
Modularity as a Solution to Spatial 
Interference in Neural Networks

Kim Verner Soldal

Master of Science in Informatics

Supervisor: Pauline Haddow, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology





1

“The most exciting phrase to

hear in science, the one that her-

alds the most discoveries, is not

"Eureka!", but "That’s funny...".”

Isaac Asimov



2



Abstract

Modularity is an architectural trait that is prominent in biological neural

networks, but strangely absent in evolved artificial neural networks. This

report contains the results of a theoretical study focusing on two ques-

tions about modularity in neural network systems. How does modularity

emerge in biological neural networks, and when could modularity be use-

ful in artificial neural networks?

The theoretical study resulted in a hypothesis that modularity in biologi-

cal neural networks is the result of physical constraints on their architec-

tures. Because these physical constraints affect the digital environments

in a different way, modularity does not emerge naturally during evolution

of neural networks in a digital medium. Secondly, it is hypothesised that

modularity in artificial neural networks can reduce the amount of spatial

interference during learning. A phenomenon that is here shown to occur

when two outputs that exhibit low correlation are solved using the same

neural network structures.

Experiments have been performed that indicate a benefit of modular topolo-

gies when solving multiple tasks that show low correlation.

I



II

Keywords: Modularity, ANN, NEAT, SharpNEAT, Spatial Interference, Dual

Functional Regression, Pearson Correlation



Preface

This report was written as a masters thesis at Department of Computer

and Information Science at the Norwegian University of Science and Tech-

nology (NTNU).

Thank you to my advisors professor Pauline Haddow and Kai Olav Ellef-

sen for reviewing this thesis and for ripping it to shreds as every good

advisor should do. Thanks are also deserved by Elise Marie Ihler who is

able to put up with my rambling and exotic work habits on a daily ba-

sis, Jorunn Helene Melby for advice and discussion and Jon Helge Sunde

Jakobsen for distracting me at the best and worst times with wine and

great company.

Trondheim, June 7, 2012

Kim Verner Soldal

III



IV



Contents

1 Introduction and Background 1

1.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . 8

1.3 Modularity in the Context of an ANN . . . . . . . . . . . . . 9

1.4 Neuroevolution of augmenting topologies (NEAT) . . . . . . 12

1.4.1 Age tracking - Global Innovation Numbers . . . . . . 13

1.4.2 Speciation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Spatial Interference . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Dual Functional Regression . . . . . . . . . . . . . . . . . . . 16

2 Modularity 19

2.1 Modularity From Environmental Variation . . . . . . . . . . 21

V



VI CONTENTS

2.2 Modularity from Noise in Genotype-Phenotype Mapping . . 27

2.3 Spatial Interference, Learning and Modularity . . . . . . . . 31

2.4 Modularity from Structural Constraints . . . . . . . . . . . . 34

2.5 Modularity from Pleiotrophic Effects . . . . . . . . . . . . . . 37

2.6 Theories on the Benefits of Modularity . . . . . . . . . . . . . 40

3 Model 45

3.1 On the choice of Dual Functional Regression Tasks . . . . . . 47

3.2 Spatial Interference in Neuroevolution . . . . . . . . . . . . . 48

3.3 Measuring Spatial Interference . . . . . . . . . . . . . . . . . 49

3.4 Measuring Modularity . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The Intended Effects of Constraining Modularity During

Neuroevolution . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 SharpNEAT - Neuroevolutionary Framework . . . . . . . . . 56

3.6.1 Phased search . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . 59

4 Experimental Setup and Results 61

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Limiting Modularity . . . . . . . . . . . . . . . . . . . 63



CONTENTS VII

4.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Recognizing Convergence . . . . . . . . . . . . . . . . 67

4.2.2 Single Output Tasks . . . . . . . . . . . . . . . . . . . 68

4.2.3 General trends for Dual Output Tasks . . . . . . . . . 70

4.2.4 Dual Output Tasks With Full Positive Correlation . . 70

4.2.5 Dual Output Tasks With Full Negative Correlation . 75

4.2.6 Dual Output Tasks With Low Correlation . . . . . . . 79

5 Conclusion and Future Work 85



VIII CONTENTS



List of Figures

1.1 Flow of a Genetic Algorithm . . . . . . . . . . . . . . . . . . . 8

1.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . 9

1.3 The differnece between a fully connected topology and mod-

ular topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Simplified neural network topology that suffer from spatial

interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Function Sin(x) bounded between 0 and 1 for y values, and

1 to 10 for x values. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 A neural networks weight configuration is described as an

NxN matrix A with inputs as rows and outputs as columns.

Qm is the measure of modularity in the network. This mea-

sure is bound between 0 and 1, with 1 being fully modular

(max number of disjoint systems). Figure has been copied

from (Kashtan et al., 2009). . . . . . . . . . . . . . . . . . . . . 24

IX



X LIST OF FIGURES

2.2 The propagation of the effect of change on a connection

weight in the first layer of connections between in two dif-

ferent network topologies. . . . . . . . . . . . . . . . . . . . . 29

3.1 The interaction of elements in the experiment model. . . . . 46

3.2 Functional regression tasks can be seen as an abstraction of

more realistic learning tasks. . . . . . . . . . . . . . . . . . . . 46

3.3 Effect of setting constraints on evolution with regards to

reachable search space. . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Example of a converging . . . . . . . . . . . . . . . . . . . . . 69

4.2 Dual functional regression Log(x) and Log(x) . . . . . . . . . 71

4.3 Dual functional regression Log(x) and Log(x) twice modu-

larity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Dual functional regression Log(x) and 1-Log(x) . . . . . . . . 76

4.5 Dual functional regression Log(x) and 1-Log(x) with modu-

larity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Dual functional regression Sine(x) and Log(x) . . . . . . . . . 80

4.7 Dual functional regression Sine(x) and Log(x) with modu-

larity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Expected correlation between the correlation between two

outputs and the degree of modularity in the network. . . . . 89



List of Tables

4.1 Parameters used for all experiments with p standing for

probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Results of single output funcitonal regresion experiments. . 70

XI



XII LIST OF TABLES



Chapter 1

Introduction and Background

An artificial neural network (ANN) is a computational model based on

biological neural networks (BNN). ANNs where developed as a way of

creating artificial systems with the goal of performing tasks at the same

level as brains. This goal has sadly never been achieved. There seem to be

a fairly low limit to how difficult problems ANNs are capable of solving,

especially compared to BNNs. One problem that have been identified as

an obstacle for ANNs to solve more difficult problems is called spatial in-

terference. Spatial interference is the name that describes a situation where

neural networks receive so many conflicting messages during learning of

two or more tasks at a time that learning is hindered, some times com-

pletely (Jacobs et al., 1991a; Nardi and Togelius, 2006). One could compare

spatial interference with you trying to Write a poem while learning to sing

“The lion sleeps tonight” by Elton John at the same time. These two tasks

are bound to confuse you, and its a similar confusion as the spatial inter-

ference experienced by ANNs trying to learn two unrelated tasks at the

same time.

1



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

Because ANNs are based on BNNs, one would assume that BNNs also

have the potential for spatial interference. Yet, BNNs such as brains are so

large and complex, while designing ANNs even of the size of a single nu-

cleus using evolutionary methods is a great challenge. What did we miss?

What is missing from ANNs that limit them from achieving the results

that BNNs do? One factor that seem to differ between biological neural

networks (BNN) and ANNs, is a property known as modularity. From a

functional perspective, a module is defined as a part of a system that per-

form a task or subtask at least semi autonomously (Igel, 2002). A modular

approach is the standard for constructing complex systems of any kind.

When building a car, parts are manufactured by themselves, often in dif-

ferent countries, and assembled at the end of production. When designing

and implementing computer software, critical components of the program

are contained in different modules. Simple interfaces are constructed be-

tween these modules to avoid propagation of changes, and to make the

systems code more manageable. Even systems designed by nature are

modular. The human body is modular all the way from the microbiol-

ogy of each cell with its ribosomes and mitochondria, all the way up to

the larger organs such as lungs and liver. Even the brain shows a distinct

modular configuration, with a hierarchy of modules ranging from nuclei

all the way to lobes (Chen et al., 2008; He et al., 2009).

Interest in why modularity is so prominent in BNNs, but does not appear

naturally in ANNs (Bullinaria, 2002), has motivated a theoretical study

into how modularity could emerge in BNNs. Suspecting that modularity

can reduce the degree of spatial interference in ANNs, experiments have

been perform to show in which cases spatial interference occurs, and indi-

cate how modularity affect the learning time of multiple composite tasks



3

in one network with and without correlation.

Neuroevolution tend to focus solely on the computational aspect of the

neural network. In evolution of biological brains and other neural net-

works, there are actually many more considerations to account for than

just maximizing the computational performance of the network. Natu-

ral evolution has to also account for constraints imposed on the neural

network by such things as the laws of physics, and maximize network

performance under these constraints. Though it would be ideal to add

all relevant laws of physics into neuroevolutionary algorithms, this would

be impractical with regards to computational cost, and would be a waste

with regards to all the knowledge that already exist within the field of

neuroscience. Instead of simulating the laws of physics directly the effects

of physical constraints on neural networks can be generalized, estimated

and applied through cost functions. There exist a lot of knowledge about

the effects of the laws of physics on neural networks at many different lev-

els, and it makes sense to choose the cost functions at the same level as

the level of abstraction made in artificial neural networks. ANNs abstract

all the complex behaviour within a biological neuron, and approximating

the behaviour into simple activation functions. As such ANNs can be said

to already account for the costs that apply at the level of microbiology. In-

stead, cost could be estimated at the level of more abstract constraints such

as wiring cost and energy consumption.

The constraint in energy consumption is that sustenance needs to be con-

sumed in order for neurons to stay alive and function properly. This cost is

a general constraint that work to minimize the number and size of all liv-

ing components of the individual, including the size of the brain. As such,



4 CHAPTER 1. INTRODUCTION AND BACKGROUND

this constraint is one of the reasons why animals do not simply evolve to

be as large as possible, and one of the reasons why brains does not sim-

ply grow bigger than they are. Given two brains with equal functionality,

the evolutionary advantage goes to the one with the smallest and most

energy efficient brain. This individual will have to consume less food to

survive and thereby have an edge. There are also costs relating to the

wiring of the neural network. For example, the electrochemical processes

in dendrites result in loss of passive electrical propagation velocity with

increasing length of connections. A dendrite is required to quadruple its

diameter when its length is doubled in order to retain its positive cable

conduction properties. This constraint alone ensures that biological brains

can not achieve full connectivity as soon as it’s size exceeds that of a small

nucleus (Chklovskii, 2004; Kaas, 2000a; Ringo et al., 1994). This second

constraint is also one of the reasons that even though the brain of an ele-

phant is much bigger than that of a shrew, the computaitonal power of

both brains are essentially the same. The brain of the elephant, though

just as efficient is also significantly slower than that of a shrew. The brain

of the shrew on the other hand is highly optimized for it’s size in order for

the animal to react quickly and creatively in order to get out of danger.

Neither Wiring costs, energy costs, nor any other structural constraints

are usually included in evolution of ANN topologies. These experiments

usually focus mainly on maximizing the computational performance of

the network. Which makes sense, since the laws of physics do not apply

to these experiments in the same manner as with biological evolution. It

may be though, that these constraints on biological neural networks could

actually help solve some of the problems that is plaguing the field of neu-

roevolution today. They are after all one of the main differences between



5

biological and artificial evolution.

This is great and all, but before trying to answer the very difficult ques-

tion of how evolution emerges in neural networks, two questions should

be answered: Why does modularity emerge in nerual networks? And,

even though modularity is prominent in BNNs, why would we want to

include modularity in ANNs? Motivation for at least digging deeper into

this question can be explained through an example with a robot controller:

Given a robot with a set of 25 sensors, and 3 actuators consisting of two

wheels and a claw in front. These actuators are supposed to perform 2

different tasks; navigating the landscape while not crashing into anything

and picking up marked objects. If a monolithic network is constructed

that tries to navigate the landscape and operate the claw at the same time,

then the two tasks are bound to interfere with each other in one way or

another. Especially if these tasks have little to do with each other. On the

other hand, there could be benefits to some form of cooperation between

the wheels that navigate and the claw in order to grip the object correctly.

One example would be to move the robot slowly forward any time the

claw should close. One approach that might yield some results for this

task could be to create 2 different robot controllers solving one task each

with the same 25 sensory inputs for each, and let them control the robot

together. This means that two systems are not able to communicate with

each other unless a third system is created specifically for this purpose,

which seem to be quite a hassle. But if the robot controller was modular,

it would be possible to solve both tasks in the system, and it would pro-

vide the possibility of cooperation between modules. Unless the tasks are

completely unrelated it is likely that some computation of one actuator is

helpful for computing the output for another actuator. with all actuators



6 CHAPTER 1. INTRODUCTION AND BACKGROUND

in the same system, this computation can be supplied to another mod-

ule without sending messages between systems in some complicated way.

Also, using evolution of ANN topologies, evolution could decide which

computations are helpful for what all by itself.

1.1 Genetic Algorithm

Genetic algorithms (GA) have been proven to be versatile and power-

ful search algorithms, showing exceptional promise on optimization and

search problems (Stanley, 2004; Yao and Liu, 1997). They are inspired by

the evolutionary process, and explore the domain of possible solutions

that is given by the programmer through a genetic representation. This

representation is usually in the form of a string of bits or integers. The

basic flow of a genetic algorithm is described in figure 1.1. The algorithm

is initialized by creating a starting population of genomes, based on the

chosen genetic representation. For the initial population the individuals

may very well be a long list of totally random bits or integers, and will

not have any decent solutions at all. Regardless, they are developed into

phenotypes by translating the genomes into a population of phenotypes.

A phenotype is a functional attempt at a solution which is ready to be

tested on a problem. The next step is to evaluated how well each phe-

notype solves a given problem based on a fitness function. The fitness

function specifies both the problem to be solved, and also how to score the

performance of each phenotype as a solution to the problem. This score

is called fitness. Based on the fitness of the population, a set of parents

are selected for reproduction. There are many ways to select parents, but



1.1. GENETIC ALGORITHM 7

what they all have in common is that phenotypes with higher fitness have

a higher likelihood of becoming parents. There are two main operators for

reproduction in a GA. these are crossover and mutation. If the crossover

operator is used, each parents genome is split two or more times, and the

child contains at least one part of the genome from each parent. Next, each

child has a chance for each of their genes mutate. For a genome made up

of a sequence of bits this is as simple as rolling a dice for each bit, and flip-

ping the bit if the die rolls the right number. Parent selection, crossover

and mutation is repeated until the intended number of children have been

reached. The new population of children is then developed into adults,

and the whole process repeats. The algorithm continues until a stop cri-

terion is achieved. Stop criterion are commonly set to check is a certain

level of fitness has been reached or a specified number of generations have

passed. The phenotype with the highest fitness at the end of the evolution-

ary run will be the final solution supplied by the algorithm.

Even though the implementation of an genetic algorithm is fairly easy,

and that a well designed GA is extremely powerful. They are highly de-

pendant on the design choices made by the programmer, and the algo-

rithm that solves one problem in just a few generations might never be

able to solve some other problem. Even though these problems might be

fairly even in difficulty. This high dependability on design choices and the

parameters used, such as the rate of mutation, the approach to parent se-

lection and the genetic representation used, makes GAs implementations

very specific. Constructing a general implementation for a set of problems

is therefore extremely difficult.



8 CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.1: Flow of a Genetic Algorithm

1.2 Artificial Neural Network (ANN)

An Artificial Neural network (ANN) is a computational model inspired by

the structure and function of biological neural networks. They are com-

monly used as data-structures to model and/or learn complex non linear

relationships between sets of data.

A neural network is an interconnected group of artificial neurons, usu-

ally illustrated as shown in figure 1.2. Each neuron has two main func-

tions; First, they sum up all inputs given to them, and then send an output

based on an internal function represented by the sigmoid sign in figure

1.2. By connecting these simple neurons together, the arrows in figure 1.2,

and giving each connection a numbered weight, highly complex patterns

and processes can be modelled. Neural networks are though highly de-

pendant on choosing the correct architecture to achieve good results, and

architectures are highly problem dependent.

The flow of data in a neural network is directional as illustrated by the use

of arrows in figure 1.2. The network gets one input value per neuron in the

input layer, calculates the output from the neuron using the internal func-

tion, and sends this output value along each connection pointing away

from the neuron as an input value for another neuron. After doing this



1.3. MODULARITY IN THE CONTEXT OF AN ANN 9

process for each neuron in the input layer, each neuron in the hidden layer

calculates its input values sent by the input layer by multiplying each in-

coming value by the weight number on the connection it was sent along.

These input values are then summed up by each neuron in the hidden

layer and an output value is calculated in the same way as for the neurons

in the input layer. Finally the neurons in the output layer processes their

inputs into outputs in the same way as the neurons in the hidden layer,

except this time the outputs from these neurons are the final outputs from

the network.

Figure 1.2: Artificial Neural Network

1.3 Modularity in the Context of an ANN

Most definitions of modularity involve a separation of parts in the system

into functionally semi-autonomous units. This result in different patterns

for different types of neural network topologies, but this section will only

be focusing on feed forward networks, which is the network type used

throughout this thesis. In these networks, separation of parts of the sys-



10 CHAPTER 1. INTRODUCTION AND BACKGROUND

(a) Fully connected net-

work.

(b) Modular network. (c) Fully modular net-

work.

Figure 1.3: The differnece between a fully connected topology and modu-

lar topologies.



1.3. MODULARITY IN THE CONTEXT OF AN ANN 11

tem into functionally semi-autonomous units entails limiting how many

outputs a specific hidden neuron of connection contributes to (Bullinaria,

2002; Jacobs et al., 1991b). Figure 1.3 show the difference between a fully

connected network in figure 1.3(a) and a fully modular network in figure

1.3(c). In the fully connected network, every connection and neuron is

contributing to every computation that occur later in the network. In the

fully modular topology on the other hand, the number of computations

each neuron and connection contributes to is halved by removing the con-

nections that connect the left and right side of the network. And most

importantly, in the modular network, each neuron and connection in the

hidden layers only contribute to one output. Providing a separate set of

computational resources for each output is practically the same as creat-

ing two different networks, since these are now disjoint systems. The thing

is, even though the two outputs would benefit from not sharing all their

computational resources, since this would make balancing weights very

difficult and tedious, there is likely to be parts of the computation that can

efficiently be shared between the outputs. For this reason the network in

figure 1.3(b) is most likely a better topology than either of the extremes

with regards to efficient learning, because it would be capable of keep-

ing learning of distinct computations that are only helpful for one output

separate, while still sharing computations that are useful for both outputs,

allowing these to only be learnt once. Given a fully connected topology,

any computation that is only needed for one output will interfere with

the learning of the other output, actively hindering the learning of any

such computation. In the other extreme with full modularity, there will

be no interference of learning anything, because every computation will

only affect one output, but any computation that would be beneficial for



12 CHAPTER 1. INTRODUCTION AND BACKGROUND

both outputs would have to be learned twice, effectively slowing down

the learning process. The most efficient topology is thus a good middle

ground where the topology promotes positive common learning, while

also isolating learning of computations that could cause interference.

1.4 Neuroevolution of augmenting topologies (NEAT)

Neuroevolution is the result of combining neural networks and genetic al-

gorithms. Neural networks are powerful tools for all sorts of tasks from

classification tasks to speech recognition. Yet there are tough optimiza-

tion related challenges to the efficient use of these networks. Genetic al-

gorithms on the other hand is a powerful tool when it comes to optimiza-

tion and search problems. They are as such perfect for optimization of

weight configurations or searching for suitable neural network architec-

tures which are the most common tasks of a GA in neuroevolution.

Neuroevolution of augmenting topologies (NEAT) is a neuroevolutionary

framework created by Stanley and Miikkulainen (Stanley, 2002) at Uni-

versity of Texas at Austin in 2002. This system evolves the topology of

the network in addition to the correct weights, and has been used with

great success for a variety of tasks over the years (Stanley, 2004). NEAT

employs direct encoding, meaning that there is a direct translation from

one genotype to one phenotype. In addition, NEAT is based on the idea

of complexification, which implies that the algorithm starts out with sim-

ple manageable structures, and adds neurons and connections to them in

order to increase the complexity and thus the potential power of the net-

work. There are a few aspects that make NEAT differ from the standard



1.4. NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) 13

model of evolution of ANN topologies:

1.4.1 Age tracking - Global Innovation Numbers

Evolving ANN topology is not exactly a straight forward task. When per-

forming cross-over operations on networks with different topologies, it

is vital to know which gene represents what. And when combining two

sets of descriptions, information is most likely lost. For example neuron

four may have a completely different function in parent one compared to

parent two, meaning that if the first half of parent one is combined with

the second half of parent two, and parent two refers to neuron 4, which is

part of parent one, then the functionality of the network has most likely

changed completely.

To solve this challenge, NEAT employs an age tracking method that gives

each new gene in each genome a global innovation number. this number

increments with each new gene, and is used to track the historical ori-

gin of each gene in the population so that (1) crossover can be performed

between networks with different topologies, and (2) the networks can be

segmented into species based on topological similarity.

When two ANNs in NEAT are to be recombined through reproduction, the

genes in both chromosomes are aligned based on their innovation num-

bers. Genes that do not match are either disjoint if they are located inside

the range of the other parent’s innovation numbers, meaning one parent

has a gene the other parent does not, or they are excess if they are outside

of the other parents innovation number, meaning one parent is larger than

the other. Excess and are inherited from the more fit parent (Stanley, 2002).



14 CHAPTER 1. INTRODUCTION AND BACKGROUND

This allows evolution to evolve ANN topologies without losing valuable

information when recombining networks during reproduction.

1.4.2 Speciation

The number of disjoint and excess genes are used to measure the distance

between genomes. This distance is then used to specify species in the pop-

ulation, with a species being a group of networks with similar topology.

Each species primarily reproduces within its own species, and thus only

compete with individuals that are fairly similar with itself. This way topo-

logical innovations are protected an allowed to optimize their structure

and weight configuration before they have to compete with the popula-

tion at large. This method is meant to avoid early convergence, by having

one good mutation dominate the population during evolution and focus-

ing the search too much in one direction (Stanley, 2002).

1.5 Spatial Interference

Imagine a simple input output mapping task taking two integer inputs,

and sending these through a hidden layer with a single neuron on to two

output neurons. All weights are bounded integers between 1 and 10. One

output neuron tries to maximize it’s output, while the other tries to min-

imize it’s own output. Under these condition, any alteration of either

weight w1 or w2 in figure 1.4 will be beneficial for one output, but detri-

mental for the other. Therefore neither of the two tasks will ever be learned

successfully using any gradient decent based algorithm. This problem of



1.5. SPATIAL INTERFERENCE 15

conflicting weight updates hindering successful learning of a network is

called spatial interference.

Figure 1.4: Simplified neural network topology that suffer from spatial

interference.

Spatial interference is a result of low correlation between two outputs shar-

ing topological network structures in neural networks. One way of alle-

viating the issue of spatial interference could be to provide a separate set

of hidden neurons for each set of outputs that result in spatial interference

when sharing network structures. This is exactly the the purpose of find-

ing a modular network topology. Any neural network with at least one

hidden layer and more than one output, that is trained using a gradient

descent algorithm such as backpropagation, will be susceptible to spatial

interference. Also, the problem of spatial interference increases as the cor-

relation between two outputs sharing network structures moves towards

zero (Jacobs et al., 1991b; Plaut, 1987).



16 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.6 Correlation

Correlation is a common statistical property that specifies a degree of de-

pendence between two variables. The Pearson correlation (Lee and Nice-

wander, 2012) between two variables is calculated using equation 1.1 and

is always bound between -1 and 1. The correlation value indicates a posi-

tive or negative linear dependency between the two variables. A positive

correlation value indicates that when one variable increases, the other is

likely to increase as well and vice versa. A negative correlation value on

the other hand indicates that when one variable increases, the other will

most likely decrease and vice versa.

r =
N(

∑
xy)− (

∑
x)(

∑
y)√

(N(
∑

x2)− (
∑

x)2)(N(
∑

y2)− (
∑

y)2)
(1.1)

Where N is the least number of data samples between the two datasets. x

is a value from function 1 and y is a value from function 2.

1.7 Dual Functional Regression

Functional regression is is the task of specifying a mathematical function

that fits a given dataset. The datasets are usually given as a set of obser-

vations with a set of dimensions, and through functional regression the

function that best fits the dataset is specified in order to predict the possi-

ble values of future observations.

For example, when using a neuroevolutionary like in this thesis, a math-

ematical function is given such as the function Sin(x) from 1 to 10 as



1.7. DUAL FUNCTIONAL REGRESSION 17

Figure 1.5: Function Sin(x) bounded between 0 and 1 for y values, and 1

to 10 for x values.

shown in figure 1.5. Neuroevolution must then create an ANN topology

with a configuration of connection weights to mimic a sampling of values

from this function. The y values of all functions used in this thesis are all

bounded between between 0 and 1 to fit the output of the neural networks

directly. As such the actual function used as a fitness function is on the

form (f(x) ∗ a) + b where f(x) is the function applied, and a and b are con-

stants. This does not change the shape of the function, so each function is

referred to as only the f(x) part for simplicity.



18 CHAPTER 1. INTRODUCTION AND BACKGROUND



Chapter 2

Modularity

1962, Herbert Simon publishes a paper on “The architecture of complex-

ity” (Simon, 1962). His ideas that complex systems frequently exhibit a

hierarchical structure that consist of near-decomposable structures, and

that the evolution of complex systems with hierarchical structure is faster

than evolution of equivalent systems without this structure has gotten

much attention. Through years of research on complex systems, a simi-

lar, but distinct structure has emerged that exhibit the same traits of near-

decomposability as Simons hierarchies, but does not require structures to

be dependant on each other. This more general idea has been named mod-

ularity and, considering it encompasses Simons hierarchies, is observed

even more frequent in complex systems.

Modularity is a common concept in complex natural and artificial systems.

Both biological neural networks such as brains and artificial networks like

the Internet can be shown to have a significant modular configuration.

Even so, ANNs designed through neuroevolution hardly ever show any

19



20 CHAPTER 2. MODULARITY

modular configuration of any form. Due to the fact that both ANNs and

GAs are modelled after their biological counterparts, one would expect

that when modularity appears in biological neural networks, but not in

neuroevolution, the aspects of biological evolution of neural networks that

promote modular structure are not part of the neuroevolutionary experi-

ment. The question is then, what parts are missing? And will adding

these factors to neuroevolutionary experiments enable neuroevolutionary

methods to solve more difficult problems than before?

There are two primary methods employed to produce modularity in neu-

roevolution. One is to explicitly encode modularity directly in the genome

of the network and thereby enforcing modular structures (Happel and

Murre, 1994; Mouret and Doncieux, 2008). The other is to promote mod-

ularity through external pressure, usually as part of the fitness function

(Bullinaria, 2007a; Hø verstad, 2011; Kashtan and Alon, 2005; Pan and

Sinha, 2007). Even though both of these approaches have the potential

for generating modular solutions, the first approach requires a solid un-

derstanding of when and why modularity in neural network systems is

useful in order to be applied with confidence to neuroevolution. With-

out this understanding, enforcing modularity through genetic encoding

is likely to limit the domain of topologies that can be represented. With-

out proper understanding of modularity it is also difficult to ensure that

these limitations don’t exclude the optimal topology from the domain of

topologies that can be represented. In order to take a step in the direction

of understanding when and why to use modularity in neural network sys-

tems, the second approach is applied when testing the hypothesis in this

thesis. As such, the first approach will not be discussed any further.



2.1. MODULARITY FROM ENVIRONMENTAL VARIATION 21

2.1 Modularity From Environmental Variation

Lipson et al. (Lipson et al., 2002) suggested that the modular configu-

ration in neural network systems is the result of evolution on a problem

that varies over time, and showed that the amount of modularity obtained

was logarithmically proportional to the frequency of change in the envi-

ronment between generations. This theory poses that modular structures

in biological neural network systems are at least partially a result of the

changing world around us, and that a modular configuration makes it

easier to adapt to changes in the environment. This seems sound with

regards to biological living systems in changing environments. Especially

considering genetic changes between generations in evolution as a way of

adapting to changes in the environment (Baldwin, 1896). Also consider-

ing that neuroevolution normally focuses on a single, rather simple task

compared to tasks solved by biological systems, this could explain why

modularity is so rarely observed in neuroevolution.

Inspired by the work of Lipson et al., Kashtan and Alon (Kashtan and

Alon, 2005) performed a series of experiments on two separate problems of

higher complexity than those used in the experiments by Lispon et al., and

showed that random perturbations of the environment was not enough to

promote modularity. They suggested that for modularity to emerge, the

environment need to change over time in a modular fashion. What this

implies is that the environment needs to switch between multiple goals

that have at least some common sub goals. Evolution would then have to

minimize the number of changes required to adapt to the changes in the

environment. Some changes in nature can be described as changing in a

modular fashion, for instance if a species of animals empty out one food



22 CHAPTER 2. MODULARITY

source in an area. As an example of such a situation, if the foxes in Aus-

tralia eat all the rabbits, the foxes will have to adapt to eating something

else, for example they could start eating baby kangaroos. Rabbits and baby

kangaroos can be said to have a lot in common as sources of food for the

fox population, which can be considered common sub goals with regards

to the above methods. It would seem as though environmental variation,

by varying the task between generations, would in effect have similar ef-

fect to limiting the number of connections in the evolved network in some

regards. When the fitness function is switched, evolution must reorganize

the network to maximize performance for this new task. Over time this

evolutionary behaviour seem to evolve networks that can quickly adapt

between the fitness functions, and thus generate networks that need mini-

mal genetic alteration to adapt to each task. Though not a distinct method

from limiting the number of connections in the network, this evolution-

ary behaviour searches for solutions for each problem that are as similar

to each other as possible. Also, given sub-tasks that are common over all

tasks being alternated, then each sub-task could be solved in one module.

This would make sure that only the connections going out of the module

would have to be changed if the task changes.

Kashtan and Alon continued their work on the ideas introduced in (Kash-

tan and Alon, 2005) and developed a simple analytical methodology for

evolution under modularly varying goals in linear systems (Kashtan et al.,

2009). They showed that evolution under modularly varying goals could

significantly speed up the evolution of neural networks both with regards

to topology and training, and established an analytical model for the be-

haviour of how evolution behaves under modularly varying goals with

regards to movement through the fitness landscape. By visualising the fit-



2.1. MODULARITY FROM ENVIRONMENTAL VARIATION 23

ness landscape during evolution as a landscape filled with mountains and

valleys, with valleys representing local optima, then periodically chang-

ing the environment will periodically change up the fitness landscape.

Chances are that a genome that is stuck in valleys could be located on

a mountain after switching the environment. This would give genomes

new gradients to move along, as any move towards a valley is consid-

ered a positive fitness change, effectively helping evolution avoid local

optima. Given that there are global optima that are common between

the two fitness landscapes, then any genome located at this point will not

move when changing the environment. On the other hand, if there are not

a common global optima for both environments, then genomes that find

one optima will move away from this when the environment changes. In

this case evolution will never be able to find a stable solution. The biggest

challenge with regards to this method would be to identify an alternative

environment with a common global optima to the main function. Sadly

this was not part of the work by Kashtan and Alon. Secondly, because

their work only focuses on linear systems, the definition of modularity in

this setting is similar to the definition of a disjoint system. Their study fo-

cuses on the evolving solutions to specific input-output mappings where

only a subset of the inputs are used to generate subsets of outputs like

the ones described in figure 2.1. This limitation to linear systems is the

biggest weakness of the study. While the promising results of speed-up of

evolution under modularly varying goals are of great interest, most neural

network systems are not linear. Non-linear systems generally have much

more complex fitness landscapes than linear neural networks, which in

theory could either speed up evolution even more, or just serve to add

noise to the evolution. Given a very rugged fitness landscape, then small



24 CHAPTER 2. MODULARITY

differences in locations in the fitness landscape could result in different

trajectories after switching environment. This would increase sensitivity

to the evolutionary parameters, making the method much harder to use.

Unless the study of speed-up of evolution under modularly varying goals

is extended to non-linear systems, its uses will remain limited.

Figure 2.1: A neural networks weight configuration is described as an

NxN matrix A with inputs as rows and outputs as columns. Qm is the

measure of modularity in the network. This measure is bound between 0

and 1, with 1 being fully modular (max number of disjoint systems). Fig-

ure has been copied from (Kashtan et al., 2009).

Requiring that the environment has to change in a modular fashion in or-

der to promote a modular topology in neuroevolution is a strong limita-

tion with regards to what applications and domains that are applicable for

this method. This implies that environmental variation is far from a com-

plete explanation of the origin of modularity in neural network systems.

Multiple studies have also tried to replicate earlier results of promoting

modularity using environmental variation without any success (Hintze

and Adami, 2008; Hø verstad, 2011; Li and Yuan, 2011). The fact that these



2.1. MODULARITY FROM ENVIRONMENTAL VARIATION 25

studies are unable to replicate results achieved using varying environ-

ments indicate that even though these methods might be capable of pro-

moting modularity under certain circumstances, there is still something

missing from these theories to reliably promote modular topologies. In

addition, all these experiments change goals between generations, which

lowers the biological realism of this theory drastically. Even though there

are theories that suggest that there are genetic changes happening dur-

ing reproduction based on environmental variation in nature (Baldwin,

1896), in all likelihood, the goals that change in time during the individu-

als lifetimes are more likely to be relevant to the actual topology of brains.

Especially with regards to processing efficiency and learning speed (Kaas,

2000b). Considering goals varying between generations without consider-

ing any of the changes in goals that happen during an individuals lifetime

seem like a very limiting way of studying a trait inspired by biology. Mi-

nor changes in the environment during an individuals lifetime can usually

be easily modelled by adding limited non-random noise to the inputs of

the neural network during training. As such, there is no reason not to take

this into account when investigating neuroevolution under environmen-

tal variation. The fact that most studies on environmental variation do not

even mention changes within one generations lifetime is cause for suspi-

cion. Even so it may be that varying goals between generations could be

a viable method for promoting modularity in neuroevolution under cer-

tain conditions, and that there may well be several reasons for and ways

of promoting modularity. In addition, with a refined understanding of

environmental variation, this theory could have useful applications when

included in neuroevolution regardless of its limited relevance to biology.

Despite any potential benefits, this branch of research into the origin of



26 CHAPTER 2. MODULARITY

modularity has been dropped. The conclusion was that modularity emerg-

ing from environmental variation is more likely the result of the indirect

constraints imposed by switching tasks during evolution, than the switch-

ing of the tasks in and of itself. For example, this approach seem to ef-

fectively minimize the number of genetic alternations required to adapt

to change in the environment. As shown by Kasthan and Alon (Kashtan

et al., 2009), if there is no network topology that is able to solve both prob-

lems that are being switched between, evolution will move towards the

topology that is closest to both optimal solutions, minimizing the number

of genetic alternations needed to optimize either one. In the same manner,

other studies (Li and Yuan, 2011; Lipson et al., 2002) that employ different

forms of environmental variation are simply hiding the actual constraints

they pose on the topology of the network behind the variation mechanics

they employ. What exactly these constraints are is hard to say, but the fact

that every study seems unable to replicate the results from earlier studies,

and that every study end up construct it’s own theory that diverge signif-

icantly from earlier theories (Hintze and Adami, 2008; Hø verstad, 2011;

Li and Yuan, 2011) suggest that even though these studies are touching on

relevant factors for promoting modularity, the angle of attack seem to be

off. Other approaches are therefore considered instead, especially regard-

ing constraints on the topology of the network.



2.2. MODULARITY FROM NOISE IN GENOTYPE-PHENOTYPE MAPPING27

2.2 Modularity from Noise in Genotype-Phenotype

Mapping

Høverstad (Hø verstad, 2011) attempted to recreate the results of the left

and right retina experiment used by Kashtan and Alon (Kashtan and Alon,

2005), but concluded that the results of Kashtan and Alon have too much

sensitivity to the experimental conditions to be of practical use. In order

for modularity to emerge, Høverstad instead added noise to the genotype-

phenotype mapping, arguing that modularity reduces the negative effects

of non-deterministic genotype-phenotype development.

Adding noise to parts of a system during development is an efficient way

of promoting robustness in automatically designed systems. This robust-

ness emerges as a way to minimize the damage caused by random per-

turbations in the part of the system that experience noise. In this case

Høverstad made random permutations to the weights of the network. In

order to minimize the damage caused by these permutation, evolution de-

signed the networks as to limit the number of weights affected. Based

on figure 2.2, if the network where to be standard feed forward and fully

connected with more than one hidden layer, then a random permutation

in a weight between the input layer and the first hidden layer would af-

fect every connection dependant on the changed connection. For the next

layer of connections the change resulting from noise would affect every

connection going out from the neuron getting input from the affected con-

nection, which are marked in red in figure 2.2. For any additional layer

of connections after this, the random change in the earlier weight will af-

fect every connection in each of those layers resulting in horrible dam-



28 CHAPTER 2. MODULARITY

age to the computations done throughout the entire network as a result of

changing one weight in the first layer. On the other hand, if the network

consist of two distinct modules, then any random permutation of a weight

in the input-hidden layer of connections would only affect the weights ac-

tually dependant on the changed weight. For figure 2.2(b) this would be

no more than half the weights affected in the fully connected network in

figure 2.2(a). Though this can potentially be a large number of weights,

and be destructive through many layers of the network, the damage will

in all modular cases be less than in a fully connected network. It should be

pointed out though that the type of modularity that would emerge from

this approach is different from the one that is used in the experiments of

this thesis. While the definition of modularity used in this thesis dedi-

cates different hidden neurons to different outputs, the modularity that

appears in the case of Høverstads experiments does not help separate pro-

cessing of different outputs. Instead, evolution will counteract the damage

by minimizing the damage from random pertubations, meaning compu-

tations where the propagation of changes through the network would end

up cancelling out at some point would be optimal. Therefore, evolution

could possibly be biased towards modularity in some form as a result of

noise in the genotype-phenotype mapping, but the purpose of this type of

modularity is increased robustness of the computations done by the net-

work, while the purpose of modularity in the experiments done in this

thesis is to maximize learning efficiency. What should be taken away from

this analysis is that there appears to be multiple types of modularity, and

that these types of modularity can serve different puroses. With multiple

reasons for and benefits from multiple types of modularity, it would be

surprising if there existed only one answer to why modularity appears in



2.2. MODULARITY FROM NOISE IN GENOTYPE-PHENOTYPE MAPPING29

(a) Fully connected network. (b) Modular network.

Figure 2.2: The propagation of the effect of change on a connection weight

in the first layer of connections between in two different network topolo-

gies.

neural networks.

By modelling environmental variation as non-random persistent noise,

meaning that any changes made to the input data are gradual and transfer

over to the next generation, the effects of noise in the genotype-phenotype

mapping can be directly related to the effects of environmental variation.

While any perturbation of elements in the network only affect the part of

the network that depends on the element that has changed, changes in

the inputs will affect all parts of the network that depend on that input.

Unless the network has inputs that are unimportant for the task at hand,

a change in any input is very likely to affect the entire network, upset-

ting the performance of the entire network. Also, because there are very

few stable environments in the real world, if one input has noise added

to it, it would make sense to have noise on all inputs. This would multi-



30 CHAPTER 2. MODULARITY

ply the potential damage caused by the number of inputs. unfortunatrely,

no amount of modularity in the network would be able to limit this dam-

age, unless an input is only used of some outputs. While this non-random

noise could be seen as promoting a robust topology for the network, this

is not always possible. Especially in the case of switching tasks between

generations. Unless the tasks being switched between have a common

topology that solve both tasks, evolution will only be able to approximate

a solution to each of the two problems. Of course, not all problems require

an optimal solution, but the problem of finding a good enough solution to

both problems becomes harder the wider the gap is between the optimal

solution for each of the problems. Assuming that the non-random noise

used to model environmental variation generates gradual changes in the

inputs, the problem of adapting to this change between generation should

be minimized, but the number of tasks that evolution has to be able to

move between will grow exponentially with growing number of inputs.

Therefore the noise applied to the inputs will force evolution down cer-

tain evolutionary paths, and will therefore limit any diversity in the popu-

lation. Unfortunately, because changes in inputs will most likely affect the

entire network, there seem to be little theoretical evidence that environ-

mental variation should promote modular configurations at least for small

networks such as those developed using neuroevolution, unless some in-

puts are only useful for some outputs, which could allow a segmentation

of the topology.



2.3. SPATIAL INTERFERENCE, LEARNING AND MODULARITY 31

2.3 Spatial Interference, Learning and Modular-

ity

Most studies into modularity in ANNs just assume that modularity is a

good thing and that it is natural to include it in ANNs based on the fact

that it is so frequent in biology. Bullinaria (Bullinaria, 2001, 2002) on the

other hand took a critical standpoint and investigated the effects of a mod-

ular topology versus a fully connected topology in a single-hidden layer

feed forward ANN. These studies indicate that that non-modular solu-

tions using the correct learning algorithm outperforms any modular solu-

tion for the What-Where retina task, a task that show strong evidence of

being solved modularly in nature (Livingstone and Hubel, 1987; Rueckl

et al., 1989). These conflicting observations between biological and artifi-

cial neural networks posed the big question: Why?

Expecting modularity to appear in order to counteract the problem of spa-

tial interference, Bullinaria (Bullinaria, 2007b,a) conducted follow-up stud-

ies focusing on the learning advantage of modularity. These indicated that

modularity only appear when the learning algorithm is unable to resolve

conflicts of spatial interference. Bullinaria used two different error mea-

sures for the back-propagation algorithm to train networks for the What-

Where retina experiment. The cross entropy (CE) error measure evolved

a fully connected neural architecture every time, while the sum square

error (SSE) error measure tended to result in a modular neural architec-

ture. Bullinarias conclusion was that the computational power of back-

propagation learning with CE in combination with full connectivity out-

weighs the benefit of reduction in spatial interference provided by mod-



32 CHAPTER 2. MODULARITY

ularity. On the other hand, modularity did appear when the SSE error

measure was employed. This he explained by considering a known prob-

lem with back-propagation using SSE. Weight updates when using SSE are

proportional to the sigmoid derivatives. These approach zero for totally

incorrect outputs as well as for totally correct outputs. For training data

resulting in conflicting weight updates, this means that the optimization

will slow down to near zero updates for any weight configurations that

are far from optimal, as well as for near optimal ones, making training a

fully functional network very difficult. In this case, the problem of spa-

tial interference is proportionally larger due to the small sigmoid deriva-

tives, making modularity appear in order to minimize the frequency of

these conflicting updates. To verify this, a variation on the SSE error mea-

sure that counteract the problem of diminishing sigmoid derivatives was

also tested. SSE with Sigmoid Prime Offset (SPO), which simply adds 0.1

to the output sigmoid derivative would result in mostly fully connected

solutions. These fully connected topologies also performed consistently

better than any modular topology that emerged. In addition, when allow-

ing evolution to choose which error measure to use, and the degree of use

for each one, the CE error measure was consistently chosen, and a fully

connected topology evolved. There is thus expected to be a trade-off be-

tween minimizing the problem of spatial interference and the additional

computational power and flexibility provided by the extra weights a fully

connected topology provide. The problem of spatial interference is largely

problem dependant, and Bullinaria concluded that networks evolved for

the What-Where retina experiment does not experience a large enough de-

gree of spatial interference between tasks to warrant a modular topology.

Even though Bullinaria show evidence that modularity appears in order



2.3. SPATIAL INTERFERENCE, LEARNING AND MODULARITY 33

to minimize the destructive effects of spatial interference, he makes no at-

tempt at explaining what causes spatial interference or estimating the re-

lationship between spatial interference and the degree of modularity that

emerge.

One thing Bullinaria does propose though is that given a good enough

learning algorithm, capable of handling the challenge of spatial interfer-

ence, there should be no reason not to use full connectivity, even when

solving multiple tasks in the same network. Assuming that the learning

methods used by biological brains are much more sophisticated than the

back-propagation algorithms employed by Bullinaria, why would biolog-

ical brains be so highly modular? One important difference to consider

in this context between biologically evolved neural networks and those

created using neuroevolution is that biology is constrained by the laws of

physics. The effect of these on the structure of the network is normally

not considered in neuroevolution. Instead the focus is usually purely on

the computation performed by the network. Biological neural networks

are constrained by such factors as development cost, energy consump-

tion, heat dissipation, electrical cable properties and so on. These con-

straints precludes full connectivity in biological neural networks of brain-

like size. Evolution has gathered neurons in highly connected groups

called modules, and interconnected these modules. Thus creating a highly

modular brain by maximising the computational performance of the brain

while minimizing the physical factors that constrain its physical properties

(Kaas, 2000b).



34 CHAPTER 2. MODULARITY

2.4 Modularity from Structural Constraints

Pan and Sinha (Pan and Sinha, 2007) suggested that methods based on

environmental variation for promoting modular network topologies are

to complex to be a proper explanation for the origin of Modularity. In-

stead their experiments show that focusing on both structural and func-

tional constraints during automatic design of a neural network, they could

control what sort of modular structure emerged in the network. Three

competing constraints were used in their experiments. First, the network

needed to reduce the average path length between every set of two nodes.

Second, the number of edges used were to be minimized. Finally, the net-

work should decrease the instability of its dynamical states, meaning that

removing any neuron in the network should render as few neurons as

possible unreachable from each other neuron. Developing networks that

maximize these factors, Pan and Sinah gave parameters that would deter-

ministically affect the kind of modularity that would emerge. With this

approach, they moved the focus of the search for the origin of modularity

away from focusing on the environment the network functions in to also

focusing on the effects of constraints posed directly on the topology of the

network. Putting the theories posed by Pan and Sinah in the context of bi-

ological neural networks one could consider what constraints are actually

posed directly on biological structures and the biological processes during

the development of these networks, and what effect these constraints have

on the topology of biological neural networks.

Based on early work by Jacobs and Jordan (Jacobs and Jordan, 1990), Bow-

ers and Bullinaria (Bowers and Bullinaria, 2005) performed a study using

an embryonic developmental model with restrictions on connection length



2.4. MODULARITY FROM STRUCTURAL CONSTRAINTS 35

between neurons positioned in three-dimensional space to investigate the

effects of physical constraints on neuroevolution. Their finds showed that

the emergence of modularity was highly dependant on the learning algo-

rithm employed, similar to Bullinarias former results (Bullinaria, 2007b,a),

as well as on the allowed length of connections. Only the shortest con-

sidered connections resulted in modularity, and using back-propagation

with SSE was unable to create any fully functioning networks at all for

the shortest connection constraint. Verbancsics and Stanley (Verbancsics

and Stanley, 2011) performed a similar study by extending HyperNEAT

with a bias towards shot connections after Clune et al. (Clune et al., 2010)

showed that standard HyperNEAT was unable to generate modular solu-

tions. The extended HyperNEAT was able to evolve modular solutions

similar to those found in the studies by Bowers and Bullinaria. Based

on the work by Jacobs and Jordan, Ferdinando, Calabretta et al. (Ferdi-

nando et al., 2000) also successfully used a bias towards short connections

to promote modular topologies for the What-Where retina task. In addi-

tion, they argue that learning should not be done during evolution of the

topology. The reason for this is that the deletion of any weight in a network

is very likely to set back the learning of a weight configuration, since the

deleted weight most likely contributed positively to some computation in

the network. For this reason, only the initial weight configuration should

be specified by evolution, and the final weight configuration should be

learned during the networks lifetime.

Even though the results hinted at physical constraints being relevant for

explaining some modularity, they were inconclusive as to how these con-

straints affect the structure of networks. In his follow-up studies, Bul-

linaria (Bullinaria, 2009a,b) decides to only constrain the degree of con-



36 CHAPTER 2. MODULARITY

nectivity between neural layers. One concern posed by Bullinaria is that

when investigating the effects of physical constraints through abstracted

physical constraints it can be difficult to distinguish between traits that are

direct results of the constraints and traits that are in fact side effects. Re-

meber the lesson from statistics 10, correlation does not mean causality. A

second challenge is that even if a trait that is a direct result of physical con-

straints is identified, such as the bias towards short connections (Bowers

and Bullinaria, 2005; Kaas, 2000b), these traits are likely to be highly sensi-

tive to scales of other aspects of the network and environment. In this case,

the effects of biasing the length of connections between neurons seem to

be highly sensitive to the distance measure used. If the bias towards short

connections is too strong, evolution will most likely not be able to create

a topology at all. If the bias is too weak, there will be too little modular-

ity in the network, and thus spatial interference would still be an issue.

this results in a high dependency on initial condition in order to achieve

proper results. Even though Bullinaria argues that constraining the degree

of connectivity in the network is a better way of constraining the network

topology than a bias towards short connections, it seems like the degree of

connectivity in the brain is another level of abstraction away from the con-

straining laws of physics compared to biasing the length of connections.

This is based on the assumption that given a large enough neural network,

any bias towards short connections would result in limiting the degree of

connectivity in the network (Kaas, 2000b). On the plus side, constrain-

ing the degree of connectivity is most likely easier to implement and less

computationally expensive than implementing less abstracted constraints.

Regardless, constraining the degree of connectivity does yield full modu-

larity consistently in Bullinarias follow up study (Bullinaria, 2007b) for



2.5. MODULARITY FROM PLEIOTROPHIC EFFECTS 37

both CE and SSE error measures when the degree of connectivity is below

50%. This constraint may thus be of use in further studies of modularity

that does not wish to build their model bottom up by implementing all the

relevant laws of physics.

2.5 Modularity from Pleiotrophic Effects

Pleiotrophy is a term that describe the genetic effect of one gene on multi-

ple phenotypical traits. This is a highly relevant term in biological evolu-

tion, seeing as biological genes do not describe how an individual should

look, but instead is a recipe for constructing that individual. Biological

genes therefore only describe how to synthesize simple chemicals needed

to construct larger parts in the body and how to combine units into larger

parts, effectively building a body. Because some chemicals are used in the

construction of many different parts at many different levels, the gene that

specify how to make that chemical has widespread effects on how the fin-

ished body will look. A mutation in this gene will therefore cause changes

in every recipe that is dependant on this gene. With a genome as large and

complex as the ones coding for living creatures such as humans or even

simple fruit flies, which in fact have genome of approximately the same

size, and specific genes that affect an arbitrary number of other genes, one

would expect that a random mutation on the genome has a fair chance

of causing fatal damage, hindering the development of the offspring. Yet

somehow, fatal mutations in biology appear to be very rare. This suggests

that there are mechanisms in biology that limit the chance of mutation in

genes with high pleiotrophic factor, or alternatively compensates for the



38 CHAPTER 2. MODULARITY

damage done by such mutations. How these effects are limited is still a

hot topic in the scientific community, but one thing is for sure; Something

is ensuring that fatal genetic mutations are limited in nature.

In the setting of neuroevolution, systems where the genome is treated as

a recipe for creating a phenome, as opposed to a direct description of the

phenome, are known as developmental systems. Evolution of develop-

mental systems is in general incredibly complex, and as such analysis of

the behaviour of evolution in these systems is much harder than in neu-

roevolutionary systems that employ direct encoding. As such, because the

factors that are analysed in the experiments in this thesis do not warrant

a developmental system, a simpler direct encoding is employed. Even so,

it should be mentioned that biological evolution only use developmental

encodings. As such, very interesting theories have emerged that factors in

development could be the cause of modularity in biological systems.

One theory surfacing from the study of pleiotrophic effects is that mini-

mization of the damage caused by mutating genes with high pleiotrophic

effect could be the origin of modularity in biological systems. Samal and

Wagner et al. (Samal et al., 2011) used evolution of genome-scale metabolic

networks that evolved to survive in as many different environments as

possible during an individuals lifetime to show the benefit of modular-

ity, as opposed to changing the environment between generations as dis-

cussed in section 2.1. Genome-scale metabolic networks are large neural

networks that transform a set of resources in their environment into nutri-

ents that help extend the individuals life. Transformation of resources into

nutrients in the experiments is only possible through chemical reactions

specified as a table of allowed chemical reactions. The experiments show



2.5. MODULARITY FROM PLEIOTROPHIC EFFECTS 39

that evolution segments the networks into modules where each module

is specialized to perform one chemical reaction each. They then show a

linear correlation between the number of modules in the network and the

number of environments the network can survive in, arguing that genes

organize so that mutations only affect the development of one module.

Even though the evolved networks have the same number of reactions en-

coded in them as the E. coli virus and show a high degree of modularity, E.

coli is even more modular. To explain this they argue that E. coli is capable

of surviving in even more chemical environments than their experiments

considered, such as growing on sulfur and nitrogen. By grouping genes

that show correlation between their activation patterns together to only

affect one phenotypic module, the mutation of one of these genes would

have a higher chance of resulting in increased fitness. As such, modularity

should help minimize the destructive effects of mutations by limiting the

number of phenotypic traits that the mutation affects, much in the same

way as concluded in section 2.2. This theory is also supported by other

studies (Espinosa-Soto and Wagner, 2010; Chen and Dokholyan, 2006).

Chen and Dokholyan (Chen and Dokholyan, 2006), in addition to draw-

ing the same conclusion as Samal and Wagner, take a more biological ap-

proach by studying the evolution of yeast through mRNA abundance and

codon adaptation index. They show that pairs of proteins that cooperate

within the same module evolve at 30% more similar rates compared to

pairs of proteins that function between modules or in different modules.

Which supports the idea of grouping genes with correlated activity pat-

terns code for traits in the same module. In addition, they show evidence

of genes mutating in a cooperative manner. When one gene mutates to

alter the expression level of a specific protein, another gene tends to mu-



40 CHAPTER 2. MODULARITY

tate in order to compensate for this change in some way. This behaviour

is highly surprising, as there is no obvious genetic mechanism that would

balance mutations in this way. This observation indicate that biological

mutation is far from random like most mutations employed in neuroevo-

lution.

Unlike the theories on spatial interference, environmental variation and

physical constraints, which are for the most part based on theoretical ev-

idence, the theories on pleiotrophic effects are based on actual observa-

tions in biological systems. Though the information regarding the origin

of mechanisms that affect pleiotrophy in genetic systems is still sparse,

there is clear evidence that these mechanisms exist. Unfortunately the

lack of understanding of these mechanisms render them limited in their

potential for investigation in neuroevolutionary systems.

2.6 Theories on the Benefits of Modularity

There are two main general arguments that repeats in the scientific liter-

ature regarding the benefits of modularity in neural networks. Literature

focused more towards Neuroscience tends to focus on the effects of phys-

ical constraints on the topology of brains, such as the effects of the size of

brains (Kaas, 2000b), the ratio between grey and white matter (Changizi,

2001; Chklovskii, 2004) and the percentage of neurons a given neuron is

connected to (Stevens, 1989). Literature focusing on ANNs on the other

hand, tend to focus on the benefits of modularity with regards to learning

(Durr and Mattiussi, 2010; Jacobs et al., 1991b).



2.6. THEORIES ON THE BENEFITS OF MODULARITY 41

Both of these arguments are applicable for biological neural networks.

Given that physical constraints on these networks preclude full connectiv-

ity, which is definitely observable in brains (Changizi, 2001; Kaas, 2000b),

then modular wiring seem to be the optimal topological configuration

(Chklovskii, 2004). This seems to provide a heavy bias towards modu-

lar configurations, and could result in a reduction in spatial interference

as a beneficial side effect. It could also be that spatial interference works

like a secondary pressure that mainly helps decide what functionality is

included in which modules, instead of a direct pressure towards modular

topologies. Even the effects of varying environments seem to be a way of

imposing structural constraints on the network, though these constraints

are hidden under a layer of abstraction by posing the constraints indirectly

through changes in the environment and are as such difficult to identify.

Due to the differences in the substrates between biological and artificial

neural networks, there are no physical constraints to preclude full connec-

tivity in ANNs. This reduces the bias towards modularity to only include

the reduction in spatial interference. If the benefit of reduction in spatial

interference was a strong enough bias to result in modular configurations,

then modular topologies should appear more regularly during neuroevo-

lutionary experiments. Especially in experiments that solve multiple tasks

in the same network. Seeing as this is not the case, it is natural to con-

clude that while modularity can help reduce the issue of spatial interfer-

ence, a network experiencing spatial interference during evolution does

not provide strong enough selective pressure towards modular topologies

for them to emerge from this pressure alone. In fact extensive spatial inter-

ference during neuroevolution seem to provide selective pressure towards

full connectivity (Bullinaria, 2002), as discussed in section 2.3. The ques-



42 CHAPTER 2. MODULARITY

tion then is whether including physical constraints in neuroevolutionary

experiments will lead to modular topologies that help reduce the issue of

spatial interference. Considering that the laws of physics do not limit the

topology of ANNs in the same way as with their biological counterparts,

there are most likely better ways to solve the issue of spatial interference

than imposing extra constraints on the networks that are not natural con-

straints on the substrate. On the other hand, if including these constraints

improve the performance of neuroevolutionary methods, then modularity

should by all means be included, despite any arguments that these are not

natural constraints for the neuroevolutionary substrate.

From a developmental standpoint, modularity through minimization of

pleiotrophic effects is a plausible alternative to the theory of modularity

through physical constraints, but these are by no means mutually exclu-

sive. In fact, these two theories are most likely complementary in BNNs.

While modularity emerges as a way of optimizing neural wiring under

physical constraints, there is still a question remaining as to how and

why functions are grouped into modules the way they are. Based on the

studies in section 2.5, pleiotrophic effects could be a secondary pressure

that help decide what functions are solved in which modules. Much like

this thesis theorises that spatial interference does in ANNs. Considering

that the genetic mechanisms that affect pleiotrophy seem to have more

to do with gene interactions in developmental systems than physical con-

straints, these mechanisms could turn out to be a more natural inclusion in

neuroevolution than physical constraints, because pleiotrophy seem to be

the result of gene interaction rather than physical constraints. Even so, the

questions that remain, such as what these mechanisms are, or how they

work, means that much research still remain before these mechanisms can



2.6. THEORIES ON THE BENEFITS OF MODULARITY 43

be used to improve neuroevolutionary systems.



44 CHAPTER 2. MODULARITY



Chapter 3

Model

The decisions made with regards to the experimental model are discussed

here. The most important elements of the model and how they interact

is shown in figure 3.1. To sum up the model, SharpNEAT is employed in

order to solve dual functional regression tasks by evolving feed-forward

ANN topologies. The complexity of a topology is estimated according to

equation 3.2. This along with the fitness and degree of modularity of the

topologies in the evolving population are measured and studied for tasks

showing varying degree of correlation. Correlation is calculated according

to equation 1.1.

45



46 CHAPTER 3. MODEL

Figure 3.1: The interaction of elements in the experiment model.

Figure 3.2: Functional regression tasks can be seen as an abstraction of

more realistic learning tasks.



3.1. ON THE CHOICE OF DUAL FUNCTIONAL REGRESSION TASKS47

3.1 On the choice of Dual Functional Regression

Tasks

The simplicity and generality of functional regression tasks make them

ideal for studying both modularity and correlation in a general neural net-

work context. Firstly, the correlation between two mathematical functions

can be easily calculated based on a sampling of values according to equa-

tion 1.1. Secondly, tasks being solved by neural networks are in essence

unknown mathematical relationships. Though some tasks are definitely

more complex, dynamic and difficult than others, they all require a sys-

tem to map input data to some intended output. For instance, as illus-

trated in figure 3.2, the tasks employed here can be imagined to represent

the intended behaviour for a robotic controller with two actuators. An ac-

tuator needs to behave according to some rules in order to perform its task

sufficiently. During training, the ANN robot controller will have to learn

what the rules governing the actuators behaviour are. This is in essence

what the task of functional regression is as well. There are though slight

differences in the type of feedback provided between these two scenarios.

Depending on what type of actuator each of the outputs represent, the

output functions will have varying degrees of correlation. If the two out-

puts represent two wheels, they will likely show high correlation. On the

other hand, if the two wheels are represented in one output and the grip-

per of the robot by the other, then the output functions are likely to show

only medium to low correlation. For this reason, functional regression is

the perfect platform for testing out a general hypothesis for neural net-

work systems learning a task where the input output mapping is known

beforehand. In addition, the use of this platform should not limit the re-



48 CHAPTER 3. MODEL

sults from applying to neural network systems that are trained using other

techniques.

3.2 Spatial Interference in Neuroevolution

Spatial interference is usually closely related to gradient descent learning.

With gradient decent learning, weights move smoothly along a gradient

from bad to better. Weights are repeatedly updated until a stable weight

configuration is reached where there is no gradient that reduced the differ-

ence between the network outputs and the intended outputs, just like the

search space in figure 3.3 illustrates. The most common gradient descent

algorithm used for ANNs is the backpropagation algorithm. Backpropa-

gation sums up the error between the actual output of each output neu-

ron in the network versus the expected output and then changes weights

backwards in the network from output to input based on the error of each

output. When two outputs in this algorithm wants to change a weight in

two different directions, it is called a conflicting update. If the conflict-

ing weight updates are frequent enough to hinder learning, the network

is said to suffer from spatial interference.

As a learning algorithm, neuroevolution also suffers from spatial inter-

ference, but in reverse. When neuroevolution mutates a weight, this is a

gradual change in the weight in a random direction. Mutations are grad-

ual changes in weights that move along a gradient based on feedback from

fitness evaluation and reproduction. If a weight mutation survives until

the next generation, it is regarded as a good mutation. This is where the

spatial interference dynamics of neuroevolution is reversed. While back-



3.3. MEASURING SPATIAL INTERFERENCE 49

propagation experiences spatial interference during weight updates, neu-

roevolution experiences spatial interference during fitness evaluation. If

the change in the weight is beneficial to one output, but detrimental to

another, then the effect is cancelled out in the same way as in backpropa-

gation. As a result of this dynamic, neuroevolution can be used directly to

study the dynamics of spatial interference.

3.3 Measuring Spatial Interference

The purpose of this thesis is to study if modularity can reduce the amount

of spatial interference during learning in a neural network. So why look at

the correlation? Regrettably, spatial interference is very difficult to mea-

sure directly. Spatial interference implies that a significant number of

shared weights in the network receives conflicting updates frequent enough

to hinder learning.

One could consider measuring spatial interference by storing a count of

how many conflicting weight updates each connection has, and calculat-

ing a percentage of how many of the weight updates where conflicting.

Unfortunately, there is a problem with this approach. First consider that

not all conflicting weight updates are detrimental. It could be that there

are some computations in the network that are useful for more than one

task. In this case, it would make sense to share these computations be-

tween the outputs. If this shared computational structure happens to be

well optimized before the rest of the network, then the weights in this

structure should not be altered, as it could be that the computation is used

differently for two tasks. This would mean that any change in this shared



50 CHAPTER 3. MODEL

structure would affect the two output functions differently. It could be that

the change makes the computation in the shared structure better with re-

gard to one function. Most likely though, another function will not benefit

in the same way. In this case, the shared structure would become spe-

cialized to the computation of the first structure, and result in higher fit-

ness for this function. The second function on the other hand will lose

its benefit from the shared structure, and would lose fitness. The topol-

ogy could compensate by removing any connection from the shared struc-

ture to the second function. In this case, new topological structures would

have to be created to replace the computational function lost from the sec-

ond function. In most such cases, it is better to keep the computational

structure like it is. Conflicting weight updates is one way of keeping this

structure stable while the rest of the network is optimized. As such there

are times when conflicting weight updates are helpful. The problem with

measuring spatial interference directly through the number of conflicting

weight updates is then to distinguish between beneficial and detrimental

occurences of conflicting weight updates. Given two neural networks, one

which has a significant portion of shared computational structures that are

useful for both output tasks, and another which simply has a bad topol-

ogy and suffer from spatial interference. Unless there is an efficient way

of distinguishing the effects of the conflicting weight updates, these two

topologies could receive a similar score if the number of conflicting up-

dates is used as a metric.

An alternative way of measuring the detrimental effects of spatial interfer-

ence, which is the metric used here, is the time taken to learn tasks in the

network. While measuring spatial interference directly would be a more

exact approach, the time taken to successfully learn tasks in the network



3.4. MEASURING MODULARITY 51

should give a sufficient indication of how significant the problem of spa-

tial interference is. Given that a network topology can represent a solution

to the problem, it should be able to learn it. Therefore, if the learning time

for the tasks using one network topology is much longer than for a second

topology, both of which are capable of representing a solution to the tasks,

then the first topology is said to suffer from more spatial interference than

in the second topology. Also, if a network which should be able to repre-

sent a solution is incapable of learning the tasks at all, the network is said

to suffer from catastrophic spatial interference. The main problem with

this approach is that it is difficult to specify to which degree the speed of

learning is related to spatial interference or other factors such as a great

difference in the complexity of the two topologies. Though with signifi-

cant differences in learning time between two networks, and evidence of

spatial interference for the tasks at hand, this metric should be sufficient.

3.4 Measuring Modularity

In order for the concept of modularity to have any practical application it

needs to be measurable. Focusing on pure feed forward networks, shared

structures can be identified by backtracking from each output. By identi-

fying which hidden neurons contribute to its output, and listing these for

each output, every list that contain the same hidden neuron will have a

shared structure, and have the potential of suffering from spatial interfer-

ence.

Measuring the degree of modularity in a network is achieved by using

equation 3.1. By counting the number of hidden neurons in the network



52 CHAPTER 3. MODEL

and dividing it by the sum of hidden neurons connected to each output,

the degree of modularity in the network is given by a number between

0 and 1. 1 meaning a fully disjoint system where each output has it’s

own computational structures which only contribute to that output, and
1

numberofoutputs
means the network is fully connected, and all outputs share

all computational structures.

M =
N∑O

o=0 N− > o
(3.1)

Where M is the degree of modularity. N is the Number of hidden neurons

in the network. o is a specific output from the network. O is the networks

total number of outputs, and
∑O

o=0N− > o is the number of hidden neu-

rons contributing to output o.

The purpose of this measurement of modularity is to limit the amount

of shared computational structures in order to minimize the destructive

effects of spatial interference. If connections are measured instead of neu-

rons, then this would directly constrain the connectivity of the network

based on how many connections there are in the network. This will have

unwanted effects on evolution. More connections per computation means

more weights that can be tuned to perform more complex computations,

and as such means more computational power. Had backpropagation

learning been used in these experiments more connections would have

a detrimental effect, as all connections connecting to a shared hidden neu-

ron would receive conflicting weight updates, causing more spatial inter-

ference. Since backpropagation is not used in these experiments, the re-

sults will be slightly different. Chances are that only a few of the connec-

tions going into this one neuron is mutated. Compared to backpropaga-



3.5. THE INTENDED EFFECTS OF CONSTRAINING MODULARITY DURING NEUROEVOLUTION53

tion, spatial interference in neuroevolution works backwards. The weight

is changed first, and the effect of spatial interference is seen when the

change in error of the two outputs cancelling out, rendering the fitness un-

changed. Because of this reversal in the dynamics of spatial interference,

there is no reason to limit the number of connections used for any com-

putation in the network. Therefore the measurement has been abstracted

to measure modularity on the neuron level. By doing this the constraints

on the topology only limit the percentage of shared computations in the

network, without putting any constraints on how complex these computa-

tions are. As such, constraining shared computational structures is a more

natural approach to constraining modularity during neuroevolution, and

is the measurement employed here.

3.5 The Intended Effects of Constraining Modu-

larity During Neuroevolution

Figure 3.3 illustrates the concept of constraining search space in order to

avoid local optima in two-dimensional space. Each location within the

outer frame represent an ANN, while the ANNs that evolution is capable

of generating is contained within the thin outline. An optima is defined

as an ANN that can not be changed by evolution in order to improve fit-

ness. The spirals represent global optima, or optimal solutions, and each

X represent local optima, that is not a perfect solution, but will stop evo-

lution from proceeding if the population centers around one. Each global

optima and local optima have what is called an attractor field. When evo-

lution reproduces and alters solutions during reproduction, this moves



54 CHAPTER 3. MODEL

the solution in a specific direction in the search space. The attractors are

represented by arrows, and show the general direction of gradient that

would provide increased fitness if a change to the solution were to move a

solution in that direction. By punishing or rewarding ANNs through con-

straints, the trajectories and momentum of the population in the search

space can be manipulated to better avoid local optima. Finding a local

optima can hinder evolution from finding a global optima, because there

appears to be no way to alter the ANN in order to gain fitness. The two

main ways of avoiding local optima are to allow evolution to alter ANNs

enough to be able to escape local optima, effectively jumping away from

the pull of its attractors, or by constraining the search space to minimize

the number of local optima in the reachable search space. Altering trajec-

tories and momentums in the search space will also alter the shape of the

reachable search space, which is the same as changing the shape of the

thin outline in figure 3.3.

Figure 3.3: Effect of setting constraints on evolution with regards to reach-

able search space.



3.5. THE INTENDED EFFECTS OF CONSTRAINING MODULARITY DURING NEUROEVOLUTION55

Because the layout of the search space is usually hidden, and the attrac-

tors and number of local optima are usually plentiful, manipulating the

search space successfully is a significant challenge. Using physical con-

straints to promote modular topologies is an approach that would alter

the trajectories and the layout of the search space. The idea, as illustrated

by figure 3.3, is to alter the search space so that all trajectories effectively

lead to a global optima. This would require all local optima to be excluded

from the search space. Because there is normally many more local optima

than there are global optima in any search space, global and local optima

may be very close to each other. Then when global optima are few and

far between, constraining the search space to only contain global optima

is exceedingly difficult. However, the goal of evolution is only to reach a

global optima, regardless of the shape or layout of the search space. As

such, the search space only need to be constrained so that the chance of

finding a global optima is maximized. If the chance of reaching a global

optima is great enough for it to happen consistently, then the search space

has been successfully constrained.

Given that two tasks are solved in the same network which show low cor-

relation, then the idea is that the sections of the search space that represent

ANNs with mainly shared computational structures contain considerably

more local optima than the sections representing modular ANNs. If this

is the case, then constraining the search space to only cover modular solu-

tions should increase the chance of reaching a global optima. This will re-

quire that there is a continuous set of trajectories through the search space

that connect ANNs in the start population to a global optima. Meaning

that there has to be a gradient of increasing fitness from the location of the

ANN in the search space that leads to a global optima. Like the series of



56 CHAPTER 3. MODEL

arrows leading to global optima in the right figure of 3.3. It is likely that

constraining evolution too much will result in isolated pockets of search

space, which would mean that if there is no global optima in the pocket

where the ANN is, then there is no way evolution can move the ANN

through the search space to an optimal solution. As such, the experiments

that sets a lower limit on the modularity of the network will not limit evo-

lution to only fully modular topologies, as this would constrain the search

space so much that it would become a study of evolution of disjoint sys-

tems, and not modular systems.

3.6 SharpNEAT - Neuroevolutionary Framework

SharpNEAT is a C# implementation of NEAT written by Colin Green (Green,

2004a) of the NeuroEvolution of Augmented Topology (NEAT) framework

by Stanley and Miikkulainen (Stanley, 2002). Using a tested framework for

evolution of neural network topology provides more credible results than

if the system was implemented from scratch. The fact that SharpNEAT has

been used in other published research (Lowell, 2011; Randall et al., 2009;

Stanley et al., 2009) along with extensive familiarization of the code dur-

ing implementation of the model into SharpNEAT gives confidence with

regards to the quality of the implementation. The risk of results deriv-

ing from quirks in the programmers code is also significantly lowered by

having only some specific modules being developed by the experimenter.

SharpNEAT builds ANN topologies from bottom up. This allows net-

works to start from the simplest possible topologies and get more and

more complicated. Given that the phased search mode is set to relative,



3.6. SHARPNEAT - NEUROEVOLUTIONARY FRAMEWORK 57

evolution has the potential for reaching all possible topologies in the search

space. This complexification approach should pose minimal constraints

on the search space before the constraints related to modularity are added.

3.6.1 Phased search

SharpNEAT is a C# implementation of NEAT. Even though NEAT is at

its core, there is one addition to the framework that should be discussed

when using this implementation as opposed to alternatives. Phased search

in SharpNEAT (Green, 2004b) is a mechanic that switches search mode

during evolution between complexification and simplification. While com-

plexifying, evolution is allowed to perform all the different mutations on

the network add neurons and connections, delete neurons and connec-

tions and mutate connection weights. During complexification, when the

mean population complexity (MPC), meaning the mean complexity of all

the networks in the population, reaches a set threshold according to equa-

tion 3.2, the search mode is switched to simplification, which is not al-

lowed to all neurons or connections to the network. This mode is used to

prune redundant and excess topological structures and optimize the cur-

rent solutions. When MPC has not fallen for a set number of generations,

the search mode is switched back to complexification.

MPC =

∑I
i N + C

I
(3.2)

Where i is an individual ANN in the population off ANNs defined as I .

N is the total number of neurons in ANN i, and C is the total number of

connections in ANN i.



58 CHAPTER 3. MODEL

The MPC can be set in two ways. It can be set to an absolute value, which

forces the population to stay below that MPC. This is useful if the pro-

grammer knows that the complexity of the final solution will not have a

higher complexity than the absolute MPC and will speed up evolution,

since the networks will be simpler and thus faster than without this lim-

itation on MPC. On the other hand, this limits the domain of reachable

topologies that SharpNEAT can evolve. The other alternative is setting a

relative value, which will raise the MPC threshold at the end of a simpli-

fication phase by the initial MPC threshold. This will allow evolution to

reach all possible solutions that can be represented by the genetic repre-

sentation, but periodically optimizing the topologies in the population.

While phased search could have many effects on the evolutionary pro-

cess, and will definitely have both benefits and drawbacks just like any

other method, what is most important is to make sure that employing

this method does not impact the results relevant to the hypothesis in any

unforeseen ways. Using phased search should not alter the intended be-

haviour of SharpNEAT during the complexification phase. Also, the sim-

plification phase is only different in that it does not add structures to any

network in the population, which means that it will not adversely affect

the fitness of the population, only remove structures that either does noth-

ing, or hinder proper function of a network. Either way, there should be

no reason for phased search to have any effect on how any final network

will function as long as the method is employed for all experiments. The

primary reason for using phased search in these experiments is to mini-

mize the adverse effects of genome bloat. Genome bloat is a phenomenon

where adding genes to genomes that are neither detrimental or beneficial

only serve to increase the size of the genome, and thus slow down evo-



3.6. SHARPNEAT - NEUROEVOLUTIONARY FRAMEWORK 59

lution because computations on these networks take more time. Phased

search helps remove these types of excess genes, and keep the speed of

evolution manageable.

3.6.2 Fitness Function

The fitness function used to evaluate the correctness of each network is

given in equation 3.3a. The maximum fitness for each network is always

1.0 in these experiments because all outputs are scaled to be between 0

and 1. The fitness function sums up how much the output for each sample

misses from its target, and lowers the fitness based on the average error

over all the samples. This approach provides a continuous and gradual

increase in fitness as the output of the ANNs become more accurate.

fitness = maxfitness−RMSE (3.3a)

RMSESingle =

∑N
n (o1 − y1)

2

N
(3.3b)

RMSEDual =

∑N
n

(o1−y1)2+(o2−y2)2

2

N
(3.3c)

In the above equations, RMSE is the Root Mean Squared Error over all

the sample points according to equation 3.3b for single output networks

and 3.3c for dual output ANNs. N is number of sample points taken of

the function. These are uniformly distributed within the specified bounds

of the function. o is the actual output value from the ANN, and y is the

expected output value from the ANN.



60 CHAPTER 3. MODEL



Chapter 4

Experimental Setup and Results

The theoretical study in chapter 2 has led to the hypothesis that modular-

ity observed in BNNs is primarily the result of physical constraints, and

that spatial interference is a beneficial side effect of this modular configu-

ration. It is more likely that spatial interference works as a secondary pres-

sure that is more important for deciding which computations are done in

which modules, and thus affects the modularity that emerges, but is not a

cause for modularity in and of itself. Because ANNs are merely inspired

by BNNs, and are not exact models, it is not guaranteed that ANNs face

the same challenges as BNNs. As such, even though there are strong ar-

guments for the existence of spatial interference in ANNs, there is less

evidence for spatial interference in BNNs. Before physical constraints are

included in neuroevolution as a solution to spatial interference, it is im-

portant to clarify two things. Firstly, it should be verified that modularity

actually does reduce the destructive effects of spatial interference. Sec-

ondly, the circumstances that causes spatial interference in ANNs should

be identified. The argument made here is that spatial interference is the

61



62 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

result of low correlation between outputs in a neural network. If there

is no relationship between two tasks, considering each output as a task,

then there would be no common pattern between the tasks to learn from.

As such, any weight that is shared between two tasks with low correla-

tion will receive too many conflicting updates to ever stabilize. Therefore

spatial interference is here measured by the degree of correlation between

tasks. As such, if the number of generations it takes to evolve a solution to

a problem with low correlation is significantly higher than evolution of a

solution to a problem with high correlation. Then, given that the tasks are

of approximately the same difficulty, this will be seen as evidence that cor-

relation causes spatial interference. Also, in order to verify that modular-

ity can help reduce spatial interference, the same experiments are repeated

with a lower limit on the degree of modularity in the network. Given

that low correlation indicates a high degree of spatial interference, then if

restricting evolution to modular solutions does not increase the required

number of generations in order to evolve a solution to a problem with

low correlation, this would indicate that modularity reduces the problem

of spatial interference. Because the hard limit that is set in order to con-

strain evolution to modular topologies will most likely severely limit how

much of the search space is reachable. Because constraining evolution in

this way is actually a burden on evolution as it limits the number of po-

tential solutions, even an equal performance with this constraint would

mean that it causes little to no damage, and as such should be viewed as a

positive result. These experiments looks at the difference in the time taken

to evolve 99% correct ANNs for dual functional regression tasks. Solu-

tions are evolved with and without enforcing modularity, and the number

of generations taken to reach a sufficient solution is compared in order to



4.1. SETUP 63

draw conclusions. The setup, results and conclusions of each experiment

are given in this chapter.

4.1 Setup

All experimental conditions required to replicate the experiments perform

for this thesis are given in this section.

Activation functions for neurons are all sigmoid functions. These have

been shown by Bullinaria to have extra need for modularity as the ef-

fect of spatial interference is significantly stronger when combined with

squared error and backpropagation learning. Whether the same is true for

neuroevolution is uncertain, but if including these factors is likely to en-

sure more spatial interference, then they could only help to increase the

significance of any results regarding the positive effects of modularity.

4.1.1 Limiting Modularity

In experiments where modularity was enforced, any network with a mod-

ularity score of less than 0.75, meaning the two outputs share more than

half their computational structures, are set to 0 fitness. This ensures that

evolution is limited to only modular solutions, but allows evolution to also

specialize by giving one input up to 50% computational structures that are

specialized to only one output. This could be especially helpful when one

function is significantly harder to solve than another.



64 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

4.1.2 Parameters

As the purpose of these experiments is to investigate the effect of corre-

lation and modularity on evolution times, the parameters listed in table

4.1 are constant over all experiments. The chance of deleting and adding

connections are set equal to allow evolution to freely traverse the search

space and try a large variety of topologies without biasing the search to-

wards higher complexity. Increased complexity should appear because

these mutations are beneficial to the performance of the network, not be-

cause evolution is biased in that direction. Also, by summing all mutation

parameters to 1, there should be approximately one mutation per gene

per generation, minimizing the chance of mutations cancelling each other

out. This genetic interference will still occur, but at a more manageable

rate. Any neuron that becomes isolated as a result of the deletion of con-

nections is automatically purged from the genome. Therefore, there is no

need for a mutation that delete neurons from the topologies. Finally, by

setting the chance of mutating a connection weight to 97.9%, most muta-

tions will be trying to optimize the current weight configuration instead of

constantly changing the topology of the network. This high chance for re-

production to only mutate weights for a significant number of networks in

the population. This bias towards weight mutation is useful when using

neuroevolution as a learning algorithm. Had some other learning algo-

rithm been employed during fitness evaluation, the mutations could have

been biased more purely towards evolving topologies, and only specify

favourable initial weight configurations for efficient training. However,

as neuroevolution have to fine tune the weights by itself this bias should

provide some stability for evolution to optimize the weight configuration



4.1. SETUP 65

once a promising topology has been found. The speciation functionality of

NEAT should also help in this regard. By grouping sets of networks into

species, a set of ANNs with similar topologies can compete to optimize

the weight configuration within the species. This allows SharpNEAT to

focus on multiple areas of the search space in parallel. As for the size of

the population, 150 seems to be sufficient to properly traverse the search

space. The other priority was to speed up evolution in order to run more

experiments.

There are sure to be more optimal parameters that provide better results

on each task, but the goal in these experiments is to study the effect of the

factor introduced, not to achieve optimal results. The mode for phased

search is set to relative for all experiments to allow evolution to have the

potential to explore as much of the reachable search space as possible. It is

very difficult to make assumptions as to how complex a network solving

these tasks should be, so because there is no good reason to use an abso-

lute complexity threshold, except for optimization, a relative complexity

threshold is used.

The trend through the experiments is for evolution to quickly discover a

good solution that get 90-95% fitness, and then spend much longer tweak-

ing this solution to reach the 100% fitness mark. This tweaking and slow

climb to a perfect solution can likely be at least partially remedied by set-

ting better parameters for each experiment, but tweaking the parameters

for one experiment is likely to be less beneficial for another experiment.

Parameters were therefore chosen that provide a decent overall perfor-

mance during evolution. Because the purpose of these experiments is to

identify the effects of correlation and modularity during evolution, a fit-



66 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Experiment Parameters

Min value 1

Max Value 10

Number of Sample x Values 63

Minimum Modularity Score 0.75

Evolutionary Algorithm Parameters

Population size 150

Number of Species 8

Elitism Proportion 20 %

Selection Proportion 50 %

p Asexual Offspring 50 %

p Offspring by Crossover 50 %

p Interspecies Mating 1 %

NEAT Genome Parameters

Connection Weight Range -5 to 5

Initial Connections Proportion 1 %

p Mutate Connection Weights 97,9 %

p Mutate Add Neuron 0,1 %

p Mutate Add Connection 1 %

p Mutate Delete Connection 1 %

Phased Search Parameters

Phased Search Mode Relative

Complexity Threshold 20

Table 4.1: Parameters used for all experiments with p standing for proba-

bility



4.2. RESULTS 67

ness of 99% is set as the stop condition.

4.2 Results

In order to detect and resolve issues early and provide the best results

possible, the experiments has been performed in incremental stages. Each

function was first solved as a normal functional regression task with only

one function. These results should reveal any differences in the difficulty

of the task. Then composite tasks was performed without selecting for

modularity. These experiments are the benchmark to which the experi-

ments with modularity is compared. Finally, experiments that limit the

search to only modular topologies are performed. When comparing the

results achieved with modularity to those without, the main focus is on

the difference between the two results. Less focus is put on how evolution

achieved these results in the first place. However, if there are important as-

pects of evolution that could affect the results with regards to modularity,

these are discussed. It is also important to note that incremental evolution

is not used, and no knowledge is transferred between stages.

4.2.1 Recognizing Convergence

One way to recognize convergence for a population in these runs is a sig-

nificant decrease in amplitudes of the mean fitness, modularity and com-

plexity in the population. As the population centers around the optima,

the gradient of improvement is so strong towards the optima that any mu-

tation in any other direction is considered bad, and does not survive. As



68 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

a result, a few ANNs start dominating the population, and the population

is no longer able to move around much in the search space. If this optima

turns out to be a local optima, then evolution is stuck, and will not be able

to reach a sufficient solution. The speciation method used in SharpNEAT

helps remedy this problem of convergence on one optima. There are 10

species in the population for each of these runs. One can visualize these

as clusters of solutions located around the search space, and each clus-

ter follows its own trajectories. If one species converge on a local optima,

then it will stay there until it becomes extinct as a result of continued in-

crease in fitness in the other species. For the entire population to get stuck,

this would require every species to converge on an optima. Having 10

species in difference parts of the search space converge should certainly

increase the chance of one of them converging on a global optima. How-

ever, convergence on local optima can still happen. Figure 4.1 shows an

example of such a run where evolution of the task sine(x) and Log(x) stag-

nated in a local optima. SharpNEAT compensates for this convergence by

adding redundant structures to the topologies in the hope of finding a mu-

tation that can get evolution unstuck. Despite thousands of generations of

sky-rocketing complexity. Evolution is unable to break free from such an

optima in most cases.

4.2.2 Single Output Tasks

To minimize the chance of the results achieved in dual output experiments

being artefacts resulting from the specific tasks used, and to better be able

to understand the results, this section show the results of neuroevolution

on each task by itself. Evolution was set to achieve correct output on 99%



4.2. RESULTS 69

(a) network complexity (b) Fitness

(c) Degree of modularity

Figure 4.1: Example of a converging

of all sample points as a stop condition to make these experiments as rel-

evant to the dual function experiments as possible. Estimated time re-

quired to evolve 99% correct network for simple single output control ex-

periments is listed in table 4.2. Fitness is calculated on the correct output

from 63 sample x values between 1 and 10 based on equation 3.3a. Each

experiment was run a minimum of 20 times, and the estimated number of

generations needed for evolution was calculated by averaging over all the

runs.

The results show that Log(x) and Sine(x) are approximately of the same

difficulty, with the inverse functions being significantly harder, but still

easily solved by SharpNEAT.



70 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Function Bounded function Estimated generations

Log(x) 0.1 + (Log(x) ∗ 0.17) 5648

1− Log(x) 1− (0.1 + (Log(x) ∗ 0.17) 12817

Sine(x) (Sin(x) ∗ 0.4) + 0.5 6152

Table 4.2: Results of single output funcitonal regresion experiments.

4.2.3 General trends for Dual Output Tasks

Certain behaviours of evolution during the experiments are general for

all experiments, and are as such not the result of any factor introduced

between the experiments, but the results of the system in itself. First is

the fact that NEAT evolution generate networks through complexification.

This means that there is a bias towards adding structures as opposed to re-

moving them. As a result, when evolution get stuck in local optima, the

complexity of the network sky-rockets with minimal gain in fitness. These

redundant structures serves no purpose in the network, but does reduce

the modularity of the network as the connectivity degree increases. The

inclusion of phased search helps to keep the complexity of the networks

manageable, but this does not always help when evolution stagnates. So

when the complexity graphs start shooting sky high with without any in-

crease in fitness, this is a sign that evolution is stuck in a local minima.

4.2.4 Dual Output Tasks With Full Positive Correlation

Expecting correlation to benefit from shared computational structures the

results of experiments that solve the same function for two outputs in one



4.2. RESULTS 71

network are discussed here. Because the two outputs are the same for

every value of x, the correlation between these functions is 1 according to

equation 1.1.

Normal

Experiments solving Log(x) twice in the same network were performed

without enforcing modularity. A typical run which reaches 99% fitness in

6 203 generations is shown in figure 4.2. This task is consistently solved

by evolution in less than 10 000 generations.

(a) Function domain (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.2: Dual functional regression Log(x) and Log(x)

Evolution normally find suitable topologies in less than 2 000 generations,

and uses the remaining generations, usually 4 000 to 6 000, to fine tune the



72 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

weight configuration of this topology. The most important factor to note in

the results in figure 4.2 is the correlation between the increase of complex-

ity in figure 4.2(d) and the decrease of modularity in figure 4.2(c). There

seem to be a consistent trend where as network complexity increases, the

degree of modularity in the population decreases. This implies that as

more complex solutions are evolved, the chance of connecting a compu-

tational structure to a new output increases. Considering that the lowest

possible score for modularity is 0.5, then average modularity would be ex-

pected to stay one standard deviation above minimum if the population

tends towards low modularity. This standard deviation seem to be around

0.1 in figure 4.2(c), which indicate that evolution of ANNs for two Log(x)

tasks in the same network does not result in modular topologies. Seeing

as these tasks require the exact same computations, as the correlation be-

tween the tasks is 1, there is no reason for having a modular topology in

such a network.

Modularity

Experiments solving Log(x) twice in the same network were performed

without enforcing modularity. A typical run which reaches 99% fitness in

11 947 generations is shown in figure 4.3. This task is consistently solved

by evolution in less than 15 000 generations.

Limiting the search to modular solutions when trying to solve Log(x) twice

in one network increases the time required to find a sufficient solution.

Evolution is still able to solve the problem, but because fewer computa-

tional resources are shared between the outputs, at least some of the com-

putation will have to be learned twice. While evolution still finds a suit-



4.2. RESULTS 73

(a) Function (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.3: Dual functional regression Log(x) and Log(x) twice modularity



74 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

able topology in less than 2 000 generations, the time required to tweak

the weight configuration is increased to 6 000 to 10 000 compared to the

experiments without modularity in figure 4.2. Also, as the allowed num-

ber of shared computational resources have been limited, the complexity

of the network increases faster and more than in the experiments with-

out putting limitations on the topologies. As such the best genome in this

example run ended up with a complexity of 54, which is more than dou-

ble the complexity of the best ANN from the run without limitations on

modularity in figure 4.2(d).

Funnily enough, some of the runs show the same sort of pattern regarding

the modularity of the best ANN as shown in figure 4.3(c). One would ex-

pect that when evolution without limitations on modularity minimize the

modularity of the population, setting a limit on modularity would sim-

ply result in the modularity being pushed to this lower limit instead. This

is definitely the case for the mean modularity of the population, but as

it turns out, not necessarily for the best ANN. For some reason the best

ANN end up showing higher than average modularity in a significant

portion of the runs. One theory that could explain this behaviour is that

because networks are not forced to be fully modular, the shared structures

in ANNs with modularity of 0.75 have the potential to cause problems.

Because there are plenty of ways to encode the Log(x) function in a feed-

forward neural network, forcing the computation of the functions to have

at least 50% separate computational structures is very likely to result in

the remaining two modules to end up solving the Log(x) function is dif-

ferent ways. This would mean that the shared computations have a differ-

ent function for each of the outputs, which means that a mutation in the

shared can have a positive effect with regards to one output, but a nega-



4.2. RESULTS 75

tive effect on the other. As such, setting a limit on the modularity of the

networks could actually create topologies suffering from spatial interfer-

ence.

After evolution converges on an optima in the search space after about 6

000 generations, there is a sudden drop in fitness just after 9 000 genera-

tions with a matching spike in higher modularity and lower complexity.

This sort of anomaly is the result of the simplification phase of the phased

search mechanic. Given that a large enough portion of the population is

mutated during simplification, then at least a portion of these new net-

works will survive through reproduction, even if they provide lower fit-

ness. Because add structure mutations are turned off in this phase, none of

these mutations are capable of cancelling out the surge of deleted connec-

tions. If a deleted connection happens to be the only link between a com-

putational structure and an output, then this deletion will also increase the

modularity of the network. Finally because only deletion mutations are al-

lowed in this face there is a natural drop in complexity. While this anomaly

gives a sudden drop in fitness, it could help break the convergence on lo-

cal optima by forcing a great shift in the location of the population in the

search space. In this case however, the population has converged on a

global optima, so the population simply converges back on the same solu-

tion.

4.2.5 Dual Output Tasks With Full Negative Correlation

Expecting that full negative correlation should also benefit from shared

computational structures, though not quite as directly as with full posi-



76 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

tive correlation, the results of experiments that solve both the nomal and

the inverse function in one network are discussed here. Because the two

outputs are the inverse of each others for every value of x, the correlation

between these functions is -1 according to equation 1.1.

Normal

Experiments solving both Log(x) and 1-Log(x) in the same network were

performed without enforcing modularity. A typical run which reaches

99% fitness in 6 370 generations is shown in figure 4.4. This task is con-

sistently solved by evolution in less than 8 000 generations.

(a) Function (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.4: Dual functional regression Log(x) and 1-Log(x)

Surprisingly, despite 1-Log(x) showing signs of being a significantly harder



4.2. RESULTS 77

task for the system to solve by itself than Log(x), evolution of these func-

tion in the same network seem to actually be solved faster than solving

Log(x) twice in the same network. Apart from this though, the result of

these runs, and the example run in figure 4.4, are nearly indistinguishable

from the positive correlation runs with no constraints. The exception is

that these runs consistently end up with ANNs of up to double complex-

ity compared to the dual Log(x) task. A gain in complexity in this case is to

be expected. Because Log(x) and 1-Log(x) are not the same function, they

require more computational structures in order to properly solve the task.

As a result, the only conclusion as to why these functions seem to find suit-

able solutions faster would be to study the asymmetrical nature of NEAT.

because NEAT mostly perform one mutation per ANN per generation,

the topologies are evolved asymmetrically, and there is no apparent bias

towards symmetry at any point. Because the dual Log(x) task is symmet-

rical in the way that both outputs require exactly the same computations,

this Log(x) and 1-Log(x) task is of an asymmetrical nature. As a result, it

is likely that the shared computations are easier to balance, as connections

connecting the shared computational structures to each output does not

have to be symmetrical like they need to be in the experiments with full

positive correlation in figure 4.2.

Modularity

Experiments solving Log(x) twice in the same network where performed

without enforcing modularity. A typical run which reaches 99% fitness in

15 679 generations is shown in figure 4.5. This task is consistently solved

by evolution in less than 18 000 generations.



78 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

(a) Function (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.5: Dual functional regression Log(x) and 1-Log(x) with modular-

ity



4.2. RESULTS 79

The proposed benefit of asymmetry gained by the unconstrained negative

correlation experiments in figure 4.4 seem to only help in the case of share

computation. When constraining modularity in these experiments the re-

quired number of generations needed to evolve sufficient solutions is even

higher than the number of generations required by the experiments with

full positive correlation constrained to modular solutions. So while the

unconstrained experiments with full negative correlation seem to gain a

benefit over the experiments with full positive correlation, this benefit is

not seen when constraining evolution to modular topologies. The two re-

maining explanations as to why this dual task takes longer than the full

positive correlation case are that 1-Log(x) have been shown in table 4.2 to

be more difficult to solve for evolution than Log(x), and this could have

a bigger effect in this experiment than in the unconstrained version. The

other explanation would be that just like the constrained version of the

full positive correlation experiment, limiting evolution to modular solu-

tions could be causing spatial interference, which is interfering with the

proper tuning of the connection weights.

4.2.6 Dual Output Tasks With Low Correlation

Expecting that low correlation should cause spatial interference in shared

computational structures, modularity is expected to provide a positive ef-

fect with regards to the results of experiments that solve the Sine(x) and

Log(x) functions in one network. The correlation between these functions

is -0.2659 according to equation 1.1.



80 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Normal

Experiments solving both Sine(x) and Log(x) in the same network where

performed without enforcing modularity. Despite getting very high score,

even a promising run going 200 000 generations where unable to reach

99% fitness for this task. A typical run which converges on a local optima

of 98.1% fitness after 10 000 generations is shown in figure 4.6.

(a) Function (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.6: Dual functional regression Sine(x) and Log(x)

Despite the fact that evolution consistently reaches a promising 95% - 97%

in less than 10 000 generations, neuroevolution is unable to optimize the

topology and weight configuration to reach 99% fitness. Evolution with

no promotion of modularity seem to have great trouble solving two func-

tions with low correlation within the same neural network. While the ex-



4.2. RESULTS 81

periments with high correlation in sections 4.2.4 and 4.2.5 find a sufficient

solution in a reasonable number of generations, even after well over 200

000 generations, evolution is only able to reach 97.59% fitness for a net-

work solving Log(x) and Sine(x) in the same neural network.

As evolution approaches the goal off 99% fitness, the amplitudes of the

mean for all three measures of modularity, complexity and fitness drop to

almost zero. A clear sign that evolution has converged, and will not be

able to improve on the current solution in reasonable time. Whether this

convergence is actually caused by spatial interference is very difficult to

say for sure at this point, but it is clear that solving two functions with

the low correlation of -0.2659 poses a much greater challenge than solving

problems showing high correlation such as 1 or -1.

One interesting anomaly that should be commented on is the section from

2 000 to 3 000 generations in the modularity plot in figure 4.6(c). This kind

of spike is the mark of a simplification phase. Because the simplification

phase did not cause a sudden drop in the complexity of the population,

usually because there are few redundant structures in the population at

that point, the simplification phase lasts longer than usual. In the same

way that the inherent bias of complexification drives the population to-

wards lower modularity, extended periods of simplification removes con-

nections from the network over a period of time, effectively providing a

bias towards increased modularity in the same way. There might be ways

of exploiting this reversed bias in future studies of modularity.



82 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

Modularity

Experiments solving both Sine(x) and Log(x) in the same network where

performed with a lower limit of 0.75 on modularity. While these experi-

ments also had trouble reaching 99% fitness consitently, a sufficient solu-

tion was reached in between 35 000 to 45 000 generation in about 20% of

the runs. One of the runs actually generating a sufficient solution is shown

in figure 4.7. This graph unfortunately does not show all 38 000 genera-

tions it took to reach 99% fitness due to the statistics modular overrunning

it’s buffer. As such only the first part of the run is shown, as the following

10 000 generations only show a slowly climbing fitness measure. At the

end of the listed fitness graph in figure 4.7(b) the best ANN has a fitness

of 98,2%.

(a) Function (b) Fitness graph

(c) Modularity graph (d) Network complexity

Figure 4.7: Dual functional regression Sine(x) and Log(x) with modularity



4.2. RESULTS 83

Even though evolution only succeeds on 20% of all runs, and the opti-

mization of the final few percent fitness take as much as 30 000 genera-

tions. The fact that evolution with a constraint on modularity is able to

find a sufficient solution at all is better than expected. A blatant limit on

modularity is far from an optimal approach to biasing evolution towards

modular topologies, so the fact that this approach is able to improve the

performance of the system, even if only by a small amount, can be con-

sidered a highly positive result. This show clear indication that modular

topologies could have a beneficial effects on problems showing low corre-

lation between outputs.

However, there is not enough evidence in these experiments to identify

whether the benefit from modularity is a lowering of spatial interference,

or some other unknown factor not discovered in these experiments. So

while this experiment give the indication it set out to do, further study

is required in order to draw reliable conclusions on the reasons for the

benefits observed here.

Again, the anomaly observed between generation 16 000 and 23 000 of the

fitness measure in figure 4.7(b) is a signature of an extended simplifica-

tion phase as a result of simplification being unable to properly lower the

complexity of the population. While these anomalies are frequent during

these experiments, no detrimental effects have been detected as a result

of them. Evolution seem to stabilize after the phase passes. One poten-

tial effect could be that the population could be moved to new areas of

the search space, as the simplification space will alter the trajectories that

dictate the movement of the population through the search space.



84 CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS



Chapter 5

Conclusion and Future Work

The main result of this thesis has been a solid theoretical study of the field

of modularity in neural networks, with focus on how modularity emerges,

and when this could be useful in ANNs. Based on the theoretical study,

an experimental model was developed for studying the effects of modu-

larity in neuroevolution. Simple experiments were performed using this

model studying the relationship between modularity and correlation be-

tween two outputs. It is important to note that the purpose of these exper-

iments were to indicate whether the theories in this thesis warrants further

study or not. No effort has been taken to draw any final conclusions about

the dynamics of modularity in ANNs.

As a basic approach, modularity was introduced in experiments by set-

ting a hard lower limit on the degree of modularity allowed in each topol-

ogy. Any topology that showed less than 50% modularity automatically

had its fitness set to 0. A set of three experiments where then run twice.

Once with and once without enforcing modularity. The three experiments

85



86 CHAPTER 5. CONCLUSION AND FUTURE WORK

where designed to show three extreme values of correlation, high positive,

high negative and low. The conclusions made in this chapter are drawn by

comparing the results of the experiments with modularity to those with-

out.

Imposing a constraint in a system is the same as introducing a drawback.

Seeing as imposing constraints without there being any need for the effects

of the constraint, will only serve to provide a drawback with no resulting

benefit, effectively only causing damage. The main reason for perform-

ing the experiments in chapter 4 is therefore to indicate when constraining

evolution to focus on modular topologies can be beneficial. In order to

properly employ modularity in ANN, one need to understand when mod-

ularity is beneficial, regardless of what these benefits actually are. The first

experiments performed for tasks that show full positive and negative cor-

relation respectively give a clear indication that restricting evolution to

modular solutions for tasks with high correlation seem to be mainly detri-

mental. This is the result that was estimated before performing the experi-

ments based on the argument that spatial interference result from trying to

share computational resources between outputs of low correlation. Trying

to get an indication of whether this argument holds any promise, the third

experiment performed dual functional regression on two tasks showing a

low correlation of -0.2. The fact that evolution was unable to generate any

sufficient ANNs to solve the task, certainly support the idea of low cor-

relation hinders successful learning in some way. When it also turns out

that even the basic approach of setting a hard limit on modularity is able to

slightly improve the performance of evolution, just enough so that evolu-

tion is able to scrape together the last few percent fitness required to reach

the goal of 99%, this really cements the indication that low correlation hin-



87

ders learning. In addition, this improvement in performance over result

the non-modular approach indicates that modularity is a way of remedy-

ing the issues resulting from low correlation. While it is theorized that this

issue is spatial interference, there is unfortunately not enough evidence to

say this for sure. How ever, it is safe to say that the results are positive

enough to warrant future study. There is definitely a connection between

low correlation and modularity.

As for the dynamics that seem to bias neuroevolution towards non-modular

topologies. For any optimal modular solution, there seems to always exist

at least one optimal non-modular solution as well, regardless of the corre-

lation score between the outputs. Considering that for any optimal modu-

lar ANN that has a topology of at least some complexity, there will be two

connections that can be added which cancel each other out while lower-

ing the modularity of the network. Such redundant structures emerged in

multiple runs where evolution was not stopped after reaching an optima,

regardless of whether this was a local or global optima. The bias inher-

ent in the complexification dynamic of NEAT results in ever increasing

complexity as long as the added structures do not lower the fitness of the

ANN, an example of this behaviour can be seen in figure 4.1. This in ef-

fect will always minimize modularity, as the closer the topology is to full

connectivity, the fewer modular topologies with that number of connec-

tions there are. As such, limiting the search to only modular topologies is

not necessary to find a solution to problems with low correlation, but the

problem of spatial interference has to be dealt with in some way. Modu-

larity seems to handle this problem, but a learning scheme that can handle

conflicting updates will most likely be a more natural solution for ANNs

than using physical constraints to promote modularity.



88 CHAPTER 5. CONCLUSION AND FUTURE WORK

This thesis therefore proposes that structural constraints to neuroevolu-

tionary experiments will result in modular topologies. And that these

modular topologies can help avoid conflicts during learning when several

partially unrelated tasks are solved in the same neural network. Finally,

it is hoped that this approach can help create neural networks that solve

more difficult composite tasks than before.

Evolution is quick to find fairly good solutions for all tasks used in this

thesis, reaching more than 90% fitness in the first few thousand genera-

tions. The task of fine tuning the weights in order to reach a sufficient

solution for the given topologies require many more generations than it

takes to find an approximate topology. This would indicate that either the

functions used in the experiments require a very simple topology, while

the task of tuning the weights is much more complex, or the tuning of

the weights is significantly hindered by the topological mutations. Both of

these possibilities are likely and both should be remedied in future work.

A wider selection of functions should be tested in order to investigate the

robustness of the results achieved here. This would easily clarify how

much of the results achieved in the experiments here are artefacts caused

by the selected functions, as opposed to being the result of the dynam-

ics of constraining evolution to modular topologies. Functions with more

intermediate correlation scores should also be tested in order to indicate

the exact relationship between the need for modularity and the degree of

correlation between functions. Following Occam’s razor one could expect

the relationship between correlation and modularity to be linear as shown

in figure 5.1. An extensive set of experiments for difference correlation

values would have to be performed in order to properly investigate what

the relationship between correlation and modularity actually is and how



89

the two concepts relate. In addition to running more varied experiments,

these should not rely on neuroevolution for both design of topology as

well as learning the weight configuration. Instead a gradient decent al-

gorithm such as backpropagation should be employed to learn the task

during each generation without any possible interference from changing

topologies. This would remove any genetic interference during learning

as argued by Ferdinando et al. (Ferdinando et al., 2000). In addition, back-

propagation is recommended because this algorithm has been proven to

suffer from spatial interference under certain circumstances, which could

be when training multiple tasks with low correlation, and as such provides

a great platform for investigating whether the benefits observed here does

relate to spatial interference.

Figure 5.1: Expected correlation between the correlation between two out-

puts and the degree of modularity in the network.

The theoretical study of modularity concluded that one of the main rea-

sons that modularity is so prominent in BNNs is that modularity is an

optimal neuronal layout under physical constraints. Because of the sheer

physical size of a fully connected BNN of brain-like proportions, along

with other constraints discussed in chapter 2, full connectivity is just not



90 CHAPTER 5. CONCLUSION AND FUTURE WORK

viable in the real world. However, these physical constraints do not con-

strain the size or degree of connectivity in ANNs. As such, introducing

physical constraints in neuroevolution could be an efficient way of pro-

moting modular topologies. Future work should therefore build a model

that properly implements physical constraints on ANNs in order to in-

vestigate the potential for this approach to promote modular topologies.

These topologies should then be applied to problems that show strong

spatial interference to estimate how well the resulting modularity can re-

duce the detrimental effects of spatial interference.

However, while modularity does appear to reduce the detrimental effects

of spatial interference, ANNs have an edge over BNNs. While BNNs

have to optimize under physical constraints which limit both the poten-

tial size and speed of the network, ANNs are not naturally constrained by

the same laws. The limits that constrain ANNs would in comparison be

hard-disc size and processor speed. As the computational powers of com-

puters increase, so does the potential strength of ANNs. As such, it can

be argued that ANNs have the potential to be more powerful than BNNs

because ANNs are not constrained by the laws of physics in the same way

as BNNs. For this reason, introducing physical constraints to promote

modular topologies does provide a method for solving the issue of spatial

interference. This method is likely to improve the performance of state of

the art ANNs. However, there is arguably a better long term potential in

finding a learning algorithm that can handle spatial interference without

setting constraints on the computational structures of the network. How-

ever, in the meantime modularity should provide a promising solution to

the problem of spatial interference.



Bibliography

Baldwin, M. J. (1896). A New Factor in Evolution. The American Naturalist,

30(255):536–553.

Bowers, C. and Bullinaria, J. (2005). Embryological modelling of the evo-

lution of neural architecture. PROGRESS IN NEURAL PROCESSING,

16:375.

Bullinaria, J. (2001). Simulating the evolution of modular neural systems.

In Proceedings of the twenty-third annual conference of the Cognitive Science

Society, pages 146–151. Lawrence Erlbaum.

Bullinaria, J. (2002). To modularize or not to modularize. In Proceedings

of the 2002 UK Workshop on Computational Intelligence (UKCI-02), pages

3–10.

Bullinaria, J. (2009a). The Importance of Neurophysiological Constraints

for Modelling the Emergence of Modularity. Computational modelling in

behavioural neuroscience: closing the gap between neurophysiology and be-

haviour, pages 187–208.

Bullinaria, J. (2009b). The Importance of Neurophysiological Constraints

for Modelling the Emergence of Modularity. modelling in behavioural neu-

roscience: closing the.

91



92 BIBLIOGRAPHY

Bullinaria, J. a. (2007a). Understanding the emergence of modularity in

neural systems. Cognitive science, 31(4):673–95.

Bullinaria, J. a. (2007b). Understanding the emergence of modularity in

neural systems. Cognitive science, 31(4):673–95.

Changizi, M. a. (2001). Principles underlying mammalian neocortical scal-

ing. Biological cybernetics, 84(3):207–15.

Chen, Y. and Dokholyan, N. V. (2006). The coordinated evolution of yeast

proteins is constrained by functional modularity. Trends in genetics : TIG,

22(8).

Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J., and Evans, A. C. (2008).

Revealing modular architecture of human brain structural networks by

using cortical thickness from MRI. Cerebral cortex (New York, N.Y. : 1991),

18(10):2374–81.

Chklovskii, D. B. (2004). Exact solution for the optimal neuronal layout

problem. Neural computation, 16(10):2067–78.

Clune, J., Beckmann, B. E., Mckinley, P. K., and Ofria, C. (2010). Investigat-

ing Whether HyperNEAT Produces Modular Neural Networks. Retina,

pages 635–642.

Durr, P. and Mattiussi, C. (2010). Genetic representation and evolv-

ability of modular neural controllers. Intelligence Magazine, IEEE,

10(August):10–19.

Espinosa-Soto, C. and Wagner, A. (2010). Specialization can drive the evo-

lution of modularity. PLoS computational biology, 6(3):e1000719.



BIBLIOGRAPHY 93

Ferdinando, A. D., Calabretta, R., and Parisi, D. (2000). Evolving Modular

Architectures for Neural Networks Evolving Modular Architectures for

Neural Networks. Artificial Life.

Green, C. (2004a). No TitleSharpNEAT - A C# implementation of Neu-

roEvolution of Augmented Topologies.

Green, C. (2004b). Phased Searching with NEAT.

Happel, B. and Murre, J. (1994). Design and evolution of modular neural

network architectures. Neural Networks, 7(6-7):985–1004.

He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu,

C., Gong, Q., Zang, Y., and Evans, A. C. (2009). Uncovering intrinsic

modular organization of spontaneous brain activity in humans. PloS

one, 4(4):e5226.

Hintze, A. and Adami, C. (2008). Evolution of complex modular biological

networks. PLoS computational biology, 4(2):e23.

Hø verstad, B. A. (2011). Noise and the evolution of neural network mod-

ularity. Artificial life, 17(1):33–50.

Igel, C. (2002). Task-dependent evolution of modularity in neural net-

works. Connection Science, 10(3):219–229.

Jacobs, R. and Jordan, M. (1990). Computatiod Consequences of Bias to-

ward Short Connections. Journal of Cognitive Neuroscience, 4(4).

Jacobs, R., Jordan, M., and Barto, a. (1991a). Task decomposition through

competition in a modular connectionist architecture: The what and

where vision tasks. Cognitive Science, 15(2):219–250.



94 BIBLIOGRAPHY

Jacobs, R., Jordan, M., and Barto, a. (1991b). Task decomposition through

competition in a modular connectionist architecture: The what and

where vision tasks. Cognitive Science, 15(2):219–250.

Kaas, J. (2000a). Why is Brain Size so Important: Design Problems and

Solutions as Neocortex Gets Biggeror Smaller. Brain and Mind, 1(1):7–

23.

Kaas, J. (2000b). Why is Brain Size so Important: Design Problems and

Solutions as Neocortex Gets Biggeror Smaller. Brain and Mind, 1(1):7–

23.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity

and network motifs. Proceedings of the National Academy of Sciences of the

United States of America, 102(39):13773–8.

Kashtan, N., Mayo, A. E., Kalisky, T., and Alon, U. (2009). An analytically

solvable model for rapid evolution of modular structure. PLoS computa-

tional biology, 5(4):e1000355.

Lee, J. and Nicewander, W. A. (2012). Thirteen Ways to Look at the Corre-

lation Coefficient. Evaluation, 42(1):59–66.

Li, S. and Yuan, J. (2011). The Modularity in Freeform Evolving Neural

Networks. shuguangli.com, pages 2605–2610.

Lipson, H., Pollack, J. B., and Suh, N. P. (2002). On the origin of modular

variation. Evolution; international journal of organic evolution, 56(8):1549–

56.

Livingstone, M. and Hubel, D. (1987). Psychophysical evidence for sep-



BIBLIOGRAPHY 95

arate channels for the perception of form, color, movement, and depth.

The Journal of Neuroscience, 7(11):3416–3468.

Lowell, J. (2011). Comparison of NEAT and HyperNEAT Performance on a

Strategic Decision-Making Problem. Genetic and Evolutionary Computing

(ICGEC), 2011 Fifth International Conference on, pages 102 – 105.

Mouret, J.-B. and Doncieux, S. (2008). MENNAG: a modular, regular and

hierarchical encoding for neural-networks based on attribute grammars.

Evolutionary Intelligence, 1(3):187–207.

Nardi, R. D. and Togelius, J. (2006). Evolution of neural networks for heli-

copter control: Why modularity matters. , 2006. CEC 2006.

Pan, R. and Sinha, S. (2007). Modular networks emerge from multicon-

straint optimization. Physical Review E, 76(4):1–4.

Plaut, D. (1987). Learning sets of filters using back-propagation. Computer

Speech &amp; Language, 2:35–61.

Randall, T., Cowling, P., and Baker, R. (2009). Using Neural Networks for

Strategy Selection in Real-Time Strategy Games. Symposium on AI &amp;

Games,.

Ringo, J. L., Doty, R. W., Demeter, S., and Simard, P. Y. (1994). Time Is of

the Essence: A Conjecture that Hemispheric Specialization Arises from

Interhemispheric Conduction Delay. Cerebral Cortex, 4(4):331–343.

Rueckl, J., Cave, K., and Kosslyn, S. (1989). Why are what and where

processed by separate cortical visual systems - A computational inves-

tigation. Journal of cognitive neuroscience, 1(2):171–186.



96 BIBLIOGRAPHY

Samal, A., Wagner, A., and Martin, O. C. (2011). Environmental versa-

tility promotes modularity in genome-scale metabolic networks. BMC

Systems Biology, 5(1):135.

Simon, H. (1962). The architecture of complexity. Proceedings of the Ameri-

can Philosophical Society, 106(6):467–482.

Stanley, K. (2002). Evolving neural networks through augmenting topolo-

gies. Evolutionary computation, 10(2):99–127.

Stanley, K. (2004). Competitive coevolution through evolutionary com-

plexification. J. Artif. Intell. Res. (JAIR), 21:63–100.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-

based encoding for evolving large-scale neural networks. Artificial life,

15(2):185–212.

Stevens, C. F. (1989). How Cortical Interconnectedness Varies with Net-

work Size. Neural Computation, 1(4):473–479.

Verbancsics, P. and Stanley, K. O. K. (2011). Constraining connectivity

to encourage modularity in HyperNEAT. In Proceedings of the 13th an-

nual conference on Genetic and evolutionary computation, pages 1483–1490.

ACM.

Yao, X. and Liu, Y. (1997). A new evolutionary system for evolving artifi-

cial neural networks. IEEE transactions on neural networks / a publication

of the IEEE Neural Networks Council, 8(3):694–713.


	Title Page
	Introduction and Background
	Genetic Algorithm
	Artificial Neural Network (ANN)
	Modularity in the Context of an ANN
	Neuroevolution of augmenting topologies (NEAT)
	Age tracking - Global Innovation Numbers
	Speciation

	Spatial Interference
	Correlation
	Dual Functional Regression

	Modularity
	Modularity From Environmental Variation
	Modularity from Noise in Genotype-Phenotype Mapping
	Spatial Interference, Learning and Modularity
	Modularity from Structural Constraints
	Modularity from Pleiotrophic Effects
	Theories on the Benefits of Modularity

	Model
	On the choice of Dual Functional Regression Tasks
	Spatial Interference in Neuroevolution
	Measuring Spatial Interference
	Measuring Modularity
	The Intended Effects of Constraining Modularity During Neuroevolution
	SharpNEAT - Neuroevolutionary Framework
	Phased search
	Fitness Function


	Experimental Setup and Results
	Setup
	Limiting Modularity
	Parameters

	Results
	Recognizing Convergence
	Single Output Tasks
	General trends for Dual Output Tasks
	Dual Output Tasks With Full Positive Correlation
	Dual Output Tasks With Full Negative Correlation
	Dual Output Tasks With Low Correlation


	Conclusion and Future Work

