
Learning to play Starcraft with
Case-based Reasoning
Investigating issues in large-scale

case-based planning

Jan Eriksson
Dag Øyvind Tornes

Master of Science in Computer Science

Supervisor: Helge Langseth, IDI
Co-supervisor: Anders Kofod-Petersen, IDI

Pauline Haddow, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

i
i

“master” — 2012/6/11 — 17:36 — page 1 — #1 i
i

i
i

i
i

Jan Eriksson
Dag Øyvind Tornes

Learning to play Starcraft with Case-based
Reasoning
Investigating issues in large-scale case-based planning

Master thesis, spring 2012

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science, Norwegian University of

Science and Technology

i
i

“master” — 2012/6/11 — 17:36 — page 2 — #2 i
i

i
i

i
i

i
i

“master” — 2012/6/11 — 17:36 — page i — #3 i
i

i
i

i
i

i

Abstract

In this master thesis we describe our work in creating a planner for the real-time
strategy game Starcraft using case-based reasoning. Our work has been focused
on the challenges in creating a usable casebase, and the resulting issues arising
from scaling up the casebase.

First, we present an agent designed to play Starcraft using plans from our CBR
planner, and its architecture. We then move on to describe how this planner works,
and how it overcomes the challenges in scaling up.

We then present several experiments designed to measure how well our approach
works given the limitations we have set. Finally, we discuss our results, and provide
some interesting unsolved challenges which may benefit from further investigation.

Sammendrag

I denne masteroppgaven beskriver vi arbeidet v̊art med å lage en planleggingsal-
goritme, basert p̊a case-basert resonering, for strategispillet Starcraft. Arbeidet
har fokusert p̊a utfordringene i å konstruere en brukbar database av cases, og de
utfordringene som følger av å skalere opp størrelsen p̊a databasen.

Vi presenterer en agent som spiller Starcraft med planene fra algoritmen, og
arkitekturen bak agenten. Deretter beskriver vi hvordan planleggingsalgoritmen
virker, og hvordan den h̊andterer utfordringene oppskalering medfører.

Vi fortsetter med å beskrive flere eksperimenter som m̊aler hvor godt løsningen
v̊ar virker, gitt de begrensningene vi har satt. Til slutt diskuterer vi resultatene,
og staker ut mulige utvidelser til agenten.

i
i

“master” — 2012/6/11 — 17:36 — page ii — #4 i
i

i
i

i
i

ii

i
i

“master” — 2012/6/11 — 17:36 — page iii — #5 i
i

i
i

i
i

iii

Preface

This project was done by two master students at the Norwegian University of Sci-
ence and Technology. During the course of our studies, we have selected Artificial
Intelligence (AI) as our specialization, and have an interest in game development
and use. Due to this, we were naturally drawn to this project because of its na-
ture, the creation of AI agents for the game “Starcraft”. The project allowed us
to choose fairly freely among different AI techniques for making agents, and this
in turn motivated us further. Starcraft presents a challenge for AI agents, due to
its complex environment.

i
i

“master” — 2012/6/11 — 17:36 — page iv — #6 i
i

i
i

i
i

iv

i
i

“master” — 2012/6/11 — 17:36 — page v — #7 i
i

i
i

i
i

v

Acknowledgments

First off, we would like to thank our thesis supervisors, Helge Langseth and Anders
Kofod-Petersen, for their invaluable support in the work we have accomplished.
We would also like to thank Agnar Aamodt and Tomasz Szczepański for sharing
their expertise in case-based reasoning.

Jan would like to thank his wonderful fiancée, Silje Skage, for always being there
for him.

Dag Øyvind would also like to thank ASS, BGB and FSK for keeping him moti-
vated when the work seemed too overwhelming.

Jan Eriksson
Dag Øyvind Tornes

Trondheim, June 11, 2012

i
i

“master” — 2012/6/11 — 17:36 — page vi — #8 i
i

i
i

i
i

vi

i
i

“master” — 2012/6/11 — 17:36 — page vii — #9 i
i

i
i

i
i

Contents

1 Introduction and Overview 1
1.1 The assignment . 1
1.2 Background and Motivation . 1
1.3 Goals and Research Questions . 10
1.4 Contributions . 11
1.5 Research Method . 12
1.6 Thesis Structure . 12

2 Background 15
2.1 Real-time strategy agent architectures 15
2.2 Case-based reasoning . 19
2.3 CBR in Starcraft and other Real-time strategy games 25

3 Planning with CBR 29
3.1 Modelling Starcraft . 29
3.2 Case selection . 37
3.3 Case adaptation . 41
3.4 Case retention . 43
3.5 Notes on case revision . 45

4 System overview 47
4.1 The tools . 47
4.2 The main components . 48

5 Experiments and Results 51
5.1 Architecture and Model . 51
5.2 Experimental Plan . 53
5.3 Experimental Results . 59

6 Evaluation and Conclusion 61
6.1 Summary . 61

i
i

“master” — 2012/6/11 — 17:36 — page viii — #10 i
i

i
i

i
i

viii Contents

6.2 Evaluation . 62
6.3 Discussion . 63
6.4 Contributions . 64
6.5 Future Work . 65

References 68

A Starcraft 73
A.1 The game . 73
A.2 The Real-time Strategy genre . 73
A.3 Starcraft’s success . 74
A.4 Gameplay . 75
A.5 Resource management . 77
A.6 High-level decision making in Starcraft 79
A.7 Low-level army management in Starcraft 79
A.8 Brood War API . 79
A.9 Starcraft as an agent environment 80

B Agent architecture 81
B.1 Planning layer . 81
B.2 Executive layer . 82
B.3 Reactive layer . 85

i
i

“master” — 2012/6/11 — 17:36 — page ix — #11 i
i

i
i

i
i

List of Figures

1.1 Starcraft . 4

2.1 Our layered agent architecture 18
2.2 The CBR cycle . 22

3.1 Representation of a case . 30
3.2 Composite case tree . 35
3.3 Sample start-case Protoss vs. Zerg 36
3.4 Casebase with clustered features 39

4.1 The flow of data through the system 48

A.1 Terran holding high ground with tanks against Hydralisk . 75
A.2 Protoss forces fighting a group of Hydralisk with Psi storm 76
A.3 Zerglings overwhelming Protoss base 77
A.4 Initial starting location . 78

i
i

“master” — 2012/6/11 — 17:36 — page x — #12 i
i

i
i

i
i

x List of Figures

i
i

“master” — 2012/6/11 — 17:36 — page xi — #13 i
i

i
i

i
i

List of Tables

5.1 The casesbases used in the experiments 52
5.2 The results from experiment 1 . 54
5.3 The results from experiment 2 . 56
5.4 The results from experiment 3 . 57
5.5 The results from experiment 4 . 59

i
i

“master” — 2012/6/11 — 17:36 — page xii — #14 i
i

i
i

i
i

xii List of Tables

i
i

“master” — 2012/6/11 — 17:36 — page 1 — #15 i
i

i
i

i
i

Chapter 1

Introduction and Overview

In this chapter we present an introduction of our thesis. First we present the
relevant background for the thesis, followed by the goals we have for it. After
that we present the possible contributions we can make, and the research method.
Finally we give an overview of the remaining thesis structure.

1.1 The assignment

This is the assignment text as was agreed with our supervisor at the beginning of
this project.

We wish to explore the possibility of using Case-based Reasoning in
order to create plans that can be used by an agent playing Starcraft.

1.2 Background and Motivation

In this section we will go into the background of our project. First we will give a
brief project description, followed by a short intro to Starcraft as an environment.
Last we will show some existing AI work in Starcraft.

1.2.1 Project description

Prior to this master thesis we had done extensive research in architectures for an
Real-time strategy (RTS) agent [22]. At the end of this project we had decided

i
i

“master” — 2012/6/11 — 17:36 — page 2 — #16 i
i

i
i

i
i

2 Background and Motivation

that our focus area should be Case-based Reasoning (CBR), and that we should
implement an agent that uses CBR to perform planning. One thing we noted from
our research was that the existing implementations did not elaborate on scaling
issues, nor the creation of complete agents. We thus wanted to create a complete
agent, and test how well it performed with regards to scaling. In order to achieve
this, we set ourselves these tasks:

• Perform research on CBR tools and existing implementations

• Create a framework agent with minimal intelligence and features

• Create a CBR module, including modules to read and analyze replays

• Refine our agents other layers to play better

• Run tests to measure the performance of our CBR module

1.2.2 Real-time strategy games

Real-time strategy games is one of the most popular genres of computer games
today. In a typical RTS two or more players build bases, train armies and research
new technology in order to defeat their opponent on the battlefield. The success
of the genre is in large part due to the possibility of playing online versus other
humans. Most games also feature an artificial intelligence (AI) opponent for those
who can not play against others. Unfortunately, these AI opponents are rarely
robust enough to provide an entertaining challenge [3].

RTS games also provide a challenging testbed for AI researchers. Most RTS games
feature complex environments and provide several challenges for AI methods to
overcome. Russell and Norvig provide a classification of agent environments [18],
and RTS games provide one of the most challenging combinations of environmental
properties:

Partially observable environment
In RTS games most of the battlefield is covered by a “fog of war”, an area
which cannot be observed. The agent will need to utilize its limited resources
to scout the opponent or make decisions under uncertainty.

Stochastic
Most RTS games include an element of chance. The agent can not be certain
that initiating an action will lead to a certain result.

Sequential decisions
In any RTS, decisions made now can have far-reaching consequences. Often,

i
i

“master” — 2012/6/11 — 17:36 — page 3 — #17 i
i

i
i

i
i

Introduction and Overview 3

a game is decided by a single early mistake made by one player.

Dynamic
The real-time component of RTS games provides another challenge. They
are fast-paced, and while the agent deliberates, the conditions it bases its
decisions on may have changed significantly.

Continuous environment
RTS games provide a continuous environment. An action does not immedi-
ately change the environment, rather, actions start a gradual change to the
environment.

Cooperative and competitive multiagent
Several agents can play simultaneously in a single game. Often their objective
is to defeat all other agents, however, teams cooperating are not uncommon.

Together, these properties lead to a vast state-space, uncertainty and performance
requirements, making RTS games an ideal test application for new AI approaches.

1.2.3 Starcraft

Starcraft is an RTS game released by Blizzard Entertainment in 1998. To date,
it is one of the most popular computer games, having sold more than 11 million
copies by 2009. Starcraft has its own pro-gaming league in South-Korea, USA and
international tournaments. Starcraft, with its Brood War expansion, constitute
the environment we use for testing. For readers unfamiliar with the concepts of
Starcraft, please read appendix A.

Much of Starcraft’s success is due to a break from the traditional way of creating
RTS games. Prior to Starcraft, an RTS would feature two opposing factions, whose
gameplay was nearly symmetrical. Starcraft changed this by introducing three
factions (or races in Starcraft) with widely different play-styles. The three races
are the insectoid swarms of the Zerg, the mechanized armies of the Terrans and
the high-tech warriors of the Protoss. Each of these races have unique advantages
and disadvantages, and all require different strategies to play effectively and win.

In Starcraft, two players face off with the ultimate goal of destroying the opposing
player. In order to do so, the players must build bases, set up a resource harvesting
operation and train armies to crush the enemy.

Figure 1.1 shows a Terran army defending against Protoss attackers.

i
i

“master” — 2012/6/11 — 17:36 — page 4 — #18 i
i

i
i

i
i

4 Background and Motivation

Figure 1.1: Starcraft

i
i

“master” — 2012/6/11 — 17:36 — page 5 — #19 i
i

i
i

i
i

Introduction and Overview 5

The three races

As mentioned in the previous section, Starcraft features three races which the
player may choose from. Each race plays in different ways, and have their own
unique strategies.

The Terrans are human colonists struggling to survive in the vast space of the
galaxy. Their armies combine infantry with armor, and are fairly powerful. The
race provides strong defensive units, and many of their strategies rely on holding
key locations on the battlefield.

The Protoss are an ancient people, with a strong hierarchical government. Their
warriors rely on technology and honor on the battlefield. The Protoss strategies
are based on fierce attacks and utilizing their technological advantage to defeat
their foes.

Finally, the Zerg are a hivemind race and menace to all galactic civilizations. Their
units are not individually strong, but numerous beyond imagining. The Zerg rely
on their great numbers and fast evolution when entering battle.

Resource management

In Starcraft, the player must manage three distinct resources, namely minerals,
gas and supply.

Minerals are the most common resource. Every unit, structure and upgrade in
Starcraft requires at least a small amount of this resource. Minerals are harvested
from mineral patches spread around the map, usually in clusters near good base
locations.

Gas is the secondary resource in Starcraft. Much rarer than minerals, gas is a
requirement of more powerful units and often used to research new technology. Gas
can only be harvested from vespene geysers after the player has built a structure
there to refine the volatile resource.

The last resource is supply. Each race has a unique way of providing this resource.
Terrans have Supply Depots, Protoss have Pylons and the Zerg have Overlords.
Before training a unit, the player must provide a certain amount of supply. Each
unit has its own requirement, for instance Zealots require 2 supply, while Battle-
cruisers require 6. If a unit dies, the its required supply is available for another
unit to use. If the supply sources are destroyed, units will not die, but the player
is unable to train any new units before resupplying.

i
i

“master” — 2012/6/11 — 17:36 — page 6 — #20 i
i

i
i

i
i

6 Background and Motivation

Bases

Building your bases is a large part of Starcraft. Different structures unlock new
and more powerful units, allow you to research new technology, provide resources
and defenses. Choosing the right structures to build can be crucial in winning
games.

The act of creating additional bases is called “expanding”, and has a huge effect
on the game. A secondary base will provide a much more powerful resource in-
frastructure and serves as a backup if your main base is attacked. Choosing the
right time to expand can win or lose a game on its own.

Training and upgrading units

Creating a powerful army is the only way to win in Starcraft. In the most common
mode of play, the “Melee”, a player wins when all of the opponents structures are
razed. To achieve this, the player has several units at its disposal.

Some units are purely utilities, such as the Protoss Observer, which cannot attack,
but is floating invisibly at the edge of space, and the drop-ships each race has
available. Other units pack a punch. Generally, units are divided into three tiers,
with the higher tiers being more powerful, but also more expensive. Some units
fly, and can only be attacked by units with anti-air weapons. They are also not
restricted by features of the map and can reach any positions. This grants them a
special advantage, and some strategies in Starcraft revolve around this mobility.

In addition to training armies, the player can upgrade them. From special struc-
tures in the base, upgrades may be purchased. These are very expensive, but
provide an advantage to all the players units. Some upgrades are called technol-
ogy, and grant additional abilities to certain types of units.

Choosing the right mix of units for a given situation, and upgrading wisely is
probably the single most important decision a player can make during a game.

Army management

Army management, more commonly referred to as “micro” in Starcraft, is the skill
of controlling your units in an effective manner. Some examples may be retreating
with wounded units, selecting targets which are susceptible to your army’s weapons
and sneaking past your opponents defenses.

i
i

“master” — 2012/6/11 — 17:36 — page 7 — #21 i
i

i
i

i
i

Introduction and Overview 7

Professional players have shown time and again that a superior army can be de-
feated by an inferior force, if the smaller force is better managed. These pro-gamers
often use the measure “actions per minute” (APM) as an indicator of their skill in
micro. The more orders you can issue in a short amount of time, the better you
are able to manage your troops. The most experienced players can reach APMs
in excess of 400, nearly 7 orders issued every second.

Planning

Starcraft’s depth and complexity allows for a plethora of strategies. A successful
player must be able to identify his opponents strategy, and devise a plan to counter
this.

As the enemy is doing the exact same thing, continuously analysing the situation
and revising the plan is an essential skill. Players facing a situation they have not
planned for are easily defeated by the more prepared player.

Brood War API

Brood War API (BWAPI) is a free open-source C++ framework which gives us
access to the same information a player has from the game itself. It also facilitates
ease of implementing agents in Starcraft. We give a more detailed description of
BWAPI in section 4.1.1.

Starcraft as an environment

Using Starcraft as the environment provides us with several advantages. First and
foremost, Starcraft presents our agent with a highly dynamic environment, with
hidden information and a multitude of available actions to perform at any point
in the game. Starcraft has been played for more than 10 years, and in that time
there has not been a single prevalent strategy that works every time. Due to this
rock-paper-scissor effect of any strategy, the agent needs to continually ensure that
it is using a strategy that beats the opponent in some way. In addition, the agent
needs to be able to utilize its forces in a proper manner, since a plan is only as
good as its execution. This provides us with an environment that can be just as
hard as the real world, and as such it provides an excellent place to test new AI
methods.

Second, due to the fact that the game is fairly old, it has very low computational
requirements and can be run on almost any computer that exists today. This

i
i

“master” — 2012/6/11 — 17:36 — page 8 — #22 i
i

i
i

i
i

8 Background and Motivation

ensures that we have most of the computational resources available for the agents
internal functions, and do not need to worry about Starcraft being a bottleneck in
our execution.

Finally, we have access to the BWAPI framework, which speeds up the process of
implementing our agent. By eliminating the need to create our own framework to
interface with the game itself, we can start on the AI related work right away.

Using a single race

We have chosen to create an agent which only plays as Protoss. Since the three
races are different, it requires a lot of additional work to create a generic agent
which is capable of playing all the races. Creating a separate agent for each race is
also out of the question, as this is a time-consuming process and would divert our
focus from the research we wish to conduct. The choice of the race Protoss was
made due to personal preferences from the group members. As we explained earlier,
each race is balanced, so we do not get any special advantage or disadvantage by
using Protoss.

1.2.4 AI work in real-time strategy games

In recent years Starcraft and similar RTS games has received a lot of attention
from researchers. In this section we review some of the work which has been done.

Using Goal-Driven Autonomy in a Starcraft agent

Weber, Mateas and Jhala presents a complete agent in their article [25] capable
of playing the game Starcraft autonomously. It does so by using Goal-Driven
Autonomy (GDA). GDA is a research area in AI communities that aim to address
the problem of how to respond when an agent encounters an unanticipated failure.
One of the main ways to perform GDA is to enable agents to reason about their
goals, enabling them to react and adapt to unanticipated situations. The agent
was tested against both the built-in AI and human players online. It managed
to outperform 48 percent of the human players on that specific ladder, and was
capable of changing its strategies when playing against the same human player.

i
i

“master” — 2012/6/11 — 17:36 — page 9 — #23 i
i

i
i

i
i

Introduction and Overview 9

Creating a CBR database from automated replay annotation in Star-
craft

Weber and Ontañón presents a system in their article [27] that focuses on automat-
ing the process of learning from expert Starcraft replays. They state that previous
work has been using small amount of replays due to the effort needed to convert
them to cases manually. Their work seek to remove this barrier by the use of goal
ontologies. They base their work on a system called Darmok 2 [16], which allows
them to find plans from human demonstrations. Their experimental evaluation
manages to use plans to set up the resource infrastructure, but is still unable to
beat the built in AI of Starcraft.

Using Reactive Planning Idioms for multi-scale game AI in Starcraft

Weber et. al. presents a system in their article [26] that focuses on creating an
AI agent that is able to reason about goals across multiple levels of granularity.
They propose the need for this technique due to the nature of RTS games. In RTS
games, one needs to reason about high level decisions such as long term goals and
strategies while simultaneously managing short term goals for an army engaging
the opponent. The usual way to deal with this is to abstract the responsibilities
into separate layers, but they argue the need for reasoning across the layers. One
example is when a unit both has individual priorities and responsibilities to the
squad it is part of. Their system uses the reactive planning language A Behaviour
Language (ABL) [14], and successfully implements a behaviour tree that is able to
pursue concurrent goals. They show good results against the built-in AI, with a
win rate of above 60 percent against all races.

Using reinforcement learning to create game AI in Starcraft

Micić, Arnarsson and Jónsson presents methods for reinforcement learning in their
research report [15] with Starcraft as their domain. They focus on the area of
managing troops (micromanagement), both as individuals and in squads. Their
experiments are for learning when to transition between states in Finite State
Machines (FSM), and the effectiveness of using reinforcement learning for tuning
this transition. Their results show positive results with single units and small
squads, but it gets harder as the complexity of the squads increase. They argue
that reinforcement learning can be applied with more advanced techniques than
FSM, but also show that learning needs to be done offline. They state that any
noticeable learning during execution is still out of the question.

i
i

“master” — 2012/6/11 — 17:36 — page 10 — #24 i
i

i
i

i
i

10 Goals and Research Questions

1.3 Goals and Research Questions

In this section we outline the goals we wish to achieve with this thesis. We present
two issues which have received little attention from researchers, and how we intend
to solve these.

We also present several questions which serve as a basis for testing and as a mea-
surement of how successful our approach has been.

1.3.1 Case construction

A lot of work has been done in applying the CBR process to the domain of RTSs,
especially as a tool for generating plans. However, one aspect of this, namely
that of constructing a useful initial casebase, has only been touched upon briefly.
Most Case-based planners for RTS games utilize small casebases which have been
created through a manual process.

A casebase must have several properties to be considered useable:

• The casebase must contain enough cases to provide a solution even in rare
situations the agent may face.

• The casebase must be created with minimal manual effort by the user.

• The casebase must have a representation which is suitable for use in a real-
time environment.

The first item, casebase size, is an important one. Most research has been per-
formed with manually constructed casebases, whose small number of cases can’t
cover all the situations an agent may find itself in.

The effort involved in creating the casebase should be minimal. Hand-creating
cases is time-consuming and will likely not result in a good casebase. Thus, a
casebase whose size is significant must be created by some automated process.

Finally, large casebases will come with a performance penalty. It serves us no
good if searching the stored cases takes minutes or hours, by the time we have
a solution it will be outdated. Therefore, the casebase must be represented in a
manner which makes efficient lookup possible.

In order to combat these issues we propose a method for automatically extracting
cases from expert replays, and investigate whether this is a viable approach to case
construction.

i
i

“master” — 2012/6/11 — 17:36 — page 11 — #25 i
i

i
i

i
i

Introduction and Overview 11

1.3.2 Scaling issues

Given that our case construction method is successful we face a second issue. The
casebase will contain a very large amount of cases, which will lead to decreased
performance. We will therefore investigate issues in scaling up casebase size.

First, we need to know whether a large casebase causes performance issues which
make the CBR planner useless in a real-time setting. New plans must be generated
quickly if the agent is to respond effectively to the rapidly changing situations in
the game.

Second, we will investigate how a larger casebase affect the outcome of games.
We will determine whether the larger casebase leads to an agent which wins more
games. If this is not the case, we wish to determine the cause.

Finally, if runtime performance turns out to be and issue, we will investigate
possible solutions to this.

1.3.3 Research Questions

• What are the major challenges in creating a usable casebase

• What effect, if any, does the casebase have on the agents performance

• Does the size of a usable casebase require a sophisticated selection algorithm
to meet the demands of a real-time environment

1.4 Contributions

This thesis will research the feasibility of creating a CBR planner for an agent
playing Starcraft. Our main contribution is determining if it is possible to create a
case-base from a large amount of replays. Previous work concerned with analysing
player strategies in Starcraft [23] used 36 replay trace files to create the case-base,
and got around 1500 cases. We wish to go further than this and find the feasibility
of using a case-base with more than 10,000 cases. Our tests will investigate whether
the performance of an agent improves with the additional cases.

A second contribution is that we intend to create a complete agent playing Star-
craft. It is possible for other parties to create an agent based on our work. One
possibility is to keep the planning with CBR we use and create an independent
micromanagement module that uses our plans. Our selected architecture support

i
i

“master” — 2012/6/11 — 17:36 — page 12 — #26 i
i

i
i

i
i

12 Research Method

switching out parts within the layers without affecting the overall run-time of the
agent.

1.5 Research Method

Initially we will research existing solutions that uses CBR and tools used to create
these. Our goal is to develop a good understanding of the feasibility of using CBR
in Starcraft. We will also find out how previous solutions have solved issues with
the size of the case-base, if they have considered it at all.

In order to answer the questions we have posed, we will implement an agent which
plays complete games of Starcraft. By complete games, we mean that the agent
will have to play games in the same manner humans do, and not in a restricted
scenario. Thus, the agent must be capable of managing both resources and units,
planning ahead and constructing bases.

In order to create a casebase to be used as input for the planner, we will need
to create a system that allows us to translate expert replays into a format that
is understandable by the agent. We will focus on time-efficiency, as the case
representation could be changed at any point. This is to avoid having to spend
too much time recreating the case-base when these inevitable changes occur.

In order to test our agent we will let it play against the built-in AI and use the data
from these matches to reason about its performance. We wish to focus on how
usable the case-base is in terms of time efficiency and the amount of wins/losses
the agent manages to get.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

In Chapter 2 we present the research we performed during August through Decem-
ber 2011. This project led to this master thesis and is of importance for some of
the choices we made. We follow with a thorough description of the CBR method,
and give some examples of previous work in the field.

In Chapter 3 we present the CBR model we are using in our agent. We start with
detailing the model of the domain and follow with the steps our CBR follows.

i
i

“master” — 2012/6/11 — 17:36 — page 13 — #27 i
i

i
i

i
i

Introduction and Overview 13

In Chapter 4 we present an overview of our system. First we present the tools we
have utilized, and how they have affected us when we were creating the agent. We
follow with a description of the major components of of the agent.

In Chapter 5 we refine our research questions to testable experiments, and define
performance measures for the experiments. We present the method by which the
experiments were conducted and finally the results we observed.

In Chapter 6 we present an evaluation of our research. We summarize our results
and conclude with some possible extensions of our research.

i
i

“master” — 2012/6/11 — 17:36 — page 14 — #28 i
i

i
i

i
i

14 Thesis Structure

i
i

“master” — 2012/6/11 — 17:36 — page 15 — #29 i
i

i
i

i
i

Chapter 2

Background

Here we will provide an overview of the background of our thesis. First we will
present the research we did during the fall of 2011, which is considered as a pre-
study to this thesis. After that we will present a thorough overview of the case-
based reasoning method.

2.1 Real-time strategy agent architectures

Prior to this master thesis we did a research project in fall 2011. The main goal
of this project was to investigate the possible architectures that are suited for an
RTS agent. We were then tasked with arguing which of these were most suited
for an agent and instantiate an agent design based on this architecture. Finally
we were to select an area of specialisation, which would be realized in this master
thesis. This section will give a short summary of that project. For the complete
project report, please read [22].

2.1.1 Pre-study

The project had six groups of two students, and we were encouraged by our su-
pervisors to work together on a pre-study. We utilized a method called Structured
Literature Review (SLR) to find a collection of research papers to base our argu-
ments on. SLR is a method for a thorough and structured search for literature
relevant to one or more research questions. The goals of this method are to ensure
the quality and coverage of the literature related to some given research ques-

i
i

“master” — 2012/6/11 — 17:36 — page 16 — #30 i
i

i
i

i
i

16 Real-time strategy agent architectures

tion(s), and to be reproducible. The interested reader can read Kofod-Petersen’s
tutorial [9], which gives a step by step recipe of the method.

At the end of the review we had narrowed the scope down to about 50 relevant
articles. These served as a basis for the remainder of the projects investigation of
possible architectures for an RTS agent.

2.1.2 Architectures

Our research showed that there are many different architectures that could be used
in an RTS agent. We classified these in three main classes of possible architectures:
Layered, Cognitive and Multi-agent systems.

Layered architectures

Layered architectures are a staple within software engineering, with applications in
many sub-fields, including AI. While layered architectures may encompass many
concepts, there are some features which uniquely identify them. First and fore-
most, layered architectures consist of several layers, where each layer has some
clearly defined responsibilities. An example would be separating a planning layer
from a reactive layer. Another feature of layered architectures is that any layer
should only communicate with the layers directly above or below it.

Cognitive architectures

Cognitive architectures are based on the way the human brain works, by using
a large amount of multiple processors that compete and collaborate with each
other. The idea is that conscious content will emerge from this interaction, and
create advanced behaviours. Due to this, there is some overlap with biologically
inspired AI research. As it is inspired by the brain, many architectures are based
on the different parts of the brain that are used in human reasoning. Examples
include the basal ganglia, which is used by humans for a variety of functions such
as voluntary motor control, cognitive emotional functions and procedural learning
relating to routine behaviours or “habits”, such as eye movements.

i
i

“master” — 2012/6/11 — 17:36 — page 17 — #31 i
i

i
i

i
i

Background 17

Multi-agent systems

Multi-agent systems (MAS) is a fairly new field which has attracted a lot of at-
tention in the past years. The basic idea is to make several agents which control
one or more entities each, by analysing sensor input data and control them via
their actuators. The agents also need to communicate with the other agents and
coordinate plans together.

2.1.3 Architectural reasoning

After analysing each architecture class, we ended up creating an architecture based
on a layered one from robotics [2]. Our research showed that all three architectures
satisfied our goals of planning, resource management and unit control. The main
difference was in the inherent qualities of each architecture. We needed the ar-
chitecture to be modular and extensible. While both cognitive architectures and
MAS are modular and extensible, they are not inherently simple. Both fields re-
quires time and work to understand the principles to it, and the architectures are
often geared towards the specific methods each field employs. Layered architec-
tures have simple communication protocols between the layers, while supporting
an arbitrary complexity within each layer. This means that it is possible to use
any method or technique to fulfill a layers responsibilities, without the need for
any other layer to know of this complexity. This is the well-known principle of
encapsulation, and it enables work to progress in parallel in the different layers.

2.1.4 Our architecture

As is presented in [2], the architecture is divided into three separate layers: plan-
ning, executive and reactive. In addition, the architecture has a separate module
which makes global state available, in a read-only manner, to all layers. We also
use a communication-module, which allows layers to cooperate, while still main-
taining strict separation. We will explain briefly how each layer works here. Figure
2.1 shows the overall architecture we are using.

Planning layer

The planning layer is the top layer and the brain of the agent. It performs the
high-level reasoning that is required in the RTS domain. This includes generating
plans, distributing plans and fixing outdated plans. The plan generation can be

i
i

“master” — 2012/6/11 — 17:36 — page 18 — #32 i
i

i
i

i
i

18 Real-time strategy agent architectures

Figure 2.1: Our layered agent architecture

i
i

“master” — 2012/6/11 — 17:36 — page 19 — #33 i
i

i
i

i
i

Background 19

performed by any arbitrary method, as long as the generated plans comply with
a given format.

Executive layer

The executive layer is the middle layer. It acts as an intermediary between high-
level reasoning and executable tasks. Its tasks include plan decomposition, al-
locating resources to tasks, maintaining scouting information and keeping track
of units and structures. It will give orders to the reactive layer such as ordering
attacks, creation of buildings and units, and ordering scouts. It will also notify
the planning layer if a plan seems impossible to execute, or if events should render
the plan obsolete.

Reactive layer

The reactive layer is the bottom layer, and the only one that interacts directly
with Starcraft. It translates tasks such as attacking and creating buildings into
actions that units perform in the game. This is managed by creating behaviours
that control individuals or a set of units. Behaviours are designed to be indepen-
dent of each other, and can be linked together to perform more complex tasks.
One example is that we can order units to move together to a rally point before
attacking, in order to attack with a single large force, rather than two small ones.
This does not affect the move behaviour or the attacking behaviour, as they do
not know or take into account any such abstractions.

2.2 Case-based reasoning

Case-based reasoning is a subfield of machine learning which is concerned with
learning from experience. CBR is based on the intuition that problem solving can
be performed by remembering similar situations form the past and then reusing
the solution from that situation in the new context. Ontañón et. al. [17] presents a
CBR system that integrates learning and reasoning in this way.

A more intuitive way of explaining CBR is through examples from the real world.
For instance, a lawyer arguing a case may remember a previous case, where the
situations were similar, and reuse the reasoning from the previous case. Another
example may be a doctor observing a certain set of symptoms in a patient. If he
has seen similar symptoms in the past, he may reason that the diagnosis is the

i
i

“master” — 2012/6/11 — 17:36 — page 20 — #34 i
i

i
i

i
i

20 Case-based reasoning

same and recommend a treatment. In both examples previous knowledge has been
employed to create a solution to the current problem at hand.

CBR traces its roots to the work of Schank on Dynamic Memories [20], and the
research on analogical reasoning by Gentner [6]. The first system that uses the
ideas of CBR is the work done by Janet Kolodner on the system Cyrus [11] [12].
Cyrus contains two databases that are able to give information about the former
U.S. Secretaries of State Cyrus Vance and Edmund Muskie. Cyrus is able to
answer questions given in English that concerns these two secretaries. An example
is given in her first article [11]:

It retrieves facts from its memory when queried in English. Follow-
ing is a dialog with CYRUS:

• When was the last time Vance was in Egypt?
• ON DECEMBER 10, 1978.
• Why did he go there?
• TO NEGOTIATE THE CAMP DAVID ACCORDS.
• Who did he talk to there?
• WITH ANWAR SADAT.
• Where was Muskie three weeks ago?
• IN EUROPE.
• Who did he talk to?
• TO NATO IN BRUSSELS ON MAY 14 AND TO ANDREI GROMKYO

IN VIENNA.

2.2.1 Case representation

Representing cases is a very fundamental part of any system performing CBR,
since the CBR module is only as good as the cases it stores. But before we explore
the case structure we plan to use, let us define the meaning of a case. Janet
Kolodner is one of the pioneers within CBR, and in the first chapter of her book
Case-based reasoning [10] she defines a case as:

A case is a contexualized piece of knowledge representing an expe-
rience that teaches a lesson fundamental to achieving the goals of the
reasoner.

She also divides a case into two parts:

1. The lesson(s) it teaches

2. The context in which it teaches its lesson(s)

i
i

“master” — 2012/6/11 — 17:36 — page 21 — #35 i
i

i
i

i
i

Background 21

The first item is the cases solution, and the second item are its features. Based on
this we need to first find the features of Starcraft’s domain that have an impact on
how we should play in order to win. Second, we need to define how our solution
should be structured so our agent can carry out the actions it needs to fulfill its
goals.

2.2.2 The CBR method

Here we will go into detail about the case-based reasoning method. While there
are many different implementations, which we will show in section 2.3, they share
the general idea of a CBR cycle. We will present the cycle structure that Aamodt
and Plaza [1] proposes. It contains 4 steps:

• Retrieve

• Reuse

• Revise

• Retain

2.2.3 CBR Cycle - Retrieve

The “Retrieve” step is the first part of the CBR cycle. It can be divided into 4
subtasks:

• Identify features

• Search

• Initially match

• Case Selection

Identifying the features can be simply comparing the input descriptors of a domain.
In our domain this means that we use the current gamestate in a gameplay. This
gamestate contains information such as ours and enemy units. It is possible to
describe the domain in more detail, by using contextual information. One example
is to signify that an attack is currently being executed, which would mean that
some of our units are occupied. Another example would be to use the opponent
model from our previous case as input for buildings we believe the enemy has, if
we have not been able to scout them. This approach is an important part of any
knowledge intensive CBR system.

i
i

“master” — 2012/6/11 — 17:36 — page 22 — #36 i
i

i
i

i
i

22 Case-based reasoning

Figure 2.2: The CBR cycle

i
i

“master” — 2012/6/11 — 17:36 — page 23 — #37 i
i

i
i

i
i

Background 23

Searching a database for matching cases is the next task. The first objective is to
find out what we are looking for. One example is that we require a case to use,
and have a certain model of the world. This example will search for cases based
on the features they have. Another example is that we are following a case, and
want to find similar cases. This would require the search to base its comparisons
on both the features and the solutions of cases. As for the searching itself, it may
not always be feasible to search through all the cases we have. Some domains have
strict time limits for the retrieval process. In others the case database could be
very large, depending on the design and data availability of the domain. Efficiency
can, and often is an important part of the search. Within the CBR community this
is collectively known as the indexing problem [10]. One way to improve the situation
is to provide search trees which will filter out uninteresting cases. Another way is
to combine similar cases into more general cases. One way of creating general cases
is proposed by Koton [13]. He creates Generalized Episodes (GE) which are used
to combine cases with some similarities. The GE contains norms, which contains
abstract general information that is common for all the containing cases. Next
follows indices which are features that differ in some way. The indices can lead to
the third part which can be cases or another GE.

Initially match is the task of finding a set of possible matches. There are a few
choices of matching criteria, depending on the domain and database size. The
simplest method is to do a similarity matching based on the features of a case.
This provides a fast and easy way to get a certain similarity value between a
current situation and the cases in the database. A more knowledge intensive way
is to weigh each feature according to its importance. The importance of a feature
depends the state of the environment, and a knowledge intensive approach utilizes
this. An example is in Starcraft, where buildings can show strategies early in the
game, while later we are more interested in amount of income bases. Weighting
allows partial matching, where the focus is on a subset of the features which are
more relevant to the current problem we need to solve. Another way is to consider
contextual information, and find a deeper semantic similarity between a case and
a current situation. This can be done by using goals and constraints to guide
the matching process. The knowledge intensive methods are in general more time
consuming, and the environment might be too time constrained to use them.

Case selection is the process of further elaborating on the cases it received from
the initial matching. This may have been done in the initial matching already,
by finding only one case to use, but more often we will have a set to consider. In
order to select a case it will need to evaluate the matching cases in more detail.
For instance, this can be done by generating explanations for why some features
does not match fully and finding the consequences of the mismatch. Another way

i
i

“master” — 2012/6/11 — 17:36 — page 24 — #38 i
i

i
i

i
i

24 Case-based reasoning

is to simulate a solution and see how well it performed. In our domain this is not
feasible, as it would be too time consuming to simulate entire plans. A system can
also request user input for selection.

2.2.4 CBR Cycle - Reuse

The “Reuse” step is the second part of the CBR cycle. It can be performed by
copying or adapting a solution.

The simplest method is to copy the solution. Any differences are abstracted away,
and the solution is used directly. This is the most trivial form of reuse, and is
naturally not possible in most situations. If the differences are critical, one needs
to adapt the solution in some way before reusing it.

Case adaptation can be performed in several ways. According to Aamodt and
Plaza, one can either reuse the solution itself (transformational reuse) or the
method that constructed the solution (derivational reuse). In transformational
reuse, there exists a way to transform the current solution into a solution that we
can use in our current environment. In our domain, this could be by adding tech-
nology buildings that are prerequisites for certain parts of the solution, or removing
redundant items from the solution. In derivational reuse, one will construct a new
solution based on the method that we used in the retrieved case. With the new
domain parameters and goals it will “replay” the old solution in the new context,
and thus generate a new solution.

2.2.5 CBR Cycle - Revise

The “Revise” step is the third part of the CBR cycle. This step is performed after
a copied or adapted solution has been used. If the solution failed in some way
during reuse, we have a chance to learn from those errors. Revision consists of two
subtasks: evaluating the solution and repairing faults.

Evaluating the solution is generally time consuming and is performed outside the
CBR module. It is done by performing the solution in a real environment or asking
a teacher to evaluate. If the solution is successful, it will be retained. If not, we
will progress to repairing the solution.

Repairing involves detecting errors in the solution and generating explanations
for them. The first way to repair is by using the case database to find another
solution to a sub-problem that failed. If our database is rich enough, it will be
possible to find proper solutions for the problems we encountered, and creating a

i
i

“master” — 2012/6/11 — 17:36 — page 25 — #39 i
i

i
i

i
i

Background 25

new case by merging the solutions. The second way is to modify the solution so
that the failures do no occur. In the CHEF system [7] [8], the repair module adds
steps to the plan to assure that the causes of the errors will not occur. The repair
module needs to have certain domain knowledge that allows it to compensate and
fix errors that are commonly occurring.

2.2.6 CBR Cycle - Retain

The “Retain” step is the fourth and last step of the CBR cycle. It is the process
of deciding what parts of a case should be stored in the database, and how we
should store it. It has three parts, extraction, indexing and integration.

The extraction step involves finding out which parts of a case should be retained.
If we have a failure, we want to make sure we do not make the same mistakes
again. This can be done by having a failure database we can use to check if a
solution has pitfalls we want to avoid. It also applies to successes, as we need to
decide if the entire case is relevant for the success.

Indexing is the process of deciding how to structure the database for future use
and deciding what features to use. The trivial solution is to use all the features in
this process. This is, however, not optimal if we have a large database or if time
is restricted.

The integration step involves either inserting the newly generated case in the
database, or updating an existing case with the modifications we have made during
reuse. If we have a new case we want to add we need to modify the indexes in
the database, to improve similarity matching in the future. If we need to update
an existing case it comes down to how we wish to alter the existing cases. This is
usually done by combining the features and updating the weighting.

The retain step is a good source of learning, as we will gradually refine the database
to be better at matching and solving new problems.

2.3 CBR in Starcraft and other Real-time strat-

egy games

In this section we will present various work on CBR systems in Starcraft and other
real-time strategy games.

i
i

“master” — 2012/6/11 — 17:36 — page 26 — #40 i
i

i
i

i
i

26 CBR in Starcraft and other Real-time strategy games

2.3.1 Creating a casebase from automated replay annota-
tion in Starcraft

Weber and Ontañón presents a system in their article [27] that focuses on automat-
ing the process of learning from expert Starcraft replays. They state that previous
work has been using small amount of replays due to the effort needed to convert
them to cases manually. Their work attempts to remove this barrier by the use of
goal ontologies.

They base their work on an existing system called Darmok 2 [16]. This system can
analyze human demonstrations (traces) and create plans from these. The system
uses a special technique called on-line case-based planning cycle [17], proposed by
Ontañón et. al. This technique interleaves planning and execution in real-time
domains. In addition it uses an efficient plan transformation algorithm to adapt
plans in real-time.

Their system is able to automatically annotate replays with goals from a goal
ontology, in order to create traces that can be used in Darmok 2. The problem
with this process is that general replays are very noisy, unless you specifically tailor
an expert to play with the agent in mind. The goal ontology is used here to specify
when certain goals are being pursued. Goals can be subdivided into smaller task
oriented goals, and each goal has parameters that state when this goal can be
pursued in an ongoing match.

When evaluating the system it was noted that it was not able to beat the built in
AI. The agent was, however, able to set up a resource infrastructure and expand
the technology tree. The reason for the failure against the built in computer was
because it uses a strong early attack strategy which their system is not yet able to
counter properly. A full evaluation of the system is intended as part of the future
work.

This system is very relevant to our agent. Our system was inspired by the use
of automatic replay analysis and creating plans from these. Their system touches
upon our focus area, scaling CBR. As they expressed, creating a large case database
is not possible with manual replay analysis. It is our intention to go test the CBR
module with an even larger case library than they used in their system.

2.3.2 CBR used for micromanagement in Warcraft 3

Tomasz Szczepański and Agnar Aamodt presents a system in their article [21] for
managing troops (micromanagement) in the strategy game Warcraft 3. This game

i
i

“master” — 2012/6/11 — 17:36 — page 27 — #41 i
i

i
i

i
i

Background 27

is made by the the same company that made Starcraft, Blizzard Entertainment,
and it shares some game concepts with that game.

They have chosen Warcraft 3 as their testing environment because it has a large
emphasis on individual unit control. Compared to Starcraft, units in Warcraft 3
have much larger health, and often an inherent ability to heal themselves. This
leads to strategies involving moving damaged units out of the fray and spreading
the damage to several units. In addition the built in AI is fairly predictable, it has
unit type priorities, and the observant player can make a note of which units it
will focus on and simply move it back. This will cause the AI to follow that unit
mindlessly while taking numerous hits from the lower priority units.

The system was trained by letting it play against the computer, and having an
expert add cases when it did something wrong. After training the module, it was
able to beat the built in computer every time. Additional tests were performed
on human players of various levels of skill. It was shown that it outperformed
the built in AI, but was beaten by the expert players in the end. They did not,
however, manage to do so without loosing units. In addition the agent was used
as a combat assistant with the human players. It worked by taking control of
any unselected troops, while the human player controlled whichever units he had
selected. This received positive feedbacks from the novice and casual gamers, but
the expert players felt it was getting in the way of their plans.

While this system is not directly relevant to our current system, since they deal
with the low level micromanagement instead of planning, it is still relevant to
our future work. Their article shows that micromanagement using CBR is a very
viable approach in real-time strategy games. In our system, it is a natural way
to expand the use of CBR, by letting it learn how to control armies from replays.
This work is, however, more than likely to be considered a separate master project
in itself.

2.3.3 CBR using conceptual neighbourhoods in Wargus

Weber and Mateas presents a system in their article [23] which uses conceptual
neighbourhoods to perform retrieval in a CBR system. Conceptual neighbourhoods
are a hybrid between nearest neighbour methods and symbolic CBR [24], which use
domain specific transformation rules to improve case comparison. They use a game
called Wargus, which is a clone of the game Warcraft 2 by Blizzard Entertainment,
to test their agent in. The CBR system is tasked with finding optimal build orders
and executing them.

The system is based on A behaviour language (ABL) [14], which is a reactive plan-

i
i

“master” — 2012/6/11 — 17:36 — page 28 — #42 i
i

i
i

i
i

28 CBR in Starcraft and other Real-time strategy games

ning language. The agent is a bundle of managers that each have certain responsi-
bilities. These managers communicate with each other through the ABL’s working
memory.

The casebase was created by running several scripted builds against each other
on several maps. The scripts were hand coded build orders with specific timing
attacks to be executed. The map types ranged from small maps with open paths
to large maps with bases separated with a forest that needed to be cut down.

The agent was tested against the built in AI and other well established scripts.
An important feature in the testing stage was that they used both perfect and
imperfect map information. This had not previously been tested to a great extent.
The testing was done by comparing a nearest neighbour selector (NNS) to the
conceptual neighbourhood selector (CNS). The CNS algorithm performed just as
well as the NNS algorithm with perfect map information, but it performed better
than the NNS when imperfect map information was used.

Our reactive layer was inspired by the use of ABL in this system. While we did
not go to the extent of using ABL, we implemented our own version of it. Our
reactive layer consists of independent behaviours that can perform anything from
simple to advanced tasks. The nature of these behaviours make them very useful
for expanding the reactive layer at our own pace. Adding behaviours is simply
the operation of instantiating the behaviour and attaching it to the root node.
Behaviours can also be tied together, without the knowledge of the subsequent
behaviours, to perform more advanced tasks together.

i
i

“master” — 2012/6/11 — 17:36 — page 29 — #43 i
i

i
i

i
i

Chapter 3

Planning with CBR

In this chapter we describe our research in CBR-planning. We also present our
algorithms and our chosen model of the domain.

3.1 Modelling Starcraft

Here we describe the structure of our cases. We explain the level of abstraction
we have chosen, and why we believe it is appropriate. We also explain the effect
these choices have on other parts of the agent.

Figure 3.1 shows how we intend to structure our cases in a compact manner.
Features are represented as Name : Type, where [] is a list and () is a tuple.
Plan and opponent model are lists of actions to perform and expected actions
respectively. A more detailed explanation of this is given in the following sections.

3.1.1 Case features

Deciding the features of a domain is an important task. Cheng and Thawonmas [4]

presents a case structure for the RTS game ”Warcraft”. They made the decision to
divide the features into three levels, Strategic, Tactical and Operational. Strategic
and Tactical can be considered the description of the domain, while Operational
corresponds to the tasks units can get. We based the decision on our own knowl-
edge of Starcraft’s domain, we have chosen the following data from Starcraft to be
our features:

• Ours and opponents race

i
i

“master” — 2012/6/11 — 17:36 — page 30 — #44 i
i

i
i

i
i

30 Modelling Starcraft

Figure 3.1: Representation of a case

i
i

“master” — 2012/6/11 — 17:36 — page 31 — #45 i
i

i
i

i
i

Planning with CBR 31

• Ours and opponents military units

• Ours and opponents buildings

• Ours and opponents research

• Resources and income rate

• Ours and opponents harvesters

• Ours and opponents bases

Below follows a short explanation of the impact each feature has on how we need
to plan our strategy:

• The race of the our agent and the opponent is in important factor in match-
ing. In general, we wish to select amongst cases where the races match what
we observe, since the available units and strategies for each race is varied.
A note here is that we have trained the agent focusing on replays with at
least one Protoss player, since our agent always plays the Protoss race. The
variation is in the enemy race. There can be instances where the agent has
similar cases for different enemy races, which can be used to determine the
agents strategy. One example is if the enemy is focusing on close-combat
units, which requires the same counter strategies by our agent. The prob-
lem is that we still face the possibility that the opponent switches to a race
specific strategy that is hard to plan for with the wrong enemy race. Due to
this we will only consider cases that matches the enemy race.

• The military units of the agent and the opponent is vital for the available
strategies. If the opponent already has a strong force, while our agent has
focused on economy, it would be hard to facilitate strategies which involve
harassing the enemy to keep control of his movements. We anticipate that
many cases will assume that the agent has a certain amount of units, and
strategies can involve making a complementing unit that will make a good
attack force.

• The current buildings we and the opponent have available can be important
in any match. Some strategies need many of the same production building in
order to build a certain amount of units within a certain time-frame. It also
shows what units that are possible to build for ourselves and our opponent,
which can have an impact on available strategies.

• The research that we have available is also important for strategies. While it
can be hard to find out the opponents current research, beyond the weapon
and armor upgrades we have available from units, it is still important to

i
i

“master” — 2012/6/11 — 17:36 — page 32 — #46 i
i

i
i

i
i

32 Modelling Starcraft

calculate them. One example is the increased speed of “Zealots”, which
will allow them to catch up with ranged units that are trying to run away.
Another example is similar troops with different weapon and armor upgrades.
For instance, a “Marine” that has its weapon and armor upgraded once which
means it will require 6 shots to kill a basic marine. The basic marine will
require 8 shots to kill the upgraded marine. In a more extreme situation,
a basic marine against a fully upgraded marine would play out completely
differently. The fully upgraded marine requires 5 shots to kill the basic
marine, while the basic marine requires 14 shots to kill the upgraded one.
Either way, there is a major difference if a similar amount of troops meet
each other in battle.

• The agents current resources and income rate is important in order to com-
plete a case in its allocated timeframe. In the extreme case, an agent cannot
execute a plan without gas, and if he has no possibility to create an income
of gas (his vespene geyser has been blocked by the opponent), the current
plan becomes unusable. In other situations, an agent could have a sudden
drop in income, which causes him to be unable to complete the plan within
a certain error margin of the allocated time. This could have a major impact
if the agent wanted to make an early attack, but was delayed.

• The amount of harvesters you and your opponent have available can prove
important. One example is that our agent can calculate the expected income
rate of the opponent, and use this information to plan how many harvester he
needs to destroy in order to cause a significant delay in the current expected
build order he thinks the opponent will use.

• While the amount of bases is not vital to the agents success, it is important in
some situations. It is coupled to the expected income an agent can possibly
support, and running out of minerals at one base location can prompt the
agent to move on to other areas. Another example is if the opponent decides
to expand to obtain a better income, the agent can plan to attack him while
he has committed himself to economy, or use the opportunity to expand
himself.

3.1.2 Solution

The second part of the case is the solution. We have chosen these components to
be part of the solution:

• A list of actions to be executed by the agent

i
i

“master” — 2012/6/11 — 17:36 — page 33 — #47 i
i

i
i

i
i

Planning with CBR 33

• The timespan of the case, measured in frames

• The opponent model, which includes the units and buildings we expect him
to build

• Utility, given by a win/loss ratio

Below follows a more detailed explanation of each part of a solution:

• The list of actions is the actual base for the plan we wish to execute. It will
contain high-level actions like build certain buildings, train a certain amount
of units, research different technologies or expand to an additional income
slot. It also contains attack and defend commands, with different forms
of granularity. Examples include harass, all-in and drop. The agent will
decompose the actions into commands that can be sent into the game world,
so decisions on building placement, squad movement and attack strategies
beyond the high level ones are up to the actual implementation to figure
out. This separates the responsibility and ensures that the module can be
changed without major impact to the agent.

• The timespan that the case has is important if the agent is to make timed
attacks, or assume that the opponent can only build a certain amount of
buildings and/or units while the plan is executing. It is also a good measure
for how well the agent is performing, if he manages to execute a plan in less
time than originally thought for instance.

• The opponent model is useful to the agent. If the opponent does exactly
what we expect that he will, then there is no reason that the agent should
not execute a plan as it was previously done, save if he manages an attack
or defence more poorly than it was in the case. It also provides the agent
with “things to look for” when scouting the opponent. If our plan shows
that the opponent should have three production buildings by that time, and
he only has one, then we need to figure out where he is putting his resources.
On the other hand, if the agent finds a different building than he expected,
that piece of information may require the agent to use another plan. This
provides us with a natural way of replanning, without wasting computation
time on replanning after a certain amount of time.

• The utility of a case is calculated from the ratio of the wins and losses of the
cases this case can lead to. The value is used to decide the probability that
we will select this case if it has been matched. To show that we have won
many times with a higher utility is an important measure when selecting
cases.

i
i

“master” — 2012/6/11 — 17:36 — page 34 — #48 i
i

i
i

i
i

34 Modelling Starcraft

3.1.3 Composite cases

According to Aamodt and Plaza [1], a case is a specialised episode in the library,
containing specific domain knowledge. An important concept in CBR is Memory
Organisation Packets (MOPs). Proposed by Schank [20], a MOP is a general knowl-
edge structure to account for the diverse knowledge contained in episodic events.
A good example is the one given by Schank: “The sand dollars and the drunk”.

X’s daughter was diving for sand dollars. X pointed out where there
were a great many sand dollars, but X’s daughter continued to dive
where she was. X asked why. She said that the water was shallower
where she was diving. This reminded X of the joke about the drunk
who was searching for his ring under the lamppost because the light
was better there even though he had lost the ring elsewhere.

As we can see from the example, two cases from different domains can have similar
solutions. In the example the solution for both cases would be to search nearer
the place where they believed they could find the item they were looking for,
instead of looking where it was easier to search. In our domain, however, we
have the opposite problem. We have many cases that can have similar features,
but different solutions. While it is certainly possible to find all the cases that
match well, and then choose, it would be simpler if cases were bundled together.
We therefore propose, based on Schank’s theory, the use of composite cases. A
composite case is a case that is constructed from very similar cases. By combining
two or more cases into a general case, we will have a faster database, but chiefly
we will have several solutions with different utility. As we can see from figure
3.2, this will give us a decision tree when we find a case that matches with our
gamestate. The decision now rests on how well a solution has performed, with
several to choose from.

3.1.4 Sample case

Figure 3.3 shows a simple case of the initial actions our agent will perform, as well
as the indices as they were recorded from a replay. In the figure, A means Agent
and E is the Enemy.

i
i

“master” — 2012/6/11 — 17:36 — page 35 — #49 i
i

i
i

i
i

Planning with CBR 35

Figure 3.2: Composite case tree

i
i

“master” — 2012/6/11 — 17:36 — page 36 — #50 i
i

i
i

i
i

36 Modelling Starcraft

Figure 3.3: Sample start-case Protoss vs. Zerg

i
i

“master” — 2012/6/11 — 17:36 — page 37 — #51 i
i

i
i

i
i

Planning with CBR 37

3.2 Case selection

Here we will explain the selection method of our cases. We will begin by explaining
how case matching is performed, and then move on to describe our composite
cases/case clustering. Next we will detail how we select cases from the library.
Finally we make a note of how our system handles unknowns, i.e. things covered
by fog of war.

3.2.1 Case matching

Our features can be represented in a syntactic way since we have numeric values
for every feature. By syntactic we mean that we compare the values of each feature
based what we can measure from them. If we have 20 Zealots in our army, while
the case has 10 Zealots, then we have 50 % similarity. We do not consider the
deeper semantic implication this might have. In addition we also implement a more
knowledge intensive approach by weighting every feature we intend to match. This
makes it possible to do matching on some parts of our cases while disregarding
others. By using a filter it is possible to enforce that every feature we match is
above a certain threshold.

The first equation in (3.1) is the general one, when both values are non-zero. As
a note, we do not operate with negative numbers, so it is never possible to divide
by zero. If we have at least one zero value we still would like to know how similar
they are, an example is that zero to one unit is more similar than zero to ten units.

Similarity(a, b) =


a
b

if a ≤ b, a > 0, b > 0
a+ε
b+ε

if a = 0, ε > 0

1 if a = 0, b = 0
(3.1)

In equation (3.1) a and b are values from a feature in the case. One example is
that we are finding the similarity between the harvester amount. In that situation,
a is the amount of our harvesters from the gamestate, for example 15, while b is
the amount of our harvesters in the case gamestate, say 20. The similarity here
would be 75 %. If the case gamestate has the lower value, we switch the values of
a and b in the equation. This means that if we have 20 harvesters and the case
has 15, the similarity is still 75 %.

Next, we use a filter. If any value a is below a certain threshold value f , we
truncate it to zero. This allows us to disregard cases which have a similarity below

i
i

“master” — 2012/6/11 — 17:36 — page 38 — #52 i
i

i
i

i
i

38 Case selection

a certain threshold. The filter is shown in equation (3.2):

Filter(a, f) =

{
a if a ≥ f
0 if a < f

(3.2)

The complete matching function is shown in equation (3.4). For each feature, a,
we compare with the case value, b. To this we apply a certain weight, Wa, specific
to feature a. It is then processed by the filter we presented in equation (3.2), and
finally divided by the total weight (3.3). As a note, in our implementation f is
always zero, meaning all cases are considered.

Wtotal =
∑
a

Wa (3.3)

Match(a, b, f) =
Wa · Filter(Similarity(a, b), f)

Wtotal

(3.4)

Below follows an explanation of each feature we are currently comparing. When
we state that two values are compared to each other, we are implying that we use
the equation shown in equation (3.1). Each feature has a certain weight applied
to it.

• Resources and resource rate.

This is done by comparing the current minerals, gas and their respective rates to
the ones found in the case. Each value has an equal impact to the total similarity.

• Harvester count

This is done by comparing ours and the enemy’s harvester count with the one
found in the case. Each count has an equal impact to the total similarity.

• Research

This is done by comparing each research we and the enemy possess with the ones
found in the case. Each research that matches to the ones in the case is added
to the matched value, while every research counts toward the total. An example
is if we have Protoss Ground Weapons upgraded to 3, while the case have them
upgraded to 1. We would now add 2 (1 for our research, 1 for case) to the matched
value, while we would add 4 (3 ours total, 1 case total) to the total. The similarity
follows the equation in equation (3.1), with matched as a and total as b. The
enemy’s and our research have an equal impact to the total similarity.

• Ours and enemy’s units and buildings

i
i

“master” — 2012/6/11 — 17:36 — page 39 — #53 i
i

i
i

i
i

Planning with CBR 39

We compare buildings and units in the same way. First, we match on a unit to
unit basis. Only identical unit and building types are considered matching in this
stage. Then we compare the total amount of minerals and gas value of the units
and buildings. Both these results count 50 percent towards the total similarity.
We have a separate weighting for the buildings and units, and one for whether
they are ours or the enemy’s.

• Bases

Finally we match the amount of bases we and the enemy have. The enemy’s and
our bases have an equal impact to the total similarity.

3.2.2 Case clustering

In order to achieve better searching efficiency it is important to minimise the search
space. Several techniques have been devised for this purpose. Our approach works
by clustering cases with similar features as shown in figure 3.4. Depending on the
threshold for similarity, this can lead to a dramatic reduction in the number of
feature-vectors we have to search.

Figure 3.4: Casebase with clustered features

As we explained in section 3.1.3, a composite case is a case created by combining
two or more cases’ features. This is done by setting each feature in the composite
case to the average of all the cases it encompasses. When search among composite
cases we match on the combined features, and select one of the cases it contains.

3.2.3 Selection method

Our selection method is divided into searching and finding a subset of matching
cases, and then selecting between them.

Searching for cases is done by comparing the input gamestate to each case that
is not part of a composite case, and then comparing to each composite case. Any

i
i

“master” — 2012/6/11 — 17:36 — page 40 — #54 i
i

i
i

i
i

40 Case selection

case above a certain similarity threshold is kept for the next part of the matching.
If there are less than 5 cases above this threshold, we choose the 5 best matches
we have.

The second part is to select one case we will use in the agent. This is done by
giving each case a certain probability of being selected, by the formula found in
equation (3.5). If we select a normal case, it will be returned to the agent. If we
select a composite case, we will return one of the cases contained within, using the
same probability function on each case.

Probability = Similarity·Wamount·(Rwinratio+ε)
Total

ε > 0 (3.5)

In equation (3.5) Similarity is the similarity between the gamestate and the case.
Wamount is the amount of cases this probability is referring to, that is, if its a
composite case. If it is a normal case, Wamount is 1. Rwinratio is the winning ratio
of this case. We have added an epsilon to ensure that cases that leads to only
losses have a small probability of being selected. This is to ensure that we cannot
avoid any strategy, and leads to a more unpredictable and human-like agent. Total
is the total amount of all probabilities, to ensure each probability is between 0 and
1.

From this equation we can observe two things. First, composite cases are in general
more likely to be selected than normal cases. This according to our design, as a
composite case shows general tendencies towards performing similar strategies.
They also contain more refined data, in the form of more accurate win ratios.
The second observation is that cases that have better outcomes are selected more
often. If the case library is updated with the agents own replays, this will give us
an automatic tuning of the selection strategies of the agent, which is desirable.

3.2.4 Handling unknowns

When we create our cases we utilise perfect map information, and always have an
accurate representation of the enemy’s plan and forces. When we play our own
matches we do not have this advantage, and must resort to less efficient ways to
find out what the enemy is up to. This creates a discrepancy between our cases and
the gamestate we are able to provide them, as our current information could be
outdated, or incomplete. The process of handling these unknowns is an important
aspect of our agent. We have a few possible strategies to counter this problem,
but they have not been implemented yet.

i
i

“master” — 2012/6/11 — 17:36 — page 41 — #55 i
i

i
i

i
i

Planning with CBR 41

First, we already have an opponent model that we can use to predict the enemy’s
current buildings and units. If we do not have adequate scouting information
when we are selecting a new plan it is possible to use the predicted buildings in
the gamestate. This enables us to find better matches if the opponent is following
the predicted plan. The drawback is that we can enter a negative cycle where
we follow obsolete plans due to assumptions. This is a necessary sacrifice in our
environment, but it can be reduced by actively finding out what the opponent is
up to, which is a good plan in general.

Second, we are able to select weights when matching cases. If we have not been
able to see what the opponent has been building yet it is possible to set the
weights of the enemy’s units and buildings to zero. This allows us to perform
partial matching on the gamestate, which can be useful early in the game when
we have not been scouting. By not considering the enemy’s buildings and units
we effectively raise the matching percentage. This is because those features would
pull down the total matching percentage, since they match empty lists with units
and buildings towards the case’s known opponent information.

3.3 Case adaptation

Here we will detail the issues which may arise when trying to use a case, such as
missing dependencies, and when a the situation has changed enough for an entire
plan to be rejected.

3.3.1 Missing dependencies

During case selection we do not exclude any plans that cannot be executed directly.
The idea is that while we may lack a critical building for a plan, if the remaining
parts are equal enough we should use this plan. In order to solve this problem
we will do a dependency check each time we start a new plan. This is primarily
to allow our agent to perform parallel tasks, given that any parallel task does not
postpone the current first task of the plan. This dependency check will also add
any missing buildings that are required to perform our plan without trouble.

This is equivalent to the adaptation strategy presented by Kolodner([10];Ch. 11),
commonsense transformation, which is a transformational adaptation strategy.
We have access to any buildings or units requirements, and can use these to make
simple additions into a plan without the need to use a more complex strategy. An
obvious drawback is that we will need more time to complete a plan, but given

i
i

“master” — 2012/6/11 — 17:36 — page 42 — #56 i
i

i
i

i
i

42 Case adaptation

that plans are selected based on how similar they are to our gamestate, it should
not be a severe drawback.

3.3.2 Plan rejection

According to Woolridge [28], agents can have several forms of commitment. Blind
commitment is when an agent actively tries to perform its goals until they are
finished. Single-minded commitment is when an agent tries to perform its goals
until they are done, or it no longer believes they are possible to finish. Open-
minded commitment allows the agent to reason about the goals themselves, and
change them if it finds better goals.

The concept of commitment to plans is important for the success of the agent.
While it is simple to create an agent that performs its plans until they are finished,
it would not be optimal if the plan was doomed to fail due to some unforeseen
circumstance. This is an example of Blind commitment, and would not suit us
in our dynamic environment. What we want is an agent that deliberates on its
plans. The problem now is to find out when we should deliberate on our plans. If
we deliberate too often, we would spend too much time on doing it, and possibly
switch plans regularly. This would lead to an agent that performs many fractioned
plans that does not lead to a good result. If we deliberate insufficiently, we risk
using obsolete plans.

One solution to plan rejection is to use the opponent model we have from the CBR
module. The idea behind the opponent model is that if the opponent performs
the same actions we have predicted, then our plan is a counter to his strategy.
The problem is now decomposed into finding out when there is a sufficient dis-
crepancy between the opponent model and the opponents actions. One measure
we are using is when the opponent has created a building that gives it access to
a different technology than what we expected. This could have a major impact
on our strategy, and is worth replanning for. Another measure is if the opponent
has expanded when we did not expect it. This could lead to new strategies which
could involve using our tactical advantage in units, or expanding ourselves.

Our agent is currently using Blind commitment, but has the information required
to make it able to reason about its plans.

i
i

“master” — 2012/6/11 — 17:36 — page 43 — #57 i
i

i
i

i
i

Planning with CBR 43

3.4 Case retention

Here we will explain how we store and learn from our own experiences. First we
will present the method we have selected for storing our own experience. We will
then proceed with showing how we learn from this storage method, and continue
with discussing possible advantages and drawbacks to the selected method. Finally
we will present an issue with the retain process.

3.4.1 Case storing

Whenever we play a match, our agent gets concrete data on how well certain
cases have performed when the agent uses them. Our approach to storing these
new cases is based on the previous work with the replay tracer we have already
created. When the agent has played a match, a replay from that match is available.
That replay is then analysed into a trace, which is used to create cases. These cases
are merged with the current case database, and then merged with the composite
cases we already have, if they meet the similarity thresholds. This does mean that
entirely new cases are created each time we play a match, even though we followed
previous cases, with possible adjustments. In the end this approach offers us a
very simple and effective way to store our own cases.

3.4.2 Learning by refining the casebase

The learning part of our CBR module is integrated with the storage algorithm.
The agent will store all the new cases that it gets from its own replay, with the
result of the match. There is a good probability that some of the cases can be
matched with existing composite cases, or create entirely new ones. This is because
we already use cases that are in the database, and thus our strategies will try to
perform the same strategy over again. Even if we do not match with composite
cases, we will create new branches that the agent could follow in an execution. If
we do match with previous cases, we will update the win-loss ratio that composite
case had. The selection algorithm for cases, see equation (3.5), will use the win-
loss ratio in the probability for selecting a certain case. By automatically tuning
this ratio with our own cases we achieve a self learning agent.

i
i

“master” — 2012/6/11 — 17:36 — page 44 — #58 i
i

i
i

i
i

44 Case retention

3.4.3 Pros and cons of case storing method

A good advantage of this approach is that we can offer a pre-tested way of creating
cases from our own experiences. The tracer will analyse the replay as if it was an
expert that was playing it, and create new cases without any bias to the actual
reasoning behind each action. By creating new cases we avoid having bias towards
the previous cases we used. This means that we can possibly create entirely new
cases that expands the knowledge in the case database.

Another advantage is that we do not have any difference between the initial training
cases and the cases from the agents own matches, except for how the match was
played. Our training cases assume perfect information, and uses this to create
additional information to the agent that it would not have access to when playing
itself. The only way to overcome this would be to use the replays to seed additional
information to each case. This would mean that we would have to create an entirely
separate module which takes in cases while analysing replays.

Another advantage is that the agent fully commits its resources to the actual
game it is playing, without the need to carefully store data for the database. This
simplifies our agent, and gives it better performance.

The most prominent drawback is that the storage method has to be performed
offline. This is a natural feature, since our tracer must run the replay via BWAPI,
and that requires more resources and execution time than the agent has available
in a match. However, by doing the database update offline we are able to let the
agent play an arbitrary amount of matches on his own, and updating the case
database when we see fit.

3.4.4 External issue with replays

To our dismay, we discovered late in the project that replays from our own matches
were corrupted by BWAPI. The agent would perform the initial actions as usual,
but after two minutes the harvesters would stop harvesting, and creating buildings.
This first appeared when the agent had more time consuming tasks to perform, so
replays saved in the early part of the projects had no issues. The problem with
the replays is that they store actions to be simulated in the game, so if one action
is corrupted, the remaining ones will also be corrupted. The only way to fix this
would be to store information from each match ourselves, but it would not be
trivial. Since we did not want to sacrifice the overall progress on the agent, we
decided to leave case retention out of the agent, while focusing on testing scaling
issues when creating the training set.

i
i

“master” — 2012/6/11 — 17:36 — page 45 — #59 i
i

i
i

i
i

Planning with CBR 45

3.5 Notes on case revision

The observant reader will notice that we do not explicitly perform case revision.
The reason for this is that it has been merged with case adaptation and case
retention. The adaptation process will fix dependencies automatically. These
are then automatically used in case retention. If a replay leads to a failure, the
database will make sure that we perform that strategy less often.

The process of trying to repair cases is a lengthy one with our agent. While it
is possible to for a human to look at a replay and pointing out where a player in
a replay did something strategically wrong, it is very hard to translate this into
rules for a repair module. Another problem is that a case could contain a valid
strategy, but our agent fails to perform it correctly. This could be due to certain
building placement, or simply controlling attacking units poorly. Repairing these
faults is not possible without changing the strategy altogether, or changing the
agent. We believe our approach of case retention will perform better due to these
circumstances.

i
i

“master” — 2012/6/11 — 17:36 — page 46 — #60 i
i

i
i

i
i

46 Notes on case revision

i
i

“master” — 2012/6/11 — 17:36 — page 47 — #61 i
i

i
i

i
i

Chapter 4

System overview

In this chapter we give a short overview of our system and its dependencies, to
inform the discussion in the following chapters.

4.1 The tools

Our agent and tools are written in C++. C++ was chosen because it generates
high-performance binaries, while still allowing us to work with several layers of ab-
straction. In addition, the framework we use to interface with Starcraft is written
in C++. By using C++ we avoid the added complication of porting the framework
to our language of choice.

4.1.1 Brood War API

Brood War API (BWAPI) is a free open-source C++ framework which gives us
access to the same information a player has from the game itself. It has a stan-
dard add-on library (BWSAL) that gives the user several modules that does semi-
advanced operations, such as automatic building placement and build dependency
resolver. The use of this framework greatly lessens the initial start up time of a
project, and gives us more reason to use Starcraft as our testing domain. While
it is fully possible to create an agent that can play the game in one days work,
an agent based on more advanced AI methods still require quite some work. The
framework allows us to get started on the more advanced aspects of the agent
while eliminating the need to worry about trivial problems when connecting and
communicating with the game and its resources.

i
i

“master” — 2012/6/11 — 17:36 — page 48 — #62 i
i

i
i

i
i

48 The main components

4.2 The main components

Our system consists of three components, working together to allow our agent to
play a successful game of Starcraft. They are as follows:

• Tracer

• Analyzer

• Agent runtime

The first two components are data-mining tools, which allow us to generate a
case database from replays. The final component is the agent runtime, which is
responsible for using the cases and playing the actual game.

4.2.1 Data-flow in the system

Data flows from our set of replays through the Tracer, which feeds into the Analyzer
and is then saved to our database of cases. The Agent runtime uses the database
to play a game, which generates a new replay. The data-flow then loops to the
beginning, as we see in figure 4.1.

Figure 4.1: The flow of data through the system

We now outline the responsibilities and functions of each module.

4.2.2 Tracer

The tracer is a fairly simple tool, born from the pragmatic desire to make data-
mining more efficient. We initially analyzed replays directly, as BWAPI was play-
ing them, but this turned out to be a huge limitation.

i
i

“master” — 2012/6/11 — 17:36 — page 49 — #63 i
i

i
i

i
i

System overview 49

First, BWAPI does not allow us to skip forward or jump back in time. This made
detailed analysis very difficult, as we could not search for the “initiating factors”
of important events such as attacks.

Second, analyzing in real-time is a very time-consuming process, and we soon
found that analyzing a single replay could take as long as 30 minutes. If we were
ever to scale up this solution we would need several computers analyzing replays
in parallel. This was not an option, and we went in search of alternate solutions.

The answer to both these problems was the tracer. It runs through replays, and
stores enough information to make efficient analysis possible. These traces are
generated once, and analysis can then be run efficiently on the traces.

Internally, the tracer interfaces with BWAPI to view replays and saves the state
of the game for each frame. This naturally leads to a significant amount of data,
and we compress by only saving deltas when something changes. We store data
such as when structures are built, units are trained and research initiated. We also
store data on a per-unit basis, for instance its location at different times, and who
the unit is attacking. Together, this information allows us to recreate situations
at any point in the game.

4.2.3 Analyzer

The analyzer takes its input from the tracer and searches for relevant events which
occurred during each game. It uses this information to generate cases, which we
later use in our agent runtime.

From the traces we are able to recreate a detailed gamestate, which we use to
search for events. Events are actions ordered by either player, which we feel are
significant enough to be reenacted by our agent while it plays a game. It then
separates these into sequences of actions, which serve as the solution of a case. We
also record the gamestate at the start of the sequence, from which we can identify
similar cases in the runtime.

The analyzer feeds these cases into our case database.

4.2.4 Agent runtime

The agent runtime is by far the most complex component of our system. Here, we
will only give a short overview of its functions, interested readers are directed to
appendix B, where we give a much more detailed description. The agent runtime

i
i

“master” — 2012/6/11 — 17:36 — page 50 — #64 i
i

i
i

i
i

50 The main components

was also the main focus of our specialization project [22], which contains an even
more detailed description as well as the reasoning behind our design.

The agent runtime is designed with a three-layered architecture. The layers are:

• Planning layer

• Executive layer

• Reactive layer

The planning layer is our main area of interest, as our thesis is based around
planning with CBR. The planning layer is responsible for monitoring the games
progress and suggest plans which lead to victory. How it achieves this will be
explained in detail in the following chapters. It then communicates this plan to
the executive layer.

The executive layers main responsibility is to execute plans received from the
planning layer. This includes allocating resources, ordering attacks and maintaing
good scouting coverage of the play area. The executive layer also monitors plan
progress, and reports to the planning layer if a plan seems impossible to execute
or if it fails due to unforeseen events.

The reactive layer is designed to control individual units or groups of units. It
receives an allocation of units and a goal these are supposed to achieve. It then
generates behaviours designed to fulfill the goals, and reports the outcome back
to the executive layer. The behaviours can be modified and extended at runtime,
and are largely inspired by work done in the field of hierarchical task networks
(HTNs) [5].

i
i

“master” — 2012/6/11 — 17:36 — page 51 — #65 i
i

i
i

i
i

Chapter 5

Experiments and Results

In this chapter, we refine our research questions to testable experiments, and define
performance measures for the experiments. We present the method by which the
experiments were conducted and finally the results we observed.

5.1 Architecture and Model

All the tests are performed by playing the agent against the built-in AI opponent
of Starcraft.

Our agent is configured with different casebases, and then plays a succession of
games, while tracking different performance measures.

5.1.1 Casebases

Our casebase is derived from 956 replays scraped from several websites1 which
maintain databases of replays. As a note, we initially had 4200 replays as a base
for creating traces, but only 956 passed our inclusion requirements. Examples of
inclusion requirements are the ability to find a winner in the end, and only two
distinct players in the game. We filtered the replays such that at least one of the
players had to be Protoss for the replay to be used. If the game was played as
Protoss vs. Protoss we would generate cases from both players viewpoint. These
replays were run through the replay tracer and then the analyzer to generate a

1Sites include www.gosugamers.net, www.iccup.com and www.teamliquid.net

i
i

“master” — 2012/6/11 — 17:36 — page 52 — #66 i
i

i
i

i
i

52 Architecture and Model

casebase. After filtering corrupt replays and cases, our source casebase contained
23106 cases.

From this source casebase we generated several new casebases with different char-
acteristics. A separate tool would resize the database or run our clustering algo-
rithm. The clustering algorithm was configured to combine cases with more than
90% similarity.

Table 5.1 lists the casebases which we use in our experiments. Cases and clusters
are the size of the searchable feature-vectors. Their sum is the size of the search-
space. Solutions are the total number of plans the agent can select from. Finally,
solutions per cluster is the average number of solutions contained in the case
clusters. We will be referring to this table during the rest of this chapter.

id cases clusters solutions solutions per cluster
1 23106 0 23106 0
2 2300 0 2300 0
3 230 0 230 0
4 1316 3518 23106 6.2
5 928 405 2300 3.4
6 186 19 230 2.8

Table 5.1: The casesbases used in the experiments

5.1.2 Tracking performance measures

If the agent is configured to run in test-mode, a module in the agent will track
several different measurements of the agents performance. The module will track
every measurement in every game, whether it is needed for the given experiment
or not.

The module tracks these measurements for each game played:

• Outcome of the game, one of (Win, Loss, Crash)

• Races in the game, ours and the opponents.

• The map we played on

• Which casebase was in use

• Which cases were selected during the game

• The match between selected case and current gamestate

i
i

“master” — 2012/6/11 — 17:36 — page 53 — #67 i
i

i
i

i
i

Experiments and Results 53

• The time, in milliseconds, to select a case

5.1.3 Additional notes on experiments

Because Starcraft must run in realtime and we need several games to produce
statistically significant results, running the experiments is very time-consuming.
With the capability of tracking every measurement we therefore decided to base
several experiments on the results from a single run, if the input was compatible.
For instance, given a large database we can track both the performance of case-
selection and the agents win-rate in a single run.

The measurement module is also designed to work incrementally. Despite our
best efforts to create a robust agent, both it and BWAPI contains bugs. Some of
these lead to fatal crashes, and we decided to design the experiments such that
they could be halted at any point and then resumed later. For non-fatal bugs we
merely record that the game could not be finished.

5.2 Experimental Plan

In this section we detail the tests we wish to perform, and what the measure of
the tests are.

5.2.1 Effect of database size on runtime performance

Test details

In this test we will run the agent with differing database sizes, and measure the
time to find a match with each. The database will only contain normal cases, that
is, it will have no case clustering.

Over the course of 3 runs we will use databases of 1%, 10% and 100% of the source
database. the 10 % is created by selecting a tenth of the 100 % database, while
the 1 % is created by selecting a tenth of the 10 % database. Each run will contain
100 games.

For each run, we will measure the average time to select a solution, the minimum
and maximum time to select a solution and standard deviation.

i
i

“master” — 2012/6/11 — 17:36 — page 54 — #68 i
i

i
i

i
i

54 Experimental Plan

Test reasoning

We perform this test to show how the database size affects the runtime performance
of our agent. It is important that the agent is able to perform its tasks within a
certain time limit, since a plan could become obsolete if we spend too much time
deliberating on it. It also gives us a measure of how often we are able to create
new plans when the agent is playing a game, which is important if there is a need
to change plans dynamically.

We also wish to find out how large the database can theoretically be. If there is
a low threshold of the size we can have, we must be more selective when choosing
which replays to use. Having a the highest theoretical size of the database means
that we limit the ability for the agent to update the database with its own replays.

Test results

The test results we achieved are shown in table 5.2. In this table, Total matched
refers to the number of times the CBR module was called upon to find a solutions.
Avg is the average time to select a case over all runs. Avg / case is the average
time to match a single case. Std.Dev, Min and Max are respectively, the standard
deviation of time to select, the minimum and maximum time to select. Times are
in milliseconds. Run is the identifier of the run in this experiment, while Casebase
identifies a casebase listed in table 5.1.

Run Casebase Total matched Avg Avg / case Std.Dev. Min Max
1 1 743 8.82 0.038 7.42 0.0 71.0
2 2 734 569 0.247 574 70 3835
3 3 902 6007 0.260 4005 603 19,550

Table 5.2: The results from experiment 1

Discussion of results

We believed that the runtime performance of the agent would be somewhat linear
based on the size of the database. This is because the matching algorithm runs over
every case it has once, and then selects one of the best candidates. The matching
algorithm is linear, as it only depends on the amount of information each feature
contains, and not on the other cases in the library. We thus expected the matching
time per case to be fairly constant, and the average retrieval time to scale linearly
with the case size. Our results show that the average time retrieve a case from

i
i

“master” — 2012/6/11 — 17:36 — page 55 — #69 i
i

i
i

i
i

Experiments and Results 55

the database increases more than linearly. The time to perform matching on a
single case is on average 0.038 ms in the smallest database, while it has increased
to more than six times that amount with the medium and large databases. This
is an interesting and unexpected result, which needs to be investigated.

Another important aspect of these results is that the agent uses too much time to
deliberate. When we play against the built-in AI, it does not matter if the game
freezes a few second when matching. The gamestate does not change during that
time. This is an effect of Starcrafts internal architecture.

5.2.2 Effect of case clustering on runtime performance

Test details

In this test we will run the agent with differing database sizes, and measure the
time to find a match with each. In this test we will enable case clustering in order
to see how this changes the performance.

Over the course of 3 runs we will use databases of 1%, 10% and 100% of the source
database. the 10 % is created by selecting a tenth of the 100 % database, while
the 1 % is created by selecting a tenth of the 10 % database. Each database will
have composite cases as well as normal cases that did not match well enough for
composite cases. Each run will contain 100 games.

For each run, we will measure the average time to select a solution, the minimum
and maximum time to select a solution and standard deviation.

Test reasoning

We perform this test to see if our case clustering method has any notable improve-
ments on the effectiveness of the agent. This is an important result if it does give
an improvement, as it allows us to further increase the database size.

Test results

The test results we achieved are shown in table 5.3. The structure of this table is
identical to that in 5.2. See its description for an explanation of the headings.

i
i

“master” — 2012/6/11 — 17:36 — page 56 — #70 i
i

i
i

i
i

56 Experimental Plan

Run Casebase
Total

matched Avg Avg / case Std.Dev. Min Max
1 4 505 8.91 0.043 8.36 0 70
2 5 738 507.00 0.380 519.00 60 3,515
3 6 668 11,004.00 2.87 8,328.00 470 30,263

Table 5.3: The results from experiment 2

Discussion of results

The average matching time is fairly equal to the time we had without clustering,
except for the large database. The main difference is that our databases now
consist of considerably fewer cases that we match with, as each composite case is
matched once, while each case that it consists of is not used directly in the match-
ing. This results in a large increase in the average matching time per case. The
large database now consists of 1,316 single cases, and 3,518 composite cases, which
gives us 4,834 total cases when matching, compared to 23,000 without composite
cases. The medium database requires almost 9 times as much time on average to
match each case compared to the small database. The large database uses almost
67 times the average matching time of the small database. As we explained in the
previous test, we expected a linear relationship between the average case retrieval
time, and a fairly constant average matching time per case. This is not true and
needs to be investigated.

The most important result here is that case clustering increases the time required
to retrieve a case from the large database. The medium and small databases
have as good as equal retrieval time. We expected case clustering to reduce the
time required, since we only have to consider a subset of the total database. Our
databases also show that case clustering is possible, and more effective on the large
database, so the fact that it increases the time is very unexpected.

5.2.3 Effect of database size on win performance

Test details

In this test we will run the agent with differing database sizes, and measure the
impact this has on the agents winning rate. The database will only contain normal
cases, that is, it will have no case clustering.

Over the course of 3 runs we will use databases of 1%, 10% and 100% of the source
database. the 10 % is created by selecting a tenth of the 100 % database, while

i
i

“master” — 2012/6/11 — 17:36 — page 57 — #71 i
i

i
i

i
i

Experiments and Results 57

the 1 % is created by selecting a tenth of the 10 % database. Each run will contain
100 games.

This experiment is designed to measure what effect scaling up the database has
on the selected strategies, and whether the agent improves with a larger database.

For each run we will be measuring the wins, losses and the ratio between these.

Test reasoning

We perform this test to show if we get a better agent by scaling the database. This
is an intuitive notion, since more experience often yields better understanding in
other fields. By testing this in our agent we prove if this is true for CBR in
Starcraft as well.

Another important reason behind this test is how well it is able to perform in terms
of winning based on the size of the database. A large database could mean that
the agent does not find adequate strategies since it has so many to choose from.
The concept of having an optimal size of the database when it comes to winning
games is something that can be shown from this test. This could lead to the idea
that one can exchange cases in the database with cases that perform better.

Test results

The test results we achieved are shown in table 5.4. Run and Casebase are as for
tables 5.2 and 5.3. Wins and Losses record how many games were finished with that
outcome. Crashes lists the times a game could not be finished, due to some error
in our bot. Finally, the Ratio Win/Losses is calculated as Ratio = Wins

Wins+Losses
.

Run Casebase Wins Losses Crashes Ratio Win/Losses
1 1 1 78 21 1.28%
2 2 2 77 21 2.59%
3 3 5 77 18 6.49%

Table 5.4: The results from experiment 3

Discussion of results

As we can see, we have fairly poor winning results against the built-in AI. The most
important result we can derive from this is that a larger database does increase

i
i

“master” — 2012/6/11 — 17:36 — page 58 — #72 i
i

i
i

i
i

58 Experimental Plan

the winning percentage. The increase is fairly small, but compared to the other
percentages we have a good increase. The real question is whether this is because
our plans are poor, if we select plans that are not suited for the situations or if the
agent does not execute plans in a good way. One observation we made during the
testing was that the agent was not able to direct his units to the enemy’s bases,
save the initial one. This lead to poor use of military units if the agent managed
to kill the initial base, and then stopped using those military units.

5.2.4 Effect of case clustering on win performance

Test details

In this test we will run the agent with differing database sizes, and measure the im-
pact this has on the agents winning rate. In this test we will enable case clustering
in order to see how this changes the performance.

Over the course of 3 runs we will use databases of 1%, 10% and 100% of the source
database. the 10 % is created by selecting a tenth of the 100 % database, while
the 1 % is created by selecting a tenth of the 10 % database. Each database will
have composite cases as well as normal cases that did not match well enough for
composite cases. Each run will contain 100 games.

This experiment is designed to measure what effect scaling up the database has
on the selected strategies, and whether the agent improves with a larger database.

For each run we will be measuring the wins, losses and the ratio between these.

Test reasoning

The reason we choose this test is to see if our composite cases give any notable
difference in the winning performance of the agent. Our composite cases are de-
signed to allow the agent to select more accurately between cases, since they offer
a win/loss ratio of the cases it contains. This should, in theory, give it more dis-
crimination between cases in when it needs a plan, and thus provide better plans.
We wish to see if this theory is correct.

Test results

The test results we achieved are shown in table 5.5. See 5.4 for an explanation of
the table.

i
i

“master” — 2012/6/11 — 17:36 — page 59 — #73 i
i

i
i

i
i

Experiments and Results 59

Run Casebase Wins Losses Crashes Ratio Win/Losses
1 4 1 89 10 1.12%
2 5 3 79 19 3.79%
3 6 4 76 20 5.26%

Table 5.5: The results from experiment 4

Discussion of results

As we can see, the results are fairly equal to the test without case clustering. The
agent manages to increase his winning percentage with larger databases, but the
percentages are much lower than what we wanted them to be. Until we can get
the agent to play better it is hard to see if case clustering has a good effect on the
win/loss ratio. Our results so far leads to the conclusion that case clustering is
not increasing our winning performance yet.

5.2.5 Improvement from learning

This would be a run of 100 games, learning from those 100 games, running another
100 games and recording improvements. However, replays become corrupted, and
we cannot run this test. The reason we wished to run this test is to see if our
agent becomes better at case selection when it refines its own database. This is
an important concept in CBR, which we discussed in section 2.2.6. An agent that
refines its database should become better at similarity matching in the future. In
our system this means that the agent will choose winning strategies more often,
and avoid loosing strategies. To be able to prove this with testing results would
mean that our agent could have great potential of automated learning, which is a
desirable property in an agent.

5.3 Experimental Results

In this section we discuss how the results interact across the experiments.

5.3.1 Timing

As we see from the experiments measuring case selection performance, things do
not look good for scaling up the casebase. In addition, the case clustering algorithm

i
i

“master” — 2012/6/11 — 17:36 — page 60 — #74 i
i

i
i

i
i

60 Experimental Results

which we believed would lead to a significant performance boost actually increases
selection time by nearly 50%.

The selection algorithm is linear in the number of feature-vectors it looks through.
If we use the 1% casebase (with about 9ms. selection time) as our baseline, we
should observe about 90ms. for the 10% casebase. Instead, we see nearly 600 ms,
which is closer to the 900ms. we expect for the full casebase. This, however, takes
nearly 6 seconds to select a case.

After these surprising results, we manually reviewed the timing of the selection
algorithm. To our dismay, we discovered that the majority of the time was spent
copying the casebase. On disk, the source casebase is about 50 Mb. and is ex-
panded to nearly 150 Mb. in memory. This is copied every time we attempt to
select a case. Our more careful review showed that copying this database can take
as long as 4-6 seconds, while the remainder of the selection algorithm only takes
about 200 ms.

We also performed these tests with the clustered casebase. Due to the increased
complexity caused by clustering, the copying takes even longer in this case. In this
situation the actual matching was reduced to about 100 ms.

We believe it should be possible to redesign the selection algorithm to avoid this
copying, and if so, this would lead to a significant improvement in selection times.

i
i

“master” — 2012/6/11 — 17:36 — page 61 — #75 i
i

i
i

i
i

Chapter 6

Evaluation and Conclusion

6.1 Summary

In this paper we present the issue of creating CBR modules to be used in RTS
games. We then show an area that has not been explored to a great extent namely
the use of large scale casebases. We present our goal of creating a database from
automatic replay analysis, and how to manage the scale of the database.

Further we present a brief overview of our previous work on creating a viable agent
architecture for Starcraft. We show the reasoning behind our choice of a layered
approach, and how the agent will solve the tasks of the RTS domain. We continue
with a detailed overview of the CBR method and show some systems that have
been created using CBR in our domain.

We then show the CBR system we have created and explain the design decisions we
made to tailor it to Starcrafts domain. We also explain any discrepancies between
the earlier description of the CBR method, and why these were made.

Since our system is complex, we present an overview of the different components
and the dataflow between these. The most important of these are the tracer
that stores Starcraft replays in a more accessible format, traces, the analyzer that
extracts cases from these traces, and a brief overview of the agent.

We then present our results of our own experiments, and why we selected them.
We ran four different tests, finding the runtime performance with a normal and
a clustered casebase, and finding the winning performance with a normal and a
clustered casebase. We proceed with discussing the results across the tests.

i
i

“master” — 2012/6/11 — 17:36 — page 62 — #76 i
i

i
i

i
i

62 Evaluation

6.2 Evaluation

6.2.1 CBR for planning - scaling issues

Our work has shown how well CBR can be used for planning in Starcraft. Our main
focus was to find out how an agent with a large database performs. The results
of our testing shows that the agent should be able to have a good performance
with larger databases after some redesigning of our selection algorithm. With
this redesign, the effect of case clustering should be more apparent. With our
large database, 94 % of the cases where eligible for clustering, and we reduced the
size of the part database of the database that is relevant for matching to 21 %
of the original size. The effect of this should be even more apparent with larger
databases. In our opinion, the agent has a lot of potential, although it is still a
work in progress.

6.2.2 Creating a casebase from replays

Our work with creating the database using automatic replay analysis has been a
success. The use of traces greatly lessens the time required to create the casebase.
Our Tracer does require a fair amount of time to generate the traces from replays,
as it needs to simulate each game via BWAPI. The creation of all our traces too
about three days, but we only required 2 hours to create the large casebase of more
than 23,000 cases. This allows us to avoid worrying about making changes to the
case representation, or refining the analysis module.

6.2.3 Creating an effective agent for Starcraft

We also wish to elaborate on the winning performance of the agent. As we have
shown in our tests, the agent still performs fairly poorly against Starcrafts built-
in AI. We believe that there are a few causes to this. In our opinion, the main
problem is how the agent executes plans. Due to time constraints, we were not
able to implement the agent to play as well as we had hoped. As a consequence
of this, the executive and reactive layer does not have some features that could
help with plan execution. One issue is that the agent has a hard time finding
every building the enemy owns, and does not press its advantage when the first
base has been destroyed. Another issue is that the agent does not spend all its
resources. During the initial few plans, the main constraint is the resources, but as
we progress, the agent accumulates much unspent resources. The main constraint

i
i

“master” — 2012/6/11 — 17:36 — page 63 — #77 i
i

i
i

i
i

Evaluation and Conclusion 63

then becomes how fast it is able to produce units, and we have not made the agent
evaluate its plans on those premises.

Another issue is that our replays are of experts playing Starcraft. The built-in AI
has a tendency to perform a strong rush strategy, and our cases are more tailored
towards longer matches. While we have replays of some rush strategies, the agent
would probably improve it it received more training in these scenarios.

6.3 Discussion

At the outset of this thesis, in section 1.3, we described two major areas we wished
to investigate. In this section, we discuss how well our research has accomplished
its goals, and whether our research questions have been answered.

6.3.1 Case construction

One of our goals was to determine how well an automated case construction tool
could perform.

One of our first discoveries was that the most time-consuming step in this process is
playing through replays in BWAPI. Since replays are stored in a compressed format
by Starcraft it is impossible to analyze these directly, because no information about
state is stored. We have solved this problem by using a separate trace tool which
runs the replays and saves necessary state. We recommend that anyone attempting
to analyze replays use this approach.

6.3.2 Performance in scale

Our initial research showed that very little work has been done in determining how
well CBR scales up.

We were successful in creating a large database of cases, and performed several
measurements of its performance. Our experiments showed a tendency to im-
proved play by our agent when it used a larger casebase. Unfortunately our agents
micromanagement is not robust enough to use plans effectively, and the results are
skewed because of this. We believe the plans are improved, however, we can not
make a conclusion one way or the other.

i
i

“master” — 2012/6/11 — 17:36 — page 64 — #78 i
i

i
i

i
i

64 Contributions

We have also measured the runtime performance of an upscaled casebase. This is
easy to measure, but there are no absolute limits above which the solution becomes
unusable. One indicator is provided by the rules of the AIIDE tournament1. It
states a bot is disqualified if:

• ≥ 2 frames exceed 10 seconds

• or ≥ 10 frames exceed 1 second

• or ≥ 200 frames exceed 55ms

By these rules, our solution would struggle. Selecting cases is a time-consuming
process, and is performed often enough that we would violate the second rule.
Despite this, the agent should be able to play without noticeable delay versus a
human player. Due to this we believe that scaling up a CBR solution solution
shows promise, but would benefit from more research and testing.

6.3.3 Answers to research questions

In section 1.3 we posed three research questions we wanted to answer. We now
provide the answers here.

We have determined that automated case construction from expert replays is a
viable solution to case construction. The process is time-consuming, especially
running the replays through Starcraft, but the resulting casebase is well worth the
effort.

An agent with a large casebase has shown a tendency to outperform one with a
smaller set of cases. We believe the effort in creating the larger database will pay
off in improved plans utilized by the agent.

A planner based on case-based reasoning is a complex piece of software. A large
casebase needs a smart selection algorithm to be able to perform in a real-time
strategy game such as Starcraft.

6.4 Contributions

We have made three major contributions by creating this agent. The first is that
we have researched on the viability of creating and using a large casebase for

1http://skatgame.net/mburo/sc2011/rules.html

i
i

“master” — 2012/6/11 — 17:36 — page 65 — #79 i
i

i
i

i
i

Evaluation and Conclusion 65

planning in Starcraft. Other parties may use our results to further test the limits
of CBR in RTS, or other similar domains.

The next contribution is the CBR case creating system we have made, the Tracer
and Analyzer. These subsystems are independent of the agent, and can be further
refined, or used to create cases for other areas in Starcraft.

The last contribution is the complete agent we have made. While it is a work
in progress, other parties could use our system and put in their own ideas and
subsystems. The architecture has been designed to facilitate change of its internal
modules. While we have made a good planning system with CBR, there are areas
to improve in order to make the agent better. This could include working more on
creating better behaviours, or completely redesigning the reactive layer. We had
to create our system from scratch and can acknowledge that it is a lot of work.

6.5 Future Work

Our goal was to create a complete agent that could play Starcraft. While our agent
can play Starcraft without any constraints on the games, there are still areas that
could be improved. Here we will present some of the ideas we have for further
work on our agent.

6.5.1 Smarter planning

While our planning layer manages to generate plans, we have a few ideas on how it
can be improved. First, the use of context information when selecting plans could
be very helpful. We have made one such approach to alter plans that try to create
expansions while we already have an expansion that is about to be built. The
issue is also apparent when we are performing an attack. As it is now, the most
common final action of a plan is to perform an attack. We generate new plans
when we issue this command, and many of the combat units that are available at
the plans beginning might be occupied or dead by the end of it. By improving
the information we supply the planner with, it is possible to generate more valid
plans.

The second idea is to use the opponent model when scouting to a greater extent.
If we are able to show that a plan has become invalid, we can alter our strategies
to perform better in the long run.

i
i

“master” — 2012/6/11 — 17:36 — page 66 — #80 i
i

i
i

i
i

66 Future Work

6.5.2 Smarter selection algorithm

Our experiments have shown that the size of the casebase has a significant impact
on case selection performance. We have proposed one method which improves the
selection time by reducing the search space, however we believe there are other
methods which may further improve this.

6.5.3 A goal-oriented representation of plans

The current representation of plans is very straight-forward. We represent plans
as a list of actions to be performed directly. This leads to a lot of adaptation of
plans, which in turn leads to an increase in the size of the casebase as new cases are
learned. We believe that representing plans as goals would alleviate this problem.

As an example, the sequence of actions Train(5, Probe), Build(2, Pylon) would be
changed to Have(5, Probe), Have(2, Pylon). The agents executive layer can then
check if goals are fulfilled or need to be expanded, but the results of the plan are
invariant to the state of the game. This would also reduce the need for adaptation
algorithms, which should improve performance further.

6.5.4 Improving micromanagement

The reactive layer was designed to be able to plug in new behaviours at will.
Creating good subsystems to control units can be a separate thesis in itself, and
our work here is only basic functionality. One area we wanted to improve ourselves
was the attack algorithm. Currently it is overzealous and will not stop attacking
the enemy until it has either won or lost all its units. Creating methods to evaluate
the viability of an attack would be most helpful, along with a retreat behaviour.

We also want to improve the target selection within the attack behaviour. The
current system is designed to attack nearby units, based on how valuable they are.
It does not consider its own positioning, and whether a target far away is poorly
defended. Our agent often goes straight into the fray, heedless of the opponents
defences and ranged units. An improvement here would go a long way in preserving
units.

i
i

“master” — 2012/6/11 — 17:36 — page 67 — #81 i
i

i
i

i
i

Evaluation and Conclusion 67

6.5.5 Improving the executive layer

One apparent problem with the agent was that it did not properly store where
the enemy was situated. Our idea is to scout more effectively and store relevant
information such as base locations, known army and defences. This information
would form the backbone of a better attack algorithm.

i
i

“master” — 2012/6/11 — 17:36 — page 68 — #82 i
i

i
i

i
i

68 Future Work

i
i

“master” — 2012/6/11 — 17:36 — page 69 — #83 i
i

i
i

i
i

References

[1] Aamodt, A. and Plaza, E. (1994). Case-Based Reasoning: Foundational Is-
sues, Methodological Variations, and System Approaches. AI Communications,
7(1):39–59.

[2] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An
Architecture for Autonomy. International Journal of Robotics Research, pages
1–38.

[3] Buro, M. and Furtak, T. (2003). Rts games as test-bed for real-time ai research.
In Proceedings of the 7th Joint Conference on Information Science (JCIS 2003),
pages 481–484.

[4] Cheng, D. and Thawonmas, R. (2004). Case-based plan recognition for real-
time strategy games. In Proceedings of the Fifth Game-On International Con-
ference, pages 36–40.

[5] Erol, K., Hendler, J., and Nau, D. (1994). Umcp: A sound and complete
procedure for hierarchical task-network planning. In Proc. AIPS, volume 94,
pages 249–254.

[6] Gentner, D. (1983). Structure-Mapping : A Theoretical Framework for Anal-
ogy. Cognitive Science, 7:155–170.

[7] Hammond, K. J. (1989). Case-Based Planning: Viewing planning as a memory
task. Academic Press Professional, Inc., San Diego, CA, USA.

[8] Hammond, K. J. (1990). Explaining and repairing plans that fail. Artificial
Intelligence, 45:173–228.

[9] Kofod-Petersen, A. (2012). How to do a Structured Literature Review in com-
puter science.

[10] Kolodner, J. (1993). Case-based reasoning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

i
i

“master” — 2012/6/11 — 17:36 — page 70 — #84 i
i

i
i

i
i

70 References

[11] Kolodner, J. L. (1983a). Maintaining Organization in a Dynamic Long-Term
Memory. Cognitive Science, 7:243–280.

[12] Kolodner, J. L. (1983b). Reconstructive Memory : A Computer Model .
Cognitive Science, 7:281–328.

[13] Koton, P. (1988). Using Experience in Learning and Problem Solving. PhD
thesis, Massachusetts Institute of Technology, Laboratory of Computer Science.

[14] Mateas, M. and Stern, A. (2002). A behavior language for story-based be-
lievable agents. IEEE Intelligent Systems, 17(4):39–47.

[15] Micić, A., Arnarsson, D., and Jónsson, V. (2011). Developing Game AI for
the Real Time Strategy Game Starcraft. Reykjavik University.

[16] Ontañón, S., Bonnette, K., Mahindrakar, P., Gómez-Mart́ın, M., Long, K.,
Radhakrishnan, J., Shah, R., and Ram, A. (2009). Learning from Human
Demonstrations for Real-Time Case-Based Planning. In IJCAI-09 Workshop
on Learning Structural Knowledge From Observations (STRUCK-09).

[17] Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. (2010). On-Line Case-
Based Planning. Computational Intelligence, 26(1):84–119.

[18] Russell, S. and Norvig, P. (2010). Artificial intelligence: a modern approach.
Prentice hall.

[19] Schadd, F., Bakkes, S., and Spronck, P. (2007). Opponent modeling in real-
time strategy games. In 8th International Conference on Intelligent Games and
Simulation (GAME-ON 2007), pages 61–68.

[20] Schank, R. C. (1983). Dynamic Memory: A Theory of Reminding and Learn-
ing in Computers and People. Cambridge University Press, New York, NY,
USA.

[21] Szczepański, T. and Aamodt, A. (2008). Case-based reasoning for improved
micromanagement in real-time strategy games. Positioning paper NTNU-IDI.

[22] Tornes, D. and Eriksson, J. (2011). A layered architecture for a starcraft
agent.

[23] Weber, B. G. and Mateas, M. (2009a). Case-Based Reasoning for Build Order
in Real-Time Strategy Games. In Proceedings of the Fifth Artificial Intelligence
and Interactive Digital Entertainment Conference, pages 106–111. The AAAI
Press.

i
i

“master” — 2012/6/11 — 17:36 — page 71 — #85 i
i

i
i

i
i

References 71

[24] Weber, B. G. and Mateas, M. (2009b). Conceptual Neighborhoods for Re-
trieval in Case-Based Reasoning. In Proceedings of the 8th International Con-
ference on Case-Based Reasoning (ICCBR), pages 343–357.

[25] Weber, B. G., Mateas, M., and Jhala, A. (2010a). Applying Goal-Driven
Autonomy to StarCraft. In Proceedings of the Sixth Conference on Artificial
Intelligence and Interactive Digital Entertainment. The AAAI Press.

[26] Weber, B. G., Mawhorter, P., Mateas, M., and Jhala, A. (2010b). Reactive
planning idioms for multi-scale game AI. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, pages 115–122. IEEE.

[27] Weber, B. G. and Onta, S. (2010). Using Automated Replay Annotation for
Case-Based Planning in Games. In Proceedings of the ICCBR Workshop on
Computer Games.

[28] Wooldridge, M. (2002). An introduction to multiagent systems. Wiley.

i
i

“master” — 2012/6/11 — 17:36 — page 72 — #86 i
i

i
i

i
i

72 References

i
i

“master” — 2012/6/11 — 17:36 — page 73 — #87 i
i

i
i

i
i

Appendix A

Starcraft

Central to this project is the game “Starcraft”. Here we will present the game at
a level of detail intended for a reader that is not familiar with the game itself or
the Real-time Strategy genre.

A.1 The game

Starcraft is a military science fiction real-time strategy (RTS) game developed
by Blizzard Entertainment. The game was released 31st of March 1998, and is
one of the best selling games (11 million copies as of February 2009) for personal
computers. It deviated from the common way of implementing RTS games at that
time, which became a huge success. The game was highly praised by critics and
game players alike. Its expansion, Starcraft Brood War (SC:BW) has a pro-gaming
league in South-Korea. Although the game is largely replaced by Starcraft II, it
is still the de facto benchmark that new RTS games are compared to today. This
is because of its extensive testing and balancing for more than 10 years.

A.2 The Real-time Strategy genre

In RTS games, the player has control of units and structures and must make
tactical decisions to destroy the opposing players assets. The players have to
accumulate resources by making buildings and/or a dedicated resource gathering
unit (worker), and then expend these resources in different areas. Examples can

i
i

“master” — 2012/6/11 — 17:36 — page 74 — #88 i
i

i
i

i
i

74 Starcraft’s success

be to make a large army, or to invest in more buildings and technology that will
unlock better units.

The standard way to play these games is that each player is given an equal amount
of resources, a small amount of gathering units and a structure to make more. From
this modest start, the players have to decide how to best make units and buildings
that will ultimately lead to victory. There are other ways to play the game though,
but since these are not relevant to the agent we are making we will not elaborate
on them.

The complexity of the genre lies in the need to make a high level strategy to
defeat ones opponent, while handling the dynamic part of controlling the army.
The player needs to balance his attention in these areas in order to continually
control every aspect of his gameplay.

A.3 Starcraft’s success

The reason Starcraft was so successful is because it deviated from the normal way
of making RTS games at the time. Previously, players had two races/factions
to choose between. The problem was that these two races had different names,
but equivalent creatures, with identical attributes. A good analogy is Chess, each
player controls his pieces, but the only difference between the pieces of each player
is the color, white or black. A white Queen has the same options as the black
Queen when it comes to moving it. Starcraft deviated from this principle by using
3 races. Each of the races had very different features, and supported different
strategies, depending on the opponent. The strength of this method came from
the way Blizzard balanced each race, so that there were no single strategy that
would work every time against a certain opponent race. While we have not found
a study that supports this claim, there are still strong indications that it is true.
Starcraft has a Pro-gaming league in South-Korea, and over the past 10 years
they have had the best players in the world competing there. Any imbalances that
has been discovered there has been quickly patched by Blizzard. This has been an
ongoing process for 10 years, and we are confident that there exists few imbalances
today.

i
i

“master” — 2012/6/11 — 17:36 — page 75 — #89 i
i

i
i

i
i

Starcraft 75

A.4 Gameplay

Starcraft has 3 races that one can choose among. First, the “Terrans”, who are
human colonists. They are the most versatile race, and provide a good mix of
all-round infantry and mechanical military technologies, such as tanks and nuclear
weapons. They also have personal cloaking (invisibility) abilities for selective units,
and a high damage single target ability for their unit “Battlecruiser”. While there
are many tactics for Terrans, they are particularly good at playing a defensive
game. This is because they can completely block off entry points (called “Ramps”)
to their main base, while providing a way through for their own forces by lifting
production structures off the ground. Combined with the long range area-of-effect
damage of their unit “Siege Tank”, a player would in most cases be forced to make
aerial units to break their defences.

Figure A.1: Terran holding high ground with tanks against Hydralisk

Second is the psionic alien race called the “Protoss”. In general they have more
expensive and more powerful units, but they have higher production time than

i
i

“master” — 2012/6/11 — 17:36 — page 76 — #90 i
i

i
i

i
i

76 Gameplay

the other races. They possess advanced technologies such as personal shields for
all units and can warp in structures. This allows them to warp in many structures
simultaneously with only one worker. In battle they have many exotic abilities and
units, such as a “Psi Storm”, which does massive area-of-effect damage, the per-
manently cloaked assassin “Dark Templar”, to the massive flying unit “Carrier”,
which launches small fighter ships that does the fighting for it.

Figure A.2: Protoss forces fighting a group of Hydralisk with Psi storm

Last is the insectoid alien race “Zerg”. They are composed of entirely organic
structures, which consumes the worker that creates them. They are very different
from the two others races, as all units can be produced from their main building,
the hatchery. Units are not queued up and produced one by one at a normal
production building, but they use a unit called “larva” that are generated auto-
matically (up to a max of 3 per hatchery). A larva can morph itself into any unit
the Zerg have access to create. They do need the unit specific building in order to
be able to spawn each unit though. A player can then simultaneously make units
at every hatchery (if he can afford it), and spawn an attack wave using the same
time that it takes to make a single unit. Combined with cheap and expendable

i
i

“master” — 2012/6/11 — 17:36 — page 77 — #91 i
i

i
i

i
i

Starcraft 77

units this gives the Zerg a very offensive style of play, where an attack wave can be
quickly followed up with another before the opponent is able to recover from the
last. Units available include the small and agile “Zergling”, the all-round shooter
“Hydralisk”, to the massive ground unit “Ultralisk”. Alternatively the player can
make the highly agile flying unit, the “Mutalisk” for a hit-and-run tactic.

Figure A.3: Zerglings overwhelming Protoss base

A.5 Resource management

In Starcraft there are two resources that can be harvested. First there are minerals,
which are required for every unit and building in the game. It can be obtained
by harvesting it with a worker from the mineral fields that are scattered around
the map. Second is vespene gas. This requires a special harvesting building to be
built upon the gas node first, and can only be accessed by one worker at a time.
In general resources are bundled together in groups of 8 mineral patches with one

i
i

“master” — 2012/6/11 — 17:36 — page 78 — #92 i
i

i
i

i
i

78 Resource management

gas node. Every player starts at one such location, shown in figure A.4, and can
make additional bases at other bundles.

Figure A.4: Initial starting location

In addition, the player has a number of supply points. Each unit uses a fixed
amount of supplies from 1/2 to 6 points. Once a unit dies, its supply points are
returned. This is a mechanism to ensure that each unit type is balanced, powerful
units require more supply points per unit than weaker units. It can be increased by
making the special unit or building that increases it for each race. It is, however,
limited at a total of 200 supplies, for example 40 units that use 5 supply points
each, or 200 units that use 1 supply point each. This ensures that an agent must
take care to avoid reaching this limit, as it cannot produce more units if it does. It
also leads to certain strategies that involve destroying the enemy’s supply buildings
or units, in order to stop them from continually producing units.

i
i

“master” — 2012/6/11 — 17:36 — page 79 — #93 i
i

i
i

i
i

Starcraft 79

A.6 High-level decision making in Starcraft

The high level decision making, or macro-management, is a very vital part of any
agent. In Starcraft, one needs to predict the strategy of the other player, and plan
to make buildings and units that somehow counters his strategy and ultimately
leads to a victory. When starting a game, an agent has a selection of build-orders,
similar to chess openings, each of which has pros and cons. A build order is the
selection of the initial actions you want to perform. The agent can select anything
from setting up a strong resource infrastructure to making an early tactical attack.
There are no dominant strategies here, but the success of a build order depends on
many factors, including the map, the opponents race and strategy. Since an agent
cannot always know what the opponent will do (without sacrificing units early to
scout), the environment offers a very complex decision making process which has
to be managed.

A.7 Low-level army management in Starcraft

The need to manage individual troops and coordinating the army, or micro-
management, is at the opposite end of macro-management. Micro-management
refers to the detailed control of individual units of squads. For instance, the player
can move a damaged unit out of the line of fire, or spreading a squad out to avoid
area-of-effect damage. The agent needs to react in real-time to ensure that its
decisions are being executed correctly, and change its strategy on-the-fly if the op-
ponent makes an unexpected move. Pro-gaming has shown us that a player with
good micro-management can overcome a foe with a more powerful army while sus-
taining minimal losses, and decide the outcome of the game that way. The agent
has many different units available with different strengths and weaknesses, from
the small and agile Zerglings, to the slow and powerful Battlecruiser.

A.8 Brood War API

Brood War API (BWAPI) is a free and open-source C++ framework which allows
agents to control and retrieve information about nearly all aspects of SC:BW.
Using BWAPI, programmers may test their AI techniques and perform research
in a robust RTS environment.

Recently, tournaments for AI agents have been started, much like tournaments
have existed for human players since SC:BW’s inception. Several such tourna-

i
i

“master” — 2012/6/11 — 17:36 — page 80 — #94 i
i

i
i

i
i

80 Starcraft as an agent environment

ments are hosted by universities for the sole purpose of advancing AI research.
Some examples include the annual AIIDE1, organised by AAAI2 and hosted at
universities around the world, and CIG3, organised by IEEE.

BWAPI is a flexible framework, and allows for many interesting aspects of AI
research. For instance, BWAPI may limit information to what would be available
to a human, posing challenges for the AI in opponent modelling, and requiring it
to send out scouts to reveal the opponents intentions. Another possibility would
be analysing replays by professional players to discover optimal build-orders or
learning strategies.

A.9 Starcraft as an agent environment

The reason we chose Starcraft as our environment is because it is highly dy-
namic, combining the need to plan on a higher level (macro-management) with the
more dynamic part of controlling the army in order to defeat the enemy (micro-
management). In addition, the environment offers imperfect information by adding
a “fog-of-war”, which means it hides the information of the areas of the screen that
the agent currently has no units or structures in. It is similar to the way a com-
mander must have scouts that report to him about enemy movements in their
sector. Without scouts he only knows how it was based on previous intel. We also
have access to a free project, Brood War API, which gives us access to the same
information and actions a human player has available. This allows us to focus
on the creation of the agent itself. All in all, Starcraft offers an ideal test-bed to
make complex intelligent agents which can be used to solve other similar complex
problems.

1Artificial Intelligence In Digital Entertainment
2Association for Advancement of Artificial Intelligence
3Computational Intelligence in Games

i
i

“master” — 2012/6/11 — 17:36 — page 81 — #95 i
i

i
i

i
i

Appendix B

Agent architecture

In this section we will describe our architecture. It consists of three layers which
has separate responsibilities. They are the planning layer, which decides the high-
level decisions, the executive layer, which generates behaviours to fulfill each plan
item, and the reactive layer, which directly controls our units and structures via
the API. For more information concerning our reasoning behind the choice of
architecture, please read our pre-master project [22].

B.1 Planning layer

The planning layer is our top-most layer. It handles decisions in the most abstract
form, which generally consists of a plan for the immediate future gameplay. Here
is a list of the responsibilities this layer has:

• Plan generation

• Re-planning (exchanging plans at run-time)

• Opponent modelling

Plan generation is the primary task of this layer. A plan is a set of actions we want
the agent to perform, for instance “train x amount of units of type y”, where x and
y can be an arbitrary value. The CBR module has the primary task of generating
proper plans based on the current gamestate. A plan is generated when the planner
requests it, and it has a certain format so we can change the modules when we
please.

i
i

“master” — 2012/6/11 — 17:36 — page 82 — #96 i
i

i
i

i
i

82 Executive layer

The task of re-planning is vital to any agent that wants to have a dynamic playing
style. Consider the following event, an opponent builds aerial units, while your
agent only has ground based attacks. This would allow the opponent to engage
your army without the fear of retaliation, and would surely lead to defeat. The
task of re-planning is to question a current plan, in light of new information, to
see if it still is valid. Re-planning can be initiated by any significant event in the
game game, e.g. if the agent is attacked, a current plan fails, or if the opponent
model (explained below) differs from the observed actions of the opponent. In
either case, the planner will have to decide whether the current plan is valid or
not.

Opponent modelling is a very important for any agent [19]. The idea is that we
predict how an opponent will play, based on our current information, and generate
plans that will somehow counter that strategy. In our agent an opponent model is
made by the CBR module. We will use a predicted opponent build order, which
can be used when we are scouting the opponents base. If we fail to find an expected
item, we need to find out where the opponent is using his resources. It can also be
used to signal a significant event in the game, such as finding an unexpected unit
or building when scouting.

Our planning layer communicates only with the layer directly below it. It will
issue these types of messages:

• New plan

• Revised plan

A new plan is the most common message. We execute one plan at the time, so
when the planning layer either has no plan, or the executive layer informs that the
current plan is finished or failed, it will generate a new plan and pass it down.

As we mentioned previously, our agent can revise its plans. This is done if the
current plan is believed to fail, in the light of recent information. The agent will
then scrap the current plan and generate a new one which will handle the new
situation. The message passed down will thus order the executive layer to scrap
its current plan, and any active execution that has been issued from the previous
plan, and start with the new plan.

B.2 Executive layer

The executive layer is our middle layer. It is responsible for executing the plans
it receives from the planning layer in a sensible way, and will instantiate and

i
i

“master” — 2012/6/11 — 17:36 — page 83 — #97 i
i

i
i

i
i

Agent architecture 83

track any behaviours that are created to fulfil a plan item. Here is the list of the
responsibilities this layer has:

• Subdivide plans into items that correspond to actions

• Allocate resources and units which are requested in plan items

• Perform plan items in parallel wherever possible

• Track plan progress

The main task of this layer is to subdivide plans into items that correspond actions.
This is a fairly simple task, as we have chosen a plan granularity that roughly cor-
responds to a one-to-one mapping between the two. The main task thus becomes
to track the progress of a plan. In order to do this, the executive layer will divide a
plan into an action, then create an appropriate behaviour that will fulfil this action
and instantiate it. Some behaviours, like training units, can be considered done in
the plan when the behaviour is created. We do not yet consider the even that the
unit was cancelled or its production building was destroyed. Other behaviours,
like creating buildings, requires the behaviour to send a success of failure message
to the executive layer before we can consider it done. This is because other plan
items, such as a building or training a unit, may require that previous building to
be able to execute.

An important task of the executive layer is to allocate resources and units that are
requested in plan items. The first and simplest case is to allocate resources. The
agent knows at any time how many of its respective resources, minerals, gas and
supply, it has available. The work is to plan to spend resources before instantiating
a behaviour, else the resources could be used before while the behaviour runs. One
example is a worker trying to build a building. It will require its resources to be
available when it has finished moving to the location of the building site, else it
will fail. Our solution is to flag resources as taken before instantiating a behaviour,
and to release these resources when they have been spent in the game. The second
case is when a plan item requires units. We have a unit manager that tracks all
the units the agent owns, and whether they are occupied or not. In addition we
have a harvest manager that controls all the workers that are mining minerals or
gas. Most behaviours requires units, one example is attack behaviours. Attacks
must have combat units to perform its attack, and the planning layer will have
a suggested amount of units that had a certain effect in a similar attack. While
the agent might have access to the units it is recommended to use, some units
may be occupied in other vital tasks, such as scouting and base defence. The
executive layer has to decide if and where it should deallocate units from, and
then instantiate the attack behaviour.

i
i

“master” — 2012/6/11 — 17:36 — page 84 — #98 i
i

i
i

i
i

84 Executive layer

In order to have even a resemblance of effective gameplay, the agent must work
on tasks in parallel. Our initial observation was that the agent was always beaten
badly by the built in AI, because it perform every task sequentially. This is a
fairly complex task of the executive layer, since there are many events to keep
track of. First, it must find dependencies in its current plan. In most cases, this is
that a unit/building/upgrade requires another building in order to be built. One
example is that the unit ”Dragoon” requires not only its production building, but
also an additional building the ”Cybernetics core”, in order for it to be unlocked.
When the layer encounters such situations, it has to make sure that the previous
items has finished before starting executing the next. Another important task
is to plan ahead with resource management. If it is vital that the layer starts
a dependent unit/building/upgrade immediately after its prerequisite building is
complete, then it needs to make sure that other tasks does not spend too many
resources while the prerequisite building is in construction. We do not distinguish
between the importance of plan items, save that they come in a recommended
execution order.

The final task is to track plan progress. This has been discussed some above, but
the important part is to make sure that every plan item is executed correctly, and
warn the planning layer when it has finished its current plan.

The executive layer communicates with the layers above and below it. It will issue
these types of messages:

• Plan finished

• Instantiate behaviour

• Release units

The first message is the only message it will send to the planning layer. This
message will signal the planning layer that the current plan has finished executing,
and it is ready to receive a new one. We only have one plan at the time, so this
message will make the planning layer remove its current plan and create a new
one. We plan to add logic to handle concurrent plans, but this is a low priority.

The next message is to the reactive layer. It will order it to create a new behaviour
of a certain type, with a certain amount of resources and units available. Examples
include attack behaviours with a combat force, a build command with a worker
assigned and the resources necessary, or a scouting command with its respective
units.

The last message is usually sent just prior to the instantiate behaviour message.
It will order the reactive layer to release the given units from the behaviour that

i
i

“master” — 2012/6/11 — 17:36 — page 85 — #99 i
i

i
i

i
i

Agent architecture 85

controls them. This will happen every time an early scouting command is issued,
which must use a worker that is currently harvesting. Other examples include
deallocating defensive units to an attack group, or sending workers to a new base
location to harvest.

B.3 Reactive layer

The lowermost layer is the reactive layer. It is the only layer that directly com-
municates with the game environment, via the API. Its primary task is to manage
the behaviour tree/forest that is created to perform the tasks from the executive
layer. Here is a list of the responsibilities this layer has:

• Create behaviours for the behaviour tree

• Report the status of behaviours as they finish

The primary task of the reactive layer is to create behaviours that will fulfil a task
from the executive layer. Our approach gives us a lot of freedom when it comes to
deciding how to perform a task. Each behaviour has only knowledge of itself and
its children. This allows us to wrap entire behaviours with new logic, without the
need to change the individual behaviours. One example is an attack command.
While the only current behaviour for this command is an attack behaviour, we can
easily add logic previous and after this to, for example, initially move to a rally
point, and retreat to base when the attack behaviour is completed.

The second task is to report the status of behaviours as they finish. We have a
single root node which will receive and store any messages from the behaviours
lower in the tree. The reactive layer will only check the message buffer of this root
node, and forward any messages to the executive layer. The way this is done is
by adding a default logic which causes any behaviour to check the message buffers
of its children, put any messages in its own buffer, and then delete the child’s
message. It is possible to override this method should the parent wish to add a
more customised message to its own.

The reactive layer communicates only with the layer directly above it, the executive
layer. Here are the messages it will issue:

• Behaviour status

The message concerning behaviour status is the only one we are sending at the
moment. It will contain an integer which identifies which behaviour it belongs to,
and whether the behaviour was successful or not. It is also possible to append

i
i

“master” — 2012/6/11 — 17:36 — page 86 — #100 i
i

i
i

i
i

86 Reactive layer

additional information to the message. We currently do this when a ”Nexus” or
an ”Assimilator” building has been completed. The first is the main building of
our race, which signals that a new base has been constructed. The second is the
unique building that needs to be created to harvest the resource vespene gas. Both
of these buildings will require the harvest manager to allocate its own harvesters
to the new resource location.

	Title Page
	Introduction and Overview
	The assignment
	Background and Motivation
	Goals and Research Questions
	Contributions
	Research Method
	Thesis Structure

	Background
	Real-time strategy agent architectures
	Case-based reasoning
	CBR in Starcraft and other Real-time strategy games

	Planning with CBR
	Modelling Starcraft
	Case selection
	Case adaptation
	Case retention
	Notes on case revision

	System overview
	The tools
	The main components

	Experiments and Results
	Architecture and Model
	Experimental Plan
	Experimental Results

	Evaluation and Conclusion
	Summary
	Evaluation
	Discussion
	Contributions
	Future Work

	References
	Starcraft
	The game
	The Real-time Strategy genre
	Starcraft's success
	Gameplay
	Resource management
	High-level decision making in Starcraft
	Low-level army management in Starcraft
	Brood War API
	Starcraft as an agent environment

	Agent architecture
	Planning layer
	Executive layer
	Reactive layer

