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Abstract

Modern Graphics Processing Units (GPU) exhibit a high degree of par-

allelism and over the years have grown to adopt an increasing number of

techniques to speed-up photorealistic rendering. One such technique is tes-

sellation, i.e. the recursive subdivision of object elements into finer or coarser

parts with the aim of achieving the appropriate amount of detail.

The aim of this thesis is an adaptive tessellation algorithm for terrain

rendering which can highlight important parts of the terrain while maintain-

ing reasonable performance. This algorithm needs to be crack-free to avoid

pixel faults between adjacent patches. A prototype was created in OSG,

with GLSL shaders. The adaptive tessellation used three tessellation selec-

tion factors based on distance, a tessellation map and normals. An OSG

program with five GLSL shaders (vertex, tessellation control, tessellation

evaluation, geometry and fragment) was created for the tessellation of the

terrain. The greatest advantage of tessellation is the reduced bandwidth

between memory and GPU. Tessellation improves FPS, because it’s faster

to control vertices on the GPU than on the CPU.
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1 Introduction

In this chapter the motivation for this project will be presented together with the

problem description and the structure of this thesis. The main goal for this thesis

is to make a tessellated terrain for Vegvesenets car simulator. Vegvesenet use the

simulator to simulate traffic and road projects, therefore the terrain need to be

more accurate where the road meets the terrain. The solution was to make a

texture that follows the road and highlights important places, to specify the level

of tessellating. Vegvesenet needs terrain as close to the real environment as they

can get on their simulator, because the different tests need to look real to the

driver.

One of the largest problems in terrain rendering is performance. Today the

terrain is static, which means that wherever you are, the terrain will still be the

same. To speed up the FPS (Frames Per Second), the terrain is made less detailed

away from the road. Tessellation controls the details based on factors that makes a

good LOD (Level Of Detail). The factors made from specified needs, such as more

tessellation, are needed close. Every factor is used in the tessellation formula to

decide the final level of tessellation. The tessellation can change the terrain based

on the position of the camera and how detailed the height map is.

The product of this master thesis is an OSG (OpenSceneGraph) program with

GLSL (Graphics Library Shading Language) shaders that use adaptive tessellation

on the terrain. The terrain program uses light, texture and one camera. The

camera is needed to change the view matrix in a way that we can move over the

terrain. This is just for debugging purposes because in the simulation the camera

will be mounted on a car.
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1.1 Problem description

The objective of this thesis is the adaptive tessellation of terrain data for a driving

simulator at Vegvesen, in order to provide high-quality rendering of terrain data

in real time. It will be based on a height map that defines the terrain, a 3D road

network model and textures for making the terrain realistic. It will involve GPU

tessellation and OSG technology.

1.2 Structure of the thesis

The second chapter is about background and related work. This is the chapter

where the programming language is briefly presented and hardware is specified.

The third chapter contains the related work, while the fourth chapter holds the

method, the description of the vertex shaders and textures used in the terrain.

Later on the results are discussed in chapter five. Last comes the conclusion and

further work, in chapter six. In the appendix the shader code is provided.
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2 Background

2.1 Developing languages

To understand OSG which was specified in the problem description, it’s important

to understand OpenGL, since OSG is based on OpenGL. OSG is just a higher level

language. The main part of this chapter is about languages since it is a large part

of the project to understand the interface.

2.1.1 OpenGL

OpenGL (Open Graphics Library) [1] is a language to control graphics hardware.

It has commands to make primitives, matrix and all that we need to create 3dimen-

sional objects. The objects are made from primitives like points, lines, triangles

and patches. OpenGL added tessellation to version 4.0 [2]. This is done by using

tessellation shaders and the new primitive patches. The number of vertices for

GL PATCHES can vary from 1 - 32. The only primitive that is supported by tes-

sellation shaders is the primitive patches. The tessellation shaders consist of two

programmable shaders, tessellation control and tessellation evaluation. Between

them in the pipeline there is a fixed shader called tessellation primitive generator.

On the internet there are a lot of OpenGL tutorials. The tutorials explain basic

things like how to create a camera or add textures and lighting [3] [4].

2.1.2 OpenSceneGraph

A scene graph is a data structure, it contains different nodes that relate to each

other [5] [6]. It is most common to have one parent and multiple child nodes. OSG

was started by Don Burns when he was experimenting to make his hang gliding

simulator available to affordable hardware. In the nineties, Burns met a fellow

hang glider fan, Robert Osfield, who wanted to collaborate on the project. Osfield
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wanted to make a stand-alone OSG and took over the leadership. By 2006 there

were over 1500 users on the email list. OSG is used in advanced visualization and

simulation applications.

2.1.3 OpenGl Shading Language

GLSL (OpenGl Shading Language) [20] [21] is used to make shaders that con-

trol the OpenGL processing pipeline. The five processors that are programmable

are: vertex, tessellation control, tessellation evaluation, geometry and fragment.

The shader that controls the vertex processor is called vertex shader, tessellation

control shader and so on. In the vertex shader we can change vertices, one at a

time, often just passes through the vertices, or changes the position. Tessellation

control shader is the shader that decides the level of tessellation. It is therefore

an important shader when optimization is needed. The numbers of tessellation

drastically reduces frame rate. The maximum number for tessellation is 64. That

means that every edge is divided by 64. If the inner tessellation also is set to 64,

each quad will be divided 64 by 64. The tessellation evaluation shader decides

the position and attributes to the vertices generated by the tessellation primitive

generator. The position of the vertices can be found by interpolation between the

main vertices, by parametric patches or by height map. Geometry shader gets

primitives in and can do displacement on vertices and add attributes. Fragment

shader or pixel shader uses positions, colours, textures and calculates light to fill

the fragment with right colour.

To interact with the shaders from the code we use uniform variables. It could be

textures, matrix, floats and vectors. We need these if we have to change parameters

during the run. Each shader has built-in-functions that are available only for them.

The geometry shader uses for instance Emit Vertex and End primitive. This is

used to send vertices and complete the primitive.
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2.2 Hardware

To use hardware tessellation on GPU requires a graphic card which supports Di-

rectX 11 or OpenGL 4.0. The figures in this assignment is made with MSI GeForce

GTX 560Ti 2GB PhysX [25] and runs in 880MHz. This card supports DirectX

11and OpenGL 4.1, and was chosen based on price, performance and power con-

sumption.
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3 Related work

Here are similar approaches to terrain rendering presented.

3.1 Subdivision

Subdivision is to divide surfaces with a scheme. Catmull-Clark subdivision is one

of the most famous subdivision schemes [26]. The rules to subdivide a quad are to

split each face of the control mesh into four faces, by adding a vertex in the middle

and one new vertex at each edge. The position can be calculated by using a weight

mask. There are two main types of subdividing: interpolating and approximating.

Interpolating means that the control points remain in the subdivided mesh. In

the approximating approach the new points and the old points are moved in every

step. Catmull-Clark is an approximating subdivision [27].

3.2 Tessellation

One of the biggest feature to DirectX 11 was tessellation [28] [29]. Tessellation

is to divide a polygon into smaller pieces. While subdivision needs to calculate

one step at a time, tessellation calculates the entire dividing in one step. The

most popular way to use tessellation is to use a displacement map for changing

the height of the tessellated polygon. LOD becomes better with tessellation since

we can vary the level smoothly while the program runs.

Boesch [30] made a terrain by using Python and GLSL shaders. He used

one image for normals and height. The red, green and blue components vas the

normal and the alfa value stored the height. One of his optimizations was to set the

patches out of view to zero. Rideout have two articles about tessellation [31] [32],

both triangles and quads, and some good explanations to the most important

parameters that needs to be set for tessellation.
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3.2.1 Adaptive tessellation

Losasso and Hoppe [33] use a clipmap to decide the tessellation level. This has

similarities with texture mapping. The geometry clipmap caches the terrain in

a set of nested regular grids centred about where the viewer is. The mask has

different levels of tessellation at the power of two, and moves with the viewer.

This is a LOD, based on viewer distance.

Livny et.al [34] generates a sample grid. The resolution to the grid is deter-

mined by the hardware to the system, and is set to the resolution that the system

manages to run within the desired FPS. The grid remains fixed, usually for the

entire session. The persistent grid is mapped onto the z plane, by sending rays

from the viewport through the grid, on to the z plane which is the terrain base

plane.

3.2.2 Tessellating with displacement map

Displacement mapping is used to apply geometric detail to a simpler surface base.

This technique makes it easier to increase the complexity of the geometry. Moule

and McCool [35] use displacement map and adaptive tessellating. They find the

edges and use a user-defined threshold to set the tessellation factors. Displace-

ment maps can also be used to make 3d polygons, Jan Kautz and Hans-Peter

Seidel [36]render polygon from displacement maps by slicing through the volume.

Wang et.al. [37] presents an approach to rendering the displacement mapped sur-

face based on the complexity of the displacement map. They use a minimal set

of triangles which reduces memory usage and computational costs. The triangle

density is greatest where the details are. The cracks made from the connected low

and high vertices, are avoided by forcing the triangulation to include the edge.

The edge is found by looking at neighbour points for similar height.
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3.2.3 Tessellating with Bézier patches

Bézier patches [38] are used for tessellating when a curved patch needs positions

for the new vertices. The control points (initially vertices) decide how the patch

turns out. Dyken et.al. [39] uses Bézier patches when they adaptively tessellate

based on silhouette. Their method tests the normals from the triangle patches with

the viewpoint position. The silhouette is found, if one point is front-facing while

the other is back-facing. The tessellated geometry changes when the viewpoint is

moved.

3.3 Marching Cubes

The voxel-based rendering system Marching Cubes (MC) [40] [41], can be used

for making a terrain from a three dimensional image. MC looks at one cube at a

time, which has a value in every corner, and use a lookup table to find the number

of primitives to use. The lookup table is made from 14 different cubes that are

rotated to get all possible situations. If we count the 15th cube, which have zero

triangles, this makes 256 cases from 0 to 255. The vertices that lies on the edges

are placed by interpolations of the two corners. If one corner has value – 0.5 and

the other have 0.5 the edge vertex is placed right in the middle on the zero value.

MC is often used in water simulations where the voxels can make several clusters.
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4 Proposed Tessellation Method

Five shaders are used to tessellate the terrain: the vertex shader, the tessellation

control shader, the tessellation evaluation control shader, the geometry shader

and the fragment shader. Each shader is linked to the OSG program, and sends

information with uniform variables (see table 1 and 2). Every shader will be

explained in this section. Figure 1 shows how the shaders are linked together.

Figure 1: Shader connections

4.1 Vertex shader

When the patches arrive the vertex shader, all the vertices are in one plane, the

xy plane. Every vertex has the z value zero. Usually the height is also sent to

the vertex shader, but in this case there are two uniform variables, scaleXY and
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Table 1: Uniform variable table, part 1

Uniform name Variable type Description

heightMap sampler2D Texture with terrain height values

normalMap sampler2D Texture with terrain normal

tessellationMap sampler2D Texture deciding tessellation level

diffuse sampler2D Main texture

canyon rock01 sampler2D Rock texture

canyon rock02 sampler2D Rock texture

dry grass09 sampler2D Grass texture

dry grass12 sampler2D Grass texture

Romanian sand05 sampler2D Sand texture

VertRock 0 90 mask sampler2D Texture mask for rock textures

VertDetail 0 90 mask sampler2D Texture mask for grass and sand textures

Grass mask sampler2D Texture mask for grass

Flow mask sampler2D Texture mask for sand

AmbientOcc sampler2D Texture mask for ambient light
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Table 2: Uniform variable table, part 2

Uniform name Variable type Description

lightPosition Vec3 Position for light

ambientMaterial Vec3 Ambient light properties

diffuseMaterial Vec3 Diffuse light properties

specularMaterial Vec3 Specular light properties

shininess float Shininess light properties

rotationMatrix Matrix Rotate texture coordinates

mvp Matrix Projection * View * Model

normalMatrix Matrix3 The left upper 3 by 3 matrix from Model matrix

scaleXY float Scale factor for x and y axes

scaleZ float Scale factor for z axis

cameraPosition Vec3 Position of the camera

userDecidedLevel float Controls tessellation level
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scaleZ. These two variables are used to scale the terrain in both xy plane and in

z direction. Since this can change during the run of the program, there is no need

to pass height to the vertex processor when we don’t know the scale yet. The

texture coordinate is set by dividing the vertex position by scaleXY. If scaleXY

is 10, the height map will cover 10 times longer in both x and y direction. ScaleZ

controls the height. The height map contains values from 0 to 1 and is multiplied

with scaleZ, so if scaleZ is 250 the z value goes from 0 to 250. The height map is a

black and white image, which means that all the values red, green and blue have

the same value at the same pixel. In this case the red r component is used. When

the height is found, the complete position is being sent to the tessellation control

shader.

4.2 Tessellation control shader

This is the most important shader for tessellating. The tessellation control shader

decides how the patches will be tessellated. To get the best quality with an accept-

able FPS, we need a formula that adaptively decides the tessellation level for the

terrain. The formula was based on distance, tessellation map and normals from

the patch vertices.

4.2.1 Tessellation based on distance

To imagine how the distance is affecting the tessellation factor, think of a bounding

box or a bounding sphere in this case. When the middle of a quad edge comes

in contact with, or is inside the sphere, it will be tessellated. The amount of

tessellation is then calculated based on the distance to the camera position. Figure

2 is a patch from the tessellation control shader. The blue dots are the vertices

0,1,2,3 clockwise. And the ab, dc, ad and bc are four vectors that complete the

patch. It is important that the parallel vectors have the same direction, because

12



Figure 2: Vectors on a patch
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the edge combines the two patches. This means that the calculation happens two

times for every edge, and needs to be accurate to get the same tessellating factor.

The green dots are where the distance is checked. The position is calculated by

adding a half vector to the starting vertex position. For instance, the position for

vertex 0 added a half ab vector, as we can see in equation (1). The green dot

on the ad vector is abMidPos. vPosition[0] holds the position of the vertex 0 and

vPosition[1] for vertex 1 (vertices is the blue dots in figure 2).

abMidPos = vPosition[0].xyz +
vPosition[1].xyz − vPosition[0].xyz

2
(1)

When we have the distance to the centre point of every edge, the distance is

calculated from the point to the camera position. The tessellation factor is then

calculated based on the distances and in this case set to the gl TessLevelOuter[0],

bc to the gl TessLevelOuter[3] and so on. The red numbers in figure 2 show where

the vectors corresponds with the gl TessLevelOuter. The vertices are numbered

clockvice and the tessellation level is numbered counterclockwise. The inner tes-

sellation is set to be the average of the four edges.

4.2.2 Tessellation based on tessellation map

Vegvesenet use the simulator to simulate traffic and road projects, therefore the

terrain need to be more accurate where the road meets the terrain. The solution

was to make a texture that follows the road and highlights important places, to

specify the level of tessellating. The idea of a tessellation map sprung out of the

need for more detailed tessellation, close and on the roads. A grey value scaled

from 0 to 255 is assigned on a 2d image, based on how important the point on the

map is. Since we have to make the tessellation map ourselves, it does not only

limit us to draw roads, but other important areas such as towns. In the control
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shader the point tested against is the middle of the edge. The middle is found

by calculating each vector and dividing it by 2, then add it to the corresponding

corner, as in the distance tessellation factor. It is important to calculate the vectors

in the same direction on the opposite side. This is crucial because each edge will be

calculated 2 times since the patches share the edge between them. Both edges need

to be tessellated the same amount to prevent cracks between them. The point or

points could vary as long as they are calculated the same way. The parallel vectors

must also have the same number of points. In this tessellation control shader, one

point is used for every edge because the size of the road is larger than the size of

the patch. If the road is larger than the patch, the middle of the patch edge will

naturally be in the road. If the road is smaller than the patch then you need to

add more check points around the edge to prevent the road slipping undetected

between them.

4.2.3 Tessellation based on normals

Equally to the previous two sections, each edge is calculated twice, where the two

quads meet. The algorithm makes four new points for each edge, see figure 3. The

red dots are the existing vertices and the blue dots are the new points, where we

also check the normals. From figure 4 we can see that the four dots make two

squares, one on each side of the vector, in this case the bc vector. Listing 1 shows

how the translation vectors are made. The distance between the vertices in current

patch is used to find the position to the vertices of the neighbour patches.
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1 // Vectors to make p a r a l l e l patch edge ve c t o r s to compare

normals .

vec2 l e f t = vec2 ( vPos i t i on [ 0 ] . xy −vPos i t i on [ 1 ] . xy ) ;

3 vec2 r i g h t = vec2 ( vPos i t i on [ 1 ] . xy−vPos i t i on [ 0 ] . xy ) ;

vec2 up = vec2 ( vPos i t i on [ 1 ] . xy−vPos i t i on [ 2 ] . xy ) ;

5 vec2 down = vec2 ( vPos i t i on [ 2 ] . xy−vPos i t i on [ 1 ] . xy ) ;

Listing 1: Translation vectors from tessellation control shader

This is done for all four edges. The green lines in figure 4 shows which point

vertex 2 is tested with. The red lines show the test points for vertex 1. This is put in

a struct-array that contains the normal and distance to the camera. The distance

is used, if we want to use tessellation in a specified radius. In the figure, the

diagonal lines show the matching corners. The array is sent to normalTessFactor

and the angle between the normals from the diagonal vertices is calculated.

4.2.4 Tessellation control formula

The three tessellation factors described above are put together by formula (2).

Every factor has a weight to make it easy to decide how the tessellation is spread.

The constantTessellationWeight is for the patches that do not qualify in the other

tessellation factors. In this way we avoid that some patches are divided by 64 and

some others set to 1, at the same time.
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Figure 3: Points used in normal tessellation factor
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Figure 4: Points used in normal tessellation factor, for one edge
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• cTW = constantTessellationWeight (user decided weight, set in shader)

• nT = normalTessellation (from 0 to 1 and set by tessellation based on the

normals)

• nTW = normalTessellationWeight (user decided weight, set in shader)

• tT = textureTessellation (from 0 to 1 and set by tessellation based on tes-

sellation map)

• tTW = textureTessellationWeight (user decided weight, set in shader)

• DT = distanceTessellation (from 0 to 1 and set by tessellation based on

distance)

• dTW = distanceTessellationWeight (user decided weight, set in shader)

• userDecidedLevel = (from 0 to 63 changed by keyboard, while the program

runs)

TessLevel = 1+
cTW + nT ∗ nTW + tT ∗ tTW + DT ∗ dTW

cTW + nTW + tTW + dTW
∗userDecidedLevel

(2)

4.3 Tessellation evaluation shader

This shader can use fractional or integer for tessellation. When we choose integer,

the patches will be divided by 1, 2, 3, 4 and so on. This works when the tessellation

is constant, but if the tessellation factor is based on camera position, the patches

will jump between stages. This will look strange when the camera glides over the

terrain.

As we can see from figure 5, two vectors are calculated: the ad vector and the

bc vector. The gl TessCoord.x was used on both of the vectors to get two points.
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Figure 5: Vectors used in tessellation evaluation shader

If the gl TessCord.x (the two red dots in figure 5) was 0.5, the new tessellated

points are exactly in the middle of the vectors. Then gl TessCord.y (the blue dot

in figure 5) is used to find one point between the two points we got from ab and bc

vectors. This position is divided by scaleZ to create the texture coordinate. Then

the texture coordinate is used to find the height from the height map. The height

is multiplied by scaleZ to find the real height. Vertex position is then multiplied

by the model view projection (mvp) matrix and sent to the geometry shader.

4.4 Geometry shader

The light for the terrain was a bit of a challenge, since we can solve it in many ways.

The first test was to calculate one normal for all three vertices in one triangle, and

send them to the fragment shader. Figure 6 is an example of this.

This looks nice when the terrain was tessellated maximum (64), because each

triangle was as small as a pixel. When the terrain had no tessellation, it was easy
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Figure 6: Light calculated based on one normal for each triangle
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to spot the different colours on the triangles. This can make a cool effect and it’s

easy to see the structure, but this is inaccurate for a terrain, unless the tessellation

level is high. Since the tessellated vertices are generated in the control shader, a

normal map is needed in the geometry or pixel shader.

The next test was to calculate a normal map from the height map image. It was

sent to the fragment shader and got the normal for every pixel. This looks good,

but the problem with this approach was that we got the shadow-side for peaks,

that did not exist in the current tessellation level. When the terrain tessellation

level was high, the results were like the last test, good. The shadow-side got a peak

to lie behind. The chosen method uses the geometry shader to get in the normals,

one for every vertex. The light is then interpolating between these vertices in

the fragment shader. This will make the dark side of the peak less visible, if the

neighbour vertices lie by the side of the peak. When the normal is read in the three

components of the vector r g b, it varies from zero to one, because the image only

has positive values. The function NormalFromTexture takes in the colour value

from the normal map and subtract 0.5, since the normal map zero starts at 0,5.

Then we get the values from - 0,5 to 0,5. To the end the vector is normalized. The

normal, position and texture coordinates are sent to the fragment shader. This

can be done in a for-loop that runs three times, one for every vertex. This made

the program drop by several FPS, in one case from 216 FPS down to 210 FPS. On

the low FPS this made little difference to the FPS, it dropped from 58 to 57.

4.5 Multi texture Fragment shader

Light and texture is the main job for the fragment shader, also known as pixel

shader. This shader takes in six textures. Five of these are used both horizontally

and vertically. The rock texture, horizontally and vertically is mixed by using the

VertRock 0 90 mask. This mask follows the terrain in a way that we can’t see that
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the texture is repeated. To make it even better, there are two rock textures that

lie on top of each other, with a different scale. This is done by multiplying the

texture coordinate for each texture by different numbers. The two grass textures

are also used horizontally and vertically, but these have a grass mask that tells

where it should be grass. To the end the light is multiplied by the texture to

complete the fragment.

4.6 Single texture Fragment shader

This is a simplified version of the multi texture fragment shader that calculates

the light and uses one texture. The result of this is that FPS increases drastically

when using single texture.
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4.7 Terrain

The terrain is built from at least four images: the texture, height map, tessellation

map and the normal map. Four images were made to make a terrain over an

island, called Sekken. The texture and the height-values were found on the website

Norway in images [49].

4.7.1 Texture

When single textures are used on a terrain, there are two options: one is to have a

small image repeated several times on the terrain, this makes an unwanted pattern.

The other is to use one large image that covers the whole terrain. This image can

either use real terrain images like figure 7 or make it from multiple other textures

in the same way as the multi texture fragment shader.

Figure 7: Texture of Sekken
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4.7.2 Height map

The terrain starts as a plane, see figure 8. This is an image from an early stage

when the patches were just put together. This height map was made by filling

each elevation curve with a gray shade that fades to white on the highest values.

It is important to scale the heights of the terrain, so that the whole spectre is used

from 0 to 1, or 0 to 255. This is to make it more accurate. We have to remember

to set the correct height scale in the code. If not, the terrain will have wrong

proportions.

4.7.3 Tessellation map

Tessellation map is created manually, see figure 10. A good start is to draw the

main roads in white, then the smaller roads in gray and keep the uninteresting

areas in black. The image-values varies from 0 – 255 and will affect the patches

according to these. White (255) will have most effect and black (0) will have no

tessellation.

4.7.4 Normal map

Calculations of the normal map image are used in both the fragment shader and

control shader. We take in the height map image to get the right size for the height

map. Then the four position vectors are declared. A for-loop goes through every

pixel from the height map and calculates the four vectors (one for each neighbour

pixel). The for-loop sets the x and y component while the z component is read

from the height map by using x and y. Vectors to neighbour pixels are calculated.

Then 2 by 2 vectors are crossed. These have to be in 90 degrees of each other.

This makes four normals for the current pixel, these are summed together and

normalized to make the final normal for the pixel. The normal is given the colour

value. Negative goes from 0 to 127, positive goes from 127 to 255. This is stored
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Figure 8: Plane of patches
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Figure 9: heightMap

Figure 10: tessellationMap
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Figure 11: normalMap

in the normal map image. One example for a height map is viewed in figure 11.

4.8 Camera and input

The camera was the main reason to have an input handler. The key description is

listed in table 3. The camera creates the view matrix with help from makeLookAt

in OSG. The makeLookAt takes three arguments: camera position, target position

and up vector. The up vector is set to (0,0,1) to specify that z is the up axis. The

calculations of the target position and camera position are viewed in code listing 2.

To visualize how this is done, see figure 12. The blue dot is the camera position

and will always stay in the middle of the sphere. Target position is the green

dot, and will move according to specified theta and phi. The length from camera

position to camera position will always be one, therefore the target position is in

the sphere surface at all time.
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1 // View matrix .

// Ca l cu la t e look−at−vec to r based on

3 // the two ang l e s s e t by the input handler .

ta rge tVecto r . x ( ) = s i n ( ( theta ∗ 3 .14 / 180) ) ;

5 ta rge tVecto r . y ( ) = cos ( ( theta ∗ 3 .14 / 180) ) ;

ta rge tVecto r . z ( ) = tan ( ( phi ∗ 3 .14 / 180) ) ;

7 ta rge tVecto r . normal ize ( ) ;

9 // Ca lcu la t e t r a n s l a t i o n .

cameraPos i t ion += targe tVecto r ∗ speed ;

11 speed = 0 ; // Set speed to zero again .

13 Vec3 t a r g e t P o s i t i o n = cameraPos i t ion + targe tVecto r ;

pos i t ionUni form−>s e t ( cameraPos i t ion ) ; // Set uniform .

15

Vec3 upVector = Vec3 (0 , 0 , 1 ) ;

17 Matrix view ;

view . makeLookAt ( cameraPosit ion , t a r g e t P o s i t i o n , upVector ) ;

Listing 2: View matrix code from OSG

4.9 Light

Per pixel lighting means that each pixel has its own normal, when calculating the

light. In this program the best way to calculate light is by using one normal for

every vertex. The terrain changes in different tessellation levels. With a correct

normal for every vertex, the light is calculated by interpolating between them,

see listing 3. The fragment shaders light calculation is based on a shader by

Rideout [32]. The maximum light occur, when the normal and light vector are in
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Figure 12: Camera vector
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Table 3: Key description

Key Description

E Lifts camera in z direction

Q Lower camera in z direction

A Rotate camera left

D Rotate camera right

W Move camera forward in view direction

S Move camera backward in view direction

R Rotate camera up

F Rotate camera down

T Add one to userDecidedLevel

G Subtract one from userDecidedLevel

X Set render mode to wireframe

Z Set render mode to fill

O Add one to scaleZ

L Subtract one from scaleZ

I Add one to scaleXY

K Subtract one from scaleXY
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the same direction.
// Light c a l c u l a t i o n

2 vec3 h = normal ize ( l i g h t P o s i t i o n + vec3 (0 , 0 , 1) ) ;

f l o a t df = abs ( dot ( gNormal , l i g h t P o s i t i o n ) ) ;

4 f l o a t s f = abs ( dot ( gNormal , normal ize ( l i g h t P o s i t i o n + vec3

(0 , 0 , 1) ) ) ) ;

s f = pow( s f , s h i n i n e s s ) ;

6

// Ca lcu la t e the l i g h t based on the normal and l i g h t

p o s i t i o n .

8 vec3 l i g h t = ambientMater ia l + df ∗ d i f f u s e M a t e r i a l + s f ∗

spe cu l a rMate r i a l ;

Listing 3: Light calculation from fragment shader
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5 Results

This chapter shows the result of the tessellation program. Every figure shows

different tessellation modes viewed in both fill mode and line mode (wireframe).

This is because we need to render it as wireframe to get all the details of how

the patches are divided and tessellated together. But it’s necessary to show how

the terrain is in fill mode to know how the terrain is adapting to the tessellation

modes. Also to reveal that the terrain is rendered smooth, with no gaps between

the patches. It is important to know the difference between triangles and patches.

Patches are what you can see in figure 13. Two triangles make the quadratic patch.

This patch can be divided in 64 * 64, and still being one patch, but it is 64 * 64

* 2 triangles.

5.1 Multi textures

In this section the figures are made by multiple textures and texture masks. The

data was provided by Jo Skjermo. Table 4 shows the FPS for the figures from this

section. Subsection shows different tessellation factors by themselves. First, we

compare tessellation level 1 with 64, and then each factor shows how they affect

the terrain. To the end the final results are viewed.

5.1.1 Image tessellation 1 vs 64

In figure 13 we can see the terrain passed through the control shader with tessel-

lation level one. This means that no extra vertices are made. This is exactly how

the vertices left the vertex shader.

Figure 14, shows the terrain when tessellation level is set to 64, which is the

maximum level. In the back it seems that the terrain is filled. It means that the

size of each triangle is close to the size of one pixel.
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Table 4: FPS table multi textures

Tessellating factor Tessellation level Line or Fill FPS Screen resolution

Constant 1 F 312 1280 x 800

Constant 1 L 485 1280 x 800

Constant 64 F 23 1280 x 800

Constant 64 L 108 1280 x 800

Normal 2 F 181 1280 x 800

Normal 2 L 374 1280 x 800

Distance 4 F 257 1280 x 800

Distance 4 L 422 1280 x 800

Tessellation Map 4 F 407 1280 x 800

Tessellation Map 4 L 381 1280 x 800

Tessellation Map 18 F 373 1280 x 800

Tessellation Map 18 L 219 1280 x 800

All Factors 10 F 215 1280 x 800

All Factors 10 L 161 1280 x 800
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Figure 13: Tessellation level set to 1
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Figure 14: Tessellation level set to 64
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5.1.2 Distance tessellation

This is the level of detail tessellation mode. The closer we are to the patch, the

more it tessellates. As we can see in figure 15, the distance factor is multiplied

by 4 (userDecidedLevel = 4). This could be set up to 64, but it is easier to see

the triangles like this in the demonstration image. The evaluation shader takes in

fractional numbers in this example. Both radius and tessellation level should be

set according to hardware and terrain to get the best result.

5.1.3 Tessellation map

It is important to consider camera position and tessellated area when evaluating

the FPS from table 4. To show how tessellation map factor works, the camera is

lifted to get an overview. Because of this, the FPS will be different. The view is

changed and we see less or more patches. In figure 16 we can see a more tessellated

area, that could be a road, in the wireframe model. When other models are put

on the terrain, the terrain needs to be accurate to prevent the models to either

fly over or be buried under the ground. Vegvesenet have more accuracy on the

road than the terrain. This is a problem when the terrain is coming up through

the road. The only way to fix this is to raise the road, or with the tessellation we

could send in values of the road to lower the ground.

Figure 17 shows how the tessellation map factor adapts to the terrain. It is

able to reach high tessellation in just one patch. Note that the patches have the

same tessellation level as neighbouring patches against shared border.

5.1.4 Normal tessellation

Figure 18 shows the normal tessellation factor in use. When we use this factor

there is no need for extra tessellation on the silhouette. The normal tessellation

factor will kick in when the terrain goes over a peak, because of the changes
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Figure 15: Distance tessellation with userDecidedLevel set to 4
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Figure 16: Tessellation map with userDecidedLevel set to 4
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Figure 17: Tessellation map with userDecidedLevel set to 18
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in normals. If we look at the figure we can see that the step has tessellation

factor 1. This is because the normal is in the same direction. If you see in the

hillside where the terrain alters rapidly, the tessellation factor is set up to give

an accurate representation of the terrain. This tessellation factor will make sure

that every important detail is shown. The normal factor is the most complicated

factor of them all and uses a lot of calculating in the control shader, because it

checks 24 normals for every patch. To improve this, we can set a distance for

where we should use the normal tessellation and we could go over to silhouette

tessellation instead, because it just checks 4 normals for every patch. When we

use silhouette tessellation the only areas that will be tessellated are the patches

touching the silhouette, in addition to normal tessellation that tessellates more

where the terrain bends.

5.1.5 Tessellation formula

The results of all the factors combined together with tessellation formula is shown

in figure 19. For all the factors: normal, distance, the tessellation map and the

static factor creates this image. The closest patches are divided more than the

flat patches far away. The road is tessellated, and the silhouette that consists of

mountains is smooth, because the normal factor detects the changes when following

over the peak. When the userDecidedLevel is changed, it will affect all the factors.

In this figure, the userDecidedLevel is set to 10, but could be set up to 64. This

is the final result for this thesis and can be used for tessellation rendering in

simulations and games. Each factor can also change their weight to dominate

more and to make it easier to switch between different programs.
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Figure 18: Normal tessellation with userDecidedLevel set to 2
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Figure 19: Tessellation formula with userDecidedLevel set to 10
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5.2 Single texture terrain

The single texture terrain gives a simpler fragment shader that runs faster. In

these images the line mode (wireframe) is slower than the fill mode. The FPS is

shown in table 5. These images use the tessellation formula with all factors. All

the factors have the same weight in this example.

Table 5: FPS table single texture

Location Tessellating factor Tessellation level Line or Fill FPS Screen resolution

Sekken All Factors 16 F 470 1280 x 800

Sekken All Factors 16 L 386 1280 x 800

Trondheim All Factors 16 F 461 1280 x 800

Trondheim All Factors 16 L 356 1280 x 800

5.2.1 Sekken

This island from figure 20, is made from the height map made by contour lines.

We can see how the ocean is just tessellated by the constant factor. The camera

is too far away for the distance factor to have any effect.

5.2.2 Trondheim

Trondheim, in figure 21, shows another terrain with single texture. This is one

of the current terrains used in the car and truck simulator at Vegvesenet. The

data was given by Jo Skjermo. The camera is placed over the city heading for

Gløshaugen. It is hard to see the contours of the terrain at this camera height, but

it is to show how the texture fits the terrain. When the camera is placed closer to

the ground, we can see the terrain better.

44



Figure 20: Sekken
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Figure 21: Trondheim
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6 Discussion

The result of this work is an executable terrain tessellation program with OSG

and GLSL shaders. The control shader has three tessellation factors: distance, a

tessellation map and the normals to the patch. The fourth factor is a constant

decided by user. This constant helps to divide the patches which never satisfy the

conditions to be tessellated. This constant helps to make a smoother terrain when

the tessellation level is set close to maximum. All of these factors can vary from

zero to one. Control shader also includes weights for each factor. The weights

are used to specify how much each factor affects the tessellation level, because the

terrain can be built in many ways. The weights create a more general formula

and can be used for all terrain and simulators. Changing the weights gives the

user opportunity to adjust for the best result. The sum of all factors and weights

should be between zero and one, and then multiplied with our userDecidedLevel,

set from input, which varies from zero to sixty three. This is done because the

final edge tessellation level must be between zero and sixty four. The formula

starts at one and goes up to sixty four. If one patch has zero, it will not be drawn.

This is something that can be done in further work, by setting patches known

for sure are out of view to zero. This program can help the OSG environment

to use tessellation because there is little work done by now. OSG 3,0 is based

on OpenGL 4,0, and therefore supports tessellation. To use tessellation in OSG

has been harder than OpenGL, because the parameters are set in a different way,

and when we look in the documentation for the OSG, some of the set-methods

haven’t been made yet. This is because we can go to other set methods in OSG

that can do the same. The first tessellation program was in OpenGL, because

it was better documented and some tutorial was available. OpenGL helped me

understand tessellation and some of the error codes from the shaders. When I had

the OpenGL program running, I knew that the hardware supported the shaders.

47



Then I could concentrate on the OSG to look for errors in reading in shaders and

execute them. This program can help people, starting with tessellation in OSG.

The threshold to create a program that can tessellate gets smaller when a similar

program exists. The most challenging problem in the start of this project was to

get OSG and Visual Studio correctly set up. All the packages and parameters needs

to be correct. This work proves that OSG and the tessellation shaders cooperate

well together. This is important for continuing using OSG, since tessellation has

come to stay. Tessellation is important because it makes a good LOD. Terrain is

difficult to render since it consist of large models and needs to be continuous with

no gaps between the parts. An ideal frame would be that all primitives have the

same size, no matter if you’re looking at the horizon or the close terrain. With

the exception: the parts that need higher accuracy, like silhouette and roads. The

tessellation formula presented in this thesis creates a good LOD, because of the

distance factor. The silhouette becomes smooth because we have high level of

tessellation where the derivation of the terrain curve is large. This is checked with

the normal factor that looks at the changes on the normals to decide tessellation

level. These tessellation factors will make a more detailed terrain, and at the

same time checks for over-tessellation, which will increase the FPS. FPS tables

for the multi textures and single textures, shows that the fragment shaders for

the multi textures are complex and uses too many textures. If we had to improve

the FPS, this would be the place to start. In the single textures we can see that

the fill-mode has higher FPS than the wireframe / line mode, but in the multi

textures the wireframe modes have significantly higher FPS. This because the

multi texture fragment shader takes in too many textures, and becomes slower

than in the wireframe mode. Three different terrains are viewed in this thesis to

show how easy it is to modify the code to take in other terrain. Either to change

the number of patches, or number of textures. If you look at figure 19, which is
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the complete results of all factors with tessellation level ten, you can see that the

closest patches are divided more than the flat patches far away. If you remember

where the road went you can see that the terrain is tessellated more there too,

and the silhouette that consists of mountains are smooth because of the change

in normals when you follow over the peak. The figures of Sekken and Trondheim

also use the full formula of tessellations at the userDecidedLevel of sixteen. Each

resolution of the window was 1280 * 800. If the resolution is set down, the FPS

will increase drastically and the other way around if the resolution is set higher.
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7 Conclusion and further work

Tessellation is a powerful feature. Numbers of vertices is reduced when sent to

the graphic card, and this reduces bandwidth and memory usage. In this thesis,

tessellation was used to get a better accuracy of the terrain. The thesis looks at

adapting tessellation for terrain rendering. The solution is a program with three

variable tessellation factors and one static. We can decide how much each factor

will affect the tessellation of the terrain. The evaluation shader uses a height

map to displace the position of each new vertex. At the start Bèzier patches was

used to find the positions, but that became too inaccurate, because the data from

Vegvesenet only has a height for every tenth meter. If we skip sixty four pixels

in the height map, it means that we have only one correct position for every 160

metres, if we use sixteen vertices to make one patch. The height map is available

in the evaluation shaders and can find exact values for all new vertices. Now

we have an accurate terrain where we need it. In the control shader, a struct is

holding the distance to every vertex, where we test for the normal. Normal based

tessellation is used on the whole terrain, just based on normals, but in further

work we could for instance restrain the distance of where the normal factor should

be applied. Another thing that could be done is to use bump maps together with

texture mask. If for instance the terrain has cobblestone road, the bump map will

adjust the heights so that the stones will stand out. Other factors that can be used

are to calculate tessellation factor for silhouettes, or make a grid for the camera

that tessellates based on the screen space. This means that the closest patches

will be tessellated more and the distant patches tessellated less. This has been

done before by Livny et.al. [34]. We can also check if the patches are shown on

the screen. If they don’t show, we set the tessellation factor to zero. Then none

of the vertices for this patch will be passed on.
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[40] Ryan Geiss GPU Gems 3

[41] Timothy S. Newman and Hong Yi A survey of the marching cubes al-

gorithm

[42] Mike Bailey http://web.engr.oregonstate.edu/ mjb/cs519/ [May 11, 2012]

[43] http://recreationstudios.blogspot.com/2010/03/simple-tessellation- exam-

ple.html

[44] Microsoft http://msdn.microsoft.com/en-us/library/windows/ desk-

top/ff476340(v=vs.85).aspx [May 11, 2012]

[45] OpenGL http://www.clockworkcoders.com/oglsl/ [May 11, 2012]

[46] Multi-Texture http://www.lighthouse3d.com/tutorials/glsl-

tutorial/multi-texture/ [May 11, 2012]

[47] Mourad Boufarguinel create a image http://www.mail-archive.com/osg-

users@lists.openscenegraph.org/msg30381.html [May 11, 2012]

[48] World, View and Projection Matrix Unveiledl

http://robertokoci.com/world-view-projection-matrix-unveiled/ [May 11,

2012]

[49] http://www.norgeibilder.no/ [May 11, 2012]

[50] http://rastertek.com/tutindex.html [May 11, 2012]

54



[51] Michael Doggett and Johannes Hirche Adaptive View Dependent

Tessellation of Displacement Maps

[52] Yotam Livny, Zvi Kogan and Jihad El-Sana Seamless patches for

GPU-based terrain rendering

[53] John McDonald Tessellation on Any Budget

[54] Iain Cantlay DirectX 11 Terrain Tessellation

[55] Bill Bilodeau and Peter Lohrmann Tessellation in a Low Poly World

[56] Jon Story and Cem Cebenoyan Tessellation Performance

[57] Edward Angel Interactive Computer Graphics, fifth edition

[58] Hearn Baker Computer Graphics with OpenGL, third edition

[59] Dave Shreiner OpenGL Programming Guide, seventh edition

[60] David Wolff OpenGL 4.0 Shading Language Cookbook

55



A Appendix

A.1 Vertex shader

//

2 // Vertex shader .

//

4

// Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

6 #ver s i on 400

8 // Gets in p o s i t i o n .

in vec4 p o s i t i o n ;

10

// Sends ver tex p o s i t i o n out to t e s s e l l a t i o n c o n t r o l shader

.

12 out vec4 vPos i t i on ;

14 // Uniform s e t by OSG.

uniform sampler2D heightMap ;

16 uniform f l o a t scaleXY ;

uniform f l o a t s ca l eZ ;

18

//

20 // Main

//

22 void main ( void )
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{

24 // Set t ex tu re coo rd inate based on p o s i t i o n and s c a l e in

XY plane .

vec2 textureCoord inate = p o s i t i o n . xy / scaleXY ;

26

// Use t ex tu re coord ina te to f i n d the value on the he ight

Map,

28 // mult ip ly i t with s c a l e ( a long the Z a x i s ) to f i n d the

he ight .

f l o a t he ight = texture ( heightMap , textureCoord inate ) . r ∗

s ca l eZ ;

30

// Set the new ver tex p o s i t i o n .

32 vec4 pos i t ionWithHeight = vec4 ( p o s i t i o n . x , p o s i t i o n . y ,

he ight , 1 . 0 ) ;

34 // Sends ver tex p o s i t i o n to the t e s s e l l a t i o n c o n t r o l

shader .

vPos i t i on = pos i t ionWithHeight ;

36 }
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A.2 Tessellation control shader

//

2 // T e s s e l l a t i o n c o n t r o l shader .

//

4

// Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

6 #ver s i on 400

8 // Spec i f y numbers o f v e r t i c e s out .

layout ( v e r t i c e s = 4) out ;

10

// Gets in ver tex p o s i t i o n from the ver tex shader .

12 in vec4 vPos i t i on [ ] ;

14 // Sends ver tex p o s i t i o n out to the t e s s e l l a t i o n

e v a l ua t i o n s shader .

out vec4 t c P o s i t i o n [ ] ;

16

// Uniforms .

18 uniform f l o a t t e s s e l l a t i o n L e v e l ;

uniform f l o a t scaleXY ;

20 uniform f l o a t s ca l eZ ;

22 // Uniform cameraPos i t ion used with d i s t anc e c a l c u l a t i o n s .

uniform vec3 cameraPos i t ion ;

24
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// Uniform te s s e l l a t i onMap and normalMap .

26 uniform sampler2D te s s e l l a t i onMap ;

uniform sampler2D normalMap ;

28

// Get ID .

30 #d e f i n e ID g l Invoca t i on ID

32 //

// NormalFromTexture takes in the co l ou r va lue from normal

map and subt rac t 0 . 5 ,

34 // s i n c e the normal Map zero s t a r t s on 0 ,5 , then we get the

va lues from − 0 ,5 to 0 , 5 .

// To the end we normal ize the vec to r .

36 //

vec3 NormalFromTexture ( vec3 normal )

38 {

normal . x = normal . x − 0 . 5 ;

40 normal . y = normal . y − 0 . 5 ;

normal . z = normal . z − 0 . 5 ;

42 normal = normal ize ( normal ) ;

r e turn normal ;

44 } ;

46 //

// DistanceFactor

48 //

f l o a t DistanceFactor ( f l o a t f a c t o r )
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50 {

i n t l i m i t = 50 ;

52

i f ( f a c t o r > l i m i t )

54 {

f a c t o r = 0 ;

56 }

e l s e

58 {

f a c t o r = (50 − f a c t o r ) /10 ;

60 }

r e turn f a c t o r ;

62 } ;

64 //

// ver tex s t r u c t conta in s normal and d i s t anc e to a ver tex

from cameraPos i t ion .

66 //

s t r u c t ver tex

68 {

vec3 vertexNormal ;

70 f l o a t d i s t anc e ;

} ;

72

//

74 // normalTessFactor

//
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76 f l o a t normalTessFactor ( ver tex [ 6 ] array )

{

78 // c a l c u l a t e the ang l e s between oppos i t e co rne r s .

f l o a t t e s t a n g l e = acos ( dot ( array [ 0 ] . vertexNormal , array

[ 3 ] . vertexNormal ) ) ;

80 f l o a t t e s t a n g l e 9 0 = acos ( dot ( array [ 2 ] . vertexNormal ,

array [ 1 ] . vertexNormal ) ) ;

f l o a t t e s t a n g l e 2 = acos ( dot ( array [ 0 ] . vertexNormal , array

[ 5 ] . vertexNormal ) ) ;

82 f l o a t t e s t ang l e 902 = acos ( dot ( array [ 1 ] . vertexNormal ,

array [ 4 ] . vertexNormal ) ) ;

84

f l o a t f a c t o r = 0 ;

86

i f ( t e s t a n g l e > 0 .90 | | t e s t a n g l e 9 0 > 0 . 9 0 | | t e s t a n g l e 2 >

0 .90 | | t e s t ang l e 902 > 0 . 90 ) // uses rad ians

88 {

r e turn ( t e s t a n g l e + t e s t a n g l e 9 0 + t e s t a n g l e 2 +

te s t ang l e 902 ) ;

90 }

r e turn 0 ;

92

} ;

94

//

96 // Main .
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//

98 void main ( )

{

100 // Passes through the ver tex p o s i t i o n .

t c P o s i t i o n [ ID ] = vPos i t i on [ ID ] ;

102

// Test that ID i s ze ro .

104 i f ( ID == 0)

{

106

//

108 // T e s s e l l a t i o n based on normals .

//

110

// Dec lare ver tex s t r u c t f o r each s i d e o f the patch .

112 ver tex [ 6 ] a b v e r t i c e s ;

ve r tex [ 6 ] a d v e r t i c e s ;

114 ver tex [ 6 ] d c v e r t i c e s ;

ve r tex [ 6 ] b c v e r t i c e s ;

116

/∗

118 // Vectors to make p a r a l l e l patch edge ve c t o r s to

compare normals .

vec2 l e f t = vec2 (−2 ,0 ) ;

120 vec2 r i g h t = vec2 (2 ,0 ) ;

vec2 up = vec2 (0 , 2 ) ;

122 vec2 down = vec2 ( 0,−2 ) ;
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∗/

124 // Vectors to make p a r a l l e l patch edge ve c t o r s to

compare normals .

vec2 l e f t = vec2 ( vPos i t i on [ 0 ] . xy −vPos i t i on [ 1 ] . xy ) ;

126 vec2 r i g h t = vec2 ( vPos i t i on [ 1 ] . xy−vPos i t i on [ 0 ] . xy ) ;

vec2 up = vec2 ( vPos i t i on [ 1 ] . xy−vPos i t i on [ 2 ] . xy ) ;

128 vec2 down = vec2 ( vPos i t i on [ 2 ] . xy−vPos i t i on [ 1 ] . xy ) ;

130 // abVector .

// Set normal and d i s t anc e to the two v e r t i c e s in the

abVector .

132 a b v e r t i c e s [ 0 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 0 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy ) ,

cameraPos i t ion . xy ) ;

134 a b v e r t i c e s [ 1 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 1 ] . xy ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 1 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 1 ] . xy ) ,

cameraPos i t ion . xy ) ;

136

// Set normal and d i s t anc e to the two v e r t i c e s ( in the

abVector ) added the l e f t vec to r .

138 a b v e r t i c e s [ 2 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy + l e f t ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 2 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy +

l e f t ) , cameraPos i t ion . xy ) ;
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140 a b v e r t i c e s [ 3 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 1 ] . xy+ l e f t ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 3 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 1 ] . xy+

l e f t ) , cameraPos i t ion . xy ) ;

142

// Set normal and d i s t anc e to the two v e r t i c e s ( in the

abVector ) added the r i g h t vec to r .

144 a b v e r t i c e s [ 4 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy+ r i g h t ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 4 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy+

r i g h t ) , cameraPos i t ion . xy ) ;

146 a b v e r t i c e s [ 5 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 1 ] . xy + r i g h t ) / scaleXY ) . xyz ) ;

a b v e r t i c e s [ 5 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 1 ] . xy+

r i g h t ) , cameraPos i t ion . xy ) ;

148

150 // adVector

// Set normal and d i s t anc e to the two v e r t i c e s in the

adVector .

152 a d v e r t i c e s [ 0 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy ) / scaleXY ) . xyz ) ;

a d v e r t i c e s [ 0 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy ) ,

cameraPos i t ion . xy ) ;

154 a d v e r t i c e s [ 1 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 3 ] . xy ) / scaleXY ) . xyz ) ;
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a d v e r t i c e s [ 1 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 3 ] . xy ) ,

cameraPos i t ion . xy ) ;

156

// Set normal and d i s t anc e to the two v e r t i c e s ( in the

adVector ) added the down vecto r .

158 a d v e r t i c e s [ 2 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy + down) / scaleXY ) . xyz ) ;

a d v e r t i c e s [ 2 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy +

down) , cameraPos i t ion . xy ) ;

160 a d v e r t i c e s [ 3 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 3 ] . xy+ down) / scaleXY ) . xyz ) ;

a d v e r t i c e s [ 3 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 3 ] . xy+

down) , cameraPos i t ion . xy ) ;

162

// Set normal and d i s t anc e to the two v e r t i c e s ( in the

adVector ) added the up vec to r .

164 a d v e r t i c e s [ 4 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 0 ] . xy+ up) / scaleXY ) . xyz ) ;

a d v e r t i c e s [ 4 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 0 ] . xy+ up

) , cameraPos i t ion . xy ) ;

166 a d v e r t i c e s [ 5 ] . vertexNormal = NormalFromTexture ( t ex ture (

normalMap , ( vPos i t i on [ 3 ] . xy+ up) / scaleXY ) . xyz ) ;

a d v e r t i c e s [ 5 ] . d i s t ance = d i s t anc e ( ( vPos i t i on [ 3 ] . xy+ up)

, cameraPos i t ion . xy ) ;

168
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170 // dcVector . Do the same to dcVector as abVector

because they are p a r a l l e l .

d c v e r t i c e s [ 0 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 3 ] . xy ) / scaleXY ) . xyz ) ;

172 d c v e r t i c e s [ 0 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 3 ] . xy ) ,

cameraPos i t ion . xy ) ;

d c v e r t i c e s [ 1 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy ) / scaleXY ) . xyz ) ;

174 d c v e r t i c e s [ 1 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy ) ,

cameraPos i t ion . xy ) ;

176 d c v e r t i c e s [ 2 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 3 ] . xy + l e f t ) / scaleXY ) . xyz ) ;

d c v e r t i c e s [ 2 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 3 ] . xy +

l e f t ) , cameraPos i t ion . xy ) ;

178 d c v e r t i c e s [ 3 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy+ l e f t ) / scaleXY ) . xyz ) ;

d c v e r t i c e s [ 3 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy+

l e f t ) , cameraPos i t ion . xy ) ;

180

d c v e r t i c e s [ 4 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 3 ] . xy+ r i g h t ) / scaleXY ) . xyz ) ;

182 d c v e r t i c e s [ 4 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 3 ] . xy+

r i g h t ) , cameraPos i t ion . xy ) ;

d c v e r t i c e s [ 5 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy+ r i g h t ) / scaleXY ) . xyz ) ;
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184 d c v e r t i c e s [ 5 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy+

r i g h t ) , cameraPos i t ion . xy ) ;

186

// bcVector . Do the same to bcVector as adVector

because they are p a r a l l e l .

188 b c v e r t i c e s [ 0 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 1 ] . xy ) / scaleXY ) . xyz ) ;

b c v e r t i c e s [ 0 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 1 ] . xy ) ,

cameraPos i t ion . xy ) ;

190 b c v e r t i c e s [ 1 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy ) / scaleXY ) . xyz ) ;

b c v e r t i c e s [ 1 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy ) ,

cameraPos i t ion . xy ) ;

192

b c v e r t i c e s [ 2 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 1 ] . xy + down) / scaleXY ) . xyz ) ;

194 b c v e r t i c e s [ 2 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 1 ] . xy +

down) , cameraPos i t ion . xy ) ;

b c v e r t i c e s [ 3 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy+ down) / scaleXY ) . xyz ) ;

196 b c v e r t i c e s [ 3 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy+

down) , cameraPos i t ion . xy ) ;

198 b c v e r t i c e s [ 4 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 1 ] . xy+ up) / scaleXY ) . xyz ) ;
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b c v e r t i c e s [ 4 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 1 ] . xy+ up

) , cameraPos i t ion . xy ) ;

200 b c v e r t i c e s [ 5 ] . vertexNormal = NormalFromTexture ( t ex tu re (

normalMap , ( vPos i t i on [ 2 ] . xy+ up) / scaleXY ) . xyz ) ;

b c v e r t i c e s [ 5 ] . d i s t anc e = d i s t anc e ( ( vPos i t i on [ 2 ] . xy+ up)

, cameraPos i t ion . xy ) ;

202

// Send the ar rays to the normalTessFactor .

204 f l o a t abNormalTesse l lat ion = normalTessFactor (

a b v e r t i c e s ) ;

f l o a t adNormalTesse l lat ion = normalTessFactor (

a d v e r t i c e s ) ;

206 f l o a t dcNormalTesse l l a t ion = normalTessFactor (

d c v e r t i c e s ) ;

f l o a t bcNormalTesse l l a t ion = normalTessFactor (

b c v e r t i c e s ) ;

208

// Ca lcu la te the average to the inner t e s s e l l a t i o n .

210 f l o a t inne rNorma lTes s e l l a t i on = ( abNormalTesse l la t ion

+ adNormalTesse l lat ion + dcNormalTesse l l a t ion +

bcNormalTesse l l a t ion ) /4 ;

212 //

// Distance

214 //

216 // c a l c u l a t e the p o s i t i o n to the edges o f the patch .
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// Use the coo rd ina te from the t e r r a i n .

218 vec3 abMidPos = vec3 ( vPos i t i on [ 0 ] . xyz + ( ( vPos i t i on [ 1 ] .

xyz − vPos i t i on [ 0 ] . xyz ) /2) ) ;

vec3 adMidPos = vec3 ( vPos i t i on [ 0 ] . xyz + ( ( vPos i t i on [ 3 ] .

xyz − vPos i t i on [ 0 ] . xyz ) /2) ) ;

220 vec3 dcMidPos = vec3 ( vPos i t i on [ 3 ] . xyz + ( ( vPos i t i on [ 2 ] .

xyz − vPos i t i on [ 3 ] . xyz ) /2) ) ;

vec3 bcMidPos = vec3 ( vPos i t i on [ 1 ] . xyz + ( ( vPos i t i on [ 2 ] .

xyz − vPos i t i on [ 1 ] . xyz ) /2) ) ;

222

// Get t e s s e l l a t i o n f a c t o r by sending i t to

DistanceFactor .

224 f l o a t abD i s t anc eTe s s e l l a t i on = DistanceFactor ( d i s t anc e (

abMidPos , cameraPos i t ion . xyz ) ) ;

f l o a t adD i s t anc eTe s s e l l a t i on = DistanceFactor ( d i s t anc e (

adMidPos , cameraPos i t ion . xyz ) ) ;

226 f l o a t d c D i s t a n c e T e s s e l l a t i o n = DistanceFactor ( d i s t anc e (

dcMidPos , cameraPos i t ion . xyz ) ) ;

f l o a t b c D i s t a n c e T e s s e l l a t i o n = DistanceFactor ( d i s t anc e (

bcMidPos , cameraPos i t ion . xyz ) ) ;

228

// Ca lcu la te the average to the inner t e s s e l l a t i o n .

230 f l o a t i n n e r D i s t a n c e T e s s e l l a t i o n = (

abD i s t anc eTe s s e l l a t i on + ad Di s t anc eT e s s e l l a t i on +

d c D i s t a n c e T e s s e l l a t i o n + b c D i s t a n c e T e s s e l l a t i o n ) /4 ;

232 //
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// Tesse l lat ionMap

234 //

236 // These coo rd ina t e s i s s c a l e d to be used on the

t ex tu re .

vec2 abMidTexPos = vec2 ( ( vPos i t i on [ 0 ] . xy + ( ( vPos i t i on

[ 1 ] . xy − vPos i t i on [ 0 ] . xy ) /2) ) / scaleXY ) ;

238 vec2 adMidTexPos = vec2 ( ( vPos i t i on [ 0 ] . xy + ( ( vPos i t i on

[ 3 ] . xy − vPos i t i on [ 0 ] . xy ) /2) ) / scaleXY ) ;

vec2 dcMidTexPos = vec2 ( ( vPos i t i on [ 3 ] . xy + ( ( vPos i t i on

[ 2 ] . xy − vPos i t i on [ 3 ] . xy ) /2) ) / scaleXY ) ;

240 vec2 bcMidTexPos = vec2 ( ( vPos i t i on [ 1 ] . xy + ( ( vPos i t i on

[ 2 ] . xy − vPos i t i on [ 1 ] . xy ) /2) ) / scaleXY ) ;

242 f l o a t abTextureTes s e l l a t i on = texture ( t e s s e l l a t i onMap ,

abMidTexPos ) . r ;

f l o a t adTextureTes s e l l a t i on = texture ( t e s s e l l a t i onMap ,

adMidTexPos ) . r ;

244 f l o a t dcTextur eTes s e l l a t i on = texture ( t e s s e l l a t i onMap ,

dcMidTexPos ) . r ;

f l o a t bcTextur eTes s e l l a t i on = texture ( t e s s e l l a t i onMap ,

bcMidTexPos ) . r ;

246

// Ca lcu la te the average to the inner t e s s e l l a t i o n .

248 f l o a t i n n e r T e x t u r e T e s s e l l a t i o n = ( abTextureTes s e l l a t i on

+ adTextureTes s e l l a t i on + dcTextur eTes s e l l a t i on +

bcTextureTes s e l l a t i on ) /4 ;
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250

// T e s s e l l a t i o n with a l l the f a c t o r s .

252

f l o a t normalTesse l lat ionWeight = 5 ;

254 f l o a t t ex tu r eTes s e l l a t i onWe ight = 5 ;

f l o a t d i s t anceTes s e l l a t i onWe igh t = 5 ;

256 f l o a t cons tantTes se l l a t i onWeight = 1 ;

258 g l Te s sLeve l Inne r [ 0 ] = 1 + ( (

cons tantTes se l l a t i onWeight + inne rNorma lTes s e l l a t i on

∗ normalTesse l lat ionWeight +

i n n e r T e x t u r e T e s s e l l a t i o n ∗ t ex tu r eTes s e l l a t i onWe ight

+ i n n e r D i s t a n c e T e s s e l l a t i o n ∗

d i s t anceTes s e l l a t i onWe igh t ) /(

cons tantTes se l l a t i onWeight +

normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;

g l Te s sLeve l Inne r [ 1 ] = 1 + ( (

cons tantTes se l l a t i onWeight + inne rNorma lTes s e l l a t i on

∗ normalTesse l lat ionWeight +

i n n e r T e x t u r e T e s s e l l a t i o n ∗ t ex tu r eTes s e l l a t i onWe ight

+ i n n e r D i s t a n c e T e s s e l l a t i o n ∗

d i s t anceTes s e l l a t i onWe igh t ) /(

cons tantTes se l l a t i onWeight +

normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;
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260

g l TessLeve lOuter [ 0 ] = 1 + ( ( cons tantTes se l l a t i onWeight

+ abNormalTesse l lat ion ∗ normalTesse l lat ionWeight +

abTextureTes s e l l a t i on ∗ t ex tu r eTes s e l l a t i onWe ight +

abDi s t anc eTe s s e l l a t i on ∗ d i s t anceTes s e l l a t i onWe igh t

) /( cons tantTes se l l a t i onWeight +

normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;

262 g l TessLeve lOuter [ 1 ] = 1 + ( ( cons tantTes se l l a t i onWeight

+ adNormalTesse l lat ion ∗ normalTesse l lat ionWeight +

adTextureTes s e l l a t i on ∗ t ex tu r eTes s e l l a t i onWe ight +

adDi s t anc eTe s s e l l a t i on ∗ d i s t anceTes s e l l a t i onWe igh t

) /( cons tantTes se l l a t i onWeight +

normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;

g l TessLeve lOuter [ 2 ] = 1 + ( ( cons tantTes se l l a t i onWeight

+ dcNormalTesse l l a t ion ∗ normalTesse l lat ionWeight +

dcTextureTes s e l l a t i on ∗ t ex tu r eTes s e l l a t i onWe ight +

d c D i s t a n c e T e s s e l l a t i o n ∗ d i s t anceTes s e l l a t i onWe igh t

) /( cons tantTes se l l a t i onWeight +

normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;

264 g l TessLeve lOuter [ 3 ] = 1 + ( ( cons tantTes se l l a t i onWeight

+ bcNormalTesse l l a t ion ∗ normalTesse l lat ionWeight +

bcTextureTes s e l l a t i on ∗ t ex tu r eTes s e l l a t i onWe ight +

b c D i s t a n c e T e s s e l l a t i o n ∗ d i s t anceTes s e l l a t i onWe igh t

) /( cons tantTes se l l a t i onWeight +
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normalTesse l lat ionWeight + tex tu r eTes s e l l a t i onWe ight

+ d i s t anceTes s e l l a t i onWe igh t ) )∗ t e s s e l l a t i o n L e v e l ;

266

/∗

268 // T e s s e l l a t i o n with d i s t anc e .

g l Te s sLeve l Inne r [ 0 ] = t e s s e l l a t i o n L e v e l ∗

i n n e r D i s t a n c e T e s s e l l a t i o n + 1 ;

270 g l Te s sLeve l Inne r [ 1 ] = t e s s e l l a t i o n L e v e l ∗

i n n e r D i s t a n c e T e s s e l l a t i o n + 1 ;

272 g l TessLeve lOuter [ 0 ] = t e s s e l l a t i o n L e v e l ∗

abD i s t anc eTe s s e l l a t i on + 1 ;

g l TessLeve lOuter [ 1 ] = t e s s e l l a t i o n L e v e l ∗

adD i s t anc eTe s s e l l a t i on + 1 ;

274 g l TessLeve lOuter [ 2 ] = t e s s e l l a t i o n L e v e l ∗

d c D i s t a n c e T e s s e l l a t i o n + 1 ;

g l TessLeve lOuter [ 3 ] = t e s s e l l a t i o n L e v e l ∗

b c D i s t a n c e T e s s e l l a t i o n + 1 ;

276 ∗/

278 /∗

// T e s s e l l a t i o n with Normal .

280 g l Te s sLeve l Inne r [ 0 ] = t e s s e l l a t i o n L e v e l ∗

i nne rNorma lTes s e l l a t i on + 1 ;

g l Te s sLeve l Inne r [ 1 ] = t e s s e l l a t i o n L e v e l ∗

i nne rNorma lTes s e l l a t i on + 1 ;
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282

g l TessLeve lOuter [ 0 ] = t e s s e l l a t i o n L e v e l ∗

abNormalTesse l la t ion + 1 ;

284 g l TessLeve lOuter [ 1 ] = t e s s e l l a t i o n L e v e l ∗

adNormalTesse l la t ion + 1 ;

g l TessLeve lOuter [ 2 ] = t e s s e l l a t i o n L e v e l ∗

dcNormalTesse l l a t ion + 1 ;

286 g l TessLeve lOuter [ 3 ] = t e s s e l l a t i o n L e v e l ∗

bcNormalTesse l l a t ion + 1 ;

∗/

288

/∗

290 // T e s s e l l a t i o n with Tesse l lat ionMap .

g l Te s sLeve l Inne r [ 0 ] = t e s s e l l a t i o n L e v e l ∗

i n n e r T e x t u r e T e s s e l l a t i o n + 1 ;

292 g l Te s sLeve l Inne r [ 1 ] = t e s s e l l a t i o n L e v e l ∗

i n n e r T e x t u r e T e s s e l l a t i o n + 1 ;

294 g l TessLeve lOuter [ 0 ] = t e s s e l l a t i o n L e v e l ∗

abTextureTes s e l l a t i on + 1 ;

g l TessLeve lOuter [ 1 ] = t e s s e l l a t i o n L e v e l ∗

adTextureTes s e l l a t i on + 1 ;

296 g l TessLeve lOuter [ 2 ] = t e s s e l l a t i o n L e v e l ∗

dcTextureTes s e l l a t i on + 1 ;

g l TessLeve lOuter [ 3 ] = t e s s e l l a t i o n L e v e l ∗

bcTextureTes s e l l a t i on + 1 ;

298 ∗/
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300 /∗

// No T e s s e l l a t i o n .

302 g l Te s sLeve l Inne r [ 0 ] = t e s s e l l a t i o n L e v e l + 1 ;

g l Te s sLeve l Inne r [ 1 ] = t e s s e l l a t i o n L e v e l + 1 ;

304

g l TessLeve lOuter [ 0 ] = t e s s e l l a t i o n L e v e l + 1 ;

306 g l TessLeve lOuter [ 1 ] = t e s s e l l a t i o n L e v e l + 1 ;

g l TessLeve lOuter [ 2 ] = t e s s e l l a t i o n L e v e l + 1 ;

308 g l TessLeve lOuter [ 3 ] = t e s s e l l a t i o n L e v e l + 1 ;

∗/

310 }

}
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A.3 Tessellation evaluations shader

1 //

// T e s s e l l a t i o n e v a l u a t i o n s shader .

3 //

5 // Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

#ve r s i on 400

7

// Decide how you want the patches d iv ided f r a c t i o n a l or

i n t e g e r .

9 // Divided by f r a c t i o n a l .

l ayout ( quads , f r a c t i o n a l o d d s p a c i n g , ccw ) in ;

11

// Divided by i n t e g e r .

13 // layout ( quads ) in ;

15 // Gets in ver tex p o s i t i o n from the t e s s e l l a t i o n c o n t r o l

shader .

in vec4 t c P o s i t i o n [ ] ;

17

// Sends t ex tu re coord ina te to the geometry shader .

19 out vec2 textureCoord inate ;

21 // Uniforms from OSG.

uniform sampler2D heightMap ;

23 uniform mat4 mvp ;

76



uniform f l o a t scaleXY ;

25 uniform f l o a t s ca l eZ ;

27 //

// Main .

29 //

void main ( )

31 {

// Gets the p o s i t i o n in the ad and the bc vec to r .

33 vec4 adPos i t i on = mix ( t c P o s i t i o n [ 0 ] , t c P o s i t i o n [ 3 ] ,

g l TessCoord . x ) ;

vec4 bcPos i t i on = mix ( t c P o s i t i o n [ 1 ] , t c P o s i t i o n [ 2 ] ,

g l TessCoord . x ) ;

35

// Then f i n d s the p o s i t i o n between the adPos i t i on and the

bcPos i t i on po int .

37 vec4 p o s i t i o n = mix ( adPos it ion , bcPos i t ion , g l TessCoord .

y ) ;

39 // Mult ip ly the found p o s i t i o n with s c a l e in the xy−plane

.

textureCoord inate = p o s i t i o n . xy / scaleXY ;

41

// Use t ex tu re coord ina te to f i n d the value on the he ight

Map,

43 // mult ip ly i t with s c a l e ( a long the Z a x i s ) to f i n d the

he ight .
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f l o a t he ight = texture ( heightMap , textureCoord inate ) . r ∗

s ca l eZ ;

45

// Set the ver tex p o s i t i o n .

47 vec4 pos i t ionWithHeight = vec4 ( p o s i t i o n . x , p o s i t i o n . y ,

he ight , 1 . 0 ) ;

49 // Sends ver tex p o s i t i o n m u l t i p l i e d mvp matrix .

g l P o s i t i o n = mvp ∗ pos i t ionWithHeight ;

51 }
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A.4 Geometry shader

1 //

// Geometry shader .

3 //

5 // Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

#ve r s i on 400

7

// Gets t r i a n g l e in .

9 l ayout ( t r i a n g l e s ) in ;

layout ( t r i a n g l e s t r i p , max ver t i c e s = 3) out ;

11

// textureCoord inate from t e s s e l l a t i o n eva lua t i on shader .

13 in vec2 textureCoord inate [ 3 ] ;

15 // Sends normal and tex ture coord ina te to fragment shader .

out vec3 gNormal ;

17 out vec2 gTextureCoordinate ;

19 // Uniforms from OSG.

uniform mat3 normalMatrix ;

21 uniform sampler2D normalMap ;

23 //

// NormalFromTexture takes in the co l ou r va lue from normal

map and subt rac t 0 . 5 ,
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25 // s i n c e the normal Map zero s t a r t s on 0 ,5 , then we get the

va lues from − 0 ,5 to 0 , 5 .

// To the end we normal ize the vec to r .

27 //

vec3 NormalFromTexture ( vec3 normal )

29 {

normal . x = normal . x − 0 . 5 ;

31 normal . y = normal . y − 0 . 5 ;

normal . z = normal . z − 0 . 5 ;

33 normal = normalMatrix ∗ normal ize ( normal ) ;

r e turn normal ;

35 } ;

37 //

// Main .

39 //

void main ( )

41 {

// Get the normal f o r g iven ver tex p o s i t i o n and send

normal .

43 gNormal = NormalFromTexture ( t ex tu re (normalMap ,

textureCoord inate [ 0 ] ) . rgb ) ;

g l P o s i t i o n = g l i n [ 0 ] . g l P o s i t i o n ; // Sends through

p o s i t i o n .

45 gTextureCoordinate = textureCoord inate [ 0 ] ; // Sends

through textureCoord inate .

EmitVertex ( ) ; // Sends t h i s ver tex .
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47

// Get the normal f o r g iven ver tex p o s i t i o n and send

normal .

49 gNormal = NormalFromTexture ( t ex tu re (normalMap ,

textureCoord inate [ 1 ] ) . rgb ) ;

g l P o s i t i o n = g l i n [ 1 ] . g l P o s i t i o n ; // Sends through

p o s i t i o n .

51 gTextureCoordinate = textureCoord inate [ 1 ] ; // Sends

through textureCoord inate .

EmitVertex ( ) ; // Sends t h i s ver tex .

53

// Get the normal f o r g iven ver tex p o s i t i o n and send

normal .

55 gNormal = NormalFromTexture ( t ex tu re (normalMap ,

textureCoord inate [ 2 ] ) . rgb ) ;

g l P o s i t i o n = g l i n [ 2 ] . g l P o s i t i o n ; // Sends through

p o s i t i o n .

57 gTextureCoordinate = textureCoord inate [ 2 ] ; // Sends

through textureCoord inate .

EmitVertex ( ) ; // Sends t h i s ver tex .

59

/∗

61 // Can do t h i s in a for−loop , but l o o s e s a couple o f f p s .

f o r ( i n t i = 0 ; i <3; i++)

63 {

// Get the normal f o r g iven ver tex p o s i t i o n and send

normal .
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65 gNormal = NormalFromTexture ( t ex tu re (normalMap ,

textureCoord inate [ i ] ) . rgb ) ;

g l P o s i t i o n = g l i n [ i ] . g l P o s i t i o n ;// Sends through

p o s i t i o n .

67 gTextureCoordinate = textureCoord inate [ i ] ; / / Sends

through textureCoord inate .

EmitVertex ( ) ; // Sends t h i s ver tex .

69 }

∗/

71

// Send p r i m i t i v e .

73 EndPrimitive ( ) ;

}
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A.5 Multi texure fragment shader

//

2 // Fragment shader .

//

4

// Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

6 #ver s i on 400

8 // Gets in t ex tu re coord ina te and normal from geometry

shader .

in vec2 gTextureCoordinate ;

10 in vec3 gNormal ;

12 // Sends out fragment .

out vec4 fragment ;

14

// Light uni forms

16 uniform vec3 l i g h t P o s i t i o n ;

uniform vec3 d i f f u s e M a t e r i a l ;

18 uniform vec3 ambientMater ia l ;

uniform vec3 spe cu l a rMate r i a l ;

20 uniform f l o a t s h i n i n e s s ;

22 // Rotation matrix to r o t a t e texture−coo rd ina t e s 90 degree s

.

uniform mat4 rotat ionMatr ix ;
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24

// Gets in a l l t e x t u r e s .

26 uniform sampler2D d i f f u s e ;

uniform sampler2D canyon rock01 ;

28 uniform sampler2D canyon rock02 ;

uniform sampler2D dry gra s s09 ;

30 uniform sampler2D dry gra s s12 ;

uniform sampler2D romanian sand05 ;

32

// Load in the t ex tu re masks .

34 uniform sampler2D VertRock 0 90 mask ;

uniform sampler2D VertDeta i l 0 90 mask ;

36 uniform sampler2D Grass mask ;

uniform sampler2D Flow mask ;

38

// Ambient−l i g h t−map .

40 uniform sampler2D AmbientOcc ;

42 //

// Main .

44 //

void main ( )

46 {

// Light c a l c u l a t i o n with help from the fragment shader

48 // in Quad T e s s e l l a t i o n with OpenGL 4 . 0 .

// http :// pr ideout . net / blog /?p=49

50 vec3 h = normal ize ( l i g h t P o s i t i o n + vec3 (0 , 0 , 1) ) ;
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f l o a t df = abs ( dot ( gNormal , l i g h t P o s i t i o n ) ) ;

52 f l o a t s f = abs ( dot ( gNormal , normal ize ( l i g h t P o s i t i o n +

vec3 (0 , 0 , 1) ) ) ) ;

s f = pow( s f , s h i n i n e s s ) ;

54

// Ca lcu la te the l i g h t based on the normal and l i g h t

p o s i t i o n .

56 vec3 l i g h t = texture ( AmbientOcc , gTextureCoordinate ) . rgb

+ df ∗ d i f f u s e M a t e r i a l + s f ∗ spe cu l a rMate r i a l ;

58 // A l t e rna t i v e l i g h t i f we dont have a t ex ture f o r the

ambient l i g h t .

// vec3 l i g h t = ambientMater ia l + df ∗ d i f f u s e M a t e r i a l +

s f ∗ spe cu l a rMate r i a l ;

60

62 // D i f f u s e t ex tu re .

vec4 d i f f u s e Te x tu r e = texture ( d i f f u s e , gTextureCoordinate

) ;

64

// Make a tex ture coo rd ina te f o r the ro ta ted images with

the r o t a t i o n matrix .

66 vec2 textureCoord inate90 = ( vec4 ( gTextureCoordinate , 1 , 1 ) ∗

ro tat ionMatr ix ) . xy ;

68 // Use VertRock 0 90 mask to mix the t ex tu re with the

texture , ro ta ted 90 degree s .
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vec4 textureRock = mix ( t ex tu re ( canyon rock01 ,

textureCoord inate90 ∗20) , t ex tu r e ( canyon rock01 ,

gTextureCoordinate ∗20) , t ex tu re ( VertRock 0 90 mask ,

gTextureCoordinate ) . r ) ;

70 vec4 textureRock2 = mix ( t ex tu re ( canyon rock02 ,

textureCoord inate90 ∗10) , t ex tu r e ( canyon rock02 ,

gTextureCoordinate ∗10) , t ex tu re ( VertRock 0 90 mask ,

gTextureCoordinate ) . r ) ;

72 // Use VertDeta i l 0 90 mask to mix the t ex tu re with the

texture , ro ta ted 90 degree s .

vec4 t e x t u r e g r a s s 1 = mix ( t ex tu re ( dry grass12 ,

textureCoord inate90 ∗50) , t ex tu r e ( dry grass12 ,

gTextureCoordinate ∗50) , t ex tu re ( VertDeta i l 0 90 mask ,

gTextureCoordinate ) . r ) ;

74 vec4 t e x t u r e g r a s s 2 = mix ( t ex tu re ( dry grass09 ,

textureCoord inate90 ∗100) , t ex tu re ( dry grass09 ,

gTextureCoordinate ∗100) , t ex tu re ( VertDeta i l 0 90 mask ,

gTextureCoordinate ) . r ) ;

vec4 texturesand = mix ( t ex tu re ( romanian sand05 ,

textureCoord inate90 ∗50) , t ex tu r e ( romanian sand05 ,

gTextureCoordinate ∗50) , t ex tu re ( VertDeta i l 0 90 mask ,

gTextureCoordinate ) . r ) ;

76

// Set fragment co l ou r .

78 vec4 fragmentColour = d i f f u s eT ex t u r e ;
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80 // Mix in rock t e x t u r e s .

fragmentColour = mix ( fragmentColour , textureRock , 0 . 8 ) ;

82 fragmentColour = mix ( fragmentColour , textureRock2 , 0 . 5 ) ;

84 // Mix in g ra s s t e x t u r e s with the Grass mask .

fragmentColour = mix ( fragmentColour , t ex tu reg ra s s1 ,

t ex tu re ( Grass mask , gTextureCoordinate ) . r ) ;

86 fragmentColour = mix ( fragmentColour , t ex tu reg ra s s2 ,

t ex tu re ( Grass mask , gTextureCoordinate ) . r /2) ;

88 // Mix in sand t e x t u r e s with the Flow mask .

fragmentColour = mix ( fragmentColour , texturesand , t ex tu re (

Flow mask , gTextureCoordinate ) . r ) ;

90

92 // Add l i g h t .

fragmentColour ∗= vec4 ( l i g h t , 1 ) ;

94

// Sends fragment .

96 fragment = fragmentColour ;

}
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A.6 Single texture fragment shader

//

2 // Fragment shader .

//

4

// Set GLSL ve r s i on . Minimum ve r s i on that supports

t e s s e l l a t i o n i s 4 . 0 .

6 #ver s i on 400

8 // Gets in t ex tu re coord ina te and normal from geometry

shader .

in vec2 gTextureCoordinate ;

10 in vec3 gNormal ;

12 // Sends out fragment .

out vec4 fragment ;

14

// Light uni forms

16 uniform vec3 l i g h t P o s i t i o n ;

uniform vec3 d i f f u s e M a t e r i a l ;

18 uniform vec3 ambientMater ia l ;

uniform vec3 spe cu l a rMate r i a l ;

20 uniform f l o a t s h i n i n e s s ;

22 // Get in t ex tu re .

uniform sampler2D d i f f u s e ;

24
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//

26 // Main .

//

28 void main ( )

{

30 // Light c a l c u l a t i o n with help from the fragment shader

// in Quad T e s s e l l a t i o n with OpenGL 4 . 0 .

32 // http :// pr ideout . net / blog /?p=49

vec3 h = normal ize ( l i g h t P o s i t i o n + vec3 (0 , 0 , 1) ) ;

34 f l o a t df = abs ( dot ( gNormal , l i g h t P o s i t i o n ) ) ;

f l o a t s f = abs ( dot ( gNormal , normal ize ( l i g h t P o s i t i o n +

vec3 (0 , 0 , 1) ) ) ) ;

36 s f = pow( s f , s h i n i n e s s ) ;

38 // Ca lcu la te the l i g h t based on the normal and l i g h t

p o s i t i o n .

vec3 l i g h t = ambientMater ia l + df ∗ d i f f u s e M a t e r i a l + s f

∗ spe cu l a rMate r i a l ;

40

// D i f f u s e t ex tu re .

42 vec4 d i f f u s e Te x tu r e = texture ( d i f f u s e , gTextureCoordinate

) ;

44 // Set fragment co l ou r .

vec4 fragmentColour = d i f f u s eT ex t u r e ;

46

// Add l i g h t .
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48 fragmentColour ∗= vec4 ( l i g h t , 1 ) ;

50 // Sends fragment .

fragment = fragmentColour ;

52 }
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