NTNU - Trondheim
Norwegian University of

Science and Technology

Evaluating the use of Learning
Algorithms in Categorization of Text

Alf Simen Nygaard Sgrensen

Master of Science in Informatics
Submission date: June 2012
Supervisor: Trond Aalberg, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Abstract

The research area of supervised learning have seen a lot of study
and improvements in the last couple of decades. We wanted to see if it
would be possible to use supervised learning on a real-world case from
Difi. They have an ontology with categories and a set of documents
coupled to these categories, and they wanted to automate the process
of adding new uncategorized documents to the ontology. The amount
of documents they want to add is huge and to do this by hand would
take lot of time and manpower.

We have tested this by developing a small prototype that used the
corpora of labeled documents with some different learning algorithms
to see if the results would be satisfactory. We conclude that while the
system would indeed make it easier for someone to classify unlabeled
documents, it can not work totally autonomously based on the rela-
tively small amount of documents and large amount of categories that
are in the ontology.

Norwegian:

Leerende algoritmer brukt pa eksempel-dokumenter er et forskning-
somrade som har hatt ett stort fokus og dermed fatt mange forbedringer
i de siste arene. Vi ville se om det var mulig & bruke disse pa et reelt
problemcase fra Difi. Difi har en ontologi med kategorier og ett sett
med dokumenter som er koblet opp mot disse kategoriene, og de ville
automatisere prosessen med a legge til nye ukategoriserte dokumenter
inn i ontologien. Mengden med dokumenter de vil legge til er sa stor
at hvis man skulle gjore det for hand ville det ta veldig lang tid og
kreve mye arbeidskraft.

Vi har derfor testet om dette lar seg gjgre ved a utvikle en pro-
totype som bruker denne samlingen med allerede kategoriserte doku-
menter til & teste noen forskjellige leerende algoritmer for a se om det
er mulig. Vi konkluderer med at selvom systemet nok ville kunne
gjore jobben lettere, sa kan den ikke jobbe helt autonomt grunnet den
relativt lave mengden med dokumenter og store mengden kategorier
som er i ontologien.

i

Preface

This master’s thesis was carried out within the Information Management (IF)
group under the Department of Computer and Information Science (IDI) at
the Norwegian University of Science and Technology (NTNU).

Trondheim, June 1, 2012

Alf Simen N. Sgrensen

il

v

CONTENTS v

Contents
List of Figures vii
List of Tables ix
Code listings Xi
Acknowledgements xiii
1 Introduction 1
1.1 Background and motivation 1
1.2 Problem definition 1
1.3 Ourcase e 2
1.4 Summary resultso L 3
1.5 Brief overview of the thesis organization 3
2 Background research 5
2.1 Information retrievalo)
2.1.1 Text document indexing and retrieval 5
2.1.2 C(Classification by hand 7
2.2 Text mining and machine learning 8
2.2.1 Classification 9
2.2.2 Algorithms 11
2.3 Our documents 16
24 LOS . . 16
2.4.1 Ontology/thesauri 18
3 Technologies 21
3.1 Related worko 21
3.1.1 Research about supervised learning and classification . 21
3.1.2 Automatic classification systems 23
3.2 Technologies considered 24
3.2.1 WebSphinx oo 25
3.2.2 Java Machine Learning Library (Java-ML) 25
3.3 Technologies in our prototype 26
331 WEKA. 27
3.3.2 0 JSOUp . ..o 27
4 Prototyping 29
4.1 Problems and decisions 29

4.1.1 Memory and time restrictions 29

vi

4.2 Overview of system

4.3 System parts we have implemented for testing

4.3.1 Preprocessing
4.3.2 Feature selection
4.3.3 Classification as a whole

5 Testing and results

5.1 Thetesting
5.1.1 Testoptions
5.1.2 The test system

52 Thetestset,

53 Theresults
53.1 Mainresults
5.3.2 Extended testing
5.3.3 Discussion

6 Conclusion

6.1 Ourresults
6.2 Future work
6.3 Summary

References
Bibliography
A Code

B Enclosed ZIP Archive

CONTENTS

47

....... 47
....... 48
....... 49

51

51

95

65

LIST OF FIGURES vii

List of Figures

0 ~J O Ul = Wi

— = = = O
W N = O

Information retrieval process 7
Classification types 10
Naive Bayesian classifier as a Bayesian network 13
A linear Support Vector Machine 16
Size distribution of HTML documents 17
Size distribution of processed documents 17
Range of amount of documents inaclass 18
LOS structure 19
CBC Clustering 23
Overview of the system workflow 31
Distribution correctly classified in testing 43
Reductionin classes. 45
Estimated needed amount of docso 49

viii LIST OF FIGURES

LIST OF TABLES ix

List of Tables

=W N =

Amount of classes and documents used in research 22
Java-ML main algorithms and features 26
RAM usage with default settings 29

Time usage building classifier 30

LIST OF TABLES

CODE LISTINGS xi

Code listings

© 00 J O Ol Wi

Java-ML code exampleo 26
Validation result for Naive Bayes with default options 40
Validation result for IBk with default options 40
Validation result for RandomForest with 80 trees and 1 feature 41
Validation result for SMO with default options 42
RandomForest Validation results with 79 Classes 44
RandomForest Validation results with 15 Classes 44
CrawlLOS.java 55

WebPageClassifier.java 57

xii

CODE LISTINGS

Acknowledgements

I would like to thank friends and family for continuous support and encour-
aging words throughout the process.

[would also like to thank my supervisor, Trond Aalberg for his counseling
and guidance which has been invaluable.

xiil

X1v

1 Introduction

1.1 Background and motivation

The amount of information found on the Internet has increased vastly in
the last ten years and information from municipalities have also increasingly
been made available on the web. Difi (Agency for Public Management and
eGovernment) operates a website called www.norge.no which indexes web-
pages with information about the public sector in Norway. They also have
a ontology called LOS, which contains tags that are relevant for organizing
municipal information. Unfortunately, as of now there are almost no infor-
mation here, except for some handpicked web-pages, from all the different
municipalities that publishes information on their websites. One of Difi’s
goals are to be able to index this information based on the ontology so that
it will be easier for everyone to find relevant information about what they
are looking for.

Given that Norway contains 429 municipalities, each with their own web
pages with lots of information relevant to their geographic location and with
vastly different themes, the amount of information is huge. To be able to
solve the gathering and categorization of this information, without having to
rely on a huge amount of manpower, the usage of information retrieval (IR)
techniques would ease the workload. Within IR there is a field called text
maning which use a learning algorithm on a corpora that’s already classified to
“teach” the program what classes (we may sometimes use “category” instead of
class) documents belong to. Then you can use this to classify new documents
that have an unknown class. Since LOS already contains documents that have
a defined class, we can use these to teach the algorithm about the classes and
thus be able to classify new documents with this later on.

The key problem would then be the relatively low amount of documents
per class that we are to learn from. This will impede on the precision and
accuracy of the results.

1.2 Problem definition

Based on this background and motivation the goal of this thesis can be sum-
marized as:

Find out if IR-techniques can be applied to the current amount
of information in the ontology so that it would be easier to add
new information into the system.

2 1 INTRODUCTION

This can then be broken down into several questions we would like to have
answered:

1. What techniques could be used and what requirements do we have for
these?

2. Are there enough documents in LOS to be able to use these techniques
effectively and will we be able to categorize new documents correctly?

(a) Subsequently, what amount of documents will be required to achieve
good enough results so that this kind of system can be used.

3. Are there any pre-made solutions that could be used?

The task at hand is as such not to develop a whole new system or to invent
something new to solve this problem, but to see if the methods that already
are available are suitable for this specific task.

1.3 Our case

We have mentioned the LOS-ontology several times and we would like to
better describe what it is and how it’s built up. LOS is a ontology with con-
tent relevant to public services like work done at Town Hall etc. It contains
504 keywords, the classes, used on different portals like web pages and other
public informations systems. It’s structure is built up of 15 main themes, 78
sub-themes and then the 504 classes divided up under the sub-themes. It also
contains more than 1500 search words that link to these classes and themes.
There are also links to public services (i.e. web pages) that are relevant to
the keywords. It is these documents that are linked to that we shall use to
teach the system about what kind of document belong to a certain class.
Part of it’s structure:

e Arbeid (main theme)

— Arbeidsliv (sub-theme)

« Arbeidsavtale (class name)
- Documents

x Arbeidsgiver
- Documents

x Arbeidsmiljg

- Documents

1.4 Summary results 3

— Arbeidssgking og rekruttering

e Barn og familie
o ..

More about LOS and it’s content can be found in section 2.4.

1.4 Summary results

The results give a clear picture that shows that the amount of documents
that are already classified in LOS are not sufficient. The best result we got
was 14.8% correctly classified of the test-set and this is not usable at all.
Even when we tried reducing the amount of categories by using the other
levels of LOS (main theme and sub-theme), we only managed to get up to an
average of 51.6% correctly classified. This on the other hand could be used
as an indicator to help in the process of manually classifying new documents,
but it would not be using the full potential of the ontology since it only uses
the 15 top-level categories.

We estimate that the ontology would have to have upwards of 50 docu-
ments per category to be able to get good enough results for an automated
system. This would mean that they would need (504 categories times 50
documents) 25200 documents in the system. This is a huge increase from the
1105 documents that are in it as of now and it would require a great deal of
time and manpower to achieve this.

1.5 Brief overview of the thesis organization

The rest of the thesis is organized as follows:

Chapter 2 Chapter 2 provides the necessary theoretical knowledge to be
able to understand the rest of the thesis. It is not meant as a thorough expla-
nation of all details regarding the topics, but will be enough to understand
our approach. It also refers to books and articles that goes deeper into the
topics if the reader would like to get more information.

Chapter 3 In this chapter we will take a look at some of the different
systems that are made for the task we are solving. We will also talk about
some of the technologies that we have used in our implementation.

4 1 INTRODUCTION

Chapter 4 Here we will show how we implemented our approach and also
take a closer look at the algorithms used. Problems we have met during
development and how we solved them will be described. Code examples will
also be shown and described.

Chapter 5 This chapter will take a look at the results and how good our
implementation are compared to other implementations. It will also discuss
what needs to be done in future work to improve on the results.

Chapter 6 At last we will draw a conclusion based on our results and take
a look at the testing to see what can be improved and what to be researched
in the future. It will summarize the thesis as a whole.

Appendix A Contains Java code that are referenced in the thesis when
there is a need to explain in more detail how parts of the system works.

Appendix B Describes the content of the enclosed zip-archive with code
and folder structure representing LOS that contain the files used to teach the
system.

2 Background research

This chapter will give relevant information that is necessary for the reader
to understand the basis for this thesis. It contains references to cited papers
and books so that one can do more in depth reading if one wants to get
an even better understanding of the topics. The goal of this chapter is to
be a basic introduction to the relevant topics so that the rest of the thesis
is understandable. The basis of the thesis is the broad field of information
retrieval (referenced as IR from now on) and within this the field of machine
learning. Thus we will have a brief look at these topics here.

2.1 Information retrieval

The term information retrieval has several different definitions and can be
anything from searching for a physical book in the library to searching for a
specific file on your laptop or just finding out where you left your car keys at
home. But to be more specific and relevant to this thesis the definition from
the book “Introduction to Information Retrieval” [19] is befitting.

“Information retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an infor-
mation need from within large collections (usually stored on com-
puters).“

In essence it can be though of as this: You give some input to a search system
containing documents and receive information that is relevant to this input.
In our case it would be to input a class that we want to find information about
and receiving documents that have relevant information about said class. At
least that is all there is for the user of the system, but in the background
there could be any number of processes going on at any given time. For the
system to be able to give back the relevant information to a query it would
have to have indexed a lot of documents based on classes. In a somewhat
normal use case this would be done by searching through the documents for
occurrences of the class name in the documents and storing this in an index
for later retrieval.

2.1.1 Text document indexing and retrieval

The basis for most IR are the indexing and retrieval of text documents.
The reason for this are the vast amounts of text documents and textual
information stored away in libraries and in later years on the web. And
because of the large amounts of information there were a necessity to be

6 2 BACKGROUND RESEARCH

able to develop techniques for extracting relevant information from this in
an easy manner. To search through all this information by hand would be
an immense task which would take a lot of time and manpower. Since the
basis for our case is the text document, lets have a look at what a typical
text document would be in our case.

Most would probably describe a document as a physical material object
like a book or a piece of paper with text on it. Mentioned by Michael K.
Buckland [4] a document was described in 1935 by the International Institute
for Intellectual Cooperation, an agency of the League of Nations as:

“Any source of information, in material form, capable of be-
ing used for reference or study or as an authority. Examples:
manuscripts, printed matter, illustrations, diagrams, museum spec-
imens, etc.”

This fits rather well with the way it is ordinarily described, but in our case
the document are not of a similar material form but rather in a digital form as
bits on a hard drive. But the main part of the document definition still holds,
it contains information, information that is meant to be used for reference or
study. The document we are using are a digital collection of words that as a
whole defines a web page. It contains information about the look of the web
page and also the information visible to the user.

To be able to compare similarities between documents and a query from
the user the documents have to be indexed. The most plain and easy way of
doing this is with a boolean retrieval system. Documents get indexed by sets
of keywords and the search can then use boolean operators like AND, OR, and
NOT to retrieve documents containing (or not containing) certain keywords.
A much used way of storing the information about what documents contain
what keywords are the inverted file. An inverted file contains contains all the
words and for each word it lists all the documents that contain said word.
Thus, if the user wants all the documents containing the word “computer” it
is as easy as to just return the list of documents that contain said word. If
the user wants documents containing “computer” AND “code” it then merges
the two lists for these two words and returns those documents that there are
duplicates of in the list. For the OR query it would merge and return all
documents that have no duplicates and for the NOT query it would return
all documents from list 1 that is not in list 2. A overview of the process of
finding documents that fits a query can be seen in Figure 1 on page 7.

This way of indexing is good when you are looking for certain words within
a document, but in our case we would like to classify a document based on
the combined content of the document. Thus you may search for the class
name but miss out on a lot of relevant documents because the class name is

2.1 Information retrieval 7

Query Documents
\ 4 A 4
t Processing l { Processing l
A4 A4
Query Document
representation representations

NS

Comparison
(similarity
calculation)

_
v

Retrieved
documents

Figure 1: Information retrieval process

not specifically mentioned in the text of all relevant documents. Because of
this we would have to have a different approach when classifying documents.
Before the era of computers and computer IR-techniques this was done by
hand and we will take a look at this now.

2.1.2 Classification by hand

The way such classification has been done since the beginning has been by
hand. A person had to either have enough background information about
a document from before, or go through the document and try to figure out
what class it belonged to. Librarians and other similar professions have
been doing this for as long as classification has been around and it is a very
manual, labor-intensive work. It is relatively effective as long as the amount
of documents are small, or you have small amounts of documents to classify
at any given time, but as soon as it increases substantially it will be less and
less cost-effective.

The case in our thesis involves trying to classify thousands and thousands
of web pages in the most effective way possible, and thus we need the next
chapters techniques to achieve this.

8 2 BACKGROUND RESEARCH

2.2 Text mining and machine learning

As mentioned before, the huge amount of documents and information to
classify becomes a problem when it is done by hand. The amount of docu-
ments also increase at a high rate because we are able to save information
much easier now than before when doing it digitally. And somewhere in all
these documents lay the information that we would like to get a hold of.
As opposed to regular IR where you mainly just look for certain words in
a document, in data mining you look for patterns in the information. The
book “Data Mining: Practical Learning Tools and Techniques” [34] define
data mining as:

“The process of discovering patterns in data. The process must
be automatic or (more usually) semiautomatic. The patterns dis-
covered must be meaningful in that they lead to some advantage,
usually an economic one. The data is invariably present in sub-
stantial quantities.”

And it is these patterns that allow us to make predictions about new data.
To describe what a pattern is is not straightforward, so we will rather give
an example.

The following are the content of one of the web-pages that we get from
LOS that has been preprocessed (for information on preprocessing, see 4.3.1):

direktoratet naturforvaltning jakt fangst hopp sideinnhold hopp hovedmeny hopp sidemeny hopp sgkefelt hjem
nettstedskart english kontrast friluftsliv aktiviteter allemannsretten friluftslivsomrdader fritidsfiske jakt fangst
naturarven verdiskaper norges nasjonalparker nermiljosatsing pilegrimsledene stillhet verdiskaping natur-
basert reiseliv klima klimaendringer norge klimaeffekter land klimaeffekter ferskvann klimaeffekter havet
kysten klimaendringer friluftsliv klimaendringer svalbard arealplanlegging arealbruk klima overvdking effek-
ter klimaendringer naturmangfold naturmangfoldets betydning internasjonalt samarbeid klima database kli-
maeffekter naturmangfold energi miljopavirkning fremmede arter genmodifiserte organismer gmo hav kyst
inngrepsfrie naturomrader norge inon internasjonalt miljosamarbeid kartlegging natur kulturlandskap laks
sjoorret sjoroye landskap naturindeks norge naturovervaking trua arter naturtyper vann vassdrag verneom-
rader verdien naturmangfold gkosystemtjenester forvaltningen arealplanlegging gronnstruktur markaomrader
naturforvaltning kommunene sikring forvaltning friluftslivsomrader strandsonen tilradninger verneomrader
tilskuddsordninger publikasjoner brosjyrer dn faktaark dn handbgker dn notat dn rapporter dn utredninger
oppdragsrapporter annet skjema regelverk naturmangfoldloven fjelloven friluftsloven genteknologiloven lakse
innlandsfiskloven lov statlig naturoppsyn motorferdselloven plan bygningsloven viltloven handel trua arter
cites kart kartkatalog lakseregisteret naturbase rovbase vannmiljs vann nett villreinbase temakart wms kart-
lag inon kart abonner nyheter ansatte arrangementer hgringer innsiktsarkivet kontaktinformasjon ledige
stillinger logo direktoratet maturforvaltning media presse nyhetsarkiv offentleg journal offentlige anbud di-
rektoratet naturforvaltning personvernerklering tema friluftsliv jakt fangst jakt norge fangst fangstredskaper
jakthund jaktstatistikk jakttider jegeravgift rapportering jegerprove opplaringsjakt kvotejakt lisensfelling pre-
parering vilt skyteprove smaviltjakt storviltjakt utdanning jegerproveinstruktorer vipen ammunisjon snarveier
friluftsliviskolen st mld nr friluftsliv veg hogare livskvalitet friluftsliv jakt fangst jakt fangst sidene finner
informasjon retten drive jakt fangst norge lover regler gjelder jegere fangstfolk jakt fangst viktig del friluft-
slivet norge forvalter viltressursene vare viktig skjer mate bevarer naturens produktivitet artsmangfold direk-
toratet naturforvaltning sammen miljoverndepartementet overordnede ansvaret viltforvaltning arbeid knytta
utformingen regelverket innen forvaltning viltressursene utgvelsen jakt fangst siste innen jakt fangst sist opp-
daterte artikler jegerprove oppleringsjakt utdanning jegerproveinstruktorer storviltjakt smaviltjakt skyteprove
publikasjoner jakt norge hunting in norway jagen in norwegen skitt jakt strategi forvaltning hjortevilt jakt
norge hunting in norway jagen in norwegen brosjyre informasjon jakt jakttider flere publikasjoner lover
forskrifter fjelloven friluftsloven viltloven sentrale forskrifter viltloven lokale forskrifter wviltloven nyheter
prove jakt pil boge god human sikker jakt etterspkshundene mda bedre jegere far jegeravgiftskortet ny ut-
danning jegerproveinstruktorer nyhetsarkiv eksterne lenker rapporter jakt fangstutbyttet ssb jegerregisteret
hjorteviltregisteret se direktoratet naturforvaltning besgksadresse tungasletta postadresse postboks sluppen
trondheim tlf faks post postmottak dirnat nettredaktor gurt sandvik kontaktinformasjon media presse kontakt
nettredaksjonen ledige stillinger ansatte nyhetsbrev

As you can see, it is not really too easy to see what kind of content or what
category this belongs too without reading through it thoroughly. This be-

2.2 Text mining and machine learning 9

comes a tedious and difficult task to do by hand. One way of finding a pattern
in this text is by summing up word-occurrences. When we have done this we
can highlight the words that are more common. The result would be this:

NYHETS
s oy oo veRoisKAvER
PREPARERING JELLRAPNINGER " PILEGRIMSLEDENE FRITIDSFISKE Vs

SKYTEPR@VE ARBEID NETTREDAKTOR
mifv"iil““‘;f,\: R O N OMRADER FRILU rrstovin e [N presse Bz

b o UTDANNING YILTRESSURSENE, FORSKRIFTER FCCMEDIA,,,
K LI MAVAESSDIR\]G D RI N G ERNATU RMANG FO LD ﬂ“oWERTRUA FRILUFTSLIVSOMRADER LEDIGE fetvere

HOGARE JEGERAVGIFTSKORTET BEDRE I NORWAY rostmorrac
HUMAN _TILSKUDDSORDNINGER J NATURMANGFOLDETS

smAviLTiakT JEGERPR@VEINSTRUKT@RER OPPLARINGSJAKT

LIVSKVALITET MOTORFERDSELLOVEN MIL@PAVIRKNING OPPDATERTE

INNEN
i EAN G ST FRILUFTSLIV FORALNNG:
RAPPORTLR HOPP VILTLOVEN™pUBLIKASJONER
IN)I&%L\‘C&SJOHNALT STORVILTJAKT HUNTING
% NATURFORVALTNING
RO DIREKTORATE T F 2 A
wo KLIMA K| IMAEFFEKTER i ARTER

KSEREC\ST[RET IATURINDEKS ARRANGEMENTER
KARTLEGGING Km% LOVERFJ ELLOVEN KNYTTA pi VILLRENBASE KARTKATALOG
ENERGI NEWSTEDSKART

Now we can much more easily see a pattern emerge, the words “jakt”,
“fangst” and “norge” are words that are very common in this text, and thus
we could guess that the document belongs to a category about hunting in
Norway. This is rather spot on for the actual category it belongs to in LOS,
the actual category is called “viltforvaltning” and is indeed about hunting.

2.2.1 Classification

The classification we are doing can be seen as a sort of subject classification
because we want to predict the topic or subject of a web page (or several).
There are also a classification type called functional classification and senti-
ment classification. With the first type you are looking for the role that a
web page have. It can be roles like a personal web page, landing page or a
course page for a university. The second type looks for the opinions that the
web page shows about a certain topic. For example opinions about a political
topic or the stance the author of the web page has about religion.

Some classification problems can only be classified into two categories
like “positive” or “negative” and this is called binary classification. On the
other hand (as it is in our case) there are a lot of classes and this is called
multi class classification. Also, the documents we classify may be categorized
within just one (single-label classification), or multiple classes (multi-label
classification). In our case we are to classify each document to one class and
only one. Lastly we can have very clear “boundaries” for a documents class,
where it may either be within a class or not, or it can have intermediate
states where it may be having 80% in common with one class and 35% with
another etc. This is called hard and soft classification. Some examples of

10 2 BACKGROUND RESEARCH

Classification

Classification ¢
|
+¥ L' B employer

employer
employment

D work environment
positive negative employment

(a) Binary classifica- (b) Multiclass, multilabel, hard
tion classification

Figure 2: Classification types

this can be seen in Figure 2 on page 10. We will be using the classification
shown in 2b.

The task we set out to do when talking about classification in our case
is to create a sort of mapping between the documents in our corpora and
a set of class labels, and thus we work with subject classification. This
mapping is generally called a model. In general this way of creating a model
by using already classified documents are called supervised learning. The
resulting model can then be used to automatically determine the class of
new documents that we have not been assigned any class yet. We can go a
little more into detail about the steps involved in this:

1. Data collection and preprocessing
Here we collect all the documents that are already labeled with classes,
also called crawling. After this we have to process the documents so
that unnecessary information are removed, we “clean” the documents.
i.e. this means removing stop words, common words, punctuation sym-
bols and HTML tags and do stemming on the words.
Lastly we divide the collection of documents into two subsets:

® a training set
This set will be used to create the model and may also be divided
into two subsets; one will be the part that actually creates the
model, and the last one used to fine tune the parameters for the

2.2 Text mining and machine learning 11

model learning (called a validation subset).

e q test set
This set is used to test if the model are good enough.

2. Building the model
This step is where you actually “learn” or “train” the model with the
use of a learning algorithm. It are often an iterative process where you
fine tune parameters of the feature selection and the algorithm. Steps
to iterate:

(a) Apply an evaluator that chooses the appropriate features (words)
(b) Apply the learning algorithm to get a model

(c) Validate the model with the validation subset from the training
set

(d) Fine tune parameters

3. Testing the model
At this step we apply the model to the test set from step 1 and we
compare the predicted classes with the actual classes of the documents.
It should be noted that here the classes of the documents are only used
for evaluation and not used by the learning algorithm as in step 2.

4. Classification of new documents
When the model are considered good enough it can be used to classify
new documents that have no assigned class.

2.2.2 Algorithms

In this section we will give some details about different algorithms that we
used and why we choose them over others. There will also be some general
information about how the different kinds of algorithms work and how the
different kind of types work.

General From the literature we can see some trends with the different kinds
of algorithms. With decision trees, the dataset usually needs to be rather
large to build a good classifier. Also, decision trees have problems when the
amount of classes are very large. In these cases the tree would be too large
to be searched efficiently and memory usage would be very high. On the
other hand, Bayesian classifiers are much better at small datasets where it
usually outperforms other classifiers. Support Vector Machines have shown
very good results both in regards to efficiency and the domain it is used [28].

12 2 BACKGROUND RESEARCH

Naive Bayes are usually used as a baseline which to compare other al-
gorithms up against. Thus we also use it here to see how well the other
algorithms we have chosen perform compared.

Algorithm details We decided to test algorithms from several different
ways of performing the learning. We used [6] and available algorithms in
Weka as a basis for choosing which algorithms to test. Since decision trees
showed such a poor performance and that the amount of documents we have
are so small, we did not test any of these. The different algorithms we have
chosen are Naive Bayes, IBk, Random forest and SMO.

Naive Bayes are a well-used classifier when classifying text because of
it’s easy of implementation and because it is fast. It has been found to not
perform very good [35, 37], but we use it as a sort of baseline to see how the
other algorithms perform.

Naive Bayes A Bayesian classifier is used to classify text work by corre-
lating words in an already classified text with the class it belongs to and then
using Bayesian inference to calculate the class of the new text. The Naive
Bayes classifier assumes that all words are conditionally independent of each
other given the class (see Figure 3 on the facing page). Meaning that we
assume that the words are randomly distributed in the document and not
dependent on the documents length or any other words in it. And despite
this simplifying assumption it’s still on par with a lot of more complex and
sophisticated induction algorithms. According to [14] it gives accuracies that
are comparable to those from rule-based induction methods in medical do-
mains and that it also performed better than an algorithm with decision-tree
induction (C4) in four out of five domains. It has been shown to compete
well with more sophisticated classifiers [20] and it is because of this we will
try it out on our documents as a sort of baseline for the other algorithms.

When classifying documents you want to know the probability p that a un-
classified document D belongs to a given class C' from the collection of classes
already in the system. This can be written as:

p(C|D) = HE00)

which by Bayes’ theorem gives the statement:

p(C|D) = 29 p(D|C)

2.2 Text mining and machine learning 13

‘c)

Xa)))

Figure 3: Naive Bayesian classifier as a Bayesian network
It’s predictive attrs (X1, X2, ... Xa) are conditionally independent given the
class attribute (C).

The probability for a class C' is dependent on all features f and can be
written as:

p(C|F1, ceey Fn)
which by applying Bayes’ theorem gives us:

P(CIFY, oy Fy) = MO 0)

this means that the posterior probability equals the prior probability for
a class, multiplied by the likelihood for the features given this class, and this
result is then divided by the evidence (the probability of the features).
Since the bottom of the fraction is not dependent on the class C' and the
values of all the features are known, it is a constant and may be removed.
Now we are left with the joint probability model:

p(Ca F17 ceey Fn)

which after applying the chain rule for repeated applications of the defi-
nition of conditional probability gives us:

p(C) Tz, p(FiC, Fy)

where Fj is all other features except Fj, but since the algorithm assumes
that all words are conditionally independent of each other given the class, we
can remove F; and ends up with:

14 2 BACKGROUND RESEARCH

p(C, B, .., Fy) = p(C) [Ti2y p(Fi[C)

The specific classifier from Weka that we use are weka.classifiers.bayes.NaiveBayes
and are tested with some different options:

1. default options
2. with/without kernel estimation

3. with/without discretization of attributes

IBk Bk is a k-nearest-neighbor algorithm. One of it’s main advantages are
it’s simplicity and ease of implementation. The algorithm works by creating
vectors of the documents by using TF/IDF weights of words in the docu-
ments. When classifying a document it creates the vectors and then looks
for the k-nearest neighbor in the vector space to determine what class it be-
longs to. It is a quite simple algorithm and it is one of the fastest algorithms
we tested (see Table 4 on page 30). For more information read “Instance-
based learning algorithms” by Aha and Kibler [1].

The specific classifier in Weka is weka.classifiers.lazy.IBk and we are testing
with some different options:

1. default options
2. different number of neighbors used

3. let the algorithm choose number of neighbors

Random Forest One of the tree algorithms we have chosen are the random
forest algorithm. It has shown good results in [6], so we would like to see it’s
performance in our case.

Random Forests work by “growing” a collection of trees from the learning
data and then letting them vote for the classes they predict a document to
belong to. So each tree generates a random vector that is independent of all
the other past random vectors generated by other trees but it is built upon
the same distribution. Then the tree is built using the training set and this
vector, which results in a classifier. When a large number of such trees are
generated, they all vote for which class a document belongs to.

Definition: A random forest is a classifier consisting of a collection of tree-
structured classifiers {h(x,0x), k = 1,...} where the {O4} are independent

2.2 Text mining and machine learning 15

identically distributed random vectors and each tree casts a unit vote for the
most popular class at input x. [3]

The specific classifier from Weka is weka.classifiers.trees.RandomForest and
are tested with these different options:

1. default options
2. number of trees

3. number of features to consider

SMO SMO is a Support Vector Machine and stands for sequential minimal
optimization. It is an algorithm developed by John Platt which is made for
training a support vector classifier [25]. SVMs were originally developed by
Vapnik in 1982 [32] and it only classified binary problems. The way in which
this worked is roughly this:

It generates vectors of the documents in a vector space.

Then it performs class separation, i.e. it’s looking for the optimal separating
hyperplane between the two classes by maximizing the margin between the
classes’ closest points. The points that lay on these boundaries are called
the support vectors and in the middle of these are the optimal separating
hyperplane.

It then reduces the weights of data points on the wrong side of this margin
so as to reduce their influence.

If it cannot find a linear separator it projects the data points into a higher-
dimensional space via kernel techniques.

Lastly it formulates the task at hand as a quadratic optimization problem to
be solved by known techniques.

A figure can be seen in Figure 4 on page 16.

SMO has improved upon this, since the quadratic optimization problem
usually needs a lot of storage, the SMO algorithm decomposes the overall
problem into a series of the smallest possible QP sub-problems. It then solves
the smallest of these at each step analytically, which avoids time-consuming
numerical QP optimization. [26]

The specific classifier in Weka is weka.classifiers.functions.SMO and we are
testing with some different options:

1. with/without normalization

2. varying the tolerance parameter

16 2 BACKGROUND RESEARCH

Positive Examples

Maximize distances to nearest
points

Negative Examples

| > Space of possible inputs

Figure 4: A linear Support Vector Machine

Separating hyperplane

2.3 Owur documents

The documents we are classifying in this thesis are web-pages and their syn-
tax etc are well-known and will not be described here. The difference be-
tween classifying our documents and the traditional text documents should
be noted. Documents used in traditional text classification are usually of a
more structured form with consistent styles, as for example a corpora of news
articles with well-controlled styles [8]. A web document on the other hand
does not have a controlled style or a certain high quality that you expect
from a news article. It is of a much more inconsistent form and random in
nature.

The diagrams in Figure 5 on page 17 and Figure 6 on page 17 shows
the distribution of the document sizes both before preprocessing and after
preprocessing, and you can see how they vary a lot in size. It is also notable
how large the decrease in size are after the preprocessing are done.

2.4 LOS

The LOS ontology has been mentioned before, and we would like to better
describe some details here. We could argue about the definition of LOS as an
ontology, because it probably fits better into the description of a thesaurus,
but since Difi calls it the LOS-ontology we have also called it that in this
paper to avoid confusion. It is a networked collection of controlled vocabulary
terms. This mapping is between the three sections main themes, sub-themes
and the classes that we are classifying the documents to. This structure
can be seen in Figure 8 on page 19. The classes it contains are specific to
municipal government services that are available in the public domain and

24 LOS

250 8

200 8

150 8

amount

100 8

50 8

0 20 40 60
size in kb

Figure 5: Size distribution of HI'ML documents

Total size of all the documents before preprocessing are 41.05 MB.

800 - 8

600 |- 8

400 8

amount

200 - :

T T
0 5 10 15 20 25 30

size in kb

Figure 6: Size distribution of processed documents

Total size of all the documents after preprocessing are 4.32 MB.

17

18 2 BACKGROUND RESEARCH

158
150 |- 8

B 94 |
100 33

classes

96 55

docs

Figure 7: Range of amount of documents in a class

also about rules and regulations that the municipalities enforces. In total
it contains 504 classes of which 83 are empty (without any documents) and
the rest contains in total 1105 documents. This distribution can be seen in
Figure 7.

LOS are created with the goal of making it easier to share information in
the public sector. They envision it being used as a standardized menu when
you look for services, municipal web-pages can categorize their information
about what services they offer and lastly to have an easy way of integrating
all such info into the portal norge.no. This way all the relevant information
about services that the public sector offers can be available in one central
place. Users may not know what search-words to use to find the exact infor-
mation they want, but with the structure of keywords (categories) that LOS
provides it is much easier to navigate until one finds the correct information.

For more information about LOS itself you can visit their web-page!.

2.4.1 Ontology/thesauri

Los are as mentioned an ontology /thesauri, meaning that it is a collection of
knowledge about a certain domain represented as a set of concepts and their
relationships. So to be more specific it is a domain ontology. This struc-
tural framework is a way of organizing the information about the domain, in
this case municipal government services. Since it is a domain ontology, the

thttp://los.difi.no/

24 LOS 19

Main themes

Sub-themes

Classes

Documents

Figure 8: LOS structure

meaning of words that may mean different things depending on the domain
should then of course be seen in the context of this ontology’s domain. If you
were to look at a ontology about “poker” then the word “card” would mean
a playing card, as opposed to a ontology about computer hardware were the
meaning could be video card. Also, even ontologies on the same domain may
have different meanings about certain words depending on what kind of per-
ception of the domain the designers of the ontologies have. The difference in
perception may arise from differences in education, language, ideology etc.

At the top there are main themes that encompass large portions of the
whole, these are themes like “work”, “health”, “taxes” and “school”, and these
contain sub-themes. The sub-themes become a little more explicit and more
detailed in what they describe. So for example under the main theme “health”
theres sub-themes like “public health”, “health care”, “mental health” and “pa-
tients’ rights”. These again contain the classes themselves that are a specific
area of information. Examples of classes within “health care” are “physiother-
apy’, “chiropractic”, “emergency room” and “hospitals”. Each level thus has
a relationship to either a higher less specific section or a lower more specific
section or both.

20

2 BACKGROUND RESEARCH

21

3 Technologies

In this chapter we will have a look at some of the scientific work and results
that have been done in the field of supervised learning and classification.
We will also take a look at some of the different technologies that have been
developed as a result of this work. At last we will have some details about the
technologies that we have chosen to use when testing the different methods
and algorithms that we have discussed in chapter 2. We will take a look at
some of the trends and challenges that have been focused upon in research
papers and also give a short overview of some systems that are made to
automatically categorize web pages with the help of supervised learning.

3.1 Related work
3.1.1 Research about supervised learning and classification

There has for a long time been a high focus on trying to properly and easily
extract patterns and relations from the World Wide Web in the research-
community. There has been an abundance of different methods proposed
and tested with the goal of achieving this. When classifying content on
the web it can help in improving crawling, assist in developing large web
directories and to analyze content and structure of websites. In the beginning
of research about classification the focus has been on the use of already
present information in already classified documents to be able to learn what
documents belong to certain classes. This is called supervised learning and
has proven to work very well with large corpora of labeled documents.

In the later years (last decade) there has been a bigger focus on also using
the unclassified documents as a resource directly into the learning process.
By using the unlabeled documents into the learning process the accuracy of
the results will increase [30], especially when the amount of already labeled
documents are small. This methodology has been called semi-supervised
learning.

Supervised learning [16] Within supervised learning there are a lot of
different learning algorithms such as Support Vector Machines, neural nets,
logistic regression, Bayes and naive Bayes, memory-based learning, random
forests, decision trees, bagged trees etc, and they have all proved themselves
through the years on different tasks. There have been a good amount of
progress over the last decade and some of the newer methods give perfor-
mance that some of the older algorithms from 15 years ago would struggle to
obtain [6]. Also, a good algorithm will most probably not perform well on all

22 3 TECHNOLOGIES

’ Research paper \ Classes Documents per class (avg.) ‘
(18, 13] 135 108
90 106
[27) 33 65
8] 20 2000
9] 10 188
[17] 2 7352
6] 2 2500
2] varying from 2 to 26 varying from 50 to 5500
[28] varying from 10 to 135 | varying from 105 to 960

Table 1: Amount of classes and documents used in research

tasks it is set to solve. There may be great variances in the performance of
algorithms on different sets of problems. Thus, when trying to solve a task,
several different methods should be tested to get a good result.

Semi-supervised learning [7] Because supervised learning work well on
large corpora of labeled documents and this is usually not the case in practical
learning scenarios, semi-supervised learning have gotten high focus the last
decade. In most practical learning scenarios you have only a small amount
of labeled documents and a huge amount of unlabeled documents. Semi-
supervised learning tries to take advantage of this scenario by using the un-
labeled documents as a resource in the learning process. One of the biggest
problems in supervised learning are that there is a sparsity of data available
in the labeled documents. With semi-supervised learning you reduce this and
improve the accuracy.

A way to get extra information from the unlabeled documents are to use
clustering of words in the documents for an improved accuracy [30]. These
clusters will then contain several documents that have the same word repre-
sentations and can then be combined into the prediction from the supervised
part of the learning.

While the unlabeled documents can help to improve the accuracy of the
supervised learning, there is still some difficulties when the amount of labeled
documents are very low [36]. Thus they propose to cluster both the labeled
and unlabeled documents with guidance from the labeled data, then to label
some of the unlabeled documents based on these clusters and at last build
new classifiers by supervised learning based on these expanded datasets. An
example can be seen in Figure 9 on page 23. It is rather similar to unsu-
pervised learning, but in this case the labeled data are used to aid in the

3.1 Related work 23

[] B.’ . \‘\
L] ’ L]
o« * o+ 7 e * ot
:.'./oo :_:L. ® o o
[e /0 [] ., 0 T
o et A oW e
.'___'___’,J__-———'___'__'___' N
® 00 79 %og, e8o “e.e® ::_69* :0—7 800
R4 0g o%a o \ o oo
" o o
,'l ° c; co ‘?\ o %0
o e [
(a) Classification with (b) Expand labeled set (c) Classification with
original labeled data by clustering newly labeled data

Figure 9: CBC Clustering
The black and gray points are the two actual classes in the unlabeled data.
The big + and - are the originally labeled data, and the small + and - are
documents that are considered labeled with high confidence by the clustering.

clustering so that latent class labels are easier to spot, and some of the unla-
beled documents can be considered as labeled to the clusters they come into
with high confidence.

3.1.2 Automatic classification systems

There are a lot of different types of automatic classification systems, but we
have focused on the ones that employ supervised learning because this fits the
thesis problem. Some systems don’t use learning but instead use pure string
matching and searches for the ontology term itself, or use part-of-speech
tagging or other methods.

MnM [33] is a tool for annotating web resources with semantic infor-
mation. The tool is accessible through a web browser and provides options
for using your own ontologies through it’s API and also tools for information
extraction from the web-pages. The five main activities that MnM facilitates
are:

e Browse.
Here you can choose the specific set of the ontology that you want to
use.

o Markup.
If you have no documents that already are marked with categories, you
can mark documents here.

24 3 TECHNOLOGIES

e Learn.
This part uses learning algorithms to learn from the marked up docu-
ments to create a learning model.

o Test.
In the test activity you can test the created learning model with a
testing corpus to see if it scores well enough in recall and precision.

e Faxtract.
The last part extracts information from new and untagged documents
to find the category it belongs to.

These are the main parts of the process that Difi would like to perform.

Melita [10] is a tool that is made to interact with the process of using
machine learning to create a model from already categorized documents. The
system that learns the documents are called Amilcare. It has an interface
where you can see the proposed categories for a document and also highlight-
ing of the words or parts of the document that triggered it. In the early stages
of categorization, when there are not enough documents to make the system
very sure of what category a document belongs to, the user can double-check
the proposed categories and select the one that is correct. When the system
has got enough documents to learn from it will be able to select categories
without the user having to double-check.

Rainbow project [29] is a collection of more or less independent web
mining projects that are done by the knowledge engineering group at the
University of Economics in Prague. Unlike the other systems, the rainbow
project are only usable within the domain that these researchers have agreed
upon and can thus not be used with your own specialized ontology.

Thresher [12] is a system that focuses more on letting the user teach
the system the relations between the web-pages and the categories. The user
highlights content in the document that are relevant to a category and the
system calculates the tree edit distance between the DOM subtrees of these
examples to generate a model of the documents. It can then automatically
categorize new documents. Thresher thus needs a lot more user interaction
than the other systems, and are not able to use a pre-existing ontology or a
corpus of already categorized documents as easily as the other ones.

3.2 Technologies considered

When we set out to develop the prototype, we researched some of the options
when it came to gathering the web-pages that the learning should be per-
formed on and also at what API’s with learning algorithms that were easily

3.2 Technologies considered 25

accessible and quick to implement. In this chapter we present some of the
most important findings.

3.2.1 WebSphinx

WebSphinx is a Java library for developing web crawlers that are highly cus-
tomizable [21]. It offers a number of features including a graphical workbench
where you can visualize websites and their links amongst other things. The
part we used were the Java class library for writing web crawlers. Some of it’s
features are multi threading, object model for representing pages and links,
HTML parsing, pattern matching and HTML transformations.

We used it in the beginning with the collection of links extracted from
the LOS sql database we got from Difi, but found out it was easier to scrape
los.difi.no myself and use jsoup (section 3.3.2 on page 27) to save the web
page. This way we also got a lot more web pages than using the sql database
Difi first gave us. This resulted in us going from 450 documents to 1105,
which is a significant improvement. The code for this can be found in Code
listing 8 in the appendix, Section A.

Although we did not need this library when we were collecting the doc-
uments we needed, this library will fit nicely if Difi were to write a system
that should crawl municipal websites. There are also a lot of other open
source crawlers written in Java, such as Heritrix, JSpider, Bixo, Crawler4j
etc. More can be found at [31].

3.2.2 Java Machine Learning Library (Java-ML)

Java-ML is collection of machine learning algorithms written in Java. It is
meant to be used and implemented by programmers and research scientists in
their code and as such it has no GUI that enables any visual experimentation
with the algorithms. An overview of it’s main algorithms and features can
be seen in Table 2 on page 26.

The library are built around two key elements, the dataset and the in-
stance, and these are represented by two core interfaces. These again have
different implementations for different kinds of datasets and the algorithms
you use. A quick look at using the library in Java code are presented in
Code listing 1. This example takes in a dataset called iris.data in line 1,
then defines a clustering algorithm to be used in line 2 and at last uses this
algorithm to get the clusters the data would create from the data in line 3.

26 3 TECHNOLOGIES
’ Clustering \ Classification \ Feature selection ‘
K-means-like (7) SVM (2) Entropy based

Self organizing maps
Density based
clustering (3)
Markov chain

Instance based
learning (4)
Tree based methods

(2)

methods (4)
Stepwise
addition/removal (2)
SVM_RF

Normalization (2)
Missing values (3)
Instance manipulation

(11)

Distance metrics (11)
Correlation measures

(2)

clustering Random Forests Random forest
Cobweb Bagging Ensemble feature
Cluster evaluation selection
measures (15)
’ Data filters \ Distance measures \ Utilities ‘
Discretization Similarity measures (6) Cross-

validation /evaluation
Data loading (ARFF
and CSV)
Weka bridges (2)

Table 2: Java-ML main algorithms and features

Code listing 1: Java-ML code example

1 |Dataset data = FileHandler.loadDataset (new
File(”iris.data”), 4, 7.,7);

2 | Clusterer km = new KMeans() ;

3 |Dataset [] clusters = km. cluster (data);

We considered Java-ML as a proper contender for what library to use for
the machine learning techniques, but Weka had some properties that gave it
an edge and this will be elaborated on in the next chapter.

For a more in-depth look at Java-ML, all the API documentation can be

found at their web-page?

3.3 Technologies in our prototype

Here we take a look at some of the main technologies that we use when testing
the machine learning methods and also software that we envision used in a
system developed for this purpose.

2http://java-ml.sourceforge.net /api/

3.3 Technologies in our prototype 27

3.3.1 WEKA

Weka is similar to the Java-ML library mentioned before as it is a collection
of machine learning algorithms used for data mining and it is written in
Java. A difference is that it also comes with a graphical user interface that
can be used for testing data preprocessing, classification, etc., together with
the usual API you can use while writing Java applications.

Weka was developed by a machine learning group at The University of
Waikato in New Zealand and their goal is to “build state-of-the-art software
for developing machine learning techniques and to apply them to real-world
data mining problems”. Out from this goal sprung the Weka software, a
software now used both by specialists within a particular field, researchers
and scientists, and also within teaching [11]. An example of the impact
Weka have done in the field of data mining and machine learning is the
SIGKDD Service Award it was awarded from ACM’s Special Interest Group
on Knowledge Discovery and Data Mining in 2005 [24]. This award are given
to individuals or teams for outstanding service contributions to the field of
knowledge discovery in data and data mining.

The reason for choosing Weka is that I could use the GUI to test some
things beforehand, that it had been given acclaim as mentioned above and
also that it is used in several papers. Also, I have been reading the book
Data Mining: Practical Machine Learning Tools and Techniques [34] and it
are showing that it is powerful and could be used for exactly what I wanted
to do.

3.3.2 jsoup

jsoup is a Java library for working with HTML documents and it provides
an API for extraction and manipulation of the data within the document. It
uses a documents DOM in combination with jQuery-like methods to achieve
this. Some of it’s main usage applications are:

e scrape and parse a HTML document from URL, local file or a string
e find and extract data from HTML documents by traversing the DOM
e manipulate the HTML elements, attributes and text

If we were to try to parse the HTML by developing our own methods it
would be like inventing the wheel all over again, and we would waste a lot
of time probably ending up with a sub-par solution compared to jsoup. It is
therefore a good choice to use such a library for this kind of task.

My usage of jsoup can be seen in Code listing 8 in Appendix A.

28

3 TECHNOLOGIES

29

4 Prototyping

This chapter will give an overview of the overall design that we have envi-
sioned to be used at Difi. We will also describe how the parts we have tested
can be used and incorporated into the system.

4.1 Problems and decisions

One of the main problems we have encountered along the way have been the
rather small amount of documents per class in the ontology. At this moment
there are only 1105 documents distributed across 504 classes, and to make
matters worse 83 of these classes are even empty. Because some classes are
empty a supervised learning system will not be able to learn these classes and
the resulting classification will never be able to classify any new classes into
these either. The tests (which can be read about in chapter 5 on page 37)
also support this.

4.1.1 Memory and time restrictions

The way the algorithms are built and the fact that the system are going to
be processing large amounts of data when building a classifier the system
that should run this would need a good amount of RAM. Depending on the
amount of words that are set to be kept in the filter, the algorithm used
and the amount of documents to process, this will vary. Some examples of
RAM-usage with our amount of docs are shown in Table 3.

As you can see, the amount of RAM needed are quite large and would
only increase when more documents are added to the system. Therefore any
computer that works with this would probably benefit greatly from having at
least 8Gb of RAM and the bare minimum would be 4Gb as long as it weren’t
working on anything else at the same time.

Also, the time each algorithm uses to build the classifier from the data and
also the time it uses when classifying documents varies quite a bit and should
be taken into account when choosing which one to use in a system. Time

’ Algorithm \ RAM usage ‘

NaiveBayes 3174 MB
1Bk 494 MB
RandomPForest 1965 MB
SMO 2940 MB

Table 3: RAM usage with default settings

30 4 PROTOTYPING

| Algorithm | Build classifier | Classify per document (avg) |
NaiveBayes 64 sec 6.1 sec
IBk 9 sec 0.017 sec
RandomForest | 4274 sec (71 min, 14 sec) 0.004 sec
SMO 410 sec 0.846 sec

Table 4: Time usage building classifier

usage may be critical if the system should rebuild the classifier each time a
new document are added or if it should just do the rebuilding every night
when it has more time to do so. The time used to classify new documents
are not too great and should not present a big problem as long as it’s not in
the amounts of tens of thousands at a time.

4.2 Overview of system

The system would be working as autonomously as possible, guided by the
user for some operations. For example; if the system classifies a document
that gets a very low score, it would be marked as “need human evaluation”
and the user could then see the different categories that the system predicted
and their scores. Then the user could decide which one of them that are the
correct one. This way, if the collection has categories with a low coverage
(small amount of docs) the system would predict lower and more similar
scores for several categories and the user could then inspect and decide the
correct one.
Some of it’s main operations:

e Monitoring the LOS-ontology.
It should be monitoring the LOS-ontology for new additions that may
be added manually by users. When such an addition is found it should
add this new document to the learning model and recalculate the model
accordingly when needed.

e Have an input-option for single documents that users want to
have classified.
This way the user can give the system a single document in the form
of a URL, and have it added to the system for classification. When it
is done, it should be added into the ontology in its appropriate class.

e Have an input-option for a whole domain.
When Difi wants to add a whole new domain or municipality’s domain

4.3 System parts we have implemented for testing 31

Scraper —7/ HTML page(s) F) Preprocessing Has class?

e » Classify
A

Yes Verify
‘/

Add to training data
and
link to it from LOS

Figure 10: Overview of the system workflow

to the ontology, they could just give the domain-URL to the system
and have it download, preprocess and classify all it’s pages and then
add them to the ontology.

A graphical overview of the workflow of the system can be seen in Figure
10.

4.3 System parts we have implemented for testing

This section will give an overview of the parts of this system that we have
implemented and tested. Since this was only supposed to be a prototype,
we have not created any GUI or made it very user-friendly. The file that
selects what kind of algorithm to use and what options to use are “Classi-
fyController.java” found in the enclosed zip archive. The code only outputs
results to the standard output stream.

4.3.1 Preprocessing

Preprocessing will have to be performed on all documents that are gath-
ered from the web. This is both to ensure that the feature selection will
have appropriate words to use and that file-sizes will be kept at a minimum.
There are as mentioned in section 2.3 a lot of extra information in a HTML-
document that are needed for the browser, but are superfluous for us in the
classification-task. The preprocessing-part of the system are where this extra
information are removed.

The preprocessing are done to remove certain parts that are either not
relevant or that are not giving any positive effect on the results. Parts that
are removed are:

32 4 PROTOTYPING

e HTML tags
The HTML tags are not relevant for the classification and may therefore
be removed.

e Stop words / common words
Stop words are words that are very common and considered to not give
any positive effect on the results, and can thus be removed. A list of
the stop words used can be found in the file structure provided which
are described in Appendix B on page 65.

e Punctuation symbols
Punctuations symbols like “?”, “!I” etc, are not relevant for the learning
process and may be removed.

You can see the decrease in file size after preprocessing are done in the di-
agrams in Figure 5 on page 17 and Figure 6 on page 17. The total size of
all 1105 documents before preprocessing are 41.05 MB and after the prepro-
cessing it has decreased to 4.32 MB. The preprocessed size is only 10.5% of
the original size and this is a great reduction in size. Since the system has
to keep the documents locally it is imperative to keep the file size as low as
possible and the preprocessing helps with this.

The code for this can be found in the provided zip described in Ap-
pendix B on page 65.

4.3.2 Feature selection

The feature selection are handled by a Weka filter called StringToWordVector
which converts strings into a set of attributes that represents word occurrence
in a document (the string provided from the preprocessing). The weight w;
of a word t; in a document d; is in the simplest way calculated as:

{ 1, if thewordisinthewebpage
j pu

0, otherwise

This gives equal importance to words that occur a lot in many documents
and to words that are more rare and probably more important. Thus we use
some of the StringToWord built-in options of the StringToWordVector filter
to achieve TF/IDF (term frequency—inverse document frequency) weights for
each word. TF/IDF is a product of the local term importance (TF) and the
global term importance (IDF):

wi; = TF(t;, d;)- IDF(t;)

4.3 System parts we have implemented for testing 33

TF(t;, d;) is the number of time the word ¢; occurs in the document d;,
and the document frequency DF(t;) shown next is the number of documents
that the word tjoccurs in at least once.

1

0, otherwise

, if d;containst,;

DF(tj) = Zfil {

The IDF(?;) is then calculated from this and the total number of docu-
ments V:

IDF(t;) = log(575)

This reflects how important a word is to a document in a collection of
documents as a whole. Meaning that if the word occurs in many documents,
then it will be given a lower weight, but if it only occurs in a single document
it will be given a larger weight. We also normalize the word frequencies for
a document according to the document lengths. This way a long document
that contains a lot of one word should not get precedence just because it is
a long document with frequent use of this word because of it’s length.

This filter uses what’s called a bag of words representation of a document.
It takes single words found in the collection of documents as features and
ignore the sequence of the words in a document and only focuses on the
statistics of the isolated word. There are some other ways one could choose
to get feature representations about the words. One could use the word
positions in the document, use n-grams representation where you look at
word sequences of length n, use phrases, terms or hypernyms etc. All of
these methods have been used in lots of different ways on different problems,
but there have not been shown any significant differences in performance or
any big advantages when using them in text categorization [27, 22].

4.3.3 Classification as a whole

Here we will describe the whole process of learning a model of the documents
in a corpus, and then classifying new documents with this model.

The code for this and section 4.3.2 can be seen in code listing 9 on page 57.
The testing system creates an instance of the class WebPageClassifier which
contains a set of Instances called m_data which are going to contain the
training data. It has a boolean called m_UpToDate that ensures that every
time new data are added to the training data in m_data, when it is going
to classify a document, it has to perform the feature selection by the filter

34 4 PROTOTYPING

and also rebuild the classifier. It also contains the filter m_Filter and the
classifier in m_Classifier.

When an instance of this is created, it takes in a specified classifier and
it’s settings and uses these. Then it defines a FastVector with 2 attributes,
the document content (text) and the class it belongs to. The class attribute
has default-values which are all the classes that LOS contains. After this it
defines the name of the dataset, its attributes (the FastVector) and a initial
capacity.

The next step is to update the model with the data from all the documents
and this is done by going through all the preprocessed files in the file structure
and for each file run the method updateModel with the document content and
class. This method then runs the method makelnstance on the content of the
file. makelnstance defines the type of attribute that the content should be
and the value of it (the content of the file), and what dataset it should belong
to (m_data). Then it returns the instance so that updateModel can set it’s
class value and add the instance to the dataset m_data. At last it sets the
boolean m_UpToDate to false so that the system knows that it has to perform
the filter and rebuild of the classifier the next time it runs a classification on
a document.

Now when the system has been filled with the documents that are to be
learned the system may use the method called buildClassifier to build the
classifier (learn the documents and classes). This method first ensures that
the filter has it’s options set as described in section 4.3.2 by running the
method setFilterOptions. Then it filters the data with the filter (performs
feature selection) and lastly builds the classifier with the filtered instances.
Now the system has learned the documents and classes so that it are able to
predict classes for new documents.

The last part is then to classify new documents. The method classifyContent
takes in the content of a document and in our case also the actual class it
belongs to (for test purposes). If the system has added new documents into
the collection it will run the buildClassifier method to rebuild the classifier
as described above. Then it creates a copy of the structure if the data has
string or relational attributes and "cleanes” string types (i.e. doesn’t contain
references to the strings seen in the past) and all relational attributes. The
content of the document to be predicted are then added to the cleaned test-
set and the test-set is then filtered by the filter. When this is done the last
step is to use the classifylnstance method of the classifier with the filtered
test-set as input and get the indexes of the predicted classes.

The output would be the predicted percentages of the different classes it
could be a part of. Some classes may get almost the same percentages and
this could mean that the document could belong to all of them. In these

4.3 System parts we have implemented for testing

cases the user should verify the results manually.

35

36

4 PROTOTYPING

37

5 Testing and results

5.1 The testing

As mentioned we will test each algorithm mentioned in section 2.2.2 with
different options to see if we can find the optimum settings for the best
results. All the algorithms are tested with their default settings as a baseline
to compare the other settings against.

The tests consist of two parts, the first is to test the classifier against
a test set described in section 5.2, and to perform a cross-validation on the
learned data set. The cross-validation was performed with 5 runs with 5 folds
each and with different seeds for the randomizing of the data. Each run of
the validation creates a copy of the test data that it then randomizes the
features of each document instance. Then it creates an evaluation instance
and runs 5 folds on this randomized data. Each fold then creates a training
set and a test set from the randomized data. Then it builds the classifier
on the training set and lastly runs an evaluation of the classifier on the test
set. For each run it then shows it’s results and we can then average over
these 5 runs for our results. The code for this can be seen in the function
performEval() in code listing 9 on page 57.

We also tried running a cluster-based classification from Weka, but it ran
for 140 hours without returning any results. The reason for it using way too
much time is because of the 421 clusters it was supposed to make, and with
each new document added it would recalculate a lot of the clusters.

Also, we have mentioned some methods of semi-supervised learning, but
have not tried any of them out for ourself. This is because we have not had
access to any more documents that are already categorized in LOS to work
with and the relative small amount of 169 documents we have as a test-set
would not really be enough. The “unclassified” documents would need to
be categorized for us to be able to check if the classification improved (the
categories would only be used to check for improvement, and the documents
would be treated as if they were unclassified), and we would not have enough
time to sit and manually classify thousands of documents ourself. After all,
the reason for testing this is to be able to automate that process.

5.1.1 Test options

NaiveBayes We tried adding the kernel estimation option, but it used too
much ram and we could not get any results on whether this could improve
the results or not. We also tried it with the supervised discretization option
to process the numeric attributes. This turned out to be getting very bad

38 5 TESTING AND RESULTS

results, it classified wrong on all test documents and showed comparably bad
results in the cross-validation.

IBk First we tried to vary the amount of neighbors used by the algorithm
manually and saw no improvement when choosing more neighbors, it actually
got worse. Then we choose the option to let the algorithm choose itself within
an interval we set. It turned out that the algorithm found that just 1 neighbor
gave the best results, which we also could see from testing each on our own.

RandomForest We started out by varying the amount of trees it builds
from the standard of 10, and then increased it twofold each time. We also
increased the amount of features it should consider.

SMO We tried it with and without normalization (in case there are a great
variance in some of the variables) and also to vary the tolerance parameter
from the default of 0.001 and up to 1.0 with the steps 0.001, 0.005, 0.01, 0.05,
0.1, 0.5 and 1.0.

5.1.2 The test system

The tests have been run on a computer with a Intel i7 CPU running normally
at 2.2GHz but it automatically overclocks upwards to 3.3GHz if it’s not too
hot. It has usually been working in the range of 2.4 to 2.8 GHz during the
testing and it has only used one core. We have also given the program as
much ram as we have to give (4Gb) to use. This has been more than enough
for most of the tasks, although some of the algorithm options have seemed to
use so much ram, so fast, that we could not complete them in testing. Also,
some of the algorithms uses a lot of time to complete, and the validation runs
the algorithms 5*5 times, this results in a lot of time. The algorithms have
thus not gotten all their options tested. This is not such a big problem, since
we still show how bad they perform because of the low amount of training
material, and we were not out to try to find the perfect options.

5.2 The test set

We created the test set by selecting at random one document from every class
that has 3 or more documents in it. This resulted in a test set containing 169
documents from a good portion of the data set (18%). We could not take out
much more documents since the amount of documents we were learning from
were rather small already. If we remove too many documents the quality of

5.3 The results 39

the learning would suffer, and as we can see in the results, this was probably
a good call.

5.3 The results

In the testing there are two parts, the real-world scenario of classifying our
test-set and also the results from the WEKA evaluation. From both of these
we will look at the percentage of correctly classified documents, but in the
evaluation there are also one other measure that are of high interest, the
kappa statistic. The kappa statistic are a measure that tells you how much
better the result would be than if one would just randomly guess what class
a document belongs to. This number is computed as:

P(A)—P(E)
—r@ - P

P(A) is the result from the classification and P(E) is the result that
was expected from the classification. LE. P(E) represents the amount of
times we would expect the system to agree to the result by chance. The
resulting number can range from -1 to 1 where a value of 1 would mean
perfect agreement, a 0 would mean it is equal to chance and a -1 would mean
a perfect disagreement. In our case, the closer the kappa statistic are to 1,
the better the calculated model. If the result would be close to 0 it would
mean that the calculated model would be bad and equal to someone just
picking categories randomly.

5.3.1 Main results

NaiveBayes The best results came from using the default options, with
neither kernel estimation or supervised discretization. Out of the 169 doc-
uments in the test set it classified 157 with the wrong class, giving it only
12 correct classifications. That equals to only 7.1% correct and is not a very
good result. On the cross-validation it was a little lower with an average of
5.4% correctly classified instances. We can also see that the kappa statistic
is very close to zero, which means that it is close to random guessing. The
full overview of one of the evaluation runs can be seen here:

40

5 TESTING AND RESULTS

Code listing 2: Validation result for Naive Bayes with default options

——= Setup run 3 ——

Classifier: weka.classifiers.bayes.NaiveBayes

Dataset: WebpageClassification

Folds: 5
Seed: 3

—— 5—fold Cross—validation run 3=—=

Correctly Classified Instances 50 5.3419 %
Incorrectly Classified Instances 886 94.6581 %
Kappa statistic 0.05

Mean absolute error 0.0037

Root mean squared error 0.0595

Relative absolute error 94.6926 %

Root relative squared error 133.7309 %

Total Number of Instances 936

IBk The best results came once again from the default options where it
only looked at 1 neighbor. This was also shown when we used the option
to let the algorithm choose the number of neighbors itself by doing some
evaluation of the training data. Out of the 169 documents in the test set
it classified 160 with the wrong class giving it only 9 correct classifications.
This gives it a little bit of a worse performance than the NaiveBayes, 5.3% in
this case. On the cross-validation it also got a slightly lower result with an
average of 5.2% correct. As with NaiveBayes, this also got a very low kappa
statistic score close to zero. The full overview of one of the evaluation runs
can be seen here:

Code listing 3: Validation result for IBk with default options

——= Setup run 2 ——

Classifier: weka.classifiers.lazy.IBk -K 1 W 0 —A
?weka. core.neighboursearch.LinearNNSearch —A
\”weka.core.EuclideanDistance —R first —last\

Dataset: WebpageClassification

Folds: 5

Seed: 2

99

—— 5—fold Cross—validation run 2=——

Correctly Classified Instances 49 5.235 %
Incorrectly Classified Instances 887 94.765 %
Kappa statistic 0.0491

Mean absolute error 0.0038

Root mean squared error 0.0484

Relative absolute error 96.9611 %

Root relative squared error 108.7455 %

Total Number of Instances

936

5.3 The results 41

RandomForest With the default options of the RandomForest algorithm
we got similar results as the previous ones. It classified 157 out of the 169
wrong, giving it 12 correctly classified, or 7.1%. The validation results came
in at something equal to the others with an average of 6.5% correct.

Then we started to vary the amount of trees it builds and the number
of features it considers. From all the testing it turned out that setting the
amount of features to 1 gave the best results in every variance of the amount
of trees we chose. We then increased the amount of trees twofold each time.
20 trees gave 4 more correctly classified, 40 trees gave 7 more and 80 trees
or more gave a whole 13 more. But beyond the amount of 80 trees the
results did not improve any more. The result is that we had an impressive 25
correctly classified instances from the test-set. This amounts to 14.8% and
is quite much higher than any of the other algorithms.

The validation had a slightly lower result with an average of 8.3% correctly
classified and the kappa statistic has improved slightly, but are still not very
good.

One of the validation results from the best options with 80 trees and 1
features considered:

Code listing 4: Validation result for RandomForest with 80 trees and
1 feature

—— Setup run 4 —
Classifier: weka.classifiers.trees.RandomForest —1 80 —-K 1 —S 1
Dataset: WebpageClassification

Folds: 5
Seed: 4
5—fold Cross—validation run 4===
Correctly Classified Instances 84 8.9744 %
Incorrectly Classified Instances 852 91.0256 %
Kappa statistic 0.0861
Mean absolute error 0.0038
Root mean squared error 0.049
Relative absolute error 95.7871 %
Root relative squared error 110.1826 %
Total Number of Instances 936

SMO The SMO algorithm impressively classified a whole 17 (10.1%) doc-
uments correctly with it’s default options. In the validation it got a decent
7.4% correct which is better than most of the other algorithms even after
they have been tweaked by using different options. But once again the kappa
statistic are low, almost on the same level as NaiveBayes and IBk. When
we tried it with normalization and to vary the tolerance parameter, it got
slightly worse (2 more wrongly classified) up to 0.1 where it slightly improved

42 5 TESTING AND RESULTS

(only 1 more wrongly classified). But then on 0.5 it got worse again with
4 more wrongly classified and on 1.0 it got considerably worse with every
document classified wrong. Thus, the default options turned out to get the
best results. One of the validation results follows:

Code listing 5: Validation result for SMO with default options

—— Setup run 3 —

Classifier: weka.classifiers.functions.SMO —C 1.0 —L 0.001 —P
1.0E-12 -N 0 -V -1 W 1 K
?weka. classifiers.functions.supportVector.PolyKernel —C 250007
-E 1.0”7

Dataset: WebpageClassification

Folds: 5

Seed: 3

5—fold Cross—validation run 3=—==

Correctly Classified Instances 63 6.7308 %
Incorrectly Classified Instances 873 93.2692 %
Kappa statistic 0.0631

Mean absolute error 0.004

Root mean squared error 0.0445

Relative absolute error 100.0224 %

Root relative squared error 100.0365 %

Total Number of Instances 936

Overview One can see in the figure 11 that all of the algorithms performed
fairly similarly. Especially in the evaluation results, all of the algorithms were
within 3.1% of each other. On the real world test with the test set on the
other hand, the variance were a bit bigger. With a difference of 9.5% from
the worst performing algorithm IBk to the best performing RandomForest,
we can see that there is a difference in how the real world data works with
different algorithms. So with the documents that are in the ontology, the
RandomForest algorithm are clearly the one to choose.

5.3.2 Extended testing

Seeing both from the literature (Table 1 on page 22) and from our tests, the
amount of documents per class in the system does not result in any good
classification. There are simply to few documents and too many classes.
Because of this we wanted to see if we could get some better results if we used
the two other levels (main themes and sub-themes) of the LOS-ontology’s
class structure (Figure 8 on page 19) when classifying.

If we would use the sub-theme level we would have a lot fewer classes
(79 versus the 421 that contains documents, 504 in total), and this would
be a reduction of as much as 81.24%. At the main theme level, the decrease
in classes would be substantial, going from 421 to only 15 classes. This

5.3 The results 43

14.8

14 R

12 8
=
§ mn 10.1 |
2. 8.3

8l7.1 7.4

6 I5.4 5.35.92

- m

NaiveBayes 1Bk RandomForest SMO
B0 Test-files' " Evaluation

Figure 11: Distribution correctly classified in testing

equates to a reduction of as much as 96.44%, and it is a huge reduction.
And when reducing the amount of classes we of course increase the amount
of documents per class and thus the probability for a correct classification.
When reducing to 79 classes the amount of documents per class increases
from an average of 2.63 per class to an average of 13.99 documents per class.
This is a decent improvement, but nowhere near the amount used in testing
by most literature. It is only when we reduce the number of classes to only
the 15 main theme classes that we see a number of average documents per
class that are somewhere near what is used in the literature. This results in
an average of 73.66 documents per class and are within the numbers we have
seen. A comparison of these numbers can be seen in Figure 12 on page 45.

We wanted to see what kind of improvements we could get from the reduc-
tions in classes by using the algorithm that performed best in our earlier tests,
the RandomForest algorithm, with the settings that performed the best. We
ran the learning on the documents with the new levels and performed the
cross-validation we used in the previous tests to get the results.

When we reduced the number of classes to 79 we achieved an average of
34.23% correctly classified, which is a good step up from the 8.3% we saw
when using all 421 classes earlier. Here you can see one of the validation
results:

44 5 TESTING AND RESULTS

Code listing 6: RandomForest Validation results with 79 Classes

——= Setup run 2
Classifier: weka.classifiers.trees.RandomForest —1 80 -K 1 —S 1
Dataset: WebpageClassification

Folds: 5

Seed: 2

—— 5—fold Cross—validation run 2=——

Correctly Classified Instances 321 34.2949 %
Incorrectly Classified Instances 615 65.7051 %
Kappa statistic 0.329

Mean absolute error 0.0195

Root mean squared error 0.1093

Relative absolute error 78.422 %

Root relative squared error 98.0375 %

Total Number of Instances 936

Lastly we ran the test with only the 15 main themes as classes and
achieved an average of 51.60% correctly classified. The last validation re-

sult:

Code listing 7: RandomForest Validation results with 15 Classes

—— Setup run 5 ——

Classifier: weka.classifiers.trees.RandomForest —1 80 -K 1 —S 1
Dataset: WebpageClassification

Folds: 5

Seed: 5

—— 5—fold Cross—validation run 5=——=

Correctly Classified Instances 484
Incorrectly Classified Instances

51.7094 %
452 48.2906 %

Kappa statistic 0.478
Mean absolute error 0.0821
Root mean squared error 0.2196
Relative absolute error 66.4749 %
Root relative squared error 88.361 %
Total Number of Instances 936

5.3.3 Discussion

These results are not good enough to be able to use this kind of system on
the LOS-ontology as it is as of now.

One of the reasons for the bad result is the low degree of separation
between the categories in LOS. Firstly, the collection has a rather low amount
of documents to be able to learn the differences between categories and the
categories used are rather fuzzy and ambiguous. Many classes overlap and are
not very well-defined or separated. Because of this the algorithms computes

that a document has equal similarity with several classes.

Although this

5.3 The results 45

600 - ‘ 7
504

400 :
g
=
S

£ 200 |

79 73.66

2.63 13.99 15
0 e o

T T T
Class Sub-themes Main-themes

IiClasses' " Docs per class

Figure 12: Reduction in classes

may not really be wrong either, because the document may very well contain
information relevant for several classes, the cut-off value for how high of a
percent a document needs to have in common with a class to be considered
belonging to this class may be hard to define.

When we took a look at the results from the test-data we could see that
this problem of ambiguity shows. The classes that get a lot of correct classi-
fication are either classes with a lot of documents or they are quite unique in
the words they use. Although only 13% of the classes that got correctly clas-
sified over 50% of the time had 5 or more documents, of all the classes only
3.6% had 5 or more documents. So, having more documents does improve
the chances of getting correctly classified. We could also see that most of the
other classes that got correctly classified over 50% of the time had content
that was quite unique, so that despite them having fewer documents to learn
from, they got good results. Classes like “Viltforvaltning”, “Kystforvaltning,
“Alkoholsalg” and “Lotteri” got correctly classified in over 75% of the tests.

The extended testing showed a great improvement because of the increase
in documents per class and further solidifies the stance that we need more
documents to get good enough results.

46

5 TESTING AND RESULTS

47

6 Conclusion

In this thesis we tried to find out if there were possible to use supervised
learning to help in classification of documents into the classes of LOS. We
wanted to see what kinds of precision we could get in the classification of new
documents and also estimate how many documents that would be needed.
In this chapter we will discuss our findings and testing results.

6.1 Our results

As we have seen in the results in Section 5, the percentages of correctly clas-
sified documents on each of the classifiers are very low. The worst performing
came in at a low 5.3% and the best performing at an albeit higher but still low
14.8%. Also, the kappa statistic, that ranges from 0.0491 to 0.0861, shows
that they do not really perform much better than if it tried to just guess the
classes at random.

When trying to decrease the number of classes and increasing the number
of documents per class by using the higher-level categories of LOS we see a
great increase in both percentage correct and in the kappa statistic. With
79 classes the amount of correctly classified documents increase to 34.29%
and the kappa statistic increase to 0.329 which is a great increase from the
previous results. When we go even further and only use the 15 top level
categories of LOS the amount of correctly classified documents increase to
51.71% and the kappa statistic to 0.478. Both of these are good increases
and shows that with more documents per category the algorithm can give a
much better result.

But when we look at the percentage of increase between the different
levels it levels out a bit. The first leap from the original 2.625 documents per
class up to 13.987 is a 432.84% increase. This resulted in the increase from
8.3% correctly classified up to 34.29% and this is an increase of 313.13%. Here
both the increase in documents per class and the resulting correctly classified
are huge and follow each other rather well with only a difference of 32.10%.
The last leap from 13.987 documents per class up to 73.666 is an increase
of 426.67%, almost the same as with the first one. On the other hand, the
increase in correctly classified documents go from 34.29% to 51.71% and is
only an increase of 50.8%. Here, the increase in documents are still huge, but
the increase in correctly classified are rather low. The difference this time is
157.44%. 1.E. the increase in correctly classified documents does not follow
the increases in the amount of documents per class.

We would probably see some differences in this behavior if we would ac-
tually get more documents labeled as opposed to just decreasing the amount

48 6 CONCLUSION

of categories. We would probably not get such a drastic difference so quickly
when increasing the amount of documents per category if we were adding
new documents. But this still shows that we at least need more documents
for the percentages of correctly classified to reach a usable level. The number
of correctly classified documents would have to be in the range of 80% for
this to be usable by Difi, and there is a long way to get there. To be able to
reach these numbers there are two possible things to do. One can add more
documents, which is the number one thing to do to achieve this goal. And
secondly, one can try to decrease the amount of categories. The last part
are probably not something Difi wants to do since they feel that the different
categories are required. But seeing as a lot of categories are overlapping each
other quite a lot and that the result of this are that the learning are having
a hard time to discern the different categories, something should be done
about this too.

From what we have seen in the literature (Table 1 on page 22) and from
our testing we would estimate that with such a high amount of categories as
LOS has (504), they would need at least 50 documents per class on average
to be able to get any good results. This would result in them having to have
upwards of 25200 documents in LOS. This is a huge increase of 2180.54%
from what they have now, and would take quite a lot of manual labour to
achieve. On the other hand, they could use supervised learning to give them
a sort of indication of what categories a document may belong to so that the
manual job would take less time.

6.2 Future work

To be able to get better results with this low amount of documents per cat-
egory some methods try to use the documents that are to be classified as
an information source as well. In “CBC: Clustering Based Text Classifica-
tion” [36], they use clustering of both the labeled documents together with
the documents that are unlabeled. They then consider the unlabeled docu-
ments that are very close to the centroids of classified documents as having
such a high certainty of belonging in that class that they then label them
and use them in the training portion to make a new model.

“Using Unlabeled Data to Improve Text Classification” [23] also uses the
unlabeled documents as a way of improving the results. They initially use
for example a Naive Bayes classifier to model the labeled documents only.
Then they estimate the labels of the unlabeled documents and use both
the newly estimated documents and the labeled documents to build a new
classifier. This method showed a 30% reduction in classification error over
just learning the labeled documents when there were only 15 documents per

6.3 Summary 49

B
S 80f |
—
]
o
)
¥
E 60| |
i
<]
o
—
S
S 40| |
+
o]
e
»
S 20 :
(o)
(o)
<

T
0 0.5 1 1.5 2 2.5
amount of docs 104

now ' I predicted

Figure 13: Estimated needed amount of docs
class.

6.3 Summary

As we have seen in the literature, supervised learning are most certainly a
viable option when you want to automate categorization. A lot of papers
show good results [15, 6] and the sheer amount of papers that are written
on the subject show that it is a subject that are thoroughly studied and
continually improving.

But as the situation stands today with regards to the LOS ontology and
the use of supervised learning, it is not possible to get any good results with
the standard methods. The small amount of documents and the large amount
of classes in LOS makes it impossible to get a good model that gives good
results when classifying new documents. As we saw when we tried to use the
higher-level categories of LOS and thus reducing the amount of classes and
increasing the amount of documents per category, the percentage of correctly
classified documents increased a lot. It did not however increase enough to
be able to be used. Thus we envision that as the system stands today, using
supervised learning to categorize new documents does not give good enough
results to be able to be used totally automated without human intervention.
On the other hand, it can be used as an indicator that automatically can

50 6 CONCLUSION

categorize documents that have a very high probability itself, and let the
user manually categorize documents where the system are not sure enough.
This way it can ease the burden of the manual labour of categorizing a lot
of documents.

BIBLIOGRAPHY o1

Bibliography

1]

2]

[10]

[11]

[12]

D. Aha and D. Kibler. Instance-based learning algorithms. Machine
Learning, 6:37-66, 1991.

E. Bauer and R. Kohavi. An empirical comparison of voting classifi-

cation algorithms: Bagging, boosting, and variants. Machine learning,
36(1):105-139, 1999.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
M.K. Buckland. What is a “document”? JASIS, 48(9):804-809, 1997.

J. Carletta. Assessing agreement on classification tasks: the kappa statis-
tic. Computational linguistics, 22(2):249-254, 1996.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of su-
pervised learning algorithms. In Proceedings of the 23rd international
conference on Machine learning, pages 161-168. ACM, 2006.

O. Chapelle, B. Scholkopf, A. Zien, et al. Semi-supervised learning,
volume 2. MIT press Cambridge, MA:, 2006.

C. Chekuri, M.H. Goldwasser, P. Raghavan, and E. Upfal. Web search
using automatic classification. In Proceedings of the Sixth International

Conference on the World Wide Web. Citeseer, 1997.

J. Chen, H. Huang, S. Tian, and Y. Qu. Feature selection for text classi-
fication with naive bayes. Expert Systems with Applications, 36(3):5432—
5435, 2009.

F. Ciravegna, A. Dingli, D. Petrelli, and Y. Wilks. User-system cooper-
ation in document annotation based on information extraction. Knowl-
edge Engineering and Knowledge Management: Ontologies and the Se-
mantic Web, pages 122-137, 2002.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1.H.
Witten. The weka data mining software: an update. ACM SIGKDD
Ezplorations Newsletter, 11(1):10-18, 2009.

A. Hogue and D. Karger. Thresher: automating the unwrapping of
semantic content from the world wide web. In Proceedings of the 1jth
international conference on World Wide Web, pages 86-95. ACM, 2005.

52

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

BIBLIOGRAPHY

T. Joachims. A probabilistic analysis of the rocchio algorithm with tfidf
for text categorization. Technical report, DTIC Document, 1996.

George H. John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Fleventh Conference on Uncertainty in Artificial
Intelligence, pages 338-345, San Mateo, 1995. Morgan Kaufmann.

R.D. King, C. Feng, and A. Sutherland. Statlog: comparison of clas-
sification algorithms on large real-world problems. Applied Artificial
Intelligence an International Journal, 9(3):289-333, 1995.

SB Kotsiantis, ID Zaharakis, and PE Pintelas. Supervised machine
learning: A review of classification techniques. FRONTIERS IN ARTI-
FICIAL INTELLIGENCE AND APPLICATIONS, 160:3, 2007.

D.D. Lewis. An evaluation of phrasal and clustered representations on a
text categorization task. In Proceedings of the 15th annual international
ACM SIGIR conference on Research and development in information
retrieval, pages 37-50. ACM, 1992.

D.D. Lewis and M. Ringuette. A comparison of two learning algorithms
for text categorization. In Third annual symposium on document anal-
ysis and information retrieval, volume 33, pages 81-93. Citeseer, 1994.

C.D. Manning, P. Raghavan, and H. Schiitze. Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

A. McCallum and K. Nigam. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text
categorization, volume 752, pages 41-48, 1998.

Rob Miller. Websphinx: A personal, customizable web crawler. http:
//www.cs.cmu.edu/ rcm/websphinx/, 2012. [Online; accessed 28-febr-
2012]".

D. Mladenic. Text-learning and related intelligent agents: a survey.
Intelligent Systems and their Applications, IEEE, 14(4):44-54, 1999.

K.P. Nigam. Using unlabeled data to improve text classification. PhD
thesis, Citeseer, 2001.

Gregory Piatetsky-Shapiro. Winner of sigkdd data mining and knowl-
edge discovery service award ... http://www.kdnuggets.com/news/
2005/n13/2i.html, 2005. [Online; accessed 29-febr-2012]”.

BIBLIOGRAPHY 93

[25]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Platt. Fast training of support vector machines using sequential min-
imal optimization. In B. Schoelkopf, C. Burges, and A. Smola, edi-
tors, Advances in Kernel Methods - Support Vector Learning. MIT Press,
1998.

J. Platt et al. Sequential minimal optimization: A fast algorithm for
training support vector machines. 1998.

S. Scott and S. Matwin. Feature engineering for text classification.
In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, pages 379-388. Citeseer, 1999.

F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1-47, 2002.

V. Svatek, M. Labsky, and M. Vacura. Knowledge modelling for de-
ductive web mining. Engineering Knowledge in the Age of the Semantic
Web, pages 337-353, 2004.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple
and general method for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics,
pages 384-394. Association for Computational Linguistics, 2010.

http://java-source.net/. Open source crawlers in java. http://
java-source.net/open-source/crawlers, 2012. [Online; accessed 24-
may-2012].

VN Vapnik. Estimation of dependences based on empirical data, 1982.
NY: Springer-Verlag.

M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and
F. Ciravegna. Mnm: Ontology driven semi-automatic and automatic
support for semantic markup. Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web, pages 213-221, 2002.

[LH. Witten, E. Frank, and M.A. Hall. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2011.

Y. Yang and X. Liu. A re-examination of text categorization methods. In
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 42-49. ACM,
1999.

o4 BIBLIOGRAPHY

[36] H.J. Zeng, X.H. Wang, Z. Chen, H. Lu, and W.Y. Ma. Cbc: Clustering
based text classification requiring minimal labeled data. In Data Mining,
2003. ICDM 2003. Third IEEE International Conference on, pages 443~
450. IEEE, 2003.

[37] T. Zhang and F.J. Oles. Text categorization based on regularized linear
classification methods. Information retrieval, 4(1):5-31, 2001.

0O Ui Wi+

— =
N = O O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

95

A Code

Code that crawls the LOS-website, creates the folder structure according to
the LOS-structure and then saves the web pages belonging to each class.

Code listing 8: CrawlLOS.java

package Useful;

import
import
import
import

import
import

public

org.jsoup.Jsoup;
org.jsoup.nodes.Document;
org.jsoup .nodes. Element;
org.jsoup.select.Elements;

java.io .x*;
java.util.ArrayList;

class CrawlLOS ({

public static void traverseAndMakeFoldersFromLosWeb(String

rootUrl, int level, String folderpath) {
ArrayList<String> temaerUrls = new ArrayList<String >();
ArrayList<String> temaerNames = new ArrayList<String >();
try {

Document doc = Jsoup.connect(rootUrl).get();
Element body = doc.body();
Elements main = body.select ("#main”);
Elements elements = null;
if(level <= 3) {

elements = main. get (0).select (”.elements”);
}
else {

elements = main. get (0).select (”.netresource”);
}
for (Element e : elements) {

Elements tema = e.select (7a”);

temaerUrls.add (tema.get (0).attr ("href”));
temaerNames . add (tema. get (0) . text ()) ;

} catch (IOException e) {
e.printStackTrace () ;

if(level <= 3) {
int count = 0;
for (String url : temaerUrls) {
File folder = new File(folderpath +
temaerNames. get (count) + ”7/7);
if (! folder.exists()) {
folder . mkdir () ;

26 A CODE

41 }

42 String spaces = 77

43 if(level = 2)

44 spaces += "—> 7;

45 if(level = 3)

46 spaces 4= "—> 7;

47 System.out.println (spaces + "Folder: 7 +
temaerNames . get (count)) ;

48 traverseAndMakeFoldersFromLosWeb ("http://los. difi .no/”
+ url, level + 1, folderpath +
temaerNames. get (count) + 7/7);

49 count+-;

50 }

51 }

52 else {

53 int count = 0;

54 for (String url : temaerUrls) {

55 try {

56 File file = new File(folderpath ,

temaerNames. get (count)) ;

57 if (Ifile.exists()) {

58 System.out.println (”File: 7 +
temaerNames. get (count) + 7 url: 7 +
url);

59 Document doc = Jsoup.connect(url).get();

60 BufferedWriter out = new

BufferedWriter (new
OutputStreamWriter (new
FileOutputStream (file) ,”UTF8”)) ;
61 //new BufferedWriter (new
FileWriter (folderpath + 7/”
+ temaerNames. get (count)));

62 out.write(doc.html());

63 out.close () ;

64 }

65 count—++;

66 } catch (IOException e) {

67 System.out.println (”Error on file: ” +
temaerNames. get (count) + 7 url: 7 + url);

68 e.printStackTrace () ;

69 }

70 }

71 }

72 }

73 public static void main(String [] args) {

74 traverseAndMakeFoldersFromLosWeb ("http://los. difi.no/struktur/”

1, 7?/media/Master /LOS/”) ;
75 }
76}

00 O Uik Wi

R RN RN N KN o e e e e e e
QU W N OO Uk W= OO

26
27
28

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

57

Code listing 9: WebPageClassifier.java

package Classifying;
import weka.classifiers. Classifier;
import weka.classifiers.Evaluation;
import weka.core . x;
import weka. filters . Filter;
import weka. filters .unsupervised.attribute.StringToWordVector;
import java.io.File;
import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collections;
import java.util.Random;
public class WebPageClassifier implements Serializable {
private static final long serialVersionUID = 1L;
// The root folder of the training data files
private static final String rootF = ”/media/Master /LOS/”;
// Training data
private Instances m_data = null;
// if it needs to rebuild the classifier because there have
been added new instances to the training data or not
private boolean m_UpToDate;
// Filter
private StringToWordVector m_Filter = new
StringToWordVector () ;
// Classifier
private Classifier m_Classifier = null;
/%%
x Construction of empty training set
x Adds the classes to the training data
x @throws FEzception
*/
public WebPageClassifier (Classifier classifier , String []
classifierOptions) throws Exception {
m_Classifier = classifier;
m_Classifier.setOptions(classifierOptions);
String datasetName = ”"WebpageClassification”;
FastVector attributes = new FastVector(2);
attributes.addElement (new Attribute (”Content”,

(FastVector) null));

44
45
46
47
48
49
50
o1

92
93
54
55
56
o7
o8
59
60
61
62
63

64
65

66
67
68
69
70
71
72

73

74
()
76

7
78
79
80
81
82
83
84
85
86

o8

}

Vit

A CODE

// Class attributes
File root = new File (rootF);
ArrayList<String> classes = new ArrayList<String >();
for (String f1 : root.list()) {
File folderl = new File(rootF + ”7/” + f1);
for (String f2 : folderl.list ()) {
File folder2 = new File(rootF + 7/” + f1 + 7/”

+ £2);
for (String folder : folder2.list ()) {
if (! classes.contains(f2 + 7 — 7 + folder)) {
classes.add(f2 + 7 — 7 + folder);

}

}
}
FastVector classValues = new FastVector(classes.size());
for (String ¢ : classes) {
classValues.addElement (c);
}

attributes.addElement (new Attribute (”Class”,
classValues));

// Create a dataset with initial capacity of 100, plus
set the index of class.

m_data = new Instances(datasetName, attributes, 100);

m_data.setClassIndex (m_data.numAttributes () —1);

Updates the model with the given training page.

x Makes an instance of the data, sets it’s class and adds

it to m_data.

x Also sets m_UpToDate to false so that it will rebuild

the classifier before classifying mew documents.

* Q@throws FException

public void updateModel(String content, String classValue)

throws Exception {
// Convert content string into an instance
Instance instance = makelnstance(content, m_data);

// Add the class wvalue to the instance
instance.setClassValue (classValue);

// Add teh instance to the training data
m_data.add (instance);

m_UpToDate = false;

87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105

106

107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128

}
/%%

x sets the options for the filter , i.e.:

99

x adds TD/IDF , normalizes vectors based on document length

x @throws Fxception

*/

public void setFilterOptions () throws Exception {

// Initialize filter

//TF_IDF

m_Filter.setIDFTransform (true);
m_Filter.setTFTransform (true);

// Normalize document lengths
m_Filter.setNormalizeDocLength (new

SelectedTag (StringToWordVector . FILTER_ NORMALIZE ALL,

StringToWordVector . TAGS_FILTER)) ;
m_Filter.setInputFormat (m_data) ;

}
/%%

x Method that sets the options of the filter , filters the
data with this filter and then build the classififer.

x Sets m_UpToDate to true so that it will

not need to

perform this task when it is already done and no new

data is added.
x @throws FException

*/

public void buildClassifier () throws Exception {

setFilterOptions () ;

Instances filteredData = Filter.useFilter (m_data,

m_Filter);

m_Classifier. buildClassifier (filteredData);

m_UpToDate = true;

}
/%

x Classifies a given document
* @param content Content of the document

x @param actualClass the class that the document belongs to

x @throws Fxception

*/

public void classifyContent (String content
actualClass) throws Exception {

String

// Check if a classifier already has been built

if (m_data.numlInstances() = 0) {
throw new Exception(”No classifier

available”);

129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148

149
150
151
152
153
154
155
156
157

158

159

160
161

162
163
164
165
166

167
168

60

A CODE

}
if (!m_UpToDate) {

System.out.println ("Model not up to date, building
new classifier”);

buildClassifier ();

}
Instances testSet = m_data.stringFreeStructure ()
Instance instance = makelnstance(content, testSet);

// Filter the instance
m_Filter.input (instance);
Instance filteredInstance = m_Filter.output();

// Get the index of the predicted class value
double predicted =
m_Classifier.classifyInstance (filteredInstance);

double [] dist =

m_Classifier.distributionForInstance (filteredInstance);
ArrayList <MyClass> myClasses = new ArrayList<MyClass>();
int count = 0;
for (double d : dist) {

myClasses.add (new MyClass(count, d));

count+-+;

}

Collections.sort (myClasses) ;

System.out.println ("\nContent classified as: 7 4+ (int)

predicted + 7: 7 +
m_data.classAttribute ().value((int) predicted)
+ "\nActual class: 7+
actualClass + ”\n Probability: 7 +

dist [(int) predicted]);

if (lactualClass.equals(m_data.classAttribute ().value ((int)
predicted))) {
System.out.println ("WRONG! other possibilities:\n”);

count = 0;

for (MyClass m : myClasses) {
count—++;
System.out.println (77’ +

m_data.classAttribute () .value (m.getId ()) +
"7+ 7 with prob: ” 4+ m.getPercent());

if (m.getPercent () = 0.0 || count = 30) {
break;

169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184

185
186
187
188
189
190
191
192
193
194

195

196
197

198

199
200
201
202
203
204
205

206
207

208

61

}
VT

x Converts the content of a file into an instance

x @param content The content of the file

* @param data the data already in the system (m_data)
x @return an Instance of the content

*/

public Instance makelnstance(String content, Instances
data) {
Instance instance = new Instance(2);

Attribute contentAtt = data.attribute (”Content”);
instance.setValue (contentAtt ,
contentAtt.addStringValue (content));

instance.setDataset (data);

return instance;

}

/%%

*

x @param root The string for the root folder of the files

x @param processed if it should look for files that ends
with .processed or not

x @return ArrayList with type FilePathAndClass with all
the filepaths

*/

public ArrayList<FilePathAndClass>
getAllFilePathsFromFolderStructure (String root, boolean
processed) {

ArrayList<FilePathAndClass> filePaths = new
ArrayList<FilePathAndClass >();

File _root = new File(root);
if(_root.exists()) {
for (String f1 : _root.list ()) {
File folderl = new File(root + 7/” + f1);
for (String f2 : folderl.list ()) {
File folder2 = new File(root + ”7/” + f1 +
”/77 4 f2)7
for (String f3 : folder2.list ()) {
File folder3 = new File(root + ”/” + f1
+)7+ £2 4 7)) 4 £3);
for (String file : folder3.list ()) {

209
210

211

212
213
214
215

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

236
237

238
239
240
241
242
243

62

A CODE

if (processed) {
if(file.endsWith(”.processed”))

filePaths .add (new
FilePathAndClass (f2 + 7
_» + f37 root + 77/77 +
fl + 77/77 + f2 + 77/77 + f3
+ /)7 + file));

}
}
else {
if (! file .endsWith(”.processed”))
{
filePaths .add (new
FilePathAndClass (f2 + 7
-7 4+ £3, root + 7/7 +
f1 +7/7 + f2 +7/7 + 3
+ 7/ + file));
}
}
}
}
}
}
}
return filePaths;
}
Vir

* runs a 5 run, 5 fold evaluation of the learned data
* Q@throws FException
«/
public void performEval() throws Exception {
int runs = 5;
int folds = 5;

Classifier classifier = (Classifier)
Utils.forName(Classifier .class,
m_Classifier.getClass () .getName() ,
m_Classifier.getOptions());

setFilterOptions () ;

Instances filteredData = Filter.useFilter (m_data,
m_Filter);

for(int 1 = 0; i < runs; i++) {
int seed = i + 1;

Random random = new Random (seed);

Instances randData = new Instances(filteredData);

244
245
246
247
248
249
250
251
252
253
254
255

256
257
258
259
260
261
262

263

264

265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284

}

VT
x Gets the time
x @return String on the format yyyy—MM-dd HH:mm: ss

63

randData.randomize (random) ;

if (randData.classAttribute ().isNominal()) {
randData.stratify (folds);

}

Evaluation evaluation = new Evaluation(randData);
for (int n = 0; n < folds; n++) {
System.out.println ("Fold ” + n);
Instances train = randData.trainCV(folds, n);
Instances test = randData.testCV (folds, n);

Classifier classifierCopy =

Classifier .makeCopy(classifier);
classifierCopy .buildClassifier (train);
evaluation .evaluateModel (classifierCopy , test);

}

// output evaluation
System.out.println () ;
System.out.println (”

Setup run ” + (i + 1) + 7

—");

System.out.println (” Classifier: 7 +
classifier.getClass().getName() + 7 7 +
Utils.joinOptions(classifier.getOptions()));

System.out.println (”Dataset: 7 +

m_data.relationName ()) ;
System.out.println ("Folds: ” + folds);
System.out.println (”Seed: ” + seed);
System.out.println () ;
System.out.println (evaluation.toSummaryString (”
7 4+ folds + "—fold Cross—validation run 7 + (i +
1) + '==", false));
System.out.println () ;

public static String now() {

final String DATEFORMATNOW = "yyyy-MM-dd HH:mm: ss”;
Calendar cal = Calendar. getInstance () ;
SimpleDateFormat sdf = new

SimpleDateFormat (DATE FORMAT NOW) ;

return sdf.format (cal.getTime());

64 A CODE

285 ViE

286 x Writes the learned model to a file for later usage

287 * @param path The place it should be stored

288 * @param modelFileString Name of the file

289 x @throws FEzxzception

290 %/

291 public void writeModelToFile(String path, String

modelFileString) throws Exception {

292 File f = new File(path + modelFileString);

293 if (f.exists()) {

294 f.renameTo(new File (path + modelFileString +

7.oold”));

295 f.delete();

296 }

297 FileOutputStream modelOutFile = new
FileOutputStream (path + modelFileString);

298 ObjectOutputStream modelOutObjectFile = new
ObjectOutputStream (modelOutFile) ;

299 modelOutObjectFile. writeObject (this);

300 modelOutObjectFile. flush () ;

301 modelOutFile. close () ;

302 }

303

304 Vit

305 x Creates a string with the classifier used and all it’s

options

306 x @return String

307 %/

308 public String getClassifierString () {

309 String options = ” options:”;

310 for (String s : m_Classifier.getOptions()) {

311 options += " 7 + s}

312 }

313 return m_Classifier.getClass().toString () + options;

314 }

315}

65

B Enclosed ZIP Archive

This appendix describes the contents of the ZIP archive enclosed with this
thesis. The archive is available through the DAIM system at http://daim.
idi.ntnu.no

The folder structure of the archive is as following:

e LOS
The folder structure of http://los.difi.no/struktur/

— Main categories

x Sub categories

- Classes

e LOStest
The test-set

e src
Source files for the prototype

— Classifying
The parts that perform classification

— Crawl
The part that crawls the los-webpage

— PreProcessing
The parts that perform preprocessing

e stop.txt
Text-document that lists all stop words I have used

	Title Page
	masteroppgave.pdf

