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Problem Description

The master thesis looks at sparse matrices originating from optimization
problems and tuning storage formats for cache-efficient access. It applies low
level instrumentation tools for the development and analysis of cache-aware
sparse matrix multiplication and cholesky decomposition in interior point
methods. If time permits, it should be further looked into parallelization.





Abstract

In previous work, a cache-aware sparse matrix multiplication for linear pro-
gramming interior point methods was proposed. The serial implementations
achieved speedups ranging from 1.2 to 108.0 over the implementation in
GLPK, an open-source linear programming solver. In this work, the same
ideas and data structures are used to develop a cache-aware sparse cholesky
decomposition as it is implemented in GLPK. The serial implementation
achieves a speedup of up to 2.5 on the problem set considered. The matrix
multiplication and cholesky decomposition are analysed by use of perfor-
mance counters on both an AMD-based and an Intel-based system. The
analysis shows that the applied blocking techniques reduce the number of
floating point operations performed, and that this effect is even more im-
portant than the achieved cache utilization to produce speedup for some
problems.
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Chapter 1

Introduction

Linear programming is widely applied in economics and business, and is in-
volved in a significant portion of all scientific computations [11]. GNU Linear
Programming Kit (GLPK) is an open-source library intended to solve large-
scale linear programming problems, mixed integer programming problems,
and other related problems [2]. Included in GLPK is a serial implementa-
tion of an interior point method for linear programming. A central part of
the interior point method is solving a linear equation system of the form
(ADAT )x = b. Eleyat [10] proposed a cache-aware implementation of the
multiplication ADAT using blocking techniques, and also a load balance
scheme for parallel execution.

In this work, the same idea and data structures developed for the blocked
matrix multiplication are used to develop a blocked version of the cholesky
decomposition, as it is implemented in the interior point method in GLPK.
The cache behaviour of both the matrix multiplication and the cholesky
decomposition are analysed by use of performance counters.

The report is structured as follows. Chapter 2 introduces linear program-
ming, the interior point method and sparse matrix representations. The
theory of numerical linear equation solving is given, and the blocked matrix
multiplication is presented. Chapter 3 describes the blocked cholesky decom-
position. Chapter 4 presents and discusses the results and cache-analysis.
Conclusions and suggestions to future work are given in Chapter 5.
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Chapter 2

Background

Linear programming problems often introduce large, sparse matrices, which
are stored in special data structures. One such structure is the compressed
row storage format, which is used in the interior point method of GLPK and
is central in the development of the blocked sparse matrix multiplication [10].
The interior point method in GLPK solves linear programming problems by
performing numerical linear algebra computations, such as matrix multipli-
cation and cholesky decomposition, on such sparse matrices.

2.1 Linear Programming

Linear programming (or linear optimization) is a tool for finding the optimal
value of a linear function, given a set of linear constraints. Linear program-
ming uses a mathematical model, which in standard form can be expressed
as

minimize cTx

subject to Ax = b, (2.1)

x ≥ 0,

where cTx is the objective function to be minimized, x is the decision variables
to be found, A is the constraint matrix, and c and b are constant vectors.
The most common application is resource allocation, but any problem that
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fits the mathematical model, such as certain network flow problems, can be
solved by linear programming.

2.2 Interior Point Method

The constraints in Equations 2.1 form a convex region that defines the set of
feasible solutions to the problem. Contrary to the simplex method (see for
example [6]), which finds the optimal solution by moving along the bound-
aries of the feasible region, the interior point method converges to an opti-
mal solution through a path in the interior of the region. The interior point
method is found to be superior to the simplex method for some large linear
programming problems [11].

GLPK implements the primal-dual interior point method proposed by Mehro-
tra [13]. Figure 2.1 shows the computations of an iteration of the algorithm.
The vectors xk, yk and zk represent the estimate of solutions to Equations 2.1
and its dual problem. The dual problem is the equivalent problem maximize
z = bTy, subject to ATy + z and z ≥ 0. Xk and Zk are diagonal matrices
with elements of xk and zk along their diagonals. The vector e represents
[1 1 . . . 1]T .

An iteration of the interior point method spends most of its time in a lim-
ited set of linear algebra kernels. Computation of lines 1.1 and 3.1 of Figure
2.1 involves solving linear equations of the form (ADAT )x = b. As will be
described in Section 2.4 this is done by performing matrix multiplication
S = ADAT , cholesky decomposition of S, followed by forward and backward
substitutions. Other linear algebra routines involve matrix-vector multipli-
cations of the form Ax and ATx, and various vector-vector operations.

2.3 Sparse Matrix Representations

The straight-forward representation of a matrix saves the entries of the ma-
trix contiguously in memory, either by rows or by columns. An element, aij,
can then be directly accesses by row index i and column index j. For sparse

4



1. Compute affine scaling direction
1.1 dyaff = (ADAT )−1(AZ−1

k (Xk(c−AT yk − zk) +XkZke) + b−Axk)
1.2 dxaff = Z−1

k (Xk(A
Tdyaff − c+AT yk + zk)−XkZke)

1.3 dzaff = X−1
k (−XkZke− Zkdxaff)

2. Compute the centering parameter σ
2.1 αaff-p = inf{0 ≤ α ≤ 1|xk + αdxaff ≥ 0}
2.2 αaff-d = inf{0 ≤ α ≤ 1|zk + αdzaff ≥ 0}
2.3 µaff = (xk + αaff-pdxaff)T (zk + αaff-ddzaff)
2.4 σ = (µaff/µ)3, where µ = xTk zk/n

3. Compute the centering direction
3.1 dycc = (ADAT )−1(AZ−1

k (−(σµe−XkZke)))
3.2 dxcc = Z−1

k (Xk(A
Tdycc) + (σµe−XkZke))

3.3 dzcc = X−1
k ((σµe−XkZke)− Zkdxcc)

4. Compute the combined direction
4.1 dx = dxaff + dxcc

4.2 dy = dyaff + dycc

4.3 dz = dzaff + dz
5. Determine primal and dual step sizes

5.1 αp = γ · inf{0 ≤ α ≤ 1|xk + αdx ≥ 0}
5.2 αd = γ · inf{0 ≤ α ≤ 1|zk + αdz ≥ 0}, where γ = 0.90

6. Compute next point
6.1 xk+1 = xk + αpdx
6.2 yk+1 = yk + αpdy
6.3 zk+1 = zk + αpdz

Figure 2.1: Iteration k of the IPM algorithm

matrices, i.e. matrices primarily populated with zeroes, this storage scheme
becomes inefficient, both in terms of memory requirements and operations
performed on the matrix. For such matrices, only the non-zero elements need
to be saved and trivial operations resulting in zero can often be avoided.

A wide variety of storage techniques for sparse matrices has been proposed [14].
Some storage formats are optimized for matrices with specific structures,
such as banded matrices, while others are general and support matrices of
any structure. The general idea is to store only the non-zero entries and de-
termine their position in the matrix through an indexing structure. Hence,
entries are not accessed directly by their row and column indices.

The cost of the savings in memory, memory referencing and computations is
that algorithms become more complicated. Because of the indirect indexing
pattern of sparse formats, these algorithms can be much more challenging to
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optimize for modern memory hierarchies than algorithms for the traditional
matrix format.

2.3.1 Compressed Row Storage

The Compressed Row Storage (CRS) is a general storage format with no
requirements for the matrix structure. An m × n matrix with nnz non-zero
elements is represented by three arrays, Aval, Aind and Aptr. Aval contains
the nnz non-zero entries, where rows are stored in order, and Aind holds the
column indices for each of the values in Aval. Aptr contains the n starting
positions of each row of A in Aval and Aind, and the number of non-zeroes plus
one, nnz + 1, at the (n+ 1)th position. Within a row, the entries need not be
stored in the same order as in A. The Compressed Column Storage (CSS) is
a format similar to CRS where values are stored column-by-column and Aptr

contains column positions. A matrix A in CSS format equals its transpose,
AT , in CRS format. The CRS format reduces the memory requirement of
mn storage locations for the full matrix to 2nnz + n + 1 storage locations.
Figure 2.2 shows a matrix A and its CRS storage.

A =


0 0 0 2
0 3 1 0
8 0 3 0
7 0 0 0

 Aval = (2, 3, 1, 3, 8, 7)

Aind = (4, 2, 3, 3, 1, 1)

Aptr = (1, 2, 4, 6, 7)

Figure 2.2: A matrix A in compressed row storage

2.4 Linear Solver

An equation of the form Ax = b is solved by factorizing A into a product of
a lower-triangular and and an upper-triangular matrix, A = LU . When A is
symmetric (A = AT ) and positive definite (cTAc > 0 for all non-zero vectors
c), L can be chosen so that L = UT . This is the cholesky decomposition of A.
The equation is now solved by first solving UTy = b (forward substitution)
and then solving Ux = y (backward substitution).
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The interior point method spends most of the iteration time solving the linear
equation system of the form (ADAT )x = b. First, the matrix product

S = PAD(PA)T (2.2)

is calculated. P is a permutation matrix saved as a one-dimensional array
π, such that row i of A is interchanged with row π(i). P is calculated using
some ordering algorithm and is used to reduce fill-in, i.e. entries that change
from zero to a non-zero value during the cholesky decomposition [8]. Next,
S is factorized into the product

S = UTU. (2.3)

Matrix A is saved in CRS format and vectors and diagonal matrix D = XZ−1

are saved in full one-dimensional arrays, including their zero-entries. The
upper-triangular part of matrices S and U are stored in CRS format, and
their diagonal entries are stored in arrays Sdiag and Udiag.

Both the matrix multiplication and the decomposition are preceded by a
symbolic phase which finds the structures of S and U , respectively. The
symbolic phases find Sind, Sptr, Uind and Uptr and are performed once, before
the iterations of the interior point method are carried out. The numeric
phases of the matrix multiplication and the decomposition, which calculate
the actual values of Sval and Uval, are performed in each iteration.

2.5 Sparse Matrix Multiplication

For a matrix A saved in the traditional way, a multiplication of the form
S = PAD(PA)T has a trivial implementation. For each element sij, the dot
product, multiplied by entries of the diagonal matrix D, of row π(i) and row
π(j) of A is computed:

sij =
n∑
k=1

aπ(i),kdk,kaπ(j),k (2.4)

An element can be directly accessed by indices i and j, so the iterator vari-
ables of three nested loops can be used for indexing.

When A and S are in CRS format, elements must be accessed in a way to
avoid searching for entries. The beginning of a row can be accessed directly,
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all non-zero entries of a row can be iterated over, and for each of these entries
its column index can be found directly. GLPK implements the multiplication
row by row, as described in Algorithm 1. For each row i, the π(i)th row of
A is decompressed into a full vector in an array w. Then, for each entry, sij,
in row i, the dot product is computed between row π(j) of A and w. The
dot product is carried out by iterating over row π(j) of A while reading the
corresponding entry of row p(i) out of w.

Algorithm 1 Computing S = PAD(PA)T

1: for i = 1→ m do
2: ip = π(i)
3: for k = Aptr(ip)→ Aptr(ip + 1) do
4: w(Aind(k)) = Aval(k)
5: end for
6: for k = Sptr(i)→ Sptr(i+ 1) do
7: j = Sind(k)
8: jp = π(j)
9: for l = Aptr(jp)→ Aptr(jp + 1) do

10: Sval(k) = Sval(k) + Aval(l) ·D(Aind(l)) · w(Aind(l))
11: end for
12: end for
13: for k = Aptr(ip)→ Aptr(ip + 1) do
14: Sdiag(i) = Sdiag(i) + Aval(k) ·D(Aind(k)) · Aval(k)
15: end for
16: end for

Eleyat [10] has suggested modifications to improve the performance of the
multiplication based on the following observations: First, values of D and w
needed to compute non-zero entries in S are scattered irregularly over large
arrays and might cause a high cache miss rate. Second, the permutation of
A makes it difficult to benefit from data locality and might cause translation
lookaside buffer (TLB) misses. Two partitioning schemes were presented to
avoid these problems, a one-dimensional and a two-dimensional partitioning.

2.5.1 One-dimensional Matrix Partitioning

The multiplication can be done in vertical blocks so that parts of w and D
can be kept in memory during the multiplication of a block. Using block
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matrix multiplication, AAT can be computed as

AAT =
[
A1 A2 . . . Ak

]

AT1
AT2
...
ATk

 =
[
A1A

T
1 + A2A

T
2 + . . .+ AkA

T
k

]

where A is partitioned into to k vertical blocks. Matrix D is left out of the
equation for simplicity. Since entries of A are not directly accessible, sparse
block matrix multiplication requires a new structure for A to avoid having
to search for the beginning of a block in a row. The matrix A is therefore
divided into k matrices represented by separate CRS structures. In addition,
another level of CRS indexing is introduced to avoid looking up zero-rows
of a block. This higher-level CRS treats non-zero rows of a partition as
entries and indexes the partition number instead of column number. The
permutation of A is performed during the partitioning so that A is already
permuted when multiplied.

2.5.2 Two-dimensional Matrix Partitioning

The vertical partitions of A can be further further divided to achieve a two-
dimensional blocking of A. When partitioned into four sub-matrices, AAT is
computed as

AAT =

[
A11 A12

A21 A22

] [
AT11 AT21

AT12 AT22

]
=

[
A11A

T
11 + A12A

T
12 A11A

T
21 + A12A

T
22

A21A
T
11 + A22A

T
12 A21A

T
21 + A22A

T
22

]
.

A is partitioned into M × N blocks and S into M ×M blocks. To exploit
that the sparsity structure of S is known, each block of S keeps an array
of indices of non-zero rows. In addition, S has an array of indices of par-
ticipating pairs of blocks of A. Two blocks are participating if the result of
their multiplication is non-zero. These arrays are calculated once, before the
iterations of the interior point method begin.

2.5.3 Parallel Implementation

The matrix multiplication is computed in parallel by calculating rows of S
concurrently. Since rows have different sparsity, dividing an equal amount
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of rows to each processor leads to load imbalance. Instead, S is divided into
a number of shares that equals the number of processors. Ideally, all shares
have the same number of non-zeros. A share is made up of consecutive rows
in the vertical partitioning case, and a number of consecutive rows of blocks
in the two-dimensional block case.
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Chapter 3

Cache-aware Cholesky
Decomposition

State of the art algorithms for sparse cholesky decomposition are based
on supernodal and multifrontal methods that make use of optimized dense
BLAS [12] routines to reach near peak performance of the hardware [7].
In the following, the ideas and structures developed for the sparse matrix
multiplication are used to make a more cache-aware version of the cholesky
decomposition as implemented in GLPK.

3.1 Original Algorithm

The factorization (Equation 2.3) is a form of Gaussian elimination performed
row by row. For the n× n matrix S, the algorithm follows from

S =

[
s11 s12

sT12 S22

]
=

[
u11 0
uT12 UT

22

] [
u11 u12

0 U22

]
= UTU

where s11 is the upper-left entry of S, s12 is the row vector consisting of
the remaining entries of the first row, and S22 is the remaining sub-matrix.
Carrying out the matrix multiplication, gives the following equations:

s11 = u11u11 (3.1)

s12 = u11u12 (3.2)
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S22 = uT12u12 + UT
22U22. (3.3)

u11 is found as
√
s11 and u12 equals s12/u11. Rearranging Equation 3.3 to

UT
22U22 = S22− uT12u12, U22 is found by recursively applying the algorithm on

the matrix S22 − uT12u12. The main work of the decomposition is updating
the sub-matrix, U22, by subtracting the outer product uT12u12 (note that u12

is a row vector).

Entries of S are copied into U before the algorithm starts. The sparse im-
plementation is performed row by row as shown in Algorithm 2. The trans-
formed row i of U is unpacked into array w. For each non-zero entry in
uT12u12, the outer product between elements in w is subtracted from U22.

Algorithm 2 Computing factorization S = UTU

1: for i = 1→ m do
2: Udiag(i) =

√
Udiag(i)

3: for k = Uptr(i)→ Uptr(i+ 1) do
4: w(Uind(k)) = Uval(k) = Uval(k)/Udiag(i)
5: end for
6: for k = Uptr(i)→ Uptr(i+ 1) do
7: j = Uind(k)
8: for l = Uptr(j)→ Uptr(j + 1) do
9: Uval(l) = Uval(l)− w(j) · w(Uind(l))

10: end for
11: Udiag(j) = Udiag(j)− w(j) · w(j)
12: end for
13: end for

3.2 Blocked algorithm

Blocking matrix operations to exploit reuse of data in cache is a frequently
used technique for dense matrices [9]. The same strategy used in the cache-
aware sparse matrix multiplication can be applied to the sparse cholesky de-
composition. Similar to the multiplication case, a vector w is used throughout
the computation, so that the original cholesky decomposition can suffer from
the same cache issues mentioned in Section 2.5. Blocking S as

S =

[
S11 S12

ST12 S22

]
=

[
UT

11 0
UT

12 UT
22

] [
U11 U12

0 U22

]
= UTU
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where S11 is k × k, S12 is k × (n− k) and S22 is (n− k)× (n− k), gives the
following equations:

S11 = UT
11U11 (3.4)

S12 = UT
11U12 (3.5)

S22 = UT
12U12 + UT

22U22 (3.6)

Both U11 and U12 in Equations 3.4 and 3.5 can be found by performing
Algorithm 2 on [S11S12]. Rearranging Equation 3.6 to UT

22U22 = S22−UT
12U12,

U22 is found by recursively running the algorithm on matrix S22 − UT
12U12.

Updating the sub-matrix now involves a matrix multiplication instead of the
outer product in the unblocked algorithm. This matrix multiplication can
be performed on vertical blocks in the same way as the vertically partitioned
multiplication described in Section 2.5.1, so that the same data structure can
be used for the blocked cholesky decomposition.

Algorithm 2 is used to compute U12, which is needed to update sub-matrix
U22. Since matrices in CRS format are accessed in rows, it is better to have
available its transpose, UT

12, to efficiently compute UT
12U12. Therefore, U12 is

transposed before the matrix update. This is equivalent to saying that U12 is
transformed from compressed row storage to compressed column storage so
that columns of U12 can be efficiently accessed. Algorithm 3 shows the steps
to transpose a matrix A. Steps 1, 2 and 7 are performed once and are not
repeated trough the iterations.

Algorithm 3 Find n×m matrix B = AT , given m× n matrix A

1: Determine row counts of B, w(i)=number of entries in row i of B
2: Find the cumulative sum, w(i+ 1) = w(1) + · · ·+ w(i)
3: for i = 1→ m do
4: for k = Aptr(i)→ Aptr(i+ 1) do
5: p = w(Aind[k])
6: w(Aind[k]) = w(Aind[k]) + 1
7: Bind(p) = i
8: Bval(p) = Aval(k)
9: end for

10: end for

Since the pattern of U is known, the CRS structures of the transposed blocks
can be decided before the interior point method iterations begin. This is
done by first transposing the upper-triangular matrix U to a lower-triangular
matrix L, and then dividing L into vertical partitions of size k.

13



3.3 Parallel Implementation

In each recursive step, the update of sub-matrix U22 can be parallelized,
both in the original and the blocked version. Distribution of work between
processors can be pre-calculated as done with the matrix multiplication in
Section 2.5.3. Some complications occur when applying the same strategy
for the cholesky decomposition. First, the shares need to be decided for each
recursive step. Second, dividing the shares to include an equal amount of
non-zeroes in U22 is not necessarily as effective, since the work performed
for each non-zero entry can be varying from one recursive step to the next.
Instead, rows of U22 are distributed such that each processor is assigned an
equal amount of work in form of floating point operations.
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Chapter 4

Results and Discussion

The sparse matrix multiplication and cholesky decomposition have been anal-
ysed by use of performance counters on two different hardware architectures,
one of which is the same system as was used to develop the sparse matrix
multiplication [10].

Some comments on the original results of Eleyat [10] are appropriate. When
reproducing the results it was found that the parallel execution times re-
ported [10, pp. 437, Figures 5-9] measure the initial point calculation in
addition to the first iteration of the interior point method. Hence, the tim-
ings include two invocations of the multiplication. Also, results were of code
compiled in 32-bit, which resulted in higher execution times on multiple cores
than was the case for the same source code compiled in 64-bit. All results
reported in this chapter are of code compiled in 64-bit.

4.1 Test Environments

The first system is a Linux Rocks cluster running CentOs 5.3. Each node
is equipped with two 6-core 2.4 GHz AMD Opteron 2431 processors, adding
up to 12 cores per node. As shown in Figure 4.1 each core has a 64KB
L1 and a 512KB L2 cache and all cores share a 6MB L3 cache. Results
are collected from a dedicated node with a custom kernel compiled with
support for performance counters [1]. All code is compiled with GCC 4.4.3,

15



optimization level 3. This is the same system as was used to develop the
sparse matrix multiplication.
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Figure 4.1: Cache hierarchy on the AMD Opteron 2431

The second system is running SUSE Linux Enterprise Server 11. The com-
pute nodes are equipped with two 2.93GHz Intel Xeon X5570 (Nehalem)
quad-core processors. Each core has a 32KB L1 and a 256KB L2 cache and
all cores share a 8MB L3 cache, as shown in Figure 4.2. All code is compiled
with GCC 4.3.4, optimization level 3.

Host: r2i3n7

Indexes: physical

Date: Sun 03 Jun 2012 02:52:18 PM CEST

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#0

NUMANode P#1 (12GB)

Socket P#1

L3 (8192KB) L3 (8192KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1 Core P#2 Core P#3

PU P#0

PU P#8

PU P#1

PU P#9

PU P#2

PU P#10

PU P#3

PU P#11

PU P#4

PU P#12

PU P#5

PU P#13

PU P#6

PU P#14

PU P#7

PU P#15

Figure 4.2: Cache hierarchy on the Intel Xeon X5570

Performance Application Programming Interface (PAPI) [5] has been used
to read the performance counters on the processors. The AMD-based system
has no support for L3-counters, and so only L1 and L2 results are discussed
for this machine. The following PAPI-counters have been used in the results.
PAPI L1 DCA, PAPI L2 DCA, PAPI L1 DCM and PAPI L2 DCM are used
to read the L1 and L2 data cache accesses, and L1 and L2 data cache misses,
respectively. PAPI L3 TCA and PAPI L3 TCM are used to read the total
L3 cache accesses and misses on the Intel core. Floating point operations are
counted with PAPI FP OPS.
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4.2 Problem Set

The test problems are taken from the Netlib LP test problem set [4] and the
BPMPD website [3]. The dimensions of constraint matrix A and the sparsity
of A, S (see Equation 2.2) and U (see Equation 2.3) for each problem are
shown in Table 4.1. FIT2D, NSCT2 and BAS1LP were also used to asses the
matrix multiplication in the work of Eleyat [10]. The problems are selected
to represent different sparsity structures.

Table 4.1: Dimensions and sparsity of the problem set matrices

Dimensions Sparsity Sparsity Sparsity
Name of A of A [%] of S [%] of U [%]

FIT2D 10525× 21024 0.07% 0.13% 0.13%
NSCT2 23003× 37563 0.08% 0.79% 1.41%
BAS1LP 9872× 14286 0.42% 1.94% 4.31%
DFL001 6084× 12243 0.05% 0.12% 4.23%
BAXTER 28563× 31855 0.01% 0.08% 0.89%

The sparsity patterns of the problem matrices are given in Figure 4.3. The
figure depicts the non-zero structure of the permuted matrix PA and matrix
S for each problem. Permutation matrix P for all problems is found by the
minimum degree ordering algorithm [8], which is the default in GLPK.

4.3 Original GLPK

Table 4.2 shows the execution times of the original GLPK implementations
of the matrix multiplication and the cholesky decomposition for one iteration
on the AMD core. The numbers show that most time is spent computing
the matrix multiplication and cholesky decomposition for these problems.
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Table 4.2: Original GLPK execution times for matrix multiplication and cholesky
decomposition together with the percentage it makes up of the total iteration time

Multiplication Cholesky
Name S = PAD(PA)T [s] decomposition [s]

FIT2D 2.35 (99.2%) 7.32 · 10−3 (0.3%)
NSCT2 1.85 (5.5%) 3.18 · 101 (93.9%)
BAS1LP 8.97 · 10−1 (11.3%) 6.96 (87.5%)
DFL001 5.68 · 10−3 (0.2%) 3.03 (98.8%)
BAXTER 1.42 · 10−1 (0.7%) 1.88 · 101 (98.5%)

(a) FIT2D Matrix PA (b) FIT2D Matrix S

(c) NSCT2 Matrix PA (d) NSCT2 Matrix S

Figure 4.3: Sparsity patterns of matrix A after permutation and matrix S. Non-
zero entries are coloured
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(e) BAS1LP Matrix PA (f) BAS1LP Matrix S

(g) DFL001 Matrix PA (h) DFL001 Matrix S

(i) BAXTER Matrix PA (j) BAXTER Matrix S

Figure 4.3: Sparsity patterns of matrix A after permutation and matrix S. Non-
zero entries are coloured
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4.4 Matrix Multiplication

Table 4.3 shows the speedups for the one-dimensionally (1D) and the two-
dimensionally (2D) partitioned matrix multiplication when run on one core.
Block sizes are fixed to 100 and 100 × 100 for the one dimensional and two
dimensional versions, respectively. Speedup is achieved for FIT2D, NSCT2,
BAS1LP and BAXTER. Results are comparable on the AMD core and Intel
core. The preferred partitioning scheme varies from problem to problem.
The remainder of this section will discuss the results of the one-dimensional
blocking.

Table 4.3: Speedup achieved with the one-dimensionally and two-dimensionally
partitioned matrix multiplication on the AMD and Intel core, and the ratio of
floating point operations performed in the original GLPK implementation to the
floating point operations performed in the blocked versions

Speedup Speedup FP ops.
AMD core Intel core ratio

Name 1D 2D 1D 2D 1D 2D
FIT2D 94.12 102.62 86.22 90.23 83.30 84.05
NSCT2 1.25 1.68 1.33 1.65 2.08 2.15
BAS1LP 1.19 1.55 1.28 1.50 1.61 1.65
DFL001 0.83 0.28 0.86 0.28 4.69 4.58
BAXTER 3.94 2.06 5.07 2.83 15.23 14.51

Also shown in Table 4.3 is the ratio of floating point operations in the original
GLPK implementation to floating point operations in the blocked version. In-
terestingly, the ratios reveal that the blocked implementations perform much
less floating point multiplications for some of the problems. Most extreme is
the problem FIT2D for which over eighty times as many multiplications are
performed for the original GLPK implementation, and speedups of 94 and
102 are achieved for the vertical and blocked partitioning, respectively, on
the AMD core.

As can be seen from Figure 4.3a, FIT2D has a special sparsity structure.
The matrix PA is mostly empty, except for entries along two diagonal bands
and a few dense rows at the bottom. In the development of the blocked
implementation, the high speedup was assumed to be caused by effective
cache reuse in the dense rows [10, pp. 436]. However, the fact that the
number of floating point operations is reduced, was not considered.

20



Figure 4.4 illustrates the computation of a row in the matrix multiplication
of FIT2D. Non-zero entries are coloured blue, and the row being computed is
coloured red. Denser areas of the matrices are coloured with higher opacity.
In the original GLPK implementation, the entire row of PA in Figure 4.4a
is copied into an array. Next, the non-zero entries in the same row of S in
Figure 4.4b are traversed. Matrix S is empty except at its diagonal and a
group of adjacent dense columns at the right edge. When calculating an entry
of these dense columns, a dense row from PA is traversed and multiplied by
the previously extracted array that mostly contains zeroes. Most of these
multiplications result in zero.

Now, consider the vertical partitioning introduced as black lines in Figure
4.4a. Using the higher level CRS, the entire first partition is discarded when
computing the row, avoiding the multiplication between part of the dense row
and an array of zeroes (circled in Figure 4.4a). This saves a significant amount
of multiplications, since almost every row of S involves multiplying the dense
rows of A with an almost empty row in the original GLPK implementation.

(a) Matrix PA (b) Matrix U

Figure 4.4: Performing one row of matrix multiplication for FIT2D

Since the blocked versions perform less operations than the original GLPK
implementation, their cache performances are not directly comparable. The
blocked algorithms perform extra indexing for the blocks and thus introduce
more memory accesses. Table 4.4 shows the ratio of memory accesses to
floating operations performed for the original and the vertically partitioned
matrix multiplication. For DFL001, for which speedup is not achieved, the
blocked version performs a much higher number of memory accesses on av-
erage for each floating point operation.

Table 4.5 and Table 4.6 present the cache miss rates for the vertical partition-
ing on the AMD core and the Intel core, respectively. The blocked version
has a similar effect on the cache misses on both systems. As expected, L1
cache misses are reduced. However, the blocked version does not seem to
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Table 4.4: Ratio of memory accesses to floating point operations for the original
GLPK matrix multiplication and the vertically partitioned matrix multiplication

Name Original 1D Partition
FIT2D 1.45 1.46
NSCT2 1.40 2.06
BAS1LP 1.38 1.63
DFL001 1.71 8.62
BAXTER 1.42 3.07

exploit L2 and L3 cache as well as the original GLPK implementation, as
the percentage of cache misses is increased for these levels.

Table 4.5: Level 1 and level 2 cache misses for the original GLPK matrix multi-
plication and the vertically partitioned matrix multiplication on the AMD core

Original 1D Partition
Name L1 [%] L2 [%] L1 [%] L2 [%]

FIT2D 2.25 1.26 0.37 20.10
NSCT2 2.18 9.53 1.26 21.13
BAS1LP 1.77 5.43 1.22 22.12
DFL001 22.27 3.04 12.36 35.18
BAXTER 3.08 0.72 3.96 12.37

Table 4.6: Level 1, level 2 and level 3 cache misses for the original GLPK matrix
multiplication and the vertically partitioned matrix multiplication on the Intel core

Original 1D Partition
Name L1 [%] L2 [%] L3 [%] L1 [%] L2 [%] L3 [%]

FIT2D 12.85 11.53 0.04 1.10 18.00 10.20
NSCT2 8.22 17.35 2.30 4.66 19.06 3.81
BAS1LP 7.65 7.61 1.68 4.53 19.53 1.64
DFL001 31.47 18.57 5.14 12.82 61.82 12.73
BAXTER 12.35 5.83 0.76 6.76 35.44 19.77

A change in the cache miss rate of higher level caches affects the access
pattern in the lower levels. Reducing misses in L1 cache reduces the L2
cache accesses, which again affects the cache miss rate of L2 cache. The
same applies for L3 cache. Table 4.7 presents the percentage of cache misses
relative to the total number of L1 accesses for each level of cache on the
Intel core. Although cache misses are increased in L2 and L3 for most of the
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problems, the effect is not as significant as the effect in L1 cache. In the case
of NSCT2, cache utilization is improved in all levels of cache.

Table 4.7: Level 1, level 2 and level 3 cache misses relative to the total (L1) cache
accesses for the original GLPK matrix multiplication and the vertically partitioned
matrix multiplication on the Intel core

Original 1D Partition
Name L1 [%] L2 [%] L3 [%] L1 [%] L2 [%] L3 [%]

FIT2D 12.85 1.06 3.66×10−4 1.10 0.20 1.64×10−2

NSCT2 8.22 1.66 2.33×10−2 4.66 0.90 2.03×10−2

BAS1LP 7.65 0.62 1.04×10−2 4.54 0.89 1.03×10−2

DFL001 31.47 6.58 2.20×10−1 12.89 8.39 4.54×10−1

BAXTER 12.35 1.42 1.33×10−2 6.71 2.99 3.29×10−1

The problems differ substantially in how much work is performed, and also
in what amount of memory accesses is required for each unit of work, when
comparing the original and blocked implementations. An interesting measure
is how cache misses change from the original to the blocked implementation
when considering the work performed. Table 4.8 shows the ratio of floating
point operations to cache misses, i.e. how many multiplications that are,
on average, computed without causing a cache miss. The numbers reveal
that even though the number of operations are considerably reduced for
all problems, the cost of each operation increases. For DFL001, for which
vertical partitioning showed to reduce the number of multiplications by a
factor of 4.7, the cache miss penalty is severe. The number of operations per
cache miss has dropped considerably for each level of cache. FIT2D, on the
other hand, which achieves a speedup greater than the factor of operations
performed, has a much better cache utilization, increasing the number of
operations per cache miss from 5.4 and 71.7 to 60.2 and 247.8 in L1 and L2
cache, respectively.

It is clear that the different test cases cause very different effects on the cache
performance of the multiplication algorithms. More important than the size
and sparsity of the matrices is the sparsity structure. The matrix PA of
DFL001 (Figure 4.3g), which has its entries evenly distributed, causes higher
cache miss rates compared to matrices where entries are collected in denser
parts of the matrix, such as PA of BAS1LP (Figure 4.3e). L1 cache miss
rates for DFL001 and BAS1LP are, on the Intel core, 7.65% and 31.47.%,
respectively.
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Table 4.8: Ratio of floating point operations to level 1, level 2 and level 3 cache
misses for the original GLPK matrix multiplication and the vertically partitioned
matrix multiplication on the Intel core

Original 1D Partition
Name L1 L2 L3 L1 L2 L3

FIT2D 5.4 71.7 164132.0 60.2 347.8 2921.6
NSCT2 8.6 45.4 1865.6 10.4 52.8 1248.7
BAS1LP 9.5 111.7 6623.5 13.5 68.0 3911.9
DFL001 1.9 7.1 209.0 0.9 1.4 11.1
BAXTER 5.6 88.9 2517.3 4.9 10.3 61.1

4.5 Cholesky Decomposition

As described in Section 3.2, the blocked cholesky decomposition consists of
three operations: The standard cholesky decomposition on blocks of the ma-
trix, transposing of matrix blocks, and updating the remaining sub-matrix by
matrix multiplication. Table 4.9 shows the time distribution for the blocked
cholesky decomposition. For most of the problems the transposing of U takes
less than one percent of the total execution time, while the block matrix mul-
tiplication accounts for around 90%. The exception is FIT2D which spends
a relatively large proportion of time transposing U , and also less time in the
sub-matrix update.

Table 4.9: Time distribution for blocked cholesky decomposition on the AMD core

Standard Sub-matrix
Name cholesky [%] Transposing [%] update [%]

FIT2D 14.6 22.4 63.0
NSCT2 5.5 0.5 94.0
BAS1LP 8.5 0.8 90.7
DFL001 8.3 0.7 91.0
BAXTER 9.9 1.0 89.2

Speedups for the blocked cholesky decomposition are presented in Table 4.10.
Block widths of 100 and 50 are used on the AMD core and Intel core, respec-
tively. Compared to the matrix multiplication, where speedup varies between
1.2 and 102.6, the effect of the blocking is not as varying for the different
problems for the blocked cholesky decomposition. This could be linked to the
fact that the structures of matrices S do not differ as much for the different
problems as is the case for matrices PA, as can be seen from Figure 4.3.
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Table 4.10: Speedup achieved with the blocked cholesky decomposition on the
AMD and Intel core, and the ratio of floating point operations performed in the
original GLPK implementation to the floating point operations performed in the
blocked version

Speedup Speedup FP ops.
Name AMD core Intel core ratio

FIT2D 0.51 0.41 1.16
NSCT2 2.04 1.41 1.28
BAS1LP 1.61 1.45 1.32
DFL001 1.64 1.21 1.32
BAXTER 2.54 1.81 1.79

As in the case of blocked matrix multiplication, the blocked cholesky decom-
position can avoid performing some zero-operations. Consider performing
the outer product between the first row and column, uij = ui1u1j, on the ma-
trix U in Figure 4.5. This outer product is subtracted from sub-matrix U22 as
described in Section 3.1. A dot in Figure 4.5 represents a non-zero entry and
an X represents a non-zero entry that leads to a zero-multiplication when
computing the third row. In the original GLPK implementation, the first
row is unpacked into a full array. When traversing the third row, an element
corresponding to a zero in this array causes a multiplication by zero. This
is not the case in the blocked version since the row (together with adjacent
rows) is transposed into a separate matrix that is accessed by row-pointers
in the matrix multiplication (Algorithm 1 in Section 2.5).

U =


• • •
•

• • × ×
• •

• •
• •


Figure 4.5: Performing the outer product on the first row and column on matrix
U . A dot represents a non-zero entry and an X represents a non-zero entry that
leads to a zero-multiplication when computing the third row

As seen from Table 4.10, the reduction of operations for the blocked cholesky
decomposition is not as substantial as for the blocked matrix multiplica-
tion. For most of the problems, the blocked cholesky decomposition achieves
speedups higher than the factor of reduced operations, indicating better cache
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utilization, and that overhead associated with extra indexing of the blocks
does not sabotage performance. Table 4.11 shows that the ratio of memory
accesses to floating point operations is not as different between the original
and blocked cholesky decomposition, as was the case for the matrix multi-
plication.

Table 4.11: Ratio of memory accesses to floating point operations for the original
GLPK cholesky decomposition and the blocked cholesky decomposition

Name Original Blocked
FIT2D 3.05 5.46
NSCT2 2.03 2.11
BAS1LP 2.02 2.10
DFL001 2.02 2.16
BAXTER 2.02 2.14

Table 4.12 and Table 4.13 present the cache miss rates on the AMD core and
the Intel core, respectively. Compared to the blocked matrix multiplication,
the blocked cholesky decomposition does not achieve the same improvements
in L1 cache. In fact, for all problems except NSCT2, L1 performance is
degraded on the AMD core. There is, however, a consistent improvement
in L3 cache on the Intel core. FIT2D is the exception for which cache miss
rates are increased for all levels of cache.

Table 4.12: Level 1 and level 2 cache misses for the original GLPK cholesky de-
composition and the blocked cholesky decomposition on the AMD core

Original Blocked
Name L1 [%] L2 [%] L1 [%] L2 [%]

FIT2D 0.04 4.72 0.50 10.15
NSCT2 0.52 5.01 0.50 6.54
BAS1LP 0.35 5.18 0.70 7.36
DFL001 0.60 8.23 1.48 8.00
BAXTER 0.79 6.23 1.06 8.04

Taking the number of floating point operations performed into consideration,
Table 4.14 shows the ratio of floating point operations to cache misses on the
Intel core. The numbers confirm the improvement in L3 cache utilization.
For NSCT2, the average number of floating point operations between each
L3 cache miss is increased from 277.5 to 2839.1, a factor of 10.2.
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Table 4.13: Level 1, level 2 and level 3 cache misses for the original GLPK cholesky
decomposition and the blocked cholesky decomposition on the Intel core

Original Blocked
Name L1 [%] L2 [%] L3 [%] L1 [%] L2 [%] L3 [%]

FIT2D 0.81 4.73 22.58 3.20 28.68 54.25
NSCT2 5.39 6.83 34.55 4.84 6.63 3.31
BAS1LP 4.74 6.54 25.55 4.64 9.47 2.22
DFL001 5.02 12.70 27.45 5.29 55.41 1.39
BAXTER 5.51 10.37 22.90 4.95 29.39 2.20

Table 4.14: Ratio of floating point operations to level 1, level 2 and level 3 cache
misses for the original GLPK cholesky decomposition and the blocked cholesky
decomposition on the Intel core

Original Blocked
Name L1 L2 L3 L1 L2 L3

FIT2D 46.1 1136.6 3103.3 4.1 13.7 16.2
NSCT2 8.9 120.3 277.5 9.8 109.9 2839.1
BAS1LP 10.2 153.0 351.6 10.5 164.6 4225.0
DFL001 9.6 76.8 275.7 7.6 16.4 765.6
BAXTER 8.7 85.2 260.5 8.9 29.8 920.7

4.6 Parallel Cholesky Decomposition

The sub-matrix update of the blocked cholesky decomposition has been par-
allelized in OpenMP. Attempts at parallelizing the remaining parts did not
improve performance, and so were left to run in serial. This means that for a
problem where 90% of the time is spent updating the sub-matrix, by Amdahls
law, a maximum speedup of 10 can be achieved for the whole procedure.

Figure 4.6 shows the speedup for the parallelized sub-matrix update using
the load balancing scheme described in Section 3.3, and using the guided
scheduling option in OpenMP, on the AMD node. Guided scheduling dy-
namically assigns each thread with decreasing chunks of iterations and was
the most effective among the scheduling options on the problem set. The
load balancing clearly improves performance on multiple cores. Excluding
FIT2D, speedup on 12 cores falls between 8 and 10 for all problems using
the load balancing, compared to a speedup between 1.5 and 3.5 using the
guided scheduling. The load balanced version provides consistently good re-
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sults on all of these problems. FIT2D is slowed down in both cases. For this
problem the interior point method spends time in the order of microseconds
in cholesky decomposition, so that the overhead of parallelization sabotages
the potential speedup.

(a) Load balanced (b) Guided scheduling

Figure 4.6: Parallel Blocked cholesky sub-matrix update speedup on the AMD
node

Figure 4.7 shows the speedup for the parallel blocked and the parallel original
cholesky decomposition on the AMD node. As expected by Amdahls law,
the speedup of the blocked version is decreasingly linear as the number of
cores increases. The parallel original cholesky decomposition using the load
balancing scheme achieves more varying speedups for the different problems
than what was the case for the sub-matrix update in the blocked version
(Figure 4.6a). For NSCT2, the blocked version shows a clear advantage over
the original, achieving a speedup of 6.6 (10.2 for the block update), compared
to a speedup of 3.2 for the original.

4.7 Block Sizes and Memory Considerations

Fixed block sizes have been used for all the results in this chapter. Since
sparse matrices have varying sparsity patterns, one block size is not neces-
sarily ideal for all problems. Hence, the choice of block size depends both on
the computer architecture, to optimize for cache, and also on the problem
to be solved. Eleyat found that by using a fixed block size, the speedup
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(a) Blocked (b) Original

Figure 4.7: Parallel Cholesky decomposition speedup on the AMD node

for NSCT2 was reduced by 16% compared to using block sizes adjusted for
this problem [10]. However, finding the optimal block size required manual
tuning for each problem.

Memory consumption has not been discussed in this work. Storing row point-
ers for each matrix partition requires extra memory over the plain CRS rep-
resentation. Also, the blocked cholesky decomposition stores both U and its
transpose, whereas only U is stored in the original implementation. For the
problems considered, memory requirements have not been an issue. The most
memory intensive problem, NSCT2, uses 141MB of memory for matrices A,
S and U using double precision floating point numbers.
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Chapter 5

Conclusions and Future Work

Matrix blocking can make sparse matrix multiplication and sparse cholesky
decomposition more efficient. The effect differs significantly between prob-
lems, which can have matrices of very different sparsity structures. The
degree of success for a given problem is determined by a complex combi-
nation of number of operations performed, the ratio of memory accesses to
operations, and cache utilization. No single conclusion can be drawn for all
problems. Although the motivation behind the blocked multiplication was
to improve cache efficiency, analysis shows that avoiding zero-multiplications
can be even more important for performance.

The blocked sparse cholesky decomposition, built on the same ideas and data
structures as the blocked matrix multiplication, shows some differences from
the multiplication in how the blocking affects performance. For the problems
considered, the reduction of floating point operations performed was not as
dramatic as was the case for the blocked matrix multiplication, and cache
performance appears to be of more importance to achieve speedup. The pre-
computed division of work between processors is invaluable to achieve good
load balance in the parallel cholesky decomposition. The blocked implemen-
tation better utilizes multiple processors for some problems.

As suggested for the matrix multiplication, future work can look at different
storage formats and computation mechanisms for blocks based on their spar-
sity [10]. The Intel-based system used in this work is a temporary system
for bridging operations to the new super-computer at NTNU. Future work
can evaluate the performance of the algorithms on the new system. Also, it
remains to fully parallelize the blocked cholesky decomposition.
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