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Abstract

Mobile gaming for smartphones has gained huge popularity in recent years and
has become a big industry. In 2011 Google Play passed 10 billion downloads.
e game Angry Birds alone has been installed on devices more than 50 million
times.

Increased performance of mobile devices means that new development
teniques can be used to make more advanced games. is project presents
a new tenique to develop multiplayer games using a distributed system.

Multiplayer games oen use a client-server aritecture in order to com-
municate. Many games present a shared game universe to the players. Updates
to the game state must be performed consistently, otherwise discrepancies in
the game state may appear to the players.

Mobile devices are unreliable servers for several reasons. First, they use a
Wi-Fi connection that may not be reliable. Second, the devices have limited
amounts of resources. e operating system may need to terminate the server,
e.g., to recover memory for important services su as receiving phone calls.
Lastly, if the person with the server ooses to stop playing, the game cannot
proceed.

A distributed system can prevent unreliable devices from causing failures.
When a device becomes unavailable, all its responsibilities should be trans-
ferred to other devices in the system.

is project presents the distributed system Same for sharing state in mobile
multiplayer games. Same is a peer-to-peer system with a master device that
automatically recovers from failure. When a master fails, the system may enter
an inconsistent state. Recovery is performed by electing a new master that
restores consistency by comparing the state of all the clients in the system.
e system is presented as a general model for sharing state and implemented
for the Android operating system.

Same is evaluated using benmarks and an example application. Updates
are performed consistently and distributed to all the connected devices. Same
is shown to be a viable alternative to a standard client-server aritecture.





Sammendrag

Mobilspill for smarelefoner har bli veldig populært de siste årene, og dee
har bli en stor industri. I 2011 passerte Google Play 10 milliarder nedlastinger.
Spillet Angry Birds har alene mer enn 50 millioner nedlastinger.

Økt ytelse i mobile enheter gjør at nye teknikker kan benyes for å lage mer
avanserte spill. Dee prosjektet presenterer en ny teknikk for å utvikle spill for
flere spillere ved å bruke et distribuert system.

Spill for flere spillere bruker oe en klient-tjener-arkitektur for å kommu-
nisere. Mange spill presenterer et delt spillunivers for spillerene. Oppdateringer
til spillets tilstandmå gjennomføres på en konsistent måte, ellers kan det oppstå
avvik i tilstanden til de forskjellige spillerene.

Mobile enheter er upålitelige tjenere av flere grunner. For det første bruker
de en trådløs wi-fi-tilkobling som kan være upålitelig. For det andre har
enhetene begrensede ressurser. Det kan være nødvendig for operativsystemet å
avslue tjeneren, f.eks. for å frigjøre ressurser til viktige tjenester som å moa
samtaler. For det tredje så kan personen med serveren velge å slue å spille, og
da kan ikke spillet fortsee for resten av spillerene heller.

Et distribuert system kan hindre feil når man har upålitelige enheter. Når
en enhet blir utilgjengelig må alt ansvaret til enheten flyes til en av de andre
enhetene i systemet.

Dee prosjektet presenterer det distribuerte systemet Same for å dele
tilstand i mobile spill for flere spillere. Systemet er basert på en peer-til-peer-
arkitektur med en master som automatisk gjenoppreer normal tilstand når
enheter feiler. Når en enhet feiler kan det oppstå inkonsistens i systemet.
Gjenoppreing skjer ved at en ny master velges. Den nye masteren gjenop-
preer tilstanden ved å kombinere tilstanden til alle klientene i systemet.
Systemet blir presentert som en generell modell for å dele tilstand og som en
implementasjon for operativsystemet Android.

Same blir evaluert med ytelsesmålinger og et eksempelprogram. Oppda-
teringer blir gjort på en konsistent måte og distribuert til alle enheter tilkoblet
systemet. Det blir vist at Same er et mulig alternativ til en standard klient-
tjener-løsning.
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Chapter 1

Introduction and Motivation

Mobile gaming for smartphones has gained huge popularity in recent years and
has become a big industry. In 2011 Google Play passed 10 billion downloads1.
e game Angry Birds has been installed on devices more than 50 million
times2.

As the performance of mobile devices increase, new development te-
niques can be used to make more advanced games. Advances in graphics
tenologies has made it possible to create 3D games on mobile devices.
Increasing amounts of RAM lets us run larger programs with more graphics
content. Widespread mobile internet enables multiplayer games and social
features, su as instantly comparing your high score with friends online.

1.1 Problem Description

Multiplayer games oen use a client-server aritecture in order to communi-
cate. Many games present a shared game universe to the players. Updates to
the game state must be performed consistently, otherwise discrepancies in the
game state may appear to the players.

A common solution to this allenge is to use a client-server aritecture
where one of the devices acts as the server. However, mobile devices are
unreliable servers for several reasons. First, they use a Wi-Fi connection that
may not be reliable. Second, the devices have limited amounts of resources. e
operating system may need to terminate the server, e.g., to recover memory for
important services su as receiving phone calls. Lastly, the person with the

1http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.

html
2https://play.google.com/store/apps/details?id=com.rovio.angrybirds

1

http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
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server may oose to stop playing. If the server becomes unavailable, the game
will fail.

A distributed system can prevent unreliable devices from causing failures.
e responsibility of any device in the distributed systemmust be transferred to
other devices when a device fails. However, implementing a distributed system
is a allenging task because one must take into account different causes of
failure in a concurrent environment.

1.2 Project Goal
e goal of this project is to show that distributed objects can be used to create
reliable real-time multiplayer games for mobile devices. In order to do this,
a distributed shared object model for mobile devices is proposed. e model
is based on a peer-to-peer aritecture where one of the devices acts as a
master. When the master fails, another client takes over and assumes the master
responsibility. e object model consists of a set of Javascript Object Notation
(JSON) values whi are synronized consistently to all the devices of the
network. e suggested object model has been implemented on Android and is
called Same.

With a system that can be used to synronize state with different types
of games, game developers can enjoy the advantages of distributed systems
without needing to develop a specialized system for their games.

1.3 Document Structure
e rest of this apter describes some requirements of our system. Chapter 2
gives baground information on distributed systems and describes related sys-
tems. Chapter 3 describes the aritecture of Same and Chapter 4 contains im-
plementation details and allenges that were encountered. Chapter 5 presents
our experiences when using Same and performance analysis. Conclusions and
further work are presented in Chapter 6.

1.4 Requirements
Developing multiplayer games requires network programming and synro-
nizing state across all devices running the game. Accounting for unreliable
devices is aallenge, because there can be no single trusted server that handles
synronization.
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Can a framework synronize state between devices automatically? e
following properties should be satisfied by su a system:

Localized Aritecture e framework will be used in a single geographical
location by multiple participants. Many existing games use the internet
to communicate via a reliable central server. Instead, this projects targets
devices that are connected to the same local Wi-Fi network.

Low Latency e system should be responsive enough to support synro-
nization of state in real-time multiplayer games. Our goal is a throughput
of at least 25 updates per seconds. is is equivalent to a 40ms update
latency on average.

Scaling e system should scale to a modest number of mobile devices.
Because of the localized aritecture, supporting 10 devices will be
considered sufficient.

Accounting for Unreliable Devices If a device disconnects or otherwise be-
comes unavailable to the remaining devices in the system, the system
should continue to function, possibly removing the lost participant from
the system.

Programming Model e system should offer a programming model that
allows development of several types of games.

Discovery and Connection ere should be an easy way for new devices
to connect to the system without any configuration of the devices or
network equipment.

1.4.1 Trust

Another important feature of the system is some type of security model: Whi
devices should be allowed to join? Who is allowed to read the state or perform
updates?

Without built-in security features, eating can be done by accessing data
that should not be available to the player. For instance, in a card game any one
player should not see the cards of other players. If the game synronizes all
cards to all participants, a player may gain access to another player's cards by
modifying their client.

Unfortunately, the scope of this project is limited. erefore it is assumed
that all the clients in the system are trustworthy.e networks created by Same



4 KJETIL ØRBEKK REQUIREMENTS

are completely open for anybody to join and to inspect all values in the system,
su as the card objects in a card game. Security features are le as future work.



Chapter 2

Distributed Systems Baground

is apter presents baground material for distributed systems and related
systems.

2.1 Properties of Distributed Systems

Although distributed systems are used for many different purposes, e.g.,
databases; file systems and distributed computations, many aspects of their
aritecture and programming model can oen be described using some of the
following properties.

Atomic Transactions Whether a sequence of operations can be performed
atomically by the system, i.e., either none or all the operations are
performed, and no intermediate state may be observed.

Sequential Consistency Whether two operations are guaranteed to be per-
formed in the same order on all nodes. If two writes, w1 and w2 are
performed, these writes must be performed in the same order on all nodes
in a system with sequential consistency.

Fault Tolerant Whether meanisms in the system help recover from failure.
In distributed systems this is implemented with redundant nodes su
that a failing node can be replaced by another node.

Peer-to-Peer Systems without a centralized server are known as peer-to-peer
systems. Any computer in su a system is known as a peer, and all peers
have similar roles.

5
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ese properties are not well defined, because they have different meanings
in different systems. When analyzing distributed systems, one must consider
what terms su as “consistency” means in the context of the system at hand.

e notion of fault tolerance is particularly difficult. Many computer
systems have some level of error handling, but none of them are completely
resistant to all types of errors. For instance, the Paxos algorithm handles
approximately n/2−1 simultaneous failures, where n is the number of devices
in the system. A storage system that uses parity bits in order to provide
redundancy handles only one failure. Both of these system are fault tolerant,
to different extents.

An alternative measure of fault tolerance is availability. Instead of measur-
ing how many errors the system can handle before failing (possibly irrecover-
ably), a system may simply become unavailable when it cannot handle more
errors. Availability is oen aracterized by “number of 9s”, e.g. five 9s means
that the system is available 99.999 percent of the time.

2.2 Master Election

Fault tolerant systems should not have single points of failure. Sometimes
distributed systems have participants with special responsibilities. If su a
component fails, its responsibilities must be transferred to another participant.

A participant with an important responsibility in the system is sometimes
referred to as the master. e process of oosing whi participant should
become the master is called master election.

2.2.1 Bully Algorithm

e Bully Algorithm [1] is a master election algorithm based on an ordering
of the process IDs in the system. When the master fails, a process is allowed
to become the master if it has the highest ID. A master election is shown in
Figure 2.1. e algorithm has the following steps:

1. If process p has the highest process ID, it becomes the master directly
by sending coordinator messages to all processes. Otherwise p starts the
election by sending elect messages to all processes qi > p.

(a) If process qi responds with an answer message, p waits for the
election to finish. If it takes too long, it will restart the election.
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t=0

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

t=1

t=2

t=3

election

election

election
answer

timeout

coordinator

Figure 2.1 – A master electing with the Bully Algorithm. Process p3 has failed, and p2
should become the new master.
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(b) If all qis fail to respond, p assumes that it has the highest ID and
sends a coordinator message to become the master.

2. Any process that receives an elect message responds with an answer
message and starts the process from step 1.

A process that joins the network is allowed to start an election immedi-
ately. If it has the highest process ID it will become the coordinator. is
is why it is called the Bully Algorithm.

It is possible to come up with alternative values instead of process IDs, as
long as the processes can be ordered. For instance, some processes may
have more computing power than others. It may be desirable to have
high-performing master nodes. By ordering the processes by computing
power, the the highest performing node will become the master.

2.2.2 Paxos

Paxos [4] is a more general consensus algorithm, that allows a set of processes
to agree on values. e Paxos algorithm is based on different roles within the
system. A process may be a proposer, acceptor or a learner, or any combination
of these. In this project, all processes implement all of the roles.

e process that wants to establish consensus on a value is called the
proposer.e processes that receive a proposal are called acceptors.e learners
receive values that have been accepted and stores them for use in the system.
A successful iteration of Paxos is shown in Figure 2.2.

e Paxos algorithm is performed as follows. Let N denote the number of
processes in the system.

1. Process p wishes to propose the value v. It sends a proposal to all the
acceptors. e proposal contains an id k, whi is the highest proposal
number p has seen so far.

(a) An acceptorAi respondswith a promise if k is bigger than the largest
proposal Ai has previously seen, say ki. Otherwise it responds with
a rejection containing ki.
If n > N/2 of the acceptors responded with a promise, p proceeds.

(b) Otherwise p retries from 1 with k set to the maximum ki + 1.

2. Aer n > N/2 promises, p sends an accept request with the proposal
number to all the acceptors.
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Proposer Acceptors Learner

propose(1)

promise

accept(1)

accepted

store(1, v)

Figure 2.2 – A successful iteration of the Paxos algorithm with one proposer, three
acceptors and two learners.

(a) An accept request is handled identically to a proposal request by the
acceptors, except that it returns acceptance on success.

If n > N/2 of the acceptors responded with acceptance, p proceeds.

(b) Otherwise, p retries from 1 with k set to the maximum ki + 1.

3. When a value has been accepted, consensus has been established and p
may write the value to the learners.

Master Election with Paxos

In this project, Paxos has been used for master election in the following way: A
participant p tries to establish a consensus with the Paxos algorithmwith id k. If
it succeeds, it may send a broadcast message to all the participants advertising
that p is the new master with number k. If it fails, it tries again aer a timeout.

When a process receives a message that advertises a new master, it aborts
its master election process in order to avoid starting another master.

If unluy timing occurs, the proposal number is used to identify the correct
master. Because ea proposal number is unique, one of the masters have the
highest su number. e clients follow the master with the highest master
number, whi is always the most recently elected master.
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2.3 Peer Discovery
In distributed systems systems one needs a meanism to find other peers in
the system. e procedure of finding other peers in the system to connect to is
known as peer discovery [7].

In client-server aritectures, clients may join the system by connecting
directly to the server. It is not always as easy in peer-to-peer systems because
they la centralized servers. Additional allenges arise when aempting to
handle different types of networks and failure situations. For instance, if only
a single peer is known, it is not possible to join the network if that peer fails.

2.3.1 Static Discovery
A very simple form of peer discovery is to maintain a configuration file
containing the peers of the system. When the system starts, it connects to the
other peers found in its configuration file. is method is suitable for networks
with a constant set of peers, where ea peer has an address that never anges.

2.3.2 Directory Server
A directory server maintains a list of currently available peers. When a peer
needs to join the network it contacts the directory server to get a list of peers to
connect to. If the set of peers frequentlyange, a directory server can maintain
a view of the network. is process is automatic and there is no need to ange
a configuration file when anges occur in the network.

2.3.3 Member Propagation
If a distributed network is very large, maintaining a complete list of all peers
may not be feasible. Instead a partial list of member can be stored. When a peer
needs to join the network, it discovers a subset of the peers of the network. If
a complete peer list is required, the peer can recursively query other peers for
their member lists in order to build a complete view.

2.3.4 UDP Broadcast
If the network is very small and located on a LAN, it is possible to use UDP
broadcast messages for peer discovery. Peers that are connected to the network
listen for broadcast messages on a specified port. When a new peer needs to join
the network it sends a UDP broadcast message to the same port. is notifies
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the peers in the network that a new peer is available. A message will be sent to
the new peer containing information that lets the new peer join.

One may consider UDP as too unreliable to use for communication between
nodes because it has very lile failure handling. During discovery, however, no
harm is done if a discovery paet goes missing: e client will simply retry.

2.4 Multicast

In computer networking, sending the same message to a group of receivers is
known as multicast. Multicast can be implemented in various forms, e.g., in
the networking sta, in the operating system, in the transport libraries or in
soware.

Only soware multicast is described here, because reliable network-level
multicast depends on support and configuration of networking equipment.
Depending on special network setup is not acceptable because most users do
not have the necessary equipment and skills.

2.4.1 Soware Multicast

Reliable multicast can be performed in soware with a TCP connection to ea
client. When the server wishes to send a message, the message is simply sent
to ea client separately.

With a low number of devices, soware multicast is relatively fast.
With a high number of devices, soware multicast will be slower, but may

be performed using other algorithms.

2.4.2 Group Communication

Group communication systems provide reliable messaging in distributed sys-
tems [6]. Su systems utilize different teniques su as network or soware
multicast. When a message cannot be delivered, the group communication
system will aempt to resend it.

A group is defined as a set of processes that send messages to ea other.
When one of the processes sends a message, it is delivered to all the other
processes within the group.
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Spread Toolkit

Spread Toolkit1 is an open source group communication system. It supports
several different semes for message delivery, including multicast and group
communication.

An application uses Spread by communicating with a local Spread server.
is server must be started separately from the application. e Spread API
interacts with the local server, whi in turn sends and receives messages to
other Spread servers.

is is similar to the Android aritecture of the system proposed in this
project: e system runs in a separate process and exposes an Android service.
An Android application interacts with the system using message passing.

Again, because only a low number of devices will be used in this project,
soware multicast should be efficient enough. In a distributed system with
many devices, Spread could be used to simplify the communication between
processes.

2.5 Related Distributed Systems

Many distributed systems for state sharing exist. is is a summary of some
related systems.

2.5.1 Distributed Shared Memory

A distributed shared memory (DSM) is a virtual memory that provides shared
memory semantics to processes in a distributed system [5]. Ea process
has access to reading and writing to the shared memory. Distributed shared
memory may be implemented in the operating system or as a middleware.
A DSM implemented in the operating system level provides implicitly shared
memory to processes, as shown in Figure 2.3. e middleware approa
provides a programming interface to the DSM, in whi a memory unit is
shared explicitly by the programmer. is is shown in Figure 2.4.

Operating System Level DSM

Operating systems handle read andwrite requests to virtual memory addresses.
Ea available virtual address corresponds to a word on a page. A subset of the
pages are mapped into the operating system as space allows.

1hp://www.spread.org
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Application

Operating 
system

Application

Operating 
system

shared
memory

Figure 2.3 – Distributed Shared Memory implemented in the Operating System.

Application

DSM

Application

DSM

shared
memory

Operating 
system

Operating 
system

Figure 2.4 – Distributed Shared Memory implemented as a library used by the
application.
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In a DSM, a page can be wrien to by at most one process at a time,
otherwise inconsistency will arise. When a process runs a read or write
operation, the DSM looks up the address of the process holding the correct
page. e page is unmapped from the process holding it, sent over the network
to the caller process, mapped into the memory of the caller operating system
and then the operation is performed.

A problem with operating system level DSM occurs when unrelated vari-
ables are stored on the same page. If two variables are stored on a single page
and two processes write to the variables, the pagemust be sent over the network
even if the writes are unrelated – a huge decrease in performance.

Middleware Based DSM

Middleware based DSMs provide a programming interface to the distributed
memory. A programmer explicitly declares the variables they want to share.

Memory Model

Middleware based DSMs are not subject to the traditional memory interface
provided by operating systems. Instead, middleware based DSMs provide a
memory model to the application developer and may have different synro-
nization and consistency guarantees than operating systems do. For instance,
a middleware based DSM may share logical objects rather than pages. is
alleviates the problem of synronizing unrelated variables: A shared object
may contain unrelated variables, but it is not as likely.

Error Handling

Memory operations at the operating system level are assumed to always
succeed. erefore, operating system level DSMs have no flexibility when
handling errors. If a program requests a memory location on a page that
is temporarily unavailable, the operating system must either terminate the
program or blo until the node becomes available.

In contrast, middleware based DSMs may expose their error handling to
the application developer. If the memory operation cannot be performed, the
application is allowed to handle the error.

Latency

Memory operations in DSMsmay require network operations, whi are orders
of magnitudes slower than local memory in operations. In cases of high latency,
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an asynronous interface may be preferable to traditional bloing memory
operations.

2.5.2 Linda
Traditional distributed systems may use shared state (e.g. DSM), message
passing or remote procedure calls to communicate between processes in a
distributed system. Linda introduced a new paradigm that decouples processes,
yet it supports coordination and shared storage [3].

e Linda coordination model is based on shared, distributed state, but
differs from shared memory. In DSM the shared state is accessed directly: a
shared variable can be read or wrien to. Linda offers special operations with
semantics that are designed to make concurrent access easier to manage.

Shared state in Linda is represented as typed ordered tuples, and the shared
state is called a tuple space. e tuples in a tuple space are immutable but they
may be extracted and replaced with another, modified tuple.

Linda has the operations out(), in() and read(). For simplicity, untyped
version of the operations is presented here.

• out(p1, . . . , pi) writes the tuple (p1, . . . , pi) to the tuple space. Duplicate
values are allowed.

• in(p1, . . . , pi) extracts a tuple from the tuple space. In this case
the parameters are used as a paern to find mating tuples. For
instance, the operation in(food, mouse, any) will extract a tuple su as
(food,mouse,eese) from the tuple space.

• read(p1, . . . , pi) is equivalent to in(p1, . . . , pi) except that the tuple is not
extracted from the tuple space.

e Linda operations have several advantages over direct access to shared
state. For instance the race condition in Listing 2.1 can be avoided in Linda as
demonstrated in Listing 2.2. If in() is executed concurrently, one of these calls
will atomically extract a tuple, and the other call is bloed until the a mating
tuple is wrien ba to the tuple space with out().

Compared to message passing and RPC, the advantage of tuple spaces is
that processes are loosely coupled, and that tuple spaces offer persistent storage.
For instance, an online bookstore could have two different processes: A web
server that lets users order books and an order processing server that processes
payments and sedules shipping. When a user orders a book, the web server
puts a tuple in the tuple space representing the order. Whenever the order
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Listing 2.1 – Race condition when incrementX() is called by concurrent processes.

void incrementX () {

int x = readSharedVariable ("x");

writeSharedVariable ("x", x + 1);

}

Listing 2.2 – IncrementX() using Linda: No race condition.

void incrementX () {

(unused , x) = in("x", any);

out("x", x + 1);

}

processing server is ready to process the order, it reads the tuple. When the
order has been processed, it can remove the tuple. If the order processing server
fails in this design, it can be restarted without losing any orders. (Additional
failure recovery is necessary in order to avoid processing payments twice,
otherwise customers may be unhappy with the system.)

2.5.3 JavaSpaces

JavaSpaces is a modern implementation of Linda's tuple space [2]. Java objects
are stored in spaces by the processes in the system. Similar to Linda, a space is
a distributed repository of objects and processes use the spaces for persistent
storage and for communication.

e basic operations on spaces are similar to the Linda operations: read,
write and take. JavaSpaces adds many features to the Linda model, su as
distributed transactions and the notify command.

JavaSpaces for Mobile Games

e distributed object model to be presented in Section 3 supports shared
global state between devices. When an object is updated, it is immediately
synronized to all the other devices. ese semantics are important in order
to share global state in multiplayer games.

JavaSpaces' development model can be used to simulate the operations in
our object model. e following is a naive translation of Same semantics to
JavaSpaces. Refer to Section 3.1.1 for more information on these operations.
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1. All variables that will be used are initially added to a space with a special
nil value. is is done in order to differentiate between undefined and
unavailable variables.

2. A write operation is performed by first taking the object from the space
and then writing the new version. is ensures that variables will be
updated sequentially: If two nodes try to perform a write concurrently,
only one of the take operations will succeed. e other node has to wait
until the first node writes ba its new value.

3. An update operation is performed by reading the object from a space. If
the object is not available, some other device has taken it and is writing a
new version. When that device returns the object, the update will finish.

4. Update notification can be performed with the notify operation.

ese operations work under normal conditions, but do not handle failures.
If a node takes an object and then fails before writing it ba to the space, the
object will be permanently lost. In addition, no one may read an object while
it is being updated.

We can aempt to solve these problems by introducing lo objects: When
a write operation is performed, a special lo object is taken from the space. In
case of failure, the lo must expire aer a certain time. is way another node
is allowed to perform its write operation aer a certain timeout.

Alternatively, JavaSpaces supports transactions, whi can be used as an
alternative to the lo systemmentioned above. Simply perform ea take-then-
write in a transaction to make the write operation safe.

e operations above (1-4) simulate Same semantics, but there are differ-
ences in how the operations are performed.

1. JavaSpaces is a distributed system designed to help developers build
distributed applications that run onmultiple servers [2]. Same is designed
to run on mobile devices.

2. JavaSpaces Transactions are performed using two-phase-commits. is is
a mumore expensive operation than a Same write, whi is performed
with a single query to the master.

3. All JavaSpaces operations may require accessing remote data, but Same
automatically broadcasts the entire state.erefore, accessing variables is
less expensive in Same. JavaSpaces is excellent if ea node only accesses
a small subset of the available objects. Same is beer for multiplayer
games where ea node requires all the shared objects.



Chapter 3

Aritecture and Design

In this apter the distributed object system named Same is proposed. First, the
programming interface is presented.is is a brief introduction that covers only
some of the features. Second, the internal state model and semantics are dis-
cussed. ird, the system aritecture and design of the Same implementation
are briefly covered. Lastly, failure handling and master recovery is presented
in detail.

3.1 Programming Model
e Same programming model exposes a service that allows sharing state
with several devices. State is shared within a network of connected devices.
A discovery service lets users automatically discover available networks or
register their own.

Same stores objects for the participating clients. An object is stored as a
JSON value.e JSON values are serialized from Java objects using the Jason1

library.
A client stores an object by writing it to a Same variable. When an object

is wrien, it is automatically synronized to all the other clients in the
network. Ea object carries an internal version field, whi is used to maintain
sequential consistency on a per-object level. If a write is requested on an
outdated object, it is rejected by the master.

In normal operation Same offers low-latency synronization. When de-
vices disconnect or otherwise fail, delays may occur until a new master is
elected and consistency is verified. A signal is sent to the client application
and update requests will blo until the system has resumed normal operation.

1http://jackson.codehaus.org/
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Listing 3.1 – Updating a variable with the Same programming interface.

void setVariableExample(VariableFactory vf) {

// Create the String variable "hello" in Same.

Variable <String > hello = vf.create("hello", String.class);

// Assign the variable. Returns an object that represents an

// asynchronuous operation (similar to a Future ).

DelayedOperation op = hello.set("Hello , Same!");

// Wait for 'op' to finish.

op.await ();

if (op.isOk ()) {

// Operation succeeded.

}

}

3.1.1 e Variable Class

A programmer using Same accesses shared objects with the Variable class. A
Variable object is created with a user-supplied name and type. When the user
interacts with the variable, it communicates with the Same baend to provide
synronization. A Variable supports the following operations:

• e get() operation returns the current value of the variable. is value is
initially set to the most recent value the local client has seen, but is never
anged unless the user invokes the update() method.

• e update() method updates the object in the same manner as the
initial update. Having an explicit update() method forces the user to
anowledge a new value before overwriting it. For instance, if the
user calls set() twice, only the first invocation will succeed. e second
invocation aempts to update an outdated variable, whi will fail. e
user has to update the variable between ea call to set().

• e set()method tries to set the variable to a new object. is operation is
asynronous and returns a DelayedOperation. e DelayedOperation
class is similar to a Java Future2, except it does not throw as many
exceptions. Listing 3.1 is an example of interaction with a String variable
with the name “hello”.

2java.util.concurrent.Future
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Listing 3.2 – IncrementX() using Same: No race condition, because set() fails if x was
updated concurrently.

void incrementX () {

Variable x = variableFactory.create("x", Integer.class);

boolean updated = false;

while (! updated) {

x.update ();

DelayedOperation op = x.set(x.get() + 1);

op.await ();

updated = op.isOk ();

}

}

• Variables also support ChangeListeners, whi are notified whenever the
variable has been updated.

Because of the update and set semantics in Same, the race condition in
Listing 2.1 does not occur, as shown in Listing 3.2.

3.2 State Model

e state of the system consists of a list of named objects. Ea object has
an identifier, the object content represented as a JSON value, and a revision
number.

e revision number is used to prevent unintentional overwrites. A client
cannot overwrite an object unless it has seen the current state of that object.

e state is used for variables stored by users and for internal variables. An
internal variable has a '.' (period) as the prefix of its identifier. An example
of an internal variable is .participants, whi stores the full list of currently
connected peers.

3.2.1 Global Revision Number

In addition to the list of objects, a global revision number is used to keep tra
of the most recent version of the system state. is is used aer failures in the
system in order to ensure that all clients have the most recent version of the
state. e master simply requests the global revision numbers from all clients,
and the client with the highest su number has the most recent state.
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3.2.2 Consistency

e consistency model used by Same is the following.

Immutable Objects An update replaces an immutable object with another
immutable object. No “incomplete,” intermediary object is seen by the
client when this is performed.

Per-Object Sequential Consistency Updates to a variable occur in the same
order on all devices in the system. For performance reasons, sequential
consistency is only on a per-object level.

Because ea update has an unique identifier, this implies that all the
updates that are ever seen by the system are unique, i.e. all

(identifier, object, revision)

triples observed by any device in the system are distinct.

3.3 System Overview

Because Same is a distributed system, the hardest development allenges are
related to concurrency. Several devices should run the system in parallel in a
consistent fashion and manage failure conditions transparently when possible.
Ea device runs a program that is split into several components that run in
parallel.

Here the system is described under normal operation with no errors. In
Section 3.4 the error states and transitions are described.

e Same system consists of a variable number of devices that communicate
with ea other. Figure 3.1 is an example of a Same system with three devices.
Eaof the devices in the system has a client service. Client applications interact
with Same using their local client service.e client services communicate with
a master service. e master service is hosted on a single device and handles
updates. e Paxos service is idle until it is needed for master election.

Note that client applications communicate with the local client service,
even if their device has the master service. is is done in order to avoid code
duplication.

Every device has a copy of the system state described in Section 3.2. e
system state is consistent across all the devices, but ea instance may not be
up-to-date.
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Client App Client App Client App

Master Service

Client Service

Paxos Service

Client Service

Paxos Service

Client Service

Paxos Service

78.91.20.251 78.91.13.85 78.91.14.104

Figure 3.1 – System Overview: A system with three devices. Each device has a
ClientService and a PaxosService, but only one has a MasterService. An arrow from
A to B means that A interacts with B.

3.3.1 Updating State

When a client requests a ange in the system state an update message is sent
to the master. e update message contains the new object for a particular
variable. If the client's state was sufficiently up-to-date the master accepts the
update.

What is meant here by sufficiently up-to-date is the following. Recall that
the system state consists of a set of objects with identifiers, revision numbers
and object, i.e. a triple

(identifier, object, revision).

If a client requests an update of (i, o, r) to (i, o′, r′), the client sends (i, o′, r)
to the server in an update request. e server looks up its version of the object,
say (i, o0, r0). If r = r0 then the client's version was sufficiently up-to-date.
Equivalently, a client may update a variable v if it has the most recent version
of that variable. e update will succeed even if other variables than v have
been updated more recently.
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3.3.2 Peer Discovery and Participation
e Same system is meant to discover peers automatically. Because it is
assumed to run on a LAN, UDP broadcasts were used at first. Every participant
in the system would listen for broadcasts on a predetermined port. When a
new client wanted to connect to the system, it would broadcast its address. e
participants listening for broadcasts, would then contact the source address of
the broadcast with information about their network. e new client could then
request to join the network.

is method of discovery was assumed to work well in most simple LANs,
but Same was developed at NTNU using the Eduroam3 network. is network
does not support UDP broadcasts (and even if it did, devices frequently get
addresses from different subnets).

Instead of using automatic peer discovery by UDP broadcasts, a centralized
server was developed. When a network is created, the master sends a message
to the central server containing the local IP address of the master. is address
is oen a local address not accessible from the internet. Clients wanting to join
the system queries the server for available networks, and request permission to
join the network.

Many issues arose because of the centralized server. e system was
supposed to be used on LANs, but because of this server the systems are globally
advertised.We can imaginemeans to solve these problems, but this has not been
a focus area of this project.

3.4 System State
e Same system has four possible states. e current state of the network
determines the behavior of the participants and user interaction with the
system.

ese states are maintained by the clients. All of them may not have the
correct view on the system at all times. For instance, if a client loses connection
to the system, themaster will drop it on the next update. From themaster's point
of view, the client is disconnected, but from the client's point of view it is still
connected to the network, until the next time it tries to run an update whi
will fail.

Disconnected e client is not currently connected to a network. e system
is idle, and user interaction results in errors. When the client connects to
a network, it enters normal operation.

3http://www.eduroam.org

http://www.eduroam.org
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Normal Operation A set of clients are connected to a master. Variables are
updated and broadcasted to the entire set of clients. If a client fails, the
client goes to the no master state. e master drops the participant and
the remaining peers continue in normal operation. If a master fails, the
master is disconnected, and the clients enter the no master state.

Some of the clients may fail to be notified of a master failure. ey will
either eventually go into the no master state or be notified when a new
master takes over.

No Master When a client is in a no master state, it aempts to establish a
consensus on whi client should become the new master. If more than
half of the current participant list is in this state, they will elect a new
master and assume normal operation. Otherwise, master election will fail
and all clients in the no master state will be disconnected.

If the client application aempts to set a variable in this state, the caller
thread is bloed until the client enters normal operation.

Master Takeover Period Aer a master has been elected, all the participants
of the network need to anowledge the new master and the system has
to ensure that all clients have a consistent view of the current state.

Inconsistency may have emerged because clients le the normal opera-
tion at different times, e.g., because some clients lost their connection to
the master before others. If the remaining clients in normal operation
managed to perform state updates, the clients in the no master state
would not know about these updates.

All the clients whi anowledge the new master enter normal opera-
tion. Other clients are dropped the network and enter the disconnected
state.

User interaction in the master takeover period is the same as in the no
master state.

3.5 Participant Overview

e participants are responsible for maintaining their own state, and their
view of the global system according to the network protocol. Additionally they
provide a programming interface to allow interaction with the system.
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Listing 3.3 – Service specifications. Each service has a set of methods that take one
message parameter and returns another. A “void” method is one that returns an empty
message.

service Client {

rpc SetState (Component) returns (Empty);

rpc MasterDown (MasterState) returns (Empty);

rpc MasterTakeover (MasterState)

returns (MasterTakeoverResponse );

rpc GetFullState (Empty) returns (FullStateResponse );

rpc MasterTakeoverFinished (MasterState) returns (Empty);

}

service Master {

rpc JoinNetworkRequest (ClientState) returns (Empty);

rpc UpdateStateRequest (Component)

returns (UpdateComponentResponse );

}

service Directory {

rpc RegisterNetwork (MasterState) returns (Empty);

rpc GetNetworks (Empty) returns (NetworkDirectory );

}

service Paxos {

rpc Propose (PaxosRequest) returns (PaxosResponse );

rpc AcceptRequest (PaxosRequest)

returns (PaxosResponse );

}

3.5.1 Services

Ea participant runs a set of services, served using Simple-Protobuf-RPC
(Section 4.4). A service handles remote procedure calls from other participants.
e services are specified using the protocol buffer language4. e definitions
of the main services used in Same are shown in Listing 3.3 and the message
definitions in Listing 3.4. ese listings show protocol buffer code. ey are
compiled into Java code using protocol buffer compiler.

4http://code.google.com/p/protobuf/

http://code.google.com/p/protobuf/
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Listing 3.4 – Some of the message types used in Same.

message Empty {

}

message UpdateComponentResponse {

required bool success = 1;

}

message Component {

required string id = 1;

required string data = 2;

required int64 revision = 3;

}

message MasterState {

optional string master_url = 1;

optional int32 master_id = 2;

optional string network_name = 3;

optional string master_location = 4;

optional int64 revision = 5;

}

message MasterTakeoverResponse {

optional bool success = 2;

optional ClientState client_state = 3;

}

message FullStateResponse {

optional int64 revision = 1;

repeated Component component = 2;

}

message ClientState {

optional string url = 1;

optional string location = 2;

optional int64 revision = 3;

}

message NetworkDirectory {

repeated MasterState network = 1;

}

message PaxosRequest {

optional ClientState client = 1;

optional int32 proposalNumber = 2;

}

message PaxosResponse {

optional int32 result = 1;

}
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3.5.2 Master

e Master service governs the global state of the system. e global state
consists of the user state as explained as the State Model, the set of participants,
and other meta data about the system. When a client wants to join or update
an object, it contacts the master service, whi handles the request.

When a master has failed and another master takes over, the new master
has to resume the operations of the system. e master handles recovery of the
state during the master takeover period described in Section 3.4.

3.5.3 Client

e Client is responsible for a number of tasks to a participant:

Client Service Receive state updates from the master and apply them to the
local state copy.

Programmer Interface Handle asynronous state operations from the client
program. State updates from the client program must be sent to the
master. State updates from the master must be relayed to the appropriate
program objects.

Master Election When the master fails, the client starts a master election by
sending a MasterDown() message to the other clients. is process is
described in Section 3.6.

3.5.4 Paxos

e Paxos service is a fairly standard realization of the Paxos protocol. Its
implementation is discussed in Section 4.6.

3.5.5 Directory

e Directory service is used as a registry of available networks. When a
network is created, it is registered in this service using the RegisterNetwork()
method. Another device may use the GetNetworks() method in order to get a
list of active networks.

Networks automatically expire aer a certain time. In order to keep the
network in the directory, the devices must re-register the network before it
expires.
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3.5.6 SystemService

e SystemService (not shown in the previous listing) is used for testing. e
GetSystemStatus()method returns information about the running components
in the system. It can be used to determine if two devices have consistent state.

e KillMaster() method is used to kill the master of the network. If this
method is called on the participant hosting the master service, it will kill
the master immediately. Otherwise it will forward the request to the current
master.

3.6 Master Takeover

When a master fails or becomes unavailable, a message from any client will
fail. When this happens, the client enters the no master state and broadcasts a
no master message to the rest of the network. (is message needs no error
handling. If it reaes any other clients, they will join the master election,
otherwise it has no effect.)

At this point at least one client start aMasterProposer. eMasterProposer
contacts all the available Paxos services. eMasterProposer tries to establish
a consensus value. It will either succeed with some proposal n, or it may be
aborted if some other MasterProposer finished and a new master was already
elected.

When a MasterProposer succeeds, it will start a new master with id n
(from the proposal number). e master sends a MasterTakeover() message
containing the master id to all the clients, and the network enters the master
takeover period.

When a client is notified of a new master, it accepts it if its id is greater than
the current master. If several masters were activated with different ids (whi
is possible or even likely, due to the behavior of the Paxos protocol), one master
will have the highest id, and all clients will accept it as the new master. e
new master resolves possible inconsistency in the master takeover period, aer
whi the network continues in normal operation.

An example of this process is illustrated in Figure 3.2.

3.6.1 Master Election Algorithm

Paxos has been used as the master election algorithm in Same. is oice was
made arbitrarily.
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client1:Client client1:Master client2:Master client2:Paxos client2:Client

:MasterProposer

:MasterProposer

Fails

new

new
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newMaster()
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promise

accepted
accept(n)
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update()

Update failed
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stop()

Figure 3.2 –Master takeover: This diagram is a visualization of a master takeover that
happened in a Same system running on two mobile devices. The log messages from
the devices were translated into this sequence diagram.

Master1 and client1 run on device A. The rest of the objects run on device B. Aer
master1 fails and client2 aempts to update a variable, the master takeover starts. Each
of the devices start a MasterProposer. DeviceB establishes a consensus with the only
available Paxos service, paxos2 and becomes the new master.
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e Same networks that were tested during development consisted of
devices with very different performance. If a low performing device becomes
the master it greatly affects the performance of the entire system.

If the Bully Algorithm was used for master election, the devices could run a
benmark to assess their performance and use this measurement in the master
election. en the best performing device would be the master with a high
probability. Due to the problems with a low performing master it was probably
a mistake to use Paxos.

3.6.2 Available Paxos Services
Paxos guarantees consensus when a proposal has been accepted by a majority
of the Paxos servers in the system. is means that a proposer must know the
total number of servers in order to determine whether it aieved consensus.

In Same the current participants are broadcasted to the entire system.When
a master fails the list of participants is used as a basis for the available Paxos
services, but the Paxos service from the failed master is removed from the list.
A master may fail for various reasons, and in some cases the device may still be
available. If it is available, it is possible to utilize its Paxos service. Otherwise,
using its Paxos service may result in an unrecoverable state: Consider two
devices, A and B. Device A is the current master, whi fails. Device B will
aempt to establish a consensus value by proposing a value to A and B. If A's
Paxos service is unavailable, B will get only 50 percent acceptance, whi is
not a majority. Excluding A's Paxos service from the master election solves
this problem.

3.6.3 Master Recovery
Aer a master has been elected, the master takeover period starts. At this
point, there may be inconsistencies in ea client's state. e master restores
consistency with the following steps.

1. Send master takeover message. is aborts otherMasterProposers.

2. Retrieve the most recent state. is is done by requesting the global
revision number from ea client. If any client returns a revision number
that is higher than the master's revision number, the master requests the
state from that client.

3. Send the updated state to all clients. Same sends the full state to all
participants, even though the master may use the revision numbers to
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determine exactly whi state it must send. is optimization may speed
up the master takeover time if many large objects are stored.

4. Any clients that failed to receive any of the previousmessages sent during
the master takeover period are removed from the network. is is done
because otherwise those clients may have state that is inconsistent with
the rest of the system.

5. Send a takeover finished message. All clients resume normal operation.



Chapter 4

Implementation

Same is designed as a Java library that can run on a Linux computer and on
Android mobile devices. e basic implementation and testing was done for a
Linux computer. e system was adapted for the Android operating system.

During the development of Same, many bugs related to concurrency were
observed, and this apter explains some of the experiences. In addition, the
RPC system Protobuf-simple-RPC is presented.

4.1 Concurrency Model

In a distributed system, many operations run in parallel at any time. Even a
single participant runs many concurrent operations, e.g., issuing asynronous
state updates and processing requests.

Programming concurrent applications is very hard, especially when directly
using the concurrency primitives offered by Java. For instance, forgeing to
notify bloed threads may lead to deadlos while forgeing to synronize a
code blo may lead to inconsistent state.

Using Java's java.util.concurrent library may make our programs less prone
to some of these errors. For instance, using atomic variables and thread-
safe data structures removes the need for manual synronization. However,
other errors may occur. Producer-consumer queues and executors lets us build
concurrent components that do not rely on internal loing. However, unless
it is used correctly, it may introduce thread starvation.

32
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4.1.1 Producer-Consumereues

Early versions of Same used concurrency primitives directly, but this caused
several bugs in the master and client code. Classes were rewrien to using
producer-consumer queues, resulting in less code and fewer bugs.

e queues are typically used for delayed commands. Most of the service
objects hold a lo while processing an incoming query. If su an object sends
an RPC to itself it could cause a deadlo. For instance, when themaster receives
a state update it should respond immediately instead of notifying other services
of the update while bloing the master thread.

Late in its development, Same swited to an asynronous RPC imple-
mentation. is removes the issue of deadlos, because threads typically do
not blo while waiting for an RPC to finish. Instead, encoding the wrong set
of dependencies in RPCs may cause thread starvation, whi is discussed later.

4.1.2 Message Passing

An Android application is organized as Activities and Services. An Activity is
an object with a user interfaces that the user interacts with directly. A Service
is an object that performs tasks in the baground without user interaction.
e Android platform supports different forms of message between different
objects, and between different processes.

Same is implemented as a server application, maintaining its own state and
communicating with other participants in the baground. erefore it runs
as a Service on Android. Any Activity that uses Same communicates with the
Same service using a message passing interface.

e Service model clearly separates persistent components from compo-
nents that may be garbage collected by the operating system. Whenever an
Activity is not visible to the user, Androidmay shut it down in order to conserve
system resources.

Unfortunately the message passing interfaces used in Android is verbose
and not very easy to use. One goal of Same is to provide a simple programmer
interface. To aieve this, the Same programming interface was replicated on
Android. e ClientInterfaceBridge class implements the same programming
interface, but communicates with the Same service using message passing.

Android's message passing is handled by a single main thread (similar to the
event-dispat thread in Java Swing). Bloing this thread can have unfortunate
consequences. In Same an object sent amessage to another object and then tried
to blo the thread until a response was received. Because the message handling
thread is bloed, the target object could never process its message, resulting
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in freezing the entire program. Strictly speaking this is not a concurrency bug,
because only one thread was involved, however it is very closely related to
thread pool starvation.

4.2 read Pool Starvation

In early versions of Same, the different services could be executed in parallel.
Recall that when the master fails, clients receive a MasterDown() request.
When clients got this message, they used to send propose requests to the Paxos
services directly.

Aer switing to asynronous RPCs the clients would freeze when trying
to elect a new master. e reason for this is that requests are seduled in a
single-thread thread pool. When a client sends a request to the Paxos service, it
is bloed until it receives a response. Unfortunately this blos the only thread
in the thread pool and therefore the Paxos request can never be processed. is
freezes the client, butmore severely the RPC server cannot process any requests,
not even to the debugging service. is bug was located by inspecting the sta
traces of the running threads.

4.3 Remote Procedure Calls

Same uses Remote Procedure Calls (RPC) for all its communication. Although
RPCs are widely used, the majority of the available libraries are targeted to
server systems. Several RPC implementations were evaluated for use in Same.

• Java RMI is the standard RPC library in Java. It is not supported on
Android.

• Apae XML-RPC1 is an RPC library that uses XML over HTTP. An
aempt was made to use this library with Same. Unfortunately the XML
library used internally by XML-RPC is not supported on Android.

• JSON-RPC for Java2 (jsonrpc4j) is similar to XML-RPC, but uses JSON
instead of XML. It can be used directly with Java interfaces, whimakes
it very easy to use this RPCmeanism, as well as removing the transport
layer under test.

1hp://ws.apae.org/xmlrpc/
2hp://code.google.com/p/jsonrpc4j/
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Initially, Same adopted jsonrpc4j using the Jey server as the transport
layer. Unfortunately a bug in the HpUrlConnection class in Android versions
prior to 2.3 made it impossible to use jsonrpc4j with persistent connections 3.
is was fixed by implementing a custom transport layer using the Apae
HTTP Client4.

e Jey web server is a full-fledged web server for Java that can be
embedded in applications. A web server is a useful tool for monitoring and
debugging of distributed applications. A special servlet was wrien to allow
interaction with the system through a web browser.

Because Android phones have limited computing resources, jsonrpc4j over
HTTP provided by Jey is quite slow. On older models su as the HTC Magic
the RPC latency was not satisfactory for real-time applications.

4.4 Toward a Faster RPC for Mobile Devices
e RPC performance with some of the existing solutions is not good enough
for real-time applications. Potential reasons that jsonrpc4j over Jey is too slow
on Android devices may include

1. Jey is a full-featured web server not optimized for the relatively low-
end mobile devices used in this project. For instance, Jey may work
more efficiently with a larger amount of RAM and may have code that
runs faster on JVMs other than Dalvik.

2. Usage of inefficient formats. HTTP requests need to be parsed and
interpreted by Jey, and HTTP has features that are irrelevant to this
application. JSON is a human-readable format that needs to be generated
and parsed with ea request.

3. Jsonrpc4j uses the Java reflection API and so does the JSON library
Jason5 whi is used internally. is may give worse performance
compared to compiled Java code.

A lightweight specialized RPC solution for mobile devices may address all
of these issues. Protocol Buffer6 is a binary format wrien to be platform-
independent, fast to serialize and unserialize and have a mu smaller binary

3hp://code.google.com/p/android/issues/detail?id=2939
4hp://hc.apae.org/hpcomponents-client-ga/
5hp://jason.codehaus.org/
6hp://code.google.com/p/protobuf/
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footprint than formats su as JSON and XML. Protocol Buffers do not include
an RPC meanism directly, but provides services that can be used for RPC
with a specialized transport layer.

Protobuf-simple-RPC7 was developed for this project as an aempt to
create a fast RPC for mobile applications. In addition to overcome the issues
mentioned above, it provides a configurable asynronous RPC meanism.

It is difficult to implement a concurrent server. Because it was supposed to
have good performance on mobile devices, an aritecture based on the Java
non-bloing I/O libraries (java.nio) could handle several connections from a
single thread.is was not done because java.nio is harder to use than bloing
soets, especially when using protocol buffers8. Additionally, an asynronous
interface is easier to implement with multithreading.

For these reasons, Protobuf-simple-RPC uses the bloing soets in Java. It
is meant to handle a relatively small number of concurrent connections and in
fact uses several threads per connection in order to handle requests indepen-
dently and asynronously. It uses producer-consumer queues to communicate
between threads. For instance, one thread writes responses to a soet from a
bloing queue. A single connection may have an arbitrary number of ongoing
requests. Whenever a request is processed the response is simply pushed to the
queue. e number of concurrent requests is bounded by the queue and thread
pool sizes, whi are configurable. An overview of this design is illustrated in
Figure 4.1.

Sequential execution of queries is not guaranteed by protobuf-simple-RPC.
Requests are asynronous and may be seduled in any order by the server.
If sequential execution is required, this may be aieved by seing the request
handling pool size to one. is pool is shared by all the services running in a
server instance, and therefore guarantees sequential consistency. On the client
side, ea request is atomically added to a bloing queue and sent in order.
Even though the server processes requests synronously, several requests
may be queued and sent over the network in the same TCP paet, giving
a performance boost. is is the mode that is used in Same. All the services
used by Same were initially made for a synronous RPC library. A result of
this was that the request handlers had to respond quily in order to minimize
the latency of the synronous calls. If the response handlers execute fast, the
performance gain of concurrent request handling may be small.

7hps://github.com/orbekk/protobuf-simple-rpc
8Protocol Buffers provide a meanism to interact with bloing streams. If java.nio were

to be used, messages would have to be buffered and assembled manually.



TOWARD A FASTER RPC FOR MOBILE DEVICES KJETIL ØRBEKK 37

RequestHandler

MasterService
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Figure 4.1 – The Protobuf RPC server. Incoming connections are handled by dedicated
threads (running in a thread pool not shown in this diagram) that read queries and
push them to the request queue. RequestHandlers take queries from the request queue
and executes methods in one of the registered services. When a method completes,
its response is pushed to a response queue and later wrien back to its respective
connection.

Most of the server components may be parallelized. All the yellow components are
per-connection. This includes the queues (which are also bounded). If one connection
is slower than others it should not slow down the speed of the system, because the
other connections run in separate threads. However, if the pool size of the shared
thread pool is set to one the server handles all requests sequentially.
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Table 4.1 – Requests per second processed by mobile devices.

RPC implementation HTC Magic Samsung Galaxy S
Jsonrpc4j+Jey 31 85
Protobuf-simple-RPC 94 884

Table 4.2 – Requests per second sent and processed by mobile devices.

RPC implementation HTC Magic Samsung Galaxy S
Jsonrpc4j+Jey 16 69
Protobuf-simple-RPC 66 570

4.5 RPC Performance

In order to evaluate protobuf-simple-RPC a benmark was performed compar-
ing it to jsonrpc4j with Jey. Similar services were programmed for jsonrpc4j
and protobuf-simple-RPC, in whi a simple function is computed and returned
by the server.

ese benmarks are aempts to measure the performance of the services
under normal operation. Ea benmark consists of a warm-up round and the
main benmark. e warm-up round forces the devices to run slow startup
code su as loading Java classes.

4.5.1 Benmark 1

In this benmark requests were sent from a Linux PC to mobile devices over
a consumer-level Wi-Fi network. is is an aempt to measure the end-to-end
performance of the TCP sta and the RPC implementation on these devices.
e results are shown in table 4.1.

4.5.2 Benmark 2

In this benmark, the mobile devices sent requests to themselves. is elim-
inates network latency but uses operating system soets and therefore the
performance of the TCP sta could still be a factor. e results are shown
in table 4.2.
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4.5.3 Evaluation

Protobuf-simple-RPC has mu beer performance than jsonrpc4j over Jey in
these measurements. On the Galaxy S, performance is up to 10 times faster with
protobuf-simple-RPC. Interestingly, an increase of only a factor of 3 is seen on
HTC Magic.

If more effort were to be put into protobuf-simple-rpc, it may be possible
to aieve even beer results. For instance, if the usage of a high number
of threads is a performance bolene, an alternative implementation could
use the java.nio library and Android's internal message passing interface. is
implementation could run in a single thread.

A Note on Object Pooling

Object pools are occasionally used on Android. For instance the
Message.obtain()9 method manages a pool of messages for performance
reasons. An official Android performance guide advises against creating
unnecessary objects10.

Protobuf-simple-rpc creates a handful of objects for ea request. In a
benmark that executes thousands of requests, one may think that object
creation and garbage collection could affect the performance. One benmark
was aempted for protobuf-simple-RPC with a single recycled object instead
of new objects for ea request. is gave no performance increase, and
confirms that object pools should not be used without measuring their effect
on performance.

4.6 Paxos Implementation

As an example of a concurrent component, a discussion of Same's Paxos
implementation is presented.

4.6.1 Paxos Service

e Paxos service itself was very easy to implement: e only thing it needs to
do is to perform the acceptor algorithm, whi is simple. e implementation
used here is based on the original algorithm[4] but sends reject messages.
e service may be tested by seing internal state (the highest promised and

9hp://developer.android.com/reference/android/os/Message.html
10hp://developer.android.com/guide/practices/design/performance.html
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accepted values) and testing the responses of the service (whi are completely
deterministic). Because clients may contact the service concurrently, it should
be thread-safe. is was accomplished with a lo.

4.6.2 Paxos Client

e Paxos client was harder to implement. When it sends queries to a set of
Paxos servers, it must handle the responses concurrently and proceed when
enough servers accept. is was implemented using components from the Java
concurrency library11. e client makes use of atomic variables instead of los,
and a CountDownLatch as a barrier. e ResponseHandler in Listing 4.1 is the
callba used with the RPC requests, and handles the synronization used in
the Paxos client. An example of its usage is given in the propose() method in
Listing 4.2.

ResponseHandler completes immediately if enough promises have been
received, but waits longer than strictly necessary otherwise (it could fail
immediately when a majority of the requests fail). is was done by design
because if there is a failure, the Paxos client will wait a while before retrying,
meaning that optimizing this case is unnecessary. Additionally, a Paxos server
may respond late with a higher promised value – waiting until all the requests
have been received ensures that result is not anged to a different value aer
it has been set12. Trading a dubious optimization for predictable concurrent
behavior was presumed to be a good decision.

Experiences with Lo-Free Objects

Using lo-free teniques as in ResponseHandler seemed simple at first: All
the variables are updated atomically and new values are visible to all threads
immediately. However, ResponseHandler has several atomic variables and aer
careful analysis of the thread safety of checkDone() a bug was discovered. If
numResponses is updated before numPromises (this was the case in an earlier
version) there is a race condition that makes it possible for ResponseHandler to
incorrectly report a failure (mu beer than incorrectly reporting a success).
is race condition is very unlikely to occur in practice13, and only in special

11java.util.concurrent
12is relies on numRequests being set correctly according to the number of RPC requests.

en numResponses.get() ≥ numRequests only if they are equal.
13In Same it would never occur, because the RPC server uses only a single thread to execute

callbas. Same deliberately relies on this for sequential consistency, but the Paxos client was
not meant to rely on it.
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circumstances that depend on the responses of the Paxos servers, and it would
probably result in the Paxos client to fail only slightly more than it should. is
is no means a problem, but it illustrates how difficult concurrency can be.

4.7 Dependency Injection
Same uses the dependency injection paern throughout the code. Initially this
was in order to write efficient unit tests and also due to personal preference. At
a later time in the development it proved to be useful in this project for several
other reasons as well.

• e implementation of UDP broadcast had to be anged for the Android
platform. A custom implementation for Android could be substituted for
the Java implementation because the components were loosely coupled.

• Very poor performance was observed on old mobile devices. e Jey
web server was a suspected reason for this. Because the code was loosely
coupled and used the HpServlet tenology, Jey server could easily be
substituted with another web server. Performance was tested using Tiny
Java Web Server, but this did not increase the performance.

• Testing remote procedure calls. Same uses RPC to interact with the other
components in the system. With dependency injection, local versions of
the services can be used in unit tests. Instead of sending RPCs over a
network connection, RPCs are sent directly to a local object.
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Listing 4.1 – The ResponseHandler callback used by the Paxos client.

class ResponseHandler implements RpcCallback <PaxosResponse > {

final int proposalNumber;

final int numRequests;

/** Contains -n, where n is the highest accepted proposal. */

final AtomicInteger bestPromise = new AtomicInteger ();

final AtomicInteger numPromises = new AtomicInteger (0);

final AtomicInteger numResponses = new AtomicInteger (0);

final AtomicInteger result = new AtomicInteger ();

final CountDownLatch done = new CountDownLatch (1);

public ResponseHandler(int proposalNumber , int numRequests) {

this.proposalNumber = proposalNumber;

this.numRequests = numRequests;

bestPromise.set(-proposalNumber );

}

/** This method is called when an RPC completes. */

@Override public void run(PaxosResponse response) {

if (response != null) {

int result = response.getResult ();

if (result == proposalNumber) {

numPromises.incrementAndGet ();

}

boolean updated = false;

while (! updated) { // Lock -free update of bestPromise.

int oldVal = bestPromise.get();

int update = Math.min(oldVal , result );

updated = bestPromise.compareAndSet(oldVal , update );

}

}

numResponses.incrementAndGet ();

checkDone ();

}

private void checkDone () {

if (numPromises.get() > numRequests / 2 ||

numResponses.get() >= numRequests) {

if (numPromises.get() > numRequests / 2) {

result.set(proposalNumber );

} else {

result.set(bestPromise.get ());

}

done.countDown ();

}

}

public int getResult () throws InterruptedException {

done.await ();

return result.get();

}

}
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Listing 4.2 – The ResponseHandler callback used by the Paxos client.

/** Propose a value to the paxos servers.

* If the proposal is accepted , returns proposalNumber.

* Otherwise it returns -n where n is the highest promise

* that has been observed. */

private int propose(int proposalNumber)

throws InterruptedException {

ResponseHandler handler = new ResponseHandler(proposalNumber ,

paxosLocations.size ());

for (String location : paxosLocations) {

// Get a connection to the paxos service.

Services.Paxos paxos = connections.getPaxos(location );

if (paxos == null) {

// The paxos service at 'location ' is not reachable. This

// counts as one failure.

handler.run(null);

continue;

}

Rpc rpc = rpcFactory.create ();

PaxosRequest request = PaxosRequest.newBuilder ()

.setClient(client)

.setProposalNumber(proposalNumber)

.build ();

// Send the proposal; 'handler ' is the callback.

paxos.propose(rpc , request , handler );

}

// This blocks until enough servers responded or requests

// timed out.

return handler.getResult ();

}



Chapter 5

Evaluation and Experiences

isapter discusses experiences gained while using Same. An example appli-
cation with shared state has been developed and benmarks were performed.
e benmarks target specific requirements.

5.1 Example Application

e example application draws a movable circle on the screen. When the user
toues a point, the circle moves there. e application is shown in Figure 5.1.
e circle is represented by a Same object containing its position.

When several devices are connected and run the example application, the
location of the circle is shared. Touing any of the devices moves the circle on
all the connected devices.

A simple implementation of this is to ange the variable whenever the
user toues the screen. However, Same does not support anging a variable
twice unless the first ange is allowed to finish before sending the second.
Additionally the application receives too many tou events for this to be
efficient.

A beer approa is to remember the most recent tou event and update
the variable when the variable is ready to get updated or when another tou
event has been received. is was harder than it may appear for the following
reasons.

• It is necessary to synronize on several conditions: Tou events and
"ready to update".e laer is true when we have the most recent version
of the variable.

44
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Figure 5.1 – The Example Application running on one device.

• Errors have to be handled. An update request may give an error if there
is a conflict, if the local client lost connection to the master, etc. Some
errors should result in retries, others should abort the update.

• e tou events from the user and update events from Same are received
in the UI thread. Bloing this thread may result in an unresponsive
application or in the worst case thread starvation. erefore bloing
operations have to be performed in a separate thread.

ese issues are common for all applications that want to use Same to con-
tinuously update a variable based on user input. e class VariableUpdaterTask
handles this type of update paern and is included in Same.

A video demonstration of the example application may be found at http:
//youtu.be/XOF6oeEPJNY.

5.2 Benmarks

All benmarks have been performed on Android devices on the EduroamWi-
Fi network at NTNU.e devices run a fewwarm-up iterations and then collect
results from a number of benmark iterations.e graphs show average values
and the standard deviation of the samples. An overview of the specifications of
the devices is given in Appendix B.

http://youtu.be/XOF6oeEPJNY
http://youtu.be/XOF6oeEPJNY
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Figure 5.2 – Update latencies in benchmark 1. The benchmark performs 2000 variable
updates aer 100 warm-up iterations.

5.2.1 Benmark 1: Update Latency

is benmarks measures end-to-end latency of updates. One device updates
a variable a number of times and measures the time until the master sends
the updated version of the variable. is is repeated with different numbers of
devices in the network.

e latency of an update is important in order to support real-time appli-
cations. Low latency was one of the requirements according to Section 1.4. e
update paern in this benmark is similar to the behavior in the example
application.

e result is shown in Figure 5.2. ere is very lile increase in the latency
as new devices are added.e results from this benmark are very stable, even
though the test was performed with a variety of devices. e reason for this is
that the bolene is the performance of the master device. As long as all the
clients can keep up with the updates from the master, the results are dependent
on the performance of only one device.

5.2.2 Benmark 2: Master Takeover Time

Whenever the master fails in Same, there is a period when no updates can be
performed in the system. A real-time application may freeze during this period,
whi is what happens in the example application1. If the master can take over
in a short period of time, this has less negative impact on the application.

1is can be observed in the video demonstration.
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Figure 5.3 – Master takeover time average in benchmark 2. This benchmark kills
the master service and measures the master takeover time 50 times aer 2 warm-up
iterations.

is benmark measures the end-to-end recovery time aer the master
fails. A number of devices participate in a network, and then the master is
killed repeatedly. Aer the master is killed, one of the participants aempts to
update a value and measures the time until the update can be performed. is
experiment is repeated with a varying number of devices and.

e result of this benmark is shown in Figure 5.3. It appears that the
master recovery time increases as the number of devices increase. Apart from
that, the graph looks rather strange. is benmark has a few problems that
are discussed below, and therefore we should not completely trust the results.

Few Iterations is benmark was performed with only 50 iterations. We
had limited access to test devices, and because ea iteration of this
benmark took long to run, the number of iterations were decreased.

Randomized Process e Paxos algorithm is randomized, i.e., it is random
whether it finishes aer one iteration or if several iterations must be
performed. In addition, the master proposers have a randomized ba-
off timeout. is process may have surprising running times based on the
number of devices.

Different Masters In Benmark 1, one device was allowed to remain the
master during the entire test. In this benmark, the master is elected
randomly among the participants. Unfortunately the benmark was
executed on five different types of devices. Because the master has a large
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impact on the performance of the network, this may have impacted the
result of the benmark.

5.3 Development Environment

For the curious reader this section is a summary of the development environ-
ment used in this project and the experiences with Android development and
testing with multiple devices.

5.3.1 Soware

e Eclipse IDE was used for the Java programming. e Android plugin for
Eclipse includes a debugging environment that makes it possible to debug
running processes on Android devices.

e Android Debug Bridge (adb) daemon automatically connects to all
devices that is plugged into the system. No special setup need to be performed
in order to develop on multiple devices.

Apae Maven was used for dependency management, building and execu-
tion. It can be set up for an Android project to build, install and run an Android
application on all connected devices. is was done in order to run and test the
programs in this project.

e adb command line tool was used to examine logs. For ea device, one
terminal window with adb logcat running gives real-time log messages from
all the devices in the system.

5.3.2 Benmarking

In order to perform repeated experiments it was necessary to create a frame-
work to collect results from benmarks. Ea benmark is an Android
Activity that should run and measure performance. e measurements should
be collected to a single location and combined into one data file.

is project already uses RPCs and multiple services. Because the infras-
tructure was already in place the natural solution was to create a benmark
server. e benmark server hosts a special service for ea benmark. When
the benmark Activities run, they connect to the benmark server in order to
report their results. e benmark server made it easy to repeat experiments
with different parameters.
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5.3.3 Debugging

e main debugging tool was log messages wrien by the system. Looking at
logs in real-time lets us observe whether commands are transported correctly
between the devices and in whi order events occur. However, the logs can get
very verbose, and too mu logging may slow down the application. Same uses
the slf4j logging framework that allows configuration of logging of different
parts of the system. For instance, logging may be selectively enabled for the
RPC library. In that case all incoming and outgoing RPCs from the system are
printed, whi is great for debugging but slows down the system drastically.

A special service called SystemService was developed to inspect and control
the state of a device. e SystemService.GetSystemStatus() method can be
called to get information about the state of the client and master components
of a system.

Asmentioned, the Android Eclipse pluginwas used to debug the application
to some extent. One useful usage of this was to inspect sta traces that
uncovered a thread pool starvation bug.

5.3.4 Automatic Testing

Same was programmed with standard Java without using any Android classes
for the main functionality. is allowed tests to be wrien in standard Java as
well. e testing frameworks JUnit 42 and Moito3 were used to create unit
tests and functional tests. Testing that individual components behave correctly
in isolation increases the ance that the components work well together.

5.4 Evaluation

is section is an evaluation of Same based on the requirements in Section 1.4.

Localized Aritecture It has a mostly localized aritecture.e exception to
this is the directory service that is used for peer discovery. As mentioned
in Section 3.3.2 there may be some ways around this, but at this time we
do not have a satisfactory solution.

In the spirit of this requirement, all Same operations run on a local
network. e discovery service is only used for peer discovery.

2http://www.junit.org
3http://code.google.com/p/mockito/

http://www.junit.org
http://code.google.com/p/mockito/
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Low Latency Same has reasonably low latency. It may be good enough for real
time applications, but not with many objects transferred concurrently.

Scaling Same appears to scale very well. Only a small increase in the update la-
tency is seen when new devices join the network. However, with a larger
network, more updates can be expected. In that case the performancemay
not be good enough, but this is likely a latency problem and not because
of poor scalability.

Accounting for Unreliable Devices When a device fails, Same is able to
quily oose a new master and resume normal operation.

Same should be able to handle failures under the same condition as the
Paxos protocol whi is used to elect the new master.

Programming Model Same provides a programming model that lets users
share many types of Java objects using JSON serialization.e objects are
synronized and Same provides update semantics that are convenient
for the programmer.

Same has been used to develop one example application and different
test and benmark applications. e experience suggests that Same is
useful for game development. Furthermore, Same is a platform that may
be extended with more features and it uses the client-server model that
game developers are used to.

Discovery and Connection As previously mentioned, a directory service is
used for discovery. e directory service is very simple, and is inconve-
niont to use. erefore, this requirement has not been completed and is
le as future work.

Overall, Same has fulfilled most of its original requirements and success-
fully provides distributed objects to Android devices. However, with more
effort, Same could become an even beer system. Possible directions and
further work is discussed in Section 6.2.



Chapter 6

Conclusion and Further Work

is project presented a distributed model for sharing state for mobile mul-
tiplayer games and applications. e model is based on several assumptions
about networking in multiplayer games, su as the need to share global state.
Similar systems exist, but have been designed for larger systems and therefore
they are not well suited for mobile applications.

is apter gives a summary of the results of this project and possible
further work with Same and related tenology. Some lessons that were learned
while developing this distributed system will be presented. Finally, this thesis
concludes with remarks about Same.

6.1 Resulting Artifacts

is project has produced two open source libraries that anyone can use.
Same is available at https://github.com/orbekk/master. e protocol buffer
based RPC library that was developed for this project is available separately at
https://github.com/orbekk/protobuf-simple-rpc and may be used by any Java
project. Both of these projects are licensed under the Apae License version
2.0.

A video demonstration of Same is available at http://youtu.be/

XOF6oeEPJNY. e video shows the example application and the user
experience when a master recovery occurs. Another video is available at
http://youtu.be/ADtXy1Ggjvo. is video shows the responsiveness of Same
when running the example application with 6 devices.
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6.2 Further Work
e goal of this project was to show that a distributed system can be used
to share state in real-time multiplayer games. Same has been shown to work,
but only with an example application. Some assumptions were made about
how multiplayer games tend to share state, and verifying that that the model
is useful is the next step for Same.

For that reason we would like to evaluate Same in a real mobile game
seing, e.g. by implementing a multiplayer game. However, the scope of this
master's thesis is too small to include this.

In addition, several improvements to the implementation of Same could
increase its usefulness:

1. As previously mentioned, Same has fairly good latency, but not excellent.
If optimizations could decrease the update latency, it would bewell-worth
it, because it allows more devices to share state concurrently, as opposed
to just one shared object as in the example application.

2. e master recovery has worked well, but should be thoroughly tested.
Automatic tests that disrupt the master recovery at various steps would
be a good addition to this project.

3. In order to tale different types of devices in the network, Same should
swit to using the Bully Algorithm in order to get a master with high
performance. is decreases the update latency for all devices in the
network.

4. is project has not considered security issues. Any security features
remains as further work.

5. Finally, the network directory server used in this project is too simple.
A beer network directory server could try to deal with NAT routers
and have more features. Alternatively other types of discovery could be
considered.

6.3 Lessons Learned
Developing a distributed, highly concurrent system was a humble experience.
e development started with only simple knowledge of Java concurrency
and lile knowledge of the Android concurrency model. In the early stages of
the project, Java's synronization primitives were used directly. is caused
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several problems: First, the loing semantics of Same's classes were not
precisely defined. is lead to deadlos and code that was hard to test.
Secondly, the Java memory model when using multiple threads was not well-
understood.

Lastly, unintentionally sharing references between objects can have devas-
tating effects. One example of this problem was experienced when developing
master takeover. When a client started the takeover process, a reference
to the client state was copied to the master. When the client received an
update from the master, it rejected the update because the state object had
was unintentionally shared between the client and the master and therefore
already updated by the master. e system almost worked, but did not send
notifications of ange (whi resulted in failure in completely unrelated
components that relied on update notifications). Fortunately this bug was
discovered quily because of a failing unit test.

Studying the Java Concurrency API and proper usage of concurrency
paerns was well worth the time. Bloing queues, immutable and atomic
variables made concurrency mu easier to handle in the later stages of the
project. Some experimentation with lo-free objects was performed, with
mixed results. is was discussed in Section 4.6.

Switing from synronous to asynronous RPC caused several problems.
Asynronous RPC suited this project beer in terms of concurrency and error
handling but, because some of the classes had been designed for synronous
RPC some problems arose. An example of this were the thread starvation
problems mentioned in Section 4.2. Some classes contained code that was
no longer optimal, su as spawning threads to handle RPCs and producer-
consumer queues that were no longer needed.

6.4 Conclusion

With the increase in performance of mobile devices it is possible to adopt new
development teniques in order deliver beer games to this growing market.

In this project we proposed a distributed model for sharing state. e model
makes it possible to create multiplayer games that use a local Wi-Fi network to
communicate. With a centralized server aritecture state operations are sent
to a server on the internet. Same sends state operations between the devices
using the local network only.

Several distributed shared object systems exist with different semantics and
implementations. Su systemsmay be optimized for update latency, scalability
or concurrent access. ey are typically designed for distributed applications
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on a mu larger scale. To our knowledge, Same is the only aempt to create a
distributed shared object system for mobile devices.

e performance of Same is acceptable and it has been successfully applied
to create an interactive application with real-time sharing of state between
devices.

Our contribution to mobile game development is the distributed system
Same. It can be used to share state between devices without a centralized server.
Updates to this state is sent to all the other connected devices in a reliable,
consistent manner. When devices lose their connection, the system is able to
recover and continues to function. To our knowledge, this is a new direction in
mobile game development that may outperform existing centralized solutions.
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Appendix A

Class Diagram

A class diagram containing the most important classes in Same is shown on
the next page. An arrow from class A to class Bmeans that A interacts directly
with B.
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package com.orbekk.protobuf

package com.orbekk.same

SimpleProtobufServer

// RPC server

ConnectionHandler

ServiceHolder

RequestDispatcher

RequestHandler

RpcChannel

// Has  a connection to a SimpleProtobufServer

OutgoingHandler IncomingHandler

SameController

// Controls  system components

Client

// Maintains  client s tate

Master

MasterController

// Stops  and s tarts  a master

ConnectionManager

// Maintains  shared connections

PaxosService
SystemService

// Debugging interface

ClientServiceClientInterfaceImpl

State

MasterProposer

// Elects  a new master

MasterService

ClientInterface

// Low-level interface to Same.

implements

Component

VariableFactory

// Creates  Variable objects .

Variable (type T)

// The main interface to Same components .

public T get()
public void set(T)

VariableUpdaterTask

// Continous ly updates  a variable.



Appendix B

Test Devices Overview

SevenAndroid devices were used in the benmarks covered in Section 5.2.is
is an overview of the specifications of the devices. e devices are numbered
1-7. eir numbers correspond to the respective points on the graphs, e.g., the
results with 3 devices were gathered using device 1-3.

Device 1 Samsung Galaxy S2

CPU Dual-core 1.2 GHz Cortex-A9

RAM 1 GB

Android version CyanogenMod 9 Android 4.0.4

Provided by Trygve André Tønnesland

Device 2 HTC Desire HD

CPU Single-core 1 GHz Scorpion

RAM 768 MB

Android version HTC Sense Android 2.3.3

Provided by NTNU Department of Computer and Information Science

Device 3 Samsung Galaxy S

CPU Single-core 1 GHz Cortex-A8

RAM 512 MB

Android version CyanogenMod 9 Android 4.0.3

Provided by Kjetil Ørbekk

Device 4 Samsung Galaxy S2
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CPU Dual-core 1.2 GHz Cortex-A9

RAM 1 GB

Android version Samsung Android 4.0.3

Provided by Simen Andresen

Device 5 HTC Desire HD

CPU Single-core 1 GHz Scorpion

RAM 768 MB

Android version HTC Sense Android 2.3.3

Provided by NTNU Department of Computer and Information Science

Device 6 Samsung Nexus S

CPU Single-core 1GHz Cortex-A8

RAM 512 MB

Android version Google Android 4.0.4

Device 7 Amazon Kindle Fire

CPU Dual-core 1 GHz OMAP 4 4430

RAM 512 MB

Android version CyanogenMod 9 Android 4.0.4

Provided by Trygve André Tønnesland
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