
TaleTUC: Text-to-Speech and Other
Enhancements to Existing Bus Route
Information Systems

Trond Bøe Engell

Master of Science in Computer Science

Supervisor: Bjørn Gamback, IDI
Co-supervisor: Rune Sætre, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

i
i

“Disp” — 2012/6/17 — 19:33 — page i — #1 i
i

i
i

i
i

i

Abstract

As smartphone sales increase, the demand for content for these devices also
increases. Service providers that want to reach out to as many users as possible
need to create smartphone applications that satisfy people that do not fall into
the "normal user" category. People that require non-visual feedback, such as
visually impaired persons, need output in form of auditory signals. Text-to-
speech synthesis provides this functionality, giving the smartphone the ability
to convey messages in the form of speech.

This thesis describes TaleTUC: Text-to-speech, a proof of concept text-to-speech
system for the domain of bus route information. The system uses a client-server
architecture where the server converts text to computer-generated speech sig-
nals and provides playable audio files either directly to the smartphone, or
through a Java Servlet that provides functionality to tailor the output (e.g., au-
dio compression). Descriptions of other enhancements to bus route information
systems, that are are not directly related to synthesized speech, have also been
given.

Three text-to-speech modules have been evaluated and to establish whether
there is a link between intelligibility and naturalness in synthesized speech.
Non-functional tests (transfer, response time, etc) have also been conducted
to get an impression of whether service providers that use "cloud" technology
provide a better service than an in-house system. There are no definitive an-
swers to these questions, but results indicate that there might be a link (how-
ever small) between intelligibility and naturalness and that an in-house system
is still preferable in the domain of bus route information.

i
i

“Disp” — 2012/6/17 — 19:33 — page ii — #2 i
i

i
i

i
i

ii

i
i

“Disp” — 2012/6/17 — 19:33 — page iii — #3 i
i

i
i

i
i

iii

Sammendrag

Samtidig som smarttelefonsalget øker, øker også følgelig behovet for innhold til
disse enhetene. Tjenesteleverandører som ønsker å nå ut til så mange brukere
som mulig trenger å lage applikasjoner for smarttelefoner som tilfredsstiller
personer som ikke faller inn under "normal bruker" kategorien. Folk som kr-
ever ikke-visuelle tilbakemeldinger, som for eksempel svaksynte, må få respons
i form av lydsignaler. Talesyntese tilbyr denne funksjonaliteten, noe som gir
smarttelefonen evnen til å formidle meldinger i form av tale.

Denne avhandlingen beskriver TaleTUC: Tekst-til-tale, et prototyp talesyn-
tesesystem for bussrutedomenet. Systemet bruker en klient-server-arkitektur
der serveren konverterer teksten til datagenererte språksignaler og gir spillbare
lydfiler enten direkte til smarttelefonen, eller gjennom en Java Servlet som gir
funksjonalitet for å skreddersy lydfilene ytterligere (f.eks lydkomprimering).
Det er også gitt beskrivelser av andre forbedringer til bussrutesystemer, som
ikke er direkte relatert til syntetisk tale.

Tre tekst-til-tale moduler har blitt evaluert for å fastslå om det er en sam-
menheng mellom forståelighet og naturlighet i syntetisk tale. Ikke-funksjonelle
tester (dataoverføring, responstid, etc) har også blitt gjennomført for å få et in-
ntrykk av om tjenesteytere som bruker "nettsky"-teknologi gir en bedre tjeneste
enn et internt system. Det er ingen definitive svar på disse spørsmålene, men
resultatene indikerer at det kan være en kobling (om enn liten) mellom forståe-
lighet og naturlighet, og at en internt system fortsatt er å foretrekke i bussrute-
domenet.

i
i

“Disp” — 2012/6/17 — 19:33 — page iv — #4 i
i

i
i

i
i

iv

i
i

“Disp” — 2012/6/17 — 19:33 — page v — #5 i
i

i
i

i
i

v

Preface

This Master’s thesis describes the study and work done by Trond Engell. The
work is the last final part of his Master of Science (MSc) degree in Computer
Science at the Department of Computer and Information Science at the Norwe-
gian University of Science and Technology (NTNU). The assignment is a con-
tribution to the Fremtidens ultimate intelligente ruteopplysningssystem (FUIROS)
project, where other assignments have been conducted earlier. This includes the
two pre-studies TABuss: An Intelligent Smartphone Application and MultiBRIS: A
Multiple-platform approach to the Ultimate Bus Route Information System for Mobile
Devices, but also the thesis An Intelligent Smartphone Application [21, 2, 29]. The
results of the pre-studies have been rewritten in the form of papers and [22, 3].
They were be presented at the 12th International Conference on Innovative Internet
Community Systems1 on the 13th of June, 2012.

Parts of the Future Work section of this thesis are identical to the ones found
in a thesis conducted in parallel to this one, by Marcussen and Andersstuen [20].
Section 6.2 in Future Work is also found in their FUIROS assignment, but has
been slightly adjusted to fit the text of this thesis. Subsections 6.2.1 and 6.2.3
were written by Engell and Anderstuen and modified by Marcussen [2]. Sub-
sections 6.2.2 and 6.2.4 were originally written by Marcussen and Eliassen [21].
Those have also been modified by Marcussen and were approved by Eliassen.

1http://www.ntnu.edu/i2cs/

i
i

“Disp” — 2012/6/17 — 19:33 — page vi — #6 i
i

i
i

i
i

vi

i
i

“Disp” — 2012/6/17 — 19:33 — page vii — #7 i
i

i
i

i
i

vii

Acknowledgments

I would like to thank my supervisors Rune Sætre and Björn Gambäck, along
with Rune M. Andersen for their effort in leading me in the right direction.
I would also like to thank my lab partners Runar Andersstuen, Lars Moland
Eliassen and Christoffer Jun Marcussen for our collaboration in the FUIROS
project, and for technical and moral support . Also, I would like to thank Geir
Josten Lien for his advice and all the kind people who volunteered to be my test
subjects. Finally, I would like to thank my parents for all their encouragement
during this process.

Trond Bøe Engell
Trondheim, June 17, 2012

i
i

“Disp” — 2012/6/17 — 19:33 — page viii — #8 i
i

i
i

i
i

viii

i
i

“Disp” — 2012/6/17 — 19:33 — page ix — #9 i
i

i
i

i
i

Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgment vii

Table of Contents ix

List of Figures xi

List of Tables xiv

Terminology and Abbreviations xvii

1 Introduction and Goals 1
1.1 Task Description . 1
1.2 Motivation . 2
1.3 Research Questions and Goals . 3
1.4 Research Method . 4
1.5 Thesis Structure . 5

2 Theory and Background 7
2.1 Text-To-Speech (TTS) Technology 7

2.1.1 Formant Synthesis . 8
2.1.2 Concatenative Synthesis . 8

2.2 Multi-Modal Output . 9
2.3 Cloud vs Local Computing . 10
2.4 BusTUC . 13
2.5 Existing TTS Solutions for Norwegian 14

2.5.1 Microsoft Speech API (SAPI) 14

i
i

“Disp” — 2012/6/17 — 19:33 — page x — #10 i
i

i
i

i
i

x Contents

2.5.2 iSpeech . 15
2.5.3 Nuance . 16
2.5.4 eSpeak . 16

3 Methods 17
3.1 The Nora Client . 17

3.1.1 The BUSTER System . 17
3.1.2 Client Prototype . 19
3.1.3 Extending Nora with Java Servlet Technology 21

3.2 Physical Server Setup . 27
3.3 The Test Application . 27
3.4 Standardizing Server Communication 28
3.5 Character Encoding (UTF-8) . 30
3.6 Pronunciation Optimization . 31
3.7 The New BusTUC Web Page . 32

3.7.1 HTML 5 . 32
3.7.2 CSS 3 . 33
3.7.3 JavaScript . 33
3.7.4 jQuery . 34
3.7.5 Same Origin Policy . 34

4 Results 37
4.1 Speech Synthesis Module Evaluation 37
4.2 Pronunciation Optimization . 42
4.3 Response Time . 43
4.4 Uptime . 45
4.5 Data Transfer . 46
4.6 The New BusTUC Web Page . 47

5 Discussion and Conclusion 49
5.1 Tests . 49

5.1.1 Speech Synthesis Module Evaluation 49
5.1.2 Pronunciation Optimization 51
5.1.3 Response Time . 51
5.1.4 Data Transfer . 53
5.1.5 The New BusTUC Web Page 53

5.2 Discussion . 53
5.3 Conclusion . 55

5.3.1 Research Question 1 . 55
5.3.2 Research Question 2 . 56
5.3.3 Research Question 3 . 56

i
i

“Disp” — 2012/6/17 — 19:33 — page xi — #11 i
i

i
i

i
i

Contents xi

6 Future Work 57
6.1 Future Enhancements . 57

6.1.1 Sound Compression . 57
6.1.2 Integrate with TABuss . 59
6.1.3 Extending the Nora Servlet with more Functionality 59
6.1.4 Merging Servers . 59
6.1.5 Extensive Testing . 59
6.1.6 Improve Bus Stop Pronounciation 60
6.1.7 Update To New SAPI Speech Engine 60
6.1.8 Nora Parameters . 60
6.1.9 BusTUC Tram . 60

6.2 FUIROS and FUIROS Related Technologies 61
6.2.1 Geographical Expansion of FUIROS and Standards 61
6.2.2 TABuss . 62
6.2.3 MultiBRIS . 64
6.2.4 BusTUC . 65

Bibliography 67

i
i

“Disp” — 2012/6/17 — 19:33 — page xii — #12 i
i

i
i

i
i

xii Contents

i
i

“Disp” — 2012/6/17 — 19:33 — page xiii — #13 i
i

i
i

i
i

List of Figures

2.1 The architecture of a cloud computing environment. 12
2.2 The black box structure of the iSpeech cloud. 15

3.1 The server architecture of BUSTER. 18
3.2 The Nora Client prototype . 20
3.3 The Wave file format header, used for the audio data received by

the Nora client. 22
3.4 The Nora Servlet prototype . 26
3.5 The prototype test application used for gathering the evaluation

data. 28

4.1 The average score for each speech synthesis module in a low-
noise environment. 39

4.2 The average score for each speech synthesis module in a high-
noise environment. 40

4.3 The total average score for each speech synthesis module in both
low-noise and high-noise environments. 41

4.4 The result of making use of the User Dictionary Editor on a bus
stop name. 42

4.5 The average response time for each speech synthesis module with
either a WiFi or mobile network connection. 44

4.6 The number of test subjects that think the response time for each
of the speech synthesis modules (Nuance, iSpeech and the Nora
Client) are acceptable. 45

4.7 The data traffic between each specific speech synthesis module
and the smartphone for a typical BusTUC answer. 46

4.8 The new web page designed for BusTUC 47
4.9 The textual response from the new BusTUC web page 48
4.10 The JSON response from the new BusTUC web page 48

i
i

“Disp” — 2012/6/17 — 19:33 — page xiv — #14 i
i

i
i

i
i

xiv List of Figures

6.1 The Perceptual Evaluation of Sound Quality (PESQ) score for
each quality setting of the audio codecs. 58

i
i

“Disp” — 2012/6/17 — 19:33 — page xv — #15 i
i

i
i

i
i

List of Tables

3.1 Server information for busstjener.idi.ntnu.no. 27
3.2 Server information for orwell.idi.ntnu.no. 27

i
i

“Disp” — 2012/6/17 — 19:33 — page xvi — #16 i
i

i
i

i
i

xvi List of Tables

i
i

“Disp” — 2012/6/17 — 19:33 — page xvii — #17 i
i

i
i

i
i

Terminology and Abbreviations

This section describes the terminology and abbreviations used in this thesis.
Some of the explanations below are partially taken from sources such as product
web-sites, standardization organization’s web-sites and Wikipedia2.

• A-law - A standard companding algorithm, used in European digital com-
munications systems to optimize, i.e., modify, the dynamic range of an
analog signal for digitizing.

• API - An Application Programming Interface is a source code based spec-
ification intended to be used as an interface by software components to
communicate with each other.

• AtB - Administration agency for public transport in Sør-Trøndelag. For-
merly Team Trafikk.

• ASR - Automatic Speech Recognition is the translation of spoken words
into text.

• Black Box - An object which can be viewed solely in terms of its input,
output and transfer characteristics without any knowledge of its internal
workings.

• Business Logic - A non-technical term generally used to describe the func-
tional algorithms that handle information exchange between a database
and a user interface. In this thesis, it is specifically used to describe the
part of the system that makes the actual computations and calls external
services.

• BusTUC - A natural language problem solver capable of answering ques-
tions about bus departures in Trondheim stated in common English or
Norwegian language.

2http://en.wikipedia.org/wiki/Main_Page

http://en.wikipedia.org/wiki/Main_Page

i
i

“Disp” — 2012/6/17 — 19:33 — page xviii — #18 i
i

i
i

i
i

xviii

• CAPI - The Common ISDN Application Programming Interface is a stan-
dardized software interface (ISDN conform).

• CPU - Central Processing Unit is the hardware within a computer system
which carries out the instructions of a computer program by performing
the basic arithmetical, logical, and input/output operations of the system.

• CSS - Cascading Style Sheets is a style sheet language used for describ-
ing the presentation semantics (the look and formatting) of a document
written in a markup language.

• (D)DOS - Denial-Of-Service attack (DoS attack) or Distributed Denial-Of-
Service attack (DDoS attack) is a malicious attempt to make a machine or
network resource unavailable to its intended users.

• Diphone - A diphone is an adjacent pair of phones. It is usually used to
refer to a recording of the transition between two phones.

• DOM - The Document Object Model is a cross-platform and language-
independent convention for representing and interacting with objects in
HTML, XHTML and XML documents.

• FUIROS - Fremtidens Ultimate Intelligente RuteOpplysningsSystem. In
English: The Ultimate Bus Route Information System For The Future.

• GUI - A Graphical User Interface is a type of interface that allows users to
interact with electronic devices using images rather than text commands.

• HSDPA - High-Speed Downlink Packet Access is an enhanced 3G (third
generation) mobile telephony communications protocol.

• HTML5 - A HyperText Markup Language for structuring and presenting
content for the World Wide Web, and a core technology of the Internet.

• IaaS - Infrastructure as a Service is basic cloud service model, providing
computers as physical or more often as virtual machines.

• IDE - An Integrated Development Environment is a software application
that provides comprehensive facilities to computer programmers for soft-
ware development.

• IDI - Department of Computer and Information Science (Institutt for
Datateknikk og Informasjonsvitenskap), NTNU.

i
i

“Disp” — 2012/6/17 — 19:33 — page xix — #19 i
i

i
i

i
i

Terminology and Abbreviations xix

• ISDN - Integrated Services Digital Network is a set of communications
standards for simultaneous digital transmission of voice, video, data, and
other network services over the traditional circuits of the public switched
telephone network.

• ISP - Internet Service Provider is an organization that provides access to
the Internet.

• JSON - JavaScript Object Notation is a lightweight data-interchange for-
mat.

• L&H - Lernout & Hauspie was a leading Belgium-based speech and lan-
guage processing technology company.

• MultiBRIS - Multiple-platform approach to the Bus Route Information
System is a system developed in parallel with TABuss.

• NLP - Natural Language Processing is a field of computer science, artifi-
cial intelligence and linguistics concerned with the interactions between
computers and human (natural) languages.

• NTNU - Norwegian University of Science and Technology (Norges Teknisk-
Naturvitenskapelige Universitet).

• PaaS - Platform as a Service is a category of cloud computing services that
provide a computing platform and a solution stack as a service.

• PESQ - Perceptual Evaluation of Speech Quality, is a family of standards
comprising a test methodology for automated assessment of the speech
quality as experienced by a user of a telephony system.

• Phone - A speech sound or gesture considered a physical event without
regard to its place in the phonology of a language.

• RIFF - The Resource Interchange File Format is a generic file container
format for storing data in tagged chunks. It is primarily used to store
multimedia such as sound and video, though it may be used to store any
arbitrary data.

• SaaS - Software as a Service is a software delivery model in which soft-
ware and associated data are centrally hosted on the cloud.

• SAPI - Speech Application Programming Interface is an API developed
by Microsoft to allow the use of speech recognition and speech synthesis
within Windows applications.

i
i

“Disp” — 2012/6/17 — 19:33 — page xx — #20 i
i

i
i

i
i

xx

• SDK - A Software Development Kit is typically a set of software develop-
ment tools that allows for the creation of applications for a certain soft-
ware package, software framework, hardware platform, computer sys-
tem, video game console, operating system, or similar platform.

• SCRUM - An iterative and incremental agile method for software devel-
opment that manage software projects.

• TABuss - Tore Amble Buss is an intelligent Android bus route application.

• TTS - Text-to-Speech is the artificial production of human speech.

• TUC - The Understanding Computer is a reasoning system developed at
IDI by Tore Amble.

• WAV - A Microsoft and IBM audio file format standard for storing an au-
dio bit stream on PCs.

• W3C - The World Wide Web Consortium is the main international stan-
dards organization for the World Wide Web.

• WHATWG - The Web Hypertext Application Technology Working Group
is a community of people interested in evolving HTML and related tech-
nologies.

• WiFi - Wireless local area network is a technology that allows an electronic
device to exchange data wirelessly (using radio waves) over a computer
network, including high-speed Internet connections.

• XHTML - eXtensible HyperText Markup Language is a family of XML
markup languages that mirror or extend versions of the widely-used Hy-
pertext Markup Language (HTML).

i
i

“Disp” — 2012/6/17 — 19:33 — page 1 — #21 i
i

i
i

i
i

Chapter 1

Introduction and Goals

In the following sections, the task description and motivation for this thesis are
presented. The research questions and goals are also defined. Finally, a research
method definition and an overview of the thesis structure is provided. The fo-
cus of the thesis has been on creating a text-to-speech extension to TABuss, giv-
ing the application the ability to speak in Norwegian [21]. Tweaks and additions
that enhance the system itself, have also been explored.

1.1 Task Description

The (original) assignment was given by supervisors (Tore Amble,) Björn Gam-
bäck and co-supervisor Rune Sætre, as a part of the FUIROS project:

FUIROS - Fremtidens ultimate intelligente ruteopplysningssystem.

BusTUC is a natural language bus route system for Trondheim. It gives
information about scheduled bus route passings, but has no information
about the real passing times. This is about to change, because AtB has
installed GPS tracking of the buses, giving access to real passing times and
delays. Besides, with new smart phones arriving rapidly on the market,
there are possibilities for GPS localisation and connections to maps. The
project shall take a broad view, and consider all possible advanced concepts,
resulting in advanced smart phone applications.

The concrete task in this thesis is to look at possibilities for text-to-speech (TTS)
synthesis in Norwegian for use on smartphones in the domain of bus route in-
formation systems. It is desirable to make use of available existing solutions
(like BUSTER) and to find out what needs to be implemented in order for the
system to work optimally for the domain [15]. The end goal is to implement

i
i

“Disp” — 2012/6/17 — 19:33 — page 2 — #22 i
i

i
i

i
i

2 Motivation

a text-to-speech synthesis module in order to add multi-modal functionality
to smartphone applications (proof of concept). Two applications created for
FUIROS last year (TABuss on the Android platform and MultiBRIS on multi-
ple platforms) are good candidates for implementing such a proof of concept
module [21, 2, 22, 3].

Another stakeholder in this project is AtB1, the main bus transportation com-
pany in Trondheim, and the bus route information development community
represented by Rune M. Andersen. If a text-to-speech standard for bus route
information can be established, future development could contribute to the im-
provement of this standard, which would make it easier to expand beyond
Trondheim’s borders and to other cities.

1.2 Motivation

This work is a natural extension of the previous work by Andersstuen and En-
gell, and Marcussen and Eliassen [2, 21]. These previous FUIROS assignments
were carried out as pre-studies prior to this thesis and consisted of exploring the
possibilities for running bus route information systems with natural language
(like BusTUC) on smartphone devices. The paper written by Andersstuen and
Engell describes the increase in sales and popularity of smartphones and the
importance of adapting software to mobile devices [2]. The worldwide smart-
phone market has expanded immensely during the last few years. There were
440 million mobile devices sold by vendors in the 3rd quarter of 20112. Of these,
115 million were smartphones. This equals a market share of 26.1% of mobile
phones.

This is a motivation for continuous implementation of new functionality tar-
geting these devices. The Future Work section in the same paper describes the
potential of speech functionality. Additional support for input and output in
the form of speech (Multimodal Interaction3) could be added to smartphone
applications. This would expand the target audience further to include the vi-
sually impaired, elderly and non-natives. The spoken dialog system "Let’s Go"
(2003) has implemented functionality to make bus route information available
for these user groups [32]. For the non-natives, using such a system can even
aid in learning the local language [31].

Marcussen and Eliassen developed an application for the Android4 plat-
form, called TABuss, and performed user tests where user feedback indicated

1https://www.atb.no/
2Deduced from the numbers given in Gartner’s press releases: http://www.gartner.com
3http://en.wikipedia.org/wiki/Multimodal_interaction
4http://www.android.com/

http://www.gartner.com
http://en.wikipedia.org/wiki/Multimodal_interaction
http://www.android.com/

i
i

“Disp” — 2012/6/17 — 19:33 — page 3 — #23 i
i

i
i

i
i

Introduction and Goals 3

that it has potential to be a popular choice for bus travelers [21]. Therefore, this
application will serve as a potential target application for the prototype mod-
ules created in this master thesis.

The starting point for the research is an existing speech recognition and
speech synthesis system called BUSTER [14, 11]. BUSTER is a spoken dialog
system which interacts with BusTUC5, and provides route suggestions through
a dial-up telephone interface. BUSTER is further described in section 3.1.

The combination of the motivation from the BUSTER system with the promis-
ing results from the projects of Marcussen and Eliassen, and Andersstuen and
Engell, creates a solid motivational foundation to continue the FUIROS project.

1.3 Research Questions and Goals

This section describes the research questions and goals of this master thesis.

Research question 1 (RQ1) What is the most optimal system architecture for a
text-to-speech module designed for a smartphone?
a) Is it preferable to put the entire system directly on the smartphone, or
will a client-server system be more practical?
b) Can cloud-based solutions potentially be used?

Research question 2 (RQ2) What enhancements are likely to make a bus route
information system more efficient?

Research question 3 (RQ3) Does intelligibility and naturalness in speech co-
incide? If computer-generated speech is highly natural, does it also mean
it is intelligible?

Goal 1 Create a text-to-speech module prototype. (RQ1)
The prototype module should be able to receive text and output syn-
thesized speech in Norwegian. The prototype module should be imple-
mented in such a way that it can be easily integrated into other applica-
tions, such as the TABuss application [21].

Goal 2 Create an intermediate Java Servlet prototype. (RQ1)
The prototype module will be developed for testing purposes and should
be able to do the same as the prototype described in goal 1. It should also
provide functionality that enlightens the advantages of adding an inter-
mediate Java Servlet between the server and client in the text-to-speech
solution.

5http://busstuc.idi.ntnu.no/

http://busstuc.idi.ntnu.no/

i
i

“Disp” — 2012/6/17 — 19:33 — page 4 — #24 i
i

i
i

i
i

4 Research Method

Goal 3 Create a new web page and implement JSON output for BusTUC. (RQ2)
A new web page should be implemented for BusTUC to meet today’s stan-
dards. The web page should present the BusTUC Oracle answers both as
text to humans and as JSON output for further computer processing.

Goal 4 Conduct a test to see if intelligibility and naturalness are features that
go hand in hand in text-to-speech. (RQ3)
The test should use subjects in different scenarios to measure the intelligi-
bility and naturalness of different text-to-speech modules.

1.4 Research Method

This section provides a rough outline of how the research was conducted for
this thesis.

Trello6, which is similar to a SCRUM7 board, along with the FUIROS wikipedia
page8 was used for planning and assigning tasks from the FUIROS project to be
integrated in the thesis.

The work of this thesis was split into four phases:

1. Problem definition and initial research

2. Prototyping

3. Evaluation

4. Documentation

The research phase was conducted by reading and analyzing relevant publica-
tions from these electronic libraries: DAIM9, Google Scholar10, Cite Seer X11

and IEEE Xplore Digital Library12.

The prototype implementation phase consisted of:

• Development of a TTS module for use within Android applications

6http://www.trello.com
7http://en.wikipedia.org/wiki/Scrum_(development)
8https://www.ntnu.no/wiki/display/FUIROS/
9http://daim.idi.ntnu.no/

10http://scholar.google.com
11http://citeseerx.ist.psu.edu
12http://ieeexplore.ieee.org/Xplore/guesthome.jsp

http://www.trello.com
http://en.wikipedia.org/wiki/Scrum_(development)
https://www.ntnu.no/wiki/display/FUIROS/
http://daim.idi.ntnu.no/
http://scholar.google.com
http://citeseerx.ist.psu.edu
http://ieeexplore.ieee.org/Xplore/guesthome.jsp

i
i

“Disp” — 2012/6/17 — 19:33 — page 5 — #25 i
i

i
i

i
i

Introduction and Goals 5

• Development of a Java Servlet extension to the TTS module

• Development of a test application for use in the evaluation phase

• Development of a new web page for BusTUC

• Implementation of JSON output in BusTUC

• Resolve UTF-8 issues in BusTUC

The evaluation phase was performed by the use of the test application and eval-
uation forms in collaboration with test subjects.

The documentation phase consisted of documenting the work done in the thesis
after the evaluation phase was complete. This includes discussing the results,
writing a conclusion and describing future work.

1.5 Thesis Structure

This section gives an overview over the master thesis structure with a summa-
rized description of each chapter.

1. Introduction and Goals introduces the thesis with a description of task
definition, motivation, research questions, defined goals, research method
and the thesis structure.

2. Theory and Background presents the TTS and other background theory
for this thesis.

3. Methods describes the development of the prototypes and the practical
work done in this thesis.

4. Results presents the development results, with graphs, descriptions and
screenshots.

5. Discussion and Conclusion discusses the results and reflects on how the
goals and research questions were answered. Finally, some conclusion are
drawn.

6. Future Work describes future work of this thesis and the FUIROS project.

i
i

“Disp” — 2012/6/17 — 19:33 — page 6 — #26 i
i

i
i

i
i

6 Thesis Structure

i
i

“Disp” — 2012/6/17 — 19:33 — page 7 — #27 i
i

i
i

i
i

Chapter 2

Theory and Background

2.1 Text-To-Speech (TTS) Technology

Speech synthesis, or text-to-speech (TTS), is the artificial production of human-
like speech. Computer systems used for this purpose are called speech synthesiz-
ers. TTS systems synthesize text strings and files into spoken audio with syn-
thetic voices by using a complex system of linguistic rules and dictionaries.

Different implementations of TTS systems exist. This section discusses some
of the concepts on which these systems are built. This thesis is not concerned
with how they work in detail, but the following text will give a concise overview
of the current techniques used today.

In general, a TTS system can be broken down into three main parts: a lin-
guistic, a phonetic and an acoustic part. First, an ordinary text is input to the
system. A linguistic module converts this text into a phonetic representation.
From this representation, the phonetic processing module calculates the speech
parameters. Finally, an acoustic module uses these parameters to generate a
synthetic speech signal.

The following comparison show that the technologies can be split in two in
sense of how they work: The natural-sounding but inflexible "playback" sys-
tems (concatenative synthesis) , and the parameterizable systems requiring ex-
plicit acoustic models which are difficult to formulate (formant synthesis). New
approaches try to overcome this separation by adding more control to synthesis
methods in different ways [35].

i
i

“Disp” — 2012/6/17 — 19:33 — page 8 — #28 i
i

i
i

i
i

8 Text-To-Speech (TTS) Technology

2.1.1 Formant Synthesis

Formant synthesis does not use human speech samples, but rather a set of rules
to predict the acoustic realization of speech. Even though these rules are de-
signed carefully by experts, they tend not to capture the complexity of human
speech, and the resulting synthetic speech sounds unnatural and "robotlike".
However, Formant synthesis is flexible because it allows for control over a wide
range of parameters.

2.1.2 Concatenative Synthesis

Concatenative synthesis "strings" together segments of recorded speech. This
method produces the most natural-sounding speech. There are three main types
of concatenative synthesis:

Diphone Synthesis

Diphone synthesis works by sequencing small pieces of human speech record-
ings. A speaker records one example of each diphone at a monotone pitch. A
diphone is the piece of a speech signal that goes from the middle of one phone
to the middle of the next phone. This gives a resulting quality that is usually
quite a bit better than formant synthesis. The disadvantage, however, is that
the voice quality is fixed, determined by the performance of the speaker during
diphone recordings.

Unit Selection Synthesis

Unit selection synthesis works like Diphone synthesis, but instead of just one
recording of each diphone at monotone pitch, several versions of the diphone
are recorded in natural speech. For any target sentence, the most suitable di-
phone units are stringed together by using a sophisticated selection method,
often a weighted decision tree. If suitable units are available, no or very lit-
tle signal processing is needed. Accordingly, the resulting synthesized speech
can sound very natural, to the point where it is indistinguishable from human
speech.

Domain-specific Synthesis

Domain-specific synthesis strings together prerecorded words and phrases to
create complete sentences. This method is used in applications where the sys-
tem text output is limited to a particular domain. Examples of this are broad-

i
i

“Disp” — 2012/6/17 — 19:33 — page 9 — #29 i
i

i
i

i
i

Theory and Background 9

casting messages and weather reports [18]. The level of naturalness of systems
using this method can be very high due the low variation of sentence types.

2.2 Multi-Modal Output

Most smartphones have big screens in order to utilize touch functionality1. The
smartphone applications are inherently visual, giving information and feedback
through means of a graphical user interface (GUI) and text. However, for users
(such as the visually impaired) set in situations where visual feedback is inad-
equate or even impossible, audible feedback may be an essential feature. For
other users it may just add extra value to a product. Still, implementing feed-
back in the form of speech to an application is no trivial matter and comes with
many challenges. One of the major ones is inflexibility in the sense of digital
recordings of human speech. This is where TTS comes in handy, giving applica-
tions the ability to give multi-modal output without many of the disadvantages
of digital recordings. Text-to-speech provides a very valuable and flexible alter-
native for digital audio recordings in cases where:

• Human speech recordings are too expensive.
• Disk storage is insufficient to store recordings.
• The application does not know ahead of time what it will need to speak.
• The information varies too much to record and store all the alternatives.

Bus route information is never fixed for many reasons (new routes, delays etc)
and it is therefore not feasible to store all the alternatives as digital recordings.
TTS solves this problem by using computers to generate the utterance through
synthesized speech.
Many types of applications can benefit from TTS functionality. They cover a
wide range of products in the markets of computers (including multimedia),
telephony, medicine, automotive and consumer electronics.

In the telecommunications business, the technology can be utilized in such ap-
plications as home banking, remote e-mail and fax access, database driven in-
quiry systems and PC-based phone management systems.

Integrated in new features for automotive electronics such as phone, naviga-
tion and information systems, TTS also helps in reduction of potential safety
hazards. It provides a common hands-free interface, thereby keeping the atten-
tion of the driver on the road and increasing the driving comfort and safety.

Consumer electronics can also highly benefit from the use of TTS functionality.
Toy and appliances markets present one specific range of needs while pocket

1http://en.wikipedia.org/wiki/Touchscreen

http://en.wikipedia.org/wiki/Touchscreen

i
i

“Disp” — 2012/6/17 — 19:33 — page 10 — #30 i
i

i
i

i
i

10 Cloud vs Local Computing

(or hand held) translators, digital answering machines, portable and cellular
phones, organizers and PCs cover the other end of the spectrum.

In the industry, TTS can be an essential feature in production of alarm sys-
tems and announcement systems. It can also be used for dictation facilitating
hands- and eyes-free operation.

In the computer industry, TTS provides a considerable added value for both
business and home applications. Language learning, PC-based video games,
proof reading and data verification, message notification, answering machines
and television viewing have become leading TTS features in the home PC mar-
ket. In computer multimedia, TTS is for example used in addition to synced
video data to provide extra intelligibility for visually impaired [19]. Yang et al.
describe an application designed for a translation task, giving two people, who
speak different languages the possibility to talk to each other over the Internet
with the use of speech synthesis [42].

In the medical field, TTS is an excellent contribution to the production of help-
ing tools for people with disabilities. One example is use of a communication
aid for vocally impaired persons, to help them "talk" [7]. World renowned
physician Stephen Hawking uses such technology [38]. Shi and Maier states
that for people with disabilities, such as visually impairment (e.g the elderly),
the screen text is hard to identify and it would be helpful to have the option to
use the ears to listen to the contents of computer applications [36]. Additional
support for input and output, in the form of speech (multimodal interaction),
can be added to smartphone applications in order to expand the target audi-
ence of such applications further to include the visually impaired and elderly
and even non-natives. The spoken dialog system Let’s Go (2003) has imple-
mented functionality to make bus route information available for these user
groups [32]. For the non-natives, using such a system can even aid in learn-
ing the local language by helping them acquire the vocabulary, grammar, and
phonetic knowledge necessary to fulfill the task the system was designed for
[31]. TTS in TaleTUC will, in practice, work like these systems, giving bus route
information by speech.

2.3 Cloud vs Local Computing

Zhang et al. point out that a standard definition of cloud computing is not eas-
ily created [44]. They argue that cloud computing is not a new technology, but
rather a new operations model that brings together a set of existing technologies
to run business in a different way. In the Search Engine Strategies Conference2

2http://www.searchenginestrategies.com/

http://www.searchenginestrategies.com/

i
i

“Disp” — 2012/6/17 — 19:33 — page 11 — #31 i
i

i
i

i
i

Theory and Background 11

in 2006, Google’s CEO Eric Schmidt used the word cloud to describe the emer-
gent business model of Internet-provided services. The term cloud computing
has since gained popularity and has been used mainly as a marketing term in
many different contexts to represent different ideas. Vaquero et al. analyzed
over 20 different definitions from a variety of sources in order to find a com-
plete consensus definition [39]. This thesis adopts the definition of Mell and
Grance (created for The National Institute of Standards and Technology, NIST)
because it is concise and covers the essential aspects of cloud computing:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction." [23].

Cloud service providers move the computing away from local computers and
devices. They deliver computation as a service to developers through another
level of abstraction. The goal is to achieve the same or better service and perfor-
mance as if the software was installed locally on end-user computers. Services
are provided through the network to any device compatible with the services’
interface. Popular ways to access the services are through web browsers or mo-
bile applications. The cloud does not require the users to have knowledge of the
physical location of the services or details about the infrastructure, so the users
can save time by only focusing on the input and output of the cloud service.
Hayes highlights the Google Docs service as a good example of a cloud service,
where major components of the software reside on unseen computers possibly
scattered over continents [12]. This abstraction facilitates the use of light-weight
(thin) clients, which are often just web or smartphone applications, since the
business logic and data can be stored on servers in some remote locations.
A cloud computing environment can be divided into three layers. The Infras-
tructure layer is responsible for physical resource management (servers, routers,
power and cooling systems, etc). It also provides resource virtualization that fa-
cilitates dynamic resource assignment. The Platforms layer consists of operating
systems and software frameworks that facilitate the deployment of applications
without the cost of buying and managing the underlying hardware and soft-
ware. The Application layer provides cloud applications that leverage the auto-
matic scaling feature for improved performance, availability and low operating
cost. Each of these layers may be implemented as a service to the layer above,
and conversely, as a customer to the layer below. Figure 2.1 gives an overview
of the architecture.
Speech synthesis data can take up many gigabytes of storage space, which

i
i

“Disp” — 2012/6/17 — 19:33 — page 12 — #32 i
i

i
i

i
i

12 Cloud vs Local Computing

Application
(Business applications, web

services)

Platforms
(Software frameworks, DB)

Infrastructure
(Hardware, VM)

Resource
LayersEnd Users Service Examples

Software as a
service

Platform as a
service

Infrastructure
as a service

Youtube, Facebook,
Google Apps

Microsoft Azure,
Google AppEngine

Amazon EC2,
GoGrid

Figure 2.1: The architecture of a cloud computing environment.

makes it infeasible for use directly on most mobile devices today. Also, Ander-
sstuen and Engell show that moving business logic from a smartphone device
to a server will conserve battery power since Central Prosessing Unit (CPU)-
cycles on the smartphone will use more power than sending/receiving data
over a network [2] . It is also easier to update and maintain a server instead
of making all the end-users update their applications with lots of data regu-
larly. Keeping the data on servers and deliver synthesized speech on demand
is therefore the only viable solution. Using a cloud service for speech synthesis
in a smartphone application would bring both advantages and disadvantages.
It is a matter of trust whether a company should maintain server infrastructure
and services by themselves, or if they should leave it to other companies that
specialize in that service domain. Companies specializing in providing voice
synthesis through Software as a Service (SaaS) will continuously strive to im-
prove and to keep their TTS services up to date. This may serve to bring more
natural, human-like voices in the future. This is a big advantage, since creating,
updating and maintaining in-house solutions are time consuming processes.

By outsourcing the server infrastructure to the clouds, the business risks
are moved from the service provider (cloud service customers) to the cloud
providers. Hardware failures and connectivity issues are then often handled
by people that have more expertise and are better equipped for managing and
dealing with these risks. The service providers can then cut down the costs
of hardware maintenance and staff training [44]. On the other hand, Heiser

i
i

“Disp” — 2012/6/17 — 19:33 — page 13 — #33 i
i

i
i

i
i

Theory and Background 13

and Nicolett state that cloud computing is filled with security risks, saying it
has "unique attributes that require risk assessment in areas such as data integrity,
recovery, and privacy, and an evaluation of legal issues in areas such as e-discovery,
regulatory compliance, and auditing"[13]. They also claim that smart customers
should perform a thorough security assessment before committing to a cloud
vendor, preferably from a neutral third party. Brodkin follows up this article by
describing the seven main security risks [5]. He illuminates system vulnerabil-
ities when handling sensitive data. Data access, encryption, location, logging,
backup recovery are of high concern. TaleTUC only requires a quality SaaS,
meaning that it needs stable uptime, good response times and high quality TTS-
conversion. No data storage is needed. No sensitive data is handled since the
text queries used for input contain trivial information. Hence, these security
risks are of no issue.

The decision of whether to use local, self-maintained servers or to use cloud
services comes down to performance. Availability, response time and quality of
voice synthesis should be the key properties that point a TTS solution in either
direction.

2.4 BusTUC

BusTUC is the main building block of the FUIROS project and the underlying
system used by all of its assignments. Amble describes it as a text-based ques-
tion answering system for questions about bus transportation [1]. The Natural
Language Processing (NLP) module BusTUC uses is based on a complex set of
rules and is implemented in Prolog3. It is versatile in the way that it can answer
a variety of alternative formulations requesting the same kind of information.
This question-answering system consists of three modules. The BusLOG mod-
ule includes the bus route database, the list of bus stop of names (including
mappings from street descriptions to bus stops), and a route analyzer/planner,
which finds the shortest/best route between two given bus stops. Bus trans-
fer is handled if there is no direct route. The second module is a general text
understanding module (The Understanding Computer, TUC) which performs
rule-based grammatical and semantic parsing. The third and main module inte-
grates TUC and BusLOG, and tailors the system to process a complete inquiry
in a single sentence. This is the part which is called BusTUC, as it is the part
specifically made for the question-answering mode. In the publicly available
online version there is no memory as there is no dialog; i.e., every question is
concerning a new, independent inquiry and must contain all the semantic enti-

3http://www.sics.se/isl/sicstuswww/site/index.html

http://www.sics.se/isl/sicstuswww/site/index.html

i
i

“Disp” — 2012/6/17 — 19:33 — page 14 — #34 i
i

i
i

i
i

14 Existing TTS Solutions for Norwegian

ties necessary to provide an answer from the bus route database. In the dial-up
version, a template-filling dialog approach is used. BusTUC will typically un-
derstand and respond to sentences like:

I would like to travel from Studentersamfundet to Lade Kirke in about one hour from
now.

When is the next bus from the City Centre to Ila?

The BusTUC system was commercialized, and is publicly available as a ser-
vice from the bus company in the city of Trondheim, AtB4. A web service has
been operational since 1998 and a SMS service since 2002.

2.5 Existing TTS Solutions for Norwegian

This section provides a description of existing TTS systems used for speech
synthesis in Norwegian. Creating in-house TTS systems from scratch are big
projects on their own and out of the scope of this thesis. The focus is therefore
on APIs or services that provide interfaces or complete solutions that allow a
much shorter implementation phase. The underlying technology used for some
of these solutions are company secrets and therefore not described.

2.5.1 Microsoft Speech API (SAPI)

The Speech Application Programming Interface (SAPI)5 is an API developed
by Microsoft to enable speech recognition and speech synthesis in Windows
applications. SAPI can be viewed as a piece of middle-ware or as a high-level
interface between an application and speech synthesis. SAPI implements the
low-level details needed to control and manage the real-time operations of var-
ious speech engines (voices). Speech engines are runtime packages that include
the language model, acoustic model, and other data necessary to provision a
speech engine to perform speech synthesis in a particular language. This ab-
straction facilitates an easier and shorter implementation phase. Shi and Maier
state that: "The development of a standard speech interface like SAPI provides a very
positive outcome for those who want to use speech functionality with minimus technical
details."[36]. It is also flexible in the way that SAPI compatible speech engines
can be set to use a specific pitch, speed (words/min) and volume. SAPI also

4www.atb.no
5http://www.microsoft.com/en-us/tellme/

www.atb.no
http://www.microsoft.com/en-us/tellme/

i
i

“Disp” — 2012/6/17 — 19:33 — page 15 — #35 i
i

i
i

i
i

Theory and Background 15

Smartphone

iSpeech Cloud Service
(Black box)

String of text

Sound clip

"Hello. My name is
Arnold."

Figure 2.2: The black box structure of the iSpeech cloud.

provides a user lexicon (user dictionary) which allows custom words and pro-
nunciations to be added by a user or application. SAPI was first introduced in
Windows 95. The current version of Microsoft Windows, Windows 7, ships with
a narrator program6 that uses SAPI, with the speech engine Microsoft Anna.
Also, some versions of Microsoft Office use SAPI. Speech engines are available
in 26 languages, Norwegian included.

2.5.2 iSpeech

iSpeech7 is a provider of cloud-based speech technology. It supports web ap-
plications and many mobile platforms, including Android, iPhone and Black-
Berry. iSpeech is mostly known for their DriveSafe.ly smartphone application
that reads your text messages and emails out loud so you can concentrate on
the road. Also, they provide free SDKs and APIs for mobile devices that offer
over 40 TTS voices with support for more than 25 languages, including Nor-
wegian. Through the API, iSpeech delivers synthesized speech through a black
box SaaS. The user provides the text string to be synthesized and the cloud does
the speech synthesis. It then returns the audio and automatically plays it (see
Figure 2.2).

6http://windows.microsoft.com/en-US/windows-vista/Hear-text-read-aloud-with-Narrator
7http://www.ispeech.org/

http://windows.microsoft.com/en-US/windows-vista/Hear-text-read-aloud-with-Narrator
http://www.ispeech.org/

i
i

“Disp” — 2012/6/17 — 19:33 — page 16 — #36 i
i

i
i

i
i

16 Existing TTS Solutions for Norwegian

2.5.3 Nuance

Nuance8 is a multinational computer software technology corporation that fo-
cuses on providing server and embedded speech and imaging applications. Nu-
ance’s NDEV Mobile provides access to their speech platform via the Dragon
Mobile SDK and API. This platform offers a blackbox TTS service similar to iS-
peech’s, hiding away details in how the technology works. The SDK provides
support for more than 35 languages, including Norwegian. Nuance provides
90 days of free access to the cloud-based speech services and then a running
subscription needs to be bought (which is expensive).

2.5.4 eSpeak

eSpeak is a compact open source software speech synthesizer for Windows,
Linux and other platforms. The technology used is the formant synthesis method,
providing many languages. Still, it only requires a small amount of storage
space. Much of the programming for eSpeak’s languages was based on in-
formation found on Wikipedia, with some subsequent feedback from native
speakers. Google Translate has used implementations of eSpeak to provide TTS
functionality for many languages, including Norwegian9.

8http://www.nuance.com/
9http://googleblog.blogspot.no/2010/05/giving-voice-to-more-languages-on.

html

http://www.nuance.com/
http://googleblog.blogspot.no/2010/05/giving-voice-to-more-languages-on.html
http://googleblog.blogspot.no/2010/05/giving-voice-to-more-languages-on.html

i
i

“Disp” — 2012/6/17 — 19:33 — page 17 — #37 i
i

i
i

i
i

Chapter 3

Methods

This chapter describes the methods used to implement the goals of the thesis.
This includes the prototypes for the TaleTUC: Text-to-speech system.

3.1 The Nora Client

This section describes the system architecture of the Nora Client and how the
complete BUSTER system works.

3.1.1 The BUSTER System

Harborg describes a TTS solution installed on the university network of NTNU
[10]. It is a product of the BRAGE project conducted by NTNU, Telenor Re-
search and Innovation1 and SINTEF Information and Communication Technol-
ogy2 to create five demonstrators for information access and retrieval within
the domain of timetable information for bus transportation, directory assistance
and visitor guidance.

One of these demonstrators, BUSTER, provides information about bus trans-
portation in the city of Trondheim using a dial-up phone dialog interface [15].
It is a spoken dialog system that makes use of BusTUC to answer questions
regarding bus routes [1]. This system includes a speech recognizer module to
handle natural speech input and a TTS module set up to create the synthesized
speech for the response. The speech recognizer has a vocabulary of about 800
words, where around 700 contain names of bus stops and area descriptions
of Trondheim. The system is robust in the sense that it degrades the dialog
towards a system driven approach. While the underlying text-based system

1http://telenor.com/no/innovasjon/
2http://www.sintef.no/home/Information-and-Communication-Technology-ICT/

http://telenor.com/no/innovasjon/
http://www.sintef.no/home/Information-and-Communication-Technology-ICT/

i
i

“Disp” — 2012/6/17 — 19:33 — page 18 — #38 i
i

i
i

i
i

18 The Nora Client

Main ProgramTTS-Server Dialogue Server

TabuLib ISDN Telephony
InterfaceHAPI ASR

LAN TCP/IP
Connection

Text

Speech Text

Windows Linux

Speech

"Når går.."

Figure 3.1: The server architecture of BUSTER.

(BusTUC) deals with a wide scope of questions, the speech based version has a
grammar that limits the question to only consider how to come from one place
to another at a specific day and time. Figure 3.1 shows an overview of the server
architecture BUSTER makes use of.
The server architecture is of modular design. The various modules are running
on different computers, based on both Linux and Windows. The communi-
cation between the three top modules (main program, dialog server and TTS
server) is performed over a TCP/IP connection using sockets3.

The main program module is written in the Python4 programming language.
It communicates with the Tabulib program library that handles speech detection
and the ISDN5 telephony interface [17]. It is also integrated with the HAPI
automatic speech recognizer (ASR) [26]. The main program runs on a Linux
server with a Debian6 operating system (version 3.1), and with CAPI7 installed.

3http://www.troubleshooters.com/codecorn/sockets/
4www.python.org/
5http://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
6http://www.debian.org/
7http://www.capi.org/

http://www.troubleshooters.com/codecorn/sockets/
www.python.org/
http://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
http://www.debian.org/
http://www.capi.org/

i
i

“Disp” — 2012/6/17 — 19:33 — page 19 — #39 i
i

i
i

i
i

Methods 19

An active ISDN telephony card8 is used. The main program makes a semantic
analysis of the text provided by the speech recognizer in order to make sure
that only meaningful sentences are passed on to the dialog handling system
(on the dialog server). Depending on the type of utterance that is received by
the recognizer, it is either sent to the dialog server for further computing or
handled locally in the main program to create a textual response to be sent to
the TTS module for speech synthesis.

The dialog server is a module written in Python. It receives text input from
the main program and sends it to the dialog handling system, which is written
in Sicstus Prolog9 (version 3.11). The dialog handling system does some text
filtering before the response is sent back to the main program.

The TTS server is a module written in the C++ programming language10 and
it supports the TTS engines that are SAPI4 compatible. The speech engine cur-
rently used is the commercially available Lernout & Hauspie (L&H) Telecom
RealSpeak SAPI4 (version 3.11) Release 6 from Nuance11, with the Norwegian
voice (speech engine) of Nora. This TTS solution will from now on be referred
to as Nora. The server runs on a Windows XP machine. It has a socket inter-
face for the TTS engine that listens for text input and responds with complete
synthesized speech audio data. This audio is then forwarded to the telephony
interface for user response.

3.1.2 Client Prototype

The Nora Client is written in the Java programming language on the Android
platform for smartphones [4]. The platform is chosen because the main target
for this application is the TABuss prototype, which is an application for An-
droid. The client works by receiving the text string to be synthesized as input.
It opens up a socket connection to the TTS server and provides it with the text
string. The TTS server answers with raw audio data. The client retrieves this
data and stores it temporarily in a byte array. It adds a file header for the data
and stores the resulting audio file, making it ready for playback on the An-
droid smartphone device. Any Android applications may consequently use the
Android media player12 or similar software to play the audio file. Figure 3.2
depicts how the Nora Client works.

8ISDN card AVMB1PCI, see http://www.avm.de/en/Produkte/Server-Produkte/B1_PCI/

index.html.
9www.sics.se/sicstus/

10http://en.wikipedia.org/wiki/C%2B%2B
11http://www.nuance.com/
12http://developer.android.com/reference/android/media/MediaPlayer.html

 http://www.avm.de/en/Produkte/Server-Produkte/B1_PCI/index.html.
 http://www.avm.de/en/Produkte/Server-Produkte/B1_PCI/index.html.
www.sics.se/sicstus/
http://en.wikipedia.org/wiki/C%2B%2B
http://www.nuance.com/
http://developer.android.com/reference/android/media/MediaPlayer.html

i
i

“Disp” — 2012/6/17 — 19:33 — page 20 — #40 i
i

i
i

i
i

20 The Nora Client

TTS Server

"Bus 3 passes by Studentersamfundet at
6.20 pm, at 6.50 pm and at 7.20 pm and
arrives at Lade kirke, 21 minutes later."

Text

Synthesized speech

Raw audio data of
synthesized speech

1001
0100
1011
0111

Smartphone with
Nora Client installed

Raw audio data

Wave file format
header

Stored Wave file
ready for playback

1 2

3

Figure 3.2: The Nora Client prototype.
Step 1: The smartphone sends a text string to the TTS server.
Step 2: The TTS server responds with raw audio data of synthesized speech.
Step 3: The client adds a Wave file header, merges it with the raw audio data
and stores the resulting file so it is ready for playback.

i
i

“Disp” — 2012/6/17 — 19:33 — page 21 — #41 i
i

i
i

i
i

Methods 21

The output of the BUSTER TTS module, the voice of Nora, comes in the form
of 8-bit ITU-T13 G.71114 A-law (.al) speech files. This is raw audio data (bit
streams) compressed with an algorithm commonly used in European digital
communication systems (telephones mostly) to optimize the dynamic range of
an analog signal for digitization15. The encoding process breaks the linear au-
dio data into segments. Each progressively higher segment doubles in size.
This makes sure that the lowest amplitude signals, where most of the speech
information is located, get the highest bit resolution. This is while still allowing
enough dynamic range to encode high amplitude signals. The resulting effect
is to increases the coding efficiency and give a signal-to-distortion ratio that is
superior to that obtained by linear encoding [6]. This method does not provide
a very high compression ratio. The A-law compressed files roughly have half
the file size. They do not require much processing power to decode though.

Since the output comes in raw data form, it needs to be put in a file format
that is directly playable by the Android media player. The Wave16 file format is
compatible17. It is a Microsoft and IBM audio file format standard and is very
convenient since it is widely supported by most media players and audio tools
on many operating system. In order to make the A-law data into a valid Wave
file format, one needs to implement a Wave file header. Figure 3.3 shows what
the header used for the Nora Client looks like.

3.1.3 Extending Nora with Java Servlet Technology

The Nora Servlet is a server set up as an interface between the smartphone and
the TTS server. It is implemented in such a way that it should do all the work
that the Nora Client does. Actually, it integrates the Nora Client directly. In
addition, it provides compression capabilities in order to conserve the amount
of data that has to be sent to the smartphone.

Java Servlet Technology

The server technology used is Java Servlet18, developed by Sun Microsystems
in 1997. The Java Servlet technology is now at version 3.0 and has been around
for over a decade. It is a well tested and documented technology. With Java

13http://www.itu.int/ITU-T/
14http://en.wikipedia.org/wiki/G.711
15http://www.digitalpreservation.gov/formats/fdd/fdd000038.shtml
16http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
17http://developer.android.com/guide/appendix/media-formats.html
18http://www.oracle.com/technetwork/java/javaee/servlet/index.html

http://www.itu.int/ITU-T/
http://en.wikipedia.org/wiki/G.711
http://www.digitalpreservation.gov/formats/fdd/fdd000038.shtml
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
http://developer.android.com/guide/appendix/media-formats.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

i
i

“Disp” — 2012/6/17 — 19:33 — page 22 — #42 i
i

i
i

i
i

22 The Nora Client

A-law data

ChunkID: "RIFF"

ChunkSize: variable

Subchunk1ID: "fmt"

Format: "WAVE"

NumChannels: 1

Subchunk1 Size: 16

AudioFormat: 6 (A-law)

The "RIFF" chunk descriptor

SampleRate: 8000

ByteRate: 8000

Subchunk2ID: "data"

BlockAlign: 1

BitsPerSample: 8

Subchunk2 Size: variable

The "Wave" format require the
two sub chunks "fmt" and "data".

The "fmt" sub chunk

Describes the format of the audio data
in the "data" sub chunk.

The "data" sub chunk

Gives information of the audio
data size and contains the actual

raw audio data.

File offset
(bytes)

0

4

8

12

16

20

22

24

28

32

36

40

44

34

Field Size
(bytes)

4

4

4

4

4

4

4

4

4

2

2

2

2

S
ub

ch
un

k2
 S

iz
e

Field name

Figure 3.3: The Wave file format header, used for the audio data received by the
Nora Client. The Wave file format is a subset of Microsoft’s RIFF specification
for the storage of multimedia files. A RIFF file starts out with a file header fol-
lowed by a sequence of data chunks. A Wave file is just a RIFF file with a single
"Wave" chunk which consists of two sub chunks: A "fmt " chunk specifying the
data format and a "data" chunk containing the actual audio data. The header
field values show what values should be set in a Wave file format with A-law
audio data.

i
i

“Disp” — 2012/6/17 — 19:33 — page 23 — #43 i
i

i
i

i
i

Methods 23

Servlets, business logic can easily be written in Java and then be made avail-
able to consumers through Java Servlets [27]. A Java Servlet can be published
through any available Java Servlet container, which makes it very portable. A
Java Servlet container, also known as a web container, is a component of a web
server that interacts with a Java Servlet and makes the communication between
a Java Servlet and a web client possible. There are many Java Servlet contain-
ers available. Some are commercial and some are not. The best known com-
mercial containers are IBM’s WebSphere19 and SAP’s NetWeaver20. Among the
non-commercial Java Servlet containers are Apache’s Tomcat21 and Glassfish
from Sun Microsystems22. As this was an academical project a non-commercial
server would be needed. The one chosen is called Jetty, from Eclipse Founda-
tion23. It is seen at a rising star in the web community, much because Google
chose to use Jetty technology for their cloud service, Google App Engine24.
What is special about Jetty is that it is made up of pure Java code. As known
Java is very portable [4]. This all facilitates a very portable server solution. Us-
ing a server one can also provide logging functionality, keep track of user statis-
tics, counteract abuse (such as DDOS25).

Nora Servlet Client

Before the string to be synthesized is sent to the Nora Servlet, it is first encoded
to UTF-8 to avoid errors of various kind, e.g. whitespace issues. A query is sent
to the Nora Servlet as a HTTP GET and parameter data is sent through the URL.
Then the client receives the audio data. A typical query to the server looks like
this (the UTF-8 encoding will replace the whitespaces with %):

http://vm-6114.idi.ntnu.no:9007/NoraServlet/NoraServlet?text=Bus 8 passes
by Torget at 5.58 am and at 6.18 am and arrives at Ila, 11 minutes later.

Nora Servlet

The Nora Servlet has capabilities of tailoring the output from the TTS server in
different ways. For instance, it can compress the output (the synthesized speech
audio data) further to conserve data transfer from the server to the smartphone

19www.ibm.com/software/websphere/
20http://www.sap.com/platform/netweaver/index.epx
21http://tomcat.apache.org/
22http://glassfish.java.net/
23http://www.eclipse.org/jetty/
24http://code.google.com/intl/no/appengine/
25http://en.wikipedia.org/wiki/Denial-of-service_attack

www.ibm.com/software/websphere/
http://www.sap.com/platform/netweaver/index.epx
http://tomcat.apache.org/
http://glassfish.java.net/
http://www.eclipse.org/jetty/
http://code.google.com/intl/no/appengine/
http://en.wikipedia.org/wiki/Denial-of-service_attack

i
i

“Disp” — 2012/6/17 — 19:33 — page 24 — #44 i
i

i
i

i
i

24 The Nora Client

device. Keeping down the data transfer size is not only important to shorten the
response time of TTS requests, but also because the communication cost will be
reduced on network connections that are typically charged on a per byte basis.

Audio codecs that perform compression and decompression, and digital sig-
nal processing (DSP), are commonly used in voice communications. They can
be configured to conserve bandwidth. However, there is a trade-off between
voice quality and bandwidth conservation. The best codecs provide the most
bandwidth conservation while producing the least degradation of voice quality.
Bandwidth can be measured quantitatively, but voice quality requires human
interpretation, although estimates of voice quality can be made by automatic
test systems such as Perceptual Evaluation of Speech Quality (PESQ). PESQ is a
widely used perceptual measurement method for voice quality in telecommu-
nications [28]. It was developed by OPTICOM GmbH in Germany and forms
the basis of ITU-T Recommendation P.862. PESQ is designed for testing voice
quality on low bandwidth devices such as telephones, smartphones and hands-
free devices. Mean Opinion Score (MOS) results from PESQ achieve a very high
correlation with results obtainable using human subjects in a way that is faster,
more repeatable, less expensive, and fully automated [33].

With today’s compressing codecs, we can compress the output audio data of
the TTS server further (than A-law) without significant quality loss. Codecs de-
signed for speech compression, like Speex26, are optimal. However, Android
does not support these27. MP3 and Ogg Vorbis (that are supported) are there-
fore used as compression codecs on the Nora Servlet for testing purposes. Using
PESQ to determine which audio codec is optimal is not done in this thesis, but
is described in Section 6.1.1.

When a HTTP GET has been sent to the Nora Servlet from the Nora Servlet
Client with a text string, the Nora Servlet contacts the TTS server (similarly
to the Nora Client) and receives the raw audio data. The raw data is then fit
with a Wave header such as the one previously mentioned for the Nora Client.
The audio data is then uncompressed (still in Wave format) using an A-law de-
compression lookup table28 in order to arrange the data for compression. The
uncompressed data is consequently compressed using either MP3 or Ogg Vor-
bis (or Speex) and sent to the smartphone for playback. The codecs used are
LAME MP3 encoder and oggenc2 Ogg Vorbis encoder from rarewares29. These
are open source-based binaries. These codecs have quality settings (ranging

26http://www.speex.org/
27http://developer.android.com/guide/appendix/media-formats.html
28http://www.threejacks.com/?q=node/176
29http://www.rarewares.org

http://developer.android.com/guide/appendix/media-formats.html
http://www.threejacks.com/?q=node/176
http://www.rarewares.org

i
i

“Disp” — 2012/6/17 — 19:33 — page 25 — #45 i
i

i
i

i
i

Methods 25

from 0-9) that tell the codec to either focus on preserving the best sound quality
or to focus on minimizing file size.

i
i

“Disp” — 2012/6/17 — 19:33 — page 26 — #46 i
i

i
i

i
i

26 The Nora Client

TTS Server

"Bus 3 passes by Studentersamfundet at
6.20 pm, at 6.50 pm and at 7.20 pm and
arrives at Lade kirke, 21 minutes later."

Text

Synthesized speech

Raw audio data of
synthesized speech

1001
0100
1011
0111

Smartphone with the Nora
Servlet Client installed

Stored Audio
file ready for

playback

Raw audio data

Wave file
format header

Wave file

Audio file ready for
playback

Nora Servlet

MP3

Further compressionImplement
Wave header

Ogg v. Speex

Wave file (A-law
compressed)

Wave file uncompressed

Decompress file
using lookup table

MP3
compressed

file

Ogg Vorbis
compressed file

Speex
compressed

file

1

"Bus 3 passes by Studentersamfundet at
6.20 pm, at 6.50 pm and at 7.20 pm and
arrives at Lade kirke, 21 minutes later."

Text

2 3

4

5

6

Figure 3.4: The Nora Servlet prototype.
Step 1: The smartphone sends an UTF-8 encoded text string to the Nora Servlet.
Step 2: The text string is simply forwarded to the TTS server.
Step 3: The TTS server responds with raw audio data of synthesized speech.
Step 4: The Nora Servlet implements a Wave file header and merges it with the
raw audio data. It is then uncompressed and compressed in another audio file
format (MP3, Ogg Vorbis or Speex).
Step 5: The resulting compressed audio file is sent back to the smartphone.
Step 6: The audio file is stored and ready for playback.

i
i

“Disp” — 2012/6/17 — 19:33 — page 27 — #47 i
i

i
i

i
i

Methods 27

3.2 Physical Server Setup

There are two physical servers used in this thesis. They are busstjener.idi.ntnu.no
and orwell.idi.ntnu.no. The server busstjener.idi.ntnu.no has the Nora Servlet
installed and orwell.idi.ntnu.no provides the TTS service. All results are pro-
duced using these servers. In tables 3.1 and 3.2 the specifications of the servers
are given.

Attribute Value
CPU 2x 5.2 GHz, VMware shared pool 30

Memory 4 GB dedicated
OS Ubuntu 11.04 (GNU/Linux 2.6.38-8-server x86_64)

Table 3.1: Server information for busstjener.idi.ntnu.no.

Attribute Value
CPU Pentium 4, 3.0 GHz
Memory 2 GB dedicated
OS Windows XP Professional Version 2002, Service Pack 3

Table 3.2: Server information for orwell.idi.ntnu.no.

3.3 The Test Application

The Android test application was created for the purpose of testing the three
different TTS modules, iSpeech, Nora and Nuance. Similar to the Nora Client it
was written in Java. Both the Nora Client and Nora Servlet Client are integrated
in this application. iSpeech and Nuance are implemented by the use of their
corresponding SDKs (see Section 2.5).

Figure 3.5:a shows the home screen of the test application. From here, the
user can navigate either to Test Environment 1 by tapping the "TTS" button or
Test Environment 2 by tapping the "Test" button".

Figure 3.5:b depicts Test Environment 1. It provides tools for testing specific
speech synthesis modules. At the top there is a text field where the users can
type in any text they want to use as input for any of the modules. The users
may also click the "Next" button to scroll through a list of 1400 bus stops in

i
i

“Disp” — 2012/6/17 — 19:33 — page 28 — #48 i
i

i
i

i
i

28 Standardizing Server Communication

Figure 3.5: The prototype test application used for gathering the evaluation
data. Screenshots: (a) Home menu, (b) Test Environment 1 and (c) Test Envi-
ronment 2.

Trondheim and place one in the text field (replacing any text already present).
If the users then click on any of the speech synthesis modules (iSpeech, Nora,
Nora through a Java Servlet or Nuance) the module will synthesize the current
text string in the text field and the smartphone will play it through the speaker.

Figure 3.5:c depicts Test Environment 2. The "Random" button gives synthe-
sized speech by choosing a random speech synthesize module (iSpeech, Nora
or Nuance) and providing it with a random bus stop from the bus stop list as
text string input. The "Info" button is created for the test examiner in mind. It
will present information about what module and text string was used in the pre-
vious use of the "Random" button functionality. The "Repeat" button will replay
the previous synthesized speech. The "Dragvoll" button at the bottom will play
the bus stop name "Dragvoll" synthesized with the Nora module (once with the
default pronunciation of the word and once where the pronunciation has been
tampered with. See Section 3.6).

3.4 Standardizing Server Communication

The BusTUC system gives answers to bus route information queries in textual
format. Both MultiBRIS and TABuss applications already uses for this purpose
[2, 21]. As mentioned earlier, BusTUC is written in Prolog. Since BusTUC is

i
i

“Disp” — 2012/6/17 — 19:33 — page 29 — #49 i
i

i
i

i
i

Methods 29

being used as an underlying system for many systems regarding bus route
queries, it should give output data that is easy to parse. For developers, this
saves a lot of time during the implementation phase. This was achieved by
altering the Prolog code, formatting the data into JSON as follows:

{
" t r a n s f e r " : " f a l s e " ,
" t imese t " : " f a l s e " ,
" departures " : [

{
" busstopname " : " Studentersamfundet " ,
" busstopnumber " : 16011476 ,
" busnumber " : 92 ,
" time " : 523 ,
" durat ion " : 3 ,
" d e s t i n a t i o n " : " Sentrumsterminalen "

} ,
{

" busstopname " : " Studentersamfundet " ,
" busstopnumber " : 16011476 ,
" busnumber " : 94 ,
" time " : 527 ,
" durat ion " : 3 ,
" d e s t i n a t i o n " : " Sentrumsterminalen "

} ,
{

" busstopname " : " Studentersamfundet " ,
" busstopnumber " : 16011476 ,
" busnumber " : 8 ,
" time " : 555 ,
" durat ion " : 3 ,
" d e s t i n a t i o n " : " Sentrumsterminalen "

}
]

}

Listing 3.1: Bus route answers in the JSON format.

i
i

“Disp” — 2012/6/17 — 19:33 — page 30 — #50 i
i

i
i

i
i

30 Character Encoding (UTF-8)

3.5 Character Encoding (UTF-8)

A character encoding system assigns a computer-internal representation (e.g.
a number) to every character of an alphabet. Web pages can use a variety of
different character encodings, like ASCII, Latin-1, Windows 1252 or Unicode.
Most encodings today can only represent a few languages, but Unicode can
represent thousands: from Arabic to Chinese to Norwegian.

Unicode Transformation Format (UTF-8) is a character encoding that can
represent every character in the Unicode character set, which is a computing
industry standard for representation and handling of text expressed in most of
the world’s writing systems. It is designed for backward compatibility with
ASCII and to avoid the complications with UTF-16 and UTF-32. UTF-8 can also
be used in programming languages and compilers that are not designed for
Unicode. UTF-8 has become the dominant character encoding for the World
Wide Web. It is the one of the standards that are included in HTML and XML
documents and accounts for more than half of all web pages31. Google uses
Unicode as the internal format for all the text they search (any other decoding
is first converted to Unicode for processing).

FUIROS systems (like BusTUC) and documentation are written in both Nor-
wegian and English. However, bus route information needs to be presented in
either in Norwegian or English. This causes problems with character encoding
systems that do not fully support both languages. Due to the large amount of
characters UTF-8 can represent, including the Norwegian-specific characters æ,
ø and å, it is a standard that should be used in all of FUIROS systems to avoid
such issues.

In the Prolog code of BusTUC, adding an UTF-8 header to all the files solves
the problem. The Eclipse32 Integrated Development Environment (IDE) pro-
vides functionality to add a Prolog header, which is UTF-8 specified, to the
source code files. It looks like this:

/* -*- Mode:Prolog; coding:utf-8; -*- */

In order to make every Prolog file UTF-8 compatible, 75 files needed to be man-
ually set with this as header. Unfortunately this caused the æ, ø and å characters
in the code to be represented incorrectly, so these also needed to be corrected
manually.

31http://googleblog.blogspot.no/2010/01/unicode-nearing-50-of-web.html
32http://www.eclipse.org/

http://googleblog.blogspot.no/2010/01/unicode-nearing-50-of-web.html
http://www.eclipse.org/

i
i

“Disp” — 2012/6/17 — 19:33 — page 31 — #51 i
i

i
i

i
i

Methods 31

3.6 Pronunciation Optimization

This section describes how to alter pronunciation of bus stop names using the
L&H User Dictionary Editor (UDE), which is a tool that comes bundled with
the L&H Realspeak speech engine mentioned in Section 3.1.

The L&H TTS RealSpeak system, which the Nora voice is based on, supports
user dictionaries. User dictionaries make it possible to customize the output of a
TTS system and the input of an ASR system. It allows the user to specify special
pronunciations for particular words or strings of characters (e.g. abbreviations).
When a user dictionary has been loaded, the TTS system will look up every
word of the input text in the user dictionary. If a word is found in the dictionary,
the TTS system will substitute the pronunciation that has been specified in the
dictionary for the pronunciation that would be generated automatically by the
TTS system.

The L&H User Dictionary Editor is an application designed to create and
edit such user dictionaries. User dictionaries may contain orthographic as well
as phonetic information. The L&H UDE includes two phonetic alphabet sets
that are used to generate phonetic transcriptions: the L&H+ phonetic alphabet
and the International Phonetic Alphabet (IPA)33. If the user selects plain or-
thographic, the destination text of the dictionary entries should be specified in
orthographic spelling. Plain orthographic mode is especially useful if the user
want to add abbreviations to the user’s user dictionary or if you want to define
a "sounds like" string for the source text. The User Dictionary Editor allows you
to listen to how dictionary entries are pronounced, using an L&H TTS engine.
The speech parameters of the TTS system can be set according to your prefer-
ences. The User Dictionary Editor allows you to enter several pronunciations
for a single word and all of them will be recognized by the ASR.

The UDE-tool is well suited for making alterations to bus stop name pro-
nunciation. In this thesis it was used to alter the pronunciation of the bus stop
name "Dragvoll" for testing purposes. This bus stop name was chosen because
the intelligibility and naturalness of its pronunciation were deemed poor by the
author of this thesis. "Dragvoll", with a capital "D", was given new phonetic
values that sounded better:

"dr6AgfOll"

Now it was easy to compare it to the default pronunciation that was given by
the word "dragvoll" (without the capital "D"), making it ready for the evaluation
test in Section 4.2.

33http://en.wikipedia.org/wiki/International_Phonetic_Alphabet

http://en.wikipedia.org/wiki/International_Phonetic_Alphabet

i
i

“Disp” — 2012/6/17 — 19:33 — page 32 — #52 i
i

i
i

i
i

32 The New BusTUC Web Page

3.7 The New BusTUC Web Page

A new web page for BusTUC has been created34. The web page was created by
the use of HTML5 the and jQuery JavaScript library.
The FUIROS project has a big vision to become the ultimate bus route informa-
tion system for the future (hence the name). As for the future part of the vision:
This is a research assignment. The web page written here is a prototype. There-
fore it is important for further development of this prototype that it is created
within standards that can stand the test of time ("future proof"). This does not
only mean functionality, but also that is should be visually pleasing. Renewing
this web page consists of removing old technology such as frames, giving it a
more streamlined look. Also, replacing old PHP-scripts with JavaScript code is
part of this process.

Big software companies like Apple and Adobe both see the potential of the
open standards HTML5, JavaScript and CSS [2]. These technologies are stan-
dards that have been around for many years and are firmly set in the world wide
web. The Web Hypertext Application Technology Working Group (WHATWG)
states that preserving backwards compatibility with browsers designed for ear-
lier versions of HTML is one of the key features of HTML535.

3.7.1 HTML 5

HTML5 is a cooperation between the World Wide Web Consortium (W3C) and
the WHATWG. HTML5 will be the new standard for HTML, XHTML, and the
HTML Document Object Model (DOM). The previous version of HTML (Ver-
sion 4) came in 1999. The web has changed a lot since then and new functional-
ity is needed to give more HTML native support for new functionality. HTML5
is still work in progress. However, some rules for the final HTML5 standards
have been established:

1. The new features should be based on HTML, CSS, DOM, and JavaScript
2. Reduce the need for external plugins (like Flash)
3. Provide better error handling
4. Contain more markup, to replace scripting
5. HTML5 should be device independent
6. The development process should be visible to the public

The new main features in HTML5 are:

1. Canvas element for drawing

34http://busstuc.idi.ntnu.no/
35http://wiki.whatwg.org/wiki/FAQ

http://busstuc.idi.ntnu.no/
http://wiki.whatwg.org/wiki/FAQ

i
i

“Disp” — 2012/6/17 — 19:33 — page 33 — #53 i
i

i
i

i
i

Methods 33

2. Video and audio elements for media playback
3. Better support for local offline storage
4. New content specific elements, like article, footer, header, nav, section
5. New form controls, like calendar, date, time, email, url, search

The most interesting property of HTML5 in the context of this thesis, is that less
code is required for development.

3.7.2 CSS 3

Cascading Style Sheets (CSS) is a style sheet language used to describe the pre-
sentation semantics of a document written in a markup language. CSS is pri-
marily designed to make it easy to style fonts, color and layout for different
parts of an web page.

The new CSS 3 standard differs from the old ones in that it uses modules
that handle different types of styling. These modules are manifested text doc-
uments, and each module adds new capability or extends features defined in
CSS 2 standard. The first CSS 3 draft came already in June 1999, but the the first
W3C recommendation for a CSS 3 module was made in in June 2011. JQuery,
described later in this section, uses CSS 3 for styling purposes.

3.7.3 JavaScript

JavaScript is a prototype-based scripting language that is dynamic, "weakly
typed" and has first-class functions, as explained below. It is a multi-paradigm
language, supporting both object-oriented, imperative and functional program-
ming styles. Prototype-based simply means that one does not use classes. Be-
havior reuse is accomplished through cloning of existing objects which then
serves as prototypes. "Weakly typed" means that JavaScript is not strict on how
different data types are mixed. JavaScript has first-class functions, which means
that it treats functions as first-class objects, and can therefore pass functions as
arguments to other functions.

JavaScript was for a long time seen as the black sheep of the web, but since
the AJAX web development method became popular JavaScript has redeemed
itself. Traditionally JavaScript has only been used on the client sides, but lately
better virtual machines have been developed for it to run on. Hence, JavaScript
is now also on the server side. As one can see from the HTML 5 section above,
JavaScript plays an important role when working with the new HTML stan-
dards. As JavaScript is a scripting language, it makes it possible to move most
of the business logic to the client side of the web-application, if desired.

i
i

“Disp” — 2012/6/17 — 19:33 — page 34 — #54 i
i

i
i

i
i

34 The New BusTUC Web Page

The author of this thesis is primarily a Java developer and does not have
extensive knowledge of coding web pages in HTML. Using the JavaScript ap-
proach, which is very similar to Java in sense of syntax and control, therefore
makes this the best choice for programming language.

3.7.4 jQuery

Several JavaScript frameworks out there that help to ease the pain of making a
graphical user interface. One of these, jQuery36 is a popular alternative and pro-
vides everything needed for the BusTUC web page. jQuery is a fast and concise
JavaScript Library that simplifies HTML document traversing, event handling,
animating, and Ajax interactions for rapid web development. Especially the
handling of Ajax interactions is something that helps tremendously when cre-
ating this particular web page because of the cross domain communication (see
Section 3.7.5).

3.7.5 Same Origin Policy

The same origin policy37 is an important security concept for a number of pro-
gramming languages browser-side, such as JavaScript, and provides a challenge
when developing the web page. The origin term describes resources having
the same application layer protocol, domain name and, in most browsers, port
number. Two resources are considered to be of the same origin if and only if
all the values are exactly the same. The policy allows scripts running on web
pages originating from the same site to access each other’s methods and prop-
erties with no restrictions. For web pages on different sites, however, access is
denied. This is a real concern for the communication between the server and
client developed in this thesis. Data transfers consist of data in both text and
JavaScript Object Notation (JSON) format delivered through AJAX requests.
Regular AJAX-calls are prohibited by the browser and fail to work due to the
same domain policy. Luckily, there are workarounds for this issue. For regular
text data requests, an XMLHttpRequest was used. For JSON data requests, the
JQuery API has a solution to this problem. The solution is called getJSON38.
Instead of using the standard AJAX request, JQuery injects a <script> tag into
the DOM. For example, if the prototype web page in this project wants to load
bus-stop data from http://busDomain.com/stops, the injected script tag might
look something like this:

36http://jquery.com/
37http://www.w3.org/Security/wiki/Same_Origin_Policy
38http://api.jquery.com/jQuery.getJSON/

http://busDomain.com/stops
http://jquery.com/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://api.jquery.com/jQuery.getJSON/

i
i

“Disp” — 2012/6/17 — 19:33 — page 35 — #55 i
i

i
i

i
i

Methods 35

<script src="http://busDomain.com/stops?callback=someCallback"></script>

The browser on the client side then makes a request to that url and includes the
response as if it was any other type of JavaScript include. Because the client
passes a callback in the url above, the busDomain server knows that the client
wants to be notified when the result comes in and that it should call a certain
callback function with the data it sends back as parameters. As long as the
remote server is configured to format the response data accordingly, transfers
are completed successfully.

i
i

“Disp” — 2012/6/17 — 19:33 — page 36 — #56 i
i

i
i

i
i

36 The New BusTUC Web Page

i
i

“Disp” — 2012/6/17 — 19:33 — page 37 — #57 i
i

i
i

i
i

Chapter 4

Results

This chapter presents the research results obtained by use of the methods de-
scribed in chapter 3. The results presented here are then further discussed in
Chapter 5. The measurements for all the tests (except the New BusTUC Web
Page) were done in Trondheim on the Test Application (see Section 3.3) on a
Samsung Galaxy SII.1

4.1 Speech Synthesis Module Evaluation

This section presents the results of the speech synthesis evaluation test. Three
modules were tested: iSpeech, Nora and Nuance. These modules have been
set to their default audio quality setting. The goal of this test was to see which
module gives the most intelligible and natural text-to-speech response. The test
subjects were told to use their own definition of "natural speech" and to keep in
mind Tanner’s definition of "intelligible":

"Speech intelligibility is related to the amount of speech items that is recognized
correctly."[37]

The text input is limited to be bus stop names in order to refine the testing to be
relevant to this thesis’ scope.

The test consists of playing back sound clips of bus stop names to the test
subjects by using random speech synthesis modules. The test subjects were
exposed to the sound clips by holding up the smartphone’s speaker close to
their ear in a regular phone call fashion. The subjects then repeated what they
think they heard before the correct answer was given to them. They were asked
to rate how easy it was to understand what the voice in the sound clips had

1http://www.samsung.com/global/microsite/galaxys2/html/

http://www.samsung.com/global/microsite/galaxys2/html/

i
i

“Disp” — 2012/6/17 — 19:33 — page 38 — #58 i
i

i
i

i
i

38 Speech Synthesis Module Evaluation

said. The rating was done by selecting one of four answer alternatives: "Unin-
telligible", "Very hard to understand" , "A little hard to understand" and "Fully
intelligible". (These answers were transformed into points, ranging from zero
to three.) 20 subjects were asked to listen to and rate 15 sound clips, 5 from each
speech synthesis module. The large amount of tests were performed in order to
achieve statistical significance. The tests were conducted in both low-noise and
high-noise scenarios. The low-noise tests were performed inside, in a closed
group room at the NTNU campus where the background noise could be kept at
a minimum. The high-noise tests were performed in various situations outside;
on buses, in areas of high traffic, in shopping malls and in city parks. The aver-
age score was computed for each module and plotted into the graphs in figures
4.1, 4.2 and 4.3.

The test subjects were also asked after the tests if they had any general com-
ments. This section was only for writing down what the test subjects had on
their mind, anything at all, no matter how relevant to this thesis. The test su-
pervisor was not allowed to hint in any direction.

i
i

“Disp” — 2012/6/17 — 19:33 — page 39 — #59 i
i

i
i

i
i

Results 39

Figure 4.1: The average score for each speech synthesis module in a low-noise
environment. The graph shows the average intelligibility and naturalness score
for the three speech synthesis modules iSpeech, Nora and Nuance. The y-axis
depicts the scores ranging from "Unintelligible/Unnatural" (0) to "Fully intelli-
gible/Natural" (3) (higher is better).

i
i

“Disp” — 2012/6/17 — 19:33 — page 40 — #60 i
i

i
i

i
i

40 Speech Synthesis Module Evaluation

Figure 4.2: The average score for each speech synthesis module in a high-noise
environment. The graph shows the average intelligibility and naturalness score
for the three speech synthesis modules iSpeech, Nora and Nuance. The y-axis
depicts the scores ranging from "Unintelligible/Unnatural" (0) to "Fully intelli-
gible/Natural" (3) (higher is better).

i
i

“Disp” — 2012/6/17 — 19:33 — page 41 — #61 i
i

i
i

i
i

Results 41

Figure 4.3: The total average score for each speech synthesis module in both
low-noise and high-noise environments. The graph shows the average intelli-
gibility and naturalness score for the three speech synthesis modules iSpeech,
Nora and Nuance. The y-axis depicts the scores ranging from "Unintelligi-
ble/Unnatural" (0) to "Fully intelligible/Natural" (3) (higher is better).

i
i

“Disp” — 2012/6/17 — 19:33 — page 42 — #62 i
i

i
i

i
i

42 Pronunciation Optimization

4.2 Pronunciation Optimization

This is a comparison between pronunciations of the bus stop name Dragvoll
before and after using the user dictionary editor to edit the user lexicon as de-
scribed in Section 3.6. The Nora Client module was used with the following text
string (it was made clear to the test subjects that "best" means "most intelligible
and natural" before testing):

Hva høres best ut?.. dragvoll.. Eller.. Dragvoll..

Translated into English:
What sounds the best? dragvoll or Dragvoll?

The bus stop name "dragvoll" has the default pronunciation of the bus stop
name. "Dragvoll", with a capital "D", has been altered by editing the user lex-
icon using the user dictionary editor. Figure 4.4 shows which one of the two
pronunciation the test subjects thought was most intelligible and natural.

Figure 4.4: The result of making use of the User Dictionary Editor on a bus stop
name. The red part is the percentage of people who think the default pronunci-
ation was most intelligible and natural, while the green part is the percentage of
people who think the altered pronunciation was most intelligible and natural.

i
i

“Disp” — 2012/6/17 — 19:33 — page 43 — #63 i
i

i
i

i
i

Results 43

4.3 Response Time

This section displays the results from the response time comparison between the
TTS modules. The comparison consisted of measuring how long it took from
the text string was sent until playback of the received audio clip was initiated.
The WiFi test was performed close to a DLINK DIR-8252 access point, giving In-
ternet access through a 2.4GHz WiFi-network with 70Mbit/10Mbit bandwidth
delivered from Canal Digital3. The Mobile network test was performed outdoors
connected to a mobile network (HSDPA4) provided by Netcom5, giving a maxi-
mum theoretical bandwidth of 14Mbit. The test alternated between the modules
to ensure that the modules operated under the same conditions. The text string
for input was an imagined, typical bus route response:

Du kan ta bussen fra Munkegata til Lade Kirke klokken 16.07.

Figure 4.5 shows the average response time for each speech synthesis module.

The next test consists of playing back an arbitrary sound clip from each of the
speech synthesis modules with their corresponding average response time as
measured in the previous test. The test supervisor held the smartphone up so
that the test subject could see when the button that starts the speech synthesis
was tapped. The test subjects waited for the sound to be played and were asked
if the response time was acceptable. If they answered "Yes", it meant that the
response time would not stop them from using the text-to-speech functionality.
If the answer was "No", it could make them not use it or at least be unsure. Fig-
ure 4.6 shows the response time acceptance for each speech synthesis module.

2http://www.dlink.com/DIR-825
3http://www.canaldigital.no/
4http://en.wikipedia.org/wiki/HSDPA
5https://netcom.no/mobilt-bredband-oversikt-privat

http://www.dlink.com/DIR-825
http://www.canaldigital.no/
http://en.wikipedia.org/wiki/HSDPA
https://netcom.no/mobilt-bredband-oversikt-privat

i
i

“Disp” — 2012/6/17 — 19:33 — page 44 — #64 i
i

i
i

i
i

44 Response Time

Figure 4.5: The average response time for each speech synthesis mod-
ule with either a WiFi or mobile network connection. The numbers
represent the time it takes from the user requests text-to-speech until
the sound clips are ready to be played back on the smartphone (lower
is better).

i
i

“Disp” — 2012/6/17 — 19:33 — page 45 — #65 i
i

i
i

i
i

Results 45

Figure 4.6: The number of test subjects that think the response time for
each of the speech synthesis modules (Nuance, iSpeech and the Nora
Client) are acceptable (higher is better).

4.4 Uptime

During all the tests in this thesis, both iSpeech and Nuance provided a 100 %
uptime. The server providing Nora with synthesis, on the other hand, had to
be restarted several times manually.

i
i

“Disp” — 2012/6/17 — 19:33 — page 46 — #66 i
i

i
i

i
i

46 Data Transfer

4.5 Data Transfer

This section describes the amount of data transfered to the smartphone from
the different speech synthesis modules. The measurements were done using
the Android Application Traffic Monitor6. The Nora Servlet is set to compress
the audio data to MP3 (using the LAME binary), with its quality setting set to
produce the smallest file size (see Section 3.1.3). The text used as input for this
comparison is a typical answer from BusTUC:

Question:
Når går bussen fra Samfundet til Lade?
In English: When does the bus leave from Samfundet to Lade?

Answer:
Buss 94 passerer Studentersamfundet kl. 0527 og kommer til Lade allé 80, 14 min-

utter senere.
In English: Bus 94 passes by Studentersamfundet at 5:27 am and arrives at Lade

allé 80, 14 minutes later.

Figure 4.7: The data traffic between each specific speech synthesis
module and the smartphone for a typical BusTUC answer (lower is
better).

6https://play.google.com/store/apps/details?id=com.radioopt.widget

https://play.google.com/store/apps/details?id=com.radioopt.widget

i
i

“Disp” — 2012/6/17 — 19:33 — page 47 — #67 i
i

i
i

i
i

Results 47

4.6 The New BusTUC Web Page

This section shows images of the new web page created for BusTUC. Figure 4.8
presents the web page design. The frames have been removed and the web
page has the possibility to present the BusTUC answers in both textual and
JSON format. The web page was tested in Google Chrome (version 19.0.1084.56)
and Mozilla Firefox (version 11.0). Figure 4.9 presents the web page giving a
textual response to a bus route query. Figure 4.10 presents the web page giving
a response in form of JSON to a bus route query.

Figure 4.8: The new web page designed for BusTUC.

i
i

“Disp” — 2012/6/17 — 19:33 — page 48 — #68 i
i

i
i

i
i

48 The New BusTUC Web Page

Figure 4.9: The textual response from the new BusTUC web page.

Figure 4.10: The JSON response from the new BusTUC web page.

i
i

“Disp” — 2012/6/17 — 19:33 — page 49 — #69 i
i

i
i

i
i

Chapter 5

Discussion and Conclusion

This chapter will discuss the results. Then a summarized discussion reflects on
how the goals and research questions were answered. Finally, conclusions are
drawn.

5.1 Tests

This section will discuss the results from Chapter 4. Some of the conclusions
in the following texts have been based on the comments the test subjects gave
during the tests. These provided a lot of interesting feedback. Maybe even more
so than the tests themselves.

5.1.1 Speech Synthesis Module Evaluation

It can be seen in all the graphs that the naturalness scores are consistently lower
than the intelligibility scores. This gives reasons to believe that synthesized
speech is not required to be natural in order to be understood. But is natural
speech then needed? Many of the test subjects said that they thought Nuance
was "best", as its speech synthesis sounds more natural and human-like. Others
stated that Nora was most natural and consequently best. There was a general
strong consensus, though, that iSpeech was the "worst", since it sounded more
fragmented, lacked flow and had a "robotlike" quality to it. These responses
suggest that a high level of naturalness is required for synthesized speech in
order to achieve a good user experience.

Both the intelligibility and naturalness categories in this test have four score
alternatives (0,1,2,3) for a bus stop utterance. Given that a test subject has picked
a score for intelligibility for an arbitrary bus stop name utterance, there is a
1 in 4 chance that the test subject will pick the same score for naturalness. If

i
i

“Disp” — 2012/6/17 — 19:33 — page 50 — #70 i
i

i
i

i
i

50 Tests

the test subjects were to pick scores randomly, 75 of 300 bus stop name utter-
ances would be given the same score. In this test, 140 of 300 (~47 %) bus stop
names utterances made the test subjects pick the same score for intelligibility
and naturalness. This is a strong indication that there is at least a link between
intelligibility and naturalness in synthesized speech.

One test subject thought all the modules were natural sounding in general,
even though the test subject did not understand everything. The test subjected
stated that "Some pronunciations sounded more like strong foreign accent than unnat-
ural.". This gives reasons to believe that people have very different definitions
of the word "natural", which has probably had an unfortunate effect on the test,
giving false data.

Looking at the total (which summarizes the low-noise and high-noise graphs)
results, it is apparent that Nuance is better than iSpeech and Nora both in sense
of intelligibility and naturalness. It has high scores for both categories, while
Nora and iSpeech end up with "neutral" scores. Several of the test subjects said
that they had trouble understanding the dialect of Nora. Some even said the
Nora dialect was annoying. It would therefore be reasonable to assume that this
had a negative impact for Nora on the tests. It also indicates that TTS should
have a more neutral dialect in order to reach out to a larger audience. One
reason why iSpeech does not score well could be because it fails to pronounce
Norwegian abbreviations correctly. By observation, it always pronounces each
letter by itself. This is really bad for bus stop names that often have abbrevia-
tions like "St. Olavs Hospital". Another good reason for Nuance’s good scores
may simply be because the technology is newer. The Nora speech engine was
released in 2002 and has been discontinued, while Nuance’s TTS solutions to-
day are still being updated1. iSpeech also continue to update their TTS software,
but is still a bit behind the two other modules in the sense of intelligibility and
naturalness.

The test performed in a high-noise environment shows that all of the TTS
modules suffer from noise, especially iSpeech. iSpeech lost ~0.54 points of intel-
ligibility and ~0.34 points of naturalness, while Nora only lost ~0.14 and ~0.18
compared to the low-noise test. Also, the gap between intelligibility and nat-
uralness for iSpeech seems to dissipate. This probably means that the scores
were so low that it was hard for the test subjects to distinguish between the two
categories.

It is interesting to see that Nora only performs marginally worse in high-
noise environments. The reason for this might be the speed at which words
are uttered. A couple of the test subjects commented that Nuance and iSpeech
sometimes were a bit harder to understand than Nora because they spoke too

1http://www.nuance.com/for-business/by-product/nuance-vocalizer/index.htm

http://www.nuance.com/for-business/by-product/nuance-vocalizer/index.htm

i
i

“Disp” — 2012/6/17 — 19:33 — page 51 — #71 i
i

i
i

i
i

Discussion and Conclusion 51

quickly. The fact that Nora does not suffer in noisy environments could be
linked to the fact that Nora speaks slower and is not that affected by sudden
bursts of noise. Even if words are not heard in their entirety, hearing a few
fragments of the words might give the brain the opportunity to fill in the blanks
and complete the words.

When supervising these tests, it was apparent that some people are more
susceptible to noise than others. One of the test subjects did not even notice
that there were three different voices (modules) in the test. This could be due to
hearing loss, lack of concentration or it could be because the overall quality of
the TTS modules is too low to be understood. Human voices are the worst dis-
traction, so if TTS functionality is used closed to large groups of people, head-
phones or hands-free devices are recommended.

Two test subjects pointed out that knowing the bus stop names prior to the
test makes them much easier to understand. This exposes a weakness of this
evaluation. All test subjects should be unfamiliar with Trondheim and its bus
stop names to give valid results in further studies.

5.1.2 Pronunciation Optimization

Many of the test subjects mentioned that the synthesis modules had very strange
pronunciations of bus stop names. One test subject actually failed at recogniz-
ing the name of the place where the test subject had lived earlier.

In the pronunciation optimization test, 95 % of test subjects thought that the
altered pronunciation sounded more intelligible and natural than the default.
It is safe to assume that having functionality to change pronunciation of words
(like bus stop names) is very helpful in order to improve speech synthesis for a
bus route information system.

5.1.3 Response Time

In the WiFi test, the Nora Client module and Nora Servlet module performed
nearly equally well. With an average response time of 826 ms and 859 ms, they
beat iSpeech (1549 ms) and Nuance (1923 ms) by quite a margin. The 33 ms
difference between Nora Client and Nora Servlet indicates that the extra Java
Servlet layer (with audio compression) leaves no significant negative impact on
performance.

The Nora Client transfers the most data (see Section 5.1.4), but has the fastest
response time of all the tested TTS modules. This could have many explana-
tions. It could be because the cloud services of iSpeech and Nuance needs more
time to process the request (either because the speech synthesis takes longer

i
i

“Disp” — 2012/6/17 — 19:33 — page 52 — #72 i
i

i
i

i
i

52 Tests

or because the request is queued), but it is also possible that the difference is
caused by Internet routing. The Nora TTS server is located in the same city
as where the tests were conducted (Trondheim), while the servers for iSpeech
and Nuance are situated abroad, in Germany and USA respectively. USA is
further away from Trondheim than Germany and has a longer response time.
It is therefore reasonable to assume that the time difference correlates with the
distance between where the TTS servers are located and the smartphone. The
routing theory is strengthened by the fact that iSpeech has a data transfer size
that is twice the size of Nuance. It should therefore had had a slower response
time due to the requirement of more bandwidth, but it does not.

In the Mobile network test, however, all the modules performed similarly
worse. All modules had a response time of ~3700 ms. In environments without
good WiFi access points nearby it does not matter for the user what module is
used in respect to response time. Since the data sent is the same, it gives reasons
to believe that the overhead is lost because of the low bandwidth and high la-
tency from the mobile network access provided by the Internet Service Provider
(ISP). The performance bottleneck is located in the mobile network connection
between the ISP (Netcom) and the smartphone device.

In the Response acceptance test, the Nora Client resulted in having a 100 %
acceptance rate. While test subject thought that Nora’s response time was ac-
ceptable, ~79 % of the test subjects thought that iSpeech was acceptable and
~47 % thought that Nuance was acceptable. The reason why Nora comes out
best in this test is that it has come under a "sweet spot" where perceived respon-
siveness does not make the user experience suffer. Over half of the test subjects
thought Nuance was too slow, indicating that such a system would probably
not gain popularity in the masses if implemented.

During the response time acceptance test an unexpected discovery was made.
As the smartphone was held up in front of the test subject and speech synthe-
sis through iSpeech was initiated, the test subjects noticed that iSpeech had a
loading animation. Many of the test subjected stated that the loading animation
makes longer waiting times bearable since you see that something is happen-
ing (i.e. being processed). Waloszek states: "At the perceptual level, immediate
feedback is mandatory to maintain the relationship of cause and action: To assure users
that a command has been acknowledged" [41]. Stimulating the users by using a
loading animation or progress bar seems to be important for the overall user
experience. This is confirmed by Myers, who performed experiments that in-
dicate that progress bars are important and useful user-interface tools, and that
they enhance the attractiveness and effectiveness of a programs [24]. The fact
that only iSpeech had a loading animation is a weakness in the test and has
most likely skewed the test results in iSpeech’s favor. Further studies should be

i
i

“Disp” — 2012/6/17 — 19:33 — page 53 — #73 i
i

i
i

i
i

Discussion and Conclusion 53

conducted where the users cannot see the screen of the smartphone.

5.1.4 Data Transfer

The results of the data transfer test show that Nuance is far better than iSpeech
and Nora when it comes to data transfer size. Nuance (22.59 KB) has about
half the data size of iSpeech (55.45 KB) and one third of Nora (74.08 KB). This
simply means that Nuance uses a more effective compression algorithm (codec)
for its audio data or that it has a codec quality setting that focuses on produc-
ing the smallest data size possible rather than preserving audio quality. This
could have a major negative impact on audio quality, but since Nuance topped
the tests both in the sense of intelligibility and naturalness (and did not get
any complaints about noise from the test subjects), audio quality seemed just
fine. The Nora Servlet, that used MP3 compression functionality to reduce data
size of the audio data, produced almost just as small data size (22.84 KB). This
showcases that extra functionality such as audio compression can help reduce
the bottleneck presented by the limited bandwidth and the communication cost
on network connections that are charged on a per byte basis. It also shows that
it is possible for Nora to compete with Nuance in the sense of data transfer size.
This does not mean that the quality of audio is the same, though. This must be
tested in another study (see Section 6.1.1).

5.1.5 The New BusTUC Web Page

No user-tests or evaluations have been conducted to determine if the new web
page2 is better than the old one3, but it is not hard to see that the design is tidier
and more streamlined. The new look and feel makes the web page more user-
friendly and visually pleasing, and it is therefore better equipped to meet the
demands of today’s Internet users.

5.2 Discussion

Test subject comments like "Norwegian text-to-speech is exciting!" and "Likes that
the smartphone talks." indicate that there is an interest in such functionality present
in the public, which is encouraging for future development and use of TTS tech-
nology.

2http://busstuc.idi.ntnu.no/
3http://www.idi.ntnu.no/~tagore/busstuc/

http://busstuc.idi.ntnu.no/
http://www.idi.ntnu.no/~tagore/busstuc/

i
i

“Disp” — 2012/6/17 — 19:33 — page 54 — #74 i
i

i
i

i
i

54 Discussion

It is hard to decide whether to use a cloud service or not for a TTS func-
tionality. One must decide if the improved speech synthesis (like Nuance’s) is
worth the lack of control. By using in-house systems, like BUSTER, one can
update and tweak the system. By integrating an intermediate Java Servlet to
BUSTER, the system is more flexible since extra functionality (like audio com-
pression algorithms, logging tools, user control and statistics, and security mea-
sures) can easily be added. Also, the Nora speech engine pronunciations can be
edited to gain more intelligibility and naturalness. This feature is not available
in the cloud services (iSpeech and Nuance), leaving the user helpless if, e.g., a
bus stop name is pronounced in an especially incomprehensible way. Since the
Nora Client is written in Java, it is only fit to be installed on Android devices.
By installing the Nora Client on the Nora Servlet (that can handle HTTP GET re-
quests), Nora’s TTS service can be offered to multiple platforms (iOS, Symbian
and basically all platforms that are equipped with an Internet browser) through
web applications on the smartphone [2]. The TaleTUC: Text-to-Speech system
is set up in a university which presents learning and research opportunities be-
cause you have an in-house system to look into.

Cloud providers (like iSpeech and Nuance) do not provide these opportuni-
ties due to their black box approach. In every specific case one must also make
an assessment if it is more expensive to maintain the server infrastructure in-
house or if it is cheaper to just leave it to the cloud providers. One should also
investigate the cloud providers to illuminate any risks related to things such
as reliability in sense of their future prognosis (so that one does not invest in
companies that go bankrupt) and uptime, preferably by a neutral third party. It
should be noted though, that the cloud providers in the tests of this thesis had
a 100 % uptime, while the TTS server that Nora uses had to be restarted several
times. The reason for the instability is that the server has not been tweaked and
tested for commercial use. This is described further in Section 6.1.5.

Nuance’s high performance in the Speech Synthesis Module Evaluation test
would suggest that it is the optimal choice of TTS solution for use in TaleTUC:
Text-to-Speech. However, it is very expensive. iSpeech, on the other hand,
is free, but does not perform well. Nora, with its SAPI approach, is a good
compromise. It does not have the same TTS quality as Nuance (but better than
iSpeech), but it is free, comes with total control, superior response time and
the possibility to improve bus stop name pronunciation. It is simply very well
suited for the domain of bus route information.

i
i

“Disp” — 2012/6/17 — 19:33 — page 55 — #75 i
i

i
i

i
i

Discussion and Conclusion 55

5.3 Conclusion

Speech synthesis has recently emerged as a compelling service to aid in ev-
eryday tasks. Apple’s release of SIRI4 is a good example of a system that has
contributed to the gained popularity. The increase in smartphone sales and
the importance of digital information has already reached such an enormous
level that many companies and even corporations provide information through
smartphone applications. Service providers that want to reach out to as many
users as possible need to create smartphone applications that satisfy people that
do not fall into the "normal user" category. People that require non-visual feed-
back, such as visually impaired persons, need output in form of auditory sig-
nals.

Speech synthesis in Norwegian has matured enough to successfully provide
bus route information. Cloud providers do have the potential to deliver good
TTS services, but with the users’ lack of control it is hard to tailor them to work
well in this domain. Norwegian TTS still needs to improve in both intelligibility
and naturalness. There are many names that are pronounced incorrectly and it
has not reached its full potential. This means that opportunities still exist for
researchers to make contributions in the field and bring significant impact to
the development of such technology.

The following sections answer the research questions defined in the thesis:

5.3.1 Research Question 1

Is it preferable to put the entire system directly on the smartphone, or will a client-server
system be more practical? A client-server system is not only more practical, but
unavoidable. Having the entire TTS system on the smartphone is simply not
feasible if concatenative synthesis (like Nora) is to be used. The recording data
can take up hundreds of megabytes to gigabytes of space. The voice of Nora
(SAPI speech engine) takes 700 MB of space and is too big to be stored on the
smartphone. The client application would be too big to be published on any
"app store" or "app market" (e.g. Google Play). It is therefore a requirement that
the speech is synthesized on demand on a server and then sent to the smart-
phone.

Can cloud-based solutions potentially be used? Using a cloud-based solution can be
viable for the domain of bus route information, but if a quality TTS is needed,
it is very expensive. Also, since there are no means of control the customer is

4http://www.apple.com/iphone/features/siri.html

http://www.apple.com/iphone/features/siri.html

i
i

“Disp” — 2012/6/17 — 19:33 — page 56 — #76 i
i

i
i

i
i

56 Conclusion

stuck with fixed pronunciations.

5.3.2 Research Question 2

What enhancements are likely to make a bus route information system more efficient?
Several enhancements can be done to FUIROS in order for it to become more
efficient and fulfill its vision of becoming the ultimate bus route information of
the future. The visual and technical update to the BusTUC web page have made
it more appealing and will hopefully make it go "viral". Standardizing systems
by consequently using the UTF-8 character encoding will help to mitigate is-
sues concerning different languages. This will help to remove incorrect charac-
ter representation in situations where different systems send text between each
other. Standardizing such textual communication with JSON will also help ease
the development of current or new potential systems.

5.3.3 Research Question 3

Does intelligibility and naturalness in speech coincide? The test results hinted in the
direction that intelligibility and naturalness do coincide, but since no common
definition of naturalness was set prior to the tests, a final conclusion cannot be
drawn.

i
i

“Disp” — 2012/6/17 — 19:33 — page 57 — #77 i
i

i
i

i
i

Chapter 6

Future Work

6.1 Future Enhancements

The following sections describe the future work related to the TTS systems of
the thesis.

6.1.1 Sound Compression

Tests should be conducted that evaluate which codec should be used for com-
pression of speech synthesis audio data.

Both objective and subjective tests can be used to assess sound quality be-
fore and after compression. Subjective tests use human test subjects to measure
how well the sound is perceived by the end-user, which is optimal. This is
expensive and time consuming though, since many subjects are needed to get
statistically significant results. PESQ is an alternative, objective way of mak-
ing these assessments. It uses an algorithm to assess audio degradation that is
highly comparable to subjective tests.

Granda et al. evaluate audio quality in a range of speech codecs using PESQ
[9]. They show that speech encoded with low quality codecs is either unintel-
ligible or requires great effort by the listener to listen to. On the other hand,
speech encoded with medium or high quality codecs was easily understood
and hardly distinguishable, so medium quality codecs, like Speex 5 (Speex with
quality setting 5) is the best compromise between quality and resource require-
ments.

Speex is unfortunately not supported by Android to this date. The test could
therefore be done in such a way that it e.g. measures the PESQ scores of different
codecs (that are supported) at various quality settings and compare them to
Speex 5 to determine which codec should be used and at which quality setting.

i
i

“Disp” — 2012/6/17 — 19:33 — page 58 — #78 i
i

i
i

i
i

58 Future Enhancements

Figure 6.1 shows an imagined graph depicting the results.

Figure 6.1: The Perceptual Evaluation of Sound Quality (PESQ) score for each
quality setting of the audio codecs. Keep in mind that Speex 5 is at constant "5"
quality and is consequently not affected by the x-axis.

i
i

“Disp” — 2012/6/17 — 19:33 — page 59 — #79 i
i

i
i

i
i

Future Work 59

6.1.2 Integrate with TABuss

The Nora Client should be integrated into the TABuss application and tested
extensively by users to see if it is ready for commercial release. Since the Nora
Client is a module that has been implemented for just this purpose, only a few
lines of code is required for the application to start "talking".

6.1.3 Extending the Nora Servlet with more Functionality

The Nora Servlet should be implement functionality like logging, user control
and statistics in order for the the maintainers of FUIROS to have an overview of
how the system is being used. This could help them see trends of user behavior
and plan future development to meet the demands of these trends accordingly.

6.1.4 Merging Servers

Currently, the BUSTER system is spread over several servers (see Section 3.1).
It is desirable to move both the main program and dialog server to Orwell (the
Windows TTS server that hosts the TTS module) so that only one server needs
to be maintained.This should not provide many challenges since all the code
is written in Python or Prolog, which works on Windows platforms. The only
requirements are the availability of Sicstus Prolog and sockets programming for
the platform.

6.1.5 Extensive Testing

It is vital that the stability of the Orwell (the server that hosts the TTS mod-
ule in BUSTER) improves in order for it to be used for commercially available
products. Reliability is key for a successful end-user application. Once in a
while, during the development of the server, errors occurred that could not be
replicated and therefore not fixed. With many systems working together it is
not always easy to pinpoint the exact origin of an error. Therefore it would be
beneficial to conduct extensive testing of the server to try to get rid of as many
bugs as possible. A proper load test should also be conducted to estimate what
hardware specifications is needed in relation to concurrent queries for synthe-
sized speech. Extensive testing should also be conducted on the Nora Client
prototype in order to reveal weaknesses and fix them.

i
i

“Disp” — 2012/6/17 — 19:33 — page 60 — #80 i
i

i
i

i
i

60 Future Enhancements

6.1.6 Improve Bus Stop Pronounciation

The pronunciation of active bus stop’s names in Trondheim should be assessed.
Those that have low intelligibility and/or naturalness should be edited with
the User Dictionary Editor (see Section 3.6) in making them more intelligible
and natural.

6.1.7 Update To New SAPI Speech Engine

The Nora speech engine is beginning to get quite old (released 2002) and at
one point it should be updated to achieve even higher levels of intelligibility
and naturalness. There exists newer1 speech engines in Norwegian for SAPI.
The problem with installing these is that they require newer versions of SAPI
to function (the current version of SAPI is 5.4). SAPI5 was a complete redesign
from previous versions and neither engines nor applications which used older
versions of SAPI could use the new version without considerable modification.
Installing SAPI5 will, in turn, require an update to the server program (that
provides the synthesized speech) on the TTS server (BUSTER). There should be
made an effort in finding a speech engine that speaks in a more neutral dialect
than Nora (like the eastern-Norwegian dialect that Nuance uses) in order to
satisfy a bigger audience. Also, when installing these new speech engines, the
documentation for these should be checked so no copyright claims are violated
if TaleTUC: Text-to-Speech should ever be commercialized.

6.1.8 Nora Parameters

The Nora speech engine has settings (pitch, speed (words/min) and volume)
that tailor the synthesized speech output of the TTS server. Currently, these
must be set prior to server startup. Preferably, these could be set on every
speech synthesis request. Also, the Nora Servlet should be able to switch be-
tween file formats and compression codecs and quality. All of these things can
be achieved by reworking the code for the TTS server and Nora Servlet such
that they take input parameters along with the text to be synthesized.

6.1.9 BusTUC Tram

The BusTUC system has fundamental functionality to provide tram route infor-
mation in Trondheim. The Prolog code for this functionality is not up to date
and does not to this date function together with the bus route information parts

1E.g. Hulda: http://www.microsoft.com/en-us/download/details.aspx?id=3971

http://www.microsoft.com/en-us/download/details.aspx?id=3971

i
i

“Disp” — 2012/6/17 — 19:33 — page 61 — #81 i
i

i
i

i
i

Future Work 61

of the system. This issue should be investigated and fixed so tram users may
make use of this service.

6.2 FUIROS and FUIROS Related Technologies

The following sections describe the future work for FUIROS in general, TABuss,
MultiBRIS and BusTUC.

6.2.1 Geographical Expansion of FUIROS and Standards

An idea for future work for FUIROS is to add support for other cities in Norway,
and use a single system to provide public transportation information for the
entire country. Then, a single client application could access route information
based on the mobile device’s location.

A challenge for an effective expansion is the need for standards. It would aid
the development if all of the bus agencies in Norway used the same standards
for sharing routes and real-time data. Norway’s largest bus agency, Trafikan-
ten AS2, already uses such a standard. This standard, which is called SIRI3, is
used for the distribution of real-time data. It is an XML protocol that allows dis-
tributed computers to exchange real-time information about public transport
services and vehicles.

Through a JSON-API Trafikanten AS has made the StopMonitoring part of
SIRI available for public use. The Stop Monitoring section is described by the
SIRI standard as follows:

The Stop Timetable (ST) and Stop Monitoring services (SM) provide
stop-centric information about current and forthcoming vehicle arrivals
and departures at a nominated stop or Monitoring Point, typically for de-
partures within the next 20-60 minutes for display to the public. The SM
service is suited in particular for providing departure boards on all forms of
device4.

SIRI is already in use by Trafikanten and therefore represents a good example of
what could be a national standard for sharing real-time public transport infor-
mation. For the notion of a single system, implementing the Siri standard could
be the first step towards achieving this.

2www.ruter.no
3http://www.kizoom.com/standards/siri/
4http://www.kizoom.com/standards/siri/documentation.htm

www.ruter.no
http://www.kizoom.com/standards/siri/
http://www.kizoom.com/standards/siri/documentation.htm

i
i

“Disp” — 2012/6/17 — 19:33 — page 62 — #82 i
i

i
i

i
i

62 FUIROS and FUIROS Related Technologies

However, the major challenge for such standards is probably not techni-
cal, but rather political and financial. An approach that avoids the distributed
standardization challenge could be constructed by absorbing the existing trans-
portation agency systems one-by-one. This system would effectually become
the mediation layer that creates the standard, seen from an application devel-
oper’s point-of-view. This would also increase the amount of work needed to
expand the system substantially, compared to expanding a system based on
standards. The advantage of this approach would be that such a system could
establish a position of power in relation to public transport data sharing. It
is reasonable to believe that a system that has a standard way to communi-
cate route data for an entire country would become vastly popular in the de-
velopment community. By providing the "back-end" to "front-end" mediation
layer for the majority of available public transportation client-applications, one
would be in a position of power. This is an advantage that could be used to
encourage the use of standards such as SIRI, among the public transportation
agencies.

6.2.2 TABuss

The following sections first identify possibilities with the new smartphone tech-
nologies. Future work involving context-awareness is then described. Finally,
suggestions for future extensions to TABuss are provided.

Updated Version on Google Play

With the use of TABuss as a TaleTUC client, an updated version of TABuss has
to be uploaded to Google Play. This should optimally be put on hold until
TaleTUC supports all the bus stops in Trondheim. User testing of the current
prototype can be useful, however, and an imminent release could therefore be
considered.

New Smartphone Technologies

Based on the experiences of Marcussen and Andersstuen with developing the
TaleTUC: ASR client widget, a widget could be created for TABuss [20, 21]. This
could provide information such as real-time passings of buses for the closest
bus stop to the user’s location. Touch events could trigger the widget itself to
provide som information, or trigger the start-up of TABuss.

Another interesting field is Near Field Communication (NFC) [43] and the
use of this technology in mobile applications [34]. A usage in TABuss could be

i
i

“Disp” — 2012/6/17 — 19:33 — page 63 — #83 i
i

i
i

i
i

Future Work 63

to detect Radio Frequency Identification (RFID) [25] tags that have been inte-
grated into every bus stop. When the user is close enough to a bus stop, the
application could trigger the display of the next passing buses. RFID tags inte-
grated into bus stops could also be used for speech synthesis purposes. Visually
impaired people could benefit from a functionality where the system reads out
loud the next passing buses, when they approach a bus stop.

A new implementation that involves AtB, is the purchase of bus tickets. It
is possible to buy tickets through a service provided by AtB, by sending a text
message to 2027 (Norwegian number) and specifying the type of ticket (adult,
child, military, etc). This sending of a text message could be triggered by the
user approaching the bus stop. It should be integrated into already existing
functionalities, to avoid unnecessary sending of text messages. An example
is when the user has performed a query to MultiBRIS and has received route
suggestions. The user could then select the suggestion he or she wants to use,
an action that alerts the RFID reader to start the SMS service when the user
approaches the selected departure bus stop.

Context-Awareness

An extension involving context-awareness for TABuss is to use more sensors
than only the location sensor, which has been done by Raento et al. [30]. Their
system uses four sensors: location, user interaction, communication behaviour
and physical environment. This means that besides location information, their
system monitors: what actions the user performs, calls, text messages and sur-
rounding devices.

For TABuss, this sensor information could be used to introduce context-
awareness to the user interface. The age differences between potential target
users is large, and an adaptive user interface could be a solution. The user in-
terface could through sensors track the user’s actions, register some trends and
then adjust visibility and availability accordingly. An example is to track the
usage of the Automatic Speech Recognition (ASR) and Text-To-Speech (TTS)
modules. If they are often used features, access to them could be made quicker.

The tracking of user trends could also be used to perfect route suggestions.
People of different ages have different levels of mobility and have different
walking speeds. This has been addressed by Vieira et al. [40] in their proposed
system UbiBus. UbiBus considers different people’s and vehicle’s mobility, and
other factors that can affect a bus departure. An interesting idea is for AtB to
contribute to such functionalities in order to improve route suggestions. Buses
have installed cameras could be used to monitor how crowded a bus is. This
could prove beneficial for handicapped people, or people with small children,
who need seats or at least clear floor area.

i
i

“Disp” — 2012/6/17 — 19:33 — page 64 — #84 i
i

i
i

i
i

64 FUIROS and FUIROS Related Technologies

Another suggestion is to use context through calendar information, by moni-
toring scheduled appointments. When an appointment is approaching, the user
could be prompted with a query suggestion. Khalil and Connelly [16] stated
that it is an inevitable fact that people’s actions not always mirror their inten-
tions. Even though an appointment has been scheduled, the user is not guar-
anteed to attend. TABuss queries should therefore not be run automatically in
this case, only a query suggestion should be prompted. Automatic query runs
could cause unnecessary data traffic when the user has chosen not to attend a
scheduled appointment, or has chosen another form of transportation.

A challenge with introducing context-aware extensions is privacy. If such
information is to be stored on a server, a secure login mechanism is necessary.
Marcussen and Andersstuen, in their TaleTUC ASR system, uses the device IDs
of the smartphones to separate users, which is a sufficient solution when non-
sensitive data is stored [20]. To introduce the factors proposed by Raento et al.
[30] will either require that these factors are stored on the device, or that a secure
storage functionality is created server-side. With server-side storage and a login
mechanism, it is important to minimize the user requirements. Users may reject
an application that requires too many involvements, when they want to get a
quick route suggestion.

Future Extensions of TABuss

A future extension could be to integrate TABuss into a tourist application. The
Trondheim Guide5 is an intelligent travel guide which already provides some
bus route information. This information is limited, and no information on ar-
rival/departure times was found during testing. Another alternative is City
Explorer6, which is a framework for city exploration. In relation to TaleTUC,
tourist information could be a domain to extend the ASR functionality to cover.
TABuss as a TaleTUC client with integrated City Explorer functionalites could
then use this.

6.2.3 MultiBRIS

Flinn et al. [8] developed a system that dynamically decides whether to perform
server-side or client-side computations. These decisions are based on monitored
resource usage both on the server and the client. This functionality could be
implemented for MultiBRIS, and prevent delays when the MultiBRIS server is

5www.trondheim.no/app
6http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/

City-Explorer/

www.trondheim.no/app
http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/City-Explorer/
http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/City-Explorer/

i
i

“Disp” — 2012/6/17 — 19:33 — page 65 — #85 i
i

i
i

i
i

Future Work 65

busy, which can be caused by a high traffic load. In those situations, the clients
should do the necessary operations instead of relying on MultiBRIS. Clients
such as TABuss must have functionality that calculates route suggestions, and
allow for queries to be sent to BusTUC and AtB’s real-time system. This puts
extra computational pressure on the client, but facilitates a solution that can
provide route suggestions with and without the involvement of MultiBRIS.

Flinn et al. [8] also describe the idea to let the client learn what is best practise
in the different situations, when taking into account factors such as low battery
power. The client could monitor the resource usage for performed operations
over time, and learn which tasks to compute client-side and which to compute
server-side. Experiences gained after each operation could be stored as cases,
and a Case-based reasoning (CBR) functionality could be used for retrieval [20].

6.2.4 BusTUC

Future work on BusTUC includes the research of other intelligent route infor-
mation solutions. Because BusTUC is the only available candidate in Trond-
heim, there are no systems to compare it with. One specific task would be to
do research on similar systems found outside of Trondheim, and develop com-
parable prototypes. If research shows that BusTUC is the best solution, a goal
could be to establish it as a standard for bus route information in Norway. This
standard, together with the SIRI standard, could then be two of the building
blocks of a common standard for the exchange of transportation information.

Another option is to expand BusTUC and the concept of a natural language
route information system outside of Trondheim to cities of different sizes and
number of inhabitants.

i
i

“Disp” — 2012/6/17 — 19:33 — page 66 — #86 i
i

i
i

i
i

66 FUIROS and FUIROS Related Technologies

i
i

“Disp” — 2012/6/17 — 19:33 — page 67 — #87 i
i

i
i

i
i

Bibliography

[1] T. Amble. BusTUC: a natural language bus route oracle. In Proceedings of the
sixth conference on Applied natural language processing, pages 1–6. Association
for Computational Linguistics, 2000.

[2] Runar Andersstuen and Trond Engell. Multibris: A Multiple-platform
approach to the Ultimate Bus Route Information System for Mobile De-
vices. Technical report, Department of Computer and Information Science,
NTNU, December 2011.

[3] Runar Andersstuen, Trond Engell, Rune Sætre, and Björn Gambäck. A
Multiple Platform Approach to Building a Bus Route Information System
for Mobile Devices. In 12th International Conference on Innovative Internet
Community Systems, June 2012.

[4] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Pearson, 4rd edition, 2005. ISBN 0321349806. URL http:

//www.worldcat.org/isbn/8177587722.

[5] B.J. Brodkin. Gartner: Seven cloud-computing security risks. Infoworld,
pages 2–3, 2008.

[6] Charles W. Brokish and Michele Lewis. A-law and mu-law compand-
ing implementations using the tms320c54x. Infoworld, 1997. URL
http://www.eettaiwan.com/ARTICLES/2001MAY/PDF1/2001MAY02_NTEK_

DSP_AN1135.PDF.

[7] D.J. Calder and D. Phil. The development of synthesized speech systems
for the vocally handicapped. In Singapore ICCS/ISITA’92.’Communications
on the Move’, pages 442–446. IEEE, 1992.

[8] Jason Flinn, Soyoung Park, and M. Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In Proceedings of the
22nd International Conference on. Distributed Computing Systems, pages 217–
226, 2002.

http://www.worldcat.org/isbn/8177587722
http://www.worldcat.org/isbn/8177587722
http://www.eettaiwan.com/ARTICLES/2001MAY/PDF1/2001MAY02_NTEK_DSP_AN1135.PDF
http://www.eettaiwan.com/ARTICLES/2001MAY/PDF1/2001MAY02_NTEK_DSP_AN1135.PDF

i
i

“Disp” — 2012/6/17 — 19:33 — page 68 — #88 i
i

i
i

i
i

68 Bibliography

[9] J.C. Granda, J. Quiroga, D.F. Garcia, and F.J. Suarez. Quality assessment of
speech codecs in synchronous e-learning environments. In Multimedia and
Expo (ICME), 2011 IEEE International Conference on, pages 1–6. IEEE, 2011.

[10] Erik Harborg. Demonstrators in the BRAGE project. Technical report, SIN-
TEF, 2007.

[11] O. Hartvigsen, E. Harborg, T. Amble, and M.H. Johnsen. Marvina - A
Norwegian Speech Centric, Multimodal Visitors Guide. In NODALIDA
2007 Proceedings (The 16th Nordic Conference of Computational Linguistics),
2007.

[12] Brian Hayes. Cloud computing. Communications of the ACM, 51(7), 2008.

[13] Jay Heiser and Mark Nicolett. Assessing the security risks of cloud
computing. 2008. URL http://www.gartner.com/DisplayDocument?id=

685308.

[14] Magne Hallstein Johnsen, Torbjørn Svendsen, Tore Amble, Trym Holter,
and Erik Harborg. TABOR - a Norwegian spoken dialogue sys-
tem for bus travel information. In INTERSPEECH, pages 1049–1052.
ISCA, 2000. URL http://dblp.uni-trier.de/db/conf/interspeech/

interspeech2000.html#JohnsenSAHH00.

[15] M.H. Johnsen, T. Amble, and E. Harborg. A Norwegian Spoken Dialogue
System for Bus Travel Information. Telektronikk (2), 2003.

[16] Ashraf Khalil and Kay Connelly. Improving cell phone awareness by us-
ing calendar information. In Maria Costabile and Fabio Paternò, editors,
Human–Computer Interaction – INTERACT 2005, volume 3585 of Lecture
Notes in Computer Science, pages 588–600. Springer Berlin / Heidelberg,
2005. ISBN 978–3–540–28943–2.

[17] J.E. Knudsen, FT Johansen, J. Rugelbak, and ND Warakagoda. Tabulib 1.4
reference manual. Telenor R&D, (36):2000, 2000.

[18] LF Lamel, JL Gauvain, B. Prouts, C. Bouhier, and R. Boesch. Generation
and synthesis of broadcast messages. In Proc. ESCA-NATO Workshop on
Applications of Speech Technology, pages 207–210, 1993.

[19] J.C. Lee, M.S. Hahn, H.S. Lee, J.W. Yang, and Y. Lee. Text-to speech conver-
sion system for synchronizing between synthesized speech and a moving
picture in a multimedia environment and a method of the same, August 23
2011. US Patent RE42,647.

http://www.gartner.com/DisplayDocument?id=685308
http://www.gartner.com/DisplayDocument?id=685308
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2000.html#JohnsenSAHH00
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2000.html#JohnsenSAHH00

i
i

“Disp” — 2012/6/17 — 19:33 — page 69 — #89 i
i

i
i

i
i

Bibliography 69

[20] Christoffer Marcussen and Runar Andersstuen. Speech-to-text for bus
route information systems. Master’s thesis, Department of Computer and
Information Science, NTNU, June 2012.

[21] Christoffer Marcussen and Lars Moland Eliassen. TABuss: An Intelligent
Smartphone Application. Technical report, Department of Computer and
Information Science, NTNU, December 2011.

[22] Christoffer Marcussen, Lars Eliassen, Rune Sætre, and Björn Gambäck.
Context-Awareness and Real-Time Information in an Intelligent Smart-
phone Application. In 12th International Conference on Innovative Internet
Community Systems, June 2012.

[23] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
http://www.nist.gov/itl/cloud/index.cfm, September 2011.

[24] Brad A. Myers. The importance of percent-done progress indicators for
computer-human interfaces. SIGCHI Bull., 16(4):11–17, April 1985. ISSN
0736-6906. doi: 10.1145/1165385.317459. URL http://doi.acm.org/10.

1145/1165385.317459.

[25] E.W.T. Ngai, Karen K.L. Moon, Frederick J. Riggins, and Candace Y Yi.
RFID research: An academic literature review (1995-2005) and future re-
search directions. International Journal of Production Economics, 112(2):
510 – 520, 2008. ISSN 0925-5273. URL http://www.sciencedirect.com/

science/article/pii/S0925527307001934.

[26] J. Odell, D. Kershaw, D. Ollason, V. Valtchev, and D. Whitehouse. The
HAPI Book V1. 4. Entropic Ltd., Jan, 1999.

[27] Bruce W. Perry. Java Servlet & JSP Cookbook. O’Reilly Media, 1st edition,
December 2003. ISBN 0596005725. URL http://www.amazon.com/exec/

obidos/redirect?tag=citeulike07-20&path=ASIN/0596005725.

[28] Z. Qiao, L. Sun, and E. Ifeachor. Case study of PESQ performance in live
wireless mobile voip environment. In Personal, Indoor and Mobile Radio
Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on,
pages 1–6. IEEE, 2008.

[29] Magnus Raaum. An intelligent smartphone application. Master’s thesis,
NTNU, 2010.

http://www.nist.gov/itl/cloud/index.cfm
http://doi.acm.org/10.1145/1165385.317459
http://doi.acm.org/10.1145/1165385.317459
http://www.sciencedirect.com/science/article/pii/S0925527307001934
http://www.sciencedirect.com/science/article/pii/S0925527307001934
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596005725
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596005725

i
i

“Disp” — 2012/6/17 — 19:33 — page 70 — #90 i
i

i
i

i
i

70 Bibliography

[30] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. Con-
textphone: A prototyping platform for context-aware mobile applica-
tions. IEEE Pervasive Computing, 4:51–59, 2005. ISSN 1536-1268. doi:
http://doi.ieeecomputersociety.org/10.1109/MPRV.2005.29.

[31] A. Raux and M. Eskenazi. Non-native users in the Let’s go!! spoken di-
alogue system: Dealing with linguistic mismatch. In Proceedings of HLT-
NAACL, volume 4, 2004.

[32] A. Raux, B. Langner, D. Bohus, A.W. Black, and M. Eskenazi. Let’s go
public! taking a spoken dialog system to the real world. In Ninth European
Conference on Speech Communication and Technology, 2005.

[33] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra. Perceptual eval-
uation of speech quality (PESQ)-a new method for speech quality assess-
ment of telephone networks and codecs. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference
on, volume 2, pages 749–752. IEEE, 2001.

[34] Miguel Sánchez, Montserrat Mateos, Juan Fraile, and David Pizarro. Touch
Me: A New and Easier Way for Accessibility Using Smartphones and NFC.
In Javier Bajo Pérez, Miguel A. Sánchez, Philippe Mathieu, Juan M. Cor-
chado Rodríguez, Emmanuel Adam, Alfonso Ortega, María N. Moreno,
Elena Navarro, Benjamin Hirsch, Henrique Lopes-Cardoso, and Vicente
Julián, editors, Highlights on Practical Applications of Agents and Multi-Agent
Systems, volume 156 of Advances in Intelligent and Soft Computing, pages
307–314. Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-28761-9.

[35] M. Schröder. Expressive speech synthesis: Past, present, and possible fu-
tures. Affective information processing, 2009.

[36] H. Shi and A. Maier. Speech-enabled windows application using Microsoft
SAPI. International Journal of Computer Science and Network Security, 6(9):33–
37, 2006.

[37] W.P. Tanner. The measurement of speech intelligibility. Technical report,
Michigan University, 1970.

[38] P.J. Tritton. Automatic translation of spanish text to phonetics: Using letter-
to-sound rules. Hispania, 74(2):478–480, 1991.

[39] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer
Communication Review, pages 50–55, 2009.

i
i

“Disp” — 2012/6/17 — 19:33 — page 71 — #91 i
i

i
i

i
i

Bibliography 71

[40] Vaninha Vieira, Luiz Rodrigo Caldas, and Ana Carolina Salgado. To-
wards an ubiquitous and context sensitive public transportation system.
International Conference on Ubi-Media Computing, 0:174–179, 2011. doi:
http://doi.ieeecomputersociety.org/10.1109/U-MEDIA.2011.19.

[41] G. Waloszek. Waiting at the computer: Busy indicators and system
feedback–part 1. SAP User Experience, SAP AG, 2008.

[42] J. Yang, J. Xiao, and M. Ritter. Automatic selection of visemes for image-
based visual speech synthesis. In Multimedia and Expo, 2000. ICME 2000.
2000 IEEE International Conference on, volume 2, pages 1081–1084. IEEE,
2000.

[43] J. Ylinen, M. Koskela, L. Iso-Anttila, and P. Loula. Near field communica-
tion network services. In Digital Society, 2009. ICDS ’09. Third International
Conference on, pages 89 –93, feb. 2009. doi: 10.1109/ICDS.2009.43.

[44] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications, 1(1):
7–18, 2010.

	Title Page
	Abstract
	Sammendrag
	Preface
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Terminology and Abbreviations
	Introduction and Goals
	Task Description
	Motivation
	Research Questions and Goals
	Research Method
	Thesis Structure

	Theory and Background
	Text-To-Speech (TTS) Technology
	Formant Synthesis
	Concatenative Synthesis

	Multi-Modal Output
	Cloud vs Local Computing
	BusTUC
	Existing TTS Solutions for Norwegian
	Microsoft Speech API (SAPI)
	iSpeech
	Nuance
	eSpeak

	Methods
	The Nora Client
	The BUSTER System
	Client Prototype
	Extending Nora with Java Servlet Technology

	Physical Server Setup
	The Test Application
	Standardizing Server Communication
	Character Encoding (UTF-8)
	Pronunciation Optimization
	The New BusTUC Web Page
	HTML 5
	CSS 3
	JavaScript
	jQuery
	Same Origin Policy

	Results
	Speech Synthesis Module Evaluation
	Pronunciation Optimization
	Response Time
	Uptime
	Data Transfer
	The New BusTUC Web Page

	Discussion and Conclusion
	Tests
	Speech Synthesis Module Evaluation
	Pronunciation Optimization
	Response Time
	Data Transfer
	The New BusTUC Web Page

	Discussion
	Conclusion
	Research Question 1
	Research Question 2
	Research Question 3

	Future Work
	Future Enhancements
	Sound Compression
	Integrate with TABuss
	Extending the Nora Servlet with more Functionality
	Merging Servers
	Extensive Testing
	Improve Bus Stop Pronounciation
	Update To New SAPI Speech Engine
	Nora Parameters
	BusTUC Tram

	FUIROS and FUIROS Related Technologies
	Geographical Expansion of FUIROS and Standards
	TABuss
	MultiBRIS
	BusTUC

	Bibliography

