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Abstract

Peak demand is a well-known problem in the power grid. It denotes the
amount of power required to supply consumers at times when demand is
highest. Load peaks can have a negative impact on the stability of the power
grid and maintenance costs for transmission and generation companies. Be-
cause of this, electricity prices often increase during peak demand. Currently,
increasing use of plug-in hybrid electric vehicles (PHEV) further proliferates
this problem because charging patterns are expected to coincide with peak
demand hours, and especially the afternoon peak hours when people return
home from work.

To avoid the problem that increasing PHEV demand will further aggravate
peak demand hours, several different multi-agent scheduling mechanisms have
been investigated, including two centralized scheduling mechanisms and two
decentralized scheduling mechanisms. For both of the decentralized mech-
anisms, the PHEV agents choose their own charging plans without relying
upon a centralized scheduler, while in the centralized scheduling mechanisms,
the PHEVs agents defer control to a central agent for creating their charging
plans.

From the results, we found that while both the centralized mechanisms
and the decentralized mechanisms helped to reduce the average maximum
peak, the performance of the centralized mechanisms proved to be highly
dependent on how the day-ahead portfolio was calculated. Because of this,
the overall best performer was decentralized mechanism, which gave the best
results for reducing the average maximum peak without compromising the
ability of the PHEVs to charge their batteries too much.
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1 Introduction

According to official Norwegian estimates, The Climate and Pollution Agency
[2012] expects that plug-in hybrid electric vehicles (PHEVs), electric vehicles and
hydrogen-based vehicles will account for 5% of the total car population in Norway
by 2020, and that figure is expected to rise up to 26% by 2030. While this is ar-
guably a positive development from a climate perspective, one of the anticipated
challenges in the future smart grid is how to efficiently handle the extra load associ-
ated with charging the growing number of PHEVs. This is mainly a challenge, not
because there is an insufficient overall capacity to accommodate the extra charge,
but because the extra demand resulting from PHEVs recharging their batteries is
expected to coincide with times at which demand is already at its highest, namely
peak hours [Hadley and Tsvetkova, 2008].

One of the technologies from computer science that the next generation of power
grids can benefit from is multi-agent systems. Multi-agent systems is a branch
within computer science and artificial intelligence that is based upon theory from
many disciplines of science. They can provide flexibility, scalability and fault tol-
erance to many areas in the next generation power grids [IEEE PES Multi-agent
Systems Working Group, 2011] such as in diagnostics, distributed control (includ-
ing managing loads) and modeling or simulation. Much of the theory is shared
with economic theory and social theory. The close relationship to economic theory
makes this type of technology very suitable to problem solving in domains where
problems are highly interdependent. This is because the problem of distributing
resources such as electricity is a multi-faceted problem. On the one hand, it is an
optimization problem where there is a need for finding the most efficient way of
managing and distributing electricity. On the other hand, it is also an economic
problem where potentially limited resources need to be distributed fairly. These
are problems that often can not be solved independently. This means that close
relationship with economic theory makes multi-agent systems very applicable to
this domain.

Today, energy is traded on spot markets, forward markets and futures mar-
kets. This trading is based on predictions about the future energy demand in the
grid. Because electricity can be considered a zero-sum game where supply needs to
balance demand; any imbalances need to be compensated for by either increasing
demand or decreasing supply so that they cancel each other out. Hence, imbalances
in the day-ahead portfolio from real-time electricity consumption is traded for on
the spot markets at a penalty. In the current situation today, trading on the intra-
day market can only be limited by improving accuracy in the predictions that are
used when trading electricity on the day-ahead market. However, one of the new
capabilities of the coming Smart Grid is two-way communication between customer
and the power companies. This opens up new possibilities for demand-side man-
agement and demand response whereby consumers can increase or decrease their
electricity consumption, either by responding to price signals, or from participating
in some type of demand-side management program.

Addressing the problem of peak hours, we have investigated two different ap-
proaches to load-scheduling where the real-time consumption of energy is influenced
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by controlling the charging of PHEVs; a centralized mechanism and a decentral-
ized mechanism. This is enabled by the two-way communication capability of the
Smart Grid, which allow real-time interaction between consumer and the electric-
ity companies. In the current power grid, these kind of scheduling mechanisms
are not possible because of the lack of communication capabilities. However, with
the coming Smart Grid, PHEVs will be able to communicate their intentions to
charge or to obtain information from electricity companies about future electricity
demand, either of which can be used by the PHEV to schedule their charging plans
socially economical.

In the first approach – the centralized scheduling mechanism – we have investi-
gated an approach to load scheduling where the real-time consumption of energy is
influenced by controlling the charging of PHEVs. If we at any time have informa-
tion about 1) the current, real-time demand for energy in the grid, 2) the energy
traded on the forward market (day-ahead) at that time, and 3) the state of the
PHEVs in the grid, then we have sufficient information to schedule the charging
of the PHEVs in a way that will be socially economical. By carefully construct-
ing the day-ahead portfolio, the scheduling mechanism can be used to obtain a
peak-shaving effect on the real-time energy consumption. To help the scheduling
mechanisms we have implemented a simple learning mechanism that the PHEV
agents can use in order to learn their own usage patterns. By learning the usage
patterns, the PHEVs are better able to predict when they are likely to leave which
will help the BRP agent to find the best schedule for the PHEV charging profiles.

In the second approach to load-scheduling, we have investigated a decentralized
mechanism where no centralized schedulers are used. The idea is that that the
PHEVs will generate their charging strategies on their own accord, by randomizing
over a probability distribution that they create themselves. The important thing
to consider with this mechanism is how this probability distribution is created.
For this, we have considered two possible methods. One in which the probability
distribution is uniform, and another in which the distribution is generated by the
PHEV agent by interacting with a central agent that provides the PHEV agents
with predictions about the future energy consumption in the grid.

1.1 Motivation

The main objective of this thesis is to investigate methods of how multi-agent
systems can aid in demand-side management applications for the Smart Grid. To
investigate such possibilities, a multi-agent system and a Smart Grid simulator
was both developed. The first part of the thesis will focus on the simulator, which
uses mathematical models of the different components of the simulated power grid.
The most important model is the PHEV model, which is used by the simulator
to model the behavior of consumers that own and operate PHEVs. The focus is
to reflect uncertainty in the consumer usage patterns of the PHEVs. This is done
to challenge the scheduling mechanisms that we have developed and experimented
with.

The second part of this thesis relates to the multi-agent system that was de-
veloped. It is the MAS that implements the scheduling mechanisms that are used,
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while the models and the simulator discussed in the first part of the thesis provide
the environment which the agents operate in. To successfully schedule the charging
of the PHEVs, the different agents will cooperate and communicate with each other
with the goal of finding a mutually beneficial schedule for all the agents.

1.2 Outline

The structure of this thesis is as follows: In Section 2, the background for the
thesis will be discussed. This includes general information about the Smart Grid,
Demand-side Management, Demand Response and Plug-in Hybrid Electric Vehi-
cles, as well as some related work that has been done with respect to these areas. In
Section 3, a set of research questions and hypotheses will be defined. Subsequently,
in Sections 4 and 5, we will discuss the overall approach, how the simulator, models
and multi-agent system relate to each other. Then, in Section 3, we will discuss
the mathematical models used by the simulator to provide an environment for the
agents in, while in Section 6, the multi-agent system will be outlined, where we will
discuss the different agents, and their roles and responsibilities. In that Section
we will also discuss the different multi-agent mechanisms that were developed, two
centralized mechanisms and two decentralized mechanisms. In Sections 7, 8 and
9, we will outline how the experiments were performed, what the results of these
experiments were, and discuss whether they proved or disproved the hypotheses
made. Finally, in Sections 10 and 11, we will discuss which mechanism performed
best, comparing them against each other, and present some suggestions for future
work.
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2 Background

Parts of this section is included from my project in the previous semester. My
supervisor advised me to include these in this thesis for the sake of possible readers
who are not familiar with the power domain.

2.1 Smart Grid

The current electric grid is faced with many challenges. For instance, 20% of
the entire generation and transmission capacity in the current electric grid exist
only to meet peak-demand, meaning that this capacity is only used about 5% of
the time [Farhangi, 2010]. In countries with adequate generation and transmis-
sion capabilities, this solution works most of the time, although inefficiently. In
developing-countries where generation or transmission capacity might be limited,
peak-demand often means rolling blackouts over parts of the network. In countries
like India, this may affect the lives of a significant amount of people.

Smart Grid has been called the next-generation electricity-grid [Farhangi, 2010],
and it is difficult to provide an exact definition of what it is, because it is still
evolving as a concept. However, what can be said about it is, it refers to a class
of technology aimed to help bring utility electricity delivery systems into the 21st
century, taking advantage of the modern advances in computing and automation
[Office of Electricity Delivery and Energy Reliability, 2011]. One of the things
that is expected of it, is that is should address the shortcomings of the existing
grid and the challenges that were created with the deregulation of the market and
the increasing interdependencies among the critical infrastructures in the modern
electricity grid [Amin and Wollenberg, 2005].

It is expected that Smart Grid will bring about a revolution in how customers
interact with the electric companies. Presently, there is little interaction between
customer and utility companies. Consumers buy their electricity from retailers,
paying a certain price for the electricity that is consumed, but it is difficult for the
utility companies to know how much electricity is being consumed in real-time, and
this can affect the stability of the system. However, one of the key steps towards
the Smart Grid is to open up two-way communication lines between the consumer
and the utility companies, giving both consumer and utility company more real-
time information on what is happening in the grid. This, and some of the other
expected key differences between the current grid and the next generation grid, is
shown in table 2.1.

Because consumers pay for electricity consumed, and not for how much that
is generated, utility companies have to ensure that there is a sufficient capacity of
electricity in the grid to meet consumer demands. Today, this is done by keeping
energy reserves, but this method is inefficient and expensive. It is also becoming an
increasingly difficult problem for the utility companies to expand their generation
capacity in line with the increasingly growing demands for electricity [Farhangi,
2010]. This means that the next-generation grid need to move in a direction of be-
coming less dependent on keeping energy reserves, so that as much of the generation
capacity as possible can be effectively utilized.
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Existing Grid Intelligent Grid

One-Way Communication Two-Way Communication
Centralized Generation Distributed Generation
Hierarchical Network
Few Sensors Sensors Throughout
Blind Self-Monitoring
Manual Restoration Self-Healing
Failures and Blackouts Adaptive and Islanding
Manual Check/Test Remote Check/Test
Limited Control Pervasive Control
Few Customer Choices Many Customer Choices

Table 2.1: The smart grid compared with the existing grid [Farhangi, 2010]

One of the key steps towards the evolution of the Smart Grid is the introduction
of Advanced Metering Infrastructure (AMI) units. For instance, critical capability
such as demand response may not be possible without them [Farhangi, 2010]. In
essence, an AMI unit can be thought of as a more advanced version of the Automatic
Meter Reading unit that exist today. The most significant differences is the two-way
communication capability and near real-time sensors that the AMI unit has. These
devices will record real-time electricity consumption where they are installed, and
they will be able to communicate this information directly to the utility companies
in fixed intervals of time. In Norway, a recording frequency of 15 or 60 minutes is
being considered [NVE, 2011].

2.2 Demand-side Management

The term demand-side management (DSM) refer to techniques for influencing con-
sumer demand of energy through various means. Many demand-side management
techniques relate to ways of reducing peak-demand in the electric grid, also called
peak-shaving. Reducing these is important for many reasons. For instance, rolling
blackouts are intentionally engineered blackouts that are used when demand for
electricity in the grid exceeds the power supply capabilities of the network. The
need for intentionally engineered blackouts arise either when there is insufficient
generation capacity, or when there is insufficient transmission capacity to cope with
the current demand for electricity in the grid. Because demand-spikes put extra
pressure on the network, these are often the primary cause for the need for rolling
blackouts. Furthermore, because of the zero-sum nature of the electric grid, if de-
mand for electricity increase, then production must also increase. Because of this,
utility companies have to keep energy reserves to be able to cope with the extra de-
mand. If demand-spikes could be reduced or eliminated in the network, there would
be less need for peaking plants and top load generators. Many ways and techniques
for peak-shaving have been discussed, such as load-deferring through micro-storage
units [Ramchurn et al., 2011] and district heating systems [Wernstedt et al., 2007].
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An important note on load-shifting techniques is that the overall goal is to
reduce the peak-to-average ratio. If load-shifting is done without some form of
coordination, or structure to enforce an even distribution of consumption over
time, then there is a risk that peak-demand is simply shifted from peak-hours to
nonpeak-hours. This is called load-synchronization [Mohsenian-Rad et al., 2010].
In other words, the overall goal in load-shifting is to minimize the peak-to-average
ratio, or peak/Lavg, where peak is the overall load during peak hours, and avg is the
average load during a day. An example of load-shifting can be seen in figure 2.1,
where demand is shifted away from peak-hours.

Figure 2.1: Effects of demand-side management and load-shifting techniques [Shaw
et al., 2009]

2.3 Demand Response

demand response (DR) is one of the important new features of the Smart Grid. In
short, it is the ability to influence consumer demand for electricity by price, mone-
tary incentives or utility directives [Stavrogiannis, 2010]. Although DR techniques
might seem similar to demand-side management (DSM) techniques, there are some
subtle differences. Typically, in DR programs, end-users respond to price signals to
reduce their electricity consumption in the short term. In DSM programs, however,
the overall goal is to achieve energy efficiency, such as load-shifting. In load-shifting
techniques the overall demand for electricity is not necessarily reduced, but is more
evenly distributed over a day. While this may incidentally reduce electricity pricing
for consumer, this is indirectly as a consequence of the load-shifting. In DR pro-
grams, however, any shift in energy consumption is caused directly by consumers
responding to price signals.

In figure 2.2 and 2.3, the different effects of hypothetical DR and DSM tech-
niques can be seen. Figure 2.2 shows the effect of a DSM program on overall
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Figure 2.2: Improved energy efficiency using demand-side management techniques
[Rowles, 2011]

Figure 2.3: Potential effect of a demand response program [Rowles, 2011]

electricity demand, showing how the overall demand is reduced uniformly. This
represents how DSM techniques can be used to improve energy efficiency. In figure
2.3, however, it can be seen how the price per kWh of electricity affects consumer
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demand for electricity. The upper graph shows price compared to time of day, while
the lower graph shows aggregated demand in the grid, both during normal load and
with the effects of DR applied. As can be seen, the effects of DR on demand is most
noticeable during peak-hours, lowering the overall average demand. However, while
the overall demand during peak-hours is lowered, the upper limit of peak-demand
is almost untouched, meaning that peak-to-average ratio actually increases in the
DR program. This is because prices goes down when the consumption goes down.
But if prices go down too far, then consumers are given incentive to increase their
consumption again, so the consumption goes back up. Because one leads to the
other, you will inevitably get these periodic patterns of fluctuating demand. This
does not necessarily mean that DSM is a better solution, however. The benefits
of DR is that they are often relatively cheap to implement if automated control
systems are already in place. Considering how many countries are also mandating
the introduction of the AMI, this is an argument in favor of DR. Also, while DR
and DSM might have different potential and limitations, they are not mutually
exclusive techniques. In fact, they are more likely to be complementary techniques
in the next generation power grid, each contributing with its own advantages.

So what is the difference between demand-response and demand-side manage-
ment? In short, it is a difference in approaches. In demand response programs,
the general idea is to influence consumer demand by price signals, so this approach
directly involves and depends upon consumer interaction. In demand-side man-
agement, however, the focus is more directed towards utility-, transmission- or
generator companies. This includes load-shifting, reducing peak-to-average ratio
and increasing energy efficiency. While some DR programs might achieve some of
the same effects as in DSM, the consequences are caused by different means. For
instance, different pricing mechanisms can theoretically produce a load-shifting ef-
fect similar to load-shifting programs in DSM, but it is not guaranteed, and it
ultimately depends on how the consumer reacts to the price signals. However, in
load-shifting programs in DSM, the ultimate goal is the load-shifting itself, with-
out affecting consumer awareness of it. This means that it should be transparent
to the consumer whether there is a load-shifting DSM program running, or not.
This would not be the case in a DR program, as it directly involves and depends
on consumer interaction (either through an agent-proxy, or through the consumer
itself). If a consumer lowers its consumption by responding to a price signal, then
this reduction must come at an expense of something, for instance by turning off
some lights or postponing some activity that depends upon electricity to a later
time. However, this also means that the benefits of DSM programs may not be
directly obvious to the consumer, as the benefits are primarily for the electricity
industry. But, indirectly, and in a market economy, if a utility company can reduce
its margins, then it is also able to offer lower prices on its services. Load-shifting
through DSM would improve energy efficiency, which would save costs for the util-
ity companies, which would allow them to lower the margins on their electricity
prices.
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2.4 Plug-in Hybrid Electrical Vehicles

One of the concerns about the future of the Smart Grid is how plug-in hybrid
electric vehicles will be integrated into the Smart Grid. Plug-in Hybrid Electric
Vehicles (PHEVs) are expected to become a significant challenge for the power grid
in the future, as they are expected to considerably increase the demand for elec-
tricity (predictions expect that around 30% of the cars in Belgium will be PHEVs
by 2030, and that they will account for 5% of the total electricity consumption
in Belgium by 2020 [Herbruggen and Zeebroeck, 2006]). Further troubling is that
people are likely to start recharging the batteries immediately after having used
them (i.e. when they get home from work). Because most people use their cars
in the same way (to get to and from work), we get what we call rush hours in
the transportation grid. This is analogous to peak-hours in the power grid, and
because people use electricity when they are home, this means that peak-hours will
generally coincide with the end of rush hour. This also means that it is likely that
people will start recharging the batteries coincidentally during peak-hours, adding
to an already considerable problem. It is therefore necessary to consider ways of
managing or scheduling consumption in a way such that the safety and stability of
the power grid is preserved.

The plug-in hybrid electric vehicle (PHEV) is a close cousin to the hybrid electric
vehicle that exist on the market today. The difference is mainly that it has a larger
battery and that, in addition to be chargable through the gasoline engine, it can
also be charged by plugging the vehicle into the electric grid [U.S. Department of
Energy, 2012]. This has the advantage that the PHEV can further displace fuel
usage compared to the HEV.

2.5 Multi-agent systems

Multi-agent systems (MAS) is a field of study within A.I. that takes inspiration
from a number of disciplines, such as economics, software engineering and social
sciences to name a few. From a computer science perspective, autonomy is the key
feature of MAS [Russell and Norvig, 2010]. Agents often possess other qualities.
For instance, an autonomous agent is an entity that is capable of learning through
experiences on how their actions affect the environment, reasoning, and having
beliefs about their environments. They could also have desires and intentions to
act upon those desires, to achieve a goal that they desire. There are many different
forms of agents, and the field of MAS is the study of how these agents interact with
each other when there are several agents in the environment.

Because agents can have different goals, intentions and beliefs, it becomes im-
portant to understand how populations of heterogeneous or homogeneous agents
will interact. For instance, in some scenarios it could be beneficial for agents to
form coalitions, co-operating to achieve some common goal. And when they have
different goals, they may co-operate if this is mutually beneficial to each other. In
other scenarios, however, they could be primarily self-interested and competitive.

In the rest of this Section, we will discuss how agents can make rational decisions
using Game Theory, when competing against other agents in environments where
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they are primarily self-interested. First, we will look at a simple type of game, the
Prisoner’s Dilemma, in which we find and describe the Nash equilibrium. Second,
we will look at a special type of game, called load balancing games, which defines the
problem of load scheduling computing tasks over multiple machines in computer
science. Also, while Game Theory does not preclude co-operative behavior, the
underlying assumption is that the Agents choices are made based on their own
self-interest. However, it is possible to also describe altruistic behavior in Game
Theory as well, using Evolutionary Game Theory, but this outside the scope of this
thesis and has been omitted.

2.5.1 Game Theory

Game Theory is often used to analyze what is the rational decisions that an agent
might make in a multi-agent system. It is originally a mathematical theory that
dates back as early as the 1950s through the works of many scholars, including John
von Neumann among others. It was the study of two-person zero-sum games and its
associated minimax theorem [Wooldridge, 2002]. However, practical applications
of Game Theory were limited until John Forbes Nash extended the theory with
his concept of a Nash equilibrium. The concept of a Nash equilibrium made it
possible to extend the theory beyond two-person, zero-sum games, and it has since
been used in many areas of science, including economics, computer science and
biology to name a few. Later, other branches of Game Theory have appeared,
including Evolutionary Game Theory that extends the theory into multi-player
games, although the type of game has slightly different characteristics than in
original game theory (GT).

To explain Game Theory, a classic example of the Prisoner’s Dilemma is often
used. In it, two prisoners, p1 and p2 are kept apart, unable to communicate with
each other, and both are given the choice to either cooperate (C) or defect (D).
If both prisoners chooses C, then both agents will get sentenced to 1 month in
prison. However, if one prisoner, p1 chooses C and the other, p2 chooses D, then
prisoner p1 gets 1 year in prison, while p2 goes free. Conversely, the same holds
true for prisoner p2 if p2 chooses C while p1 chooses D. If both prisoners choose D,
then they both get 3 months in prison. The problem in deciding what to do, then
becomes dependent on what the other agent chooses. The choices of actions and
their effects are illustrated in a pay-off matrix in Table 2.2 where the outcome of
their choices are represented with payoff values.

The problem for the prisoners in the Prisoner’s Dilemma example is that the
reward of choosing some action becomes dependent on the choice of the other
prisoner. Because the prisoners have no way of communicating with each other,
they both have to make an assumption of what the other prisoner is likely to do.
The best possible scenario for p1 is if p1 chooses D while p2 chooses C. However, if
p1 chooses D, then it risks that p2 might also have chosen D, and they both get 3
months. In this case, they would have been better off by choosing C instead, where
they both would have gotten 1 month. But if p1 had chosen C, then it would have
had the risk that the other prisoner would have chosen D, leading to the worst
possible outcome it could have had.
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In Game Theory, finding a Nash equilibrium is often used to help make rational
decisions about which strategies to play in games like the Prisoner’s Dilemma.
The idea is that there might exist some strategies (s1, s2) in which neither player
have any incentive to deviate from their choice of strategy. More formally, a Nash
equilibrium is defined for two strategies s1 and s2 when [Wooldridge, 2002]:

1. under the assumption that prisoner p1 plays s1, prisoner p2 can do no better
than play s2, and

2. under the assumption that prisoner p2 plays s2, prisoner p1 can do no better
than play s1.

In the Prisoner’s Dilemma, a Nash equilibrium can in fact be found when both
prisoners choose to defect, (D, D). Assuming that prisoner p1 defects, p2 can do no
better than to defect either, otherwise it would get the worst possible outcome by
changing its strategy, and conversely, the same argument holds true for the other
prisoner. In fact, (D, D) is the only Nash equilibrium that can be found in this
game. Even though the sum of the total payoff for both players would be highest
with (C, C). However, while (C, C) would give the highest total payoff, it is not
a Nash equilibrium, because either agent would benefit individually from changing
their strategy and defecting. (C, D) and (D, C) are neither Nash equilibriums,
because in this case, the prisoner that is playing strategy C would benefit from
changing its strategy. In this sense, playing strategy D would be a rational choice
for both prisoners, even though it is the third least preferable outcome.
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Table 2.2: A pay-off matrix for the Prisoner’s Dilemma.

2.5.2 Load balancing games

A classic problem in computer science is how to optimally allocate computing
tasks to machines so that the maximum load over all machines, or makespan, is
minimized. In Game Theory, such problems are called load balancing games. The
problem is defined by considering an agent that has a task that it wishes to place
on one of a set of machines, assigning the task to the machine so that the work
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load is most evenly balanced over all the machines. More formally, the problem
is defined by a set of m identical-, or uniformly related machines, with speeds
s1 . . . sm. The intentions is to distribute [n] tasks with weights w1 . . . wn. If the
set of pure strategies for an agent is [m], then the the goal is to find an optimal
assignment A : [n]→ [m] that will minimize the makespan:

lj =
∑

i∈nj=A(i)

wi
sj
,

where lj is the load on machine j.

(a) Nash equilibrium (b) Socially optimal (c) Non-equilibrium

Figure 2.4: Load scheduling assignment. Figure 2.4a, shows an assignment which
is a Nash equilibrium, while Figure 2.4b and 2.4c shows the socially optimal as-
signment and a non-equilibrium assignment

These load balancing games also applies to Mixed strategies in Game Theory,
where probabilities are assigned to the set of the pure strategies. Formally, it is de-
fined as a probability distribution that assigns to each available action a likelihood
of being selected. For Mixed strategies this means that: If pji is the probability that

agent i assigns it task to j, then a strategy profile is defined by P = (pji )i∈[n],j∈[m].
This means that if the strategy profile P contains the probabilities for all the pos-
sible assignments to the machines, over all the tasks, then the expected load of
machine j is defined by

E[lj ] =
∑
i∈n

wip
j
i

sj
,

and the social cost of strategy P is cost(P ) = E[cost(A)] = E[maxj∈[m]], the
expected maximum load over all the machines.

Nash equilibriums in load balancing games

In load balancing games, a Nash equilibrium is defined for a strategy profile P
when only assignments that minimize the makespan have positive probabilities. If
the strategy profile P has only one assignment with a positive probability, then
the strategy is said to be pure. For pure strategies the Nash equilibrium is defined
when no agent has any incentive to assign its task to another machine. Also, we
can further assume that every instance of the load balancing game admits at least
one pure Nash equilibrium. Proof of this proposition can be found in the textbook
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Algorithmic Game Theory by Nisan et al. [2007]. Essentially this means that for
an assignment A that is not in a Nash equilibrium, there exists a finite sequence
of improvement steps whereby an agent can improve its utility by changing its
assignment, ultimately leading to a Nash equilibrium. Remember, however, that
a Nash equilibrium is not guaranteed to be the socially optimal solution. This
is illustrated in Figure 2.4, where a Nash equilibrium is compared to the socially
optimal assignment and a non-equilibrium assignment where further improvement
steps can be made. Further, since it is possible that there may be several Nash
equilibriums, there is no guarantee that the sequence of improvement steps will not
lead to the worst Nash equilibrium. The cost of selfish load balancing games is then
calculated as the ratio between the cost of the worst possible Nash equilibrium and
the socially optimal cost. This is called the price of anarchy.

2.6 Related work

Boucké and Holvoet [2011] discuss strategies for real-time scheduling of the charg-
ing of PHEVs. The system is a hierarchical MAS, with 3 different kind of agents,
where one agent is responsible for charging the PHEV, another agent is responsible
for preventing overload of the transformer, and one agent that is responsible for
minimizing the cost of imbalances, which is the penalty that is payed on the intra-
day market for a negative or positive imbalance of electricity from the day-ahead
portfolio to the real-time consumption. The last agent is called a Balancing Respon-
sible Party agent (BRP), and is responsible for creating the load-schedules for all
of the PHEVs that are connected to it. It does this by creating an intention graph
of all the PHEVs in its distribution grid, a graph containing information about
each of the PHEVs intentions to charge, including how much they want to charge,
and until when they want it charged. This is done by each PHEV communicating
their desire to charge to the transformer agent. The BRP agent aggregates the
information from all its transformer agents, and then selects which agents should
charge for the next time step depending on the given strategy.

For load-scheduling, they evaluate two strategies, a reactive- and a proactive
strategy. In the reactive strategy, imbalances are postponed as long as possible.
That is, it will schedule PHEV charging to perfectly balance the real-time electricity
consumption with the predictions that were made on the day-ahead market. By
doing so, the portfolio remains balanced for as long as possible, but at a risk of large
future imbalances. In the proactive strategy, the BRP agent will use its intention-
graph to reduce the average distance between the real-time consumption and the
predicted day-ahead consumption. This reduces the risk of large future imbalances,
but is more dependent on accurate real-time predictions. In simulations, they
show that the reactive strategy is able to reduce imbalance costs by 14%, and the
proactive strategy by up to 44%

An extension of the system described above, is also discussed in [Vandael et al.,
2011], which builds upon previous work in Vandael et al. [2010], Boucké and Holvoet
[2011]. However, in this article the focus is not on load scheduling, but rather on
how plug-in hybrid vehicles can be used as a primary reserve capacity in the power
grid. For instance, in Europe, the constant net frequency is 50 Hz, so to maintain
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stability, the actors in the grid have to ensure that the frequency do not deviate
too much from this value. If the frequency is higher, then there is an oversupply of
electricity to the grid. If it’s lower, there is an undersupply. To ensure stability, the
grid should be able to react quickly to deviations in frequency, e.g. by using primary
reserve capacities when the frequency falls below 50 Hz. However, primary reserve
capacities are typically expensive and they generate normally little power. This
means that, because of the potential technology such as District Heating Systems
(DHS), PHEVs might be used as primary reserve capacities.

Figure 2.5: Architecture of the system

An overview of the architecture of the system can be seen in figure 5.7a. It is
a hierarchical system of agents, each with their own responsibilities. There is a
PHEV agent, a Transformer agent and a FleetAdmin agent. The PHEV agent is
responsible for charging the battery of its PHEV in time, the Transformer agent
is responsible for flattening the load of its transformer so that it doesn’t overload,
and the FleetManager is responsible for managing a number of PHEVs as primary
reserve capacities. In essence, the system works by the PHEV agent communicating
its intentions to charge to the Transformer agent. The FleetAdmin will then create
an intention-graph of all the PHEVs in the grid, through its Transformer agent.
It uses this intention-graph to decide which PHEV will charge when, and how
much based upon one of a few predetermined strategies. This information is then
communicated back to the PHEV agents. The extended version of this system,
which can make PHEVs act as primary reserve capacities add two extra steps: Each
PHEV calculates its potential to increase or decrease its charging power. And, this
information is transmitted back to the FleetAdmin agent, which aggregates this
information to calculate a percentage of charging power that the PHEVs should
adjust their power in direction of.
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3 Objectives

In this Section, we will first define the research questions posed by this thesis, after
which we will define a few hypotheses regarding those questions.

3.1 Research Questions

In this section we will define three different research questions concerning peak-
load, stability and end-user quality of service.

Research Question 3.1 Is it possible to obtain a peak-shaving effect in the Smart
Grid by using a centralized or decentralized scheduling mechanism for the scheduling
of PHEV loads?

This question will address peak-load in the system.

Research Question 3.2 Can a mechanism be designed that will schedule the charg-
ing of PHEV loads, while also maintaining the stability of the system with respect
to transformer capacity constaints?

This question will address the stability of the system.

Research Question 3.3 Can a scheduling mechanism be designed that will be fair
with respect to the end-user?

This question will address end-user quality of service

3.2 Hypotheses

To investigate the research questions made above, we have designed a few hypothe-
ses that we are going to test.

Hypothesis 3.1 We hypothesize that a carefully constructed day-ahead portfolio
can be used by a centralized scheduling mechanism to obtain a peak-shaving effect,
where PHEV loads are scheduled away from peak-hour.

This hypothesis addresses research question 3.1

Hypothesis 3.2 We hypothesize that a decentralized strategy can reduce peak-load
in the system by distributing PHEV demand, either uniformly, or according to a
weighted probability distribution based on predictions about the future energy con-
sumption.

This hypothesis addresses research question 3.1

Hypothesis 3.3 We hypothesize that the TRF agent and the scheduling mecha-
nisms can be designed in a way that will minimize the significance and number of
transformer capacity violations.
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This hypothesis addresses research question 3.2

Hypothesis 3.4 We hypothesize that by PHEV agents participating in the schedul-
ing mechanisms, the scheduling mechanisms can be made so that they do not com-
promise the ability of the PHEV agents to maintain an acceptable quality-of-service
for its end-user. This assumes that the PHEV agents can be made to learn about
their own usage patterns, to help create the best possible charging strategies.

This hypothesis addresses research question 3.3

Hypothesis 3.5 We hypothesize that a carefully designed decentralized mechanism
can perform at least as well as a centralized scheduling mechanism in obtaining a
peak-shaving effect, and in charging the PHEVs and maintaining stability in the
grid.

This hypothesis addresses research question 3.1
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4 Overall Approach

To test the hypotheses defined in Section 3.2, an open source simulator was de-
veloped, where PHEVs, Transformers, and other entities capable of producing or
consuming energy are simulated within a grid delimited by a balancing responsible
party, where each agent in the simulator is assigned a model that it is responsible
for. The simulator is designed to be modular so that other agents and mecha-
nisms can be implemented and integrated without needing to make changes to the
simulator, or the mathematical models used to simulate the environment.

The multi-agent system, and the different mechanisms will be implemented in
the simulator to be used in experiments where historical data is used to simulate
houses and small businesses. Consumers that own and operate PHEVs will be
simulated mathematically, modeled to reflect uncertainty in the usage patterns
of the consumers. The results of the experiments performed on the scheduling
mechanisms will be compared against results from running the simulator using no
scheduling mechanisms.

4.1 Development Tools

The simulator, models and multi-agent system was developed in the .NET frame-
work using the F# language1. F# is a multi-paradigm, functional and object-
oriented programming language based upon OCaml. The reason behind this choice
in framework and programming language was the strong support for agent design
patterns. For instance, the support for discriminated unions and its strong typing
system make F# a good fit for systems in which type-safe message passing is im-
portant. Being an officially supported .NET language, it also has access to existing
libraries for numerics and statistics that can be found in the .NET framework and
community. It also has good support for cross-language interoperability. Addition-
ally, threads in F# are light-weight and use the ThreadPool concept of the .NET
framework. This is an advantage over other frameworks, such as JADE and Java,
where each agent has its own thread.

Further, the multi-agent framework was built from the bottom up, and no other
frameworks, like JADE or Zeus were used. The custom-designed messaging pro-
tocol will be further discussed in Section 6.5. For sending and receiving messages,
the simulator uses the MailboxProcessor available through the .NET framework.

4.2 Architecture

The architecture of the system can be categorized into three main groups, the
simulator itself, the mathematical models that provide the environment for the
agents, and the multi-agent system. For the models, we have three main types
that represent physical entities, the PHEV model, the Transformer model and the
PowerNode model. The PowerNode model represent the individual houses, small
businesses or distributed energy facilities in the grid. In the simulator they are

1Source code for the open source simulator is available through github [Haukedal, 2012]
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modeled as a node in the grid, which either consumes or produces electricity. For
the Transformer model, this is modeled as a node in the grid where electricity
passes through. For the electricity throughput, they have a maximum capacity
that they can handle at any given time. In addition, they are either connected to
a parent Transformer or a Balancing Responsible Party, and they can have one or
more PowerNodes or PHEVs assigned to it as child nodes in the grid. The last
model, the PHEV, represents a physical PHEV entity. It is modeled by an average
charging- and discharge rate, a maximum battery capacity and a current through-
put. They also have a set of probability distributions that determine the frequency
and duration of when they are used. This is generated from pre-defined PHEV
profiles when creating the PHEV models, and are meant to represent individual
consumers.

For each of the models described above, there is a corresponding agent associ-
ated with it. In total, there are 4 types of agents: A PHEV agent, a Transformer
agent, a PowerNode agent and a BRP agent. The PHEV agent has two targeted
tasks: First, its main task is to ensure that the PHEV is adequately charged when
it needs to be. Second, it should try to charge the PHEV batteries so that the
social welfare of the power grid is considered.

For the other agents, the PowerNode agent has no particular targeted task.
They observe their current demand as time passes in the simulator, and can pro-
vide information about this demand to the other agents if requested. The BRP can
have up to two targeted tasks, depending on which mechanism is used. Common
for all mechanism, it has a targeted task to reduce the average maximum peak in
the power grid, while in the centralized mechanism, it has an additional targeted
task to minimize the imbalances between the day-ahead portfolio and the real-time
consumption. The last agent, the Transformer agent, has one targeted task, to pre-
vent the electricity throughput to exceed the maximum capacity of its Transformer
model.

In Figure 4.1, an overview of the system can be seen, where the relationship
between the models, the simulator and the agents is distinguished.
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Figure 4.1: The relationship between the different components in the system, show-
ing the different models and agents. The figure shows how the PHEV and Pow-
erNodes are connected to its parent Transformer. Note, also the input that is used
to generate the PowerNode and PHEV, illustrated by the orange and blue boxes.
The Historical data that is used as input to the PowerNode is a function f(t) that
determines its electricity consumption, while the Profile that is used as input when
creating the PHEV model is a function f(t) that returns a set of vectors, where
each vector contains a probability that the PHEV leaves on a trip, the duration of
the trip, and also how much of the trip is spent driving. In addition, each PHEV
agent has a knowledge base (KB) that it uses for a simple learning mechanism that
will be discussed further in Section 6.2.1. The green boxes represent the output
from the Transformer model to the simulator, representing the accumulated con-
sumption over all its child nodes. The yellow box represent the input when creating
the day-ahead portfolio. How the day-ahead portfolio is calculated will be further
discussed in Section 5.4
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5 Models

The architecture of the simulator is based on 4 main models: The Transformer
model, the PHEV model, the PowerNode model and the Day-ahead model. The
relationship and hierarchy between these models can be seen in Section 4, Figure
4.1. In addition to these, there is also a model for the day-ahead profile.

5.1 PowerNode model

The PowerNode model is the simplest model in the simulation. Essentially, it
represents anything in the grid that can consume or produce power, and which is
not a PHEV. For instance, it can represent a household, consuming power, in which
case it will contribute a negative flow of electricity to the power grid. Or it can
represent a distributed energy facility, contributing a positive flow of electricity.

In terms of the complexity of the model, the main thing to consider is how the
model decides what the flow of electricity will be. In this simulator, the flow of
electricity is determined by historical data collected from smart meters installed in
real houses. In essence, this means that each PowerNode model in the simulator
will be represented by one household, or equivalent, from the dataset used. While
the PowerNode model could also represent a power producing unit in the grid,
the historical data that we used to generate the PowerNode models included only
recordings made on power consuming units. The flow of electricity at time t in the
simulator is then determined by the recorded consumption at corresponding time
t in the dataset for that household.

Considering that the resolution of the simulator, with respect to time, is in 15
minute intervals, and the historical data used was recorded in hourly intervals, the
dataset was processed to match the resolution used in the simulator. To process
the dataset, power levels in between the hourly readings were interpolated using
splines. More specifically, the Akima spline interpolation algorithm [Alglib, 2012]
was used to interpolate the readings to match a 15 minute resolution. The benefit of
this particular spline interpolation algorithm, its stability with respect to outliers.

5.2 Transformer model

In the simulation, the transformers are the nodes in the power grid that will con-
nect the PHEV agents. They are relevant in the simulation in the sense that they
connect the different parts of the grid, and they have a maximum capacity of elec-
tricity throughput that should not be exceeded. In other words, BRP agents should
not schedule the charging of PHEVs so that it violates the capacity constraints of
the transformer models. This means that the Transformer model will need to have
a known value for the maximum capacity of energy that it can handle at any given
time, as well as to be able to hold information about the amount of electricity that
it is currently handling. For maximum capacity, we have used standardized values
for power grids in Norway, with capacities in the range of 220-240V for low-voltage
transformers, 11kV for high-voltage transformers and 66kV for regional voltages.
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5.3 PHEV model

To model PHEVs in the simulation, the simulator tries to reflect the behavior of
PHEVs and consumers realistically. It does this by assuming that the behavior
of the PHEVs can be modeled using statistical distributions such as, for instance,
distributions around when people go to work in the morning and around the time at
which they are expected to return home. Additionally, each PHEV has a value for
how long it takes for the PHEV to reach its destination, including information about
the average battery consumption while driving and average recharge rate when
connected to the grid. During the simulation, the simulator will decide whether
the PHEV departs on a drive according to a profile determined by a composition
of probability distributions.

For instance, assuming a profile composed of a single Gaussian distribution, the
probability at which the PHEV leaves for work at any given time, would be given
by:

f(x, µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where σ2 is the variance, and µ is the mean time when a PHEV will leave for
work. The mean value for each PHEV should be given, respectively by the time at
which the PHEV needs to start its journey so that it arrives at work in time, as
well as the time at which the PHEV finishes work. An illustration of this can be
seen in figure 5.1, where a time-line corresponding to 24 hours is illustrated with
2 Gaussian distributions centered around peak hours µ1 = 8, µ2 = 16, and with
standard deviations of σ = 0.25. Since time is modeled discretely in units of 15
minutes in the simulator, the probability that a PHEV departs between 07.45 and
08.00 would, for instance, be ∼ 34.13%.

Figure 5.1: Probability distribution of time of departure for a PHEV over a 24
hour period, showing two Gaussian distributions with mean values 07:00 and 18:00

Additionally, because of the nature of the Gaussian normal probability distribu-
tion, the probability that a PHEV might leave for work will be evenly distributed
around the mean. However, this might not accurately reflect the behavior of a
population of PHEV users. For instance, some individuals might be consistently
earlier for work than others, as well as vice versa. To account for more varied
behavior amongst individuals in the simulator, the PHEV models are based upon
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fixed user profiles which may contain different number of probability distributions.
For instance, some individuals might be earlier for work than others, and as such,
their probability distribution during early peak hours. To model this, we might
consider a distribution that is more like a LogNormal distribution or a Weibull
distribution with an early peak and a long tail, illustrated in Figures 5.2 and 5.3.
Also, the choice of distribution is likely to depend on the task to be performed
as well. For instance, an individual might be consistently early for work, which
he or she might consider to be a more important task than, for instance, meeting
a friend for watching a game of football. To account for many different types of
behavior, the simulator and model is designed to support many different types of
distributions, but this thesis will mainly concentrate on the Gaussian, LogNormal
and Weibull distributions.

Figure 5.2: An illustration of a few different LogNormal distributions generated
using Wolfram Alpha [Wolfram Alpha, 2012]

5.3.1 PHEV profiles

While it is reasonable to believe that the probability distributions will vary from
person to person, it also seems reasonable to believe that the probability distribu-
tions will vary depending on the time of the day, within the daily patterns for an
individual. For instance, a person should be more likely to arrive early at work,
or at least somewhat on time, rather than arriving very late, very often. However,
while this may be true for work, the probability distributions may look very differ-
ent for other regular activities. To account for this, the probability distributions
for the PHEV model in the simulator may be composed of several different types
of probability distributions over a single day. These combinations of probability
distributions for a single PHEV make up what will be called a PHEV profile, and
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Figure 5.3: An illustration of a few different Weibull distributions generated using
Wolfram Alpha [Wolfram Alpha, 2012]

each PHEV model in the simulations are generated from such a profile. Which
profile that is used to generate the PHEV model is pre-defined in a configuration
file that contains information about the configuration of the simulated power grid.
Pseudo-code for how the simulator decides when a PHEV leaves, based upon the
generated probability distributions, can be found in Algorithm 4.

5.4 Day-ahead model

When determining the day-ahead profile, it is preferable that the day-ahead profile
will be as accurate as possible with respect to the real-time energy consumption.
In real-life, historical data is often used to determine the day-ahead profile. In
the simulator, a two-step process is used in the simulator. First, the baseline is
determined as the expected contribution from all of the non-schedulable loads.
For the experiments, the non-schedulable loads will be defined by the PowerNode
models based on the historical data that was sampled from residential houses with
smart meters.

After establishing the baseline, the expected PHEV demand need to be added
to the day-ahead profile. To do this, it is necessary to know how much needs to be
added. However, since no historical data is available for the PHEV demand, and
since the PHEVs are modeled by the simulator, there are two different options that
can be used. One option estimates the PHEV demand by running the simulation
in advance, recording the demand by the PHEVs as the simulation progresses and
without using any scheduling mechanisms. This option will be further discussed in
Section 5.4.1. The other option calculates the expected demand from the PHEVs
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(a) Simulated values (b) Expected values

Figure 5.4: Comparison between simulated and expected values for 616 PHEVs,
for a single, Gaussian probability distribution with mean 12:15, and a standard
deviation of 60 minutes.

statistically by using known values for the probabilities that a PHEV would leave
at a given time, plus the duration of the travel during which it would be discharging
its batteries, the average rate with which it would be discharging, and the rates
with which it would recharge upon return. Further discussion of this option can be
found in Section 5.4.2.

Again, after the baseline and the expected demand from the PHEVs is deter-
mined there are different options available. One option is to add them together,
superimposing them. This would create an accurate prediction of the demand pro-
file when no scheduling mechanisms are used. However, considering that we also
desire to influence the reduction of peak-loads, there are two other options avail-
able in the simulator for adding the PHEV predictions and the baseline together.
In one, the baseline and the PHEV predictions are added together, after which
one of the two algorithms is used. One algorithm, Algorithm 2, is a peak-shaving
algorithm, loosely based on the Kohonen algorithm for self-organizing maps, and
will be discussed further in Section 5.4.3. The other is an algorithm, Algorithm 3,
where the PHEV demand is distributed onto the day-ahead portfolio based upon a
distance rule. This algorithm will be discussed in Section 5.4.4. Common to both
algorithms is that they shift loads away from peak-hours, while the overall volume
of the portfolio is preserved. Both algorithms result in a portfolio that can be used
to schedule PHEV loads to help reduce peak-load.

A comparison between simulated and expected values can be seen in Figure
5.4 showing the demand from running the simulator with 616 PHEV agents for a
selected day in Figure 5.4a, as well as the expected demand calculated using the
expected values based on the PHEV profiles in Figure 5.4b. For simplicity, all the
PHEV profiles used for the comparison contained a single Guassian distribution.
The Simulated values showed a consumption of 4734.62 kWh by the PHEV agents
for that day, while the Expected values predicted a demand of 4235.0 kWh, a
difference of 11,7%. However, as will be discussed later in Section 7, it is preferable
that the expected values predict a slightly higher consumption than the actual
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consumption.

5.4.1 Simulated values

In using the simulated values, the method for calculating the day-ahead profile is the
result of running the simulations for the desired number of days, without scheduling.
This means that the contribution of the PHEVs will depend on the composition
of profiles among the PHEVs modeled. Or in other words, the combination of
probabilities that the PHEV might depart at any given time, as well as the duration
of departure. These are the only influencing factors in determining the amount of
power that a PHEV will need to charge when returning.

The apparent advantage in using this method for calculating the day-ahead
profile, would be to obtain a fairly accurate day-ahead profile, for any day in the
simulation. Using simulated values, the day-ahead portfolio will very closely ap-
proximate a load profile in which no scheduler is employed. The most obvious
disadvantage in using simulated values, is the overhead of running the simulations
twice, once for obtaining a day-ahead portfolio, and twice for running the simula-
tions with the day-ahead portfolio obtained.

5.4.2 Expected values

Another approach to calculating the PHEV demand, is simply: If the load pro-
files of the power nodes are given, then an expected aggregated load profile can
be calculated using the probability distributions, profiles, and average recharg-
ing/discharging rate of the PHEV models. In other words: Each PHEV profile has
a set of probability distributions, and each probability distribution has an associ-
ated duration. This means that the expected load of a PHEV at a time t depends
only on the probability that a PHEV is arriving at that time, the amount of power
discharged since it left, as well as the recharging rate of the PHEV. Assuming that
the PHEV will fully recharge its batteries upon return, then the aggregated ex-
pected load contribution from a singular probability distribution, is the probability
that it left some time d ago, multiplied by the product of a duration vector and a
scalar recharging rate. For instance, if we use a normal Gaussian distribution, and
assuming that the PHEV has fully discharged its batteries, then the aggregated
expected demand of that distribution to the overall expected load profile is 1 (the
sum of the area under the normal distribution) multiplied by the capacity of the
battery.

For determining the expected demand at some specific time t, we need to con-
sider the contribution of the expected demand from any of the probability distri-
butions in the profile. This means that the expected load for a single distribution,
at some specific time t is the product of the probability that it was discharging at a
time d earlier, and its (constant) recharging rate, assuming it has not recharged its
batteries yet. The aggregated expected load contribution for the entire profile then
becomes the aggregated contribution of the demand caused by all the distributions
in the profile. Furthermore, the aggregated expected load demand from all the
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PHEV models then, similarly, is the aggregated sum of all the profiles for all the
PHEV models.

Figure 5.5: A sample probability distribution for a profile i. The marked area
shows the probability that a PHEV leaves during a given 15 minute interval.

The process for calculating the expected PHEV demand is also illustrated in
Algorithm 1. profiles is the set of probability profiles, where a probability profile,
Φ is represented as a vector containing the parameters for a probability distribu-
tion, the duration of the trip, how much of that trip is spent driving, the average
discharge rate for that trip, and also the average charging rate for the PHEV.
The average charging rate is constant over all probability distributions for a single
PHEV.

First, the total amount of discharged power is calculated, iterating over the
total time of the duration, accumulating the average discharge rate when PHEV is
driving, given by the function κ(Φ, t′). Second, for each time step t, we calculate
the expected demand for time t plus the duration of the trip forward in time, until
the accumulated discharged power is depleted. λ is a step.function that takes as
parameters the probability profile, Φ and a time t, and returns the probability
that the PHEV departs at that time. ξ is the expected demand from a particular
probability profile, while the expected demand caused by the entire PHEV profile
is given by the set of expected demand from all the probability profiles, Ξ.

After having calculated the PHEV demand, either by using simulated- or ex-
pected values, there are a couple of different options as to how this is added to the
day-ahead portfollio. For this, we have considered further two approaches. One,
where the PHEV demand is distributed using a distance rule algorithm, and one
where the PHEV demand is superimposed on the PowerNode predictions, after
which a peak-shaving algorithm is applied.
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Algorithm 1 The algorithm for calculating the expected PHEV demand

1: for each Φ ∈ profiles do
2: χ← 0
3: for each t′ ∈ 0 . . .Φ.duration do
4: if κ(Φ, t′) then
5: χ← χ+ Φ.drate
6: end if
7: end for
8: for each t ∈ T do
9: for each t′ ∈ t . . .Φ.duration do

10: if χ > 0 then
11: τ ← Φ.crate ∗ λ(Φ, t)
12: ξ[t+ t′]← ξ[t+ t′] + τ
13: χ← χ− τ
14: end if
15: end for
16: end for
17: Ξ← append(Ξ, sort(ξ))
18: end for

Figure 5.6: Expected load distribution caused by profile i. This figure shows how
the expected load is calculated from the probability distribution in Figure 5.5. The
expected load at time t′ is the product of the weighted probability that it left some
time d ago times the recharging rate of the PHEV, added to the expected load that
is caused by earlier probable events.

5.4.3 Peak-shaving algorithm

After having calculated the predicted demand for all the PHEVs, the next step in
the process is to determine how to distribute this across the load profile for all the
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power nodes. By superimposing the PHEV demand onto the predicted PowerNode
demand, the peak-shaving algorithm can be used. The idea is that by shifting
the PHEV demand away from peak-hours, the day-ahead imbalances can be best
capitalized by the PHEVs early on, helping the PHEVs ability to charge as early
as possible.

Algorithm 2 Processing the day-ahead profile using the peak-shaving algorithm.
D is the dayahead profile, which contains the energy traded for on the dayahead
market for each 15 min interval for the specific day. ~wi is the maximum energy
during the day, or the peak energy. S is the energy pool. Initially, the energy pool
contains the energy shaved from peak hours. After peak-shaving, the energy in S
is distributed to nearby hours until S is empty.

1: ~wi ← arg maxD, k ← i+ 1
2: ~xi ← arg avg(D)
3:

4: let δ( ~wj) = αθ(~xi − ~wj)
5:

6: function update( ~wj)
7: ψ ← δ( ~wj)
8: ~wi ← ~wi + ψ
9: S ← S + ψ

10: end function
11:

12: while ( ~wi±(k+1) + δ( ~wi±(k+1))) > ~wi±k do
13: update( ~wi±k)
14:

15: k ← k + 1
16: end while
17:

18: while S < 0 do
19: update( ~wi+k)
20:

21: k ← k + 1
22: end while
23:

24: φ← S
2k

25:

26: for j ∈ i− k . . . i+ k do
27: ~wj ← ~wj − S

2k+1
28: end for

In algorithm 2, the peak-shaving algorithm is applied to the simulated day-
ahead profile. It starts out by finding the maximum peak in the day-ahead profile,
D, ~wi. From there, the algorithm explore the energy profile for nearby times,
moving the predictions closer to average and keeping track of how much. This

28



(a) PHEV demand (b) PowerNode demand

(c) PHEV + PowerNode (d) PHEV + PowerNode – after peak-
shaving

Figure 5.7: Sample images from the simulator showing the different steps for calcu-
lating the day-ahead profile using the peak-shaving algorithm. Figure 5.7a shows
the calculated expected PHEV demand, while the Figure 5.7b shows the PowerN-
ode demand predictions. The aggregated demand of the PHEV and PowerNode is
shown in Figure 5.7c. Finally, Figure 5.7d shows how the peak-shaving algorithm
has been applied to the aggregated demand from Figure 5.7c.

process is repeated until the adjusted demand of the next time-step would have
been greater than the adjusted demand of the current iteration. This process is
illustrated in Figure 5.8. So far, the blue colored area has been shaved from the
peak hours, accumulating the area in S meanwhile. This is the first part of the
algorithm. In the second part, the accumulated energy pool S is distributed forward
in time. It is important to note this difference, as it is the only difference between
the first and the second part of the algorithm, except for the conditions with which
they terminate. The same process is then repeated until the accumulated energy
pool, S, is empty. Examples of the algorithm in action can also be seen in Figure
5.7, where the different steps of the entire process for calculating the day-ahead
portfolio using the peak-shaving algorithm is discussed.
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Figure 5.8: A graphical illustration of the effects of Algorithm 2. The initial up-
date is shown by adjusting the peak by the update rule ~wi ← ~wi + αθ(~xi − ~wi).
The blue colored area represent the total area that will be shaved from the peak,
accumulated in the energy pool S. The first part of the algorithm will terminate
in the intersection between the blue and red colored areas, from where the shaved
area will be subsequently distributed forward in time, until the energy pool S is
depleted.

5.4.4 Distance-rule algorithm

The first method for distributing the expected contribution is simply to place the
contribution at a time t which maximizes the function

f(x) =
θ|x−x

′|

dayaheadx′

where θ|x−x
′| is the distance rule away from the original position x′, and dayaheadx′

is the value of the load profile of the power nodes at some time t. An illustration of
the algorithm in action can be seen in Figure 5.9, where the initial expected load
from all of the PHEVs are shown in the top left corner and the expected load of
all the power nodes in the bottom left corner. In the top right corner, you can
see the remaining load from the expected load of the PHEVs, where the blue area
represents the amount of energy that has been distributed at the current time t,
while in the bottom right corner you can see where the distributed energy from
the top right graph has been placed. Pseudocode for the algorithm can also be
found in Algorithm 3, where υv(x,′ t) is the distance rule function. The algorithm
iterates over the expected PHEV demand, adding the demand to the time in the
dayahead portfolio that maximizes the value of the distance rule.
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(a) Expected PHEV (b) Expected PHEV demand remaining

(c) PowerNode (d) PowerNode + PHEV demand distributed so
far

Figure 5.9: A graphical illustration of Algorithm 3, showing how the expected
PHEV demand is distributed onto the PowerNode predictions based on the
distance-rule algorithm. Figure 5.9a shows the expected PHEV demand that is
to be distributed, while Figure 5.9c shows the PowerNode predictions. In Figure
5.9c, some of the demand from Figure 5.9a has been distributed. This is illustrated
by the blue colored area, and Figure 5.9d illustrates how this blue colored area
has been distributed onto the PowerNode predictions based on the distance-rule
algorithm.
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Algorithm 3 Distribute expected load from PHEVs onto to expected load contri-
bution of power nodes

1: let υ(x, x′) = θ|x−x
′|

dayaheadx′
2:

3: for each i ∈ 0 . . . len(expected) do
4: let demand = expectedi
5:

6: while demand > 0 do
7: let υ′(x) = υ(x, i)
8: i← arg maxυ′(x) dayahead
9:

10: dayaheadi ← dayaheadi − ratemin
11: demand← demand− ratemin
12: end while
13: end for
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6 Multi-agent system

In the previous Section we discussed the different underlying models that the sim-
ulator and agents depend on. We discussed how the day-ahead portfolio was calcu-
lated, which is used by the BRP agent, and how this could be calculated by using
a combination of simulated or expected values based on statistical tools. Further
we discussed how the PHEV models were created. The PHEV models represents
the mathematical model of the consumer, and determines when and how long the
PHEV is used. And we also discussed how the constraints of the Transformer model
are determined, and how the PowerNode models are generated based on historical
data that is used as input to the simulator.

All the different models that we discussed in the previous Section is the founda-
tion for the environment in which we intend to implement the multi-agent system
and the different mechanisms that are used for scheduling the PHEV charging
plans. In the rest of this Section, we will discuss each of the individual multi-agent
scheduling mechanisms, as well as each of the individual agents and their responsi-
bilities. Of the different mechanisms, two of them are based on a centralized load
scheduling mechanism, and further two are based on a decentralized mechanism
where the agents either choose their charging plans based on a uniform distribu-
tion, or a mixed strategy distribution based on a weighted distribution on the future
energy demand in the grid. We will first discuss the individual agents and the mes-
sage protocol they use, after which the four different mechanisms will be discussed,
explaining the load scheduling algorithms for the centralized mechanisms, and how
the PHEV agents choose their own charging plans in the decentralized mechanisms.

6.1 PowerNode agent

The PowerNode agent in the simulator have only one main responsibility, which is to
inform its parent Transformer agent about its demand for the next 15 minutes. The
demand is given by the PowerNode model that was generated from the historical
data that was discussed in Section 5.1. The PowerNode agent knows its demand by
observing changes to its PowerNode model as time moves forward in the simulator.

6.2 PHEV agent

In both mechanisms, the PHEV agent have two main responsibilities. Its primary
responsibility is to maximize the battery levels within time of departure. Its sec-
ondary responsibility is to achieve its primary responsibility in the most socially
economical way possible. How it attempts to achieve these goals, however, depends
upon which mechanism is used by agents. In the decentralized mechanisms, the
PHEV agent chooses its charging strategies by itself, while in the centralized mech-
anism it defers control of creating the charging plan to a centralized scheduler. A
sample interaction between a PHEV agent, Transformer agent and BRP agent in
the centralized mechanism can be seen in Figure 6.2, where the PHEV agent is
negotiating with the other agents in creating a charging plan that will maximize
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the social welfare of all the agents. Sample interactions of the decentralized mech-
anisms can also be seen in Figure 6.5 for the Uniform strategy scenario, and 6.7
for the Mixed strategy scenario. In the Random strategy mechanism, the PHEV
agent will choose its charging plan based upon a uniform distribution from the
time the plan is created and until its expected time of departure, while similarly,
in the Mixed strategy mechanism, the charging plan will be generated based upon
a weighted distribution. The different mechanisms will be discussed in more detail
in Sections 6.6 and 6.7.

6.2.1 PHEV learning

Figure 6.1: A sliding window over a histogram for a PHEV leaving

To estimate expected time to depart, the PHEV needs a way to collect infor-
mation about its usage patterns. With this in mind, each time the PHEV is used,
the starting time of its journey will be recorded, as well as the state of its battery
at the time of departure. While they are related, this learning mechanism must
not be confused with the PHEV profiles that determines when a PHEV model
leaves on a drive. The PHEV agent has no direct knowledge of the PHEV profiles
that determines the behavior of its model. This means that it will have to learn
from experience the usage patterns of the model it is responsible for. Ultimately,
this should mean that the probability distributions that are defined in the PHEV
profiles will be reflected in the PHEV knowledge base (KB). The PHEV will use
this KB to estimate an expected time to depart, which it will communicate to the
BRP agent each time the PHEV connects to the grid. The BRP agent will use
this information to find a good scheduling plan for all its agents. Additionally,
the PHEV agent also records information about the state of its battery at time of
departure. This can be used to measure the effectiveness of participating in the
scheduling mechanism, from the point of view of the PHEV agent.

While using the pre-defined mean values from the probability distributions in
the PHEV profiles could have been used to determine the expected time of depar-
ture, it is preferable that the simulator should be as realistic as possible. In reality,
people are generally unpredictable, and PHEV units are unlikely to have direct
knowledge about the usage patterns of a potential owner. To this end, the PHEV
learning mechanism is used to reflect this uncertainty.

To determine the most likely time to departure from the KB of the agent, the
PHEV agent applies a sliding window, of size k, to determine the mode of the data
within that window of time. Where the window is defined from the present time,
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Algorithm 4 Updating the state of PHEVs. This is the algorithm that decides
whether a PHEV leaves home, thereby disconnecting from the grid.

1: let norm = normal(µ = 60, σ2 = 15)
2:

3: for each phev in phevs do
4: if phev.status is connected then
5: for each probdist in phev.profile do
6: let prob = (probdist.cdf(now + 15 min) - probdist.cdf(now))
7: let rand = (rand(0.0, 1.0))
8:

9: if rand < prob then
10: leave(phev, tick, phev.battery)
11: end if
12: end for
13: else
14: if phev.status is arrived at destination then
15: set(phev.status, connected)
16: end if
17: end if
18: end for

and until k units of time later. An illustration of this principle is shown in figure
6.1. By using a sliding window, we limit the probability of the pitfall that the
PHEV agent converges on an expected time to depart that may, or may not be far
off into the future. However, it also has the disadvantage that the performance of
the PHEV agent in determining its time of departure will depend on the size of
the window. For instance, let us assume a window of 5 hours is used. If, using this
window size, the PHEV agent applies the window to its KB during night hours,
then it is less likely to find any significant patterns than if the window size had
been 8 hours which would likely have presented more valuable information. And
disregarding the time of the day the window is applied to, it is always a risk that
the just beyond the window, there might be more valuable information than what
is currently present. However, for the purposes of the experiments that will be
discussed in later Sections, this mechanism will perform adequately well that it can
be used. Since we know the PHEV profiles that determines the usage patterns of
the PHEVs, we can select a window size which will perform adequately well.

6.3 Transformer agent

The transformer agent has one main responsibility, to ensure that the capacity of
the physical transformer it is assigned to is never exceeded. To enforce this con-
straint, it has the capability to filter demand messages made by PHEV agents.
After the PHEV agent have negotiated a charging plan with the BRP agent, or if
the PHEV agent have already done so in a previous timeframe, the PHEV agent
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will send a Demand message containing their energy demand for the current time-
frame to the Transformer agent. The Transformer agent will collect these Demand
messages from all of its connected PHEV agent and PowerNode agents. If the sum
of the demand of all the Demand messages exceeds its capacity, then it will filter
away Demand messages that are coming from PHEV agents until its capacity con-
straint is satisified. While it could also, theoretically, filter Demand messages from
agents other than PHEV agents also, it is not safe to assume that those messages
represent deferable loads.

6.4 Balancing responsible party

Depending on which mechanism is used, the BRP agent has one of two responsibil-
ities. In the centralized mechanisms, the BRP agent is responsible for scheduling
the PHEV charging plans for all the PHEV agents in the grid. More detail about
how the charging plans are scheduled in the centralized mechanisms can be read
about in Section 6.6.1. If any of the two decentralized mechanisms is used instead,
then the BRP agent is responsible for providing its predictions about the future
energy demand to the PHEV agents.

6.5 Message protocol

The message protocol used for this thesis is a custom-designed protocol built upon
discriminated unions, which are supported in the F# language 2. A discriminated
union is a type of data structure that can hold values which may be of different,
fixed types, depending upon the tag. This means that the Message type used by
the agents in the simulator, can take different values depending upon its tag. For
instance, a message can be tagged as being a Charge-message, where the value
is an n-ary tuple that takes two floating points and an integer, or it could be
tagged as a Demand -message, taking on a value of a single floating point. By using
discriminated unions as messages, this allows for type-safe message passing in the
simulator.

In this case, the message protocol is a double-layered message structure, where
the first layer includes information about recipient, sender, contents of the message,
and optionally, the reply channel if the sender desires a response to the message.
A list of the most important messages can be seen in Table 6.1. The full list of
messages available to the agents can be found in Appendix C.1.

6.6 Centralized mechanisms

In the centralized mechanisms, the PHEV agent coordinates its charging plan by
interacting with the BRP agent and the Transformer agent. The BRP agent com-
municates with its Transformer agent, which it can announce its intention to charge
to. In turn, the Transformer agent which is responsible for keeping peak load within
the constraint of its transformer, forwards the aggregated intentions of all its PHEV

2Also called tagged unions in Computer Science
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Type Contents Description
Charge Uχ - uncharged capacity

ttl - time to departure
rate - charging rate

Used by the PHEV agents to an-
nounce their charge intentions

Demand Ed - current demand by the
agent

Used by the PHEV agents and
PowerNode agents to announce
their current demand to the
Transformer agent

Consume Ec - accepted demand to agent Used by the Transformer agents
to inform the PHEV agents and
PowerNode agents how much
they can consume at this time

Request
Predictions

- Used by the PHEV agents in the
Mixed strategy mechanism to re-
quest a window of predictions
about the future energy demand
of all the PowerNodes

Request
Dayahead

- Used by the simulator to request
the dayahead model from the
BRP agent

Predictions ~pt - predictions up to time t Used by the BRP agent when re-
sponding to RequestPredictions
from the PHEV agents

Strategy ~χt - charging strategy until ex-
pected time to departure

Used by the PHEV agents in the
Mixed strategy mechanism when
informing the BRP agent about
their final charging plan

Table 6.1: A selection of the most important messages available to the agents in
the simulator
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PHEV agent TRF agent

�lter(demand)

Predictions(from, to)

Charge(energy, ttl, rate)

BRP agent

Demand(energy)

schedule(Charge list)

Strategy(strategy)

Intentions(Charge list)

Consume(energy)

Figure 6.2: An example of multi-agent interaction in the centralized scenario

agents to the BRP agent which performs load scheduling on the intentions. Af-
ter having scheduled the load profiles, the BRP agent announces its charging plans
back to the Transformer agent. Depending on whether the constraints of the trans-
former is satisfied, the Transformer agent will either request a new plan from the
BRP agent or forward the message back to the intended PHEV agents. An example
of such an interaction is shown in figure 6.2.

6.6.1 Scheduling algorithms

How the PHEV agents charging plans are scheduled in the centralized mechanisms
depend upon which scheduling algorithm that is used. If the centralized scheduling
mechanism is used, the BRP agent can choose between two scheduling algorithms:
A reactive scheduling algorithm and a proactive scheduling algorithm Boucké and
Holvoet [2011]. The goal of both algorithms is to schedule the charging plans
so that the overall difference between the dayahead predictions and the realtime
energy demand is as low as possible.

Reactive scheduling

The principal idea behind the reactive scheduling algorithm is to schedule the
PHEV demand so that the imbalances between the day-ahead portfolio and the
real-time consumption is minimized as early as possible. In figure 5, pseudo-code for
the proactive scheduling algorithm is shown, showing how energy is reserved for as
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long as the prediction of a given time is less than the dayahead consumption for the
same timeframe, while there is still PHEV demand left to assign. Notice that any
remaining demand is not scheduled if the dayahead portfolio imbalances does not
admit it. While this will likely reduce the performance of the algorithm in charging
the PHEV batteries, one of the primary intentions with the centralized scheduling
mechanism is to use it to achieve a peak-shaving effect. Therefore, we want the
algorithm to adhere to the constraints of the dayahead portfolio imbalances as
closely as possible. The effects of this scheduling profile is shown in figure 6.3.

Algorithm 5 Pseudocode for a reactive scheduling strategy, adapted from the
algorithm described by Boucké and Holvoet [2011]

1: function Create-plan
2: energyLeft← sum(intentions)
3:

4: for each t ∈ now . . . ttd do
5: if sum(prediction) < sum(dayahead)&energyLeft > 0 then
6: plant ← χ.rate
7: predictiont ← predictiont + χ.rate
8: energyLeft← energyLeft− χ.rate
9: end if

10: end for
11:

12: return plan
13: end function

Figure 6.3: An illustration of the effects of a reactive scheduling profile [Boucké
and Holvoet, 2011]
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Proactive scheduling

Algorithm 6 Pseudocode for a proactive scheduling strategy [Boucké and Holvoet,
2011], adapted from the algorithm described by Boucké and Holvoet [2011]

1: function Create-plan
2: energyLeft← sum(intentions)
3:

4: while energyLeft > 0 do
5: if sum(dayahead)− sum(prediction) > 0 then
6: t← arg maxt(prediction(t)− dayahead(t))
7: plant ← χ.rate
8: predictiont ← predictiont + χ.rate
9: energyLeft← energyLeft− χ.rate

10: end if
11: end while
12:

13: return plan
14: end function

Figure 6.4: An illustration of the effects of a proactive scheduling profile [Boucké
and Holvoet, 2011]

In this profile, energy is distributed in a way such that demand is assigned
to times when the imbalance between the day-ahead portfolio and real-time con-
sumption is the greatest. This is done while there is a positive difference in the
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day-ahead portfolio compared to the predicted real-time consumption. The predic-
tions in this case, refers to the energy demand predictions from the PowerNodes,
and does not include predictions about the demand of the PHEVs, initially, but
the BRP agent will update its predictions with the PHEV demand as it gener-
ates the charging plans. Otherwise, energy is assigned to the times at which the
imbalance is smallest. This is intuitively because it is desirable to minimize the
average distance between the day-ahead quantity and the real-time predictions. By
assigning energy to the time of largest imbalance while the difference is positive,
actual real-time consumption is brought closer to the day-ahead quantity. If the
difference is negative this means that the overall consumption has exceeded the net
day-ahead quantity. This means that wherever the charge is placed, it will have a
negative impact, but it will do the least harm at the time at which the imbalance
is the least. This is illustrated in the pseudo-code shown in figure 6, and the ef-
fects are illustrated in 6.4. Also in this algorithm will the scheduler strictly adhere
to the constraints of the day-ahead portfolio imbalances, similar to the Reactive
scheduling mechanism.

6.7 Decentralized mechanisms

In the decentralized mechanisms, the idea is that a peak-shaving effect can be
obtained by letting PHEVs choose charging strategy on their own. They do this
by randomizing over a probability distribution, where the probability at a given
time determines the likelihood that a PHEV chooses to charge during that time.
This process is illustrated by pseudo-code in Algorithm 7. The important thing
to consider with this mechanism is how the strategy for generating the charging
plans is decided. Each agent is, in principle, free to decide whichever strategy they
believe will benefit them the most. Assuming that the agents are interested in
maintaining the stability of the grid, reducing maximum peak and PAR, we have
considered two different strategies in this thesis: A Uniform strategy and a Mixed
strategy which are discussed in Sections 6.7.1 and 6.7.2.

Algorithm 7 Randomizing over a distribution

1: let remaining = battery.max - battery.current
2:

3: let plan = [..]
4:

5: for t ∈ now .. ttd do
6: if rand(0,1) < strategyt then
7: plant ← rate
8: remaining ← remaining - rate
9: end if

10: end for
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6.7.1 Uniform strategy

With the uniform strategy, the PHEV agents will generate a charging strategy,
assigning a uniform distribution with a probability of 1

2 that it will charge in each
of the 15 minutes leading up to the expected time of departure determined from
the PHEV learning mechanism that was discussed in Section 6.2.1. If the KB of
the PHEV is insufficient to determine an expected time of departure, it will default
to the size of its learning window. For instance, if a learning window of 40 times
15 minutes is used, but it has no previously recorded departures for that window,
then it will default to generating a charging plan for the next 10 hours. Ideally, this
should lead to a uniform distribution of the PHEV demand over the duration of a
day. While the assumption is that this will aggravate demand during peak-hours
somewhat, the idea is to investigate by how much the problem is aggravated and
compare it to see whether this strategy is better than a baseline scenario where no
scheduling is used at all. Because of the simplicity of this mechanism, this strategy
has an advantage over centralized mechanisms concerning fault-tolerance.

PHEV agent TRF agent

create_strategy()

Demand(energy)

Consume(energy)

�lter(energy)

Figure 6.5: An example of multi-agent interaction in the uniform strategy scenario

6.7.2 Mixed strategy

In the Mixed strategy scenario, the distribution will be based upon predictions
about the future energy demand, weighting the probabilities so that likelihood of
charging during times of low demand increases compared to times of high demand.
The predictions that is used to generate the weighted probability distribution come
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Algorithm 8 Generating a mixed strategy charging plan

1: ttd← arg maxt(window ∈ KB)
2:

3: let predictions = ask(BRP, Predictions(ttd))
4:

5: let max = arg max predictions
6: let min = arg min predictions
7:

8: for each t ∈ now . . . now + window do
9: let x = predictionst

10: strategyt ← (x−min)/(max−min)
11: end for

(a) Scaling the predictions by x/ argmax

(b) Inverting the scaled predictions

Figure 6.6: An illustration of how the mixed strategy is generated. Figure 6.6a
shows how the demand graph is scaled by x − arg max, and then normalized by

x
argmax . The scaling is done to aggravate the differences between minimum demand

and peak demand, so that the full range of probabilities from 0% to 100% is used.
Subsequently, Figure 6.6b shows how the scaled and normalized predictions from
Figure 6.6a are inverted by 1− p
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from the BRP agent. Each time the PHEV agent recognizes that it is connected
to the grid and that its current battery capacity is below maximum capacity, it
will ask the BRP agent for its predictions about the future energy consumption
based on a window from the present time and until the PHEV agent believes it will
disconnect from the grid again. And similar to the Uniform strategy mechanism,
it will default to the size of its learning window if it is unable to determine an
expected time of departure from its KB. It is important to remember, however,
that in the Uniform strategy mechanism, the expected time of departure is used
to generate the charging plan directly, while in the Mixed strategy mechanism, the
information is used to request a window of predictions about the future energy
demand from the BRP.

The demand predictions that are generated by the BRP is initially determined
from the historical data that was used for input to the PowerNode models. This
means that the PHEV demand is initially not included in the predictions that the
PHEV agents receive from the BRP. However, once the PHEV has generated its
charging strategy, randomizing over the distribution, it reports the charging plan
that it created back to the BRP agent. The BRP agent will then update its own
predictions with the charging plan that it got from the PHEV agent. This prevents
subsequent PHEV agents from generating their charging plans based on the same
distribution as the previous PHEV agents.

The algorithm for generating the mixed strategy can be seen in algorithm 8.
and Figure 6.6 shows a graphic illustration of the process. The end-result is a
distribution that is an inverted distribution based on the normalized predictions
about the future energy consumption. A typical interaction between the agents
can be seen in figure 6.7
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PHEV agent BRP agent

create_strategy()

Predictions(from, to)

RequestPredictions(from, to)

TRF agent

Strategy(strategy)

Demand(t, energy)

�lter(demand)

Consume(t, energy)

update(pred., strat.)

Figure 6.7: An example of multi-agent interaction in the mixed strategy scenario
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7 Experiments

The experiments are designed to measure the performance of the different mecha-
nisms with respect to the hypotheses presented in Section 3, targeting the fairness,
stability and peak-shaving capabilities of the mechanisms.

Each experiment consists of running the simulations for the length of 100 days,
where each combination of mechanism and day-ahead algorithm were used. This
gives a total number of 18 different experiments, with 6 combinations of day-ahead
algorithm and mechanisms, where each was tested with respect to stability, fairness
and peak-shaving. The experiments will be performed on a grid composed of 1756
power nodes and 616 PHEVs. The number of power nodes come from the historical
data that was used as a basis for the simulations, while the number of PHEVs is
reflected from the predictions presented in Section 2, which state that by 2030 the
ratio of PHEVs in Norway will be 26%. For good measure, this was rounded up
to 30%. This assumes an average number of 1 vehicle per house. In addition, the
time period for the sampled data that was used was from April 1st until July 10th,
2006.

7.1 Power Grid

For the purpose of this simulations, it was preferable to model a grid in which the
capacity of the grid would be challenged under times of high demand. However,
since the historical data used as a baseline for the power nodes included no informa-
tion on the structure of the grid, it was decided to generate one computationally, in
which the grid was deliberately designed so that it would challenge the maximum
capacity during peak.

The grid was generated by finding the peak load of each of the power nodes
from the historical data, and then assigning power nodes to each transformer until
the sum of the peak loads exceeded the capacity of the transformers. After a
low voltage transformer had been assigned enough power nodes, the low voltage
transformer would, in turn, be assigned to a high voltage transformer by following
the same principles. This process was iterated until the set of power nodes from
the historical data were empty.

7.2 PHEV profiles

In figure 7.1, the different PHEV profiles used for the experiments can be seen.
Figure 7.1a is based on the Commuter profile, with a Weibull- and LogNormal
distribution centered around 07:15 and and 20:15. The different parameters for the
distributions can be found in Table 7.1. Figure 7.1b has one Gaussian distribution
centered around 07:15 and 20:15, with standard deviations of 30 minutes and 120
minutes. Figure 7.1c shows three Gaussians, centered around 12:15, 18:15 and
22:15, with standard deviations of 60, 120 and 120 minutes. The last figure, Figure
7.1d, shows a Weibull distribution at 07:15 with a shape parameter of 5.0 and a
scale parameter of 14.0, and two Gaussian distributions centered around 18:15 and
22:15, with standard deviations of 30 and 60 minutes.
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The profiles were designed so that the PHEV demand would roughly coincide
with peak hours, putting extra pressure on the power grid, but also to be chal-
lenging for the individual PHEVs in being fully charged at time of departure.
The Commuter-profile in Figure 7.1a is designed to have an earlier time of depar-
ture during morning hours than the other profiles, considering that a commuter
likely has a longer distance to work than most others. In the afternoon hours,
the Commuter-profile also has a LogNormal distribution, designed to simulate a
regular behavior pattern for a typical Commuter.

For the City-profile in Figure 7.1b, the profile is designed to have a relatively
short distance to work and can leave later for work than the other profiles. Since it
also spends less time traveling, the overall duration that it is disconnected from the
Grid is also shorter. This profile also has a LogNormal distribution in the afternoon
hours, but with a longer tail than the Commuter-profile. The afternoon distribution
was mainly added to challenge the battery scheduling of the mechanisms.

In the Homeworker-profile there are three Gaussian distributions. The idea is
that since the Homeworker works from home there are no time-pressing considera-
tions for a highly regular behavior. All the Gaussian distributions are designed to
be somewhat overlapping with long tails. This is done to simulate a highly irregular
pattern for this type of profile.

The last profile, Suburban, is designed to be a middle ground between the
City-profile and the Commuter-profile with a shorter distance to work than the
Commuter-profile, but longer than the City-profile. This profile also have a Log-
Normal distribution in the afternoon hours to put pressure on the recharging of
the batteries. In addition, assuming that a Suburban household is likely to use a
car more than a City household, there is an additional Gaussian distribution in the
evening hours.

Also, the battery capacity and charging rate used for the PHEVs in the simula-
tor were 16kWh, and 0.625kWh/tick respectively. This gives a total charging time
for an empty battery of 6,4 hours. In addition, each PHEV has a discharge rate of
2.0 kWh/tick, which gives a total driving time of 2 hours.

7.3 Baseline and minimum extreme

To have a reference point to compare the results of the different experiments out-
lined in this section, we will also do experiments to use as point of reference when
comparing the results: A baseline experiment which is established by running the
simulator with no scheduling mechanisms or transformer filtering used, and a min-
imum extreme experiment which is established by running the simulator with no
PHEVs present in the grid. The two experiments will represent two polar extremes,
where the baseline is intended to be used as a worst-case scenario that the other
mechanisms will attempt to outperform, and the minimum extreme experiment
which will represent the best case scenario when comparing average maximum
peak. The idea is that if that the mechanisms do worse than the baseline experi-
ments, then it seems reasonable to assume that the mechanisms failed in achieving
their goals and it would be better to not use scheduling at all. Conversely, if any
of the mechanisms were to outperform the results of the minimum extreme exper-
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Profiles

type γ µ σ λ k dur. driv.

City

Weibull 31 (07:45) - - 5.0 14.0 36 4
LogNormal 69 (20:15) 0.0 1.467 - - 6 4

Suburban

Weibull 29 (07:15) - - 5.0 14.0 40 10
LogNormal 74 (19:30) 0.0 2.0 - - 5 2
Gauss 81 (21:45) 81.0 4.0 - - 6 4

Homeworker

Gauss 49 (12:15) 49 4.0 - - 11 6
Gauss 69 (18:15) 69 4.0 - - 10 6
Gauss 85 (22:15) 85 4.0 - - 10 6

Commuter

Weibull 29 (07:15) - - 5.0 14.0 44 16
LogNormal 31 (20:15) 0.0 1.0 - - 12 4

Table 7.1: Numerical values for the different profiles and probability distributions.
γ is the location parameter, µ and σ is the mean and standard deviation, λ and k is
the scale- and shape parameter, dur. is the duration that the PHEV is disconnected
from the grid and driv. is the time spent driving.
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(a) Commuter (b) City

(c) Homeworker (d) Suburban

Figure 7.1: The different, discretized PHEV profiles used in the simulator. A
graphical representation of the profiles and probability distributions found in Table
7.1
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iment with respect to average maximum peak, then this would be an indication of
a logical flaw with one or more of the mechanisms or models.

The results of these experiments can be found in Section 8.1, Experiment 8.1a.

7.4 Day-ahead profile

In this thesis we have examined 2 different options to calculating the PHEV con-
tribution. Either by using simulated values, or calculating expected values using a
statistical approach. Subsequently, there are 3 different options for the next step.
Either the expected or simulated values can be added to the PowerNode contri-
bution, after which peak-shaving is performed, or the PHEV contribution can be
distributed onto the PowerNode contribution by distributing using a distance rule.
One of the ideas behind calculating the PHEV demand by using expected values,
was to save the overhead of using simulated values. In addition, and perhaps more
importantly, it is also preferable that there is some error in the approximations,
as this will make it easier to compare the performance of the different centralized
mechanisms in later experiments. If the approximation of the PHEV demand is too
accurate, or underestimated, then the difference between the proactive and the re-
active mechanism will not be apparent. In general, the optimal result for comparing
the centralized mechanisms will be if the PHEV demand is slightly overestimated.

To analyze the performance of the experiments, the simulator was run for 100
days with no scheduling mechanisms used, where the dayahead was calculated using
both simulated and expected values. The experiment is designed to see how much
the different dayahead profiles deviates from the total energy consumption. The
results of the experiments can be found in the Section 8.2, experiments 8.2a and
8.2b.

The intention with these experiments is to verify that a day-ahead profile can
be constructed by using expected values for calculating the PHEV demand. This
will relate to 3.1 in the sense that it will verify whether this method of calculat-
ing the PHEV demand, using expected values, is a good approximation for when
calculating the PHEV demand in later experiments.

7.5 Scheduling mechanism

Perhaps the most interesting experiments in this thesis will be the different schedul-
ing mechanisms. In this thesis we have investigated four different approaches
to load-scheduling PHEVs: Two algorithms where a centralized scheduler would
schedule the charging plans of the PHEVs, and two algorithms where the PHEVs
would decide upon their charging plans by themselves.

In these experiments, we will investigate hypotheses 3.1 and 3.2, of whether a
centralized scheduling mechanism or decentralized scheduling strategies can help to
reduce peak-load in the system. The simulator will first be run with no scheduling
mechanism, where PHEVs charge whenever possible, after which experiments will
be performed against the centralized scheduling algorithms and the decentralized
scheduling strategies. We will observe how the scheduling mechanisms perform
with respect to the average maximum peak and the peak-to-average ratio (PAR),
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Peak-shaving Distance-rule
Centralized (Proactive) 8.3a 8.3b -
Centralized (Reactive) 8.3c 8.3d -
Decentralized (Uniform) - - 8.3e
Decentralized (Mixed) - - 8.3f

Table 7.2: The different combinations of scheduling strategies. The cells refer to
the experiments in Section 8.3, where the results of the experiments can be found.

Peak-shaving Distance-rule
Centralized (Proactive) 8.4a 8.4b -
Centralized (Reactive) 8.4c 8.4d -
Decentralized (Uniform) - - 8.4e
Decentralized (Mixed) - - 8.4f

Table 7.3: The cells refer to the experiments in Section 8.4, where the results of
the transformer experiments can be found.

defined by peak/Lavg, where peak is the overall load during peak hours, and avg is
the average load during a day

7.6 Transformer agent

These experiments will investigate hypothesis 3.3 that a centralized scheduling
mechanism or decentralized scheduling strategy can help to reduce the problem
of transformer capacity being exceeded. The experiments will be performed in
the same manner as in Section 7.5, but the focus will be on number of times the
peak-load will exceed the maximum capacity of any of the transformers in the grid.
We will observe how the scheduling mechanisms perform with respect to average
transformer capacity exceeded, and average PHEV charging demand filtered by the
Transformer agent.

7.7 PHEV fairness

These experiments will investigate hypothesis 3.4 that a centralized scheduling
mechanism or a decentralized scheduling strategy can be scheduled fairly. The

Peak-shaving Distance-rule
Centralized (Proactive) 8.5a 8.5b -
Centralized (Reactive) 8.5c 8.5d -
Decentralized (Uniform) - - 8.5e
Decentralized (Mixed) - - 8.5f

Table 7.4: The cells refer to the experiments in Section 8.5, where the results of
the PHEV fairness experiments can be found.
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experiments will be performed in the same manner as in Sections 7.5 and 7.6. We
will observe how the scheduling mechanisms perform with respect to the average
battery capacity at time of departure for the PHEV agents.
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8 Results

In this section, the results of the experiments described in Section 7 will be pre-
sented. Each experiment will be presented individually, highlighting some of the
key figures. The results will be presented as is. For further discussion and compar-
ison of the results, see Section 9.

8.1 Baseline and minimal extreme experiment

Experiment 8.1a Baseline and minimum extreme

The baseline and minimum extreme was established by running the simulator
for 100 days, using no scheduling mechanisms or transformer filtering. Additionally,
the minimal extreme experiment was established by running the simulator for 100
days in the same grid, but without PHEVs.

Figure 8.1: Sample image of the baseline from a selected day in the simulator. The
baseline represents the scenario where no scheduling mechanisms are used. The
dark gray area represent the consumption of the PowerNodes, while the light gray
area represent the combined consumption of both the PowerNodes and the PHEVs.

The results of establishing the baseline can be seen in Table 8.1, where the
most interesting variables to note are the values for peak-to-average ratio (PAR),
transformer capacity exceeded, and average uncharged capacity of the PHEVs at
time of departure. The results show a peak-to-average ratio (PAR) with an average
of 15,2%, and a maximum of 22,6%. Average maximum peak during the simula-
tion was 3.31 MWh, while the maximum daily peak was 5.38 MWh. Transformer
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Desc. µ Max σ γ

Peak-shaving

Peak 3.310* 5.388* 681.9 1.02
PAR 1.152* 1.226 0.026 0.69

PHEV fairness

PHEV(Ux) 3.762* 4.278* 183.5 0.10
PHEV(Avg) 0.776 0.341 1.0 6.15

Transformer stability

Trf(Exc) 939.4 24204.2 3430.0 5.57
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 0.000* 0.000* 0.000* 0.00
Dayh.(Dx) 276.238* 460.222* 58.312* 1.07

DDx/Tot. 1.000* 1.000* 0.00 0.00

Daily.Avg 2.877* 4.794* 607.4 1.07
Total 276.238* 460.222* 58.312* 1.07

Table 8.1: Average results for the baseline experiment after 100 days of simulation.
Description of the experiment can be found in Section 8.1. µ is the mean, Max
is the average maximum for each day, σ is the standard deviation and γ is the
skewness of the results.
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Desc. µ Max σ γ

Peak-shaving

Peak 3.269* 5.388* 685.2 1.02
PAR 1.180 1.248 0.026 0.00

PHEV fairness

PHEV(Ux) 0.000* 0.000* 0.0 0.00
PHEV(Avg) 0.00 0.00 0.00 0.00

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 0.000* 0.000* 0.000* 0.00
Dayh.(Dx) 266.414* 450.160* 58.473* 1.09

DDx/Tot. 1.000* 1.000* 0.00 0.00

Daily.Avg 2.775* 4.689* 609.1 1.09
Total 266.414* 450.160* 58.473* 1.09

Table 8.2: Average values after 100 days of simulation, for the minimum extreme
experiment with no PHEVs present. Description of the experiment is found in
Section 8.1
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Figure 8.2: Sample image from the minimum extreme experiment for a selected day
in the simulator. The minimum extreme experiment represent a scenario where no
PHEVs are present in the grid.

capacity was also exceeded by an average of 939,4kW each day, with a maximum
of 24204,2kW. The average total uncharged capacity of the PHEVs at time of de-
parture was 3.62 MWh per day, which gives an average of 3,62e3MWh

616 = 5.87kWh
per PHEV.

In Table 8.2, the results of the minimal extreme experiment can be seen. The
results show a peak-to-average ratio (PAR) with an average of 18,0%, with a maxi-
mum of 24,8%. Transformer capacity was exceeded by an average of 502,6kW each
day, with a maximum of 13654,9kW. Average maximum peak during the simulation
was 3.27 MWh, while the maximum daily peak was 5.39 MWh.

8.2 Day-ahead profile

Experiment 8.2a Expected dayahead

The results of running the simulator for 100 days with no scheduling mechanisms
and calculating the dayahead profile using expected values can be seen in Table
8.3. The results show an average imbalance in volume between predictions and the
dayahead profile of 3.77 MWh per day. This gives an average difference between
dayahead and predictions of 3.77MW

96 = 39.27kW per 15 min, which gives an
average error of 0.03951

2.87 = 1, 36%. A sample day can also be seen in figure 8.3a.

Experiment 8.2b Simulated dayahead
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Desc. µ Max σ γ

Peak-shaving

Peak 3.310* 5.388* 682.2 1.02
PAR 1.152 1.233 0.026 0.76

Transformer stability

Trf(Exc) 935.0 24164.0 3414.9 5.53
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 278.441* 462.187* 58.473* 1.09
Dayh.(Dx) 3.777* 7.089* 0.344* 9.16

DDx/Tot. 0.014* 0.018* 0.00 -0.39

Daily.Avg 2.877* 4.791* 607.6 1.07
Total 276.227* 459.981* 58.331* 1.07

Table 8.3: Baseline with day-ahead profile calculated using expected values, after
100 days of simulation

Desc. µ Max σ γ

Peak-shaving

Peak 3.310* 5.388* 683.3 1.01
PAR 1.152 1.230 0.026 0.75

Transformer stability

Trf(Exc) 931.1 23864.5 3383.0 5.54
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 276.214* 459.986* 58.350* 1.07
Dayh.(Dx) 0.446* 0.791* 0.108* 0.43

DDx/Tot. 0.002* 0.003* 0.00 0.39

Daily.Avg 2.877* 4.791* 607.4 1.07
Total 276.204* 459.941* 58.309* 1.07

Table 8.4: Baseline with day-ahead profile calculated using simulated values, after
100 days of simulation
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(a) Experiment 8.2a: Using expected values (b) Experiment 8.2b: Using simulated values

Figure 8.3: Sample images from calculating the dayahead profiles for Experiment
8.2a and 8.2b. The legend is the same as described in Figure 8.1, with the addition
of the day-ahead profile. The day-ahead profile is represented by the brightest
area, and is barely visible in Figure 8.3a during peak-hours. In Figure 8.3b, the
day-ahead profile approximation to the total consumption is too accurate to be
clearly visible in the graph. Average results for all 100 days of simulation can be
found in Tables 8.3

The results of running the simulator for 100 days with no scheduling mechanisms
and calculating the dayahead profile using simulated values can be seen in Table
8.4. The results show an average difference in volume between predictions and
the dayahead profile of 0.47MW per day. This gives an average difference between
dayahead and predictions of 0.47MW

96 = 4, 89kW per 15 min, which gives an average

error of 4,895e−3
2.87 = 0, 17%. A sample day can also be seen in figure 8.3b.

8.3 Scheduling mechanism

Experiment 8.3a Proactive scheduling with peak-shaving

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.5. From these results, the most interesting variables to note
are the values for peak-to-average ratio (PAR), transformer capacity exceeded, and
average uncharged capacity of the PHEVs at time of departure. The results show
a peak-to-average ratio (PAR) with an average of 16%, and a maximum of 22,3%.
Average maximum peak during the simulation was 3.272 MWh, while the maximum
daily peak was 5.388 MWh.

Average dayahead volume per day was 278.46 MWh and the average total imbal-
ance between the dayahead profile and the dayahead predictions were 7.629MWh.

Experiment 8.3b Proactive scheduling with distance-rule

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the distance-rule algorithm for calculating the day-ahead profile,
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Desc. µ Max σ γ

Peak-shaving

Peak 3.272* 5.388* 683.0 1.03
PAR 1.160 1.223 0.024 0.17

PHEV fairness

PHEV(Ux) 10.989* 12.904* 870.8 -1.63
PHEV(Avg) 0.346 1.0 0.378 -4.06

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 9.9 501.9 58.7 7.15

Day-ahead imbalance

Dayh. 278.460* 462.217* 58.476* 1.09
Dayh.(Dx) 7.629* 12.485* 0.814* 3.18

DDx/Tot. 0.029* 0.046* 0.01 0.06

Daily.Avg 2.825* 4.747* 608.8 1.08
Total 271.164* 455.665* 58.449* 1.08

Table 8.5: After 100 days of simulation using proactive scheduling with peak-
shaving on expected values for PHEV demand. (theta=0.950, alpha=0.500 and
PHEV learning window of 40)
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Desc. µ Max σ γ

Peak-shaving

Peak 3.269* 5.388* 685.2 1.02
PAR 1.150 1.209 0.024 0.09

PHEV fairness

PHEV(Ux) 8.678* 10.925* 516.9 -0.33
PHEV(Avg) 0.482 1.0 0.407 0.02

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 278.441* 462.187* 58.473* 1.09
Dayh.(Dx) 5.334* 12.000* 0.726* 8.10

DDx/Tot. 0.020* 0.028* 0.00 -0.09

Daily.Avg 2.845* 4.752* 605.9 1.07
Total 273.107* 456.219* 58.170* 1.07

Table 8.6: After 100 days of simulation using proactive scheduling with distance-
rule on expected values for PHEV demand (theta=1.000 and PHEV learning win-
dow of 40)
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(a) Experiment 8.3f: Mixed strategy (b) Experiment 8.3e: Uniform strategy

(c) Experiment 8.3d: Reactive scheduling,
distance-rule

(d) Experiment 8.3c: Reactive scheduling, peak-
shaving

(e) Experiment 8.3b: Proactive scheduling,
distance-rule

(f) Experiment 8.3a: Proactive scheduling, peak-
shaving

Figure 8.4: Sample powergraphs from the scheduling experiments. The images
show the consumption of the PowerNodes over a day, the combined consumption
of the PowerNodes and PHEVs, and the day-ahead profile estimated for that day.

can be seen in Table 8.6. From these results, the most interesting variables to note
are the values for peak-to-average ratio (PAR), transformer capacity exceeded, and
average uncharged capacity of the PHEVs at time of departure. The results show
a peak-to-average ratio (PAR) with an average of 15%, and a maximum of 21%.
Average maximum peak during the simulation was 3.27 MWh, while the maximum
daily peak was 5.39 MWh.
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Desc. µ Max σ γ

Peak-shaving

Peak 3.272* 5.388* 682.6 1.03
PAR 1.157 1.219 0.023 0.20

PHEV fairness

PHEV(Ux) 10.126* 12.389* 955.0 -0.77
PHEV(Avg) 0.396 1.0 0.377 -2.61

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 10.0 465.4 58.5 6.74

Day-ahead imbalance

Dayh. 278.460* 462.217* 58.476* 1.09
Dayh.(Dx) 6.894* 12.297* 0.919* 2.58

DDx/Tot. 0.026* 0.043* 0.01 0.15

Daily.Avg 2.832* 4.752* 607.5 1.08
Total 271.898* 456.195* 58.317* 1.08

Table 8.7: After 100 days of simulation using reactive scheduling with peak-shaving
on expected values for PHEV demand. (theta=0.950, alpha=0.500 and PHEV
learning window of 40)

Average dayahead volume per day was 278.46 MWh and the average distance
between the dayahead profile and the dayahead predictions were 5,33 MWh.

Experiment 8.3c Reactive scheduling with peak-shaving

The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.7. From these results, the most interesting variables to note
are the values for peak-to-average ratio (PAR), transformer capacity exceeded, and
average uncharged capacity of the PHEVs at time of departure. The results show a
peak-to-average ratio (PAR) with an average of 15,7%, and a maximum of 21,9%.
Average maximum peak during the simulation was 3.27 MWh, while the maximum
daily peak was 5.38 MWh.

Average dayahead volume per day was 278.46 MWh and the average distance
between the dayahead profile and the dayahead predictions were 6,90 MWh.

Experiment 8.3d Reactive scheduling with distance-rule

The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the distance-rule for calculating the day-ahead profile, can be
seen in Table 8.8. From these results, the most interesting variables to note are
the values for peak-to-average ratio (PAR), transformer capacity exceeded, and
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Desc. µ Max σ γ

Peak-shaving

Peak 3.269* 5.388* 685.2 1.02
PAR 1.152 1.214 0.024 0.08

PHEV fairness

PHEV(Ux) 9.308* 10.722* 485.9 -1.73
PHEV(Avg) 0.445 1.0 0.380 -0.20

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 0.0 0.0 0.0 0.00

Day-ahead imbalance

Dayh. 278.441* 462.187* 58.473* 1.09
Dayh.(Dx) 5.717* 11.999* 0.667* 8.62

DDx/Tot. 0.022* 0.027* 0.00 -0.35

Daily.Avg 2.841* 4.750* 606.2 1.07
Total 272.724* 456.029* 58.194* 1.07

Table 8.8: After 100 days of simulation using reactive scheduling with distance-rule
on expected values for PHEV demand (theta=1.000 and PHEV learning window
of 40)
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Desc. µ Max σ γ

Peak-shaving

Peak 3.363* 5.499* 728.2 0.89
PAR 1.185 1.255 0.031 0.17

PHEV fairness

PHEV(Ux) 9.659* 10.640* 497.3 -4.16
PHEV(Avg) 0.423 1.0 0.332 -1.41

Transformer stability

Trf(Exc) 502.6 13654.9 2013.4 5.49
Trf(Flt) 116.4 2556.9 373.2 4.87

Day-ahead imbalance

Dayh. 0.000* 0.000* 0.000* 0.00
Dayh.(Dx) 272.254* 455.329* 58.226* 1.07

DDx/Tot. 1.000* 1.000* 0.00 0.00

Daily.Avg 2.836* 4.743* 606.5 1.07
Total 272.254* 455.329* 58.226* 1.07

Table 8.9: After 100 days of simulation using the Uniform strategy with learning
window 40

average uncharged capacity of the PHEVs at time of departure. The results show
a peak-to-average ratio (PAR) with an average of 15,2%, and a maximum of 21,4%.
Average maximum peak during the simulation was 3.27 MWh, while the maximum
daily peak was 5.39 MWh.

Average dayahead volume per day was 278.44 MWh and the average distance
between the dayahead profile and the dayahead predictions were 5.71 MWh.

Experiment 8.3e Uniform strategy

The results of running the simulator for 100 days using the uniform strategy
mechanism can be seen in Table 8.9. From these results, the most interesting vari-
ables to note are the values for peak-to-average ratio (PAR), transformer capacity
exceeded, and average uncharged capacity of the PHEVs at time of departure. The
results show a peak-to-average ratio (PAR) with an average of 18,5%, and a max-
imum of 25,5%. Average maximum peak during the simulation was 3.363 MWh,
while the maximum daily peak was 5.50 MWh.

Experiment 8.3f Mixed strategy

The results of running the simulator for 100 days using the mixed strategy mech-
anism can be seen in Table 8.10. From these results, the most interesting variables
to note are the values for peak-to-average ratio (PAR), transformer capacity ex-
ceeded, and average uncharged capacity of the PHEVs at time of departure. The
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Desc. µ Max σ γ

Peak-shaving

Peak 3.271* 5.388* 686.0 1.02
PAR 1.147 1.206 0.024 0.05

PHEV fairness

PHEV(Ux) 7.310* 8.238* 314.8 -0.19
PHEV(Avg) 0.548 1.0 0.412 1.31

Transformer stability

Trf(Flt) 126.4 2739.6 361.1 4.85
Trf(Exc) 502.6 13654.9 2013.4 5.49

Day-ahead imbalance

Dayh. 0.000* 0.000* 0.000* 0.00
Dayh.(Dx) 273.934* 457.497* 58.224* 1.07

DDx/Tot. 1.000* 1.000* 0.00 0.00

Daily.Avg 2.853* 4.766* 606.5 1.07
Total 273.934* 457.497* 58.224* 1.07

Table 8.10: After 100 days of simulation using the Mixed strategy with learning
window 40

results show a peak-to-average ratio (PAR) with an average of 14,7%, and a max-
imum of 20,6%. Average maximum peak during the simulation was 3.27 MWh,
while the maximum daily peak was 5.39 MWh.

8.4 Transformer constraints

Experiment 8.4a Proactive scheduling with peak-shaving

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.5. The results show that transformer capacity was exceeded
by an average of 502,6kW each day, with a maximum of 13654,9kW. Average
demand filtered by the Transformer agent was 9,9 kW.

Experiment 8.4b Proactive scheduling with distance-rule

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the distance-rule algorithm for calculating the day-ahead profile,
can be seen in Table 8.6. The results show that transformer capacity was exceeded
by an average of 502,6 kW each day, with a maximum of 13654,9kW. Average
demand filtered by the Transformer agent was 0.0 kW.

Experiment 8.4c Reactive scheduling with peak-shaving
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(a) Experiment 8.4f: Mixed strategy (b) Experiment 8.4e: Uniform strategy

(c) Experiment 8.4d: Reactive scheduling,
distance-rule

(d) Experiment 8.4c: Reactive scheduling, peak-
shaving

(e) Experiment 8.4b: Proactive scheduling,
distance-rule

(f) Experiment 8.4a: Proactive scheduling, peak-
shaving

Figure 8.5: Sample graphs for a single Transformer agent. The red line represent
the maximum capacity of the transformer, while the dark gray area represent the
current demand in the grid. The light gray area is the demand filtered by the
Transformer agents, and is barely visible in the Mixed strategy and Uniform strat-
egy, but absent in the other graphs. Further discussion of these results can be
found in Section 9.3

The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.7. The results show that transformer capacity was exceeded
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by an average of 502,6 kW each day, with a maximum of 13654,9kW. Average
demand filtered by the Transformer agent was 10.0 kW.

Experiment 8.4d Reactive scheduling with distance-rule

The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the distance-rule for calculating the day-ahead profile, can be
seen in Table 8.8. The results show that transformer capacity was exceeded by an
average of 502,6 kW each day, with a maximum of 13654,9kW. Average demand
filtered by the Transformer agent was 0.0 kW.

Experiment 8.4e Uniform strategy

The results of running the simulator for 100 days using the uniform strategy
mechanism can be seen in Table 8.9. The results show that transformer capacity
was exceeded by an average of 502,6kW each day, with a maximum of 13654,9
kW. Average demand filtered by the Transformer agent was 116,4 kW, with a
maxmimum of 2556,9 kW.

Experiment 8.4f Mixed strategy

The results of running the simulator for 100 days using the mixed strategy mech-
anism can be seen in Table 8.10. The results show that transformer capacity was
exceeded by an average of 502,6kW each day, with a maximum of 13654,9kW. Av-
erage demand filtered by the Transformer agent was 126,4 kW, with a maxmimum
of 2739,6 kW.

8.5 PHEV fairness

Experiment 8.5a Proactive scheduling with peak-shaving

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.5. Total uncharged capacity of the PHEVs at time of depar-
ture was 10,99 MWh per day, which gives an average of 10,99e3kWh

616 = 17, 84kWh
per PHEV. Average battery capacity at time of departure was 34,6%

Experiment 8.5b Proactive scheduling with distance-rule

The results of running the simulator for 100 days with a proactive scheduling
mechanism, using the distance-rule algorithm for calculating the day-ahead profile,
can be seen in Table 8.6. Total uncharged capacity of the PHEVs at time of
departure was 8,68 MWh per day, which gives an average of 8,68e3kWh

616 = 14, 09kWh
per PHEV. Average battery capacity at time of departure was 48,2%

Experiment 8.5c Reactive scheduling with peak-shaving

67



(a) Experiment 8.5a: Proactive scheduling, peak-
shaving

(b) Experiment 8.5b: Proactive scheduling,
distance-rule

(c) Experiment 8.5c: Reactive scheduling, peak-
shaving

(d) Experiment 8.5d: Reactive scheduling,
distance-rule

(e) Experiment 8.5e: Uniform strategy (f) Experiment 8.5f: Mixed strategy

Figure 8.6: Sample graphs of the daily battery state for a single PHEV. The dark
gray line represent the current battery capacity of the PHEV while the light gray
line represent a step-function which determined whether a PHEV is disconnected
from the grid. These samples are taken from a PHEV with the commuter profile,
and since the commuter profile spends much of its time driving, the batteries will
often be empty by the time it returns home.

The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the peak-shaving algorithm for calculating the day-ahead profile,
can be seen in Table 8.7. Total uncharged capacity of the PHEVs at time of
departure was 10,126 MWh per day, which gives an average of 10,126e3kWh

616 =
16, 42kWh per PHEV. Average battery capacity at time of departure was 39,6%

Experiment 8.5d Reactive scheduling with distance-rule
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The results of running the simulator for 100 days with a reactive scheduling
mechanism, using the distance-rule for calculating the day-ahead profile, can be
seen in Table 8.8. Total uncharged capacity of the PHEVs at time of departure
was 9,3MWh per day, which gives an average of 9,3e3kWh

616 = 15, 1kWh per PHEV.
Average battery capacity at time of departure was 44,5%

Experiment 8.5e Uniform strategy

The results of running the simulator for 100 days using the uniform strategy
mechanism can be seen in Table 8.9. Total uncharged capacity of the PHEVs at
time of departure was 9,66 MWh per day, which gives an average of 9,66e3kWh

616 =
15, 68kWh per PHEV. Average battery capacity at time of departure was 42,3%

Experiment 8.5f Mixed strategy

The results of running the simulator for 100 days using the mixed strategy
mechanism can be seen in Table 8.10. Total uncharged capacity of the PHEVs at
time of departure was 7,31 MWh per day, which gives an average of 7,31e3kWh

616 =
11, 87kWh per PHEV. Average battery capacity at time of departure was 54,8%
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9 Discussion

In this Section we will discuss the results from Section 8 that were obtained from
running the experiments defined in Section 7. First we will discuss the results from
running the experiments on how to calculate the day-ahead portfolio in 9.1. After
which we will discuss the results from the scheduling experiments, the stability
experiments and the PHEV fairness experiments.

9.1 Day-ahead portfolio

From the results in Section 8.2, we see that by calculating the dayahead portfolio
using expected values we get an error of 1,19% from the dayahead predictions to the
actual energy consumption. Similarly, for calculating the dayahead portfolio using
simulated value, with get a negligible error of 0,17%. While the accuracy of these
number largely comes from the fact that the historical data for the PowerNodes are
used, both as the basis for the dayahead predictions, and as input for the real-time
energy consumption in the simulator, we are only interested in getting a reasonably
accurate method for calculating the day-ahead portfolio for the simulator, and not
in finding a realistic method for calculating it in a real life scenario. In fact, a
small error in calculating the expected PHEV demand is preferable to an exact
result. The reason for this is that it will make it easier to separate the results of
the reactive and the proactive scheduling algorithms. Since both these algorithms
will schedule the PHEV demand until imbalances between the day-ahead portfolio
and the real-time demand is canceled, this also means that if both algorithms are
able to fully cancel these imbalances, or if the day-ahead portfolio is insufficient to
schedule all the PHEVs, then they will also perform identically. However, if the
day-ahead portfolio exceeds real-time demand, then we should be able to see some
differences between the performance of the to algorithm. To this end, the small
error that we got from the results of doing the day-ahead experiments show that
using Expected values is preferred over Simulated values.

9.2 Scheduling experiments

In this section we will discuss the performance of the different scheduling mecha-
nisms with respect to Hypothesis 3.1 and 3.2. The mechanisms will first be dis-
cussed individually, comparing their performance to the baseline (minimal extreme
experiment), after which we will do a general comparison of the different mecha-
nisms against each other. The most interesting variable to the performance of the
scheduling mechanisms with respect to these hypotheses, is the peak-to-average
ratio (PAR) and the average maximum peak.

Proactive scheduling with peak-shaving

The results from this experiment can be found in Table 8.5, while the powergraph
from a sample day can be seen in Figure 8.4f. With the proactive scheduling
mechanism, and the peak-shaving algorithm, an average PAR of 1.160 was obtained.

70



Figure 9.1: A boxplot graph showing the average PAR for each of the different
mechanisms. Lower is better.

The average peak in the simulation was 3.27 MW, while the maximum peak was
5.39 MW. The average PAR was almost the same as with the baseline, while the
maximum PAR remained the same, showing an negligible reduction from 1.226 to
1.223.

Proactive scheduling with distance-rule

The results from this experiment can be found in Table 8.6, while a powergraph
from a sample day can be seen in Figure 8.4e. With the proactive scheduling
algorithm, and using the distance-rule algorithm an average PAR of 1.15 was ob-
tained. The average peak in the simulation was 3.27 MW, while the maximum
peak was 5.39 MW. Compared to the baseline, with a PAR of 1.152 and average
and maximum peak of 3.31 and MW in the baseline, this may seem to be a modest
improvement. Perhaps more significantly, the mechanism was able to reduce the
maximum PAR from 1.226 in the baseline results to 1.21, and the average peak
from 3.31 MW to 3.269 MW which is the same result as in the minimal extreme
experiment.
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Figure 9.2: A graph showing the average daily peak for each of the different mech-
anisms. Lower is better.

Reactive scheduling with peak-shaving

With the reactive scheduling algorithm, and using the peak-shaving algorithm, an
average PAR of 1.157 was obtained. The average peak in the simulation was 3.272
MW, while the maximum peak was 5.388 MW. The average PAR was almost the
same as with the baseline, while the maximum PAR showed a minor reduction
from 1.226 to 1.219.

Reactive scheduling with distance-rule

With the reactive scheduling algorithm, and the distance-rule algorithm, an average
PAR of 1.152 was obtained. The average peak in the simulation was 3.27 MW,
while the maximum peak was 5.39 MW. The average PAR was almost the same as
with the baseline, while the maximum PAR showed a minor reduction from 1.226
to 1.214.

Uniform strategy

With the Uniform strategy mechanism, an average PAR of 1.185 was obtained. The
average peak in the simulation was 3.36 MW, while the maximum peak was 5.50
MW. This is an increase over the baseline by .033 in average PAR, and an increase
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by 32000 kW in average peak and 111000 kW in maximum peak. Compared to the
minimal extreme experiment, the results show an increase in average and maximum
peak by 94000 kWh and 111000 kWh respectively.

Mixed strategy

With the Mixed strategy mechanism, an average PAR of 1.145 was obtained. The
average peak in the simulation was 3.27 MW, while the maximum peak was 5.39
MW. This is a minor reduction from the baseline by .005 in average PAR, and a
reduction of 39000 kW in average peak. Additionally, the results show not much
difference in average and maximum peak compared to the minimal extreme exper-
iment. This is a positive result for the mixed strategy mechanism.

Comparisons

The overall goal with these experiments were to investigate the Hypotheses 3.1
and 3.2. To measure the performance of the mechanisms with respect to those
hypotheses, we investigated the result of running the simulations with respect to
the values for PAR, average and maximum peak. The results are interpreted as
positive if they can outperform the baseline simulations, but they are expected
to be no better than the minimal extreme experiment when considering average
maximum peak.

The results from running the experiments show that all of the different mech-
anisms demonstrate a positive result compared to the baseline when considering
average peak, where each mechanism except the Uniform strategy managed to ob-
tain a similar average maximum peak to the minimum extreme experiment, which is
illustrated in Figure 9.2. This is a positive result, considering that the results from
the minimum extreme experiment represent the best case scenario with respect to
average maximum peak.

Why the Uniform strategy performed so poorly is illustrated in Figure 8.4b,
where a uniform distribution of the PHEV demand can be seen. Because of the
nature of the Uniform strategy mechanism, the distribution of the PHEV demand
is equally probable for all timeframes. This means that some of the distributed
PHEV demand will inevitably be allocated to the early morning peak hours, which
is the reason for the high PAR and average maximum peak values for the Uniform
strategy. This is in contrast to the other mechanisms where the PHEVs seem to be
fully charge within that time, and where each of the other mechanisms managed
to obtain positive results for the average maximum peak.

With the exception of the Uniform strategy mechanism, and with respect to
the average maximum peak and the average PAR values, none of the scheduling
mechanisms managed to outperform each other. Instead, all the other mechanisms
managed to perform well in maintaining a low average peak. And while the Mixed
strategy mechanism showed some signs of performing better with respect to the
average PAR, the gains were relatively small. As to why no improvement in average
PAR value was seen, this discussion is deferred to Section 9.4. This is because
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these results are best explained when seen in perspective of the results of the other
experiments which will discussed subsequently.

9.3 Stability experiments

In this section we will discuss the performance of the different scheduling mecha-
nisms with respect to Hypothesis 3.3. The performance of the mechanisms will be
evaluated with respect to how much the capacity is exceeded by on average. This
will be compared against the baseline, which will represent the worst case scenario,
and the minimal extreme experiment which will represent the best case scenario.
The mechanisms will first be discussed individually, comparing their performance
to the baseline (minimal extreme experiment), after which we will do a general
comparison of the different mechanisms against each other.

Figure 9.3: A graph showing the average capacity exceeded over all transformers,
for each of the different mechanisms. Lower is better.

Proactive scheduling with peak-shaving

With proactive-scheduling and the peak-shaving algorithm, transformer capacity
was exceeded by 502,6 kWh each day. This is equal to the minimal extreme exper-
iment, and seem to suggest that the scheduling mechanism is able to schedule the
PHEV demand so that no extra demand is experienced during times when trans-
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Figure 9.4: A graph showing the average PHEV demand filtered, for each of the
different mechanisms. Lower is better.

former capacity is exceeded. Additionally, 9,9 kWh was filtered by the Transformer
agent.

Proactive scheduling with distance-rule

With proactive-scheduling and the distance-rule algorithm, transformer capacity
was exceeded by 502,6 kWh each day. This is equal to the minimal extreme ex-
periment, and seem to suggest that the scheduling mechanism is able to schedule
the PHEV demand so that no extra demand is experienced during times when
transformer capacity is exceeded.

Reactive scheduling with peak-shaving

With reactive-scheduling and the peak-shaving algorithm, transformer capacity was
exceeded by 502,6 kWh each day. This is equal to the minimal extreme experiment,
and seem to suggest that the scheduling mechanism is able to schedule the PHEV
demand so that no extra demand is experienced during times when transformer
capacity is exceeded. Additionally, 9,9 kWh was filtered by the Transformer agent.
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Reactive scheduling with distance-rule

With reactive-scheduling and the distance-rule algorithm, transformer capacity was
exceeded by 502,6 kWh each day. This is equal to the minimal extreme experiment,
and seem to suggest that the scheduling mechanism is able to schedule the PHEV
demand so that no extra demand is experienced during times when transformer
capacity is exceeded.

Uniform strategy

With the Uniform strategy mechanism, transformer capacity was exceeded by 502,6
kWh each day. However, 116,4 kWh of demand was filtered by the Transformer
agent, which suggests that some of the PHEV demand was scheduled at times when
demand was already high. This seem like a reasonable result, considering that
the uniform strategy will distribute PHEV demand based on an equal probability
distribution.

Mixed strategy

With the Mixed strategy mechanism, transformer capacity was exceeded by 502,6
kWh each day. However, 126,4 kWh of demand was filtered by the Transformer
agent, which suggests that some of the PHEV demand was scheduled at times when
demand was already high.

Comparisons

The overall goal with these experiments were to investigate the Hypotheses 3.3.
To measure the performance of the mechanisms with respect to this hypothesis,
we investigated the results of running the simulations with respect to the values
for average transformer capacity exceeded. The results are positive if they can
outperform the baseline simulations, but they were expected to be no better than
the minimal extreme experiment.

The results from running the experiments show that all of the different mech-
anisms demonstrate a positive result compared to the baseline. All of the mech-
anisms showed equal performance to the minimal extreme experiment which is a
positive result, considering that the minimal extreme experiment represent the best
case scenario. However, in the reactive scheduling with peak-shaving mechanism
and the uniform- and mixed strategies, some of the PHEV demand was filtered by
the Transformer agents. This does not affect the performance of the mechanisms
with respect to Hypothesis 3.1, as the stability of the grid remains well preserved
within the definition that the stability is preserved relative to the baseline; if no
change in average Transformer capacity exceeded is observed. Still, it might sug-
gest a weakness for these mechanisms with respect to PHEV fairness experiments
and Hypothesis 3.4 which will be discussed in Section 9.4.
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9.4 PHEV fairness experiments

In this section we will discuss the performance of the different scheduling mecha-
nisms with respect to Hypothesis 3.4. The performance of the mechanisms will be
evaluated with respect to the average uncharged battery capacity of a PHEV at
time of departure. This will be compared against the baseline, which will represent
the worst case scenario, and the minimal extreme experiment which will represent
the best case scenario. The mechanisms will first be discussed individually, compar-
ing their performance to the baseline (minimal extreme experiment), after which
we will do a general comparison of the different mechanisms against each other.

Baseline

From the baseline experiment in Section 8.1, it can be seen that the average un-
charged battery capacity of the PHEVs at time of departure was 77,61%. This is
the value that will be used to compare with when evaluating the performance of
the other mechanisms.

Proactive scheduling with peak-shaving

With proactive scheduling and the peak-shaving algorithm, average battery capac-
ity by the PHEVs at time of departure was 34,57%. This is a difference of -43,04%
from the baseline.

Proactive scheduling with distance-rule

With proactive scheduling and the distance-rule algorithm, average battery capac-
ity by the PHEVs at time of departure was 48,20%. This is a difference of -29,41%.

Reactive scheduling with peak-shaving

With reactive scheduling and the peak-shaving algorithm, average battery capacity
by the PHEVs at time of departure was 39,55%. This is a difference of -38,31%.

Reactive scheduling with distance-rule

With reactive scheduling and the distance-rule algorithm, average battery capacity
by the PHEVs at time of departure was 44,53%. This is a difference of -33,08%.

Uniform strategy

With the Uniform strategy mechanism, average battery capacity by the PHEVs at
time of departure was 42,34%. This is a difference of -35,27%.

Mixed strategy

With the Mixed strategy mechanism, the average battery capacity by the PHEVs
at time of departure was 56,37%. This is a difference of -21,24%.
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Figure 9.5: A graph showing the average battery capacity at time of departure, for
each of the different mechanisms. Higher is better.

Comparisons

The overall goal with these experiments were to investigate Hypothesis 3.4. To
measure the performance of the mechanisms with respect to this hypothesis, we
investigated the result of running the simulations with respect to the values for
average transformer capacity exceeded. The results are interpreted as positive if
they can outperform the baseline simulations, but they were expected to be no
better than the minimal extreme experiment.

The results from the PHEV fairness experiments seem to suggest that there is
a cost to the average battery capacity of the PHEVs when using the scheduling
mechanisms. From Figure 9.5, we see that the Mixed mechanism is the over-
all best performing scheduling mechanism with a difference of -21.24% compared
to the baseline experiment. More troubling is the results from calculating the
day-ahead portfolio using the peak-shaving algorithm in the centralized schedul-
ing mechanisms, which showed performance penalties of -43,04% for the proactive
scheduling mechanism, and -38,31% for the reactive scheduling mechanism. With
the distance-rule algorithm, the situation was somewhat better with -29,41% and
-33,08%, respectively, but both were still lower than the Mixed stratey mechanism.

An illustration of how the average battery capacity at time of departure varied
depending on time of day can be seen in Figure 9.7. This illustrates why none of
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Figure 9.6: A graph showing the ratio of average battery capacity at time of de-
parture, where the Y axis is the ratio of average battery capacity and X is the time
of departure. Higher is better

the mechanisms, including the baseline experiment, managed to obtain an average
value closer to 100%. The reason for this is illustrated by how the average value
drops during the course of the day, as the PHEV profiles are designed so that the
PHEVs are most active during the afternoon and evening hours. This means that
many of the PHEVs when returning home from work, are connected to the grid for
such a short time that even if all the time is spent charging, there is insufficient
time to fully charge before they leave home again.

Also, returning to the concern that was raised about the values for the PAR in
Section 9.2: Considering the results from the PHEV fairness experiments, we see
that most of the different mechanisms performed worse with respect to charging
the PHEVs compared to the baseline experiment. Since the PHEVs are charging
less in the scheduling mechanisms, this means that the average consumption will
be lower. And if the average peak decreases less than the total average decreases,
then the PAR will increase compared to the baseline. And while all the mechanisms
showed postive results, considering that they all performed similar to the best case
scenario, there is a natural limit to the potential for peak-reduction because of the
morning peak hours. This can be seen in Figures 8.3f, 8.3d and 8.3b, where all
of the PHEV demand during the afternoon peak hours have been moved to low-
demand hours during the night. However, because the early morning peak hour

79



(a) Mixed strategy (b) Uniform strategy

(c) Reactive scheduling, distance-rule (d) Reactive scheduling, peak-shaving

(e) Proactive scheduling, distance-rule (f) Proactive scheduling, peak-shaving

Figure 9.7: These graphs show the ratio of average battery capacity at time of
departure for each of the different mechanisms. Each mechanism is contrasted
with the results from the baseline experiment for comparison.

is higher than the afternoon peak for that particular day, the peak value for this
day will not be lower. This explains much of the lack of results when considering
the PAR value. Still, since all the mechanisms managed to perform similar to the
best case scenario when considering the average peak value, this suggests that the
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only limitation to the peak-shaving effect for these mechanisms depend on factors
beyond the control of the mechanisms.

Reactive scheduling vs proactive scheduling

While both the reactive and proactive mechanisms are very similar in technique,
there are some minor differences. Where the reactive scheduling mechanism will try
to minimize the imbalances as soon as possible, the proactive mechanism will try
to minimize the average imbalance. However, as to which of these perform better
at scheduling the PHEVs, the results were inconclusive. With the peak-shaving
algorithm, the reactive scheduling mechanism seemed to perform better, obtaining
a 4,98% improvement over the proactive mechanism, while with the distance-rule
algorithm, the proactive mechanism obtained a 7,34% higher average than the
reactive mechanism. This seems to suggest that which mechanism is better depends
on how the day-ahead imbalances are distributed. In the distance-rule algorithm,
the day-ahead imbalances are distributed mostly during night hours, as seen in
Figures 8.4c and 8.4e. This seems to favor a proactive mechanism where PHEVs
are charged so that the average imbalances are reduced. Meanwhile, in the peak-
shaving algorithm, seen in Figures 8.4d and 8.4f, the day-ahead imbalances are
distributed closer to peak hours and are less uniformly distributed, which seems to
favor a reactive mechanism.

For the stability experiments, the results show almost no difference in the
amount of demand filtered by the Transformer agents. Instead, the difference
seem to be more dependent on which algorithm is used to calculate the day-ahead
portfolio. In neither the reactive- or the proactive mechanism did the Transformer
agent have to filter demand when the distance-rule algorithm had been used. With
the peak-shaving algorithm, a small amount of filtering was done, but the amount
was almost similar both for the reactive- and the proactive mechanism suggesting
that determining factor was which day-ahead algorithm was used.

Finally, in the scheduling experiments where we investigated the performance
of the different mechanism with respect to lowering peak demand and the peak-to-
average ratio, the results are inconclusive as to which mechanism perform better.
As can be seen in Figures 9.2 and 9.1, all of the mechanisms except the Uniform
strategy solution showed very similar results. With the exception of the Uniform
strategy, all the mechanisms showed positive results toward maintaining a low aver-
age peak, showing similar performance to the minimum extreme experiments. This
seem to suggest that the potential for reducing the average peak was only limited by
the average peak of the PowerNode demand, which represent the non-schedulable
loads.

Distance-rule vs peak-shaving

Besides the two scheduling mechanisms, the experiments were also done using two
different methods for calculating the day-ahead profile. These were included to see
how the composition of the day-ahead profile would affect the performance of the
scheduling mechanisms.
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With respect to the fairness experiments, where the mechanisms are measured
by how successful they are at charging the PHEVs in time, the proactive and re-
active mechanisms were able to achieve an average battery capacity of 34,57% and
39,55% using the peak-shaving algorithm for constructing the day-ahead profile,
compared to 48,20% and 44,53% with the distance-rule. These results were some-
what unexpected, as it was expected that by constructing the day-ahead profile
so that the mechanisms would schedule the PHEVs closer to the time they would
normally have been recharging. However, these results can be explained by consid-
ering the PHEV profiles and how the centralized scheduling mechanisms work. The
centralized scheduling mechanisms will schedule the charging of PHEVs until the
imbalances between the day-ahead profile and the real-time demand is minimized.
Also, because the peak-shaving algorithm will move the demand to nearby hours,
the extra demand in the day-ahead profile is likely to be placed during the evening
hours. However, when we consider that the PHEV profiles that were designed for
the experiments, they ensure that most of the PHEVs will be most active during the
evening hours. This means that since the scheduler will try to schedule much of the
PHEV demand for those hours when the PHEVs are most active, this means that
the scheduling plans will be largely incompatible with the activity of the PHEVs
when the peak-shaving algorithm is used. This means that the performance of the
peak-shaving algorithm and the distance-rule algorithm, with respect to charging
the PHEVs, seem to depend highly on how active the PHEVs are. Overall, these
results seem to favor the distance-rule which will distribute most of the imbalances
during night hours when the PHEVs are least active.

For both the scheduling and the stability experiments, the results did not seem
to favor any one particular algorithm. Each of the algorithms performed well
in maintaining a low average peak value, and neither of the algorithms in the
centralized mechanisms had any problem ensuring the stability of the grid compared
to the minimal extreme experiment.

Centralized scheduling vs decentralized scheduling

So far in this Section, we have compared the performance of the two different
centralized scheduling mechanisms and how their performance differs depending
on how the day-ahead profile is constructed. In this Section, we will discuss the
performance between the centralized.

The best results of the centralized scheduling mechanisms came from both the
proactive and reactive scheduling mechanism where the distance-rule was used.
These mechanisms showed an average battery capacity at time of departure of
48,20% and 44,53% respectively. In contrast, for the decentralized mechanisms,
the best performer was the Mixed strategy mechanism which had an average bat-
tery capacity of 56,37%, while the Uniform strategy managed an average battery
capacity of 42,34%. This means that using the Mixed strategy, the decentral-
ized mechanism was able to outperform both of the best performing centralized
mechanisms. Even still, the Uniform strategy mechanism managed to obtain a
performance close to the best performing centralized schedulers. This argues in
favor of the decentralized scheduling mechanisms when considering charging of the
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PHEVs and the fairness experiments. This is impressive considering the relative
simplicity of the decentralized mechanisms compared to the centralized.

For the stability experiments, we find that both the Mixed and the Uniform
strategy solution manage to preserve the stability of the grid relative to the min-
imal extreme experiments. However, compared to the centralized mechanisms,
both the decentralized mechanisms show a higher degree of filtered demand by the
Transformer agent, with an average of 116.4 kWh demand filtered in the Uniform
strategy solution, and 126.4 kWh filtered in the Mixed strategy solution. This
means that both decentralized mechanisms performed worst in these experiments
with respect to Hypothesis 3.3. It should, however, be noted that in both de-
centralized mechanisms the filtered demand was relatively low, with only a daily
average of 117.5 kWh and 131.0 kWh filtered for the Uniform and Mixed strategy
solutions. This is a relatively low number compared to the number of PHEVs used
in the simulations. It would be interesting to see how this would scale with the
number of PHEVs.

9.5 Summary

In this section we have discussed the results that we obtained by running the exper-
iments defined in Section 7. From these results, we found that all the mechanisms
performed well in maintaining a low average peak value compared to the minimum
extreme experiment. This seems to verify Hypothesis 3.1 and 3.2 that it is pos-
sible to obtain a peak-shaving effect by using a centralized scheduling mechanism
in combination with a carefully calculated day-ahead portfolio, and that the same
effect is possible with a decentralized mechanism (depending on the distribution).

While the improvement to PAR over the baseline was not large for any of the
mechanisms, this seemed to be partly because of early morning peak hours, which
the scheduling mechanisms were unable to affect since the demand during those
hours were mostly due to non-schedulable loads. But also because the scheduling
mechanisms could not the performance of the baseline experiment with respect to
charging the PHEVs, leading to a lower overall average consumption. Some of this
effect can perhaps be seen in Figures 9.5 and 9.1, where a high column in the chart
over the average battery comparison seems to indicate a lower column in the chart
over the average PAR values. The exception is the Uniform strategy mechanism,
which because of its poor performance in lowering the average peak in Figure 9.2 is
exempt from this pattern, while the other mechanisms perform almost identically
in this respect.

For the centralized mechanism, it is also important to note that the composition
of the day-ahead profile can make a significant impact on the results. This is
apparent from the different results obtained by the centralized mechanism when
the day-ahead profile was constructed using the peak-shaving algorithm, compared
to when the day-ahead profile was constructed using the distance-rule algorithm.
Especially when the average battery capacity is concerned. From the results, we
found that if the centralized scheduler was given incentive to schedule the PHEV
demand during night hours, the PHEVs were able to capitalize on this. While if
the demand was scheduled during evening hours, when PHEV activity was higher,
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the PHEVs suffered some loss to the average battery capacity. For both other
experiments, all mechanisms showed positive results, as all mechanisms were able
to maintain a low average peak, and they were all able to maintain stability in the
power grid.
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10 Conclusion

In this thesis we have considered the impact that plug-in hybrid electric vehicles
may have on the power grid, and how this may be handled in a way that does
not compromise the stability of the grid or the end-user quality of comfort, while
simultaneously scheduling PHEV loads so that the extra demand does not coincide
with peak hours. This is a complex, multi-faceted problem that is not easily solved.
To address this problem, we posed several questions at the beginning of this thesis,
in Section 3.

To verify or falsify the hypotheses, we developed a Smart Grid simulator where
we could experiment with a multi-agent system composed of four different types of
agents: A Transformer agent, a PHEV agent, a PowerNode agent and a BRP agent,
each with its own responsibilities. To help these agents solve the problems men-
tioned earlier, we considered several mechanisms which would help them achieve
their goals. The mechanisms that were considered, were two centralized solutions
where a centralized scheduler would help to schedule the PHEV demand, with the
ultimate goal of lowering the PAR. In addition to these two centralized mechanisms,
two decentralized mechanisms were also considered, where the PHEV agents gener-
ated their own charging strategies. In the Uniform strategy mechanism, the PHEV
agents generated their charging plans based on a uniform distribution, while in the
Mixed strategy mechanism the PHEV agents would generate their charging plans
based on a weighted distribution generated from predictions it received from the
BRP agent. Finally, to evaluate the performance of the different mechanisms, we
defined a set of experiments in Section 7 that would help us to verify or falsify our
hypotheses.

For the centralized mechanisms, the overall best results came from the reactive
and proactive scheduling algorithms where the day-ahead profile had been con-
structed with the distance-rule algorithm. Both of these were able to obtain an
average maximum peak similar to the minimal extreme experiment, the best case
scenario, and while the positive results were limited with respect to the average
PAR, this seemed to because of the early morning peak hours, which were largely
caused by non-schedulable loads. But also because there seemed to be some cost
associated with using a scheduling algorithm concerning the average PHEV battery
capacity, which would lead to a lower overall average consumption. However, since
the results for the average maximum peak was positive, this verifies the Hypothesis
3.1, that by carefully calculating the day-ahead algorithm, a centralized scheduling
mechanism can be used to obtain a peak-shaving effect. Additionally, the Hypoth-
esis was also verified for the Mixed strategy mechanism, which presented equally
positive results compared to the centralized scheduling mechanisms in this regard.

Concerning the stability of the grid, both the centralized and decentralized
mechanisms managed to obtain results similar to the minimum extreme experi-
ment, presenting no signs of exceeding the transformer capacity more than the
best case scenario. And while the Uniform- and Mixed strategy mechanisms pre-
sented some signs of demand filtering by the Transformer agents, this was relatively
small amount and seemed to have little or no impact on the ability of the PHEV
agents in the decentralized mechanisms to recharge their batteries. Especially when
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considering that the Mixed strategy mechanism was the overall best performer in
this regard. This verifies Hypothesis 3.3, that a scheduling mechanism can be
designed that will not compromise the stability of the grid.

While all the mechanisms performed well with respect to the average maximum
peak and grid stability, most of the mechanisms showed signs of weakness concern-
ing average battery capacity at time of departure. For the centralized mechanisms,
this seemed to depend on how the day-ahead portfolio was calculated. If the im-
balances were distributed during times when the PHEVs were most active then
this seemed to negatively affect their ability to charge. For instance, the peak
shaving algorithm would shift loads away from peak hours to hours that were rela-
tively close. Because of the way the centralized scheduling mechanisms worked, this
meant that the scheduler would try to fit PHEV demand into those adjacent hours.
While this seemed like a good idea in theory, the experiments showed that for highly
active PHEV profiles, if the PHEVs are not present in the grid then they miss this
opportunity to charge. Additionally, neither the peak-shaving algorithm, nor the
distance-rule algorithm considers whether there are enough PHEVs in the grid to
be able to fully capitalize on the demand that is shifted. This means that there is a
possibility that the much of the day-ahead imbalances could be concentrated over
such short periods of time that the PHEVs are unable to capitalize on it. While this
does not verify Hypothesis 3.4 that a scheduling mechanism can be designed that
will be fair with respect to the end-user, it does not directly disprove it either. This
is because the performance varied much depending on how the day-ahead portfolio
was calculated, and it could be that a method exists which can calculate an optimal
portfolio that will schedule the PHEV charging plans without compromising the
average battery capacity. Also, the decentralized Mixed strategy mechanism pre-
sented promising results, outperforming all the centralized mechanisms in average
battery capacity. Considering the relative simplicity of this mechanism, there could
be significant potential for improvement for that mechanism.

When considering which mechanism that performs best, it is worth noting that
the performance of the centralized mechanism is highly dependent on how the
day-ahead profile is constructed. Similarly with the decentralized mechanism, the
performance will vary much depending on how the strategy is generated. However,
with the Mixed strategy solution discussed in this thesis, the decentralized mecha-
nism proved to be a consistently good performer, performing equally well or better
than the centralized mechanisms, thus verifying Hypotheses 3.2 and 3.5, that a de-
centralized mechanism can be used to obtain a peak-shaving effect, and that it can
perform at least as well as a centralized scheduling mechanism. Additionally, by
letting the PHEV generate the strategies themselves, the necessity of a centralized
scheduler is removed. This increases the robustness of the system, as the depen-
dency on a single component in the system is reduced. The most apparent downside
to the Mixed strategy solution is that it can not be used to minimize the imbal-
ances between the day-ahead profile and the real-time consumption, such as the
centralized scheduling mechanisms can. However, assuming that the performance
of charging the PHEVs in the Mixed strategy mechanism can be improved, the
benefit of having a decentralized and robust mechanism may outweigh the benefit
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of reducing day-ahead imbalances.
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11 Future work

In this section, some ideas for future work will be presented. These ideas were not
implemented or experimented with in this thesis, either because it was necessary
to limit the number of experiments, or because the ideas were outside the scope of
the theme of the thesis.

While some positive and some negative results were presented for the different
mechanisms that were used, it would be beneficial to perform further experiments
on different methods for calculating the day-ahead portfolio, or for generating the
strategy probability distributions. As became clear from the results, the different
scheduling mechanisms varied in performance depending on whether the peak-
shaving algorithm or the distance-rule algorithm was used. The same was also the
case for the decentralized mechanism, depending on whether the Uniform strategy
or the Mixed strategy distributions were used to generate the charging plan. And
while the performance of these were analyzed and compared against each other, it is
likely that these mechanisms can perform differently depending on what parameters
are used, how the day-ahead portfolio is calculated and how the strategy probability
distributions are determined.

Another typical concern in multi-agent systems is the incentive an agent has to
be untruthful. For instance, in the centralized mechanisms discussed in this thesis,
there is an obvious advantage for the PHEV agents to report their expected time
of departure untruthfully. By reporting their expected time of departure to be
earlier than the agents actually believes, it is more likely to be prioritized when the
BRP creates the charging plans, or when the Transformer agent decides on which
plans to filter. Note, however, that this concern does not arise in the decentralized
mechanisms with respect to the scheduling of the charging plans, as each PHEV
agent is itself responsible for generating its own charging plan. Assuming that the
PHEV agent believes that the BRP agent is reporting its predictions about future
energy demand truthfully, then the PHEV agent can do no better than to generate
a plan according to the predictions it receives. Even so, the PHEV agent still has
an incentive, also in the decentralized mechanism, to report its expected time of
departure untruthfully to the Transformer agent. This decreases the likelihood that
its charging plan will be filtered.

While the Mixed strategy mechanism performed better than the centralized re-
active and proactive mechanisms with respect to charging the PHEV batteries and
for maintaining a low PAR, it did show some signs of weakness with respect to the
stability hypothesis as the Transformer agents had to resort to filtering the PHEV
charging plans. While the filtered amount was low, it was more than compared
to the centralized mechanisms. To address this concern, it could be interesting to
modify the decentralized mechanism slightly. Currently, the PHEV agents inter-
act with the BRP agent in acquiring predictions about the future energy demand.
However, assuming that the Transformer agents were able to make predictions
about the future energy demand in their responsible sub-grids, it could be possible
to alter the mechanism so that the PHEV agents got their predictions from their
parent Transformer agent instead. This would have the effect that their charging
plans would be based on the future energy demand of their local sub-grid, and
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thereby the charging plans of the PHEVs would be targeted at maintaining a low
PAR in their own local grid. The hypothesis is that, if the PHEV agents manage
to coordinate their charging plans so as to maintain the stability of their local-
grid, then it seems reasonable to infer that if the stability of all local sub-grids are
maintained, so is the stability of the entire grid itself.

Finally, in Section 2, we discussed the existence of load-scheduling problems in
Game Theory. Remember the proposition that every load scheduling game admits
at least one Nash equilibrium. Further, given any optimal allocation A : [n]→ [m],
there exists a finite sequence of improvements steps that the agent can make in
order to find a Nash equilibrium. Assuming that the problem of load scheduling
PHEVs in the Smart Grid is reducible to a load scheduling game in Game Theory,
whereby; instead of allocating [n] tasks to [m] machines, the allocation is [n] units
of demand over [m] units of time, with the additional constraint that only one
allocation is possible per unit time. Then for any allocation such as the one made
with the Mixed strategy mechanism discussed in this thesis, there exists a finite
sequence of improvement steps that the PHEV agents can make to improve their
charging plans until they find a pure Nash equilibrium. This means that it could be
possible to extend or modify the decentralized mechanism discussed in this thesis
so that the PHEV agents – after choosing the initial allocation – can iteratively
try to improve upon this allocation, by following a sequence of improvement steps
in order to maximize their average battery capacity while still maintaining a low
average peak-to-average ratio.
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Abstract—Load peaks can have a negative impact on the
stability of the power grid and maintenance costs for transmission
and generation companies. Currently, increasing use of plug-in
hybrid electric vehicles (PHEV) further proliferates the problem
because charging patterns are expected to coincide with peak
demand hours, especially the afternoon peak hours.

To avoid the problem that increasing PHEV demand will
further aggravate peak demand hours, we have investigated two
different mechanisms for scheduling the charging PHEVs; one
centralized mechanism, where a centralized scheduler creates the
charging plan for the PHEVs, and one decentralized mechanism,
where the PHEVs create their own charging plans by random-
izing over a strategy probability distribution.

We found that both mechanisms were able to schedule the
PHEVs so that aggravating peak load was avoided, but that it
came at a cost of the PHEVs capacity to recharge. However, the
decentralized mechanism showed promising results that it could
be possible to create a multi-agent mechanism that is able to
charge PHEVs by avoiding peak hours, and still be fair to the
end-user.

I. INTRODUCTION

According to official Norwegian estimates [1], plug-in hy-
brid electric vehicles (PHEVs), electric vehicles and hydrogen-
based vehicles will account for 5% of the total car population
in Norway by 2020, and that figure is expected to rise up to
26% by 2030. While this is arguably a positive development
from a climate perspective, one of the anticipated challenges
in the future smart grid is how to efficiently handle the extra
load associated with charging the growing number of PHEVs.
This is mainly a challenge, not because there is an insufficient
overall capacity to accommodate the extra charge, but because
the extra demand resulting from PHEVs recharging their
batteries is expected to coincide with times at which demand
is already at its highest, namely peak hours [2].

Considering the challenges of how to address the future
demand caused by PHEVs, multi-agent systems (MAS) may
prove to be a promising candidate technology. A multi-
agent system consists of intelligent agents interacting in an
environment. The agents can be computer software modules,
human beings, or anything else capable of autonomous and
rational actions. Multi-agent technology can be used to build
systems that are scalable, fault-tolerant, secure and easy to
reason about.

Addressing the problem of peak-load, we have investigated
two different approaches to load-scheduling where the real-
time consumption of energy is influenced by controlling the

charging of PHEVs; a centralized mechanism and a decentral-
ized mechanism.

In the first approach, with the centralized scheduling mech-
anism, we have investigated an approach to load-scheduling
where the real-time consumption of energy is influenced by
controlling the charging of PHEVs. If we at any time know
1) the current, real-time demand for energy in the grid, 2) the
energy traded on the forward market (day-ahead) at that time,
and 3) information about the state of the PHEVs in the grid,
then we have sufficient information to schedule the charging of
the PHEVs in a way that will help to minimize the difference
between the real-time energy demand and the energy traded
for on the day-ahead market.

In the second approach to load-scheduling, we have in-
vestigated a decentralized mechanism where no centralized
schedulers are used. The idea is that that the PHEVs will
generate their charging strategies on their own accord, by
randomizing over a probability distribution that they create
themselves. The important thing to consider with this mech-
anism is how this probability distribution is created. For this,
we have considered two possible methods. One in which the
probability distribution is uniform, and another in which the
distribution is created the PHEV agent, by interacting with a
central agent that provides the PHEV agents with predictions
about the future energy consumption in the grid.

II. RELATED WORK

The simulator that we developed, is based upon the works
presented in [3]–[5]. While they also investigated scheduling
mechanisms for the charging of PHEVs, which minimizes
the difference between the day-ahead portfolio and real-time
consumption, our simulator extends upon their work by con-
sidering how such scheduling mechanisms can also be used to
influence peak-shaving. Although it is not used yet, the PHEV
model in our simulator is capable of learning its usage-patterns
from experience. By learning, it is possible for the system to
better schedule PHEVs when there is uncertainty about when
they will be used.

In [6], McArthur et al. argue why multi-agent systems is a
methodology well suited to the power engineering domain.
The publication is a result of work done by IEEE Power
Engineering Society’s Multi-Agent Systems (MAS) Working
Group. They identify several key areas where agents are
applicable: monitoring and diagnostics, distributed control,
modeling and simulation and protection schemes for the
network. In [7] they offer guidance and recommendations
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on the design and implementation of MAS specifically for
power engineering. They stress the importance of standards
that allow interoperability between systems, such as: 1) using
FIPA standards for communication, 2) employing a common
”upper” ontology for interoperation between MAS, 3) employ-
ing a specific design methodology for MAS, where knowledge
engineering and task decomposition allow for ontology and
agent design. However, they find it too hard to give a recom-
mendation on the design of the agent anatomy. This highlights
the difficulty and importance of good agent design, however
the main point of the two papers are how well suited MAS
are for power engineering.

[8] describes a system in a micro grid context, that includes
distributed energy sources as well as storage devices. Such
a micro grid can either operate connected to the main grid
or be isolated. A their laboratory micro grid, each connected
device also has a corresponding agent in the network. They
use a simple centralized algorithm for calculation of the
difference between produced and consumed power to correct
any discrepancies. In their laboratory experiments, loads are
turned on and off and the system responds accordingly.
The system is thus designed to be reactive, i.e. responding
to changes immediately, without any inherent prediction or
learning capabilities. Their work represent no intelligent way
of load scheduling, but is an example of the use of MAS in a
power control setting.

[10] focus on reducing the peak-to-average (PAR) ratio by
using energy consumption scheduling (ECS) devices. The ECS
is implemented in smart meters, and the goal is to perform
autonomous demand side management in a neighborhood. A
distributed algorithm finds the optimal energy consumption for
each subscriber. They focus on incentives for reducing PAR,
such as lower utility charges. The scenario consists of one
energy source (e.g. substation) shared by several subscribers,
each having an ECS with communication capabilities. They
show that given an appropriate pricing scheme, the subscribers
can reach a Nash equilibrium where the overall system per-
forms better, and they also pay less individually. The authors
formulate the problem mathematically as a convex optimiza-
tion problem. The algorithm shows good results, however
the system does not learn or predict any load profiles, the
assumption is that the energy consumption is pre-determined
and set by the subscriber.

In a similar manner to [10], [11] investigate the effect of
sharing load profiles among users versus not sharing (for
privacy reasons), and device a distributed algorithm (i.e. a
game) for users in the first case, and a stochastic strategy
in the latter case. The key is a dynamic pricing scheme that
encourages users to achieve a desirable load profile, from the
perspective of the utility. Their scenario is the same as in [10].
Both approaches reduce PAR, the distributed game approach
being the best. What separates the results from [10] is the
ability of users to make inferences based on the instantaneous
load in the case where the other users do not share their
demands. This is benchmarked against a situation where there
is no communication between the users.

III. MODELS

To test our hypotheses, we have developed an open-source
simulator [14], built around a hierarchy of models and agents
as seen in Figure 1. It is composed of a Balancing Responsible
Party agent (BRP), Transformer agents (TRF), PHEV agents,
and PowerNode agents. The first three agents are similar to the
agents described in [3]. It is the responsibility of the BRP agent
to minimize the imbalances between the day-ahead profile and
the real-time energy consumption, while the TRF agents and
the PHEV agents are responsible for ensuring that demand
does not exceed the capacity of its associated transformer, and
that the PHEV is adequately charged in time for use. The
PowerNode agent in the simulator represent any node in the
grid capable of producing or consuming energy, and which is
not a PHEV. A typical interaction between the agents can be
seen in Figure 2, where the agents are negotiating a charging
schedule for the PHEV agent.

A. PowerNode model

The PowerNode model in the simulator represents anything
in the grid that can consume or produce power, and which
is not a PHEV. For instance, it can represent a household,
consuming power, in which case it will contribute a negative
flow of energy to the power grid. Or it can represent a
distributed energy facility, contributing a positive flow of
energy.

In terms of the complexity of the model, the main thing to
consider is how the model decides what the flow of energy
will be. In this simulator, the flow of energy is determined
by historical data collected from smart meters installed in real
houses. In essence, this means that each PowerNode model
in the simulator will be represented by one household, or
equivalent, from the dataset used. The flow of energy at time
t in the simulator is then determined by the flow of energy at
time t in the dataset, for that household, offset by the initial
recording time for the dataset.

B. PHEV model

The most important and complex model in the simulator is
the PHEV model. For this model, we tried to implement the
PHEV model so that it reflects and captures the uncertainty
of human nature. In addition to this, the PHEV model also
incorporates models information such as average discharge
rate for the PHEV while driving and average recharge rate
when connected to the grid. To model its behavior in the
grid, we have designed a set of PHEV profiles, where a
PHEV profile contains a set of probability distributions that
determines whether a PHEV leaves/disconnects from the grid.
Mapped to each probability distribution, is information about
the duration of that trip, as well as information about how
much of the time was actually spent driving. In Figure 3, the
four PHEV profiles used for the experiments can be seen,
showing a Suburban profile, a Homeworker profile, a City
profile and a Commuter profile. These profiles were mostly
designed to stress test the system during peak hours and
challenge the ability of the PHEVs and the BRP to schedule
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the charging of the PHEVs. And while some considerations
have been made to make the profiles reflect realistic behavior,
these considerations are not based on any scientific analysis.

PHEV
Pro�le

PHEV Agent

PowerNode

PowerNode Agent
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PHEV Agent

PowerNode

PowerNode Agent
Historical

Transformer

Transformer Agent

Transformer

Transformer Agent
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Load

Load

Predictions KB
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Fig. 1. An overview of the agent-model hierarchy, showing the different
agents in the system and the main channels of communication.

Fig. 2. An interaction showing the PHEV agent requesting a schedule from
the BRP agent.

C. Transformer model

While the PowerNode- and PHEV models in the simulator
will provide electricity throughput, the Transformer model will
act as a constraint as to the capacity of that throughput in the
different parts of the grid. This is to prevent the BRP agents
or PHEV agents from scheduling the charging of the PHEVs
in such a way that it violates the capacity constraints of the
transformers. This means that the Transformer model will need
a defined value for its maximum capacity of energy that it
can handle at any given time. For these values, we have used
standardized values for power grids in Norway, with capacities

(a) Commuter (b) City

(c) Homeworker (d) Suburban

Fig. 3. The different, discretized PHEV profiles used in the simulator.

in the range of 220-240V for low-voltage transformers, 11kV
for high-voltage transformers and 66kV for regional voltages.

D. Grid model

The Grid model is the model for the structure and hierarchy
of the grid itself. For the purpose of the experiments, the
grid was modeled so that the capacity of the grid would be
challenged during times of high demand. Using the defined
values for transformer capacity mentioned earlier, the grid
was generated by finding the peak load for each of the power
nodes from the historical data, assigning power nodes to each
transformer until the sum of the peak loads exceeded the
capacity of the transformers by a scaling factor. After a low
voltage transformer had been assigned sufficient power nodes,
the low voltage transformers were assigned to high voltage
transformers by following the same principle. This process
was iterated until the set of power nodes were empty.

E. Determining the day-ahead profile

The last model in the simulator is the Day-ahead model,
which is the model used by the centralized mechanisms when
scheduling the loads of the PHEVs. The model is essentially a
prediction about the next day energy consumption, which we
will call the day-ahead profile. To determine the day-ahead
profile, a two-step process was used. First, the baseline was
determined as the expected contribution from all of the non-
schedulable loads. For this, we used the historical data sampled
from houses with smart meters installed. While this has the
effect that the day-ahead profile will be perfectly accurate with
respect to the power nodes, it is the demand from the PHEVs
that we are ultimately interested in.

To determine the expected contribution from the PHEVs,
we implemented and tested two different methods. The first
method estimated the PHEV contribution to demand by run-
ning the simulation in advance, without using any of the
scheduling mechanisms. This let the PHEVs charge on de-
mand, whenever it was possible to so. The other method cal-
culated the expected contribution from the PHEVs statistically
by using known values for the probabilities that a PHEV would
leave at a given time, plus the duration of the travel during
which it would be discharging its batteries, the average rate
with which it would be discharging, and the rates with which
it would recharge upon return.

After the baseline and the expected contribution of the
PHEVs was determined, these were added together in or-
der to yield the day-ahead profile. This could have been
used as a basis for the day-ahead portfolio in the simulator.
However, considering that we also desire to influence the
reduction of peak-loads, an additional step was performed
on the portfolio, so that the PHEV loads were shifted away
from the peak-hours. This was also done by investigating two
slightly different methods. In one, the baseline and the PHEV
contributions were added together, after which one of the
two algorithms was used. One algorithm was a peak-shaving
algorithm, loosely based on the Kohonen algorithm for self-
organizing maps, and the other was a distribution algorithm,
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(a) PHEV contribution (b) PowerNode contribution

(c) PHEV + PowerNode (d) PHEV + PowerNode – after
peak-shaving

Fig. 4. Sample images from the simulator showing the different steps for
calculating the day-ahead profile

where the PHEV contributions were distributed onto the day-
ahead portfolio based upon a distance rule. Common to both
algorithms is that they shift loads away from peak-hours
while the overall volume of the portfolio is preserved. Both
algorithms result in a portfolio that can be used to schedule
PHEV loads to help reduce peak-load.

In Figure 4, the 4 steps in the process of calculating the day-
ahead profile are shown with 4 graphs illustrating the result of
each step in the process. (4a) shows the expected contribution
from all the PHEVs in the simulator, while (4b) shows the
baseline with the contribution from all of the PowerNodes. In
(4c) the baseline and expected PHEV contribution are added
together, leading to an aggravation of the afternoon peak-load,
and finally, the end result in (4d) shows the result of applying
the Kohonen-inspired, peak-shaving algorithm.

IV. MULTI-AGENT SYSTEM

There are four types of agents in the multi-agent system
that we designed for these experiments, a PHEV agent, a
Transformer agent, a BRP agent and a PowerNode agent. Each
of these agents are responsible for their respective models. The
PHEV agent will act and react upon changes made to its PHEV
model, the Transformer agent will act and react upon changes
to its Transformer model, and similarly for the PowerNode
agent. The model for the BRP agent is the day-ahead model
and its predictions about the electricity demand, which it will
use, for instance, in scheduling the PHEVs charging plans in
any of the centralized mechanisms. Also, depending on the
mechanism used, each of these agent will also interact with
each other and their environment/models differently.

A. PHEV agent

In both mechanisms, the PHEV agent have two main
responsibilities. Its primary responsibility is to maximize the
battery levels within time of departure. Its secondary respon-
sibility is to achieve its primary responsibility in the most
socially economical way possible. How it fulfills these respon-
sibilities, however, depend upon which mechanism is used. In

the decentralized mechanisms, the PHEV agent chooses its
charging strategies by itself, while in the centralized mech-
anism it defers control of creating the charging plan to a
centralized scheduler.

B. Transformer agent

The transformer agent has one main responsibility, to ensure
that the capacity of the physical transformer it is assigned to is
never exceeded. To enforce this constraint, it can filter demand
messages made by PHEV agents that choose to participate in
the centralized scheduling mechanisms. After the PHEV agent
have negotiated a charging plan with the BRP agent, or if
the PHEV agent have already done so previously, the PHEV
agent will send a Demand message containing their current
energy demand to the Transformer agent. The Transformer
agent will collect these Demand messages from all of its
connected PHEV agent and PowerNode agents. If the sum of
the demand of all the Demand messages exceeds its capacity,
then it will filter away Demand messages that are coming
from PHEV agents until its capacity constraint is satisfied.
Note, however, that it only filter demand messages sent by the
PHEV agents. It does not filter messages from the PowerNode
agents, as these are assumed to be non-deferrable loads.

C. Balancing responsible party

Depending on which mechanism is used, the BRP agent has
one of two responsibilities. In the centralized mechanisms, the
BRP agent is responsible for scheduling the PHEV charging
plans for all the PHEV agents in the grid. If any of the two
decentralized mechanisms is used instead, then the BRP agent
is responsible for providing its predictions about the future
energy demand to the PHEV agents.

D. Centralized mechanisms

In the centralized mechanisms, the PHEV agent coordinates
its charging plan by interacting with the BRP agent and the
Transformer agent. The BRP agent communicates with its
Transformer agent, which it can announce its intention to
charge to. In turn, the Transformer agent which is responsible
for keeping peak load within the constraint of its transformer,
forwards the aggregated intentions of all its PHEV agents
to the BRP agent which performs load scheduling on the
intentions. After having scheduled the load profiles, the BRP
agent announces its charging plans back to the Transformer
agent. Depending on whether the constraints of the transformer
is satisfied, the Transformer agent will either request a new
plan from the BRP agent or forward the message back to the
intended PHEV agents.

1) The scheduling algorithms: How the PHEV agents
charging plans are scheduled in the centralized mechanisms
depend upon which scheduling algorithm that is used. The
BRP agent can choose between two centralized scheduling
algorithms: A reactive scheduling algorithm and a proactive
scheduling algorithm [3]. The goal of both algorithms is to
schedule the charging plans so that the overall difference
between the dayahead predictions and the realtime energy
demand is as low as possible.
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Reactive scheduling: In the reactive profile, energy is bal-
anced in a way that attempts to maintain a perfect balance
between the day-ahead profile and the actual demand, for
as long as possible. In Algorithm 1, pseudocode for the
scheduling algorithm is shown [3], showing how energy is
reserved for as long as the prediction of a given time is less
than the dayahead consumption for that timeperiod, and while
there is still energy left over to assign.

Algorithm 1 Pseudocode for a reactive scheduling strategy,
adapted from the algorithm described by [3]

1: function CREATE-PLAN
2: energyLeft← sum(intentions)
3:
4: for each t ∈ now . . . ttd do
5: if sum(prediction) <
sum(dayahead)&energyLeft > 0 then

6: plant ← χ.rate
7: predictiont ← predictiont + χ.rate
8: energyLeft← energyLeft− χ.rate
9: end if

10: end for
11:
12: return plan
13: end function

Algorithm 2 Pseudocode for a proactive scheduling strategy,
adapted from the algorithm described by [3]

1: function CREATE-PLAN
2: energyLeft← sum(intentions)
3:
4: while energyLeft > 0 do
5: if sum(dayahead)− sum(prediction) > 0 then
6: t← argmaxt(prediction(t)− dayahead(t))
7: plant ← χ.rate
8: predictiont ← predictiont + χ.rate
9: energyLeft← energyLeft− χ.rate

10: end if
11: end while
12:
13: return plan
14: end function

Proactive scheduling: In this profile, energy is distributed
in a way such that charges are assigned to times at which
the imbalance is greatest while there is a positive difference
in the dayahead quantity compared to predicted consumption.
Otherwise, energy is assigned to the times at which the imbal-
ance is smallest. This is intuitively because it is desirable to
minimize the average distance between the dayahead quantity
and the real-time predictions. By assigning energy to the
time of largest imbalance while the difference is positive,
actual real-time consumption is brought closer to the dayahead
quantity. If the difference is negative this means that the
overall consumption has exceeded the net dayahead quantity.
This means that wherever the charge is placed, it will have

a negative impact, but it will do the least harm at the time
at which the imbalance is the least. This is illustrated in the
pseudocode shown in Algorithm 2.

E. Decentralized mechanisms
In the decentralized mechanisms, the idea is that a peak-

shaving effect can be obtained by letting PHEVs choose
charging strategy on their own. They do this by randomizing
over a probability distribution, where the probability at a given
time determines the likelihood that a PHEV chooses to charge
during that time. This process is illustrated by pseudocode in
Algorithm 3.

Algorithm 3 Randomizing over a distribution
1: let remaining = battery.max - battery.current
2:
3: let plan = [..]
4:
5: for t ∈ now .. ttd do
6: if rand(0,1) < strategyt then
7: plant ← rate
8: remaining ← remaining - rate
9: end if

10: end for

1) Uniform strategy: For this, we investigate two different
strategies; one in which PHEVs choose charging times by ran-
domizing over a uniform distribution, under the constraint that
they will try to charge fully if they can. In the other strategy,
the PHEVs will ask the BRP agent about its predictions on
total electricity demand for the next six hours. The PHEVs will
then generate a strategy, assigning probabilities of whether
it will charge in each of the fifteen minutes leading up to
the next six hours. With the uniform strategy, the probability
distribution is 1

2 for each possible timeslot.
2) Mixed strategy: In the mixed strategy, the probabilities

will be weighted favorably towards times when total demand
is low. The algorithm for generating the mixed strategy can be
seen in algorithm 4, and Figure 5 shows a graphic illustration
of the process. The end-result is a distribution that is an
inverted distribution based on the normalized predictions about
the future energy consumption. These predictions come from
the BRP agent, and each time the PHEV agent recognizes that
it is connected to the grid and that its current battery capacity
is below maximum capacity, it will ask the BRP agent for
its predictions about the future energy consumption based on
a window from the present time and until the PHEV agent
believes it will disconnect from the grid again. Also, once the
PHEV has generated its charging strategy, randomizing over
the distribution, it reports it charging plan back to the BRP
agent. The BRP agent will then update its own predictions
with the charging plan that it got from the PHEV agent. This
prevents the PHEV agents from all generating their charging
plans based on the same distribution.

V. EXPERIMENTS

To test the mechanisms and our hypotheses, we designed
a set of experiments that would measure the performance of
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Algorithm 4 Generating a mixed strategy charging plan
1: let predictions = request(predictions, ttd)
2:
3: let max = argmax predictions
4: let min = argmin predictions
5:
6: for each x ∈ predictions do
7: strategyt ← 1.0− (x−min)/(max−min)
8: end for
9:

10: let plan = create-plan(strategy)
11:
12: inform(brp, plan)

(a) Scaling and normalizing the predictions by (x −
argmin)/(argmax− argmin)

(b) Inverting the normalized predictions

Fig. 5. An illustration of how the mixed strategy is generated

the different mechanisms with respect to stability, fairness and
peak-to-average ratio. The experiments consisted of running
the simulations for the length of 100 days, where each com-
bination of mechanism and day-ahead algorithm were used.
This gives a total number of 18 different experiments, with 6
combinations of day-ahead algorithm and mechanisms, where
each was tested with respect to stability, fairness and peak-
shaving. The experiments were done on a grid composed of
1756 power nodes and 616 PHEVs. The number of power
nodes come from the historical data that was used for the
simulations, while the number of PHEVs is reflected from the
predictions that by 2030, the ratio of PHEVs in Norway will be
30%. This assumes an average number of 1 vehicle per house.
In addition, the time period for the sampled data that was
used was from April 1st until July 10th, 2006. This interval
selected has hopefully limited the most significant influences
of seasonal changing on the experiments.

For the composition of the PHEV profiles used in the
experiments, each PHEV was randomly assigned one of the
four profiles in Figure ?? with a uniform likelihood of 25% for
each of them. The battery capacity of the PHEVs is based on
the Chevrolet Volt, with a large 16 kWh lithium-ion battery,

and each PHEV was given an average charging rate of 2.5 kWh
per hour, and a discharging rate of 8 kWh per hour driving.
These values were selected to give an average recharging rate
of 6,4 hours, and an average total driving time of 2 hours.
Further, the model assumes that the PHEV will charge its
batteries fully to maximum capacity, and that it will drive
entirely on its batteries until the capacity is depleted. While
these may be naive assumptions about how PHEVs work in
practice, note that these experiments are designed to stress
test the power grid, meaning that we are mostly interested in
demand and consumption by the PHEVs when connected to
the grid.

To compare and contrast the experiments, we ran two further
experiments: The baseline experiment, in which no scheduling
mechanisms were used, and the minimal extreme experiment,
in which the simulator were run without PHEVs present. These
two experiments represent polar extremes in a sense that the
baseline represent the worst case scenario and the minimal
extreme represent a lower case scenario. Either experiment
should not produce a worse average maximum peak than
the baseline, otherwise the mechanism would work counter
to its purpose. Also, no experiment should produce a lower
maximum peak than the minimal extreme, which would be an
indication of a flaw with the simulator.

VI. DISCUSSION

For the scheduling experiments, we were interested in the
performance of the different mechanisms with respect to
lowering the peak-to-average ratio and the average maximum
peak. The results of these experiments can be seen in Figure
6 and 7. Figure 6 shows a box plot graph of the peak-
to-average ratio. As can be seen, the results showed only
minor differences to the maximum, minimum and average
values for the PAR. The reason for this is illustrated by
Figure 7, where it is apparent that most of the mechanisms
are equal to the performance of the minimal extreme with
respect to the average maximum peak value. This seems to
suggest that any further performance improvement is limited
mostly by the average maximum peak of the power nodes.
The exception to this case is the Uniform strategy solution,
which performs worse than all the mechanisms, including the
baseline experiment.

Fig. 6. A boxplot graph showing the average PAR for each of the different
mechanisms. Lower is better.
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Fig. 7. A graph showing the average daily peak for each of the different
mechanisms. Lower is better.

Fig. 8. A graph showing the average capacity exceeded over all transformers,
for each of the different mechanisms. Lower is better.

Fig. 9. A graph showing the average PHEV demand filtered, for each of the
different mechanisms. Lower is better.

While the results were somewhat inconclusive as to which
mechanism was best at reducing the average maximum peak
and the average PAR, the results were somewhat more con-
vincing in the fairness experiments. In these experiments we
compared how the mechanisms performed with charging the
PHEV batteries. To do this, we measured the average ratio
of battery capacity at time of departure (BCTD) for each of
the PHEVs. This is illustrated in 10, which shows a histogram
over the average BCTD from 07.30 and until 24.00. The time-
period between 24.00 and 07.30 was omitted from the graphs,
as no PHEV profiles were given a positive probability for

(a) Mixed strategy (b) Uniform strategy

(c) Reactive scheduling,
distance-rule

(d) Reactive scheduling, peak-
shaving

(e) Proactive scheduling,
distance-rule

(f) Proactive scheduling, peak-
shaving

Fig. 10. These graphs show histograms over the average battery capacity at
time of departure for each of the different mechanisms. Each mechanism is
contrasted with the results from the baseline experiment for comparison.

departing during those hours. From this figure, it is apparent
that the mechanism that performed best compared to the
baseline was the Mixed strategy solution, which showed an
average BCTD of 56,37%. This is compared to the baseline,
which had an average of 77,61%. It is also apparent that the
average BCTD drops steadily from morning until evening.
This is consistent with the usage patterns defined by the PHEV
profiles, where the PHEVs have most of the night to recharge
until the morning hours, leading to a high BCTD. However,
from the afternoon and on, when the PHEVs are more active,
it is more challenging for the mechanisms to recharge them in
time, leading to a steady drop in the BCTD as the likelihood
of activity increases.

Finally, for the stability experiments, where we interested in
observing the performance of the different mechanisms with
respect to the average demand that exceeded the Transformers
capacity, or when applicable, the amount of demand filtered
by the Transformer agent from the PHEV charging plans. The
results for these experiments are illustrated in Figure 9, which
show the amount of PHEV demand filtered by the Transformer
agent, and in Figure 8, which show the amount of energy
exceeding the transformer capacity. The distinction between
these variables is that, while both measure excess demand, to
an extent, the filtering mechanism is only employed in the
scheduling mechanism. This means that if demand exceeds
the capacity for any of the transformers, the Transformer agent
may intervene by filtering away some demand from the PHEV
charging plans. However, only when there is no PHEV demand
left to filter, will the excess demand be registered as exceeding
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the capacity.
From Figure 8 experiments showed that all combinations

of the different mechanisms performed equally well to the
minimal extreme experiments which is the experiment where
no PHEVs are present in the grid. This means that all of the
mechanisms were able to prevent the PHEV demand from
aggravating the already strained power grid during times of
high demand. This is consistent with the observations made in
the scheduling experiments, which showed that all of the algo-
rithms managed to maintain an average maximum peak that
was identical to the minimal extreme experiment. However,
while all of the mechanism showed flawless performance with
respect to capacity exceeded, the decentralized mechanisms
had to resort to filtering some of the PHEV charging plans, as
can be seen in Figure 9. Ultimately, this has no effect on the
stability of the system, as the worst case scenario would be that
the Transformer agents would have to filter all of the PHEV
charging plans. This would lead to a result that would be
identical to the minimal extreme experiment, where no PHEVs
are used, meaning it would only lead to the PHEVs not being
able to charge their batteries. But since the Mixed strategy
solution was the mechanism that showed best performance in
charging the batteries, it seems fair to assume that the benefit
of this charging strategy more than cancels the negative result
in demand filtered.

VII. CONCLUSION

In summary, the mechanism that overall proved to be the
best performer was the decentralized, Mixed strategy solution,
where the PHEVs generate their own charging strategies based
on predictions they receive from the central BRP agent. This
does not preclude the centralized mechanisms, however, as
the results show that how the day-ahead profile is constructed
can have great impact on the efficiency of the mechanism.
From the results we found that while the centralized mecha-
nisms performed well with reducing peak-to-average ratio and
maximum peak, they showed some weakness in charging the
PHEVs. The best results of the centralized mechanisms came
when the day-ahead profile was created from the distance-
rule algorithm, where the largest imbalances in the day-ahead
profile was placed during the night time. In the peak-shaving
algorithm, where the imbalances were placed in relative prox-
imity to its expected original time-location, it seemed as if the
highly active PHEV profiles caused the scheduling mechanism
to be unable to capitalize on these imbalances. This further
seems to stress the importance of how the day-ahead profile
is calculated in the centralized mechanism, and it is possible
that better results can be obtained with other algorithms than
described in this article.

However, while the centralized mechanisms showed some
difficulty in scheduling based on how the day-ahead profile
was created, the Mixed strategy solution in the decentralized
mechanism showed positive results in all the experiments. This
is a promising result for decentralized scheduling mechanisms,
as they have several advantage over centralized mechanisms.
Firstly, if the entire mechanism depend on a centralized sched-
uler, then the system is vulnerable if the BRP agent goes down.

Secondly, scheduling algorithms are often computationally
demanding so optimal scheduling may not be plausible to do in
real-time. Compare this to the decentralized mechanism, where
the only dependency is the agent that the PHEV agent receives
its predictions from, and even if this agent should become
unavailable for some time, the PHEV agent may even default
to predictions of its own, removing the need for interaction
between agents altogether. However, removing the exchange
of information between agents would lead the agents blind to
choices made by other agents, which would most likely lead
to a less optimal result depending on how each PHEV agent
would generate their charging plans. Considering all of this,
the decentralized mechanism seem like a promising solution
to load-scheduling.
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B User Manual

B.1 Files and folders

The simulator uses the following files

• /SimCar/SimCar/data/grid.cfg

• /SimCar/SimCar/data/profiles.cfg

The simulator uses the following folders:

• /SimCar/SimCar/data/*

• /SimCar/SimCar/data/img/*

• /SimCar/SimCar/data/log/*

• /SimCar/SimCar/data/log/latex/*

• /SimCar/SimCar/data/log/experiments/*

• /SimCar/SimCar/data/interpol/*

The data folder contains the grid- and PHEV profile configuration files. In the
img folder, the simulator will store images from experimental runs, where images
are sampled for each day of the simulations. The images include consumption
graphs over the entire grid, and sample battery- and transformer graphs for selected
PHEVs and Transformers. In the log folder, and subfolders, log files from the
experimental results are recorded. Both in text format, LaTeX format and raw
binary data collected from the experiments. In the interpol folder, the historical
data is stored as .dat files, where each .dat file represent the historical used for each
of the PowerNodes in the simulator.

B.2 Scripts

In addition to the User Interface, the simulator comes with 4 complimentary scripts:
test powerprofiles.fsx, make tree.fsx, parse realtime data.fsx, parse results.fsx.

test powerprofiles.fsx

This script contains unit tests on calculating the expected PHEV demand

make tree.fsx

This script generates a power grid tree. It has four variables that can be set:
phev ratio, peak ratio, high trf, low trf.

The first variable, phev ratio, specifies the ratio of PHEV to PowerNodes, while
peak ratio is the factor used when assigning PowerNodes to the Transformers.
For instance, a peak ratio of 1.5 means that PowerNodes will be assigned to the



Transformer until the sum of the maximum peak value of the PowerNodes exceeds
1.5 times the maximum capacity of the Transformer.

The last two variables, high trf and low trf specifies the maximum capacity of
the low-pass transformers and high-pass transformers.

parse realtime data.fsx

This script provides some additional charting functionality that can be used to plot
the comparison charts used in the in the Discussion section of the thesis.

parse realtime data.fsx

This script was used for parsing the historical data used for the simulator to a
format that the simulator could use. The script also performs the Akima spline
interpolation on the data.

B.3 User Interface

The graphical user interface, seen in Figure B.1, is divided into three main sections:
The main charting area that contains the charting components, seen in Figure B.2,
the logging section, seen in Figure B.3, and the sidebar, seen in Figure B.4. The
main charting area is only meant to provide visual feedback that the simulator is
running, while quantitative results are stored in folder on the disk. Configuration
of the experiments are done in the sidebar, and textual information about the
progress of the simulations can be seen in logging section.

Sidebar

The sidebar section of the user interface contains controls for setting the day-ahead
algorithm, as seen in Figure B.5a, where the day-ahead portfolio can be set to
calculated using the Peak-shaving algorithm, the Distance-rule algorithm, None,
Superposition and Uniform. And in Figure B.5b, the drop down box for selecting
which mechanism to use can be seen. The choices include: Reactive, Proactive,
Uniform, Mixed and None. For selecting how to calculate the expected PHEV
demand, see Figure B.5c. The choices include: Expected, Simulated and None.

In addition to selecting which combination of mechanism and day-ahead algo-
rithms, it is possible to set the different parameters associated with these. Figure
B.5d shows where to set the θ variable in the distance-rule algorithm discussed in
Section ?? of the thesis. In addition, Figure B.5e shows where to set the different
parameters associated with the peak-shaving algorithm discussed in Section 5.4.3
of the thesis, and Figure B.5f shows where to set the size of the PHEV learning
window discussed in Section 6.2.1 of the thesis.



Figure B.1: This screenshot shows the graphical user interface for the simulator
that was developed for this thesis.



Figure B.2: A screenshot of the graphical user interface for using the simulator. In
this screenshot, the different charting areas are highlighted. These are meant to
provide the users with graphical feedback to the user of the progress, and are not
meant to be interacted with. The results of the simulations are rather stored on
drive for easier access.



Figure B.3: This screenshot shows the simulator textbox to the bottom left of the
screen and the debugging textbox. In the simulator textbox, the daily results will
be recorded. The debugging textbox will show any information which is relevant
to the simulations, its progress and success or failure, but which is not relevant to
the results of the experiments.



Figure B.4: On the far right in the user interface, the sidebar with the different
controls can be found



(a) Day-ahead al-
gorithm

(b) Scheduling
mechanism

(c) Expected
PHEV demand

(d) Distance-rule
parameters

(e) Peak-shaving
parameters

(f) PHEV learning
window

Figure B.5: A snapshot of the simulator user interface, showing the different con-
figuration options available through the simulator.



C Message Protocol



Type Contents Description
Charge Uχ - uncharged capacity

ttl - time to departure
rate - charging rate

Used by the PHEV agents to an-
nounce their charge intentions

Demand Ed - current demand by the
agent

Used by the PHEV agents and
PowerNode agents to announce
their demand to the Transformer
agent

Consume Ec - accepted demand to agent Used by the Transformer agents
to inform the PHEV agents and
PowerNode agents how much
they can consume at this time

Intentions ~E - list of charge intentions Wrapper message for the Trans-
former agents to collect all
charge intentions from all their
children nodes before propagat-
ing upwards

Dayahead d(t) - dayahead function Used by the simulator to update
the BRP agent with new daya-
head predictions

Prediction p(t) - prediction function Used by the simulator to update
the BRP agent with realtime pre-
dictions

Request
Predictions

- Used by the PHEV agents in the
Mixed strategy mechanism to re-
quest a window of predictions

Request
Model

- Used by the simulator to request
the agents model

Request
Dayahead

- Used by the simulator to request
the dayahead model from the
BRP agent

Predictions ~pt - predictions up to time t Used by the BRP agent when re-
sponding to RequestPredictions
from the PHEV agents

Model ~m - a model Used by the agents when re-
sponding to RequestModel

Strategy ~χt - charging strategy up to ex-
pected time to departure

Used by the PHEV agents in the
Mixed strategy mechanism when
informing the BRP agent about
their final strategy

Update t - current time Synchronization message from
the simualtor to the agents. In-
forms the agents that time has
advanced by a tick

Kill - Sends a termination request to
the agents

Reset - Sends a reset request to the
agents

Schedule sched - the schedule function Used to send the scheduling al-
gorithm to the BRP agent.

Table C.1: Full list of messages available to the agents in the simulator
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