
Problem Description

In this research project we try to exploit computational properties of un-
conventional materials (materials usually not considered as a computational
substrate). Such materials may offer computation at extreme low cost and
may also enable us to do computation that is hard (or impossible) on a von
Neumann stored program machine. Currently we explore possible computa-
tional properties of carbon nano tubes.

In 2010 a first version of a platform was made. This system consists of a
PCB, including an Atmel microcontroller and a Xilinx FPGA, that acts as
an interface between a PC and a micro electrode array. The array interfaces
the material under investigation.

In this project the experimental platform will be extended. There are several
possible directions. As such there is a possibility for several students pursuing
different directions. Possible directions:

a) Extending the software, microcontroller and PC (mostly c-programming).

b) Extending the FPGA interface to the material (VHDL and c-programming).

c) Design of additional interface circuits between the FPGA and the micro
electrode array (PCB-design, digital/analogue design).

i

ii PROBLEM DESCRIPTION

Abstract

Evolution in materio aim at revealing computational properties
in materials. A bottom-up approach combining methods and the-
ories from evolutionary algorithms, complex systems and uncon-
ventional computation, is used to explore inherent computational
properties of alternative computational materials. This master’s
thesis build on earlier and ongoing research at NTNU focusing
on interfacing materials. Mecobo is a prototype interface plat-
form, including a physical interface, hardware for stimuli/mea-
surements and software, developed at NTNU.

The Mecobo platform is intended to serve as a platform for
experimenting with unconventional materials’ behavior in a dy-
namic complex system. This project describes the existing Mecobo
platform, modifications to it and the new extension Cellular Au-
tomata Central Processing Unit (CA CPU). With the new ex-
tension, Mecobo is now capable of modelling dynamic complex
systems with a cellular automaton and an unconventional mate-
rial.

The Cellular Automata Central Processing Unit extension is a
parallel processor with 32 cores, but supports up to and including
64 cores, for controlling each material configuration pin. The
core is implemented as a stack machine optimized for instruction
space. It uses an 8-bit reduced instruction set computing (RISC)
instruction set architecture (ISA).

The modified Mecobo platform is tested and confirmed to
work with several cellular automata rules and a simple model
consisting of a theoretical material with constant response.

iv ABSTRACT

Sammendrag

Evolusjon i materio har som mål å utforske komputasjonelle egen-
skaper i materialer. En bunnen-opp tilnærming som kombinerer
metoder og teorier fra evolusjonære algoritmer, komplekse syste-
mer og ukonvensjonell komputasjon, blir brukt for å utforske in-
neboende komputasjonelle egenskaper i alternative komputasjonelle
materialer. Denne masteroppgaven bygger p̊a tidligere og p̊ag̊aende
forskning ved NTNU, som fokuserer p̊a interaksjon med materi-
aler. Mecobo er en prototype grensesnitt plattform, med et fysisk
grensesnitt, hardware for stimuli/målinger og software, utviklet
ved NTNU.

Mecobo plattformen er ment som en plattform for å gjøre
forskning p̊a ukonvensjonelle materialers oppførsel i et dynamisk
komplekst system. Prosjektet beskriver den eksisterende Mecobo
plattformen, endringer p̊a den og den nye utvidelsen Cellular
Automata Central Processing Unit (CA CPU). Med den nye
utvidelsen, er Mecobo istand til å modellere dynamisk komplekse
systemer med en cellular automaton og et ukonvensjonelt mate-
riale.

Cellular Automata Central Processing Unit utvidelsen er en
parallell prosessor med 32 kjerner, men den støtter opp til og
med 64 kjerner, for å kontrollere hver material konfigurasjons pin.
Kjernen er implementert som en stakk maskin, optimalisert for
instruksjons størrelse. Den bruker en 8-bit reduced instruction
set computing (RISC) instruction set architecture (ISA).

Den endrede Mecobo plattformen er testet og bekreftet å virke
med flere cellular automata regler og en enkel modell best̊aende
av et teoretisk materiale med konstant respons.

vi SAMMENDRAG

Acknowledgements

Thanks to my supervisor, Gunnar Tufte, for insightful and interesting ideas,
discussions and criticism. And thanks to my brother Ole Henrik Jahren for
his input and discussions.

vii

viii ACKNOWLEDGEMENTS

Contents

Problem Description i

Abstract iii

Sammendrag v

Acknowledgements vii

1 Introduction 1

2 Background 3
2.1 Self-organization . 3
2.2 Evolvable Hardware . 5
2.3 Cellular Automata . 8
2.4 Genetic Algorithms . 23
2.5 GA, CA, Evolution in materio, in Mecobo 25

3 Overview 27
3.1 The Idea . 30
3.2 CA models . 31
3.3 Evolution and behavior . 35
3.4 Hardware and software . 36

4 Design and Implementation details 39
4.1 FPGA . 42

4.1.1 Microcontroller interface 43
4.1.2 Command controller 45
4.1.3 Pin controller . 49
4.1.4 CA CPU . 50

4.2 Microcontroller . 52
4.3 Host software . 56

ix

x CONTENTS

5 Experiments 59
5.1 Rule 90 . 60

5.1.1 Results . 61
5.2 Rule 110 . 64

5.2.1 Results . 64
5.3 Rule 225 . 67

5.3.1 Results . 68
5.4 Uniform 1 . 71

5.4.1 Results . 72

6 Discussion 77
6.1 Conclusion . 77
6.2 Future Work . 78

A CA CPU 79
A.1 Register file vs stack-based architecture 79
A.2 Multicycle vs Pipelined . 80
A.3 The pipeline . 83

A.3.1 CPU module . 83
A.3.2 Fetch module . 83
A.3.3 Decode module . 84
A.3.4 Execute module . 84
A.3.5 Writeback module . 84
A.3.6 Memory module . 84
A.3.7 I/O register module . 85
A.3.8 ALU module . 85

A.4 Hazards . 85
A.4.1 Structural hazards . 85
A.4.2 Data hazards . 85
A.4.3 Control hazards . 86

A.5 CA CPU architecture details 86
A.6 ALU . 87
A.7 Opcodes . 88
A.8 Control . 88
A.9 Assembler . 89
A.10 Simulation verification . 91
A.11 Corner cases . 92
A.12 Synthesis results . 92

List of Figures

2.1 A thread forming and splitting (Taken from Gordon Pask [1]) 4

2.2 Gordon Pask’s assemblage, showing the electrodes and the
underlying solution (Taken from Gordon Pask [1]) 5

2.3 Final circuit of one of Thompson’s FPGA experiments. Gray
cells are cells that affect the functionality even though their
output is not used. (Taken from Thompson [2]) 6

2.4 Photograph of the antenna ST5-3-10 (Taken from [3]) 7

2.5 Von Neumann neighbourhood showed in two dimensions. 1-
dimensional Von Neumann neighbourhood is without the stip-
pled cells (only horizontal axis), while 2-dimensional includes
all cells(vertical axis included). 8

2.6 Rule 30, figure (a) shows the chaotic behavior of rule 30 (b)
shows the Wolfram code of rule 30 (Taken from [4]) 10

2.7 Wolfram CA with k=2 and r=2 (Taken from [5]) 12

2.8 Wolfram CA with k=2 and r=2, with different initial condition
(Taken from [5]) . 13

2.9 Rapid transient length growth in the vicinity of the phase
transition between ordered and disordered dynamics (Taken
from [6]) . 15

2.10 Growth of the transients as a function of CA size (Taken from
[6]) . 16

2.11 Langton’s CA with K=4 and N=5 (Taken from [6]) 17

2.12 Langton’s CA with K=4 and N=5 continued (Taken from [6]) 18

2.13 Shows how at higher λ a cells behavior becomes more chaotic
(Taken from [6]) . 19

2.14 Shows how the average mutual information spikes around the
phased change event or edge of chaos (Taken from [6]) 20

2.15 Location of the Wolfram classes in λ space (replicated figure
from [6]) . 21

xi

xii LIST OF FIGURES

2.16 (a) fitness each generation (b)-(f) space-time plots of the be-
havior of highest-fitness individual (Taken from [7]) 26

3.1 The host computer controls the material bay through Mecobo.
(Taken from [8]) . 28

3.2 The old Mecobo FPGA toplevel, before the addition of the
new extension . 29

3.3 The MEA Amplifier to the left, without the replaceable elec-
trode array inserted, shown on the right. (Taken from [8]) . . 30

3.4 Mathematical model of the hybrid CA material system 32
3.5 Cellular Automaton 1 . 33
3.6 Cellular Automaton 2 . 34
3.7 Cellular Automaton 3 . 34
3.8 This is the complete system with the new extension and how it

is suppose to be used. The solid lines are the physical system,
while the stippled lines denote the abstract system and how it
is suppose to be used. 35

3.9 Address space layout . 37

4.1 The software and hardware stack of the new functionality. . . 39
4.2 Material configuration bits (also referred to as a CA state or

configuration) . 40
4.3 The new FPGA Toplevel . 42
4.4 Microcontroller interface . 44
4.5 Microcontroller interface state diagram 45
4.6 Command control block diagram 46
4.7 Command control state diagram 48
4.8 Pin control . 49
4.9 Pin . 50
4.10 CA CPU . 51
4.11 Read cycle of the microcontroller 53
4.12 Write cycle of the microcontroller 54

5.1 The rule 90 program visualized 61
5.2 Results from rule 90 . 62
5.3 Rule 90 result states from 51 and onwards 63
5.4 Rule 90 state space of FPGA driven pins 64
5.5 The rule 110 program visualized 64
5.6 Results from rule 110 . 65
5.7 Rule 110 result states from 51 and onwards 66
5.8 Rule 110 state space of FPGA driven pins 67

LIST OF FIGURES xiii

5.9 The rule 225 program visualized 68
5.10 Results from rule 225 . 69
5.11 Rule 225 result states from 51 and onwards 70
5.12 Rule 225 state space of FPGA driven pins 71
5.13 The uniform 1 program visualized 72
5.14 Results from uniform 1 . 73
5.15 Uniform 1 result states from 51 and onwards 74
5.16 Uniform 1 state space of FPGA driven pins 75

A.1 Multicycle . 81
A.2 Pipeline . 82
A.3 Pipelined instructions . 83
A.4 Non-pipelined instructions, assuming all instructions require

4 cycles each. 83
A.5 Example assembler syntax . 90
A.6 Example program . 90
A.7 Testbench . 91

xiv LIST OF FIGURES

List of Tables

4.1 Table of possible pin configurations 40
4.2 Commands supported by libEMB 58

A.1 Instruction format . 87
A.2 ALU function list . 87
A.3 Opcode list . 88
A.4 Pipeline control . 89

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Evolution in Materio is a relatively new field, but the ideas date back to
the 1950’s and the field of cybernetics. One of the pioneers of evolution in
materio is Gordon Pask, a British cybernetics researcher. Who made the
famous ”ear” which could distinguish two frequencies from another [1]. The
primary focus in the field evolution in materio is finding and exploiting the
underlying material, more common today is evolvable hardware (EHW) [9]
which is largely dominated by research into evolving circuits based on known
and common electronic components. In evolution in materio there is more
focus on finding new unconventional materials to use in computation, like
Harding and Miller’s tone discriminator evolved in liquid crystal [10] or using
a substance of gel and nanotubes, i.e. like in the Mecobo platform.

While the current semi-conductor industry is heavily invested into doped
silicon and transistors, and struggling with area, heat and power constraints.
It is desirable to find a new method or material which does not have these
constraints or are less affected by them. Maybe even an inherently robust
material could be found, which is one of the key properties wanted in an
adaptive system.

The system described in this thesis is Mecobo. Mecobo is a platform for run-
ning experiments on different materials. It consists of software, a microcon-
troller, a FPGA and a material bay which interfaces with the material.

The task was to design and implement an extension which enabled the ability
to experiment with evolvable material, and integrate it into the already ex-
isting Mecobo platform. The result is Cellular Automata Central Processing
Unit(CA CPU) and modifications to the existing Mecobo platform.

1

2 CHAPTER 1. INTRODUCTION

The Mecobo platform is a platform for interfacing with a test material, the
interfacing can be done by setting each input to the material manually, or
by using the CA CPU(cellular automaton central processing unit) which is a
parallel processor module which can be used to model a CA in conjunction
with the test material, which makes it a hybrid CA materio model. The
CA will guide the evolution of the material by changing the configuration or
input to the material based on the material’s response.

The Mecobo platform and ideas of possible research directions, are based
on theory of evolution in materio and self-organization, cellular automata,
genetic algorithms and complex behavior in general.

Similar to what Langton did [6] for CAs, one goal is to search for materials
which can support information transmission, storage and modification to see
if we can exploit the material to exhibit complex behavior and ultimately
support universal computation.

Can the complete hybrid CA material system modeled on Mecobo exhibit
complex behavior equivalent of a class 4 CA and able to do computations?
Or perhaps the CA can evolve the material such that the material by its own
can exhibit complex behavior and support universal computation?

It is also interesting to see if it is possible to find and evolve a material which
can add complexity to a CA’s behavior or perhaps even inhibit complex
behavior, in this way the material acts as a complexity modifier.

The Mecobo platform is designed to explore these ideas and to possibly find
new materials with interesting properties and behavior. Mecobo enables the
user to experiment with different materials, to see how they behave. The
Mecobo platform is very programmable, the CA running on the FPGA is
user-defined, or a GA can evolve the CA and initial state. One can also
experiment with the material directly without the use of the CA CPU module
by configuring the pins to the material directly using a GA or manually. The
material bay also supports different voltages(be sure that the FPGA’s IO
ports can handle the current and voltage).

Chapter 2 gives an introduction to the ideas, models and some of the the-
ory behind the design of the Mecobo platform and the CA CPU extension.
Chapter 3 gives an overview of the Mecobo system and general idea behind
it. Chapter 4 is a description of the system and some implementation details.
Chapter 5 describes each of the initial programs run on Mecobo and their
results. Chapter 6 discusses the platform and results, and describes some of
the technical difficulties, as well as future improvements and new ideas.

Chapter 2

Background

This chapter describes some of the necessary theory which is needed to under-
stand how the system is suppose to operate. In [8] Lykkebø introduces some
of the background and motivation of the Mecobo platform. The extension
of Mecobo introduces some new elements, among them cellular automaton
and self-organization to get a better understanding of how the new exten-
sion fits into the theory of evolution in materio. The conjunction of cellular
automata and self-organizing material does not have a formal model tied to
it yet, there are shared principles and ideas that gives valuable insight when
trying to merge them.

2.1 Self-organization

One of the pioneers of self-organization which introduced self-organization to
the sciences as we know them today is William Ross Ashby, he created one
of the first self-organizing devices, the Homeostat in 1948, later described in
[11]. Which could adapt itself to the environment. He stated that ”every
isolated determinate dynamic system obeying unchanging laws will develop
”organisms” that are adapted to their ”environments””. Which in essence
means that all dynamic systems tend to evolve towards equilibrium or an
attractor. Others like Gordon Pask’s ear and Heinz von Förster’s principle
”order from noise” [12] followed after. Order from noise is the principle that
the faster the system goes through its state space the faster it ends up in an
attractor or equilibrium.

Some of the main motivation of evolution in materio comes from Gordon

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: A thread forming and splitting (Taken from Gordon Pask [1])

Pask’s experiments which showed a self-organizing system based on metallic
ions and electric current. Through Pask’s experiments he were able to create
an ear by using methods presented in [1], which could distinguish between
two signals with different frequency. The main part in the system is the
ferrous sulphate solution in which the metallic ions form threads which lead
current. And a device able to distribute current through the electrodes creat-
ing connections. The connections may grow stronger or weaker, more or less
current flowing through them. The device maximizes the current through
the electrodes, but limits the overall current in the network.

The connections formed by threads can be seen in figure 2.1, the thread forms
because of the voltage differences of the electrodes in the solution. Where x,y
and S are electrodes with different voltage levels. The system self-organizes
and the thread is building itself from S towards both x and y based on the
current flowing.

The voltages is applied through the resistor network shown in figure 2.2.
The slightly wavelike object in the background of figure 2.2 being the fer-
rous sulphate solution and infront the resistor network, part of the device
distributing the current. The controlling machine which evolves the system
can be seen in the top.

2.2. EVOLVABLE HARDWARE 5

Figure 2.2: Gordon Pask’s assemblage, showing the electrodes and the un-
derlying solution (Taken from Gordon Pask [1])

2.2 Evolvable Hardware

Adrian Thompson presented in [2], 3 hypotheses and showed how evolution
could exploit the underlying material. Thompson evolved among other things
frequency discriminator similarly to what Pask managed to create, and was
able to observe that the evolution process was able to exploit some ”hidden”
functionality in the FPGA. Thompson’s hypotheses:

1. conventional design methods work withing constrained regions.

2. evolutionary algorithms can explore some of the regions beyond the
scope of conventional methods.

3. evolutionary designs can in practice produce design that are beyond
the scope of conventional methods.

6 CHAPTER 2. BACKGROUND

The hidden properties in the FPGA was found by checking each cells con-
tribution to the emergent behavior of the circuit shown in figure 2.3. The
figure shows the circuit layout of the logical blocks in the FPGA, the grey
blocks where identified as not connected and still they affect behavior of the
circuit. Which means that they found a physical property of the FPGA not
present in the theoretical model, and was able to exploit it.

Figure 2.3: Final circuit of one of Thompson’s FPGA experiments. Gray
cells are cells that affect the functionality even though their output is not
used. (Taken from Thompson [2])

Similarly to what Thompson and Pask has done, Linden’s antennas also
shows interesting evolution of hardware and how evolution can exploit the
underlying material or structure. The antenna presented by Lohn, Linden,
Hornby, Kraus, Rodŕıguez-arroyo and Seufert in [3] perhaps being the most
interesting since it got sent out to space. One of Linden’s evolved antennas
is shown in figure 2.4. The figure shows how the evolution has created an un-
conventional antenna structure with several of what seems like unstructured
branches.

2.2. EVOLVABLE HARDWARE 7

Figure 2.4: Photograph of the antenna ST5-3-10 (Taken from [3])

Thompson’s or Linden’s research might not be perfectly described as Evolu-
tion in Materio, it does still provide insights into how we can use evolution
to find different solutions outside of our current methodologies’ scope. Evo-
lution in Materio can be described as Evolvable Hardware (EHW), but what
distinguishes Evolution in Materio from ”normal” EHW is the focus on use
of different materials for computation, like Harding and Miller in [10] which
evolved a tone discriminator in liquid crystal.

Miller and Downing in [13] describes a system called a ”Configurable Analog
Processor” or ”CAP”, which has clear similarities with the extension in our
project. Miller and Downing surveys several different directions of existing
technologies in Evolution in Materio among them evoultion of liquid crystal
and gives interesting ideas for the future. Most systems which is described
as Evolution in Materio have a similar structure as the CAP presented.

Our understanding of materials comes from several different sciences, two of
the most obvious would be physics and chemistry. The knowledge we pos-
sess is encoded in many different models which we use to describe different
phenomena of nature. Old models gets replaced or refined when we observe
phenomenas which is not described by the models. The models we use have
limited degrees of freedom and depends on abstraction level of the system it
describes. Atom models and how they have changed through time is a good

8 CHAPTER 2. BACKGROUND

Figure 2.5: Von Neumann neighbourhood showed in two dimensions. 1-
dimensional Von Neumann neighbourhood is without the stippled cells (only
horizontal axis), while 2-dimensional includes all cells(vertical axis included).

example, from a cubic model with electrons placed on the corners to the elec-
tron cloud model used today. Another is how the earth rotates around the
sun. On a high abstraction level the result is a system which earth has an
elliptic trajectory around the sun, which is fairly easy to model mathemati-
cally. However looking at a lower level of abstraction, to model the system
we would potentially have to take into account the entire universe and how
it all fits together to model the system perfectly, which is not possible.

In other words, what the models we use today describe, is small subsets
of the entire search space and we are limited by our own knowledge about
how these system work and should work. This is what evolvable hardware
is all about and more specifically evolution in materio. It tries to free the
design and creation process of a system, from the constraints enforced by our
models, to exploit any underlying functionality present.

2.3 Cellular Automata

Cellular Automata (CA) are mathematical models for complex natural sys-
tems. These systems can contain large numbers of simple components with
local interactions. They are discrete dynamic systems with simple construc-
tion, but can exhibit complex self-organizing behavior [14].

Cellular automata consists of a grid of cells can be 1-dimensional or of a larger
dimension, it’s easiest to look at them in 1 or 2 dimensions, because how they
are visualized. The cells can be in a finite number of states. The easiest is
either ”0” or ”1”, false or true. Cells have a defined neighbourhood, often in
a 2-dimensional grid the neighbourhood is a Von Neumann neighbourhood.
Simplified to left or right neighbour when using 1 dimension, as shown in

2.3. CELLULAR AUTOMATA 9

figure 2.5. The figure shows a Von Neumann neighbourhood with range 1 in
both dimensions, however larger ranges can be used.

Each cell also has a function which decides the new state when updating the
cells based on their own value and their neighbourhood. Figure 2.6a shows a
typical space-time plot of a CA, the time axis is vertical starting with t = 0,
the initial state and the horizontal is how the cells are laid out in space.

Cellular Automata evolved from work by John Von Neumann among oth-
ers. However Von Neumann’s interest was mainly building a self-replicating
machine not the CA environment itself. Von Neumann created the self-
replicating automata in a kinetic model which can be described more or
less as a robot. Stanislaw Ulam had worked on a cellular model and state
spaces [15] and suggested to Von Neumann a more theoretical approach to
the problem, which was free of the physical constraints of the kinetic model.
Von Neumann created a self-replicating machine called ”Von Neumann uni-
versal constructor” based on Ulam’s suggestions, which was published later
by Arthur W. Burks [16]. This machine used 29 different states and was able
to recreate itself by reading its own cell states in a CA environment.

10 CHAPTER 2. BACKGROUND

(a)

(b)

Figure 2.6: Rule 30, figure (a) shows the chaotic behavior of rule 30 (b) shows
the Wolfram code of rule 30 (Taken from [4])

Many years later, Stephen Wolfram started studying cellular automata using
computer simulations. In 1983 Wolfram published a statistical analysis of
all the elementary cellular automata (ECA) [14] and devised the number
system for them known today as the ”Wolfram code”. The code is simply
the output of the cells in the next state encoded as a binary number, where
the respective input increases from right to left as can be seen for rule 30 in
figure 2.6b. So for rule 30 this will be 000111102 = 3010.

In 1984, Wolfram published [5] a classification system for the cellular au-
tomata. In which he describes 4 classes each with different characteristics
and present evidence that all one-dimensional cellular automata fall into one
of these classes. These classes are:

1. Class I - almost all initial states evolve into a homogeneous state. Any
information in the initial state is destroyed.

2. Class II - almost all initial states evolve into simple structures, which

2.3. CELLULAR AUTOMATA 11

are either stable or periodic with typically small periods. Perturbation
in initial state tend to stay local. Information in the initial state tend
to be ”filtered” out.

3. Class III - almost all initial states evolve into aperiodic patterns, chaotic.
Perturbation in initial state tend to spread indefinitely. Any structures
are destroyed quickly.

4. Class IV - almost all initial states evolve into complex structures, in
most cases these structures are seen to ”die”. In some cases stable or
periodic structures persist.

The Class 4 type of cellular automaton is special, because it is shown that
many of these have characteristics that indicates they are capable of uni-
versal computation. That is, such a system can compute everything which
is computable i.e. create a computer from only CAs. This was proven by
Von Neumann in [16] and later by Codd [17], Smith [18] and Conway and
co-workers [19], Fredkin and Toffoli [20]. Wolfram’s conjecture about ECAs
being to simple to support universal computation was disproved around year
2000 when Mathew Cook published a proof [21] that ECA rule 110 is com-
putationally universal.

The CA in figure 2.7 and 2.8 show several different CA with very different
behavior, these are all with k=2 and r=2. Which means 2 different states
”on” or ”off” (k = 2) and neighbourhood of 4 including the cell’s own old
state (r = 2, 5 in total, 2 on either side plus old state). Both figures show
the same CA rules, but different initial conditions. Notice that figure 2.8
differs from 2.7 significantly in the emergent behavior, yet still each cell does
exactly the same thing. The first row exhibits chaotic behavior, second row
more complex structures are formed, the third goes into a quiescent state
quickly and the last row exhibit the most complex behavior.

12 CHAPTER 2. BACKGROUND

Figure 2.7: Wolfram CA with k=2 and r=2 (Taken from [5])

2.3. CELLULAR AUTOMATA 13

Figure 2.8: Wolfram CA with k=2 and r=2, with different initial condition
(Taken from [5])

14 CHAPTER 2. BACKGROUND

Langton explores in [6] the conditions under which cellular automata can
support information transmission, storage, and modification as needed by
computation. Langton’s paper generally supports Wolfram’s findings and
shows an explanation for the classes and the relationship between them. By
using the λ parameter, defined as equation 2.1.

λ =
KN − n
KN

(2.1)

Where K is the number of cell states, N is neighbours and n is the number of
transitions to the quiescent state. Using this λ parameter Langton searched
the CA space by generating different CA by stepping through 0 ≤ λ ≤ 1.0−
1
K

. The results in figure 2.12 and 2.12 show how the CA behaves differently
at very low λ values while in the vicinity of λ = 0.5 the behaviors exhibits
similarly behaviours as computations. And at high values they exhibit more
chaotic behavior.

Here transients are the CAs trajectory through state space moving towards
an attractor, or the behavior the CA settles in. Langton observed that in
the phase transition between ordered and chaotic the transient lengths grow
rapidly, which is known as ”critical slowing down”. This is shown in figure
2.9, which plots transient length as a function of λ. The figure shows that
the time before the CA settles in an attractor increases dramatically around
the edge of chaos.

Langton also observed that for low and high values of λ the size of the CA
had little effect, but when for λ = 0.5 the transient length grew exponentially,
transient length is plotted as a function of CA size in figure 2.10.

Another observation was that, in the vicinity of the phase transition it sup-
ported both static and propagating structures. Evidence of the can be seen
in CA figure 2.11 and 2.12.

Langton uses Shannon’s entropy H to measure the information in the system.
As defined in equation 2.2.

H(A) = −
K∑

i=1

pi log pi (2.2)

Langton uses the definition of mutual information in equation 2.5, as a me-
assurement of the degree of correlation between the state of cell A and B.

2.3. CELLULAR AUTOMATA 15

Figure 2.9: Rapid transient length growth in the vicinity of the phase tran-
sition between ordered and disordered dynamics (Taken from [6])

16 CHAPTER 2. BACKGROUND

Figure 2.10: Growth of the transients as a function of CA size (Taken from
[6])

2.3. CELLULAR AUTOMATA 17

Figure 2.11: Langton’s CA with K=4 and N=5 (Taken from [6])

18 CHAPTER 2. BACKGROUND

Figure 2.12: Langton’s CA with K=4 and N=5 continued (Taken from [6])

2.3. CELLULAR AUTOMATA 19

Figure 2.13: Shows how at higher λ a cells behavior becomes more chaotic
(Taken from [6])

Where H(A) and H(B) are individual entropies and H(A,B) is the joint en-
tropy defined as equation 2.3. Where a and b are particular values of A and
B, P (a, b) is the probability of these values occurring simultaneously.

H(A,B) = −
∑

a

∑
b

P (a, b) log2[P (a, b)] (2.3)

P (a, b) log2[P (a, b)] = 0, if P (a, b) = 0 (2.4)

I(A;B) = H(A) +H(B)−H(A,B) (2.5)

The mutual information plots 2.13 and 2.14 shows that the complex behavior
which a system needs to support computation is when there is just enough
correlation between cells, but not too much. Too much correlation implies a
very static behavior. The jump in the average mutual information indicates
the transition to chaotic behavior. And as λ increases even further the system
act more and more random, as is indicated by the decreasing average mutual
information.

20 CHAPTER 2. BACKGROUND

Figure 2.14: Shows how the average mutual information spikes around the
phased change event or edge of chaos (Taken from [6])

To see the Wolfram classes in the context of the λ and mutual information.
The higher λ the more complex behavior the CA exhibits, up to a certain
point. Past what is referred to as the edge of chaos, the system is too chaotic
or random which in means that the entropy is decreasing again. 2.15.

However as also Langton pointed out; ”Finally, it must be pointed out that
although the examples presented illustrate the general behavior of the dy-
namics as a function of λ, the story is not quite as simple as we have presented
it here.”, Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber revis-
ited the original experiment of Langton [22], with evidence suggesting that
the ”average” statistical properties of the CAs are not correctly captured by
the λ. As others have pointed out later, like Miller and Page [23], there are
multiple edges of chaos.

What does that mean for our complex system? Based on earlier research of
CAs it is proven that the class 4 CAs are the ones that can support universal
computation, [16, 17, 18, 19, 20, 21]. However in our case the CA guides
or evolves the material, depending on how the CA rules are set up in our
platform it might be possible that the complete complex behavior (CA and
material) combined can be the equivalent of a class 4 CA and able to do
computations, or that the CA is able to evolve the material to some state
that the material alone can perform some complex class 4 computation.

2.3. CELLULAR AUTOMATA 21

Figure 2.15: Location of the Wolfram classes in λ space (replicated figure
from [6])

When that is said, it is not possible to rule out that other classes might be
able to produce interesting results as well. Even if the class 4 CAs are proven
to support universal computation, this might not be needed or even wanted
in all applications.

When dealing with cellular architectures and even parallel architectures in
super computers today, a big task and problem is to program it correctly and
as efficient as possible. For ”normal” parallel Von Neumann like architectures
there is a good basis and understanding of how to program them, and many
tools and paradigms exist to help the programmer. However for CAs or other
cellular architectures the task is not that simple.

The reason for this is that it is the emergent behavior of the system which
is the result of the computation. Moshe Sipper categorises the new pro-
gramming paradigms for cellular programming [24] in two main categories.
Cellular programming requires distinction between a local and a global task,
where a local task is what each cell does and a global task is what the cells
does collectively known as emergent behavior.

� Direct programming
In this category the programmer must specify the system completely,
what all the individual cells should do. Configuring a FPGA could be
seen as a loose analog to this, were the logic cells must be configured
individually to perform a certain task in the global picture. Synthesis
tools can be used for this, but the problem is that the programmer has
to define the global task of the system in a descriptive language and
the synthesis the converts it into a complete cellular specification. As
per now it is no general synthesis algorithm which can convert from

22 CHAPTER 2. BACKGROUND

any language to a cellular specification to solve a global task.

� Adaptive methods
These methods are usually the goto method for a lot of research involv-
ing problems with a huge search space where it is hard or unknown how
to program or configure the system efficiently or even correctly. These
methods let the programmer partly specify the system, while it is used
in an adaptive process like learning, evolution or self-organization to
find the right functionality. Genetic algorithms used to evolve a CA is a
good example as an adaptive method. The adaptive methods abstracts
the systems task so that it mostly look at what the emergent behavior
is, not what each cell does in particular, the local task is abstracted
away.

2.4. GENETIC ALGORITHMS 23

2.4 Genetic Algorithms

Genetic algorithms became popular in the 1970s through John H. Holland’s,
his colleagues’ and students’ work at the University of Michigan [25, 26,
27]. A genetic algorithm is a search heuristic used in optimizing and search
problems. It works by imitating natural evolution and the selection process.
There are many variations and impossible to describe them all, but they all
share the common core.

GAs have an initial population of individuals. Each generation, the fitness
is calculated of each individual. The best individuals are chosen and they
produce offspring, some of the population dies. And it repeats the process
with the new population of individuals. A generic GA is listed in 2.1. Where
n is the number of generations to run and m is the population size.

Listing 2.1: A generic genetic algorithm in pseudo c code

1 void
2 generic_ga (size_t n , size_t m)
3 {
4 size_t i , j ;
5 population *p = generate_population (m) ;
6 for (i = 0 ; i < n ; i++) {
7 population *p_new ;
8
9 calculate_fitnesses (p) ;

10
11 for (j = 0 ; j < m ; j++) {
12 parents *pr = choose_parents (p) ;
13 individual *c = create_child (pr) ;
14 mutate_individual (c) ;
15 add_individual (p_new , c) ;
16 }
17 p = p_new ;
18 }
19 }

Mitchell in [7], shows a simple GA and how to use the GA to evolve cellular
automata to perform a density classification task. The CA evolved should
settle in an all 0 state or all 1 state, depending on how many 0s and 1s there
are in the initial state. The programs which the cells run is encoded in the
individuals, and when offspring is made, crossovers and mutations happen

24 CHAPTER 2. BACKGROUND

and the programs are modified.

The density classification task, is also called a majority voting. The majority
voting function can be defined as in equation 2.6. Performing this calculation
on a Von Neumann type architecture or by thought is trivial. But in a cellular
automata this is not a trivial task. No cell in the CA knows the complete
count of either 0s or 1s in the system.

Majority(p1, . . . , pn) =

⌊
1

2
+

∑n
i=1 pi − 1/2

n

⌋
(2.6)

What is interesting to note from the Mitchell’s results 2.16 (and others like
it) is that using a simple GA, the CA evolved was able to perform the task
quite well. The task performed is the equivalent of ”a lot” of computation in
a Von Neumann type architecture, count all zeroes and ones, then compare
them (subtract one from the other), based on the result set majority to either
0 or 1.

On the other hand, because there is actually a lot of computation involved
to actually evolve the CA. Imagine if this could be achieved at very low level,
type bacteria or in a nano or micro-scale material. While the evolution of
such a system might be costly the resulting system could be very power-
efficient and scalable.

GAs are often used on search and optimization problems, because it would
cover the search space better than with an exhaustive search. And an ex-
haustive search would take too much time in most cases. The rules of the CA
is encoded in the individuals of the GA. And each of these individuals fitness
is calculated from how well the CA does the density classification task.

It is important to understand that it is not trivial to find rules which makes
the CA do the task which the programmer wants it to do (Sipper’s categories
of programming techniques [24]). In a normal processor it’s straight forward
to program the complex behavior. However in a CA the complex behavior is
emergent, and each rule must be carefully chosen to support this emergent
computation. The CA is a self-organizing system in which the complete
behavior is emergent from local interaction between the cells.

Using a GA to evolve the rules for the CA is the equivalent(but not similar)
of a programmer which creates a program for a computer based on a Von
Neumann architecture. In the case of the Von Neumann architecture the
programmer already knows how to program it, while in the CA case there is

2.5. GA, CA, EVOLUTION IN MATERIO, IN MECOBO 25

currently no programming paradigm which is generally compatible with this
type of cellular computing.

2.5 GA, CA, Evolution in materio, in Mecobo

Each of the methods in use in Mecobo has its own job. A GA can be used
to search for a set of CA rules or programs to run on the Mecobo platform.
This CA uses the CA rules and inputs/outputs from/to the material under
research. The co-operation between the CA and material can be viewed in
at least two different ways. The first is that the CA and material are part of
the same ”CA” and self-organizes together. The other is that the CA rules
are evolved by the GA, and the material is evolved by the CA.

The CA is changing the next configuration of the material based on its own
state and the output of material. How the user are going to interpret the
results are up to the user, since there is many different ways to model this
co-operation on the Mecobo.

It is unknown if and how the theory of CAs will be reflected in the results
of this system, since the behavior depends largely on the material under re-
search. However when looking at Pask’s results, it sounds plausible that the
more complex the behaviour of the CA, the more complex the structure in
the material will become, depending on the material of course. If the ma-
terial does not retain any information between configurations, the evolution
the CA ”guides” the material through, will have no permanent effect, and
the behavior of the material will only be defined by the current configura-
tion.

26 CHAPTER 2. BACKGROUND

Figure 2.16: (a) fitness each generation (b)-(f) space-time plots of the be-
havior of highest-fitness individual (Taken from [7])

Chapter 3

Overview

The Mecobo platform is an experimental platform capable of modelling CAs
and experimenting with a material and capturing its behavior both alone and
in conjunction with a CA. It consists of a software framework running on a
host computer, a microcontroller, an FPGA and a material bay interfacing
the material.

Currently there is two main usages of the Mecobo platform. The first is it
can act as a interface to a test material which the user can configure from
a computer connected to Mecobo through USB. The second is it can run a
CA model in conjunction with the material, in which the CA changes the
initial configuration of the material based on the response from the material
automatically. The CA model and how Mecobo updates the configuration is
programmed by the user.

The CA model and initial configuration is supplied by the user from the
host computer through the microcontroller which loads the CA model and
initial configuration into FPGA memory and then starts the evolution. The
user then waits for the evolution to finish and gets back 256 samples of the
evolution from the Mecobo platform.

The most significant functional difference in the new version of Mecobo is
that the platform now has the ability to evolve the material under research
as part of a complex system. A system which uses the Mecobo platform
consists of 3 parts shown in figure 3.1.

1. Host computer. Where the user evolves the cellular automaton used.

2. Mecobo platform. Consists of a microcontroller and a FPGA.

27

28 CHAPTER 3. OVERVIEW

3. Material bay. The interface to the material seen in Figure 3.3.

Figure 3.1: The host computer controls the material bay through Mecobo.
(Taken from [8])

The old system (shown in figure 3.2) was limited to only setting and reading
values on the Mecobo platform, the rest of the evolution had to be done on the
host and it had no support for recognizing any self-organising behavior of the
material other than in terms of the evolution on the host. The configuration
was written from the microcontroller into the memory, and when the action
is started by writing into the command address, the ”usr module” reads out
the configuration and sets the pins through the ”pin control” module. This
design suffered from a flaw in which either the microcontroller or command
control state machine in the FPGA would potentially be starved, since both
use the ”memory” module through the same state machine in the memory
controller.

29

Figure 3.2: The old Mecobo FPGA toplevel, before the addition of the new
extension

With the new extension the material is now part of a complex system, it is
connected to a cellular automaton. So the material and the CA organizes
together and exhibits a unified behavior. This behavior is not easy to couple
to the theory behind CAs, because it is not know what sort of connection
is formed inside the material under research. Only the future will reveal
whether this kind of combined behavior has something to it or not. The new
toplevel is designed as shown in figure 4.3. In the new design a true dual-port
memory [28] is used to solve the starvation issue. The memory controller is
now rewritten and called ”uc interface”, and there are three different kinds
of memory, one for CA state samples, one for configuration and instruction
memory for each core inside the CA CPU.

The CA state memory is unwritable from the microcontroller’s side to avoid
potentially damaging the samples.

The command control in the ”cmd control” has the same core functionality
as the old ”usr module”. That is, it reads the command address waiting for
a command when it gets a command, it dispatches the command and loads
registers, configure pins through the ”pin config control” module and runs
the CA CPU depending on the command supplies. The pin controller is also

30 CHAPTER 3. OVERVIEW

rewritten and now sets all the pins in the same clock cycle, unlike the old
design which incrementally updated 8 pins at the time.

Figure 3.3: The MEA Amplifier to the left, without the replaceable electrode
array inserted, shown on the right. (Taken from [8])

3.1 The Idea

The thought behind this combined complex system of CA and the material
lies in the fact that evolving the material alone is a very static approach.
Only one configuration can be applied at the time so the material will either
exhibit interesting results or not, perhaps based on what configuration has
been applied to the material before. Since we already know from earlier
research that many CAs do indeed have interesting behaviour [5, 6, 21], we
want to see if we can exploit the natural emergent behaviour of CAs in
conjunction with an unconventional material to see if we can evolve a system
which exhibit equal or more complex behavior than the CA or material would
alone. This new extension of Mecobo is designed with this as the main goal.

3.2. CA MODELS 31

In this hybrid CA and materio approach the material can be seen as an analog
part of the CA itself, which might have the right properties to exhibit some
sort of behavior other than a chaotic or seemingly random behavior.

3.2 CA models

The configuration data referred to in this section, is the 128-bit register,
which holds both value bits and mode bits for each pin. Where the mode
bit is set to input(that is, not driven from the FPGA) the value of this pin
is actually the output of the material. When the mode bit is set to output,
the pin is driven from the FPGA.

The mathematical model which describes how the hybrid CA material model
is updated is based on Wolfram’s CA equation 3.1 (from [5]). Where k is the
number of states each cell has, r is the range to either side, t is time-step
and i is pin number.

at
i = f

[
j=r∑

j=−r

αja
t−1
i+j

]
(3.1)

αj = kr−j (3.2)

First is the definitions of the pins available to the FPGA and material. These
are defined as in equations 3.3-3.8. Where set A is the set of all the pins
and FPGA is the set of pins driven from the FPGA and MAT is the pins
driven from the material (inputs to the FPGA). And n is the total amount
of pins.

A = {b0, . . . , bn−1} (3.3)

FPGA ⊆ A (3.4)

MAT ⊆ A (3.5)

FPGA ∩MAT = ∅ (3.6)

A \ FPGA = MAT (3.7)

A \MAT = FPGA (3.8)

The layout of the pins and connection is visualized in figure 3.4, where the
D indicates a driven pin from the FPGA and the others are inputs from the

32 CHAPTER 3. OVERVIEW

material. The pins which is not marked with D is updates straight from the
material in time-step t. Before the FPGA pins in the next time-step t + 1
is updated with cell function f as can be seen in equation 3.9. M is the
material function or response of the material.

Figure 3.4: Mathematical model of the hybrid CA material system

Equation 3.9 shows the updating process for both pins driven from the FPGA
and inputs to the FPGA from the material where k = 2. The model is
simplified, but captures the essence of the updating process and the general
idea of how the system is working. Bits from the material pins is updated
inside the time-step t based on the configuration (the bits to the FPGA
driven pins) of time-step t by the material function M . Mi means that it is
a input pin(since i ∈ MAT) corresponding to the pin i from the material.
Note that when i /∈ MAT, the function Mi = bti, since the pin is driven from
the FPGA not caring about the response of the material.

bti =


Mi(b

t
0, . . . , b

t
n−1) if i ∈ MAT

f

[
r∑

j=−r

2r−jbt−1
i+j

]
if i ∈ FPGA.

(3.9)

There is a wide variety of ways to to program the platform, it can model a
lot of different Cellular Automata. The different types of nodes or cells have
different programs running on the cores. While the programs are not defined
only from CA models, some of its details are encoded in the models.

The experiments run later described in chapter 5 are all uniform programs
and differs slightly from models described in this section. All the cells or

3.2. CA MODELS 33

nodes in the experiments are of the same type, equal amount of ”in” instruc-
tions and the same boolean function executed, but different neighbourhood
cells.

It is not clear from the models, that the values coming from the material
are actually stored in the configuration data register, but it is shown earlier
in figure 3.4. In the case of figure 3.5, there is 4 configuration pins on the
material(output pins), and 4 input pins from the material. Which pins are
input pins and which are output pins are arbitrary, the configuration can
potentially differ from different application and further testing can perhaps
shed some light on what works best for each problem type.

So the CA CPU does not know or care whether it is taking in a value from
the material or a value from neighbouring nodes or itself. It is the same ”in”
instruction which fetches both values. This has to be manually selected so
that each core actually runs the right program and takes the right values as
input.

Figure 3.5: Cellular Automaton 1

The model in figure 3.5 has 4 nodes, each of these nodes are programs running
in its own core in the CA CPU. There are two different types of nodes in
the figure , the node on the far left and on the far right, node 0 and 3
respectively, are of the same type. The two in the middle are of the same
type as well.

Node 0 has in this case 3 inputs. From node 1, from the material and not
shown from its own old state. Node 3 has also 3 inputs, from node 2, the
material and from its own state. Node 1 and 2 has 4 inputs, from their
neighbours, their self and from the material.

While the 4 inputs from the material are also stored in the configuration
data, it is clear from the model that they are not considered a part of the

34 CHAPTER 3. OVERVIEW

CA state, in some applications it might be useful to encode the materials’
output in the same CA state as the configuration values that produced it.
That is, both the configuration values to the material and the output values
from the material encoded in the CA state.

Figure 3.6: Cellular Automaton 2

What shown in figure 3.6, is essentially the same as figure 3.5. Except
that there is also an additional external signal. This signal will have a pin-
configuration set to input, since it is driven from outside of the FPGA, in
addition to the previous input signals from the material.

Figure 3.7: Cellular Automaton 3

Figure 3.7 shows an example, where we have 1 pin configured as input and 4
pins as output configuration. Each of the programs takes the output of the
material and does some calculations with it and the previous state of the CA
to produce the next configuration.

3.3. EVOLUTION AND BEHAVIOR 35

3.3 Evolution and behavior

Figure 3.8: This is the complete system with the new extension and how
it is suppose to be used. The solid lines are the physical system, while the
stippled lines denote the abstract system and how it is suppose to be used.

The figure 3.8 shows how the system is suppose to be used and how it maps
on the physical hardware. The main abstract parts is the genetic algorithm
which is run on the host computer, the complex system which is the cellular
automaton’s and the marial’s behavior together. The physical parts are the
host computer, the microcontroller, the FPGA and the material bay.

The complex system is for the programmer to define, some examples are
given in the previous section 3.2, but Mecobo is capable of modelling several
different systems other than what is presented there.

Mecobo can be used in the following way:

� Step 1 use a GA to evolve the rules for the CA.

� Then in step 2, apply the rules/program the CA CPU.

36 CHAPTER 3. OVERVIEW

� In step 3, start the complex system and let the CA and material self-
organize in a fixed amount of steps. Each of these steps gets recorded
and saved in the CA memory on the FPGA.

� In step 4, read back the state history of the complex system (the CA
and material).

� Step 5 involved calculating fitness over the complex system’s behavior
and continuing with the GA.

3.4 Hardware and software

The host computer should be running any GNU/Linux distribution which
has support for serial over USB communication. The libEMB [8] is extended
with new functions to support programming the CA CPU, setting initial
state and running the complex system and reading back the results. The
control path can be seen in figure 3.1.

There is a new API to read and write to the FPGA’s memory, this API
can now handle both byte and half-word accesses to the FPGA’s memory.
The updated address space can be seen in figure 3.9. The FPGA uses its
internal memory as little-endian memory, however the AVR32UC3 expects
its memory to be big-endian [29], to overcome these troubles the interface
to the UC3 on the FPGA emulates a big-endian memory while internally it
uses little-endian addressing.

The extension of the system was initially designed to be as non-intrusive
as possible. To retain compatibility with any old programs written for the
platform. However after suffering difficulties trying to implement the new ad-
dition and interfacing with the memory, the layout and design was changed
and the system reimplemented with new memories and command control.
Figure 4.3 shows how the new toplevel looks like. The CA CPU is the main
new addition to the system. It is a programmable 64-core CPU, its purpose
is to modify the configuration of the material in test based on previous con-
figuration and the response from the material. The CA memory module is
the memory where the CA CPU stores each new configuration or state it
generates.

Initially the idea was to design something simpler and more rigid, which
could be programmed without much effort on the users part and still be able
to change the configuration of the material based on the output from the

3.4. HARDWARE AND SOFTWARE 37

material in test. However, since there was no concrete application to use as a
reference, and the applications of computation in materials could potentially
span multiple research directions across different sciences. The only logical
thing to do was to design a more general solution which did not have to be
redesigned for each new application or research direction.

The FPGA address space is currently just enough to fit in 256 samples from
the CA CPU before it has to transfer them. This limit is a hard-limit, limited
by the fact that only 12 pins of the external bus interface (EBI) is used on
the UC3 (see the AVR32UC3A datasheet [30] for details). The new address
space layout can be seen in figure 3.9 and is described later in chapter 4.
Note that some unchanged details are omitted for clarity.

Figure 3.9: Address space layout

38 CHAPTER 3. OVERVIEW

Chapter 4

Design and Implementation
details

This chapter describes the current Mecobo platform with emphasis on the
modifications. It is divided in three parts, the FPGA, the microcontroller
and the host software.

Figure 4.1: The software and hardware stack of the new functionality.

39

40 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

The software and hardware stack is shown in figure 4.1. In the FPGA sec-
tion all the significant modules are explained and shown visually, however
note that the complete CA CPU reference is in the appendix A. The mi-
crocontroller section focuses on the changes to the communication between
the microcontroller and the FPGA and hardware setup. The host software
section describes some of the new functionality as well as introducing some
of the software used to run the experiments.

The material configuration used to configure the material is defined as 128
bits. Where even numbered bits is mode bits and odd numbered bits is value
bits, as shown in figure 4.2. Throughout the thesis, this configuration may be
referred to as a CA state or a material configuration, or simply configuration
if the material is the context. This material configuration includes both
FPGA driven values and values sampled from the material as well as the
mode bits for each pin. When the CA state is stored, all of the 128-bit
is stored unless stated otherwise. The different pin configurations can be
seen in table 4.1 The value bit(bit 1) where the pin is material driven is the
sampled response from the material.

Bit 1 0 Description
0 0 FPGA driven 0
1 0 FPGA driven 1
0 1 Material driven 0
1 1 Material driven 1

Table 4.1: Table of possible pin configurations

If bit 2 and 3 is both set to 1, this means that pin 1 is an externally driven
pin, and 1 is sampled from the material. This is also shown earlier in chapter
3.2, more specifically equation 3.9 where the value bits associated with an
externally driven pin is updated within the current time step.

Figure 4.2: Material configuration bits (also referred to as a CA state or
configuration)

41

As explained later in chapter 5 all the bits are not always used, more specifi-
cally in the state-space figure, where only the FPGA driven pins are encoded
in the values presented.

42 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

4.1 FPGA

Due to how the extension was implemented and the old design, it was too
difficult to just add the extension in the previous design. The previous FPGA
firmware had certain flaws in the memory handling and command control
which is the reason that those parts were re-written along with a new true
dual port configuration memory [28] implementation. All the modules was
rewritten except the very lowest level of the pin controller, which is the tri-
state buffer for the material IO (input output) and the synchronizers for
sampling the material.

The new FPGA firmware now consists of the toplevel in toplevel.vhd, CA
CPU toplevel in ca cpu.vhd, microcontroller interface in uc interface.vhd,
CA state memory in ca mem.vhd, configuration memory in config mem.vhd,
command control in cmd control.vhd, synchronizers in synchronizer.vhdl, pin
controller in pin config control.vhd and low level pin control in pin.vhdl.

The new toplevel in figure 4.3 shows the communication between the modules,
each module will be described in the following sections.

Figure 4.3: The new FPGA Toplevel

Each core in the CA CPU in cpu.vhd consists of a fetch unit in fetch.vhd,

4.1. FPGA 43

instruction memory in mem.vhd, decode unit in decode.vhd, execute unit in
execute.vhd(this consists of two smaller modules, the ALU (arithmetic logical
unit) alu.vhd and configuration IO mux io reg.vhd) and writeback stage in
writeback.vhd.

4.1.1 Microcontroller interface

The way the microcontroller talks to the FPGA is by memory mapping all
of the FPGA memory. The address space layout can be seen in figure 3.9.
This interface’s main part is the muxing of the write enable signal and mem-
ory buses to the 3 different memories in the FPGA. Based on the address
on the memory address bus from the microcontroller the control FSM sets
signals such that the write enable signal is sent to the right memory and the
right data out is registered to be sent on the tri-state memory bus to the
microcontroller. The microcontroller interface’s block diagram can be seen
in figure 4.4.

44 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

Figure 4.4: Microcontroller interface

The state machine can be seen in figure 4.5. The state machine shows both
the read and write functionality, the chip select and write/read enable signals
coming from the microcontroller are active low. The write enable signal
passes through an edge detection unit, not visible in any figures to avoid
writing data to the memory several times. This is needed because the FPGA
clock frequency is higher than the microcontroller’s clock frequency. The
microcontroller ”ACKs” the write/read operation by deasserting the chip
select or read/write enable signal. Depending on how the microcontroller’s
SMC unit is configured.

4.1. FPGA 45

idle else

write_mem_rdy

uc_cs = 0 and uc_we = 0

read_mem_rdy

uc_cs = 0 and uc_re = 0

write_mem read_mem

uc_cs = 1 or uc_we = 1

else

uc_re = 1 or uc_cs = 1

else

Figure 4.5: Microcontroller interface state diagram

The current implementation of the interface suffers no transfer errors like the
old implementation (due to changes in both the microcontroller and FPGA
at the same time, this could have been a self-introduced artifact after the
FPGA changes was done) with the microcontroller SMC’s read and write
cycles configured as shown in figure 4.11 and 4.12. However the timings are
not completely optimized on the FPGA side, it is possible to save a cycle
both on read and write operations, but the current timings are tested and
works.

Note that since the microcontroller in use is a AVR32, it is a big-endian archi-
tecture. And since all the modules in the FPGA is using the memory as little
endian, the bytes is flipped on reads and writes so that the microcontroller
writes the correct order of the bytes in the each half word(16-bits).

4.1.2 Command controller

The command controller is what controls the majority of the modules, it con-
sists of the main state machine of the system. Its job is to read the command
register(or memory address) in the configuration memory and dispatch the
command. As can be seen in figure 4.7 it starts in the idle state and goes
through the read cmd reg state where it sets up the address bus to the con-
figuration memory and when it enters dispatch cmd the data read is ready
to be dispatched.

46 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

Figure 4.6: Command control block diagram

The connections between the command controller and other module can be
seen in figure 4.6. It is connected to the config memory on port b, the CA
state memory on port a, it controls the CA CPU and pin controller.

Currently there is 4 commands available CMD CONF EVO, CMD RUN EVO,
CMD CONF PINS and CMD READ PINS.

� CMD CONF EVO is a new command which uses the CA CPU and
material in conjunction as a complex dynamic system. The data in the
plots in the results sections in chapter 5 is sampled using this command.
This command reads the initial configuration from the command ad-
dress in the configuration memory and uses the pin controller to set
the material’s configuration, after the response is sampled the FPGA
driven pins’ and material driven pins’ values (also called a state) is
written to the state memory, then the CA CPU runs its programs to
create the new pin configuration. This repeats itself until 256 samples
is taken.

� CMD RUN EVO is much alike the CMD CONF EVO command how-
ever it does not use the initial configuration, it continues from the last
state.

4.1. FPGA 47

� CMD CONF PINS is the old way of experimenting with the material,
it reads the initial configuration from the configuration memory then
configures the material through the pin controller.

� CMD READ PINS reads back the sampled data from the pin con-
troller. This should be used after a CMD CONF PINS command is
executed.

48 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

idle

read_cmd_reg

dispatch_cmd

others

read_conf

CMD_CONF_PINS

read_pins_loop

CMD_READ_PINS

conf_evo

CMD_CONF_EVO

run_evo

CMD_RUN_EVO

read_conf_loop

else

read_pins_done

if pin_word == 7

conf_evo_loop else

run_evo_set_config

if done_o == 1

else

read_conf_set_config

if pin_word == 7

read_conf_done

else

conf_evo_set_config

if pin_word == 7

run_evo_wait else

run_evo_sample

if evo_wait == 2^16

run_evo_write_state

if pin_word == 7 and else

else

conf_evo_done

if pin_word == 7 and evo_counter == 255

Figure 4.7: Command control state diagram

4.1. FPGA 49

4.1.3 Pin controller

The pin controller abstracts the configuration of the material. It has a low
level control block for each pin, that is 64 low level controllers. Each of these
controllers have 2 bits assigned to it as seen in figure 4.8. The output of pin
controller is 128 registered bits, where the mode bits are never changed, while
the pin value bits is from sampled data in the low level pin controllers.

Figure 4.8: Pin control

The low level controllers can be seen in figure 4.9. It consists of a tri-state
buffer and two two-register synchronizers, the synchronizers protect the sys-
tem from metastability, that is when a signal is sampled in a transition
between high or low it is arbitrary what the signal will settle on, it could
become high or low. By using several chained registers to protect the system
from using a metastable signal, assuming by the time the signal has gone
through all the registers it has settled on either high or low. Usually two or
three registers are used, increasing the numbers beyond that has very small
gains. This is unchanged from the old Mecobo platform.

50 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

Figure 4.9: Pin

4.1.4 CA CPU

The CA CPU is the new extension which takes the programs supplied from
the host computer (the CA rules) , and calculates a new state of the complex
system based on the old state and the CA rules supplied. This new state is
then used to configure the pin controller and the value bits of the pins which is
configured to be driven from the material is updated and then the complete
state is written to CA state memory. The update process is described in
section 3.2 and more specifically equation 3.9.

The overview of the CA CPU can be seen in figure 4.10. Inside the CA CPU
there is an array of cores or small CPUs, with 1-bit datapath which together
calculates the new state. Each core controls one bit in the state. An idea is to
extend this even further by adding functionality so the CA rules or programs
can reconfigure the mode bits in the CA state. The memory signals comes
from the microcontroller interface module, the configuration is supplied from
the command control module. The command control module controls the
CA CPU with the core reset signal.

4.1. FPGA 51

Figure 4.10: CA CPU

In appendix A there is a complete description of the CA CPU. Section A.3
describe in detail the modules and the pipeline. The implementation details
and ISA are described in section A.5. Simulation is described in section
A.10.

52 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

4.2 Microcontroller

Most of the base code is not changed from the last version of the Mecobo
platform. It still uses the Atmel driver framework, which resides in the
src/uc3 fw directory.

The hardware is configured and initialized in src/uc/setup hw.c. The power
manager is configured with 3 different clock domains. The CPU clock, Pe-
ripheral Bus A(PBA) and the USB domain. The CPU clock is initialized to
16MHz while PBA is 4MHz. The USB clock is handled by the Atmel driver
framework and configured to be 48MHz.

The communication between the host computer and the microcontroller is
over a virtual com port which is much easier to use than a USB driver. The
microcontroller identifies itself as a USB CDC device, more specifically an
ACM modem, which has a serial interface. The communication then works as
a FIFO buffer for both ends. Pushing 1 byte at the time. The implementation
of this is in src/uc/datalink.c.

The communication with the FPGA is by utilizing the External Bus Inter-
face(EBI) [30, p. 145] and the Static Memory Controller(SMC) [30, p. 366].
The FPGA is connected to the lines associated with chip select line CS1. So
the FPGAs memory mapped address space starts on address 0xD0000000.
The EBI is configured in src/uc/conf ebi.h and the SMC is configured in sr-
c/uc/fpga smc.h. The SMC timings are changed and optimized. The timings
for a read cycle can be seen in figure 4.11, where CLK SMC is the clock, A is
the address bus, NRD is the read enable signal, NCS is the chip select signal
and D is the data bus. The write cycle is in figure 4.12, where NWE is the
write enable signal and the other lines are the same.

The read cycle is set up as NRD controlled [30, p. 374] which means the SMC
expects the data to be read when NRD goes high. For the write cycle, it is
similar, it is NWE controlled [30, p. 378] which means the cycle is controlled
by NWE and it expects the data to be written when NWE goes high, the
data bus is held until NCS goes high again for good measure.

4.2. MICROCONTROLLER 53

Figure 4.11: Read cycle of the microcontroller

54 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

Figure 4.12: Write cycle of the microcontroller

The microcontroller’s firmware is now using a new memory API for accessing
the FPGA. This new API is defined in src/uc/fpga mem.h shown in listing
4.1, the rest is implemented in src/uc/fpga mem.c.

This new API forces the accesses to be half-word(16-bit) aligned accesses, so
it does not depend on the compiler optimizations whether it will work or not.
Note that the all the functions but ”fpga mem readh” and ”fpga mem writeh”
uses byte offsets and not half-word offsets for address. So when using func-
tions that require byte offset like ”fpga mem copyto” multiply the offset by
2.

Two utility scripts are included, one for the build process src/uc/build.sh and
one for debugging purposes src/uc/avr32debug.sh. The build script is a hack,

4.2. MICROCONTROLLER 55

Listing 4.1: FPGA memory API

1 #ifndef FPGA MEM H
2 #define FPGA MEM H
3 #include <s t d i n t . h>
4 #include "command.h"
5 uint8_t fpga_mem_readb (uint16_t byte_offset) ;
6 void fpga_mem_writeb (uint16_t byte_offset , uint8_t data) ;
7 void fpga_mem_copyfrom (void *dest , uint16_t byte_offset , ←↩

uint16_t nbytes) ;
8 void fpga_mem_copyto (uint16_t byte_offset , void *src , ←↩

uint16_t nbytes) ;
9

10 static inline uint16_t
11 fpga_mem_readh (uint16_t offset)
12 {
13 volatile uint16_t *ptr = (uint16_t *) FPGA_ADDR ;
14 return ptr [offset] ;
15 }
16
17 static inline void
18 fpga_mem_writeh (uint16_t offset , uint16_t data)
19 {
20 volatile uint16_t *ptr = (uint16_t *) FPGA_ADDR ;
21 ptr [offset] = data ;
22 }
23 #endif

because after programming the microcontroller on the Mecobo platform it
would not reset correctly so what it does is, programming it then reset and
then jump to the address of the main function.

The debug script is for starting up the debugging of the microcontroller on
the hardware. It uses avr32-gdb-proxy and the remote functionality of gdb
to debug the microcontroller over JTAG.

56 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

4.3 Host software

The communication with the microcontroller and data structures for CA pro-
grams and behavior data is bundled in the EMB library, libEMB. libEMB is
in the directory src/libemb. The new additions in libEMB includes ca program.c/h,
ca state.c/h and the function evo config implemented in emb.c/h, these ad-
ditions are data structures for holding state data, assembled programs and
functions for sending and receiving data to and from the microcontroller.

The function evo config works as follows:

1. Allocate space for the packet to be sent and CA state data

2. Build the packet from the CA program structures

3. Create the CMD CONF EVO packet

4. Send the packet and free its data structures

5. Wait for the OK response

6. Receive the packet with the CA state data

7. Return the data structure of the CA states data

CA programs is implemented in python scripts in the src/host/ directory.
The programs are converted to runnable programs with the assembler written
in python (src/host/sasm.py). Listing 4.2 is an example of such a script which
sasm takes as input. This particular script is for the ECA rule 90.

The function ”ne(core num)” is the neighbourhood function. It returns a
tuple containing the neighbourhood of the given cell or core number. The
”prog” list is the list of instructions or program to be assembled. The pa-
rameter to the ”asm in” object is used as lookup in the neighbourhood tuple.
So ”asm in(0)” will assemble into an instruction which takes the cell’s 0th
neighbour as input, which is defined by the function ”ne”.

The initial config variable is the initial material configuration. In this case
there is only a single bit set, which is an odd numbered bit, that is a value
bit. Even numbered bits are the mode bits, where 1 indicates the pin is
externally driven and 0 indicates that it is FPGA driven.

Some commands that the Mecobo platform support are not tested as well
after the changes and is thus left out of the table. Table 4.2 shows the com-
mands of the previously described functionality. The two new commands
added for the new extension is CMD CONF EVO and CMD RUN EVO.

4.3. HOST SOFTWARE 57

Listing 4.2: Rule 90 program script

1 def ne (core_num) :
2 if core_num == 0 :
3 return (core_num+1, 31)
4 elif core_num == 31 :
5 return (0 , core_num−1)
6 else :
7 return (core_num+1,core_num−1)
8 prog=[asm_in (0) ,\
9 asm_in (1) ,\

10 asm_xor () ,\
11 asm_out ()]
12 initial_config='\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\←↩

x00\x00\x00\x00\x00\x00'

The program src/libemb/program fpga.c uses libEMB to send a FPGA bit
file in a CMD CONF FPGA packet.

To assemble a program, run the command:
./sasm.py uniform-1
Where ”uniform-1” is the basename of the program to assemble, there must
be a program script named uniform-1.py for this to work.

Assembled programs can be run by using the run program program in sr-
c/libemb/run program.c. It takes in one argument which is the basename of
the program.
Issuing the command:
run program uniform-1
It will read in all of the assembled program (each of the cores has its own
corresponding program in a file, named src/host/uniform-1-NN.bin, where
NN is a number from 00 to 31), as well as the initial configuration in
src/host/uniform-1.init and sends it to the microcontroller in a CMD CONF EVO
packet.

When the FPGA is done the microcontroller will read out all the CA states
from the CA state memory and send it back to the host computer and write
them to a file.

58 CHAPTER 4. DESIGN AND IMPLEMENTATION DETAILS

libEMB value Description
CMD SEND PATTERN 0x1 Set the pins to the material.
CMD READ PATTERN 0x2 Read the pin values to the material.
CMD CONF FPGA 0x3 Upload configuration bit file to the

FPGA.
CMD RESPONSE 0x4 Response from microcontroller.
CMD CONF EVO 0xB Configure and run the CA CPU and

material with supplied initial state.
CMD RUN EVO 0xC Run the CA CPU and material with

from the current state.

Table 4.2: Commands supported by libEMB

Chapter 5

Experiments

This chapter describes the initial experiments run on the new Mecobo plat-
form and the results. Each experiment has its own section.

Each experiment consists of a CA model or program which the cores in the
CA CPU runs to updated the material configuration for each round. The
programs, or mathematical functions executed by each core is generated by
setting up each rule’s function table as minterms and performing boolean
simplification. Some of the programs in this chapter could possibly be sim-
plified even more. All programs must end with an ”out” instruction.

The program along with the neighbourhood function must be defined in the
program’s python file. The assembler converts the program into runnable
programs for each core.

To generate the instructions for each core the programs must be assembled.
From command line:
cd src/host
./sasm.py rule NN.py
This generates sets of instructions for the programs, one for each core in
the CA CPU and a file with the initial configuration. The files generated is
rule NN.init which is the initial configuration and the core programs is in
the files rule NN-nn.bin.

The example program script given in listing 4.2 is the rule 90 program
script.

Results
Each experiment has two different types of result figures associated with it,
one type is the space time plot shown for rule 90 in figure 5.2, the other is a

59

60 CHAPTER 5. EXPERIMENTS

state space plot shown for rule 90 in figure 5.4.

The space time figure is similar to what is seen earlier in figure 2.6a, the first
line is the initial configuration, each diamond represent a cell. The red cells
are cells connected to FPGA driven pins, the blue cells are driven externally
or from the material. Figure 5.14 is the only experiment run which uses
externally driven cells.

The state space plots shown i.e. for rule 90 in figure 5.4, shows the trajectory
of the behavior through state space. This particular figure shows that it
settles in an attractor. However from the plots it might be hard or impossible
to actually see what state-value it settles in. The state-value can also be
seen from the space time figures like 5.2 when it starts repeating itself. In
the state space plots the FPGA driven pins are the only ones encoded in the
state value. However for some problems and materials it will most likely be
interesting to see the state space of the material driven pins as well, but for
these initial experiments it would contain little information.

5.1 Rule 90

This program is generated from the script src/host/rule 90.py. Rule 90 is one
of the simpler ones, each cell executes the function f(L,R) = L⊕ R, where
L is the left neighbour and R is the right neighbour. The instruction tree is
shown in figure 5.1, notice the ”in” instructions for each neighbour, since this
is a stack machine all operands has to be fetched and pushed onto the stack
before executing an operation(xor in this case). The two ”in” instructions
are executed first, then the ”xor” and finally ”out” which indicated the core
is done.

5.1. RULE 90 61

Figure 5.1: The rule 90 program visualized

5.1.1 Results

Figure 5.2 and 5.3 shows the general behavior of the rule 90 modeled on the
Mecobo platform. It is very easy to visually confirm that this is in fact the
right behavior of the rule 90 program. This experiments also shows how the
circular neighbourhood function works, the missing piece on the right side
of the structure is appearing on the left side, before it settels in an all 0
attractor.

62 CHAPTER 5. EXPERIMENTS

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Figure 5.2: Results from rule 90

The figure 5.3 is redundant for rule 90, because it reaches an attractor long
before the 51 time step, but it is shown for completeness. The CA does not
exit the attractor.

5.1. RULE 90 63

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
251
252
253
254
255
256

Figure 5.3: Rule 90 result states from 51 and onwards

Figure 5.4 shows the trajectory of rule 90 through state space before it reaches
the attractor. It takes 16 steps for it to settle in the attractor. The red node
represents the initial state.

64 CHAPTER 5. EXPERIMENTS

1000
2800

4400 AA00
10100

28280 44440 AAAA0 100010 280028
440044

AA00AA
1010101

82828282
44444444 AAAAAAAA 0 239

Figure 5.4: Rule 90 state space of FPGA driven pins

5.2 Rule 110

This program is generated from the script src/host/rule 110.py. In rule 110
the function each cores executes is: f(M,R,L,M,R) = M ⊕ R ∨ ((¬L) ∧
M ∧ R), where ”M” is the middle neighbour (old state of the cell), ”R” is
right neighbour and ”L” is left neighbour. The instruction tree is shown in
figure 5.5.

in M in R in L in M in R

xor not and

and

or

out

Figure 5.5: The rule 110 program visualized

5.2.1 Results

Rule 110 has a complex behavior. ECA rule 110, was proven to support
universal computation [21]. As can be seen by figure 5.6 and 5.7 it does indeed

5.2. RULE 110 65

exhibit more complex behavior than the other experiments i.e. rule 90. Note
that also this rule’s experiment was run with a cyclic neighbourhood.

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Figure 5.6: Results from rule 110

66 CHAPTER 5. EXPERIMENTS

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
251
252
253
254
255
256

Figure 5.7: Rule 110 result states from 51 and onwards

It is hard to see from figures 5.6 and 5.7 that rule 110 settles in an attractor,
but that can be clearly seen from figure 5.8, where it ends up in a cyclic
attractor shown in the bottom left of the figure. The red node represents the
initial state.

5.3. RULE 225 67

10003000
7000

D000
1F000

31000
73000

D7000

1FD000

307000

70D000

D1F000

1F31000

3173000

73D7000

D67D000

1FEC7000

303CD000

7065F000

D0EF1000

F1B93001

13EB7003

363FD007

7E60700D

C2E0D01F

47A1F030

CCE31070

DDA730D1

77ED71F3

DC3FD317

7460773C

DCE0DD64

F5A1F7ED

1FE31C3F

30273461

706D7CE3

D0FFC5A7

71804FEC

D380D83C

F681F865

1F8308EF

308719B9

718D3BEB

D39F6E3F

76B1FA60

DFF30EE0

F0171BA1

103D3EE3

306763A7

70EDE6ED

D1BF2FBF

73E178E0

D623C9A0

FE665BE1

2EEFE23

7BB8267

CEE86ED

1DBB8FBF

37EE98E1

7C3BB9A3

C46EEBE7

4CFBBE2C

DD8EE27C

F79BA6C5

1CBEEFCF

35E3B859

7F26E8FB

C16FB98F

43F8EB98

C609BEB8

CE1BE3E9

5A3E263B

FE626E6F

2E6FAF8

7AF8F88

CF89898

1D89B9B8

379BEBE8

7CBE3E38

C5E26268

CF26E6F9

596FAF8B

FBF8F89F

E0989B0

1A1B9BF0

3E3EBE10

6263E230

E6E62670

AFAE6ED1

F8FAFBF3

98F8E16

1B989A3E

3EB9BE62

63EBE2E6

E63E27AE

AE626CFB

FAE6FD8E

8FAF879B

98F88CBE

B9899DE3

EB9BB726

BEBEFD6F

E3E387F8

A6268C09

EE6F9C1B

3AF8B43E

6F89FC62

F89B04E6

89BF0DAF

9BE11FF8

BE233009

E267701B

26EDD03E

6FBF7062

F8E1D0E6

89A371AF

9BE7D3F8

BE2C7609

E27CDE1B

26C5F23E

6FCF1662

F8593EE6

88FB63AF

998FE6F8

BB982F89

EEB8789B

3BE8C9BE

6E39DBE2

FA6B7E26

8EFFC26F

9B8046F8

BE80CF89

E381D89B

268379BE

6F87CBE2

F88C5E26

899CF26F

9BB596F8

BEFFBF89

E380E09B

2681A1BE

6F83E3E2

F8862626

898E6E6F

9B9AFAF8

BEBF8F89

E3E0989B

2621B9BE

6E63EBE2

FAE63E26

2

8FAE626F

2

98FAE6F8

2

B98FAF89

2

EB98F89B

2

3EB989BE

2

63EB9BE2

2

E63EBE26

2

AE63E26F

2

FAE626F8

2

8FAE6F89

2

98FAF89B

2

B98F89BE

2

EB989BE3

2

3EB9BE26

2

63EBE26E

2

E63E26FA

2

AE626F8F

2

FAE6F898

2

8FAF89B9
2

98F89BEB
2

B989BE3E
2

EB9BE263
2

3EBE26E6 2

63E26FAE 2
E626F8FA 2AE6F898F 2FAF89B98

2
8F89BEB9

2

989BE3EB
2

B9BE263E

2

EBE26E63

2

3E26FAE6

2

626F8FAE

2

E6F898FA

2

AF89B98F

2

F89BEB98

2

89BE3EB9

2

9BE263EB

2

BE26E63E

2

E26FAE63

2

26F8FAE6

2

6F898FAE

2

F89B98FA

89BEB98F

9BE3EB98

BE263EB9

E26E63EB

26FAE63E

6F8FAE62

F898FAE6

89B98FAF

9BEB98F8

BE3EB989

E263EB9B

26E63EBE
6FAE63E2

F8FAE626 898FAE6F 9B98FAF8 BEB98F89 E3EB989B
263EB9BE

Figure 5.8: Rule 110 state space of FPGA driven pins

5.3 Rule 225

This program is generated from the script src/host/rule 225.py. The function
it executes is: f(R,L,M,L,R) = ((¬R)∧ (¬(L⊕M)))∨ (L∧R), where ”M”
is the middle neighbour (old state of the cell), ”R” is right neighbour and
”L” is left neighbour.

68 CHAPTER 5. EXPERIMENTS

in Min R in L in L in R

not

not

and

or

out

and

xor

Figure 5.9: The rule 225 program visualized

5.3.1 Results

Rule 225’s behavior can be seen in figure 5.10 and 5.11. As can be seen in
the figures, a negative pattern (looking at the 0s instead of 1s) grows to the
right continuing until it reaches the boundary and then appears on the left
side. It is hard to tell from these figures how the trajectory is.

5.3. RULE 225 69

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Figure 5.10: Results from rule 225

70 CHAPTER 5. EXPERIMENTS

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
251
252
253
254
255
256

Figure 5.11: Rule 225 result states from 51 and onwards

Figure 5.12 shows a clearer picture of what happens in figure 5.10 and 5.11.
The initial state is red and on the right side. The trajectory seem to be
endless, at least for the first 256 samples. However there is 32 bits in use,
so the CA have 232 different states and only 256 samples is taken which is
a very small subset of the possible states. It is not certain that the CA will
end up in an attractor.

5.4. UNIFORM 1 71

1000
FFFFC7FFFFFFD3FFFFFFE1FFFFFFECFFFFFFF47FFFFFF93FFFFFF81FFFFFFBCFFFFFFDC7

FFFFFED3
FFFFFF61

FFFFFFAC
7FFFFFD4

3FFFFFE9
1FFFFFF0

CFFFFFF7
C7FFFFFB

D3FFFFFD
E1FFFFFE

6CFFFFFF
B47FFFFF

D93FFFFF
E81FFFFF

F3CFFFFF
F1C7FFFF

F4D3FFFF
F861FFFF

FB2CFFFF
FD147FFF

FE493FFF
FE001FFF

FEFFCFFF
FF7FC7FF

FFBFD3FF

FFDFE1FF

FFEFECFF

FFF7F47F

FFFBF93F

FFFDF81F

FFFEFBCF

FFFF7DC7

FFFFBED3

FFFFDF61

FFFFEFAC

7FFFF7D4

3FFFFBE9

1FFFFDF0

CFFFFEF7

C7FFFF7B

D3FFFFBD

E1FFFFDE

6CFFFFEF

B47FFFF7

D93FFFFB

E81FFFFD

F3CFFFFE

71C7FFFF

B4D3FFFF

D861FFFF

EB2CFFFF

F5147FFF

FA493FFF

FC001FFF

FDFFCFFF

FEFFC7FF

FF7FD3FF

FFBFE1FF

FFDFECFF

FFEFF47F

FFF7F93F

FFFBF81F

FFFDFBCF

FFFEFDC7

FFFF7ED3

FFFFBF61

FFFFDFAC

7FFFEFD4

3FFFF7E9

1FFFFBF0

CFFFFDF7

C7FFFEFB

D3FFFF7D

E1FFFFBE

6CFFFFDF

B47FFFEF

D93FFFF7

E81FFFFB

F3CFFFFD

F1C7FFFE

74D3FFFF

B861FFFF

DB2CFFFF

ED147FFF

F6493FFF

FA001FFF

FCFFCFFF

FC7FC7FF

FD3FD3FF

FE1FE1FF

FECFECFF

FF47F47F

FF93F93F

FF81F81F

FFBCFBCF

FFDC7DC7

FFED3ED3

FFF61F61

FFFACFAC

7FFD47D4

3FFE93E9

1FFF01F0

CFFF7CF7

C7FFBC7B

D3FFDD3D

E1FFEE1E

6CFFF6CF

B47FFB47

D93FFD93

E81FFE81

F3CFFF3C

71C7FF1C

34D3FF4D

1861FF86

CB2CFFB2

45147FD1

92493FE4

1FE0

FFFFCFEF

FFFFC7F7

FFFFD3FB

FFFFE1FD

FFFFECFE

7FFFF47F

BFFFF93F

DFFFF81F

EFFFFBCF

F7FFFDC7

FBFFFED3

FDFFFF61

FEFFFFAC

7F7FFFD4

3FBFFFE9

1FDFFFF0

CFEFFFF7

C7F7FFFB

D3FBFFFD

E1FDFFFE

6CFEFFFF

B47F7FFF

D93FBFFF

E81FDFFF

F3CFEFFF

F1C7F7FF

F4D3FBFF

F861FDFF

FB2CFEFF

FD147F7F

FE493FBF

FE001FDF

FEFFCFEF

FF7FC7F7

FFBFD3FB

FFDFE1FD

FFEFECFE

7FF7F47F

BFFBF93F

DFFDF81F

EFFEFBCF

F7FF7DC7

FBFFBED3

FDFFDF61

FEFFEFAC

7F7FF7D4

3FBFFBE9

1FDFFDF0

CFEFFEF7

C7F7FF7B

D3FBFFBD

E1FDFFDE

6CFEFFEF

B47F7FF7

D93FBFFB

E81FDFFD

F3CFEFFE

71C7F7FF

B4D3FBFF

D861FDFF

EB2CFEFF

F5147F7F

FA493FBF

FC001FDF
FDFFCFEF

FEFFC7F7
FF7FD3FB

FFBFE1FD
FFDFECFE

7FEFF47F
BFF7F93F

DFFBF81F
EFFDFBCF

F7FEFDC7
FBFF7ED3

FDFFBF61
FEFFDFAC

7F7FEFD4
3FBFF7E9

1FDFFBF0
CFEFFDF7

C7F7FEFB
D3FBFF7D

E1FDFFBE
6CFEFFDF

B47F7FEF
D93FBFF7

E81FDFFB
F3CFEFFD

F1C7F7FE
74D3FBFF

B861FDFF
DB2CFEFF

ED147F7F
F6493FBF

FA001FDF
FCFFCFEF

FC7FC7F7
FD3FD3FB

FE1FE1FD
FECFECFE

7F47F47F
BF93F93F

DF81F81F
EFBCFBCF

F7DC7DC7FBED3ED3FDF61F61FEFACFAC7F7D47D43FBE93E91FDF01F0CFEF7CF7C7F7BC7BD3FBDD3DE1FDEE1E6CFEF6CFB47F7B47D93FBD93E81FDE81F3CFEF3C71C7F71C34D3FB4D1861FD86CB2CFEB245147F51
92493FA4

1FC0

Figure 5.12: Rule 225 state space of FPGA driven pins

5.4 Uniform 1

This program is generated from the script src/host/uniform-1.py. Uniform
1 is a little different than the previous programs, because it does not only
model a CA it also uses the output of the material. For this experiment the
output of the material is known to be only 1s. The function it executes is:
f(O,E) = O⊕E, where ”O” is the old state of the cell and ”E” is external,
or output from the material. Figure 5.13 shows the instruction tree of the
program. Both old state and output from the material is taken as inputs, it
then xors the values and outputs the answer.

The ”E” or external value is taken from the cells respective external pin(defined
for this experiment). The neighbourhood is defined such that, there is two
inputs to each cell, one is the old state of the cell, the other is the cells re-
spective material pin. So for cell 0, ”E” is the 31 pin, while the ”O” is 0.
For cell 1, ”E” is the 32, while ”O” is 1 and so on.

72 CHAPTER 5. EXPERIMENTS

Figure 5.13: The uniform 1 program visualized

5.4.1 Results

This is the only experiment run with input from a material. The material
is hardwired, that is fixed response, all 1s. Shown in figure 5.14 and 5.15,
the material’s response is on the left side, blue colour. The program run is
f(O,E) = O⊕E, which is the cells old state xored with the cells respective
material pin. That is the far right cell (pin 0) uses pin 31 as its ”E”, while
the next cell uses 32 and so on up to 63.

5.4. UNIFORM 1 73

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Figure 5.14: Results from uniform 1

74 CHAPTER 5. EXPERIMENTS

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

FPGA driven 0
FPGA driven 1

External driven 0
External driven 1

pin 63 pin 0
251
252
253
254
255
256

Figure 5.15: Uniform 1 result states from 51 and onwards

The state space figure 5.16 is of no interest since the program is far too
simple, but it is included for completeness. It shows that the system oscillates
between two states, state ”FFFFFFFF” and ”0”.

5.4. UNIFORM 1 75

FFFFFFFF
0128

127

Figure 5.16: Uniform 1 state space of FPGA driven pins

76 CHAPTER 5. EXPERIMENTS

Chapter 6

Discussion

Even with the new extension, Mecobo is built on fairly new concepts and
likely require multiple iterations of design and implementation before a better
system for doing experiments on materials is found. During the development
there were several difficulties, most notably in the communication between
the host and microcontroller over USB, and between the microcontroller and
the FPGA, which took a long time to figure out. The interfacing between
the microcontroller and the FPGA was rewritten as a result and some bugs
was corrected in the USB communication.

The initial experiments described and executed in this master’s thesis is only
a start and is nothing more than a very small set of experiments the Mecobo
platform is capable of executing. The Mecobo platform is capable of much
more advanced programs and CA models, some of which are described in the
chapter 3.2.

6.1 Conclusion

The Mecobo platform is extended with the CA CPU which enables the
Mecobo platform to experiment with dynamic complex systems based on
a hybrid CA material model. Most of the modules in the FPGA is rewritten
to be able to use the new extension. On the software side, both the micro-
controller firmware and libemb is extended with functions to allow a user
to program the CA CPU and run experiments with the hybrid CA material
system. The microcontroller firmware is also extended with a new memory
API towards the new memory interface in the FPGA.

77

78 CHAPTER 6. DISCUSSION

The system is tested and confirmed to be working with several CA rules
and a CA in conjunction with an theoretical unconventional material. The
material was hardwired to have constant response, to be able to verify that
the system was working correctly.

A mathematical model is presented in section 3.2 which can model the up-
dating process and behavior of many experiments which can be run in the
hybrid CA material system of Mecobo. However if the properties and behav-
ior of the material is unknown the model is incalculable, and only serves as
a specification of how the updating process of each state is executed.

6.2 Future Work

The new extension CA CPU is using a simple core featuring just enough
functionality to execute boolean functions. It could be interesting to extend
the CA CPU to include more advanced functions. There is two main exten-
sions which could be useful, first one is being able to modify the mode bit in
the configuration and the second introducing jump, status flags and compare
instructions in the cores.

Before trying to exploit any hybrid CA material system to solve a specific
problem it is likely necessary to find a material which exhibit behavior indi-
cating that it supports information transmission, storage and modification.
These properties is needed to support universal computation. To do that,
one could possibly approach the problem similarly to how Langton did [6],
looking at the entropy of the system and quantifying the mutual information
in the system’s behavior. If the material seem to exhibit or support complex
behavior, a GA with an appropriate fitness function may find CA programs
and an initial configuration which solves the problem.

Other tasks include code cleanup in libemb, the microcontroller firmware and
the FPGA.

Appendix A

CA CPU

The CA(Cellular Automata) CPU core pipeline was originally based on a
general load store CPU pipeline which was made in the course ”Hardware
Construction”. The architecture had a 16-bit RISC ISA(Instruction Set Ar-
chitecture). However it quickly became clear while removing parts which was
not necessary, that several key optimization could be done. Since the amount
of space on the FPGA is fairly limited the ISA and pipeline was completely
redesigned to make it more likely to fit on the FPGA.

The current CA CPU as of this writing, is tailor made for programming
cellular automata or DDNs(Dynamic Discrete Networks) for our purpose. It
has 64 cores, each with a stack-machine with a 4-stage pipeline and 8-bit
RISC ISA. Each core has its own instruction memory. Each core is meant to
control 1(2)-bit of the pin configuration. The cores control their respective
numbers’ pin configuration. That is, core 0 controls pin 0(1), core 1 controls
pin 2(3) etc. Remember that the even-numbered bits in the pin configuration
is the mode and the odd-numbered is the value. Th CPU does not know
whether the values it reads from the configuration bits is coming from the
material being tested, or if it is being driven from the FPGA. The cores
can be programmed in many ways, but modifying the mode bits is not yet
supported.

A.1 Register file vs stack-based architecture

The term ”stack-based” here, refers to the fact that instead of a regular reg-
ister file in the decode step, it has a register file which acts like a stack.

79

80 APPENDIX A. CA CPU

It was hypothesized that 64-cores was too ambitious for a small FPGA like
the Spartan 3 XC3S500 PQ208. So it was crucial to make the design as
compact as possible. Because of the limited space on the FPGA it was
necessary to optimize the amount of hardware synthesized and instruction
memory, while still having the ability to function like a CA.

To be able to address the 64-bit configuration signals, it is needed log2(64) =
6 bit. And it would suffice with 2-bit opcode, that is 4 different instructions.
So the instructions are 8-bit. There is currently only 3 different type of
instructions, so in the future there is room for another ”in” instruction to
read in mode bits if we would want to support complete reconfiguration.

In theory it could have been designed as a conventional register file based
CPU with 6 bits to encode both ALU function, source and destination reg-
isters, but it would limit the ALU functions and how many registers an
instruction can address too much. Hence to avoid having to encode register
addresses in the instructions, the result was a stack-based CPU.

A.2 Multicycle vs Pipelined

In a multicycle design, there is only 1 instruction which is executed at the
time. In a pipelined design, the next instruction gets fetched as soon as
the instruction before it is done in the fetch stage, in this case the pipeline
can have up to 4 instructions executing at the time. One in each pipeline
stage.

The two methodologies differ is a trade-off between size of hardware and
processing speed. The goal is to minimize the CPI(clocks per instruction)
without adding too much hardware. By exploiting the instruction level par-
allelism the CPU can achieve nearly CPI = 1. Some architectures take this
even further by issuing and retiring multiple instructions at the same time,
effectively reducing the CPI more (CPI < 1), these architectures are also
called superscalar.

The CA CPU multicycled version can be seen in figure A.1. Notice how
the hardware is significantly simpler than the piplined version in figure A.2.
There is no hardware to control forwarding, and the control unit is also
simpler, because there is only 1 instruction in the whole CPU at the time.
While the pipelined version can have an instruction in fetch, decode, execute
and writeback simultaneously.

A.2. MULTICYCLE VS PIPELINED 81

Figure A.1: Multicycle

82 APPENDIX A. CA CPU

Figure A.2: Pipeline

A.3. THE PIPELINE 83

Figure A.3 and A.4 shows how 4 instructions execute in a pipelined CPI
design and a multicycle CPU design, respectively. Note how the multicycle
CPU uses 16 cycles to execute 4 instructions, while the pipelined version
requires only 7 cycles.

Figure A.3: Pipelined instructions

Figure A.4: Non-pipelined instructions, assuming all instructions require 4
cycles each.

A.3 The pipeline

All stages uses registered output. See figure A.2 for an overview of the
pipeline.

A.3.1 CPU module

The CPU module (see fpga code/cpu.vhd) is the toplevel of the core. It ties
together the 4 pipeline stages, fetch, decode, execute and writeback.

A.3.2 Fetch module

The fetch module (see fpga code/fetch.vhd) contains a register for the pro-
gram counter. This is connected to the memory module. The address in

84 APPENDIX A. CA CPU

the PC(program counter) register is connected directly with the instruction
memory. The PC increments each clock cycle until it wraps around.

A.3.3 Decode module

The decode module (see fpga code/decode.vhd) is where most of the complex-
ity in the pipeline lies. It consist of a combinatorial decoder which controls
forwarding logic and what operation to do on the stack. The stack has 4
operations, do nothing, pop 1, pop 2 and push.

A.3.4 Execute module

The execute module (see fpga code/execute.vhd) instantiates the ALU and
the I/O register module(which is just a abstraction for handling reading the
configuration bits and writing output bit. The execute module also imple-
ments several multiplexers used for forwarding.

A.3.5 Writeback module

The writeback module (see fpga code/writeback.vhd) is the last stage in the
pipeline it has a mux selecting between input or data from the ALU. The
output data is also forwarded to execute, as well as skipping the stack in the
decode stage in case of binary ALU instructions.

A.3.6 Memory module

The memory module (see fpga code/mem.vhd) is the instruction memory
implementation. It consists of a 16-bit wide read/write port and a 8-bit wide
read port. This module is specifically designed to fit the rest of the extended
Mecobo platform and its memory controller to not break compatibility with
old programs in respect to the memory interfacing. The 8-bit read port is
used by the CA CPU core to fetch instructions.

A.4. HAZARDS 85

A.3.7 I/O register module

The I/O register module (see fpga code/io reg.vhd) implements a multiplexer
network, which selects which pin to read from in the configuration register.
Currently this is limited to value bits and not mode bits.

A.3.8 ALU module

The ALU module (see fpga code/alu.vhd) is a very simple combinatorial cir-
cuit, currently supports ”not”, ”and”, ”or” and ”xor”.

A.4 Hazards

The control in the decode stage handles setting flags to control the forwarding
muxes as well as setting the appropriate stack function to execute. The
three types of hazards are; structural hazards, data hazards, and control
hazards.

A.4.1 Structural hazards

The one structural hazard that exists is also a data hazard. The fact that
an instruction in the decode stage want to pop a value off of the stack while
an instruction in decode wants to write to it, makes it a structural hazard
because both wants to use the stack.

This is solved by forwarding data past the stack in the decode stage, when
the instruction needs data that is in the writeback stage. This results in that
neither of the instructions use the stack, since it is a push/pop relationship,
the stack is not modified.

A.4.2 Data hazards

To handle data hazards, there is two points where data is being forwarded
it is from writeback to decode and writeback to execute. This logic is drawn
in red on the pipeline overview in Figure A.2.

86 APPENDIX A. CA CPU

A.4.3 Control hazards

There is currently no control hazards, since the architecture was completely
rewritten and simplified, all the branch instructions was removed to keep the
architecture small and simple. However in the future branching might be
added again, so the 2 different control hazards which are identified are listed
for completeness. These are the issues that will occur without some form of
control hazard detection:

1. Conditional branches depends on the value of a status register of a
previous instruction.

2. When a jump is executed, the instruction right after the jump instruc-
tion will be executed as well.

Point number 1 is solved by forwarding the value of the status output from
ALU if the instruction currently in the execute stage writes status register.
This is forwarded to control, which handles the conditional branching. If the
instruction does not write status register, simply pass along the current value
of the status register.

Point number 2 is solved by forwarding the new PC value, directly into the
instruction memory, and setting PC to the new PC value + 1. This works
in all cases where the address to jump to is gives as an immediate, either
absolute or relative.

A.5 CA CPU architecture details

As explained earlier, the 16-bit instruction format is now an 8-bit format.
With 3 types of instructions, alu type, input type and output type. Notice
the lowest 6 bits of the O-type instruction is not used. These are planned
to being used in the future, to be able to configure more than 1 output bit.
Going from 16-bit to 8-bit was a big optimization and makes room for larger
instruction memories which to be able to compute larger programs. Larger
programs do not have as big impact on the stack size as the instruction
memory, since the stack is just a fraction of the memories size. The stack is
currently 16-bits.

Table A.1 describes the different instruction formats in use, the meaning of

A.6. ALU 87

the different values in the table is as follows:

opcode What operation the CPU is going to perform. This is the same bits
for all instruction formats.

conf addr The number of a bit in the configuration register.

alu func What operation the ALU is going to perform.

– Not used to anything, should be passed as all zeros.

name bit 7-6 bit 5-0
A-type opcode alu func
I-type opcode conf addr
O-type opcode –

Table A.1: Instruction format

A.6 ALU

Table A.2 describes all the implemented operations, status flags are currently
not in use so they are not set. Common for all ALU operations is that bit
number 3, indicates whether it is a binary operation or unary. The NOP
instruction is regarded as a unary instruction, and will be decoded as any
other unary instructions. That is, NOP will have its value forwarded like the
value came from the ALU.

The reason why the NOP instruction is an ALU instruction is that it made
the decoder easier to implement at first. However this might change in the
future.

These values for the alu func field can also be found in fpga code/cpu package.vhd
with the ALU FUNC prefix.

name funct description

NOP 000000 Do nothing
NOT 000001 Unary instruction, inverts ALU port A.
AND 001001 Binary instruction, anding ALU port A and B.
OR 001010 Binary instruction, ors ALU port A and B.
XOR 001011 Binary instruction, xors ALU port A and B.

Table A.2: ALU function list

88 APPENDIX A. CA CPU

A.7 Opcodes

To better utilize the limited instruction width, the instruction formats in
table A.1 might change to fit more instructions, since the alu func field has 2
bits which is currently unused. This will yield a little more complex decoder
but, in return the instruction still fit in 8-bits. Table A.3 describes the
various opcodes and what instruction format they use. These can also be
seen in fpga code/cpu package.vhd with the
OPC prefix.

name opcode format description

ALU 00 A-type ALU functions, the ALU will carry out the
command in the alu func field.

OUT 01 O-type The stops the core and the output value will
be registered in the io reg module.

IN 10 I-type This reads the bit number denoted by the
conf addr field, from the configuration data
register.

Table A.3: Opcode list

A.8 Control

How the pipeline is controlled can be seen in table A.4. ID is the decode stage,
EX - execute and WB - writeback. The push signal is not currently used for
anything. alu a fw controls the mux infront of ALU port A. stop is the stop
signal indicating that an out instruction is coming and the respective core
is finished computing. stack fw is controlling the mux bypassing the stack
in the decode stage. write out controls the write enable port on the io reg
module in the execute stage, indicating a value should be written in the
w out register.

Note that even though it decodes ”out” instructions followed by any other in-
struction, those sequences are not yet considered legal programs. After 1 out
instruction the respective core is considered finished, and any other signals
it might set on the out port, will not have any effect. This is accomplished
by a oneshot register in the ca cpu module. When the cores are reset, this
register will also reset, making it ready for a new round.

A.9. ASSEMBLER 89

ID EX WB Action

in in in Set push, push.
in in out Set push.
in out in Set push.
in out out Set push.

out in in Set push, set alu a fw, set stop, set write out, push.
out in out Set push, set alu a fw, set stop, set write out.
out out in Set stop, set write out, pop 1.
out out out Set stop, set write out, pop 1.
in in alu Set push, push.
in alu in Set push.
in alu alu Set push.
alu in in Set push, set alu a fw, if binary: set stack fw else: push.
alu in alu Set push, set alu a fw, if binary: set stack fw else: push.
alu alu in Set push, set alu a fw, if binary: pop 1.
alu alu alu Set push, set alu a fw, if binary: pop 1.
out out alu Set stop, set write out, pop 1.
out alu out Set alu a fw, set stop, set write out.
out alu alu Set alu a fw, set stop, set write out.
alu out out Set push, if binary: pop 2 else: pop 1.
alu out alu Set push, if binary: pop 2 else: pop 1.
alu alu out Set push, set alu a fw, if binary: pop 1.
in out alu Set push.
in alu out Set push.
alu in out Set push, set alu a fw, if binary: pop 1.
alu out in Set push, if binary: pop 2 else: pop 1.
out in alu Set alu a fw, set stop, set write out, push.
out alu in Set alu a fw, set stop, set write out.

Table A.4: Pipeline control

A.9 Assembler

This section describes the initial design of the assembler and the language.
The assembler is likely to be implemented in either C, Perl or a Bash script,
the current implementation is a python program which differs from this ini-
tial design.

90 APPENDIX A. CA CPU

The general format of the instructions for the assembler is as described in
figure A.5. The operation mnemonic comes first, followed by the operands.
All tokens are whitespace separated. Bit address in the configuration are
prefixed with $, and are assumed to be in decimal.

Sample assembly program

Calculates not(($10 xor $11) and ($12 xor $13))

in $10

in $11

xor

in $12

in $13

xor

and

not

out

Figure A.5: Example assembler syntax

Thie example program can be seen in figure A.6. The red arrows shows how
to generate a program for this architecture. An operation is done when all
child nodes of the current node has been visited and done. Each core will
execute one such program.

Figure A.6: Example program

To give an example in the context of CA, think of the ”in” instructions as the
edges to each node(in context of CA not like the nodes in figure A.6). That
is, it defines this core’s neighbourhood. The neighbourhood can be defined

A.10. SIMULATION VERIFICATION 91

freely, each core can address all other nodes, this allows us to program more
general DDNs(Discrete Dynamic Networks) where there is not necessarily a
local neighbourhood like in CA.

A.10 Simulation verification

The CPU core is verified using small programs and the correct output. If the
correct value is written to cpu out after the stop signal has been asserted,
the test is OK.

The testbench takes a 16 bit aligned stream of instructions, the last word,
must be padded with zeros if the program do not have an even number of
instructions. The instructions are written into the cores memory, 2 instruc-
tions at the time(since 1 instruction is 8-bits), and the core starts when the
reset flag is de-asserted. The core stops when the stop signal is asserted. The
CPU testbench can be found in fpga code/cpu test.vhd.
To summarize the steps in the testbench:

1. Write instructions into memory.

2. De-assert the reset signal to start the core.

3. Run until stop is asserted.

4. Compare result.

Figure A.7: Testbench

92 APPENDIX A. CA CPU

A.11 Corner cases

With a pipelined design there may be several different sequences of instruc-
tions that expose certain errors in the design, if they are not handled prop-
erly. In pipelined design it is important to test all the forwarding logic and
in general the logic that handles the different hazards.

In this stack based design. The important points was the muxing on the alu
inputs in the execute stage. That is unary and binary instructions which
needs the result from the previous instruction. In the decode stage it is
important to check the it does bypass the stack when it should.

Note that in the execute stage there is a second mux on ALU port B. The
reason for this is that when there is a binary instruction in the execute stage
and 1 of its values comes from the writeback stage, the second value should
come from the stack, but the second value which was indeed popped from
the stack in the decode stage is now on ALU port A, hence why this value is
muxed into ALU port B.

It is easy to see from the pipeline control table A.4 which instruction se-
quences that is the most complex. The most interesting ones are the com-
bination of ”in” and ”alu” instruction sequences, since ”out” instructions
followed by other instructions are likely not to occur considering it is not yet
considered a legal program.

A.12 Synthesis results

As can be seen below the hypothesis about the FPGA size turns out to be
correct. With a 64-core CA CPU, the design use 125% of the slices. So the
current Mecobo hardware does no support the entire CPU. However until a
new revision of the board with an updated FPGA is made, the CA CPU can
be used with 32 cores.

Selected Device : 3s500epq208-4

Number of Slices: 5851 out of 4656 125% (*)

Number of Slice Flip Flops: 2688 out of 9312 28%

Number of 4 input LUTs: 11350 out of 9312 121% (*)

Number used as logic: 9302

Number used as RAMs: 2048

A.12. SYNTHESIS RESULTS 93

Number of IOs: 2628

Number of bonded IOBs: 2627 out of 158 1662% (*)

IOB Flip Flops: 64

Number of GCLKs: 1 out of 24 4%

The IO numbers are not interesting, because the CA CPU is the toplevel
synthesized. So all the signals which are connected to the memories, memory
controller, and command control are inputs and outputs, which it won’t be
in the complete design of the Mecobo FPGA hardware, since they will be
connected internally.

94 APPENDIX A. CA CPU

Bibliography

[1] Gordon Pask. Physical analogues to the growth of a concept. 1958.

[2] A. Thompson, P. Layzell, and R.S. Zebulum. Explorations in design
space: unconventional electronics design through artificial evolution.
Evolutionary Computation, IEEE Transactions on, 3(3):167 –196, sep
1999.

[3] J.D. Lohn, D.S. Linden, G.S. Hornby, and W.F. Kraus. Evolution-
ary design of an x-band antenna for nasa’s space technology 5 mission.
In Antennas and Propagation Society International Symposium, 2004.
IEEE, volume 3, pages 2313 – 2316 Vol.3, june 2004.

[4] Eric W. Weisstein. ”rule 30.” from mathworld–a wolfram web resource.
http://mathworld.wolfram.com/Rule30.html.

[5] S. Wolfram. Universality and complexity in cellular automata. Physica
D: Nonlinear Phenomena, 10(1-2):1–35, January 1984.

[6] Chris G. Langton. Computation at the edge of chaos: phase transitions
and emergent computation. Phys. D, 42(1-3):12–37, June 1990.

[7] Melanie Mitchell. Life and evolution in computers.

[8] Odd Rune S. Lykkebø. Design and implementation of a prototype plat-
form for evolution in materio. 2010.

[9] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Ka-
jitani, E. Takahashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu.
Real-world applications of analog and digital evolvable hardware. Evo-
lutionary Computation, IEEE Transactions on, 3(3):220–235, 1999.

[10] S. Harding and J.F. Miller. Evolution in materio: a tone discriminator in
liquid crystal. In Evolutionary Computation, 2004. CEC2004. Congress
on, volume 2, pages 1800 – 1807 Vol.2, june 2004.

95

96 BIBLIOGRAPHY

[11] William Ross Ashby. An Introduction to Cybernetics. 1957.

[12] Heinz von Förster. On self-organizing systems and their environments.
Self-organizing Systems (ed. Yovitz and Cameron), pages 31–50, 1960.

[13] J.F. Miller and K. Downing. Evolution in materio: looking beyond
the silicon box. In Evolvable Hardware, 2002. Proceedings. NASA/DoD
Conference on, pages 167 – 176, 2002.

[14] S. Wolfram. Statistical mechanics of cellular automata. Reviews of
Modern Physics, 55:601–644, July 1983.

[15] S. Ulam. Random processes and transformations. In Proceedings of the
International Congress on Mathematics, volume 2, pages 264–275, 1950.

[16] John Von Neumann. Theory of Self-Reproducing Automata. University
of Illinois Press, Champaign, IL, USA, 1966.

[17] E. F. Codd. Cellular Automata. Academic Press, Inc., Orlando, FL,
USA, 1968.

[18] Alvy Ray Smith, III. Simple computation-universal cellular spaces. J.
ACM, 18(3):339–353, July 1971.

[19] E. Berlekamp, J. Conway, and R. Guy. Winning Ways for your Mathe-
matical Plays, volume 2. Academic, 1982.

[20] Edward Fredkin and Tommaso Toffoli. Conservative logic. International
Journal of Theoretical Physics, 21:219–253, 1982. 10.1007/BF01857727.

[21] Matthew Cook. Universality in Elementary Cellular Automata. Complex
Systems, 15(1):1–40, 2004.

[22] Melanie Mitchell, James P. Crutchfield, Peter T. Hraber, In G. Cowan,
D. Pines, D. Melzner (editors, and Complexity Metaphors. Dynam-
ics, computation, and the “edge of chaos”: A re-examination. In Com-
plexity:Metaphors, Models, and Reality, pages 497–513. Addison-Wesley,
1994.

[23] John H. Miller and Scott E. Page. Complex Adaptive Systems: An In-
troduction to Computational Models of Social Life. Princeton University
Press, 2007.

[24] Moshe Sipper. The emergence of cellular computing. Computer,
32(7):18–26, July 1999.

BIBLIOGRAPHY 97

[25] John H. Holland. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control and Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1992.

[26] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989.

[27] Melanie Mitchell. An introduction to genetic algorithms. MIT Press,
Cambridge, MA, USA, 1996.

[28] Xilinx. XAPP463 - Using Block RAM in Spartan-3 Generation FPGAs.
http://www.xilinx.com/support/documentation/application notes/xapp463.pdf,
2005.

[29] Atmel. AVR 32-bit Architecture Manual.
http://www.atmel.com/Images/doc32000.pdf, 2011.

[30] Atmel. AT32UC3A Datasheet. http://www.atmel.com/Images/doc32058.pdf,
2012.

	Problem Description
	Abstract
	Sammendrag
	Acknowledgements
	Introduction
	Background
	Self-organization
	Evolvable Hardware
	Cellular Automata
	Genetic Algorithms
	GA, CA, Evolution in materio, in Mecobo

	Overview
	The Idea
	CA models
	Evolution and behavior
	Hardware and software

	Design and Implementation details
	FPGA
	Microcontroller interface
	Command controller
	Pin controller
	CA CPU

	Microcontroller
	Host software

	Experiments
	Rule 90
	Results

	Rule 110
	Results

	Rule 225
	Results

	Uniform 1
	Results

	Discussion
	Conclusion
	Future Work

	CA CPU
	Register file vs stack-based architecture
	Multicycle vs Pipelined
	The pipeline
	CPU module
	Fetch module
	Decode module
	Execute module
	Writeback module
	Memory module
	I/O register module
	ALU module

	Hazards
	Structural hazards
	Data hazards
	Control hazards

	CA CPU architecture details
	ALU
	Opcodes
	Control
	Assembler
	Simulation verification
	Corner cases
	Synthesis results

