
Master of Science in Informatics
Januar 2012
Reidar Conradi, IDI
Rolf Sture Normann, Acando AS

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Viable Open Source for the Consultancy
Industry

Kristian Fredrik Klette

PėĔćđĊĒ DĊĘĈėĎĕęĎĔē

TheNorwegian communeswill have to integrate their data systemswithUninett's
FEIDE system over the next years. In order to do this, each commune needs
a system for maintaining the users that should have access to resources pro-
tected by FEIDE. Acando AS has written a white paper for Uninett AS describ-
ing how such a system could be implemented and released as open source.

Acandohas constructedaproblemdescription consistingof twomainparts,
one part implementation and the other theoretical. The implementation part
is to create an module for their OpenFEIDE solution that will allow regular
users to easily add their own XML-based data sources to the OpenFEIDE im-
port mechanism.

The theoretical part raises the following questions:

• Is authoring of open source software a viable business idea for consul-
tancy agencies?

• How should software be released as open source?

The theoretical part should identify and decide upon key issues, both tech-
nical, economical and legal ones.

The ϐinal expected result is a ϐirst attempt at anopen sourceproject release,
and a working prototype for the importer module.

i

Abstract

Open source software is growing in themarket, and increasingly preferred
to closed software for the increased ϐlexibility free software provides. As a
result of this more and more businesses are trying to enter this market and
proϐit from open source software. Consultancy agencies targeting the public
sector are in demand of expertise and products released as open source. As
this is a new ϐield formany companies, studies are needed on how to approach
these markets with a high chance of success with regards to business models
and the technological beneϐits that open source software may provide. The
problem description raises two research questions:

• Is authoring of open source software a viable business idea for consul-
tancy agencies?

• How should software be released as open source?

This thesis presents two main contributions for answering the research
questions. The ϐirst is a set of guidelines and techniques for estimating the
business viability of a of open source software venture. The second is some
best practices for authoring and releasing open source by observing the suc-
cessful projects that already exists. In addition to these theoretical parts of the
thesis, a system for analyzing and generating XSLT-transformations for Open-
FEIDE is presented.

PėĊċĆĈĊ
Ćēĉ

AĈĐēĔĜđĊĉČĊĒĊēęĘ

This Master's thesis is the ϐinal part of a Master of Science degree from the De-
partment of Computer and Information Science (IDI) at the Norwegian Uni-
versity of Science and Technology (NTNU).

Acknowledgements

I would like to thank my supervisor Reidar Conradi for his support, guidance
and patience.

I would also like to thank allmy friends in the open source communitywho
have been very helpful in the gathering of information, and correcting me if
any mistakes were made.

January 15, 2012
Kristian Klette

ii

CĔēęĊēęĘ

Abstract i

Preface and Acknowledgements ii

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Actual Context . 2
1.3 Problem Statement . 2

1.3.1 Research Questions . 2
1.3.2 Purpose of Implementation 2

1.4 Contributions . 3
1.5 Thesis Structure . 3
1.6 Appendices . 5

2 Background 6
2.1 Software Engineering . 6

2.1.1 Background . 6
2.1.2 Development Life Cycles 7
2.1.3 Software Quality . 9

2.2 Open Source . 10
2.2.1 Conditions of Open Source Software 10
2.2.2 History of Open Source . 15
2.2.3 Open Source Culture . 15
2.2.4 Open Source Software Engineering 16

2.3 Open Innovation . 17

iii

iv CONTENTS

2.4 Business Models in Open Innovation Environments 20
2.4.1 Product Based Business Models 20
2.4.2 Service Based Business Models 22
2.4.3 Implementation of Business Models 23

2.5 Licensing . 24
2.6 Release Strategies . 25

3 Implementation Background 27
3.1 The OpenFEIDE Import Mechanism 27
3.2 XML Processing . 28

3.2.1 XML Traversal . 29
3.2.2 Extensible Stylesheet Language Transformations 32

3.3 Information Retrieval . 34
3.3.1 Measuring Correctness . 34
3.3.2 Indexing Data Sources . 35

4 Research Design 39
4.1 Context and Motivation . 39

4.1.1 Acando and the OpenFEIDE Project 40
4.1.2 The Motivation Behind the Research Questions 41

4.2 Applied Research Methods in this Study 42
4.2.1 Literature Search . 42
4.2.2 Choice of Research Methods 42
4.2.3 Studied Companies . 43
4.2.4 Studied Projects . 44

4.3 Case Study Design . 45
4.3.1 Company Studies . 45
4.3.2 Project Studies . 45
4.3.3 Data Collection and Challenges 47

5 Contributions 49
5.1 Viable Open Source for Consultancy Agencies 49

5.1.1 Legal Considerations and Licensing 49
5.1.2 Estimating the Cost of Development 50
5.1.3 Business Models . 51

5.2 Practical Open Source Development 54
5.2.1 Project Start Up . 54
5.2.2 Developing in the Open 56
5.2.3 Managing Users and Contributors 57

CONTENTS v

5.2.4 Bug Tracking and Issue Management 58
5.3 Relationship Between Business and Technical Aspects 59
5.4 Implementation of XSLTGenerator 61

5.4.1 Problem Description . 61
5.4.2 Development Methodology 62
5.4.3 Context of Implementation 62
5.4.4 Problem Analysis . 65
5.4.5 Analysis of Current Import Procedure 66
5.4.6 Analysis Results . 66
5.4.7 Requirements . 67
5.4.8 Goals and Guidelines . 70
5.4.9 Architecture . 72
5.4.10 Functionality Types . 75
5.4.11 XML Analyzer System Design 76
5.4.12 System Sequences . 82
5.4.13 Technology Selection . 84

6 Evaluation & Discussion 87
6.1 Answering the Research Questions 87

6.1.1 Viable Open Source for Consultancy Agencies 87
6.1.2 Practical Open Source Development 90

6.2 Summarized Recommendations 92
6.2.1 Validity and Limitations 93

6.3 Implementing XSLT Generator for OpenFEIDE 93
6.3.1 XML Analyzer results . 94
6.3.2 User Interface . 94
6.3.3 Requirement Fulϐillment 97

7 Conclusion 99
7.1 Contributions . 99

7.1.1 Viable Open Source for Consultancy Agencies 99
7.1.2 Practical Open Source Development 99
7.1.3 Implementation of XSLTGenerator 99

8 Further Work 101
8.1 Open Source For Consultancy Companies 101
8.2 XSLTGenerator . 101

A Company study: Varnish Software ii

vi CONTENTS

B Company study: Gitorious AS vii

C Project Study: Gitorious xi

D Project Study: Varnish Cache xv

E Project study: Django xix

F Project study: Linux xxiii

G Project study: Symbian OS xxvii

H The Future of OpenFEIDE xxxi

I XSLTGenerator Documentation xxxix

LĎĘę Ĕċ FĎČĚėĊĘ

2.1 The waterfall life cycle activities 8
2.2 The agile life cycle activities . 9
2.3 Timeline of key points in OSS history 15
2.4 Relationship between open innovation, OSS and business models 17
2.5 Open Innovation Paradigm for managing R&D 18
2.6 Closed Innovation Paradigm for managing R&D 20
2.7 OSS license relationships by Fredrik Speakman adapted from

David A. Wheeler . 25

3.1 OpenFEIDE import process . 28
3.2 Example XML document for tree representation 29
3.3 Tree representation of XML document 30
3.4 XSLT Processing pipeline fromWikipedia article about XSLT [38] 32
3.5 ExampleExtensible Stylesheet LanguageTransformations (XSLT)

Processing . 33

5.1 Needed sales of consultancy hours versus lines of code 51
5.2 Product classiϐication . 52
5.3 Relationship between technical aspect and community aspect

with proϐits . 60
5.4 Visualization of implementation problem description 61
5.5 Development process . 62
5.6 OpenFEIDE Architecture Schema 64
5.7 Activity chain for addingnewsource toOpenFEIDEbeforeXSLT-

Generator . 66
5.8 Activity chain for adding new source to OpenFEIDE after XSLT-

Generator . 66
5.9 Contextual placement of the new system 67
5.10 Main user interaction use case . 68
5.11 Use case for manual generation 68
5.12 Packages and their dependencies 72

vii

viii LIST OF FIGURES

5.13 Well formed XML example . 76
5.14 Non-logical XML structure . 76
5.15 XML Analyzer design . 77
5.16 ElementType enum implementation 79
5.17 ElementType Parser Implementation 80
5.18 Client server communication during user interaction 83

6.1 Purpose of XSLTGenerator . 93
6.2 Screenshot of sample entry point for XSLTGenerator 95
6.3 Screenshot of sample entry point for XSLTGenerator 96
6.4 Screenshot of sample entry point for XSLTGenerator 96
6.5 Screenshot of sample entry point for XSLTGenerator 97

E.1 Django contribution management xxi

F.1 Linux development contribution management xxv

I.1 Example Library Usage . xl
I.2 Example Commandline Tool . xli

LĎĘę Ĕċ TĆćđĊĘ

2.1 Innovation Principles . 19
2.2 Means to appropriate returns . 21
2.3 Business model usage data from Bonaccorsi et al. [5] 24

3.1 Frequently used Java SAX API Callback Methods 31
3.2 Example Document Collection . 35
3.3 Inverted Index for Example Document Collection 35

4.1 Research Questions . 39
4.2 Companies with a primary focus on Open Source software . . . 43
4.3 Open source projects . 44

5.1 List of remote public code hosting providers 57
5.2 Identiϐied external components in OpenFEIDE 63
5.3 Functional requirements . 69
5.4 Non-functional requirements . 70
5.5 Java package overview for XSLTGenerator 74
5.6 XML Fragment analyzer scoreboard 81

6.1 Classiϐication of practices . 91
6.2 XML Fragment analyzer test results 95
6.3 Requirement Fulϐillment . 98

C.1 Key project management techniques used in Gitorious xiii

D.1 Key project management techniques used in Varnish Cache . . . xvii

E.1 Key project management techniques used in Django xxii

F.1 Key project management techniques used in Linux xxvi

G.1 Key project management techniques used in Symbian OS xxix

ix

AĈėĔēĞĒĘ

API Application programming interface . 31

BAS Brukeradministrativt system (eng: user management system) 40

CBSE Component Based Software Engineering . 17

COTS Commercial of the shelves software . 1

EPL Eclipse Public License . xxvii

FEIDE Felles Elektronisk IDEntitet . 2

FSF Free Software Foundation . 15

FTP File transfer protocol . 27

GPL GNU Public License . 14

GWT Google Web Toolkit . 11

IDE Integrated Development Environment . 84

IRC Internet Relay Chat . 26

x

0.0. ACRONYMS xi

KCAM Keyword Common Ancestor Matrix . 37

LDAP Lightweight Directory Access Protocol . 40

LKML Linux Kernel Mailing List . xxiii

NATO North Atlantic Treaty Organization . 6

NTNU Norges Tekniske og Naturvitenskapelige Universitet 40

OSD Open Source Deϐinition . 10

OSI Open Source Initiative . 10

OSS Open Source Software . 1

OpenFEIDE Acando's open source FEIDE BAS . 2

PEST Political, Economic, Social and Technological factors 41

SAS Skoleadministrative systemer (eng: school administration systems) . . . 2

SAX Simple API for XML . 29

DOM Document Object Model . 29

SCM Source code management . 54

SLA Service Level Agreement . 21

xii LIST OF TABLES

SSB Statistisk sentralbyrå (Statistics Norway) . 1

SSO Single-Sign-On . 40

SWOT Strengths, Weaknesses, Opportunities and Threats 41

SaaS Software as a service . 88

tf-idf term frequency–inverse document frequency . 36

VSM Vector Space Model . 36

W3C World Wide Web Consortium . 28

XML Extensible Markup Language . 4

XPath XML Path Language . 32

XSLT Extensible Stylesheet Language Transformations vii

CčĆĕęĊė 1

IēęėĔĉĚĈęĎĔē

1.1 Motivation

Open Source Software (OSS) is software where the source code is available for
the consumer to inspect, and given the right license modify and redistribute.
This type of software gives the consumer greater powerwith regards to how it
wants to use the software since there is no vendor lock-in occurring. SinceOSS
is in most cases provided free of charge, and the software can be modiϐied to
suite the consumers needs, OSS is becoming increasingly popular in the soft-
ware community. Companies and governments are also starting to take an
interest as a mean to reduce rising IT costs. In Norwegian state run facilities
the adoption of OSS usage has grown from 35% to almost 60% from 2006 to
2008 according to Statistisk sentralbyrå (Statistics Norway) (SSB), This trend
forces consultancies to take OSS seriously as a part of the strategies for selling
consultancy contracts with the government.

For established software houses and consultancy ϐirms OSS is a radical
new way of developing and proϐiting from software. As OSS is fairly new in
the mainstream software industry there are not a lot of well established best
practices andmonetizing strategies available. While the adoption of OSS com-
ponent usage in the Norwegian consultancies, as shown in "Adoption of Open
Source in the Software Industry" [13], is prominent, thedevelopment andmain-
tenance of OSS are not. This is not surprising as consultancies sell services and
not Commercial of the shelves software (COTS) as traditional software houses
do, and often do not want the risk involved in maintaining software, unless on
commission by a client.

The motivation of this study is to research some potential best practices
and monetizing strategies for consultancies authoring open source software.
This includes the technical, legal andbusiness aspects of these typesof projects.

1

2 CHAPTER 1. INTRODUCTION

1.2 Actual Context

Acando AS is a consultancy agency based in Oslo and Trondheim and works
mainly against the public sector. They are in the process of creating their ϐirst
OSS effort with the product Acando's open source FEIDE BAS (OpenFEIDE).
OpenFEIDE is a user management system specialized against Felles Elektro-
nisk IDEntitet (FEIDE). FEIDE is a federated identity management system
that provides users with a single set of username and password they can use
against all services in the public school sector in Norway. Most universities
and colleges are already using FEIDE, with other user management systems.
But there is a potential market in the primary and secondary schools. This
schools are run by Norwegian municipalities.

1.3 Problem Statement

The problem description has two parts that the initiators of this thesis wants
done. The ϐirst is a theoretical study of the practical and business aspects of
authoring OSS. The other is the implementation of an import module to their
open source log-in system for usage for the FEIDE platform.

1.3.1 Research Questions

The problem description raised two research questions. RQ1 is based on the
business side ofOSS. Canbeproϐitable for a consultancy agency to invest in the
authoring ofOSS, and in returnprovide consultancy services to theusers of the
software? RQ2 is about the practical side of the authoring of and releasingOSS.
Howandwhen should the software be released in anopen source setting? RQ2
includes the technical, economical and legal issues with releasing software.

RQ-1 Is authoring of OSS a viable business idea for consultancy agencies?

RQ-2 How should software be released as open source?

1.3.2 Purpose of Implementation

The initiators of the thesis would like to have an module for helping ordi-
nary users add data sources to their OpenFEIDE solution, without having to
have any technical background. The data sources are exports from internal
databases (Skoleadministrative systemer (eng: school administration systems)

1.4. CONTRIBUTIONS 3

(SAS)-systems) andmay vary in their structure and content. In the existing so-
lution OpenFEIDE must have a predeϐined XSL-Transformation for the given
data sources for OpenFEIDE to understand the data.

The implementation problem is how to create a module that helps these
users to create such an transformationwithout having to knowanything about
the technology behind it.

1.4 Contributions

From the exploration of this thesis the following main contributions are cre-
ated:

• Collected methods and tools for determine the viability of open source
business ideas, including ϐinancial and legal issues.

• Collected and analyzed development practices of successful open source
projects.

• Prototype implementation of XSLT generating software for the Open-
FEIDE project.

The purpose of the ϐirst two contribution is to give the reader a broad un-
derstanding of how both the business and technical aspects surround open
source software works. Business aspects such as business models, viability
estimation, legal issues with licenses are discussed, as well as how to do open
source development in a practical and efϐicient matter. These practices in-
cludes how to manage source code, bug tracking and user contributions in an
open environment.

The last contribution aims to provide a prototype XSLT generator imple-
mentation for OpenFEIDE's import system, and an analysis of the problem
area of the implementation.

1.5 Thesis Structure

Chapter 1: Introduction

Chapter 1 gives an introduction to the premises of this thesis, and what it is
trying to accomplish.

4 CHAPTER 1. INTRODUCTION

Chapter 2: Background

Chapter 2 illustrates the current state of the art for open source development,
from the software engineering view point and open innovation to business
models.

Chapter 3: Implementation Background

Chapter 3 gives an overview of the current state of technology related to the
implementation part of this thesis by describing technologies like Extensible
Markup Language (XML) and XSLT, and current attempts to analyze such doc-
uments.

Chapter 4: Research Design

Chapter 4 provides the context of the study and the perspective taken for this
thesis, and how the research was designed and performed.

Chapter 5: Contributions

Chapter 5 introduces the reader to the research methods used in this thesis
to establish the data needed for proposing answers to the research questions.
This is split into two part, one for each research questions.

Chapter 5 also includes the description of the implementation part of this
thesis.

Chapter 6: Evaluation and Discussion

Chapter 6 discusses the contributions made in this thesis.

Chapter 7: Conclusion

Chapter 10 provides an conclusion made from creating this thesis in the con-
text of the research questions.

Chapter 8: Further Work

Chapter 11 describes the missing pieces of the thesis and how they should be
addressed.

1.6. APPENDICES 5

1.6 Appendices

In addition to the 8 chapters, 9 appendices were created.
Appendix A and B presents case studies done on two business founded

on open source software. Appendix C, D, E, F and G are case studies of open
source projects created for mapping how different projects organize and run
themselves. Appendix H presents a recommended path of OpenFEIDE to be-
come a more open project, and how to get there. Appendix I provides some
documentation for the implementation part of the thesis.

CčĆĕęĊė 2

BĆĈĐČėĔĚēĉ

For solving the research questions posed by this thesis one must have a good
understanding of how the open source world works, and how it differs from
traditional development. This chapter aims to explore the different aspects
of Open Source development, both the technical, the legal and the business
aspects.

2.1 Software Engineering

2.1.1 Background

The term Software Engineering comes from the ϐirst conference on software
development held by North Atlantic Treaty Organization (NATO) in 1968 and
its choosing was described by Naur and Randell [26] as follows:

The phrase "software engineering" was deliberately chosen as be-
ing provocative, in implying the need for software manufacture to
be based on the types of theoretical foundations and practical dis-
ciplines, that are traditional in the established branches of engi-
neering.

Softwareengineeringwasnot formallydeϐineduntil IEEE-standard610.12-
1990 [32] released in 1990 and states the following:

(1)Theapplicationof a systemic, disciplined, quantiϐiable approach
to the development, operation, and maintenance of software; that
is, the application of engineering to software.
(2) The study of approaches as in (1).

The deϐinition itself is very general, but it's content can be broken down
to activities occurring in software development. These activities are concept
analysis, requirement analysis, design, implementation, testing, integration

6

2.1. SOFTWARE ENGINEERING 7

and maintenance [7]. But there is still no ϐirm engineering practice with re-
gards to software development. The ϐield has howevermatured by developing
tools and processes to aid performing the above activities. There are doubts
if there will ever be sound engineering principals in software. Lyu states that
software engineering is fundamentally ϐlawed as an engineering discipline as
decisions aremadeusinghuman judgment andbias, andnot lawsand required
process as with other established engineering principles [21].

2.1.2 Development Life Cycles

There are two well established life cycles in Software Engineering, the water-
fall cycle and agile.

Waterfall

The waterfall model is a strict sequential life cycle bound to the activities de-
ϐined by Braud [7]. The model ϐirst appeared in the paper "Managing the De-
velopment of Large Software Systems" by Dr. Winston W. Royce in 1970 as a
ϐlawed way of developing software. According to Royce this model is ϐlawed
becauseof the assumptions itmakes on the environment of software engineer-
ing;

• All the essential requirements for future users are known.

• The requirements are not changed signiϐicantly during the process.

• The system can be developed entirely in one sequence of activities.

• The system will not change the requirements of any external system.

These assumptions boil down to that once a system has been designed it
cannot be changed in the process of making it. It fairly well documented that
this way of developing software was only attractive to managers as it simpli-
ϐied the process by reducing it to a knownmechanical process, thus removing
risk by making the assumptions that all situations have been though of in the
design process.

The life cycle is separated into the activities shown in ϐigure 2.1.
The ϐirst activity in the life cycle is the requirements phase. In this phase

all the functional and non-functional requirements of the ϐinal product are cre-
ated and speciϐied as detailed as possible. After the requirements phase the

8 CHAPTER 2. BACKGROUND

Figure 2.1: The waterfall life cycle activities

design process starts, in which the system is designed. This includes the ar-
chitecture, data models, interactions, interfaces and so fort. When the system
is designed it's implemented as according to the given speciϐications. The last
phase during development is the veriϐication stage where the system is veri-
ϐied to be according to the speciϐications. After this is enters the maintenance
phase which lasts for the duration of the product life time.

Agile life cycles

Agile software development is often described as a lightweight incremental
development model, as opposed to the heavyweights like the waterfall model,
and often referred to as "agile". The term "agile" comes from the model's abil-
ity to handle change during the development process. This way of developing
was ϐirst formalized by E. A. Edmonds in his paper "A Process for the Develop-
ment of Software for Nontechnical Users as an Adaptive System" [11] in 1974,
but under the name "adaptive software development". As additional models
for this type of development was introduced, such as Scrum (1995) and Ex-
treme Programming (1996), the need for a common umbrella became appar-
ent. In 2001 the AgileManifesto [12]was created and the term "Agile Software
Development" was born. The Agile manifesto states:

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

• Individuals and interactions over processes and tools

2.1. SOFTWARE ENGINEERING 9

,QLWLDO�SODQQLQJ 3ODQQLQJ

5HTXLUHPHQWV $QDO\VLV�	�'HVLJQ

,PSOHPHQWDWLRQ 'HSOR\PHQW

7HVWLQJ(YDOXDWLRQ

Figure 2.2: The agile life cycle activities

• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

The activities in agile are for the most part the same as in the waterfall
model, but instead of running the sequence once, it loops to embrace change
during the development. There are of course variants of this depending on
which of the agile development models one uses, but the primary concepts
are the same. The loops or iterations of each step is represented in ϐigure 2.2

2.1.3 Software Quality

Software quality is standardized as ISO/IEC 9126-1:2001 [15], and deϐined as:

(1) The degree to which a system, component, or process meets
speciϐied requirements.
(2) The degree to which a system, component, or process meets
customer or user needs or expectations.

[32]
The two parts of the deϐinition are different as (1) is a ϐixed set of goals to

reach quality based on the predeϐined requirements, whilst (2) is concerned
with the perceived quality of the product from a user/customer perspective.

10 CHAPTER 2. BACKGROUND

Both of these are important to remain competitive in software develop-
ment, especially in business orientated software were the risks of delivering
low quality have greater hazards.

Achieving high quality software is however a costly process. Osterweil es-
timated that at least 50-60%of the effort developing software is spent on soft-
ware quality issues [29]. Slaughter et al. divided these issues into two groups;
conformance and non-conformance. Conformance being controlling defects
up front, whilst non-conformance being introduced defects and other failures
(both internal and external) [31]. One of the reasons why software quality is
expensive is due to the fact that is has to be completely integrated in the prod-
uct, and not added after the main development has been completed. Quality
with regards to security and reliability are global issues in the software and
must be thoroughly thought through during the entire development process.
Normal software defects are considered local andmaybe corrected later in the
process, but not without the risk of introducing new undeϐined states which
might result in new defects.

2.2 Open Source

Open source is the generic term for software released under licenses accepted
by the free software foundation (FSF) and theOpen Source Institute (OSI). The
term open source was coined by Eric S. Raymond to give free software a more
acceptable name for businesses in the early days of open source, as the word
"free" was a hard sell for adoption in businesses since the word "free" is more
commonly used as a term for a price tag of zero. Technically is "free software"
determined by the acceptance from the FSF, and "open source" by acceptance
from theOSI. The two terms are oftenmixedhowever, and rarely differentiated
in the FLOSS-communities.

2.2.1 Conditions of Open Source Software

For software to be considered as open source its distribution must conform
to the ten key conditions set by the Open Source Deϐinition (OSD)1 created by
the Open Source Initiative (OSI). The conditions are as follows:

1http://opensource.org/osd.html

http://opensource.org/osd.html

2.2. OPEN SOURCE 11

Free Redistribution

The license shall not restrict any party from selling or giving
away the software as a component of an aggregate software dis-
tribution containing programs from several different sources. The
license shall not require a royalty or other fee for such sale.

This condition prevents the authors demanding royalties for further dis-
tribution of the open source licensed software. The results of this is that ex-
ternal contributors to the software are guaranteed not to have to pay royalties
for the product they are helping create, as well as a safe guard for the users
of the software that they may not be forced to pay royalties or fees when they
redistribute their own version of it, or bundled with their own software. OSI
gives the following rationale for the condition:

By constraining the license to require free redistribution, we
eliminate the temptation to throw away many long-term gains in
order to make a few short-term sales dollars. If we didn't do this,
there would be lots of pressure for cooperators to defect.

Source Code

The program must include source code, and must allow distri-
bution in source code as well as compiled form. Where some form of
a product is not distributed with source code, there must be a well-
publicized means of obtaining the source code for no more than a
reasonable reproduction cost preferably, downloading via the Inter-
net without charge. The source code must be the preferred form in
which a programmer would modify the program. Deliberately ob-
fuscated source code is not allowed. Intermediate forms such as the
output of a pre-processor or translator are not allowed.

This conditions requires the authors of the software to make the source
code available for the users of the software. Either by bundling in with the
distribution, or as a separate package. It also requires the provided source
code to be in its original form. As an example, if one was to create an open
source application using Google Web Toolkit (GWT), the original java source
code must be provided, and not just the produced JavaScript code from the
compiler. The purpose of this is to ensure that the user has the possibility to
modify the software with ease, and thus preventing vendor lock-in.

12 CHAPTER 2. BACKGROUND

Derived Works

The license must allow modiϔications and derived works, and
must allow them to be distributed under the same terms as the li-
cense of the original software.

This condition ensures the users right to modify and redistribute the soft-
ware, given that the user distributes his or her version under the same license
as the original software. This is perhaps one of the key points of OSS, the pos-
sibility of modifying existing software and redistributing it. This provides the
basis for rapid evolution and innovation to happen.

Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in
modiϔied form only if the license allows the distribution of "patch
ϔiles" with the source code for the purpose of modifying the program
at build time. The license must explicitly permit distribution of soft-
ware built from modiϔied source code. The license may require de-
rived works to carry a different name or version number from the
original software.

This condition requires the license to give the author of the software the
right to restrict the usage of his software to protect the integrity of the product.
One example of this is Donald Knuth's TeX project. It is an open source project
and thus allows redistribution ofmodiϐied version, but it's license requires the
modiϐied version not to use the name TeX.

OSI gives the following rationale for the condition:

Encouraging lots of improvement is a good thing, but users have
a right to know who is responsible for the software they are using.
Authors andmaintainers have reciprocal right to knowwhat they're
being asked to support and protect their reputations.
Accordingly, an open-source license must guarantee that source be
readily available, but may require that it be distributed as pristine
base sources plus patches. In this way, "unofϔicial" changes can be
made available but readily distinguished from the base source.

2.2. OPEN SOURCE 13

No Discrimination Against Persons or Groups

The license must not discriminate against any person or group
of persons.

This condition requires that the licensedoesnotpose restrictionsonwhom
might use the licensed software. This however is some cases in contradiction
with the laws of some countries. On example of this is the United states which
have export restriction on some types of software, such of software dealing
with cryptography. But, even with this types of law, the OSD requires the soft-
ware license not to restrict the usage in these matters.

No Discrimination Against Fields of Endeavor

The licensemust not restrict anyone frommaking use of the pro-
gram in a speciϔic ϔield of endeavor. For example, it may not restrict
the program from being used in a business, or from being used for
genetic research.

This condition requires the license to pose no restriction on how the soft-
ware should be used.

Distribution of License

The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of an
additional license by those parties.

This condition requires the license to not to restrict the software by re-
quiring the agreement of additional licenses. The most common version of
this is requiring the user to sign a non-disclosure agreement for either using
the software or source code.

License Must Not Be Specific to a Product

The rights attached to the program must not depend on the
program's being part of a particular software distribution. If the
program is extracted from that distribution and used or distributed
within the terms of the program's license, all parties to whom the
program is redistributed should have the same rights as those that
are granted in conjunction with the original software distribution.

14 CHAPTER 2. BACKGROUND

This condition requires the license not to trap the user of some piece of
software to any other. In other words, a license may not require that the li-
cense in only valid if the software is used in conjunction with another piece of
software.

License Must Not Restrict Other Software

The license must not place restrictions on other software that
is distributed along with the licensed software. For example, the li-
censemust not insist that all other programsdistributed on the same
medium must be open-source software.

This condition requires the license not to impose restriction on how the
software is distributed. In other words, the license may not require that all
software distributed as a package is under the same license. There are some
subtleties herewith regards to theGNUPublic License (GPL)-family of licenses
as they require all linked software tohavea compatible license. Thedistinction
is in the difference between linked and bundled. The GPL clause is only in
effect if the if the software forms a single piece of work.

License Must Be Technology-Neutral

No provision of the license may be predicated on any individual
technology or style of interface.

This condition requires that the license and the software licensed under it, is
not dependent on a speciϐic way of distributions. This allows the software to
be redistributed in any way that is reasonable for the software in hand.

The OSI gives the following rationale for the condition:
This provision is aimed speciϔically at licenses which require an

explicit gesture of assent in order to establish a contract between
licensor and licensee. Provisions mandating so-called "click-wrap"
may conϔlict with important methods of software distribution such
as FTP download, CD-ROM anthologies, and web mirroring; such
provisionsmayalso hinder code re-use. Conferment licensesmust al-
low for thepossibility that (a) redistributionof the softwarewill take
place over non-Web channels that do not support click-wrapping of
the download, and that (b) the covered code (or re-used portions of
covered code) may run in a non-GUI environment that cannot sup-
port pop-up dialogs.

2.2. OPEN SOURCE 15

2.2.2 History of Open Source

In the very early days of the computer industry software was in fact open
source as the software was freely distributed and could be modiϐied by any-
one. Money was not made on the software, but the hardware. As the adop-
tion of computers increased, software gained value and the industry started
to close their software and restrict usage of it. Richard Stallmann then cre-
ated the ϐirst version of the GNU General Public License, commonly known as
the GPL, in an attempt to protect the freedom of the software users to modify
and share their work. Until around 1999 open source was mainly only seen
as a part of a hacker culture, but as the software outcomes from this envi-
ronment proved useful for business environments commercial applications
of open source gained momentum. In late 1998 the OSI was founded by Eric
Raymond and Bruce Perens [14] as an advocacy organization for OSS. It was
different to the Free Software Foundation (FSF) in the methodology and atti-
tude, as it's goals were not to be a high proϐile organization, but rather work
quietly in the background with an pragmatic approach, as opposed to the FSF
more philosophical hard liner approach. Magnus Sulland created a graphical
representation [34] of some of the key points in the history of OSS shown in
ϐigure 2.3.

Figure 2.3: Timeline of key points in OSS history

2.2.3 Open Source Culture

Open source is, in itsmost basic form, a sharing community driven by personal
motivation - either by solving a problem for one self, or solving problems for
the technical challenge. Some open source supporters are involved due to the

16 CHAPTER 2. BACKGROUND

philosophical aspects, whilst others see open source as a pragmatic method-
ology of creating software. Two main characters on each of these aspects are
Richard Stallmann and Linus Torvalds. Stallmann, as the founder of the FSF
is highly invested in the philosophical aspects, whilst Linus Torvalds (author
of the Linux kernel) sees open source as a pragmatic way of programming.
The latter is a prime example of an individual who is driven by technical chal-
lenges. This type of persons are the most common ones in the open source
community.

In later years the large open source projects are increasingly inϐluenced,
and driven by companies donating developer time to them, and may thus re-
duce the level of personal commitment to open source that once was. The
Linux kernel project is a good example of this. In their paper "Inϐluence in the
Linux Kernel Community" by Timo Aaltonen et al. [2] a study of which compa-
nies that had inϐluence over the developmentwas performed, and shows that a
lot, if not most, of the development is done by commission in large companies
that uses Linux in their products.

There is however still a lot of uninϐluenced work being done by hobbyist
and professionals alike in there own free time, purely for their own need or
for the challenge.

2.2.4 Open Source Software Engineering

Most OSS is not created using strict engineering practices, and could be de-
scribed as using incremental development cycles by the pure nature of how
OSS is created. In the normal case OSS projects are started as either small ex-
periments or tools to solve a single developer's problem. This is known as
"scratching the itch". As a project grows and more developers are involved
the software is structured as the developers see ϐit, and during the growing
phases often redesigned for either increased quality or to easier ϐit new ex-
tensions. As numbers grow, developers with various interests joins, including
architects and so forth. This adds expertise to the projects and helps drive
quality of design, security, and code.

Component based software engineering

Onekey factor ofmost open source systemsare that theydependheavily on ex-
ternal components. Key components have a high usage grade, thus enforcing
quality by the components being tested in many different settings and envi-
ronments. Open sourcemakes it possible for users to submit bugs andpatches.

2.3. OPEN INNOVATION 17

The Parastoo et al. [23] study of reused software components showed that,
in the given case, the defect density was 50% less in reused software com-
ponents than in non-reused components. It also showed that reused compo-
nents were given higher priority when amending defects. Component Based
Software Engineering (CBSE) is, regardless of its strengths, not free of risk---
especially in OSS. Due to the large quantities of available components, choos-
ing the right one can be a challenge and due precautions must be made. The
selection process is closely related to COTS selections. Jingyue Li et al. dis-
covered two popular selection processes in a study of COTS in Norwegian IT
companies [20]. The "familiarity-based" selection process and "process com-
bining Internet searches with hands-on trials". The former process relies on
past experiences by the project members or external experts, while the latter
is a more manual trial and error approach.

2.3 Open Innovation

Figure 2.4: Relationship between open
innovation, OSS and business models

Open Innovation is the practice of in-
novating in the open, i.e. in a pub-
lic manner. This is also called the
Bazaar model, as coined in the book
"The Cathedral and The Bazaar" by
Eric S. Raymond. Open innovation
and open source differs in some
ways with regards to legal issues,
but the innovation part is similar.
The "problem" with open innova-
tion and open source in combination
is how to proϐit from your innova-
tions without encumbering the in-
novations and technology with pro-
prietary boundaries such as patents
(and thus closing the innovation). In the general case of OSS and Open in-
novation, the technology created is in itself not valuable from a monetization
point of view, but the knowledge and expertise of it is. Open innovation was
ϐirst thoroughly examined in "Open innovation: the new imperative for creat-
ing and proϐiting from technology" [8] and described why closed innovation
was staggering and what could be done about it by using the alternate Open
Innovation model. The two innovation models are at the core two different

18 CHAPTER 2. BACKGROUND

philosophical models. Chesbrough highlighted this using table 2.1 of the prin-
ciples of open and closed innovation. The relationship between OSS and open
innovation is, despite its similarities, not a ϐixed one. As shown in ϐigure 2.4
Open Innovation does not have to result in an open/free product, and therefor
also have impacts on the business cases.

Figure 2.5: Open Innovation Paradigm for managing R&D

The notion of that the innovation in it self is not the value, but the exper-
tise that the business had about it, is similar to how consultancies work in a
day to day basis, as they sell expert services, and not a product in it self. There
are several strategies for monetizing this expertise, as will be shown below.
Munga and Fogwill divides these into two main sections, which have further
subdivisions. The two main sections denote whether the strategies are prod-
uct related, or service related.

2.3. OPEN INNOVATION 19

Cl
os
ed

In
no

va
ti
on

Pr
in
ci
pl
es

O
pe

n
In
no

va
ti
on

Pr
in
ci
pl
es

Th
es

m
ar
tp

eo
pl
ei
no

ur
ϐie

ld
wo

rk
sf
or

us
.

No
ta

ll
sm

ar
tp

eo
pl
ew

or
k
fo
ru

s.
W
en

ee
d
to

wo
rk

wi
th

sm
ar
tp

eo
pl
eo

ut
sid

eo
ur

co
m
pa

ny
.

To
pr
oϐ
it
fro

m
R&

D,
we

m
us
td

isc
ov
er

it,
de

ve
lo
p
it
an

d
sh
ip

it
ou

rs
elf

.
Ex

te
rn
al

R&
D
ca
n
cr
ea
te

sig
ni
ϐic

an
tv

alu
e;

In
te
rn
al

R&
D

is
ne

ed
ed

to
cla

im
so
m
ep

or
tio

no
ft
ha

tv
alu

e.
If
we

di
sc
ov
er

it
ou

rs
elv

es
,w

ew
ill

ge
ti
tt
om

ar
ke
tϐ
irs

t.
W
ed

on
't
ha

ve
to

or
igi

na
te

th
er

es
ea
rc
ht

op
ro
ϐit

fro
m

it
Th

ec
om

pa
ny

th
at

ge
ts

an
in
no

va
tio

n
to

th
em

ar
ke
tϐ
irs

t
wi

llw
in
.

Bu
ild

in
ga

be
tte

rb
us
in
es
sm

od
el
is
be

tte
rt
ha

ng
et
tin

gt
o

m
ar
ke
tϐ
irs

t.
If
we

cr
ea
te

th
em

os
ta

nd
th
eb

es
ti
de

as
in

th
ei

nd
us
try

,
we

wi
llw

in
.

If
we

m
ak
et

he
be

st
us
eo

fi
nt
er
na

la
nd

ex
te
rn
al
id
ea
s,
we

wi
llw

in
.

W
es

ho
ul
d
co
nt
ro
lo

ur
IP

a ,
so

th
at

ou
rc

om
pe

tit
or
sd

on
't

pr
oϐ
it
fro

m
ou

ri
de

as
.

W
es

ho
ul
dp

ro
ϐit

fro
m
ot
he

rs
'u
se

of
ou

rI
P,
an

dw
es

ho
ul
d

bu
y
ot
he

rs
'I
P
wh

en
ev
er

it
ad

va
nc
es

ou
ro

wn
bu

sin
es
s

m
od

el.

Ta
bl
e2

.1:
In
no

va
tio

nP
rin

cip
les

a I
nt
ell

ec
tu
al
Pr
op

er
ty

20 CHAPTER 2. BACKGROUND

Figure 2.6: Closed Innovation Paradigm for managing R&D

2.4 Business Models in Open Innovation Environments

Osterwalder et al. deϐines business models as something that describes the
rationale of how an organization creates, delivers, and captures value [28].
With open source and open innovation, the technology is not as valuable as
the knowledge about it. This imposes some restrictions on how to model the
business strategies. There are no restrictions on selling free software, but as
the licenses allow redistribution of the software as the user sees ϐit the busi-
ness must go beyond just selling the software to add the appropriate amount
of value for the customer to select one as a business partner.

There are two main categories of means to appropriate returns on OSS:
products and services, as classiϐiedbyDahlander(2004) [9]. JanFredrik Stove-
land expanded the original table suggested by Dahlander in his thesis paper
"Managing Firm-Sponsored Open Source Communities" [33] to from table 2.2

2.4.1 Product Based Business Models

Out of the four businessmodels listed in table 2.2 under the products category,
only three are relevant for this thesis, as we are dealing with pure software
development, not hardware.

2.4. BUSINESS MODELS IN OPEN INNOVATION ENVIRONMENTS 21

Category Means Description

Products

Packaging Facilitating distribution and ease of
use

Proprietizing Adding proprietary extensions
Spin-off Create proprietary products based on

the software
Black-box Integration with hardware

Services
Education and
training

Courses, certiϐications

Consultancy Consultancy work based on the exper-
tise in the product

Support General support with or without a
Service Level Agreement (SLA)

Table 2.2: Means to appropriate returns

Packaging

Packaging of software and adding value to the product as usability and ease of
maintenance. Red Hat2 is one example of businesses providing this service. In
the case of Red Hat they offer this as a part of their support packages. Tested
software packages, and tested installation and upgrade paths are worth a lot
for companies either with a large environment where doing the testing them
self would be very time consuming and costly, but also small environments
where there might not even be a dedicated IT department, and user friendly
installation and upgrading is crucial for the customer.

Proprietizing

Proprietizing open source products is the process of addingmodules, or exten-
sions, to an open source product as proprietary software. This requires some
forethought aswith licenses like theGPL thismight be troublesomedepending
on the nature of the extensions. Despite of this, and the FSF's disliking of this
way of dealing with free software, it is a quite popular business model. The
most recent switch to this model by a major open source project is Oracle's
purchase and new business models for the MySQL3-database, in which they

2http://www.redhat.com
3http://www.mysql.com

22 CHAPTER 2. BACKGROUND

offer enterprise grade extensions in addition to the base OSS product.

Spin-off

Spin-off is the practice of creating proprietary productswhich is based on your
OSS product. One could image creating an open source database system and a
proprietary accounting system built upon and exclusive to this database. This
allows for complete control over the software stack, and seemingly reduced
cost for the customer as they only pay for the accounting software, and not
the database. The providers however get a larger deployment of this database
and is in a position to create more spin-offs based upon it.

2.4.2 Service Based Business Models

Service based business models are the models which does not include the
product in any way, but provides services around a product or a set of prod-
ucts.

Education and training

Large computer systems are often complex and requires some skill to use and
maintain. This allows for the business of education to be relevant for the cus-
tomer. Whether it's for training the end-users of the program inusage andbest
practices, or the IT department for operations, this model is ever more popu-
lar as IT accesses every part of business operations. Under this model we can
also place the creation and selling of books and other documentation that is
not a part of the product itself. In very popular systemone can create certiϐica-
tion courses. Again is Red Hat a prime example of doing this. They provide an
extensive array of training courses and certiϐications all which have become
recognized by the industry as high quality, thus increasing its popularity and
Red Hat's income.

Consultancy

Consultancy work is a wide area and might include just about anything. From
development of integration software, add-ons, customizing and so forth, to
providing hosting and operations for the product with service level agree-
ments of various degrees (and various degrees of cost for the customer). This
business model does require a high level of understanding of the software in

2.4. BUSINESS MODELS IN OPEN INNOVATION ENVIRONMENTS 23

hand, and if hosting is provided, additional operational costs. In Norway the
consultancy industry is the primary actor in the IT industry with an approxi-
mate 80% share of the IT sector.

Support

Support is by far the most common service business model in OSS. Most cus-
tomer would like to have someone to call if something goes wrong, or they
have any other need for help. From the customer's point of view they have the
reassurance that help is just a phone call, or email, away. From the provider's
point of view this can be a lucrative deal, as call centers (for large providers)
can easily be outsourced at a low cost, or for small providers provide tight con-
tact with their customers and build valuable business relationships, increas-
ing the goodwill of the customer thatmight recommend your services to other
businesses, thus expanding your customer base.

2.4.3 Implementation of Business Models

The mentioned business models are usually not exclusive to each other, and
often sold as a package deal. Most large open source projects sponsored by a
ϐirm provides either alone or trough partners all of the above models.

In "Entry Strategies Under Competing Standards: Hybrid Business Mod-
els in the Open Source Software Industry" [5] the researcher's ϐirm sample
produced the results listed in table 2.3, and shows the multi-business model
approach usage in the market.

24 CHAPTER 2. BACKGROUND

Business model (service) Companies supplying the service
Development of ad hoc solutions 87.7%
Consulting 84.9%
Support 82.9%
Installation 80.1%
Maintenance 76.0%
Training 64.6%
Distribution 63.0%
R&D 53.4%
Marketing of software produced by
other companies

39%

Table 2.3: Business model usage data from Bonaccorsi et al. [5]

2.5 Licensing

OSS licenses are copyleft licenseswhich are in opposition of copyright licenses
by enabling the users tomodify the source code as they please, but under some
rules. The ϐirst OSS license was the GNU General Public License which was
released by Richard Stallmann in 1989 as mean to ensure the freedom of a
piece of software.

OSS licenses are however difϐicult due to the restriction they impose as a
part of ensuring the protection of the authors, as opposed to copyright licenses
where you have to have the permission from the copyright holder to use and
modifying the software. The choice of a license for a new product imposes
restrictions on how the authors may use the software in the future, though
this is in the general case only a problem once others have contributed to the
project under the premises of the given license.

As there are a lot of different licenses to choose from, and it's not always
clear which one is most suited for your project. Goals are to present some of
themajor licenses that have been tried in court (most OSS licenses have never
been tried), and what the implications of choosing one are with regards to
future development and legal protection.

A ϐigure of the relationship and grouping of the most popular licenses can
be seen in ϐigure 2.7. In this ϐigure the licenses are divided into four categories,
ranging from weaker to stronger copyleft clauses. The arrows between the
different licenses indicates that the licenses are are compatible.

2.6. RELEASE STRATEGIES 25

Figure2.7: OSS license relationshipsbyFredrik Speakmanadapted fromDavid
A. Wheeler

The main difference between OSS licenses are the level of protection for
their own interpretation of freedom. The most discussed, and arguably the
most commonproblem is theGPLs restrictions onbeingusedbyproductswith
other licenses. As GPLv2 is by far the most used license for OSS choosing a
license that is not compatible with the GPL (thus disallowing linking with GPL
licensed software), can severely restrict both your choices in libraries and the
adoption of your software. Choosing the GPLv2 as your license however does
impose some restrictions on the future of the project. If the provider (person
or organization) have not received any contribution fromothers, it can change
the license for future version at will. If they have all contributors must agree
on the change. In this case all the older version are still under the previous
license however. This is in particular an interesting point if the providers have
plans to sell proprietary "plug-ins" to the product. Proprietary "plug-ins" can
be created for GPL licensed software, but requires a less integrated approach
than one might like4.

2.6 Release Strategies

Releasing new OSS products to the world is, according to best practices, quite
different from the established norm in the proprietary software world. Eric

4"Plug-ins must be run as separate executable and not share data-structures with the orig-
inal software"

26 CHAPTER 2. BACKGROUND

S. Raymond coined the term "Release Early, Release Often. And listen to your
customers" in his book "The Cathedral and the Bazaar" [30], which states that
you should release as often as possible, even if the product is incomplete and
buggy. This is a part of the OSS mantra of sharing and collaboration. It is dif-
ϐicult to include external developers in the decision making if development
is done behind closed doors, thus discourage collaboration and involvement
from the community. If the goal of releasing a product as open source is to in-
volve others in its development, not only with regards to ϐixing ϐlaws, but also
innovation of new features, then, according to Raymond, the project needs a
transparent development model. The key factor of the "Release Early, Release
Often" mantra is the "And listen to your customers" part. Public mailing lists,
Internet Relay Chat (IRC) channels and bug tracking software is themost com-
mon forms of communication. Another step needed to facilitate developer col-
laboration is public source code repositories. There are a lot of tools available
for these purposes. Frommajor projects like SourceForge5which is to date the
largest repository of free software projects, to smaller projects like GitHub6
and BitBucket7. The latter are projects that evolved around new source ver-
sion control software that are optimized for distributed collaboration, which
the older and larger projects did not support.

According to a study by Andrea Bonaccorsi and Cristina Rossi [6], one the
biggest motivation for ϐirms to provide OSS is to gain contributions and feed-
back from the free software community, thus stating the importance of do-
ing community management right. In Stoveland paper about ϐirm-sponsored
open source communities [33] he describes the methods which Novell uses
for handling the balance between controlling their products and the open de-
velopmentmodel. In that particular case Novell uses the transparent develop-
ment model mentioned above extensively, and are so far successful in regards
of maintaining a community whilst controlling the prouct by investing in its
development.

5http://www.sourceforge.net
6http://www.github.com
7http://www.bitbucket.org

CčĆĕęĊė 3

IĒĕđĊĒĊēęĆęĎĔē BĆĈĐČėĔĚēĉ

This chapter presents some of the needed background informa-
tionneeded forunderstanding the implementationpart of this the-
sis. It includes a description of the existing solution which the im-
plementation will try to improve on, as well as the technologies
used in the implementation, such as XML, XSLT and SAX.

3.1 The OpenFEIDE Import Mechanism

The responsibility of OpenFEIDE is to convert data from internal system of
the user, to a format that is compatible with FEIDE. To do this job it must
have some sort of data which it can expose. In the usual deployment, this data
comes from SAS-systems.

OpenFEIDE imports data from these systems using a scheduling system
that retrieves XMLdocuments fromagivenFile transfer protocol (FTP)-server.

One of the problems with this approach is that the XML documents re-
trieved from these data sources may vary in their format, and the import logic
would therefor be extremely complex if it was to support every thinkable for-
mat out there.

To solve this by using XSLT transformations on the imported data for con-
verting the documents to a XML schema that OpenFEIDE understands. The
process is illustrated in ϐigure 3.1.

These XSLT stylesheets must be made for each data source since the data
is likely to be different. This is also the basis for the implementation part of
the contributions in this thesis, as a means to see if the process of creating
these stylesheets can be done either automatically, or by some sort of user
interaction from regular users.

27

28 CHAPTER 3. IMPLEMENTATION BACKGROUND

XSLT Stylesheet S1

OpenFEIDE Data Storage

XSLT Stylesheet S2 XSLT Stylesheet S3

SAS system 1

OpenFEIDE Importer

FTP

SAS system 2

FTP

SAS system 3

FTP

Figure 3.1: OpenFEIDE import process

3.2 XML Processing

XML is amarkup language that was created as a simplemachine readable doc-
ument format, that also could be read by humans. The ϐirst release was done
by the World Wide Web Consortium (W3C) in 19961. The standard has been
updated ϐive times since then, and the latest and ϐifth edition was released in
2008. The speciϐication includes ten design goals for the format:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.
1http://www.w3.org/TR/xml/#sec-origin-goals

http://www.w3.org/TR/xml/#sec-origin-goals

3.2. XML PROCESSING 29

The core of XML consist of elements, attributes and character data.
Elements are a logical component. Attributes are descriptors ϐields that can
beadded to anelement for giving the element additional info,whilecharacter
data is used for the element names, deϐining the attributes as well as the con-
tent of elements. Attributes and character data are considered to be a child of
an element, but elementmay also have other elements as children. This allows
the format to represent hierarchical data thus creating way of logically struc-
turing information inside a document. The hierarchical structure allows us to
treat XML documents as a tree. The XML documented in ϐigure 3.2 may thus
be represented as the tree shown in ϐigure 3.3. This is an important concept
whenwe start thinking about extracting information from the XML document,
and which approaches for doing so is suitable for the task at hand.

1 <root >
2 <persons>
3 <person>
4 <username> a l i c e </ user>
5 <emai l >alice@example . com</ emai l >
6 </person>
7 </persons>
8 <groups>
9 <group>

10 <name>admin i s t r a to r s </name>
11 <members>
12 <username>alice@example . com</username>
13 </members>
14 </group>
15 </group>
16 </ root >

Figure 3.2: Example XML document for tree representation

3.2.1 XML Traversal

There are threemainmethods of dealingwith XMLdocuments in terms of pro-
gramming interface: Simple API for XML (SAX), Pull parsing and Document
Object Model (DOM).

30 CHAPTER 3. IMPLEMENTATION BACKGROUND

root

persons

person

username

alice

email

alice@example.com

groups

group

name

administrators

members

username

alice@example.com

Figure 3.3: Tree representation of XML document

SAX Interface

The SAX interface is an event-driven method of reading XML documents. It
works by reading the XML document serially and invoking callback methods
when an event arises. These events occur when the state changes i.e. a new
element is read. There are a number of different events that causes callbacks
to be invoked. The standard Java SAX API provides 16 different events in their
default SAX-handler. Some of the most frequently used ones are listed in ta-
ble 3.1, along with the data that is available to the invoked callback-method.
One important aspect of SAX is the fact that the callbackmethods only knowof
the data that is given to them. As a result of this and the serial way of reading,
the application using SAX must keep track of the contextual information, if it
need it, on its own. This lack of internal context has somedrawbacks and some
beneϐits. The drawbacks are that reverse traversal is not possible andmany of
the common operations needed for extracting information must be dealt with
by the application. The primary beneϐits however is that its highly efϐicient in
terms of CPU and memory usage. Memory usage is kept down by not keeping
a history of previously parsed elements, and the CPU usage can be kept to a
minimum since the application can choose which elements to process. One
other beneϐit of this model comes from the fact that processing is done as it
traverses the document. This makes SAX a very good method of dealing with
streaming data sources since the data never have to end for the application to

3.2. XML PROCESSING 31

Event Available data Description
startDocument None Start of document
endDocument None End of document
startElement Address, QName, Local name, Attributes Start of element
endElement Address, QName, Local name End of element
characters List of characters read Character data read

Table 3.1: Frequently used Java SAX API Callback Methods

be useful.

DOM Interface

The DOM interface represents the entire XML document as tree. It does do
by traversing the entire XML document and building a tree structure of it in
memory. When the initial traversal is done, the application may access and
traverse any part of the document in memory. This provides the application
with very fast lookups (since everything is in memory), but has the drawback
of being both CPU and memory intensive.

The DOM speciϐication [35] is created and maintained by the W3C, and
speciϐies the interface compliant Application programming interface (API) im-
plementations must provide.

Pull Parsing

Pull parsing is a iterator-based traversal interface. It is similar to SAX, but
instead of the parser pushing data to the application via callbacks, the pull
parser only traverses further if the application tells it to.

This allows the application to handle the elements in a iterative manner,
which is often thought of as an easier programming model.

It shares most of the same beneϐits and drawbacks as SAX, except for the
streaming XML support. Implementing streaming support on top of a pull
parser is possible, but would diminish the advantages of having a simpler API
that it seeks to provide.

32 CHAPTER 3. IMPLEMENTATION BACKGROUND

Figure 3.4: XSLT Processing pipeline fromWikipedia article about XSLT [38]

3.2.2 Extensible Stylesheet Language Transformations

XSLT is the process of transforming data fromXMLdocument(s) to some other
structure or format using a set of rules called a stylesheet. It is not bound to
any output format, but the input is always an XML compatible source. With
its speciϐication, XML Path Language (XPath) was speciϐied as a way for navi-
gating and doing operations within a XML document. The processing pipeline
has one ormore XML sources, one ormore instances of XSLT code (stylesheet)
and a XSLT Processor (see ϐigure 3.4).

The ϐirst version of XSLT was developed by the W3C and 1999 [36]. The
W3C recommendation was released in it second edition in in 2008 [37].

A very basic usage of XSLT processing of a document is shown in ϐigure 3.5.

3.2. XML PROCESSING 33

Source XML Document:
1 <?xml vers ion ="1 .0 " encoding ="UTF−8"?>
2 <persons>
3 <person>
4 <name>A l i c e </name>
5 <emai l >alice@example . com</ emai l >
6 </person>
7 </persons>

XSLT Stylesheet:
1 <?xml vers ion ="1 .0 " encoding ="UTF−8"?>
2 < x s l : s t y l e s h e e t xmlns : x s l =" ht tp : / /www.w3 . org /1999/XSL/Transform "
3 vers ion=" 1 .0 ">
4 < x s l : output indent=" yes " />
5 < x s l : template match=" /persons ">
6 <names>
7 < x s l : apply−templates />
8 </names>
9 </ x s l : template>

10 < x s l : template match=" person ">
11 <name>
12 < x s l : value−of s e l e c t ="name" />
13 </name>
14 </ x s l : template>
15 </ x s l : s t y l e s h e e t >

Resulting document:
1 <?xml vers ion ="1 .0 " encoding ="UTF−8"?>
2 <names>
3 <name>A l i c e </name>
4 </names>

Figure 3.5: Example XSLT Processing

34 CHAPTER 3. IMPLEMENTATION BACKGROUND

3.3 Information Retrieval

Information retrieval is the science of searching and retrieving data from a
collection of data.

3.3.1 Measuring Correctness

Information retrieval theory provides a set of tools for measuring the perfor-
manceand correctness of information retrieval systems. Thesemeasurements
are based upon two main parts, precision and recall.

Precision is measured by calculating the fraction of the entries retrieved
that are wanted. The formula for this is:

precision =
|{relevant entries}∩{retrieved entries}|

|{retrieved entries}|

E.g. If we have a collection of 10 elements and we known that the search
weareperformed should retrieve 4 relevant elements, but the search returned
5 entries where only 3 entries where relevant then we get:

precision =
3
5
= 0.6 = 60%

Recall is the fraction of the number of entries that are retrieved out of all
the wanted entries. The formula for this is:

recall = |{relevant entries}∩{retrieved entries}|
|{relevant entries}|

Continuing the example from the precision calculation we get:

recall =
3
4
= 0.75 = 75%

Precision and recall by them selfs are not very useful, so we use the F-
measure formula for calculating a score between 0 and 1 which tells us how
the retrieval performed (1 is the best, 0 is the worst). The general formula for
this is:

Fβ =
(1 + β2) · (precision · recall)
((β2 · precision) + recall)

The general F-measure formula allowsus toweight the scoring basedupon the
value we assign to β. If we set β = 0.5 we weight precision twice as much as
recall. We use this for adapting the score to the type of system we are testing.

3.3. INFORMATION RETRIEVAL 35

Document ID Content
1 Oranges are better than apples
2 Pears are the best and oranges are awful
3 Bananas rocks and are much better than oranges and pears

Table 3.2: Example Document Collection

Term Documents Term Documents
and 2,3 apples 1
are 1,2,3 awful 2
bananas 3 best 2
better 1,3 much 3
oranges 1,2,3 pears 2,3
rocks 3 than 1,3

Table 3.3: Inverted Index for Example Document Collection

Systems that are sensitive of errors should weight precisionmuch higher than
recall.

E.g. Still continuing the same example, and with β = 0.5 we get the F-
measure:

F0.5 =
(1 + 0.52) · (0.6 · 0.75)
(0.52 · 0.6) + 0.75

= 0.625

3.3.2 Indexing Data Sources

The purpose of indexing data is to create data structures that allow us to do
fast lookup into large collections. The most basic approach to this is to create
an inverted index.

Inverted Index

The inverted index is a data structure that allows us to do lookup on a term
and get which subset of a document collection that contains this term. E.g.
The inverted index of the document collection in table 3.2 is represented in
table 3.3. This structure makes it trivial to answer simple boolean queries
efϐiciently.

36 CHAPTER 3. IMPLEMENTATION BACKGROUND

Vector Space Model

Mapping the documents and their terms into a plane can be very beneϐicial, as
it allows us to do regular trigonometric equations for analyzing the data. The
most common way of doing this is representing the documents and terms in
a matrix, and is called a Vector Space Model (VSM). The previous document
collection may thus modelled as:


ID apples awe f ul better . . . oranges
1 1 0 1 . . . 1
2 0 1 0 . . . 1
3 0 0 1 . . . 1


Similarity detection

The inverted index and a VSM gives us the ability to do fast evaluation of rel-
evance of a document using the combination of the term frequency–inverse
document frequency (tf-idf) and the cosine similarity.

The tf-idf calculates the importance of a term in a given document by scor-
ing termswith a high frequency lower than terms that are less frequently used.

tf(t, d) =
nt,d

∑k nk,d

idf(t) = log
|D|

|{d : t ∈ d}|

tf − idf(t, d) = t f (t, d)× id f (t)

The cosine similarity measure calculates the cosine of the angle between
two documents in vector space. Smaller angles indicates similar documents.
The cosine similarity is calculated using the following formula:

similarity = cos θ =
A · B
∥A∥B∥ =

∑n
i=1 Ai × Bi√

∑n
i=1(Ai)2 ×

√
∑n

i=1(Bi)2

Similarity detection in XML documents

The previous techniques are formulated for textual document databases, and
does not directly apply for detecting similarities in XML documents.

There are however several approaches to this problem, such as extended
tf-idf which models the XML structure as a multi-variant regression problem.

3.3. INFORMATION RETRIEVAL 37

The Path bagmodel [17] which bases it's similarity model upon the labels and
their paths in the tree, and the Keyword Common Ancestor Matrix (KCAM)
[16]model whichmodels the XML fragments asmatrices and analyzingwhich
XML fragments aremost likely to be a representation of a object based on their
structure.

I recommend reading the paper on KCAM [16] for a good introduction to
the problem area.

CčĆĕęĊė 4

RĊĘĊĆėĈč DĊĘĎČē

This chapter contains the context and motivation behind the re-
searchquestion, informationabouthowthe researchwasdesigned
and performed, and some of the challenges that were met in the
research phase.

4.1 Context and Motivation

The motivation for the research undertaken in this thesis is to enable busi-
nesses that are interested indeveloping free software, to do soonwell founded
reasons. Free and open software is quite different from the traditional way of
doing business in the software industry, and might to many seem counter-
intuitive, and maybe even scary. As well as the as the goal for businesses to
proϐit from their projects, there are both legal and technical issues that are
somewhat different in the OSS-world.

As there is little research available on the practical aspects of developing
and making money from OSS, the context of this thesis is to explore the busi-
ness, technical and legal considerations concerning the creation of OSS in an
reduced and practical manner aimed towards consultancy agencies.

The context as stated results in the research questions described in sec-
tion 4.1.2 and listed in table 4.1.

ID Research Question
RQ-1 Is providing OSS a viable business idea for consulting agencies?
RQ-2 How should software be released as OSS?

Table 4.1: Research Questions

39

40 CHAPTER 4. RESEARCH DESIGN

4.1.1 Acando and the OpenFEIDE Project

Acando is a consultancy agency within Information technology consulting, IT
management andManagement Consulting. Acando’s annual turnover exceeds
EUR 135 million and the Group employs approximately 1,100 professionals
in six European countries. In Sweden the company employs approximately
640 professionals organized in six business areas. Their business areas are
separated as individual ϐirms in Denmark, Finland, Norway, U.K and Germany.

The stakeholder in this thesis is the Norwegian section of Acando, Acando
AS.

Acando AS is interested in OSS as the demand for such systems is increas-
ing, and it's beneϐits such as freely available technologies and libraries could
improve their cost efϐiciency. They have started working on their ϐirst fully
open source product, OpenFEIDE.

OpenFEIDE is an open source initiative byAcando to create an open source
Brukeradministrativt system (eng: user management system) (BAS) applica-
tion. It's created on top of a open source Java stack with components such
as Glassϐish and the Spring framework. The application is targeted at Norwe-
gian municipals and provinces that are starting to adopt FEIDE as a Single-
Sign-On (SSO)-service for their schools and organizations. The functionality
of BAS-systems is described in detail in section 5.4.3.

FEIDE1 is an federated identitymanagement system developed by Uninett
A/S2. Its goal is to simplify the use of computer systems in the educational
sector in Norway by providing users with one set of username and password,
that works across every system in use in the sector. The solution is based
uponLightweightDirectoryAccessProtocol (LDAP)using shared schemas and
a central database for delegation of authentication and authorization requests
to the different providers.

There are few alternatives on the market for BAS solutions. The most no-
table ones are Microsoft Identity and Integration Server combined with Ac-
tive Directory, and Novell eDirectory. The only identiϐied open source solution
is Cerebrum developed primarily by Norges Tekniske og Naturvitenskapelige
Universitet (NTNU).

1http://www.feide.no
2http://www.uninett.no

http://www.feide.no
http://www.uninett.no

4.1. CONTEXT AND MOTIVATION 41

4.1.2 The Motivation Behind the Research Questions

The primary motivation behind the research questions are to get an under-
standing of open source software in regards to both business and develop-
ment.

Open Source as a Viable Business Idea

The question targets the primary issue for companies that is considering to
create OSS and releasing it to the world; How does one proϐit from giving the
software away for free? And is the potential income enough to justify the in-
vestment required for creating a product that users want to use? To gain in-
sight inwhether it's a viable business idea for consultancy agencies to provide
OSS, we need to look at the product itself, and the market of that particular
product.

Inmost cases, there are no real distinction, from a customers point of view,
between a proprietary product and a product based on OSS, so to gain this in-
sight we need to perform market analysis', such as Political, Economic, Social
and Technological factors (PEST) and Strengths, Weaknesses, Opportunities
and Threats (SWOT) analysis, on the product and compare against other prod-
ucts in the same ϐield. What does the competition offer their customers, can
the product in hand offer more, what kind of services can we provide that will
compel customers to choose our product. And what kind of services are suit-
able for an open source product?

Are there incentives for thepotential customerpool for choosingOSSprod-
ucts over proprietary products? What are the values and risks for the different
business models for the provider?

With business comes legal matters, and one of the primary concerns for a
lot of companies are how open source licensingworks and affects there ability
to use the software at hand. We need to look at some of the most prominent
licenses and see how they compare to each other and how they might affect
the future of the software that is licensed under them.

Practical Open Source Development

The research questions states "How should software be released as OSS?", and
revolves around the practical sides of the development phases of open source
software. How is the project managed, how is development done and so on.
To gain insight into known good ways of releasing and managing open source

42 CHAPTER 4. RESEARCH DESIGN

software, we need to study other successful projects, and try to extract some
knowledge about the processes and techniques these projects are using.

4.2 Applied Research Methods in this Study

There is little research available with regards to the practicality of developing
OSS with he end goal of generating value based on the support and services
that surround this type of development. These decision processes are often
done by people already engaged in the OSS communities, and are based on
the collective intelligence of these communities, and the practices they de-
ploy. This is especially true in the technical parts of developing successful
open source projects.

This state of affairs reϐlects on the chosen research methods in this paper.

4.2.1 Literature Search

• Web-search: Search engines such as Google Scholar was extensively
used for procuring former research. Google Scholar is a tool created es-
pecially for this purpose, and contains most of the articles and papers
publishedbyACM, IEEE, Springer and so on. It also contains results from
Googles normal index that has been identiϐied as papers.

• Project and company web-sites were used to gain information about
speciϐic projects and companies.

• Bibliography tails were key tools for ϐinding relevant papers, as the
quality and amount of papers found was higher than by any of the other
methods.

4.2.2 Choice of Research Methods

The primary research method used in this thesis is the case study research
strategy. Studies about Open source software in the context of business is a
mixed ϐield and need a broad approach for data gathering. Both qualitative
and quantitative evidence is of interest.

There are three main cases in the studies presented, as well as data gath-
ered from observing the greater open source community and attitudes.

4.2. APPLIED RESEARCH METHODS IN THIS STUDY 43

Product Company Services offered
Varnish Varnish Software AS Support, Training, Consultancy
Gitorious Gitorious AS Hosting (SaaS), Consulting, Training

Table 4.2: Companies with a primary focus on Open Source software

4.2.3 Studied Companies

The subjects in the case study was selected based upon their similarity to the
context of this thesis, companies providing single purpose end-user products.
The companies selected are listed in table 4.2.

Varnish Software

Varnish Software is the company behind Varnish Cache, a web-cache applica-
tion used by, amongst others, Facebook and VG. The company is based in Oslo
and Stockholm and is a spin-off project from Redpill Linpro.

Varnish Cache is licensed under a BSD-license, and is available at their
community site http://www.varnish-cache.org. This site includes access
to their source code repository, bug tracker and mailing list archives.

Their business plan is based upon selling support and proprietary add-ons
for the open source software.

The study is available in Appendix A.

Gitorious AS

Gitorious AS develops andmaintains a product called Gitorious, which is a col-
laboration tool for the git version control system. The software is licensed un-
der theAGPL-license and is available at their community sitehttp://gitorious.
org/, and is used by Nokia, OpenSUSE and QT.

Their commercial offerings include SaaS, consulting and support.
The study is available in Appendix B.

Other Companies

As there are already extensive case studies done on the large international
open source based companies, such as Red Hat, I've not not repeated these.
See for instance "The adoption of open source software in business models: a
Red Hat and IBM case study" by Munga et al. [25], which is an extensive piece

http://www.varnish-cache.org
http://gitorious.org/
http://gitorious.org/

44 CHAPTER 4. RESEARCH DESIGN

Product Purpose Status
Linux Kernel Operating system core Success
Symbian Mobile device operating system Failed
Django Web development framework Success
Varnish Cache Caching HTTP reverse proxy Success
Gitorious GIT Hosting solution Succcess

Table 4.3: Open source projects

of work studying the business models with regard to open source at Red Hat
and IBM.

4.2.4 Studied Projects

In addition to these companies a fewopen source projectswhere studied, both
successful and failed ones. It is important to view both the successful and
the failed ones for trying to determine common characteristics on why some
projects are successful, while others fail. These projects are listed in table 4.3.

Linux Kernel

Probably themost famousopen sourceproject todate. It powers theGNU/Linux
operating system, but also other projects such as the Android mobile operat-
ing system, and super computers.

The study is available in Appendix F.

Symbian

Symbian is an operating system for mobile devices created by Nokia and was
the primary operating system for mobile devices for a long time. It was open
sourced as an attempt to improve it's usage as other platforms such as iOS,
Android and Windows Mobile started to take a larger share of the market.

The study is available in Appendix G.

Django Web framework

Django is a python based web framework created initially as a tool for news-
papers to rapidly develop features for the web presence.

4.3. CASE STUDY DESIGN 45

It is the most widely used and popular web framework in the python com-
munity.

The study is available in Appendix E.

4.3 Case Study Design

Case studies are a way of extracting information without inϐluencing either
subjects or the environment [4], and are well suited for answering "how" and
"why" questions [1][4]. Because of these attributes we can, by designing the
studies they way we want them, do all our research externally.

4.3.1 Company Studies

In the case studies targeting companies we want to know about how the go
aboutworking in an open source environment. To ϐigure out how they do that,
the following questions were selected and must be answered in each study:
(CQ1) What is the business model?

We need to understand how the business is set up in regards to offering
services and/or products surrounding the open source software. We do
this by identifying the means described in section 2.4, and analyze the
model using the "BusinessModel Analysis Framework" suggested in "An
Analysis of the Value that Open Source Contributes to Business Models"
by Munga and Fogwill [24].

(CQ2) How do they interact with the project community?
What sort of role does the company havewith regards to the project they
construct they business upon?

(CQ3) Is the business proϐitable?
Control the viability of the business in terms of monetary proϐits.

(CQ4) How large is the company?
What is the size of the operation that works with the given open source
project(s)?

4.3.2 Project Studies

The art of practical open source development can be extracted by looking at
successful open source projects and see what they have in common, and see if
there are any patterns emerging.

46 CHAPTER 4. RESEARCH DESIGN

The following questions must be answered by each study:

(PQ1) How is the source code managed and controlled?
How does the project make its source code available, and which restric-
tions do they enforce with regards to publishing code?

(PQ2) What is the release process of the project?

Is there a formal process for releases? Who decides when something is
ready for releasing?

(PQ3) How does the community communicate?

Does the communityhave speciϐic tools andmethodsonwhich they choose
to communicate through? If so, are they moderated or in any way man-
aged by some entity?

(PQ4) In what way is documentation managed?

How is the project documentation distributed and managed? Does the
project have dedicated web pages for documentation, if any documen-
tation at all?

(PQ5) How does the project manage user feedback?

Howare user feedback and support requestsmanaged? Is there any sin-
gle point of contact for these requests? If so, how are the response times
for the questions?

(PQ6) How does the project manage user contributions?

How does the project accept bug ϐixes and new feature patches? How
does it decide which ones to accept, and if they are good enough?

(PQ7) How does the project manage bug reports?

Is there a single point for reporting bugs? How are these managed after
they have been submitted? Are there any restrictions on whom might
triage these reports?

4.3. CASE STUDY DESIGN 47

(PQ8) Which software license is the project licensed under?

What sort of licensing scheme is the project under? Whydid they choose
that license?

(PQ9) How easy is the software to deploy and use?

Does the project provide easy ways for it to be deployed and tested by
potential user?

4.3.3 Data Collection and Challenges

Data collection was performed by inspecting each company and project web
site, by performing web searches for further information, and in some cases
watching recording of talks some of the creators have given about the history
of his or her project. Business models are often kept secret, so the data col-
lected is extracted and interpreted by the offering the companies publish.

Challenges in Subject Selection

Oneof theprimary challengesof collectingdatawas to ϐindunsuccessful projects
that were over a certain size. There is a wide selection of projects that fail,
but ϐinding information about projects attempted by companies that failed is
proven to be difϐicult. These projects seems to be removed or left dead, and by
this being difϐicult to ϐind. The primary concern is the validity of the ϐindings
as to the limited data set.

Finding suitable subjects for studying was also a big challenge because of
the breadth of projects, and thus the results might not be applicable for what-
ever project that is being evaluation as an open source endeavor.

Depth of Gained Understanding

The research questions in this thesis are very broad in the sense that the touch
almost every aspect of open source software and business in open environ-
ments. As a result of this each case study is equally broad and perhaps shal-
low. One could argue that each of the questions in the case studies could be
suitable for further research on its own, and how the particular part has an

48 CHAPTER 4. RESEARCH DESIGN

effects on the project or business decisions. The goal of this thesis is not, how-
ever, to get a complete understand of all the effects of different choices that
are made by projects, but to get an overview of the complete picture.

CčĆĕęĊė 5

CĔēęėĎćĚęĎĔēĘ

This chapter presents the results of the studies and the implemen-
tation that makes up the contributions from this thesis. The con-
tributions directed at the research questions are presented ϐirst,
then the implementation.

5.1 Viable Open Source for Consultancy Agencies

Creating a positive return on investment in authoring OSS can be challenging,
but not impossible. It requires a combination of technical solutions and busi-
ness solutions, where both are connected to each other in variousways. There
aremultiple suitable businessmodels for OSS projects, some are described on
page 2.4 For consultancy companies the value lies in the expertise the com-
pany acquires by developing it, and thus enabling themselves to provide ex-
pert consulting on the software. Choosing a business model depends on the
software that is being created, and what the customers are willing to pay for.
They key point is to focus on services, not the product.

5.1.1 Legal Considerations and Licensing

Open source licenses are often an issue for companies as there is little knowl-
edge about them and how they work. Most companies today prefers to buy
proprietary solutions as a means to reduce the risks inherent in untested li-
censes. Ten years ago this might have been a problem, but now open source
licenses are widespread and used by most of the major software companies
in the world. This thesis explained the most common licenses in section 2.5.
Most of the licenses are proved in court by now, so the choice of licensing de-
pends now only on the way you want the software to be used, and to what
degree you want to protect your software. For large software the far most
common license is the Apache License (the 2.0 version). It's a well written le-
gal document covering licensing issues many large companies run into, such

49

50 CHAPTER 5. CONTRIBUTIONS

as patent rights. If you want a permissive license, which allows you to use the
software in proprietary products, the Apache license is a safe bet. If you on the
other hand want a restrictive license the GPLv2 is the most used and tested li-
cense.

Most companies are inclined to choose permissive licenses as they offer
themgreater ϐlexibility. That being said, bothof the companies (see appendixB
and appendix A) studied in this thesis user restrictive licenses, and are still
able to provide a wide array of services to their customers, and create a proϐit.

5.1.2 Estimating the Cost of Development

For estimating whether or not a project is going to pay off we ϐirst have to
estimate the costs for producing the software. Cost estimation in software is
hard problem due to the complexities of software development, but there are
models that provide an approximate ball-park ϐigure such as the COCOMO II
model [3]. The COCOMO II model is based on the size of projects in terms of
the number of source code lines. The basic formula is

E f f ort = a × KSLOCb

where the a coefϐicient has an initial value of 2.94 and b has an initial value of
1.0997, effort is measured in person-months. The COCOMO II model allows
for several adjustment parameters for increasing the accuracy of the estima-
tion based on the properties of the project being estimated, but for simplicity's
sake only the basic model will be used in this thesis. More information about
the COCOMO IImodel is available in theirmanual [3]. Oncewe have a baseline
for how much effort a project is estimated to require, we can create a model
for representing the ϐlow of value between the consultancy agency, and the
customers. A simpliϐied model for calculating the result of a project can be
represented as

result = (n ∗ p)− (d ∗ c)

where n = estimated consultancy hours needed in the market, p = price per
hour of consultancy, d = estimated development time and c = cost pr hour of
in-house development.

The model can be used to estimate how many hours of consultancy that
must be sold for the project to break even. If we assume an exchange rate
of 1NOK equals 6USD, the in-house cost of an employee is 600NOK, and the
consultancy price per hour is 950NOK the equation for breaking even is

n = (2.94 ∗ (KSLOC1.0977) ∗ ((600/6) ∗ 7.5 ∗ 5 ∗ 4))/(950/6)

5.1. VIABLE OPEN SOURCE FOR CONSULTANCY AGENCIES 51

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 20 40 60 80 100

Hours

Lines of code (in thousands)

(effort(x)*((600/6)*7.5*5*4))/(950/6)

Figure 5.1: Needed sales of consultancy hours versus lines of code

The growth is shown in ϐigure 5.1 tells us that even small projects require
a fair number of consultancy hours. A 20,000 lines project clocks in at about
5000 hours, that just over three years of work1. Herein lies the difϐiculty of
not selling the software, but only consultancy for it, and a large factor in why
many companies, as mentioned in the previous parts of this thesis, often have
several services connected to their products.

5.1.3 Business Models

Product Classification

Once the cost estimation is completed, one must see if the product proϐit po-
tential is large enough to support the initial development costs and the long-
termmaintenance costs. SandeepKirshnamurthy designed a twodimensional
classiϐication scheme in his paper "An Analysis of Open Source Business Mod-
els" [18], with the dimensions being "customer applicability" and "relative
product importance". This is represented in ϐigure 5.2, and shows four dif-
ferent classiϐications. "Customer applicability" denotes the potential amount

1Norwegian full-time hour count per year is 1650 hours.

52 CHAPTER 5. CONTRIBUTIONS

Figure 5.2: Product classiϐication

of deployments. Products such as cross-platform web-browsers have a large
customer applicability since it can easily be installed to the computers of a
large customer base. "Relative product importance" is a measurement of how
important a piece of product is for the potential customer base. Products such
as an operating system has a high product importance, while a new screen
saver has a low level of importance.

Q1 High importance, niche product
Products that are of high importance, but for a small market. One exam-
ple of product in this area is data processing.
Proϐit potential: Medium

Q2 High importance, broad product
Products that areof high importancewith a largepotentialmarket. Prod-
ucts such as web browsers, operating systems, ofϐice suites go into this
category.
Proϐit potential: High

5.1. VIABLE OPEN SOURCE FOR CONSULTANCY AGENCIES 53

Q3 Low importance, nice product
Low importance nice products have the lowest potential market as the
number of potential users is low.
Proϐit potential: Low

Q4 Lowimportance, broadproductProducts in this categorymaybe called
mainstreamutilities. Typical examples of this isweb-based tools such as
online TODO-lists.
Proϐit potential: Medium

Similar tools such as PEST and SWOTanalysis can improve the information
at hand about the current market and the proϐit potential of the product, and
which business models might be most suited for the product and the market.

Business Model Selection

Choosing the right business model is a difϐicult but necessary step, and must
be approached on a project to project basis. As described in section 2.4, there
are many different models available and suitable for open source projects.

As with any attempt to sell something, one must determine what the cus-
tomer is willing to to pay you for. This varies from project type to project type.
If the project at hand targets enterprise customers, support might be a very
good start for an product offering, as this is a much sought after product for
enterprises using open source software and is proven to be proϐitable e.g. Red-
hat Enterprise Linux.

The product classiϐication scheme described above is a useful tool when
evaluating the different business models. Products classiϐied as "Low impor-
tance, broad product" (large customer base, low complexity), might not be
suitable for consultancy offerings, but maybe proprietary addons providing
extra functionality is a better ϐit. "High importance, niche product" might be a
very good ϐit for consultancy offerings and adaptation offerings.

Each model must be reasoned against the product and the potential cus-
tomers to work, and because of this most companies that do business solely
on open source, uses several different business models, and often intertwine
them tomake each of themmore attractive for the customers. One example of
this is Varnish Software which bundles their proprietary tools with the sup-
port contracts.

54 CHAPTER 5. CONTRIBUTIONS

5.2 Practical Open Source Development

This section explains a framework for developing OSS solutions from scratch
in a well tested way. Each subsection explains one phase of the product life
cycle.

5.2.1 Project Start Up

The initial development of an OSS project is not very different from a regular
in-house proprietary project. There are however some considerations that
must bemadewhen the project is to be open sourced and released to the pub-
lic.

Source code management (SCM) usage

When developing the initial versions it is important to remember that, in the
ideal OSS environment, the complete source code history will be made avail-
able to the public at some point. This means that no sensitive information
should be added to the version control, as these may be extracted and ex-
ploited by an external entity after the release. This includes data sets contain-
ing person information such as social security numbers, usernames and pass-
words for various systems such as the database system. This point is consid-
ered best-practice for in-house projects as well, but the importance increases
dramatically when the information may become public.

The choices onemakeswith regards towhen andhow to release the source
code may have a great impact on the contribution rate. If released early, and
the project manages to attract some contributors, then those contributors are
often bound to become regular faces, as they gain a greater sense of ownership
of the project. The way it is released is also important. Very few developers
today prefer to get "code dumps", that means a compressed archive of all the
code. Most of todays developers prefer to ϐire up their SCM tools and clone
the project. This has two effects: They can see all the history, and are likely to
understandmoreof theproject. The secondeffect is that any contribution they
make, will most likely be easier to merge into the project, as the mechanical
parts of joining the code bases is already done by the tool.

All of the studied projects have publicly available source code repositories,
and are thriving.

5.2. PRACTICAL OPEN SOURCE DEVELOPMENT 55

Documentation

During the initial stages of any software project therewill bemade a lot of pre-
sumptions and choices for how to attack the problems at hand. Keep in mind
that at the point of releasing the software external contributors will need this
information and not just the internal development team. As with the previ-
ous point considering version control usage, this is also best practice as even
the internal teammembersmay be replaced and these newmembers will also
need the complete understanding of why the project core is developed as it is.
An additional effect is that the quality of the software tends to increase when
the developers are forced to document it. This is due to the fact that this forces
the developer to clarify the purpose of the implementation, whichmay trigger
the developer to ϐind a cleaner way of solving the problem to ease the docu-
mentation.

The most dramatic effect that good documentation can have, can be seen
if we look at the history of the Django project. The Django project emerged
amongst many other python projects as the Ruby-on-Rails project was tak-
ing off. It was not technical superiority, and it did not have any more features
than a couple of other projects, but it had great documentation. The reason for
this is that the original authors of Djangowere journalists, and hated that they
had to search long and hard for documentation of what they were attempt-
ing to do. So when they created the Django project, they made sure that its
documentation was top-notch. This made it the primary web framework for
Python developers, and it still is to this date.

Deployment - ease of use

The goal of any project should be to have users. Themore users a project have,
the more contributors get interested in the project. As well as the markets
surrounding the project increases, including the need for consult by experts.
Therefor the software should be developedwith deployment inmind from the
very start. The most effective way for a project to enable users to use their
software is to package the software for the users and for the different relevant
platforms. Creating packages for the major Linux distributions is a good start.
Debian2 and Fedora3 should be the primary targets here, as packages for these
distributions also work on Ubuntu, RedHat, CentOS and a number of differ-

2http://debian.org
3http://fedoraproject.org

http://debian.org
http://fedoraproject.org

56 CHAPTER 5. CONTRIBUTIONS

ent distributions. For MacOSX4 one can package the software as an installer
or create distributions for projects like Homebrew and Fink. In the case of
Java based web projects, a pre-compiled WAR-ϐile from the project homepage
should be enough.

The purpose of packaging is ease of installation and maintenance. Us-
ing a versioning scheme such as Semantic Versioning5 and providing detailed
change logs on new releases is a big step towards this.

5.2.2 Developing in the Open

Having a publicly available website where externals entities may follow the
development closely makes the development process transparent. This in-
creases the chances of external contributors since they have the chance to fol-
low and comment on progress. If they have patches for features they want to
have included in the distribution they can easily keep it up to date with the
source code. This helps the core developers to merge the provided patches as
they could require patches to apply cleanly to the current version of the source
code. Keeping the revision history public also helps bisecting bugs to the com-
mitwhich introduced it, thus creating a fast-path for a new regression test and
patch. The good part is that this entire process can then be done by external
contributors.

One should also not neglect the slight pressure put upon developers when
their changes are made public; this may improve not only code quality, but
the quality of the metadata for the changes, such as the commit message. Any
seasoneddeveloper have seen large commitswith commitmessages like "ϐixes
a bunch of stuff", which is not helpful for others who track the development.

However, it can be argued that the most important feature of this type of
transparent development is the fast feedback loop from the community. The
more people who are able to beta-test the software by running the latest ver-
sion, the quicker bugs can be found and reported. This may reduce the wave
of bugs that often are reported after a large release which can take a long time
to ϐix for the developers.

There are several online services and open source software projects avail-
able for the purpose of sharing source code repositories. Most of these ser-
vices and projects have features for managing the project, such as bug track-
ing and wiki hosting, and the online services often have additional features

4http://apple.com
5http://semver.org

http://apple.com
http://semver.org

5.2. PRACTICAL OPEN SOURCE DEVELOPMENT 57

available for paying customers. Some of these external providers are listed in
table 5.1. In a study performed by Black Duck Software [27] from January to
May 2011, GitHub was the most popular hosting service in terms of number
of commits.

Version control software Provider Features
Bazaar Launchpad Code hosting, Bug tracking,

Project management, Code re-
views, Translations ++

Git GitHub Code hosting, Wiki, Bug track-
ing, Code review

Mercurial Bitbucket Code hosting, Private reposito-
ries, Bug tracking

Subversion, Mercurial Google
Code

Code hosting, Wiki, Bug track-
ing

Subversion, Mercurial Microsoft
CodePlex

Code hosting, Wiki, Bug track-
ing

Subversion, Mercurial, Git SourceForge Code hosting, Bug tracking,
Wiki

Table 5.1: List of remote public code hosting providers

5.2.3 Managing Users and Contributors

Managing an open source community is no small matter, but the basics are
pretty easy to get going for any new project. It's a matter of providing com-
munication channels for both users and contributors, as well as for the core
developers. Creating an active user base not only helps promote your project
byword-of-mouth, but also helps you reduce costs by off-loading the develop-
ment team by having the community do the basic support tasks.

User Feedback

One critical part of managing an open source project is the last part of the
famous quote

Release early, release often. And listen to your customers.

58 CHAPTER 5. CONTRIBUTIONS

by Eric S. Raymond in the book "The Cathedral and The Bazaar". Providing
some level of support for the users in the open are clear sign to any new users
that the project still is alive. This is a critical part, not only for building a strong
community, but themere fact that there is publicly available signs of activity is
crucial in the open source world, as a lot of open source projects are inactive.

This can be accomplished in a number of ways. The far most popular way
is to have open mailing lists and IRC channels for communicating with the de-
velopers and other fellowusers. This as all other formsof public exposuremay
create some difϐiculties with regard to moderation and spam control, but the
cases where this poses a threat to the project are rare. The primary concern
should be to have ways of communicating ideas and problems.

Managing Contributions

There are different approaches to handling external contributions, and the
need for control varies with the size of the community of the given project.
Most projects have a set of core developers that decide what goes into the "of-
ϐicial" releases. These developers acts as gatekeepers for external contribu-
tions. Normally contributions are beingmade by an external developers creat-
ing a patch for the project then sending the given patch to the projects mailing
list, whereas the core developers and the community can do code review and
decide whether or not the patch should be applied to the ofϐicial project. In
recent years, with the rise of distributed version control, it's more common to
create a "branch" for the contribution and sending the developers a link to the
given changes for code review and merging. This allows the full version con-
trol history of the given patch to be merged into the ofϐicial version control,
thus creating a way of bisecting bugs in the patch at a later point.

5.2.4 Bug Tracking and Issue Management

Bug tracking and issue management is crucial to any project, but it may have
a profound impact on open source projects whether this information is pub-
licly available or not. There are twomain beneϐits for open source projects for
having publicly available bug and issue management systems as opposed to
an closed system:

• Users have a single point of reporting bugs.

• New contributors have a source of tasks to work on.

5.3. RELATIONSHIP BETWEEN BUSINESS AND TECHNICAL ASPECTS 59

The ϐirst point is important as it reduces the frustration of the user since they
know where to report bugs and follow the progress for having them ϐixed. It
also allows the developers to easily ask the reporting user for more informa-
tion if the original report did not include enough information to reproduce the
bug. The second point is useful for creating an environment where volunteers
have a single place to look for tasks if they want to contribute to the project.

5.3 Relationship Between Business and Technical As-
pects

One of the unfamiliar concepts of open source is the unique relationship be-
tween the technical aspects and the business aspects of the projects. Due to
the openness of the open source software, the technical choices the project
has made are open for anyone to see. This can cause both good and bad PR
in the open source community. The technical drivers are part of the whole
community aspect of the project, and thus also the business aspect.

Figure5.3 illustrates the relationshipbetweendifferent choices anddrivers,
and how they might affect the project as a whole in a positive way. There are,
aswith any choice, trade-offs for each choice, such as control or the costs of ac-
tually managing a large community, but if the goal is to have more customers,
and more feedback, positive effects it is what one wants.

Dahlander and Magnuson described two types of relationships between
companies involved in open source software and the community surround the
software in their paper "Relationships between open source software compa-
nies and communities: Observations from Nordic ϐirms" [10], symbiotic and
parasitic.

Parasitic relationships between a company and a open source community
is often described as "leeching", since the company attempts to make a proϐit
from the project with minimal involvement and contributions. The symbiotic
relationship the company gains trust and position in the community by their
efforts and values.

In the case of creating new open source projects and gather help from the
open source community it is crucial to establish the latter relationship type.
The amount and type of effort needed to become trusted enough as a com-
pany for volunteers to invest time and effort to the project varies from project
to project. As in personal relationships the trust between parties relies on
their trustworthiness, which is earned over time by being truthful and show-
ing integrity.

60 CHAPTER 5. CONTRIBUTIONS

B e t t e r
communi ty

More
use r s

Less
in-house work

Bigger
communi ty

More
contr ibutors

More potential
cus tomers

Higher
quali ty

Higher
profits

Public
source control

Public
bug t racking

Easy
deployment

Licensing
scheme

Grat is
so f tware reuse

Figure 5.3: Relationship between technical aspect and community aspectwith
proϐits

5.4. IMPLEMENTATION OF XSLTGENERATOR 61

5.4 Implementation of XSLTGenerator

The purpose of this chapter is to describe the premises for the software, as
well as the software design and architecture. The section is based upon IEEE
documentation standards IEEE-1016 for software designs, and IEEE-830 for
software requirements.

5.4.1 Problem Description

OpenFEIDE requires data sources for retrieving the user base it handles. This
importation procedure is based on the import of XML-ϐiles from internal SAS
components. As these internal systems varies in type and version, the XML-
ϐiles they are able to export varies. The current version of OpenFEIDE has a
one-to-onemappingof anexternal XMLsource, anda local XSL-Transformation
for converting the XML data to a format understood by the importation mod-
ule of OpenFEIDE.

The problemwith this approach is that the user have to write the XSLT for
their data sources. While this is normally not a problem for a developer, it is a
difϐicult process for potential customers that do not have developers at hand,
and must do this on their own. The result of this is often that the customer
gives up, and uses a competing product.

The goal of the implementation part of this thesis is to create a prototype
module for helping non-developers do the task of creating appropriate XSLT
templates for their data sources.

Figure 5.4: Visualization of implementation problem description

62 CHAPTER 5. CONTRIBUTIONS

Research ideas

Attempt idea

Partial success FailureSuccess

Research improvement ideas Dismiss ideaClean up implementation and keep

Figure 5.5: Development process

5.4.2 Development Methodology

As a one-man effort, the implementation did not follow any strict methodol-
ogy, but the closest approximation is the Kanban methodology. The initial
phases was done in spikes for testing different approaches to the problem.
During these spikes methods like traditional IR-methods (tf-idf indexing and
similar techniques), and DCAM was abandoned due to the lack of successful
analysis and retrieval using these methods, to a custom scoring system devel-
oped especially for this problem area.

Parts of the applicationwas done in a test-drivenmanner, mostly for shap-
ing the internal APIs to something that would be comfortable to work with as
a developer.

These spikes attempts and the dismissal of them can be viewed as an iter-
ative development process as shown in ϐigure 5.5.

5.4.3 Context of Implementation

Role of BAS Applications

AnBAS application's role is to provide a digital system formanagement of user
credentials and information in an organization. This central point for user
management is an requirement for establishing a connection with the FEIDE
system.

In the usual case the BAS imports data from existing systems such as SAS
andmaking sure the data is organized and valid according to the speciϐications
set by FEIDE6, but there is no restrictions on how the BAS gains its data points.

6http://www.feide.no/sites/feide.no/files/documents/temahefte_feidekrav.
pdf (Norwegian)

http://www.feide.no/sites/feide.no/files/documents/temahefte_feidekrav.pdf
http://www.feide.no/sites/feide.no/files/documents/temahefte_feidekrav.pdf

5.4. IMPLEMENTATION OF XSLTGENERATOR 63

The information in the BAS is required to be exported to the external LDAP-
catalog at least once every 24 hours. The external LDAP-catalog is required to
follow the norEdu* schema7 to be compatible with the FEIDE-system.

OpenFEIDE Technology Stack

As with any software product it's important to keep track of which external
components are used, andwhich are linkedwith the product to ensure license
compliance.
OpenFEIDEs external components are shown in table 5.2, and shows that all
but one linked component is licensedunder theApacheLicense,with the other
one is under the LGPLv3. All these licenses are compatible and since Jasper-
Reports is released under the LGPL, OpenFEIDE is free to be released under
any licensing scheme.

Component Linked License
Google Web Toolkit True Apache License, Version 2.0
Spring Web Services True Apache License, Version 2.0
Quartz Enterprise Job Scheduler True Apache License, Version 2.0
JasperReports True LGPL, Version 3
Log4J True Apache License, Version 2.0
Spring Security True Apache License, Version 2.0
Spring LDAP True Apache License, Version 2.0
Glassϐish False CDDL, Version 1.1

Table 5.2: Identiϐied external components in OpenFEIDE

OpenFEIDE Architecture

The OpenFEIDE architecture has tree critical internal components, the web
server hosting the administration interface andmanaging the import fromSAS
systems, a SQL-server for logging and other audit data, and an internal LDAP
server for storing the FEIDE compatible data. The internal LDAP-server repli-
cates it's data to an publicly available LDAP-server which is the entry point
for the central FEIDE LDAP to communicate with. A rough representation is
shown in ϐigure 5.6.

7http://www.feide.no/sites/feide.no/files/documents/norEdu_spec.pdf

http://www.feide.no/sites/feide.no/files/documents/norEdu_spec.pdf

64 CHAPTER 5. CONTRIBUTIONS

Figure 5.6: OpenFEIDE Architecture Schema

The system is designed to never expose any of the core systems to the pub-
lic internet, reducing the risk of cascading intrusions from the outside. If the
external LDAP is tamperedwith, the datawill get ϐixed in the next update from
the internal systems. The external LDAP has no way of communicating with
the internal systems, so it is impossible for an attacker to gain entry to the
internal servers from this server.

The internal data source providers (such as SAS), communicate with the
webserver throughweb services provided by the SpringWS library, or by stor-
ing the data for importation on an FTP-server available to OpenFEIDE.

Theweb services are run on the Glassϐish Application Server software, and
are responsible for logging all activity to audit logs, generating reports and
exporting data to the LDAP-server.

5.4. IMPLEMENTATION OF XSLTGENERATOR 65

5.4.4 Problem Analysis

The main issue stated in the problem description can be summarized into the
following:

How can we enable the average user to successfully import data
into OpenFEIDE from an unknown source?

Even though OpenFEIDE is specialist software, the training effort should
focus on the day-to-day use of the software, not the adding of data sources.
And considering the well known mantra for creating user friendly software:
"Don'tmakeme think" (from thebookwith the samenamebySteveKrug [19]),
the process should, as much as possible, be completed without any decision
making or interaction from the user.

This however creates new problems. The format of the XML ϐiles Open-
FEIDE are given from the data sources is unknown, this makes the process of
of creating correct and deterministic importation procedures hard.

The solution for this problem is to improve the level of knowledge the sys-
tem has about the source. Currently all we know is that the input is repre-
sented as XML, and that the data, most likely, has information that is of useful-
ness to OpenFEIDE, such as information about persons, groups and so on. We
can use the information about what kind of data we are interested in, and use
this information to search the data in the given ϐile for the appropriate content.

Searching for data ϐields in thismanner is however error-prone, so there is
a need for some control on how and when ϐields are identiϐied as appropriate
content. Two simple ways of achieving this control is to employ either one of,
of multiples of the following ways:

1. Identiϐication conϐidence level

2. Manual interaction from user

The ϐirst way is a parameter introduced to the automatic process of de-
tecting data, and the other is asking the the user for help to identify a certain
piece of data. The second could thus be used as a control mechanism for the
detection phase, with orwithout, the conϐidence level contract needed for suc-
cessful identiϐication of data, or serve the purpose of identifying data entirely
on its own.

66 CHAPTER 5. CONTRIBUTIONS

5.4.5 Analysis of Current Import Procedure

The existing import procedure of OpenFEIDE is done manually by adding a
new data source in the web interface. This source must be located on an FTP-
server. The transformation into the OpenFEIDE import format is done by a
hard coded XSLT-Transformation.

The existing activity chain for adding a new data source into OpenFEIDE
is illustrated in ϐigure 5.7.

Figure 5.7: Activity chain for adding new source to OpenFEIDE before XSLT-
Generator

5.4.6 Analysis Results

The software under development is a module for the OpenFEIDE importer
adding support for creating XSLT transformations for the users data sources
without requiring the user to knowXSLT. The softwarewill be developed as an
pluggablemodule, as illustrated by ϐigure 5.9, which the importmay call upon
the instantiation of a new data source if the user chooses to use it, as opposed
to creating the XSLT transformation by hand.

Implementation Placement

XSLTGenerator is enabled it would added in the initial stages of the import
creating the activity chain shown in ϐigure 5.8.

Figure 5.8: Activity chain for adding new source to OpenFEIDE after XSLTGen-
erator

5.4. IMPLEMENTATION OF XSLTGENERATOR 67

Implementation Usage

As OpenFEIDE is a fairly young project, and development is still on-going, and
without regards to the development of this thesis, the path of least resistance
is to create XSLTGenerator as a separate project that is easily added to Open-
FEIDE at a later stage. From a developer perspective the software should be
easily added to theproduct byenabling it as adependency in theMavenpom.XML
ϐile, and calling the documented API for initiating and using it.

Figure 5.9: Contextual placement of the new system

Soft System Requirements

This results in the following soft system requirements:

• The software shouldbeable to createXSLT transformation forXMLsources
without requiring the user to know XSLT.

• The software should be easily integrated by developers by adding it as
an Maven dependency.

• The software should expose a well documented API for integration into
software as OpenFEIDE.

5.4.7 Requirements

Thepurposeof this section is todeϐine the requirements for the softwarebeing
developed, and deϐining the guidelines for the development process.

68 CHAPTER 5. CONTRIBUTIONS

Functional View

The generation of the transformations can be done in two separate ways as
shown in ϐigure 5.10; one it fully automatic generation by analyzing a sample
XML output from the new data source. The other is a manual process where
the usermay add labels to the different XML-fragments that appear in the XML
output from the data source as shown in ϐigure 5.11. The softwarewill use this
data to generate an XLST-document for the speciϐic source.

Figure 5.10: Main user interaction use case

Figure 5.11: Use case for manual generation

The two different approaches requires different architectural needs and
implementations.

Combined Functional Requirements

Solving the issues raised in the functional view of the two subsystems requires
the functional requirements listed in table 5.3 to be fulϐilled.

5.4. IMPLEMENTATION OF XSLTGENERATOR 69

ID Role Description Priority
F-1 Developer using the API I want the software should accept

any valid URI supported by the Java
1.6 platform for retrieving the XML
sample.

High

F-2 Developer using the API I want the software to be able to ana-
lyze any valid XML document.

High

F-3 Developer using the API I want the software should produce a
valid XSLT transformation as output.

Medium

F-4 End user I want the software to expose an user
interface for manually mapping XML
fragments to their meaning.

Medium

F-5 Internal Elements must be considered dis-
tinct based upon the element name
and the elements attributes.

Medium

Table 5.3: Functional requirements

Non-functional View

In addition to the functional requirements several non-functional requirements
are present due to the problem description of this theses, as well as the exist-
ing technological platform of OpenFEIDE.

The software should strive to fulϐill the following non-functional require-
ments:

Constraints

The software should adhere to the following constraints:

• The software must run on the Java 1.6 platform

• The software must be able to inter operate with the OpenFEIDE appli-
cation.

• The performance of the system should be able to display any page in less
than 1 (one) second per request.

• Core parts of the application must be accompanied by a suitable test
suite.

70 CHAPTER 5. CONTRIBUTIONS

ID Genre Description
NF-1 Performance No page should takemore than 2 sec-

onds to load.
NF-2 Performance The XML analyzer should, as Open-

FEIDE, focus on performance with-
out regards to memory usage.

NF-3 Security The software should not include any
security mechanism.

NF-4 Extensibility and ϐlexibility The XML analyzer should be easily
modiϐiable and modular.

NF-5 Interoperability The software should be easily inte-
grated into any GWT-project.

NF-6 Interoperability The software should be easily
themed by adding custom CSS.

NF-7 Usability The software should be usable by
non-technical persons.

Table 5.4: Non-functional requirements

• The software has no requirements for memory usage, but should work
in low-memory environments with lowered performance.

• The software must run on all major browsers.

• The software must be able to integrated into an deployed GWT applica-
tion.

• The module is aimed at non-technical users and must be designed to be
used by this user group.

• Theparsing infrastructure for the automatic generationperspectivemust
be easily modiϐiable as this is probably the most brittle part of the mod-
ule.

5.4.8 Goals and Guidelines

The software development process should adhere to the following guidelines:

• Follow the KISS principle ("Keep it simple stupid!") as much as possible.

5.4. IMPLEMENTATION OF XSLTGENERATOR 71

• Follow the standard Java naming conventions.

• The software should be as fast for the user as possiblewithout impairing
code readability.

• The software should allow to be themed into the look-and-feel of an-
other application.

72 CHAPTER 5. CONTRIBUTIONS

5.4.9 Architecture

Logical view

The chosen architecture is based upon the standardGWTapplication architec-
ture, which resulted in the main Java packages listen in table 5.5. The differ-
ent parts of the system is designed to be easily be expandable by following the
singe responsibility patterns for business logic, and well deϐined connection
points for the business logic classes. The fact that this is an OSS-component
also inϐluenced the architectural design for easily extracting parts of the appli-
cation for usage in other products. One example of this is the parsing utilities
where the logic is separated into three layers. Each layer knows only about
the layer beneath it, thus creating an easily manageable dependency graph as
seen in the package dependency diagram illustrated in ϐigure 5.12.

Figure 5.12: Packages and their dependencies

5.4. IMPLEMENTATION OF XSLTGENERATOR 73

Package Layout

GWT enforces a layered software layout as mentioned in section 5.4.9. This
layout resembles the much used three layered MVC-structure. The packages
that contains thekeyworkclientaredesigned tobe translated into JavaScript,
and run in the browser. All data that is sent between the client and the server
must be implemented as such a class.

The source code is split into several Java packages. The package layout
is an best effort attempt for keeping each part of the project separate and to
allow clean reusable internal APIs. The package structure is listen in table 5.5.

74 CHAPTER 5. CONTRIBUTIONS

Package
nam

e
D
escription

no.ntnu.im
e.xsltgenerator.client

Basepackageforthecodethatwillberunontheclient.
no.ntnu.im

e.xsltgenerator.client.ui
UI-classesforspeciϐicpartsoftheapplication.

no.ntnu.im
e.xsltgenerator.client.exceptions

Exception
either

raised
from

the
server

side
or

the
clientside

that
reachestheuser.

no.ntnu.im
e.xsltgenerator.client.m

odels
Shareddatastructuresforserialization.

no.ntnu.im
e.xsltgenerator.server

Basepackagefortheserversidecode.
no.ntnu.im

e.xsltgenerator.server.utils
Com

m
onutilities.

no.ntnu.im
e.libxsltgenerator.generator

FunctionalityforgeneratingXSLT.
no.ntnu.im

e.libxsltgenerator.analyzer
Analyzingandstatisticsforelem

entidentifying.
no.ntnu.im

e.libxsltgenerator.parsers
XM

L-elem
entparserim

plem
entations.

Table5.5:Javapackageoverview
forXSLTGenerator

5.4. IMPLEMENTATION OF XSLTGENERATOR 75

5.4.10 Functionality Types

Automatic generation

Theautomatic generation is donebyanalyzing the contents of anXML-document
exported from any given data-source. The main problem with this approach
is the fact that the software has no knowledge about the structure of the XML-
document it's analyzing, thus making the process error prone. For combating
this issue, we use the knowledge of FEIDE to help the process. This is done by
creating a set of rules to match the data that is of interest of FEIDE. The four
primary data types in FEIDE are:

1. Persons

2. Entitlements

3. Groups

4. Organizations

5. Memberships (persons that are part of a group, or an organization).

Each of these data types have a given set of attributes for describing the
entity they are representing. This information can be used to create a set of
rules for detecting each data entity. A person has to have a name, a social se-
curity number, an address etc. If enough data is available the software can
interpret the common structures for location each data entity. The success
criteria for this type of analysis is highly dependent on a well-formed and log-
ically structured XML-document. An example of a structured and logical XML-
document is available in ϐigure 5.13, and an unstructured example is available
in ϐigure 5.14.

Manual generation

The manual generation is done with the help of user input. The idea is that
the user assigns labels to the different XML-fragments in the document. The
XML document can easily be displayed as a tree-structure providing the user
with an easy logical view of the document. This is important since the user
have to make informed and correct decision on what an XML-fragments is in
the context of importing.

There are some pitfalls creating this type of representation that must be
addressed, suchasmultiple elements of the same type in the sameXML-fragment.

76 CHAPTER 5. CONTRIBUTIONS

1 <document>
2 <persons>
3 <person>
4 <name>John Doe</name>
5 <username>johndoe</username>
6 <emai l > john . doe@example . com</ emai l >
7 </person>
8 </persons>
9 </document>

Figure 5.13: Well formed XML example

1 <document>
2 <persons>
3 <person name=" John Doe" emai l=" john . doe@example . com">
4 <person−usrname−index>1</person−usrname−index>
5 </person>
6 </persons>
7 <usernames>
8 <username>johndoe</username>
9 </usernames>

10 </document>

Figure 5.14: Non-logical XML structure

In XSLTGenerator elements are separated by not only their element name and
position in the tree, but also the attributes of the given element. This enables
the user to attach different labels on

<contactinfo type="email" />

and

<contactinfo type="mobile"/>

The XSLT generatormust take this information into accountwhen creating
the XSLT templates for ensuring a high information quality.

5.4.11 XML Analyzer System Design

The XML parsing system is designed to be very modular and easily modiϐi-
able as required by the non-functional requirement NF-4. This is done by us-
ing Java best practices with the generics facility introduced in Java 1.5 and

5.4. IMPLEMENTATION OF XSLTGENERATOR 77

Figure 5.15: XML Analyzer design

78 CHAPTER 5. CONTRIBUTIONS

standardized interfaces. The analyzer design is split into different layers as
shown in ϐigure 5.15. The SaxParser-interface is the starting point for de-
tecting any singular type of XML-fragment in the XML-document, such as the
PersonSaxParser andGroupSaxParser shown in ϐigure5.15. EachSaxParser-
instance may deploy any type of analysis it wants, but the ones that were cre-
ated as a part of this thesis are based on analyzing each XML-element that
occurs in the given document by its name, content and placement in the doc-
ument tree. The abstract class ElementAnalyzer is the result of the com-
mon needs that occurred during the development of the software. Each im-
plementation of ElementAnalyzer is bound to an implemented enum with
ElementType as the super class by type inference. The implemented enum
is responsible for clarifying what kind of ϐield the analyzer thinks the current
element is. An example of such an enum can be represented is shown in ϐig-
ure 5.16 and it partial parser implementation in ϐigure 5.17.

5.4. IMPLEMENTATION OF XSLTGENERATOR 79

1 public enum PersonElementTypes implements ElementTypes {
2 FIRST_NAME(" Fornavn ") ,
3 LAST_NAME(" Etternavn ") ,
4 MIDDLE_NAME("Mellomnavn ") ,
5 GIVEN_NAME(" Fornavn ") ,
6 SSN("Personnummer ") ,
7 GENERIC_NAME_NODE("Navn") ,
8 GENDER(" Kjonn ") ,
9 BIRTH_NODE(" Fod t se l sda to ") ,

10 ZIP_CODE ("Postnummer ") ,
11 GENERIC_ADDRESS_NODE(" Adresse ") ,
12 COUNTRY(" Land ") ,
13 CITY ("By") ,
14 STREET(" Gate ") ,
15 GENERIC_CONTACT_NODE(" Kontaktpunkt ") ;
16
17 public f i n a l S t r i n g de s c r i p t i on ;
18
19 PersonElementTypes (S t r i n g de s c r i p t i on) {
20 th i s . d e s c r i p t i on = de s c r i p t i on ;
21 }
22
23 public s t a t i c PersonElementTypes descriptionToEnumValue (S t r i n g

de s c r i p t i on) {
24 for (PersonElementTypes e : PersonElementTypes . va lues ()) {
25 i f (e . d e s c r i p t i on . equa ls (de s c r i p t i on)) {
26 return e ;
27 }
28 }
29 return nul l ;
30 }
31 public S t r i n g t o S t r i n g () {
32 return th i s . d e s c r i p t i on ;
33 }
34 }

Figure 5.16: ElementType enum implementation

80 CHAPTER 5. CONTRIBUTIONS

1
2 public c lass PersonSAXParser extends

SaxParserDe fau l t s <PersonElementTypes > implements SAXParser {
3
4 ArrayL i s t < S t r ing > s tack ;
5 HashMap<Str ing , ArrayL i s t <PersonElementTypes >> count ;
6 PersonElementAnalyzer elementAnalyzer ;
7 private PersonElementTypes currentType = nul l ;
8
9 @Override

10 public void startDocumentPars ing () { }
11
12 @Override
13 public void parseCharacterData (S t r i n g data) {
14 i f (data . tr im () . isEmpty ()) { return ; }
15 i f (PersonNodeContentAnalyzer . i sPerson Id (data)) {
16 currentType = PersonElementTypes . SSN ;
17 }
18 }
19
20 @Override
21 public void parseStar tE lement (S t r i n g uri , S t r i n g localName ,
22 S t r i n g qName ,
23 A t t r i b u t e s a t t r i b u t e s) {
24 s tack . add (localName) ;
25 currentType = elementAnalyzer . match (localName) ;
26 }
27
28 @Override
29 public void parseEndElement (S t r i n g ur i ,
30 S t r i n g localName ,
31 S t r i n g qName) {
32 s tack . remove (localName) ;
33 count . ge t (localName) . add (currentType) ;
34 currentType = nul l ;
35 }
36 }

Figure 5.17: ElementType Parser Implementation

5.4. IMPLEMENTATION OF XSLTGENERATOR 81

Path Detected type Aggregated score
/ null 0
/root null 0
/root/persons null 3
/root/persons/person/name PersonType.NAME 1
/root/persons/person/username PersonType.USERNAME 1
/root/persons/person/email PersonType.EMAIL 1

Table 5.6: XML Fragment analyzer scoreboard

In the provided analyzers these types are then mapped to their location
in the XML-document. In the example XML-document in ϐigure 5.13 there are
the follow distinct XPath-addresses, their match value, and score. The score
is calculated by summarizing all the child nodes that are matched as a type, in
this example a person-type. The resulting scoreboard for the example XML-
document is shown in table 5.6. As seen in this table the highest scoring dis-
tinct XPath-address for the document is /document/persons. This path is not
identiϐied as any speciϐic type, thus the analyzer predicts that this is the com-
mon root path for the fragments containing information about the element,
in this example the PersonType. This information is needed for creating the
appropriate XSLT-templates.

Performance considerations

Since the analyzer architecture anddesign relies oneachenabledparser (XML-
element to ElementType detection) checking every entity in the XML docu-
ment performance might become an issue. Earlier experimental spikes of the
software stored the XML document and traversed it as a in-memory DOM-
structure. This made the analyzer extremely slow. The ϐinalized architecture
only traverses the XML-document once as the different parsers are plugged
into a global SAX-parser. This reduced the analysis time of the software from
10 seconds to 3 seconds. Since 3 seconds still is a long time, the architec-
ture was refactored to have static compile-time evaluated regular expression
matchers inside eachparser. Bydoing this the regular expressionare expanded
into the decision trees once, and not per element check. After this refactoring
the time to analyze the same data set was reduced to 300ms using the same
hardware.

82 CHAPTER 5. CONTRIBUTIONS

The down side of this is that the new architecture for the parser is more
rigid and does not allow run timemodiϐications. Aside from this it had an pos-
itive effect on the architecture as well, as the code ϐlowwas greatly simpliϐied.
The current ϐlow of operations can be represented as this pseudo code:

1 for (En t i t y e n t i t y : XMLDocument . g e t E n t i t i e s ()) {
2 for (Parser parser : parsers) {
3 parser . handle (e n t i t y) ;
4 }
5 }
6 for (Parser parser : parsers) {
7 parser . ana l y zeCo l l e c t edDa ta () ;
8 }

5.4.12 System Sequences

The systemsequences are shown in ϐigure5.18and represents the control ϐlow
during a single run of the implementation.

TheUser represents the actual humanuser, Client represents the Javascript
application running in the user's web browser, and the Server represents the
Java application running on the server.

5.4. IMPLEMENTATION OF XSLTGENERATOR 83

Figure 5.18: Client server communication during user interaction

84 CHAPTER 5. CONTRIBUTIONS

5.4.13 Technology Selection

As OpenFEIDE is built using Java 1.6 with the Google Web Toolkit, Maven and
Spring, the creation of the XSLT-generating module was built using the same
technologies, except for Spring which was not needed. The XML-processing
was done using the included XML tool set in the JDK, so no new dependencies
were created.

Google Web Toolkit

GWT is a Java development framework for creating Javascript based web ap-
plications. It allows the developer to use Java for both client side and server
side code, thus allowing a shared code base. The client side Javascript is then
compiled into optimized Javascript and run on any A-grade browser, in addi-
tion to Internet Explorer 6.

Communication to the server is done using RPC and a built-in serializer.
Since the server side code shares the same data structures, the data sent over
the network to the server can be reduced to a minimum as the information
about the structure of the data already is available.

Maven

Maven is a tool for building andmanaging dependencies of Java projects. It has
become the de-facto build-tool in the Java communities as it is seen as having
a less complex structure and syntax than it's predecessor Apache Ant.

It works by deϐining your project in an XML-ϐile in the root at your project,
and using either the maven command-line tool or a plugin for your Integrated
Development Environment (IDE) of choice.

The purpose of the tool is to have a repeatable set of steps for getting a
working piece of software from the code base.

Plain Java

It was decided early in the project that a bare minimum of libraries should be
used, as a means to reduce the complexity of the project, and for reducing the
number of sources of uncertainty. On of the positive effects of this is the fact
that there are often problems in larger Java projects that the different libraries
depend on different versions of third-party libraries. This causes problems as
the Java class loader is non-deterministic if multiple version of a class is avail-
able. There are solution to this, such as OSGi, but these are highly complex and

5.4. IMPLEMENTATION OF XSLTGENERATOR 85

should not be used unless absolutely necessary. By not requiring any libraries
that are not already in use, the risk of this happening is minimized.

CčĆĕęĊė 6

EěĆđĚĆęĎĔē ƭ DĎĘĈĚĘĘĎĔē

In this chapter the results presented in chapter 5 and6will beused
to answer the research questions. The chapter also discusses the
results as whole.

6.1 Answering the Research Questions

The context of this thesis is a consultancy agency considering investing in OSS
and thus have some questions regarding its proϐitability and how OSS author-
ing and releasing is done.

These questions are split into twobroad research questionswhich the next
sections attempt to answer.

6.1.1 Viable Open Source for Consultancy Agencies

The research question

Is authoring OSS a viable business idea for consultancy agencies?

The core of the researchquestion iswhether or not consultancy companies
can create open source software and see a proϐitable return-on-investment by
offering services for the created product.

There are several stepsneeded for estimatingwhetherornot anOSSproject
will yield a proϐit. These steps are very similar to traditional COTS develop-
ment, and the software being open source affectsmostly the choice of business
models that are suitable.

Profit estimation

Abasicmodel for estimating theproϐits of aproject is presented in section5.1.2,
and consists of amethod for estimating the cost of software development (CO-
COMO II), and some tools for analyzing the market (SWOT and PEST) along

87

88 CHAPTER 6. EVALUATION & DISCUSSION

with a classiϐication scheme. For a practical introduction to SWOT I recom-
mend the slides from Sanjay S. Mehtas' course on marketing strategy [22].

Business models

The other part of estimating if the project is going to be successful is choos-
ing the appropriate business model(s) for the project. Section 5.1.3 contains
some guidelines for choosing the business model according to the classiϐica-
tion scheme presented in section 5.1.3.

The far most popular business model is to offer support contracts. They
are often split into several levels of available support, and are often bundled
with proprietary products for adding value to the service. Redhat provides
"veriϐied"upgrades as apart of their support contracts,whileVarnish Software
adds additional tools.

All of the studied companies have diversiϐied their business model by of-
fering multiple types of services. Gitorious AS (study in Appendix B)is a good
example of this. They offer both the product as Software as a service (SaaS)
and as managed service on the customers hardware. This is a typical example
of attempting to meet the needs of as many potential customers as possible,
which seems to be typical for companies dealing with open source.

Licensing

One of the big hurdles and seemingly difϐicult aspects of OSS is the issue of li-
censing, both how to select the correct license and how the licenses affect the
choices one have for leveraging other pieces of OSS. As there are currently 69
licenses1 that are considered open source licenses by the OSI, it might seem
like a impenetrable jungle, but in reality only a handful of these licenses are
widespread. The licenses ranges from permissive to restrictive as illustrated
in ϐigure 2.7 anddescribed in section2.5, where the restrictive have strict rules
onhow the code is used andmight be cumbersome if onewants to use the code
in relation with proprietary products. Restrictive licenses do have the advan-
tage of forcing other version of it to be published with full source code, so that
one can always leverage the work of others. Permissive licenses however do
not impose such restrictions, but that also might have the effect of the contri-
butions of others not being available for you.

When choosing a license its important, at least as a company, to choose
well known and tested licenses. Most companies choose permissive licenses

1http://www.opensource.org/licenses/alphabetical

http://www.opensource.org/licenses/alphabetical

6.1. ANSWERING THE RESEARCH QUESTIONS 89

such as the Apache license. The Apache license is especially suitable for prod-
ucts that are being made available in the US and other countries with strong
patent laws. Opscode, the creators of the conϐiguration tool Chef2, wrote an
excellent blog post on why they chose the Apache license over other licenses.
It's available at their blog3 (last checked 2012-01-01), and is a recommended
read.

Summary

Creating proϐit from Open source software is a complex business as all the
parts of the project are connected to the value chain, and each part has its
own set of auxiliary effects.

The chances of an consultancy agency, measured purely in the direct mon-
etary aspect, succeeding with the creation of a brand new OSS project are
quite small, because of the critical mass of users needed to sustain develop-
ment purely on consultancy is quite high. However, if one focuses on other
aspects of OSS projects, it might make sense for this kind of company to invest
resources in its creation. These aspects might include PR, research, training,
customer relations, recruiting and so on. This might only be suitable for large
agencies, since the main issue of these aspects are that they are hard to mea-
sure in any meaningful way, which results in a less controllable environment.

The key factors for creating a successful consultancy business around an
Open Source project is a sufϐicient customermass, whichmakes creating niche
open source products hard. If we look at projects such as Varnish Cache, which
is an application for front end caching ofweb servers, themarket is not limited
to a small set of customers, but potentially a world wide customer base. This
again sparked the need for Linpro A/S to create a daughter company called
Varnish Software to only manage that project alone. Varnish Software was
studied as a part of this thesis (see Appendix A), and shows that providing a
simple array of services they manage to operate a company, and doing so suc-
cessfully. Herein lies one of the common characteristic for companiesworking
with open source - they almost always offer multiple services. This requires
the company to be very agile and aware of the market, but if one are success-
ful in doing so, the company will have more legs to stand on when the market
changes. Some of the most used business models are presented in section 2.4,
and gives a brief introduction to each of them.

2http://www.opscode.com/chef/
3http://www.opscode.com/blog/2009/08/11/why-we-chose-the-apache-license/

http://www.opscode.com/chef/
http://www.opscode.com/blog/2009/08/11/why-we-chose-the-apache-license/

90 CHAPTER 6. EVALUATION & DISCUSSION

In the context of OpenFEIDE it depends onwhether the investment needed
for the project to become a true competitor to COTS in that particular market
matches the possible income from the available customer mass for that par-
ticular type of product. It is possible, but for it to work the OpenFEIDE-project
must become more open and focused on building a community, thus making
the product build a customer base on its own, without the company having to
contribute all of the investment needed, as illustrated in ϐigure 5.3. Building
this type of community is a demanding tasks however, and too requires re-
sources to become successful. A set of speciϐic action points for kick-starting
this process is written in Appendix H.

6.1.2 Practical Open Source Development

The research question

How should software be released as open source?

Successful OSS projects are collaborative in nature, so the gist of the an-
swer to this question is to develop and release free software in an open fashion
for encouraging this collaborative nature.

This however is easier said than done, especially if the developers are new
to the open source scene. To answer this question in a meaningful matter, we
have to look at how other successful projects are structured, and how they
approach development and releases to establish a community and a collabo-
rative force. By studying several successful projects a set of "best practices"
was created and presented in section 5.2. These practices may be seen as a
framework for creating open source software in a community friendly man-
ner.

Following this frameworkwill however only provide the project with a set
of tools that have been successfully deployed by other projects, and are by no
means a bulletproof set of rules that guarantee success.

The points addressed in section 5.2 can be classiϐied into two groups; in-
frastructure and policies (see table 6.1).

Infrastructure

The points classiϐied as infrastructure are tools that should be setup andman-
aged in such a matter that is useful for the overall goal of having an open de-
velopment model. Source code management for instance should be publicly
available, and not behind internal ϐirewalls. Using external services such as

6.1. ANSWERING THE RESEARCH QUESTIONS 91

Classiϐication Points

Policies

User feedback
Managing contributions
Deployment
Publicly available source code
Issue management

Infrastructure
Source code management
Documentation
Bug tracking

Table 6.1: Classiϐication of practices

GitHub is probably a good idea. It provides the necessary tools for getting any
open source project started: source code hosting, wiki for documentation and
a simple bug tracking tool. Custom tools can be setup when the need arises.

Policies

An open and distributed development model is greatly improved if there are
some ofϐicial policies set in place by the main developers. These may span
from technical decisions to community efforts. One example is the Django
project (see Appendix E) which enforces that every contributed new feature
must include not only code documentation, but documentation for the end
user. Policies might also be put in place on how to handle bug tracking and
the triage process of them. The point of these policies are to streamline the
project into an effective project.

Summary

If the goal of a project is to be successful in the sense of an active community,
then it is important tomake theproject open andwelcoming. Creating a strong
community has many effects on the project, some of which are presented in
section 5.3 and ϐigure 5.3. Building these communities are not a small feat,
but the chances of success increases with the amount of effort and openness
that is put into the project. Following the advices given in chapter 5 is a good
starting point for any new OSS project. One of the hard parts for teams that
are unfamiliar with open development and innovationmay be the fact that the
code is no longer tailored for one customer, andmust be made to ϐit a broader

92 CHAPTER 6. EVALUATION & DISCUSSION

audience, even if that results in a extra software being created for the customer
that needs the software.

6.2 Summarized Recommendations

To summarize the recommendations the following list indicated the most im-
portant aspects.

Develop in the open
Make your code repositories publicly available as soon as possible. This
is a part of developing in an open fashionwhich is more inviting for con-
tributors than development done behind closed doors. Development
and discussions done in private are often seen as a sign of alienation
for potential contributors, and diminishes their sense of ownership and
worth for the project.

Make your project easy to ϐind for both users and developers
This is essential if the project is to attract both users and developers; if
no one can ϐind your project, then nobody will use it. It might be a good
idea to both have a project page on its own domain, as well as to publish
the code on well known source code hosting services.

Provide ways for both users and developers to communicate
The chances of getting feedback from users, and to assist aspiring con-
tributors, it is very useful if there are well deϐined contact points where
they may reach the existing community and developers. Tools like IRC
and mailing lists are popular choices in the open source scene.

Make the software easy to use and deploy
Providing an easy way of installing the software is really good idea to
increase themarket share of the software. Not only does itmake it easier
for people to try it, but if done correctly it may provide you with solid
upgrade paths. This helps you to provide ϐixes for the software quickly,
and thus increasing the quality of the product. Packaging the software
for for all major platforms is therefor a recommended strategy.

Provide a single point for reporting bugs and other issues

Aswith the communicationpoint this is about havingwell deϐinedplaces
for reporting and searching for bugs. This is not only for users reporting

6.3. IMPLEMENTING XSLT GENERATOR FOR OPENFEIDE 93

bugs, but also for developers that want to contribute to ϐind something
they can work on.

6.2.1 Validity and Limitations

The validity of the guidelines can be questioned, as there is no true answer on
how to organize open source software projects, and any procedure must be
adapted to ϐit the project at hand. However it is in the opinion of the author
that the guidelines provide a solid base for any open source project to grow,
and have a ϐirm presence in the open source software market.

6.3 Implementing XSLT Generator for OpenFEIDE

XSLTGenerator is the result of implementing a systemthat allowsanon-technical
person to createXSLT-ϐiles for convertingXML-sources into a format supported
by OpenFEIDE. The result was a two separateways of solving the problem; the
ϐirst is a fully automated system that uses analysis and statistics to determine
the correct way of translating the document. The other is a manual process
involving the user.

The key question can be constructed as follow: "How can we create an
XSLT-transformation for an unknown input source to ϐit a know format with-
out technical interaction from a human?" and can be simpliϐied to the process
shown in ϐigure 6.1.

This is a difϐicult problem to solve in a general way since the parser must
account for any type of XML-structure. In reality there are only a handful of
formats that are candidates for being imported into OpenFEIDE, such as docu-
ments following the ABCEnterprise schema, which is the only freely available
schema that has public documentation, and thus the only set of example data
that XLSTGenerator was built after.

Given a properly structured document the built analyzer should be able to
extract most of the context needed for importing data, but there is one area

Figure 6.1: Purpose of XSLTGenerator

94 CHAPTER 6. EVALUATION & DISCUSSION

that is not solved. XLSTGenerator has no way of knowing the meaning of a
membership to a group. Given the group name of "1.klasse" and derivatives of
this name, it is impossible to know the meaning of that name in terms of ac-
cess privileges. One could hard-code support for every example that one may
ϐind in the wild, and hope that the solution will converge against something
that will work 100% of the time in the future, but this is unlikely to be a good
solution as the consequences of given person thewrong accessmight be grave
(giving students access to the grading software for instance).

Neither implementation will solve the problem 100%, due to the loose
speciϐications and large varieties of XML-structures that might enter the sys-
tem.

6.3.1 XML Analyzer results

During development only one document from a production system was avail-
able for testing. This XML-document was an export from a SAS-system struc-
tured according to the ABCEnterprise XML-schema. This example data is not
included as an appendix as it contains conϐidential information about students
in data set.

Detection results

The analyzers included in this thesis achieves the results listed in table 6.2
tested against the sample document. The results are calculated using the tech-
niques described in section 3.3.1 andwith β = 0.5. The good news from these
results are thatwe have no false positives, howeverwe do lack a lot on the case
of recall on the results. As a result it is not yet production ready, especially
when it comes to the case of entitlements. We have not identiϐied any func-
tional generic solution for detecting and understanding entitlements from ar-
bitrary XML documents. This is a show stopper for using the process without
any human interaction.

6.3.2 User Interface

XSLTGenerator includes a basic user interface built upon the provided API.
Running the sample application the ϐirst page the user sees it the entry point
shown in ϐigure 6.2. This page accepts anyURL support by Java 1.6 as required
by functional requirement F-1. Once the user presses the "Parse XML Source"

6.3. IMPLEMENTING XSLT GENERATOR FOR OPENFEIDE 95

Type Wanted Detected Precision Recall F-measure
Organizations 8 2 1.00 0.25 0.62
Org. Units 14 0 0.00 0.00 0.00
Persons 12 12 1.00 1.00 1.00
Groups 2 2 1.00 1.00 1.00
Group membership 3 2 1.00 0.66 0.90
Entitlements 2 0 0.00 0.00 0.00
Average 0.66 0.48 0.58

Table 6.2: XML Fragment analyzer test results

button a progress bar appears while the software analyzes the XML and cre-
ated the needed UI-elements.

Figure 6.2: Screenshot of sample entry point for XSLTGenerator

Once the this process is done the user is shown a page with a menu bar
at the top that allows the user to switch between the automatic generation
mode and the manual mode. The former shows example data output from all
the types and ϐields it was able to discover in the XML document as shown in

96 CHAPTER 6. EVALUATION & DISCUSSION

ϐigure 6.3.

Figure 6.3: Screenshot of sample entry point for XSLTGenerator

At the bottomof the page the generated XSLT is shown (see ϐigure 6.4. This
information is not useful for the target user, but at this sample application is
created as an example for the developer that wants to use the module it in-
cludes some technical data.

Figure 6.4: Screenshot of sample entry point for XSLTGenerator

If the user clicks the "Manual generation"-tab, he is taken to the manual
modeexample applicationpage. This pagedisplays all thedistinct XML-fragments
in a tree-structure. The user then goes through all the elements he can in-
terpret and adds the appropriate label from the menu at the right. When an
element has been assigned a label it's marked as green in the tree. Once the
application has enough data to generate any XSLT, the result is displayed at
the bottom of the page. This page is shown in ϐigure 6.5.

6.3. IMPLEMENTING XSLT GENERATOR FOR OPENFEIDE 97

The manual generation tab allows the user to select not only the direct
meaning of the current XML-element, but also add side-effects. The use-case
for these side-effects are groupmemberships that modify the standard FEIDE
afϐiliation groups. One example of this is a group membership, or relation el-
ement that has an type-attribute called "has-teacher". This would imply that
the person connected to the group in the relation is a teacher, and thus should
in addition to the regular groups be included in the FACULTY-group deϐined by
FEIDE.

Figure 6.5: Screenshot of sample entry point for XSLTGenerator

6.3.3 Requirement Fulfillment

In section 5.4.7 and section 5.4.7, therewere ϐive functional requirements, and
7 non-functional requirements speciϐied. The status of the delivered code in
terms of these requirements are listed in table 6.3.

98 CHAPTER 6. EVALUATION & DISCUSSION

ID Priority Status Comment
F-1 High 100%
F-2 High 100% Any valid XML can be analyzed, but results

may vary
F-3 Medium 50% The manual generation does not produce

valid XSLT as of delivery
F-4 Medium 90% The interface is shown, but is missing some

functionality	
F-5 Medium 100%
NF-1 N/A 90% Depends on client machine
NF-2 N/A 100%
NF-3 N/A 100%
NF-4 N/A 70% Scoreboard system is still complex, and

might be hard to replace
NF-5 N/A 90% GWT server-side code is required to create

client objects for communication
NF-6 N/A 100%
NF-7 N/A 20% Deep domain knowledge is needed for all

cases to be covered

Table 6.3: Requirement Fulϐillment

CčĆĕęĊė 7

CĔēĈđĚĘĎĔē

7.1 Contributions

7.1.1 Viable Open Source for Consultancy Agencies

RQ1: Is authoring OSS a viable business idea for consultancy agen-
cies?

There are no clear answers to RQ1, and as with many other things in both
computer science andbusiness the answer is "It depends", but through explor-
ing this thesis it is shown that it is possible. It does not come free however, and
the consultancy agencymust be ϐlexible enough tonot only rely on concultancy
jobs, but might have to offer differenct services for the investments to pay off.

7.1.2 Practical Open Source Development

RQ2: When and how should free software be released?

It is not hard to develop open source software in a practical manner, it
might just be a bit different from internal development. The main issues are
that you share your code, and your projectwith theworld, andmust have some
methods for handling this. By reading and understanding the issues discussed
in section 5.2, and following the recommendations made in section 6.2 takes
youa longway for creatingopen sourceprojects that followsknowngood stan-
dards.

7.1.3 Implementation of XSLTGenerator

The automatic processing and analysis of XML-documents, and the genera-
tion of XLST-transformations for converting the data into compatible formats
seems promising, but has some major pain points that must be addressed be-
fore being considered production ready. The main problem lies within the

99

100 CHAPTER 7. CONCLUSION

loose standards which govern the types of documents that are suitable for im-
porting, such as ABC Enterprise, with much weight on the relation types. It's
hard to ϐigure out the appropriate access levels that should be granted out of
non-speciϐied strings. As a result, the process must always include some sort
of human interaction.

Themanual process does however provide the appropriate abstraction for
a regular user to create a set of rules that might be converted into an XSLT-
document. The problem is, aswith all non-technical human interaction, is that
the consequences of the actions are often not understood and might thus re-
sult in unwanted behavior. In the case of OpenFEIDE, this might result in the
students getting access to every system that the teachers have, and thus gain
access to setting their own grades and similar unwanted behavior.

Even though the delivered implementation is not in a state which makes it
ready forusage, it haveexposed someof theproblemswith anautomatic/semi-
automatic approach for generating the XSLT stylesheets for OpenFEIDE.

CčĆĕęĊė 8

FĚėęčĊėWĔėĐ

This chapter represents the authors view on how to do further work and re-
search to better understand the issues addressed by this thesis.

8.1 Open Source For Consultancy Companies

There is currently a lack of scientiϐic data on the creation of successful open
source software in an business oriented manner. For a better understanding
it would be very interesting with research following a project from its birth
to monetizing by a consultancy agency. This is often hard to do since these
processes often span over multiple years of development and iterations of the
both the business model and product.

8.2 XSLTGenerator

XSLTGenerator in its delivered form, is not yet integrated into OpenFEIDE. If
the project wants to incorporate the code into their own, even with the de-
fects and risks discussed earlier, then it would have to be integrated using the
provided APIs.

The two approaches discussed in the implementation has their own set
of needed further work. The automatic approach lacks support for handling
multiple memberships, while themanual generations approach needs further
work in translating the input from the user to a workable XSLT template. As
previously discussed, neither approach is, most likely, never going to provide a
bulletproof way of integrating the softwarewith external systemswithout any
technical expertise. The automatic generator could however be used as a tool
for integrators to give them a starting point for generating XSLT templates for
the sources they work with. Creating this sort of tool, given the exposed API,
is a trivial task for any programmer. An example of this is shown in ϐigure I.2.

101

RĊċĊėĊēĈĊĘ

[1] Case Studies for Software Engineers, 2005.

[2] Timo Aaltonen, Jyke Jokinen, and Jyke Jokinen. Inϐluence in the linux
kernel community. In OSS, pages 203--208, 2007.

[3] Chris Abts, Ellis Horowitsh, A. Winsor Brown, Ray Madachy, Sunita Chu-
lani, Don Reifer, Brad Clark, and Bert Steece. COCOMO II - model def-
inition manual. http://csse.usc.edu/csse/research/COCOMOII/
cocomo2000.0/CII_modelman2000.0.pdf, 2000.

[4] Izak Benbasat, David K. Goldstein, andMelissa Mead. The Case Research
Strategy in Studies of Information Systems. MIS Quarterly, 11(3):369--
386, 1987.

[5] Andrea Bonaccorsi, Silvia Giannangeli, and Cristina Rossi. Entry strate-
gies under competing standards: Hybrid business models in the open
source software industry. Management Science, 52(7):1085--1098,
2006.

[6] Andrea Bonaccorsi and Cristina Rossi. Altruistic individuals, selϐish
ϐirms? the structure ofmotivation in open source software. FirstMonday,
9(1), 2004.

[7] Eric Braude. Software Engineering: An Object-Oriented Perspective. John
Wiley and Sons,, United Kingdom, 2001.

[8] Henry William Chesbrough. Open innovation: the new imperative for
creating and proϔiting from technology. Harvard Business School Press,
2003. ISBN 1-57851-837-7.

[9] Linus Dahlander. Appropriating the commons: Firms in open source
software, 2004.

102

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf

REFERENCES 103

[10] Linus Dahlander and Mats G. Magnusson. Relationships between open
source software companies and communities: Observations from nordic
ϐirms. Research Policy, 34(4):481 -- 493, 2005.

[11] E. A. Edmond. A process for the development of software for nontechni-
cal users as an adaptive system. N/A, 1974.

[12] Martin Fowler and Jim Highsmith. The agile manifesto. SOFTWARE DE-
VELOPMENT -SAN FRANCISCO-, 2001.

[13] Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of
open source in the software industry. InBarbaraRusso, ErnestoDamiani,
Scott A. Hissam, Björn Lundell, and Giancarlo Succi, editors, OSS, volume
275 of IFIP, pages 211--221. Springer, 2008.

[14] Open Source Initiative. History of the OSI. http://www.opensource.
org/history.

[15] ISO. ISO/IEC 9126-1:2001, Software engineering -- Product quality --
Part 1: Quality model. Technical report, International Organization for
Standardization, 2001.

[16] Lingbo Kong, Shiwei Tang, Dongqing Yang, Tengjiao Wang, Jun Gao, and
Jun Gao. Kcam: Concentrating on structural similarity for xml fragments.
InWAIM, pages 36--48, 2006.

[17] Evangelos Kotsakis. Structured information retrieval in xml documents.
In Proceedings of the 2002 ACM symposium on Applied computing, SAC
'02, pages 663--667, New York, NY, USA, 2002. ACM.

[18] Sandeep Krishnamurthy. An analysis of open source business models.
In Eds.) Perspectives on Free and Open Source Software. The MIT Press,
2005.

[19] Steve Krug. Don't Make Me Think: A Common Sense Approach to the Web
(2nd Edition). New Riders Publishing, Thousand Oaks, CA, USA, 2005.

[20] Jingyue Li, Finn Olav Bjørnson, Reidar Conradi, and Vigdis By Kamp-
enes. An empirical study of variations in cots-based software develop-
ment processes in the norwegian it industry. In Software Engineering,
2004. ICSE 2004. Proceedings. 26th International Conference on, 2004.

http://www.opensource.org/history
http://www.opensource.org/history

104 REFERENCES

[21] Michael R. Lyu. Software reliability engineering: A roadmap. In 2007
Future of Software Engineering, FOSE '07, pages 153--170, Washington,
DC, USA, 2007. IEEE Computer Society.

[22] Sanjay S. Mehta. Marketing strategy - chapter 4 - SWOT: The analysis of
strengths, weaknesses, opportunities, and threats, 2000.

[23] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz.
An empirical study of software reuse vs. defect-density and stability. In
Software Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on, 2004.

[24] Neeshal Munga and Thomas Fogwill. Analysis of the value that open
source contributes to business models, 2009.

[25] Neeshal Munga, Thomas Fogwill, and QuentinWilliams. The adoption of
open source software in business models: a red hat and ibm case study.
In Barry Dwolatzky, Jason Cohen, and Scott Hazelhurst, editors, SAICSIT
Conf., ACM International Conference Proceeding Series, pages 112--121.
ACM, 2009.

[26] Naur and Randell. Software engineering. NATO, 1969.

[27] Stephen O'Grady. Survival of the forges. http://www.readwriteweb.
com/hack/2011/06/github-has-passed-sourceforge.php.

[28] A. Osterwalder, Y. Pigneur, and T. Clark. Business Model Generation: A
Handbook for Visionaries, Game Changers, and Challengers. Wiley Desk-
top Editions Series. John Wiley & Sons, 2010.

[29] Leon J. Osterweil. Strategic directions in software quality, 1996. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/242223.242288.

[30] Eric S. Raymond. The Cathedral and The Bazaar. O'Reilly Media, 1999.
ISBN-13: 978-0596001087.

[31] Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. Eval-
uating the cost of software quality., 1998. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/280324.280335.

[32] IEEE Computer Society. IEEE computer society. IEEE standard glossary
of software engineering terminology: IEEE standard 610.12-1990. num-
ber 610.12-1990 in IEEE standard., 1990. ISBN 1-55937-067-X. doi:
http://dx.doi.org/10.1109/IEEESTD.1990.

http://www.readwriteweb.com/hack/2011/06/github-has-passed-sourceforge.php
http://www.readwriteweb.com/hack/2011/06/github-has-passed-sourceforge.php

REFERENCES i

[33] Jan Fredrik Stoveland. Managing sponsored open source communities.
Master's thesis, Universitet i Oslo, 2008.

[34] Magnus Sulland. A study of requirement negotiation in open source com-
munities. Master's thesis, Norges Tekniske og Naturvitenskapelige Uni-
versitet, 2010.

[35] W3C. Document object model core speciϐication. http://www.w3.org/
TR/2000/REC-DOM-Level-2-Core-20001113/core.html.

[36] W3C. XSL transformations (XSLT) version 1.0. http://w3c.org/XSLT1.

[37] W3C. XSL transformations (XSLT) version 2.0. http://w3c.org/xslt2.

[38] Wikipedia. XSLT processing pipeline. Wikipedia, 2011.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html
http://w3c.org/XSLT1
http://w3c.org/xslt2

AĕĕĊēĉĎĝ A

CĔĒĕĆēĞ ĘęĚĉĞ: VĆėēĎĘč
SĔċęĜĆėĊ

Varnish Software is a company that offers services for the Varnish Cache soft-
ware. They are currently 8 people, and are located primarily in Oslo, Norway.

(CQ1) Business models

Varnish Software offers multiple services surrounding Varnish Cache, some of
which are package deals, such as a high level of support includes some of the
proprietary tools. Varnish Software therefor uses a polyglot business model.
Each of the different offerings are analyzed using the business model analysis
framework create by Munga et al. [24].

Support

Multiple levels of support are offered ranging from €3300 to €33500 a year.

The Value Offering
Since the company is the core development contributors to the prod-
uct they are supporting, the cost of training and maintaining the com-
petency needed for keeping this offer attractive. Given the level of com-
petence inherit in the company, it can offer support to a wide range of
customer, both at the enterprise level and the small end of the scale.
By offering this service the company also gains knowledge about com-
mon pain points for the different customer groups, andmay thus choose
whether to solve these problems in the core open source product, and by
doing so improving the quality of the product and increasing their mar-
ket share. Or they can choose to write additional proprietary software
for solving these problems, and sell them as standalone product, or as a
value-add for support contracts.

ii

iii

The Market

The customers range from small businesses to large enterprises. All of
which can beneϐit from the software. Large enterprises often require
their IT-departments to only purchase and use software that have sup-
port contracts available for them, while small technical oriented compa-
nieswants the beneϐit of having support directly from the creators of the
software.
As far as competition goes, the fact that it is the creators of the software
that is providing the support gives a huge advantage in the market.

The Revenue Logic

The support contracts are basedupon response times and the number of
support requests that are handled. The higher levels are value-added by
bundling additional tools and support features, providing the customers
with good incentives for selecting a higher level of support.

Proprietary addons

Varnish Software offers addons and tools that interact with Varnish cache,
such as control panels, monitoring software and more.

The Value Offering

Providing complementary products on top of the base open source soft-
ware, the company reduces the costs of by not having to create individ-
ual products for each case. Creating these tools might also increase the
sales of the other types of offerings, as the productmight become amore
attractive ϐit for potential customers if the complementary product is
available, and making it tangible for them to use the software.

The Market

The customer of this ranges from the medium to large scale, as most
small business only need the basic functionality that is provided with
thebaseproduct. Since the companyalsoprovides support, and therefor

iv APPENDIX A. COMPANY STUDY: VARNISH SOFTWARE

knowswhere the pain points for there customers are, are in a unique ad-
vantage as they knowwhat type of complementary products that might
sell.

The Revenue Logic

The complementary products are only sold as bundles with their sup-
port packages. This simpliϐies their offerings, while adding value to the
support offers.

Training

Varnish Software offers three different training courses, in both online and
classroom versions. These courses have a starting price at €1000 pr partici-
pant.

The Value Offering
They often say that the best way of learning something, is by teaching
it. This reinforces the competency in the company, and by interaction
with "students" theymight comeupwith new ideas. Aswith the support
offering, the training offers have a low cost, since the competency need
for a good service is already inherit in the company.

The Market

Training is a versatile offer as the customer base spans all ranges and
needs. Similar to the support offers, the company has a unique market
position because of their direct involvement with the development of
the software. This also means that they can underbid a lot of the com-
petition since the internal training process is done in parallel with the
other offerings.

The Revenue Logic

Because of the breadth of the potential customer base, and the different
needs of the customers when it comes to training, the offer is very often
interesting for the user of the software. As long as the deployment rate
of the software is high, there will always be a customer base.

v

Consulting

Varnish Software offers multiple consulting packages in addition to custom
consultancy offers. Theprice range varies fromservice to service, but themost
packages starts at around €1000.

The Value Offering

Consultancy is a good way of learning more about the problem space of
which the product lives, but again with a low cost since the consultants
are also developers. If done correctly, the consultancy jobsmight lead to
up sale of some of the other offerings.

The Market

Wether the consultancy jobs are modifying the product, or integration
with other systems, the company is still in a unique position to market
and sell this offer, especially on jobs that require changes to be made on
the product itself. Themarket howevermight be quite small, andmostly
reserved for the large customers that have complex setups or needs.

The Revenue Logic

Consulting for this type of project is often integration projects thatmight
be complex and require a lot of work. The size of the problems this offer
attempts to solve makes this a proϐitable service.

(CQ2) How does the company interact with the com-
munity

As the both the project and the company is quite small, and the fact that they
are the core contributors to the project results in them having a very active
involvement in the community.

(CQ3) Is the business profitable

As only the public available information is at hand, it is too early to determine
the proϐitability of the company. They have however announced that they are

vi APPENDIX A. COMPANY STUDY: VARNISH SOFTWARE

hiring, and might be an indicator for them being proϐitable, or on their way of
getting there.

(CQ4) How large is the company?

At the time of writing, Varnish Software consists of 8 full-time employees.

AĕĕĊēĉĎĝ B

CĔĒĕĆēĞ ĘęĚĉĞ: GĎęĔėĎĔĚĘ AS

Gitorious AS is a company that offers services for the Gitorious software. They
have currently two full-time employees, and are locatedprimarily inOslo, Nor-
way.

Business models

The purpose of this section is to gain some insight into how Gitorious AS op-
erates from a business perspective. Gitorious AS offers multiple services sur-
rounding theGitorious software, including SaaS, consulting and softwareman-
agement.

Software-as-a-Service

GitoriousAS offers hosted versions of the software starting at $99/month. The
SaaS offerings include higher levels that allows for customization of the soft-
ware.

Gitorious AS also offers a SaaS model of the product hosted on the cus-
tomer's hardware. This is useful for installations within protected corporate
networks, and thus expands the client base to include large corporations.

The Value Offering

Providing hosting and support for your own product makes the product
evenmore important, and quality arises from the fact that is reduces the
amount of work you have to to per customer. This is a positive spiral, as
the increased qualitymay attractmore customers, and it also allows you
to service more installations using fewer resources.

The Market

vii

viii APPENDIX B. COMPANY STUDY: GITORIOUS AS

Since the company is the primary driver behind the project, they have a
uniquemarket position onwhich they operate, as they should, and prob-
ably do, know the software and how to operate it in a safe and stableway
best.
There are however steep competitionwhen it comes to the problemarea
with other companies such as GitHub and Atlassian offering their own
versions. Gitorious AS does however underbid thembothwhen it comes
to on-site installations and support.

The Revenue Logic

The product area is huge, as every serious company that software de-
velopment needs this type of software. That combined with the fairly
low price tag, and the option for on-site installations, makes the poten-
tial customer base quite large, spanning from the smallest of teams, to
enterprise installations.
If done correctly the operating costs of this service can be quite low, and
thus it may provide a very proϐitable service for the company.

Consulting and Customization

Gitorious AS offers consultancy services, such as integration and customizing.
They operate with a ϐixed hourly rate of $180.

The Value Offering
Because of the company's position regarding the software, the cost of
doing this sort of work is quite low. There is little training needed, as
the team already knows the software, since the wrote it.

The Market

The market spans from small teams who just want a custom stylesheet
on their installation, to large enterprises who wants to integrate with
other systems. This span, and thedeepknowledgeof the softwaremakes
Gitorious AS quite unique in the market.

The Revenue Logic

ix

Consulting and customization are sought after features for most compa-
nies that want the software to meet there speciϐic demands. With the
price tag Gitorious AS sets on its consultancy services, most companies
can afford to have these jobs done.

(CQ2) How does the company interact with the com-
munity

As the both the project and the company is quite small, and the fact that they
are the core contributors to the project results in them having a very active
involvement in the community.

(CQ3) Is the business profitable

As only the public available information is at hand, it is too early to determine
the proϐitability of the company. They have however announced that they are
hiring, and might be an indicator for them being proϐitable, or on their way of
getting there.

(CQ4) How large is the company?

At the time of writing, Gitorious AS consists of 2 full-time employees.

AĕĕĊēĉĎĝ C

PėĔďĊĈę SęĚĉĞ: GĎęĔėĎĔĚĘ

Thepurposeof this section is tohighlight someof theways theGitoriousproject
is managed.

Case Study Answers

(PQ1) Source code management

Being software for hosting git source code repositories it's only natural that
Gitorious is self-hosted using their own software.

The source code is publicly available athttp://gitorious.org/gitorious/
mainline. Commit access is restricted to a core developer team.

(PQ2) Release Process

Gitorious uses a rolling release process which means that there is no version-
ing or release processes.

(PQ3) Community

There does not seem to be a large community surrounding the software, but
they do use mailing lists and IRC for communication.

The project includes a HACKING-ϐile which gives the reader an introduction
on how to contribute to the project.

(PQ4) Documentation

All the project documentation is distributed as a part of the source code. Ex-
cept from overview and installation documentation, there is not much dedi-
cated documentation.

xi

http://gitorious.org/gitorious/mainline
http://gitorious.org/gitorious/mainline

xii APPENDIX C. PROJECT STUDY: GITORIOUS

(PQ5) Managing User Feedback and Support

There are no dedicated places for this except the regular mailing lists and IRC
channels mentioned above.

(PQ6) Managing User Contributions

User contributions are expected to be posted to the bug tracking software, or
as a pull-request in the version control software.

(PQ7) Bug tracking

Bug tracking is done using a self-hosted ChiliProject1-instance, and is publicly
available at https://issues.gitorious.org.

(PQ8) License

Gitorious is licensed under the AGPLv3 license. It very similar to GPLv3, but
has separate clauses for web sites, indicating that if modiϐications are made
and the site is publicly available, then the source code must be available.

(PQ9) Deployment

Deployment on different operating systems are documented as separate ϐiles,
and some include ready-to-go installation scripts.

Summary

Gitorious is a quite small and niche project, but seems to open and under con-
stant development.

The key project points are listed in table C.1 for brevity.

1https://www.chiliproject.org/

https://issues.gitorious.org
https://www.chiliproject.org/

xiii

Question ID Part Description Public
PQ1 SCM Self-hosted git Yes
PQ2 Release Process None
PQ3 Communication Mailing lists Yes
PQ4 Documentation OK documentation Yes
PQ5 User Feedback and Support Email and IRC Yes
PQ6 User Contributions Bug tracker or Pull Requests Yes
PQ7 Bug tracking Self-hosted ChiliProject Yes
PQ8 License AGPLv3
PQ9 Deployment Packaged No

Table C.1: Key project management techniques used in Gitorious

AĕĕĊēĉĎĝ D

PėĔďĊĈę SęĚĉĞ: VĆėēĎĘč CĆĈčĊ

Varnish Cache is a very fast reverse proxy developed for serving web pages
out of a cache, thus reducing the workload on application servers and give the
user the ability to serve more customers.

Users of Varnish includes vg.no, facebook.com and wikipedia.org.

Case Study Answers

(PQ1) Source code management

Varnish uses git as their SCM-tool, and the repositories are publicly available
at git://git.varnish-cache.org/varnish-cache.

(PQ2) Release Process

Releases are doneby a releasemanagerwhen anewversion seems to be stable
enough. There are no real processes behind the decision beyondwhat the core
team of developers think.

There are three levels of releases, and the version is denoted by a three
digit, dot separated identiϐier, e.g. 3.2.1 which denotes that it's major version
3, minor version 2 and bug-ϐix release 1.

(PQ3) Community

The community interaction is based upon mailing lists and forums available
at the project homepage, as well as an IRC channel.

The mailing lists are split into 6 different lists, each for its own purpose.

varnish-announce Project announcements.

varnish-bugs Notiϐications from the bug tracking system.

varnish-commit Commit logs and discussions about speciϐic commits.

xv

vg.no
facebook.com
wikipedia.org
git://git.varnish-cache.org/varnish-cache

xvi APPENDIX D. PROJECT STUDY: VARNISH CACHE

varnish-dev Varnish developer discussions.

varnish-dist Discussion about packaging and distribution.

varnish-misc Free-for-all discussions about Varnish.

(PQ4) Documentation

Varnish is documented using Sphinx (a Python based documentation tool) and
is publicly available at https://www.varnish-cache.org/docs/.

In addition to the ofϐicial documentation collection, there is also a wiki
available with more information.

(PQ5) Managing User Feedback and Support Requests

The project offers, and speciϐies which mailing list that is the appropriate for
user feedback andquestions. It also includes someguidelines how to askques-
tions, and how to reply.

(PQ6) Managing User Provided Contributions

Contributions such as bug-ϐixes and patches for new features are expected to
be added to the bug tracker with the appropriate labels and descriptions.

(PQ7) Bug tracking

Varnish Cache uses a self-hosted Trac instance for their tracking bugs and fea-
ture requests. The tracker is publicly available athttps://www.varnish-cache.
org/trac.

(PQ8) License

The project is licensed under a 2-clause BSD license.

(PQ9) Deployment

Varnish is packaged by all themajor Linux server distributions. They also have
extensive documentation on installation and conϐiguration available at their
homepage.

https://www.varnish-cache.org/docs/
https://www.varnish-cache.org/trac
https://www.varnish-cache.org/trac

xvii

Summary

The key project points are listed in table D.1 for brevity.

Question ID Part Description Public
PQ1 SCM Self-hosted git Yes
PQ2 Release Process Release manager No
PQ3 Communication Mailing lists Yes
PQ4 Documentation Excellent documentation Yes
PQ5 User feedback Mailing lists Yes
PQ6 User Contribution Bug tracker Yes
PQ7 Bug tracking Self-hosted Trac Yes
PQ9 Deployment Packaged Yes
PQ9 License BSD (2-clause)

Table D.1: Key project management techniques used in Varnish Cache

AĕĕĊēĉĎĝ E

PėĔďĊĈę ĘęĚĉĞ: DďĆēČĔ

Django is a framework for web-development written in the Python program-
ming language, and coins itself as "a web-framework for perfectionists with
deadlines".

Released as open sourced in 2005 and has seen an incredible growth over
the last couple of years.

Case Study Answers

The purpose of this section is to highlight some of the ways the Django project
is managed.

(PQ1) Source code management

Django uses Subversion as its SCM-tool hosted by the project itself, but is pub-
licly available at https://code.djangoproject.com/. Commit access is re-
stricted to a team of core developers.

(PQ2) Release Process

TheDjango releaseprocess is documented indetail athttps://docs.djangoproject.
com/en/1.3/internals/release-process/. The releases are made by the
core developer team.

(PQ3) Community

The community efforts of Django is enabled by heavy usage ofmailing lists and
IRC channels. There is very limited moderation of the communication chan-
nels, but the core developers do have the ability to do so if needed.

Django provides guidelines for community efforts in their documentation
as well as reading material for people wanting to contribute to the project.

xix

https://code.djangoproject.com/
https://docs.djangoproject.com/en/1.3/internals/release-process/
https://docs.djangoproject.com/en/1.3/internals/release-process/

xx APPENDIX E. PROJECT STUDY: DJANGO

Mailing lists

There are two primary mailing lists used by the Django community. django-
users, and django-dev. django-users has almost 22000 subscribers and is tar-
geted for users of Django. django-developers has 6800 subscribers and is tar-
geted for developers working on Django itself.

IRC-channels

Aswith themailing lists there are twomain channels for communication. Both
are using the Freenode IRC-network, and are named #django and #django-
dev. #django is targeted at the users of Django, whilst #django-dev is for the
developers of Django itself. #django has around 400 users and #django-dev
has about 85.

Conferences

As the Django community has grown the project has gotten dedicated confer-
ences, both in the US and in Europe, DjangoCon and DjangoCon Europe.

Both these conferences are run annually and are always sold out with sev-
eral hundred people attending each time.

(PQ4) Documentation

Django has a strict documentation policy, meaning that no feature is commit-
ted to the source code without proper documentation being available.

All thedocumentation is available athttps://docs.djangoproject.com/.

(PQ5) Managing User Feedback

User feedback and support are handled through the commity channels. See
above.

(PQ6) Managing User Contributions

Django handles its contributions by using a team of core developers as gate
keepers to the source code, and the bug tracking software as central point for
sending patches. This process is illustrated in ϐigure E.1.

https://docs.djangoproject.com/

xxi

Core developer 1

mainline

Core developer 2 Core developer n

Bug tracking software

Contributor 1 Contributor 2 Contributor n

Figure E.1: Django contribution management

(PQ7) Bug tracking

Bug tracking is done using the Trac bug tracking software1, and is publicly
available at https://code.djangoproject.com/. The database has all the
historical records dating back to the release of Django (bug #1 was opened
2005-07-13).

There are no restrictions on the triage process of bugs, so it is completely
open, with the exception of security bugs which are only available to the core
developers until a ϐix is released.

The bug tracking software is also used for new features and acts as such as
a tool for managing user provided contributions.

(PQ8) License

Django is licensed under the permissive license BSD.

(PQ9) Deployment

Django includes documentation for deployment, and is also packaged for all
major operating systems and ϐlavours includingDebian, Ubuntu, FreeBSD, and
RHEL. Django is also installable using python packaging tools such as pip and
easy_install with a single command.

1http://trac.edgewall.org/

https://code.djangoproject.com/
http://trac.edgewall.org/

xxii APPENDIX E. PROJECT STUDY: DJANGO

Question ID Part Description Public
PQ1 SCM Self-hosted Subversion Yes
PQ2 Release Process Core developers Yes
PQ3 Communication Mailing lists and IRC-channels Yes
PQ4 Documentation Excellent documentation Yes
PQ5 User Feedback IRC and Email Yes
PQ6 User Contributions Bug tracker Yes
PQ7 Bug tracking Self-hosted Trac Yes
PQ8 License BSD (3-clause)
PQ9 Deployment Packaged, one-click-installs Yes

Table E.1: Key project management techniques used in Django

Summary

The Django project is awell run open source project consisting of a core group
of developers and a large community. The development process is very open,
albeit strict due to the impact of bugs introduced in a project of its size and
usage.

The key project points are listed in table E.1 for brevity.

AĕĕĊēĉĎĝ F

PėĔďĊĈę ĘęĚĉĞ: LĎēĚĝ

Linux is the kernel which powers the GNU/Linux operating systems and was
ϐirst released using a custom license in 1991. Linux 0.99 was the ϐirst version
of Linux to be licensed under the GPL, and was released in December 1992.

Linux is estimated to be running on 60% of all servers, and can be de-
scribed as one of the most successful open source projects to date.

Case Study Answers

(PQ1) Source code management

Source code management is done using the git version control software and
is publicly available at http://git.kernel.org/. Linux uses a purely dis-
tributed development model as far as version control goes, but the de-facto
mainline kernel is managed by Linus Torvalds, the original author of Linux.

(PQ2) Release Process

Mainline releases are done by Linus Torvalds, while older major versions are
maintained and get bug ϐix releases controlled by different people.

(PQ3) Community

As theLinuxdeveloper community is so large the communicationmeansvaries
greatly, but mailing lists are heavily used by almost everyone. The largest of
these is the Linux Kernel Mailing List (LKML) which is the central point for
development that is applied to themainline kernel and averages between 350
and 450 emails each day. It has about 6500 subscribers which is quite high
considering the high volume of emails.

In addition to announcements andpatchnotiϐication, the LKMLalso acts as
a review tool for new features and bug ϐixes. This however more often takes

xxiii

http://git.kernel.org/

xxiv APPENDIX F. PROJECT STUDY: LINUX

place in the mailing lists for the particular sub-system of Linux that is being
affected by the proposed change.

(PQ4) Documentation

Linux includes detailed documentation with its distributed source code, as
well as man pages for system calls.

(PQ5) Managing User Feedback and Support

While user feedback and support request are often not asked directly to the
kernel developers, but the the distributions that use the kernel, the samemail-
ing lists that thedevelopersuser are accessable andpublic, and theonlyofϐicial
point on where to get in contact with kernel developers.

(PQ6) Managing User Contributions

As mentioned the mainline kernel which makes its way to most distribution
is controlled by Linus Torvalds. As the sheer volume of changes made to the
kernel each day is so high (A publication by The Linux Foundation in August
2009 stated that each day 10,923 lines of code is added to the kernel, 5,547
lines removed, and 2,243 lines change), themerging of patches into the kernel
are ϐiltered by a web of trust around Linus. Linus get merge requests from
people he trust to do a good job1, these few people have people they trust and
so forth as illustrated in ϐigure F.1.

(PQ7) Bug tracking

The Linux kernel uses both the LKML and bug tracking software, with a pref-
erence for the LKML as the primary tool.

Their bug tracking software of choice is Bugzilla2, and it's publicly avail-
able3 at https://bugzilla.kernel.org/.

(PQ8) License

Linux is licenced under the GPLv2 licence.
1Often referred to as his lieutenants
2http://www.bugzilla.org/
3Currently not available 2011-12-01

https://bugzilla.kernel.org/
http://www.bugzilla.org/

xxv

Linus Torvalds

mainline

Lieutenant 1 Lieutenant n

Contributor 1 Contributor n Contributor 1 Contributor n

Figure F.1: Linux development contribution management

(PQ9) Deployment

Linux ismostly providedby theoperating systems that use it and requires little
to no effort to get installed as it is installed automatically with the operating
system.

For custom installations Linux provides detailed instructions on how to
build and package the kernel, but the installation may vary upon other soft-
ware determined by the operating system that uses it.

Summary

The Linux kernel project is one of largest and the most famous open source
projects, and has a high level of success. The development is very open, but
also, due to the size of the project, fragmented. This fragmentation is handled
by a hierarchical structure of trustedmaintainers which produce themainline
Linux kernel that is widely used.

The key project points are listed in table F.1 for brevity.

xxvi APPENDIX F. PROJECT STUDY: LINUX

Question ID Part Description Public
PQ1 SCM Self-hosted git Yes
PQ2 Release Process Managed by Linus
PQ3 Communication Mailing lists Yes
PQ4 Documentation Excellent documentation Yes
PQ5 User Feedback Mailing lists Yes
PQ6 User Contributions Mailing lists, Web of Trust Yes
PQ7 Bug tracking Self-hosted Bugzilla and Email Yes
PQ8 License GPLv2 Yes
PQ9 Deployment Packaged Yes (indirectly)

Table F.1: Key project management techniques used in Linux

AĕĕĊēĉĎĝ G

PėĔďĊĈę ĘęĚĉĞ: SĞĒćĎĆē OS

Symbian OS was once the most popular operating system for mobile devices,
but with the rise of Apples iPhone it could not keep up. As an attempt to re-
vitalize it, Nokia initiated the work for having it open sourced under the be-
lief that the would automatically leverage the open source communities and
get free/low-cost contributions to the operating system, which would once
again make it a desired platform. The source code was to be released under
the Eclipse Public License (EPL), a fairly well known and respected license.

However, after the initial publicity created by this, and the initial surge of
interest from various developer communities, the source code and the needed
infrastructure were never really made accessible in a meaningful matter.

As of today, the released source code lives only in a long abandoned code
dump on SourceForge1.

It is as such an interesting project to see as a worst case scenario for an
open source release (nousers, zero contributions, etc). It shouldbementioned
that Nokia a couple of years later shutdown the project of creating a living
open source community around Symbian OS, relicensed the software under a
proprietary license and created the "Symbian Platform" product based upon
it.

Note: This study applies to the open source release of SymbianOS, and not
the platform itself.

Case Study Answers

(PQ1) Source code management

Symbian released the source as complete packages and as Mercurial reposito-
ries, and were publicly available at http://developer.symbian.org.

1http://sourceforge.net/projects/symbiandump/

xxvii

http://developer.symbian.org
http://sourceforge.net/projects/symbiandump/

xxviii APPENDIX G. PROJECT STUDY: SYMBIAN OS

(PQ2) Release Management

No releases were made after open sourcing.

(PQ3) Community

The communitywas supposed to gather around theprojectwebsite, withmail-
ing lists as the primary communication channel for developers, and the wiki
for documentation.

As with the Linux project, Symbian had dedicated mailing lists for each
subsystem and project.

(PQ4) Documentation

Some of the documentation was provided to the general public using articles
and a centralized wiki. Most of the documentation required the reader to reg-
ister and login to gain access.

As little of this documentation exists today it's difϐicult to predict the qual-
ity of the documentation, other than the few that are reachable using the In-
ternet Archive2.

(PQ5) Managing User Feedback and Support Requests

Both mailing lists and bugtrackers were set up, but never active.

(PQ7) Bug tracking

The project used a self-hosted Bugzilla instance publicly available at http:
//developer.symbian.org/bugs/.

(PQ8) License

The source code was released under the EPL (Eclipse Public License).

(PQ9) Deployment

Actual deployment is not relevant to the general public, as specialized knowl-
edge and hardware is needed. The distribution did include a deployment sim-
ulator for testing however.

2http://web.archive.org/web/20091012040700/http://developer.symbian.org/
main/documentation/

http://developer.symbian.org/bugs/
http://developer.symbian.org/bugs/
http://web.archive.org/web/20091012040700/http://developer.symbian.org/main/documentation/
http://web.archive.org/web/20091012040700/http://developer.symbian.org/main/documentation/

xxix

Part Description Public
License EPL
SCM Self-hosted Mercurial Yes
Bug tracking Self-hosted Bugzilla Yes
Documentation Good documentation No
Communication Mailing lists Yes
Deployment Packaged No

Table G.1: Key project management techniques used in Symbian OS

Summary

The SymbianOS open source projectwas the largest conversion of proprietary
source code to open source at its inception. This might have been its downfall,
as a lot of the same tools and techniques used for managing the project as
successful projects , such as Linux, was used.

But therewasnever any real communitybuilt around theproduct, and thus
it never turned into the successful open source project Nokia had imagined.

The key project points are listed in table G.1 for brevity.

AĕĕĊēĉĎĝ H

TčĊ FĚęĚėĊ Ĕċ OĕĊēFEIDE

Based upon the previous chapter these are some recommendations on how to
migrate OpenFEIDE to a possible viable open source project, both in terms of
business aspects and technical practicalities.

Practical Open Source Development

The purpose of this section is to give some recommendations for the Open-
FEIDE project based upon the results in this thesis.

Source Code Management

As one of the core features of open source development is the availability of
the code and a transparent development process, the source code should be
available publicly and preferably as source code repository.

As mentioned in section 5.2.2 there are many ways of doing this, but the
ϐirst choice iswhether or not to use a source code repository hosting providers
such as GitHub, or host the code on your own servers.

My recommendation is to use a remote service as this enables you to con-
centrate on creating a product, and not on hosting issues and the like. At the
current time I would recommend the usage of GitHub as the provider. They
provide all the basics that are needed for a open source project of OpenFEIDE's
size. If Acando is to pay for the service theywould also get private repositories.
As a result of this they could have the public source code in one repository, and
customized versions for customers in private branches. This way the code can
easily be shared across repositories and reduce the complexities of maintain-
ing different versions of the software.

GitHub has extensive documentation on how to start using the service, and
how tomigrate existing data from almost every source codemanagement tool.

xxxi

xxxii APPENDIX H. THE FUTURE OF OPENFEIDE

Documentation

Documentation is the key for users to feel conϐident that it is a serious and
maintained project, and thus willing to try it.

The ϐirst piece of documentation that should be written in detail is instal-
lation instructions, both for production environments and for developer envi-
ronments.

There is no need for any advanced documentation scheme. Simple text-
ϐiles, or wiki pages are good enough, at least for user documentation. De-
veloper documentation such as Javadoc and design documents might require
someother formats. If the source code is hostedat someremotehostingprovider,
it probably has some sort of wiki-functionality that can be used for this.

Keeping the documentation easy and accessible is crucial for it to be read.

Deployment and Ease of Use

One of the big hurdles for new users is often the installation of the product.
If they don't manage to install it, they will never use it. Because of this, any
application should be packaged and distributed in a way that makes it dead
simple for the user to install. As mentioned in section 5.2.1, if this is done
correctly, the project will have well deϐined upgrade paths for all installations.
This adds operational quaility the product, and may result in operation teams
to prefer your software over other projects that are harder for them to keep
updated.

As OpenFEIDE is software that is run on servers, the ϐirst two platforms
to package the software for is Debian1 and Red Hat Enterprise Linux2. Both
projects have excellent documentation on how to create packages, http://
pkg-java.alioth.debian.org/docs/tutorial.html forDebianandhttp:
//docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/
RPM_Guide/index.html forRedHat, CentOSandFedora (theyall use the same
package manager, and package format). The Debian packages are compatible
with Ubuntu as well.

Managing Contributions

Contribution management should be handled in a way that makes the people
that tries to send contributions feel like they get a response from the develop-

1http://www.debian.org
2http://www.redhat.com

http://pkg-java.alioth.debian.org/docs/tutorial.html
http://pkg-java.alioth.debian.org/docs/tutorial.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html
http://www.debian.org
http://www.redhat.com

xxxiii

ers. There are many ways to do this, and as most projects uses bug tracking
software for solving these issues, it is often a good place to start for handling
these contributions, as it requires little effort and knowledge from either side
for managing this.

If modern distributed version control systems are used, such as git ormer-
curial, the contributions could be taken as "pull requests". "Pull requests" are
requests for the developers to "pull" (fetch and merge) either a branch of the
contributors code, or a patch set. There are some differences on how this is
handled fromone version control system to the next, but almost all the hosting
services for these have built-in functionality for handling such requests. See
GitHub's help page3 for an example on how this is done using these tools.

Community

The probability for a product like OpenFEIDE to gain a huge community is
fairly small. The number of people would most likely be something like n ∗ 2
where n is the number of user organizations. This is similar to what Uninett's
NAV project has. That being said, even though the community is small, it does
not mean that is does not need some infrastructure for communication. IRC
channels are a popular choice for instantmessaging, andmailing lists formore
structured discussions. There are a lot of free services providing these fea-
tures. TheFreenode4 IRCnetwork is a popular choice for open sourceprojects,
while Google Groups is favoured for mailing lists. Using these services, the to-
tal amount of time setting the infrastructure up is roughly ϐive minutes, and is
thus trivial.

Migration

OpenFEIDE is at the time being, only available internally for Acando employ-
ees. The source code repository should be migrated to be publicly available.
However before this can be done the current repository must be restarted
or modiϐied as it includes example data with conϐidential data. This can be
done by importing the subversion repository into git and then following http:
//help.github.com/remove-sensitive-data/ to remove the offending ϐile
from the history, and then create a new subversion repository based upon the
git repository (or keep using git).

3http://help.github.com/send-pull-requests/
4www.freenode.net

http://help.github.com/remove-sensitive-data/
http://help.github.com/remove-sensitive-data/
http://help.github.com/send-pull-requests/
www.freenode.net

xxxiv APPENDIX H. THE FUTURE OF OPENFEIDE

Once the code is public OpenFEIDE should establish a common place on
the Internet for ϐinding information about it, downloading it and reporting
bugs. This is also important fromabusinessperspective as itmakes theproject
more visible to the wider community.

Viable Open Source

License Selection

Choosing the license is, as mentioned, not always easy, and requires some
thought. My recommendation for OpenFEIDE is the Apache Software License
v2. There are couple of reasons for this. First of all, being a permissive license,
it does little to restrict Acando's future use of the code base, and they might
reuse parts of the project for other efforts without having to worry about li-
censing issues (given that the other efforts are of a proprietary nature). The
second reason is given the technology selection (see table 5.2), using theApache
license is a safe choice, as most of the other software components that is used
by OpenFEIDE are also licensed under it. This reduces the chances of mixing
incompatible licenses.

The drawbacks of selecting the Apache license, is as with any projects re-
leased under permissive licenses, is that you are not guaranteed to get access
to other versions of the software.

Business Models

OpenFEIDE is a product with special integration needs. This is due to the fact
that most organizations have different data sources for it to use, and different
access control requirements.

As the integration situations as so varied and complex, there should be a
market for doing deeper integration and customizations. These changes can
be kept by Acando if they so choose, and reused to reduce cost in other deploy-
ments without releasing these changes to the public.

A more radical step for a consultancy agency like Acando is to provide
OpenFEIDE as a service. If done right, and the infrastructure to support it can
be obtained at a low cost, this could be quite proϐitable. It does, however, re-
quire the company to provide the necessary resources for maintenance and
running costs of the solution.

In this section some of the possible business models are analyzed in con-
text of OpenFEIDE.

xxxv

Software-as-a-Service

SaaS is providing the customer with the software as a service, and not as set
of executables that they run on their own. The business model has had rapid
growth the last couple of years as the internet gets increased adoption and
better available infrastructure, such as fast connections.

Value for the customer
SaaS is an attractive business model for many companies because of its
stable economic nature. Almost all the unknown factors introduced by
IT-systems are removed, due to the fact that the customer does not have
to provide the infrastructure, nor services for the product.

• Reduce operational costs
• Fixed pricing (no hidden costs)
• Small number of unknown factors

Value for Acando AS
The main value for the hosting company is the possibility of increasing
revenue by being able to parallelize work across multiple installations,
and may thus handle more customers with fewer resources. Another
value is gained from having complete control over the environment that
the software runs in, whichmay reduce the complexity of operations and
support greatly.

• Self-controlled environment reduces risk
• The cost of serving another customer after the initial one is low.

Risks for Acando AS
There are risks in any business model, and SaaS business models deϐi-
nitely have them. Managing and hosting system critical software is a sci-
ence in its own regard, and is easy to get wrong. In order to handle such
requirements, investments must be made, and are not easily reverted if
the businessmodel fails. The investments addmore expenses to the list,
and thus requires a higher amount of customers to become proϐitable.
One additional risk with OpenFEIDE in mind, is the customizations that
must be made for each customer. These might add up to being so differ-
entiated from other setups, that it cancels out the value of having multi-
ple instances.

xxxvi APPENDIX H. THE FUTURE OF OPENFEIDE

• Lack of needed skills and resources for operating the environment?
• Differences between setups might be large, and might add a lot of
complexity.

• Needs critical mass for hosting and resource allocating to pay off.

Support

Support is always a pretty low risk service to offer, as it is very ϐlexible. In the
start-up phase of monetization of the project, the supported levels might be
quite relaxed and only handled by the developers as a "side job" to program-
ming. This gives the customers some security at a very low cost for Acando.
If the number of customers increases to the point were the developers do not
cope anymore, then it could be assumed that themarket is present for expand-
ing the support offerings, and dedicate resources for that purpose.

Value for the customer

• Support directly from developers
• The availability of support contracts (often a requirement)

Value for Acando AS

• The cost of serving another customer after the initial one is low.
• Low initial costs if developers are used for support calls
• Low risk as there are few investments
• Potentially high proϐit if software is stable
• Knowledge of where the pain points for the customers are, can re-
sult in either better software or proprietary addons if solved.

Risks for Acando AS

• Too much pressure on support could slow development down

Support is often the ϐirst line of attack for commercializing open source
software, and not without reason. The low risks and costs of setting this busi-
ness model up, and the potential high proϐits, makes it a prime candidate for
one of the offerings the company can provide.

xxxvii

Customization / Integration

Consultancy services are well suited for projects as OpenFEIDE because of its
need for integration into other systems. One could argue that almost every
installation of OpenFEIDE would need these services, either from Acando, the
customers own IT department or a competitor.

Value for the customer

• Custom tailored integration for their needs
• Developers that are guaranteed to know both the project and the
problem domain.

Value for Acando AS

• Consultancy jobs are highly proϐitable due to high prices
• Possibilities of up-selling other products by close customer rela-
tions

Risks for Acando AS

• Given a limited set of customers, one time integration jobs will run
out.

Business Model Recommendations

Offering only one type of services is probably not enough to cover enough cus-
tomer needs to make a proϐit. This seems to be the case for many open source
projects, and Acando should attempt to offer multiple of these services, and
iterate and adapt them as one gets customer feedback.

Themodel selected by Varnish Software seems to be a good ϐit for the type
of speciality software like OpenFEIDE, meaning offering support and consul-
tancy services. The SaaS model has too much risk at the startup phase to vali-
date the investments needed for it to bring enough value to the customers for
being attractive.

AĕĕĊēĉĎĝ I

XSLTGĊēĊėĆęĔė
DĔĈĚĒĊēęĆęĎĔē

Library module

libxsltgenerator is the library that powers the analysis and actual genera-
tion of XSLT-ϐiles. It is included as an appendix to the thesis and is located in
the libxsltgenerator folder.

Installation of libxsltgenerator

The library is packages as a Maven module, so all you have to do to make it
available for your applications is to run:

cd libxsltgenerator && mvn clean install

Usage in Other Maven Projects

If the installation process succeeded without errors, you can include the li-
brary in othermaven projects by adding the following to the project pom-ϐile's
dependencies section:

1 <dependency>
2 <groupId>no . ntnu . ime</groupId>
3 < a r t i f a c t I d > l i b x s l t g e n e r a t o r </ a r t i f a c t I d >
4 <vers ion>0.0.1−SNAPSHOT</ vers ion>
5 </dependency>

Example Library Usage

The exposed functionality of the provided API is quite small, and done so by
design to keep the usage as simple as possible.

xxxix

xl APPENDIX I. XSLTGENERATOR DOCUMENTATION

The following is a complete example on how to retrieve, analyze and gen-
erate XSLT from a XML document on the local hard drive.

1
2 public S t r i n g fetchXSLT () {
3 S t r i n g FIXTURE_XML = " f i l e : ///home/ developer / f i x t u r e . xml " ;
4
5 XSLTGenerator generator = new XSLTGenerator () ;
6
7 // Analyze the given document
8 Map<St r ing , L i s t <SaxParserResu l t >> par s ingResu l t s =

generator . parseXMLSource (FIXTURE_XML) ;
9

10 // Generate XSLT fo r the en t i r e document
11 S t r i n g generatedXSLT = generator . g e tX l s t Fo rDa t a s e t (" / " ,

pa r s ingResu l t s) ;
12
13 // Get the o r i g i n a l XML document as a F i l e−i n s t a c e
14 F i l e xmlSourceF i l e = generator . retr ieveXMLSource (FIXTURE_XML) ;
15
16 // Invoke the XSLT P ipe l i n e on the generated XSLT on the source

xml document
17 S t r i n g translatedXML =

generator . at temptConvers ion (generatedXSLT , xmlSourceF i l e) ;
18
19 return generatedXSLT ;
20 }

Figure I.1: Example Library Usage

Console Applications

The library can easily be used as a command line tool for creating starting
points for new XSLT templates. A basic example is shown in ϐigure I.2.

xli

1 package no . ntnu . ime . l i b x s l t g e n e r a t o r ;
2
3 import j ava . i o . F i l e ;
4 import j ava . i o . F i l eWr i t e r ;
5 import j ava . u t i l . L i s t ;
6 import j ava . u t i l . Map ;
7
8 import no . ntnu . ime . l i b x s l t g e n e r a t o r . models . SaxParserResu l t ;
9

10 public c lass Tool {
11
12 public s t a t i c void main (S t r i n g [] args) throws Except ion {
13 i f (args . l eng th < 3) {
14 System . err . p r i n t l n (" Usage : j ava − j a r x s l t t o o l . j a r input . xml

output . x s l ") ;
15 System . e x i t (1) ;
16 }
17 S t r i n g source = args [1] ;
18 S t r i n g sourceURL = new F i l e (source) . toURI () . t o S t r i n g () ;
19 XSLTGenerator g = new XSLTGenerator () ;
20 Map<St r ing , L i s t <SaxParserResu l t >> r e s u l t =

g . parseXMLSource (sourceURL) ;
21 S t r i n g x s l t = g . g e tX l s t Fo rDa t a s e t (" / " , r e s u l t) ;
22 F i l e output = new F i l e (args [2]) ;
23 F i l eWr i t e r f i l eW r i t e r = new F i l eWr i t e r (output) ;
24 f i l eW r i t e r . wr i te (x s l t) ;
25 f i l eW r i t e r . c l o s e () ;
26 System . out . p r i n t l n ("Done") ;
27 }
28 }

Figure I.2: Example Commandline Tool

GWT Web Application

Theexamplewebapplication that uses the library is located in theXSLTGenerator-
folder in the included source code.

In addition to the automatic parser example, the application also includes
the manual selection prototype.

xlii APPENDIX I. XSLTGENERATOR DOCUMENTATION

Compile and Run

The source code includes a maven conϐiguration that allows you to test the
application in an production like environment.

To compile and run the code in such an environment, use the following
command:

mvn clean package jetty:run-war

If successful, the application is available at:

http://localhost:8080/XSLTGenerator.html

Note:
GWT only works on 32bit JVM.
Make sure that you use a 32bit JDK and JVM (i586), if you are
on a 64bit system (x86_64)

http://localhost:8080/XSLTGenerator.html

	Title Page
	Abstract
	Preface and Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Actual Context
	Problem Statement
	Research Questions
	Purpose of Implementation

	Contributions
	Thesis Structure
	Appendices

	Background
	Software Engineering
	Background
	Development Life Cycles
	Software Quality

	Open Source
	Conditions of Open Source Software
	History of Open Source
	Open Source Culture
	Open Source Software Engineering

	Open Innovation
	Business Models in Open Innovation Environments
	Product Based Business Models
	Service Based Business Models
	Implementation of Business Models

	Licensing
	Release Strategies

	Implementation Background
	The OpenFEIDE Import Mechanism
	XML Processing
	XML Traversal
	Extensible Stylesheet Language Transformations

	Information Retrieval
	Measuring Correctness
	Indexing Data Sources

	Research Design
	Context and Motivation
	Acando and the OpenFEIDE Project
	The Motivation Behind the Research Questions

	Applied Research Methods in this Study
	Literature Search
	Choice of Research Methods
	Studied Companies
	Studied Projects

	Case Study Design
	Company Studies
	Project Studies
	Data Collection and Challenges

	Contributions
	Viable Open Source for Consultancy Agencies
	Legal Considerations and Licensing
	Estimating the Cost of Development
	Business Models

	Practical Open Source Development
	Project Start Up
	Developing in the Open
	Managing Users and Contributors
	Bug Tracking and Issue Management

	Relationship Between Business and Technical Aspects
	Implementation of XSLTGenerator
	Problem Description
	Development Methodology
	Context of Implementation
	Problem Analysis
	Analysis of Current Import Procedure
	Analysis Results
	Requirements
	Goals and Guidelines
	Architecture
	Functionality Types
	XML Analyzer System Design
	System Sequences
	Technology Selection

	Evaluation & Discussion
	Answering the Research Questions
	Viable Open Source for Consultancy Agencies
	Practical Open Source Development

	Summarized Recommendations
	Validity and Limitations

	Implementing XSLT Generator for OpenFEIDE
	XML Analyzer results
	User Interface
	Requirement Fulfillment

	Conclusion
	Contributions
	Viable Open Source for Consultancy Agencies
	Practical Open Source Development
	Implementation of XSLTGenerator

	Further Work
	Open Source For Consultancy Companies
	XSLTGenerator

	Company study: Varnish Software
	Company study: Gitorious AS
	Project Study: Gitorious
	Project Study: Varnish Cache
	Project study: Django
	Project study: Linux
	Project study: Symbian OS
	The Future of OpenFEIDE
	XSLTGenerator Documentation

