
Implementing a Heterogeneous 
Multi-Core Prototype in an FPGA

Leif Tore Rusten
Gunnar Inge Sortland

Master of Science in Computer Science

Supervisor: Magnus Jahre, IDI
Co-supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: July 2012

Norwegian University of Science and Technology





Problem Description

Implementing a Heterogeneous Multi-Core Prototype in an FPGA

Current multi-core processors are constrained by energy. Consequently, it is not possi-
ble to improve performance further without increasing energy efficiency. A promising
option for making increasingly energy efficient CMPs is to include processors with dif-
ferent capabilities. This improvement in energy efficiency can then be used to increase
performance or lower energy consumption.

Currently, it is unclear how system software should be developed for heterogeneous
multi-core processors. A main challenge is that little heterogeneous hardware exists. It
is possible to use simulators, but their performance overhead is a significant limitation.
In this thesis, the students should develop a framework for realizing heterogeneous multi-
core processors in an FPGA. The minimum requirements of this thesis are two simple
processor core implementations, a scalable interconnect and a memory interface. If time
permits, a simple Task Based Parallelism (TBP) runtime engine can be implemented
for the prototype architecture.

Supervisor: Magnus Jahre, IDI
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Sammendrag
(Norwegian Abstract)

Siden midten av 1980-tallet har ytelsesveksten for prosessorer vært formidabel, med
en årlig vekst p̊a om lag 52%. Denne veksten er gjort mulig blant annet grunnet
arkitekturer som utnytter ILP og økende klokkefrekvenser. Disse fremgangsm̊atene for
ytelseøkning er derimot ikke lenger like effektive siden vi har n̊add den praktiske grensen
for effektforbruket til prosessorer. Ved å bruke heterogene prosessorer kan vi forbedre
energieffektiviten, men dette krever forskning p̊a åpne spørsm̊al vedrørende heterogen
prosessering. Mangelen p̊a heterogen maskinvare gjør det derimot vanskelig å drive
effektiv forskning. I denne oppgaven har vi laget et svært modulært og konfigurerbart
rammeverk for prototyperealiseringer av heterogene flerkjerneprosessorer. Rammever-
ket, som er planlagt brukt hos datamaskingruppen ved NTNU, best̊ar av to forskjellige
prosessorfliser i tillegg til en rekke funksjonelle fliser. Disse flisene kan flislegges til
forskjellige heterogene prosessorprototyper. Ved å bruke rammeverket v̊art opp mot en
Xilinx Virtex 6 fikk vi implementert prosessorer med opp til 40 heltallskjerner eller 16
flyttallskjerner.





Abstract

Since the mid-1980s processor performance growth has been remarkable, with an annual
growth of about 52 %. Methods such as architectural enhancements exploiting ILP and
frequency scaling have been effective at increasing performance, but are now limited by
its diminishing returns and the power wall. Heterogeneous processors as an alternative
source for continued growth looks promising, but research on heterogeneous software is
made difficult as heterogeneous hardware is in low supply. This thesis cover the design
and implementation of a heterogeneous processor called SHMAC and its framework.
Flexibility of the delivered system allows rapid exploration of both hardware and soft-
ware sides of heterogeneous processor research questions. The system is intended for
research at CARD at NTNU. Two processor tiles and a set of additional tiles for ex-
tended functionality are provided, yielding a wide range of possible hardware setups in
the delivered framework. Using a Xilinx Virtex 6 we were able to implement 40 integer
cores or 16 floating-point cores.
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1
Introduction

It is roughly 60 years since the first general-purpose electronic computer was created. In
this period, the progress of the field of processor design has been incredible. Figure 1.1
shows that from 1986 to 2002 processors had a performance growth of about 52 %
annually. The performance growth for single core processors has however declined the
latest years due to the limitations of power, available Instruction Level Parallelism (ILP)
and memory latency [1]. According to Horowitz and Dally [2] the power of today’s chip
is now limited by the cost of cooling.

As the growth in single-core processors have been high, computer software has tradi-
tionally been written for serial computation. Until recently, performance growth have
focused on increasing instruction throughput through pipelining for allowing frequency
scaling and exploiting all forms of ILP [3]. To enable higher frequencies and thus perfor-
mance, processors became increasingly complex with deep pipelines, advanced branch

Figure 1.1: History of Processor Performance from 1978 to 2006. (Reproduced from [1,
p. 3])

1
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Figure 1.2: The Power Wall. (Reproduced from [4])

prediction to avoid the cost of flushing these pipelines and reordering of instructions to
exploit ILP.

The increased complexity of processor designs have led to an increased power usage
as frequency is increased and more transistors are utilized. Meenderinck and Juurlink
[4] argues that we have reached the power wall for single-core processors (illustrated
in Figure 1.2) i.e. we can no longer easily get more performance growth from adding
complex hardware modules. This is due to power constraints which limit the complexity
at a given clock frequency, but designs are also influenced by its economics [5]. Data
centers consumed 1.5 % of all electricity in the U.S. in 2006 with an annual growth of
12 % [6]. This has created an increased focus on energy efficiency.

Borkar and Chien [7] predicts that operation frequency will increase slowly, with energy
as the key limiter, during the next two decades. This forces a change in our approach
to exploiting parallelism for increasing performance. One possibility is to focus on
heterogeneous cores and accelerators to achieve good performance and energy efficiency.
As given by Amdahl’s law, total speedup for parallel execution of a program is limited by
its sequential parts. Performance will therefore require research in exploiting parallelism
without sacrificing single thread performance [8].

In nearly every program there will be a substantial amount of work which cannot easily
be implicitly parallelized by hardware. This is due both to true dependencies within
the program in addition to that there may be to expensive to exploit all available
ILP within a program. In a multicore setting, the total execution time and/or power
consumption would benefit from assigning unparallelizable work to a faster CPU core
or accelerator. This is exactly what heterogeneous processors enables if one assigns
unparallelizable or hard work to higher performance cores or accelerators, while still
using simple cores for normal parallelizable work. Some early research suggests that a
task-based programming model may be fitting to utilize a system using heterogeneous
cores, given that the scheduler is aware of its architecture [9, 10].

Heterogeneous computing is becoming one of the main focuses of research at The Com-
puter Architecture and Design Group (CARD) at Norwegian University of Science and Tech-
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Figure 1.3: A first SHMAC overview

nology (NTNU). This computer architecture approach looks promising both for reducing
energy consumption and increasing performance. To obtain as large a potential gain as
possible it is necessary to understand how to utilize the heterogeneous computational
units in smart ways. This requires research on the topic of heterogeneous processors,
but heterogeneous processor implementations are not readily obtainable.

1.1 SHMAC Overview

This thesis’ purpose is to implement a heterogeneous processor using an Field-Programmable Gate Ar-
ray (FPGA) in an attempt to circumvent the current lack of heterogeneous hardware
available. A hardware framework is requested rather than a simulator framework be-
cause software approaches becomes limited due to simulation overhead as the core count
increases. Simulators are on the other hand very flexible. Our thesis’ outcome should
allow for the specification of multiple different heterogeneous designs. This customiza-
tion shall compensate for the lack of currently commercial solutions to build research
on. The customization also tries to mitigate the loss of flexibility incurred by moving
away from simulators. Based on the hardware space attainable from this customizable
framework, research on characteristics software solutions need to fully exploit heteroge-
neous processing can be done. In case the hardware space made available in our delivery
becomes to restrictive, the system is designed in a way that allows for easy modification
and additions of new modules and concepts to the framework.

We have created a processor design called Single-ISA Heterogeneous Multicore Archi-
tecture Computer (SHMAC) which together with its associated framework promises to
fulfill the previously outlined purpose. Figure 1.3 shows one possible hardware configu-
ration of the SHMAC processor consisting of sixteen cores. The cores are encapsulated
in a construct called a tile. The tile concept is known for its ease of scalability and
how its reusability leverage initial design cost and subsequent maintenance efforts. Fur-
thermore, as previous work by Zhang and Asanovic [11] shows, tile-based architectures
allows for a modular approach. The details of the different interiors of tiles are kept
contained within each tile. By encapsulating the different cores in uniform tiles we
allow for the complete separation of the interconnection module from the core modules.
This makes it easy to modify the organization of tiles and the implementations of the
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modules. New hardware concepts can easily be made into tiles and be integrated with
the existing framework.

In addition to the processor framework we have created a small run-time support system
creating the abstractions needed for communication between cores and for synchroniza-
tion. If cores are to cooperate, then these building blocks are of importance since
reasoning about shared memory is easily error-prone if not supported by some sort of
software abstractions. The SHMAC framework is intended to be CARD’s initial pro-
totype of a heterogeneous framework. It is going to aid in the exploration of existing
solutions (e.g. task-based parallelism) and discovery of novel software approaches. The
delivered software abstractions is considered helpful for a swift start-up after project
handover.

1.2 Assignment Interpretation

We have split the assignment into the following precise tasks:

T1 (Mandatory) Create a framework for heterogeneous multi-core processors in an
FPGA. Different processor cores must be included in the delivered framework.

T2 (Mandatory) Include a scalable interconnect for processors and memory.

T3 (Mandatory) Add a memory interface for external access.

T4 (Optional) Implement a Task Based Parallelism (TBP) run-time engine on top of
the hardware.

T3 has been made more precise than what the assignment text specifies as merely
requiring any memory interface is trivially fulfilled in any processor design. Making
precise the notion of external memory accesses as for e.g. examining memory from
a lab setup, introduces functionality and possibilities not already inherent. This is
assumed to be the true intent of this part of the assignment.

1.2.1 Requirements

A set of developer requirements were determined based on a combination of the tasks
found, input from CARD and our own self-interests in such a framework.

Functional Requirements

1. The framework must ship with a basic integer based core

2. The framework must ship with a floating-point accelerated core

3. The framework shall utilize the modular tile architecture

4. The framework shall utilize a mesh interconnect

5. The framework must have an external memory interface

6. The framework need only support a single Instruction Set Architecture (ISA)
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Table 1.1: Key design decisions

Choices considered
Design question (bold marks decision) Remarks

Architectural class Classic, Tile By Classic we mean the de facto indus-
try standard with cores connected in a
multi-level cache hierarchy.

Interconnect type Mesh, Tree,
All-to-all, Bus All-to-all and bus interconnects were

only briefly considered as these were
considered to not meet the scalability
requirement of T2.

Core diversity by Accelerators, ILP Starting from a simple core it seemed
less time-consuming to integrate an ac-
celerator then to add ILP techniques.

Multi-ISA Yes, No Single-ISA suffice when researching the
impact of software techniques on dif-
ferent heterogeneous processor layouts,
while simplifying aspects of both pro-
cessor tile design and run-time system.

Non-Functional Requirements

1. A FPGA must be utilized

2. The GNU Compiler Collection (GCC) tool-chain should be supported

These requirements fixes the more loosely defined tasks. As the tasks left us with a
great deal of freedom of choice, some overall factors were decided upon to guide in the
decision making. Table 1.1 succinctly summarize the key decisions made.

From the outset we decided to opt for choices which were time-saving to implement,
but still generic enough to be considered a suitable first architecture for design space
explorations in both hardware and software. Also, to enable easy future extensions
of the framework, modularity were considered a crucial factor when finalizing the re-
quirements. For the same reasons the novelty of our architecture has been given a low
priority so novel ideas were only brought to completion whenever it was considered the
more time-efficient alternative. E.g. when implementing atomic hardware operations,
in the choice between adding cache-coherence (the conventional way) and creating our
own solution, the former option was discarded as it was considered too time-consuming.

Task T1 asks for multiple processor cores. We choose to fulfill this aspect by using
a simple core as one of the two core designs required and then modifying this with
new features to provide the second design. Modifying the core to exploit more ILP
was considered to daunting for our given time budget. For instance, adding support
for speculative execution would require substantial redesign of an already functioning
processor pipeline, incurring regression test costs in addition to the already high costs
associated with complex logic. Instead we choose to add a floating point accelerator to
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the design whose complexity is contained within itself.

Seeing as how the assignment tasks us to make a framework and not a complete pro-
cessor design from scratch, we opted for the simple core design to be a third-party
component. This was in part a consequence of our wish for supporting the GCC tool-
chain for easy software development. Since supporting GCC meant we had to implement
a GCC supported ISA fully we would rather use a third-party design and use the time
saved to focus on the overall framework.

Additionally, the core design should allow for modifications so adding an accelerator
is possible. This meant we would not be using Xilinx IP from our development en-
vironment. MIPS Technologies provides complete cores, but since these are not free
this was not considered an option. Instead we focused on finding suitable designs on
OpenCores[12].

To evaluate third-party modules we assume that we can find suitable and working
designs without too much effort wasted. Also, while using freely available modules for
the more complex parts such as the cores and accelerator should allow us to focus on the
integration and the overall architecture, there is a trade-off. Time and effort have to be
redirected to learning these modules, possibly extending them to meet our requirements
and tailor them to fit in the design. Even so this was considered a less time-consuming
approach than to write and test similar modules from scratch ourselves.

An added benefit from using open sourced third-party modules is that its maintenance
becomes a collective endeavor of the original authors and its users. A drawback from
this is that any modifications done on the module by our part which are for internal
use only and not patched upstream must be regression maintained when updating from
the third-party. This effort is considered small in comparison to full maintenance, so
all in all this should free resources for the users and maintainers of our framework.

When considering the requirement for a scalable interconnect, two designs were found
suitable. One is a mesh based approach where each tile is connected to a neighbor on
each side of itself. This is a very conventional and tried-and-true approach. The second
approach is tree-based and works by dividing memory space according to the relative
height of leaf nodes (i.e. tiles) in the tree. The tree-based approach, albeit interesting,
was discarded in favor of a known to be reliable and seemingly simpler mesh-based
design. An especially compelling reason for settling on the mesh approach is that it is
deadlock free if using well-known routing strategies.

Even though the possibility for a multitude of different designs is available with a
modular tile approach, for this thesis some constraints were enforced to aid and simplify
the total system. The most considerable is the decision to focus on a single ISA. Even
though the SHMAC architecture does not restrict the addition of cores using different
ISAs, it would require inter-ISA adaptations not currently implemented. For instance,
mechanisms to keep the memory space consistent with regards to endianness would be
needed. The complexity introduced with these adaptions, combined with the run-time
system challenges, were considered too large a work burden. Support for such a system
were not needed by the research group and by constraining on the number of ISAs
supported, requirements such as supporting the GCC tool-chain also becomes more
feasible.
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1.3 Main Contributions

This thesis gives a flexible and highly modular framework for heterogeneous multi-core
processors, focused on being easy to expand and improve so it can be used for rapid
prototyping. The resulting framework consists of the following contributions.

Hardware

C1 A mesh interconnect with a uniform router interface both internal and exter-
nal to tiles. Enables encapsulation and modularity

C2 An integer tile as a basic core

C3 A floating-point accelerated tile as a advanced core

C4 An implementation of atomic locking in processor hardware without the use
of a cache subsystem

C5 An atomic lock tile to support C4

C6 A technique called the jump tile to correctly bootstrap the different tiles in
different parts of the memory space

Configuration/debug system

C7 A configuration system to setup different processor layouts and coordinate
the hardware and software components accordingly

C8 Support for GCC using C7 with custom linker script and mechanisms to
support shared symbols between cores

C9 A communication tile for external memory access and to control execution

C10 Support tiles such as clock tile for timing, led tile for debugging and ram
tile for extending memory is also provided

Run-time system

C11 A mutex library utilizing the atomic locking enabled by C4 and C5

C1 answers task T2 as both processors and memory is contained within tiles and C1
constitutes an interconnect between tiles. Contributions C2 and C3 fulfills the require-
ment for multiple cores as required by task T1. Task T3 is handled by contribution
C9. The rest of the listed contributions are functionality and aspects of the framework
considered by us to have significant worth for users.

Throughout the thesis, multiple design opportunities and improvements outside our
scope have been located and since documented in this thesis. We mention this briefly
here even though it should not be considered a main contribution. On the other hand, as
heterogeneous processing is an ongoing research topic, these remarks and observations
are of interest, especially when considering that the delivered framework will be put to
use in active research.

In addition we have created microbenchmarks which tests the memory access perfor-
mance. Benchmark showing parallel performance and relative speedup is also included.
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1.4 Report Outline

The rest of the report is organized as follows:

Chapter 2, Background, introduces the theoretical basis for the implemented architec-
ture, in addition to a broader basis needed for understanding the different challenges
arising when designing an Heterogenous Multicore Processor (HMP). This chapter will
also include theory about programming models useful for these architectures. Chap-
ter 3, The SHMAC, gives an overview of the implemented architecture. Here we present
a top-down view of the system, the tile concept, its interconnect and memory system.
Finally the programming model, configuration and run-time system is also described.

Implementation details for hardware is given in Chapter 4, Detailed Design. This
presents the different tiles and their inner workings, including the different cores’ im-
plementations and basic units such as the interconnect switch and routing. Software
implementation is given in Chapter 5, SHMAC Software. Chapter 6, Verification, gives
methodology and test strategy for verification of the design.

Chapter 7, Results, lists the results from this work. This includes microbenchmarks
showing memory access performance, parallel performance for the processor and syn-
thesis time for the design. Chapter 8, Discussion, compares the obtained results with
the requirements of this thesis with regard to programmability, scalability and perfor-
mance and examines the merit of our contributions, as well as pinpointing possible
improvements to shortcomings identified during our implementation and discusses al-
ternative designs. Concluding remarks and outlined future work is given in Chapter 9,
Conclusion.



2
Background

This chapter gives the theoretical background needed for this thesis. This includes
a brief introduction to analytical models, design of multi-core processors, scheduling
algorithms and routing algorithms. Our main focus is on heterogeneous multi-core
processors, but as a natural part of this discourse we will also consider homogeneous
multi-cores.

2.1 Analytical Models of Computer Systems

2.1.1 Amdahl’s law

Amdahl’s law states that the upper bound on the parallel speedup for any application
is given by 1/(1− p), where p is the fraction of the program that can be run in parallel
[13].

This assumes that the fraction is independent of the size of the problem that is solved,
while this is not necessarily so. By relaxing the assumption, Gustafson comes up with
a more optimistic result regarding maximal speedup. The two can be combined as
equation 2.1 [4], when assuming homogeneous cores:

S =
N

s(N−1)
s+ n
√

N(1−s)+1

(2.1)

This equation gives speedup, S, with regard to serial fraction, s. n = 1 is equal to
Gustafson’s law, while n = ∞ is equal to Amdahl’s law. A plot showing this is given
in Figure 2.1.

In reality, maximum speedup for a program will be somewhere in between Amdahl’s
and Gustafson’s law and the value of n will be application specific. Both Amdahl and
Gustafson tries to express how the critical path of a program limits maximal potential
speedup.

9
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Figure 2.1: Plot showing maximal speedup for an application given its parallel portion.
(Reproduced from [14])

Hill and Marty [8] describes maximal parallel speedup with respect to the software
fraction that is parallelizable (f), number of cores (n) and the performance of it’s
cores. The equation assumes that one core is used to execute the sequential part with
a performance perf(r).

Speedupsymmetric(f, n, r) =
1

1−f
perf(r)

+ f×r
perf(r)×n

(2.2)

Speedupasymmetric(f, n, r) =
1

1−f
perf(r)

+ f
perf(r)+n−r

(2.3)

With heterogeneous processors it may be possible to use high performance cores to
increase efficiency on sequential tasks while still being able to exploit parallelism. This
can be done by reducing execution time of the critical path of the program. Optimal
execution of a program therefore utilize all processors in such a way that all resources
are dispatched in the order to make the program’s critical path as short as possible. If
all cores are equal (homogeneous cores), a work intensive task will not be given more
resources than any other task. If the other cores must idle during such work intensive
tasks then the resources could have been spent more efficiently.

2.1.2 Pollack’s Rule

Pollack’s Rule states that microprocessor performance increases due to micro-architecture
advances is roughly proportional to the square root of the increase in complexity [15].
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Figure 2.2: Integer performance with regard to area. (Reproduced from [7])
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Figure 2.3: Examples of architectures with different complexity, showing performance
with regard to complexity.

Figure 2.2 exemplifies this with a plot of integer performance versus area for a selection
of processors.

An advanced core using nine times the resources as a simple core, would according to
this rule give three times the performance as illustrated by Figure 2.3. Figure 2.3a
shows a multi-core processor with simple cores having a complexity and performance of
1, while Figure 2.3b shows an advanced core with a complexity of 9, which according
to Pollack’s rule obtains a performance of

√
9 = 3. Figure 2.3c shows a heterogeneous

architecture with one core with complexity of 4 and performance of 2 in addition to
simple cores. The exact distribution of resources used for the advanced core versus the
simple cores is set arbitrary for illustration purposes, as the optimal distribution would
depend on the type of applications this processor is expected to run.

Table 2.1 shows execution time (number of cycles) for one single-threaded and one
perfectly parallel program doing the same amount of work. From these extremes the
generalized view is that assuming the program contains enough parallelism it will be
ideal to let it run on many small cores instead of fewer advanced cores. For the sequential
single-thread example, i.e. there is not enough parallelism within the program, most
cores would be idle and an advanced super-core would utilize resources better. As can be
seen from the table, if the program’s parallel portion is e.g. 80 % then a heterogeneous
approach is preferable.
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Figure 2.4: Run-time example for various processor architectures showing execution
time versus parallel portion of the application

Heterogeneous processors is a combination of the two extremes outlined above. It
allows sequential parts such as execution start-up to be run on a super-core. Keeping
Pollack’s rule in mind, the parallel parts would be run on a multitude of simpler cores.
Execution time is given by sequential run-time× (1− f) + parallel run-time× f . These
calculations are only a rough estimate and omits important aspects such as memory
interfaces, caching and more.

Table 2.1: Run time example for different processor architectures, where the parallel
portion of the program is given as f .

Program Work Multi Core Single Core Heterogeneous

sequential 126 126
1

= 126.0 126
3

= 42.0 126
2

= 63.0
parallel 126 126

9
= 14.0 126

3
= 42.0 126

7
= 18.0

f = 80 % 126 36.4 42.0 27.0

From this simple example it can be observed that the sequential parts of a program can
significantly slow down overall performance, as shown by Amdahl [8]. For our example
the heterogeneous core will outperform the single core processor even if when only half
the program can be parallelised. In the same example the multicore will only be faster
when the program is close to absolute parallel, as shown in Figure 2.4.

Also, the optimal distribution of advanced versus simple cores and the amount of re-
sources allocated to each advanced core will be application specific. This is dependent
on the amount of sequential work in the applications [8]. It is important to keep in
mind that there may be parts of the program with different degrees of parallelization
such that one could benefit from having more than one super-core. For example if some
parts of the program only have a few threads while the rest is embarrassing parallel.
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2.2 Chip Multiprocessors

Figure 2.5: ILP available in a perfect processor for size of the SPEC92 benchmarks.
(Reproduced from [1, p. 157])

Lately there have been a shift from focusing on increased single-thread performance,
mainly driven by exploiting ILP and increasing clock frequency, to maximizing through-
put by using multi-core processors.

There are three primary factors that have led to this shift:

The ILP wall To keep increasing frequency, processors needs to find enough par-
allelism in a instruction stream demands reordering instructions and advanced
techniques to keep the processor busy. This requires speculative executions with
complicated, dynamically-scheduled processors [16]. Even with these advanced
techniques, finding enough parallelism to keep a high-performance processor occu-
pied is hard. Figure 2.5 lists the available ILP for six of the SPEC92 benchmarks,
where the last three benchmarks are loop-intensive floating-point programs. This
figure shows that even if there is a lot of available ILP, not all of this can be
exploited due to limitations in window size (as shown in the figure) for finding
ILP, imperfect branch and jump predictions and finite number of virtual registers
[1, p. 154].

The power wall Power consumption is proportional with frequency, and depending
on the cooling system, power can become the limiting factor for the maximum
obtainable single core performance [4].
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The memory wall There has been a growing disparity of the processors performance
and the main memory latency [17].

One of the greatest challenges this shift have brought is increased complexity for ap-
plication development as exploiting all available resources requires the software to be
written with parallelism in mind.

2.2.1 ILP focused CMP

ILP techniques exploit the inherent parallelism between instructions. Several instruc-
tions can be executed simultaneously (super-scalar) or multiple instructions’ can be
in-flight at different parts of the pipeline at once. One example of a processor utilizing
these techniques is the Pentium 4, which includes massive out-of-order execution, deep
pipelines and advanced branch prediction [18].

Hennessy and Patterson [1, p. 67] lists loop-level parallelism as the simplest and most
common way to exploit ILP, that is to exploit parallelism among iterations of a loop.
One example of code inheriting this parallelism is given in Listing 1. Each N iteration
is independent, allowing them to run in parallel. This is typically exploited by either
allowing the compiler to create vector instructions utilizing the Central Processing Unit
(CPU)’s SIMD unit, by loop unrolling or in more advanced processors let the out-of-
order unit handle loop-level parallelism automatically. Since it may be costly to flush a
deep pipeline, many processors reorder instructions to avoid running instructions with
dependencies at the same time.

Listing 1 Loop-level Parallelism

for (int i=0; i<N; ++i)

x[i] = x[i] + y[i];

Very Long Instruction Word (WLIW) processors are designed to exploit ILP without
adding much complexity, with the motivation that single instructions does not use all
of the processors resources. In these processors, instructions are bundled. A bundle is
a fixed number of instructions which can be executed simultaneously. For instance that
one multiplication instruction and three addition instructions can be done in parallel
and can therefore be added to the same bundle. These families of architectures is
popular in embedded systems.

2.2.2 TLP focused CMP

Sun Microsystem’s UltraSPARC T1 (Niagara 8 Core) is an processor which focuses
on maximizing Task Level Parallelism (TLP) instead of ILP. This design opts out on
techniques such as multiple instruction issue, out-of-order issue and aggressive branch
prediction. This allows for keeping each core simple which increases the number of cores
that may fit into a chip [19].
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Figure 2.6: Tile concept with CPU, cache and router. (Reproduced from [11])

It is a barrel processor support 32 threads and switches thread each clock. If a thread
is waiting for memory it is simply skipped. With this architecture the processor may
operate efficient even when threads are waiting for memory, reducing the need for
advanced caching.

Another processor type focused on TLP is Graphical Processing Units (GPUs). This
is however a separate unit giving rise to significant latency when copying data to and
from the unit.

2.2.2.1 Tiled Chip Multiprocessors

The term Tiled Chip multiprocessor was introduced in 2005 by Zhang and Asanovic
[11]. The main idea introduced is to create a regular structure of modular processing
cores named tiles. These tiles are replicated throughout the chip and connected using
an interconnect. Figure 2.6 shows, that by using replicated cores, one may create a less
error prone architecture, as each core may be simpler and tested independently.

Tilera is currently shipping processors with up to 100 cores. The TILE-Gx100 processor
family has an operating frequency of 1.5 GHz and typical power usage of 10 to 55W.
I.e. both power and frequency lower than for typical state-of-the-art server processors.
This processor includes in addition on-chip hardware accelerators for encryption and
compression.

A paper by Facebook and Tilera shows that for a tuned version of Memcached “a
TILEPro64-based S2Q server with 8 processors handles at least three times as many
transactions per second per Watt as the x86-based servers with the same memory foot-
print”, and had a performance advantage many times higher than Intel XEON and
AMD Opteron processors [20].

Figure 2.7 shows that this family of processors uses multiple copies of the same core
interconnected with a mesh using packet switching. Each tile consists of a processor
with L1 and L2 cache, in addition to a non-blocking switch. Each processor is connected
with a two-dimensional on-chip mesh network.

To provide more deterministic throughput several parallel meshes are used with different
transaction types. To keep communication latency low and scalable bandwidth, more



16 CHAPTER 2. BACKGROUND

Figure 2.7: Overview of the TILEPro64TM processor. (Reproduced from [21])

parallel networks could be added as the number of tiles increases. In order to keep
power efficiency high, idle tiles can be set to a low-power sleep mode [21].

2.2.3 Heterogeneous Chip Multiprocessors

A heterogeneous multi-core architecture is a Chip Multiprocessor (CMP) composed of
cores with different properties regarding size, performance and complexity and different
functionality such as cryptographic accelerators or video decoding.

As the heterogeneous processor consists of both simple cores and more powerful cores,
it combines the power of efficient parallel performance of multi-core processors without
neglecting sequential performance.

Kumar et al. [22] shows through simulation that their heterogeneous multi-core design
has the potential to increase energy efficiency by a factor of three. This work shows
that most energy efficiency can be obtained even when using as few as two cores. The
simulated processors are reusing four different Alpha cores, with different complexity
and power usage. Minor differences between the cores are handled by using either the
least common denominator of the supported ISAs or by using software traps.

2.3 Software for Heterogeneous CMPs

Frameworks such as Compute Unified Device Architecture (CUDA) and OpenCL are
specialized for Single Instruction, Multiple Data (SIMD) operations by utilizing GPUs.
These are languages which requires that the programmer reason about the architecture.
They may therefore be best suited when the parallelism is regular and typically the same
instruction should be executed on multiple data.

Topcuoglu et al. [23] suggests that the existing scheduling algorithms for heterogeneous
architectures is not generally efficient because of their high complexity and/or insuf-
ficient results. Two new algorithms is presented: Heterogeneous Earliest-Finish-Time
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Figure 2.8: Execution model using strands. (Reproduced from [25])

(HEFT) and Critical-Path-on-a-Processor (CPOP).

Directed Acyclic Graph (DAG) scheduling is used in many applications. It uses partial
ordering, which can be represented as a DAG. General DAG scheduling is NP-complete,
and there have been much research in finding heuristics for this problem. Most of these
are, however, targeting homogeneous processors.

The HEFT algorithm selects the task with the highest upward rank at each step and
assigns this to the most suitable processor that minimizes the earliest finish time. CPOP
schedules critical-path nodes onto a single processor in order to minimizes the critical
path length. HEFT is claimed to outperform all other tested algorithms, but also CPOP
seems to perform better or equal to existing algorithms.

HEFT has been observed to be significantly affected by how weights are assigned to the
nodes and edges of the DAG [24]. This study focuses on five heuristics for heteroge-
neous DAG-scheduling; HEFT, CPOP, Dynamic Level Scheduling (DLS), Fastest Crit-
ical Path (FCP) and Levelized-Min Time (LMT). Sakellariou and Zhao [24] suggests
using an hybrid approach for DAG scheduling by reducing the problem to smaller
sub-problems for scheduling independent tasks, leading to their Balanced Minimum
Completion Time heuristic.

TBP is a form of parallelization, focusing on parallelising tasks in contrast to ILP and
data parallelism which is much used in most modern processors using SIMD-instructions
and automatic reordering by the processor.

Using the definitions from Intel c© CilkTM Plus, a strand is a sequence of instructions
without any spawn or sync points. A spawn occurs where one strand ends and begins
two new ones, and a sync ends one or more strands and starts a new strand. All new
strands can be run in parallel with each other.

All strands of a programs execution can be seen as a DAG, where spawns are viewed
as outgoing edges and syncs as incoming edges. This is shown in Figure 2.8.

2.3.1 Work Stealing

Optimal DAG scheduling is known to be NP-hard [26]. As the execution of a program
may be viewed as a DAG, finding a good online algorithm for scheduling with minimal
overhead is important.

Well known implementations of TBP-libraries such as Wool [27] (C) and Intel c© CilkTM
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Plus [28] (C/C++) use an algorithm called work stealing for scheduling work to each
processor. This algorithm is designed to minimize the number of times work is moved
between the processors [29].

The original paper on Cilk [28] proves that the upper bounds of resources used is:

Space The memory used by a P-processor execution follows SP ≤ S1×P , where S1 is
the memory usage of a serial execution of the Cilk program.

Time With P processors, the expected execution time is bounded by TP = O(T1/(P +
T∞)), where T1 is the execution time by its serial elision.

Communication The expected number of bytes communicated during execution is
O(T∞ × P × Smax), where Smax is the largest size of any closure.

Even though work scheduling is known to be NP-complete, all these bounds are proved
to be within a constant factor of the optimal [28].

2.3.2 Architecture-aware Task-scheduling

The execution time of a program will be bound by the critical path of the application’s
execution DAG. Both Wool and Intel c© CilkTM Plus assumes a homogeneous architec-
ture. An heterogeneous architecture can shorten the critical path by allocating task on
this path to higher performance cores.

There has been some research on architecture-aware task-scheduling with different ob-
jectives, such as minimizing the processors temperature [30], minimize energy usage
[31] and maximizing performance [23]. Task-scheduling for heterogeneous processors is
a complex problem as the scheduler needs to be able to find a matching between the
tasks and cores without significant cost in performance and/or power usage. This still
remains an active field of research.

2.4 Interconnect

Interconnects is an essential part of multi-core System-on-Chips (SoCs) design since
typical workloads utilize communication patterns such as map-reduce and all-to-all.
Using a single communication interface between all parts of the system also allows
for easy modularization and abstraction. Such networks can utilize both packet and
circuit switching, but only packet switching will be covered in this report. The mesh is
well-known and is thoroughly analyzed elsewhere.

A mesh arranged in n-dimensions with k nodes in each dimension contains a total
of N = kn nodes. The number of dimensions chosen have an impact on obtained
throughput and latency, but to keep wires short and to minimize serialization latency
the lowest dimension number that still allows for maximum throughput should be chosen
[32]. The number of dimensions may be increased as the number of cores becomes
sufficiently large, to allow the interconnect to scale well with regard to bandwidth.
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2.4.1 Routing Algorithms

Figure 2.9: The possible abstract cycles and turns in a 2D mesh. (Reproduced from
[33])

For n-dimensional mesh topologies, dimension order routing algorithms are proven to
create deadlock-free routing. These algorithms are very popular, and includes the rout-
ing algorithms Turn Model and XY routing [32]. Figure 2.9 shows the eight possible
turns for a two dimensional mesh. Dimensional order routing algorithms imposes re-
strictions on which of these turns that should be allowed to avoid possible deadlocks.

Using a torus instead of a mesh gives the network a smaller diameter, which can improve
latency and efficiency in the network. Making a routing algorithm deadlock-free in a
torus will however require two virtual channels, in contrast to a mesh where one channel
suffices. Utilizing a torus network would require other algorithms than for a mesh and
is left as future work [34].

2.4.1.1 The Turn Model

The Turn Model is an deadlock and livelock free routing algorithm, which is adaptive
and restricts packets to the shortest possible path [33]. The path between two nodes is
determined based on the network load. By disallowing some turns, such that no cycles
can be formed, the routing can be done deadlock free [32, p. 268]. Figure 2.10a shows
the six turns allowed by the west-first algorithm, which is one of the possible routing
algorithms within the turn model. Figure 2.10b gives an example of this algorithm for
an 8x8 mesh.

2.4.1.2 XY routing

Another, more restrictive, dimensional order routing algorithm applicable for 2D meshes
is the XY routing algorithm. Figure 2.11a shows the allowed turns for this algorithm,
with an example given in Figure 2.11. This algorithm will route packets in the X
direction until it is on the correct column before routing the packet in the Y direction.

This algorithm gives a deterministic routing, where two packets with the same source
and destination will cross the same route without considering traffic. There will there-
fore be no reordering of memory accesses due to routing.

XY routing also guarantees that a packet will, assuming use of a mesh topology, take
the shortest possible path in the network, i.e. the Manhattan distance. It does however
seem like there is a tendency of accumulation of packets around the center of the network
when there is significant traffic [35].
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(a) The six turns allowed by the
west-first algorithm. (Reproduced
from [33])

(b) Examples of the west-first algorithm. (Re-
produced from [33])

Figure 2.10: The west-first algorithm.

2.4.2 Wormhole Flow Control

Cut-through switching is a method for packet switching networks, where the switch
start forwarding a packet before the whole frame is received. Wormhole flow control is
a form for flit-buffer flow control, which operates like cut-through, but the channel and
buffers are allocated to flits rather than packets [32].

Each network packet is broken into a number of smaller packets named flits. When the
head flit arrives at a node it acquires a virtual channel, one flit buffer and one flit of
the channels bandwidth. Each following flit is routed using this virtual channel until
the arrival of the tail flit. The tail flit releases the virtual channel as it passes. Using
wormhole flow control the number of lines between each tiles could be decreased, but
will lead to higher latency than sending full packets.
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(a) The four turns allowed by the
XY routing algorithm. (Repro-
duced from [33])

         (2,2)

R M

P
R

i

j

         (0,0)

R M

P
R

         (0,1)

R M

P
R

         (1,0)

R M

P
R

         (2,0)

R M

P
R

         (2,1)

R

P
R

         (0,2)

R M

P
R

         (1,1)

R M

P
R

         (1,2)

R M

P
R

M

(b) Example of XY routing

Figure 2.11: The XY routing algorithm
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3
The SHMAC

This chapter presents an overview of the processor architecture while the details about
the implementation are deferred until Chapter 4.

Figure 3.1 gives an overview of the implemented architecture, SHMAC, which consists
of a number of independent tiles interconnected using a mesh. Each tile is allocated
a subset of the global memory’s address space, referred to as its local memory. This
makes SHMAC a Non-Uniform Memory Access (NUMA) processor as the memory
is distributed and the mesh interconnect access times are dependent on the distance
between tiles.

The interconnection network is organized as a mesh with full-duplex channels between
neighboring tiles. This interconnect is hardwired for a two dimensional network with
fixed bandwidth. The network transports memory requests and responses in a packet
format. A master unit sends a request to a slave unit over the mesh, which the slave
unit then must handle appropriately. Figure 3.2 shows how tiles in a mesh structure
can be mapped to coordinates in a regular fashion. Based on such a regular coordinate
structure, routing can be carried out in a simple manner.

T1 T2

T3 T4

SHMAC

Figure 3.1: Top-level overview of the SHMAC processor showing organization of tiles
and interconnection network

23
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Figure 3.2: Mesh organization of tiles with given coordinates.

The concept of using replicated tiles throughout the design does not require the use
of a mesh network. If a new router module is created, SHMAC could use alternate
topologies such as discussed in the Piranha project [36].

3.1 Instruction Set Architecture

The SHMAC is a single-ISA architecture, similar to the architecture given in [22]. All of
the processor cores should therefore be able to execute the same instructions, i.e. same
program binaries, even though the different cores have different capabilities. Single-ISA
allows a scheduling run-time system to schedule tasks to arbitrary cores. That is all
processor cores should be able to execute the same code, but the performance of this
execution may suffer if scheduling does not take the individual cores’ capabilities into
account.

The current ISA supported is the MIPS-I, which is chosen on the basis of it being a
relatively small Reduced Instruction Set Computer (RISC) architecture supported by
GCC. MIPS also facilitate the use of coprocessors, which makes it simpler to expand
the processor, e.g. by adding a floating-point unit. Its 32 bit-architecture helps to keep
the logic footprint small. Also, multiple third-party open-source implementations are
available for the MIPS architecture, which lowers the risk for the project as one of its
main components is easily replaced in case of serious bugs or other deficiencies.

The MIPS-ISA allows coprocessors to throw exceptions if operations is not implemented.
It also allows a processor to set an exception if coprocessor 1, which is reserved for
Floating-Point Unit (FPU), is not present. This can be used for full floating point
support in both cores with and without an FPU module by implementing floating-
point support in software. Hardware traps can also allow for the FPU to support only a
subset of the floating-point operations. Jumping to interrupt routines which implement
the missing FPU operations while operating on the data stored in the FPU register file
is readily possible with CPU-to-FPU register instructions in the MIPS-ISA.
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external channels

channels

Figure 3.3: An overview of a generic SHMAC-tile

3.2 Tile Organization

Figure 3.3 gives an overview of the content of a generic tile. Each tile consists of an
optional master unit, a slave unit and a router unit.

Master Unit sending memory requests

Slave Unit handling memory requests – must send reply on memory read operations

Router Forward packets to other tiles or internal if tile is destination

Master units will typically be processor cores, while slave units typically will be on-
chip block Random Access Memory (RAM). Slave units may also be control of Light-
Emitting Diodes (LEDs), off-chip memory and other units that can be controlled by
memory accesses.

Any request to a tile’s memory range will be handled by this tiles slave unit, and will
handle this request according to if it is a read or write operation. For a read operation
it must return an reply to the master unit. The slave unit is not required to function as
RAM, such that how the unit handles request to its address range is specific for each
tile; The only requirement is that if this is a read request the unit must send a response.
If the local address is not valid, this response should include a flag indicating this.

If a tile is not making use of its associated local memory space the architecture still
requires that external memory accesses are handled as according to the specifications,
i.e. returning a reply to any read requests. This is the tile’s responsibility associated
with being allocated a subset of the global memory space. A dummy slave unit which
simply replies to any read request with zeroes is provided to uphold this responsibility
for tiles not utilizing a slave. Such a tile will in the report be referred to as a pure
master tile, with a pure slave tile being a tile without a master.
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Figure 3.4: Global address layout
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Figure 3.5: Virtual tiles merged

3.3 Memory Layout

SHMAC uses a NUMA layout. All tiles shares the same memory space wherein each
tile have a local memory, but are still able to access all other memory locations in the
processor. As the processing cores are without cache, this makes the tiles very sensitive
to memory access patterns.

Figure 3.4 shows the global memory address layout. Each tile is given a subset of the
memory map, where the most significant bits of the memory address maps to the tile
responsible for it. Specifically the tile’s coordinates (i,j) is used as seen in the figure
to partition the global memory space. The remaining bits gives the local memory byte
address space, wherein only a subset of the addresses is used. The SHMAC defines the
global memory space as little-endian. This means that all data shared with other tiles is
assumed to use this convention. A big-endian tile’s data should therefore be converted
when crossing this tile’s interface.

Currently the SHMAC is configured to use eight bit for coordinates, allowing 28 = 256
cores with local memory limited to 224 B (16 MB). A research goal of reaching 1024
cores would give a local memory of only 222 B (4 MB). Further still, most tiles will have
an even smaller memory than this. This according to how much memory resources are
available per tile when reaching a high number of cores, but also by what is required for
the tile’s functionality. In other words, the number of unused bits in the local memory
address will vary between tiles. The SHMAC also does not require that the size of the
mesh is a power of two. This allows that not all the values of the coordinate fields of
Figure 3.4 will map to tiles and therefore will not map to memory addresses.

Multiple tiles can be combined virtually so that a physical tile can have a larger address
space. The need for such a solution becomes more apparent the larger the maximum
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Figure 3.6: Global Memory Space Layout

count of tiles supported becomes, as the architecture divides the global memory space
equally according to the maximum number of tiles possible. When tiles require a larger
address range to function properly, then one possibility is to use as many tile slots as
needed. This will require adapter logic, for instance a tile made to consume a given
number of tile slots to produce a single tile slot. Figure 3.5 shows an example of where
all tiles at the right border would be connected to the same physical tile, i.e. where tile
T2 and T4 are virtual.

For tiles which include a processing core, the start of its local memory contains the
program to be executed. The start of a tile’s local memory is on the other hand not
necessary the memory address the processing core asks to fetch first. Instead of fixing
this start address in the cores, we fix it at the memory location. If a processing core
which is included in a specific SHMAC layout starts by requesting instruction address
a, then we solve this by placing what we call a Jump Tile at the coordinate responsible
for the global address a. The Jump Tile’s responsibility will then be to make sure that
the different cores will start executing at the its associated tile’s local memory instead.
Typically the first address fetched for processors will be address 0 so a Jump Tile is
normally positioned at (0, 0) in the layout.

Addressstart = i << (32− 4) + j << (32− 8) + local (3.1)

The first memory address associated with each tile is given by Equation 3.1, assuming
an 16× 16 mesh. Figure 3.6 exemplifies how the global memory space is partitioned for
such interconnect parameters, where n and m are hexadecimal digits.
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4
Detailed Design

This chapter presents the details of the SHMAC design. Some overall tile concepts are
further elaborated before the different tiles are presented. Both implementation and
functionality are examined. Finally the interconnect is detailed.

Table 4.1 gives an overview of all implemented tiles. Some points are worth remarking.
The LED Tile does no address checking, as all of its memory locations are aliases to
the same set of LEDs. Some tiles are very restricted in the resources available on the
development board. Such tile types are marked with the current maximum number of
tiles possible. More details is given are given in the respective sections for each tile.

Table 4.1: Tile Details

Glyph Reference Description Master Slave Address range

P PLASMA Integer Processor mlite RAM 12 bit : 0− 4095
F FPU Floating-point Processor mlite+FPU RAM 12 bit : 0− 4095
R RAM RAM – RAM 12 bit : 0− 4095
S LED LED [Max one] – LED Full range
C CLOCK Clock – clock 0− 3
J JUMP Jump tile – jump 0− 3
L LOCK Lock tile – RAM+lock 12 bit : 0− 4095
U UART UART [Max one] UART dummy N/A

As can be seen from the table, all processor tiles delivered with the current SHMAC
framework uses either mlite or a mlite derivative as its master unit. A variety of different
processor cores can however be fitted into a processor tile, as long as they implement
the interface required to operate correctly with the router unit.

4.1 Network Packets

All communication throughout the SHMAC is done using packet switching. The layout
of a packet is shown in Figure 4.1, assuming that 2× 4 bits are used for tile addressing.

29
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Figure 4.1: Network packet layout, assuming 2× 4 bits are used for tile addressing.

As the sender’s coordinate is included, total packet size depends on the interconnect’s
size. The same layout is currently used both for memory requests and responses.

Each packet contains a req flag, which is used to decide whether this packet is a memory
response or a memory request. If the req flag is set the packet’s destination coordinate
is given by the upper bits of Address, that is bit 56 to 63. If this flag is not set then
the packet’s destination is the sender coordinate.

As master units are the ones making memory requests, the packets from these units
will have the req flag set. If a packet has arrived at its destination tile it will be routed
using one of its internal ports. This flag will then be used for distinguishing between
these internal ports, such that if req is set this is a memory request and the packet
should be routed to intern_mem. If this is not set, it will be routed to intern_proc.

Accesses to memory locations outside the tile’s scope of responsibility will on the other
hand be routed using one of the router’s external channels according to the implemented
routing algorithm. The router will therefore need to read the req field, and in according
to this read either the sender’s or destination’s address.

The write_enable field (referred to as WE in the figure) sets the write mode of this
request. Read requests are given as 0000, while each set bit indicate a write of this byte
as shown in Table 4.2. It is not required that slave units support unaligned memory
accesses. Any slave unit receiving a read request must send a reply.

The packet includes a flag field. This field supports the enums none, sync and inter-

rupt. The sync flag is used for Load-Linked (LL)/Store-Conditional (SC). An memory
response with the interrupt flag set indicate that the read was unsuccessful, typically
occurring from reading an invalid memory address.

An request with the codeinterrupt flag set is used for explicitly send an interrupt to an

Table 4.2: Setting memory request mode

WE Type Bits

0000 Read 4 byte 0− 31
0001 Write 1 byte 0− 7
0010 Write 1 byte 8− 15
0100 Write 1 byte 16− 23
1000 Write 1 byte 24− 31
0011 Write 2 byte 0− 15
1100 Write 2 byte 16− 31
1111 Write 4 byte 0− 31
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slave unit. The only tile utilizing this is the LL/SC, where this performs an explicit
invalidation of the requested memory location.

4.2 Basic Tile Units

Some units are used in many different tiles and are considered to be the basic building
blocks when composing tiles. The most reused units in the delivered framework is
the on-chip block RAM, the dummy slave and the mesh router. These will be further
examined in this section. The other units are more specific for their intended tiles and
are elaborated in conjunction with them.

4.2.1 On-chip Block RAM

All of the implemented processor tiles, in addition to locking tile and RAM tile, uses
block memory. This unit is a minimal wrapper utilizing a 1 kB third-party memory
module in a manner such that the memory can be accessed with our implemented
interconnection interface.

4.2.2 Dummy Slave

As each tile owns a subset of the global memory space, all slave units are required to
give an reply to any read request in order to avoid requesting master units to stall
forever waiting for a response. Some tiles does not utilize its local memory space and
should never receive either read or write requests. If a processor still tries to read a
memory location belonging to this tile, this error should be handled correctly without
leading to a stall.

The slave unit is therefore simply a unit which replies to any read request by sending a
packet with the interrupt flag set. The data field of this packet is all zeros, which is
a nop instruction in the MIPS architecture. Write request to invalid memory locations
are simply dropped.

4.2.3 Mesh Router

This router is the only one implemented in the SHMAC and is used in all of the tiles.
It assumes the use of a regular mesh interconnect, such that it does not utilize the
SHMAC’s torus.

Each router have up to six ports, including two internal ports for the master and slave
units. All ports have the same interface. Each port is named after their geographical di-
rection, i.e. east, north, west and south in addition to intern_proc and intern_mem.
The two latter are internal channels, while the rests is connected to other routers.
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Figure 4.2: Overview of the router module

Each router consist of four sub-modules; input ports, output ports, switch and
arbiters as shown in Figure 4.2. Each of these, except the switch, consist of one
independent sub-module for each routing direction. That is all modules have a four
sub-modules for each outgoing channel in addition to the two internal channels.

An incoming packet will be buffered in input port, setting ack to allow the sender to
continue. This module then sets up an request to the correct output port, given by
it’s routing algorithm. Each output port is connected with an arbiter which decides
which of the requesting input port that is to be handled. This arbitrator sets priority
in a round-robin manner. The output port is then setting up it the switch, holding
this channel open until input port no longer have req set.

This router may be done more efficient by dropping this strict handshake between
input port and output port, but this implementation makes communication between
modules straight forward and easy to understand.

The router uses a handshaking mechanism for interaction which all connected units
must match. When tx_req is set, it signals that there is valid data on the tx_data

bus. The receiving router sets the tx_ack when it have buffered the data, allowing the
sending router to remove the data from the bus and unset the tx_req.

The routing is done using XY routing, by first routing in the i-direction and then in the
j-direction. The routing is simply done by comparing the packets destination with the
current tiles coordinate. If the packet’s destination is the current tile it will be routed
to either intern_proc or intern_mem as described in Section 4.1

4.3 Integer Processor Tile

The Integer Processor Tile is our basic processor tile. Figure 4.3 shows this tile’s
organization. We have wrapped the third-party mlite core into a master unit while
using the basic RAM unit as the slave unit. The wrapper takes care of fitting the
mlite’s memory stalling mechanism to SHMAC’s interconnect interface.
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4.3.1 mlite

The mlite is the CPU core of the Plasma MCU by Steve Rhoads [37] found on Open-
Cores.org. This is a a 32-bit processor supporting most of the MIPS-I ISA, configurable
to either a two or three-stage pipeline. In the Integer Processor Tile this is setup as a
two stage pipeline. Figure 4.4 gives a block diagram of the core.

This core is basically wrapped into a state machine so it can be used with the SHMAC’s
network interface. When the state machine receives a memory request it pauses the
core while waiting for the response packet. The state machine must also distinguish
between data read and writes, allowing the core to immediately continue execution if
it is a write operation. Read request will however force it to pause until it gets the
response over the interconnect.

The mlite itself utilize the same memory port for both instructions and data fetches.
This is a possible improvement opportunity, but since the shared port behavior is well-
defined, i.e. the order of data versus instruction fetching is consistent, it is easy to
wrap correctly. Since this is a third-party core the possibility of the order to change
is present, making it possible for the state machine to break when updating the mlite
design from upstream.

The order of fetches is strictly enforced by our state machine. In other words, for the
current pipeline both instruction and data fetches occurring at the same time from the
different pipeline stages are ordered so one must wait until the other is completed. The
state machine introduces this stall to make sure there is no possibility of reordering the
two fetches. If we did not make sure to wait, then given the NUMA architecture of our
design a data fetch response could return before the instruction fetch which was issued
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Figure 4.4: Block diagram for mlite. (Reproduced from [37])

prior. This would result in the data response being interpreted as the next instruction.
On the other hand, a simple reordering station in conjunction with the state machine
would rectify this. This could be a simple alternative to the two ports solution alluded
to above, but would still give the mlite module an improved performance according to
the degree of data fetches in the workload.

In order to support atomic locking operations, we have expanded the CPU core to
support the instructions LL and SC defined in the MIPS-II ISA. These are the only
two MIPS-II ISA instructions our processor tiles support, so an application must not
try to use any other MIPS-II instructions. A provided locking library utilizing LL and
SC may be used so that other applications do not need to enable MIPS-II support in
the GCC tool-chain.

In order to support LL/SC the control unit of mlite is expanded to properly decode
these instructions. The control unit was modified to decode and assert control signals in
such a way that the previously available memory mechanisms could be reused with only
minor modifications. The memory controller was adjusted to interpret two new control
modes referring to whether a Load-Linked or Store-Conditional was being executed. The
most important modification of the memory controller stems from the Store-Conditional
being in our solution both a store and a load at the same pipeline step. This means
that for the beginning of a Store-Conditional the execution is much like a regular store.
Their differences stems from the fact that a regular store operation does not stall the
processor core, while our SC does. This since the conditional part of our SC can not
be determined until a response to whether or not the SC operation was successful has
arrived. This is similar to a load and is performed at the end of the pipeline step for
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the execution of SC. Reusing the already present load and store memory control modes
allowed for a cheap realization in terms of hardware and design time.

Both LL and SC requires special attention over the interconnect interface since they
must be differentiated by regular requests and responses. To handle these special mem-
ory accesses a sync-flag was introduced to the packet format. The units capable of
handling packets with this property may do so, while other units should issue an ex-
ception. Currently no exceptions are raised as the support for interrupts are somewhat
lacking in the mlite core.

4.3.1.1 Known Limitations

As previously mentioned the mlite core lacks a few instructions from the MIPS-I ISA
(unaligned load and store) and some very minor restrictions on the use of others (break
and syscall) which should normally not be problematic if using the GCC tool-chain.
These are further documented on the plasma homepage[37].

What is not documented as thoroughly is the way exceptions are handled. Currently
interrupts are hard-coded in the sense that on the assertion of an interrupt request line
the processor jumps to a hard-wired address, i.e. interrupt vector. The address fits
neatly into the software solution provided with the Plasma MCU, but not necessarily
so for other solutions, e.g. our run-time system. A solution would be to provide a
substitution mechanism in our configuration system which at synthesis time would
rewire the interrupt vector to the address of a user-provided function. This would
on the other hand tie the intended run-time software and hardware tightly together,
making it necessary to re-synthesize for changes to the software. A better solution
would be to make it possible to specify the interrupt vector programmatically.

Furthermore, no hardware traps exists for exceptions regarding other coprocessors as
currently all non-implemented coprocessor instructions are treated as NOPs. This
means among other things that for floating-point programs to run correctly on the
integer tile, they must be compiled with the soft-float option enabled. This means that
we currently need two sets of the programs to be run in experiments, one set compiled
with soft-float for the integer tile and one set with coprocessor 1 (i.e. FPU) for the
accelerated tile. We recommend that hardware traps be implemented in the mlite in-
stead and emulate an FPU in the interrupt system of the run-time system. This makes
it easier to change tile types and layout without requiring the experiments’ program
binaries to change. This leads to a better separation of hardware issues from software
issues.

To summarize, what we see is a coprocessor 0 that is only partly implemented in the
current version of the mlite core and a fault-tolerance for coprocessor 1 that is lack-
ing more or less completely. The improvement of the mlite’s coprocessor support is
considered to be a prime candidate for future work.
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Figure 4.5: Block diagram for floating-point mlite. (Based on figure from [37])

4.4 Floating Point Processor Tile

For the floating-point accelerated tile we based the design on the integer core and
added a third-party floating-point unit to it as is shown in Figure 4.5. Furthermore
the integer core’s control units were modified to support coprocessor 1-instructions and
to stall the processor when waiting for FPU computation to complete. In conjunction
with this stall logic a state machine were created to coordinating stalls according to the
different coprocessor 1-instructions. These has not been added to the figure, similar to
the original figure where all stall lanes were left out for clarity.

Seen from the figure is an FPU module and a multiplexer. The FPU module is further
elaborated in Subsection 4.4.1. One of the main responsibilities for the mlite core
regarding our FPU support is to present data and receive data from the FPU module.
As seen from the figure, some new lanes was needed and modifications to some existing
modules. Beyond this, processor register to co-processor 1 register operations was fairly
straightforward to implement by controlling the pipeline in subtle ways. For memory-
register operations on the other hand was a bit more tricky. The multiplexer has
been added because a memory store from coprocessor 1 (SWC1 instruction) uses the
FPU’s register file and retrofitting this into the regular store operation required that
all values needed for the store must be ready for the next cycle. To make this timing
requirement the data could not reuse the regular pipeline and was shortcut by using
a multiplexer and some glue logic. Memory loads to the coprocessor 1 register file on
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the other hand happens over multiple pipeline stages which makes it possible to reuse
parts of the pipeline associated with the regular loads. This enables us to avoid adding
a multiplexer for this case.

Only some of the floating-point functionality is currently implemented. This is the
aforementioned load and store together with CPU-FPU move operations and the basic
floating-point arithmetic for double precision. Other COP1 instructions (e.g. compares
and square root) causes hardware exceptions. The interrupt request lines are currently
left unconnected to the mlite core as an implementation and integration of a new co-
processor 0 module to support this was considered unfeasible within our remaining
time budget. Therefore special care must be taken when utilizing this version of the
accelerated core.

4.4.1 FPU Module

decode

control

format

mux

regfile

ev en

regfile

odd

regfile

control

FPU

single

FPU

double

FPU

fixed

reg

mode

data_in
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cause cause cause

FPU Module

interrupt

Figure 4.6: Block diagram of FPU module

Figure 4.6 shows a overview of the FPU module implemented for integration into the
mlite for the creation of an accelerated core. The detail level of this figure is kept
somewhat abstract for clarity. Some lines are not shown and some are combined. Most
notable is the handshake mechanism between the FPU Module and the mlite core
and the unlabeled arrows from the sub-module labeled “format mux”. These arrows
represent data and control lines in both direction. The dashed lines are modules not
currently implemented, but which were considered and designed for. The sub-module
“FPU double” provides our support for double-precision operations and is a third-party
module created by Lundgren [38].

When the mlite core decodes a floating-point instruction it sorts it into one of different
categories or modes as defined by us. The mode is one of the categories regular load,
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regular store, control load, control store or arithmetic. mode is input to the FPU Module
as seen in the figure. If it is an arithmetic operation then the floating-point instruction
is given as the input data data_in for further decoding at this level. If the mode is
one of the other categories then the decoder unit in the mlite will present to the FPU
Module which register reg to operate on, and as mentioned earlier will present data on
data_in or expect data on data_out for loads and stores respectively.

The FPU Module’s decoder interpret the mode and any arithmetic instruction present
on data_in and decides if this is an operation that the module is capable of doing.
If not then it raises an exception to the control module which in turn shall assert an
interrupt. If no exception is raised then the decode module presents to the “format
mux” what operation to perform and which registers/data to perform on. It also select
which data format the operation is to use as shown by the line format. This works
somewhat like a selector for a multiplexer, but the “format mux” is a multiplexer by
name only.

The sub-module“format mux”started as a multiplexer early in the design, but expanded
its functionality to encompass aspects of control regarding the different FPU format
execute units. Also, the different ways to use the register files according to which
format is in use for the current operation made it logical to place this part of the
control within the multiplexer. The different FPU execution units are all envisaged to
have the same interface and thus control and status to and from these units would be
beneficial to multiplex. The register files indexing scheme is also different according
to which format the operation is for, and instead of merging parts of the decoder and
the control module to be able to handle this, the task of choosing registers from the
multiple banks was left for the “format mux”. As such the “format mux” is one part
multiplexer and one part control/decoder. This somewhat overlap of responsibility is
symbolized in the figure by the dashed box surrounding the control, decode and the
“format mux” sub-module.

4.5 RAM Tile

The RAM tile is a pure slave tile containing a RAM slave unit. The intentions for this
tile is to increase the available amount of accessible memory locations in a SHMAC
layout. This is useful for layouts for data heavy applications and experiments requiring
large data sets to produce interesting results. Also since this tile is one of the simplest
functional tiles it is helpful in regression testing of overall tile changes.

4.6 LED Tile

The LED tile is used to set the LEDs of the development board and has mainly been
used for debugging purposes. It is a pure slave tile where the slave unit is mapped
to external pins which routes to a LED array on-board. It provided us with a simple
feedback mechanism during development and debugging, but is now mostly superseded
by the UART memory interface for such cases.
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Figure 4.7: Complete memory layout of the LED Tile, with a total of 8 bit on-chip
RAM

The unit holds just eight bits of data which is directly mapped to eight LEDs on
the development board (ML605). The LEDs will show the eight lower bits of any data
written to any memory location within this tile’s range as shown in Figure 4.7. Reading
from the tile will return this data. Bit 8 to 31 is regarded don’t care, and will return
zero on read. It can be noted that this tile takes no different action depending on the
address requested, making all addresses within the tile’s address space aliases to the
same memory. As the slave unit is connected directly to the LED pins in the SHMAC’s
toplevel, only one such tile can exist.

4.7 Clock Tile

This tile is a pure slave tile which allows a program to get tick counts, which may be used
for benchmarking programs. Using this tile can also make possible implementations of
other timed events such as sleeps.

The function provided is a tick count, i.e. a counter which is incremented on each
rising clock edge. This counter can be read and reset by memory operations. It also
allows “silent counting” which is a mode where the counter value is frozen when viewed
externally, but is still actively counting in the background. As this functionality is
implemented as a tile, accuracy will be influenced by external factors such as network
congestion. Given no network congestion the latency for starting and stopping the clock
from a given tile will be the same. Thus benchmarking will be accurate if the same core
initiate the clock prior to execution and freeze the clock at the end.

Memory layout for this tile is given in Table 4.3 gives the memory layout for this tile,
where all control signals are set by writing to address zero. Table 4.3b gives details for
the control register.

The tick count register is 64 bit, so an application would need two reads to retrieve
the complete tick count. A correct reading would therefore require that the mem-
ory locations are not updated between those reads, as Tick Count0 overflows every
232/ (33× 106 Hz) sec ≈ 130 sec, assuming a 33 MHz clock. By setting the update

field to 0, the memory is frozen and reads are safe.

An example of the writes needed to the control register in a benchmark is shown below.
If the total execution time is wanted, there is no need in resetting the clock as this is
done when the execution starts. In our benchmarks, the measured application simply
disables the clock as its last instruction. The host polls the clock control register over
UART until the clock is disabled and continues to read the result.

1. Set ctrl reg to 0b111: Resets and starts counter. Memory is updated.
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Table 4.3: Memory layout of the clock tile

(a) Complete memory layout

Address Function Description Read/Write

0 Control Register R/W
1 Tick Count1 Most significant bits R
2 Tick Count0 Least significant bits R

(b) Control Register for Clock Tile

Fields

Name Bit Description R/W Reset State

Enable 0 Enables counting R/W 1
Update 1 To update memory or not when counting R/W 1
Reset 2 Resets count on every write of 1 W 0

2. Wait for timed event to finish

3. Write 0b001 to ctrl register: Memory is frozen, and can be safely read.

4.8 Jump Tile

This tile is a pure slave tile which returns MIPS-I instructions specially tailored for
performing a jump to the start of the local memory of the requesting processor tile.
This is necessary since the different processor tiles’ local memories start at different
global memory addresses and must in some way be directed to its associated program
instructions. The Jump Tile contains a simple slave unit with no RAM and no master
unit.

By utilizing this tile we avoid the need for either hard-wiring the start addresses for
the different processor cores or requiring the cores to implement a common interface to
support for an external method of setting the Program Counter (PC) at reset. As all
the processing tiles implemented in the SHMAC starts execution at the global address
0, the Jump Tile is placed at coordinate (0,0) which is responsible for this segment.
At reset when all processor tiles access address 0 each will receive replies tailored to it
directing them to jump to the start of their associated local memory.

The memory layout for the tile is given in Table 4.4 on the facing page. The reply
of an access to address 0 will be set using the requester’s coordinate. The memory at
address 1 and 2 are hardwired constant, and accesses to other addresses will give nop

(all zeroes). The slave unit does not contain any RAM.

Instruction one and two will set register 12 to coord(0)||coord(1)||000000000000000000000000,
where coord is the requester’s coordinate assuming 4 bit coordinates. Instruction three
gives a jump using the address in register 12.
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Table 4.4: Memory layout of the jump tile

Address Function Description R/W

0 LUI Load jump address (upper) R
1 ORI Load jump address (lower) R
2 JR Jump instruction R
3 NOP NOP for branch delay slot R

It would also be possible to implement this functionality by making the tile virtual, i.e.
in a distributed fashion in each processor tile’s router unit, or as done in our current
implementation as a physical/actual tile. The virtual tile approach would favor start-
up speed at the cost of increased hardware resource usage. As all processors will send
requests to this tile at start-up it will give massive initial congestion and latencies in
large SHMAC layouts when using the physical tile version. An implementation of a
virtual Jump Tile will typically intercept all requests to tile (0,0) and reply directly
to the processor instead of routing.

4.9 LL/SC Tile

The LL/SC Tile is used for implementing lock-free atomic Read-Modify-Write (RMW).
Normally implementations of the LL and SC instructions utilizes caching mechanics,
but as the SHMAC currently have no caching this tile is implemented to allow for a
cache-less implementation of these instructions. This tile is a superset of the RAM tile
containing additional registers for book-keeping whether a loaded word is still valid or
not. This tile is a pure slave tile.

The bookkeeping of the atomicity of a LL/SC-pair is implemented as a table indexed
by processor ID. Table 4.5 gives the layout of this validation table.

For each LL the valid bit for the processor will be set and the target address is saved.
Data will be returned just as a normal load. Normal load operations function as before,
while store operations will invalidate entries in the same manner as a successful SC.

A SC will be successful if the valid bit is set and the saved address equals the target
address. A successful SC will return a packet with the sync-flag set, and allow data to
be written to RAM. All entries in the valid-table with the same address will have their
valid bit unset. An unsuccessful SC will return a packet without the sync-flag, and will
not be allowed to modify the memory in accordance to the specifications given in [39].

The MIPS specification requires that an SC fails if an exception occurs on the pro-
cessor execution the LL/SC. For supporting this the tile includes a option for explicit
invalidating entries. If the LL/SC Tile receives a packet from a processor tile with the
interrupt flag set, then it will invalidate this processor’s entry.
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Table 4.5: LL-tile’s synchronization bookkeeping example

(a) Example state

Processor ID Address Valid

0 a 1
1 a 1
...

...
...

i ai vi
...

...
...

(b) After processor 1’s SC to a 6= ai

Processor ID Address Valid

0 a 0
1 a 0
...

...
...

i ai vi
...

...
...

(c) Processor 0’s SC fails, then retries
with a LL to a

Processor ID Address Valid

0 a 1
1 a 0
...

...
...

i ai vi
...

...
...

4.10 UART Tile

The UART Tile is a pure master tile that provides the functionality needed to control
the SHMAC processor. The host system is typically the laboratory computer running
experiments. The delivered version supports commands for reading and writing to
memory and toggling resets. Table 4.6 lists the supported commands.

This hardware module is somewhat specific to the development board used since an on-
board UART-controller chip is utilized. As only the basic UART functionality presented
from the controller was used this module should be easy to port to other development
boards.

Table 4.6: UART commands

Command
Full Command Syntax Byte Encoding Function

RESET_ON 11110000 Resets interconnect and state machines
throughout the design, reset and freezes the
computational cores.

RESET_OFF 00001111 Unfreeze the computational cores.
READ <addr> 00000000 Returns over UART the content of <addr>
WRITE <addr> <data> 11111111 Writes <data> to <addr>

The UART Tile adds flexibility as run-time configuration of the system is possible. The
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assignment text require a memory interface for the developed system. Prior to adding
the UART tile this consisted of writing initial memory at FPGA synthesis/implemen-
tation time and reading the final memory state through ChipScope, LEDs or using an
external scope on output pins. Although possible it is a tedious and cumbersome form
of running experiments. The addition of an UART memory interface is considered a
good solution.

UART master unit

UART command protocol

UART

handshake

UART

controller

packet

interface

rx

tx

Figure 4.8: UART master unit design

The master unit of the UART Tile is shown in Figure 4.8. The digital design of the
UART solution consists of the UART controller from the Plasma project, a correspond-
ing facade/wrapper responsible for handshaking and a state machine utilizing this in
our command protocol. In the version delivered, the UART is clocked at 1 MHz which
with the current transfer protocol achieves an actual transfer rate of 1.1 kBps. The rea-
son for such a relative slow actual transfer rate is the intensive handshaking during the
protocol. The handshakes are added to avoid buffer overflows on the SHMAC side of
the communication channel. The current UART controller only has a two byte buffer
and given the possibility for delays/congestion in the Network-on-Chip (NoC) some
type of throttling for overflow fault tolerance was needed. This results in handshakes
for every byte transferred. The speed achieved was more than sufficient for our needs
during development. Therefore we decided to not modify the third-party modules to
avoid incurring more validation and verification time costs than strictly needed. If fu-
ture needs dictate it the UART speed should be fairly easy to increase by enlarging the
controller’s buffer size to n+ 1 and handshake for every n-th byte instead.

One possibility would have been to use a protocol with a checksum and then resend when
this were incorrect. We went with a simpler approach where we assume the host has
the necessary buffering resources required and that only host-initiated communication
needs to be stalled. This is accomplished by a contract between host and SHMAC that
makes both writes and reads into blocking operations. For reads this is trivial, just
wait for the answer before proceeding in the host’s program execution. For writes, the
UART tile will echo back the written data after having processed it. If the host waits
until hearing its echo then no buffer overflows can occur. Still, the possibility of some
line errors would make the checksum method more robust, but even then the possibility
of errors is present, for instance by multiple line errors in the same UART packet.

The UART has been tested thoroughly and a correct functionality has been empirically
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verified by overnight (12-hour or more) stress tests. These tests consists of continuous
tests running at the maximal sustainable rate over UART and tests with varying time
between consecutive communications for testing different usage patterns.
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Figure 5.1: Overview of the SHMAC framework. Both the hardware and software are
configured by the configuration system.

Figure 5.1 shows the created framework. It contains two software parts: The configu-
ration system and the run-time system. The configuration system sets up the hardware
and software build systems with the correct layout of tiles according to specifications
from a configuration file. It also configures different run-time system components to
work with this architecture layout. As software written for the SHMAC is compiled
according to a specific configuration, a change in hardware layout may require that
software be rebuilt.

In addition to the framework components, host programs have been written which are
used to setup and administer the SHMAC to run different experiments on the currently
implemented hardware configuration. These tools load new software in an easier fashion
than if required to go through the complete configuration system build process each
time.

45
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Figure 5.2: Configuration system build steps

5.1 Configuration System

The SHMAC Configuration System is a collection of user space tools which chained
together implement a processor with a specified layout onto an FPGA and tailors our
software framework to work in this layout. Figure 5.2 shows the steps taken by the
system to move from specification to FPGA implementation.

JPPPP

PFPFP

PPPPP

Figure 5.3: Example processor layout configuration file
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Table 5.1: Tile types. Details given in Chapter 4.

Glyph Reference Name Limitations

P PLASMA Integer Processor Tile
F FPU Floating Point Processor Tile
R RAM RAM Tile
S LED LED Tile Maximum one
C CLOCK Clock Tile
J JUMP Jump Tile Should be placed in (0,0)

L LLSC LL/SC Tile
U UART UART Tile Maximum one

The processor layout is input to the configuration system in form of a text file schematic.
The intended layout is drawn with different ASCII characters representing the different
types of tiles available as given in Table 5.1. For instance the regular processor core is
denoted P in the schematic and the floating-point accelerated processor core is denoted
F. An example of such an schematic is shown in Figure 5.3 on the preceding page.

Based on the layout specification in setup.txt the configuration system generates a
toplevel HDL source file with the tiles interconnected in a mesh topology. It also creates
a header file describing the layout by the use of a TILE macro which may be used
programmatically or as part of configuration files. The toplevel is then processed by
the regular Xilinx toolchain creating an FPGA bit-file ready for FPGA implementation
using the Xilinx flash writer program impact.

Figure 5.2b shows the steps taken for software to be built correctly for a given hardware
layout. A mapping of applications to tile slots are input to the build system as a setup
directory gen-tile-rams. In this directory, symbolic links of the form i j points should
point to the ELF binary destined for the local memory of the tile at position (i, j). An
example of this is given in Appendix E. Furthermore, if the application needs atomic
locking, the configuration system can create a lock library, locklib.o, which presents
applications with a convenient C API for atomic locking. A more fundamental respon-
sibility of the directory setup is to instruct the linker script generator to create linker
scripts for the correct mapping of the different binaries to the correct local memories
of tiles. Without correct linker scripts the execution is bound to crash as instructions
using absolute memory addressing mode will be erroneous. In case any program is to
be in memory immediately after the FPGA initialization then this gen-tile-ram setup
must be provided at the hardware build time. If provided then a RAM unit generator
makes sure to initialize the block RAM within the tiles with program binaries associated
with it.

Makefiles are provided to aid in the different parts of this configuration process. Using
the dependency tracking mechanisms of make allows changes made to the different
hardware or software steps of incurring the least amount of rebuilding necessary. In
addition to a Makefile for building the complete system, Makefiles for building software
for the SHMAC, i.e. setup to use the correct cross-compilation tool-chain, is also
provided. All Makefiles are considered part of the configuration system.
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Not shown in the figure is the generation of a user constraints file. Different tiles requires
different user constraints which means that dependent on which tiles are included in
the SHMAC layout the ucf-file must match accordingly. Using the included Makefile
takes care of these details.

5.2 Run-time System

The SHMAC framework provides support for a C run-time environment and provides
an atomic lock mechanism. This goes a long way to support TBP run-time engines, but
unfortunately time did not permit the implementation of such a run-time scheduling
solution. Some deliberations about TBP run-time systems for our architecture is given
under Future Work.

The supported MIPS ABI is O32 and gives developers access to the C programming
model as opposed to writing in assembly. To support the C run-time environment,
an assembly snippet, crt0.s, sets up the required hardware state at boot while the
linker scripts makes sure symbols referring to stack and heap is available for use. The
stack is heavily used to support function calls. Currently the heap support of the MIPS
Application Binary Interface (ABI) is left for the users of the framework to implement.
Figure 5.2b shows where in the build process the provided C run-time setup is used.

To run a simple multi-programmed workload on the SHMAC requires only to configure
the memory space in such a way that each tile run their own program and does not
access other processor tiles’ memory and only read from other type of tiles. Multi-
programmed workloads are on the other hand not sufficient for the implementation of
TBP.

To support proper co-operative parallel run-time systems, the SHMAC framework pro-
vides a lock library and header files which may be used to create more interesting
run-time system. This may be a simple map-reduce system or it may be a TBP. For
the remainder of the thesis the approach taken by us was to explicitly code synchroniza-
tion statements where needed. This was a viable possibility for our small benchmarks,
but for larger software systems a proper parallelization engine is much preferred.

5.3 Writing SHMAC Software

5.3.1 Accessing External Symbols

Each tile is compiled with a binary each and the binaries will not have access to each
others symbols out of the box. To allow the SHMAC to support programming multi-
ple threads of execution with shared memory a binary can access shared symbols by
including an header file containing this information.

The binary of the core holding the shared symbol must be compiled before those which
depend on it. The symbol is retrieved using a script which access this symbol using nm
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Listing 2 Listing dependencies between binaries in Makefile
<uses-shared-variable>.elf: externs.h

externs.h: <declares-shared-variable>.elf

Listing 3 Make variable accessible for other binaries
#pragma shmac <shared>

volatile unsigned long <shared> = 1

and builds a header file, externs.h, containing this information. To ensure that binaries
are compiled correctly, circular dependencies between binaries should be avoided, and
the Makefile should include dependencies as shown in Listing 2.

To make a symbol accessible for other binaries, the variable must be global and be listed
using #pragma shmac <name> as shown in the example given by Listing 3. Shared
variables will be renamed to ext_<name> to avoid problems with redeclaration of names.
The prefix ext_ should therefore not be used for any user variables. An example showing
this is given in Listing 4 on the next page.

5.3.2 Access Memory from other Tiles

The start of a tile’s memory address is defined in the header shmac.h, so it can be
used at compile-time. This header also gives how many of each tile type the configured
hardware contains. This is used for instance in the provided locking framework, as
this automatically uses the first available LL/SC Tile. Each tile is numbered using
left-right, top-bottom, such that TILE(<type>,1) is placed either down or right of
TILE(<type>,0). The header-file can also be used to retrieve an array containing all
tiles of a specific type which may be used to set this address at runtime. Listing 5 shows
a example of this syntax.

Listing 5 Retrieving Memory Addresses using shmac.h
#include <shmac.h>

// Will not compile without a Clock Tile in layout

unsigned int * start_address_of_clock_tile = (void*) TILE(CLOCK, 0);

// Will compile without a Clock Tile

unsigned int clock_tiles = TILE(CLOCK, ARRAY); // Array of start addresses

if( TILE(CLOCK, NUM) )

unsigned int * start_address_of_clock_tile = clock_tiles[0];

else

unsigned int * start_address_of_clock_tile = NULL;
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Listing 4 Accessing a shared variable
#include <externs.h>

volatile unsigned long * <shared> = (volatile unsigned long*) ext_<shared>;

Listing 6 Using the locking framework
#include <locklib.h>

#pragma shmac wait

volatile int wait = 1;

#pragma shmac lock_address

unsigned int * lock_address;

int main()

{

// Initializes the locking library

init_ll();

// Allocate lock

int lock_error;

alloc_lock(&lock_address, &lock_error);

// Allows other binaries to proceed

wait = 0;

lock(lock_address);

(...)

unlock(lock_address);

}

5.3.3 Locking Library

The locking library is set to use LL/SC Tile zero, that is TILE(LOCK,0). The address to
this tile is set statically, so it must be compiled specifically for the given configuration.
It does not currently support using more than one LL/SC Tile.

Listing 6 gives an example of usage of the locking library. The locking library needs
to be initialized before use. This must only be once. Locking addresses is not set until
after alloc_lock, so it is important that other binaries that is to use the lock does not
proceed until after this point. This is typically assured by letting these binaries run a
loop checking if the value of the shared variable wait is zero.

By setting wait = 1 we assure that the variable is not placed in .BSS, which would
allowed it to be uninitialized at program start. In worst case this may allow other
binaries to run lock() before initialization.

In a shared memory multiprocessor environment the requirement for synchronization is
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paramount for enabling any possible cooperation and work sharing. There exists pure
software implementations such as Peterson’s algorithm [40] for mutual exclusion. They
are however assumed to be inferior to hardware solutions utilizing atomic operations.
We have therefore implemented a subset of the MIPS-II ISA to support the LL and SC
instructions.

The locking library provides functions for handling all synchronization. Applications
should still be compiled for MIPS-I as the full MIPS-II ISA is not supported, and invoke
LL and SC through this library.

To provide atomic RMW among multiple processors, all accesses to the LL/SC tiles
must be done with a cache coherent system [39]. This will also be true in the imple-
mented cache free system. With the use of a x-y routing, no accesses will be reordered,
which can guarantee that exceptions in the processors will not create unpredictable
behavior.

5.4 Host Software

5.4.1 UART Utility Programs

On the host a suite of programs running on Linux was developed. These uses the typical
tty/terminal library to communicate over UART. These programs where written in
accordance with the handshake protocol contract described given in Section 4.10. The
program suite consists of the UART stress test programs, the program loader with all
its tool-chain components, and a program to dump memory content. With the program
loader and the memory dump program it is possible to create a system for conducting
experiments.

5.4.1.1 Program Loader

uart-run-conf.sh is a script that takes an experiment configuration which maps bi-
naries to tiles. An example of such a configuration is given in Listing 7. The utility
writes the binaries to the SHMAC as directed and sends a reset signal. It is invoked
using uart-run-conf.sh <configuration file>

Listing 7 Example of UART configuration file

TILE(PLASMA, 0) <binary>

TILE(PLASMA, 1) <binary>

The steps taken by the utility is given in Table 5.2.

A remark about uart-load-with-readback-bin is in order. This tool-chain compo-
nent writes to memory, but since writes are non-blocking this behavior alone is not
enough to ensure a correct behavior. This because the following release of reset might
happen before all in-flight packets truely have been written to memories. Therefore this
component verifies that data has been written by issuing a read to the same address
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Table 5.2: uart-run-conf.sh tool-chain steps

Step Tool Component Description

1 uart-reset-on Holds reset on the SHMAC
2 uart-load-with-readback-bin For each configuration line the utility writes a binary to the specified tile
3 uart-reset-off Releases reset

range which are written. This is possible based on the fact that we use the determin-
istic XY-routing which makes sure that no reordering occurs in the mesh, making the
readback guaranteed to return after the write has finished.

5.4.1.2 Read Memory over UART

This program is used for retrieving the memory content of a specified address range in
the SHMAC. It takes a byte addressed memory range as input. The output is written
to standard out.

uart-tools/uart-memdump <from> <to>



6
Verification and Reproducibility

The verification phase of our thesis coincided with the implementation phase, realized
as test-driven development by unit testing. Also larger integration test-benches were
created, but a planed full system test-suite were not completed. This system test was to
be used during optimizations (speed or logic size) of modules and would allow for rapid
feedback on introduced breakage. Due to time constraints, simulations to support the
verification of the full hardware system were given a lower priority than verifying the
correct functionality of the complete system. In other words, the hardware is considered
correct as long as the software running on it is observed to function correctly.

This assumption does however tie the hardware tightly to software troubleshooting
since no full system test can be used to eliminate the hardware from the software
error observed. As such, faulty behavior which is not immediately evident to origin
from software may or may not originate from hardware. It may be that a previously
undiscovered hardware bug is accidentally exercised by a new piece software. This
uncertainty regarding the source of errors may cause time to be wasted on efforts to
track down bugs in the wrong part of the design. During development, the debug
mantra of “always assume the problem to be software related first” seemed accurate,
but more complete test suits are still encouraged for future work since the uncertainty
will be reduced.

Regarding Software Verification the approach taken is a pragmatic one. Software is exe-
cuted and its correct behavior asserted from a correct end-result, usually determined by
examining the memory state of selected processor tiles. Any faults discovered prompts
a manual insertion of debug statements in the code with the purpose of creating debug
memory state to examine the faulty behavior closer. This makes it possible to examine
the memory and execution state at specific points in the program by setting a variable
to unique values all according to which part of the program is currently executing, or
make use of control statements which simulate a break points in the execution until
poking the control statement’s associated test value over UART to continue execution.
This rudimentary approach have treated us well for the verification of our software,
but for larger software systems it would be considered cumbersome and we recommend
adding support for GNU Debugger (GDB) or another sophisticated debugging system
before implementing the TBP run-time system.
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6.1 Hardware Verification

Figure 6.1: Modelsim window

For this thesis the main test strategy for hardware consisted of writing VHDL test-
benches capable of running in a simulator. Typically use cases for the different modules
and use cases for collections of modules were tested. This was implemented by writing
non-synthesizable HDL containing sequences of test vectors with associated precom-
puted result vectors. The digital design is then driven by this sequence and its output
compared to the precomputed result vectors.

The simulators available to us were the integrated simulator ISim as part of Xilinx’
development tools and the standalone simulator Modelsim by Mentor Graphics. Since
we have prior experience with Modelsim this was chosen to be our main test tool. The
version utilized was Modelsim SE-64 6.6d. Using Modelsim both functional and timing
simulations could be performed on the test-benches.

In addition to writing test-benches to be used for test-driven development, i.e. tests
written based on intended functionality and specifications, another debugging strategy
was used when bugs were found or tests were lacking. Using Modelsim’s possibility
to drive lines (including clock generation) from command line, a method focusing on
rapidly examining the waveforms in a similar setup, i.e. hardware layout and software,
was developed. Using functional simulation the design was simulated until the fault
observed in the field was reproduced in waveform. An iterative approach of backtracking
the wave and forcing signals in conjunction with reasoning about the signals behavior
helped in tracking down which module part was faulty and suggested what cases was
erroneous. After such a session, portions of the Modelsim command log could also serve
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Table 6.1: System-level Software Tests

Experiment Thoroughly exercises Notable remarks

Tutorial Processor, RAM and LL/SC Tile, interconnect
µbenchmarks Processor Tile
Parallel sum Processor Tile Also verifies that the lock mechanism and the timer system works

as the prototype of new test-benches. Figure 6.1 shows a typical debug session with a
functional simulation showing our design’s waveforms.

For board-under-test verification, a setup consisting of a computer, with remote access
over the network, was connected to the JTAG interface of the ML605 board. We
could then flash the FPGA remotely from our work places. When combined with X
tunneling the possibility of a remote scope became apparently beneficial. Utilizing
Xilinx’ ChipScope Pro Core Inserter 12.4 and ChipScope Pro Analyzer 12.4 M.81d the
interior signals and state of the true realization on the FPGA could be examined. This
allows for a very thorough verification of the final product.

To examine the contents of FPGA memory primitives which were directly instantiated
in third-party modules, Xilinx’ unisim/simprim VHDL source codes for these primi-
tives were modified to become synthesizable. Using these versions the memory state
signals could explicitly be kept after synthesis by using constraints during the FPGA
implementation process. If done in this way then verification of the memory content
becomes considerably less cumbersome throughout all the verification steps, from func-
tional through timing simulation to even board-under-test since bus signals then became
available for ChipScope to use. An unsatisfactory consequence of this approach is that
such modifications may introduce inconsistencies between the simulated and the actual
since this method require substituting the simulation primitives for modified ones. For
instance in the board-under-test verification an inconsistency is introduced when using
the modified simulation primitives. Block RAM primitives are changed to distributed
RAM, i.e. flip-flops. Although this should be functionally equivalent, it constitutes a
difference between the verified system and the actual.

An example of a positive effect of development on verification is how the development of
the UART memory interface simplifies system verification and rectify the inconsistency
introduced in the approach outlined above. Also with this new functionality, when do-
ing system-level verification new experiments could be continuously programmed onto
the currently implemented SHMAC layout and a correct result verified from a memory
dump over UART. By using this approach a serious bug in the LL/SC Tile missed
in previous unit and integration tests was found and corrected. Automating such an
approach would allow for continuous randomized test vector explorations, or other test
methodologies exploring coverage and exercising subsets of all possible input combina-
tions in an automatic test system.
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6.2 System Verification

The complete SHMAC system is considered verified as it has been running comprehen-
sive experiments which stress the different portions of our design. The ones which are
included in our final delivery is listed in Table 6.1. They are briefly examined as follows.

The tutorial (Chapter E) gives an implementation of the textbook showcase for atomic
locking, i.e. the bank account example. This program’s correct behavior is a good
indicator for the total system’s correctness. To maximally stress the components a
modified version with maxed out number of processor tiles was utilized. This stresses
the interconnect so that congestion arises since the number of processor tiles relative
to the number of LL/SC Tiles becomes large and multiple processor cores is actively
trying to gain the lock ownership of the single lock. Also since each tile’s program’s
account is stored in the same RAM Tile this tests the ability of the interconnect and
RAM Tile to handle diversity and quantity of packets and memory accesses.

The parallel sum experiment mainly exercise the processor tiles, but as the program’s
correctness is dependent on the functionality of the LL/SC Tile this tile is also implicitly
verified. As the time measurements made from the different experiment runs looks as
expected, the correctness of the Clock Tile is given.

6.3 Our Setup

In this thesis we have made use of a development kit from Xilinx, namely the Virtex-6
FPGA ML605 Evaluation Kit. This board contains a fairly large FPGA chip, enabling
us to implement processors with a large number of cores. In addition it contains I/O
such as UART over USB aiding in the interfacing of the final design and the surrounding
environment. The development tools used from synthesis to implementation is Xilinx’
ISE software version 12.4 M.81d. Figure 6.2 shows the laboratory setup used during the
thesis. As shown the development board is connected to a host system which besides
controlling and implementing our design onto the FPGA also provided us with remote
access to our development system over the network.

For the software part, since the delivery do not contain any operating system, the C
compiler suite and tool-chain needs to be configured for this case. This can be accom-
plished by utilizing a C standard library implementation which do not use operating
system syscalls. A handy shell script for setting up such a bare metal tool-chain which
utilize the C standard library implementation called newlib was found on the Open-
Cores homepage for the Plasma project. After some minor modifications of this script
the tool-chain builds automatically. The most important tools built from this script for
our implementation is binutils 2.21.1, GCC 4.5.2 and newlib 1.19.0.
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Figure 6.2: Development board setup
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7
Results

7.1 Micro Benchmarks

Figure 7.1 gives Cycles Per Instruction (CPI) for three microbenchmarks, Local Memory
Read, Neighboring Tile Read and Neighboring Tile Write. As the figure shows, all these
benchmarks includes reading instructions from local memory. Implementation details
for the benchmarks is given in Appendix B.1 on page 87.

The Local Memory Read benchmarks 2000 register-to-register instructions. This is done
in 58038 cycles, giving 58038 cycles

2000 instr
≈ 29CPI.

Reading 2000 addresses from a neighboring tile takes 156038 cycles, as measured by
the Neighboring Tile Read microbenchmark. This benchmark includes equally many
instruction reads from local memory. The processor can have maximum one outstanding
memory read request, such that the external read request takes a total of 98000 cycles.
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Figure 7.1: CPI for the implemented microbenchmark, showing both cycles used for
reading instruction from local memory and the memory access to neighboring tile

59



60 CHAPTER 7. RESULTS

Read performance to neighboring tile is then approximately 49 CPI in addition to cycles
used for fetching program instruction.

Neighboring Tile Write issues 2000 memory write requests to a neighboring tile using
80038 cycles. That is 22000 cycles in addition to instruction fetches. This gives a
performance 22000 cycles

2000 instr
≈ 11CPI in addition to instruction fetches. As the router have

received a write request, the processor is allowed to continue and may fetch the next
program instruction.

7.2 Parallel Sum

This benchmark runs a summation using a loop with 360000 iterations using 1949596 cycles
with 36 Integer Processor Tiles. The benchmarks source code is given in Appendix B.2
on page 89

All of the benchmarks are done using the same bit file, with the master program execut-
ing on the same tile in all runs. The tile closest to this tile executes the slave program,
while redundant tiles is set to halt.

Table 7.1 gives execution time in cycles for this application given number of workers
and problem size. Figure 7.2 shows the speedup as the numbers of worker increases for
the different problem sizes. It can be observed that for very small problem sizes, such
that 288 iterations, the overhead of parallelization makes the sequential version faster.
Using four workers does however give a lower execution time than two workers.

As expected, it can be observed that if the problem size is not sufficient large, adding
more workers may decrease overall performance.

7.3 Time Required for building Prototypes

The processor tiles implemented in the SHMAC can easily be altered to allow use of
different processor cores. The only requirement is that they implement the interface

Table 7.1: Execution time in cycles given number of workers and problem size

Problem Size

Workers 288 2 304 12 960 51 840 180 000 360 000

36 210 988 220 732 272 236 460 156 1 079 596 1 949 596
32 201 392 212 354 270 296 481 706 1 178 576 2 157 326
16 152 564 174 488 290 372 713 192 2 106 932 4 064 432
8 100 219 144 067 375 835 1 221 475 4 008 955 7 923 955
4 72 912 160 608 624 144 2 315 424 7 890 384 15 720 384
2 75 097 250 489 1 177 561 4 560 121 15 710 041 31 370 041
1 50 440 401 224 2 255 368 9 020 488 31 320 328 62 640 328
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Figure 7.2: Speedup given as a function of workers for different problem sizes

required to operate against the router. This is typically done by adding a simple wrapper
or adapter between the processor core and the router, with a simple state machine to
convert the processors memory operations to network packets.

This modular approach is helpful in reducing the time investment required to develop
different heterogeneous processors, as many of the modules can be partly or completely
reused.

7.3.1 Synthesis Time

The bit files have been synthesized using an eight core 2.50 GHz Intel(R) Xeon(R)
processor with 8 GB RAM using Xilinx ISE 12.4 with multi-threading allowing usage
of maximum four cores are activated for map and par.

Synthesis time for different dimensions is shown in Table 7.2 for a setup with Inte-
ger Processor Tiles and in Table 7.3 for Floating Point Processor Tiles. Each of this
setups consists of one Jump Tile and one UART Tile with the rest as Integer Proces-
sor Tiles. The Jump Tile and UART Tile is added to create a typical fully programmable
example.

A synthesizing of 42 Integer Processor Tiles uses approximately 2 hours and 45 min-
utes in total. It can be observed that synthesis time is increasing as we reach the
resource limit for the FPGA as map (placer and map) must do heavier optimizations.
For balanced dimensions, that is keeping the length of the axis relatively equal, this
is the largest design we have been able to synthesize. The synthesis time is shown in
Figure 7.3. Larger design have been tested, but will not fit the used FPGA.

The Floating Point Processor Tiles requires significant more logic than their integer
counterparts. This is both due to that floating-point operations in general requires
more logic, but also due to that our FPU implementation introduces a significant longer
critical path which complicates mapping. Our largest synthesized Floating Point Pro-
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Table 7.2: Synthesis Time for Integer Processor Tiles in second

Total

Dimensions Tiles Cores xst bld placer map par In seconds In hours

2x2 4 2 140 15 166 178 165 664 ≈ 0.2 h
2x4 8 6 257 31 469 496 265 1518 ≈ 0.4 h
4x4 16 14 514 64 615 674 462 2329 ≈ 0.6 h
4x8 32 30 1080 174 1275 1416 863 4808 ≈ 1.3 h
4x9 36 34 1354 149 1517 1686 978 5684 ≈ 1.6 h
5x8 40 38 1549 166 1748 1952 1160 6575 ≈ 1.6 h
4x10 40 38 1550 165 1787 1989 1088 6579 ≈ 1.8 h
6x7 42 40 1658 175 1853 2069 1300 7055 ≈ 2.0 h

Table 7.3: Synthesis Time for Floating Point Processor Tiles in second

Total

Dimensions Tiles Cores xst bld placer map par In seconds In hours

3x3 9 7 845 113 1178 1263 603 4002 ≈ 1.1 h
4x4 16 14 1633 222 3724 3926 1115 10620 ≈ 2.9 h
3x6 18 16 1945 257 4600 4842 1313 12957 ≈ 3.6 h

cessor Tile design is a 3x6 mesh containing 16 processor cores. Designs containing 18
cores is tested, but does not fit in the FPGA. Synthesis time is shown in Figure 7.4.

Table 7.4: Synthesis Time for mixed Processor Tiles in second

Total

Dimensions Tiles Int FP xst bld placer map par In secs In hours

4x5 20 12 6 1436 147 1934 2071 851 6439 ≈ 1.8 h
5x5 25 18 6 1724 168 3832 4002 944 10670 ≈ 3.0 h
5x6 30 20 8 2175 213 5200 5433 1423 14444 ≈ 4.0 h

Table 7.4 gives synthesis time for a configuration including both Integer Processor Tiles
and Floating Point Processor Tiles, respectively labeled Integer and Floating-point.
The distribution of integer and floating-point processors is set arbitrarily to show a
combination of those.

Synthesis reports are given in Appendix C with place-and-route report for a 6x7 mesh
with 40 Integer Processor Tiles given in Listing 16. This synthesis uses 99 % of all
available slices, where 1 % of those have an unused Lookup Table (LUT). Synthesis of
a configuration with 20 Integer Processor Tiles and 8 Floating Point Processor Tiles
gives the same result as shown in Listing 18. The largest FPU design synthesized, that
is 16 cores, occupies 97 % of all slices, from which 1 % of these have unused LUT as
shown in Listing 17.



7.3. TIME REQUIRED FOR BUILDING PROTOTYPES 63

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2x2 (2 cores)

2x4 (6 cores)

4x4 (14 cores)

4x8 (30 cores)

4x9 (34 cores)

5x8 (38 cores)

4x10 (38 cores)

6x7 (40 cores)

Ti
m

e
 [

se
c]

Dimension

xst
bld

placer
map
par

(a) Absolute

 0

 0.2

 0.4

 0.6

 0.8

 1

2x2 (2 cores)

2x4 (6 cores)

4x4 (14 cores)

4x8 (30 cores)

4x9 (34 cores)

5x8 (38 cores)

4x10 (38 cores)

6x7 (40 cores)

Ti
m

e
 [

re
la

ti
v
e
]

Dimension

xst
bld

placer
map
par

(b) Relative

Figure 7.3: Synthesis time for Integer Processor Tiles
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Discussion

8.1 Processor Performance

The Local Memory Read microbenchmark measures the performance of reading local
memory. As this microbenchmark only performs memory read requests to local memory
and there is no other traffic on the interconnect, all latencies are from state machines in
the master unit wrapping the processor, slave unit controlling the RAM and the local
router.

Instruction fetches constitutes a large part of the cycles used within the Neighboring
Tile Read and Neighboring Tile Write benchmark, mostly due to a slow router imple-
mentation. The program executed by a processor should be placed in its local memory
to obtain good performance, which makes overall system performance highly dependent
on local memory access latency. Improving local memory performance may therefore be
crucial for the SHMAC’s performance. The utilized RAM slave unit may be expanded
to obtain this goal by assigning a designated port for the tile’s master unit to the RAM,
as the FPGA have dual-port block-ram RAM.

For a sufficient large problem size, that is when the parallelizable work is sufficient large
with respect to communication overhead, we obtains close to linear speedup. For small
problem sizes increasing core count may even decrease performance due to communica-
tion overhead. All the current benchmarks have one point of synchronization, namely
the LL/SC Tile. This may lead to a high load for the LL/SC Tile as the work is equally
partitioned between cores and all locking is invoked within a short time span.

8.2 Synthesis Time and Rapid Prototyping

One of the goals for this project is to allow rapid prototyping of heterogeneous pro-
cessors. In comparison with using simulators, compiling a bit-file gives a significant
overhead. Software may however be executed without the overhead imposed by simu-
lation.

All the different benchmarks may be executed using the same hardware, that is there is
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no need for compiling more than one bit-file. By reusing bit-files this may give better
performance than using simulators. Using techniques such as floorplanning and smart
guide may be used for decreasing synthesis time.

8.3 Design Vulnerabilities

If an master unit issues a read operation to an address not handled by any tiles or to
an tile without slave unit, the master unit may halt as it will never receive a response
packet. If the interconnect is a mesh the request will simply be dropped, while the
request will be routed eternally in the network as it will never reach its destination for
a torus.

As the memory system provides no restrictions for memory addressing, a processor with
a pipeline or using prefetching may therefore halt even if the program does not explicitly
reads an invalid memory location.

If the size of the implemented mesh does not perfectly fit the allocated memory space,
e.g. it is not a power two, the border of the mesh should include dummy slave units
which would avoid this hazard. As there is no restrictions in addressing, the binary of
a tile may write into another tile’s binary which may cause undefined behavior.

8.4 Run-time System

The SHMAC does not provide a TBP framework. As the MIPS standard makes it
possible to perform floating-point operations in software if the processor lacks hardware
support. It may be benefittal to assign a task using few floating-point operations to an
Integer Processor Tile if all Floating Point Processor Tile are busy.

8.5 Alternative Topologies and Addressing

There is huge differences between how much memory each slave unit utilizes. An al-
ternative interconnect for dividing memory between tiles more flexible could be to use
a tree-based approach. This can be done by partitioning the memory space according
to a tree with interior nodes being switches routing on a subset of bits (fan-out bit-set)
which size determines this interior node’s fan-out. Bit-sets can be chosen such that a
traversal downward the tree fixes an increasing prefix of the addresses.

The leaf nodes of the tree is the tile with master and slave units. The leaf nodes
(i.e. tiles) handle all external communication by sending and receiving packets from its
parent node. Router nodes compare packets’ destination address with its own address
where the fan-out bit-set is set as don’t cares. If it doesn’t match, that is the destination
and the router’s fixed prefix differ, the router node routes the packet to its parent. For
a match it uses an ordering on its fan-out bit-set to determine which of its child nodes
should receive the packet.
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Figure 8.1: Tree Interconnect

To avoid deadlocks and keeping performance higher this may be implemented as a
fat-tree with an increasing number of buffers toward the root. This may give a more
flexible way of allocating different memory ranges to tiles, but may introduce limitations
to where tiles can be placed as a specific tile must be placed somewhere in the tree that
have enough allocatable memory range.

Figure 8.1 shows how addresses could be divided between three tiles, leaving the left-
most tile the largest memory address range. In this example for example external RAM
can use 16 bit, leaving 8 bit to each of the other tiles.
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9
Conclusion

The main goal for this thesis has been to implement a heterogeneous processor on an
FPGA. We have created a fully functional processor framework, implemented layouts
with forty processor cores complete with interconnect, support for atomic locking and a
memory interface connection to a host system. It consists of a number of implemented
tiles which provides the needed functionality for running multiple threads of execution
with the use of synchronization between threads.

SHMAC is highly modular and allows rapid prototyping of different architectural layouts
by simple configuration. It supports a simple interface between the tiles such that new
tiles can be easily implemented for specific needs. We have also provided a programming
framework which creates a layer of abstraction for accessing the different tile’s local
memory from other tiles and abstractions for utilizing atomic locking in applications.

Execution of several microbenchmarks has shown that the SHMAC have a large poten-
tial for improvements. This framework is however able to get close to linear speedup
for large parallel programs.

Besides the delivered prototype we have also given a specific list of future expansion
possibilities which may be implemented in future projects at CARD to improve the
framework. As this prototype is to be used in research on the topic of heterogeneous
multi-core processor, we have focused on modularity and keeping things simple to allow
for maximal flexibility. These qualities are also evident in the following listed suggestions
of future expansions and enhancements.

9.1 Future Work

As this is a first prototype, a part of this thesis objective has been to give an overview
of the main design challenges within the field of heterogeneous processing. The most
important part of this is the realization of the SHMAC, but almost equally important
is how this prototype can be further developed. During development some choices
were made because of time constraints leading to and some of the design outcomes
gave rise to new alternatives, or ideas for optimizations. This is knowledge acquired
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during development that would be lost if not documented since the maintainers of the
framework is going to be carried out by CARD. The following moments therefore reflect
how we see that the SHMAC framework best could be improved.

9.1.1 Processor Tile Improvements

9.1.1.1 Exception Handling

The mlite core should be expanded to allow correct exception handling, both from
interrupts over the interconnect and for unsupported operations. This may then be used
for setting up handlers when accessing illegal memory addresses or to allow software
execution of floating-points operations if this is not enabled in hardware (e.g. when
using our integer core). Since the current mlite core reserves specific regions of the
global memory space for interrupt state and configuration the simplest solution would
be to create a virtual IRQ Tile for these memory regions. Piggy-backing such a virtual
tile to all processor tiles would make the current interrupt mechanism in the mlite-core
integrate nicely. Otherwise, modifications of the core is called for. Currently there is
no support for doing floating-point operations in software for the processors lacking
coprocessor 1 because of the limited interrupt support available.

9.1.1.2 Caching

As the SHMAC currently is not using any caching, performance is extremely sensitive
of how instructions and data is distributed in memory. Including caching would allow
the processor to be more flexible and efficient, but would require a cache coherency
mechanism. If implementing a cache coherency protocol then the LL/SC Tile may
be retired in favor for a more standard implementation of LL/SC. This would allow
arbitrary memory locations to be used in conjunction with LL/SC.

9.1.1.3 Improved FPU Performance

The floating-point enhanced processor tile have a significant complexity and long critical
path. Rodolfo et al. [41] have implemented floating-point support with the Plasma CPU
with good results. This work may be used to create a more efficient Floating Point Pro-
cessor Tile.

9.1.1.4 Dual-Port RAM Slave Unit

The on-chip block RAM for Virtex-6 may be used as a true dual-port RAM, i.e. each
port can read or write independently of each other [42]. One of those ports should
connect the RAM to the router, while the other port can be made freely available for
the tile for any use. Figure 9.1 gives an overview of the extra ports available for the
tile, when expanding the basic on-chip block RAM unit. Simultaneous writes to the
same address would result in data uncertainty and should be avoided [42].
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A possibility is for both ports to be connected to the router, such that the router can
perform two memory operation concurrently. This would complicate the router, but
does not require any further changes to the different slave and master unit interfaces.
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Figure 9.2: Improved processor tile

9.1.1.5 Improved Local Memory Performance

By using the suggested dual-port RAM unit, the processor core master units can be
connected directly to their associated local memory. Figure 9.2 shows a suggestion
for the new interconnection between these two units. The address can be hardwired
from the outgoing packet of the master unit, with the data source select signal set to
correspond either to data received from the local slave unit or the router dependent on
the packet’s destination address field. If a dual-port RAM unit is implemented then this
modification is a natural next step. Only a small expansion of the master unit’s state
machine combined with the modifications outlined in the figure is needed to circumvent
the router unit’s latency. We postulate that this modification alone would increase the
processor’s performance ten- to thirtyfold compared to the current version based on
observed versus theoretical IPC performance of the processor core’s pipeline.
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9.1.2 Interconnect Improvements

9.1.2.1 Configurable Memory Properties

Currently, SHMAC is defined as a 16x16 mesh, i.e. two fields of 4 bits each of the
memory addresses is used for coordinates (Figure 3.4). Parametrization of these fields
would give SHMAC users extra flexibility in their hardware design explorations. For
instance exploring the extremes of these parameters could provide challenging environ-
ments giving rise to novel solutions. For instance, using the complete address layout
for coordinates would give each tile ownership of only a single byte.

Another modification to increase the flexibility of the current memory solution is to
parametrize the number of block RAMs to use in each tile. The current hardwired
amount is a remnant from early design decisions where careful spending of hardware
resources was considered to enable larger core counts. Still, this should be up to the
user to decide, but for a first prototype it is an acceptable simplification.

9.1.2.2 Buffering at Router Ports

To increase efficiency in routing, the input and output ports may convert to larger
FIFO buffers. This can decrease congestion in the mesh, but will consume more logic
resources. If reordering of memory accesses is allowed then the first ready, i.e. non-
blocked, packet in the buffers could be routed also possible increasing the network
performance. To allow memory access reordering on the other hand would require
implementing support for different memory consistency models which is a large task to
undertake.

9.1.2.3 Flit-buffer Flow Control

The interconnect is using channels where each data channel is as wide as a packet.
By using a flit-buffer flow control, such as wormhole routing, the interconnection and
buffers would require less resources. Using less resources could improve scaling at the
cost of decreased bandwidth. This trade-off should be investigated further.

9.1.2.4 Routing Resources

A FPGA, in contrast to Application-Specific Integrated Circuits (ASICs), have limited
interconnection resources. For saving routing resources it is possible to have channels
support only one direction between each neighboring tile. This would require the current
interconnect to be setup as a torus instead of a mesh so packets can move along the
complete row or column by wrapping around at the borders. The routing algorithm
would become a simplified form of XY routing, where a packet is routed along the
X axis’s only direction until it reach the correct column, and then be routed along the
Y axis until it reaches its destination. This approach will on the other hand increase
communication latency. Since the synthesis reports suggest that logic is the limited
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resource at the moment, this would not help in increasing the core count, but a simpler
network may reduce the synthesis time usage.

9.1.2.5 Routing Algorithms

The current mesh interconnect is simply converted to a torus, but this would require
modifications to the routing algorithm. Even so, with the network changed to a torus
the tiles could communicate using shorter paths, e.g. tiles placed at the border of the
layout could be able to communicate directly. Introducing new routing algorithms could
therefore reduce the average hop count of the network significantly.

Adaptive routing algorithms could also be implemented to overcome network conges-
tion, but this may cause reordering of memory accesses and would therefore entail
considerable processor tile adaptations.

9.1.3 SHMAC Enhancements

The SHMAC could easily be expanded to suit different needs by adding different appli-
cation specific tiles. Some different examples is listed in this section.

9.1.3.1 DRAM Tile

The DRAM Tile makes any external DRAM on the development board available for
use internally on the processor, thereby expanding the SHMAC’s amount RAM as it is
limited by the FPGA.

If only eight bits are used for coordinates, each tile’s local address space consists of
16 MB. To exploit more of the DRAM’s resources, the DRAM Tile could occupy
several tile slots as discussed in Section 3.3.

9.1.3.2 Random Tile

The Random Tile is used to generate random values. It is a pure slave tile with a random
generator slave unit. It could be seeded and pseudo-random or better still connected to
an external true random generating unit. This may be used for randomized algorithms
and for use in cryptography.

9.1.3.3 Crypto Tile

Accelerators for cryptography is common in processors today, as this is typically work
that can be done efficient in hardware. If an application makes heavy use of cryptogra-
phy the SHMAC could easily be expanded to include such a tile either as a coprocessor
in a processor tile or as a stand-alone function tile.
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9.1.3.4 Collection Tile

Many slave units utilize only a small part of their allocated memory addresses. This
is true for both Clock Tile and Jump Tile for instance. If memory addresses becomes
a scarce resource then such wasteful overhead should be avoided. A tile design can be
created which collate a number of slave units or master units from other pure slave or
master tiles. Figure 9.3 shows how the Collection Tile increases the utilization of the
address space by making use of previously unused address bits.

Internal
router

Router

Slave

Slave

Slave

Slave

Figure 9.3: Collection Tile with slave units

The end-result is that the Collection Tile’s local memory space is evenly shared by
all its slave units. Figure 9.4 gives an example of how the address format could be,
using two bit for internal routing where x and y is for internal address. For a tile only
containing master units the internal router can be even simpler.

i
31 28

j
27 24

y
23

x
22

Unused
21 12

Address
11 0

Figure 9.4: Collection Tile’s internal address representation

9.1.3.5 CA Tile

Another tile concept that shows of the possibilities with the flexibility and ease of
modification enabled by the SHMAC is the Cellular Automata Tile. A sub-mesh of CA
Tiles in the interconnect could be reserved for the computation of a cellular automata.
The slave unit would consist of memory containing automata rules, cell state and tile
control, while the master unit is responsible of following the automata rules presented
by its slave. Typically the automata master unit reads its own and neighbors state and
updates its own state based on this. Other tiles in the SHMAC can interface with this
automata through the memory interface as per usual, e.g. a processor tile could run
the genetic algorithm to decide which rules should advance to the next generation and
since update the different CA Tile’s rule set.
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9.1.4 External Communication

9.1.4.1 UART Debug Support

For debug purposes we envision the extension of the current UART solution with the
new commands HALT, STEP and SCAN. The HALT command is envisioned as a clock
enable/disable for the tiles. The memory is then readily available through the UART
memory interface, but registers needs a way to be accessed. By implementing a register
scan line in the system the state of all computations and routing becomes accessible
from the outside environment. STEP enables the clock for a single cycle, thereby
stepping through execution one step at a time. This gives the possibility of inspecting
the execution in great detail and would make it possible to add GDB support for the
SHMAC.

9.1.4.2 Automatic Result Gathering

Another UART extension which could aid in running experiments is the addition of a
data structure on the SHMAC that the host system could access after execution has
reached the end on the SHMAC. If such a structure was defined then the program
running experiments on the host could be guided in dumping memory to files after
a run. E.g. a linked-list of memory segments’ start, length and which file to store
the memory dump in could simplify tedious bookkeeping work needed to document an
experiment.

Another beneficial gain from this solution is the possibility of programmatically cre-
ating the structure, helpful for experiments where the result data is not necessarily
known in advance where it will reside in memory, for instance if memory allocations on
heap are performed. If well-known memory addresses in the UART Tile’s slave unit is
used to store pointers to such defined structures then UART commands could be used
to perform such a memory dump without the need for the researcher to track down
and dump the data manually. This addition is the last piece remaining to be able to
automate the task of running large numbers of experiments.

9.1.4.3 SHMAC to Host Communication

The delivered version of SHMAC has no proper way to communicate that execution
is finished since the current UART Tile is host side initiated, i.e. the host side is
currently the only side capable to initiate communication as per the strict handshake
contract utilized. During the thesis, LEDs have been used as indicators to whether
execution has finished or not, but this is an unsatisfactory way to support for instance
time measurements, because it does not enable the automation of running batches of
test benches or rapidly exploring design spaces. What is currently done to circumvent
this one-sidedness is to use the UART Tile in combination with the Clock Tile. Using
this time keeping module the UART can know when the execution has finished by
polling the Clock Tile’s control register, i.e. by stopping the clock the execution can
signal its end to the host side. The polling from the host side does however create
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unnecessary network load, and could be better solved by a control register embedded
in the UART Tile’s local memory space which would avoid the polling to traverse the
interconnect. Better still would be to enable two-way communication over UART.

9.1.4.4 Robust UART Reset

A shortcoming with the current UART Tile is that the reset command is part of the
regular state machine. If for some reason a malevolent packet is introduced, for instance
because of a bug in another unit, and this is addressed to the UART’s master unit
then the state machine could hang. The same is true for incomplete or wrong UART
communication from the host side. Reset in our current design is a command equal in
priority to any other command making the command protocol’s state machine fragile.
A more robust design should make reset self-contained so it would always be possible
to reset SHMAC to an initial state over UART.

9.1.5 Software Improvements

9.1.5.1 Work Stealing Algorithm

A run-time system based on TBP scheduling is a logical continuation of this thesis.
Such scheduling systems will require efficient algorithms. Cilk and Wool is examples of
contemporary homogeneous multi-core scheduling systems which make use of what is
known as work stealing to distribute the global workload fairly and efficiently.

The work stealing approach may well be a good fit as a scheduling algorithm for het-
erogeneous multi-core processors also. Work stealing is however non-deterministic and
would require that a tile can access random memory locations without large memory
access latencies which would require a cache system to be implemented.

For heterogeneous architectures such as the SHMAC it should be considered hard to
program parallel workloads explicitly, especially for the SHMAC case as the exploration
of new layouts could introduce inconsistencies between program and hardware. A work
stealing enabled run-time system which abstracts away the heterogeneous nature of the
hardware for the programmer would be helpful in this regard.

9.1.5.2 TBP Run-time Engine

As the SHMAC currently does not utilize any form of cache, accessing arbitrary memory
locations may introduce significant overhead. TBP would require that it is possible to
map available tasks to idle processors efficiently. This will require that a core can run
arbitrary tasks as they are ready for execution. As the execution time for each task
may be unknown at compile-time, the mapping must be done in run-time. This is true
also for scheduling algorithm utilizing work stealing, but these algorithms is dynamic
so it would also be hard to predict which core will be assigned each task. Getting good
performance in a architecture without cache would require that initial placement of
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tasks in memory is done such that each core should access memory as close at possible
to the core.

Since execution time for the tasks may be unknown it would be impossible to create a
optimal placement for tasks in memory that minimizes each core’s access delay. One
possibility would be to duplicate the most heavily used tasks throughout memory, using
a heuristic for finding a good placement. Efficient scheduling within TBP without use
of cache would therefore require extensive analysis of the application. Memory accesses
for run-time systems utilizing work stealing scheduling would be unpredictable, which
would make performance of the system equally unpredictable.

9.1.5.3 SHMAC Layout Introspection

Currently the details of the SHMAC layout is conveyed to the run-time by using auto-
generated header files included at compile time. Integrating this configuration in the
hardware itself using a ROM would allow the applications to fetch the current layout’s
information at run-time instead. This would make programs more portable between dif-
ferent FPGA implemented SHMAC layouts. For instance could it simplify any run-time
system’s responsibility of abstracting away differences between heterogeneous layouts as
the run-time system then would not need to be recompiled together with each synthesis
of new layouts.

9.1.5.4 Per-Experiment Configurations

The delivered configuration system separates the hardware and software steps of the
build process. This is a remnant from our legacy configuration system were we con-
sidered matching the configuration to the assumed typical usage pattern. This would
be to specify a hardware layout, generate and implement this before running multiple
benchmarks or other experiments. From results gathered in this round, hardware would
be modified and a new iteration could be done. Unfortunately tailoring the configura-
tion system directly to this approach has made any other usage pattern cumbersome
and makes reproduction of results dependent on a researcher dutifully document every
different combinations of hardware layout and software used. This should be improved
upon before using our prototype for research.

Specifically this means that the layout configuration must change. The layout schemat-
ics, setup.txt should be moved together with the experiment’s software source code or
possibly a new folder structure for experiments which links the two aspects together in
some other way. The gen-tile-ram file system structure should be discarded in favor of
reusing the experiment configuration for this step also. In addition to encapsulating
the whole SHMAC setup in self-contained experiments this would assure the correct
mapping of the same programs after both synthesis and experiment runs.
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9.1.5.5 Alternative Linker Script

When multiple threads of execution is to share a variable belonging to one of the cores,
the binary of this core must be compiled before cores depending on this variable. This
restricts the order of compilation and cause problems in cases of circular dependencies.

This could be solved by creating a single binary containing the complete program mem-
ory of the SHMAC, instead of binaries per processor tile as is currently done. A linker
script would need to be generated which ensures that the program sections are mapped
to the different processor tiles’ local memory spaces correctly. Each tile’s binary could
be extracted from the large binary blob to allow for selective reprogramming of indi-
vidual tiles.

9.1.5.6 Configurable Topology

Currently the interconnect topology is defined to be a mesh and the configuration
system assumes this when creating the toplevel description, but allowing a more flexible
interconnect setup could make interesting hardware solutions possible. This would
require new types of router units and routing algorithms. Moreover the configuration
system must provide the means for specifying arbitrary topologies and parsing these
into synthesizable hardware descriptions.

9.1.5.7 Fallback Lock Library

The current lock library generation requires a LL/SC Tile and causes builds to fail
if such hardware is missing. This breaks applications which require locking on such
layouts. A solution is to let the lock library generator generate a pure software locking
scheme if no lock hardware is available. Generating a locklib.o in all cases allows for
applications to build on more layouts and will reduce breakage.

9.1.5.8 Interrupt Routines

Given the possibility of both hardware and software interrupts, routines should be
created to handle faults for application. A set of default interrupt handlers could be
created and bundled with the framework after proper interrupt support is implemented
in hardware. Some interrupt handlers are time consuming to implement, for instance
the interrupt mechanism for FPU emulation to handle exceptions caused by coprocessor
1 missing from our integer tiles. As such this is worthwhile to provide for new users of
the system.

9.1.5.9 Heap Support

The supported C run-time environment supports the heap concept, but due to time
shortage no malloc implementation is included in the delivery. Such an implementation
may be as simple as the standard textbook implementation [43] or it may take advantage
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of the distributed nature of the global memory space. If the textbook implementation
of malloc runs out of local memory it returns an error code, but a distributed malloc
could search outwards from its local tile until finding the closest neighbor with available
memory to allocate.
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A
Glossary

LL/SC Tile Tile supporting LL/SC instructions for obtaining atomic RMW. 41, 47,
49, 50, 55, 56, 65, 70, 78, 101

Clock Tile Pure slave tile for counting ticks, used for benchmarking.. 47, 56, 75, 101

Floating Point Processor Tile Tile containing a MIPS-I processor with FPU.. 47,
61, 62, 66, 70, 95

Integer Processor Tile Tile containing a MIPS-I processor without FPU.. 32, 33,
47, 60–62, 66, 95, 101

Intel c© CilkTM Plus An extension to the C and C++ programming languages, de-
signed for multithreaded parallel computing.. 17, 18

Jump Tile Pure slave tile returning a jump instruction to the start of aprocessors
local memory.. 27, 40, 41, 47, 61, 101

LED Tile Pure slave tile used for setting on-board LEDs.. 29, 47

Memcached A general-purpose distributed memory caching system used for keeping
results of expensive queries.. 15

MIPS MIPS is a RISC ISA developed by MIPS Technologies.. 6, 24, 31, 33, 34, 40,
48, 51, 66, 85

mlite The processor core implemented in the Plasma project. . 29, 32–34

Plasma Processor implementing most of the MIPS-I ISA. The processor is written in
VHDL by Steve Rhoads. . 85

RAM Tile Pure slave tile containing on-chip block RAM.. 47
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UART Tile Pure master tile used for controlling the processor through UART.. 42,
47, 61, 75, 76

Wool Wool is an library for independent task parallelism developed by Karl-Filip
Faxén, assistant professor at the Royal Inst. of Technology in Stockholm.. 17, 18
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B
Benchmarks

This chapter gives some details about the implemented benchmarks. All of the bench-
mark applications does some kind of calculation, which is controlled to be correct. In
addition the assembly files are controlled to assure that the compiler does not do any
unwanted optimizations.

Timing is done by simply deactivating the clock. The UART will pull the value of the
clock’s control register with regular intervals. If the clock is deactivated, the execution of
the benchmark is done and the result can be read. This should give minimal interference
with the benchmark as this interval is relative long, and the benchmark have no external
communication.

B.1 Microbenchmarks

These benchmarks does not require any synchronization between the tiles, and there
will be no additional traffic in the mesh. All initialization needed for the benchmarks
are done before clock is started to avoid any overhead. Since there should be no traffic
on the interconnect, the two writes to clock should take the same time. The timing
should therefore be accurate.

B.1.1 Sustained Int

This is a benchmark for instruction reads, that is reads from local memory. No com-
munication is done outside the tile except setting the Clock Tile’s control register. This
benchmark executes addiu 2000 times.

The benchmark have no memory operations making instruction reads the only memory
requests measured. Code given in Listing 9.

87



Listing 8 Benchmark UART configuration file

#include ‘‘../include/shmac.h’’

TILE(PLASMA, 0) <bin-file>.bin

Listing 9 Sustained Int Benchmark
1 .globl _start

2 _start:

3 li $4,0

4

5 // Reset clock

6 li $2,TILE(CLOCK,0) # 0x1000000

7 li $3,7

8 sw $3,0($2)

9

10 // Add

11 .rept 2000

12 addiu $4,$4,1

13 .endr

14

15 // Stop clock

16 sw $0,0($2)

17

18 // Save result

19 li $2,TILE(RAM,0)

20 sw $4,0($2)

21

22 // Halt

23 1: beq $0,$0,1b

B.1.2 Read to Neighbor

This benchmark measures read performance from neighboring tile by executing lw 2000
times. The execution times includes sending data through two routers in addition to
the performance of the master and slave unit.

Code given in Listing 10.

B.1.3 Write to Neighbor

This benchmark measures write performance to neighboring tile by executing a sw 2000
times. This benchmark measures when the processor is finished, not when the data is
actually written to memory such that the last sw will not be taken into account. As
the number of request is so high this inaccuracy will however not be significant. Code
is given in Listing 11.
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Listing 10 Read from Neighbor
1 .globl _start

2 _start:

3 // Initialize read address

4 li $4,TILE(RAM,0)

5

6 // Reset clock

7 li $2,TILE(CLOCK,0)

8 li $3,7

9 sw $3,0($2)

10

11 // Load word to $5

12 .rept 2000

13 lw $5,0($4)

14 .endr

15

16 // Stop clock

17 sw $0,0($2)

18

19 // Halt

20 1: beq $0,$0,1b
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Figure B.1: Layout for hardware in the Parallel Sum Benchmark

B.2 Parallel Sum

This benchmark consists of a for loop which sums the 10000 ∗ 36 iterations using 36
Integer Processor Tiles. There is no loop unrolling, as this is does not affect the relative
execution time for parallel versus sequential execution.

There is one master program, which will contain the final sum. This program is also
responsible for all setup. The work is divided between all cores, and is written to the
master after each worker is finished. When all workers are finished, the master stops
the clock. Listing 12 gives the source for the master program, while Listing 13 gives the
source for the slave program. Listing 14 gives the sequential version of this algorithm.

Figure B.1 gives the layout of the hardware used for the benchmark. This layout, i.e.
the same bit file, is used for all runs of the benchmark. To reduce the number of workers,
some of the cores halts by running the code given in 15. Figure B.1 shows the utilized
hardware, with the master program located in tile (2,4). All active cores are placed
as close as possible to the master program to avoid latencies.
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Listing 11 Write to Neighbor
1 .globl _start

2 _start:

3 // Initialize read address

4 li $4,TILE(RAM,0)

5

6 // Data

7 li $5,0x11259375 #0xabcdef

8

9 // Reset clock

10 li $2,TILE(CLOCK,0)

11 li $3,7

12 sw $3,0($2)

13

14 // Write 0xabcdef to TILE(RAM,0)

15 .rept 2000

16 sw $5,0($4)

17 .endr

18

19 // Stop clock

20 sw $0,0($2)

21

22 // Halt

23 1: beq $0,$0,1b
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Listing 12 Parallel Sum - Master
1 #include <shmac.h>

2 #include <locklib.h>

3

4 #pragma shmac finished

5 volatile unsigned int finished = 1;

6 #pragma shmac wait

7 volatile unsigned int wait = 1;

8 #pragma shmac N

9 volatile unsigned int N = 25920;

10 #pragma shmac sum

11 volatile unsigned int sum = 0;

12 #pragma shmac lock_address

13 unsigned int * lock_address;

14

15 // Numbers of workers to wait for

16 const int workers = 2;

17

18 int main(void){

19 // Reset Clock

20 unsigned int * clock_ctrl_reg = (unsigned int *) TILE(CLOCK,0);

21 *clock_ctrl_reg = 7;

22

23 // Resets Lock Tile

24 init_ll();

25

26 // Allocate lock

27 int lock_error;

28 alloc_lock(&lock_address, &lock_error);

29

30 // Local Variables

31 int local_sum = 0;

32

33 // Start run

34 wait = 0;

35

36 // Do summation

37 for (int i=0; i<N; ++i)

38 local_sum += 1;

39

40 // Send reply

41 lock(lock_address);

42 finished += 1;

43 sum += local_sum;

44 unlock(lock_address);

45

46 // Wait until all slaves are finished

47 while(finished!=workers){};

48

49 // Stop Clock Tile

50 *clock_ctrl_reg = 0;

51

52 return 0;

53 }
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Listing 13 Parallel Sum - Slave
1 #include <shmac.h>

2 #include <locklib.h>

3 #include "externs.h"

4

5 int main(void) {

6

7 // Gives a local copy of external lock_address

8 unsigned int * lock_address;

9

10 // Local Variables

11 int local_sum = 0;

12

13 // Wait for ready signal

14 while ( *((volatile int*) ext_wait) ){};

15

16 lock_address = *ext_lock_address;

17

18 // Do summation

19 volatile int N = *((volatile unsigned long*) ext_N); // Create local copy of counter

20

21 for (int i=0; i<N; ++i)

22 local_sum += 1;

23

24 // Send reply

25 lock(lock_address);

26 *((volatile unsigned long*) ext_finished) += 1;

27 *((volatile unsigned long*) ext_sum) += local_sum;

28 unlock(lock_address);

29

30 return 0;

31 }

92



Listing 14 Sequential Sum
1 #include <shmac.h>

2

3 volatile unsigned int N = 12960;

4

5 int main(void){

6

7 // Reset Clock

8 unsigned int * clock_ctrl_reg = (unsigned int *) TILE(CLOCK,0);

9 *clock_ctrl_reg = 7;

10

11 unsigned int sum = 0;

12

13 volatile double d = 1.1;

14 d += 1.1;

15

16 sum += (volatile int) d;

17

18 // Do summation

19 for (int i=0; i<N; ++i)

20 sum += 1;

21

22 // Stop Clock Tile

23 *clock_ctrl_reg = 0;

24

25 return 0;

26 }

Listing 15 Halt Program
1 .globl _start

2 _start:

3 // Halt

4 1: beq $0,$0,1b
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C
Synthesis Reports

This appendix contains the synthesis reports for the largest integer and FPU designs
fitting the utilized FPGA as shown below. There is in addition synthesis report for a
mixed integer/FPU design.

Listing 16 Design with 40 Integer Processor Tiles

Listing 17 Design with 16 Floating Point Processor Tiles

Listing 18 Design with 20 Integer Processor Tiles and 8 Floating Point Processor Tiles
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Listing 16 Synthesis Report for 40 Integer Processor Tiles using a 6x7 mesh.
Excerpt from shmac.par
Slice Logic Utilization:

Number of Slice Registers: 55,213 out of 301,440 18%

Number used as Flip Flops: 55,148

Number used as Latches: 65

Number used as Latch-thrus: 0

Number used as AND/OR logics: 0

Number of Slice LUTs: 142,204 out of 150,720 94%

Number used as logic: 137,024 out of 150,720 90%

Number using O6 output only: 129,922

Number using O5 output only: 40

Number using O5 and O6: 7,062

Number used as ROM: 0

Number used as Memory: 5,120 out of 58,400 8%

Number used as Dual Port RAM: 5,120

Number using O6 output only: 0

Number using O5 output only: 0

Number using O5 and O6: 5,120

Number used as Single Port RAM: 0

Number used as Shift Register: 0

Number used exclusively as route-thrus: 60

Number with same-slice register load: 58

Number with same-slice carry load: 2

Number with other load: 0

Slice Logic Distribution:

Number of occupied Slices: 37,564 out of 37,680 99%

Number of LUT Flip Flop pairs used: 144,377

Number with an unused Flip Flop: 91,427 out of 144,377 63%

Number with an unused LUT: 2,173 out of 144,377 1%

Number of fully used LUT-FF pairs: 50,777 out of 144,377 35%

Number of slice register sites lost

to control set restrictions: 0 out of 301,440 0%
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Listing 17 Synthesis Report for 16 Floating Point Processor Tiles using a 3x6 mesh.
Excerpt from shmac.par
Slice Logic Utilization:

Number of Slice Registers: 94,369 out of 301,440 31%

Number used as Flip Flops: 94,304

Number used as Latches: 65

Number used as Latch-thrus: 0

Number used as AND/OR logics: 0

Number of Slice LUTs: 141,539 out of 150,720 93%

Number used as logic: 135,798 out of 150,720 90%

Number using O6 output only: 111,077

Number using O5 output only: 1,805

Number using O5 and O6: 22,916

Number used as ROM: 0

Number used as Memory: 4,816 out of 58,400 8%

Number used as Dual Port RAM: 4,800

Number using O6 output only: 64

Number using O5 output only: 1,344

Number using O5 and O6: 3,392

Number used as Single Port RAM: 0

Number used as Shift Register: 16

Number using O6 output only: 16

Number using O5 output only: 0

Number using O5 and O6: 0

Number used exclusively as route-thrus: 925

Number with same-slice register load: 774

Number with same-slice carry load: 150

Number with other load: 1

Slice Logic Distribution:

Number of occupied Slices: 36,810 out of 37,680 97%

Number of LUT Flip Flop pairs used: 143,552

Number with an unused Flip Flop: 66,951 out of 143,552 46%

Number with an unused LUT: 2,013 out of 143,552 1%

Number of fully used LUT-FF pairs: 74,588 out of 143,552 51%

Number of slice register sites lost

to control set restrictions: 0 out of 301,440 0%
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Listing 18 Synthesis Report for 20 Integer Processor Tiles and 8 Floating-point Pro-
cessor Tiles using a 4x6 mesh.
Excerpt from shmac.par
Slice Logic Utilization:

Number of Slice Registers: 74,791 out of 301,440 24%

Number used as Flip Flops: 74,726

Number used as Latches: 65

Number used as Latch-thrus: 0

Number used as AND/OR logics: 0

Number of Slice LUTs: 142,166 out of 150,720 94%

Number used as logic: 136,969 out of 150,720 90%

Number using O6 output only: 120,382

Number using O5 output only: 911

Number using O5 and O6: 15,676

Number used as ROM: 0

Number used as Memory: 4,968 out of 58,400 8%

Number used as Dual Port RAM: 4,960

Number using O6 output only: 32

Number using O5 output only: 672

Number using O5 and O6: 4,256

Number used as Single Port RAM: 0

Number used as Shift Register: 8

Number using O6 output only: 8

Number using O5 output only: 0

Number using O5 and O6: 0

Number used exclusively as route-thrus: 229

Number with same-slice register load: 139

Number with same-slice carry load: 82

Number with other load: 8

Slice Logic Distribution:

Number of occupied Slices: 37,379 out of 37,680 99%

Number of LUT Flip Flop pairs used: 144,616

Number with an unused Flip Flop: 78,664 out of 144,616 54%

Number with an unused LUT: 2,450 out of 144,616 1%

Number of fully used LUT-FF pairs: 63,502 out of 144,616 43%

Number of slice register sites lost

to control set restrictions: 0 out of 301,440 0%
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D
Configuration

Configuration of toplevel tile layout is done by editing the file toplevel/setup.txt

as descibed in 5.1 on page 46. By using the Makefile; this configuration builds
toplevel/toplevel.vhd and include/shmac.h. The actual hardware is build using
this toplevel. The header is used for easing access to each tile’s memory locations.

JPPPP

PFPFP

PPPPP

Figure D.1: Example tile layout configuration file

Listing 19 Example of accessing a tile’s memory

/* Memory of the Clock Tile’s registers */

// Set directly at compile time

int * clock_ctrl_register = TILE(CLOCK, 0) + 0;

int * clock_count0 = TILE(CLOCK, 0) + 1;

int * clock_count1 = TILE(CLOCK, 0) + 2;

// Create array at compile time

// Allows programmatic control of clock if present in the layout

int ** clock_tile_array = TILE(CLOCK, ARRAY);

if (TILE(CLOCK, NUM))

{

int * clock = clock_tile_array[0];

int * clock_ctrl_register = *(clock+0);

int * clock_count0 = *(clock+1);

int * clock_count1 = *(clock+2);

}

Listing 19 shows how memory addresses to the different tiles can be done.
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E
Tutorial

This tutorial assumes a clean checkout of the SHMAC repository, and that the ISE is
installed.

During this tutorial we will create a simple “bank application”: Two workers start with
£500000 each, and repeatedly deposits £1 to a shared account until their local account
is empty. This tutorial demonstrates how to access variables from other tiles, usage of
locking library and benchmarking.

Set up Configuration of SHMAC

The hardware to be used for this application contains two Integer Processor Tiles and
a LL/SC Tile. In addition the processors would require a Jump Tile. Benchmarking
will be done using the Clock Tile. To be able to program the system after synthesis an
UART Tile is included. All of the bank data is placed in the RAM Tile at (2, 0).

We have two workers, namely east and west. This application does not make use of
any runtime-system, with one worker tied to each core. To create this mapping the
following setup is used:

J C U

P L P

R R R

Listing 20 on the following page gives the generated headerfile for this setup. Each
coordinate is set to use four bit.
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Listing 20 Tutorial: shmac.h

1 /* Header file for SHMAC

2 * author: Leif Tore Rusten and Gunnar Inge G. Sortland

3 *

4 * Usage: TILE(NAME, NUMBER)

5 * TILE(CLOCK, 0) gives address to first clock tile

6 * TILE(CLOCK, NUM) gives number of clock tiles

7 */

8

9 #ifndef SHMAC_H

10 #define SHMAC_H

11 #define TILE(tile_type, tile_num) TILE_ ## tile_type ## _ ## tile_num

12 #define TILE_JUMP_0 0

13 #define TILE_CLOCK_0 16777216

14 #define TILE_UART_0 33554432

15 #define TILE_PLASMA_0 268435456

16 #define TILE_LLSC_0 285212672

17 #define TILE_PLASMA_1 301989888

18 #define TILE_RAM_0 536870912

19 #define TILE_RAM_1 553648128

20 #define TILE_RAM_2 570425344

21 #define TILE_CLOCK_NUM 1

22 #define TILE_FPU_NUM 0

23 #define TILE_JUMP_NUM 1

24 #define TILE_LLSC_NUM 1

25 #define TILE_PLASMA_NUM 2

26 #define TILE_LED_NUM 0

27 #define TILE_RAM_NUM 3

28 #define TILE_UART_NUM 1

29 #define TILE_CLOCK_ARRAY {16777216}

30 #define TILE_FPU_ARRAY {}

31 #define TILE_JUMP_ARRAY {0}

32 #define TILE_LLSC_ARRAY {285212672}

33 #define TILE_PLASMA_ARRAY {268435456, 301989888}

34 #define TILE_LED_ARRAY {}

35 #define TILE_RAM_ARRAY {536870912, 553648128, 570425344}

36 #define TILE_UART_ARRAY {33554432}

37 #endif
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The Bank Application

Listing 21 Tutorial: bank west.c
#include <shmac.h>

#include <locklib.h>

#include "externs.h"

int main(void) {

// Gives a local copy of external lock_address

unsigned int * lock_address;

// Accounts

unsigned int * shared = (unsigned int*) TILE(RAM, 1) + 0;

unsigned int * local = (unsigned int*) TILE(RAM, 1) + 1;

// Initialize accounts

*local = 500000;

// Wait for ready signal, since lock is then procured.

while ( *((volatile int*) ext_wait) ){};

lock_address = *ext_lock_address;

// Add money to shared account as long as we have some

while ( *local > 0 )

{

// Add £1 to shared, remove £1 from local

*local -= 1;

lock(lock_address); //

*shared += 1; // Critical section

unlock(lock_address); //

}

*((volatile int) ext_wait) = 1;

return 0;

}
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Listing 22 Tutorial: bank east.c
1 #include <shmac.h>

2 #include <locklib.h>

3

4 #pragma shmac wait

5 int wait = 1;

6 #pragma shmac lock_address

7 unsigned int * lock_address;

8

9 int main(void){

10

11 // Resets Lock Tile

12 init_ll();

13

14 // Allocate lock

15 int lock_error;

16 alloc_lock(&lock_address, &lock_error);

17

18 // Accounts

19 unsigned int * shared = (unsigned int *) TILE(RAM, 1) + 0;

20 unsigned int * local = (unsigned int *) TILE(RAM, 1) + 2;

21

22 // Clock

23 unsigned int * clock_ctrl_reg = (unsigned int *) TILE(CLOCK,0);

24

25 // Initialize accounts

26 *local = 500000; // Initial amount for east

27 *shared = 0; // Initial amount in shared account

28

29 // Reset Clock Tile

30 *clock_ctrl_reg = 7;

31

32 // Start run

33 wait = 0;

34

35 // Add money to shared account as long as we have some

36 while ( *local > 0 )

37 {

38 // Add £1 to shared, remove £1 from local

39 *local -= 1;

40 lock(lock_address); //

41 *shared += 1; // Critical section

42 unlock(lock_address); //

43 }

44 while ( wait == 0 ){};

45

46 // Stop Clock Tile

47 *clock_ctrl_reg = 0;

48

49 return 0;

50 }
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The program running in (1,0) will be in charge of setting up all shared resources, such
as lock and initialization of the bank’s account. Listing 21 on page 103 and Listing 22
on the facing page gives the source code of these applications. west must wait until
east have finished all initializations before it can start execution. This is done by east

sharing a variable wait = 1 , used as a spinlock by west. The same variable is used as a
barrier for allowing east to ensure west has finished execution. This way the execution
can be seen as a DAG where execution both starts and ends in east.

The following symbolic link are created to setup the linker scripts used for compiling:

1 ln -s plasma-prog/tutorial/bank_west gen-tile-rams/setup/1_0

2 ln -s plasma-prog/tutorial/bank_east gen-tile-rams/setup/1_2

east shares variables to other binaries. This are listed by using #pragma shmac wait

so that the compiling framework will generate a pointer to this address in externs.h.
Listing 23 shows an example of this generated headerfile.

Listing 23 Tutorial: externs.h

1 /* Header file containing external symbols

2 * author: Leif Tore Rusten and Gunnar Inge G. Sortland

3 *

4 * Example:

5 * #pragma shmac <name>

6 * int <name> = 1

7 */

8

9 #ifndef EXTERNS_H

10 #define EXTERNS_H

11 volatile unsigned long * const ext_wait = (void*) 0x120005cc; // bank_east.c

12 volatile unsigned long * const ext_lock_address = (void*) 0x120005d0; // bank_east.c

13 #endif

Programming the SHMAC

The bit file is generated by invoking make. This will also generate shmac.h and link-
erscripts for binaries with symbolic links present in gen-tile-rams/setup/. This will
also invoke the application’s Makefile.

uart-run-conf.sh located in the uart-tools folder will be used for loading the ap-
plication to the FPGA’s RAM. We will use the configuration file given below. Loading
the application is done by invoking ./uart-run-conf.sh tutorial.conf.

$ cat tutorial.conf

TILE(PLASMA, 0) bank_west.bin

TILE(PLASMA, 1) bank_east.bin
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Validating output

The content of the accounts can be accessed using uart-memdump <from address>

<to address> where addresses are given in decimal values. The memory location of
the different addresses can be found by invoking nmbank\_<west/east>.elf.

The following values can be found after execution:

000f4240 // Account shared 1000000

00000000 // Account west 0

00000000 // Account east 0

00000000 // Ctrl register

00000000 // Ticks 0 0

37b69cff // Ticks 1 934714623

Execution time was equal to 934714623/33 MHz = 28 sec.
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