
Bruk av kunstig intelligens for å oppdage
innbrudd i datasystemer

Ole Morten Grodås

Master i datateknikk

Hovedveileder: Tor Stålhane, IDI
Medveileder: Torgeir Broen, Forsvarets forskningsinstitutt

Institutt for datateknikk og informasjonsvitenskap

Innlevert: Juni 2012

Norges teknisk-naturvitenskapelige universitet

i

Problem description
With its large growth, the Internet has emerged as an area for organized crime. An important aspect

of cybercrime is breaking into computer systems and securing control over them. Many of today's

most widely used network intrusion detection systems are based on hand-crafted signatures. With

the increasing volume of malicious activity, it is getting harder and harder to keep manually written

signature sets up to date. The problem has been further exacerbated by the fact that many

cybercriminals work hard to avoid detection.

The research literature describes a number of systems to automate intrusion detection based on

artificial intelligence, but few of these systems are in operational use today. A problem often cited

as the reason why these systems are not used is a high false positive rate.

This thesis aims to design and implement a prototype intrusion detection system based on artificial

intelligence. The system should as far as possible automate the process of detecting compromised

computers. The system will be evaluated on real network traffic in order to assess the effectiveness

in the best possible way.

Supervised by:

Tor Stålhane, Professor at Norwegian University of Science and Technology (NTNU)

Torgeir Broen, Scientist at Norwegian Defence Research Establishment (FFI)

iii

Abstract
With its large growth, the Internet has emerged as an area for organized crime. As other types of

organized crime most of the activity is motivated by economic profits. In addition to economically

motivated threat agents some are driven by political motives, like national state intelligence

agencies and cyber terrorist. An important aspect of cybercrime is breaking into computer systems

and securing control over them. When cyber criminals have successfully gained access to a system

they often install a hidden malicious program to secure permanent access. The program is normally

a bot that recruits the compromised computer into a botnet. Multiple bots under a common central

administration is called a botnet.

This paper describes the design of a botnet detector and reports the results from testing the

detector on real world data from an organization in Norway. The proposed system is designed

around automation of a classical misuse detection system. It takes as input activity log from the

network like netflow, DNS log or HTTP log and searches this log data using a large set of signatures.

The signature set is generated by algorithmically combining freely available signature lists. Most of

the signatures are either automatically generated by an external mechanism, for example by

running malware samples in a sandbox or created and shared by information security communities.

The detector is based on four main components. 1) An algorithm for quantifying the risk

represented by a signature, 2) An algorithm for whitelisting bad signatures that would create false

positives, 3) A matching engine for searching log files with a large signature set, and 4) An algorithm

for identifying compromised computers by aggregating alarm data.

Putting all the components together the system provides a significant improvement over intrusion

detection based on searching logs using blacklist with simple string search algorithms. The two main

improvements are 1) The system makes it easier to deal with large signature sets because most bad

signatures are automatically whitelisted; 2) Alarms have a quantified risk score and are aggregated

up to a victim risk score. This reduces the need to manually inspect each alarm and simplifies the job

of identifying compromised computers.

The system is complementary and synergistic to some of the recently suggested system in the

research literature like Exposure(Bilge, Kirda, Kruegel, & Balduzzi, 2011) and Notos(Antonakakis,

Perdisci, Dagon, Lee, & Feamster, 2010)

v

Abstract (Norwegian)
Med sin store vekst, har internett utviklet seg til et lukrativt domene for organisert kriminalitet. Som

andre typer organisert kriminalitet er mesteparten av aktiviteten motivert av økonomisk gevinst. I

tillegg til økonomisk motiverte trusseleaktører er noen tilsynelatende drevet av politiske motiver,

som nasjonalstaters etterretningsorganisasjoner og cyberterrorister. En viktig del av datakriminalitet

er å bryte seg inn i datasystemer og sikre fremtidig kontroll over systemene. Når nettkriminelle har

klart å få tilgang til et system installerer de ofte et skjult program for å sikre fremtidige tilgang. Dette

programmet kalles en bot og rekrutterer den kompromitterte maskinen inn i et botnet. Flere boter

under en felles sentral administrasjon kalles et botnet.

Denne oppgaven beskriver utformingen av en botnet detektor og rapporterer resultatene fra testing

av detektoren på reelle data fra en organisasjon i Norge. Det foreslåtte systemet er designet rundt

automatisering av et klassisk "misuse detection system". Det tar som input nettverksaktivitetslogg

som for eksempel NetFlow, DNS logg og HTTP logg og søker igjennom denne loggen med et stort

signatursett. Signatursettet er generert ved å algoritmisk kombinere fritt tilgjengelige signaturlister.

De fleste signaturlistene er enten automatisk generert av en ekstern mekanisme, for eksempel ved å

kjøre malware i en sandbox eller laget og delt av ulike informasjonssikkerhet miljøer. Detektoren er

basert på fire hovedkomponenter. 1) En algoritme for å kvantifisere risikoen representert ved en

signatur, 2) En algoritme for fjerning av dårlige signaturer som vil skapt mange falske positive, 3) En

søkemotor for å søke igjennom loggfiler med et stort signatursett, og 4) En algoritme for å

identifisere kompromittert datamaskiner ved å aggregere alarm data.

Ved å se alle komponentene under ett ser det ut til at systemet gir en betydelig forbedring i forhold

til inntrengningsdeteksjon basert på vanlig signatursøk. De to viktigste forbedringene er at

1) Systemet gjør det lettere å håndtere store signatur sett fordi de fleste feilaktige signaturene blir

automatisk fjernet og 2) Alarmer har en kvantifisert risiko og aggregeres opp til en risiko for hver

klient i nettverket. Dette reduserer behovet for og manuelt inspisere hver enkelt

alarm og forenkler dermed jobben med å identifisere kompromitterte datamaskiner

Systemet er komplementært og synergistisk med noen av de nylig foreslåtte systemene i

forskningslitteraturen som Exposure(Bilge et al., 2011) og Notos (Antonakakis et al., 2010)

vii

Acknowledgements
First, I would like to thank my professor, Tor Stålhane for encouragement and providing good advice

and feedback.

I would also like to thank my supervisor Torgeir Broen, Scientist at the Norwegian Defence Research

Establishment, for providing good advice and feedback on the work as well as advice on writing a

great thesis.

I would also like to point out the great support I have received from my current employer Norsk

Helsenett SF and I especially want to thank my colleagues at the Norwegian Healthcare Computer

Security Incident Response Team (HelseCSIRT): Jørgen Bøhnsdalen, Kjell Christian Nilsen, Kjell Tore

Fossbakk and Suhail Mushtaq for interesting discussions that provided important insights and for

feedback on the report.

Trondheim, June 2012

Ole Morten Grodås

1 Contents

1

Contents
Problem description .. i

Abstract ... iii

Abstract (Norwegian) ... v

Acknowledgements .. vii

Contents ... 1

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Botnet history and terminology ... 1

1.3 Botnet overview ... 3

1.4 Problem overview... 5

1.5 System overview... 7

1.6 Research question .. 9

2 Background ... 11

2.1 Information Retrieval ... 11

2.1.1 Manual classification .. 11

2.1.2 Handcrafted rules ... 12

2.1.3 Machine learning .. 13

2.2 Intelligent threat agent .. 17

2.3 Botnet detection based on network resources .. 20

2.3.1 Stateful firewalls ... 20

2.3.2 Command and control topologies .. 20

2.3.3 Cryptography .. 22

2.3.4 IP-adresses .. 23

2.3.5 Domains .. 25

2.3.6 Retrospective analysis .. 25

2.4 Related work... 26

2.4.1 Tracking botnets using passive DNS ... 26

2.4.2 Tracking botnets using netflow .. 28

3 Methodology .. 31

2 Contents

2

3.1 Quantifying signatures ... 31

3.1.1 Risk score contribution .. 31

3.1.2 Total risk score ... 33

3.2 Whitelisting signatures .. 35

3.2.1 IP-addresses ... 36

3.2.2 Domains ... 36

3.3 Matching engine .. 37

3.4 Quantifying victim risk ... 40

4 Data collection ... 43

4.1 Log data .. 43

4.1.1 Example Log data ... 43

4.2 Signatures .. 44

4.2.1 Zeus Tracker ... 44

4.2.2 Spyeye Tracker ... 44

4.2.3 Spamhaus DROP ... 44

4.2.4 SpyEye Database (Sedb) ... 45

4.2.5 Malewaredomainlist .. 45

4.2.6 Malwaredomains ... 45

5 Results and Discussion ... 47

5.1 Signature search... 47

5.2 Signature search with automated whitelisting .. 50

5.3 Improved signature matching .. 52

5.4 Aggregating alarms by victim ... 52

5.5 Performance of the system .. 56

6 Conclusion .. 57

7 Further work .. 59

8 Abbreviations ... 61

9 List of Tables .. 63

10 List of Figures ... 65

11 Bibliography ... 67

Appendix A: Source code and signatures... 71

Appendix B: Log data ... 73

1 Introduction

1

1 Introduction
This paper describes the design of a botnet detector and reports the results from testing the

detector on real world data from an organization in Norway.

1.1 Motivation
With its large growth, the Internet has emerged as an area for organized crime. The problems of

cybercrime has grown to such a magnitude that the United Nations treats it at the same level as

other major organized crime activities like smuggling and trafficking. Estimated annual loss from

cybercrime range from 1 billion USD to 1 trillion USD (Globalization of Crime: A Transnational

Organized Crime Threat Assessment, 2010).

Cybercrime is a broad term and includes many activities and many actors. The original hacker

stereotype as a smart teenage or adult male that breaks into computers for fun and fame is no

longer a good description of today's cybercriminals. As other types of organized crime most of the

activity is motivated by economic profits. In addition to economically motivated threat agents some

might be driven by political motives, for example national state intelligence agencies and cyber

terrorist.

An important aspect of cybercrime is breaking into computer systems and securing control over

them. When cyber criminals have successfully gained access to a system they often install a hidden

malicious program to ensure permanent access. The program is normally a bot that recruits the

compromised computer into a botnet.

Botnets are an underlying tool used by most cybercriminals from economically motivated criminals

to national states conducting cyber warfare. Examples of two famous botnets are Stuxnet and

Spyeye. Stuxnet became famous because of the speculation that it was designed by a nation state to

target the Iraninan Bushehr and Natanz nuclear power plant. Spyeye is a powerful botnet kit which

has been used, among other things, to target multiple norwegian banks.

The UN Transnational Organized Crime Threat Assessment concludes that cyber criminals are

opportunistic and predatory. Law enforcement strategies based on arrests and seizures alone are

not likely to be successful because new criminals will pop up as soon as the old ones are removed.

They conclude that “the solutions are more likely to be technological, aimed at making it more

difficult to acquire money in these ways.”, finding better techniques for detecting and tracking

botnets will probably be helpful in this regard. If the malicious activity is detected in an early stage,

the victims can be notified before any harm is done. Better detection and tracking also has the

potential to assist law enforcement in tracking down and arresting the criminals.

1.2 Botnet history and terminology
The name botnet has a rather long history. The first part of the word "bot" is a shorted form of

“robots” and was originally a neutral, non-malicious term. The word seems to have been first used

in 1920 by the Czech science fiction writer Karel Čapek(“Robot,” 2012). The term is a derivation from

2 Introduction

2

the Czech word robota, which can be translated to English as “forced labour”, or more simply just

“work”. In his writing, Čapek used the word robot for artificial people created in a factory. Even

today, there does not seem to be a single agreed upon definition of the term robot. A broad

characterization would be “A robot is a mechanical or virtual intelligent agent that can perform tasks

automatically or with guidance, typically by remote control”. The term “robot” is usually used when

referring to an electro-mechanical machine, while the term “bot” is used when referring to a

software agent. The term bot, as in software agent, was first used to describe a virtual individual

that could sit on an Internet Relay Chat (IRC) channel and do things for its owner while the owner

was busy elsewhere. The first IRC bot was developed in 1988 by Jarkko Oikarinen of the University

of Olulu (Amit, 2011). As the usage of IRC grew, enthusiasts began adding more features to the bots,

for example, automated scripts for logging channel statistics, providing mechanisms for file

distribution and exercising operator privileges.

The term botnet was also initially a non-malicious term and has it origin from the early days of IRC

networks. On most IRC networks, each channel has one or more channel operators, which has extra

privileges. If the channel operator is taken offline, another member of the channel will automatically

be assigned operator status. In the early 1990s, malicious users began exploiting this behavior in

attempts to acquire operator status; this kind of attack is often called channel takeover attacks. The

most popular technique at the time was to perform a denial of service (DOS) attack against the

channel operator by flooding his uplink. In December 1993, Robey Pointer developed the IRC bot

eggdrop, which was designed to help manage and protect channels from takeover attempts and

other forms of IRC war. It was written in C, but designed to allow execution of user added TCL

scripts. Eggdrop had a key feature called botnet that enabled multiple eggdrop bots to exchange

information. This allowed eggdrop bots to share user lists, ban lists, ignore lists and effectively

protect channels against takeover attempts. It’s doubtful that the author ever envisaged its

architecture being put to malicious use, controlling networks of tens of thousands zombies

(Canavan, 2005). Today the term botnet usually refers to a collection of compromised computers

connected to the internet. Earlier botnets typically used the IRC protocol, but today's botnets use a

variety of protocols. Currently one of the most popular protocols is HTTP. One of the reasons HTTP is

so popular is that most firewalls does not block outbound HTTP traffic.(Li, 2009)

The term bot can refer to both the compromised computer and the malicious software running on

the compromised computer, depending on the context. It is also worth mentioning that in some

situations the term bot are still used to refer to "good bots", examples are web crawlers, software

update agents, and artificial characters in computer games. For the remainder of this paper the term

bot will imply a “bad bot”.

Bad bots are part of a broader term for software called malicious software or malware for short. The

term is used to describe most types of hostile, intrusive or annoying software. Malware includes

computer viruses, Trojan horses, spyware, dishonest adware, rootkits, key loggers, botnets and

more. There has been attempts to create taxonomies for malware, but experience has

demonstrated that it is very difficult to create mutually exclusive or unambiguous categories of

malware based on the commonly used terminology (Karresand, 2002).

3 Introduction

3

The following is a short summary of the terminology used to describe botnets and related malware.

A malware program with a unique MD5 sum is called a malware sample. The best way to interpret

the traditional malware classification terminology like virus, worm, trojans etc is that that they

describe features. A single malware sample can have multiple features at the same time. A typical

malware sample can therefore be a virus, a worm, a rootkit and a bot at the same time. On recent

example of this is the botnet known as TDL or Alureon , which also had advanced rootkit

functionality1

Viruses and worms can collectively be described as infectious malware and are known for the

manner in which they spread, rather than any other particular behavior. Typically, a virus attaches

itself to executable files that may be part of legitimate programs. When the user launches the

infected program, the virus code is also executed and the virus spreads itself to other files. A worm

is also self-replicating program, but a worm typically spreads by sending copies of itself to other

nodes in the network. Often a worm is spreading without user intervention due to security

vulnerabilities in operating systems or other software. Unlike a virus, a worm does not need to

attach itself to an existing program.

Non-infectious malware have to rely on other methods for infections. A popular technique is

phishing. The term is a variation of the word fishing, and alludes to “baiting” users in hopes that the

potential victim will “bite” by clicking a malicious link, opening a malicious attachment in which case

the attacker gains access to the computer system or confidential information. A popular type of

non-infectious malware is a Trojan horse, which can be defined as a program that invites the user to

run it, concealing a harmful or malicious payload.

The code used to take advantage of vulnerabilities in computer systems is an exploit. After a

computer is compromised, the attacker typically wants to ensure continued access. This is normally

done by installing a bot on the computer. The software used to download and install the bot is

called a dropper. The server the bot contacts for getting new instructions is a command and control

server. If the bot is exfiltrating data, the server the data is exfiltrated too is often called a drop site.

Developing bots and exploits is very resource intensive, for this reason many botnet operators does

not make their own, but buy ready-made commercial botnet kits or exploit kits. Bots that are based

on the same botnet kits are considered part of the same botnet family.

1.3 Botnet overview
The main purpose of a botnet is to allow the owner of the botnet to control computers he has

compromised. In the early days before stateful firewalls were common, cyber-attacks were typically

performed by directly attacking services running on the victim’s computer. To secure future access

the attacker would open a port that gave him shell on the compromised client and use it as a

backdoor into the system. This simple attack is illustrated in the figure 1 below.

1
 An analys of the Alureon rootkit functionality by Microsoft Software Development Engineer Joe Johnson

http://www.virusbtn.com/pdf/conference_slides/2010/Johnson-VB2010.pdf

http://www.virusbtn.com/pdf/conference_slides/2010/Johnson-VB2010.pdf

4 Introduction

4

1. Attack

2. Open backdoor

3. Reconnect to backdoor

Figure 1: Cybercriminal directly attack the victims computer

These direct attacks were possible because many computers were running services with known

vulnerabilities by default. Opening a backdoor and connecting to it was possible because stateful

firewalls were not very common. With the increasing focus on security, most clients stopped having

open ports by default and most computers were put behind stateful firewalls. These security

measures made the simple direct attacks inefficient.

Because of these security measures, cyber criminals developed more advanced indirect methods for

attacking and maintain control of their victims. This development is the basis for today's botnets.

The figure below illustrates a typical modern attack. Cyber criminals attack the user indirectly by

first compromising a legitimate web page. The attacker maintains access by installing a bot that poll

a command and control server for new instructions. These more indirect attack methods are

illustrated in figure 2 below.

5 Introduction

5

2. Browsing

3. Exploit

Legitimate
Web servers

1. Attack

Command and control server

4. Poll

5. commands

Figure 2 illustrates an example of how cybercriminals recruit computers into botnets

This attack method defeats the extra security that stateful firewalls provide. There are many

variations of the attack describe above. Another very popular mechanism for recruiting clients into

botnets besides hacking legitimate servers is sending phishing emails to the victim.

As botnets has been recognized as an increasing problem more efforts has been put into detecting

and shutting them down. This again has led to efforts from criminals to create more robust

botnets.(Ollmann, 2009)

1.4 Problem overview
Most network-based botnet tracking in operational use is either based on handcrafted full content

signatures or blacklists of known malicious IP-addresses or domains. Both of these strategies have

advantages and drawbacks.

The full content signatures are primarily tracking characteristics of the communication protocol used

by the botnet software. Writing botnet software is a resource intensive activity and most botnets

operators are therefore using standardized commercial botnet kits. Because of this, well-written full

content signatures are able to detect many botnets as long as they are using the same botnet kit.

This is the main advantage of full content signatures. The disadvantage is that developing high

quality signatures requires substantial effort from a highly skilled security analyst. With the

increasing volume of malicious activity, it is getting harder and harder to keep manually written

signature sets up to date.

Writing good signatures are complicated by the fact that malware authors know that their activity is

tracked using full content signatures. To mitigate this threat they have developed a series of

techniques to defeat full content signatures. One of their techniques is to make the botnet traffic as

similar to normal traffic as possible. This strategy makes it very difficult to write good signatures

6 Introduction

6

with low false positive rates. Another strategy for malware authors is utilizing encrypted protocols

like HTTPS. The use of encrypted protocols makes most full content signatures useless. Because it is

easy for cyber-criminals to enable strong encryption, botnet detection techniques that rely on full

content data will always be inherently unreliable.

Blacklists on the other hand are primarily tracking the network resources cyber-criminals are using.

They can essentially be considered simplified signatures that only use the domain or IP-address of

the Command and control server to identify botnets. Because the IP-address is needed by routers to

forward traffic on the internet cyber-criminals cannot easily hide the IP-address with encryption in

the same manner that the rest of the packet data can be hidden. The standard DNS protocol is also

unencrypted making it difficult for criminals to hide the domain names they use as well.

The big advantage of blacklists is that the detection mechanism depends on the parts of the botnet

traffic that is very difficult to hide for cyber-criminals. Another advantage is that they can more

easily be updated automatically. For example by running malware samples in honeypots or by static

analysis, the command and control server can be found and automatically added to blacklists.

Keeping blacklists up to date does therefore not require the constant attention of a highly skilled

security analyst in the same manner that full content signatures sets typically do.

IP and domain blacklist has therefore emerged as a very powerful tool for tracking botnets. Because

of this, malware authors have come up with a series of strategies to defeat blacklist detection. One

of the techniques is increased command and control server agility. In this context, agility means

moving the botnet command and control server often, typically multiple times per day. Another

strategy they are using to defeat blacklists is compromising legitimate servers and utilize them as

command and control serves. This creates a problem for blacklisted based techniques because the

server the cyber-criminals are using is both hosting benign and malicious content at the same time.

Adding the server to the blacklist will therefore create false positives, but not adding the server to

the blacklist will create false negatives. This illustrates that simple blacklists in some cases does not

have enough expressiveness to distinguish malicious traffic from benign traffic.

In addition to these techniques, there are considerable efforts in the research community on finding

good detecting methods based on machine learning and anomaly detecting methods. The limited

use of machine learning and anomaly detecting in operational botnet detecting is there for

somewhat surprising. The paper "Outside the Closed World: On Using Machine Learning For Network

Intrusion Detection" (Sommer & Paxson, 2010a) argues that the field of network intrusion detecting

exhibits inherit characteristics that makes it difficult to apply machine learning. The characteristics

identified by Sommer et al are 1) The need for outlier detection, 2) High cost of classification errors,

3) A sematic gap between detection results and their operational meaning, 4) The enormous

variability of benign traffic, 5) Challenges with performing sound evaluation, and 6) The need to

operate in an adversarial setting.

7 Introduction

7

1.5 System overview
The proposed system is inspired by the difficulty in applying machine learning to intrusion detecting

outlined in "Outside the Closed World: On Using Machine Learning For Network Intrusion Detection"

(Sommer & Paxson, 2010a). The proposed system takes as a starting point the manual methods for

detecting botnets in operational use today and tries to automate the processes in such a way that

compromised computers can be identified automatically. As part of this master thesis, a prototype

system is implemented and its performance is tested on real word data. The proposed system is

designed around a classical misuse detection system. Figure 3 below illustrates the basic concept.

Detection
Engine

Activity

Signatures

Alarms

Figure 3: Detection system overview

The Activity can be any form of line-based log, but the most useful activity log in this context is

netflow, DNS log and HTTP log. In a large organization, there are typically products from many

vendors and each vendor has its own log format. In such scenarios, it simplifies the log management

if an IDS sensor is used for passively generating log data based on the network data. When this is

done, multiple sensor can be deployed for collecting logs and all logs will be in the same format.

Typically, these sensors are placed between the corporate network and the Internet as described on

in figure 4 below.

8 Introduction

8

Internet

Corporate network

IDS sensor

Port mirroring

Logdata:
Netflow
Dnslog

http

Figure 4: Illustrates activity log collection

In addition to the detection engine itself, the system has two important components: one for

generating the signature set and one for managing the alarms from the detection engine.

The component that generates the signature is threat centric. It collects signatures that can detect

malicious activity and estimates a risk score for each signature. At the most basic level the threat

centric component takes as input multiple signature list and output a new combined signatures list

were each signature is assigned a risk score. The quality of signature list and signature varies a lot

and the challenge is to find a good method for quantifying a signature score. The figure below

illustrates the basic workings of the threat centric component:

Signaturelist #1

Signaturelist #2

Signaturelist #..

Combine
quantified

Signaturelist

 Figure 5: Process to dynamically learn network resources used by threat agents

9 Introduction

9

The alarm management component is asset centric, it analyses the alarms generated for each client

on the network and based on this estimates the likelihood that the client has been compromised.

The figure below illustrates the basic workings of the asset centric component:

Alarm #1

Alarm #2

Alarm #...

Combine Client risk score

Figure 6: Process to dynamically assign a risk score to hosts in the network

These kinds of intrusion detection system can often create enormous amounts of alarms with a very

high false positive rate. The important part of this module is to relieve some of the alarm

management from the operator and instead present to the operator the list of clients that most

likely are compromised.

1.6 Research question
Traditionally a security analyst has manually performed the tasks of downloading signatures,

searching logs and analyzing the resulting alarms. The proposed system automates this process; the

goal of the automation is to simplify the detection of compromised hosts in the network

One of the main challenges of using large signature sets is that they tend to generate alarms with a

high false positive rate and this makes it easy to miss important alarms. If a signature triggers on a

popular legitimate service it can even generate so many alarms that it floods the alarms

management system. It is therefore very important that the proposed systems is able to deal with

such bad bad signatures.

RQ1: Will the system be able to automatically deal with signatures that generate large amount of

false positives?

The hypothesis is two-fold: 1) that a few bad signatures triggers on normal legitimate traffic and this

generates most of the false positives and 2) that the proposed whitelisting algorithm in combination

with the proposed matching engine will be able to automatically remove these signatures, there by

significantly reducing the number of false positives.

10 Introduction

10

To test the hypothesis the proposed system will be tested on network activity logs from a large

organization in Norway. The log data will first be searched using the full signature set without the

proposed whitelisting algorithm. The results will then be compared to searching the same log data

after applying the whitelisting algorithm. The proposed matching engine will be tested the same

way. First log data will be searched using a simple string matching algorithm and then the results will

be compared to results of applying the proposed matching engine to the same log data.

RQ2: Will the system simplify the process of detecting compromised host in the network compared to

manual inspecting each alarm?

Even after removing some of the bad signatures searching log data with a large signature set will

often generate very large numbers of alarms. Manually inspecting each alarm to detect

compromised computers requires a lot manual work and is sometimes practically impossible. The

proposed system will quantify the risk associated with each alarm and calculating an aggregated risk

score for each host in the network. By doing this it should no longer be necessary to inspect each

alarm to identify compromised hosts.

The hypotheses is that using the proposed system it should be possible to identified compromised

hosts only be looking at the hosts with the highest risk score and the alarms that represents the

highest risk.

The hypotheses will be tested by applying the proposed system to the same log data that was used

for RQ1 and try to manually verify if the hosts with the highest risk score are actually compromised.

A limitation with the proposed test is that it will be difficult to verify how good proposed system is

beyond the fact that it can detect some compromised computers. It will not be possible to test if all

compromised hosts were identified or what percentage of compromised hosts was identified. This is

related to general challenge of identify ground truth in intrusion detection research(Sommer &

Paxson, 2010b).

11 Background

11

2 Background
The intrusion detection literature is vast and it can be challenging to identify the most relevant

papers. This section starts with looking at intrusion detection in general and tries to frame it as an

information retrieval problem. The second chapter follows up by looking more specifically on the

problems of applying machine learning techniques in an adversary environment.

The proposed botnet detector is design mainly to detect botnets based on the IP-address and

domain names they are using. In the section "2.3 Botnet detection based on network resources"

different aspects of modern networks are discussed and how these influence the effectiveness of

the suggested botnet detector.

In the last section the recent research on instruction detection is reviewed. The review is limited to

intrusion detection based on netflow and passive DNS.

2.1 Information Retrieval
Information retrieval is a broad term used to describe many problems related to searching large

amounts of data. This section discusses aspects of the information retrieval literature and how it

relates to network based intrusion detection.

The main goal of network instructions detection systems is to detect if hosts on the network are

compromised. A network based intrusion detection system typically achieves this by searching the

network traffic for suspicious activity. Based on this search the system estimated the likelihood that

hosts on the network are compromised. Using terminology from the field of information retrieval,

this can be considered a classification problem. In a classification problem one is given a set of

classes and the goal is to determine which classes a given object belong to. Casting network

intrusion detection as a classification problem the classes would typically be: secure or

compromised and the network traffic from each host the 'object' that represents the host in the

classification algorithm. Again using information retrieval terminology, we can categorize the

classification technique used in intrusion detecting based on the level of automation. (Introduction

to Information Retrieval [Hardcover], 2008)

 Manual classification

 handcrafted rules

 machine learning-based classification

2.1.1 Manual classification

Manual classification or inspection of network traffic can give a deeper insight into the workings of

the network and what it is used for. The problem is that it is very labor intensive and it is difficult to

scale to the massive amount of traffic that is normal in today's network. Manual inspection is

therefore not practical as a general intrusion detection technique, but can be an important

technique for getting insights into what is going on when investigating alarms generated by some of

the more automated techniques.

12 Background

12

2.1.2 Handcrafted rules

Handcrafted rules are one of the most common techniques in use today. The main reason is that

handcrafted rules have good scaling properties and can be used to inspect enormous amount of

network traffic very efficiently. In information retrieval terminology, this called standing queries.

Figure 7 below is an example of a typical handcrafted network intrusion detection rule; it is a rule for

the popular open source network intrusion detection system SNORT.

Figure 7 Example of handcrafted snort signature

Intrusion detection based on handcrafted rules that specify malicious activity is in the intrusion

detection literature often called misuse detection systems. Typically, a misuse detection system

contains two major components (1) a language for describing known techniques (called misuse

signatures) used by attackers to penetrate the target system, and (2) monitoring programs for

detecting the presence of an attack based on the given misuse signatures. (Lin, Wang, & Jajodia,

1998). What is considered a hand crafted rule in information retrieval terminology is often called a

signature in the intrusion detection literature.

One problem with applying handcrafted rules to intrusion detection is that both normal traffic and

attacks change over time and keeping the signatures up to date becomes challenging. The gradual

changing over time leads to large and complex rule sets. For example, Snort has two popular

commercial rule sets, one from Source Fire2 and one from Emerging threats3. They contain

respectively about 13 000 and 20 000 signatures. The problem of keeping these handcrafted

signatures sets up-to-date will probably increase as the use of internet continues to increase in the

coming years and with it the scope of cybercrime. The web page av-test.org provides some statistics

2
 http://www.sourcefire.com/

3
 http://www.emergingthreatspro.com/

http://www.sourcefire.com/
http://www.emergingthreatspro.com/

13 Background

13

on the number of total classified malware sample that illustrates this problem.

Figure 8 Illustrating how total number of classified malware has been increasing

Simple blacklists of malicious domains and IP-addresses can also be considered handcrafted

signatures with a simplified rule language. The simplified rule language has the advantage that it

easier to automatically share and integrate from multiple sources. Simple blacklists are also easier to

automatically generate, using for example honeypots.

2.1.3 Machine learning

Apart from manual classification and handcrafted rules, there is a third approach, namely machine

learning-based classification. In machine learning, the rules are learned automatically from training

data. Machine learning based systems seem to have limited success in operational

environments(Sommer & Paxson, 2010a)

A typical supervised machine-learning algorithm learns a classifier function based on the statistical

properties of a labeled training dataset. The learned classifier can then predict which class new

instances belongs to. For network intrusion detection the classifier can typically classify traffic as

either malicious or benign or a host as secure or compromised. For most binary classification

14 Background

14

algorithms, there is a requirement that a representative selection of instances from both classes

must be contained in the training data. Often when applying machine learning to intrusion detection

it is not possible to get a complete training set and the algorithm will often only have access

to examples from one class.

The problem of learning from a classifier based on examples from only one class is called a one-class

classification problem4. This problem is considered fundamental harder than the

standard classification problem(Khan, Madden, Coyle, & Freyne, 2010). One-class classification is

related to anomaly detection which is defined as the problem of finding patterns in data that do not

conform to expected behavior (Chandola, Banerjee, & Kumar, 2009). Anomaly detection is also

often referred to as outlier detection, where a outlier is: “an observation that deviates so much from

other observations as to arouse suspicion that it was generated by a different mechanism”

(Hawkins, 1980). An Intrusion detection system based on anomaly detection learns a notion of what

is normal activity and then reports deviations from that profile as alerts. The underlying assumption

of such a system is that malicious activity exhibits characteristics not observed for normal usage

(Denning, 1987)

From these definitions, we see that anomaly detection can be considered a one-class classification

problem that is only using examples from the benign class. It is possible to gain a simple intuition of

why one-class classification is a harder than normal classification problems from the illustrations in

figure 9 below. In a standard learning problem, the learning algorithm is given a representative

selection of examples from both classes and the learning algorithm is able to learn a boundary

between the classes.

• 4 Other names for one-class classification is: “Concept-learning in the absence of counter-

examples”, Anomaly detection or “novelty detection”

15 Background

15

Figure 9 Example of the binary classification with two features

When the learning algorithm is given only examples from one of the classes, it is more difficult for

the algorithm to decide where to draw the class boundary. This is illustrated in figure 10 below. In

the figure to the left, the learning algorithm is presented examples from only one of the classes and

learns a boundary based on the available training examples. In the figure on the right the examples

from the other class is plotted as well. We can see that the algorithm misclassifies some of the

examples. The underlying reason for the miss classifications is that it is very difficult for the learning

algorithm to know where to draw the class boundary without counter examples from the other

classes.

Figure 10 Example of classification with only examples from one classanomaly detection

16 Background

16

From example in figure 10, we can get the intuition that a machine learning based intrusion

detection system stands a better chance of being successful if the training dataset includes a

selection of representative examples from both malicious and benign traffic.

Even though it seems obvious that anomaly based detection systems are sub optimal they are the

most popular strategy employed in network intrusion detection research. One reason for its

popularity might be the problem of creating and maintaining a good training dataset. Benign traffic

data is often not shared because of privacy concerns and malicious traffic is not shared for security

reasons.

Sommer et al criticizes the anomaly detection strategy in their paper Outside the closed world: On

using machine learning for network intrusion detection and argues that the domain of network

intrusion detection exhibits particular characteristics that make the use of anomaly detection

particularly hard. They identify 6 characteristics:

1) The need for outlier detection,

2) High cost of classification errors,

3) A sematic gap between detection results and their operational meaning,

4) The enormous variability of benign traffic,

5) Challenges with performing sound evaluation,

6) The need to operate in an adversarial setting

The problem of outlier detection is related to the fact that real world network traffic from a

heterogeneous network exhibits immense variability even within its most basic characteristics such

as bandwidth, duration of connections etc. An anomaly system must per definition report all

deviation from its profile of normality as a potential intrusion and experience has shown that

legitimate activity often can generate many anomalies. Changes in network setup, the addition of a

new server or client, a new popular internet service or all attendees of a meeting downloading the

project files at the same time are example of legitimate activity that easily creates anomalies.

The high cost of error is related to the fact that every time the system generates an alarm, it will

require the attention of an operator. A typical alarm from an anomaly detection system can be

“unusual increase in outbound traffic”. It will take an operator considerable amount of time to

figure out the underlying cause of the alarm to determine if it is malicious activity or not. The

amount of traffic an NIDS inspect and the cost of verifying alarms make it critical that the false

positive rate of a NIDS is very low and this is very difficult to achieve because of the high variability

in the network traffic.

Sommer et al. reference to the sematic gap is based on the notion that an anomaly based intrusion

detection systems detects anomalies and not attacks and it is up to the operator of the system to

investigate the activity and decide if the anomaly is malicious or benign.

According to Sommer et al these characteristics are the underlying reasons for the notion in the

information security community that anomaly detection systems create to many false positives to

17 Background

17

be useful. It is also believed to be the reason that most of the machine learning based systems have

had limited operational success.

Another aspect that is not discussed by Sommer et al is that every time the system triggers an alarm

a human operator must investigate the threat. In this process the operator will typical learn a lot

about the threat. A successful intrusion detecting system must make it easy to take advantage of the

knowledge the operator gained during the investigation. Simple hand-crafted rules are simple ways

to encode this knowledge back into the IDS. In contrast, when a machine learning based approach is

used it is often difficult for the human operator to directly teach the system. Often when supervised

learning algorithms are used, the only way to teach the system is to represent the new examples to

the learning algorithm and hope that the algorithms find statistically significant attributes that can

be used to classify the new attack. This indirect form of teaching is often not satisfactory. In the case

of an attack, the operator will want some guaranties that the detection system will detect the attack

in the future.

Another advantage of simple rules over machine learning is that they are easy to share across

organizations compared to for example statistical classifiers. Considering the importance of sharing

threat intelligence this might be another important underlying reason for the low usage of machine

learning based intrusion detection system. Such systems might perform very well for a limited

dataset or period when the authors put a lot of effort to encode and select the correct features for

the learning algorithm, but as the threat gradually changes the system performance decreases.

All these challenges do not suggest that it is impossible to detect attacks with anomaly based

network intrusion detection systems. Certain types of network attacks create very distinct network

anomalies. Examples are scanning, denial of service and worm propagation, for these activities there

are a number of anomaly based detection mechanisms that has been shown to work efficiently. An

example of a successful commercial product based on these techniques is Arbor peakflow5. Botnet

command and control traffic is an example of a malicious activity that is easier to make very similar

to normal traffic and therefore difficult to detect with anomaly detection systems. There are for

example few statistical differences between a malicious bot polling a Command and control server

and a legitimate software agent polling a server for software updates.

2.2 Intelligent threat agent
A central challenge when applying machine learning to intrusion detection is that the source of the

error is not just random variations, but an intelligent adversary working actively to defeat detection.

This adds an extra dimension of complexity to the problem of measuring the effectiveness of the

algorithm (Halpern & Tuttle, 1993).

Creating a machine learning technique that produces good results on present day malicious activity

does not mean much because malicious activity evolves. Most intrusion detection techniques so far

5
 Arbor Peak flow http://www.arbornetworks.com/peakflowsp

http://www.arbornetworks.com/peakflowsp

18 Background

18

have been like pesticides that do nothing more than create a new, resistant strain of bugs. The

important question is: will the algorithm work even if the threat agent knew exactly how it worked?

A machine-learning algorithm claiming to be efficient in the domain of intrusion detection must

therefore show that it can detect intrusions even if the adversary knows how the algorithm works. It

must at least provide convincing arguments that is it very difficult for an attacker to avoid detection.

If this is not the case the algorithm will probably be inefficient as soon as it gets popular. For

example when checksum based antivirus detection became popular malware authors started to use

more and more on polymorphic code and thus defeating the checksum based detection algorithms.

Because most errors are not random the design and assessment of intrusion detection algorithms

requires a deeper understanding of the threat agent and his intentions. Assessing the effectiveness

of a detection algorithm only using the adversaries’ current techniques will most likely provide

overoptimistic results because new attack techniques will not be random variations of existing

attacks, but evolved versions designed to defeat the detection mechanisms.

Most cyber criminals are businessmen and their goal is to make money. Breaking into computers

and recruiting them into botnets is only a mean to that end. If we get very good at detecting today’s

attacks, cybercriminals will try to design new ways of breaking into computers. The only way we can

defeat them is if we can make it very difficult to make money on cybercrime. This would then over

time probably lead to fewer cybercriminals, and less cybercrime. There are of course many

important aspects to such a strategy; building better and more secure software, introducing better

and more efficient international law enforcements and so on, but this paper is only concerned with

the role of intrusion detection. If we could find effective and efficient methods for detecting these

cybercrime operations that work over time, we could probably stop most of the attacks very early

and it would be difficult to make money on cyber-attacks. The challenge is finding good general

detecting methods that will work even when facing an intelligent opponent. In machine learning

terminology this is sometimes called adversarial machine learning (Tygar, 2011)

Developing strategies in the face of an intelligent adversary is something military organizations have

been doing for centuries. It therefore seems appropriate to look for inspiration from military

strategy when designing system intended to fight cybercrime.

An important part of military strategy is intelligence, which is concerned with information collection

and analysis to provide guides and direction in military planning. The process used by US and NATO

forces today is called intelligence preparation of the battlefield (IPB). The original description of the

method is found in US Army Field Manual 34-130 Intelligence preparation of the battlefield.

“IPB is the best process we have for understanding the battlefield and the options it presents to

friendly and threat forces.”

The IPB process is defined as a continuous process consisting of 4 steps:

1. Define the battlefield environment.

19 Background

19

2. Describe the battlefield’s effects.

3. Evaluate the threat.

4. Determine threat COAs.

The IPB process was developed to support kinetic military operations and it’s not clear that is a

useful approach to conflicts on the Internet or that it is useful against economically motivated

criminals. One of the challenges of applying the IPB process to cyberspace is finding analogs for

kinetic concepts such as terrain and weather. A simple analog for terrain is the parts of the IT

systems that are not possible to change in the time frame of operation. Hanseth et.al has proposed

calling these more slowly changing parts of information systems the Information

infrastructure(Hanseth, Monteiro, & Hatling, 1996).

DARPA has been sponsoring various research efforts to test if the IPB process can be mapped to

cyber defense. On such effort is the The Information Battle space preparation experiment(Moore,

Kewley, Parks, & Tinnel, 2001). The goal of the experiment was to test if an adopted IPB process

could improve detection, prevention and prediction of network attacks. The main conclusion of the

experiment was that the adopted IPB process in fact seemed to improve all three: detection,

prevention and prediction. When discussing why the IPB process allow for better prediction of

enemy course of action (COA) they conclude with the following

“We judge that this structured process encourages the human to think through all aspects of

hostilities in a methodical way which allows him or her to identify potential COAs more accurately.

IPIB takes a much more comprehensive view of adversary goals, vulnerabilities and attack axes to

determine EnCOAs”

The two key concepts for predicting how an adversary will act seems to be understanding the

adversary’s goals and how the environment creates opportunities and limitations for reaching those

goals. For example in a traditional real world IPB process it would probably be natural to analyze the

weather’s impact, for example on visibility. Analyzing this in a systematic way one might come to the

understanding that bad weather presents an opportunity for the adversary to conduct an operation

in secrecy. Predicting this with some probability allows for planning a defensive strategy for such a

situation. Comparing this to cyberspace there is no clear analogy for weather conditions, but there

are clearly concepts that affect the visibility from a NIDS point of view. One example of this is

cryptography. Switching from HTTP to HTTPS makes it possible for an adversary to hide the URL

used in command and control traffic from a NIDS sensor point of view. In fact using cryptography

will render all full content NIDS signatures that relay on data above the IP layer in the TCP/IP model

useless. This example implies that it important to take into consideration how the environment (IT

infrastructure) creates opportunities. For example designing machine learning algorithms that

depend on full content data present the opportunity for the adversary to avoid detection with the

use of cryptography. This implies that a machine learning algorithm that hopes to be successful over

time in the face of an intelligent adversary must not depend on concepts that can easily be avoided

by an adversary.

20 Background

20

The biggest contribution from the IPB process seems to be the insight that a systematic method for

analyzing how the environment create opportunities both for adversaries and defenders it

important when facing and intelligent adversary.

2.3 Botnet detection based on network resources
In the previous section, it was identified that understanding the IT infrastructure and the

opportunities it presents for the adversary is important. This section will discuss how the modern

networks affects a NIDS ability to detect intrusions and an argument will be made that most botnets

can effectively be tracked by the network resources they are using.

2.3.1 Stateful firewalls

Today most home networks and corporate networks are behind a stateful firewall or Network

address translation (NAT) router. This has affects how adversaries can attack and secure access to

compromised computers. Stateful firewalls forces attack related traffic to originate from the inside

of the intranet network.

Figure 11 Illustrates that the introduction of firewalls forces adversaries to install bots that poll for new instructions to
ensure continued access

The fundamental change with the introduction of firewalls is that the bot has to be preprogrammed

with the location of the command and control server. This forces the location of command and

control servers to stay the same between each time the bot polls for new instructions. If the location

of the command and control server changes when the bot is offline, the attack er will lose control

of the compromised computer. Especially in large botnets there will always be some bots that are

offline for various reasons, this makes changing the command and control very difficult for the

attacker. This fundamental limitation of botnets makes them easy to track. As the size of the botnet

increases, it will get increasingly difficult for an attacker to keep the command and control lookup

mechanism secret.

2.3.2 Command and control topologies

Cyber criminals are well aware of the fact that the command and control server is a critical

vulnerability. As a countermeasure they have developed a series of different command and control

communication topologies, making it more difficult to track the botnets(Ollmann, 2009). The

21 Background

21

different topologies can be compared on how difficult they are to setup and maintain, how robust

they are against takedown, and how difficult they are to track. Example topologies are single server,

multi-server, hierarchical and peer to peer.

The simplest topology is a single server topology. This topology is the simplest to setup, but is also

the simplest to track and shut down. The next topology is multi-server topology which adds more

servers. This topology requires more resources to setup and maintain because of the introduction of

multiple server, but it also makes it more difficult to track and shut down.

Because most network equipment such as routers and firewalls can track and block traffic based on

IP-addresses even the most advanced IP-address based topologies are relatively easy to track and

take down. As a countermeasure cyber criminals have developed strategies that enable them to

resolve the IP-address of the servers dynamically thus making them less dependent on having

command and control server with static IP-addresses.

The domain name system is the standard mechanism for resolving IP-addresses on the internet

today. By using the domain name system a botnet can potentially become more resilient to server

takedowns. If a server is taken down a new one can be created and the domain name record

updated to point to the new server. The use of domain names creates a new problem for cyber

criminals; the domain is now a new single point of failure. To mitigate this problem they have

developed even more advanced command and control topologies. Examples of such topologies are

IP flux, Domain flux, domain wildcarding and Random domains6

Criminals can in theory depend on other services than the domain name system for resolving the IP-

address of the command and control server. There have been examples of bots using for example

closed Google groups or Twitter channels. But historical data seems to indicate that most cyber

criminals prefer to use the domain name system. There are some properties that seem to make the

domain name system better for cybercriminals comparing to internet services like Twitter and

Google groups.

The domain system is a very large distributed system with many independent domain name

registrars7. Most of these registrars base their incoming on monthly fees from registered domains.

Terminating domains because of illegal activity reduces their income and at the same time the cost

of the illegal activity is external to the domain registrar. This creates a situation where some

registrars are not very willing to terminate domain registrations because of illegal activity. Some

might even be reluctant to terminate domains when given proof that they are used for malicious

activity. Others have very little resources to deal with misuse cases. Because of this it can be

6
 These topologies are discussed in (Ollmann, 2009) and will not be described in detail her.

7 domain name registrar is an organization or commercial entity, accredited by both ICANN and generic top-

level domain registry (gTLD) to sell gTLDs and/or by a country code top-level domain (ccTLD) registry to sell

ccTLDs; to manage the reservation of Internet domain names in accordance with the guidelines of the

designated domain name registries and to offer such services to the public. (source: Wikipedia.org)

22 Background

22

challenging to take down domain names used by command and control servers. This is a very

attractive property for cyber criminals.

This is in contrast to using an Internet service like Twitter or Google groups where a single

organization is in control. If their service is associated with botnet activity they can easily be

blacklisted or lose credibility as a secure service. The cost of botnet activity is therefore more likely

to be internal to the business running the service and they might therefore be more motivated to

stop the activity. A botnet depending on a service like Twitter is therefore facing the risk of faster

removal, which can leave the botnet without a command and control server and effectively

disabling the botnet.

Another advantage of using the domain name system is the share number of registrars. If one

registrar becomes really good at detecting and shutting down domains used for malicious activity it

is very easy to switch to another registrar. In the case of an Internet service, for example Twitter, if

they get really good at detecting and removing accounts used for malicious activity there is no other

place to go.

Even though botnets based on the domain name systems can be hard to takedown, they are

relatively easy to track from a NIDS sensor. The reason for is that all DNS traffic will normally pass a

NIDS unencrypted.

2.3.3 Cryptography

Full content signatures make it possible to detect characteristics of the botnet traffic itself. This will

often make it possible to detect all botnets that share the same botnet kit. For example, the snort

signature below can reliably detect all traffic related to certain version of the Zeus botnet kit.

Table 1: Example snort signaure

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET

CURRENT_EVENTS Zeus Bot / Zbot Checkin (/us01d/in.php)";

flow:established,to_server; content:"GET"; nocase; http_method;

content:"/us01d/in.php"; nocase; http_uri;

reference:url,garwarner.blogspot.com/2010/01/american-bankers-association-

version-of.html; reference:url,doc.emergingthreats.net/2010729;

classtype:trojan-activity; sid:2010729; rev:5;)

23 Background

23

The problems is that if the cyber criminals become aware of the fact that their command and

control traffic is primarily tracked based on full content signatures they can enable encryption and

that will render the signatures useless. Take the example signature above, the creators of Spyeye kit

has already created a crypto plugin that makes it possible to encrypt the botnet command and

control traffic.

Figure 12 The Orange color illustrates that all data in the application layer of the TCP/IP stack can potentially be
encrypted, and detection based on it is easy to avoid.

This fundamental weakness of full content signatures in relation to botnet tracking does not indicate

that full content signatures are useless in all cases. For example the exploit of a vulnerability is

generally not possible to encrypt and full content signatures can be a very powerful tool in detecting

such an attack.

Even though it would be easy to encrypt botnet traffic, experiences from popular botnets indicate

that many of them are not encrypted. One reason for this might be the added complexity of using

cryptography. Even though full content signatures still are an efficient method for some botnet

detection, it is probably not a good idea to design a system that relies on it because the mechanism

is so easy to defeat for botnet operators.

2.3.4 IP-adresses

For hosting command and control servers, cyber criminals can choose between renting a server or

hijacking and using a compromised server. Renting their own server has the advantage that it’s

simpler; they don’t have to first compromise an Internet facing server for command and control

purposes. Another advantage is that it’s often more stable, a compromised computer might get

cleaned up and if the bots are not programmed with redundant s servers the attacker might lose

control over the bot net.

It’s very important for cyber criminals are to remain anonymous to avoid law enforcement. If the

service providers the criminals are renting servers from are cooperating with law enforcement they

24 Background

24

might provide traffic logs or a ghost image of the rented server. And in such a situation the

anonymity of the criminals is in danger. For this reason cyber criminals prefer to rent servers from

countries with weak cyber legislation and from service providers with a reputation for not

cooperating with law enforcement. These service providers are often called bullet proof hosters

because they normally ignore takedown requests and allow criminals to conduct their business

uninterrupted. Over the last couple of years a long list of bullet proof hosters has been identified

and taken down. The list below is examples of bullet proof hosters from the last couple of year.

Figure 13 List of know pullet proof hosters
8

This means that there are certain IP-address spaces that are more likely to be related to cybercrime

and botnet command and control servers. The challenge for cyber criminals is that using bulletproof

hosting protects their anonymity, but it makes it much easier to detect the botnet. Traffic to or from

their IP-address space could be considered very suspicious. The fact that many botnet operate from

within a small IP-address space is a big advantage because by tracking the IP-address used by known

botnet command and control server new botnets that operate within the same address space can

be detected.

One of the solutions cybercriminals have come up with to avoid the problem is a layered botnet

topology. They use compromised computer to proxy the traffic to a central command and control

server that is hosted by a bullet proof hoster. The usage of hijacked server as reverse proxies defeats

some of the IP-address based botnet tracking because it is not possible to determine if the traffic is

botnet related if the traffic goes to a hijacked server.

Even though the use of hijacked servers as reverse proxies isis making IP based botnet tracking

much harder, the usage of the technique seems to be limited. The reason is probably that

maintaining a large pool of hijacked server for reverse proxies requires a lot of resources from the

botnet operator.

8
 http://en.wikipedia.org/wiki/Bulletproof_hosting, last visited 10.06.2012

http://en.wikipedia.org/wiki/Bulletproof_hosting

25 Background

25

2.3.5 Domains

When selecting domains for their command and control server cyber criminals can choose between

registering their own domains or hijacking legitimate domains. The tradeoffs associated with this

choice are similar with that of renting or hijacking a command and control server. Renting is easier

because it is not necessary to hijack a legitimate domain. The biggest disadvantage for cyber

criminals when registering their own domains is that they might leave clues that makes it easier to

identify them.

2.3.6 Retrospective analysis

The DNS and netflow logs even from big networks are small enough that they can be stored for

years. If a new botnet is detected, old activity logs can be searched and an overview of

compromised computers can be found relatively quickly. The possibility to perform this kind of

retrospective analysis is a powerful feature of botnet tracking based on domain name and IP-

addresses.

At first glance it might seem that this kind of retrospective analysis is of little value because if the

computer has already been compromised for some time an argument can be made that the damage

has already been done. It is reasonable to assume that as soon as the computer was compromised

some of the sensitive information on the computer was stolen, such as credit card information,

usernames and passwords stored in the web browser.

If the infected computer contains other sensitive information or is connected to other systems with

sensitive information, it will normally require a manual targeted attack from the owner of the

botnet to get the information. After the initial infection, there will therefore be a race between the

attacker and the victim's organizations security team. The team defending the network will have to

clean up the compromised computer before the attacker is able to perform a targeted attack and do

more damage.

Experience has demonstrated that attacks are often detected sometime after they are performed. I

n such a situation retrospective analysis is crucial to get an overview of the attacks. We know that

cyber criminals have developed a black marked for buying and selling cybercrime services,9 it is

therefore not unreasonable to assume that access to computers that might hold sensitive

information is sold to individuals that for example specializes in industrial espionage. Because of

scenarios likes this it will always be important to detect compromises as soon as possible and get

the computers cleaned up.

Given the importance of retrospective analysis, sharing threat intelligence with the rest of the

security community in the form of domains and IP-addresses seems a good idea to help improve the

overall ability to detect cybercrime activity.

9
 http://us.norton.com/cybercrimeindex/blackmarket.jsp

http://us.norton.com/cybercrimeindex/blackmarket.jsp

26 Background

26

2.4 Related work
The system for detecting botnets proposed in the next chapter is based on tracking botnets based

on IP-addresses and domain names. This section will review the current literature on using netflow

and passive DNS for detecting and tracking botnets.

2.4.1 Tracking botnets using passive DNS

The most recent paper that studies how botnets and malware activity in general can be detected

using passive DNS is Exposure: Finding malicious domains using passive dns analysis(Bilge et al.,

2011). The exposure system can be considered a classical machine learning system. First training

data is labeled using popular blacklists and white lists. For blacklists spyeyetracker,

malwaredomainlist etc are used and for whitelisting the top 1000 most popular web pages are used,

based on the assumption that the most popular pages on the internet are professionally managed

and not malicious. The authors then extracts a set of features they believe will separate malicious

and benign traffic, and a machine learning algorithm is used to train a classifier on the available

training data. Bilge et al had access to traffic from central DNS server on the internet that received

about 1 million queries per minute. During the two and a half month trial they monitored

approximately 100 billion DNS queries. Unfortunately they had a problem processing that much

data. They therefore had to filter out some domains. The authors removed requests going to the

domains on the Alexa top 1000 domain list, under the assumption they were benign. The next

filtering step they performed was to remove all domains that were older than 1 year. The argument

was that most malicious domains are disclosed after a short period and domains older than 1 year

are therefore most likely benign. These two filtering steps removed about 50 % of the traffic

Table 2 List the features used by exposure to classify domains

Bilge et al has proposed many new and innovative features but some of proposed features will be

problematic in certain settings. The time-based features for example have the problem that they

depend on a time series algorithm that only works if there are many requests for the analyzed

27 Background

27

domains Because of this, the authors decided to only include domains that in total had more than 20

quires directed toward them. This led the authors to exclude 4.5 million domains from the dataset.

After removal of 4.5 million domains the dataset contained only 300 000 domains. Table 3 below

summarizes the detection rates that Bilge et al reports on the filtered dataset.

Table 3 The reported accuracy of Exposure (AUC= Area Under the ROC Curve)

The results seem impressive, but analyzing the performance of the algorithm on less than 7% of the

domains in the original dataset makes it difficult to evaluate the results.

In two situations, the Exposure system queries Google for information about a domain. 1) To

determine if an IP is used by a shared hosting service, we query Google with the reverse DNS answer

of the given IP address. Legitimate web hosting providers and shared hosting services are typically

ranked in the top 3 query answers that Google provides. This helps us reduce false positives. 2) for

domains that are determined to be suspicious, we check how many times it is listed by Google. The

reasoning here is that sites that are popular and benign will have higher hit counts. Using Google, as

an external oracle is problematic because it makes it very difficult to determine how good the select

features and machine learning algorithm really are.

The usage of Time to live(TTL) features and searching for fluxing TTL values will also be problematic

in some real world environments. This is problematic in cases where the DNS sensor will observe

DNS traffic from caching DNS servers and not traffic directly from an authoritative DNS server. When

a caching DNS server responds to a query it will subtract the number of seconds the DNS records has

already been cached from the original TTL value. A sensor observing traffic from a caching DNS

server will therefore observe fluxing TTL values even though the original DNS records TTL value is

unchanged.

Another recent paper that looks at botnet tracking using passive DNS is: Building a Dynamic

Reputation System for DNS(Antonakakis et al., 2010). This paper shares many characteristics with

the previous paper. It describes a system called Notos that is designed to be able to dynamically

assign reputation score to new domains. The premise of this system is that malicious, agile use of

DNS has unique characteristics and can be distinguished from legitimate, professionally provisioned

DNS services. The system uses similar features as the Bilge et al paper. In addition to a supervised

learning algorithm similar to Exposure, Notos also uses a clustering algorithm for grouping similar

activity.

Evaluating the Notos system using 9530 known bad domains and the Alexa top 500 most popular

domains gave a false positive rate (FP%) of 0.38 % and a true positive rate (TP%) of 96.8%. When

28 Background

28

extending the known good domains to 100 00 domains the detection rate dropped to a FP% of 0.6%

and TP% 80.6%. The big drop in TP% might indicate that Notos has some problems determining if

less popular sites are malicious or benign. This would limit the usefulness of the system as a

standalone system. The authors conclude that the system it would be a best to use it in combination

with other detection techniques.

In chapter 3.1 the paper introduces a practical and concise formal terminology for describing the

relation between, domains, top level domains, second level domains, IP-addresses, zones, IP-

networks, PGB routing prefixes, AS numbers. This terminology seems promising as a standard

terminology when describing these relationships.

The detection systems Notos and Exposure are complementary to the system proposed in this

paper. They use a limited set of blacklisted domains to learn statistical properties about malicious

domains that enables them to detect new domains. The system proposed in this paper is design to

be able to use a much larger and more unreliable signature set of malicious domains directly.

The strength of Notos and Exposure are that they can learn a statistical profile of malicious activity

based known threats provided in blacklists. These techniques make it possible for Notos and

Exposure to detect malicious activity even if the domains and IP-addresses are not blacklisted, as

long as the activity is with in statistical profile of malicious activity. The disadvantage of these

systems is that is difficult to guarantee what they will detect. For example traffic to domains and IP-

addresses well known for their maliciousness can go unnoticed if they operate outside the statistical

profile of malicious activity.

The proposed system in this thesis is complimentary to Notos and Exposure because the detection

method is based on directly matching large signature sets with the activity log. This has both

disadvantages and advantages compared to the statistical method used by Notos and Exposure. The

disadvantage of the proposed system compared to Notos and Exposure is that it will be unable to

detect malicious activity if the activity uses completely new domains and IP-addresses. The

advantage of the proposed system is that it will always trigger an alarm if the domain or IP-address

is known to be malicious. From this we see that the Notos and Exposure has complementary

strengths and weaknesses compared to the system proposed here. A possible synergy is that

domainsdomains flag as suspicious by Notos and Exposure can be used as input to the system

proposed in this paper and by doing so improve the systems detection capability. In addition the

system proposed here includes an algorithm for handling large amounts of alarms which could

potentially improve the operational usefulness of Notos and Exposure.

2.4.2 Tracking botnets using netflow

Two often cited tools with regard to detecting botnets using netflow data is BotMiner (Gu, Perdisci,

Zhang, & Lee, 2008) and Botsniffer (Gu, Perdisci, et al., 2008) and Botsniffer(Gu, Zhang, & Lee,

2008). These two systems are similar as they both utilize horizontal correlation across multiple host.

The underlying assumption is that the system is monitoring multiple hosts infected by the same

botnet and that these infected computers will behave in a coordinated way. In the last couple of

29 Background

29

years there have been multiple law enforcement efforts to take out the large botnets; this has led to

a trend where there are many small botnets instead of few large ones. This trend might be

problematic for these detection techniques because they depend on correlating activity from

multiple infected hosts from the same botnet. The likelihood of having multiple bots from the same

botnet decreases drastically as the size of the botnets decreases.

Another tool that uses netflow is BotHunter (Gu, Porras, Yegneswaran, Fong, & Lee, 2007) this tool

is designed to track the two-way communication flows between internal assets and external

entities, developing an evidence trail of data exchanges that match a state-based infection sequence

model. A web page www.bothunter.net has been created to support the continued development

and distribution of the bothunter tools. An updated infection dialog model can be found on the web

page. Dialog in this setting means stages in an attack.

Figure 14 BotHunter's Infection Life Cycle Model
10

Bothunter uses a dialog like the above to perform dialog sequence analysis, if a host has alarms from

many of the states it is assumed to be infected. The system uses a modified version of snort to

generate the dialog alarms.

10

 http://www.bothunter.net/about.html

http://www.bothunter.net/about.html

31 Methodology

31

3 Methodology
An overview of the proposed system is presented in chapter 4.4. The following chapters explain the

individual components in more detail.

3.1 Quantifying signatures
This section discusses an algorithm for assigning a risk score to signatures. The risk score is a number

that represent the quality of the signature. A high number means that the alarms generated by the

signature are a good indication that the victim is compromised.

There are a many blacklists on the internet and a signature can often be found in multiple blacklists.

The first section below discusses an algorithm for assigning a risk score contribution from each

signature list. The second section discusses an algorithm for combing the risk score contribution

from each signature list into a total risk score.

3.1.1 Risk score contribution

The different blacklists use different methods for gathering threat intelligence and creating

signatures. Some of them get their signatures from web pages where community members report

malicious IP-addresses or domains. Example of such a list is Malware Domain Lists. Some lists are

generated by running malware samples in sandboxes and automatically extracting the command

and control server. For some blacklists like Spyeye Tracker the collection strategy is not publicly

known. Because the collection strategy varies, from blacklists to blacklists, so does the quality of the

lists. Some blacklists are very reliable and provide signatures with very low false positive rate, other

are inherently unreliable and provide little context information with each signature.

Some of the lists are freely available, some cost money and some are only available to members of

certain security communities. For this thesis only freely available blacklist are used.

Different signatures can indicate different stages of an attack. Some signatures represent a botnet

command and control servers and any traffic to it is a very strong indication that the client is

infected. Other signatures indicate that the domain or IP-address is serving exploits and traffic to it

does not necessarily indicate that the client is compromised. A network host is therefor much more

likely to be compromised if he triggers a command and control related signature compared to

triggering a exploit related signature.

When using large signature sets the intrusion detection system will typically generate a lot of false

positives and signatures from low reliability blacklists typically generates the majority of the false

positives. There is a danger that so many false positives are generated that important alarms can go

unnoticed. Excluding large blacklists with lower reliability is not desirable either because they often

contain some useful signatures. To be able to use multiple blacklists it is important to be able to

quantify a risk score associated with each signature and put more weight on signatures from high

reliability lists.

32 Methodology

32

The botnet detection tool BotHunter (Gu et al., 2007) discussed in the previous chapter uses an

detailed state-based infection sequence model and match signatures to this model. The problem

with such an approach is that many of the easily available blacklists do not seem to provide enough

context information to do this. For example, many of the blacklists do not provide enough

information to determine if the signature represents command and control traffic or an exploit

attempt. For this reason, it is difficult use and detailed infection model and simpler model is chosen

here.

Each blacklist has a function that assigns a number between 0-100 to each signature. The number is

the blacklists risk score contribution for the signature. This number represents the risk that a client is

infected given that the alarm triggers on traffic from the client. 100 indicate a very high likelihood of

being infected.

Two primary factors influence the signature risk score contribution.

1) The activity the signature represents

2) How reliable the signature produces alarms that are true positives

For example, the signatures from Spyeye Tracker represent command and control traffic from the

SpyEye crimeware kit. If a host on the network is talking to a command and control server, it is a

strong indication that the computer is compromised. The Spyeye Tracker also has a reputation of

providing signatures with low false positive rate. Signatures from Spyeye tracker should therefore be

assigned a high risk score contribution.

A custom function for assigning risk score to signatures that uses all available information can be

developed for each signature list, but because most signature lists provide little or no context

information, a simple general function will therefore suffice in most cases. The proposed algorithm

for calculating the risk score for each signature uses the three following core concepts:

 Signature

 Tag

The Tag concept is introduced to make it easy to group signatures together. The tag concept has one

important attribute and that is the tag severity, representing the severity of signatures that has the

given tag. The severity is a number between 1 and 100 representing the likelihood that the

computer is infected given that the computer triggers the signature. Example of tags can be botnet

CC, drive by download, exploit kit or bulletproof hoster.

The source concept is introduced to make it easy to relate the signature and the tag to the source

that is reporting it. The source concept has one important attribute and that is the source reliability,

which tells the reliability of the source. The reliability is a number between 1 and 100 and represents

the likelihood that the source is reporting a signature that does not trigger false positives.

The figure below is a relational model describing the relationship between signatures, tags and

sources.

33 Methodology

33

sig

PK sig_id

 name
 description

sig_tag_src

PK sig_tag_src

FK1 sig_id
FK2 tag_id
FK3 src_id
 enabled

tag

PK tag_id

 name
 severity

src

PK src_id

 name
 reliability

Figure 15: Relational model

The relational model illustrates that a signature can have multiple sources and each source can

assign multiple tags to each signature.

When calculating the signature risk score a central concept is that the score should be proportional

to the reliability of the source reporting the signature and the severity of the tag associated with the

signature. The algorithm for calculating the risk score contribution for a signature with one source

and one tag is therefore:

Sometimes a source might report multiple tags on a single signature. For example, a source might

tag some signatures with both the tag zeus_botnet and botnet. This double tagging is often done

only to make it easier to organize the signature. From this it seems reasonable to conclude that the

risk score contribution from a single source should be independent of the number of tags the source

has given the signature. It therefore seems reasonable that the best approach is using the tag with

the highest severity when calculating the signatures risk score from a single source. The algorithm

for calculating the risk score contribution for a signature with one source and multiple tags is

therefor:

3.1.2 Total risk score

When multiple sources report a signature as malicious it seems reasonable that the likelihood that

the domain is actual evil increases and therefore should the risk score associated with the signature

also increase. For example if the domain evil.com is reported as malicious by both Zeus_Tracker and

Malware Domain List the overall risk score should be increasing.

34 Methodology

34

Intuition seems to indicate that the risk score contribution given by independent sources are

additive. By this, we mean that a signatures total risk score is always increasing when more sources

report it as malicious. If one source as given a signature a high risk score contribution and another

source has given the same signature a low score the contribution to the total risk score from the last

source should be small but positive.

It is also desirable that the signature risk score algorithm is design in such a way that signatures with

low severity that are reported by many sources with low reliability rarely have a higher total risk

score than a signature that is reported with a high severity from a single source with high reliability.

This seems to indicate that the contribution to the total risk score from each source should be sub

linear. An algorithm that seems to work in many similar situations is the Root Sum Square (RSS)

algorithm. The total risk score for a signature is the root sum square of the risk score contribution

from each source. Based on the intuition described so far an algorithm for calculating the total risk

score can be constructed.

 √ ∑

The algorithm can be further mathematically formalized. To do that some basic terminology is

necessary.

A set of tags is described with a capital T, a particular tag with a letter case t. The severity rating of a

particular tag is given by the term tseverity.

A set of sources is described with a capital S, a particular source with a letter case s. The reliability

rating of a particular source is given by the term sreliability and the risk score contribution is given by

the term Sscore_contribution

A set of signatures is described with a capital R, a particular signature with a lower case letter. The

risk score associated with a signature is given by the term rscore

The sets are narrowed down using sub scripts. For example T means all tags in the database, Ts all

tags associated with a particular source s and Tsr all tags associated with a particular source s and a

particular signature r.

Based on this terminology the risk score contribution from a single source can be expressed as

following

()

The total risks core associated with a signature described informally above can be mathematically

expressed as following:

35 Methodology

35

 √∑()

It is important to note that the total risk score algorithm is only dependent on the risk score

contribution. Each signature list can there implement its own algorithm for estimating the risk score

contribution.

3.2 Whitelisting signatures
Because signatures are automatically loaded from many blacklists with varying quality, sometimes

there will be bad signatures that can trigger a lot false positives.

For example, some blacklists are generated by running malware in a sandbox and automatically

adding the command and control domains to a blacklist. This will generate false positives when the

malware sample tries to contact a legitimate host to check if it has internet access. For example if a

blacklist connects to google.com to check for internet connectivity, google.com can end up being

blacklisted. In some cases, the malware might contact legitimate domains only to confuse malware

researches and pollute blacklists. This is problematic because these bad signatures can generate so

many alarms the alarm management software can stop working as intended.

Another problem is that an automatically generated signature can trigger on domain names or IP-

addresses that are used internal on the monitored network. For example if the local IP-addresses

192.168.1.1 is in a blacklist and it is also used for something important on the monitored net this can

create a lot of false positives. If the internal DNS server or internet gateway has a blacklisted IP-

address it is possible to come in a situation where traffic on the network is generating an alarm and

this will in most cases flood the alarm management system.

To be able to use these automatically generated blacklists it is therefore important to have good

mechanisms for removing bad signatures.

The whitelisting method proposed here uses 3 signatures sets.

1. A black signature set with all signatures indicating malicious activity,

2. A white signature set with all signatures that are known to be non

3. An asset signature set with all local IP-addresses and domains.

A central component of the whitelisting mechanism proposed here is the risk score algorithm

described above that assigns a score to each signature in a signature set. For the white and asset

signature set the "risk score" indicates how confident we that the content it matches on is NOT

malicious.

The whitelisting algorithm checks if the black signatures set overlaps with the two others. If a black

signature is conflicting with a signature in the two other signature sets the relative score determines

if it is going to be whitelisted or not.

36 Methodology

36

If the black signature has a lower score it is blacklisted, if it has a lower score it not blacklisted. By

designing the algorithm like this, we reduce the likelihood that a good signature in the black

signature set is whitelisted by a bad signature in the white signature set.

To be able to deal with the different types of signatures efficiently some extra logic is required. This

logic is described in the following sections.

3.2.1 IP-addresses

The system understands three types of IP-address signatures: single IP-addresses, IP-ranges and

CIDRs. Because the number of signatures can be high, an efficient algorithm is needed to check if

any of the blacklisted signatures matches any of the white listed. Because IP address ranges can be

represented as number intervals the problem can be casted to a problem of finding overlapping

intervals. There are many well-known Interval tree algorithms with good run time properties.

Typically the query time is O(log n) where n is the number of elements in the interval tree.

The basic workings of the IP-address whitelisting algorithm is to first build an interval tree of all IP-

addresses and IP-ranges in the whitelist and asset signature set and then query the interval tree for

each signature in the black signature tree.

3.2.2 Domains

For domains simple string matching is enough in most cases but some extra logic is needed to deal

with subdomains.

For example if google.com is whitelisted with a high risk score and sites.google.com is blacklisted

with a low risk score it is desirable that sites.google.com is removed from the blacklist. The problem

is that it is not always desirable to remove subdomains of whitelisted domains from the black

signature set. For example if dyndns.org is whitelisted and evil.dyndns.org is blacklisted it is not

desirable to remove evil.dyndns.org from the blacklist.

This problem is related to what is called public suffix or effective top-level domain (eTLD). According

to Mozilla: "public suffix" is one under which Internet users can directly register names. Some

examples of public suffixes are ".com", ".co.uk" and "pvt.k12.wy.us".
11

When a domain is not a public suffix it is generally under the control of a single entity and the

maliciousness of subdomains are in most cases closely related to the maliciousness of the top

domain. For public suffixes this is not the case.

It is generally safe to assume that the public suffixes themself are not malicious. It is therefore

desirable to whitelist public suffixes, but the whitelisting of public suffixes should not influence the

maliciousness of their sub domains. The underlying reason for this is that even though the service

provider is legitimate, their service can be used for malicious purposes. For example, the dynamic

11

 http://publicsuffix.org/

http://publicsuffix.org/

37 Methodology

37

DNS provider dyndns.org is legitimate but they might unknowingly sell the domain evil.dyndns.org

to cybercriminals.

Unfortunately, there is no perfect method to determine if a domain is a public suffix. There are

however some best effort community initiatives. The most promising is the "public suffix list"

initiative from Mozilla12. Another interesting initiative is the community list of dynamic domain

name providers started by Malware Domain blocklist13

Because it is not possible to determine the public suffix with certainty, it is desirable that the

whitelisting algorithm is conservative when removing domains from the black signature set because

the super domain is whitelisted. Normally a domain is removed from the blacklist if the domain is

also in the whitelist and the whitelist score is higher than the blacklist score. To add an extra safety

when removing subdomains a requirement is added that the whitelist score must be 40% higher

before a sub domain is removed from the blacklist.

When the whitelisted domain is not a public suffix the decision to remove a domain from the black

signature set can there for be expressed mathematically as:

The following 3 examples illustrate the algorithm:

 Example 1: The domain evil.com is blacklisted with a risk score of 90 and evil.com is

whitelisted with a score of 80. In this example evil.com will not be removed from the

blacklist because

 Example 2: The domain ns.evil.com is blacklisted with a risk score of 70 and evil.com is

whitelisted with a score of 80. In this example ns.evil.com will not be removed from the

blacklist because

 Example 3: The domain ns1.ns.evil.com is blacklisted with a risk score of 60 and evil.com is

whitelisted with a score of 80. In this example ns1.ns.evil.com will not be removed from the

blacklist because

3.3 Matching engine
The matching engine takes as input the signatures and the log data and generates alarms.

The number of blacklists signatures are in the range 100 000 to 1 000 000. The matching engine

must be able to search through many gigabytes of log data quickly. This requires that the matching

engine uses a search algorithm that has good asymptotic run time properties with regard to size of

the signature set and the size of the search text. A good candidate algorithm is the Aho-Corasick

12

 http://www.malware-domains.com/files/dynamic_dns.zip
13

 http://mxr.mozilla.org/mozilla-central/source/netwerk/dns/effective_tld_names.dat?raw=1

38 Methodology

38

multi string matching algorithm(Aho & Corasick, 1975). The algorithm has a runtime that is linear to

the length of the patterns plus the length of the searched text plus the number of output matches.

Using a fixed string search algorithm represents some problems. For example searching for the IP-

address 10.0.0.1 will also match on the IP-address 110.0.0.1. The same problem with over matching

can be found when searching for domains. For example searching for the domain evil.com will also

match on the domain notevil.com. Another problem is that it is not possible to search for IP-address

networks. For example, 192.168.1.0/24 will not give a match on 192.168.1.1.

To work around this problem, the matching engine will have to use a preprocessing and post

processing step to prepare the signature and verify the matches. For example, the signature

"192.168.1.0/24" needs to be changed to "192.168.1." in the preprocessor step and if the signature

matches the post processing step must check that the match actually is an IP-address in the correct

range.

Currently support for Domains, IPv4-adresses, IPv4-ranges and IPv4-CIDRs has been implemented.

But it is easy to extend this to other types of signatures as long as a pre-processing function can

generate a fixed string guard for the signature. The requirement of the fixed string guard is that it

cannot produce false negatives and for performance reasons the number of false positives should

be as low as possible.

Below is a simple example demonstrating how the matching engine works. When the matching

engine is loaded with the following signatures:

Table 4 Example signature set

92.122.190.0/24
148.123.13.68
n3g.akamai.net

And feed with the following log data:

Table 5 Example log data

2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n1g.akamai.net. 1138 A 92.122.190.85
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n2g.akamai.net. 2241 A 148.123.13.63
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n3g.akamai.net. 644 A 148.123.13.68

It will out put the following two alarms

Table 6 Example alarmdata

Sigs Data
92.122.190.0/24

2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n1g.akamai.net. 1138 A

92.122.190.85

148.123.13.68 2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n3g.akamai.net. 644 A

39 Methodology

39

n3g.akamai.net 148.123.13.68

Each alarm contains the signatures that matched the line, the position they matched and the raw log

line:

40 Methodology

40

3.4 Quantifying victim risk
When the botnet detection software is in use, a matching engine will use the signature set and

match it against activity logs. If an event matches any of the signatures, it will generate an alarm.

The previously described relational model for signatures can be extended to also include the newly

generated alarms.

evt

PK evt_id

 timestamp
 client_ip
 event_data

evt_sig

PK evt_sig_id

FK1 evt_id
FK2 sig_id

sig

PK sig_id

 name
 description

sig_tag_src

PK sig_tag_src

FK1 sig_id
FK2 tag_id
FK3 src_id
 enabled

tag

PK tag_id

 name
 severity

src

PK src_id

 name
 reliability

Figure 16: Extended relational model, including alarms

This model allows for each alarm to be linked to multiple signatures. The total risk for a given alarm

can then be found by aggregating the risk from each signature. Having a good event risk score is very

useful but in terms of operational incident handling, dealing with events is problematic. The main

reason is the speed at which things happen on a large network and the amount of alarms that can

be generated. What most people actually want to know is if any of the computers in their network

are compromised or not. To be able to answer this question there is a need for aggregating the risk

score for individual alarms into a combined risk score for each host on the network

There are certain challenges when designing a host risk score. Computers in a network are infected

and clean up all the time, calculated risk score must therefore take this into consideration. One way

to deal with this is to calculate the risk score for fixed time intervals. An interval of one hour or one

day seems like a reasonable starting point. If the interval is too long, a computer that was infected

but is now cleaned up might appear to be affected by the algorithm. If the interval is too short there

can also be problems, an infected computer might seem to be clean in some of the intervals just

because there was no activity even though the computer is still infected. It is therefore desirable to

have as short intervals as possible, but still avoiding the problems related to a computer starting to

appear clean while it's not. Applying a smoothing algorithm would probably improve the estimated

risk score, and avoid fluxing risk score due to inactivity.

41 Methodology

41

Within a given timeframe, a single computer might trigger the same signature many times and it

might trigger many different signatures. The challenge is to finding an algorithm that can combine

all the alarms in such a way that the computer risk score represent the likelihood that the computer

is compromised.

Sometimes user activity can generate network traffic that triggers alarms without the computer

really being infected. This is considered a false positive. There are many underlying reason for false

positives. One typical issue is that signature is too broad and matches on unrelated activity. This can

for example happen if a signature matches on random data from an encrypted session. Another

problem is that the signature is no longer correct, it matches on what it's intended to match on but

it is not malicious. This can for example happen if an IP-address once was used for malicious activity

but is now cleaned up.

In most networks a lot of the diversity in network traffic comes from encrypted protocols or user

activity like web surfing and mail. A lot of this traffic will only be seen once. If a signature is too

broad and by accident matches on some of this traffic, it will normally only trigger once or a few

times. From this we can see that a lot of the false positives that happens because the signature is

not precise enough comes from encrypted traffic or user activity, since this traffic is less repetitive

than other types of traffic this type of false positives will normally trigger very few false positives.

This means that the likelihood that a signature triggers false positives decreases with the number of

alarms it has triggered from a specific host. An example of this is if a user by accident enters a bad

URL in the web browser and visits a page that is associated with a botnet command and control

server. This will trigger a botnet alarm, but the alarm will normally only be triggered once. In

contrast, if a computer is recruited into a botnet it is normal for the computer to be in regular

contact with the command and control servers. From this we can see that as the number of times a

signature has triggered an alarm within a given time period the likelihood that the computer is

compromised increases

Even though the likelihood that a computer is really infected increases with the amount of alarms an

individual signature has triggered, there is always risk that the signature is wrong and the alarms are

false positives. For example in some cases a signature can simply be wrong and trigger on normal

legitimate traffic. In such cases, the signature can create enormous amounts of false alarms. This will

very often happen for signatures from sources of low reliability. For example if an unreliable source

adds “facebook.com” to signature list because of a “facebook virus” this will no doubt generate

many false positives. This illustrated the point that we do not want signatures with low risk score to

dominate the client risk score even if they trigger many alarms.

From this, it seems reasonable that when calculating the risk score from a computer the

contribution to the total risk from a single signature should increase with the number of alarms it

has generated, but that the contributed from each new alarm should decrease in such a fashion that

the number never dominates the signature risk score. This seems to indicate that the client risk

score contribution function as a function of the number events should converge on a number. A

reasonable estimate might be that the risk contribution from the number of alarms should be no

42 Methodology

42

more than a factor of 3. A function that has the desired properties that when n goes from 1-> the

risk contribution function goes from 1->4 would be as following:

 Given the arguments above the client risk score contribution from one signature can then be

expressed like this:

For combining the risk score contributions from each signature into a total client risk score it seems

reasonable to use the same RSS algorithm that was used to calculate the total risk score for

signatures. To formalize the expression for total client risk score will need some additional

terminology.

A set of clients are described with a capital C, a particular client with a letter case c. The risk score

associated with the computer is given by the term cscore. The term nr is used to denote the number of

times the signature has triggered an alarm for the given client.

The total client risk score can then be expressed as:

 √ ∑ (

)

43 Data collection

43

4 Data collection

4.1 Log data
The Log data for the experiment was gathered over period of 1 month from 1 April 2012 to 1 May

2012 from an organization in Norway.

Two types of logdata were recorded, passive DNS and Argus Netflow. The logdata was gathered

from a passive IDS sensor. The IDS sensor was listening on a monitor port on a switch that received

all traffic going between the organization and the Internet.

In the period 41 gigabytes of passive dnslog data was recorded. That amounts to a total of 458 116

583 log entries. For Argus Netflow 109 gigabytes of log data was recorded. That amounts to a total

of 1 016211308 log entries.

4.1.1 Example Log data

The network activity was recorded in the form of line based log data. Each line of log data

represents a distinct event on the network. For DNS the following attributes were collected:

timestamp, client IP, cliet port, server IP, server port, dns query id, and the dns response. Each DNS

RR record is stored on a separate line.

Table 7: Example DNS log

2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n1g.akamai.net. 1138 A 92.122.190.85
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n2g.akamai.net. 2241 A 148.123.13.63
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n3g.akamai.net. 644 A 148.123.13.68
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n4g.akamai.net. 1140 A 148.123.13.69
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n5g.akamai.net. 2979 A 148.123.13.79
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n6g.akamai.net. 705 A 148.123.13.77
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n7g.akamai.net. 1138 A 148.123.13.63
2011-09-27 20:46:34.246279 193.213.112.4 53 192.168.1.7 65105 n8g.akamai.net. 3087 A 148.123.13.76
2011-09-27 20:46:34.247868 193.213.112.4 53 192.168.1.7 58944 a4.sphotos.ak.fbcdn.net. 4458 CNAME
a4.sphotos.ak.fbcdn.net.edgesuite.net.
2011-09-27 20:46:34.247868 193.213.112.4 53 192.168.1.7 58944 a4.sphotos.ak.fbcdn.net.edgesuite.net. 17358 C

For netflow there are many different log formats. For this paper the tool Argus was used to generate

the log data. Each network session is stored on a single line. The following attributes was stored for

each network session: start time, end time, client IP, client port, server IP, server port, client bytes,

server bytes.

Table 8: Example Netflow log

2011-09-27 14:33:39|2011-09-27 14:33:57|8|17|192.168.1.7|52327|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:33:25|2011-09-27 14:33:38|8|17|192.168.1.7|59403|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:33:10|2011-09-27 14:33:15|8|17|192.168.1.7|62742|193.213.112.4|53|2|1|82|41|0|0|0|0
2011-09-27 14:29:28|2011-09-27 14:29:58|8|17|192.168.1.7|52050|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:29:42|2011-09-27 14:29:50|8|17|192.168.1.7|63813|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:29:13|2011-09-27 14:29:40|8|17|192.168.1.7|63135|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:27:04|2011-09-27 14:27:22|8|17|192.168.1.7|64691|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:26:48|2011-09-27 14:26:56|8|17|192.168.1.7|49489|193.213.112.4|53|3|1|123|41|0|0|0|0

44 Data collection

44

2011-09-27 14:26:35|2011-09-27 14:26:55|8|17|192.168.1.7|52014|193.213.112.4|53|3|1|123|41|0|0|0|0
2011-09-27 14:25:44|2011-09-27 14:25:59|8|17|192.168.1.7|65032|193.213.112.4|53|3|1|123|41|0|0|0|0

4.2 Signatures
The signatures were obtained from publicly available blacklist. The signatures consist of domains, IP-

addresses and IP-networks in CDIR format.

Table 9 Signature overview

Signature list Signature count

Zeus Tracker 642

Spyeye Tracker 321

Spamhaus DROP 421

Sedb 100988

Malewaredomainlist 60643

Malwaredomains 15733

Total 178746

Summing the signatures from each source gives a total count of 178 746 signatures. Because some

signatures are found in more than one signature list the total number of unique signatures in the

signature database is less than the total. The signature database contained 175 935 signatures. 2811

of signatures are therefor reported in more than one signature list

4.2.1 Zeus Tracker

The Zeus tracker blacklist is hosted at zeustracker.abuse.ch. Zeus tracker provides IP and domain

information for command and control servers using the Zeus crimeware kit. The ZeuS crimeware kit

is designed to steal credentials from various online services like social networks, online banking

accounts, ftp accounts, email accounts and other.

The domains and IP-addresses provided by Zeus tracker is very reliable and creates few false

positives. Since the methods used to generate the list is not publicly known it is difficult to assess

how complete the list is.

4.2.2 Spyeye Tracker

The Spyeye Tracker is hosted at spyeyetracker.abuse.ch. Spyeye is a crimeware kit is similar to Zeus.

Because the list is created by the same team that creates spyeye tracker it is reasonable to assume

that they are generated using the same mechanism

4.2.3 Spamhaus DROP

The spamhaus drop list is a list of netblocks that are considered to be hijacked or stolen and entirely

under the control of criminals or professional spammers. Any traffic to these net blocks is

suspicious. Because this list consists of net blocks these signatures cannot be directly used in a string

based search algorithm

45 Data collection

45

Table 10: Example netbloks

2.56.0.0/14 ; SBL102988

14.192.0.0/19 ; SBL123577

14.192.48.0/21 ; SBL131019

14.192.56.0/22 ; SBL131020

31.11.43.0/24 ; SBL113323

31.135.0.0/21 ; SBL137007

4.2.4 SpyEye Database (Sedb)

This is a set of domains and IP-addresses related to SpyEye. The list is created by the same team that

creates the SpyEye Tracker

4.2.5 Malewaredomainlist

The list contains a large amount of domains and IP-addresses related to malware. Some of the

signatures are bad and create many false positives. The list provides some context information

making it possible to tag some of the signature with more specific tags like for example botnet,

exploit, spyeye, zeuz etc.

4.2.6 Malwaredomains

A large list of domains very similar to malwaredomainlist

47 Results and Discussion

47

5 Results and Discussion
In this chapter the proposed system described in Chapter 3: Methodology is tested using the data

and signatures described in Chapter 4: Data Collection.

The first section of this chapter describes how the log files are searched using a simple string search

and the result from the search is analyzed. In the two next sections, features from the system

described in chapter 3 are introduces one by one. The same log data is searched and the results are

analyzed. The results are then compared to the result in the previous sections to evaluate if the

newly introduced features reduce the number of false positives. The main goal of the 3 first sections

is to answer RQ1: Will the system be able to automatically deal with signatures that generate large

amount of false positives?

Section 4 looks at the aggregated victim scores and tries to answer RQ2: Will the system simplify the

process of detecting compromised host in the network compared to manual inspecting each alarm?

The last section reviews the performance of the proposed system.

5.1 Signature search
In this section the log data is searched using a simple string search algorithm. For this task the Linux

command tool grep is used.

The following command was used:

grep --color=always –F –f siglist.txt logfile.txt

When grep is given the '-F' flag it does a fixed string search using the Aho–Corasick string matching

algorithm enabling grep to search the logfile with a large signature set very efficiently. The

signatures are listed in the siglist.txt file, one signature per line. The '–color=always' flag makes sure

that the part of the log that matches a signature are colored making it easier to analyze the output.

Below is a simple example illustrating how grep works:

Table 11 Example siglist.txt

evil.com

superevil.com

Table 12 Example logfile.txt:

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 evil.com 454 A 122.224.5.45

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 62694 superevil.com 454 NS ns1.evi.com.

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 62694 hdcmct.com. 454 NS f1g1ns2.dnspod.net.

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 62694 hdcmct.com. 454 NS f1g1ns2.dnspod.net.

The output of running grep with the parameters given above on the sample files would be:

48 Results and Discussion

48

Table 13 Grep output

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 evil.com 454 A 122.224.5.45

2011-09-27 14:13:30 192.168.1.1 53 192.168.1.7 62694 superevil.com 454 NS

ns1.evil.com.

We can see that that the output from the grep command only contains the lines that has a substring

listed in siglist.txt. The original logfile has 4 log lines while the output of grep only has 2 lines. In the

example above evil.com would also match on superevil.com, but this is not a problem because the

variant of aho-Corasick that is used returns only nonoverlapping matches and it chooses the longest

if there are conflicting matches. For this reason the whole domain superevil.com will always be

matched in the above example.

To get a baseline of the number of alarms the different signature lists create the grep command

described above was used to test on log data from one day. The command was run on log data from

30th April 2012. The log file was 2.3 GB and contained 24.609.527 log entries. The table below

describes the number of alarms generated from each signature list.

Table 14 Alarm baseline

Signature list Signature Count Alarms count

Zeus Tracker 648 0

Spyeye Tracker 316 0

Spamhaus DROP 421 0

Sedb 100147 659646

Malewaredomainlist 60404 63729

Malwaredomains 15946 786

Total 177882 724161

All 174910 724107

We can see that for some of the lists the number of alarms is extremely high and it clear only from

looking at the number of alarms that most of them are probably false positives. The reliable

blacklist Zeus and Spyeye Tracker reported zero alarms; this might be an indication that the network

is relatively clean. The zero alarms from the Spamhaus DROP list are simply because the signatures

are in the CDIR format and the string search algorithm does not understand this signature format.

For example the signature 192.168.1.0/24 will not give a match on 192.168.1.2 even though it is an

IP-address within the CDIRs range.

The extremely large number of alarms from the Sedb and malwaredomainlist makes it very hard to

work with the alarms directly. Quickly scrolling through some of the signatures indicates that most

of the alarms are generated by signatures that clearly are wrong.

For example are www.geocities.com, sites.google.com, www.l.google.com, s3.amazonaws.com,

ad.yieldmanager.com listed as malicious. The sites www.geocities.com, sites.google.com and

s3.amazonaws.com are popular legitimate services but because they offer user to host their own

content they are sometimes used to host malicious content and this can result in the pages being

49 Results and Discussion

49

added to the blacklist. The domain www.l.google.com is a cname for www.google.com. Some

malware automatically connects to www.google.com to test if they have internet access. Because of

this some automated malware analysis software might have labeled the domain as malicious.

50 Results and Discussion

50

5.2 Signature search with automated whitelisting
The simple signature search in the previous section illustrated that performing a signature search

directly without removing some of the bad signatures will generated too many false positives to be

useful. In this section, we apply the whitelisting algorithm described in section 6.2 to remove

signatures that should not be in the signature set. The table below illustrates the number of

signatures that were removed from each signature list by the whitelisting algorithm

Table 15 Results from whitelisting

Signature list Signature count whitelisted After whitelisting Reduction

Zeus Tracker 648 0 648 0,00 %

Spyeye Tracker 316 0 316 0,00 %

Spamhaus DROP 421 0 421 0,00 %

Sedb 100147 238 99909 0,24 %

Malewaredomainlist 60404 209 60195 0,35 %

Malwaredomains 15946 131 15815 0,82 %

Total 177882 578 177304 0,32 %

All 174910 573 174337 0,33 %

We can see from the table above that the total number signatures that where whitelisted is quite

small. Less than 1% for all signature sets. This result is not very surprising. It was expected that only

a small number of signatures was responsible for most of the false positives in the previous section.

In total 988 domains were whitelisted.

With such any whitelisting there is always a risk of whitelisting malicious signatures and in the

process possibly creating false negatives, but since only 573 of 174910 signatures where whitelisted

the risk for false negatives is quite small. It would also be possible to go back and manually re-enable

signatures that was wrongly whitelisted

Rerunning the simple signature search from section 7.1 with the refined signature set gave the

following result:

Table 16 Results from whitelisting

Signature list Alarms
Alarms after
whitelisting

Reduction

Zeus Tracker 0 0 0,00 %

Spyeye Tracker 0 0 0,00 %

Spamhaus DROP 0 0 0,00 %

Sedb 659646 426 99,94 %

Malewaredomainlist 63729 7558 88,14 %

Malwaredomains 786 416 47,07 %

Total 724161 8400 98,84 %

All 724107 8393 98,84 %

51 Results and Discussion

51

We see that for the Sedb and Malewaredomainlist the number of alarms was reduced by 88% and

99%. Most of these are a generated by a few signatures that triggered on popular legitimate

domains. The reduction of false positives by 98% in total is a dramatic improvement and illustrates

that a good whitelisting algorithm is very important when dealing with large signature sets. It also

indicates that the whitelisting approach suggested here is better than the whitelisting method

currently in operational use by the people generating these lists.

The total number of alarms is still over 8000 for only one day of DNS log data. That is still too many

alarms to deal with manually and further improvements are required to easily be able to detect

compromised computes.

From manually inspecting the alarms, it is clear that some of the false positives are generated

because of the limitations of the fixed string search algorithm. For example, the signature for the

domain collective-media.ne also triggers on the domain a.collective-media.net.edgekey.net and this

creates false positives.

.

52 Results and Discussion

52

5.3 Improved signature matching
The problem with the fixed string matching used so far is that it can generate a lot of false positives

because of over matching. For example if the domain ogle.co is used as a command and control

server and is added to any of the signature list, this will generate a lot of false positives because

"ogle.co" is a substring of "google.com". A simple fixedstring search in the log files is not accurate

enough to avoid false positives from overmatching.

Below is the result from rerunning the search described in section 7.2, but replacing grep with the

matching engine described in section 6.3

Table 17 Results from usning Matchin engine

Signature list
Alarms after
whitelisting

Alarms after
using
MatchingEngine

Reduction

Zeus Tracker 0 0 0,00 %

Spyeye Tracker 0 0 0,00 %

Spamhaus DROP 0 0 0,00 %

Sedb 426 57 86,62 %

Malewaredomainlist 7558 6797 10,07 %

Malwaredomains 416 103 75,24 %

Total 8400 6957 17,18 %

All 8393 6955 17,13 %

The result illustrates the practical difference of changing the matching algorithm from the fixed

string algorithm in grep to a more sophisticated matching engine that understands domains, IP-

addresses and IP-ranges. The improvement is not quite as dramatic as the first whitelisting but

removing 17% of the alarms or in total removing 1438 false positives is still very helpful.

5.4 Aggregating alarms by victim
To test if it was possible to detect compromised hosts based on the aggregated host risk scores the

signatures set described in previous section was used to search an entire month of DNS log data. In

total 122 638 alarms was generated.

To be able to more easily view the alarms and aggregated victim scores a simple web frontend was

built. Figure 17 below lists the hosts with the highest risk score per day. Since this is real-life log data

part of the victim IP-address is removed for privacy concerns.

53 Results and Discussion

53

Figure 17 Network host with highest risk score per day

The IP-address with the highest score is "68.34" and it had a total risk score of 1151 on the

12.04.2012. On the that particular day "68.24" was in contact with 67 different network resources

known to be bad and triggered in total 3117 alarms. To get more details about the host the table

can be filtered by the IP-address and sorted by day. Figure 18 below illustrates this.

54 Results and Discussion

54

Figure 18 Compromised host table filtered by "68.34" and sorted by day

Only from looking at this data it is quite clear that "68.34" was exposed to something malicious on

4/12. A simple Google search on some of the Domains and IP-addresses that triggered the alarms

reveals that some of the domains are associated with the Conficker bot. It is therefore very likely

that the host in question is infected with Conficker.

Checking out the next victim "84.178" from figure 17 reveals that he has also been contacting the

same domains and is therefore also most likely infected with Conficker. Figure 19 below list the

victim score of "84.178" by day.

Figure 19 Compromised host table filtered by "84.|78" and sorted by day

Another possible strategy for finding infected hosts is looking at the alarms table with the highest

risk score. Figure 20 below list alarms sorted by risk score.

55 Results and Discussion

55

Figure 20 Alarms sorted by risk score

From looking at some of the top alarms it is clear that "6.139" is triggering many of the alarms with

the highest risk score. To get a better overview of "6.139" figure 21 shows the alarm table filtered by

"6.139" and sorted by date.

Figure 21: Alarms table filtered by "6.139" and sorted by time

The domains that "6.139" has been contacted has been reported malicious and related to the

botnet Zeus by multiple sources. It is therefore very likely that the client is infected. To confirm the

infection with 100% accuracy more data is need. Either must the client be brought in for forensics or

maybe proxy logs could reveal more about the infection if they had been available.

56 Results and Discussion

56

These simple tests seems to indicated that the system works as intended and at least some of the

compromised computers get a high client risk score. Because a ground truth is missing it is difficult

to test the systems more accurately.

5.5 Performance of the system
Testing the proto type system in a virtual machine on my laptop it managed to process one month

of DNS log in 111 minutes. That means that the proto type can search about 6,3 MB of log data per

second on a normal laptop. This illustrates that even the current proto type system is able to handle

real world data loads.

In the current proto type a small selection of known open blacklist was selected. In an operational

setting the system would have to handle signatures from more blacklist, it is therefore important

that the performance scales close to linearly with the number of signatures. The chosen algorithm

for the matching engine, the aho-corasic string matching algorithm, is supposed to scale linearly

with the number of signatures, but it is reasonable to expect the performance to have an over linear

tendency because as the signature set grows so does the size of the finite state machine that the

aho-corasick algorithm uses. When the size of the finite state machine grows performance can be

degraded because of the memory hierarchy in modern computer. When the state machine no

longer fits in L1 and some of it is moved to L2 cache performance will be reduced, if it no longer fits

in L2 cache some of it would be moved to L3 cache or system memory and performance will be

further degraded.

A couple of simple modification could probably increase the performance a lot. The implementation

the aho-corasick algorithm that is used is quite slow compared to for example the implementation

in GNU Grep. Changing the aho-corasick implementation would therefore probably yield

considerable performance gains. Another simple improvement would be to parallelize the search by

starting multiple searches on different log files. This would probably scale linear up to the number of

available CPU cores and hard drives.

57 Conclusion

57

6 Conclusion
In this thesis a proto type botnet detector is built and it is demonstrated that it can be used for

detecting botnets in real world scenarios.

The detector is based on four main components. 1) Algorithm for quantifying the risk represented

by a signature, 2) An algorithm for whitelisting bad signatures that would create false positives, 3) A

matching engine for searching log files with a large signature set and 4) An algorithm for identifying

compromised computers by aggregating alarm data.

Each of the research questions will now be addressed

RQ1: Will the system be able to automatically deal with signatures that generate large amount of

false positives?

A test was performed using a signature set consisting of 174 910 signatures. Searching one day of
log data with these signatures resulted in total 724 107 alarms. Applying the whitelisting algorithm
to the signatures resulted in whitelisting 573 signatures. Rerunning the same search algorithm on
the same log data with the whitelisted signatures set resulted in 8393 alarms. That is an alarm
reduction of 99%. Manual inspection verified that most of the whitelisted signatures were obviously
benign. Exchanging the simple string search algorithm with the proposed matching engine resulted
in a further reduction of the alarms to 6955 alarms, about 17% additional reduction. This proves the
stated hypothesis, at least for this test scenario, that 1) a few bad signatures that triggers on normal
legitimate traffic generates most of the false positives and 2) that the proposed whitelisting
algorithm in combination with the proposed matching engine will be able to automatically remove
these signatures, there by significantly reducing the number of false positives.

It is not known exactly what whitelisting techniques each blacklists is already using, but the result

seems to indicate that the proposed algorithm is an improvement over what is in operational use

today.

RQ2: Will the system simplify the process of detecting compromised host in the network compared to

manual inspecting each alarm?

Searching one month of log data resulted in total 122 638 alarms. Manually checking each alarm

would be very labor intensive. To test the proposed system the two hosts with the highest risk score

was tested for infection. The test indicated very strongly that they were infected with the Conficker

botnet. A check of the host that had triggered the alarms with the highest risk score seem to

indicate strongly that it had been infected by the Zeus Crimeware Kit. This seems to confirm the

hypothesis that by using the proposed system it should be possible to identified compromised hosts

only be looking at the hosts with the highest risk score and the alarms that represents the highest

risk. Because no ground through was easily available the test was not design to answer how many of

the total infected computers on the network the system would be able to detect.

58 Conclusion

58

Putting all the components together the systems seems to provide a significant improvement over

standard string search for finding compromised computers. It also makes it much easier to deal

with bad signatures that create many false positives. The improvements come from a combination

of whitelisting many of the bad alarms and moving from working with alarms directly to working

with aggregated client risk scores. The system is complementary and synergistic to some of the

recently suggested system in the research literature like Exposure(Bilge et al., 2011) and Notos

(Antonakakis et al., 2010).

59 Further work

59

7 Further work
The proposed system in this thesis is dependent on estimating a quantified risk represented by

signatures obtained from freely available blacklist. The systems performance could be improved by

improving these estimates and automatically learning new signatures.

One interesting method for learning new signatures is modeling that the domains and IP-addresses

the threat agent uses as a graph and learns new malicious networks resources by exploring the

graph.

The graph can be initialized with the network resources found in blacklists and the risk score

calculated in chapter 3. The graph is then extended using a combination of a historic DNS databases

and active DNS queries. The risk score of blacklisted domains is then attributed to neighbor domains

and IP-addresses and from this a new and extend black list is created.

For example if evil.com and superevil.com is blacklisted with a risk score of 10 and 20. A historic DNS

database is queried to find all IP-addresses these domains has ever pointed to. The IP-addresses are

added as nodes to the graph and an edge is created between the domain and IP-addresses.

evil.com

superevil.com

10.1.1.1

10.1.1.2

10.1.1.1

A

A

A

Figure 22 Domain-IP realtions

Further the domain name server of the domain are located using the same history DNS database

and is added to the graph.

evil.com

superevil.com

10.1.1.1

10.1.1.2

10.1.1.1

A

ns1.bluehost.com
NS

NS

Figure 23 Domain- domains server relations

If the blacklists contain IP-addresses, the DNS database is queried for domains that have ever

pointed to them. For example if the IP-address 132.2.1.1 is blacklisted and the domains bad.com

and verybad.net has been pointing to it they are added to the graph.

60 Further work

60

132.2.1.1

bad.com

verybad.com

A

A

Figure 24 IP-adress-domain relations

When the graph construction is finished, the graph consists of a set of black nodes that are the

initial blacklisted domains and a set of white nodes that are in some way associated with the

blacklisted domains. The next step is then to run an algorithm on the graph that iterates over the

white nodes and calculates a risk score for each of them based on their association with the black

nodes. The white nodes that get a high risk score is added to new and extended blacklist.

Google as very successfully used their page rank algorithm to calculate the popularity of web pages

using a similar model. More research is needed to investigate this possibility.

61 Abbreviations

61

8 Abbreviations
NIDS – Network intrusion detection system

NAT – Network address translation

FFI - Norwegian Defence Research Establishment

RSS – Root Sum Square

DNS – Domain Name System

HTTP – Hyper Text Transfer Protocol

IRC - Internet Relay Chat

TLD – top-level domain

SLD – second level domain

eTLD - effective top-level domain

63 List of Tables

63

9 List of Tables
Table 1: Example snort signaure .. 22

Table 2 List the features used by exposure to classify domains .. 26

Table 3 The reported accuracy of Exposure (AUC= Area Under the ROC Curve) 27

Table 4 Example signature set .. 38

Table 5 Example log data .. 38

Table 6 Example alarmdata .. 38

Table 7: Example DNS log ... 43

Table 8: Example Netflow log ... 43

Table 9 Signature overview .. 44

Table 10: Example netbloks .. 45

Table 11 Example siglist.txt .. 47

Table 12 Example logfile.txt: .. 47

Table 13 Grep output ... 48

Table 14 Alarm baseline ... 48

Table 15 Results from whitelisting ... 50

Table 16 Results from whitelisting ... 50

Table 17 Results from usning Matchin engine ... 52

65 List of Figures

65

10 List of Figures
Figure 1: Cybercriminal directly attack the victims computer ... 4

Figure 2 illustrates an example of how cybercriminals recruit computers into botnets 5

Figure 3: Detection system overview ... 7

Figure 4: Illustrates activity log collection .. 8

Figure 5: Process to dynamically learn network resources used by threat agents 8

Figure 6: Process to dynamically assign a risk score to hosts in the network .. 9

Figure 7 Example of handcrafted snort signature .. 12

Figure 8 Illustrating how total number of classified malware has been increasing 13

Figure 9 Example of the binary classification with two features ... 15

Figure 10 Example of classification with only examples from one classanomaly detection 15

Figure 11 Illustrates that the introduction of firewalls forces adversaries to install bots that poll for

new instructions to ensure continued access .. 20

Figure 12 The Orange color illustrates that all data in the application layer of the TCP/IP stack can

potentially be encrypted, and detection based on it is easy to avoid. .. 23

Figure 13 List of know pullet proof hosters .. 24

Figure 14 BotHunter's Infection Life Cycle Model .. 29

Figure 15: Relational model ... 33

Figure 16: Extended relational model, including alarms .. 40

Figure 17 Network host with highest risk score per day .. 53

Figure 18 Compromised host table filtered by "68.34" and sorted by day .. 54

Figure 19 Compromised host table filtered by "84.|78" and sorted by day .. 54

Figure 20 Alarms sorted by risk score .. 55

Figure 21: Alarms table filtered by "6.139" and sorted by time .. 55

Figure 22 Domain-IP realtions .. 59

Figure 23 Domain- domains server relations ... 59

Figure 24 IP-adress-domain relations ... 60

67 Bibliography

67

11 Bibliography

Aho, A. V., & Corasick, M. J. (1975). Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6), 333-340. ACM.

doi:10.1145/360825.360855

Amit, K. (2011). A Wide Scale Survey on Botnet. International Journal of Computer

Applications. Retrieved from

http://www.ijcaonline.org/archives/volume34/number9/4126-5948

Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010). Building a

Dynamic Reputation System for DNS. America (pp. 1-17). USENIX Association.

Retrieved from http://www.usenix.org/events/sec10/tech/full_papers/Antonakakis.pdf

Bilge, L., Kirda, E., Kruegel, C., & Balduzzi, M. (2011). Exposure: Finding malicious

domains using passive dns analysis. Proceedings of NDSS. Retrieved from

http://www.cs.ucsb.edu/~chris/research/doc/ndss11_exposure.pdf

Canavan, J. (2005). The Evolution of Malicious IRC Bots. Proceedings of Virus Bulletin VB

(pp. 104–114). Citeseer. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.4045&rep=rep1&type=pdf

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882

Denning, D. E. (1987). An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, SE-13(2), 222-232. doi:10.1109/TSE.1987.232894

Globalization of Crime: A Transnational Organized Crime Threat Assessment. (2010). (p.

310). United Nations. Retrieved from http://www.unodc.org/documents/data-and-

analysis/tocta/TOCTA_Report_2010_low_res.pdf

Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008). BotMiner: Clustering Analysis of Network

Traffic for Protocol- and Structure-Independent Botnet Detection. Security.

Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. (2007). BotHunter: detecting

malware infection through IDS-driven dialog correlation. In N. Provos (Ed.),

Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium (pp.

1-16). USENIX Association. Retrieved from

http://portal.acm.org/citation.cfm?id=1362903.1362915

Gu, G., Zhang, J., & Lee, W. (2008). BotSniffer : Detecting Botnet Command and Control

Channels in Network Traffic. Technology, 53(1), 1-13. Citeseer. doi:10.1.1.110.8092

68 Bibliography

68

Halpern, J. Y., & Tuttle, M. R. (1993). Knowledge, probability, and adversaries. Journal of

the ACM, 40(4), 917-960. doi:10.1145/153724.153770

Hanseth, O., Monteiro, E., & Hatling, M. (1996). Developing Information Infrastructure: The

Tension Between Standardization and Flexibility. Science, Technology & Human

Values, 21(4), 407-426. doi:10.1177/016224399602100402

Hawkins, D. (1980). Identification of Outliers (Monographs on Statistics & Applied

Probability) (p. 188). Springer. Retrieved from http://www.amazon.com/Identification-

Outliers-Monographs-Statistics-Probability/dp/041221900X

Introduction to Information Retrieval [Hardcover]. (2008). (p. 496). Cambridge University

Press; 1 edition. Retrieved from http://www.amazon.com/Introduction-Information-

Retrieval-Christopher-Manning/dp/0521865719

Karresand, M. (2002). A proposed taxonomy of software weapons. No. FOI. Linköping

University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1512

Khan, S., Madden, M., Coyle, L., & Freyne, J. (2010). A Survey of Recent Trends in One

Class Classification. (L. Coyle & J. Freyne, Eds.) (Vol. 6206, pp. 188-197). Berlin,

Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-17080-5

Li, C. (2009). Botnet: Survey and case study. Innovative Computing, Information and ….

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5412718

Lin, J.-ling, Wang, X. S., & Jajodia, S. (1998). Abstraction-Based Misuse Detection: High-

Level Specifications and Adaptable Strategies. In Proceedings of the 11th Computer

Security Foundations Workshop. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.8529

Moore, R. a., Kewley, D. L., Parks, R. C., & Tinnel, L. S. (2001). The Information

Battlespace preparation experiment. Proceedings DARPA Information Survivability

Conference and Exposition II. DISCEX’01, 1, 352-366. IEEE Comput. Soc.

doi:10.1109/DISCEX.2001.932230

Ollmann, G. (2009). Botnet communication topologies. Retrieved September, 30, 2009.

Retrieved from http://www.damballa.com/downloads/r_pubs/WP Botnet

Communications Primer (2009-06-04).pdf

Robot. (2012).Encyclopedia Britannica Online. Retrieved June 2, 2012, from

http://www.britannica.com/EBchecked/topic/505818/robot

Sommer, R., & Paxson, V. (2010a). Outside the Closed World: On Using Machine Learning

for Network Intrusion Detection. 2010 IEEE Symposium on Security and Privacy (pp.

305-316). IEEE. doi:10.1109/SP.2010.25

69 Bibliography

69

Sommer, R., & Paxson, V. (2010b). Outside the Closed World: On Using Machine Learning

for Network Intrusion Detection. 2010 IEEE Symposium on Security and Privacy (pp.

305-316). IEEE. doi:10.1109/SP.2010.25

Tygar, J. (2011). Adversarial Machine Learning. IEEE Internet Computing, 15(5), 4-6.

doi:10.1109/MIC.2011.112

71 Appendix A: Source code and signatures

71

Appendix A: Source code and signatures
The prototype botnet detector was over 2500 lines of python code in addition to about 500 lines of

HTML and JavaScript. The signature set including the original and whitelisted signatures amounts to

about 700 000 lines of signature data. It is very inconvenient to print and read that much data on

paper. The source code and signatures are therefor provided as a separate ZIP file along with the

report.

73 Appendix B: Log data

73

Appendix B: Log data
The total log dataset is over 100GB of data. It is not provided with the report because of the

practical problems of dealing with such large amount of data. There are also security and privacy

concerns with regards to making the data publicly available. If anyone would like to continue the

research and need access to the log data contact me at grodaas@gmail.com and we can find a way

to provide the log data securely.

mailto:grodaas@gmail.com

	Tittelside
	masteroppgave.pdf

