
CESAR - text vs. boilerplates
What is more effcient - requirements written

as free text or using boilerplates (templates)?

Vegard Johannessen

Master of Science in Computer Science

Supervisor: Tor Stålhane, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

i
i

“report” — 2012/6/12 — 0:14 — page i — #1 i
i

i
i

i
i

Problem description

Poor requirements specifications are identified by several studies as one of the most
important reasons for cancellation, delay or cost overrun of software projects.

The most common method of expressing requirements is to use free text. This
method is seen as flexible and easy to use, but offers little support for ensuring
the quality of the requirements.

Boilerplates have been developed as an alternative to free text. This project
will study some important differences between the two methods, in order to deter-
mine the value of using boilerplates, as well as to discover any problems connected
with introducing the method to somebody that is unfamiliar with it.

i
i

“report” — 2012/6/12 — 0:14 — page ii — #2 i
i

i
i

i
i

ii

i
i

“report” — 2012/6/12 — 0:14 — page iii — #3 i
i

i
i

i
i

Abstract

This thesis examines the differences between boilerplates and free text as methods
to write software requirements. Through an experiment, the methods will be tested
from both the requirements engineering standpoint, and from the standpoint of a
stakeholder looking to understand the requirements.

i
i

“report” — 2012/6/12 — 0:14 — page iv — #4 i
i

i
i

i
i

iv

i
i

“report” — 2012/6/12 — 0:14 — page v — #5 i
i

i
i

i
i

Preface

Boilerplates are a semi-formal method for writing requirements. This report ex-
amines the differences between using boilerplates and natural language, or free
text.

The thesis is the first study in this area, and provides insight into the strenghts
and weaknesses of boilerplates, as well as suggesting which areas need more re-
search.

The experiment performed during the project was carried out using students
from the second grade of the Computer Science program from NTNU, and was held
in an auditorium. Results were ambiguos. It is the candidate’s opinion that these
two factors influenced the results negatively. In order to get clearer answers about
the quality of boilerplates as a requirements engineering method, it is neccessary
to do a more real-life experiment, using more experienced test subject, and also
using tools like DODT to write the requirements.

i
i

“report” — 2012/6/12 — 0:14 — page vi — #6 i
i

i
i

i
i

vi

i
i

“report” — 2012/6/12 — 0:14 — page vii — #7 i
i

i
i

i
i

Preface

Boilerplates er en semi-formell metode for å skrive krav. Denne rapporten un-
dersøker forskjellene mellom å bruke boilerplates og naturlig spr̊ak eller fri tekst.

Masteroppgaven er den første store forskningen p̊a dette omr̊adet, og byr p̊a
innsikt i styrker og svakheter ved boilerplates, i tillegg til å foresl̊a hvilke omr̊ader
som bør forskes videre p̊a.

Eksperimentet som er utført som del av prosjektet ble gjennomført med stu-
denter fra andre året ved Datateknikkstudiet ved NTNU, og ble holdt i et audito-
rium. Resultatene var tvetydige. Det er kandidatens mening at disse to faktorene
p̊avirket resultatene p̊a en negativ måte. For å f̊a klarere svar p̊a kvaliteten av
boilerplates som kravspesifiseringsmetode, s̊a er det nødvendig å gjennomføre et
eksperiment som er mer virkelighetsnært, ved å bruke mer erfarne testpersoner og
å bruke verktøy som DODT til å skrive kravene.

i
i

“report” — 2012/6/12 — 0:14 — page viii — #8 i
i

i
i

i
i

viii

i
i

“report” — 2012/6/12 — 0:14 — page ix — #9 i
i

i
i

i
i

Acknowledgments

I would like to thank my supervisor, Professor Tor St̊alhane, for his support,
guidance and for being an invaluable discussion partner through this project.

Vegard Johannessen
Trondheim, June 12, 2012

i
i

“report” — 2012/6/12 — 0:14 — page x — #10 i
i

i
i

i
i

x

i
i

“report” — 2012/6/12 — 0:14 — page xi — #11 i
i

i
i

i
i

Contents

1 Introduction and Overview 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 1
1.3 Project Scope . 3
1.4 Research Method . 4
1.5 Contributions . 5
1.6 Thesis Structure . 5

2 Theory and Background 7
2.1 Software Requirements . 7
2.2 Boilerplates . 7

2.2.1 Boilerplate classifications . 9
2.2.2 Benefits to using boilerplates 11
2.2.3 Drawbacks when using boilerplates 12
2.2.4 Tools . 13

2.3 Free Text Requirements . 15
2.3.1 Benefits to using free text requirements 15
2.3.2 Drawbacks to using free text requirements 16

3 Methods and materials 17
3.1 Context selection . 17
3.2 Hypotheses . 18
3.3 Variables . 20
3.4 Test subjects . 20
3.5 Experiment Design . 21
3.6 Instrumentation . 21

4 Operation 23
4.1 Preparation . 23
4.2 Execution . 23
4.3 Data Validation . 24

i
i

“report” — 2012/6/12 — 0:14 — page xii — #12 i
i

i
i

i
i

xii Contents

5 Research Results 27
5.1 Descriptive Statistics . 27

5.1.1 Previous Experience . 27
5.1.2 Understanding Requirements 28
5.1.3 Writing Requirements . 31
5.1.4 Self-evaluation . 33

5.2 Data Set Reduction . 35

6 Evaluation 37
6.1 Understanding Requirements . 37
6.2 Writing Requirements . 39

7 Conclusion and Further Work 41
7.1 Further work . 41

Bibliography 43

Appendices 43

A Experiment 47
A.1 Tidligere erfaring . 5
A.2 Å lese krav . 7
A.3 Å skrive krav med boilerplates . 13
A.4 Evaluering . 17
A.5 Boilerplates . 19

i
i

“report” — 2012/6/12 — 0:14 — page xiii — #13 i
i

i
i

i
i

List of Figures

2.1 Requirements are built by combining a boilerplate and the corre-
sponding attributes . 8

2.2 Attribute structure (adapted from Zojer et al. [2011]) 9
2.3 DODT Requirements editor . 13
2.4 Creating a concept in DODT . 14
2.5 Boilerplate editor in DODT . 14
2.6 Ontology editor in DODT . 15

5.1 Correctness of the written requirements according to each evalua-
tion criteria . 32

5.2 Results from positive self-evaluation statements 33
5.3 Results from negative self-evaluation statements 35

i
i

“report” — 2012/6/12 — 0:14 — page xiv — #14 i
i

i
i

i
i

xiv List of Figures

i
i

“report” — 2012/6/12 — 0:14 — page xv — #15 i
i

i
i

i
i

List of Tables

1.1 Research methods. Adapted from Wohlin et al. [1999]. 4

2.1 Example use of boilerplate . 8
2.2 Boilerplate Classifications . 10
2.3 Main boilerplates . 10
2.4 Prefix boilerplates . 11
2.5 Suffix boilerplates . 11

5.1 How the participants evaluated their previous experience 28
5.2 Valid errors in boilerplate requirements 29
5.3 The percentage of the participants who found errors in requirements

written using boilerplates . 29
5.4 The percentage of the participants who found errors in free text

requirements . 30
5.5 Valid errors in free text requirements 30
5.6 Evaluation criteria of written requirements 31
5.7 Results from evaluation of requirements written using boilerplates . 31
5.8 Results from selv-evaluation form. (* Changed from ”It was more

difficult to write requirements using boilerplates than to write re-
quirements using free text” during experiment. See section 4.3) . . 34

i
i

“report” — 2012/6/12 — 0:14 — page xvi — #16 i
i

i
i

i
i

xvi List of Tables

i
i

“report” — 2012/6/12 — 0:14 — page xvii — #17 i
i

i
i

i
i

Glossary

atomic requirements. The requirement does not contain conjunctions [?]. xvi

boilerplate A template consisting of fixed syntax elements and placeholders for
attributes. ix, xiii, 1–5, 7, 9–13

boilerplate requirement Requirements written using boilerplates, with loose
limitations on form or vocabulary. 16–18, 20, 22

cohesive about requirements. The requirements address one and only one thing
[?]. xvi

complete about requirements. The requirement is fully stated in one place with
no missing information [?]. xvi

consistent requirements. The requirement does not contradict any other require-
ment [?]. xvi

current requirements. The requirement has not been made obsolete by the pas-
sage of time [?]. xvi

DODT requirements engineering tool for writing requirements using boilerplates..
36

feasable requirements. The requirement can be implemented within the con-
straints of the project [?]. xvi

free text requirement Requirements written in a natural language, like English,
with loose limitations on form or vocabulary. ix, 2–4, 7, 13, 16–20, 22

null hypothesis “states that there are no real underlying trends or patterns in
the
experiment setting; the only reasons for differences in our observations are
coincidental. This is the hypothesis that the experimenter wants to reject

i
i

“report” — 2012/6/12 — 0:14 — page xviii — #18 i
i

i
i

i
i

xviii Glossary

with as high significance as possible.” [?] In this project the null hypothesis
is mostly used as the assumption that there is no difference between two
treatments. 17

quality of requirements. Here: a requirement that is cohesive, complete, consis-
tent, atomic, unambiguous and verifiable. Other characteristics, which are
not considered in the frames of this project, are traceable, feasable and that
the requirement is current and has a specified importance. These character-
istics does not relate directly to the formulation of the requirements, and are
thus not relevant for this topic.. i

specified importance of requirements. Many requirements represent a stakeholder-
defined characteristic; the absence of which will result in a major or even fatal
deficiency. Others represent features that may be implemented if time and
budget permits. The requirement must specify a level of importance [?]. xvi

traceable requirements. The requirement meets all or part of a business need
stated by stakeholders and is authoritatively documented [?]. xvi

unambiguous requirements. The requirement is concisely stated without re-
course to technical jargon, acronyms (unless defined elsewhere in the Re-
quirements document), or other esoteric verbiage. It expresses objective
facts, not subjective opinions. It is subject to one and only one interpreta-
tion. Vague subjects, adjectives, prepositions, verbs and subjective phrases
are avoided. Negative statments and compound statements are avoided [?].
xvi

verifiable requirements. The implementation of the requirement can be deter-
mined through one of four possible methods: inspection, demonstration, test
or analysis [?]. xvi

i
i

“report” — 2012/6/12 — 0:14 — page 1 — #19 i
i

i
i

i
i

Chapter 1

Introduction and Overview

1.1 Background and Motivation

Research shows that poor requirements are at the top of the list of reasons for why
software projects fail or are challenged (by cost- or time overruns, or providing
fewer
features or functions than originally specified). The Standish Group [1995] places
incomplete and changing requirements and specifications second and third on the
list of “Project Challenged Factors”, whereas incomplete requirements are the
number one reason for why projects are cancelled.

This makes it clear that the state of software requirements specifications is
generally not good enough. The Standish Group does not specifiy the reasons
behind the numbers, but incomplete and changing requirements suggests either
a poor requirements engineering process or misunderstandings about the agreed
upon requirements. This report will focus on the latter, looking at whether a semi-
formal languagesuch as boilerplates will make requirements easier to understand.

1.2 Goals and Research Questions

Main goal

To determine whether boilerplates are a better method than free text for
writing software requirements.

During the specialization project, one of the uncertainties was how to make a
definitive statement about the quality of the requirements. We decided that such

i
i

“report” — 2012/6/12 — 0:14 — page 2 — #20 i
i

i
i

i
i

2 Goals and Research Questions

questions needed to be answered by both an objective and a subjective evaluation.
An objective evaluation will be carried out by looking at the results of the experi-
ment performed, more specifically by the quantitative data from the tasks (number
of errors found, the percentage of functionality extracted from the requirements,
etc.)

The success or failure of this goal will be determined by the results of the re-
search questions below, which in turn will be answered by quantifiable data from
the experiment. The research questions will be used to formulate hypotheses, and
the questions and tasks presented in the experiment will each be based on one or
more of the hypotheses..

Research question 1

Is it easier to prevent ambiguities when writing boilerplate requirements
than free text requirements?

Based on the work done in the specialization project, one of the factors that
was decided to be used when assessing the quality of the methods, is the amount of
ambiguities in the requirements. The Standish Group [1995] names a clear state-
ment of the requirements as the third most important factor for project success.
How good the method is in preventing ambiguous requirements should therefore
be one of the measures of quality. This factor is looked at from two perspectives,
the first of which is how ambiguous the requirements are when first written. To
answer this question, it is necessary to analyze requirements written with both
methods, to se which method produces the most ambiguous requirements.

Research question 2

Is it easier to discover ambiguities in boilerplate requirements than in free
text requirements?

The other perspective that will be used when looking at ambiguities, is how eas-
ily they are discovered when reading the requirements specification. Theoretically,
boilerplates such as BP21 and BP22 (Table 2.3) should make the requirements
more accurate, but it is necessary to test whether users experience them as such.

Research question 3

i
i

“report” — 2012/6/12 — 0:14 — page 3 — #21 i
i

i
i

i
i

Introduction and Overview 3

Is it easier to prevent inconsistencies when writing boilerplate requirements
than free text requirements?

Inconsistency is the other factor it was decided to look at when judging the
quality of requirements. Inconsistent requirements will either lead to faulty or in-
correct software, or changes in the requirements specification later in the project,
which is named as one of the most important reasons for challenged or cancelled
projects. This factor will also be measured from two perspectives; the number
of inconsistencies that are introduced when writing requirements and how many
inconsistencies are discovered when reading a requirements specification.

Research question 4

Is it easier to discover inconsistencies in boilerplate requirements than free
text requirements?

As with ambiguities, the experiment will also study whether the test subjects
find more inconsistencies in boilerplate requirements than in free text require-
ments. This perspective is used in order to see whether the use of templates and
ontologies will make it more apparent that two requirements are conflicting.

Research question 5

How much introduction to boilerplates is necessary to both understand and
be able to write new requirements using boilerplates?

One of the major findings of the specialization project was the need for proper
training in order to understand the concept of boilerplates. The test subjects who
had only a written introduction eventually gave up on most of the tasks presented
to them, while those who also got a ten minute introduction to both boilerplates
and the cases used, turned out to have far more success. Still, they used a rather
limited set of different boilerplates. Some more testing is therefore required to see
how much training is necessary before the subjects will be able to do the tasks.

1.3 Project Scope

This thesis will look at the differences between free text requirements and boiler-
plates. It will not discuss the effect of boilerplates for development methods, such

i
i

“report” — 2012/6/12 — 0:14 — page 4 — #22 i
i

i
i

i
i

4 Research Method

as iterative (Agile or Scrum) vs sequential development models (Waterfall model),
or differences between smaller and larger projects. The experiment will use only
students as test subjects.

Further research is therefore necessary to determine whether the results are
valid in all contexts, but they should at least give an indication of the strenght of
boilerplates vs FTRs.

1.4 Research Method

In order to answer the research questions listed in section 1.2, it is necessary to
perform one or more experiments. Wohlin et al. [1999] presents four research meth-
ods for use in software engineering context:

The scientific method The world is observed and a model is built based
on the observation, for example, a simulation
model.

The engineering method The current solutions are studied and changes are
proposed, and then evaluated.

The empirical method A model is proposed and
evaluated through empirical
studies, for example, case studies or experi-
ments.

The analytical method A formal theory is pro-
posed and then compared with
empirical observations.

Table 1.1: Research methods. Adapted from Wohlin et al. [1999].

Of these, the empirical and the analytical method are both useful choices, as
they examine the requirements engineering methods in a controlled environment
and provides quantifiable results. The empirical method will be chosen for this
project. More specifically, the project will be based on a set of experiments, in
which both requirements engineering methods are examined. This makes it easier
to control that the conditions are the same for both methods, for example that
the experience gathered from working with either method first, does not influence
the results of working with the other method afterwards (see section 3.5), and also
makes it possible to evaluate whether subjects with different previous experience

i
i

“report” — 2012/6/12 — 0:14 — page 5 — #23 i
i

i
i

i
i

Introduction and Overview 5

produce different results.

The experiments will be similar to the ones used in the specialization project,
but also implementing changes to reflect the feedback and observations gathered
from that project. Most noticable, the cases used in the specialization project is
replaced. The feedback suggested that the cases using an automatic cruise con-
troller and a steam boiler were too complicated or too far from the test subjects
field of expertise. A completely new case has therefore been created for this study.

The experiment will consist of a pre-experiment questionnaire where the par-
ticipants will give information about their previous experiences, a main part where
they will solve several tasks related to the case, and a post-experiment question-
naire where they will evaluate their experience of how the experiment went, how
they experienced working with boilerplate, etc. More details concerning the ex-
periment design can be found in chapter 3.

1.5 Contributions

This project is the first that compares boilerplates as a requirements engineering
method against regular free text. As such, this report gives insight into which
strengths and weaknesses the method displays in an experiment, and discusses
challenges surrounding successful requirements engineering. The report also dis-
cusses what other factors are important to look at when evaluating requirements
and requirements engineering.

As mentioned, this is the first thesis which explores this topic. As such, the
paper also serves as a basis for further research.

1.6 Thesis Structure

This thesis follows the following structure:

The first two chapters are introductory, presenting the knowledge neccessary to
understand the topics discussed later. Chapter 1 explains the goals of the project
and outlines how it was conducted. Chapter 2 gives an introduction to the meth-
ods and theories discussed in the thesis.

i
i

“report” — 2012/6/12 — 0:14 — page 6 — #24 i
i

i
i

i
i

6 Thesis Structure

The next three chapters consern themselves with the experiment performed.
Chapter 3 describes how the experiments was designed, chapter 4 describes how
it was performed, while chapter 5 presents the collection and analysis of the data
derived from the experiment.

Chapter 6 summarizes the results of the experiment, discusses how they should
be understood and whether there are any threats to the validity of the results.
Finally it tries to answer the research questions posed in section 1.2.

i
i

“report” — 2012/6/12 — 0:14 — page 7 — #25 i
i

i
i

i
i

Chapter 2

Theory and Background

2.1 Software Requirements

Software requirements can be sorted into three categories: formal, semi-formal and
informal. Formal requirements are easy to understand for machines, but normally
require a lot of training, and also places several restrictions on the requirements
engineer. Use Cases are one type of formal requirements.

Informal requirements are a lot less restrictive about form and formulation, but
does not provide much in terms of automation. Also, informal requirements are
difficult to understand for machines. They are, however, easy to get started with,
and can be understood by stakeholders who lack training. This project looks at
free text requirements, which is one type of informal requirements. (See section 2.3)

Semi-formal requirements are meant to be the middle-way between formal and
informal requirements. They try to combine the ease of use of informal requirement
with the ability to automate work processes surrounding maintaining the require-
ments specification. Another goal the semi-formal requirements try to achieve,
is aiding the requirements engineer in writing better requirements. This thesis is
mainly based on the semi-formal requirements engineering method called boiler-
plates. That method is further described in the next section.

2.2 Boilerplates

The purpose of using boilerplates is that they help “in knowing how to express
certain kinds of requirement in a consistent language”. [Hull et al., 2009]

i
i

“report” — 2012/6/12 — 0:14 — page 8 — #26 i
i

i
i

i
i

8 Boilerplates

As shown in Figure 2.1, boilerplates consist of two parts; the actual boiler-
plate or template, and the values you fill in, hereby refered to as attributes. The
boilerplates can be chosen from a standardized set, such as the one developed by
CESAR or an in-house developed set for the specific company.

Figure 2.1: Requirements are built by combining a boilerplate and the corre-
sponding attributes

The attributes are then either chosen from a standard repository for the com-
pany, or a specific set decided on for each project. An example of the use of
boilerplates is provided in Table 2.1. The reason for providing and maintaining a
standard attribute repository is to ensure that the same name is given to the same
entity for all requirements, and that this wording is consistent both throughout the
project and between projects within the organization. This is supposed to prevent
ambiguities and misunderstandings that can arise if an entity is given different
names, or perhaps is not named properly.

Boilerplate The <system function> shall provide <system capability> to
achieve <goal>.

Attributes System function: ACC
System capability: distance monitoring
Goal: a minimum distance to vehicle in front.

Requirement The ACC shall provide distance
monitoring to achieve a minimum
distance to vehicle in front.

Table 2.1: Example use of boilerplate

To use the example in Table 2.1, the system capability, distance monitoring,
could perhaps be refered to as longitude monitoring or a way to measure distance.
Mixing these terms could not only give widely different results, but could also
confuse the developer into believing they refered to three different entities.

i
i

“report” — 2012/6/12 — 0:14 — page 9 — #27 i
i

i
i

i
i

Theory and Background 9

Zojer et al. [2011] uses the attribute structure shown in Figure 2.2. The at-
tribute node on the top is only a parent node, and is not used in itself. Other than
that, quantity is used for any measures necessary, regardless of whether it is length,
weight, duration or any other measure. It is also important to specify that this
can be used in cases where the specific value is not yet determined, in which case
it can be instantiated as “TBD”, to be decided. Also, not filling out the quantity
can be used in cases where the values are confidential. If the requirements need
to be published, that may then be done without publishing any of the confidential
data.

Figure 2.2: Attribute structure (adapted from Zojer et al. [2011])

By using existing boilerplates whenever possible, the requirements will be more
uniform, preventing vague or ambiguous requirements. New boilerplates will, per-
haps, have to be added as the method matures, but only after it has been decided
no existing ones will cover the requirement. As the boilerplates are used over time,
the company or organization can gradually achieve uniformity for its requirements,
preventing vague or ambiguous requirements leading to costly mistakes.

2.2.1 Boilerplate classifications

Each boilerplate can be classified according to the categories listed in Table 2.2.
This helps ordering the requirements. The words in paranthesis refers to the goal
type for the boilerplate, such as minimizing or maximizing something.

The following is the complete list of boilerplates as presented in Zojer et al.
[2011]. The boilerplates are divided into three types; main- , prefix- and suffix
boilerplates. Main boilerplates can stand alone, whereas prefix suffix boilerplates
must be prepended or appended, respectively. The two latter are sometimes refered
to collectively as modes, but will in this report be differentiated.

i
i

“report” — 2012/6/12 — 0:14 — page 10 — #28 i
i

i
i

i
i

10 Boilerplates

Classification of boilerplates
Capability
Capacity (Maximise, Exceed)
Rapidity (Minimise, do not exceed)
Mode (while, if, for ...)
Sustainability
Timelines
Operational Constraints
Exception

Table 2.2: Boilerplate Classifications

Main boilerplates

The main boilerplates are standalone, meaning if the attributes are instantiated
they can constitute a requirement on their own. For example, BP15, can be
instatiated as “<Laptop>shall be able to <reboot>”.

BP15: <system> may be <state>
BP16: <system> shall <action>
BP17: <system> shall allow <entity> to be <state>
BP18: <system> shall be <entity>
BP19: <system> shall be able to <action>
BP20: <system> shall have <entity>
BP21: <system> shall have <quality factor> of at least <quantity>
<unit>
BP22: <system> shall have <quality factor> of at most <quantity>
<unit>
BP23: <system> shall not <action>
BP24: <system> shall not allow <action>
BP25: <system> shall not allow <entity> to <action>
BP26: <user> shall be able to <action>

Table 2.3: Main boilerplates

Prefix boilerplates

Prefix boilerplates need to be prepended to one of the 12 main boilerplates, and
can then provide conditions like “if <event>” or “while <state>”. For example,

i
i

“report” — 2012/6/12 — 0:14 — page 11 — #29 i
i

i
i

i
i

Theory and Background 11

prepending BP28 to BP19, one could create the following requirement: “If <in
sleep mode>, <laptop> shall be able to <resume session>.”

BP27: if <event>, ...
BP28: if <state>, ...
BP29: in order to <action> ...
BP30: in order to achieve <goal> ...
BP31: while <state> , ...

Table 2.4: Prefix boilerplates

Suffix boilerplates

Like prefixes, suffix boilerplates needs to be attached to a main boilerplate, like
this: “If <in sleep mode>, <laptop> shall be able to <resume session> within
<3> <seconds>.” (BP 12 attached to BP 28+ BP19)

BP0: ... after <event>
BP1: ... at <entity>
BP2: ... at least <quantity> times per <unit>
BP3: ... before <event>
BP4: ... during <state>
BP5: ... every <quantity> <unit>
BP6: ... except for <action>
BP7: ... for a period of at least <quantity> <unit>
BP8: ... from <entity>
BP9: ... other than <action>
BP10: ... to <entity>
BP11: ... unless <state>
BP12: ... within <quantity> <unit>
BP13: ... within <quantity> <unit> from <event>

Table 2.5: Suffix boilerplates

2.2.2 Benefits to using boilerplates

The general goal of using boilerplates is to standardize the formulation of require-
ments, both with regards to structure and dictionary, so as to create consistency
and prevent ambiguities.

i
i

“report” — 2012/6/12 — 0:14 — page 12 — #30 i
i

i
i

i
i

12 Boilerplates

Whether these benefits are real or just assumed is part of what this report will
try to answer. Not much research has been published on this field at the present,
meaning the benefits listed below must so far be considered theoretical.

Standardized formulation The boilerplates forces requirements to be expressed
in a certain way, helping similar requirements look alike. This should help
stakeholders (developers, customers, management, etc) understand the re-
quirements better, and also prevent confusion as to what the requirement
means. (See also “Prevent disambiguity”)

Prevent disambiguity The rigidness of the boilerplates prevents a vague lan-
guage, and encourages specifying the exact meaning. For examples, see BP2,
BP7, BP21, and BP29 in tables 2.3 - 2.5.

Prevent inconsistencies A clearer language and specification of purpose (BP29,
BP30) helps developers and other stakeholders see dependencies between
requirements, thus preventing inconsistencies.

Uniformity of language/Consistency In addition to the boilerplates, the at-
tributes should be selected from a repository, which ensures that attributes
are named the same throughout the requirements specification, and also be-
tween projects. A common understanding of the requirements reduces the
possibility of ambiguities and inconsistencies.

Easy to understand Boilerplates are written in what is called a semi-formal
language. There are certain restrictions to the vocabular and the structure
of the sentences, but they are less strict than, say, a UML diagram. Carew
et al. [2005] found that people understand informal representations better
than formal ones. The boilerplates, when attributes are initialized, appear
to be normal text, and should therefore be easier to understand than formal
representations, while still maintaining the benefits of a semi-formal method.

2.2.3 Drawbacks when using boilerplates

Reduced flexibility The boilerplates reduces the freedom to express the require-
ments as wanted. There is the possibility that constraining the expression
may lead the requirements engineers to take shortcuts that may lead to loss
of detail and functionality.

Stricter language Boilerplates, though less formal than UML-diagrams, are more
formal than free text. Carew et al. [2005] may then suggest that they are

i
i

“report” — 2012/6/12 — 0:14 — page 13 — #31 i
i

i
i

i
i

Theory and Background 13

more difficult to understand than free text, though several of the benefits
listed above may leverage against this effect.

2.2.4 Tools

DODT is a requirements engineering tool built to write and manage boilerplate
requirements. The tool allows the creation and customization of ontologies, boiler-
plate database and a requirements specification. The requirements editor is shown
in Figure 2.3. The requirement currently being edited is listed in the middle of
the screen, with editable fields for all the attributes.

Figure 2.3: DODT Requirements editor

The tool monitors whether the attributes are in accordance with the ontology.
For example, notice the yellow background for “control” in the system attribute.
Neither “Robot control” or “control” is not a part of the ontology, so DODT alerts

i
i

“report” — 2012/6/12 — 0:14 — page 14 — #32 i
i

i
i

i
i

14 Boilerplates

the requirements engineer, and he or she can quickly create the “Robot control”
concept. (See Figure 2.4)

Figure 2.4: Creating a concept in DODT

As mentioned at the beginning of the section, DODT enables the user to create
and edit boilerplates (Figure 2.5). This enables an organization to create its own
set of boilerplates specialized for them.

Figure 2.5: Boilerplate editor in DODT

It is also possible to create or import ontologies (Figure 2.6), which are used
by the tool to analyze completeness, inconsistency, ambiguity, noise, opacity, sim-
ilarity and obsoleteness in the requirements.

i
i

“report” — 2012/6/12 — 0:14 — page 15 — #33 i
i

i
i

i
i

Theory and Background 15

Figure 2.6: Ontology editor in DODT

2.3 Free Text Requirements

Free text requirements is the traditional method for writing requirements. It is
an informal method, utilizing a natural language. There are basically no rules to
writing requirements using free text, which makes it easy to formulate require-
ments. Below is an example of a free text requirements:

The user shall be able to use a simple panel to define time intervals.

The benefits and drawbacks of using free text to formulate requirements are
listed in subsection 2.3.1 and subsection 2.3.2.

2.3.1 Benefits to using free text requirements

Flexible Free text requirements will not put any restrictions on how the require-
ments are written, and therefore has a lower threshold for a person to learn

i
i

“report” — 2012/6/12 — 0:14 — page 16 — #34 i
i

i
i

i
i

16 Free Text Requirements

to write requirements in.

Easy to read Free text has the advantage that it uses a natural language, and
as such can be very well understood by any stakeholder.

Easy to understand Since free text is just natural language, no training is nec-
cessary to understand a requirement written using free text. This creates a
low threshold for communicating with customers.

2.3.2 Drawbacks to using free text requirements

Does not prevent disambiguities or inconsistencies While not putting any
restrictions on how the requirements are written, the method does not do
anything to prevent poor requirements engineering either.

Difficult for machines to read Because machines are bad at reading natural
language, automatic analysis of the requirements specification is difficult.

Lacks uniformity There is neither any inherently standard way of writing the
requirements nor a consistent dictionary to make sure similar requirements
are written the same way.

No common understanding of concepts Connecting the two previous points,
a lack of uniformity makes the requirements “prone to ambiguous represen-
tations and inconsistencies”.

i
i

“report” — 2012/6/12 — 0:14 — page 17 — #35 i
i

i
i

i
i

Chapter 3

Methods and materials

3.1 Context selection

An experiment can be run either on-line or off-line, meaning it is either carried out
in a real project setting or is simulated, respectively. An on-line experiment will
produce results with better general validity, but will have greater cost and risks
connected to it, making it a less attractive choice for this research. In the case of
further research, however, an on-line experiment would be benefitial.

For the same reasons as we chose to run the experiment off-line, the test sub-
jects will be third year computer science students. This is cheaper than using pro-
fessionals, and also involves less risk. The drawbacks are that choosing students as
test group will result in a more homogeneous group, making the experiments less
generally applicable. They will also have less experience with requirements engi-
neering. However, as one of the main focuses of the experiment is checking how well
the test subjects understand boilerplates compared to free text requirements, this
may actually be an advantage. The lack of experience may result in more similar
conditions for the two methods, making the results more reliable. Getting a siz-
able group of students is also easier than getting the same number of professionals.

The experiment will use two cases. Both provide previously defined require-
ments, which are fully valid by industry standards. To limit the size of the tasks,
however, only a small part of the requirements are included. Both cases will be
described to the test subjects both orally, in text and with a system sketch.

The first case is a heating oven, with a heat sensor, an I/O panel and a con-
troller. This case will be used for the test subjects to find errors in the require-
ments. The errors are introduced in the originally valid requirements.

i
i

“report” — 2012/6/12 — 0:14 — page 18 — #36 i
i

i
i

i
i

18 Hypotheses

The second case is a robot, which can move on a rail between two areas of a tool
cell. The safety system shall make sure the robot never operates while someone
is in the same area as the robot, and uses a set of sensors to detect movement in
and out of the areas. This case will be used for the test subjects to write require-
ments using boilerplates. A short, and in some cases vague, description of what
the requirement should say is provided, and it is then up to the test subjects to
formulate correct and precise requirements.

The experiment uses two different cases, from widely different industries. The
heating oven is an everyday object, while the robot covers a more industrial sys-
tem. Although these are two specific cases, the results from the experiment should
be generally applicable for the following reasons. First, the cases cover two differ-
ent industries, scales and complexities. Second, the experiment is designed in such
a way that the subjects will solve the same tasks using both methods. (see sec-
tion 3.5) Thus, the methods will be tested under the same conditions, with regards
to both the case and the experience gained from solving previous tasks. Third, it
is the quality of boilerplate requirements relative to free text requirements that is
examined. This means that it is not important whether the cases are general or
specific, because it is the difference between how well the test subjects performed
with each method that is evaluated, as opposed to if the experiment were to give
some fixed “grade” to the methods. In the latter example a specific, and thus
unknown, case would probably lead to poorer results than a more general and
well-known case. In this case, both methods use the same case, so the methods
used is the only variable, thereby making the results generally valid.

3.2 Hypotheses

The hypotheses presented in this section is based on the research questions pre-
sented in section 1.2. They are organized according to the research question they
are based on, in order to visualize the “red line” from the intent, through the
design of the experiment, ending with the data analysis in chapter 5.

While analyzing the results, the goal will be to disprove the null hypothesis,
then to confirm the alternative hypothesis HX1.

The null hypotheses will be enumbered HX0, X being the number of the hy-
pothesis, while the alternative hypotheses will be enumbered HX1 or HX2.

i
i

“report” — 2012/6/12 — 0:14 — page 19 — #37 i
i

i
i

i
i

Methods and materials 19

Research question 1

Is it easier to prevent ambiguities when writing boilerplate requirements than free
text requirements?

H10 There is the same or a higher number of ambiguities in requirements written
using boilerplates as using free text requirements.

H11 There are fewer ambiguities in requirements written using boilerplates than
using free text requirements.

Research question 2

Is it easier to discover ambiguities in boilerplate requirements than in free text
requirements?

H20 The same or a lower percentage of ambiguities are discovered in requirements
written using boilerplates as using free text requirements.

H21 A higher percentage of the ambiguities are discovered in requirements written
using boilerplates than using free text requirements.

Research question 3

Is it easier to prevent inconsistencies when writing boilerplate requirements than
free text requirements?

H30 The same or a lower percentage of inconsistencies are discovered in require-
ments written using boilerplates as using free text requirements.

H31 A higher percentage of the inconsistencies are discovered in requirements
written using boilerplates than using free text requirements.

Research question 4

Is it easier to discover inconsistencies in boilerplate requirements than free text
requirements?

H40 The same or a lower percentage of inconsistencies are discovered in require-
ments written using boilerplates as using free text requirements.

H41 A higher percentage of the inconsistencies are discovered in requirements
written using boilerplates than using free text requirements.

i
i

“report” — 2012/6/12 — 0:14 — page 20 — #38 i
i

i
i

i
i

20 Variables

Research question 5

How much introduction to boilerplates is necessary to both understand and be
able to write new requirements using boilerplates?

H50 Extensive training is required in order to understand and write requirements
using boilerplates.

H51 An introduction of up twenty minutes is sufficient to understand and write
requirements using boilerplates.

3.3 Variables

The independent variable of interest in this study is the requirements engineering
method: boilerplates and free text. It is the effect of these treatments the experi-
ment will try to measure.

Other independent variables, which will not be studied in-depth in this project,
are length of education, work experience and length of training. These are men-
tioned in subsection 5.1.1, and discussed in chapter 6, but will not be tested in
this experiment.

The dependent variables are the number of errors produced when writing re-
quirements and the number of errors found when inspecting requirements.

3.4 Test subjects

The test subjects were recruited from the third year of the Computer Science stud-
ies at NTNU, and volunteered in order to collect money for a class trip. The trip
commitee receives 250 NOK in compensation for each student participating. A
total of 39 students participated, being evenly distributed on the two treatments
described in section 3.4.

Most of the participants have two years of studying as their only experience
in software engineering. With respect to requirements engineering, they were cur-
rently taking the cource TDT4140 Software Engineering, but were only halfway
through the course at the time of the experiment. Because of this, their experi-
ence were limited, and the expectations for their performance must be adjusted
according to this. The upside is that they are not significantly more experienced

i
i

“report” — 2012/6/12 — 0:14 — page 21 — #39 i
i

i
i

i
i

Methods and materials 21

using either method. A professional developer would be trained in writing and
understanding free text requirements, and this would affect the expected results
in favour of free text requirements.

3.5 Experiment Design

In the first, practical part (section A.2) of the experiment, the participants are
asked to find errors in requirements. One half of the requirements are written
using boilerplates and the other half is written using free text. In this context,
a number of threats to the validity of the experiment arise: The subjects could
learn from evaluating the requirements written using either method, so that they
have a deeper understanding of the system when they evaluate the requirements
written using the second method. Or they could become more experienced with
reading requirements, especially considering their previous experience is limited.
These threats are further discussed in ??.

To reduce or eliminate the threats, the order of the tasks was alternated. Half
of the test subjects did the tasks concerning boilerplate requirements first, while
the other half did the free text requirements first. Any possible learning would
then be evenly distributed on the two methods. Which participants used which
treatment first, was determined by which side they sat down on. The distribution
between the treatments was as even as possible; 20 for one and 19 for the other.

3.6 Instrumentation

Before the experiment started, the test subjects were given a 20 minutes oral pre-
sentation about boilerplates and requirements engineering in general.

All the tasks in the experiment was collected in a booklet. This booklet also
contained descriptions of the two systems used in the cases, as well as a list of all
the boilerplates.

i
i

“report” — 2012/6/12 — 0:14 — page 22 — #40 i
i

i
i

i
i

22 Instrumentation

i
i

“report” — 2012/6/12 — 0:14 — page 23 — #41 i
i

i
i

i
i

Chapter 4

Operation

4.1 Preparation

The experiment was carried out in an auditorium, with the participants sitting on
alternate rows and with a minimum of two seats between each participants, thus
preventing them from peeking at each other’s answers. The use of the auditorium
also made it possible to use a projector to show a PowerPoint presentation (??)
as part of the introduction.

4.2 Execution

At the start of the experiment, the test subjects were given a 20 minutes oral intro-
duction to software requirements in general, the differences between boilerplates
and free text requirements and also the two systems used in the experiment. The
PowerPoint presentation used during this introduction is included in ??.

The first part presented what software requirements are, what quality measures
there are in relation to software requirements and how poor requirements influence
the results of a project. Some example requirements were given as well.

The second part presented the two methods this project is concerned with, and
explained the differences between boilerplates and free text when writing require-
ments.

Finally, the heating oven and the robot arm systems were presented briefly.
During this presentation the subjects were allowed to ask questions about anything
that was confusing or unclear, both about the methods and about the systems pre-
sented, while questions posed while they were doing the tasks in the experiment

i
i

“report” — 2012/6/12 — 0:14 — page 24 — #42 i
i

i
i

i
i

24 Data Validation

were only answered if they related to errors in the tasks, such as typos and changes
from earlier versions of the experiment that had not been altered. Few questions
were asked during the presentation. The test group claimed to understand both
the methods and the case pretty well.

The test subjects were given up to one hour to do all the tasks in the experi-
ment. This included answering the pre- and post-experiment questionaires. They
were allowed to turn in the answers and leave when they had finished, as long
as all tasks had been done properly. Only one out of the 39 delivered before 45
minutes had passed, but since that person had done all the tasks, this does not
seem to have been a problem.

The tasks were given in a booklet (see Appendix A), and consisted of five parts.
The first part was a short questionaire about the participant’s previous experience,
used to define their background. In the second part (see ??), the participants were
asked to find errors in requirements. They should mark the error as either an
inconsistency or ambiguity, and also to explain what or why it was a mistake.
Thus, it was possible to go back and check that they had actually found an error.
This part was split into two parts; one part with boilerplate requirement, and one
part with free text requirement.The third part was about writing requirements
using boilerplates. The participants were given a case description and also a short
description for each requirement. They were then asked to use this information
and the boilerplates listed in section A.5 to write three requirements. The last
part (see section A.4) was a questionaire about how the participant thought he or
she had done on the tasks, more specifically how easy or difficult it was to use the
methods, and whether they would prefer one method over the other.

4.3 Data Validation

All of the 39 participants completed the experiment, answering all the tasks. The
participants also used most of the time they had available, suggesting that they
did their best and did not deliver early, even though they were allowed to leave
when they had delivered.

A couple of questions needed to be clarified during the experiment. First, in
the explanation for the part where they were to locate errors in requirements, if
said that there where four error types, though only two were described. The cor-
rect number were two, and as this were explained in plenary, it was assumed to
not be an important mistake.

i
i

“report” — 2012/6/12 — 0:14 — page 25 — #43 i
i

i
i

i
i

Operation 25

The second issue was question 6 in the post-experiment questionaire, asking
whether it was more difficult to write requirements using boilerplates than using
free text. This was a leftover from an earlier version of the experiment, where
the participants were also asked to write free text requirements. The students
were asked to change the phrasing to ”It was difficult to write requirements using
boilerplates”. Four participants did not answer the question, probably because of
the confusion surrounding what the question asked. After due consideration, it
was decided to keep the question anyhow, as the ones who answered it did answer
according to the new question. This was also one of the more important questions
to answer.

i
i

“report” — 2012/6/12 — 0:14 — page 26 — #44 i
i

i
i

i
i

26 Data Validation

i
i

“report” — 2012/6/12 — 0:14 — page 27 — #45 i
i

i
i

i
i

Chapter 5

Research Results

5.1 Descriptive Statistics

The data from the experiment (included as Appendix A) was of many forms.
Section A.1 and section A.4 both had easily quantifiable results, since they both
consisted mainly of statements that the test subjects should take a position on
by marking one of five boxes, representing positions from ”Strongly agree” to
”Strongly disagree”.

However, the quality of requirements are not as easily tested. Section A.2 tested
how well the subjects understood requirements by asking them to find errors, and
all answers to the questions in this section had to be verified by an explanation
of the errors in the requirements. Thus, these explanations had to be evaluated,
before the proposed error was accepted. Similarly, in section A.3, all written re-
quirements had to be evaluated in order to judge their correctness.

5.1.1 Previous Experience

As explained in section 4.2, the participants were asked to answer a few questions
about themselves before starting on the experiment tasks. In two of the questions
they were asked to state to which degree they agreed or disagreed with state-
ments about their previous experience with requirements specification in general
and boilerplates in particular.

As shown in Table 5.1, a total of 64% agree either partially or strongly with
the statement that they have no previous experience with requirements specifi-
cation, whereas 23% disagree partially. This can be seen in correlation with the
answers to whether the participants had taken the course TDT4242 Requirements

i
i

“report” — 2012/6/12 — 0:14 — page 28 — #46 i
i

i
i

i
i

28 Descriptive Statistics

Statement Strongly Partially Neutral Partially Strongly
agree agree disagree disagree

”I have no previous experi-
ence with requirements speci-
fication”

31% 33% 13% 23% 0%

”I have no previous experience
with using boilerplates”

85% 13% 3% 0% 0%

Table 5.1: How the participants evaluated their previous experience

and Testing (which teaches the boilerplates method) or any related courses. None
of the participants had taken the aforementioned course, but 28% answered that
they had taken the course TDT4140 System Development, which teaches require-
ments specification. However, since the participants are all from the same class,
it is likely that the remaining 72% have also taken this course. The course was
being taught at the time of the experiment, which may explain why the students
answered that they did not have experience with requirements specification.

5.1.2 Understanding Requirements

In Task 1 and 2 the test subjects were asked to find errors in 11 requirements.
Six of the requirements were written using boilerplates, while five were written in
free text. They were to mark each incorrect requirement as either inconsistent or
ambiguous, and briefly describe the error. This last part was included to ensure
that what they found was actually an error, and to force the test subjects to re-
ally think about what they checked off. The answers were then evaluated by the
author of this paper and his supervisor, Professor Tor St̊alhane, first individually,
and then discussing their evaluation.

Although the errors were described in several different ways, it was possible to
categorize them. This was done by first reading through all the answers, noting the
different answers. Then they were grouped together, and one common description
of the error was made. These are listed in tab:ValidErrorsInBPRequirements. Af-
ter determining all of the valid errors, the answers were inspected again, marking
them as either correct or incorrect. The thought behind using this process was
that by determining which answers would be accepted before starting to evaluate
them, it was ensured that the way they were evaluated would not change during
the process.

i
i

“report” — 2012/6/12 — 0:14 — page 29 — #47 i
i

i
i

i
i

Research Results 29

Requirement Error-type Error
BPR1 - -
BPR2 Ambiguous It is not specified which type of sensor is meant
BPR3 Inconsistent The heating unit, not the system, shall have sen-

sor.
Inconsistent It is not specified what should be sampled from

the sensor.
BPR4 Inconsistent This does not differentiate between whether the

temperature is too high or too low. If the temper-
ature is > d higher than T, system shall switch off
heating unit.

BPR5 - -
BPR6 Inconsistent T0 is the default temperature, and should be ap-

plied only for the time outside of the specified time
intervals.

Inconsistent In conflict with the requirement that user shall be
able to set the temperature for the defined inter-
vals.

Ambiguous Incomprehensible

Table 5.2: Valid errors in boilerplate requirements

For the incorrect requirements written using boilerplates, on average 47% of the
participants found the errors. Although the participants were asked to separate
between inconsistent and ambiguous requirements, this report will not separate
between the two, because some requirements, like BPR6, are marked as both.
Some participants described a concrete error in the requirement (inconsistency),
while others only marked it as unclear (ambiguous). In my opinon, there is a high
probability that they refer to the same one, because there are no other suggested
errors for this requirement. Because of this, it does not make sense to separate
between the two.

BPR1 BPR2 BPR3 BPR4 BPR5 BPR6
of inconsistencies - - 51% 62% - 54%
of ambiguities - 10% - - - 13%

Table 5.3: The percentage of the participants who found errors in requirements
written using boilerplates

i
i

“report” — 2012/6/12 — 0:14 — page 30 — #48 i
i

i
i

i
i

30 Descriptive Statistics

For BPR6, it varies whether they are marked as ambiguous or inconsistent.
Most of the participants (46%) called it inconsistent that the temperature during
user-defined time intervals should be set to the default temperature, thus con-
flicting with the requirement that users should be able to set the temperature.
However, 21% of the participants marked the requirement as incomprehensible,
thereby calling it ambiguous.

FTR1 FTR2 FTR3 FTR4 FTR5
of inconsistencies - - - 69% -
of ambiguities 5% - - 3% -

Table 5.4: The percentage of the participants who found errors in free text
requirements

For the requirements written using free text, 38% of the participants found the
errors. However, two factors influence this number. Only two of the five require-
ments were deemed incorrect, making the basis of the evaluation limited. For the
requirements written using boilerplates, four out of six were incorrect, giving a
more solid sample size. The other factor, which is more interesting, is that FTR1
was only marked as incorrect by two of the participants. The rest either had
nothing to remark, or suggested as faults things that were not actually incorrect.
Because one of the two requirements was only marked incorrect by 5%, greatly
influences the results. 72% marked FTR4 incorrect. This is further discussed in
section 5.2.

Requirement Error-type Error
FTR1 Ambiguous Shall the temperature be set for the interval or

during the interval?
FTR2 - -
FTR3 - -
FTR4 Inconsistent If the temperature is too high, the heating element

should be shut off, not on.
Ambiguous Incomprehensible

FTR5 - -

Table 5.5: Valid errors in free text requirements

i
i

“report” — 2012/6/12 — 0:14 — page 31 — #49 i
i

i
i

i
i

Research Results 31

5.1.3 Writing Requirements

In part three of the experiment (section A.3) the participants were asked to write
requirements using boilerplates. The answers were evaluated according to five
categories; correct use of boilerplates, preserved meaning, simplicity, inconsistency
and ambiguity. The criteria for each category to be to correct is listed in Table 5.6.
A summary of the results are shown in Table 5.7.

Evaluation criteria Explanation
Correct use of BPs Appropriate boilerplates are used. Prefix- and postfix boil-

erplates are used where neccessary, and the boilerplates
does not reduce the scope of the requirement. Closely con-
nected to “Preserved meaning”.

Preserved meaning The scope and meaning of the requirement is not reduced
or changed. There are no elements in the requirement that
is not described in the task description.

Simplicity Splits up requirements where possible, to make each one
as independent and simple as possible. This makes the
requirements easier to test.

Consistent The requirement does not contradict either itself, the sys-
tem description or the task description. Use appropriate
names for entities, etc. Functionality is delegated to ap-
propriate subsystems.

Unambiguous The requirement is clear and easily understandable. The
requirement is not open for several interpretations.

Table 5.6: Evaluation criteria of written requirements

Correct
use of BPs

Preserved
meaning

Atomic Inconsistent Ambiguous

% Correct Reqs 66% 26% 95% 62% 69%
% Incorrect Reqs 34% 74% 5% 38% 31%

Table 5.7: Results from evaluation of requirements written using boilerplates

As we see in Table 5.7, for 34% of the requirements written, the participants
were not able to use appropriate boilerplates. Most of these mistakes were made
in Task 5. 82% of the participants used correct boilerplates for requirements 1 and

i
i

“report” — 2012/6/12 — 0:14 — page 32 — #50 i
i

i
i

i
i

32 Descriptive Statistics

2, whereas only 33% for requirement 3. One of the most frequent mistakes were
mixing up BP16 or BP19 for BP24 or BP25. BP16 and BP19 say that the system
shall do or shall be able to do something, whereas BP24 and BP25 say that the
system shall not allow an action. The first ones were used in combination with one
of the if-prefixes, while the latter ones could be used with either an if-statement
or (preferably) the unless-postfix. The difference is subtle, but definitive. Saying
what the system shall not allow states that there shall be a control mechanism,
while only saying what it shall do in certain cases implies no separate control.

Figure 5.1: Correctness of the written requirements according to each evaluation
criteria

However, the results are more interesting if we compare results for each of the
three requirements the participants were asked to write. As Figure 5.1 shows, re-
quirement 3 stands out significantly when it comes to how many used the correct
boilerplates. Whereas the percentage of correct usage for Requirement 1 and 2
were 77% and 87%, respectively, the corresponding result for Requirement 3 was
only 33%. The standard deviation for these results are as high as 23.3%. For
the other evaluation categories, the results are more uniform, and the standard
deviations for all of the other categories are below 7.5%. Subsection 6.2 discusses
why the results in one category differ so much from the other requirements.

i
i

“report” — 2012/6/12 — 0:14 — page 33 — #51 i
i

i
i

i
i

Research Results 33

5.1.4 Self-evaluation

The final part of the experiment was an evaluation form. The subjects were asked
to take a stand on ten statements concerning how they evaluated their own perfor-
mance and what their opinion was about the two methods after the experiment.
They had to mark whether they strongly or partially agreed or disagreed with the
statement, or whether they neither agreed nor disagreed (named “Neutral” on the
form). The results are listed in Table 5.8 and discussed in connection with the
other results in chapter 6.

Figure 5.2: Results from positive self-evaluation statements

The participants were overwhelmingly positive to the boilerplate method. As
the graphs in Figure 5.2 shows, more than half of the participants agreed partially
or strongly to all the positive statements about boilerplates. We even see that the
graphs for most of the statements follow the same curve, except for the one that
said ”It was easier to discover ambiguity in requirements written using boilerplates
than requirements written using free text”. Still, this one also were agreed to by
the majority of the respondents.

At the other end of the scale, we take a look at the statements with a negative
look on boilerplates. To some degree, these follow the opposite of the graphs of the

i
i

“report” — 2012/6/12 — 0:14 — page 34 — #52 i
i

i
i

i
i

34 Descriptive Statistics

A
gree

stron
gly

A
gree

p
artially

N
eu

tral
D

isagree
p
artially

D
isagree

stron
gly

”I
th

ou
gh

t
b

oilerp
lates

w
ere

easy
to

learn
”

5
21

7
6

0
”I

th
ou

gh
t

b
oilerp

lates
w

as
d
iffi

cu
lt

to
learn

”
0

7
8

17
7

”It
w

as
easier

to
d
iscover

am
b
igu

ity
in

req
u
irem

en
ts

w
rit-

ten
u
sin

g
b

oilerp
lates

th
an

in
req

u
irem

en
ts

w
ritten

u
sin

g
free

tex
t”

5
16

11
5

2

”It
w

as
easier

to
d
iscover

in
con

sisten
cy

in
req

u
irem

en
ts

w
rit-

ten
u
sin

g
b

oilerp
lates

th
an

in
req

u
irem

en
ts

w
ritten

u
sin

g
free

tex
t”

7
22

8
2

0

”R
eq

u
irem

en
ts

w
ritten

u
sin

g
b

oilerp
lates

w
as

m
ore

d
iffi

cu
lt

to
u
n
d
erstan

d
th

an
req

u
irem

en
ts

w
ritten

u
sin

g
free

tex
t”

1
11

5
14

7

”It
w

as
d
iffi

cu
lt

to
w

rite
req

u
irem

en
ts

u
sin

g
b

oilerp
lates”*

1
11

9
12

2
”I

n
oticed

m
ore

d
etails

in
req

u
irem

en
ts

w
ritten

u
sin

g
b

oiler-
p
lates

th
an

in
req

u
irem

en
ts

u
sin

g
free

tex
t”

8
19

6
4

1

”I
d
id

n
ot

see
a

d
iff

eren
ce

b
etw

een
req

u
irem

en
ts

w
ritten

u
sin

g
b

oilerp
lates

an
d

req
u
irem

en
ts

w
ritten

u
sin

g
free

tex
t”

0
0

0
14

24

”If
p

ossib
le,

I
w

ou
ld

p
refer

to
u
se

b
oilerp

lates
w

h
en

w
ritin

g
req

u
irem

en
ts

for
a

fu
tu

re
p
ro

ject”
6

20
9

4
0

”If
p

ossib
le,

I
w

ou
ld

avoid
to

u
se

b
oilerp

lates
w

h
en

w
ritin

g
req

u
irem

en
ts

for
a

fu
tu

re
p
ro

ject”
0

3
6

20
10

T
a
b
le

5
.8

:
R

esu
lts

from
selv

-evalu
ation

form
.

(*
C

h
an

ged
from

”It
w

as
m

ore
d
iffi

cu
lt

to
w

rite
req

u
irem

en
ts

u
sin

g
b

oilerp
lates

th
an

to
w

rite
req

u
irem

en
ts

u
sin

g
free

tex
t”

d
u
rin

g
ex

p
erim

en
t.

S
ee

section
4.3)

i
i

“report” — 2012/6/12 — 0:14 — page 35 — #53 i
i

i
i

i
i

Research Results 35

Figure 5.3: Results from negative self-evaluation statements

positive statements. However, there are some exceptions. 29% of the participants
partially agreed that ”requirements written using boilerplates was more difficult to
understand than requirements written using free text”. And 31% agreed that ”it
was difficult to write requirements using boilerplates”. The statement ”I did not
see a difference between requirements written using boilerplates and requirements
written using free text” is not neccessarily negatively charged, but is still included
in Figure 5.3. No one agreed to any degree with the statement, and 63% disagreed
strongly.

5.2 Data Set Reduction

As explained in subsection 5.1.2, a number of marked errors in the experiment
results were eliminated, because they were incorrect. They were eliminated based
on the description of the error.

The findings showed that about 28% of the registered errors were not actual
errors. Although this number is high, it was not unexpected. When asked to
find errors, the participants will try to find errors even where there are none. By
eliminating these incorrectly marked errors, we found the number of participants
who had correctly crossed for incorrect requirements, listed in Table 5.3.

From the first two tasks, two requirements stand out. Table 5.3 show that the

i
i

“report” — 2012/6/12 — 0:14 — page 36 — #54 i
i

i
i

i
i

36 Data Set Reduction

ambiguity in BPR2 was found by only four of the test subjects, or 10%, whereas
Table 5.4 shows that the ambiguity in FTR1 was only found by two test subjects,
or 5%. These two errors affect the results to such a high degree, that their inclu-
sion must be discussed.

In BPR2, four of the test subjects pointed out that it was not specified what
kind of sensor the system should have. Although it says ”In order to measure
temperature...”, several different types of sensors could be implied, and they are
therefore correct in pointing this out. However, since only 10% of the participants
found this error, this requirement influences the overall averages for how many of
the test subjects correctly marked each incorrect requirement.

For the ambiguity in FTR1, the two subjects who pointed it out, claimed that
the part ”...set the temperature during this interval” could be interpreted as both
”the user shall be able to set the temperature for the defined time interval” and
”the user shall be able to set the temperature for the interval during the interval”.
Granted, the latter would not be a very sensible implementation, but because the
wording can be interpreted in two ways, the requirement is ambiguous. That only
two participants pointed this out, may mean that the rest found the second inter-
pretation too unlikely, or that they simply overlooked this detail, but it also shows
that two out of 39 found this ambiguous.

With the inclusion of both requirements, and the number of test subjects find-
ing the respective ambiguities, the numbers show that on average 47.4% of the
subjects correctly marked incorrect boilerplate requirements, while 38.5% correctly
marked incorrect free text requirements, giving an edge to boilerplates. However,
if we remove the two requirements, with the argument that the errors were too
small, the numbers shift completely. Though the average number of test subjects
who correctly marked incorrect boilerplate requirements is raised to 59,8%, the
corresponding number for free text requirements is raised to 71,8%, flipping the
edge to free text.

i
i

“report” — 2012/6/12 — 0:14 — page 37 — #55 i
i

i
i

i
i

Chapter 6

Evaluation

6.1 Understanding Requirements

Discovered Differences Between BPRs and FTRs

The results presented in subsection 5.1.2 suggests that it is easier to discover errors
in boilerplate requirements than in free text requirements, as the average partic-
ipant in the experiment found 47% of the errors in the boilerplate requirements,
but only 38% of the errors in the free text requirements. However, several factors
have to be taken into account when analyzing the results.

First, some requirements greatly influenced the results. Only 10% of the par-
ticipants marked BPR2 as incorrect, and that was actually better than the 5%
that marked FTR1 as incorrect. We will get to the reason why so few found these
errors below, but first we will see how the results would look without these two
requirements. When removing the two, the average number of errors found in
boilerplate requirements rises to 60%, while the same number for free text require-
ments jumps to 72%. The big leaps are the results of a relatively small sample
size. Other than BPR2, there are three incorrect boilerplate requirements, and
there is only one incorrect free text requirement in addition to FTR1. Before the
experiment was carried out, more of the requirements were thought to be incorrect,
but this view was changed after evaluating the results. Some of the “errors” that
had been inserted into the requirements were too small to consider the require-
ments incorrect. The limited sample size raises the uncertainty about the validity
of the conclusions. Other factors, like the type of error and the complexity of the
requirement, may have had a bigger impact on how many found the error than
whether the requirement was written using boilerplates or free text.

So, which method is better? If the results lean one way when using all the data,

i
i

“report” — 2012/6/12 — 0:14 — page 38 — #56 i
i

i
i

i
i

38 Understanding Requirements

and the complete other way when removing the outliers, can we say anything for
certain?

One thing is clear: there are other factors influencing the results in addition to
which method is used to write the requirements. We have already mentioned the
type of error and complexity as other factors in this experiment. Experience looks
to be just as important. The participants were all from the second year of the
Computer Science program, and had barely started learning about requirements
engineering. The low percentage of errors found, even using the higher estimates
when removing the two requirements that stand out, suggests that they were too
inexperienced. Although this means that neither method should be expected to
be favoured, it also means that the overall results should not be expected to be
very high.

Complexity

One factor which may have been influential as to how well the requirements were
understood, and thus how many of the errors were found in them, was the com-
plexity of the requirement. Take the free text requirements, for instance. 72%
noticed that FTR4 was incorrect, while only 5% found the error in FTR1. FTR4
is a relatively simple requirement, consisting of an if-condition and the action
which shall be taken if the condition is true. FTR1, however, is a compound re-
quirement, making the error more difficult to spot. Whether the same is true for
boilerplate requirements is difficult to tell, because the boilerplate requirements
used in this experiment were not complex enough to compare. Theoretically, since
boilerplate requirements are so close to natural language when instantiated, the
observations from free text requirements should be transferable. If so, errors in
boilerplate requirements on the whole should be easier to discover, because the
nature of boilerplates prevents the requirements to become complex.

Type of Errors

In addition to the complexity of the requirement, the different types of errors also
appear to have an effect on how many discover it. BPR4, BPR6 and FTR4 are
all incorrect because of functional inconsistencies. BPR4 does not differentiate
between whether the temperature is too high or too low. BPR6 says that the
temperature shall be set to the default temperature during all [user-defined] time
intervals. FTR4 has the same error as BPR4. It was in these three that the highest
percentage of participants (an average of 67%) found errors.

i
i

“report” — 2012/6/12 — 0:14 — page 39 — #57 i
i

i
i

i
i

Evaluation 39

There are three other incorrect requirements. Two have already been discussed
in above; BPR2 and FTR1. The error in BPR2 is related to which type of sensor
is meant, while in FTR1 it is unclear whether the user shall be able to set the
temperature for an interval, or have to set it during the interval. Both of these
are ambiguities, and were marked by only an average of 8%. The final incorrect
requirement is BPR3, which has two errors; “heating unit” should have been “sys-
tem”, and it was not specified what the sensor shall sample. The percentage of
participants who marked this requirement was higher than for BPR2 and FTR1,
but still lower than the three mentioned above. As we see, none of these three
incorrect requirements are functionally inconsistent. BPR3 inconsistently use the
heating unit in stead of the system, while the

6.2 Writing Requirements

In section 6.2, it was shown that the overall requirements written by the partici-
pants contained many mistakes. The most glaring one was the test subjects’ failure
to preserve the meaning from the task description when writing the requirements.
Only 26% of the written requirements were completely in line with what the task
description specified.

Part of the reason for the poor results should be attributed to the participants’
limited experience. Most of them were only in their second year of the Computer
Science studies, and less than a fourth of them had relevant work experience. As
such, the expectations should be lowered.

However, if looking at each requirement individually, we can see certain differ-
ences that need to be explained. For example, why did so few of the participants
manage to choose a suitable boilerplate for Requirement 3 (section A.3)? Three
types of errors stand out from the answers.

One is the subtle, yet important, difference between saying “the system shall
not allow” some action and “the system shall be able to” or “the system shall
not” do some action if or while some condition is fulfilled. The first formulation
implies some sort of control mechanism. The other formulations lack this control
mechanism.

The second error is the two latter examples’ use of if- or while-postfixes, which
resulted in many situations were the requirement did not specify what to do. As
an example, “If <gate A = gate B = closed, and reset switch = on>, <robot
control> shall allow <robot> to be <on>” only specifies a condition where the

i
i

“report” — 2012/6/12 — 0:14 — page 40 — #58 i
i

i
i

i
i

40 Writing Requirements

robot shall be able to run. It does not say that the robot shall not be allowed to
run if the if-conditions are not fulfilled.

The third type of error is the use of “In order to”. This is a prefix intended to
either specify the goal of a requirement (BP30) or to state that the requirement
is a prerequisite for another requirement (BP29). Most of the participants who
used “in order to”, used BP29. However, it seems as if they did not consider the
implications of the requirement. The participant who wrote “In order to <start>,
<system shall have both doors closed and register reset switch pressed>” probably
had the right idea, but this can be interpreted like the doors shall always be closed,
so that it can start, not just that they have to be closed when starting.

Another mistake that a lot of the participants made, was using the broad term
“the system” too much. Particularly in Task 3 and 4, they wrote that if the right
preconditions were fulfilled, “(...) <system> shall <shut down> (...)”. It would
be impractical to shut down the whole system each time the someone enters the
area the robot is operating in. Also, since the task description specifies that the
robot shall shut down, this mistake is strange. Although no further research was
done to find the reason for this generalization, a possible cause may be that the
boilerplate uses <system> shall <action> and the participants did not bother to
replace system with a more specific term. If this assumption is correct, the use of
a requirements engineering tool, such as DODT, should help reduce the frequency
of this error.

i
i

“report” — 2012/6/12 — 0:14 — page 41 — #59 i
i

i
i

i
i

Chapter 7

Conclusion and Further Work

This project has tested how well test subjects are able to discover errors in require-
ments written using boilerplates and using free text, and how well they are able to
write requirements using boilerplates after receiving a twenty minutes introduction
to the requirements engineering method.

The goal of the project was to determine whether boilerplates was a better
method for writing requirements than free text. In my opinion, the results do not
give a clear answer to this question. Mainly, this is because a couple of the require-
ments used were too influential on the results. When included, the results showed
that boilerplates had a clear edge. However, the errors in these two requirements
were found by so few, that it was natural to look at how the numbers changed
when removing them from the calculations. Then the results changed completely,
and free text looked like the better method.

However, when looking deeper, it seems that the complexity of the require-
ments had a lot more to say about how easy it was to discover errors than which
method were used to write them. This does suggest that boilerplates should be
prefered, as that method prevents the requirements engineer from writing too com-
plex requirements.

It is also my opinion that using tools like DODT to write requirements using
boilerplates will greatly improve the quality of the requirements. (See section 6.2)

7.1 Further work

Based on the results of this project, there are a few areas where further studies are
required. First, it is neccessary to see how more experienced test subjects perform.

i
i

“report” — 2012/6/12 — 0:14 — page 42 — #60 i
i

i
i

i
i

42 Further work

The ones used in this experiment had no previous experience, and that affected
the general results.

Also, it would be important to test how the introduction of ontologies and the
DODT tool would affect the quality of requirements.

i
i

“report” — 2012/6/12 — 0:14 — page 43 — #61 i
i

i
i

i
i

Bibliography

Carew, D., Exton, C., and Buckley, J. (2005). An empirical investigation of the
comprehensibility of requirements specifications. International Symposium on
Empirical Software Engineering (ISESE).

Hull, E., Jackson, K., and Dick, J. (2009). Requirements engineering.

The Standish Group, t. (1995). Chaos Report. ...

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslen,
A. (1999). Experimentation in software engineering: an introduction. Kluwer
Academic Publishers.

Zojer, H., Farfeleder, S., Passes, A., Tojal, J., Adedjouma, M., Kondeva, A.,
Keuler, T., de Assis, P. O. A., Rugina, A.-E., St̊alhane, T., Daramola, O.,
Oertel, M., Rehkop, P., Montes, C. A., Rementeria, J. M., Haugen, O., and
Loughran, N. (2011). Revised Definitions of Improved RE Methods D SP2 R3.3
M3 Vol 2. ...

i
i

“report” — 2012/6/12 — 0:14 — page 44 — #62 i
i

i
i

i
i

44 Bibliography

i
i

“report” — 2012/6/12 — 0:14 — page 45 — #63 i
i

i
i

i
i

Appendices

i
i

“report” — 2012/6/12 — 0:14 — page 46 — #64 i
i

i
i

i
i

i
i

“report” — 2012/6/12 — 0:14 — page 47 — #65 i
i

i
i

i
i

Appendix A

Experiment

i
i

“report” — 2012/6/12 — 0:14 — page 48 — #66 i
i

i
i

i
i

48

i
i

“report” — 2012/6/12 — 0:14 — page 1 — #67 i
i

i
i

i
i

CESAR - text vs. boilerplates

What is more efficient - requirements using free text or using
boilerplates (templates)?

TDT4900
Master Thesis, 24.02.2012

Master-student: Vegard Johannessen

Veileder: Professor Tor St̊alhane

Fakultet for informasjonsteknologi, matematikk og elektroteknikk
Institutt for datateknikk og informasjonsvitenskap

i
i

“report” — 2012/6/12 — 0:14 — page 2 — #68 i
i

i
i

i
i

i
i

“report” — 2012/6/12 — 0:14 — page 3 — #69 i
i

i
i

i
i

Innledning

Målet med dette eksperimentet er å sammenligne to teknikker for å skrive sys-
temkrav, for å finne ut om den nye metoden (boilerplates) er bedre enn den
etablerte (fri tekst/naturlig spr̊ak). De to teknikkene vil sammenlignes ved at
testdeltakerene gjennomfører de følgende aktivitetene:

1. Fyll ut informasjon om ditt erfaringsniv̊a - ca 5 minutter

2. Følg med p̊a presentasjonen om boilerplates og systemet som skal brukes i
oppgavene - ca 20 minutter

3. Løs oppgavene - ca 60 minutter

4. Fyll ut evalueringsskjemaet - ca 5 minutter

i
i

“report” — 2012/6/12 — 0:14 — page 4 — #70 i
i

i
i

i
i

4

i
i

“report” — 2012/6/12 — 0:14 — page 5 — #71 i
i

i
i

i
i

Experiment 5

A.1 Tidligere erfaring

Veldig
enig

Delvis
enig

Nøytral
Delvis
uenig

Veldig
uenig

Jeg har ingen tidligere
erfaring med kravspesifiser-
ing
Jeg har ingen tidligere
erfaring med bruk av
boilerplates

Har du hatt faget TDT4242 Kravspesifikasjon og test-
ing, eller evt. tilsvarende fag? ...

Hvis du har hatt tilsvarende fag, hvilke? ...

Hvor mange år har du studert (universitet/høyskole)? ...

Hvor mange år/måneder med IT-relatert arbeidserfaring
har du (sommerjobber, fast jobb, etc)? ...

i
i

“report” — 2012/6/12 — 0:14 — page 6 — #72 i
i

i
i

i
i

6 Tidligere erfaring

i
i

“report” — 2012/6/12 — 0:14 — page 7 — #73 i
i

i
i

i
i

Oppgaver

Oppgavene som skal utføres er delt i to; først skal du lese og finne feil i en rekke
krav, og etterp̊a skal du f̊a skrive noen krav selv.

A.2 Å lese krav

I den første delen omhandler kravene varmeovn-eksempelet som ble presentert i
innledningen. En kort oppsummering av systemet er beskrevet p̊a neste side.

Halvparten av kravene er skrevet i fri tekst og halvparten er skrevet med boil-
erplates. En del av kravene er inneholder feil, og din oppgave er å finne disse
feilene. Kryss av for hvilken type feil du finner i kravet, og gi en kort forklaring.
For eksempel:

Krav 1 Inkonsekvent X Tvetydig

Forklaring: Kravet kaller <systemet> for <ovnen>, som er i konflikt med
ontologien.

Hopp videre til neste krav hvis du ikke finner noen feil i kravet.
Feiltypene kan beskrives som følger:

Inkonsekvent = Kravet følger ikke navngivingsreglene fra ontologien, kravet er
formulert p̊a en annen måte enn tilsvarende krav, kravet motsier seg selv,
dvs det er en kontradiksjon (kravet kan aldri oppfylles) eller kravet motsier
et annet krav eller systembeskrivelsen.

Tvetydig = Kravet kan tolkes p̊a flere m̊ater.

Dersom kravet ikke er forst̊aelig, men du ikke synes noen av de fire feiltypene
passer, s̊a skriver du bare “uforst̊aelig” i forklaringsfeltet. Du f̊ar muligheten til å
vurdere forst̊aeligheten til kravene i evalueringsskjemaet p̊a slutten.

i
i

“report” — 2012/6/12 — 0:14 — page 8 — #74 i
i

i
i

i
i

8 Å lese krav

Systemet best̊ar av fire enheter;

• Et I/O panel hvor brukeren kan konfigurere systemet

• Et varmeelement (Heating element) som skaper varme

• En sensor (Temperature sensor) som måler temperaturen i luften rundt ov-
nen

• En kontroller (Controller) som kobler sammen de tre andre enhetene.

Kontrolleren mottar input fra sensoren, og sl̊ar p̊a eller av varmeelementet
basert p̊a om temperaturen er for høy eller lav i forhold til temperaturen brukeren
har tastet inn p̊a I/O panelet.

Brukeren kan stille inn tidsstyring (time intervals) for å sette en fast temper-
atur til visse tider p̊a døgnet, f.eks. for å senke temperaturen om natten.

Brukeren kan ogs̊a sette inn en feiltoleranse for temperaturen. For eksempel
kan brukeren stille inn at det er greit at temperaturen ligger opp til 2◦C over
eller under innstilt temperatur. Da vil ikke varmeelementet sl̊as av eller p̊a før
temperaturforskjellen overstiger denne verdien.

i
i

“report” — 2012/6/12 — 0:14 — page 9 — #75 i
i

i
i

i
i

Experiment 9

Boilerplate krav

1. In order to <control temperature>, <heating unit> shall have <on / off
switch>

2. In order to <measure temperature>, <system> shall have <sensor>

3. <heating unit> shall <sample> <sensor> at least <3> times per <minute>

4. If <temperature sensor reading differs from T more than d>, <system>
shall <switch on heating unit>

5. <system> shall have <default temperature = T0>

6. <system> shall <set> <T = T0> during <all time intervals>.

Oppgave 1: Fyll inn de feilene du finner i kravene over

Krav 1 Inkonsekvent Tvetydig

Forklaring:

Krav 2 Inkonsekvent Tvetydig

Forklaring:

Krav 3 Inkonsekvent Tvetydig

Forklaring:

Krav 4 Inkonsekvent Tvetydig

Forklaring:

Krav 5 Inkonsekvent Tvetydig

Forklaring:

i
i

“report” — 2012/6/12 — 0:14 — page 10 — #76 i
i

i
i

i
i

10 Å lese krav

Krav 6 Inkonsekvent Tvetydig

Forklaring:

i
i

“report” — 2012/6/12 — 0:14 — page 11 — #77 i
i

i
i

i
i

Experiment 11

Fritekst krav

7. The user shall be able to use a simple panel to define time intervals, and set
the temperature during this interval - Ti

8. The time intervals are not allowed to overlap

9. The user shall be able to use a simple panel to define a temperature tolerance
value d.

10. If the temperature deviates by d, the heater shall be turned on

11. If the user don’t set an allowed temperature deviance, the system shall use
default value d = 2◦C

Oppgave 2: Fyll inn de feilene du finner i kravene over

Krav 7 Inkonsekvent Tvetydig

Forklaring:

Krav 8 Inkonsekvent Tvetydig

Forklaring:

Krav 9 Inkonsekvent Tvetydig

Forklaring:

Krav 10 Inkonsekvent Tvetydig

Forklaring:

Krav 11 Inkonsekvent Tvetydig

Forklaring:

i
i

“report” — 2012/6/12 — 0:14 — page 12 — #78 i
i

i
i

i
i

12 Å lese krav

i
i

“report” — 2012/6/12 — 0:14 — page 13 — #79 i
i

i
i

i
i

Experiment 13

A.3 Å skrive krav med boilerplates

I andre del av oppgavene skal du skrive noen krav ved å bruke boilerplates selv.
Kravene er i denne delen relatert til eksempelet med en robotarmen som beveger
seg p̊a en skinne mellom to omr̊ader. Systemet ble kort presentert i innføringen
før eksperimentet, men vi oppsummerer kort hva systemet gjør her:

“Robot platform” beveger seg frem og tilbake p̊a skinnen kalt “Robot rail”,
mellom de to omr̊adene A og B. Robotarmen kan rotere p̊a platformen, og utføre
forskjellige handlinger med den andre enden av armen rundt om i omr̊adet den
befinner seg i.

Rommet er delt p̊a midten, og to sensorer fanger opp bevegelse fra en side til
en annen. Lyssensoren “Light receiver” detekterer om noen krysser den stiplede
linjen hvis lysstr̊alen fra “Light emitter” brytes, og “Position switch” detekterer
hver gang robotplatformen beveger seg fra et omr̊ade til et annet.

I tillegg finnes det to innganger til rommet, “Gate A” og “Gate B”, som leder
henholdsvis til omr̊ade A og omr̊ade B. Disse er ogs̊a utstyrt med sensorer for å
detektere om noen kommer inn i rommet.

i
i

“report” — 2012/6/12 — 0:14 — page 14 — #80 i
i

i
i

i
i

14 Å skrive krav med boilerplates

Utenfor rommet finnes det en “Restart switch”, som starter roboten etter en
stans.
Systemet som styrer roboten kalles “Robot control”.

Sikkerhet er veldig viktig i dette systemet, og den viktigste regelen er at roboten
ikke skal operere i samme omr̊ade som noen befinner seg. Du skal derfor, ved hjelp
av boilerplates, skrive krav for å dekke de følgende tre reglene:

Oppgave 3

Hvis noen kommer inn i omr̊adet der roboten opererer, enten gjennom en av in-
ngangene, eller ved å krysse linjen mellom omr̊ade A og B, s̊a skal roboten stoppe
innen 10 millisekunder.

Boilerplate requirement(s):

Oppgave 4

Hvis roboten flytter seg inn i et omr̊ade der det befinner seg noen, s̊a skal robot
control stoppe roboten umiddelbart.

Boilerplate requirement(s):

Oppgave 5

Roboten skal ikke kunne startes hvis ikke begge inngangene er stengt og “reset
switch” trykkes p̊a.

i
i

“report” — 2012/6/12 — 0:14 — page 15 — #81 i
i

i
i

i
i

Experiment 15

Boilerplate requirement(s):

i
i

“report” — 2012/6/12 — 0:14 — page 16 — #82 i
i

i
i

i
i

16 Å skrive krav med boilerplates

i
i

“report” — 2012/6/12 — 0:14 — page 17 — #83 i
i

i
i

i
i

Experiment 17

A.4 Evaluering

Vurder hver p̊astand under, og kryss av for alternativet som passer best.

Veldig
enig

Litt
enig

Nøytral
Litt
uenig

Veldig
uenig

Jeg synes boilerplates var lett å lære
Jeg synes boilerplates var vanskelig å
lære
Det var lettere å oppdage tvetydighet
i krav skrevet med boilerplates enn i
krav skrevet i fri tekst
Det var lettere å oppdage inkonsistens
i krav skrevet med boilerplates enn i
krav skrevet i fri tekst
Krav skrevet med boilerplates var
vanskeligere å forst̊a enn krav skrevet
i fri tekst
Det var vanskeligere å skrive krav med
boilerplates enn med fri tekst
Jeg la merke til flere detaljer i krav
skrevet med boilerplates enn krav
skrevet i fri tekst
Jeg s̊a ikke forskjell p̊a krav skrevet
med boilerplates og krav skrevet i fri
tekst
Hvis mulig, vil jeg foretrekke å bruke
boilerplates til å skrive skrive krav til
et fremtidig prosjekt
Hvis mulig, vil jeg unng̊a å bruke boil-
erplates til å skrive skrive krav til et
fremtidig prosjekt

i
i

“report” — 2012/6/12 — 0:14 — page 18 — #84 i
i

i
i

i
i

18 Evaluering

i
i

“report” — 2012/6/12 — 0:14 — page 19 — #85 i
i

i
i

i
i

Experiment 19

A.5 Boilerplates

Boilerplates kan deles inn i prefix-, main- og suffix boilerplates. Alle krav skrevet
med boilerplates må inneholde en “main boilerplate”, som beskriver ønsket funksjon-
alitet. Kravet kan ogs̊a ha en “prefix boilerplate” først, som beskriver enten en
betingelse eller situasjon som skal utløse handlingen beskrevet i hoveddelen, eller
målet med kravet. Til slutt kan kravet ogs̊a ha en “suffix boilerplate” til slutt,
som kan beskrive rekkefølge, unntak, tidsbegrensninger eller frekvensen funskjon-
aliteten skal forekomme med.

Prefix boilerplates

BP27: if <event>, ...
BP28: if <state>, ...
BP29: in order to <action> ...
BP30: in order to achieve <goal> ...
BP31: while <state> , ...

Main boilerplates

BP15: <system> may be <state>
BP16: <system> shall <action>
BP17: <system> shall allow <entity> to be <state>
BP18: <system> shall be <entity>
BP19: <system> shall be able to <action>
BP20: <system> shall have <entity>
BP21: <system> shall have <quality factor> of at least <quantity>
<unit>
BP22: <system> shall have <quality factor> of at most <quantity>
<unit>
BP23: <system> shall not <action>
BP24: <system> shall not allow <action>
BP25: <system> shall not allow <entity> to <action>
BP26: <user> shall be able to <action>

i
i

“report” — 2012/6/12 — 0:14 — page 20 — #86 i
i

i
i

i
i

20 Boilerplates

Suffix boilerplates

BP0: ... after <event>
BP1: ... at <entity>
BP2: ... at least <quantity> times per <unit>
BP3: ... before <event>
BP4: ... during <state>
BP5: ... every <quantity> <unit>
BP6: ... except for <action>
BP7: ... for a period of at least <quantity> <unit>
BP8: ... from <entity>
BP9: ... other than <action>
BP10: ... to <entity>
BP11: ... unless <state>
BP12: ... within <quantity> <unit>
BP13: ... within <quantity> <unit> from <event>

	Title Page
	Introduction and Overview
	Background and Motivation
	Goals and Research Questions
	Project Scope
	Research Method
	Contributions
	Thesis Structure

	Theory and Background
	Software Requirements
	Boilerplates
	bp classifications
	Benefits to using bp
	Drawbacks when using bp
	Tools

	Free Text Requirements
	Benefits to using ftr
	Drawbacks to using ftr

	Methods and materials
	Context selection
	Hypotheses
	Variables
	Test subjects
	Experiment Design
	Instrumentation

	Operation
	Preparation
	Execution
	Data Validation

	Research Results
	Descriptive Statistics
	Previous Experience
	Understanding Requirements
	Writing Requirements
	Self-evaluation

	Data Set Reduction

	Evaluation
	Understanding Requirements
	Writing Requirements

	Conclusion and Further Work
	Further work

	Bibliography
	Appendices
	Experiment
	Tidligere erfaring
	Å lese krav
	Å skrive krav med boilerplates
	Evaluering
	Boilerplates

