
Using Information Extraction and Text
Classification in an Effort to Support
Systematic Literature Reviews

Sofien Lazreg

Master of Science in Informatics

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Sammendrag

Systematisk litteratur analyse er et viktig verktøy i kunnskap-
basert systemutvikling, men krever mye arbeid og tid fra forskere.
Ekstrahering av data er et viktig steg i disse analysene, men
n̊aværende praksis krever at forskere manuelt ekstraherer store
mengder data. Denne oppgaven undersøker mulighetene for å
utvikle en prototype for automatisk ekstrahering, slik at man
kan redusere tiden som blir brukt p̊a manuell ekstrahering. Ved
å gjennomg̊a tidligere relatert forskning, og ved å eksperimentere
med forskjellige funksjoner og maskinlæringsmodeller ble to forskjel-
lige modeller tilslutt implementert: ’Conditional Random Fields’
for informasjonsutvinning og ’Maximum Entropy’ for tekstklassi-
fisering. Modellene oppn̊adde henholdsvis gjennomsnittlig F1 re-
sultat p̊a 67.02% og 73.82%. Disse resultatene kan karakteriseres
som gode resultar, og viser at det er fullt mulig å automatisere
dataekstraheringsprosessen, ved kun å annotere en liten del av
datasettet og for s̊a å lære opp maskinlæringsmodeller til å utføre
ekstraheringen.

I

II

Preface

This is a master thesis submitted to the Department of Computer
and Information Science (IDI) at the Norwegian University of Sci-
ence and Technology (NTNU), in partial fulfilment of the degree
of Master of Science. The pre-study for the thesis was conducted
partly in Singapore, in collaboration with the National Univer-
sity of Singapore (NUS) and Associative Professor Min-Yen Kan.
The thesis was carried out in Trondheim, at NTNU, under the
supervision of Associate Professor Heri Ramampiaro and assis-
tance from postdoctoral fellow Daniela Soares Cruzes.

Acknowledgements

I would like to thank my supervisor Heri Ramampiaro, for his
patience and assistance, and for all of his advice and guidelines
when writing the thesis.

I would also like to thank Min-Yen Kan, and NUS for arranging
for my visit and helping me while I learned to use machine learn-
ing models.

Special thanks to Daniela Soares Cruzes, who helped me under-
stand systematic literature reviews, and the domain of my thesis.

And finally, I would like to thank my family and my girlfriend
for supporting me through the time it took me to complete my
thesis.

III

Trondheim, June 1th 2012

Sofien Lazreg

IV

Abstract

Systematic literature reviews are an important tool in Evidence-
based Software Engineering, but require a large amount of effort
and time from the researchers. Data extraction is an important
step in these reviews, but current practice requires the researchers
to manually extract large amounts of data. This thesis investi-
gates the possibility of developing a prototype for automatic ex-
traction, so to reduce the time spent on manually extracting this
data. By reviewing related research, and experimenting with dif-
ferent features and machine learning models, two different models
were implemented in the prototype: Conditional Random Fields
for information extraction and Maximum Entropy for text clas-
sification. The models achieved average F1 performance score of
67.02% and 73.82%, respectively. These results can be character-
ized as good results, and show that it is possible to automate the
data extraction process, by annotating a small part of the dataset
and training machine learning models to perform the extraction.

V

VI

Contents

1 Introduction 1

1.1 Background and Motivation 2

1.2 Problem Description . 3

1.2.1 Research Questions . 3

1.2.2 Problem Definition . 3

1.2.3 Scope . 4

1.3 Thesis Outline . 4

2 Background Research 5

2.1 Introduction . 5

2.2 Systematic Literature Review 6

2.2.1 Data Extraction step 7

2.3 Information Retrieval . 9

2.4 Information Extraction . 9

2.4.1 Machine Learning in IE 12

2.4.2 Evaluation Methods 14

2.5 Text Classification . 16

2.5.1 Machine Learning in TC 16

2.5.2 Evaluation Methods 18

2.6 Existing Tools and Development Libraries 18

2.6.1 Stanford Named Entity Recognizer 18

2.6.2 MALLET . 18

2.6.3 LingPipe . 19

2.6.4 GATE . 19

2.6.5 Apache OpenNLP . 19

VII

CONTENTS

3 Related Work 21
3.1 Introduction . 21
3.2 Related Research . 22

3.2.1 SVM Approach . 22
3.2.2 CRF-based Approach 22
3.2.3 Machine Learning Approach 23
3.2.4 Text Mining Approach 23
3.2.5 Metadata Generation Approach 23

3.3 Existing Systems . 24

4 The Approach 27
4.1 Introduction . 27
4.2 Training Process . 28
4.3 Dataset Preparations . 29

4.3.1 Reasoning . 29
4.3.2 Collection and annotation 30

4.4 Prototype . 31
4.5 CRF component . 31

4.5.1 Algorithm details . 32
4.5.2 Feature Engineering 33

4.6 MaxEnt component . 36
4.7 Preprocessing component . 36
4.8 Implementation . 37

4.8.1 Resources used . 38
4.8.2 System Description . 38

5 Evaluation 43
5.1 Introduction . 43
5.2 Evaluation Methods . 44
5.3 Evaluation Results . 45

5.3.1 CRF results . 45
5.3.2 MaxEnt results . 47

5.4 Discussion . 49

6 Conclusion & Future Work 51
6.1 Introduction . 51
6.2 Conclusion . 52
6.3 Future Work . 53

VIII

A Dataset 55
A.1 CRF Dataset . 56
A.2 MaxEnt Dataset . 57

B Annotation Guideline 59

C Lexicon Lists 63
C.1 Countries . 63
C.2 Research Methods . 64
C.3 Publication Types . 64
C.4 Publishers . 64

D Evaluation Data 65
D.1 CRF data . 65
D.2 MaxEnt data . 69

IX

X

List of Figures

2.1 Graphical structures of machine learning models 14
2.2 K-validation process . 15

4.1 Iterative development process for ERA 28
4.2 The ERA system . 32
4.3 Different Degrees of State Transition 34
4.4 Example of a sequence of tokens and associated features . . . 35
4.5 Screenshot of ERA . 37
4.6 Diagram of ERA back-end system 40
4.7 Diagram of ERA front-end system 41

5.1 Graphical representation of field scores 45
5.2 The different degrees of state transition 46
5.3 Omitting different groups of features 47
5.4 Comparison of different classifiers 48

XI

XII

List of Tables

2.1 Example of a data extraction form used in an SLR 8
2.2 Confusion Matrix . 18

3.1 Related research summary . 24

4.1 CRF Features . 33

5.1 Total number of annotated tokens per field in CRF dataset . . 44
5.2 Total number of annotated tokens per field in MaxEnt dataset 44
5.3 Average per field results of CRF 45
5.4 Average per class results of MaxEnt 47
5.5 MaxEnt confusion matrix . 48

A.1 All the papers used as CRF dataset 57
A.2 All the papers used as MaxEnt dataset 58

D.1 Iteration 1 Confusion Matrix 69
D.2 Iteration 2 Confusion Matrix 69
D.3 Trial Confusion Matrix . 70

XIII

XIV

Glossary

CRF - Conditional Random Field

DT - Decision Tree

HMM - Hidden Markov Model

IE - Information Extraction

IR - Information Retrieval

MaxEnt - Maximum Entropy

MEMM - Maximum Entropy Markov Model

NB - Näıve Bayes

RexEx - Regular Expressions

SLR - Systematic Literature Review

SVM - Support Vector Machine

TC - Text Classification

XV

XVI

Chapter 1

Introduction

1

Introduction

1.1 Background and Motivation

As knowledge is becoming more and more accessible on the Internet, the
number of available academic material is increasing along with this trend.
This increase in available material provides a problem for digital libraries,
e.g., ACM1, IEEE Xplore2 and Google Scholar3. The title of academic ma-
terial, such as papers, are often ambiguous and this causes the libraries to
struggle to represent the material in an effective manner. While it has been
sufficient to simply return suggested matches to the users information need
through query, the users often want additional information to navigate by,
such as the year of publication, author of the paper or what type of method-
ology was used. As a result, the use of information extraction and text
classification are heavily researched and is becoming more important when
indexing academic material.

Along with this increase in availability, empirical research such as sys-
tematic literature reviews, a well-known practice within medical science, has
become common in the ’Software Engineering’ field. Systematic literature re-
views help researchers gather and analyse information provided on the same
topic, but from multiple papers. These reviews need to extract a lot of in-
formation from the different papers, a practice which is normally done man-
ually by the researchers. Since the dataset often consist of a large number
of papers, this becomes a long and time-consuming task. If one could use
techniques from information extraction and classification, the same used by
digital libraries to represent their material, in an effort to automate this ex-
traction process, one could reduce the time spent on this manual extraction
task. The researchers could than continue with the analysis of the gathered
information. By annotating a small portion of the dataset, one could try to
train machine learning model(s) to extract the information automatically.

Several challenges arise with the task of automating the extraction pro-
cess. One challenge is that statistical machine learning requires an annotated
dataset, which is hard to find in this context. Therefore, a proposed solu-
tion would also need an annotated dataset for training and testing. Another
challenge is determining what type of information to extract, and if this

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3scholar.google.com

2

information could be used by every systematic review. By looking at some
systematic reviews, one could assess what type of information could be useful
to any review.

1.2 Problem Description

The purpose of this section is to give the reader a clear description of the
problem. We will state the research questions that will be addressed in this
thesis and define the problem more thoroughly. We will also present a scope
for the research in our thesis.

1.2.1 Research Questions

The research questions are organized as such: one main, overall research
question and three specific subquestions.

Main Question: Could one develop a method for automatic system-
atic literature reviews?

RQ1: Is it possible to develop a system/tool that could support the data
extraction process of a systematic literature review?

RQ2: Are there any existing solutions and/or systems that solve the
same problems addressed in this thesis?

RQ3: How well does the proposed solution work?

1.2.2 Problem Definition

The problem that the research questions will help us address is the use of
state-of-the-art techniques to assist in the extraction of information from
academic papers, which are to be used in systematic literature reviews. We
need to investigate what type of information would be beneficial to extract,
what type of methods have been used in similar tasks and finally develop a
proof-of-concept prototype using selected methods. To be able to evaluate
our solution, the prototype will require a dataset, and several iterations of
development and training.

3

Introduction

1.2.3 Scope

The coverage of this thesis will be within the field of software engineering,
with focus on techniques from information extraction and text classification,
and is limited to the domain of systematic literature reviews in software engi-
neering. The data that will be used by the prototype will consist of software
engineering papers, referenced by existing systematic literature reviews. This
will ease the dataset collection process, and focus the thesis mainly on the
prototype development and on the task of finding suitable methods to per-
form the extraction itself. It is beyond the scope of this thesis to develop a
general system working in other domains. However, with some modifications
we believe that our solution will be applicable in other domains.
In view of the above, the main contribution of this research will be insight
into how we can help researchers conducting data extraction in SLRs in a
more automatic and efficient manner.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 1: Introduction to the thesis and problem description.

• Chapter 2: Introduces the background theory for the thesis.

• Chapter 3: Investigates related work and research.

• Chapter 4: Describes in detail our approach.

• Chapter 5: Presents the results, validation data and a discussion.

• Chapter 6: The final conclusion and possible future work.

4

Chapter 2

Background Research

2.1 Introduction

This chapter will describe the background theory and research needed as a
foundation for understanding the rest of the thesis. We will present theory
about systematic literature reviews, give a short introduction into informa-
tion retrieval, navigate through information extraction and text classification,
and commonly used methods in both fields, as well as give an overview of
available tools and development libraries that could be of use.

The chapter is organized into several sections:

• Section 2.2 Systematic literature reviews theory

• Section 2.3 Introduction into information retrieval

• Section 2.4 Information extraction theory and methods

• Section 2.5 Text classification theory and methods

• Section 2.6 Existing tools and development libraries

5

Background Research

2.2 Systematic Literature Review

Systematic Literature Review (SLR) is a research method for reviewing em-
pirical evidence within a field of study, such as Software Engineering. SLRs
have been common practice within the domain of medical science, and have
later become popular as a tool to support Evidence-based Software Engineer-
ing. SLRs are used to help researchers find gaps or links between research,
or to provide further evidence that a method/tool is robust by providing a
comparison across a wide field of study [1], and is defined as:

“a means of identifying, evaluating and interpreting all available research
relevant to a particular research question, or topic area, or phenomenon of
interest.” [1]

The scientific value of an SLR is dependent on it being thorough, fair [1],
and this is supported by the thorough documentation required during the
entire review process, and at all its different steps.
An important goal with SLRs is to try and limit any potential bias the re-
searcher has when selecting papers, so to reduce the possibility of selecting
only papers that support their initial point of view and argument [2]. This
is achieved by following procedures and guidelines that strictly define how
to conduct an SLR. A review protocol is defined before the review starts, in
the planning phase, and is a detailed plan that specifies the entire process
that is to be followed in the review, and any conditions that have been set
beforehand [3]. According to [1], there are three main phases to conducting
an SLR, with several steps associated with each phase:

Planning the Reivew

• Identification of the need of a review
• Commissioning a review
• Specifying the research question(s)
• Developing a review protocol
• Evaluating the review protocol

Conducting the Review

• Identification of research
• Selection of primary studies

6

• Study quality assessment
• Data extraction and monitoring
• Data synthesis

Reporting the Review

• Specifying dissemination mechanisms
• Formatting the main report
• Evaluating the report

All the phases and steps are important when conducting an SLR, but our
focus will be on the data extraction step.

2.2.1 Data Extraction step

The data extraction step is conducted by creating forms that are designed
to collect all the information needed to address the stated research ques-
tion(s) [1]. The researchers go through the collected research material and
manually fill these forms with the information required. While the research
questions are dependent on the SLR, the same metadata fields are quite often
extracted across SLRs. These fields are key attributes of the paper, and are
non-interpretable. Examples of such fields are author, title, year of publica-
tion, and so on. A system that could automatically extract several of these
important metadata fields and information from these research papers, could
substantially reduce the time spent on the data extraction step, and let the
researcher focus on interpreting the data instead.

Table 2.1 shows a partial example of a data extraction form, used in an
existing SLR [4]. The ’Fundamental information’ and ’Specific information’
fields in the form are examples of fields that could be automatically extracted
or classified, and can be useful to any SLR. The rest of fields require a
researcher to read through the paper and use their judgment and knowledge
to fill out, and are SLR specific questions.

7

Background Research

Fundamental information
1 Data extractor
2 Data checker
3 Date of data extraction
4 Article title
5 Authors Name
6 Application domain
7 Journal/conference/conference proceedings
8 Retrieval search query
9 Date of publication

Specific information
10 Study context Academia

Industry
11 Research methodology Literature review

Systematic review
Case study
Experiment

Survey
Action research

12 Study subjects Professional
Students

13 Validity threats Conclusion validity
Construct validity
Internal validity
External validity

RQ 1 What strategic release planning models have been presented?
14 Name of presented model/framework
15 Model/Framework proposed in Literature or in industry
16 Newly presented model/framework or extension of already developed
model/framework
17 Means of representation (table, diagrammatically, mathematical means, log-
ically)
18 Description of presented model
19 On what grounds the model/framework is constructed
20 Model or framework use in Industry
21 Any requirement selection technique used in the model
22 Any limitation of the model/framework
23 Practical application of model/framework in the form of tool
24 Discussion about any other RP model/framework

RQ 2 What requirements selection factors are discussed?
25 What technical and non-technical requirement selection factors are discussed
26 Any other name of technical and non-technical requirement selection factors
27 Common requirements selection factors discussed in two or more than two
models/framework.

Table 2.1: Example of a data extraction form used in an SLR

8

2.3 Information Retrieval

Information Retrieval (IR) systems are mostly known for their searching abil-
ity, where a user states an information need and the system provides the user
with a response to this information need in return. IR is a large academic
field and encompasses several topics like browsing or filtering documents,
processing of retrieved documents and clustering or classifying documents
according to their content [5], and is defined as:

“Information Retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).”[5]

A system can increase its preciousness when retrieving the users informa-
tion need if it indexes good representing facts and features of the text. To
find and extract these facts and features, the system can use techniques that
specialize in extracting certain proof, or inferred facts, and index these as rep-
resentation for the documents or text. As the collection of documents expand,
automatic techniques that can do this become crucial. Two well-known, and
quite different techniques that provide this is Information Extraction and
Text Classification. These two techniques could be used together to extract
and produce an output that can be representative of a research document,
allowing for future IR systems to handle the indexing and retrieval process.

2.4 Information Extraction

Information Extraction (IE) is the process of automatically extracting specific
information entities or the relationship between different information entities
from a source [6] and presenting it in a structured form. The source of
information can be structured like a database, semi-structured like an HTML
document or unstructured as free text from an academic paper. We will
focus on the unstructured source. IE combines techniques from Natural
Language Processing, lexical resources and semantic constraints to effectively
provide automatic mining of documents [7] and is one of the most prominent
techniques currently used in Text Mining [8].

In [6], the field of IE is presented along these five dimensions:

9

Background Research

(A) The type of structure extracted

(B) The type of unstructured source

(C) The type of input resource available

(D) The method used for extraction

(E) The output of extraction

A. Type of structure extracted

An IE system can extract several different types of structure but the two
most common are entities and the relationships between entities. Entity ex-
traction is used to identify and extract specific entities from the unstructured
source. An example of this is Named Entity Recognition (NER), which can
be used to extract names of companies, people, locations or identify proteins
in biomedical texts. Its area of use is still heavily researched. Relationship
extraction refers to the task of identifying and extracting relationships be-
tween entities in the unstructured source. This relationship can for example
be whether an entity is a subset of another entity or is located in the same
proximity. Extracting the relationship between entities differs from extract-
ing just the entities, as it requires the recognition of an association between
two different tokens or text segments [6] which is often not stated explicitly
in the source.

Named entity and relationship extracting could be useful in our research
by extracting and filling out metadata fields like the publisher or the title of
the paper. Examples of such metadata fields can be seen in Table 2.1.

B. Type of unstructured source

The unstructured source for an IE system can be full-length documents, seg-
ment of the documents, parts of the text, sentences or records. This choice
is largely dependent on the application area of the IE system. Academic
papers contain a certain degree of structure, making it a partially structured
domain specific source [6]. This structure is present in the setup of academic
papers, with predefined and well known sections like for example abstract,

10

introduction, method, result and discussion. There is also a segmentation
called “header”, where all the text from the beginning of the paper and up
to either the introduction section or the end of the first page is used as source
[9].

C. Type of input

The type of input the IE system is provided with can significantly aid the
extraction process [6]. A labeled dataset is an example of an input resource
where a corpus has been annotated by human(s), according to a predefined
annotation guideline. This labeled, unstructured source provides contextual
information about an entity making it very valuable for the IE system [6].
The input can also be preprocessed, a technique that can help to identify
certain patterns in the natural language. The preprocessing is typically done
by sending the unstructured text through a series of “pipes”, either at token-
level or sentence-level. Each pipe is programmed to look for certain clues in
the input and add labels to the text with this identified information or alter
the text. Examples of such pipes are POS, part of speech taggers which tag
each word with its grammatical category, or parsers that can alter the to-
kens into only lowercase characters or remove all non-alphabetical characters.

D. Extraction methods

Different methods can be used for the extraction process itself, and even com-
binations of these methods. These methods can be hand-coded/rule-based
methods, requiring a domain expert and programmer to specify rules and
regular expressions to perform the extraction, or learning-based/statistical
methods, which rely on manually annotated data to train machine learning
models [6]. We will focus on the learning-based method, using machine learn-
ing models to perform the extraction.

E. Output

The type of output the IE system will finally produce depends on its area of
use. Entity relationships could be presented to the user in a graphical way,
such as a tree or graph. If only metadata is extracted, a database can be
created with the fields or the fields can be presented in a structured, template
format to a user.

11

Background Research

2.4.1 Machine Learning in IE

The use of machine learning models to perform sequence labeling is very
common in fields such as Artificial Intelligence and Natural Language Pro-
cessing. In supervised machine learning, the model is given a labeled set of
examples. It is then trained to statistically recognize patterns in new doc-
uments, assigning labels to fields which the model detects as relevant. To
improve these models, a set of features can be stated to help the system
recognize the different patterns. This is called feature engineering, and these
features can range from simple regular expressions that identify fields like
email or phone number, dictionary features that identify membership to a
lexicon or token features that tell whether the token contains only lowercase
or if it is hyphenated.

We have briefly introduced a series of machine learning models that have
previously been used in IE.

Hidden Markov Models

Hidden Markov models (HMM) are an extension of Markov models, where
each transition from an observable state has an associated probability and
produces a specific output when occurring. With HMM on the other hand,
each state is hidden and only has an associated probability with its stochastic
state transition that generates an observable output [10]. HMM has been
successfully applied to IE [11], NER [12] as well as speech recognition [10].

The advantages with using HMM are the availability and easy-to-use
frameworks that exist. These frameworks allow for training by maximum
likelihood, using labeled data and calculating the Viterbi path to find the
most likely hidden sequence of state(s) [13]. The disadvantage with HMM is
that it is a generative model that makes an independence assumption about
its observations, limiting the knowledge that previous and future observa-
tions provide [14].

Maximum Entropy Markov Models

Maximum entropy Markov model (MEMM) is a combination of HMM and
maximum entropy model. In MEMM, state transitions depend on non-

12

independent features which means that previous and future observations can
be taken into account when calculating the probability of a transition. A sin-
gle function provides the probability of the current state given the previous
state and the current observation [13].

The advantage with using MEMM’s is the use of non-independent fea-
tures, which allow for richer representation of the observation sequence at
different levels of granularity [14]. MEMM’s major disadvantage is the label
bias problem. This problem occurs because of a bias towards states with few
outgoing transitions. Since transitions leaving a state comply only against
each other, states with one outgoing transition have to take this route no
matter what their observation is [14]. This means that the label is chosen
because it is available, and not the best choice.

Conditional Random Fields

Conditional random fields (CRFs) are discriminative undirected trained mod-
els that specifies the probability of a label sequence, given an observed se-
quence [14]. CRFs use of arbitrary features and labels from previous and
future tokens provide a powerful framework for sequence labeling [6], and
this has made the model popular to implement in a variety of different uses,
such as finding protein names in text [15] and extracting information from
papers [9].

CRF offer several strong advantages over HMM and MEMM, like its abil-
ity to relax the independence assumptions made in HMM and other genera-
tive models. Another advantage is CRFs avoidance of the label bias problem
that MEMM suffers from [14], and its ability to obtain a globally optimal la-
bel [16]. These advantages and published experimental results in [9, 14] have
made CRF the current state-of-the-art method used in sequence labeling [6].
The disadvantages with CRF is its slow convergence during the training pro-
cess compared to HMM and MEMM [14]. This can cause the time required
to train the CRF on a large dataset to be long.

Figure 2.1 shows the graphical structure of the different models that have
been introduced. The non-grey circles indicate that the state is not generated
by the model.

13

Background Research

Figure 2.1: Graphical structures of machine learning models

2.4.2 Evaluation Methods

To evaluate the performance of an IE system it is common to measure three
metrics used in IR: precision, recall and F-measure.

In IR, precision is the fraction of retrieved items that are relevant [5]. In
IE, it would be the fraction of extracted items that were correctly extracted,
as presented in Equation 2.1. A high value of precision tells us that the
system returned more correctly extracted items than non-correct.

P = correctly extracted items/extracted items (2.1)

In IR, recall is the fraction of relevant items that are retrieved [5]. In IE,
it would be the fraction of correctly extracted items that were returned, as
presented in Equation 2.2. A high value of recall tells us that the system
returned a lot of the correct items available.

R = correctly extracted items/total correct items (2.2)

F-measure is the weighted harmonic mean of precision and recall [5]. F-
measure provides us with a single measurement of the effectiveness of the
system, with respect to precision and recall. Equation 2.3 presents how to
calculate the balanced F-measure.

14

F1 = 2PR/P + R (2.3)

It is also common to perform a k-fold cross-validation, where the dataset
is randomly split into k subsets and each subset acts as the validation data
once and the rest of the subsets act as training data [17], as illustrated in
Figure 2.2.

Figure 2.2: K-validation process

15

Background Research

2.5 Text Classification

Text Classification (TC), or Text Categorization, is the task of assigning a
text, which can be segments or entire documents, into a category or class.
As with IE, TC can be performed by predefining rules or using statistical
machine learning. TC has been used to automatically detect spam pages,
create topic-specific search engines, and classify movie or book reviews into
either a positive or negative class [5].

It is important to distinct between the difference of IE and TC, as it
can easily be mixed together. While both techniques use machine learning
methods, the difference is that in TC the goal is to find the best class for
the entire document, text or instance [5], while in IE the goal is to extract
specific pieces of information or relationships.

2.5.1 Machine Learning in TC

Using machine learning in TC reduces the need for manual classification,
although it requires an initial labeled dataset as discussed in Section 2.4.1.

We have shortly introduced three common methods used in TC.

Decision Tree

A decision tree (DT) consists of a collection of decision nodes that are con-
nected by branches, extending from the root node to the leaf node. The
decisions in the decision nodes can be trained from a labeled dataset. Two
common algorithms for generating decision trees are CART, classification
and regression trees, and C4.5 . CART produces binary decision trees, with
only two branches for each decision node. C4.5 produces a more variable tree
as it is not restricted to binary splits, and uses entropy reduction to chose
the optimal split when recursively traversing the tree [18]. DT has been used
heavily in data mining, where the decision nodes are replaced with data, as
well as in machine learning.

The advantage with using decision tree is its flexibility, and its capability
to break down the classification problem into several simple decision steps
making it easier to interpret [19]. The disadvantage is that creating an opti-
mal decision tree is an NP-complete problem, and to overcome this, greedy
algorithms have been used to find local optimal decisions instead of global

16

optimal [20].

Näıve Bayes

Näıve Bayes (NB) is a probabilistic method with positional independence
assumptions. There are two common NB models, namely the multinomial
NB model and the multivariate Bernoulli model. The multinomial model
uses a bag-of-words representation, where the sequence of terms that occur
in the document represents it. The multivariate model uses a binary vector
to indicate whether a term occurs in the document or not. Both models use a
vocabulary to decide which terms to include and exclude [5]. NB uses MAP,
maximum a posterior, to decide which class is the most likely to represent
the document.

The advantages with using NB is that the multinomial model take docu-
ment length into account, while multivariate is computational effective and
requires only occurrence of token [21] . NB’s simplistic nature and easy-to-
implement framework are some of the reasons to why it has become such a
popular machine learning method [22]. The disadvantages with using the dif-
ferent models are that the multinomial model assumes independence between
words and multiple occurrences of the same words, while the multivariate
model ignores frequency of tokens and ignores document length [21].

Maximum Entropy

Maximum Entropy (MaxEnt) is a technique that estimates the probability
distribution of a class given a document by deriving a set of constraints from a
labeled dataset and its features, and using these as constraints for the model
distribution [23]. The model that has the highest probability distribution
after considering the constraints, is chosen.

An important advantage with using MaxEnt over Näıve Bayes is that
it does not make any independence assumption [23]. A disadvantage with
using basic MaxEnt is its overfitting problem, which is a problem for all
learning models. This problem occurs when there is little training data and
poor features to represent it. Several implementations of MaxEnt reduce this
problem by introduction maximum a posterior, and a Gaussian prior [23].

17

Background Research

2.5.2 Evaluation Methods

TC shares the same evaluation methods as IE, as described in Section 2.4.2,
with the addition of using a confusion matrix. This matrix is an important
tool when analyzing the classification, and which part of the system might
need improvement [5]. As seen in Table 2.2, the matrix shows which classes
were mislabeled, and what they were mislabeled as. With this information,
one could add features to distinguish more significantly between the misin-
terpreted classes.

Predicted
Label X Label Y

Actual
Label X true positives false negatives
Label Y false positives true negatives

Table 2.2: Confusion Matrix

2.6 Existing Tools and Development Libraries

There are several existing IE and TC tools and development libraries avail-
able which can be used to assist with our prototype. Some of these are
introduced below.

2.6.1 Stanford Named Entity Recognizer

The Stanford NER (Named Entity Recognizer)1 is a CRF-based tool that
provides the possibility of labeling entities found in a text, such as persons
and company names or protein names. Their webpage also provides several
models that have been trained to extract a variety of different classes.

2.6.2 MALLET

MALLET (MAchine Learning for LanguagE Toolkit)2 is a Java API that
provides tools for natural language processing, information extraction, clas-
sification, sequence tagging and topic modeling. There is a wide variate of

1http://nlp.stanford.edu/software/CRF-NER.shtml
2http://mallet.cs.umass.edu/

18

implemented algorithms available, which include HMM, CRF, DT and NB.
The API also provides tools for transforming and handling text into numer-
ical representation and preprocessing options.

2.6.3 LingPipe

LingPipe3 is a tool kit, were a Java API is provided that supports a large va-
riety of linguistic computational operations, such as Part-Of-Speech tagging,
spelling correction and sentence detection.

2.6.4 GATE

GATE4 is an open-source collection of tools for text processing, used both
commercially and scientifically. The GATE Developer provides graphical
interactive tools for processing natural language text.

2.6.5 Apache OpenNLP

Apache OpenNLP5 is a toolkit for processing natural language text that
support tasks such as entity extraction, parsing, chunking and conference
resolution.

3http://alias-i.com/lingpipe/
4http://gate.ac.uk/
5http://incubator.apache.org/opennlp/

19

20

Chapter 3

Related Work

3.1 Introduction

This chapter will present research that is related to our thesis, both in the
form of related research and existing systems, and mention how our research
differs. We will also explain why the existing systems cannot be used in our
domain.

The chapter is organized into several sections:

• Section 3.2 Related research

• Section 3.3 Existing systems

21

Related Work

3.2 Related Research

The related research into IE and TC is comprehensive, but several articles
were found to be of particular relevance. The papers are presented in chrono-
logical order.

3.2.1 SVM Approach

Lee Giles et al. [24] presented a paper where they discussed the use of
machine learning to automatically extract metadata from research papers,
and presented a new method of extracting this data. The method uses,
among other things, a priori information of the structural patterns of the
data with a Support Vector Machine (SVM) for the metadata extraction.
The SVM classifier presents promising results over the HMM methods.

The authors provides us with knowledge about structural patterns, and
their possible use in metadata extraction, but differs from our research in
that we will be looking at the use of IE in a different domain, to serve as a
proof-of-concept.

3.2.2 CRF-based Approach

McCullum and Peng [9] presented a paper where they investigated the use
of IE from research papers, using the machine learning method CRF. They
experimented with the use of different prior distributions for regularization
to avoid overfitting and presented the effects of different features used, both
state transition features and local/layout features. They obtained and pre-
sented state-of-the-art performance when using CRF to extract fields from
research papers.

This research provides us with valuable information regarding the use of
CRF in IE, but differs from ours because we are looking at the use of IE
within the domain of SLRs, while they have focused on achieving the best
possible result from a machine learning model.

22

3.2.3 Machine Learning Approach

Hu [25] presented a paper where a machine learning approach to automati-
cally extracting the titles of general documents, such as Word and PowerPoint
documents, was proposed. The paper concentrated on the use of format fea-
tures with machine learning models. They tried several different models,
and they found that the performance of the CRF model presented the best
results. They concluded with the fact that extracted titles can improve the
precision of document retrieval.

Hu’s research provides us with yet another case of successful implemen-
tation of CRF, but differs from our research in that they have focused on
automatically extraction titles, while we want to extract several different
fields.

3.2.4 Text Mining Approach

Ghani et al. [26] presented a paper where they investigated the use of text
mining to extract semantic and explicit attributes for products, which can be
used to enhance product databases for retailers. They used a semi-supervised
approach, where an initial unsupervised algorithm extracts seeds, or labels,
that is then used as training data to a supervised NB classifier and a semi-
supervised co-EM classifier. They presented promising results, and have
created several prototypes that are based on this initial system.

While this research provides us with knowledge about mining semantic
and explicit attributes, and the use of semi-supervised approach, our research
will focus on extracting several specific metadata fields, some which might
need to be inferred using classification.

3.2.5 Metadata Generation Approach

Lu et al. [27] presented a paper where they investigated automatic generation
of metadata from OCRed (Optical Character Recognition) articles. They
used an SVM Light Classifier as the machine learning method, and integrated
the system into an existing digital library where they achieved promising
results.

23

Related Work

This paper provided us with the knowledge that OCR could be used to
retrieve data from articles, as a step in automatic generation of metadata.
Our research will focus on more direct automatic extraction from uploaded
papers, but this research provides knowledge into the possible use of OCR
as a step to extract the text from the papers.

Article Approach Method

[24] IE SVM

[9] IE CRF

[25] IE Several

[26] Text Mining NB

[27] IE SVM

Table 3.1: Related research summary

The methods presented by the articles allow us to see what is the current
state-of-the-art that is used in similar cases as our thesis. This gives us a
vantage point when selecting methods to use in our own approach. Table 3.1
presents an overview of all the relevant articles presented in this section.

3.3 Existing Systems

There are several existing systems that have integrated some form of IE
and/or TC and these are often digital libraries. The digital libraries use this
information to index academic papers, so that they can offer improved and
pinpointed retrieval.

CiteseerX

CiteseerX 1 [28] is a digital scientific library that provides a wide range of op-
tions, such as automatic reference linking, query-sensitive summaries and au-
tomatic extraction of metadata from their indexed papers. CiteseerX actively
crawls and harvests papers from digital academic publishers from primarily
the field of computer science. While some metadata fields are extracted, e.g.,

1http://citeseerx.ist.psu.edu/

24

author, title and publication venue, it is still not enough to be used in a typ-
ical SLR. The collection of papers is also not complete, which can provide
difficulties for researchers when conducting SLRs.

Textpresso

Textpresso 2 [29] is an open-source text mining system for academic litera-
ture that provides full text searches, TC and mining from biomedical papers.
Textpresso can also split entire papers into individual sentences and sort
these into semantic categories. It has been implemented into a variety of
biomedical systems. and could possibly be used to assist in a biomedical
SLR, but has not yet been implemented into the software engineering field.

ABNER

ABNER 3 [15] is a named entity recognition tool that can analyze biomedi-
cal text and identify several named entities. The software uses linear-chained
CRFs, and includes two models that were trained against two different cor-
pora. ABNER is not trained to process software engineering papers, and
would therefore not work as a support tool for SLRs within that domain.

2http://www.textpresso.org/
3http://pages.cs.wisc.edu/ bsettles/abner/

25

26

Chapter 4

The Approach

4.1 Introduction

This chapter will describe the details of our prototype, and the reasoning
behind the choices we made. We will describe the preparations that had to
be made to the dataset, such as the annotation process that was used and
the different fields that were extracted. We will give a detailed explanation
of the two classifiers and their implementation, and present ERA, a system
that implements the trained classifiers.

The chapter is organized into several sections:

• Section 4.2 Introduces the training process

• Section 4.3: Describes the preparations and collection of the dataset

• Section 4.4 Introduces our prototype

• Section 4.5: Explains the CRF component

• Section 4.6: Explains the MaxEnt component

• Section 4.7: Explains the preprocessor component

• Section 4.8: Describes the implementation details of ERA

27

The Approach

4.2 Training Process

The idea was to create a proof-of-concept prototype, that could extract and
classify relevant fields automatically using IE and TC techniques. To com-
plete this task, we had to undergo several steps. First, we had to identify
what type of information we wanted to extract, and how this could be ex-
tracted from the dataset. Second, a dataset was prepared for the training
of the machine learners and an annotation guideline was created to handle
the annotation process. Third, two machine learning models were developed.
Finally, the dataset was used to train the two machine learning models. IE
was used to extract most of the fields except in one case, where TC was found
to be more suitable for the task, which is discussed later in this chapter.

This process went over several iterations, with each iteration aiming to
expand the size of the training dataset with more annotated data and add
features to the machine learning models. The goal with each iteration was
that the machine learning models would become more advanced, and be
trained against an increased dataset. This iterative process is demonstrated
in Figure 4.1. After each testing phase, experimental trials were run to see
which fields produced poor results. Features were then created or altered,
either to specifically boost the poor results produced from a single field, or
to boost overall performance of the prototype.

Figure 4.1: Iterative development process for ERA

28

4.3 Dataset Preparations

Since we did not have an annotated dataset for our prototype, we needed to
manually create one. This required us to identify what type of information
researchers needed extracted when conducting a systematic review. After
reviewing the data extraction process conducted in a couple of software en-
gineering systematic reviews [30, 4], we noticed that metadata fields were
quite commonly extracted as well as some key specific characteristics like
what type of study context or research method was used in the data. This
led us to several fields that could be useful for researchers when conducting
a systematic review. These fields are:

Title
Research Approach
Research Method
Publisher
Year of Publication
Publication Type
Country of Origin

4.3.1 Reasoning

A research papers’ title is a descriptive sentence, which tells us about the
papers’ topic area and often contain valuable information about different
methods used in the paper. An extracted research title could be used by
the researchers to get an overview of the papers it represents, and tell the
researcher about part of its content.

A papers’ research approach is the path the researcher(s) takes to produce
the knowledge the paper presents. There are three main types of research
approach:

Exploratory: If the research investigates a problem that has not been de-
fined, and helps to determine the best research way or design, the best data
collection method and the best method for selecting subjects [30].

Empirical: Whether the findings in the research are from direct or indirect

29

The Approach

observations, such as a case studies [30].

Descriptive: If a system, tool or method is presented and described in the
research [30].

A research method is the specific method the researchers use to answer
their research question(s). Since there is a wide variety of research methods
used in software engineering, the extraction was limited to three common
empirical research methods:

Case Study: A case study focuses on what is happening in a single project
[31].

Experiment: An experiment focuses on a controlled project, which is repli-
cated several times with random variables [31].

Survey: A survey focuses on knowledge gathered from multiple projects,
and tries to capture the bigger picture [31].

The rest of the fields can provide the researcher with valuable metadata
information. These metadata fields can be used to infer other type of infor-
mation, such as which country produced the most research within a specific
subject, at a given year or what the most common publication type for that
subject is.

4.3.2 Collection and annotation

Several different academic software engineering papers were collected from
two different systematic reviews [30, 4] and since the dataset needed to be
manually annotated, an annotation guideline was created. This guideline was
used during the annotation process to ensure consistency and uniformity of
the labeling task. Only the first page from each paper were extracted. One
of the reasons for this limitation was that if we were to use the entire paper,
the machine learning models would be trained on a larger set of noise text,
meaning all the text that is not a part of the fields we want to extract.
This abundance of noise text could cause the statistical machine learning
model to be poorly trained to recognize the fields. If we limited the text

30

used even further, such as only using the abstract part of the paper, not
enough information would be present to annotate several of the fields and
the machine learning model would lack the statistical data needed during
training to be able to find these fields.

These first pages were originally extracted using OCR (Optical Character
Recognition) software, but this proved to cause some difficulties with han-
dling of the text in the preprocessor. The simplest solution to avoid this
problem was to manually copy and paste the first page from the paper into
a standard text file, and adjust some of the structure.

The final training dataset consisted of 38 different papers in total. A
complete list of the papers in the training dataset(s) and the annotation
guideline can be found in Appendix A and Appendix B, respectively.

4.4 Prototype

The prototype consists of three important components,, as illustrated in Fig-
ure 4.2. The input to the prototype is a text file, containing the first page of
an academic paper, and this gets preprocessed before it is sent to the CRF
and MaxEnt classifiers. If any information is extracted or classified, it is pre-
sented to the user either in console or through the ERA systems front-end,
which will be introduces later in this chapter. Both classifier components
contain methods for performing feature selection, training, evaluation and
testing. The CRF implementation was trained on the entire dataset, while
the MaxEnt implementation was only trained on 30 papers from the dataset.

CRF was chosen as the model for the IE because there has been published
results where CRF has presented state-of-the-art results with IE when applied
to a similar case as ours [9].

The reason MaxEnt was chosen as the text classifier was because it out-
performed other classifiers during experimental testing, and for its ability to
not make any independence assumption.

4.5 CRF component

CRF, presented in Section 2.4.1, is a probabilistic graphical structure which
can be used for sequence labeling. CRF was used to extract nearly all fields,
except the ‘Research Approach” field. To implement the CRF model, the

31

The Approach

Figure 4.2: The ERA system

MALLET API1 [32] was used, see Section 2.6.2 for an introduction, which
includes methods for implementing a linear-chained CRF. The CRF still
needed to be adjusted so that it could handle our purpose. This included
finding suitable features to represent and distinguish the data to the CRF,
also called feature engineering, as well as finding good parameters for the
optimization of the machine learner.

4.5.1 Algorithm details

Several decisions had to be made regarding the CRF implementation, and
with an API that provided us with the best-practice approaches, our task
became more easily achievable.

To increase efficiency during training, it was important to try and get the
learning method to converge as close as possible to its global maximum. To
achieve this, the CRF implementation was optimized by label likelihood us-
ing L-BFGS, limited-memory Broyden-Fletcher-Goldfarb-Shanno. L-BFGS
has become a popular method for non-linear optimization in CRF, because
it can converge fast [16].

1http://mallet.cs.umass.edu/

32

4.5.2 Feature Engineering

Feature engineering is a method of improving the efficiency of machine learn-
ing algorithms by reducing the dimensionality of a text or document [5]. The
goal is to remove the irrelevant dimensions [33], and to do this one needs to
find suitable features that can represent the important data in a distinguish-
able way. This is vital to the performance of the algorithm [9] and is a key
aspect as to how a machine learner like CRF can make accurate predictions
on new data, based on information from the features [34].

Table 4.1 shows a list of all features used in the CRF model. These fea-
tures where found experimentally after several iterations.

Features
State Transition Feature Second Order Markov

Local Features

Feature Window
Average Title Length
Token First Position
Token as Feature
Token Char Prefix

Lexical Features

Detect Method
Detect Country
Detect Citation Type
Detect Publisher
Detect Stop Word

RegEx Features
Detect Year
All Digits
First Capitalized Letter

Table 4.1: CRF Features

State transition features

Deciding on the level of degree the states between the labels should be con-
nected with each other, as illustrated in Figure 4.3, was an important de-
cision. These are called state transition features in CRF, and they can be
defined to form different Markov-orders [9]. The choice between the different

33

The Approach

degrees of transition has a lot to say on the computational efficiency of the
training. The higher Markov-orders have more transitions, and can model
the dependencies better but too many transitions might cause overfitting.
The lower Markov-orders on the other hand, have lesser transitions and are
faster to train but might cause the training to be inefficient, due to few de-
pendencies from neighboring labels taken into account [9].

Figure 4.3: Different Degrees of State Transition

Our implementation features a second order Markov-model, with fully
connected states for current and previous labels. This order was chosen be-
cause of good performance results found during experimental trials.

Local Features

The local features lets us take advantage of a variety of arbitrary information
that can be found in any text. Some features are more complicated than oth-
ers, and these include ’Feature Window’ and ’Average Title Length’. ’Feature
Window’, also called sliding window, adds the features of previous and next
tokens to the current token feature list. One can decide which neighboring
tokens one wants to add. We used the previous token and the next two.

The ’Average Title Length’ feature was added to help identify the titles of
the papers. In [35], the average title length of academic software engineering
papers was found to be 7.9 but we adjusted this down to 7 to try and get a
higher recall value.

34

The rest of the features are more generic:
’Token as Feature’ sets the token itself as one of the features, ’Token First
Position’ is assigned to the first token of a paper, ’Token Char Prefix’ stores
the prefix characters of each token with length 1, 2 and 3 to help identify
other tokens that have the similar root but different beginning.

Lexical Features

Lexical features check a token against a list to detect whether they are a
member or not. We created several lists, and these contain the names of
the most typical empirical research methods, a list of all the countries and a
list of well-established computer science publishers. The list with stop words
was already included in the API. See Appendix B to view the lists that were
created.

RegEx Features

RegEx features checks a token against a regular expression. These expres-
sions are used to recognize patterns in a string. In our case, we used them to
detect if a year was mentioned or if a token contained only digits. We also
used RegEx to detect whether the token started with a capitalized letter.

Figure 4.4 illustrates an example of how a sequence of tokens can look like
with features. In our case, the token sequence was converted into a feature
vector sequence before using it to train the CRF model and we have several
more features than in the example.

Figure 4.4: Example of a sequence of tokens and associated features

35

The Approach

4.6 MaxEnt component

Our goal was to implement a simple, yet effective classifier that could give
good results considering the small size of the training dataset. The MaxEnt
classifier was used to classify what type of research approach was used in the
input paper. The reason that a text classifier was used on only this field was
because the other fields were mentioned specifically in the texts, and could
therefore be annotated and trained on, but the research approach used by a
paper was rarely mentioned explicitly in the text and would therefore have
to be inferred. Our assumption was that articles using the same research
approach would have some similar characteristics in the text, which could
allow a text classifier to distinguish between the approaches.

The MALLET API provided us with an implementation of a MaxEnt
classifier, described in Section 2.5.1. The only feature that was used was the
token itself.

4.7 Preprocessing component

The preprocessing component handles the raw text input, and processes this
into the required input-type for the CRF and MaxEnt classifier. The CRF
implementation requires the data preprocessed into a sequential list of tokens
and the associated labels next to them, as illustrated in Figure 4.4, except
there is only one label and no features represented. The labels are processed
from the text, by identifying beginning and ending XML tags. If no label is
found, a default label (O) is set. The document classifier on the other hand,
requires the input processed as a one instance per line. The line is in the
following format:

[ID] [label] [text]

In the training phase, the [label] field was set to the extracted label from
the text. Otherwise, the field was set to a default type (X). The preprocessor
also handled the conversion of the text into a standard UTF-8 UNICODE
encoding scheme, so that unknown characters would not be let through to
the classifier components.

36

4.8 Implementation

The final trained models were implemented in a system to demonstrate how
such a system could be used in a real case scenario. This example system
was named ERA, Empirical Research Assistant. ERA serves as a proof-of-
concept with regards to the problem description of this thesis, and the stated
research questions. The end-result is a template form that presents the users
with all the fields that were extracted, as seen in Figure 4.5.

Figure 4.5: Screenshot of ERA

When uploading a text file, the system preprocesses the input file into
the different formats needed by the two classifiers. Then, the newly created
input formats are run through the trained classifiers and any fields that are
extracted or classified successfully are returned. If the fields were not found,
a default [N/A] label is returned.

37

The Approach

4.8.1 Resources used

ERA was implemented in the development language Java 2, using Eclipse IDE
3 as the development environment, Google Web Toolkit 4 for the frond-end
development and MALLET API 5 [32], see Section 2.6.2, for the classifiers.

4.8.2 System Description

Figure 4.6 and Figure 4.7 illustrate a simple view of the back-end and front-
end of the ERA system.

backend.classifiers

This package contains two classes, CRF.java and MaxEnt.java, that handle
the classifiers. The classes contain methods for loading the stored, and al-
ready trained models, running the input file through the feature pipes of the
model, performing k-fold cross-validation, training the model and saving the
model. The validation, training and saving methods can only be accessed by
using the main method in the backend.main.Main.java class, and are avail-
able for future development purposes.

backend.entity

This package contains the Paper.java class, which is used to create a paper
object when an input file is loaded into the system. This paper object rep-
resents the paper, and stores all the extracted information. The ID of the
paper object is extracted from the filename of the input file.

backend.main

This package contains the Main.java class, which handles the initialization
of the back-end system. This is where the models are loaded from the file
system and the paper that is loaded gets redirected for preprocessing and

2http://www.java.com/en/about/
3http://www.eclipse.org/
4http://code.google.com/intl/no-NO/webtoolkit/
5http://mallet.cs.umass.edu/

38

then to the classifiers.

backend.util

This package consists of three different classes. The AvgTitlePipe.java class
contains the code for the average title feature, and uses this information to
create a custom pipe that is included in the CRF classifier. The IOOper-
ations.java handles all the input/output operations needed by the system,
such as writing, reading or creating text files. Finally, the PreProcessor.java
class handles all the preprocessing into the different input formats.

frontend

The frond-end was created to make the testing easier, and to demonstrate
that a template generating software tool for systematic reviews is an achiev-
able goal. An in-depth description of the frond-end is not included here, but
Figure 4.5 illustrates the end-result.

39

The Approach

Figure 4.6: Diagram of ERA back-end system

40

Figure 4.7: Diagram of ERA front-end system

41

42

Chapter 5

Evaluation

5.1 Introduction

This chapter will describe the evaluation methods that were used on the
classifiers and present the results that were produced from the experiments.
We will also argue as to why these results occurred, in the discussion.

The chapter is organized into several sections:

• Section 5.2 Explains the experiments that were conducted

• Section 5.3: Presents the experiment results

• Section 5.4 Discussion about the results

43

Evaluation

5.2 Evaluation Methods

The prototype was evaluated using standard evaluation methods for informa-
tion extraction and text classification, as described in Section 2.4.2 and Sec-
tion 2.5.2 respectively. Since there were no existing benchmark dataset that
could be used with our proof-of-concept prototype, the dataset we created
while developing the prototype was also used in our evaluations. To increase
the validity of the evaluation process, both the CRF and MaxEnt implemen-
tations were trained and tested again using 5-fold cross-validation and 2-fold
cross-validation, respectively. The precision, recall and F1 scores presented
are the average scores across the folds. This means that the F1 scores are
not calculated from the precision and recall values that are presented, but is
an average score of all the F1 scores calculated in the cross-validation.
The macro average scores are computed by averaging all the precision, recall
or F1 values from the tables.

Table 5.1 and Table 5.2 illustrate how many times each field was identified,
and annotated in the CRF and MaxEnt datasets, respectively. This gives us
information about how much training data the prototype was provided with
per field. The field Pub Typ is short for publication type. All data that was
used to produce the results in the evaluation experiments can be found in
Appendix D.

FIELD Annotations
TITLE 312
METHOD 26
PUBLISHER 42
YEAR 59
PUB TYP 10
COUNTRY 62

Table 5.1: Total number of an-
notated tokens per field in CRF
dataset

CLASS Annotations
EMPIRICAL 7
EXPLORATORY 10
DESCRIPTIVE 13

Table 5.2: Total number of anno-
tated tokens per field in MaxEnt
dataset

44

5.3 Evaluation Results

This section will present the results of the evaluation experiments from the
CRF and MaxEnt classifiers.

5.3.1 CRF results

The precision, recall and F1 scores for each field is presented in Table 5.3.
In the table, you can see that year, publisher and country have the highest
F1 scores, respectively, while method has the lowest. Figure 5.1 illustrates a
graphical comparison between the different fields.

FIELD P R F1
TITLE 0.7405 0.5569 0.6329
METHOD 0.9714 0.3224 0.4076
PUBLISHER 0.7489 0.7633 0.7435
YEAR 0.9270 0.7209 0.8003
PUB TYP 1 0.5 0.5933
COUNTRY 0.9250 0.6281 0.7311
Macro Average 0.7801 0.5885 0.6702

Table 5.3: Average per field results of CRF

Figure 5.1: Graphical representation of field scores

45

Evaluation

In Figure 5.2, the results of testing all the different state transition de-
grees are presented. The results are arranged from computational easy on the
left, to computational heavy on the right. The second order Markov model,
see Section 4.5.2, is a computational heavier choice than the other degrees of
state transition, but did not affect our implementation negatively since our
dataset was not that large. But if the prototype were to use a larger dataset,
it would require a more powerful system to run the training and evaluations.
As can be seen in the graph, there is a significant increase in performance
when selecting the second order model versus the half-order model.

Figure 5.2: The different degrees of state transition

The graph in Figure 5.3 illustrates the effect on the macro-average pre-
cision, recall and F1 scores when omitting groups of features from the CRF
classifier. Omitting the local features causes the largest drop in F1, precision
and recall scores compared to when the other groups are omitted. When
omitting the lexical features, there is an increase in precision, but a decrease
in recall. This is the opposite of what happens when omitting the regular
expression features. In this case, we can see a decrease in precision but an
increase in recall.

46

Figure 5.3: Omitting different groups of features

5.3.2 MaxEnt results

The precision, recall and F1 scores for the MaxEnt implementation is pre-
sented in Table 5.4. The ’Exploratory’ class presents the highest F1 score,
with 0.8167, while the ’Empirical’ and ’Exploratory’ classes have F1 scores
of 0.6286 and 0.7692, respectively.

CLASS P R F1
EMPIRICAL 0,875 0,625 0,6286
EXPLORATORY 0,75 0,9167 0,8167
DESCRIPTIVE 0,8125 0,8125 0,7692
Macro Average 0,8125 0,7847 0,7382

Table 5.4: Average per class results of MaxEnt

The reason MaxEnt was chosen as the classier is presented in Figure 5.4.
This comparison of the three different text classifiers show that MaxEnt de-
livers the highest scores, compared to the two other classifiers. NB was close
to MaxEnt, with MaxEnt only performing 0.0096 (1.32% increase) better,
while MaxEnt outperformed DT with 0.1912 (35% increase) difference in

47

Evaluation

score.

Figure 5.4: Comparison of different classifiers

Table 5.5 presents the confusion matrix of the MaxEnt. Seven occurrences
of ’Empirical’ were predicted correctly, and one occurrence was misclassified
as ’Descriptive’. The class ’Exploratory’ was successfully classified ten times,
and misclassified twice as ’Descriptive’. All ten of the ’Descriptive’ occur-
rences were predicted correctly, with the addition of two more occurrences
misclassified into this class.

Actual
Empirical Exploratory Descriptive Total

Predicted
Empirical 7 . . 7

Exploratory . 10 . 10
Descriptive 1 2 10 13

Total 8 12 10

Table 5.5: MaxEnt confusion matrix

48

5.4 Discussion

With a macro-average F1 score of 0.6702, the CRF implementation has
proven itself to function good at its tasks, yet still has potential for im-
provement. Much of this potential for improvement is within the strong
connection the scores have with the number of annotated tokens the CRF
had available to use during training, as well as the features used to distinguish
these different fields.

The ’year’ field produced the best scores, and had the most positive effect
on the overall F1 score, with an average F1 score of 0.8003. The ’method’
field did not have a positive effect on the overall F1 scores, but in fact had
a negative impact, with an average F1 score of 0.4076. This is mostly be-
cause the field only had 26 annotated tokens, over half as much as the best
performing field. All the field that had F1 scores above 0.6, had over 42 or
more annotated tokens while the two lowest performing fields only had from
26 and below. One could argue that the CRF implementation would benefit
from a larger dataset, that had a larger representation of the ’method’ and
’pub typ’ fields. Of course, this would also mean more noise data that would
be included during training. Still, considering the small training data, the
extraction of the fields produced good results. Papers that contain most, if
not all of the fields would be the perfect training data but will not always be
present in a dataset.

While the local features demonstrated the large impact they had on the
overall scores, as illustrated in Figure 5.2, the lexical and RegEx features
only demonstrated small improvements to the scores. There was even an
increase in precision score when omitting all RegEx features. The reason for
this is that many of the local features are designed to boost specific fields,
like the average title length feature, which in the end helps to increase the
overall scores. One could argue that the CRF implementation could omit the
RegEx features, and instead try to engineer field-specific features instead.
The results clearly show that our use of these local features are one of the
key aspects to why the CRF performed as it did.

The importance of choosing the degree of state transitions is evident in
Figure 4.3. Since there were a low number of labeled tokens, it was even
more important to consider the previous and next labels. This is the reason
why the second order Markov model performed with the highest results.

The MaxEnt implementation delivered a macro-average F1 score of 0.7382.

49

Evaluation

This demonstrates how a simple text classifier can produce good results, con-
sidering the small size of the dataset, the number of labels available for train-
ing and that only one feature was used. Nonetheless, this implementation
does need improvement, as a total of three papers were misclassified and the
recall scores for the class ’Empirical’ were low. We believe the small amount
of labeled dataset that the class ’Empirical’ had available has affected the
score. Since the CRF implementation demonstrated the importance of fea-
ture engineering, we believe that the MaxEnt implementation could benefit
from experimentation with more features.

Concerning the research questions, we argue that both the results pre-
sented and the implementation of the classifiers into the ERA system show
that it is possible. While McCullum and Feng [9] presented results showing
the use of CRF with IE, we have implemented a system using two trained
classifiers, on a small self-annotated dataset. Our research has proven it to
be practically achievable. However, there are still limitations to our research
if used in a real scenario. The training data is too small for it to be repre-
sentable of all software engineering papers, the specific information each SLR
wants to retrieve differs and only one person annotated the dataset. Still, as
a proof-of-concept we argue that we have demonstrated it to be achievable.

50

Chapter 6

Conclusion & Future Work

6.1 Introduction

This chapter will present the conclusion of the thesis, answer the research
questions and give suggestions to possible future work which can be done
regarding our research and prototype.

The chapter is organized into two sections:

• Section 6.2 Presents the conclusion of the thesis

• Section 6.3: Suggestions about possible future work

51

Conclusion & Future Work

6.2 Conclusion

The goal of this thesis was to investigate if one could develop a method for
automatic literature reviews. Relevant theory into the subjects of SLR, IE
and TC was researched and state-of-the-art techniques were found. Existing
research and solutions were analyzed, but found to be insufficient at solving
our problem. A prototype was developed as a proof-of-concept, and tested
against a dataset that we created, and the results were evaluated and finally
discussed.

The contribution of this thesis is the researched, developed and evaluated
prototype named ERA. The Empirical Research Assistant was developed over
the course of several iterations, each iteration aiming to expand its labeled
dataset and engineer features to achieve better results. The labeled dataset
was annotated for the purpose of this thesis, and did not exist beforehand.
CRF and MaxEnt were used for the extraction and classification, each ma-
chine learner assigned to infer different fields. These fields were found to be
of use to researchers when conducting an SLR, by examining two concluded
SLRs [30, 4]. The prototype presented good results during the evaluations.

With the research questions in mind, we have provided direct answers to
each question:

Main Question: Could one develop a method for automatic system-
atic literature reviews?
A: Our research has shown that a crucial part of an SLR can be au-
tomated, but there is still much work that needs to be done before an
entire SLR can be conducted automatically.

RQ1: Is it possible to develop a system/tool that could support the data
extraction process of a systematic literature review?
A: The ERA system has demonstrated that it is possible, with the use
of IE and TC techniques and trained machine learning models.

RQ2: Are there any existing solutions and/or systems that solve the
same problems addressed in this thesis?
A: Although there are several similar systems, they are not compatible
at solving our task of assisting in SLRs.

52

RQ3: How well does the proposed solution work?
A: Our proposed solutions IE component has an average F1 perfor-
mance score of 67.02%, while our TC component delivers an average
F1 performance score of 73.82%.

Our conclusion is that it is possible to develop a method to support the
data extraction step of an SLR, as supported by this thesis and the prototype.
The prototype does not need to be trained on a large dataset to produce good
results, as our evaluations have demonstrated.

6.3 Future Work

With the discussion and limitations of the prototype in mind, we have sug-
gested some future work:

• The ERA systems dataset could be extended. A larger dataset would
allow the machine learners to be trained on more cases where the fields
appear, and this might in return improve their ability to detect these
fields.

• Testing more methods and new state-of-the-art methods could prove
to be beneficial.

• Conducting more specific feature engineering, directed at the fields that
were more difficult to detect. Especially the MaxEnt component could
benefit from experimenting with different features.

• A case study, using the ERA system as a support tool for the data
extraction step could provide valuable insight into how the the sys-
tem would work in a real-case scenario, and how it could be improved
further.

53

54

Appendix A

Dataset

55

Dataset

A.1 CRF Dataset

ID SLR Title
S3 [30] Challenges in requirements engineering for mobile games develop-

ment: the meantime case study
S5 [30] Evaluation of object-oriented design patterns in game development
S11 [30] Requirements engineering and the creative process in the video

game industry
S12 [30] Emotional requirements in video games
S13 [30] A practical implementation of a 3-D game engine
S18 [30] The usability of massively multiplayer online role-playing games:

designing for new users
S19 [30] ScriptEase: a generative/adaptive programming paradigm for game

scripting
S24 [30] Component based game development - a solution to escalating costs

and expanding deadlines
S25 [30] Ucigame, a java library for games
S28 [30] PlayMancer - a serious gaming 3D environment
S31 [30] Establishing user requirements: incorporating gamer preferences

into interactive games design
S32 [30] Pervasive game flow: understanding player enjoyment in pervasive

gaming
S33 [30] The platform of quick development of mobile 3D game
S35 [30] Design and implementation of a multiplayer bluetooth game
S37 [30] Playability heuristics for mobile multi-player games
S38 [30] Playability heuristics for mobile games
S51 [30] Using prototypes in early pervasive game development
S53 [30] Life-cycle of the games industry - the specificities of creative indus-

tries
S58 [30] Using genres to customize usability evaluations of video games
S66 [30] From usability to playability - introduction to player-centred video

game development process
S69 [30] User experience in interactive computer game development
S72 [30] Computer game - flow design
S74 [30] Creating an emotionally adaptive game
S78 [30] Guidelines for designing augmented reality games

56

S81 [30] Empirical validation of test-driven pair programming in game de-
velopment

S82 [30] Capturing player enjoyment in computer games
S83 [30] Mobile game development: object orientation or not
S84 [30] Object-orientation is evil to mobile game - experience from indus-

trial mobile RPGs
ID2 [4] Quantitative studies in software release planning under risk and

resource constraints
ID3 [4] Trade-off analysis for requirements selection
ID4 [4] An analytical model for requirements selection quality evaluation

in product software development
ID5 [4] Software release planning: an evolutionary and iterative approach
ID7 [4] Intelligent support for software release planning
ID8 [4] Release planning under fuzzy effort constraints
ID9 [4] Supporting software release planning decisions for evolving systems
ID10 [4] Determination of the next release of a software product: an ap-

proach using integer linear programming
ID11 [4] Fuzzy structural dependency constraints in software release plan-

ning
ID12 [4] Measuring dependency constraint satisfaction in software release

planning using dissimilarity of fuzzy graphs
Table A.1: All the papers used as CRF dataset

A.2 MaxEnt Dataset

ID SLR Title
S03 [30] Challenges in requirements engineering for mobile games develop-

ment: the meantime case study
S11 [30] Requirements engineering and the creative process in the video

game industry
S12 [30] Emotional requirements in video games
S18 [30] The usability of massively multiplayer online role-playing games:

designing for new users
S24 [30] Component based game development - a solution to escalating costs

and expanding deadlines

57

Dataset

S31 [30] Establishing user requirements: incorporating gamer preferences
into interactive games design

S33 [30] The platform of quick development of mobile 3D game
S35 [30] Design and implementation of a multiplayer bluetooth game
S37 [30] Playability heuristics for mobile multi-player games
S38 [30] Playability heuristics for mobile games
S51 [30] Using prototypes in early pervasive game development
S58 [30] Using genres to customize usability evaluations of video games
S66 [30] From usability to playability - introduction to player-centred video

game development process
S69 [30] User experience in interactive computer game development
S74 [30] Creating an emotionally adaptive game
S78 [30] Guidelines for designing augmented reality games
S81 [30] Empirical validation of test-driven pair programming in game de-

velopment
S82 [30] Capturing player enjoyment in computer games
S83 [30] Mobile game development: object orientation or not
S84 [30] Object-orientation is evil to mobile game - experience from indus-

trial mobile RPGs
ID02 [4] Quantitative studies in software release planning under risk and

resource constraints
ID03 [4] Trade-off analysis for requirements selection
ID4 [4] An analytical model for requirements selection quality evaluation

in product software development
ID5 [4] Software release planning: an evolutionary and iterative approach
ID7 [4] Intelligent support for software release planning
ID8 [4] Release planning under fuzzy effort constraints
ID9 [4] Supporting software release planning decisions for evolving systems
ID10 [4] Determination of the next release of a software product: an ap-

proach using integer linear programming
ID11 [4] Fuzzy structural dependency constraints in software release plan-

ning
ID12 [4] Measuring dependency constraint satisfaction in software release

planning using dissimilarity of fuzzy graphs
Table A.2: All the papers used as MaxEnt dataset

58

Appendix B

Annotation Guideline

Read through this document once before starting the annotation process.

Intro

Before you continue with the steps below you should open the zipped file
named ”Labeling Task” and extract its content.

The zip file contains a folder named ”Dataset”, a text document named
“Annotation Guidelines” and an Excel form named “Text Classification”.
Extract this folder onto your desktop for easy access.

“Dataset” folder contains several documents that you will be annotating.
Each of these documents contains the first page of a research paper in raw
text. Use a common text editor, like Notepad, to open these documents.

The Excel form named “Text Classification” is to be used when anno-
tating the field “Approach”. The Excel form has an ID field, which is the
document name itself, like “S2-4” or “S2-68”. The “Approach” field in the
Excel document the where the label is to be assigned.

Annotations

There are 7 fields that, if identified in the text, must be annotated with XML
tags. There is 1 field that requires you to write down the annotation in the
Excel form, without XML tags.

59

Annotation Guideline

The text must not be altered in any way to better match a description
of a label. Only annotate the fields that you identify and match with the
definitions below:

XML Tags

Title:
Annotate the entire title of the paper, including any subtitles. E.g. “The
use of nuclear-powered servers: Next generation server-farms?”

Label: <TITLE> ... </TITLE>

Research Method:
Annotate if these three empirical research methods are explicitly mentioned
in the text as used in the paper; “case study”, “experiment” or “survey”.

Label: <METHOD> ... </METHOD>

Country:
Annotate the papers’ country of origin if it occurs, e.g. ”Spain”, or ”Singa-
pore”. Only annotate the country of origin in the appropriate context, like
when it appears after the papers author(s) or institute(s)/affiliation(s). If
multiple country of origin exists, annotate them as well.

Label: <COUNTRY> ... </COUNTRY>

Publisher:
Annotate the publisher of the paper, e.g. ”IEEE” or ”ACM” or “Elsevier”.
Only annotate the “Elsevier” part if this publisher occurs.

Label: <PUBLISHER> ... </PUBLISHER>

Year:
Annotate the year of publication e.g. ”2008”. Annotate all occurrences of
this field in the proper context, e.g. when mentioned next to publisher or
author.

60

Label: <YEAR> ... </YEAR>

Type of Publication:
Annotate what type of publication the paper is, only if explicitly mention as
either “journal”, “workshop” or “conference”

Label: <CIT TYP> ... </ CIT TYP >

Excel form

By just reading the abstract part of the document, derive from the definitions
below what type of research approach the document uses:

Empirical:
Whether the findings in the research are from direct or indirect observations,
such as a case study [30] .

Descriptive:
If a system, tool or method is presented and described in the research [30] .

Exploratory:
If the research investigates a problem that has not been defined, and helps to
determine the best research way or design, the best data collection method
and the best method for selecting subjects. [30]

61

62

Appendix C

Lexicon Lists

C.1 Countries

The list was retrieved, and altered from: http://openconcept.ca/blog/

mgifford/text_list_all_countries

Afghanistan Albania Algeria Andorra Angola Antigua Argentina Arme-
nia Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados
Belarus Belgium Belize Benin Bhutan Bolivia Bosnia Botswana Brazil Brunei
Bulgaria Burkina Burundi Cambodia Cameroon Canada Cape Verde Cen-
tral African Republic Chad Chile China Colombia Comoros Congo Congo
Costa Rica Croatia Cuba Cyprus Czech Republic Denmark Djibouti Do-
minica Dominican Republic East Timor Ecuador Egypt El Salvador Equa-
torial Guinea Eritrea Estonia Ethiopia Fiji Finland France Gabon Gam-
bia Georgia Germany Ghana Greece Grenada Guatemala Guinea Guinea
Bissau Guyana Haiti Honduras Hungary Iceland India Indonesia Iran Iraq
Ireland Israel Italy Ivory Coast Jamaica Japan Jordan Kazakhstan Kenya
Kiribati Korea North Korea South Kosovo Kuwait Kyrgyzstan Laos Latvia
Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Mace-
donia Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands
Mauritania Mauritius Mexico Micronesia Moldova Monaco Mongolia Mon-
tenegro Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands
New Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Palau Panama
Papua New Guinea Paraguay Peru Philippines Poland Portugal Qatar Ro-
mania Russia Rwanda St Kitts Nevis St Lucia Saint Vincent the Grenadines

63

http://openconcept.ca/blog/mgifford/text_list_all_countries
http://openconcept.ca/blog/mgifford/text_list_all_countries

Lexicon Lists

Samoa San Marino Sao Tome Principe Saudi Arabia Senegal Serbia Sey-
chelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia
South Africa Spain Sri Lanka Sudan Suriname Swaziland Sweden Switzerland
Syria Taiwan Tajikistan Tanzania Thailand Togo Tonga Trinidad Tunisia
Turkey Turkmenistan Tuvalu Uganda Ukraine Emirates United Kingdom
UK United States USA US Uruguay Uzbekistan Vanuatu Vatican Venezuela
Vietnam Yemen Zambia Zimbabwe

C.2 Research Methods

case study studies experiment experiments survey surveys

C.3 Publication Types

conference journal workshop

C.4 Publishers

ieee ACM springerverlag springer elsevier

64

Appendix D

Evaluation Data

This data has been re-sized and presented in a reader-friendly way, but NOT
altered for the appendix. All raw data from the experiments presented in
the Evaluation chapter will be attached to the thesis in a zip file, inside
a folder named ’Validation Data’. We recommend searching for the string
“CRF Trained with Convergence!” to find the evaluation data in the raw
texts, as there is a lot of calculations and data in the texts.

D.1 CRF data

Iteration 1:

test tokenaccuracy=0,9912
TITLE
test segments true=80 pred=66 correct=32 misses=48 alarms=34
test precision=0,4848 recall=0,4 f1=0,4384
METHOD
test segments true=6 pred=0 correct=0 misses=6 alarms=0
test precision=1 recall=0 f1=0
PUBLISHER
test segments true=10 pred=6 correct=4 misses=6 alarms=2
test precision=0,6667 recall=0,4 f1=0,5
YEAR
test segments true=12 pred=10 correct=9 misses=3 alarms=1
test precision=0,9 recall=0,75 f1=0,8182

65

Evaluation Data

CIT TYP
test segments true=1 pred=0 correct=0 misses=1 alarms=0
test precision=1 recall=0 f1=0
COUNTRY
test segments true=11 pred=4 correct=3 misses=8 alarms=1
test precision=0,75 recall=0,2727 f1=0,4
OVERALL
test segments true=120 pred=86 correct=48 misses=72 alarms=38
test precision=0,5581 recall=0,4 f1=0,466

Iteration 3:

test tokenaccuracy=0,9952
TITLE
test segments true=58 pred=50 correct=50 misses=8 alarms=0
test precision=1 recall=0,8621 f1=0,9259
METHOD
test segments true=11 pred=7 correct=6 misses=5 alarms=1
test precision=0,8571 recall=0,5455 f1=0,6667
PUBLISHER
test segments true=5 pred=6 correct=5 misses=0 alarms=1
test precision=0,8333 recall=1 f1=0,9091
YEAR
test segments true=6 pred=5 correct=5 misses=1 alarms=0
test precision=1 recall=0,8333 f1=0,9091
CIT TYP
test segments true=3 pred=1 correct=1 misses=2 alarms=0
test precision=1 recall=0,3333 f1=0,5
COUNTRY
test segments true=8 pred=8 correct=7 misses=1 alarms=1
test precision=0,875 recall=0,875 f1=0,875
OVERALL
test segments true=91 pred=77 correct=74 misses=17 alarms=3
test precision=0,961 recall=0,8132 f1=0,881

Iteration 3:

test tokenaccuracy=0,987

66

TITLE
test segments true=68 pred=53 correct=26 misses=42 alarms=27
test precision=0,4906 recall=0,3824 f1=0,4298
METHOD
test segments true=3 pred=2 correct=2 misses=1 alarms=0
test precision=1 recall=0,6667 f1=0,8
PUBLISHER
test segments true=12 pred=10 correct=8 misses=4 alarms=2
test precision=0,8 recall=0,6667 f1=0,7273
YEAR
test segments true=14 pred=8 correct=8 misses=6 alarms=0
test precision=1 recall=0,5714 f1=0,7273
CIT TYP
test segments true=3 pred=2 correct=2 misses=1 alarms=0
test precision=1 recall=0,6667 f1=0,8
COUNTRY
test segments true=11 pred=6 correct=6 misses=5 alarms=0
test precision=1 recall=0,5455 f1=0,7059
OVERALL
test segments true=111 pred=81 correct=52 misses=59 alarms=29
test precision=0,642 recall=0,4685 f1=0,5417

Iteration 4:

test tokenaccuracy=0,9929
TITLE
test segments true=45 pred=33 correct=24 misses=21 alarms=9
test precision=0,7273 recall=0,5333 f1=0,6154
METHOD
test segments true=1 pred=0 correct=0 misses=1 alarms=0
test precision=1 recall=0 f1=0
PUBLISHER
test segments true=8 pred=9 correct=6 misses=2 alarms=3
test precision=0,6667 recall=0,75 f1=0,7059
YEAR
test segments true=15 pred=9 correct=8 misses=7 alarms=1
test precision=0,8889 recall=0,5333 f1=0,6667
CIT TYP

67

Evaluation Data

test segments true=1 pred=1 correct=1 misses=0 alarms=0
test precision=1 recall=1 f1=1
COUNTRY
test segments true=17 pred=11 correct=11 misses=6 alarms=0
test precision=1 recall=0,6471 f1=0,7857
OVERALL
test segments true=87 pred=63 correct=50 misses=37 alarms=13
test precision=0,7937 recall=0,5747 f1=0,6667

Iteration 5:

test tokenaccuracy=0,9932
TITLE
test segments true=61 pred=37 correct=37 misses=24 alarms=0
test precision=1 recall=0,6066 f1=0,7551
METHOD
test segments true=5 pred=2 correct=2 misses=3 alarms=0
test precision=1 recall=0,4 f1=0,5714
PUBLISHER
test segments true=7 pred=9 correct=7 misses=0 alarms=2
test precision=0,7778 recall=1 f1=0,875
YEAR
test segments true=12 pred=13 correct=11 misses=1 alarms=2
test precision=0,8462 recall=0,9167 f1=0,88
CIT TYP
test segments true=2 pred=1 correct=1 misses=1 alarms=0
test precision=1 recall=0,5 f1=0,6667
COUNTRY
test segments true=15 pred=12 correct=12 misses=3 alarms=0
test precision=1 recall=0,8 f1=0,8889
OVERALL
test segments true=102 pred=74 correct=70 misses=32 alarms=4
test precision=0,9459 recall=0,6863 f1=0,7955

68

D.2 MaxEnt data

Iteration 1:

Class ’EMPIRICAL’: P: 1.0 R: 0.25 F1: 0.4
Class ’EXPLORATORY’: P: 0.8333333333333334 R: 0.8333333333333334 F1:
0.8333333333333334
Class ’DESCRIPTIVE’: P: 0.625 R: 1.0 F1: 0.7692307692307693

Confusion Matrix, row=true, column=predicted accuracy=0.7333333333333333

Actual
Empirical Exploratory Descriptive Total

Predicted
Empirical 1 1 2 4

Exploratory . 5 1 6
Descriptive . . 5 5

Total 1 6 8

Table D.1: Iteration 1 Confusion Matrix

Iteration 2:

Class ’EMPIRICAL’: P: 0.75 R: 1.0 F1: 0.8571428571428571
Class ’EXPLORATORY’: P: 0.6666666666666666 R: 1.0 F1: 0.8
Class ’DESCRIPTIVE’: P: 1.0 R: 0.625 F1: 0.7692307692307693

Confusion Matrix, row=true, column=predicted accuracy=0.8

Actual
Empirical Exploratory Descriptive Total

Predicted
Empirical 3 . . 3

Exploratory . 4 . 4
Descriptive 1 2 5 8

Total 4 6 5

Table D.2: Iteration 2 Confusion Matrix

Trial:

69

Evaluation Data

Actual
Empirical Exploratory Descriptive Total

Predicted
Empirical 7 . . 7

Exploratory . 10 . 10
Descriptive 1 2 10 13

Total 8 12 10

Table D.3: Trial Confusion Matrix

Accuracy: 0.9
Precision EMPIRICAL’: 0.875
Recall: EMPIRICAL’: 1.0
Precision EXPLORATORY’: 0.8333333333333334
Recall: EXPLORATORY’: 1.0
Precision DESCRIPTIVE’: 1.0
Recall: DESCRIPTIVE’: 0.7692307692307693

Confusion Matrix, row=true, column=predicted accuracy=0.9

70

Bibliography

[1] B. Kitchenham, “Guidelines for performing systematic literature reviews
in software engineering,” Keele University and University of Durham,
ESBE Technical Report 2.3, July 2007.

[2] A. White and K. Schmidt, “Systematic literature reviews,” Complemen-
tary Therapies in Medicine, vol. 13, no. 1, pp. 54–60, 2005.

[3] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571–583, 2007.

[4] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M. U.
Shafique, “A systematic review on strategic release planning models,”
Information and Software Technology, vol. 52, pp. 237–248, March 2010.

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[6] S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 1, pp. 261–377, 2008.

[7] K. Kaiser and S. Miksch, “Information extraction: A survey,” Vienna
University of Technology, Tech. Rep., May 2005.

[8] D. Cruzes, V. Basili, F. Shull, and M. Jino, “Automated information
extraction from empirical software engineering literature: Is that pos-
sible?” in Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium On, 2007, pp. 491–493.

71

BIBLIOGRAPHY

[9] F. Peng and A. McCallum, “Accurate information extraction from
research papers using conditional random fields,” in HLT-NAACL04,
2004, pp. 329–336.

[10] L. R. Rabiner, “A tutorial on hidden markov models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[11] D. Freitag and A. K. McCallum, “Information extraction with hmms
and shrinkage,” in Proceedings of the AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999, pp. 31–36.

[12] J. Su, G. Zhou, and G. Zhou, “Named entity recognition using an hmm-
based chunk tagger,” in Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics, ser. ACL ’02. Association for
Computational Linguistics, 2002, pp. 473–480.

[13] A. McCallum and D. Freitag, “Maximum entropy markov models for
information extraction and segmentation,” in Proceedings of the 17th
International Conf. on Machine Learning. Morgan Kaufmann, 2000,
pp. 591–598.

[14] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Pro-
ceedings of the Eighteenth International Conference on Machine Learn-
ing, ser. ICML ’01. Morgan Kaufmann Publishers Inc., 2001, pp. 282–
289.

[15] B. Settles, “ABNER: An open source tool for automatically tagging
genes, proteins, and other entity names in text,” Bioinformatics, vol. 21,
no. 14, pp. 3191–3192, 2005.

[16] F. Sha and F. Pereira, “Shallow parsing with conditional random fields,”
in Proceedings of Human Language Technology Conference and North
American Chapter of the Association for Computational Lingustics,
2003, pp. 213–220.

[17] R. Kohavi, “A study of cross-validation and bootstrap for accuracy es-
timation and model selection,” in International Joint Conference ON
artifical intelligence, 1995, pp. 1137–1143.

72

[18] D. T. Larose, Discovering Knowledge in Data, an Introduction to Data
Mining. Wiley-Interscience, 2005.

[19] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[20] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees
is np-complete,” Information Processing Letters, vol. 5, no. 1, pp. 15–17,
1976.

[21] D. D. Lewis, “Naive (bayes) at forty: The independence assumption
in information retrieval,” in Machine Learning: ECML-98. Springer
Verlag, 1998, pp. 4–15.

[22] S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, “Some effective
techniques for naive bayes text classification,” IEEE Transactions on
Knowledge and Data Engineering, vol. 18, no. 11, pp. 1457–1466, 2006.

[23] K. Nigam, J. Lafferty, and A. McCallum, “Using maximum entropy for
text classification,” 1999.

[24] H. H. C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang, and E. A. Fox, “Au-
tomatic document metadata extraction using support vector machines,”
in JCDL ’03: Proceedings of the 3rd ACM/IEEE-CS Joint Conference
on Digital Libraries, 2003, pp. 37–48.

[25] Y. Hu, “Automatic extraction of titles from general documents using
machine learning,” in Proceedings of ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL, 2005, pp. 145–154.

[26] R. Ghani, K. Probst, Y. Liu, M. Krema, and A. Fano, “Text mining for
product attribute extraction,” SIGKDD Explorations, vol. 1, pp. 41–48,
2006.

[27] X. Lu, B. Kahle, J. Z. Wang, and C. L. Giles, “A metadata genera-
tion system for scanned scientific volumes,” in Proceedings of the 8th
ACM/IEEE-CS joint conference on Digital libraries. ACM, 2008, pp.
167–176.

73

BIBLIOGRAPHY

[28] C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: an automatic
citation indexing system,” in International Conference On Digital Li-
braries, 1998, pp. 89–98.

[29] H.-M. Müller, E. E. Kenny, and P. W. Sternberg, “Textpresso: An
ontology-based information retrieval and extraction system for biological
literature,” PLoS Biol, vol. 2, p. 309, 2004.

[30] A. Ampatzoglou and I. Stamelos, “Software engineering research for
computer games: A systematic review,” Information and Software Tech-
nology, vol. 52, pp. 888–901, 2010.

[31] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tool evaluation,” IEEE Software, vol. 12, no. 4, pp. 52–62, 1995.

[32] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[33] C. Ding, X. He, H. Zha, and H. Simon, “Adaptive dimension reduction
for clustering high dimensional data,” in Proceedings. 2002 IEEE In-
ternational Conference on Data Mining, 2002. ICDM 2003., 2002, pp.
147–154.

[34] T. G. Dietterich, “Machine learning for sequential data: A review6,” in
Proceedings of the Joint IAPR International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition, 2002, pp. 15–30.

[35] L. Anthony, “Characteristic features of research article titles in computer
science,” Professional Communication, IEEE Transactions on, vol. 44,
no. 3, pp. 187–194, 2001.

74

	Title Page
	Introduction
	Background and Motivation
	Problem Description
	Research Questions
	Problem Definition
	Scope

	Thesis Outline

	Background Research
	Introduction
	Systematic Literature Review
	Data Extraction step

	Information Retrieval
	Information Extraction
	Machine Learning in IE
	Evaluation Methods

	Text Classification
	Machine Learning in TC
	Evaluation Methods

	Existing Tools and Development Libraries
	Stanford Named Entity Recognizer
	MALLET
	LingPipe
	GATE
	Apache OpenNLP

	Related Work
	Introduction
	Related Research
	SVM Approach
	CRF-based Approach
	Machine Learning Approach
	Text Mining Approach
	Metadata Generation Approach

	Existing Systems

	The Approach
	Introduction
	Training Process
	Dataset Preparations
	Reasoning
	Collection and annotation

	Prototype
	CRF component
	Algorithm details
	Feature Engineering

	MaxEnt component
	Preprocessing component
	Implementation
	Resources used
	System Description

	Evaluation
	Introduction
	Evaluation Methods
	Evaluation Results
	CRF results
	MaxEnt results

	Discussion

	Conclusion & Future Work
	Introduction
	Conclusion
	Future Work

	Dataset
	CRF Dataset
	MaxEnt Dataset

	Annotation Guideline
	Lexicon Lists
	Countries
	Research Methods
	Publication Types
	Publishers

	Evaluation Data
	CRF data
	MaxEnt data

