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Abstract

Most of the existing poker agents using case-based reasoning (CBR) are based on
imitation of other poker agents and have weak capabilities of adapting their own
strategies to different opponents or playing styles. We address these concerns in
the development of UpperCase, a heads up no-limit Texas Hold’em poker agent
representing a new approach to the application of CBR in poker. Using methods of
perfect information hindsight analysis, the poker agent attempts to more accurately
determine the quality of poker decisions. Through extensive exploration of the
quality of different decisions, UpperCase is able to invent new poker strategies.
The agent also tries to recognize different opponents by observing their actions
and perform adaptation accordingly. Experimental results suggest that the agent
is able to successfully create new profitable strategies, as well as achieve increased
performance by dynamically changing its strategy during play.
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Sammendrag

De fleste eksisterende poker-agenter som benytter seg av case-basert resonnering
(CBR) er basert på imitasjon av andre poker-agenter og har svake evner til å kunne
tilpasse sine strategier til forskjellige motstandere og spillertyper. Dette problemet
har vi adressert i utviklingen av UpperCase, en heads up no-limit Texas Hold’em
poker-agent som representerer en ny tilnærming til anvendelsen av CBR i poker. Ved
å benytte perfect information hindsight analysis forsøker poker-agenten å produsere
mer nøyaktige målinger av kvaliteten på avgjørelser i poker. Gjennom omfattende
utforskning av kvaliteten på ulike avgjørelser er UpperCase i stand til å utvikle nye
pokerstrategier. Agenten forsøker også å gjenkjenne forskjellige motstandere ved å
observere deres handlinger og tilpasse seg i henhold til dette. Våre forsøk antyder
at agenten er i stand til å utvikle nye lønnsomme strategier, samt oppnå økt ytelse
ved å dynamisk endre sin strategi under spill.
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Chapter 1
Introduction

1.1 Artificial Intelligence in Games

Artificial intelligence (AI) in games is an interesting topic for research and has been
so for quite some time. Ever since the birth of computer games there has been
a need for intelligent opponents that can match human players. Everything from
first-person shooters, role-playing games, strategy games, sport games and more, all
need some type of AI. We have now grown accustomed to intelligent behavior in
computer games that can closely imitate human behavior. Research on AI applied
to computer games is a great way to study the field of intelligent systems because
we have extensive domain knowledge on this subject and computer games can model
many types of real-world challenges or problems that we are trying to find solutions
to.

There has been substantial research done on AI applied to various games. In 1997,
IBM’s Deep Blue beat the world’s chess champion, Garry Kasparov, in a six-game
match [33]. This proved that AI can be successfully applied to the game of chess
and outsmart the best human players. Chess is not a simple game, but it is a game
of what we call perfect information. This means that the entire state of the game is
known to all players. In chess, both players can see the whole state of the board and
the different chess pieces. No information is hidden. This makes it different from
imperfect information games.

In games with imperfect information the players involved do not have access to
the entire state of the game. Applying AI to problems with imperfect information
is different and can quickly become more complex. Poker is a game of imperfect
information as the opponents’ cards are hidden from the player. It is also a stochastic
game, meaning that there is an element of chance or non-determinism involved.
This comes from the dealing of cards which is impossible to predict. Imperfect
information and the stochastic nature of the game make poker a challenging and
interesting topic for AI research. Poker is also a well known game and a growing
business, so domain knowledge is easily accessible.

Poker has grown from a regular card game into a whole industry with huge televised
tournaments from casinos all over the world. One of the important contributions
towards this growth is online poker. The online poker industry has helped the game
become available for everyone with a computer and there are online tournaments
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with large money prizes. The interest in this game has also reached AI researchers
worldwide. Many computerized poker players, also called poker agents, have been
developed. These poker agents make decisions by applying different types of AI tech-
niques and statistics. There are annual tournaments where poker agents created by
researchers and hobbyists can compete against each other. One of the most popu-
lar is called the Annual Computer Poker Competition (ACPC)1 with contributions
from all over the world.

Poker can have different applications within AI research. It can be used as a model
for other problems with imperfect information and stochastic behavior in which
domain knowledge is weak or difficult to obtain. With this approach, poker is used
as an understudy to explore the capabilities of AI applied to a certain field (e.g.
medical research). However, in this thesis we research the possibility of creating a
strong poker agent that can match human players and other existing poker agents by
applying a method called case-based reasoning (CBR). In CBR, previous experiences
(called cases) are stored in a case-base and reused in future problem solving. We
focus on the most popular variation of poker today called Texas Hold’em [27].

1.2 Background and Motivation

We have worked with and researched the field of artificial intelligence applied to
poker in previous projects. In 2010 we created a case-based poker agent in a pattern
recognition class at the University of California, Santa Barbara. This agent used
hand history from an experienced human player as its case-base. The agent at-
tempted to imitate the human player by reusing solutions from the matching cases
it found. It was able read the game state of an online poker client using optical
character recognition (OCR) and perform actions directly to the client. The case-
based system did not perform as well as we hoped, but the pattern recognition part
worked well.

In a research project prior to this thesis [26] we further studied the use of artificial
intelligence in poker. That project resulted in a software framework for develop-
ment of poker agents in addition to a high-level architecture of a CBR poker agent
with adaptive capabilities. At the beginning of that project we were recommended
a commercially available poker program called Poker Academy Pro (PAP). This
program can be used as a learning platform for poker players and has been widely
used in research on AI in poker. The interesting part about PAP is that it has a
number of already implemented poker agents that users can play against. PAP uses
a java-based API called Meerkat that lets users plug in their own poker agents and
compete against others.

Unfortunately, we found that PAP is no longer available. This led us to develop
our own open-source poker software framework. The framework, which we named
UniPoker, lets developers implement their own Texas Hold’em poker agents in a
simple way. The idea behind this framework was to make it easier for developers to

1See http://www.computerpokercompetition.org/
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try out an idea for a poker agent. UniPoker lets developers focus on their strategy
while the logic behind the game is included and fully implemented in the framework
(dealing of cards, betting structure, game structure, and so on). UniPoker contains
a poker simulator for testing purposes that can be used to simulate poker games
between different poker agents. The UniPoker framework is presented in chapter
6.

After finishing the UniPoker framework, and as part of the same pre-thesis project
[26], we started working on the design of a CBR poker agent. CBR is a growing field
of AI research and there are many different useful applications for it [22]. However,
what we discovered after studying existing CBR poker agents is that most of these
agents are not adapting well to dynamic opponents. Many agents use case-bases
that contain hand history from another poker player or are trained up by playing
against a certain player. The resulting strategy of these CBR agents is therefore the
same strategy that the agent they were trained on applies. With an approach like
this the agent does not adapt its play if the opponent changes playing style (unless
new cases are stored during play).

In this thesis we wanted to focus on integrating adaptive strategies with CBR.
If an agent is able to analyze its opponent it can exploit known weaknesses with
the observed playing style. This adaptability can be very important when playing
against different types of players in which static strategies can become ineffective.
An adaptive strategy can also be the key to success when competing against other
adaptive opponents.

1.3 Research Approach and Goal

The topic of this thesis is how CBR can be utilized in order to achieve adaptive
capabilities in the game of poker. Our primary goal is to acquire knowledge and get
practical experience with this topic. We have formulated the following three specific
objectives:

• Study related work and existing solutions
We will research the topic and present relevant related work and existing
solutions.

• Create a new CRB-based poker agent
We will develop and present a new solution to CBR applied to poker. The
poker agent should have stronger adaptive capabilities than what we have seen
in existing CBR solutions so far.

• Reuse and improve/extend UniPoker
In a project prior to this thesis we created UniPoker, an open poker software
framework. We will utilize this framework and extend it as necessary.
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1.4 Report Structure

This thesis is divided into three parts. Part one concerns background and related
research. In chapter 2, an introduction to Texas Hold’em poker is given and chapter
3 includes a presentation of artificial intelligence in poker. Chapter 4 gives a short
introduction to CBR and presents existing solutions to CBR in poker.

Part two presents the tools and frameworks used in this thesis. This includes a
decision evaluation tool used for poker, called DIVAT, which is described in chapter
5. The UniPoker software framework for development of poker agents is presented in
chapter 6, and the initial design of our CBR-based poker agent, named UpperCase,
is described in chapter 7.

Part three includes the final results of our implementation. An overview of the
improvements to the UniPoker framework is given in chapter 8. Then the UpperCase
poker agent is described in detail in chapter 9. In section 10 we present a web-
interface that can be used to observe the system state of UpperCase during runtime.
In chapter 11, the experimental results of the UpperCase poker agent is presented,
followed by a discussion of these results in chapter 12. Conclusions and ideas for
future work are given in chapter 13.
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Chapter 2
Texas Hold’em Poker

Texas Hold’em poker is the most popular variation of poker today [27]. It is used
worldwide in casinos, professional tournaments, online and between friends. The
interest in poker has grown significantly after the introduction of online poker and
televised poker tournaments. Now everyone can log on to their favorite poker client
and play poker online with virtual money (play-money) or real money. In this
chapter, the game of Texas Hold’em is introduced, which is the variation of poker
used in this research. A presentation of the basic rules of the game is given, in
addition to different definitions and terms that are helpful to understand.

2.1 Basic Terminology

First it is important to explain some basic poker terminology that is used later.

• Hole cards
Before every round of a game the dealer deals two hole cards face-down to each
player around the table. These two cards are each player’s personal cards and
are not visible to opponents.

• Hole cards classes
There are 169 different hole cards classes ranging from pair of aces (AA) to
seven and two (72), including suited and offsuited combinations (meaning
cards of the same suit or different suits respectively) [32].

• Community cards
The community cards refers to the cards that are placed face-up on the table.
Each player can use these cards in addition to their own hole cards.

• Stage
Texas Hold’em consists of four different betting rounds called stages. The four
stages are named pre-flop, flop, turn and river. See section 2.3 for a detailed
description.

• Hand
The term hand can have two different meanings in poker. First of all, it is
often used to refer to the combination of cards that a player has (hole cards
plus community cards). In Texas Hold’em a hand consists of at most five
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cards. A player is not required to use any of his or her hole cards (can use all
five community cards to create a five-card hand).

The second meaning of the term is the reference to a single round of game
play, starting from the dealing of cards until a winner of the pot is declared
(this can also be called a deal). A game of poker consists of playing a number
of hands.

• Hand strength
There is a list of hand rankings in poker that ranks the hands from worst to
best (see appendix D). The hand strength refers to how strong a given hand
is in regards to all other possible hands. There are different ways to calculate
hand strength depending on which factors that are taken into account (number
of opponents, table position, etc.).

• Blinds
Before each hand of Texas Hold’em the player sitting on the left side of the
dealer will place the small blind and the next player to the left will place the
big blind. The big blind is twice the size of the small blind. The blinds can be
considered regular bets. The meaning of blinds is to make sure that there is
money in the pot from the beginning of a hand, and it also gives a cost to play
as the dealer and blinds rotate around the table between hands. The blinds
are only placed at the very beginning of a hand and new blinds will not be
placed until a new hand has started and the dealer has rotated to the left.

2.2 Possible Actions

Players will be required to act and their different actions can be described as either
no play, passive play or aggressive play:

• No play (fold)
If a player chooses to fold his cards, the player can no longer take part in the
current hand and the player’s hole cards are not used.

• Passive play
A passive play refers to either a call or a check. A call means that a player
will match the current bet that has been placed by an opponent to continue
to play the hand.

If no bets have been placed in the current stage (betting round), a player may
check. A check is essentially the same as calling a zero-value bet. It can be
used to continue to play the hand without placing any additional money in
the pot.

• Aggressive play
Aggressive play refers to placing a bet or a raise. Placing a bet means to put
an additional amount of money in the pot that all opponents must at least call
in order to continue to play the hand. If player A places a 5 dollar bet and
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player B answers by placing a 10 dollar bet, then player B’s action is referred
to as a raise. A raise exceeds the current value of the highest bet.

If a player bets all his or her money, this is called going all-in. If there are
more than two players still active in a hand and one of the players (player A)
goes all-in, the other players can continue to place bets exceeding player A’s
all-in bet creating a side-pot. Player A will not compete for the side-pot.

2.3 Game Structure

This section presents how a game of Texas Hold’em poker is played. Texas Hold’em
has four different stages for each hand. The stages are called preflop, flop, turn and
river. Screenshots taken from the online poker client PokerStars1 are presented to
illustrate the different stages of a game.

Pre-flop

In the pre-flop stage the blinds are placed and each player around the table is dealt
two hole cards. See figure 2.1. The player to the left of the big blind will begin
betting and it continues left around the whole table. The betting does not stop
until all players have either called or folded. If all players fold but one, this player
wins the hand (common for all stages of a game). Otherwise the hand continues to
the next stage of the game with the remaining players still in the hand.

Figure 2.1: Screenshot from PokerStars showing the preflop stage.

Flop

Now the dealer will place three community cards face-up on the table. See figure
2.2. These cards can be used by all players in order to make a five-card hand. As
on the pre-flop, the player to the left of the big blind will begin betting. Now the
players have more information regarding possible hands, both for themselves and

1http://www.pokerstars.com/
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the opponents. If there are more than one player remaining after the betting round,
the game will continue to the next stage.

Figure 2.2: Screenshot from PokerStars showing the flop stage.

Turn

The dealer places a fourth community card face-up on the table. See figure 2.3. Like
always, the betting begins with the player to the left of the big blind and continues
until each player has either called or folded. The players can use all community
cards combined with their hole cards to create the best possible five-card hand. If
there are more than one player remaining after betting, the game proceeds to the
final stage.

Figure 2.3: Screenshot from PokerStars showing the turn stage.

River

Here the dealer places the fifth and last community card face-up on the table. See
figure 2.4. If there is more than one player that has not folded after the betting
round, then a winner must be declared. This is called the showdown. If player A
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placed the bet that was called by the remaining players, player A must show his/her
cards. Any player that can beat player A’s hand must show their cards to prove it.
Players with a losing hand can choose to muck their hand, which means that they
simply fold it without showing the cards. Mucking a hand can be done in order to
prevent revealing information about a losing hand. However, showing a losing (but
strong) hand can be used as a strategy for demonstrating strength.

Figure 2.4: Screenshot from PokerStars showing the river stage.

The player with the best hand wins the entire pot. If there is a tie-situation, the
players involved will share the pot evenly between them. After the showdown is
over, the dealer and blinds rotate one step to the left. The game will then start over
again from the pre-flop stage where new blinds are placed and new hole cards are
dealt.

2.4 Betting Rules

There are different betting rules in Texas Hold’em and the three most common ones
are presented below.

• No-limit
In no-limit poker a player’s bet can be any size between the big blind value
and the size of the player’s stack. There are no set limits to the size of a bet.
If a player bets his or her whole stack then this is referred to as going all-in.

• Fixed-limit
In fixed-limit poker the size of all bets are predetermined. The fixed size can
vary between different stages of a hand. In this type of poker, players only
have to decide whether or not to bet. This type of poker is often just referred
to as limit poker.

• Pot-limit
In pot-limit poker no bets can be larger than the size of the current pot on
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the table.

2.5 Additional Terminology

The following list defines some additional terms used throughout this thesis.

• Heads up
This refers to a game of poker between two players only.

• Pot odds
This is the ratio between the cost of a call and the size of the pot that can
be won. Pot odds is used to decide if a call is worth the cost by comparing it
to the player’s probability of winning. The calculation is: callsize/(potsize+
callsize).

• Pot equity
Pot equity is used to decide when to bet. The equity of your hand is basically
your "ownership" of the pot; what you are entitled to in regards to your win
chance [44]. A 65% win chance means a 65% equity. The calculation of pot
equity is given by (equity ∗ potsize). You should bet when your pot equity is
larger than the cost of betting.

• Bluff
A bluff is a bet or raise that is placed in an attempt to intimidate opponents.
A bluffing strategy is to pretend that your hand is stronger than it actually is
by playing aggressively. Large bets can push your opponents into folding and
let you get away with the pot.

• Small blinds per hand (sb/h)
This is a way to measure the performance of a player. Small blinds per hand
is the amount of money, represented by the number of small blinds, that a
player has won in each hand on average. This means that if a player has won
$1000 in total after playing 100 hands with small blinds of $1, the sb/h equals
10. If instead the small blinds were $10, the sb/h would equal 1. This way of
measuring performance scales according to the small blind value.
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Chapter 3
Artificial Intelligence in Poker

Games is an interesting and good topic for AI research. Games have well defined
rules and goals and can model real-life problems concerning stochastic behavior and
hidden information. In this thesis we focus on the game of Texas Hold’em poker.
As stated previously, the interest in poker has grown very fast in the last years.
There has been extensive research done on the field of AI applied to poker, and
Rubin and Watson present a comprehensive review of computer poker in [38]. This
chapter presents some of the different approaches towards poker AI identified in
their review.

3.1 Strategies

Computer poker strategies can be divided into two categories; Nash equilibrium
strategies and exploitive strategies [38]. The term Nash equilibrium is named after
its inventor John Forbes Nash, an American mathematician. A Nash equilibrium
strategy means that no player has an incentive to deviate from his or her chosen
strategy because any slight changes will theoretically lead to a more negative out-
come [18]. This implies that all players involved in the game are following a Nash
equilibrium strategy and no players diverge from it. If all players follow their strate-
gies, the set of strategies will be in a Nash equilibrium which is collectively the
optimal solution. This is essentially a strategy where the goal is to minimize loss
rather than maximize profit.

An exact Nash equilibrium strategy is currently considered impossible to apply to
poker because of the high complexity of the game [30, 38]. Instead, an approximation
called ε-Nash equilibrium (or near-equilibrium) can be used [19, 38, 41]. The ε refers
to the maximum possible gain that a player can achieve by changing his or her
strategy. By following an equilibrium strategy, a player will not focus on exploiting
potential weaknesses in opponents. This means that the player will keep losses down,
but also miss opportunities for higher profits using exploitation.

Algorithms exist that are used for creating near-equilibrium based strategies in
poker. Counterfactual Regret Minimization (CFRM) [46, 19] is an iterative al-
gorithm created by the University of Alberta Computer Poker Research Group
(CPRG)1. Regret is considered the loss due to not choosing the optimal solution

1http://poker.cs.ualberta.ca/

13

http://poker.cs.ualberta.ca/


at all times. The CFRM algorithm attempts to minimize this regret by separating
the overall regret into different information sets which are then minimized indepen-
dently [46]. Gilpin, Hoda, Peña and Sandholm [15] developed an iterative algorithm
based on Nesterov’s excessive gap technique [23]. The algorithm requires O(1/ε)
iterations in order to calculate an ε-Nash equilibrium.

An exploitive strategy takes advantage of weaknesses found in opponents. This
means that it requires a method for observing and modeling the opponent, often
referred to as opponent modeling. In poker there are certain traits that can suggest
what type of player an opponent is. An example can be a playing style called
loose aggressive which is a player that plays many hands (large number of bets and
calls). This leads to frequently playing weak hands, so a good strategy against this
type of player is to bet large when you have good hands. An exploitive strategy
deviates from an equilibrium strategy which makes itself more vulnerable towards
being exploited. However, exploitive strategies can potentially be more profitable
than equilibrium strategies.

The key to creating a good exploitive strategy lies in the analysis of opponents.
A player must be able to correctly identify an opponent’s playing style and take
advantage of the opponent’s weaknesses. It is also important for the player to
adjust the strategy in regards to his or her own weaknesses. If a player has correctly
identified the opponent as loose passive, it means that the opponent calls frequently.
Bluffing is therefore not an option against this type of opponent. An opponent
model can be created by training the agent against the opponent or by analyzing
the opponent online (during live play). By training against a certain opponent,
the agent should be able to create a good and comprehensive model if a sufficient
number of hands are played between them during training. This leads to a strategy
that is very efficient against this particular opponent’s playing style. However, the
strategy might not perform well against other types of players.

An agent that analyzes its opponent online will most likely not achieve the same
degree of exploitation as an agent that is trained against this certain opponent, but
it will be better prepared to handle different opponents and playing styles. With
online opponent analysis there is a time span between the first encounter with a new
opponent and the time the agents actually starts adapting its playing style. This
means that it is important to have a good baseline strategy that is used until the
exploitive strategy takes over.

There are different types of exploitive strategies, some are static which means they
are pre-programmed and will not change during a game. Others are adaptive and
have the ability to dynamically change during a game. Adaptive strategies are more
robust, as they can better handle opponents that change their playing style over the
course of a game (adaptive opponents). Adaptive strategies must be able to apply
more weight to the most recent actions taken by the opponent in order to better
adapt to the opponent’s changing playing style.
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3.2 Different Approaches

The field of AI is large and there are many different approaches and techniques that
can be used to solve a problem. The study of poker agents show a large variety
of AI techniques that have been applied. Some poker agents depend on expert do-
main knowledge and are called knowledge-based systems [38]. There are approaches
that employ simulation and game tree search, and others that apply techniques like
neural networks, Bayesian networks and case-based reasoning. Combinations of dif-
ferent techniques have also been researched. This section presents some different
approaches and examples of existing poker agents.

3.2.1 Knowledge-Based Approach

Knowledge-based agents require good domain knowledge in order to work properly.
In a rule-based system the poker agent will make decisions by following certain rules
that apply to the different game situations. The rules will most likely be static rules
that have been developed using domain knowledge. A certain rule can be to fold
your hand pre-flop if your hole cards do not make a pair and no card is higher than
an eight. There is an extremely large number of different situations that can arise
in poker, so it is not possible to create specific rules for each separate situation.
Instead, a group of situations must be handled by the same rule. Because rule-
based agents play according to a static set of rules they are highly vulnerable to
being exploited.

A formula-based agent is also a knowledge-based system, but instead of playing ac-
cording to strict rules it collects a number of inputs that provide better understand-
ing of the game state and then uses this information for decision making. Useful
inputs can be hand strength, pot-odds, pot equity, etc. The system can output a
probability triple which consists of the probability for choosing each decision (fold,
check/call, bet/raise) [38].

CBR is also considered a knowledge-based method in general. The different pro-
cesses of CBR (see section 4.1) can be guided and supported by models of domain
knowledge [1]. However, there are different types of CBR methods and some types do
not rely on domain knowledge and are therefore not knowledge-based (e.g. instance-
based methods). Section 4.2 presents some of the approaches to CBR in poker.

Some of the most well known poker agents, Loki [28, 10] and Poki [13, 9], are both
knowledge-based agents. They were developed by the University of Alberta CPRG.
Loki uses expert domain knowledge to make rules to guide its decision making. It
also successfully applies opponent modeling to increase its performance. Poki is a
rewritten version of Loki that uses a formula-based approach. Poki performs well
against other poker agents as well as human players. A version of Poki won the
Annual Computer Poker Competition (ACPC) in the 6-player Texas Hold’em limit
tournament in 2008 [2].
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3.2.2 Game Tree Approach

Game trees can be used to represent the state of a game in a tree structure. In a
game tree a node corresponds to a certain game state and a branch between two
nodes represents the action which leads to the new state. The leaf nodes in the tree
correspond to the final outcomes. By carrying out a game tree search, an agent can
foresee the outcome of each possible action. The problems with using a game tree to
represent poker are the hidden information and the complexity of the game.

We cannot represent all possible states in poker using a game tree as the size of
the tree would be too large. Simplifications or abstractions are needed in order to
apply game theoretic principles to the game [38]. Elimination of betting rounds
is one way to reduce the number of game states. Another abstraction is to group
different hands together using their hand strength. Many different hands can have
approximately the same winning chances and can be treated the same way. It is
also possible to handle the different stages of Texas Hold’em poker (pre-flop, flop,
turn and river) in separate models to reduce the size of the game tree.

A number of poker agents created by the University of Alberta CPRG apply near-
equilibrium strategies that have been developed using game abstractions [8]. PsOpti
is the name of a collection of poker agents applying this strategy and it has proven
to be very successful. The Hyperborean poker agent [46], which is a combination of
PsOpti agents, uses the CFRM algorithm mentioned above and performs very well
against strong opponents. Hyperborean has won many of the ACPC tournaments
since the beginning in 2006.

3.2.3 Simulation-Based Approach

Considering that poker is a game of imperfect information, it is impossible to know
the exact game state. Some type of simulation must occur that randomly chooses
or predicts the hidden information.

Simulation-based agents simulate the outcome of certain decisions in order to predict
the most profitable actions. Before a decision is made, an agent can simulate what
the outcome of the decision will be by predicting the opponent’s hole cards and
adding random future community cards. When the simulation reaches the end of
the hand, the outcome is known. In order for such a simulation-based approach to
work properly there must be a large number of simulations done for each situation.
As poker is a complex game with a huge number of possible game states, simulating
every possible situation and outcome is infeasible. Hence, a simplification is required
here as well.

Monte-Carlo simulation is a method used in a wide variety of fields to approximate
the outcome of a decision by using random variables in multiple simulations [17].
This method can also be applied to poker. If an action is to be made in poker, the
Monte-Carlo simulation will make a decision and simulate the rest of the hand by
adding random community cards and opponent cards. A sufficiently large number
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of simulations will be executed with different community cards and opponent cards
for each decision. The average outcome from the simulations represent the expected
value for the given decision.

An improved version of the poker agent Loki, called Loki-2 [11], uses a modified
approach to the Monte-Carlo simulation. The opponent’s most probable hole cards
are calculated based on the opponent’s actions. The combinations of hole cards
that have higher probabilities are given more weight in the sampling used in the
simulation. This approach is called selective sampling. The results from using
this approach were promising and the creators proposed this technique to become
standard for games with imperfect information and nondeterminism. However, after
comparing the performance between a formula-based Poki agent and a simulation-
based Poki agent, the results were not as convincing [9]. The simulation-based
strategy worked well against weak opponents, but performed worse than a formula-
based strategy against stronger opponents. The simulation-based agent lost to the
formula-based agent in self-play experiments and also performed worse in heads up
play against human players.

A poker agent called AKI-RealBot [43] uses the Monte-Carlo simulation approach
combined with an exploitive strategy. The Monte-Carlo simulation provides the
expected values of different decisions and this information is post-processed and
adapted towards exploiting weak opponents. The AKI-RealBot placed second, be-
hind Poki, in the ACPC 6-player Texas Hold’em limit tournament in 2008 [2]. One
of the main reasons for its success in this tournament was the ability to exploit weak
opponents, in particular the weakest one.

3.2.4 Other Approaches

A poker agent called MANZANA, created by Marv Andersen, uses artificial neural
networks (ANNs) to play poker. MANZANA was trained on the hand history of
a strong poker agent and it placed first in the 2009 ACPC Texas Hold’em limit
bankroll tournament [3]. BPP is a poker agent based on Bayesian decision networks
[24]. It uses decision networks to model its own hand, the opponent’s hand and the
opponent’s playing style.

3.3 Measuring Performance

The stochastic nature of poker makes it difficult to accurately measure the per-
formance of poker agents. There could be situations where an agent makes good
decisions, but still loses. This means that it is not always sufficient to look at an
agent’s total profit to analyze its performance. In this section we present some of
the challenges that arise when measuring a poker agent’s performance.
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3.3.1 Luck

The element of chance coming from the shuffling and dealing of cards makes luck an
important factor in poker. Like mentioned above, a player can make good decisions
and be unlucky and lose. A lucky card can often be the difference between a huge
loss and a huge profit. This is why there are discussions about whether poker is
a game of skill or luck. Levitt and Miles [21] suggest that poker indeed is a game
of skill, examining results from the 2010 World Series of Poker. They compared
the total return on investment (ROI) between players who are identified a priori as
high-skilled and the other players. The results showed that the high-skilled players
had an average ROI of over 30 percent while the others averaged -15 percent.

However, the stochastic nature of poker will influence the measurement of perfor-
mance. What we need to do in order to more accurately measure the performance
is to play a large number of hands to reduce the variance. Fortunately, this is
significantly easier when it comes to computerized poker agents compared to hu-
man players. Most poker agents have the ability to play millions of hands in a
short amount of time. With a large sample size we can reach a satisfactory level of
statistical confidence.

To test this assumption we did an experiment using our poker simulation tool inte-
grated in the UniPoker framework (presented in chapter 6). The two tables below
show results from poker game simulations between two simple poker agents with
identical strategies. Since the agents are identical they should play evenly against
each other. This means that the total profit should be close to zero for both agents.
Table 3.1 shows the results after 1,000 simulated hands and table 3.2 shows the
results after 1,000,000 hands. The bankroll represents how much a player has won
or lost in total and the sb/h is the win-rate represented by the number of small
blinds won per hand on average (see section 2.5).

Agent Bankroll Win-Rate (sb/h)
SimpleRuleAgent 3 268.0 3.26800
SimpleRuleAgent -3 268.0 -3.26800

Table 3.1: Results after simulating 1,000 hands.

After simulating 1,000 hands the win-rate of one agent is more than 3 small blinds
per hand on average. This is a much larger number than expected.

Agent Bankroll Win-Rate (sb/h)
SimpleRuleAgent -13 840.0 -0.01384
SimpleRuleAgent 13 840.0 0.01384

Table 3.2: Results after simulating 1,000,000 hands.

After simulating 1,000,000 hands the win-rate has been reduced to a number close to
zero. This illustrates that a larger sample size will lead to a more accurate measure-
ment of performance. This experiment suggests that luck plays an important role
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in a short-term perspective, but evens out between players in a long-term perspec-
tive. The role of skill is therefore especially important over a large number of hands.
Hence, it is essential to simulate a considerable amount of hands when measuring
the performance of poker agents.

Figure 3.1 shows the resulting simulation graph of the experiment with 1,000,000
played hands. This graph illustrates the total bankroll (the amount of money won or
lost) of the two agents on the y-axis and the number of played hands on the x-axis.
We can see that neither of the agents seem to play with a consistent profit. Instead
the graphs are constantly fluctuating, which means that the winner of this game is
fairly random. This is a result of both agents applying identical strategies.

Figure 3.1: Simulation graph after 100,000 played hands.

3.3.1.1 Duplicate Poker

Another effort used to reduce the variance in poker is called Duplicate Poker [25].
The idea behind this technique is to let different players play the same hand and
then compare their performance. We present a simple example in table 3.3 of two
agents (A and B) and two different hands (X and Y). This example illustrates how
duplicate poker can be used in heads up poker.

Agent A Agent B
Run 1 X Y
Run 2 Y X

Table 3.3: Duplicate Poker Example

In run number one, agent A is dealt hand X and agent B is dealt hand Y. After
the first run is finished, any learning performed during this run is removed from the
agents’ memories. Then in round number two, agent A is dealt hand Y and agent B
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is dealt hand X. The outcome of the two runs can then be compared and the agent
with the highest total profit is the winner.

Duplicate Poker reduces variance by letting the poker agents play the same exact
hands against each other. This means that if agent A is lucky and is dealt good
cards throughout a game, this will not necessarily affect the final outcome because
agent B will be dealt these same cards in the next run. The final outcome reflects
the agents’ total performance after playing both hands.

Duplicate Poker is used in the ACPC tournaments to provide more accurate results
[4]. A series of Duplicate Poker matches are played between poker agents in order
to declare the winning agent. All memory is removed from the agents between
each match. In the 2010 ACPC heads up no-limit tournament, each agent played
200 matches of Duplicate Poker against every other opponent in which each match
consisted of 3000 hands [40]. This brings the total number of played hands between
two agents to: 200 · (3000 · 2) = 1, 200, 000 (with Duplicate Poker each hand is
played twice). This corresponds to the concept of playing a large number of hands
to achieve a more accurate measurement of performance, as mentioned above.

3.3.2 Evaluating Quality of Decisions

The quality of decisions in poker are difficult to evaluate because of stochastic be-
havior and hidden information. Few hands are actually played until a showdown, so
most of the decisions we evaluate do not include information about the opponent’s
cards. A common way to evaluate a played hand is to use the final outcome. If a
player won, the outcome is good. In a case-based approach the evaluation of deci-
sions becomes very important because we only want to reuse the best decisions. The
idea of reusing the decisions that have led to the best outcomes (highest profits) is
called a best-outcome reuse policy. This policy sounds reasonable, but the variance
in poker makes this policy noisy. Results from [37, 41, 45] show that the perfor-
mance of a best-outcome reuse policy is inferior to other policies (further explained
in section 4.2).

When evaluating the quality of decisions made by a poker agent we must take luck
into account. Some decisions are good, but still lead to a negative outcome. If we
could reduce the variance in poker we would be able to give a more accurate evalu-
ation. In chapter 5 we present DIVAT [12], an evaluation tool that focuses on this
issue, and in section 9.4.3 we present another approach to decision evaluation.
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Chapter 4
Case-Based Reasoning

Case-based reasoning (CBR) is a growing research field in AI that originated in the
US. It separates itself from many other major AI approaches by utilizing specific
knowledge of previously experienced situations, rather than solely relying on general
knowledge of a problem domain or making associations between problem descriptors
and its conclusions [1]. CBR can still work well without extensive domain knowledge
and can therefore be very useful in problems with hidden information or weak domain
knowledge.

In this chapter, a brief introduction to CBR is given in addition to a presentation
of some existing approaches to CBR in poker. Section 4.1 presents the CBR-cycle
and section 4.2 gives an overview of a few different CBR poker agents.

4.1 The CBR-Cycle

CBR stores experienced situations, called cases, in a case-base for later use. This
can resemble how humans do problem solving. When humans encounter a situation
that requires a decision or action to be made, we often look back at previous similar
situations to help the decision making. An example of this can be a physician’s
treatment of a patient, or a court’s decision in a law suit. CBR takes advantage
of this idea of looking back at previous experiences to make informative decisions.
The CBR approach can be presented as a cycle consisting of four separate processes
as identified by Aamodt and Plaza in [1] and illustrated in figure 4.1. The four
processes are retrieve, reuse, revise and retain.

Retrieve

In the first step of the cycle we have the retrieve process. This process involves
recognizing the current situation and retrieving the closest matching cases from the
case base. The input to a CBR system is a new situation (new case) described by
different features. These features help the system match the new case with already
stored cases by using some similarity function. The type of features used and the
matching between them is very important for the performance of the CBR system.
Different weights can be given to each feature based on importance in order to better
calculate the similarity. The one closest matching case can then be retrieved or a
group of the k closest cases.
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Figure 4.1: The CBR cycle illustrating the four processes; retrieve, reuse, revise and
retain from [1].

Reuse

In this process the closest matching case has been retrieved and is combined with the
new case to create a suggested solution to the problem. The system must consider
the differences among the retrieved case and the new case and choose whether to
copy the retrieved case completely or adapt it. An adaption should be made if the
retrieved case is not considered a good solution to the new problem.

Revise

After receiving a suggested solution from the reuse process this solution should be
tested. Some type of evaluation must occur. The suggested solution can be tested
by applying it to the real environment. If the evaluation shows that the suggested
solution failed, the solution must be repaired to better solve the problem at hand. To
repair a solution the system must be able to explain the errors that are found.
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Retain

In the retain process the final tested and repaired solution is stored in the case base.
This solution is now part of the case base and used in future problem solving. A
challenge in CBR is to decide how large a case base should be in order to achieve
desired performance. With very specific cases one will most likely be able to achieve
good performance, but a large case base is required to find matches in all types of
situations. A larger case base results in a much more time consuming training phase
and retrieval step.

4.2 Case-Based Reasoning in Poker

Experienced poker players are able to recognize situations and use their experience to
guide them in their decision making. This experience-based approach is what CBR
focuses on. As we play poker we discover new situations and learn the outcome of
our decisions. This can be applied to poker agents as well, and this section presents
some of the work that has been done on CBR in poker.

In order to compare and analyze the different poker agents, we investigate a set of
important factors and how these are implemented and used in each poker agent. The
performance of the agents has not been emphasized, but rather the possibility of
adapting strategies and not relying completely on imitation of other expert agents.
The factors are presented in the following list:

• Case-base structure
How are cases described? Is there more than one case-base? How is the
solution presented?

• Training
How is the agent trained?

• Reuse policy
How does the agent choose which solution to reuse?

• Adaptive capabilities
Is the agent able to adapt its strategy during live play to exploit its opponents?
Does the agent store new cases during play?

There are other factors that are important as well, like an agent’s run-time, memory
footprint and obviously its performance, but considering that this thesis deals with
adaptive strategies in CBR we have not prioritized these factors.

4.2.1 Casey

Sandven and Tessem [42] researched the potential of CBR in poker with their poker
agent Casey that plays fixed-limit Texas Hold’em. Casey uses separate case-bases
for pre-flop and post-flop play. There are two types of features used to describe a
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Casey

Case-base structure
Separate case-bases for pre-flop and post-flop play.
Matching cases constitute a generalized case.
Solution is represented by a strategy.

Training Starts with empty case-base.
Makes random decisions to grow case-base.

Reuse policy Best-outcome

Adaptive capabilities
Cases are stored during play which makes its
playing style adaptive. However, it does not
separate between different types of opponents.

Table 4.1: The Casey poker agent

case; indexed features and un-indexed features. The indexed features are used for
retrieving cases from the case-base and contain hand strength, position, number of
opponents and bets to call. The un-indexed features are contextual information that
further help describe a case, but are not used for retrieval.

Casey uses different simple strategies in order to change its play according to the
game context. A strategy consists of an initial action and a follow-up response if
possible. This could for example be a bet/raise followed by a re-raise. Deceptive
strategies are also available. A bluff consists of a bet/raise followed by a fold if
re-raised. Casey makes decisions by consulting a generalized case which consists of
information from all matching cases. If the number of matching cases that make up
the generalized case is sufficiently large, the most profitable strategy is used (best-
outcome). If not enough matches are found, a random play is made to build up the
case-base.

Casey starts off with an empty case-base and builds it up during play. The results
from a learning experiment consisting of 50,000 played hands showed that after
about 20,000 hands Casey was able to play consistently against its opponents. The
experiment was done against 3, 5 and 7 simple rule-based agents. Casey was able to
play profitably on the 4-player table, but was losing on the 6- and 8-player tables.
However, the results from all tables showed that Casey was able to learn over time
and improve its play, suggesting that CBR can successfully be applied to poker.

Table 4.1 shows the description of Casey according to the factors presented earlier.
Casey has no cases stored in the case-base before playing against a new opponent (in
the experiment presented in [42]). This means that Casey goes through a learning
phase in the beginning of a game. Until the case-base has grown sufficiently large,
Casey will mostly make random decisions resulting in bad performance initially. As
the case-base grows, Casey begins to learn what decisions to make. This makes
Casey able to adapt its play towards different opponents. However, this requires
a way of overwriting old cases with new ones or resetting the case-base between
games if the case-base has a given maximum size, if not the strategy becomes static.
Sandven and Tessem used a maximum of 100 cases to create a generalized case
[42].
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If Casey plays against a set of different opponents, it will not change its playing style
according to each opponent. Instead the decisions that have yielded the best results
during play (independent of opponent) will be reused. This might lead to a playing
style that is effective against one type of opponent, but ineffective against another.
Also, the best-outcome reuse policy is influenced by luck and is not considered a
very good policy.

4.2.2 CASPER

CASPER is a CBR poker agent that plays fixed-limit Texas Hold’em and was created
by Rubin and Watson [34]. CASPER’s training data is constructed by observing
7,000 played hands between the poker agents Simbot and Pokibot, both created by
the University of Alberta CPRG. Each decision made in the training data was stored
as one single case. CASPER uses separate case-bases for each stage of the game
(pre-flop, flop, turn and river). When it is time to act, a target case is constructed
by looking at different features of the game state. Then the appropriate case-base is
searched for cases that match this target case. All cases that exceed a 97% similarity
threshold are retrieved. If no such matches are found, the 20 most matching cases
are retrieved instead.

The decisions found in the retrieved cases are all summarized and used to create
a probability triple. This triple represents the share of decisions that are fold,
check/call, or bet/raise. CASPER’s decision is made probabilistically using the
probability triple. This means that if the probability triple is (0.1, 0.2, 0.7) CASPER
will fold 10% percent of the time, check/call 20% of the time, and bet/raise 70% of
the time.

CASPER was tested against strong adaptive poker agents, non-adaptive poker
agents and human players. Two versions of CASPER was tested against other
agents where CASPER02 is the same agent as CASPER01, but with a larger case-
base constructed by observing 13,000 played hands. Both agents were able to play
evenly against strong adaptive opponents. CASPER02 played profitably against
non-adaptive opponents, while CASPER01 did not. Rubin and Watson suggest the
reason behind this could be that the training data consists of play between adap-
tive agents, so a larger case-base is needed in order to show good results against
non-adaptive opponents.

Against human players, CASPER was able to play profitably on play-money tables
with an average profit of $2.90 for every hand. However, on real-money tables
CASPER was not able to play profitably resulting in an average loss of $0.02 per
hand. This suggests that human players play differently with real money. There
were fewer matching cases found during real-money play compared to play-money
play which supports this claim.

As we can see in table 4.2, CASPER does not support adaptability. It is trained by
observing two adaptive poker agents and simply reuses their decisions probabilisti-
cally. This means that the strategy is not adapting to different opponents. However,
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CASPER

Case-base structure
Separate case-bases for each stage.
Target case is created to find matching cases.
Solution is a probability triple.

Training Uses hand history from games between
Pokibot and Simbot.

Reuse policy Probabilistic

Adaptive capabilities Trained on adaptive agents, but has no
adaptive capabilities.

Table 4.2: The CASPER poker agent

the decision made in two identical situations will not always be the same considering
the probability triple used as a solution. This can help decrease the chance of being
exploited by an adaptive opponent.

4.2.3 SARTRE

SARTRE is another CBR poker agent created by Rubin and Watson that specializes
in fixed-limit heads up Texas Hold’em [35, 36, 37]. Its case-base is constructed
by observing the strongest opponents of the Annual Computer Poker Competition
(ACPC). A case consists of three features; hand type, betting sequence and board
texture. The hand type feature describes the strength of the hand and its ability
to improve. Betting sequence describes the betting that has occurred up to this
point in the hand. The board texture summarizes the state of the community cards,
including possibilities for flush and straight. The solution for each case is represented
by a probability triple for the chosen decisions and an outcome triple that shows
the average profit for each decision.

To retrieve matching cases a k-nearest neighbor algorithm (k-NN) was used. Rubin
and Watson created two types of SARTRE agents, called SARTRE-1 and SARTRE-
2. SARTRE-1 looks for exact matches using the k-NN algorithm where the k is only
bounded by the number of matching cases. If no exact match is found a default
policy of always calling is used. In SARTRE-2 the k is set to 1 and an exact match
is not required. This means that the one best match is always used as the solution.
The similarity metric used for the betting sequence feature also varies between the
two SARTRE agents. SARTRE-2 includes four levels of similarity between betting
sequences whereas SARTRE-1 only accepts exact matches.

Rubin and Watson experimented with three different policies for reusing cases from
the case-base [37]. The probabilistic policy selects the decision by using the proba-
bility triple in the case-solution. The majority-rules policy selects the decision that
has been made the majority of the time in the given situation. The best-outcome
policy selects the decision that has given the largest average profit.

SARTRE-1 was trained on hand history from the poker agent Hyperborean-Eqm
that won one of the 2008 ACPC heads up limit tournaments [2]. SARTRE-2 was
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trained on hand history from MANZANA that won the 2009 ACPC limit bankroll
tournament [3]. As SARTRE-1 requires exact matches between the target case and
the solution, its case-base of approximately 1,000,000 cases is more than ten times
the size of SARTRE-2’s case-base. The results from self-play experiments between
the two agents show that SARTRE-2 (with a majority-rules policy) was able to win
6 out of 10 games, where one game resulted in a draw. However, Rubin and Watson
report that the evaluation did not achieve statistical significance [37].

In a self-play experiment between the three different reuse policies, the most prof-
itable policy proved to be majority-rules. Rubin and Watson believe that this could
be because the type of opponent being challenged is Nash-equilibrium based [37].
They explain this by pointing out that a Nash-equilibrium strategy only profits
when opponents make mistakes. This means that a majority-rules policy applied to
a Nash-equilibrium case-base is a safe strategy against another Nash-equilibrium op-
ponent. The worst performance was given when using the best-outcome policy. This
suggests that a good outcome does not necessarily mean a good betting sequence,
as pointed out earlier. SARTRE-1 participated in the 2009 ACPC limit heads up
tournament with a majority-rules policy and placed 6th out of 12 competitors in the
bankroll event [3].

SartreNL is an extended version of the SARTRE agent that specializes in no-limit
heads up Texas Hold’em [40]. There is an important difference between creating
limit agents and no-limit agents as the size of bets must be taken into account in
no-limit poker. Playing limit poker can therefore be considered a less complex task
than playing no-limit poker. A good no-limit poker agent must be able to decide
on a reasonable bet size before making a bet. It must also consider the size of an
opponent bet before calling.

SartreNL is able to convert hand history into generalized cases that can be used
when playing no-limit poker. A quantitative bet is translated into a certain bet
category like quarter pot, half pot, three quarter pot and so on. This abstraction is
done to reduce the number of available actions that the agent can perform. Hand
strength buckets are also used in order to reduce the state space. An additional case
feature was also introduced called stack commitment. Stack commitment represents
how much of a player’s total stack size that has been invested in the current pot.
This is important to consider when making decisions later in a hand.

SartreNL was trained on hand history from the best no-limit poker agent from
the 2009 ACPC (Hyperborean). SartreNL performed well at the 2010 ACPC and
achieved a 2nd place in the bankroll instant run-off tournament [5].

As we can see from table 4.3 the SARTRE agents have no adaptive capabilities.
SARTRE reuses cases from other expert poker agents and do not adapt its strategy
towards different opponents. By using the majority-rules policy the agent keeps its
losses down against equilibrium opponents, but it will also make it easily exploitable
against adaptive opponents. This is because the majority-rules policy makes the
strategy completely static so an adaptive opponent can learn how to play profitably
against it.
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SARTRE-1 SARTRE-2 SartreNL

Case-base structure Separate case-bases for pre-flop and post-flop play.
Solution consists of outcome triple and action triple.

Training Hyberborean MANZANA Hyperborean
Reuse policy Majority-rules Majority-rules Probabilistic
Adaptive capabilities No adaptive capabilities.

Table 4.3: The SARTRE poker agents

The probabilistic policy used in SartreNL is not static in the same sense as a
majority-rules policy. This is because of the element of chance involved in choos-
ing a decision. However, a strong adaptive opponent should still be able to exploit
SartreNL’s strategy as this strategy will not adapt to a changing opponent and will
remain fairly consistent.

4.2.4 BayCaRP

BayCaRP is a poker agent created by Sebastian Helstad Unger that combines a
Bayesian network (BN) with CBR to play fixed-limit Texas Hold’em [45]. The BN
is used to predict the opponent’s hand types, which could be low pair, two pair,
three of a kind and so on. There is one BN for the pre-flop stage and one for the
post-flop stages. The output of the BN is the opponent’s three most probable hand
types. This prediction is then used as case-features in the CBR system.

The CBR system consists of separate case-bases for each stage of a hand. The
pre-flop case-base is the only one that is not influenced by the BN prediction. The
initial case-base was constructed by observing two poker agents, Pokibot and Simbot,
playing approximately 10,000 hands of poker against each other. Each case included
the solution (the decision made) and the outcome (the final win or loss) in addition to
common case features. The total size of the initial case-base(s) was around 100,000
cases.

When BayCaRP is requested to act it creates a new target case using features
describing the current situation (including predicted opponent hand types on post-
flop stages). This target case is then matched with cases in the case-base. Matching
cases are found by calculating the local similarities using the k-NN algorithm and
thereby finding the global similarity over this set of weighted features. All cases with
a similarity above a given threshold are retrieved from the case-base. The decisions
made (solutions) in these retrieved cases are then used to create the solution for
the target case. A best-outcome reuse policy was initially chosen for BayCaRP1.
The target case is retained in the case-base as a new case after the outcome of the
decision is known.

In an attempt to reduce the impact of luck in decision evaluation, BayCaRP planned
to use a concept called G-bucks [29]. G-bucks calculates the expected value of a
decision by multiplying the equity of a hand with the total pot size. Equity is found
by simulating the outcome of playing a certain hand a number of times against other
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BayCaRP

Case-base structure
Separate case-bases for each stage.
Target case is created to find matching cases.
Decision made and final outcome are stored.

Training Uses hand history from games between
Pokibot and Simbot.

Reuse policy Majority-rules (best-outcome initially)

Adaptive capabilities Use of hand prediction influences strategy.
Stores new cases during play.

Table 4.4: The BayCaRP poker agent

hands and record the results from each simulation. In BayCaRP, the most likely
range of opponent hands is given by the BN. This was then to be used as input to
the G-bucks calculation to assess the hand equity. Multiplying the equity with the
total pot size gives the expected income from the hand and this can be compared to
the cost of making a certain decision. A positive G-bucks score represents a decision
that gives a positive income.

As the G-bucks approach was not implemented due to time constraints, Unger in-
stead experimented with a different reuse policy in an attempt to reduce the impact
of luck. BayCaRP2 uses a majority-rules policy instead of best-outcome. With this
approach the agent will not base its decision making on the outcome of previous
decisions, but will instead more closely imitate the Pokibot and Simbot agents by
using their most common decisions.

BayCaRP was tested by playing 4,500 hands of poker on an 8-player table against
five instances of Pokibot and two instances of Simbot. Unger reports that BayCaRP1
with a best-outcome reuse policy lost an average of 0.026 bb/h (big blinds per hand),
placing 5th overall. BayCaRP2, using a majority-rules reuse policy, performed better
than BayCaRP1 with an average profit of 0.056 bb/h, placing 3rd overall.

According to Unger, BayCaRP2 is able to outperform the CBR agent CASPER
which is also trained on hand history from Pokibot and Simbot. This suggests that
BN combined with CBR can be a good approach for developing strong poker agents.
Unger reports that the three most likely hand types predicted by the BN includes
the opponent’s actual hand type 77% of the time. Knowing the opponent’s hand
type is very useful and this information can greatly increase the performance of the
CBR system.

Table 4.4 shows a description of BayCaRP according to the factors presented earlier.
The BN provides BayCaRP with the ability of modeling the opponent to a certain
degree. It collects a number of inputs describing the opponent’s playing style in
order to predict the opponent’s cards. As this hand type prediction is used as a case
feature in the target case, this prediction will have an impact on which cases that
are retrieved and reused. BayCaRP’s strategy is therefore adaptive in the sense that
it observes its opponents and plays according to their predicted hands.

BayCaRP also stores new cases in the case-bases during play. This means that
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its strategy can potentially change over time as more and more cases are stored.
However, this requires a different reuse policy than majority-rules as this policy will
always reuse the most common decision and therefore not change. By using the
G-bucks evaluation as planned, BayCaRP could instead use the best G-bucks score
as a reuse policy. This could result in a strategy that can adapt over time and also
be less influenced by luck (in comparison to the best-outcome policy).

4.2.5 Discussion

An important quality of a poker player is the ability to analyze the opponent and dy-
namically change playing style to exploit potential weaknesses. The CBR agents pre-
sented above do not implement strongly adaptive strategies. CASPER and SARTRE
focus on imitating expert players. This approach works well against equilibrium-
based opponents, but is not effective against strong exploitive opponents. CASPER
and SARTRE prove that CBR can successfully be applied to a problem without
requiring extensive domain knowledge. However, incorporating adaptive strategies
with CBR through domain knowledge could potentially lead to increased overall
performance.

Casey has the ability to adapt its playing style by continually storing new cases
(starting from an empty case-base) and using a best-outcome reuse policy. Bay-
CaRP also stores new cases during play as well as incorporating a type of opponent
modeling. These qualities can result in more robust strategies that can handle dif-
ferent kinds of opponents.

In [39], Rubin andWatson experiment with combining decisions from different expert
poker agents in order to maximize performance. In this system a decision is found
by using either ensemble voting or dynamic selection. With ensemble voting, each
expert votes on what decision to make and the decision with the majority of votes is
chosen. With dynamic selection the optimal decision, found by using an algorithm
called UCB1 [6], is chosen during play. The UCB1 algorithm calculates regret as
the loss of profit due to not choosing the optimal solution at all times. Regret
minimization is then used as a basis for decision making.

Considering that profit is not a good way to measure performance in poker, a dif-
ferent variable should be used in the UCB1 algorithm in poker applications. The
decision evaluation tool DIVAT [12] (see chapter 5) was used in Rubin and Watson’s
experiment to reduce variance affecting the evaluations. The evaluation score given
from DIVAT was used instead of profit as a variable in the UCB1 algorithm.

In [39], experiments were carried out in both fixed-limit and no-limit Texas Hold’em
poker against two different opponents. Six expert poker agents were used as the basis
for the system’s decision making. The results show that use of either ensemble voting
or dynamic selection appear to improve overall performance. In fixed-limit poker
the dynamic selection technique seems to perform slightly better than ensemble
voting. In no-limit poker the performance of dynamic selection and ensemble voting
did not improve upon the Hyberborean agent with a majority-rules reuse policy.
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Rubin and Watson suggest that additional opponents could be needed in order to
see benefits.

In [20], Johanson, Zinkevich and Bowling research different counter-strategies in
poker. Results show that agents that are trained to exploit certain opponents per-
form very well against these opponents, but against other opponents the performance
decreases significantly. They introduced a new strategy technique called restricted
Nash response that attempts to handle a variety of opponents. By computing an
approximated Nash equilibrium for a modified game of poker using abstractions,
they are able to apply regret minimization to create robust counter-strategies. This
approach resulted in good overall performance, beating various opponents without
being prone to exploitation. It was far superior to an agent that is trained only
against a certain opponent.

What we aimed for in our own CBR poker agent (presented in chapter 9) is an
agent that can play poker well with a baseline strategy in addition to being able to
identify an opponents playing style and then adapt its strategy to take advantage of
the opponent. With knowledge about different poker strategies and good counter-
measures we can implement different types of strategies that can be applied when
recognizing an opponent’s playing style. This means that the seemingly best counter-
strategy can be applied, and with this approach the agent does not rely on a strong
static strategy that can easily be exploited.

An important part of the poker strategy in a CBR agent is the reuse policy. Making
good evaluations of the quality of decisions can be critical and this is a challenge
in poker (see section 3.3.2). Using a decision evaluation tool that reduces variance
and provides a rational evaluation of quality can increase performance compared to
a best-outcome policy using profit as the basis for evaluation. We present two such
evaluation techniques in this thesis; DIVAT in chapter 5 and a different approach
in section 9.4.3. We have experimented with applying both techniques in our CBR
poker agent.
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Part II

Tools and Frameworks
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Chapter 5
DIVAT

As discussed in section 3.3.2, the variance due to the stochastic nature of poker
plays an important role when evaluating the quality of decisions. One can make bad
decisions in poker and still come out as the winner of a hand. Consequently, one
can also make good decisions, but still lose. This leads to difficulties when applying
a CBR approach to make decisions in poker. If a bad play is stored in the case base
with a positive outcome, this will be a misrepresentation of good decision making
and it will most likely have a negative impact on performance. When constructing a
case-base it is important to be able to represent as many situations as possible and
also store cases that are based on good decisions. In this chapter we investigate a
tool called the Ignorant Value Assessment Tool (DIVAT)1 that attempts to reduce
variance in the evaluation of poker decisions.

DIVAT is a tool developed by Billings and Kan from the University of Alberta and
is presented in "A Tool for the Direct Assessment of Poker Decisions" (2006)[12]. It
uses perfect hindsight knowledge to evaluate the quality of decisions made in heads up
Texas Hold’em poker. Perfect knowledge (or perfect information) means knowing
the complete state of the game, including the opponent’s hole cards. By looking
both at your own hole cards, the opponent’s hole cards and the community cards,
this tool is able to assess the quality of the decisions made in every stage within a
played hand (pre-flop, flop, turn and river).

The way it works is by following a certain policy as to whether a bet or fold should
be made in any given situation, and this can be represented by a betting sequence.
Through hindsight analysis, DIVAT will calculate the difference between the actual
value of a betting sequence and the betting sequence assessed by the DIVAT policy.
If the difference is positive this means that the decision making was good and a
negative difference means the opposite. The DIVAT difference can be summed up
within a hand (the difference score from each stage) and create a total DIVAT score
for a hand.

In order to use the idea behind DIVAT in our poker agent, we decided to implement
our own version of DIVAT based on the description in [12]. An open source version
of the DIVAT tool, called PVAT (Poker Variance Analysis Tool2), already existed,
but when we discovered this we had already implemented our own version. Our
version of the tool, which we named AIVAT (Another Ignorant Value Assessment

1The first letter represents one of the author’s first name.
2http://poker.cs.ualberta.ca/open_pvat.html

35

http://poker.cs.ualberta.ca/open_pvat.html


Tool), is strictly an imitation of the original DIVAT tool and is presented in section
9.4.2.

In this chapter we present the DIVAT tool and explain how this tool can evaluate the
quality of poker decisions. A motivational example is given in section 5.1 followed
by explanations of the different parts of the tool in section 5.2 and 5.3. Our own
version of this tool applies the same techniques and rules as DIVAT, so this chapter
can be used as an explanation of the AIVAT tool as well.

5.1 Motivational Example

We now look at an example showing the necessity of a poker evaluation tool that
can disregard luck. Let us consider two players, Tom and Lisa, in a regular game of
no-limit Texas Hold’em. Lisa is the dealer, the small blind is 1 dollar and the big
blind 2 dollars. Bets must be at least the size of the big blind. Tom is given the
hole cards A♦, 10♦ (ace of diamonds and 10 of diamonds), while Lisa gets 8♣, 5♥
(8 of clubs and five of hearts).

Tom: A♦, 10♦ Lisa: 8♣, 5♥

Pre-flop:

Lisa has a weak hand (low cards), but she has already placed the small blind and
calling the big blind is not a big investment in order to see the flop. She decides to
call. Tom has a strong hand and he chooses only to check so not to give away any
information about his hand.

Flop: A♠, 4♥, 7♠

With a pair of aces, Tom has the strongest possible pair on the board. The other
two cards on the flop are fairly low and Tom decides to bet his strong hand. Lisa
has only an ace-high hand and she knows that her hand is weak. She goes for a bluff
and raises Tom’s bet. Tom decides to re-raise and Lisa’s bluff fails. Lisa decides to
call.

Turn: A♠, 4♥, 7♠, 10♣

The turn card is a very good card for Tom, and he now has two pairs; aces and tens.
Again, Lisa has no more than an ace-high hand. Tom knows that Lisa often bluffs
her weak hands, so he decides to go for a check to see how Lisa responds. Lisa has
already invested a good amount of money in this pot and she knows that if the river
card is a 6, she will get an 8-high straight. Lisa decides to place a bet after Tom’s
check in an attempt to scare Tom into folding.

Tom reads this bet as a bluff and again he decides to re-raise. Lisa now has the
choice between folding a hand she has invested a lot of money in, or call the re-raise
and hope for a lucky river card. She finally decides to call.

River: A♠, 4♥, 7♠, 10♣, 6♦
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Character Description
S small blind
L large blind (big blind)
C call
K check
B bet
R raise
F fold
/ new stage of the hand

Table 5.1: Explanation of betting sequence.

The river card is a very lucky card for Lisa and consequently a horrible card for Tom.
Now Lisa has the strongest hand with an 8-high straight. Tom still believes that he
has the strongest hand with his two pairs. He decides to bet, and Lisa raises Tom’s
bet knowing that she has a very strong hand. Tom becomes uncertain of whether
or not he has the strongest hand. He recalls Lisa’s previous raises and wonders if
she is just bluffing. He decides to call Lisa’s raise instead of making a re-raise. Lisa
ends up winning the hand with an 8-high straight.

The betting sequence describing this example hand is presented below and an expla-
nation of the format is given in table 5.1. The lowercase characters represent Lisa’s
actions, while the uppercase characters represent Tom’s actions.

Betting sequence: sLcK/BrRc/KbRc/BrC

In this example, Tom had the winning hand all the way up until the river card,
which turned out to be a lucky draw for Lisa. Tom had a fairly strong hand the
whole game and he made the decisions of betting his strong hand. By looking back
at this game, one cannot give too much blame on Tom for losing, considering the
luck that Lisa had on the last card. If the decision evaluation would only consider
the final outcome of a played hand, then this evaluation would give Lisa a good
score (since she won) and Tom would be given a bad score. This would not be very
helpful for future decision making, seeing as Tom actually played well considering
the cards that were dealt.

In section 9.4.2 we show our AIVAT evaluation of this example hand, suggesting
that this evaluation tool can provide a reasonable decision evaluation that is less
influenced by luck compared to a regular outcome-based evaluation.

5.2 Definitions and Metrics

In this section we present a list of definitions and metrics that are used in DIVAT
and are implemented in our AIVAT tool. The definitions and metrics are the same
as in [12].

• Immediate Hand Rank
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Immediate Hand Rank (IHR) is a way of assessing the strength of a hand with-
out regarding any future community cards. It is simply a comparison between a
given hand and all possible opponent hands at the current point in a game. The
assessment is done by counting the number of times a given hand will beat all
possible hands of the opponent. At the pre-flop stage there are 1,225 possible
opponent hands (every two-card hand possible from 50 remaining cards). On
the flop there are 1,081 possibilities, 1,035 on turn and 990 on river. The actual
formula used to calculate the IHR is: (wins+ ties/2)/(wins+ ties+ losses).
IHR is represented by a number between 0 and 1 where a higher number means
a stronger hand.

• 7-card Hand Rank
The 7-card Hand Rank (7cHR) is another way of assessing hand strength, but
this time all future community cards are enumerated. This means that every
hand that is ranked consists of seven cards (two hole cards + five community
cards) in which the best possible 5-card hand is used. 7cHR is represented
by a number between 0 and 1 where a higher number means a stronger hand.
7cHR contains a mixture of positive potential and negative potential of a hand.
Positive potential considers the chance of increasing in strength as additional
community cards are dealt, while negative potential means the opposite.

• Effective Hand Rank
The Effective Hand Rank (EHR) is used to even out the mixture of positive
potential and negative potential of a hand. The 7cHR measurement implies
that every hand will go to a showdown (five community cards are dealt) which
is not the case. This will often overestimate weak hands because they have
potential to increase in strength as additional cards are dealt. The DIVAT
folding policy (see section 5.3) on the flop uses EHR = (IHR + 7cHR)/2,
while the betting policy (see section 5.3) uses EHR = max(IHR, 7cHR).

• All-in equity
All-in equity (AIE) measures how many times a given hand will win, lose or
tie against an opponent’s hand. This measurement requires perfect informa-
tion about the opponent’s cards. All possible future community cards are
enumerated and every showdown result is registered. There are 44 different
possibilities on the turn (52 cards in total minus your hole cards, the oppo-
nent’s hole cards and four community cards), 990 on the flop and 1,712,304
possibilities pre-flop. AIE is represented by a number between 0 and 1 where
a higher number means a stronger hand.

• Net gain/loss
In DIVAT, AIE is used to calculate the net gain or loss. Net gain or loss is
given by: net = (AIE · potsize) − invested, where invested represents the
amount of money invested into the current pot by the player in question. This
calculation shows how much money a player will win or lose on a given hand
on average.
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Fold Offset Make1 Make2 Make3 Make4
Pre-flop 0.000 0.580 0.825 0.930 0.965
Flop 0.075 0.580 0.825 0.930 0.965
Turn 0.100 0.580 0.825 0.930 0.965
River 0.000 0.640 0.850 0.940 0.970

Table 5.2: Standard DIVAT settings from Billings and Kan [12].

5.3 The DIVAT Policies

The DIVAT policies are used to make betting sequences which again are used to
calculate the DIVAT score. The folding and betting policies are rules that decide
how many bets should be invested in a certain hand. The folding policy says that
every hand that has a hand strength less than a certain threshold should be folded.
More accurately, the folding policy used is given by:

threshold = bet size / (total pot size + bet size + offset)

This means that if the EHR is less than the given threshold, the player should fold
the hand. The offset is used to slightly increase the fold-threshold across different
stages of a hand. As the 7cHR (used when calculating EHR) also considers future
community cards in the calculation, this value is influenced by the draw potential
(chance of getting the cards needed to make a hand). This draw potential has the
largest impact on the 7cHR calculation in the flop and turn stages. In the pre-flop
stage, all hands have sufficient draw potential and no offset is needed. In the river
stage, no community cards remain to be dealt so there is no draw potential. This is
why the offset is only introduced in the flop and turn stages. The different offsets
are shown in the left column of table 5.2 and are the same as in [12]. The offsets
are chosen based on the outcome of millions of simulations [12].

The betting policy works in somewhat the same way as the folding policy. If the
hand strength is larger than a calculated threshold the player should bet/raise. The
thresholds vary between the river stage and the other three stages. The threshold is
highest on the river. The threshold for making a first bet (make1) is lower than the
threshold for a raise (make2), which again is lower than the threshold for a re-raise
(make3). The highest threshold is given for a re-re-raise (make4) (which is usually
considered the last possible raise). The different thresholds are given in table 5.2
and are the same as in [12].

The gap between the fold threshold and the bet threshold can be considered the
calling-gap. If a hand is not strong enough to raise, but not weak enough to fold,
the player should instead check or call.

By following the DIVAT folding and betting policies, the betting sequence between
two players can be created. This betting sequence represents the line of play between
two honest players, without any deceptive plays (e.g. bluffing) or any consideration
of betting history. This is called the baseline sequence. This baseline sequence can be
assessed in all stages of a hand (pre-flop, flop, turn and river). The DIVAT policies
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are based on a bet-for-value tactic meaning that a bet or raise always represents a
positive expected value. The policies represent a realistic measurement of how much
a player should invest in his hand at any given time.

5.4 Evaluating Quality of Decisions Using DIVAT

Evaluation of decisions using DIVAT is based on a comparison between the betting
sequence of a non-DIVAT player (let us call this player agent A) and a DIVAT
player. At the beginning of each stage of a hand, a betting sequence that represents
the betting decisions made during this stage between two competing DIVAT players
can be found. The DIVAT players have the same cards and stack sizes as the
actual players in the game (agent A and its opponent). The two DIVAT players
both follow the DIVAT policies explained in section 5.3 and represent two honest
players following a bet-for-value strategy. The two DIVAT players play the hand
from the beginning of the current stage until the end of this stage according to
the policies. The resulting betting sequence from the DIVAT players makes up the
baseline sequence.

After agent A has played the current stage of the hand against its opponent, the
actual betting sequence is known. Now that we have the actual betting sequence and
the DIVAT baseline sequence we can calculate the two net gains resulting from these
two betting sequences (from the perspective of agent A and its corresponding DIVAT
player). Since we have perfect information we are able to perform this calculation
(calculation of net gain requires AIE). The actual net gain represents agent A and
the baseline net gain represents DIVAT. These two values can now be compared in
order to evaluate agent A’s decision making. If the actual net gain is higher than
the baseline net gain, agent A is given a positive DIVAT evaluation score. If the
actual net gain is lower, the DIVAT evaluation score will be negative.

Figure 5.1: Illustration of DIVAT.

Figure 5.1 illustrates how the DIVAT tool works. The input is perfect information
hand history in which the separate stages are treated one at a time. The actual
net gain is calculated using the betting sequence found in the hand history. The
DIVAT baseline sequence is found by simulating the stage using two DIVAT players.
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The net gains from each betting sequence are then compared resulting in the final
evaluation.

By evaluating agent A’s decisions against the baseline provided by DIVAT, we are
able to ignore luck. If agent A receives a lucky card on the river, then the corre-
sponding DIVAT player will also receive this lucky card. This means that agent A
must always perform better than the DIVAT player, given the same circumstances,
in order to receive a positive evaluation score.

In section 9.4.2 we present an AIVAT analysis of the motivational example intro-
duced in section 5.1. This will shed more light on the idea behind DIVAT and how
variance in decision evaluation is reduced using this technique.
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Chapter 6
UniPoker

UniPoker is the result of one of our previous projects on AI in poker [26]. UniPoker
is an open-source Java software framework which provides users with the ability to
efficiently implement their own poker agents. We have used this framework in the
development of our own CBR poker agent presented in chapter 9. In this chapter
we present an overview and short description of the UniPoker framework based on
[26]. In chapter 8, we give an overview of the extensions and improvements that
have been done to UniPoker during the work on this thesis.

6.1 Motivation

Developing poker agents requires more than just an idea for a poker strategy. There
are many components that are needed in order to have an agent playing poker.
Game logic like dealing of cards, bets, stacks, different stages and so on, need to
be provided. Also, a testing environment is required to be able to compete against
other agents to measure the performance of a new strategy.

Many researchers have been using the Meerkat API for development and the Poker
Academy Pro (PAP) software for testing their poker agents. The Meerkat API pro-
vides classes and methods used for developing poker agents. The PAP software is
basically a platform for poker where both humans and poker agents can compete.
PAP includes many different poker agents with varying performance and lets de-
velopers plug in their own agents using the Meerkat API. After discovering that
that the PAP software was unavailable we felt the need for a new test-bed for poker
agents. We were also lacking documentation of the Meerkat API. We therefore
decided to implement our own poker software framework.

UniPoker includes an adapter for an open source poker project called opentestbed1.
Opentestbed implements the Meerkat API which means that poker agents that have
been originally created for PAP can still be used with opentestbed. The integration
with opentestbed in UniPoker allows us to use these poker agents in our framework
as well.

1See http://code.google.com/p/opentestbed/ for more information.
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6.2 High-Level Structure

The three most essential modules of the UniPoker framework are the framework-
module, the agents-module and the simulation-module (see figure 6.1). The frame-
work module includes common functionality that is used by the other modules and
is described in section 6.3. The agents-module includes different types of poker
agents. Some agents are developed by us while others are open-source agents we
have included for testing purposes. The agents-module is presented in section 6.4.
The simulation-module includes a simulator that is used for testing the different
poker agents. The simulator implements the rules of Texas Hold’em poker and can
simulate millions of hands in a short amount of time. The simulation-module is
described in section 6.5.

Figure 6.1: High-level structure of UniPoker from [26].

6.3 Framework-Module

The framework-module in UniPoker consists of common data classes and common
utility classes. The common data classes implement important elements of poker
and are presented in section 6.3.1. The common utility classes provide functionality
that is needed for calculating hand strength, pot-odds, etc. The utility classes are
described in section 6.3.2.

6.3.1 Common Data Classes

Figure 6.2 shows the most important common data classes and the relationship
between them. These classes provide important elements of poker.
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Figure 6.2: Class diagram from [26] showing the common data classes.

6.3.2 Common Utility Classes

The following list includes the different common utility classes in the framework-
module.

• HandEvaluator
This class computes the best possible hand from the available hole cards and
community cards. The result of the computation is an HandEvaluation de-
scribing the type of hand, the strength and possible flush and straight draws.

• PotOdds
This class computes pot odds represented by a value between zero and one
(see section 2.5 for an explanation of pot odds).

• HandStrength
Calculates hand strength represented by a value between zero and one (see
section 2.1 for an explanation of hand strength).

• PreflopHandRollout
This class computes the pre-flop winning probability by using hand rollout.
Rollout is a technique used when calculating hand strength. Because poker is
a game of imperfect information one does not know the complete state of a
game (opponent cards and future community cards). Rollouts are simulations
of future community cards and current opponent cards that can provide a
more accurate calculation of hand strength.

45



6.4 Agents-Module

An agent in UniPoker is required to implement an interface including one single
method that controls the agent’s decision making. This method receives arguments
describing the current game state and returns a single number representing the
agent’s action. A negative number results in a fold while a positive number indicates
the agent’s bet size. Returning a number that is as large, or larger, than the agent’s
stack size will result in going all-in. Returning zero represents a call independent of
the amount needed to call. This means that if the opponent’s current bet is larger
than the agent’s stack size, returning zero will also result in going all-in.

Figure 6.3 shows an example from [26] of the implementation of an agent applying
a simple poker strategy. The SimpleAgent implements the PokerAgent interface
which requires the implementation of the act-method. The strategy used by the
SimpleAgent is as follows:

• Raise if the pot is less than 10 small blinds

• Else, always check/call

1) public class SimpleAgent implements PokerAgent{
2)
3) @Override
4) public double act(Game game,PokerGameRunner gameRunner,
5) Player player, Act theAct){
6) Deal currentDeal = game.getCurrentDeal();
7) double pot = currentDeal.getPot();
8) double targetPot = currentDeal.getSmallBlind() * 10;
9) if(pot<targetPot){
10) //Raise the difference between 10sb and the current pot
11) return targetPot-pot;
12) }else{
13) //Check/Call
14) return 0;
15) }
16) }
17)
18) }

Figure 6.3: Example of a simple poker agent.

The example in figure 6.3 shows the implementation of the SimpleAgent. The total
pot size is found in lines 6-7 and the target pot size (10 small blinds) is calculated
in line 8. If the pot size is less than 10 small blinds (line 9) the agent will raise the
difference between the target pot size and the actual pot size (line 11). Else, the
agent will check or call (line 14) depending on whether the opponent has already
placed a bet or not.

46



6.4.1 UniPoker Agent Implementations

There are a few different poker agents implemented in the UniPoker framework that
can be used when testing new strategies. Some agents are very simple while others
are stronger and more complex. The different agents are presented in the list below.
Some of the agents are taken from the opentestbed project.

• Random Agent
This agent plays with a random strategy. It folds 25% of the time. It will
otherwise raise with a value between one and fifteen small blinds. If the raise
is smaller than the current opponent bet it will call.

• Simple Rule Agent
This agent follows a simple rule-based strategy.

• Advanced Rule Agent
A rule-based agent that is more advanced than the simple rule agent.

• Simple Statistics Agent
This agent follows a strategy based on simple statistics. It collects information
using rollouts, pot-odds and hand strength and uses this to calculate if it has
a statistical advantage.

• Demo Agent (opentestbed)
The Demo Agent uses a rule-based strategy and can be found in opentestbed.
It has a hard-coded pre-flop strategy and makes decisions based on pot odds
and winning chance post-flop.

• Monte Carlo Tree Search Agent (opentestbed)
This agent is an implementation of a Monte Carlo Tree Search (MCTS) poker
agent [14].

• Chump Bot2 (opentestbed)
This agent models a loose-aggressive playing style. It plays many hands and
will often raise. It can be found in opentestbed.

• Flock Bot2 (opentestbed)
This agent models a very loose playing style and can be found in opentestbed.
It applies a strategy of always calling except on the river.

6.5 Simulation-Module

The simulation-module in UniPoker is used for testing the performance of different
poker agents. It includes the rules of Texas Hold’em poker and can simulate games
between two or more players. It supports Duplicate Poker (see section 3.3.1) which
reduces variance when testing agents. The user can choose which agents to include
in the simulation and how many hands to simulate. During simulation, a graph is

2http://oursland.net/projects/pabots/
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continuously updated that shows the bankroll (total money won or lost) of all players
on the y-axis and the number of hands simulated on the x-axis. The simulator has
the ability of simulating millions of hands in a short amount of time, but the actual
simulation time depends on the agents’ run time.

6.5.1 Simulation Example

Here we present an example from [26] illustrating typical use of the simulation-
module. We want to simulate 100,000 hands between three poker agents. Figure
6.4 shows the code needed in order to begin the simulation. The number of hands
to simulate is given as an argument to the Simulation constructor in line 5 and the
three agents are added in line 7-9.

1) public class SimulatorDemo {
2)
3) public static void main(String[] args) {
4) //Number of hands to simulate as argument
5) Simulation sim = new Simulation(100000);
6)
7) sim.addPlayer(new RandomAgent(),"Jack");
8) sim.addPlayer(new SimpleRuleAgent(),"Frank");
9) sim.addPlayer(new AdvancedRuleAgent(),"Luke");
10)
11) sim.openGui();
12) sim.start();
13) }
14) }

Figure 6.4: Example of testing three different agents in the simulator.

The progress of the simulation can be observed through a graphical user interface
(GUI). This includes information about the estimated time remaining and number
of hands simulated per second, in addition to the bankroll of each agent and number
of hands simulated. When the simulation is over the results are printed out. Table
6.1 shows the results from the example simulation. This includes the total bankroll
of each agent and the average win-rate per hand. Figure 6.5 shows a simplification
of the GUI after the completed simulation.

Player Bankroll Win-Rate
RandomAgent -13,263.0 -0.1326

SimpleRuleAgent -3,957.5 -0.0396
AdvancedRuleAgent 17,220.5 0.1722

Table 6.1: Results after simulating 100,000 hands.
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Figure 6.5: The graphical user interface after completed simulation.

We can see from table 6.1 that the advanced rule agent won the simulation with
an average win-rate of $0.1722 per hand. The random agent lost, while the simple
rule agent ended up second. This example illustrates the uncomplicated use of the
simulation-module in UniPoker. A guide for setting up and running UniPoker is
given in appendix B.
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Chapter 7
UpperCase - Initial Design

In addition to the UniPoker framework described in chapter 6, a proposed design
for a CBR poker agent was also created in [26]. CBR has proven to be successful in
imitating strong poker agents, however, not many CBR-based agents apply adaptive
strategies. Our agent, which we named UpperCase, was designed to use two collab-
orating CBR systems. One system would produce a static equilibrium strategy and
the other an adaptive strategy.

UpperCase was designed to play heads up no-limit Texas Hold’em poker. The idea
was to have a baseline strategy that performs well in general, as well as an adaptive
strategy that is applied to increase performance after recognizing the opponent’s
playing style. In this chapter we give a short description of the proposed design.
Some parts of the design are not relevant for this thesis and are therefore not fully
explained. A more detailed explanation of the proposed design can be found in
[26].

The baseline strategy uses the CBR system called EQ (equilibrium) and is presented
in section 7.2. The CBR system used for creating an adaptive strategy was named
EX (exploitive) and is presented in section 7.3. The final design and implementation
of UpperCase separates itself from the initial design in some ways and is described
in detail in chapter 9.

7.1 High-Level Design

Figure 7.1 illustrates the initial high-level design of UpperCase. UpperCase was
designed to have two different training phases. One is based on the EQ-system and
is unsupervised, while the other training phase, based on the EX-system, uses a
human expert to guide its training. The unsupervised training is performed in the
UniPoker simulator with perfect information. In the supervised training, the human
expert can view information and statistics about the system through a web-interface
and direct training towards situations where UpperCase has weak knowledge or
experience.

The goal of the supervised training is to improve the domain knowledge of Upper-
Case, including the different concepts (tactics, metrics and profiles), that it can use
to better adapt its strategy towards exploiting its opponent. The human expert can
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analyze the performance of UpperCase by looking at which situations that demand
more training and then force the agent to make decisions that lead to these.

Figure 7.1: High-level view of the initial design of UpperCase from [26].

The dotted arrows in figure 7.1 represent data that is observable through the web-
interface. The solid arrows illustrate the information flow between the different parts
of the system. Tactics, metrics and profiles are defined by a human expert using
the web-interface. These elements constitute the domain knowledge of UpperCase.
The basic poker variables are attributes that describe the current game-state, like
pot-size, hole cards, and stack sizes. These attributes are observable from a player’s
perspective. The main components of UpperCase, EQ and EX, are described be-
low.
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7.2 EQ

The EQ-system creates a baseline strategy based on DIVAT evaluation (see chapter
5). UpperCase is trained against a set of different opponents using perfect infor-
mation hand history which makes the DIVAT evaluation possible. Different tactics
are tested in simulations and the results are used to create the EQ case-base. New
situations are explored using a random strategy during training which results in a
large variety of situations. The objective of the training is to experience as many
different situations as possible such that the case-base provides good coverage. If the
agent encounters a large number of unknown situations during play the performance
will degrade significantly. Statistics are kept over which actions and situations Up-
perCase has experienced.

Every decision is evaluated using the DIVAT tool and each case in the case-base
includes a DIVAT evaluation score that can be used with a best-score reuse policy
during play. This case-base created during training makes up the basis for the base-
line strategy. The training of UpperCase is performed against a variety of opponents
that have different playing styles in order to develop a robust strategy. The DIVAT
tool provides reasonable evaluations of the decisions made during training.

7.3 EX

The initial design of UpperCase required strong domain knowledge taught by a
human expert. Knowledge about different concepts in poker were important for the
agent’s ability to analyze its opponent. After recognizing the opponent’s playing
style, the adaptive strategy is applied.

The EX-system provides UpperCase with this adaptive strategy. When UpperCase
meets a new and unknown opponent the EX case-base is empty. UpperCase will
then rely on the EQ strategy for decision making. During play, new cases are stored
in the EX case-base. As the case-base grows, the EX-system analyzes the oppo-
nent’s playing style. The EX-system will then eventually classify the opponent’s
specific player profile based on the playing style. After this classification has been
performed, the EX strategy takes precedence over the EQ strategy. This new strat-
egy is tailored to exploit known weaknesses with the observed playing style and
should therefore perform better than the baseline strategy. When UpperCase meets
the same opponent in a new game, the old EX case-base designed for this specific
opponent is reused.
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Part III

Results
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Chapter 8
Improvements to UniPoker

During the work on this thesis we have added new functionality to the UniPoker
framework when this was necessary for the implementation of UpperCase. We have
also improved the original functionality and fixed some unresolved issues. These
changes are presented in this chapter.

8.1 Improved hand evaluation

Comparing and classifying different poker hands is referred to as hand evaluation.
This can be a very important feature for some poker agents. UpperCase uses hand
evaluation extensively during the training phase, and by improving the efficiency of
hand evaluation, we were able to reduce the time spent training the system. Hand
evaluation is also required in order to declare the winner of a hand during simulation.
Not only is the correctness of the evaluation paramount in this situation, but the
efficiency greatly affects how fast poker hands can be simulated. Since we perform a
large number of simulations in our testing of UpperCase, the simulation-speed was
important to us. We have improved the performance of the original UniPoker hand
evaluator significantly.

Sometimes, e.g. when determining the winner of a hand, it is sufficient to only
produce a ranking of the different hands. A ranking does not have to include the
type of hand or tie-breaking values, only a score that can be compared to the score
of other hands. This can be done efficiently using a large collection of pre-computed
hands. The Steve Brecher’s HandEval1 is a software-library able to do efficient
hand rankings using this approach. This library has now been integrated with
UniPoker.

1Description and source code can be found on http://www.codingthewheel.com/archives/
poker-hand-evaluator-roundup#steve_brecher
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8.2 Integration with the ACPC protocol

As mentioned previously, ACPC is the Annual Computer Poker Competition. In
this competition, poker agents communicate with an ACPC server2 using the ACPC
protocol. We have now implemented support for the ACPC protocol in UniPoker so
that the framework can be used both as a ACPC server. Additionally we have also
implemented support for UniPoker poker agents to connect as clients to the original
ACPC server. Now, poker agents communicating through the ACPC protocol can be
used with the UniPoker framework. Poker agents, implemented using the UniPoker
framework, would now be able to participate in future ACPCs.

8.3 Improvements of the Poker Simulator

A central element of UniPoker is the poker simulator, implementing the rules of
Texas Hold’em poker and used to simulate poker hands. While implementing our
poker agent we have improved this significant part of the framework in different
ways.

Direct Control
While testing poker agents we discovered the value of being able to directly control
the simulation. The simulator has been redesigned so that developers are able to
run poker simulation while controlling aspects of the game, such as which cards
to be dealt, which stages to be executed and which actions are performed. The
possibility of creating test-cases, using controlled, partial hand-simulations, proved
to be helpful during development.

Side-pots
Side-pots are now supported in the simulator. This is not needed for testing heads
up poker agents (like UpperCase), but is important when simulating games between
more than two agents.

8.4 Web-Interface

We have developed a web-interface where human players can challenge the poker
agents available in the UniPoker framework. A screenshot, displaying poker being
played using this interface, is shown in figure 8.1. This web-interface presents the
player’s hole cards and the community cards, and it lets users fold, check/call,
bet/raise. This tool makes it possible to investigate how poker agents perform
against real human competition. 3

2Source code can be found on http://www.computerpokercompetition.org/index.php?
option=com_rokdownloads&view=file&Itemid=59&id=137:acpc-2011-server-code

3This web-interface is currently hosted at https://unipoker.agorait.no/ and will be main-
tained for a period of time after the submission of this thesis.
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Figure 8.1: Screenshot of a poker-game using the UniPoker web-interface.
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Chapter 9
UpperCase

The design, implementation and testing of the UpperCase poker agent has been our
main objective in this thesis. We have developed a system with a new approach to
how CBR can be applied to the game of poker. Our approach focuses on developing
adaptive capabilities, which is something that we have not observed to a great extent
during our study of existing CBR solutions.

This chapter presents the design of UpperCase. First, we provide a high-level view
of the system’s architecture in section 9.1. In section 9.2, we explain how the design
has evolved since the system first was proposed in [26]. Section 9.3 presents QBR,
a CBR-module within UpperCase. An explanation of Decision Quality Evaluation
is given in section 9.4. Sections 9.5 and 9.6 explain EQ and EX, which are the
two major components of the system. Finally, a summary of the system is given in
section 9.7.

9.1 High-Level System Architecture

The task of a poker agent is to produce actions as output when different game-
states are given as input. In order to do so, UpperCase employs two CBR-systems,
named EQ (equilibrium) and EX (exploitive), that are able to make such decisions
in a collaborative manner. When the agent is requested to make a decision, EQ
will first suggest an action that is coherent with some static equilibrium-strategy.
We call this the baseline strategy of UpperCase. With sufficient knowledge about
the current opponent, EX will then adjust the baseline strategy in order to exploit
the opponent. The final decision will be a combination of the output from the two
individual systems. This process can be viewed in figure 9.1 below.

Figure 9.1: High-level view of UpperCase.

Figure 9.2 provides some more detail. This figure shows the architecture of the
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system, with the major components, EQ and EX, in separate boxes. The EQ-
system uses one separate case-base, while the EX-system employs multiple case-
bases. Throughout this chapter we explain how the different parts of the system
shown in figure 9.2 work and interact. We revisit this figure in section 9.7, which
summarizes the chapter, to give a more detailed explanation of the figure.

Figure 9.2: System Architecture

9.2 Differences from Previous Design

As explained in chapter 7, a proposed design for UpperCase was presented in [26].
Now, we have realized the idea behind UpperCase and implemented the system.
During implementation and testing we have done some modifications to the initial
design, which are presented in this section. We refer to the previous design as
UpperCase-1 and the current design as UpperCase-2.

The basic idea of two collaborating CBR-systems and their role in making a decision
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remains unchanged from UpperCase-1 to UpperCase-2. If we compare figure 7.1
and 9.2 we see that the EQ and EX subsystems are present in both designs. EQ
produces a baseline strategy or static strategy and EX produces an adaptive strategy.
The important difference between the designs is that UpperCase-1 was envisioned
to be a knowledge-intensive system, whereas UpperCase-2 is a data-intensive system
using an instance-based approach to CBR.

Domain knowledge in UpperCase-1 is represented through tactics, metrics, variables
and profiles, but these are no longer present in UpperCase-2. The idea of teaching
UpperCase a small number of poker concepts using a human expert has been re-
placed by an approach that classifies the opponent based on a set of statistical poker
metrics. This means that the system is no longer dependent on a human expert for
guidance. Overall, this change mostly affects how EX functions. EQ remains more
or less unchanged from UpperCase-1 to UpperCase-2.

The reasons for changing the initial design is based on the complexity of the knowledge-
intensive approach of teaching UpperCase poker concepts. During implementation
we quickly discovered great difficulties in representing such concepts as well as how
they can be used to make decisions. Also, it would require much time and effort for
a human expert to create enough cases to give good coverage of situations. These
problems are rooted in the fact that poker is a very complex game with a large
number of possible game-states, where it is difficult to create a small number of
abstract concepts that handle this challenge well.

9.3 Quality-Based Reasoning

A building block in UpperCase is a module that is able to make poker decisions
based on what we call Quality Based Reasoning or QBR. UpperCase uses several
QBR-modules in different parts of the system.

Every QBR-module is an independent CBR-system using an instance-based ap-
proach to CBR. Each QBR-module also includes its own individual case-base, mean-
ing there is multiple case-bases within the system as a whole. Our instance-based
approach leads to a large number of cases and by separating the total knowledge of
the system into different case-bases we are able to retrieve cases more efficiently from
the appropriate case-base. The motivation behind this is increased performance dur-
ing the retrieve process. This design also allows us to scale the system horizontally
while adding more QBR-modules. This is important in a full-scale deployment of the
system, where we want a large number of highly trained QBR-modules to achieve
maximum performance.

If we look at the system from a different angle, we can still perceive the system as
retrieving cases from one single case-base. The format of cases is identical across the
different case-bases and all cases are stored in the same database. The separation
into different logical case-bases happens at run-time. This is why it is possible to
interpret the system as using either one single case-base or multiple case-bases. In
our presentation of the system, we consider it to use multiple case-bases.
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This section focuses on explaining how one single QBR-module works and in sections
9.5 and 9.6 we present how these modules are used in UpperCase.

9.3.1 Quality of Decisions

Previously executed poker decisions are retained in a case-base and reused based on
their quality, which is a measurement of how good or bad the decision was in the
previous situation. How the reuse process is performed is explained in section 9.3.5.
Our concept of quality is related to the concept of utility, which in CBR-systems
can be defined as the usefulness of a solution for solving a given problem [7]. The
goal of traditional systems is to maximize utility of retrieved cases in order to be in
the best possible condition to solve the current problem.

Our concept of quality is a discrete measurement describing the usefulness of the
solution applied to the previous problem. This is not the exact same concept as
utility, because utility is specifically related to the current problem. Figure 9.3
illustrates this relationship.

Figure 9.3: Relationship between similarity, utility and quality.

However, we are reusing cases based on quality while assuming a correlation between
this and utility. In this sense, utility and quality are related.

9.3.2 QBR Case Structure

The QBR-module uses a two-level hierarchical case structure. We call the upper
level a situation and the lower level a solution. A situation is an abstraction of a set
of game-states that share some similarities. A solution is the result of an execution
of a decision. There can be multiple solutions for each situation, but a solution can
only be related to one situation. Figure 9.4 illustrates this relationship.
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Figure 9.4: The relationship between situations and experiences.

A QBR-module is a CBR-system. Each case in the QBR-module is the combination
of a situation and a solution. The features of a case are the combination of features
from both the situation and the solution. Figure 9.5 illustrates the case-format in a
QBR-module.

Figure 9.5: A QBR-module case.

All index-features of the case, which are used in the retrieve-process, are contained
in the situation. The index-features are:
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• Situation-key
This index-feature is a string describing the situation. The string captures
important aspects of the game-state such as the player’s hand and previous
actions in the round. Situation-keys are explained in section 9.3.2.2.

• Case-base-ID
UpperCase uses multiple QBR-modules and each module includes one individ-
ual case-base. This index-feature defines which case-base this situation belongs
to.

The solution-features used in the reuse-process are contained in the solution. A
solution contains the following features:

• Action-type
Action-type is the type of action that was executed, meaning the decision
made in the previous problem. Possible values are defined in section 9.3.2.1.

• Quality
The quality of the action, describing if the action executed was good or bad.
This value is determined using Decision Quality Evaluation, which is explained
in section 9.4.

9.3.2.1 UpperCase Action-Types

Action-types are the possible decisions UpperCase understands. In a game of no-
limit poker there is a large number of possible bets that can be made. We have
reduced the possible decisions into four different types of actions:

• No Play (Fold)
A No Play-action ends a player’s participation in the current hand.

• Passive Play (Check/Call)
A Passive Play-action is the action allowing continued participation in the
hand with minimal investment.

• Aggressive Play (Bet/Raise)
Aggressive Play is the investment of more than the minimal amount required
for continued participation in the hand. The upper bound for this action-type
is three times the current pot size. When UpperCase uses this action-type to
act, it will bet the same amount as the current size of the pot.

• Very Aggressive Play (Large Bet/Raise)
Very Aggressive Play is comparable toAggressive Play, but the invested amount
is equal or larger than three times the current pot size. When UpperCase uses
this action-type to act, it will bet three times the amount of the current size
of the pot.
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9.3.2.2 Situation-Key Format

A QBR situation-key describes an abstraction of different game-states in a poker
game. For example, the state "On river with medium-high three-of-a-kind. Both
me and my opponent have been mostly passive this hand" could be expressed as:
"AaP|pP|pP|p/33". The format of the key is:

< Betting Pattern > / < Hand Type >

The <Betting Pattern>-section represents previous actions in the current hand. It
contains a set of characters that defines which actions that occurred in which stages.
Possible values for actions are the different action-types presented above (see 9.3.2.1)
which are: n (no play), p (passive play), a (aggressive play) or v (very aggressive
play). ’|’ represents the advancement to a new stage of the hand. This way it is
possible to know which actions that belong to the different stages. The format of
the <Betting Pattern>-section is summarized in table 9.1 below.

Character Description
N no play
P passive play
A aggressive play
V very aggressive play
| new stage of the hand

Table 9.1: Explanation of betting pattern.

Actions performed by UpperCase are capitalized to improve human readablillity of
the format. As an example, consider the string "AaP|". This string would mean
that UpperCase performed an aggressive play (raise), the opponent followed up
with another aggressive play (re-raise) and UpperCase ends the current stage with
a passive play (call).

By looking at betting patterns it is possible to give an approximation of the pot
size of the hand. Obviously, the size of the pot of a hand with mostly checks and
calls, which are passive plays, will be smaller than the size of the pot in a hand
with mostly aggressive plays like bets and raises. Two hands with similar betting
patterns can therefore be assumed to have approximately the same pot size.

The <Hand Type>-section represents the type of hand the player holds in the cur-
rent game-state. In the pre-flop stage, the value of <Hand Type> is one of the
169 possible hole card hand-classes (see 2.1), for example ’AA’, which means two
aces.

In post-flop stages, the value of this section is two digits describing the best 5-card
hand the player can make in the current situation:
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• The value of the first digit represents one of nine possible classes of 5-card
hands (see table 9.2).

• The second digit is the most significant tie-breaking value of the hand class
(see table 9.3). This is a face with thirteen different possible values converted
to an integer.

We do integer division by three on the tie-breaking value, reducing the number of
possible values for this digit to five (see table 9.4). This reduces the number of
possible values of the <Hand Type>-section from 9 · 13 = 117 to 9 · 5 = 45 for post-
flop stages. This is motivated by the need to counteract a natural bias in training
data. Since several poker hands never reach the final showdown stage, there will be
less cases in the case-base for the later stages. Decreasing the number of possible
values of the <Hand Type>-section for post-flop stages increases average number of
retrieved cases in these stages.

Value Hand Class
0 High-Card
1 Pair
2 Two Pairs
3 Three of a kind
4 Straight
5 Flush
6 Full House
7 Four of a kind
8 Straight Flush

Table 9.2: Values for different 5-card hands.

Hand Class Most significant tie-breaking value
High-Card Face of the highest card.

Pair Face of the pair.
Two Pairs Face of the highest pair.

Three of a kind Face of the three cards of same kind.
Straight Face of the highest card
Flush Face of the highest card.

Full House Face of the three cards of the same kind.
Four of a kind Face of the four cards of the same kind.
Straight Flush Face of the highest card.

Table 9.3: Most significant tie-breaking value for the different 5-card hand classes.
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Face Face value Value after division
Two 0

0Three 1
Four 2
Five 3

1Six 4
Seven 5
Eight 6

2Nine 7
Ten 8
Jack 9

3Queen 10
King 11
Ace 12 4

Table 9.4: Conversion of face-values.

Some examples of situation-keys:

• /76s
The hand is in the pre-flop stage. The player’s holecards are a seven and a six
of the same suit ("s" represents suited). No actions have been performed yet.

• a/AK
The hand is in the pre-flop stage and the player is holding an ace and a king
of different suits. He is responding to an aggressive play by the opponent.

• pAp|/03
The hand is in the flop stage and the best hand the player can make is a
high-card hand with a jack, queen or king as the high-card. The "pAp|" tells
us that the actions in the pre-flop stage were "opponent check", "player raise"
and "opponent call".

• aAaP|Av/34
The hand is in the flop stage and the player has a hand of three aces. The
player is responding to a very aggressive re-raise by the opponent. The actions
in the pre-flop-stage were "opponent raise", "player raise", "opponent raise" and
"player call".

• aP|PaP|/10
The hand is in the turn stage. The player has a pair of either twos, threes or
fours. The actions in the pre-flop stage were "opponent raise", "player call" and
the actions in the the flop stage were "player check", "opponent raise", "player
call"
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9.3.3 Similarity

A QBR-module performs direct matching of both index-features of the case, which
means that the similarity-function of a QBR-module is a binary function. Either
the case is a complete match or not. However, similarity between cases is captured
by the format of the situation-key. We have designed the situation-key format so
that different game states will be described by the same situation key when they
share some important properties, as shown below:

• Betting Pattern
The <Betting Pattern>-section ensures that the following common properties
are matched:

– Stage

– Table Position

– Approximate Pot Size

– Previous Action-Types

• Hand Type
The <Hand Type>-section ensures that the following common properties are
matched:

– Hole Card Class (Pre-flop)

– Approximate 5-Card Hand (Post-flop)

9.3.4 QBR Retrieval

Like a regular CBR-system, retrieving cases from the case-base is the first step
in the process of making a decision. At runtime, all situations are loaded into
memory. Situations are divided into different collections according to their case-
base-id index-feature, which tells which case-base it belongs to. Each QBR-module
is associated with a collection of situations. A QBR case-base is basically a key-value
store with situation-keys mapping situations. This design allows efficient retrieval
of situations.
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Figure 9.6: QBR retrieve and reuse process.

During retrieval, UpperCase converts the current game-state into a situation-key
(explained in section 9.3.2.2) that is used to retrieve solutions from the associated
collection. The retrieved solutions are viewed as a selection of cases, all sharing
the same index-features which describes the current situation. This is illustrated
in figure 9.6. Here we see that the situation-key is used to look up a collection
of solutions in the associated case-base of the QBR-module (QBR-module #2 is
associated with case-base #2). The retrieved cases (or solutions) are then passed
on as input to the QBR reuse process.

9.3.5 QBR Reuse

As explained in section 9.3.4 above, the retrieve process extracts all cases sharing a
situation. In the reuse process of QBR, the cases are grouped based on their action-
type feature (see 9.3.2). This results in an aggregated QBR solution where the
average quality of each action-type is calculated. Then the action-type of the group
with the highest average quality is selected and becomes the chosen decision.
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Figure 9.7: Example of an aggregated QBR solution.

Figure 9.7 shows an example of an aggregated QBR solution. Here we can see that
the action-type very aggressive has the highest average quality and therefore will be
reused in this example.

We call this a best average quality reuse policy. The quality of each solution is
determined in the revise process by using decision quality evaluation. This is de-
scribed in detail in section 9.4. Since quality determines which solutions that are
reused, the decision quality evaluation has a large impact on the performance of the
QBR-module.

9.3.6 QBR Training - Revise & Retain

The training of a QBR-module is performed in a two-phased process. In the first
phase, a hand is simulated in the UniPoker simulator against a designated opponent.
In the second phase, the results of the simulated hand is used to produce a collection
of cases, that possibly will be revised and retained in a case-base. This process is
repeated for a desired amount of time or until the case-base contains a desired
amount of cases. The phases are explained in the sections below and can be viewed
graphically in figure 9.8.
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Figure 9.8: Training UpperCase.

9.3.6.1 Hand Simulation

How the hand plays out is controlled by an Hand Setup Strategy. This strategy can
decide which cards should be dealt to the players in the different stages. This is
important because it affects which cases that are created to later be revised and
retained. Currently we have the following two Hand Setup Strategies:

• Random
Hands are executed in a random manner, like a regular poker game.

• Hand-Class Permutation
This strategy iterates through the 2-permutations of the 169 different possible
hand-classes (see section 2.1) and deals an example hand to the players. In
other words, the players receive samples of every possible hand-class and plays
this hand-class against every other possible hand-class. After hole-cards have
been dealt, the rest of the hand is executed in a normal, random manner.

Actions are selected according to an Action Selection Strategy. In the same way as
the Hand Setup Strategy, this strategy is important because it affects which cases
are produced by the simulation. For example, an Action Selection Strategy that
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never raises can be a bad idea, since no situations with raises will then be evaluated
and the system will have no information on the effect of such actions. Currently we
have two Action Selection Strategies:

• Random
Actions are chosen in a random manner.

• Poker Agent
A poker agent chooses the action.

Both the Hand Setup Strategy and the Action Selection Strategy should try to fulfill
the goal of producing a good distribution of cases that maximizes the coverage of
possible situations. We are currently using the random strategy for both hand-setup
and action-selection since this naturally gives a good distribution.

9.3.6.2 Hand Evaluation

In the Hand Evaluation-phase, the hand is converted to a set of cases for every
action the player performed. Each case is revised by performing a Decision Quality
Evaluation on the action. This results in a value describing the quality of the action
in the current situation. How the evaluation is performed is explained in detail in
section 9.4. The value is assigned to the case and then the case is retained in the
case-base.

When a situation has occurred more than a given limit number of times, it is not
evaluated or stored. Currently, we have a limit of 200 cases for each situation. This
is done for training-efficiency reasons since revise and retain are time-consuming
processes. This also counteracts a natural bias in poker hand history. There are
both more different late-stage situations than different early-stage situations and
also a lower frequency of late-stage situations due to that some hands are folded
before late stages. After a satisfying number of cases in the given situation have
been produced, additional cases are discarded. Early in the training phase, every
case will be revised and retained, but in the end only infrequently experienced cases
are revised and retained.

9.4 Decision Quality Evaluation

The variance introduced by the stochastic behavior of poker affects the outcome of
decisions. Like discussed in section 3.3.1, this results in problems when evaluating
the quality of a given decision in poker. Bad decisions can lead to a good final
outcome if the player is lucky, and vice versa. Luck affects decision evaluation in
traditional evaluation methods like using the profit as the basis for evaluation. Our
decision quality evaluation techniques attempt to determine the quality of decisions
independent of any luck. This can potentially lead to a stronger case-base in which
only good decisions are actually reused by UpperCase.
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In [37], Rubin andWatson investigate how different reuse policies affect performance.
We have conducted a similar investigation of reuse policies using methods of perfect
information hindsight analysis to evaluate decisions. These methods require hand
history with perfect information of the game-states, which essentially means that we
know our opponent’s cards. As a consequence, these methods cannot be used during
regular play or to analyze regular hand-history. The design and implementation of
the Profit Evaluator, AIVAT Evaluator and Equity Evaluator are presented in the
following sections. The results of testing the different evaluation techniques can be
found in section 11.1.

9.4.1 Profit Evaluator

The Profit Evaluator (PE) is a simple reference-implementation of aQuality Decision
Evaluator, similar to the best outcome reuse policy in Rubin and Watson’s study.
Every action in the same hand receives the same quality-score, which is the player’s
total profit of this hand (money won or lost). This evaluation technique can be used
as a comparison to the other two approaches to see if they are able to improve the
performance or not.

9.4.2 AIVAT Evaluator

We have created Another Ignorant Value Assessment Tool (AIVAT), which is our
implementation of the DIVAT specification described in chapter 5.

We now use the motivational example introduced in section 5.1 to show how the
analysis of Tom’s performance is evaluated. We have looked at Billings and Kan’s
paper [12] and used this as a reference for the format and presentation of the anal-
ysis. As we recall, two players, Tom and Lisa, are playing no-limit Texas Hold’em,
and Lisa is the dealer of the given hand. The equity calculations shown in the fol-
lowing tables are based on Tom’s cards and the AIVAT difference represents Tom’s
performance compared to how two AIVAT policy players would play the same exact
hand. The AIVAT difference is based on the difference between the actual net gain
and the AIVAT baseline net gain (see section 5.2). The actual net gain represents
Tom’s net gain in each play, while the baseline net gain represents the net gain that
a player following the DIVAT policies would get in the same play.

Tables 9.5, 9.6, 9.7 and 9.8 show the calculations done for each stage of the example
hand.

Tom: A♦, 10♦ Lisa: 8♣, 5♥

Pre-flop:

On the pre-flop, Tom decided to check after Lisa called the big blind. This check
led to less money being invested in the pot by both players compared to the AIVAT
baseline. In this stage, Tom had the best hand with an AIE of 0.6710, meaning that
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Board:
Pot size before betting: 0

IHR 7cHR EHR
Tom: A♦, 10♦ 0.9453 0.6709 0.9453
Lisa: 8♣, 5♥ 0.1592 0.4139 0.4139
AIE = 0.6710
AIVAT baseline = sLcRc
Actual sequence = sLcK
Actual net gain = 0.6840
Baseline net gain = 1.3680
AIVAT difference = -0.6840

Table 9.5: Pre-flop analysis

Board: A♠, 4♥, 7♠
Pot size before betting: 4

IHR 7cHR EHR
Tom: A♦, 10♦ 0.9491 0.8215 0.9491
Lisa: 8♣, 5♥ 0.1036 0.3432 0.2234
AIE = 0.7970
AIVAT baseline = Bf
Actual sequence = BrRc
Actual net gain = 4.7520
Baseline net gain = 2.0000
AIVAT difference = +2.7520

Table 9.6: Flop analysis

he was entitled to a larger share of the pot. Tom’s decision to check resulted in a
negative AIVAT difference.

Flop: A♠, 4♥, 7♠

On the flop, Lisa tried to bluff Tom into folding, but Tom decided to re-raise and
Lisa’s plan backfired. The actual betting sequence resulted in a large pot investment.
The AIVAT baseline shows that Lisa should have folded her hand after Tom’s initial
bet. The baseline net gain represents the amount that Tom would have won if Lisa
folded (pot size - invested). The actual net gain is higher than the baseline net gain
which led to a AIVAT difference of +2.7520.

Turn: A♠, 4♥, 7♠, 10♣

On the turn, Tom decided to check and Lisa answered with a bet. Tom knew that
his hand was strong so he decided to re-raise the bet. Lisa finally decided to call this
re-raise in hope of a lucky draw on the river. The actual betting sequence resulted in
a larger pot investment than the AIVAT baseline, and again the AIVAT difference
is positive.

River: A♠, 4♥, 7♠, 10♣, 6♦
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Board: A♠, 4♥, 7♠, 10♣
Pot size before betting: 16

IHR 7cHR EHR
Tom: A♦, 10♦ 0.9903 0.9410 0.9903
Lisa: 8♣, 5♥ 0.1082 0.2303 0.2303
AIE = 0.9091
AIVAT baseline = Bc
Actual sequence = KbRc
Actual net gain = 9.8184
Baseline net gain = 8.1820
AIVAT difference = +1.6364

Table 9.7: Turn analysis

Board: A♠, 4♥, 7♠, 10♣, 6♦
Pot size before betting: 24

IHR 7cHR EHR
Tom: A♦, 10♦ 0.9383 0.9383 0.9383
Lisa: 8♣, 5♥ 0.9955 0.9955 0.9955
AIE = 0.0000
AIVAT baseline = BrC
Actual sequence = BrC
Actual net gain = -16.0000
Baseline net gain = -16.0000
AIVAT difference = 0.0000

Table 9.8: River analysis

The river card was a lucky card for Lisa and she knew that her hand was strong
and correctly raised Tom’s initial bet. As Tom became unsure of whether Lisa
actually had a strong hand or was just bluffing, he decided to call. This betting
sequence matched the AIVAT baseline and therefore resulted in an AIVAT difference
of 0.

By looking back at this played hand with the AIVAT scores for each stage, we can
see that Tom actually played reasonably well considering the cards that were dealt.
The pre-flop AIVAT difference was the only negative score that was given, and this
was the result of Tom’s decision to check instead of raising after Lisa’s big blind
call. It is difficult to say what the outcome would be if Tom instead decided to
raise. Perhaps Lisa would then choose to fold her weak hand and the round would
be over. The choice of checking instead of placing a bet can often be justified by a
strategy of not giving away information about a hand, pretending that your hand is
weaker than it is, or not wanting to scare the opponent into folding when there is a
potential for bigger winnings. However, the fact that the AIVAT baseline resulted
in a larger pot investment than the actual betting sequence led to a negative score
for this play.
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The flop and turn plays both resulted in positive scores. Tom had the strongest
hand and he was able to increase pot investment compared to the AIVAT baseline.
For the player with the strongest hand it is best to attempt to increase the pot size,
as a larger pot means larger winnings.

The final and most interesting part of this analysis is the river stage. Up until the
river, Tom had the strongest hand and both players had invested heavily in the
pot. When Lisa gets the lucky straight on the last card, Tom’s strong hand is no
longer the strongest. Tom’s decision to bet-call is the same as the one given by the
bet-for-value tactic shown in the AIVAT baseline. Even though Tom loses the hand,
the AIVAT score given on the river is still not negative. This reflects the disregard
for luck, and Tom is therefore not punished for being unlucky.

If we look at the whole hand in total, Tom would get a total score of:

−0.6840 + 2.7520 + 1.6364 + 0 = +3.7044

This means that he played the hand well. The fact that he finally lost is irrelevant.
If the score from each stage of the hand is to be stored in a case base, then the
decisions made on the flop, turn and river would be considered good decisions.

This analysis tool has the potential of providing a more rational evaluation of de-
cisions that are not as influenced by luck. If we were to use the final outcome of a
played hand as the basis for our decision making, the example hand would give a
score of -16, which is how much Tom lost. Instead we now have a score of +3.7044
in total (or 0 if we look at the river stage alone). This score is more reasonable con-
sidering how Tom played. A better decision evaluation score can assist in providing
a stronger case-base for our CBR approach, where evaluations are not influenced by
luck and good decisions are reused.

9.4.3 Equity Evaluator

The Equity Evaluator (EE) is our own approach to perfect information hindsight
analysis. The idea is to investigate how one decision changes the player’s equity
of the pot related to how big investment the action represents. In other words, it
determines if the result of performing the action is more valuable than the price of
the action. The quality evaluation of the Equity Evaluator can be defined as:

DecisionQuality = PEAA− PEBA− Investment

Investment is the amount of money committed to the pot by the player’s action.
PEBA (Pot Equity Before Action) is computed by multiplying the current all-in
equity, or AIE (see section 5.2), with the current pot size. Note that the current
pot size excludes the most recent raise in the same hand, if any. We assume no
ownership of the additional money contributed by this raise. Computing Pot Equity
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After Action (PEAA) is performed in a similar fashion. However, additional care is
taken if the opponent is responding to the player’s chosen action. If the response
is a fold, the player assumes complete ownership of the pot. Therefore, PEAA will
be the value of the pot (which includes the player’s investment). If the response is
a call, the player is assumed to have partial ownership of the money contributed by
this call. In this case, the amount required for the call is added to the pot (which
the player has its percentage-based ownership of). In the case of the opponent
responding with a raise, we still add the amount required for a call to the pot as
before, but the evaluation score is then adjusted with a special offset to represent
how the opponent’s raise affects the player’s ownership of the pot. This factor is
defined as:

Score Offset = 2 · (AIE− 0.5) · Raise

Raise is the opponent’s raise, excluding the amount required to make a call. Note
that the value of score offset ranges from a positive value to a negative value de-
pending on the all-in equity. The reasoning behind this offset is to award actions
that make the opponent put more money in the pot when the player is winning and
penalize actions where a winning opponent is undermining the player’s ownership
of the pot by raising.

If the decision made by UpperCase is to fold, the equity evaluation score will be
set to zero for this decision. This means that the fold decision will often end up
with the highest evaluation score in situations where folding is reasonable. This is
because the other decisions (call, bet/raise) lead to investing more money in a pot
with low equity, which results in a negative equity evaluation score.

9.4.4 Comparison By Example

We now present an example of how the three different decision quality evaluators
work. We use the same motivating example as the one first introduced in section
5.1 and used again in the presentation of AIVAT.

One thing to observe is the difference in evaluation granularity between the different
evaluators. The Profit Evaluator does not evaluate the different actions within the
same hand individually. Since Tom ends up loosing 16$, all actions receive a -
16.0 evaluation. AIVAT does not evaluate different actions within the same stage
differently. This is because the comparison of the player’s performance and the
AIVAT baseline has to include the whole stage. We now look at Tom’s actions to
see how AIVAT and EE works differently.

Again, consider the two players, Tom and Lisa, in a regular game of no-limit Texas
Hold’em, where we are evaluating Tom’s actions. Lisa is the dealer, the small blind
is 1$ and the big blind 2$. Tom is given the hole cards A♦, 10♦ (ace of diamonds
and 10 of diamonds), while Lisa is given 8♣, 5♥ (8 of clubs and five of hearts).
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Pre-flop:

Tom’s first action is checking after Lisa called the big blind. EE gives a neutral
evaluation because Tom’s actions make no change to his equity of the pot. AIVAT,
on the other hand, gives a negative evaluation because the baseline received better
results with calling instead of checking.

Flop: A♠, 4♥, 7♠

On the flop, Tom bets his strong hand, gets re-raised by a bluffing Lisa, re-raises
her again and is answered by a call. Since he has a stronger hand, the increase of
pot size is beneficial. Both AIVAT and EE assign high scores to the actions of this
stage. EE does so because the actions increased Tom’s pot equity more than the
cost of performing them. AIVAT gives a high score because Tom did better against
Lisa in this stage than the DIVAT-player was able to against the DIVAT-opponent
during simulation.

Turn: A♠, 4♥, 7♠, 10♣

On the turn, Tom checks first, then re-raises Lisa’s bet, which she then responds to
with another call. Again, the increase of pot size is desirable, and therefore leads to
good scores. However, as explained above, AIVAT is not able to separate the two
actions. This results in both actions receiving equal scores. EE recognizes that the
main reason for the increase of Tom’s ownership of the pot is caused by his re-raise.
This action therefore receives a significantly higher score.

River: A♠, 4♥, 7♠, 10♣, 6♦

In the river stage, Tom calls Lisa’s bet. At this moment, Lisa has the best hand and
will win a showdown. Therefore the call is a direct loss of money. This is reflected in
the negative score given by EE. AIVAT does not punish this action with a negative
score because it is identical to the baseline.

Stage Action Profit Evaluator AIVAT Evaluator Equity Evaluator
Preflop Check -16.0 -0.69 0.0
Flop Raise (2) -16.0 2.38 2.13

Raise (4) -16.0 2.38 2.38
Turn Check -16.0 1.64 1.49

Raise (4) -16.0 1.64 3.27
River Raise (2) -16.0 0.0 -2.0

Call (2) -16.0 0.0 -2.0

Table 9.9: Output from PE, AIVAT and EE in the motivational example.

Table 9.9 shows the results after evaluating the motivational example for all three
evaluators. As we can see, the difference in evaluation granularity results in the
profit evaluator giving the same score to all decisions within the same hand. AIVAT
separates between each stage of the hand, while the equity evaluator gives a score
to each separate decision. Overall, the AIVAT and equity evaluators are able to
capture more information about the played hand and provide a reasonable evaluation
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of the decisions. Seeing as Tom actually played fairly well with his strong hand,
this not reflected in the profit evaluation score of -16.0. This example suggests
that the AIVAT and equity evaluation techniques can be helpful when evaluating
poker decisions for reuse in a CBR system. We have tested the performance of
the difference decision evaluators and the results are presented in section 11.1 and
discussed in section 12.1.

9.5 EQ

EQ is the module of UpperCase responsible for producing a static equilibrium strat-
egy. The objective of EQ is to provide a strategy that performs relatively well
against most opponents. This will be the baseline strategy of the system, which is
dominating decision-making when there is none or little knowledge about the current
opponent. EQ could be employed as an independent poker agent.

Figure 9.9: EQ

EQ is simply one single QBR-module (see figure 9.9). As explained in section 9.3.5,
the result of the reuse process is an aggregation of solutions where the solutions are
grouped after their action-type. This is the output of EQ, which will be processed
by EX.

Training is also performed in the same manner as explained in section 9.3.6. How-
ever, since we want to produce a solid strategy it is important that we select training-
opponents with care. A set of well-performing poker agents could be selected to
produce a general baseline strategy, or we could train specifically against a single
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opponent to create a more specialized baseline strategy. In most cases we want a
general baseline strategy, and let EX adapt this to the specific opponent.

9.6 EX

EX is the module of UpperCase responsible for adjusting the equilibrium strategy
produced by EQ in order to exploit the current opponent. The motivation behind
doing so is that increased performance can be achieved by exploiting weaknesses in
the opponent’s strategy and eliminating weaknesses in UpperCase’s baseline strat-
egy.

Figure 9.10: EX

Adaptation is performed by classifying the opponent among several pre-defined
opponent-types (explained in section 9.6.1) and adjusting the baseline strategy ac-
cordingly. The classification is based on available knowledge about the opponent,
which is extended during play (explained in section 9.6.3.1). EX employs several
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QBR-modules, as illustrated in figure 9.10, each representing a specific opponent-
type. When EX is requested to make a decision, one of these QBR-modules will be
activated.The input from EQ and the decision produced by this QBR-module are
both used to make the final decision.

9.6.1 Known Opponent-Types

These modules have been trained to perform well against such opponents. When the
current opponent has been classified as one of the opponent-types, the associated
QBR-module is activated and used to make a decision in the current game-state. EX
is trained against a set of poker agents. For each agent provided, a QBR-module is
created and trained against this agent as described in section 9.3.6. When training
is completed, all the poker agents will represent known opponent-types of EX. Each
QBR-module has developed strategies for playing well against strategies similar to
the strategy of poker agent it was trained against. The strategies of the provided
set of opponents determine which strategies EX is able to recognize and adapt to.
These will be the known opponent-types of EX. We have experimented with different
sets of opponents, but by default we use the following four poker agents, inspired
by different playing-styles described by the professional poker player Phil Hellmuth
in [16]:

• Loose-Aggressive
Players with a loose-aggressive strategy play a large number of hands, but
in an aggressive way. The high number of hands played means they will be
playing with weaker holdings on average. They may also often bluff. A player
with this strategy can be referred to as a jackal.

• Tight-Aggressive
Players with a tight-aggressive strategy play a small number of hands, but in
an aggressive way. Because these players play fewer hands, they will often have
stronger holdings on average when making plays. A player with this strategy
can be referred to as a lion.

• Loose-Passive
Players with a loose-passive strategy calls frequently. Consequently, bluffing
this type of player is rarely a good idea. A player with this strategy can be
referred to as an elephant or a calling station.

• Tight-Passive
Players with a tight-passive strategy will play a small number of hands, but
in a passive way. A player with this strategy can be referred to as a mouse.

We have implemented these playing-styles as poker agents using UniPoker. These
agents use the concept of hand strength (see 2.1) together with different fixed thresh-
olds to decide which actions to perform. By adjusting the threshold-values we can
adjust how aggressively and frequently these agents play.
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9.6.2 Characterization of Poker Strategies

EX characterizes different poker strategies using a vector of poker metrics called a SV
(Strategy Vector). The metrics are evaluated using regular hand history or imperfect
information hand history (IIHH). It is important to notice that this is different
from the perfect information hand history (PIHH) generated in the training phase.
With IIHH, we do not know the opponent’s cards unless they were displayed in a
showdown. Consequently, the decision quality evaluation tools described in section
9.4 are not applicable for evaluating IIHH. However, the poker metrics contained
in a SV can be computed from IIHH. The format of a SV is presented in figure
9.11.

Figure 9.11: A Strategy Vector (SV).

Choosing the right metrics to put in the strategy-vector is an interesting task. SVs
are used to recognize and differentiate poker strategies, so the set of metrics should
capture important aspects of different poker strategies as well as being usable even
after relatively few hands have been played. Also, the set of metrics should cover
as many situations as possible. E.g., if the set of metrics only describe pre-flop
situations, the classification of post-flop strategy will probably be weak.

We have chosen the following metrics in our SV:

• Voluntarily Put Money In Pot (VPIP)
VPIP characterizes how often a player performs actions that increases the size
of the pot, e.g. calls or bets/raises. It is defined as:

V PIP = # Actions with Cost > 0
# Actions

• Pre-Flop Aggression Factor (PFAF)
PFAF characterizes how often a player plays aggressive in the pre-flop stage.
It is defined as:
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PFRF = # Aggressive Actions on Preflop
# Actions on Preflop

• After Flop Aggression Factor (AFAF)
AFAF characterizes how often a player plays aggressive on the flop and later
stages. It is defined as:

AFRF = # Aggressive Actions Post-Flop
# Actions Post-Flop

• Flop Factor (FF)
FF characterizes how often a player participates in the flop stage. It is defined
as:

FF = # Hands reaching Flop
# Hands

• Showdown Factor (SF)
SF characterizes how often a player participates in the showdown, given that
he participated in the flop. It is defined as:

SF = # Hands reaching Showdown
# Hands reaching Flop

• Showndown Win Factor (SWF)
SWF characterizes how often a player wins the showdown. It is defined as:

SWF = # Showdowns
# Won Showdowns

This set of metrics constitues in our opinion a balanced SV. VPIP, PFAF and FF
cover pre-flop strategy. They give a good impression of the distribution of hands
that the opponent takes into the flop stage as well as how aggressively he plays
those hands. VPIP, AFAF, FF, SF are covering the later stages of the game. On
the flop, turn and river stages it is important to describe how probable it is for the
opponent to stay in the hand. This is described by VPIP and the difference between
FF and SF. In addition, we want to express how aggressively the opponent plays in
these stages using AFAF. In the last stage of the game we are interested in knowing
if the opponent can be expected to have above or below average hand-strength at
showdown. SF and SWF cover these concerns.

As mentioned earlier, one QBR case-base is created for each opponent-type in the
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training phase. In addition, several test-games are executed against each opponent
to produce hand-history from which a SV can be computed. These SVs are then
assigned to the appropriate QBR case-base. One important aspect of the generation
of these SVs is that some metrics may be affected by the player’s actions. E.g., if
the player would always fold, then FF would be close to zero. On the other hand, if
the player would always call, then the FF would probably be close to 100% even if
the opponent is identical in both cases. Therefore, this training is performed using
the baseline strategy produced by EQ in order to achieve the best approximation of
real play.

9.6.3 EX-CBR

As explained in the sections above, EX has a set of strategies to counter known
opponent-types and a way of characterizing different poker strategies. In this section
we present EX-CBR, a CBR-system that reuses the set of strategies in order to
perform adaptation so that the current opponent can be exploited. A case in this
CBR-system is the combination of a known opponent-type and the SV (see figure
9.12) describing this opponent-type. The opponent-type is associated with a QBR-
module able to produce robust strategies against opponents similar to the opponent-
type. The index-features of the case is the metrics of the SV and the solution-feature
is the opponent-type.

Figure 9.12: An EX case.

9.6.3.1 Retrieve - Opponent Classification

During play, EX will compute a SV that characterizes the current opponent’s strat-
egy based on available knowledge about him. The source of knowledge is hand
history from this opponent. This hand history is continuously appended to when
UpperCase plays against this specific opponent. It can also be populated from other
sources, e.g. hand history generated by online poker clients.
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The retrieve process proceeds with calculating the similarity between the current
opponent and known opponent-types by comparing the computed SV against the
SVs of all available cases. We use individual weights for the metics of the SV and
a weighted Euclidean distance as our similarity-function. The similarity-function is
defined as:

s =

√∑N
i=1 wi( ~SV (o,i) − ~SV (qbr,i))2∑N

i=1 wi

A different set of weights are used for each stage of a hand according to how im-
portant the given metric is in that stage. Greater weight causes the differences of a
metric to have a greater impact on the resulting similarity, which means that this
metric becomes more important. Our weights are shown in table 9.10.

Metric Pre-flop Flop Turn River
VPIP 1.0 0.75 0.75 0.75
PFAF 1.0 0.5 0.5 0.5
AFAF 0.5 1.0 1.0 1.0
FF 1.0 1.0 1.0 0.5
SF 0.5 1.0 1.0 1.0

SWF 0.5 0.75 0.75 1.0

Table 9.10: Weights for the different metrics of SVs in different stages.

The result of the retrieve process is the complete collection of cases with computed
similarities to the current case.

9.6.3.2 Reuse - Opponent Adaptation

The reuse process receives the collection of cases and order them after their similarity.
The process then identifies if at least one of the cases is reusable. The QBR-module
associated with the opponent-type of the most similar case is activated and requested
to produce an aggregated QBR-solution to the current game-state. If no matching
QBR-case can be found in this QBR-module, the request is repeated for the next
most similar case until one is found or all opponent-types been checked. If no QBR-
module is able to produce a (QBR) solution, the EX reuse process ends and the
output is the baseline strategy produced by EQ.

If a QBR-solution can be provided, EX calculates the utility of this solution based
on how much knowledge is available about the current opponent. There will be a
varying amount of knowledge about different opponents. When playing against an
unknown opponent, UpperCase will have observed no actions, but after hundred
thousands of played hands there will be many actions to consider. This determines
the utility of the case. More knowledge about the opponent correlates with higher
utility. We use the following formula to calculate utility:
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u = max{0, a− Ta

a
}

a is the number of observed actions. Ta (Action Threshold) is a constant which de-
termines the minimum required amount of observed actions before the case becomes
usable. In the current implementation we use Ta = 500.

The similarity of the selected case is used later in the reuse process, but normalized
after the following function:

‖s‖ = 1− min{Ts, s}
Ts

At the moment adaptation occurs, we have two aggregated QBR solutions. One
from EQ (EQ QBR) and one from the QBR module associated with the selected
case (EX QBR). We calculate a weighted average for each action-type to produce a
weighted EX solution. This process is illustrated in figure 9.13

Figure 9.13: EX solution

As we can see in the figure, the action-type with the highest average quality in the

88



EQ QBR solution is very aggressive. However, the selected action in the solution
provided by EX QBR is no play (fold). With a weight of 0.3 applied to the EQ
QBR solution and a weight of 0.7 applied to the EX QBR solution, the resulting
weighted EX solution selects passive (check/call). This example illustrates how a
baseline strategy can be adapted towards a specific opponent-type.

The weight (w) used in the adaptation is computed using the following formula:

w = ‖s‖ · u

Since both ‖s‖ and u ranges from 0 to 1, the resulting w is also a number between
0 and 1.

9.6.4 Adaptation Rationale

In this section we demonstrate the effects of the adaptation performed by EX, using
an example illustrated in figures 9.14 and 9.15. In these figures, different strategies
are shown as circles in a two-dimensional vector space. The actual strategy of
the current opponent is represented by the red circle. Strategies of EX’s known
opponents is represented by green circles, while the baseline strategy is represented
by a blue circle. The adapted strategy is represented with a black circle.

In both illustrations, EX has been able to classify the opponent as one of its known
opponent-types and this match is shown with a line between the actual opponent
strategy and the matched strategy. Utility is represented by the thickness of this
line and similarity by the length of this line. A thicker line means higher utility
and a shorter line means higher similarity. The resulting strategy will be somewhere
along the line between the baseline strategy, and the matched strategy, shown with
a dotted line in the illustrations.

In this example, the strategy is adapted towards Strategy A. This strategy is se-
lected because it is the most similar strategy to the opponent’s strategy. In figure
9.14 the utility is low due to weak knowledge about the opponent. Even though a
relatively similar strategy has been matched, less adaptation is performed due to
low utility.
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Figure 9.14: Lesser Adaptation

In figure 9.15, the strategy is again adapted towards Strategy A. However, this time
the utility is greater since more knowledge about the opponent has been acquired.
As a result, the adapted strategy is now closer to Strategy A, which also makes it
closer to the actual opponent strategy. The result is a strategy that is better in
counteracting the opponent.

Figure 9.15: Greater Adaptation
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In figure 9.15, the strategy is adapted towards the same type, but this time with
higher confidence. This can be the same game as in figure 9.14, but at a later stage
where more knowledge about the opponent increases CC. As a result, the adapted
strategy is now moved further against ’Strategy A’, making it closer to the actual
strategy. The resulting strategy is now a more equal mix of ’Strategy A’ and the
baseline strategy.

9.7 System Summary

The UpperCase poker agent is a fairly complex agent that applies different CBR-
systems to make decisions in poker. The two main components; EQ and EX, both
use the underlying QBR-module for decision making. The concept of having a
baseline strategy in addition to an adaptive strategy is illustrated in figure 9.16
which shows a detailed view of the system (same figure as in section 9.1).

Figure 9.16: System overview of the UpperCase poker agent.
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As we can see from this illustration, the EQ-system uses one single QBR case-base
to create a static baseline strategy. UpperCase is not an expert-imitation agent that
reuses the decisions made by other poker agents to imitate their behavior. Instead it
creates its own case-base by training against appropriate opponents. Perfect infor-
mation hand history is used during this training phase. This provides the possibility
of applying perfect information hindsight analysis to assess reasonable evaluations of
the decisions made. A decision quality evaluation is applied to every decision made
during training. Each case is given a quality score before the case is retained in the
case-base. In the reuse process, the decision with the best average quality is reused.
This approach provides UpperCase with a sufficiently good baseline strategy that is
used until the opponent’s playing style is recognized.

The decision made by the EQ-system is forwarded to the EX-system. This system
uses multiple QBR-modules in its adaptation process. Each QBR-module represents
one opponent-type and includes a strategy for exploiting this specific opponent.
During play, imperfect information hand history is stored and analyzed by the EX-
system. The goal of the EX-system is to correctly classify the opponent’s playing
style and shift the strategy provided by EQ over to a more exploitive strategy tailored
to the opponent. This provides UpperCase with an adaptive capability.

The output of the UpperCase system is a weighted average of the EQ-solution and
the EX-solution. If the EX-system is sufficiently confident in its opponent classifica-
tion, the EX-solution will be given a higher weight. This results in a strategy that
dynamically adapts during the course of a game. This can increase the performance
of the UpperCase agent by exploiting its opponents, and also prevent UpperCase
from being easily exploited by others considering that it does not completely rely
on a static strategy.

UpperCase
Case-base structure Multiple case-bases and case-base structures.

Training
Uses perfect information hindsight analysis for decision
quality evaluation during training. Also stores cases
during play to improve opponent classification.

Reuse policy Best average quality.

Adaptive capabilities
UpperCase classifies opponents among known
opponent-types in order to perform adaptation.
Different opponents are recognized individually.

Table 9.11: The UpperCase poker agent.

The combination of a static equilibrium strategy provided by the EQ-system and
an exploitive strategy provided by the EX-system, separates UpperCase from other
existing CBR-based poker agents. Table 9.11 presents an overview of the Upper-
Case poker agent using the framework introduced in section 4.2. We can see that
solutions in the case-base are represented by the expected quality of the actions.
Most other CBR poker agents apply a reuse policy based on outcome or on the
decisions made by other agents that they attempt to imitate. The goal of using
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decision quality evaluation is to decrease the effect that luck has on the evaluation
of decisions in poker. A more reasonable evaluation of decisions could result in a
stronger poker agent. The use of perfect information hindsight analysis is an inter-
esting approach. However, perfect information requires a poker simulator that can
provide this information which is not common in many poker clients.
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Chapter 10
UpperCase Web-Interface

We have developed a web-interface that allows us to monitor UpperCase. By looking
into the different case-bases of the system, we can achieve an understanding of the
different decisions made by the system. In this section, the most important parts of
this tool are presented.

10.1 Case-Base List

Figure 10.1 displays an example of the case-base list, which shows a list of the QBR
case-bases in UpperCase. For each case-base in the list, the metrics of the EX
strategy vector (SV) characterizing the case-base is shown. The number of actions
used to compute these metrics are listed as well. We can also see the number of
situations and solutions contained in each case-base. The figure shows the case-bases
after a small amount of training of has been performed. We can see that the SV
metrics describing the EQ case-base are undefined. This is because EX does not
compute a SV for the EQ case-base.

Figure 10.1: The case-base list.
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10.2 Case-Base View

Figure 10.2 shows the case-base view, which displays relevant information about one
single QBR case-base. In this view it is possible to search after situations. A QBR
situation-key is submitted in the search-form, a QBR retrieve process is executed
and the QBR aggregated solution is displayed. By using this function it is possible
to investigate the decisions this QBR case-base will produce in different situations.
In the figure we searched for "/AA" which is the best possible starting hand a player
can have. As we can see from the results, a very aggressive action-type has been
selected in this situation. All the retrieved cases are shown at the bottom of the
page.

Figure 10.2: The case-base view.
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10.3 Player List

Figure 10.3 shows the player list, which displays a list of players that UpperCase has
collected hand history from during play or training. For each player, the SV metrics,
number of hands, number of actions and the total winnings are displayed. The list
shown in the figure is relatively sparse, containing only the opponents UpperCase
faced in the training phase (IDs prefixed with "UpperCase-Training-Opponent"),
UpperCase itself (the remaining entries prefixed with "UpperCase") as well as one
single opponent faced in real play ("Opponent (SimpleRuleAgent)").

Figure 10.3: The player list.
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10.4 Player View

Figure 10.4 shows the player view, which displays the EX opponent classification
ordered by similarity. In the figure we see that the opponent has been classified as
most similar to the "TightPassive" EX opponent type. We can proceed to see all
hands, the most profitable hands and the least profitable hands from UpperCase’s
point of view against this player.

Figure 10.4: The player view.
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10.5 Hand List

Figure 10.5 shows the hand list, which displays as list of hands in which a chosen
player has participated. The list shows the hand-id, size of small-blind, the last
stage, the final pot size as well as the player’s profit in the hand.

Figure 10.5: The hand list.
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10.6 Hand View

Figure 10.6 shows the hand view, which displays information about a hand in which
a chosen player has participated. Key information such as hand-id, final pot size,
small-blind, last stage reached and final community cards are displayed. The view
also contains a list of actions in the hand, showing the QBR situation-key, action-
type, the pot size of the before the action, the amount required for a check/call and
the investment caused by the action. In the bottom of the page, the actual output
of the UniPoker simulation is displayed. By reading the output, we can identify the
hole cards of each player as well as the winner of the hand.

Figure 10.6: The hand view.
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Chapter 11
Experimental Results

In this chapter we present the results from testing UpperCase. Considering that
UpperCase includes both a baseline strategy and an adaptive strategy we have per-
formed different types of tests to measure the performance of the agent. There are
two main test categories; EQ-tests and EX-tests. The EQ-tests measure the perfor-
mance of the baseline EQ-strategy in UpperCase, while the EX-tests measure the
adaptive part of UpperCase in which the agent attempts to classify the opponent’s
playing style and exploit it.

Each separate test consists of playing poker games of 1,000,000 hands using the
technique of Duplicate Poker [25]. As discussed in section 3.3.1, the large number
of played hands helps reduce the variance in order to more accurately measure the
performance. The blinds are set to $50 small blind and $100 big blind.

The default-strategy used in all test is always fold (no case-match leads to a fold).
This can be considered a fairly weak default-strategy compared to another simple
strategy like always call. The reason for choosing the always fold default-strategy
during testing is that we want to the minimize the positive effect that the default-
strategy has on the results. If the default-strategy is strong then this might influence
the performance of the agent in a positive way and interfere with our investigation
of the different evaluation techniques and adaptive strategies. By folding in every
situation where a matching case cannot be found, an equal basis for testing the
different parts of the system can be achieved.

The results of the EQ-tests and EX-tests are presented in sections 11.1 and 11.2
respectively. A discussion of the results can be found in chapter 12.

11.1 EQ - Baseline Strategy

In this section we present the tests measuring EQ’s ability to develop solid baseline
strategies. As explained in section 9.4, EQ evaluates every action performed by the
agent during the training phase. The overall reuse-policy is highly affected by the
evaluations given in the different decision quality evaluation techniques. We have
therefore tested the performance of each of the three techniques described in section
9.4. The three evaluators are summarized in the following list:

101



• Profit
This approach uses a best-outcome reuse policy. This means that UpperCase
will reuse the decision that has given the highest average profit from all match-
ing cases. Outcome has been used as the basis for decision evaluation in other
existing CBR poker agents and is included as a benchmark for measuring the
performance of the other two reuse policies.

• AIVAT
This is an imitation of the decision evaluation tool described in chapter 5.
Every decision is given an AIVAT score, where a higher score means better
quality. A best-quality reuse policy is applied. This means that when Up-
perCase is requested to act, all matching cases from the EQ case-base are
retrieved and the decision with the highest average AIVAT score is reused.

• Equity
This decision evaluation tool is described in section 9.4.3. Each decision made
during training has been given an equity score based on the quality of the
decision. A best-quality reuse policy is applied here as well. The decision that
has given the highest average score from all matching cases will be reused.

11.1.1 Test Structure EQ

To test all three decision quality evaluators we have performed 12 tests in total.
There are two different agents, RaiseAgent and AdvancedRuleAgent both included
in the UniPoker framework, that have been used in the training phase and during
regular play. RaiseAgent is an agent made for testing purposes that always raises
the current size of the pot, while AdvancedRuleAgent is the strongest agent cur-
rently included in the UniPoker framework. Each decision quality evaluator (profit,
AIVAT, equity) has been tested in the following manner:

1. Train against R, play against R

2. Train against R, play against A

3. Train against A, play against R

4. Train against A, play against A

R refers to RaiseAgent.
A refers to AdvancedRuleAgent.

In these tests we investigate how performance is affected if EQ has been trained
against its opponent or not. In test-group 1 and 4, the agent used in training is also
the opponent during actual play. The opposite is found in test-group 2 and 3.

The training phase consists of training 1,000,000 hands, which should be sufficient
to measure the decision evaluators’ abilities to develop decent poker strategies. The
case-base is reset between each test.
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11.1.2 Test Results EQ

This section presents the test results from all EQ-tests. The results are represented
by the UpperCase agent’s win-rate in small blinds per hand (see section 2.5), in
addition to the case-match percentage in parenthesis. For completeness, the simu-
lation graphs from each individual test can be found in appendix C. This section
only presents the results in a brief manner, while a discussion of the results is given
in section 12.1.

11.1.2.1 Profit Evaluation Results

The results from testing EQ using the profit evaluation technique is presented in
table 11.1.

Play against R Play against A
Train against R 9.2021 (99.85%) 0.2290 (58.83%)
Train against A -4.0935 (34.33%) 1.0065 (99.56%)

Table 11.1: Results of the EQ-tests using profit evaluation.

In test 1 we can see that UpperCase is able to play very profitably, winning an
average of 9.2021 sb/h. It is also able to create a winning strategy against Advance-
dRuleAgent, even with a low case-match percentage, as seen in test 2. Test 3 shows
that UpperCase does not play well against RaiseAgent after training against Ad-
vancedRuleAgent. However, when playing against AdvancedRuleAgent, UpperCase
plays well with an average win-rate of 1.0065 sb/h.

11.1.2.2 AIVAT Evaluation Results

The results from testing EQ using the AIVAT evaluation technique is presented in
table 11.2.

Play against R Play against A
Train against R 4.6387 (99.67%) 0.3496 (47.94%)
Train against A -4.1685 (33.90%) 1.1487 (99.67%)

Table 11.2: Results of the EQ-tests using AIVAT evaluation.

Test 1 and 2 show that UpperCase is able to create a winning strategy against
RaiseAgent and AdvancedRuleAgent after training against RaiseAgent. The win-
rate against RaiseAgent is lower than that of the profit evaluator. However, against
AdvancedRuleAgent, the win-rate is higher than with profit evaluation, even though
the case-match percentage is almost 11% lower. Again, in test 3 the performance is
much worse. UpperCase plays very well against AdvancedRuleAgent resulting in a
average win-rate of 1.1487 sb/h.
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11.1.2.3 Equity Evaluation Results

The results from testing EQ using the equity evaluation technique is presented in
table 11.3.

Play against R Play against A
Train against R 5.3951 (99.36%) 0.3051 (59.51%)
Train against A -4.3023 (33.92%) 1.2167 (99.67%)

Table 11.3: Results of the EQ-tests using equity evaluation.

The results of the equity evaluation test resemble that of the other two tests. Upper-
Case is able to create a good strategy against RaiseAgent after training against it.
It does also beat AdvancedRuleAgent after the same training phase with an average
win-rate of 0.3051 sb/h. This is slightly below the AIVAT evaluator, but higher than
with profit evaluation. A high profit can be seen when playing against Advance-
dRuleAgent. The average win-rate of 1.2167 sb/h is the highest of all evaluation
techniques against AdvancedRuleAgent.

11.2 EX - Adaptive Strategy

The goal of the EX-system is to classify the opponent’s playing style and adapt
UpperCase’s strategy towards exploiting the opponent. During play, hand history
is stored in a case-base and analyzed by the EX-system. Different poker metrics are
observed and calculated in order to classify the current opponent-type (explained
in section 9.6.1). As the classification becomes sufficiently reliable, the adapted
strategy should begin to take precedence over the baseline strategy provided by the
EQ-system. In this section we present the results from testing the performance of
the EX-system. What we attempt to identify is the effect that the adaptation has
on the overall performance.

11.2.1 Test Structure EX

In all EX-tests, the EX-system is completely disabled during the first half of the test.
This makes it easier to compare the performance of UpperCase, with or without EX
enabled. As soon as we are halfway through the test, the EX-system is enabled
and UpperCase begins to store new cases in its EX case-base. The EX-system will
then attempt to classify the opponent-type and begin adapting its baseline strategy
towards exploiting the opponent. We have included the simulation graphs to visually
display this difference. The simulation graphs show the total bankroll (amount of
money won or lost in total) on the y-axis and the number of hands played on the
x-axis. If the graph shows an improved win-rate (more positive graph) halfway
through the test, we can assume that the adaptation has worked well and a better
strategy has been applied.
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We have used a weak EQ baseline strategy in order to more easily present the
performance of EX. This means that in the first half of each test, the performance
of UpperCase is expected to be poor. We have trained the EQ-system by playing
150,000 hands of poker, using equity evaluation, against RaiseAgent (we could also
have reused any of the case-bases constructed in the EQ-tests).

We have trained EX by playing 150,000 hands of poker, using equity decision eval-
uation, against each of the four opponent-types described in section 9.6.1. This
provides EX with knowledge on how to exploit these four opponent-types. In test
number 2, UpperCase is specifically trained against the SimpleRuleAgent by playing
150,000 hands. The reason for lowering the number of hands played during training
from 1,000,000 in the EQ-tests to 150,000 in the EX-tests, is that the EX-system
trains against multiple opponent-types and this is more time-consuming. Ideally,
the EX-system should also be trained with 1,000,000 hands (or more) against each
opponent-type, but in this test we shortened the training phase for time-constraint
reasons. However, 150,000 hands is a fairly large number, so the effect of the EX-
system is still evident in all tests.

The different EX-tests are described in the following list:

1. Unknown opponent
In this test, UpperCase plays against an unknown opponent which means
that there is no existing EX case-base for this specific opponent. This means
that EX must classify the opponent’s playing style to one of the existing four
opponent-types in the EX-system and figure out how to best adapt its baseline
strategy towards exploiting this unknown opponent. The unknown opponent
used in this test is the SimpleRuleAgent included in the UniPoker framework.
This agent applies a simple rule-based strategy.

2. Known opponent
In this test, UpperCase has already trained against the opponent during the
EX training phase. This means that an EX case-base already exists for this
specific opponent before the test begins. The test tries to identify if the EX-
system is able to recognize the opponent and adapt its baseline strategy to-
wards the counter-strategy developed during the EX training phase. We have
used SimpleRuleAgent as the opponent in this test as well.

3. Known easily exploitable opponent
In this test, UpperCase plays against an easily exploitable opponent that it
has trained against in the EX training phase. We use a loose-passive opponent
that applies a simple rule-based strategy. This means that UpperCase should
be able to quickly classify the opponent’s playing style and adapt its strategy
towards the counter-strategy developed during the EX training phase.

11.2.2 Test Results EX

The results of the three tests described in section 11.2.1 are given below. All tests
consists of playing 1,000,000 hands of Duplicate Poker. The simulation graph show-
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ing the total bankroll of each player is presented for each test. UpperCase is repre-
sented by a red line in the simulation graphs, while the opponent is represented by
a blue line.

In addition to the simulation graph, a table showing the average win-rate in small
blinds per hand (sb/h) is also presented for each test. This table includes the
sb/h for the first 500,000 played hands (when EX is disabled), and the sb/h for all
hands played from hand number 500,001 until 1,000,000 (when EX is enabled). This
illustrates the change in average win-rate for the two strategies (with and without
EX). The total win-rate for all 1,000,000 played hands is also given in the table.

The number of times a given EX case-base has been used to select an action is
referred to as the activation count. During play, EX attempts to classify the oppo-
nent using a strategy vector (see section 9.6.3.1) and the case-base associated with
the opponent-type with the highest similarity is activated. The activation count
and percentage of all total activations are shown in a table in each of the three
EX-tests.

The following sections present the results from each test while a discussion of the
results is presented in section 12.2.

11.2.2.1 Test 1: Unknown opponent

Figure 11.1 shows the simulation graph resulting from playing against an unknown
opponent. There are two consistent win-rates (both negative) that we can identify
from the figure. The first win-rate shows the performance of UpperCase before EX is
enabled. After 500,000 played, the graph begins to flatten slightly which illustrates
increased performance. This is when EX is enabled and strategy adaption can begin.
This second win-rate is a result of the adjustments made by EX.
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Figure 11.1: Simulation graph of EX-test 1. Against an unknown opponent.

sb/h
EX disabled -4.1333
EX enabled -1.7143
Total -2.9238

Table 11.4: Results from EX-test 1. Against an unknown opponent.

Table 11.4 shows that with EX disabled, UpperCase was losing 4.1333 sb/h on aver-
age. After EX is enabled, UpperCase improves its performance. However, the sb/h
of -1.7143 shows that UpperCase is not playing well enough to beat this unknown
opponent.

Opponent-type Activation count Activation %
Loose-Passive 681,417 99.71%
Tight-Passive 1,083 0.16%
Loose-Aggressive 899 0.13%
Tight-Aggressive 31 ≈ 0%

Table 11.5: EX strategy adaptation against an unknown opponent.

Table 11.5 shows that EX classified SimpleRuleAgent as a loose-passive opponent-
type in 99.71% of all activations.
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11.2.2.2 Test 2: Known opponent

In this test, UpperCase is playing against SimpleRuleAgent which it has already
played against during the training-phase of EX. We can see from the simulation
graph in figure 11.2 that UpperCase is increasing its performance significantly after
EX is enabled. The first win-rate shows a consistent loss, but after EX is enabled a
profitable strategy is applied.

Figure 11.2: Simulation graph of EX-test 2. Against a known opponent.

sb/h
EX disabled -4.1439
EX enabled 0.2150
Total -1.9645

Table 11.6: Results from EX-test 2.

Table 11.4 shows that the win-rate increases to a positive rate after EX is enabled.
This is when EX attempts to recognize the opponent and apply a counter-strategy
provided during training.

108



Opponent-type Activations Activation %
SimpleRuleAgent 675,038 99.86%
Loose-Passive 702 0.10%
Tight-Passive 172 0.03%
Loose-Aggressive 54 ≈ 0%
Tight-Aggressive 14 ≈ 0%

Table 11.7: EX strategy adaptation against a known opponent.

Table 11.7 shows that EX correctly classified SimpleRuleAgent in 99.86% of all
activations.

11.2.2.3 Test 3: Known easily exploitable opponent

From figure 11.3 we see that UpperCase is able to play very profitably against its
opponent after EX is enabled. The resulting counter-strategy from the training
phase proved to be very successful in exploiting the weaknesses of this opponent.
We can see from the simulation graph that UpperCase is able to turn the consistent
loss into a good profit after EX is enabled.

Figure 11.3: Simulation graph of EX-test 3. Against a known easily exploitable
opponent.

Table 11.8 shows that after EX is enabled the average win-rate increases significantly,
going from -1.0046 sb/h to 2.3233 sb/h. After losing consistently the first 500,000
hands, UpperCase is able to play very well the last part of the test, which leads a
total win-rate of 0.6594 over the 1,000,000 hands played.
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sb/h
EX disabled -1.0046
EX enabled 2.3233
Total 0.6594

Table 11.8: Results from EX-test 3.

Opponent-type Activations Activation %
Loose-Passive 720,307 99.71%
Tight-Passive 1,368 0.19%
Loose-Aggressive 648 0.09%
Tight-Aggressive 76 ≈ 0%

Table 11.9: EX strategy adaptation against a known easily exploitable opponent.

Table 11.9 shows that EX correctly classified the opponent as loose-passive in 99.71%
of all activations.
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Chapter 12
Discussion

In this chapter we discuss the test results and performance of the UpperCase poker
agent. Section 12.1 covers the EQ test results and section 12.2 covers the EX test
results.

12.1 Discussion of EQ Test Results

The EQ-system is very important to the overall performance of UpperCase. EQ
provides the strategy used by UpperCase until the opponent’s playing style has
been classified by EX and the adaptive strategy takes over. This means that Upper-
Case depends on a good EQ strategy when playing against different and unknown
opponents. The goal of EQ is to produce an overall acceptable strategy.

One unexpected discovery in the test results displayed in table 12.1 is the results
of test-group 1 (train against R, play against R). In this situation, the use of profit
evaluation resulted in a much higher average win-rate compared to the other two
evaluators. The profit evaluator may be considered a weak decision evaluation tech-
nique, as mentioned in section 3.3.2 and discussed in [37, 41, 45], as its evaluations
are greatly affected by luck. However, this test suggests that when competing against
a weak and static opponent, the profit evaluator can produce good results.

Evaluator Play against R Play against A
Profit Train against R 9.2021 (99.85%) 0.2290 (58.83%)

Train against A -4.0935 (34.33%) 1.0065 (99.56%)
AIVAT Train against R 4.6387 (99.67%) 0.3496 (47.94%)

Train against A -4.1685 (33.90%) 1.1487 (99.67%)
Equity Train against R 5.3951 (99.36%) 0.3051 (59.51%)

Train against A -4.3023 (33.92%) 1.2167 (99.67%)

Table 12.1: Summary of EQ test results.

When we look at the results of test-group 2 and 3, we see that the different evaluators
yield approximately the same results. One important observation is the low case-
match percentage in these tests. When trained against RaiseAgent, the case-base
will contain no cases of the opponent checking or calling. As a result, when playing
against AdvancedRuleAgent the number of matching cases will be very low. A
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similar tendency can be seen in test-group 3, where the case-match percentage is
only approximately 34%. The case-base after training against AdvancedRuleAgent
does not sufficiently cover the extremely aggressive playing style of the RaiseAgent.
In both tests, EQ therefore applies the default-strategy when no match is found,
resulting in the hand being folded. By applying a stronger default-strategy, the
system would most likely be able to achieve better performance in these situations.
This illustrates the importance of using balanced opponents during the training of
EQ to produce an equilibrium baseline strategy that works sufficiently well in a
broad spectrum of situations.

We consider test-group 4 to be most important in the comparison of the different
decision quality evaluators. Our justification of this is based on the assumption
of the AdvancedRuleAgent representing a more normal poker player as opposed
to RaiseAgent. AdvancedRuleAgent is also currently the strongest agent in the
UniPoker framework, besides UpperCase. In this test-group, the results suggest
that the equity evaluator is able to provide the most profitable strategy. However,
the difference between the two methods using perfect information hindsight analysis
(equity and AIVAT) and the profit evaluator is still not as large as expected.

If we compare the results of this test to the results of test-group 1, we see an
improvement to the equity and AIVAT evaluators compared to the profit evaluator.
Test-group 1 and 4 are similar in the sense that UpperCase is trained against the
same opponent as the one used during play, but there is a significant difference in
the quality of the opponents. As suggested above, profit evaluation may work well
against weak opponents, but when facing stronger opposition, the method of perfect
information hindsight analysis becomes more efficient. It would be interesting to see
the difference between the evaluators when tested against even stronger opponents
than the AdvancedRuleAgent.

An important property to observe when comparing different decision evaluators is
their ability to consider both a short-term perspective and a long-term perspective
of the evaluation. The short-term perspective relates to the immediate results of an
action, while the long-term perspective relates to how an action can affect a series
of later situations. A reason for the different performances achieved by the three
evaluators in test-group 4 may be explained in regards to this property. As discussed
in section 9.4.4, the profit evaluator considers the complete hand, AIVAT considers
each stage and the equity evaluator considers each separate decision. In the results,
we see a correlation between shorter perspective and higher performance.

However, in poker sub-optimal decisions can be made in some situations with the
intention of achieving larger gains later in the game. An example of this could be the
tactic of slow-play. Instead of aggressively raising with a strong hand and risking
that the opponent folds, passive play can lead to more money being invested in
the pot by the opponent. In this example, the whole context of the situation must
be taken into account when deciding which decision to make. A decision evaluation
technique that only looks at separate decisions will not be able to address this.

All three evaluation techniques can prove to be useful in creating a good poker
strategy, but the performance of the resulting strategy depends on the opponent used
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during training. Training against a specific opponent can lead to a good strategy
against this opponent, but it might not work as well when competing against other
stronger opponents. It is therefore important to choose the right poker agents to
train against in order to create a case-base with good coverage which can provide a
robust and strong poker strategy.

12.2 Discussion of EX Test Results

EX is responsible for adapting the baseline strategy towards a new strategy that
exploits the recognized opponent-type. EX should be trained against various op-
ponents in order to achieve good coverage of possible opponent-types. The results
from the EX-tests presented in section 11.2 show that the EX-system performed well
overall. Table 12.2 presents a summary of the results from the these tests.

sb/h
Unknown Known Known exploitive

EX disabled -4.1333 -4.1439 -1.0046
EX enabled -1.7143 0.2150 2.3233
Total -2.9238 -1.9645 0.6594

Table 12.2: Summary of EX test results.

All tests show an increased win-rate when EX is enabled compared to when it is
disabled. This suggests that EX is able to successfully adjust the strategy provided
by EQ to increase performance against the current opponent. The EX-system pro-
vides UpperCase with adaptive capabilities that can be very beneficial when facing
new and unknown opponents.

In all tests, the activation of the different EX case-bases seems to be consistent and
accurate. In test 1 (unknown opponent), EX classifies the unknown opponent as the
loose-passive opponent-type in 99.71% of the situations. After a new QBR-module
is added to the EX-system as a result of training against this opponent (test 2), the
classification is correctly switched into selecting this QBR-module in 99.86% of the
situations. This means that EX is able to successfully differentiate the loose-passive
opponent-type from the SimpleRuleAgent opponent-type. An explanation of the
increased win-rate from test 1 to test 2, may be that the selected QBR-module in
test 1 was not trained against a sufficiently similar opponent-type as the one used
in test 2.

However, test 2 and 3 show that by training against an opponent that closely matches
the current opponent, higher performance can be achieved. This suggests that in
order to adapt well to a broad range of opponents, EX must be trained against
strong set of opponents that provide good coverage of different strategies in an
accurate manner. This will also make UpperCase better equipped for competing
against unknown opponents. Additionally, the EX-tests performed in section 11.2
include 150,000 played hands during the training phase. With more training, the
EX-system might be able to further increase the performance.
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12.3 Summary

From what we have seen in the tests performed and presented in chapter 11, Upper-
Case is able to play well against the opponents provided in the UniPoker framework.
The baseline strategy works well and the results from using perfect information hind-
sight analysis in decision quality evaluation suggest that evaluations less influenced
by variance in poker can be beneficial. The EX-system is able to classify opponent-
types and adjust the baseline strategy towards given counter-strategies developed
for exploiting these specific opponents.

We have seen that having one static strategy might work well against one type of
opponent, but it can be a weak strategy against other opponents. This is evident in
the EQ-tests where training against RaiseAgent resulted in a great strategy against
this opponent, but it was not as strong when playing against AdvancedRuleAgent.
However, this was influenced by the low case-match percentage.

Perfect information hindsight analysis is used in when creating the EQ strategy. This
means that it requires a simulation- or training tool that can provide this perfect
information. This can be a drawback considering that not all poker software tools
provide this functionality. This means that the EQ-system cannot be trained against
other strong poker agents unless perfect information hand history is available.

To fully measure and understand the performance of the UpperCase agent we need
to compete against stronger opponents. Close to the submission of this thesis we did
an attempt to test UpperCase against the SartreNL poker agent created by Rubin
and Watson [37]. We were given an executable version of SartreNL and proceeded
with implementing support for the ACPC-protocol in UniPoker. However, with the
limited time available we were unfortunately not able to make the SartreNL agent
work properly in our testing environment. Successfully testing UpperCase against
other stronger agents remains the natural next step in this project.
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Chapter 13
Conclusions and Future Work

In this thesis we have investigated how to create poker agents with adaptive capabil-
ities using case-based reasoning (CBR). Adaptive capabilities allow a poker agent to
dynamically adjust its strategy in order to exploit different opponents. This prop-
erty is considered necessary to achieve optimal performance against various types of
opponents.

In our study of existing CBR-based poker agents, we discovered that a common
approach among such agents is imitation and reuse of decisions made by other
poker agents. This approach has been successfully applied to create strong poker
agents. We also identified a sensitive point in reuse-polices relying on the evaluation
of poker decisions. The properties of poker makes it difficult to accurately evaluate
decisions and this can have a negative effect on such reuse-policies. Investigation
of methods using perfect information hindsight analysis suggests that such methods
can achieve improved accuracy of decision evaluations.

Our main goal in this thesis was to create a new approach to the application of CBR
in poker. This has resulted in the implementation and testing of UpperCase. This
poker agent is built on a principal idea of two CBR-systems, collaborating in the
task of making decisions in the game of poker. One system, named EQ, provides a
static equilibrium strategy while the second system, named EX, adapts to different
opponents in order to exploit their strategies. These two system both employ an
instance-based approach to CBR.

Experimental results have shown that both systems are able to invent strategies able
to beat other poker agents. Our results also show that EX is able to classify different
opponents based on their previous actions and achieve increased performance by
adjusting the strategy accordingly. This means that the principal idea has been
realized successfully.

In order to reach final conclusion about how well the system is able to perform, more
experiments need to be conducted. There are still questions to be answered about
optimal configurations and training of the system. We have demonstrated that the
system is able to win consistently against the strongest agents currently available in
the UniPoker framework. However, it is still unclear how well the system will work
against stronger opposition.

We have also shown how the UniPoker framework can be utilized in the process of
developing and testing an advanced poker agent. During this process, the function-
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ality of the framework has been improved and extended. Overall, the use of the
framework has been beneficial for our work with this thesis.

13.1 Future Work

In this section we present ideas for future work regarding UpperCase and the
UniPoker framework.

13.1.1 Further Testing and Development of UpperCase

UpperCase was implemented and tested in this thesis. However, there are still some
issues left to be researched and experiments to be performed. The following list
presents some of our ideas for future work:

• Additional Testing
Although we have tested UpperCase against the strongest poker agents in
the UniPoker framework, additional testing against even stronger opponents
would be beneficial. Well-known poker agents from the Annual Computer
Poker Competition (ACPC) would be ideal opponents, as this would help us
understand how UpperCase performs in a comparison to the agents we have
studied during this research.

• Improving Situation-keys
The situation-key format of the QBR-module (see 9.3.2.2) captures important
similarities between game-states. However, the chance of improving the best
5-card hand in post-flop stages is not covered by the format. The current
format recognizes the similarity between situations that have approximately
equally strong hands, but fails to differentiate between situations where the
player has different chances of improving it. E.g., a player in the flop stage
with a weak 5-card hand is in a different position depending on if there is a
chance for improving his hand into a flush or a straight. Since the current
format does not cover this property, the system will not treat these situations
differently. Changes made to the situation-key format, addressing this issue,
can improve the strategies produced by the QBR-module.

• Dynamic Adaptation
EX currently considers all available knowledge about an opponent when char-
acterizing his strategy. This means that the characterization is averaged across
all the opponent’s actions experienced by the system. Poker players may how-
ever dynamically change their strategy during play. E.g., a tight player may
suddenly switch and become loose. The average characterization produced by
EX will, in this case, not accurately describe the changes in the opponent’s
strategy. One solution to this problem could be the introduction of dynamic
adaptation. With this approach, EX can treat the most recent actions as more
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important when characterizing the opponent’s strategy, e.g. only consider the
N last actions.

13.1.2 Further Development of the UniPoker Framework

UniPoker can be a useful tool when developing poker agents. However, there is still a
lot that can be done to improve the framework. Here are some of the improvements
we consider being most beneficial to the framework in its current state:

• Review the Meerkat-adapter
UniPoker contains an adapter allowing poker agents implementing the Meerkat-
API to be used with the framework. At the time the adapter was implemented,
we were unable to obtain any documentation of the API. As a consequence,
we have low confidence in the correctness of the implementation. However,
while working on this thesis we received the documentation of the API and
this is now included as part of UniPoker.

• Additional Poker Agents
A motivation for using the UniPoker framework is the ability to test poker
agents against different opponents. There are currently few strong agents
available in the framework and by developing or integrating additional agents
with the framework, it can become more useful to its users.

• Documentation and examples
The API of UniPoker is, in our opinion, intuitive but the framework would
still benefit from more documentation and examples on how it can be used.
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Appendix A
Setting up UniPoker

The following sections present two different ways of using UniPoker. Knowledge
about and access to the following freely available tools is required:

• Mercurial1

• Maven2

• Eclipse3

• Eclipse Maven Integration4

A.1 Setup 1: Externalized development

This setup is recommended if you will be using the features of the framework without
making any changes to it.

1. Setup a new Maven-project in Eclipse.

2. Add the Agora-repository as a repository in your pom:

<repository>
<id>agora</id>
<url>http://repo.agorait.no/content/groups/agoracontext</url>

</repository>

3. Add the framework-module as a dependency in your pom:

1Mercurial is a distributed source-control management tool. It can be downloaded from http:
//mercurial.selenic.com/.

2Maven is a project management and comprehension tool. It can be downloaded from http:
//maven.apache.org/.

3Eclipse is an IDE (Integrated Development Environment). It can be downloaded from http:
//www.eclipse.org/.

4Eclipse Maven Integration is a plugin that adds support for Maven within Eclipse. It can be
installed from the "Eclipse Marketplace" within Eclipse or downloaded from http://www.eclipse.
org/m2e/.
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<dependency>
<groupId>edu.ntnu.unipoker</groupId>
<artifactId>unipoker-framework</artifactId>
<version>1.0</version>
<scope>compile</scope>

</dependency>

4. Add the simulator-module as a dependency in your pom:

<dependency>
<groupId>edu.ntnu.unipoker</groupId>
<artifactId>unipoker-simulation</artifactId>
<version>1.0</version>
<scope>compile</scope>

</dependency>

5. Start implementing your poker agent by subclassing ’edu.ntnu.unipoker.fw.PokerAgent’.

public class CallAgent implements PlayerAgent{

public double makePlay(Game game,PokerGameRunner gameRunner,
Player player, Act theAct){
return 0;

}

}

Figure A.1: Example of a simple agent that always plays passively, e.g. check or
call.

A.2 Setup 2: Integrated development

This setup involves checking out the complete source-code for UniPoker so that it
can be viewed, modified or extended more easily.

1. Acuire a copy of the source for the UniPoker-project. An online mercurial-
repository at http://hg.agorait.no/repo/unipoker/ will be maintained for
a period of time after the submission of this thesis.

2. Import the super-pom located in the "source"-folder as an ’Existing Maven
Project’ in Eclipse.
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3. Create a package for your project either inside the unipoker-players-module or
inside a new separate maven-module.

4. Start implementing your poker agent by subclassing ’edu.ntnu.unipoker.fw.PokerAgent’.

public class RaiseAgent implements PlayerAgent{

public double makePlay(Game game,PokerGameRunner gameRunner,
Player player, Act act){
return 2 * game.getCurrentDeal().getPot();

}

}

Figure A.2: Example of a simple agent that always raises with two times the current
size of the pot.
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Appendix B
Setting up UpperCase

The following section presents how to set up and run UpperCase. The process
require the same tools as the process of setting up UniPoker (see B)The following
list shows how to set up UpperCase:

1. Setup UniPoker for integrated development as shown in section A.2 of the ap-
pendix.

2. Acquire a copy of the source for the UpperCase-project. An online mercurial-
repository at http://hg.agorait.no/repo/uppercase/ will be maintained
for a period of time after the submission of this thesis.

3. Create a new folder that can contain the configuration of UpperCase. Copy
the sample configuration-files found in the "config"-folder inside the source of
the project.

4. Update path of "uppercaseDatabaseConfigPath" inside config.xml so that it
correctly points to the hibernate.cfg.xml (the other configuration-file)

5. Configure the hibernate.cfg.xml file in order to select which SQL database that
UpperCase will store its cases inside. This process is documented here http://
docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configuration.
html. We recommend using the H2 Database1, which does not require any
configurations. A running database in needed for UpperCase to play.

6. Define a system environment-variable ’UPPERCASE_HOME’ as the path
pointing to the folder containing the configuration-files for UpperCase. You
may have to restart Eclipse at this point.

7. Import the super-pom located in the "source"-folder as an ’Existing Maven
Project’ in Eclipse.

Be aware that UpperCase may require a large heap-space depending on the amount
of training. When launching a test including the UpperCase agent for the first

1H2Database is documented and freely available at http://www.h2database.com/.
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time, a hand-rollout is performed by UniPoker. This results in a text-file including
pre-generated pre-flop winning probabilities. Generating this file may take several
minutes (but is only performed once).

The following list contains elements that can be executed:

• UpperCase Tests
The tests performed in this thesis is located inside the "uppercase-control"-
module. Executing the class "AllTests" results in all tests being executed.

• Using UpperCase
The "uppercase-control"-module contains a set of examples illustrating how
uppercase can be used to play with other agents in the UniPoker framework.
Before playing, UpperCase should be trained. A minimal amount of training
can be performed by executing the class "UpperCaseTraining".

• UpperCase Web Interface
The UpperCase web-interface is located inside the "uppercase-web"-module.
This is a standard java web-application. It can be executed inside the Eclipse
IDE or built using maven and deployed to a java web container.
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Appendix C
Simulation Results EQ

The following figures present the results from the EQ tests in section 11.1.2. Each
figure corresponds to the results shown in the tables in section 11.1.2. The graphs
illustrate the total bankroll (money won or lost) for each player on the y-axis and
the number of hands played on the x-axis.

C.1 Profit Evaluation Results

Figure C.1: EQ simulation using profit evaluation. Test 1.
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Figure C.2: EQ simulation using profit evaluation. Test 2.

Figure C.3: EQ simulation using profit evaluation. Test 3.
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Figure C.4: EQ simulation using profit evaluation. Test 4.

C.2 AIVAT Evaluation Results

Figure C.5: EQ simulation using AIVAT evaluation. Test 5.
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Figure C.6: EQ simulation using AIVAT evaluation. Test 6.

Figure C.7: EQ simulation using AIVAT evaluation. Test 7.
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Figure C.8: EQ simulation using AIVAT evaluation. Test 8.

C.3 Equity Evaluation Results

Figure C.9: EQ simulation using equity evaluation. Test 9.
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Figure C.10: EQ simulation using equity evaluation. Test 10.

Figure C.11: EQ simulation using equity evaluation. Test 11.
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Figure C.12: EQ simulation using equity evaluation. Test 12.
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Appendix D
Poker Hand Rankings

Figure D.1 from [31] presents the Texas Hold’em poker hand rankings from best
(royal flush) to worst (high card).

Figure D.1: Texas Hold’em hand rankings from best to worst.

137


	Title Page
	List of Tables
	List of Figures
	I Background and Related Research
	Introduction
	Artificial Intelligence in Games
	Background and Motivation
	Research Approach and Goal
	Report Structure
	Texas Hold'em Poker
	Basic Terminology
	Possible Actions
	Game Structure
	Betting Rules
	Additional Terminology

	Artificial Intelligence in Poker
	Strategies
	Different Approaches
	Knowledge-Based Approach
	Game Tree Approach
	Simulation-Based Approach
	Other Approaches

	Measuring Performance
	Luck
	Duplicate Poker

	Evaluating Quality of Decisions

	Case-Based Reasoning
	The CBR-Cycle
	Case-Based Reasoning in Poker
	Casey
	CASPER
	SARTRE
	BayCaRP
	Discussion


	II Tools and Frameworks
	DIVAT
	Motivational Example
	Definitions and Metrics
	The DIVAT Policies
	Evaluating Quality of Decisions Using DIVAT

	UniPoker
	Motivation
	High-Level Structure
	Framework-Module
	Common Data Classes
	Common Utility Classes

	Agents-Module
	UniPoker Agent Implementations

	Simulation-Module
	Simulation Example


	UpperCase - Initial Design
	High-Level Design
	EQ
	EX


	III Results
	Improvements to UniPoker
	Improved hand evaluation
	Integration with the ACPC protocol
	Improvements of the Poker Simulator
	Web-Interface

	UpperCase
	High-Level System Architecture
	Differences from Previous Design
	Quality-Based Reasoning
	Quality of Decisions
	QBR Case Structure
	UpperCase Action-Types
	Situation-Key Format

	Similarity
	QBR Retrieval
	QBR Reuse
	QBR Training - Revise & Retain
	Hand Simulation
	Hand Evaluation


	Decision Quality Evaluation
	Profit Evaluator
	AIVAT Evaluator
	Equity Evaluator
	Comparison By Example

	EQ
	EX
	Known Opponent-Types
	Characterization of Poker Strategies
	EX-CBR
	Retrieve - Opponent Classification
	Reuse - Opponent Adaptation

	Adaptation Rationale

	System Summary

	UpperCase Web-Interface
	Case-Base List
	Case-Base View
	Player List
	Player View
	Hand List
	Hand View

	Experimental Results
	EQ - Baseline Strategy
	Test Structure EQ
	Test Results EQ
	Profit Evaluation Results
	AIVAT Evaluation Results
	Equity Evaluation Results


	EX - Adaptive Strategy
	Test Structure EX
	Test Results EX
	Test 1: Unknown opponent
	Test 2: Known opponent
	Test 3: Known easily exploitable opponent



	Discussion
	Discussion of EQ Test Results
	Discussion of EX Test Results
	Summary

	Conclusions and Future Work
	Future Work
	Further Testing and Development of UpperCase
	Further Development of the UniPoker Framework


	Bibliography
	Appendices
	Setting up UniPoker
	Setup 1: Externalized development
	Setup 2: Integrated development
	Setting up UpperCase
	Simulation Results EQ
	Profit Evaluation Results
	AIVAT Evaluation Results
	Equity Evaluation Results
	Poker Hand Rankings










