
Master of Science in Informatics
December 2011
John Krogstie, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Test-Driven Conceptual Modelling
evaluation through a case study

Isaac Bernat-Casi

Abstract

The purpose of this project is to showcase the work cycle and feasibility of Test-
Driven Conceptual Modelling (TDCM) on a real-sized system. TDCM is a novel
methodology to develop conceptual schemas which can be understood as belonging
to the wider eXtreme Programming (XP) family called Test-Driven Development
(TDD). Its aim is to iteratively develop conceptual schemas through automated
testing at the conceptual level.
In order to achieve its goal, this project is built upon the state of the art of conceptual
schema testing, as seen in recent publications. It has been carried out in accordance
with the design-science research model to ensure both rigour and relevance.
We contribute to TDCM experimentation by applying it to a case study. In particu-
lar, this project focus on the development, by reverse engineering, of the conceptual
schema of Remember the Milk (RTM), a popular system that supports the man-
agement of tasks. As a complementary goal, some suggestions to improve the RTM
system will be presented thanks to the knowledge gathered during the process. This
document collects the result of this experience.
Our findings confirm that this methodology is promising, because the resultant
conceptual’s schema validation and high semantic quality paid off its relatively small
additional development efforts.

1

Preface

This previous semester was my last one of regular classes. I chose two more optative
subjects than I was required according to my needed number of ECTS credits,
because I was conservative and did not want to risk failing a subject and not attaining
the required credits before my Erasmus scholarship. I initially planned to start all the
topics and just leave the ones that were going to be more difficult or time-consuming
on the second week. One of those subjects was Requirements Engineering (RE),
whose main professor was Antoni Olivé with the assistance of the PhD candidate
Albert Tort, with the occasional appearance of Maria-Ribera Sancho. It certainly
was one subject with a heavy weekly workload, but before I even considered leaving
it, I was enthralled.
During the RE course I got the chance to know the TDCM approach and Conceptual
Schema Testing Language (CSTL) processor personally. We worked on a small
project with it, accomplishing very satisfactory results. I also learned about the
Kano model and other facts and aspects I comment on along the project. After
the course finished, Albert contacted me with an offer of a 30 ECTS credits project
proposal to work on the Autumn semester. This project would mark the end of the
5-year long degree on Engineer on Informatics at Technical University of Catalonia
(UPC). After a while, we finally managed to keep the project going, even if it was
to be graded internationally at Norwegian University of Science and Technology
(NTNU), thanks to Albert Tort, Antoni Olivé and John Krogstie to whom I am
truly grateful.

Trondheim, December 2011

Isaac Bernat Casi

3

Contents

I. Introduction and Background 7

1. Introduction 9

1.1. Overview . 9
1.2. Context . 9

1.2.1. Conceptual modelling . 9
1.2.2. Validation of conceptual schemas 9
1.2.3. Reverse engineering . 11
1.2.4. Test-Driven Conceptual Modelling 11

1.3. Project context . 11
1.4. Motivation . 12
1.5. Objectives . 12
1.6. Methodology . 13
1.7. Document structure . 15

2. Background 17

2.1. Overview . 17
2.2. Conceptual modelling . 17

2.2.1. Information systems . 17
2.2.2. Quality in conceptual schemas 19
2.2.3. Principle of necessity . 20

2.3. Task management systems . 21
2.3.1. Characteristics . 21
2.3.2. Our case study: Remember the Milk 21

3. Research approach 23

3.1. Overview . 23
3.2. Design science research . 23

3.2.1. Definition . 23
3.2.2. Application . 24

3.3. Project management plan . 25

i

Chapter 0 Contents

II. Case study 27

4. Use cases 29

4.1. Overview . 29
4.2. Definition . 29

4.2.1. Elements . 30
4.2.2. Interactions . 31

4.3. Limitations . 32
4.3.1. Scope . 32
4.3.2. Existing system . 32
4.3.3. Technology independence . 33

4.4. Template . 33
4.5. RTM use case specification . 34

4.5.1. Update priority from a task 34

5. Test stories 37

5.1. Overview . 37
5.2. Definition . 37
5.3. Limitations . 37

5.3.1. Scope . 38
5.3.2. Interface . 38
5.3.3. Completeness . 38

5.4. RTM story dependencies . 38
5.4.1. Context . 39
5.4.2. Groupings nomenclature . 40
5.4.3. Graphical representation . 42
5.4.4. Graphical summary . 42

5.5. RTM Test stories . 44
5.5.1. Update priority from a task 45

6. Testing strategy 51

6.1. Overview . 51
6.2. Method . 51

6.2.1. Coverage . 52
6.2.2. Goals . 52

6.3. The importance of value assessment 52
6.4. Functionality prioritisation: the Kano Model 53

6.4.1. Must-be (a.k.a. Basic) . 54
6.4.2. Attractive (a.k.a. Excitement) 54
6.4.3. One-dimensional (a.k.a. Performance) 55
6.4.4. Secondary . 55
6.4.5. Reverse . 56
6.4.6. Graphical representation . 56
6.4.7. Limitations . 58

ii

Contents

6.5. Methodological approach . 60
6.5.1. Graphical representation . 60

6.6. Subset 1: Basic use cases (i) . 61
6.7. Subset 2: Basic use cases (ii) . 63
6.8. Subset 3: Performance use cases (i) 64
6.9. Subset 4: Performance use cases (ii) 66
6.10. Subset 5: Performance use cases (iii) 68
6.11. Subset 6: Excitement use cases (i) . 70
6.12. Subset 7: Excitement use cases (ii) 72
6.13. Subset 8: Indifference use cases (i) 73

7. Application of TDCM 77

7.1. Overview . 77
7.2. CSTL Environment . 77

7.2.1. Language . 77
7.2.2. Processor . 78

7.3. TDCM . 81
7.3.1. Write a test case . 81
7.3.2. Change the schema . 82
7.3.3. Refactor the schema . 83

7.4. Limitations . 84
7.4.1. Scope . 84
7.4.2. Testing environment . 85

7.5. From test stories to formal test cases 85
7.5.1. Update priority from a task 86

7.6. Iterations . 93
7.6.1. Iteration 1 . 94
7.6.2. Iteration 2 . 96
7.6.3. Iteration 3 . 97
7.6.4. Iteration 4 . 98

III. Results 99

8. Conceptual schema 101

8.1. Overview . 101
8.2. Structural schema . 101
8.3. Behavioural schema . 101
8.4. Statistical summary . 104

9. Lessons learnt 105

9.1. Overview . 105
9.2. TDCM . 105

9.2.1. Feasibility . 105

iii

Chapter 0 Contents

9.2.2. Advantages . 105
9.2.3. Patterns of use . 106

9.3. RTM . 107
9.3.1. Conceptual deficiencies . 107
9.3.2. Lack of validation . 107
9.3.3. Additional features . 108
9.3.4. Counterintuitive Interface . 109

10.Conclusions and further work 111

10.1. Overview . 111
10.2. Conclusions . 111

10.2.1. Test-Driven Conceptual Modelling (TDCM) 111
10.2.2. Remember the Milk (RTM) 112

10.3. Further work . 112
10.3.1. CSTL Processor . 112
10.3.2. TDCM Methodology . 113
10.3.3. Experimentation . 113

IV. Appendixes and Bibliography 115

A. Use case specification 117

A.1. Task . 117
A.1.1. Create a task . 117
A.1.2. Read a task . 117
A.1.3. Update a task . 118
A.1.4. Delete a task . 119
A.1.5. Create an assign a note to task 120
A.1.6. Read a note assigned to a task 120
A.1.7. Update a note assigned to a task 121
A.1.8. Delete a note assigned to a task 122
A.1.9. Complete a task . 123
A.1.10.Uncomplete a task . 124
A.1.11.Set priority to a task . 124
A.1.12.Update priority from a task 125
A.1.13.Delete priority from a task . 126
A.1.14.Postpone a task . 127
A.1.15.Share a task with contacts . 128
A.1.16.Send a task to contacts . 129
A.1.17.Share a task with groups . 130
A.1.18.Send a task to groups . 131
A.1.19.Show tasks . 132
A.1.20.Move a task to a list . 133
A.1.21.Duplicate a task . 134

iv

Contents

A.2. Account . 135
A.2.1. Create an account . 135
A.2.2. Log into an account . 136
A.2.3. Update an account . 136
A.2.4. Delete an account . 137
A.2.5. Log out of an account . 138

A.3. Reminder . 138
A.3.1. Create a reminder schedule 138
A.3.2. Read a reminder schedule . 139
A.3.3. Update a reminder schedule 140
A.3.4. Delete a reminder schedule . 141
A.3.5. Send reminder . 141

A.4. Customisation . 142
A.4.1. Change language . 142
A.4.2. Show weekly planner . 142

A.5. Contact and group . 143
A.5.1. Add a contact . 143
A.5.2. Read a contact . 144
A.5.3. Delete a contact . 144
A.5.4. Create a group . 145
A.5.5. Read a group . 146
A.5.6. Delete a group . 146
A.5.7. Add a contact to a group . 147
A.5.8. Remove a contact from a group 148

A.6. List of tasks . 149
A.6.1. Create a list . 149
A.6.2. Read a list . 150
A.6.3. Update a list . 150
A.6.4. Delete a list . 151
A.6.5. Set default list . 152
A.6.6. Unset default list . 153
A.6.7. Share a list with some contacts 153
A.6.8. Share a list with some groups 155
A.6.9. Publish a list for some contacts 156
A.6.10.Publish a list for some groups 157
A.6.11.Publish a list for anyone . 158
A.6.12.Unpublish a list for some contacts 159
A.6.13.Unpublish a list for some groups 160
A.6.14.Unpublish a list for anyone . 162
A.6.15.Accept a shared list . 163
A.6.16.Reject a shared list . 164
A.6.17.Archive lists . 165
A.6.18.Unarchive lists . 166

v

Chapter 0 Contents

A.7. Location . 166
A.7.1. Create a location . 166
A.7.2. Read a location . 168
A.7.3. Update a location . 168
A.7.4. Delete a location . 169
A.7.5. Set a default a location . 170
A.7.6. Unset a default a location . 171

B. Test stories 173

B.1. Task . 173
B.1.1. Create a task . 173
B.1.2. Read a task . 174
B.1.3. Update a task . 175
B.1.4. Delete a task . 176
B.1.5. Create an assign a note to task 177
B.1.6. Read a note assigned to a task 178
B.1.7. Update a note assigned to a task 179
B.1.8. Delete a note assigned to a task 181
B.1.9. Complete a task . 182
B.1.10. Uncomplete a task . 182
B.1.11. Set priority to a task . 183
B.1.12. Update priority from a task 184
B.1.13. Delete priority from a task . 186
B.1.14. Postpone a task . 187
B.1.15. Share a task with contacts . 188
B.1.16. Send a task to contacts . 190
B.1.17. Share a task with groups . 191
B.1.18. Send a task to groups . 194
B.1.19. Show tasks . 196
B.1.20. Move a task to a list . 197
B.1.21. Duplicate a task . 199

B.2. Account . 201
B.2.1. Create an account . 201
B.2.2. Log into an account . 202
B.2.3. Update an account . 203
B.2.4. Delete an account . 203
B.2.5. Log out of an account . 204

B.3. Reminder . 204
B.3.1. Creation of a reminder schedule 204
B.3.2. Read a reminder schedule . 205
B.3.3. Update a reminder schedule 206
B.3.4. Delete a reminder schedule . 207
B.3.5. Send reminder . 207

vi

Contents

B.4. Customisation . 208
B.4.1. Change language . 208
B.4.2. Show weekly planner . 208

B.5. Contact and group . 209
B.5.1. Add a contact . 209
B.5.2. Read a contact . 210
B.5.3. Delete a contact . 210
B.5.4. Create a group . 211
B.5.5. Read a group . 212
B.5.6. Delete a group . 212
B.5.7. Add a contact to a group . 213
B.5.8. Remove a contact from a group 214

B.6. List of tasks . 216
B.6.1. Create a list . 216
B.6.2. Read a list . 217
B.6.3. Update a list . 217
B.6.4. Delete a list . 218
B.6.5. Set default list . 220
B.6.6. Unset default list . 220
B.6.7. Share a list with some contacts 221
B.6.8. Share a list with some groups 222
B.6.9. Publish a list for some contacts 224
B.6.10. Publish a list for some groups 225
B.6.11. Publish a list for anyone . 227
B.6.12. Unpublish a list for some contacts 228
B.6.13. Unpublish a list for some groups 229
B.6.14. Unpublish a list for anyone . 229
B.6.15. Accept a shared list . 229
B.6.16. Reject a shared list . 229
B.6.17. Archive lists . 230
B.6.18. Unarchive lists . 230

B.7. Location . 230
B.7.1. Create a location . 230
B.7.2. Read a location . 233
B.7.3. Update a location . 234
B.7.4. Delete a location . 235
B.7.5. Set a default a location . 235
B.7.6. Unset a default a location . 236

C. Conceptual schema code 239

C.1. Subset 1: Basic use cases (i) . 240
C.2. Subset 2: Basic use cases (ii) . 246
C.3. Subset 3: Performance use cases (i) 249
C.4. Subset 4: Performance use cases (ii) 255

vii

Chapter 0 Contents

C.5. Subset 5: Performance use cases (iii) 265
C.6. Subset 6: Excitement use cases (i) . 274
C.7. Subset 7: Excitement use cases (ii) 283

D. Methods code 287

D.1. Subset 1: Basic use cases (i) . 287
D.2. Subset 2: Basic use cases (ii) . 288
D.3. Subset 3: Performance use cases (i) 290
D.4. Subset 4: Performance use cases (ii) 291
D.5. Subset 5: Performance use cases (iii) 297
D.6. Subset 6: Excitement use cases (i) . 299
D.7. Subset 7: Excitement use cases (ii) 303

Bibliography 305

viii

List of Figures

3.1. Information Systems Research Framework [9] 24

5.1. Task dependency tree (leftmost part) 42
5.2. Task dependency tree (rightmost part) 42
5.3. Account dependency tree 43
5.4. Reminder dependency tree 43
5.5. Contact dependency tree 44
5.6. Location dependency tree 44
5.7. Planner and language dependency tree 45
5.8. List dependency tree . 48
5.9. Compact version of the system’s dependency tree 49

6.1. The Kano Model illustrated 57
6.2. Dependency tree of Basic use cases (i) 62
6.3. Dependency tree of Basic use cases (ii) 63
6.4. Dependency tree of Performance use cases (i) 65
6.5. Dependency tree of Performance use cases (ii) 67
6.6. Dependency tree of Performance use cases (iii) 69
6.7. Dependency tree of Excitement use cases (i) 71
6.8. Dependency tree of Excitement use cases (ii) 75
6.9. Dependency tree of Indifference use cases (i) 76

7.1. The CSTL Processor testing environment[20] 79
7.2. Screenshot of the test execution tab 80
7.3. TDCM cycle [21] . 82

8.1. RTM Partial conceptual schema (i) 102
8.2. RTM Partial conceptual schema (ii) 102

1

List of Algorithms

7.1. IB Account creation . 86
7.2. IB Log in . 87
7.3. IB Task creation (i) . 87
7.4. IB Task creation (ii) . 88
7.5. IB Priority assignation . 88
7.6. Priority update test (i) . 89
7.7. Priority update test (ii) . 89
7.8. IB Priority assignation . 90
7.9. Priority update test (iii) . 90
7.10. Priority update test (iv) . 91
7.11. Priority update test (v) . 93
7.12. Priority update test (vi) . 93
7.13. Account class . 94
7.14. Create account event . 95
7.15. Create account postcondition . 95
7.16. Create account method . 95
7.17. Create account test (ii) . 96
7.18. Account invariants (i) . 96
7.19. Create account preconditions (i) . 96
7.20. Create account test (iii) . 97
7.21. Account invariants (ii) . 97
7.22. Create account preconditions (ii) . 98

8.1. Update priority definition . 103
8.2. Update priority postcondition . 103
8.3. Update priority preconditions . 104

C.1. Account class . 240
C.2. Create account . 241
C.3. Log into account . 242
C.4. Task class . 243
C.5. Create task . 244
C.6. Delete task . 245
C.7. Update account . 246
C.8. Log out of an account . 246
C.9. Update task . 247

3

Chapter 0 List of Algorithms

C.10.Delete account . 248
C.11.Note class . 249
C.12.Create note . 250
C.13.Update note . 251
C.14.Delete note . 252
C.15.Complete task . 253
C.16.Postpone task . 254
C.17.Duplicate task . 254
C.18.Uncomplete task . 255
C.19.Priority class . 255
C.20.Create priority . 256
C.21.Update priority (i) . 256
C.22.Update priority (ii) . 257
C.23.Update priority (iii) . 258
C.24.Delete priority . 259
C.25.Reminder schedule class . 259
C.26.Create reminder schedule . 260
C.27.Update reminder schedule . 261
C.28.Delete reminder class . 262
C.29.LanguageS class . 263
C.30.Change language . 264
C.31.List class . 265
C.32.Create list . 266
C.33.Update list . 267
C.34.Delete list . 268
C.35.Set default list . 269
C.36.Unset default list . 270
C.37.Move task to list . 271
C.38.Add contact . 272
C.39.Delete contact . 273
C.40.Publish list for anyone . 274
C.41.Unpublish list for anyone . 275
C.42.Send task to contact . 276
C.43.Publish list for contacts . 277
C.44.Unpublish list for contacts . 278
C.45.Share list with contacts . 279
C.46.Accept shared list . 280
C.47.Reject shared list . 281
C.48.Share task with contacts . 282
C.49.Update account . 282
C.50.Group class . 283
C.51.Create group . 284
C.52.Delete group . 285

4

List of Algorithms

D.1. Create account . 287
D.2. Log into account . 287
D.3. Create task . 288
D.4. Delete task . 288
D.5. Update account . 288
D.6. Log out of account . 289
D.7. Update task . 289
D.8. Delete account . 289
D.9. Create note . 290
D.10.Update note . 290
D.11.Delete note . 290
D.12.Delete task postconditions . 290
D.13.Postpone task . 291
D.14.Duplicate task . 291
D.15.Uncomplete task . 291
D.16.Create priority . 292
D.17.Update priority . 292
D.18.Delete priority . 293
D.19.Create reminder . 293
D.20.Update reminder . 293
D.21.Delete reminder . 294
D.22.Change language (i) . 295
D.23.Change language (ii) . 296
D.24.Create list . 297
D.25.Update list . 297
D.26.Delete list . 297
D.27.Move task to list . 298
D.28.Set default list . 298
D.29.Unset default list . 298
D.30.Add contact . 298
D.31.Delete contact . 299
D.32.Publish list for anyone . 299
D.33.Unpublish list for anyone . 299
D.34.Send task to contact . 300
D.35.Publish list for contacts . 301
D.36.Unpublish list for contacts . 301
D.37.Share list with contacts . 301
D.38.Accept shared list . 302
D.39.Reject shared list . 302
D.40.Share task with contacts . 302
D.41.Create group . 303
D.42.Delete group . 303

5

Part I.

Introduction and Background

7

1. Introduction

1.1. Overview

The main purpose of this project is the development of the conceptual schema
of an existing information system by applying Test-Driven Conceptual Modelling
(TDCM). In particular, we focus on the development, by reverse engineering, of
the conceptual schema of Remember the Milk (RTM), a system that supports the
management of tasks. This document reports the context, the application details
and the results of this experience.
This chapter aims to describe the context, before properly starting the topic of
the thesis. To start with, section 1.2 defines the terms of conceptual modelling,
validation of conceptual schemas and reverse engineering, all of them paramount to
understand the project. Next, at section 1.3 we show the notability of the work we
are building upon. At section 1.4 there is a brief explanation of the motivation that
made this project possible. On section 1.5 and section 1.6 the project objectives
and its methodology to achieve them are defined. Finally, section 1.7 summarises
the contents of the rest of the chapters on this document.

1.2. Context

1.2.1. Conceptual modelling

A conceptual schema defines the general knowledge required by an
information system to perform its functions.[16]

This means that, in order to develop any information system, software engineers
and system designers must first define the conceptual schema of the system to-be.
This practise is commonly known by the name of conceptual modelling.

1.2.2. Validation of conceptual schemas

The validation of a conceptual schema consists on the evaluation of its quality.
According to the conceptual modelling quality framework proposed[13], a conceptual
schema of an information system has semantic quality when it is valid and complete.

9

Chapter 1 Introduction

Validity means that the schema is correct and relevant. A conceptual schema is
correct if the knowledge it defines is true for the domain, and it is relevant if the
knowledge it defines is necessary for the system. Completeness means that the
conceptual schema includes all relevant knowledge.

Actually there are two main challenges when it comes to validation of conceptual
schemas.

1. Stakeholder involvement: Since stakeholders determine the requirements of
an information system, the validation of the corresponding conceptual schema
its to involve them. Moreover, as end-users are usually not comfortable with
formalisms, they might find the conceptual schema difficult to understand.
Hence, they may not really be able to validate that it represents precisely
what they expect.

2. Rigorous validation: Many techniques that aim to validate requirement spe-
cifications are essentially manual. Validation is the “confirmation by exam-
ination and provisions of objective evidence that the particular requirements
for a specific intended use are fulfilled” [10] . In software development, “val-
idation concerns the process of examining a product to determine conformity
with user needs” [10] . Not taking into account human errors, the main issue
here is the fact that it is not possible to decide when the validation has ended
at conceptual modelling stage. This brings us to two possible undesirable
scenarios:

a) Too many human resources are devoted to validation. In this case, re-
sources are wasted, as the schema is being validated and evaluated when
it is already correct.

b) Not enough resources are put into validation. In this case the resultant
conceptual schema is wrong. Correcting the errors when detected during
further steps (e.g. design, implementation, maintenance, etc.) can make
it orders of magnitude (i.e. tens or hundreds of times) more costly to
repair than at this stage. Furthermore, it will incur on delays to provide
the finished working product, and potentially dangerous side-effects if it
goes unnoticed long enough.

An automatic test-based validation system would not suffer from these two issues.
In first place, because even if the schema is written using a formal language, the tests
can be thought as stories that stakeholders could understand and propose. Those
stories could later very easily be translated into test cases using a formal language
close to the story description. Regarding the revision, apart from diminishing the
possibility and incidence of human errors, it also offers us a method to determine
when the validation has ended, therefore avoiding the two possible inconvenient
scenarios derived from not knowing when the phase has finished.

10

1.3 Project context

1.2.3. Reverse engineering

Reverse engineering can be understood as the process of analysing a system in order
to identify its components and inner relationships. In later step, a representation of
the system is then created in another form or even in a higher level of abstraction.

The main objective of the reverse engineering of an information system, is to provide
a deeper understanding of it. This knowledge can be aimed towards correcting it,
building documentation, making it the basis for enhancements or even for a complete
redesign.

1.2.4. Test-Driven Conceptual Modelling

TDCM is an innovative conceptual modelling method based in Test-Driven De-
velopment (TDD), which is popular in programming field. Its aim is to drive the
elicitation and the definition of the conceptual schema of an information system iter-
atively. TDCM uses test cases to drive the conceptual modelling activity. In TDCM,
conceptual schemas are incrementally defined and continuously validated.[21]

1.3. Project context

This project is based on the work about conceptual schema testing [20] and Test-
Driven Conceptual Modelling [21] published by Albert Tort, Antoni Olivé and Maria-
Ribera Sancho, which are members of the GMC1 whose researchers mainly belong
to ESSI2 at FIB3 - UPC BarcelonaTech4. Within this group, and especially in the
scope of Albert Tort’s doctoral thesis, there are some advancements and work done
in the field of Test-Driven Development (TDD), concretely in tools for the validation
of software at the conceptual modelling stage.

These tools, which will be the core for the Test-Driven Conceptual Modelling (TDCM)
application are :

Conceptual Schema Testing Language (CSTL): A language specifically designed
to write automated conceptual schema tests.

CSTL Processor: A Java-based prototype that makes the execution of automated
conceptual schema tests possible.

1Conceptual Modelling of Information Systems research group. Webpage at
http://guifre.lsi.upc.edu/index.html

2Services and Information Systems Engineering Department. Webpage at
http://www.essi.upc.edu/

3Barcelona School of Informatics. Webpage at http://fib.upc.edu/
4Technical University of Catalonia. Webpage at http://www.upc.edu/

11

Chapter 1 Introduction

1.4. Motivation

Besides the personal motivation already mentioned in the preface, I think the de-
velopment of a conceptual schema of a real system using TDCM and CSTL is a
good opportunity to refine this contributions by experimentation and evaluation of
its feasibility and its advantages and drawbacks.

Currently it is not widely used because the tools we have seen in section 1.3 are
still too recent and have not yet been established in the community. Therefore
not many conceptual schemas have been developed using them and their principles.
Furthermore, the processor is a prototype, and that means that is constantly being
upgraded and still has some room for improvements.

1.5. Objectives

The main purpose of the project is the development of an executable conceptual
schema of a popular task management system. The development will use Test-Driven
Conceptual Modelling (TDCM), a novel method for the incremental definition of
conceptual schemas which uses conceptual test cases in order to drive the develop-
ment. The conceptual schema will include both the structural and the behavioural
aspects (events) of the system and it will be specified in Unified Modelling Language
(UML) class diagrams plus Object Constraint Language (OCL) constraints.

More specifically, the project has two subgoals. These objectives are TDCM exper-
imentation and improvement proposals to the system, and are going to be briefly
explained in the following lines.

TDCM experimentation

In the first place, we intend to demonstrate the feasibility of TDCM by using it
for a real-sized information system. Moreover, since the modelled system is already
implemented, in this project we put in practise a reverse engineering process aimed
to define the conceptual schema of the system by using TDCM.

TDCM fosters the development of correct and complete conceptual schemas accord-
ing to stakeholders’ needs and expectations. Additionally to the conceptual schema,
by applying TDCM we also obtain a set of validation stories formalised as test cases
that have been used to drive the knowledge to be included in the schema.

In TDCM, test cases are collected and used for regression testing in each iteration.
The advantage of regression testing is the ability to steadily advance in the devel-
opment of the conceptual model with courage about the quality of the (partial)
schema achieved in each iteration. This is done by executing the collection of test

12

1.6 Methodology

cases at each iteration, making sure that for every knowledge update that all previ-
ously tested functionalities continue to work as expected. This way, the developer
can also make sure that each part of the schema is free of collateral and undesired
changes, contributing to improve and guarantee a certain level of conceptual schema
quality during the development.
We will keep track of the time spent in each TDCM activity in order to analyse
patterns in the use of TDCM and comparing the conclusions with other existing
applications of TDCM. Moreover, we will propose improvements to the methodology
and the supporting tool according to our experience.

Improvement proposals to the system

Since we model an existing system, the application of conceptual modelling prin-
ciples and an accurate development of the conceptual schema by testing may reveal
improvement proposals to the system which may be detected at the conceptual
modelling stage. We will define the conceptual schema according to the quality
properties pursued by TDCM and we will keep track of the differences between the
schema and the real system in order to propose improvements.

1.6. Methodology

The definition of the final conceptual schema, has followed different consecutive
steps. These steps, would ideally be non-overlapping, but when the need arose some
minor transgressions where made. All in all, the order, which is coherent with the
Test-Driven Conceptual Modelling (TDCM) philosophy, could be resumed in this
way:

1. Acquisition of knowledge of the system (Remember the Milk): this would
include experimenting with it as a user, as well as consulting all the available
information and documentation. The main goal in this first step is to discover
all of its capabilities, and what the clients of the system could do and what
could not. We approached this step with a reverse engineering attitude, not
only filling the different fields with expected and unexpected data, but also
trying exhaustively as many functionalities and scenarios as the system offered.

2. Familiarisation with the tools and TDCM: here I would prepare my working
environment to make it a suitable place to run the CSTL processor proto-
type. Furthermore, I would look at available examples of CSTL code and read
the available papers as well, to better comprehend the next steps I would be
applying, according to the TDCM methodology.

3. Formalisation of the general use cases: after having gathered enough knowledge
from the system I proceeded to formalise all its functionalities into use cases.

13

Chapter 1 Introduction

The process was executed in no particular order, as at this point I lacked a
basis solid enough to decide which use cases were more valuable than others.

4. Application of TDCM: the information gathered from the use cases allowed the
definition of a test strategy in order to maximise the overall value at any point
in the iterative process, according to the Kano model5. This phase includes
the following activities :

a) Writing up the test stories: in this first step, the most important stories
not yet tested, are written. They are meant to cover every aspect of the
use case from the point of view of all the stakeholders. They will be used
as a generalisation which their satisfaction would warrant the correct-
ness and completeness of the whole use case. Therefore, exhaustivity is
especially important at this point.

b) Encode the CSTL tests: for each selected use case from the previous step,
every test story is chosen and translated into the CSTL language.

c) Construction and refinement of the schema: A further smaller scale iter-
ative process is started for each use case.

i. Execution of the tests. If they are all correct, continue outside the
loop.

ii. Modification of the conceptual schema. According to the messages
add relationships between classes, attributes, add invariants, modify
postconditions, etc. via the USE language.

iii. Modification of the methods file. Update the actions the use case is
expected to do to leave the knowledge base in a consistent state.

iv. Repetition. Return to the step i.

d) Conceptual schema refactoring: once this iteration is finished, the con-
ceptual schema is analysed to see if there are some modifications that
could improve its quality. If so, the schema is rectified accordingly. To
ensure there is no unexpected behaviour derived from the modifications
and the schema is still valid, the execution continues from step i once
again. The schema is opened using the USEx tool, which permits its
visualisation straight from the code version.

5. Utilisation of the schema: once the schema is finished and completed it can
be utilised in further steps on the software engineering process. In our case
however, it is only published in this document.

5More information in section 6.4

14

1.7 Document structure

1.7. Document structure

A short summary of the different chapters that constitute this document is presented
below.

Part I: Introduction and Background

Chapter 2 Background: The background presents and expands some of the con-
cepts that are used as a basis to build this project on.

Chapter 3 Research approach: This chapter describes the research approach, mak-
ing emphasis on why this project is both relevant and rigorous.

Part II: Case study

Chapter 4 Use cases: The use cases correspond to all the functionalities that make
up the system, written in a general technology-independent form, as user sys-
tem interactions specified in natural language.

Chapter 5 Test stories: The test stories represent the expected scenarios that should
be feasible if the conceptual schema specifies the correct and relevant knowl-
edge.

Chapter 6 Testing strategy: This chapter argues why a testing strategy is impor-
tant in the context of TDCM and which model we are using to prioritise the
tests. It also shows the dependencies between use cases, the approach we take
at prioritisation and the final subsets of use cases and their testing order.

Chapter 7 Application of TDCM: The application of the TDCM includes the pro-
gressive translation of the test stories in natural language to Conceptual Schema
Testing Language (CSTL) and its execution according to the testing strategy
and the TDCM method. The writing of the UML conceptual schema, its re-
strictions in OCL and the methods to implement the functions necessary to
pass the tests.

Part III: Results

Chapter 8 Conceptual schema: In this chapter we present the resulting concep-
tual schema of the Remember the Milk (RTM) system, which has been ob-
tained from the application of TDCM.

Chapter 9 Lessons learnt: In this chapter we report the pros and cons of TDCM
learnt from the practical application and RTM’s perceived errors and possible
enhancements that may be suggested to its community.

15

Chapter 1 Introduction

Chapter 10 Conclusions and further work: The project objectives are revisited,
the results are summarised and further work is proposed to continue research-
ing along the lines of this work.

Part IV: Appendixes and Bibliography

16

2. Background

2.1. Overview

The aim of this chapter is to deepen the notions that were already hinted in sec. 1.2
. The most relevant terms and facts about conceptual modelling are reviewed.
This includes what is understood as conceptual schema quality and how automatic
testings can contribute to its validation. There we also justify the necessity principle

of conceptual schemas[16] that requires the definition of a conceptual schema for any
possible information system. At sec. 2.3 we define what a task management system is
and why we chose the Remember the Milk (RTM) system over all other candidates.

2.2. Conceptual modelling

2.2.1. Information systems

In the definition of conceptual modelling at sec. 1.2 we talked about the development
of information systems.
The term is defined as follows[17] :

Information systems are implemented within an organization for the
purpose of improving the effectiveness and efficiency of that organiza-
tion. Capabilities of the information system and characteristics of the
organization, its work systems, its people, and its development and im-
plementation methodologies together determine the extent to which that
purpose is achieved.

The above definition, talks about the reason to be of an information system. It talks
about the capabilities influencing the degree of achievement of its goals, which might
be varied according to the necessities it has to fulfill. Nevertheless, in reference to
its characteristics, we can identify at least three main common functions that all
information systems must typically implement[15], which are:
Memory: To maintain a consistent representation of the state of a domain.
Informative: To provide information about the state of a domain.
Active: To perform actions that change the state of a domain.

17

Chapter 2 Background

An information system not only stores but also interprets the information (as inputs)
it deals with and updates (as outputs). This information corresponds with the
knowledge of the specific domain the system is suited for.

2.2.1.1. Domain

The domain is the world the information system knows and where all its reality
takes place. It is a set of real objects (not a representation of them) with all their
relationships. To most information systems, the domain is simply the organization
that holds them, but it could be almost everything, ranging from a vehicle and its
environment to something as abstract as a chess game.

2.2.1.2. Information base

The concept of domain and information base is quite close, but should not be con-
fused. The main difference between them is that the information base is the repre-
sentation of the entities of a specific domain, the relationships between these entities
and their type classification. Being a representation, means that the information
base does not exist physically. Therefore it is only an abstract description that
illustrates a concrete domain state.

2.2.1.3. Conceptual schema

One definition of the term could be[16] :
A conceptual schema defines the general knowledge required by an

information system to perform its functions.
Hence, a conceptual schema could be understood as a metadomain. It describes
the concepts utilised to describe a concrete domain. Those concepts are the result
of the creation of a human mind (the group of engineers that envision the system)
and allow the classification of the objects and their real relationships. This means
that for a specific domain there might be different valid conceptual schemas that
represent their knowledge. In the next subsection, when we talk about conceptual
schema quality, we will see this in more detail.
In the scope of a concrete information system, its conceptual schema describes and
defines only the knowledge subset of concepts (and their constraints) from its domain
that are relevant to its functions and which are represented within that information
system.

2.2.1.4. The conceptual model

What we understand as a conceptual model is how a domain is modelled (concep-
tualised). The assumption that this conceptualisation of a domain is formed by

18

2.2 Conceptual modelling

entities and their relationships, is one possible way to approach it. Another valid
way for the same domain, might be to conceive and model it as a set of facts and
logical propositions.

The term conceptual model is used quite flexibly -sometimes not as consistently as
one would desire- as a synonym of conceptual schema. Another common usage of it
is to refer to the sum of the conceptual schema plus the information base.

In order to express a conceptual schema, a formal modelling language needs to be
defined. The Unified Modelling Language (UML) from OMG1first developed in 1997
has been chosen for this task in this project, but because it is so extensive, only the
subset concerning class diagrams and the Object Constraint Language (OCL) will
be used.

The decision to choose UML was taken for its many advantages. In the first place,
it has long been the industry standard. It is actively used and supported by many
of the current leading software companies. Furthermore, because it is a language
specifically designed for this task, it covers all the different stages from stakeholder
interaction with the system, to the final class layout design, obviously going through
the conceptual schema which it is perfectly suited to define. This means that if the
resulting schema was to be implemented, it would be readily available to be used in
the following steps, like design.

2.2.2. Quality in conceptual schemas

Revisiting the definition given at sec. 1.2.2, we saw that according to the conceptual
modelling quality framework proposed[13], a conceptual schema of an information
system has semantic quality when it is valid and complete, meaning validity that
the schema is correct and relevant.

An expanded vision of the quality of a conceptual schema, would be the degree in
which it has some specific properties that let it accomplish its functions effectively[13].
These characteristics can be described as :

Completeness: a conceptual schema must know all the aspects of the domain it
describes that are relevant for the information system. As long as there is
some knowledge not described in the conceptual schema, the corresponding
information system will not be able to function properly.

Correctness: the knowledge a conceptual schema defines must be true and relevant
to the functions the system has to carry out.

Relevance : the knowledge a conceptual schema defines is necessary for the system.
1Object Management Group, a consortium founded in 1989, originally aimed at setting standards

for distributed object-oriented systems, and now focused on modelling (programs, systems and
business processes) and model-based standards.

19

Chapter 2 Background

Syntactic correctness: a conceptual schema must not violate any of the rules of
the language used to represent it.

Understandability: all the actors affected by a conceptual schema, must be able to
correctly understand the part of it that is relevant for them.

Simplicity: this characteristic is linked in a way with understandability. Those
conceptual schemas that express the same knowledge using less constructions
or simpler ones are preferable, because they tend to be more comprehensible.

Conceptualisation principle[7]: a conceptual schema should only include concep-
tually relevant aspects, both static and dynamic, of the universe of discourse
(UoD2), thus excluding all aspects of (external or internal) data represent-
ation, physical data organisation and access as well as aspects of particular
external user representation such as message formats, data structures, etc.”

The specification of an executable conceptual schema, makes the validation of syn-
tactic correctness possible. Thus, giving the capability of execution to a conceptual
schema is not only a necessary step towards the application of the TDCM, but
it can also be seen as a goal by itself, as it helps achieving an overall conceptual
schema quality. On the other hand, the execution of automatic tests in the context
of TDCM seeks the validation of the completeness and correctness properties. These
and other aspects will be discussed further at chapter 7.

2.2.3. Principle of necessity

This principle is succinctly announced as [16]:
To develop an information system it is necessary to define its concep-

tual schema.
Small systems might not strictly require its conceptual schema to be formally defined,
but in any case it must exist, even if it is only on the mind of the developer. The
non-existence of the conceptual schema is not conceivable, because any operation
an information system performs has to be defined at least in a way that determines
which is the outcome of it, and what it has to do with its parameters.
An analogy of this principle with that of other engineering or technical fields, would
be the fact that any building or piece of machinery needs a blueprint or some form of
schematics. Even if they are not always are written down, engineers must envision
the end result and its parts in order to proceed, so in a way, the schematics still
exist, even if not physically but in the mind of them.
Having reached the conclusion that every system needs a conceptual schema, the
most reasonable next step would be to write it down, preferably formalised. Making
the schema explicit forces the engineer/s to analyse it more thoroughly and therefore

2i.e. domain

20

2.3 Task management systems

increase the confidence that the representation is solid and what was sought. It is
also desirable because it can be used in the context of Requirements Engineering
(RE) to ensure all stakeholders have their needs met. Future users need to know
what the system will offer them and transmit the developers their expectations so it
can be negotiated the features the system will present in a clear and concise manner.
Furthermore, it avoids potential misunderstandings, being every relationship fixed,
and it keeps on sight all the interactions between the main entities.

2.3. Task management systems

2.3.1. Characteristics

Current task management systems, can be understood as evolved and more complex
versions of time management systems, which at the same time are successors of
the simple pen and paper to-do lists and agendas. Their aim, like its physical
counterparts, is to help the user better organize his/her tasks, in a way no one is
forgotten. It can also provide some further valuable information whose objective is to
save time by having information handy like notes and contact details. Those systems
however, typically go beyond the traditional functionalities, by letting the tasks be
shared or assigned among contacts, be prioritized or even by sending customisable
periodic reminders.
Their chronological evolution, along with the expanding number of typical function-
alities was resumed as follows [6] :
First generation: reminders based on clocks and watches, but with computer im-

plementation possible; can be used to alert a person when a task is to be
done.

Second generation: planning and preparation based on calendar and appointment
books; includes setting goals.

Third generation: planning, prioritising, controlling (using a personal organiser,
other paper-based objects, or computer or PDA-based systems) activities on
a daily basis. This approach implies spending some time in clarifying values
and priorities.

Forth generation: being efficient and proactive using any of the above tools; places
goals and roles as the controlling element of the system and favours importance
over urgency.

2.3.2. Our case study: Remember the Milk

The task/time management system we have chosen to study for this project is RTM.
After some years, it is still very relevant in its segment today and it is a decent
standpoint to compare any competitors in the market.

21

Chapter 2 Background

Some of the reasons that led us into choosing it are:
Long experience in the field: the development of this product dates from August

2004 and it launched on October of 2005.
Proven relevance: as of November 2011 it has more than 3.1 million users.
Potential: it has shown a steady growth over time, from 2 million users as of April

2011 to 2.5 million as of July 2011 to 3.1 million as of November 2011.
Cloud-based: it is hosted on the web, accessible anywhere at any time, it does

not need any installation and it brings all the other advantages typical from
cloud-based software.

Rich feature set: even having a straightforward interface and simplistic nature, the
system provides a wide enough set of features that can make up for a good
amount of different use cases.

Available for free: meaning that everyone can try it out without the need to spend
any money to verify the results of the project, or the functionalities of each
use case.

Previous knowledge: we had previously worked with this system, and we knew it
would be suitable for the project.

22

3. Research approach

3.1. Overview

This chapter aims to explain how the research was approached. In section 3.2 we
talk about the specific methodology used, how it works, why it was chosen and how
their goals are achieved in the project’s context. At section 3.3 we summarise how
the project was conceived and divided into stages from the very beginning.

3.2. Design science research

The Design Science Research[9](DSR) is the framework of the research that we will
use along all the project.

3.2.1. Definition

The DSR, besides being proposed somewhat recently (2004), it is a widely used
research approach spanning hundreds of papers and articles. The DSR is a problem-
solving paradigm based on the creation and evaluation of artifacts intended to gain
knowledge about a problem domain in order to propose a solution for some identified
organisational problems. In other words, we could define its core mission as the
development of general knowledge which can be used by professionals in the field in
question to design solutions to their specific problems. Figure 3.1 illustrates it.
There are also seven guidelines proposed to drive Design Science Research[9] (listed
alphabetically) :
Communication of research: Design-science research must be presented effectively

both to technology-oriented as well as management-oriented audiences.
Design as a search process: The search for an effective artifact requires utilising

available means to reach desired ends while satisfying laws in the problem
environment.

Design as an artifact: Design-science research must produce a viable artifact in
the form of a construct, a model, a method, or an instantiation.

Design evaluation: The utility, quality, and efficacy of a design artifact must be
rigorously demonstrated via well-executed evaluation methods.

23

Chapter 3 Research approach

Figure 3.1.: Information Systems Research Framework [9]

Problem relevance: The objective of design-science research is to develop technology-
based solutions to important and relevant business problems.

Research contributions: Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact, design foundations,
and/or design methodologies.

Research rigour: Design-science research relies upon the application of rigorous
methods in both the construction and evaluation of the design artifact.

3.2.2. Application

Having described what the DSR consists on, we are ready to state the contributions
of this project in its context. In order to do so, we will use the recommended
guidelines to support and explain to which degree they are fulfilled. Because the
order is irrelevant, they are dealt alphabetically.
Communication of research: The language of this project has been English be-

cause traditionally it is by far the most popular language for the research
topics on Computer Science and Software Engineering. This project will be
made publicly available free of charge to anyone according to the guidelines

24

3.3 Project management plan

and policies of the Barcelona Faculty of Informatics (FIB) at Biblioteca Rec-
tor Gabriel Ferraté (BRGF) library. It will also be given to the Department
of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU) where they will be able to made it publicly
available to any of their many libraries. Furthermore, I will fully grant my
authorship rights to Albert Tort so he may publish it in his web portal about
Test-Driven Conceptual Modelling (TDCM) along the other related works.

Design as a search process: The TDCM architecture is iterative, so in order to
build the main artifact (Remember the Milk’s (RTM) conceptual schema), we
incrementally built it (chapter 6 and chapter 7) and analysed its results each
step to obtain the necessary feedback to drive the research process and verify
its progress.

Design as an artifact: This project contributes to the revision and enhancement
of TDCM and the Conceptual Schema Testing Language (CSTL) Processor
prototype (chapter 10). Complementary artifacts would be the RTM concep-
tual schema (chapter 8) formally presented as a Unified Modelling Language
(UML) + Object Constraint Language (OCL) class diagram and its represen-
tation, its functions and tests written in CSTL (chapter 7).

Design evaluation: The work is evaluated with the resulting artifacts. The con-
ceptual schema (chapter 8) is proven to be functionally equivalent to that of
the RTM system, thus proving the TDCM a feasible methodology.

Problem relevance: Conceptual schema validation (the original problem that TDCM
addresses) in Information Systems development is a common present-day prob-
lem.

Research contributions: Some preliminary experiences have been conducted by ap-
plying conceptual schema testing and TDCM. These experiences need to be
extended with more experimentation in real-sized systems. This project con-
tributes to TDCM experimentation with the development of the conceptual
schema of a well known task management system.

Research rigour: The contributions of this project are based both on long proven
approaches (e.g. the Kano model sec. 6.4) and on the state of the art related
to conceptual schema validation by testing (chapter 7).

3.3. Project management plan

Along the duration of the project, weekly and bimonthly meetings were arranged
between the author and the directors in order to keep track of the progress and to
make some calendar adjustments when required. Prior to the thesis’ initial phase,
some milestones were discussed and agreed upon between both parties.
The resulting stages, were very similar to those seen in section 1.6, plus two consec-
utive more, which are presented here.

25

Chapter 3 Research approach

Analysis of results

This stage consisted on the elaboration of conclusions upon the results obtained
through TDCM experimentation. Another task was to think of further rigorous and
relevant work which could continue from where this project left.

Documentation

Writing and editing this document to its final form, while drawing figures and looking
for appropriate bibliography, was the main concern of this stage. However, it was
discussed that if there was to be an oral defence or presentation, it could have been
interesting for at least one of each type of scenario to use video with actual footage
from RTM. These visual aids would showcase the real system’s use cases steps being
"executed" as a support for the CSTL test code.

26

Part II.

Case study

27

4. Use cases

4.1. Overview

The Remember the Milk (RTM) system is by far too complex to be analysed as
a single entity. One sensible solution to this problem that naturally arises, is to
split it into smaller independent parts. Ideally, these reduced set of parts which
constitute the system, each provide a coherent set of functionalities in a controlled
environment. This is the context where different actors (stakeholders) interact with
them, usually to achieve some specific business goals. Each of these functionalities is
what a use case represents, and this is why we are going to use them in the context
of this project.
This chapter aims to show the 65 use cases that form the RTM system. In section 4.2
we talk about what a use case is and which elements constitute it. In section 7.4
we talk about the possible differences between the real life RTM’s system use cases
and the ones written in this project. We also delve into the motivation behind this
differences. At section 4.4 we offer a sample use case definition template where we
describe its elements and parts. Finally, at section 4.5, we define the system’s use
cases with the previously shown template.

4.2. Definition

A short description of the term would be [16]:
A use case is a set of actions performed by a system which yields an

observable result that is typically of value for one or more actors of the
system.

Now that we know what a use case it is, we need to justify why they are needed.
Again, we can see that use cases address a real problem through this concise defin-
ition [16]:

The functionality provided by an information system is too large to
be analysed as a single unit. We need a means of partitioning that
functionality into smaller, more manageable pieces. The concept of a
use case is very useful for this purpose.

Its purpose, which could be inferred from the above definition, would be [16]:
Use cases define the functionality provided by an information system.

29

Chapter 4 Use cases

4.2.1. Elements

Now that we know the meaning of a use case, we are ready to discuss its necessary
elements. The bare minimum are actors and name, and all use cases must have
at least these. The other elements may be present or not, but a lot of them are
common and certainly useful. The following list is not meant to be extensive, but
to cover the most habitual ones.

4.2.1.1. Actors

Resorting again to Olivé’s definition[16] :
In the field of information systems, an actor is a role played by a

physical entity that interacts with an information system. The physical
entity may be a person, an organisation, or another system. A single
physical entity may play any number of different roles in the same system
and, conversely, a given actor can be played by several different entities.

Furthermore, roles can be conceived into belonging to hierarchies. This would mean
that some of them could be understood as more specialised or more generic versions
of others. The implications this would have is that different more specific roles could
still represent its “parent” role in a use case, thus avoiding the redundancy (a known
anti-pattern) of having to create some virtually exact use cases in many different
situations.
In the more specific context of use cases, an actor is some entity that has a direct
involvement in the execution of that use case. Each use case must have at least
one of what is known as a primary actor. What makes this actor special from the
others, is that this one has at least a goal which can be satisfied by its execution.
The primary actor is also usually the one who initiates the interaction with the
system.

4.2.1.2. Name

Every use case must have a unique name that identifies it. Ideally, this name should
be a description of what are the actions that take place during the said use case
and/or what is its aim and what is it going to be achieved in the point of view of
its primary actor. It is also preferable, in order to have a good legibility, to choose
short use case names over long ones.

4.2.1.3. Preconditions

Preconditions are statements made that are assumed true at the beginning of the use
case. No use case can be executed if their preconditions are not met, as it could not

30

4.2 Definition

guarantee that its behaviour would be the one described. In any case, preconditions
should respond to situations that would not make sense in any use case scenario.
Other situations that could lead to error but their occurrence is plausible, should
be taken into account, for example with addition of use case extensions.

4.2.1.4. Trigger

Its function is defined as [16]:
The trigger section describes the starting condition that causes the

initiation of the use case.

4.2.1.5. Main success scenario

According to [16]:
The main success scenario describes the basic flow of a successful scen-

ario. It is written as a sequence of action steps, but the steps can be
executed in parallel or in a different order or can even be repeated. It is
recommended that the steps should be numbered. An action step may
be an interaction between two actors; a validation, performed usually by
the system; or an internal state change.

In our case study, however, we are somewhat more strict in its properties, to keep
the things simple for the reader. Each of the steps of our main scenarios are meant
to be executed sequentially, in the written order and without any repetitions. They
are also numbered, as recommended.

4.2.1.6. Extensions

From [16]:
The extensions section defines alternate flows when some condition is

satisfied. An extension is related to an action step of the main success
scenario, and has two parts: a condition and a sequence of action steps.
An extension can be seen as a miniature use case that may be triggered
when the main success scenario is at the step indicated and the condition
is satisfied. At the end of the extension, by default the scenario merges
back with the main scenario, but it can end with the failure of the whole
use case.

4.2.2. Interactions

Basically, any use case can interact with any other number of use cases in three
different ways. Those ways have the names of inclusions, extensions and specialisa-

31

Chapter 4 Use cases

tion/generalisation. In this project we will only be using inclusions and this is why
we will not explain the other ones.
They have been defined as[16]:

An include relationship from a base use case to an inclusion use case
means that the behaviour defined in the inclusion use case is included in
the behaviour of the base use case. This is useful for extracting common
behaviours from several use cases into a single description.

4.3. Limitations

4.3.1. Scope

One of the main limitations on this project related to use cases has been its scope.
Many of the 65 RTM’s use cases design decisions could be explained in a high
degree of detail, because there has been a lot of thought and effort put into them.
Unfortunately, this would make for a much more lengthy document, certainly more
than it would be reasonable in the context of a 30 ECTS credits project. This is
why most of the use cases’ specification will be presented in Appendix A without
any additional explanation besides themselves.

4.3.2. Existing system

As has been discussed earlier, the starting point for the conceptual schema is a
system that already exists. This means that some decisions, if we are to proceed
with a reverse engineering approach, whether we like it or not, have been taken
beforehand. This decisions, in some cases, may somehow limit the liberty of action
of the author of this text and led to suboptimal solutions in order to make the
specification of the system compliant with the one it represents (RTM).
One such example would be, in the context of contacts and groups section A.5, the
logical possibility of updating them, following the standard Create, Read, Update
and Delete (CRUD) philosophy. For example, an end-user might want to add (and
consequently update) some information regarding one of his/her groups of contacts
besides its members or related to its tasks. One such piece of useful information
would be the name of the mailing list for that group. But because in the RTM system
this functionality is not taken into account, we can not include it in the specification
as it would mean modifying too significantly the offered functionalities.
On other cases, however, when the missing information or behaviour would lead to
an erroneous state and/or does not imply modifying substantially, corrections have
been made. One such example would be introduced data validation, which is not
applied in some needed cases in the RTM system. Again this fact is more visible
and further discussed in chapter 5 and chapter 7 .

32

4.4 Template

4.3.3. Technology independence

In the context of this project, we focus on the specification of essential use cases.
Essential use cases are technology-free and implementation-independent,

keeping the interface out and focusing on the actor’s intent. [16]
The main reason for this, is because we do not want to bind the system to any specific
technology before building it. This would be unnecessarily limiting its reengineering
potential and preventing some of the most important benefits of reverse engineering.
This fact may make some concrete use cases look as if they did not correspond
exactly with the RTM functionality they represent. In those cases, is because the
use case specified here is more generic, and hence it represents the RTM way of
accomplishing together some possible additional ones.

4.4. Template

In this section, we are showing how does the use case template we will be seeing in
the next section looks like.

Use case name

Scope: the scope of the use case, in this project the RTM system.
Primary actor: the use case’s primary actor, in most cases a end-user.
Preconditions: here preconditions necessary for use case execution will be stated,

together with information to other sources when needed.
Includes: here the other included use cases will be linked. In most cases there will

not be any.
Trigger: the action that marks the beginning of the use case.
Main success scenario: an ordered list of the use case steps is shown for the most

usual scenario where the primary actor goal is achieved.
Extensions: in case they exist, they mark alternative paths for the main success

scenario. They are written in a way that their step number is the same as the
one from the main success scenario they replace. At this point, the alternative
scenario is executed because the conditions are suitable for it and not for the
main scenario. The main scenario stops executing at that numbered instruc-
tion and instead the first instruction from the alternate scenario is executed.
The next instruction, in case it exists, is the consecutive one from the follow-
ing scenario, and its subsequent until the alternate scenario is over. Once it is
over, if it is not made explicit the end of the use case or the return to a specific
position from the main scenario, by default the execution will continue from
the place on the main scenario it jumped to the alternate one.

33

Chapter 4 Use cases

4.5. RTM use case specification

In this section, we use an example of the full specification of a relevant use case of
RTM. The template used is the one seen in sec. 4.4 . In this project we specified 65
use cases whose specification is available in Appendix A.

4.5.1. Update priority from a task

4.5.1.1. Use case specification

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to change the priority from an existing task.
Main success scenario:

1. The actor reads a task1.
2. The actor indicates the system that he/she wants to modify the priority of

task he/she has read in the previous step.
3. The system provides the actor with a representation (e.g. a list or a colour

schema) which contains all possible priorities, modifications and the current
value.

4. The actor selects one priority from the representation.
5. The system temporarily sets the task’s priority to the chosen level.
6. The system validates the introduced data.
7. The system sets a priority for the task according to the temporary value.
8. The system notifies the actor that the task’s priority has been successfully

updated.

Extensions:

4a. The actor wants to increase the current priority of the task:
1. The actor indicates the system that he/she wants to increase the priority of

the task.
2. The system temporarily increments the task’s priority by one level.

1See sec. A.1.2

34

4.5 RTM use case specification

3. The execution returns to item 6 of the main success scenario.
4b. The actor wants to decrease the current priority of the task:

1. The actor indicates the system that he/she wants to decrease the priority of
the task.

2. The system temporarily decrements the task’s priority by one level.
3. The execution returns to item 6 of the main success scenario.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

4.5.1.2. Additional notes

One detail distinctive of this use case is its two extension points on step 4. This is
because the update of a priority, in the context of RTM could really be understood
as three different use cases. Those would be Increase priority, Decrease priority and
Replace priority, whose names are quite self-explanatory. But because conceptually
they are all very close (they are updating the priority) and we want to avoid unnec-
essary code repetition and use case cluttering, we decided to combine them together
in one single more general use case.
Differences in the user interface or in the technology for this very same use case can
be better seen in subsection 5.5.1, but here they are already hinted. For example, in
item 3, we can see how we do not address priority level in one specific magnitude. At
this stage we leave it open to different implementations, which might seem obvious
once seen, but they tend not always to be considered. In this situation, one priority
level could be represented simply as numbers (RTM choice), but also other valid
representations could be colours, or even categories like “High”, “Medium” or “Low”
(probably implemented as an enumeration type) and so on.
We also see that it includes one other use case case. This means that its functionality
is already partially implemented in another use case, and that its completion must
precede the implementation of this one, as there is a dependance relationship. This
way, in the long term, we will avoid code repetition which in turn will diminish the
effort put into code maintenance, both good practices
Another dependance, even if it is not present as an inclusion, would be the sec. A.2.2
log in use case. This is because the precondition for this use case execution is to have
the main actor logged in. This means that this other use case must be implemented
as well before this one.

35

5. Test stories

5.1. Overview

The aim of this chapter is to describe what a test story is and which ones we decided
to create. In section 5.2 we explain what a test story is about, which includes its
purpose and its context. In section 5.3 we talk about the limitations the test story
approach has and how they affect the Remember the Milk’s (RTM) system use cases.
In section 5.4 we analyse which are the dependencies of each use case the RTM
system has, and what this has to do with the test stories. Finally, in section 5.5, we
define the test stories that we are using to test the use cases defined in Appendix A.

5.2. Definition

In our context, test stories can be seen as representations of specific use case scenar-
ios, which would represent normal real-life usage of the system. The particularity
about them, is that they are written in a way to accomplish at least one single test
objective. These objectives, are the main purpose of test stories. They typically are
the complete execution of a use case scenario from its beginning to its end. This
could be either the main success scenario or any of its possible extensions
One characteristic of these test objectives is that, ideally, they are non-overlapping
with the goals from other test stories. This is because, if we are confident that a
test story faithfully represents its objective, it would just be redundant, and hence
undesirable and inefficient to test it again with another story. Because there can be
dependencies over use cases, as seen in sec. 5.4, some test stories simply need that
other ones are verified before, as they build upon. This fact makes necessary a test
strategy (chapter 6), to have a balanced workload regarding the number of written
tests, their value and the effort put.

5.3. Limitations

Some of the limitations of this section may not be dissimilar to those found in sec. 7.4.
After all, the project scope and the system’s conceptual schema to be elaborated are
the same, and the test-story stage is strongly linked to that of use case specification.
We refer them in the next subsections.

37

Chapter 5 Test stories

5.3.1. Scope

Similarly to what happened with use case specification, one of the main limitations
of this project in relation with test stories has been its scope. We said before that
the RTM system has many use cases (65). This is even more true with the test
stories, as each use case typically makes for at least two of them. They could all
be analysed in detail, and explain the decisions that make each of them suitable
for their objectives, but unfortunately, this would make for a much more lengthy
document, surpassing what would be reasonable for a single semester project. This
is why most of the test stories are presented in Appendix B without any additional
explanation besides themselves, even if they have been carefully crafted as to cover
all the reasonable scenarios.

5.3.2. Interface

These test-stories are meant to be representations of real life usage by end-users.
As such, some form of interface must be provided or assumed, as end-users would
need one in order to interact with the final system. In some cases, this interface is
not somehow compatible with the more general technology independent approach
made in the previous chapter. When this situation occurs, the chosen interface will
be the one closest to the original RTM system, because after all we are modelling
the schema after it.

5.3.3. Completeness

There are some extensions belonging to specified use cases that are rather open-
ended. The most obvious example for this, are those extensions that have to deal
with errors and validation of input. It is clear that one single test story can not
possibly test all the different errors. It is also not reasonable for one single test story
to test all of the different types of errors either. In this situation, probably a test
story should be written representative for each validation type error. Because we
are somehow already limited in the length of this document, we will not be testing
exhaustively all possible input errors, but just some of them. In any case we will
still hold the premise that each possible use case extension should be covered at
least by one test story.

5.4. RTM story dependencies

The testing strategy we define in chapter 6 requires analysing the dependencies
between the defined stories.

38

5.4 RTM story dependencies

5.4.1. Context

5.4.1.1. Definition

In our context, we say that one use case is dependant on another one, when the first
use case needs partially or totally the functionality of the second one in order to
successfully execute all its possible scenarios. Hence, story dependencies are based
on use case dependencies as well. A test story is dependant on another one when it
has event occurrences which are the main test objective of another test story.

5.4.1.2. Motivation

We have seen along the specification in sec. 4.5 that the number of unique use cases
the system consists on is 65. In this section we are going to show that most of these
use cases have numerous dependencies. We are also going to reveal which are those
dependencies they have on an individual basis.

Despite the information presented in this section should not be novel to the reader
(i.e. it is already implicit in the use cases themselves), we think it is noteworthy
because it helps to understand the system as a whole and grasp its internal re-
lations and dependencies in a straightforward manner. High dimensionality along
with the inconvenience of having to manually examine each of the individual use
case’s possible scenarios and the fact that some dependencies are non-obvious, could
hinder the overall understanding or at least deter the needed insight to visualise the
dependencies.

5.4.1.3. Graphical representation

The use cases dependencies are presented here in the form of directed graphs. These
are the parts that constitute them :

1. Nodes: each node represents a single use case. The name on a node is usually
the same one as its use case or a close abbreviation. Depending on their colour,
each node has additional meaning:

a) White: these nodes represent the use cases belonging to the thematic
grouping being analysed. Each thematic grouping is announced in the
figure name.

b) Dark gray: these nodes represent the use cases that other white nodes
depend upon. The main difference between white nodes that also have
dependant use cases and dark gray ones, is that the later would not belong
to the thematic grouping, and are just added because they are needed
despite being from different groupings.

39

Chapter 5 Test stories

2. Edges: each edge going from one node to another node represents that the
first use case has at least one dependency with the second one. We can also
notice that there are no mutually dependant use cases, so each edge has one
and only one arrow end. Similarly to what happened with nodes, each colour
brings additional meaning.

a) Light gray: these edges represent some of the dependencies that nodes
outside the thematic grouping have with other nodes.

b) Dark gray: these edges represent the dependencies that dark gray nodes
have with other nodes.

c) Black: these edges represent the dependencies that white nodes have with
other nodes.

3. Groups of nodes: to make it easier to discern, nodes have been grouped into
“boxes” which contain a small subset of highly cohesive nodes. This further
layer of abstraction should help visualisation and accentuate particular existent
relationships between nodes. They also have different colour representations :

a) Light gray: they represent the thematic grouping.
b) Dark gray: they represent clusters of nodes that are highly cohesive.

They also have a tag on them to make this relation more evident.

In order to improve the graph’s readability, some of the nodes that depart or arrive
at the same node have been simplified and unified. In some cases, this makes only
one edge colour visible, but it should not seriously affect the overall understanding.

5.4.2. Groupings nomenclature

In the following list, the chosen nomenclature is explained for each of the groupings.
The order in which the following groupings are presented is arbitrary.

CRUD task: Stands for Create, Read, Update and Delete a task. It includes those
4 use cases.

Share/send task & contacts: It makes reference to all use cases involved in sharing
and sending a task to contacts.

Share/send task & groups: It makes reference to all use cases involved in sharing
and sending a task to groups.

Show tasks: It only involves the use case this very same name.
CRUD note: Stands for Create, Read, Update and Delete a note from a task. It

includes those 4 use cases with equivalent functionalities.
Task completion: It makes reference to all use cases involved in completing and

uncompleting a task.

40

5.4 RTM story dependencies

Postpone task: It only involves the use case this very same name.

Duplicate task: It only involves the use case this very same name.

CRUD priority: Stands for Create, Read, Update and Delete a priority from a task.
It includes those 3 use cases with equivalent functionalities.

CRUD account: Stands for Create, Read, Update and Delete an account. It in-
cludes those 4 use cases with equivalent functionalities and also the use cases
related to logging in and out of an account.

CRUD reminder: Stands for Create, Read, Update and Delete a reminder schedule.
It includes those 4 use cases and also the use case related to sending reminders.

CRUD list: Stands for Create, Read, Update and Delete a list of tasks. It includes
those 4 use cases with equivalent functionalities and also the use case related
to moving tasks to a list.

Default list: It makes reference to all use cases involved in setting and unsetting a
default list.

Share/publish list & contacts: It makes reference to all use cases involved in shar-
ing and publishing a list for contacts.

Share/publish list & groups: It makes reference to all use cases involved in sharing
and publishing a list for groups.

Publish list_anyone: It makes reference to all use cases involved in the publication
and unpublication of a list to anyone.

Archive list: It makes reference to all use cases involved in archiving and unarchiv-
ing a list.

CRUD contact: Stands for Create, Read, Update and Delete a contact. It includes
those 3 use cases with equivalent functionalities.

CRUD note: Stands for Create, Read, Update and Delete a group of contacts. It
includes those 3 use cases with equivalent functionalities and also the use cases
related to moving a contact to a group.

Weekly planner: It only involves the use case this very same name.

Change schedule: It only involves the use case this very same name.

CRUD location: Stands for Create, Read, Update and Delete a location. It includes
those 4 use cases.

Default location: It makes reference to all use cases involved in setting and unset-
ting a default location.

41

Chapter 5 Test stories

5.4.3. Graphical representation

CRUD task

CRUD noteTask completionCRUD priority Share/send task & contacts Share/send task & groups

Create account

Log into an account

Create group Add contact

Create task

Read taskUpdate task Create note

Read noteUpdate noteDelete note

Complete task Postpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority

Delete task Show tasks

Share task with contacts Send task to contacts Share task with groupsSend task to groups

Log out Update account Delete accountCreate reminder

Read reminder Update reminderDelete reminder Send reminder Change language

Move task to list

Create list

Weekly planner Read list Update list Delete list Set default list

Unset default listRead contact Delete contact

Share list with contacts

Publish list for contacts

Publish list for anyone

Accept shared listReject shared listRead group Delete groupAdd contact to group Remove contact from group Share list with groups Publish list for groups

Archive lists

Unarchive lists

Create location

Read location Update location Delete locationSet default location

Unset default location

Figure 5.1.: Task dependency tree (leftmost part)

CRUD task

CRUD noteTask completionCRUD priority Share/send task & contacts Share/send task & groups

Create account

Log into an account

Create group Add contact Log out Update account Delete accountCreate reminder

Create task

Read reminder Update reminderDelete reminder Send reminder Change language

Move task to list

Create list

Weekly planner Read list Update list Delete list Set default list

Unset default listRead contact Delete contact

Share list with contacts

Publish list for contacts

Publish list for anyone

Accept shared listReject shared listRead group Delete groupAdd contact to group Remove contact from group Share list with groups Publish list for groups

Archive lists

Unarchive lists

Create location

Read location Update location Delete locationSet default location

Unset default location

Read taskUpdate task Create note

Read noteUpdate noteDelete note

Complete task Postpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority

Delete task Show tasks

Share task with contacts Send task to contacts Share task with groupsSend task to groups

Figure 5.2.: Task dependency tree (rightmost part)

5.4.4. Graphical summary

In this section we are presenting with the aid of Fig. 5.9 all the system’s dependencies.
In Figure 5.9 we can see that most of the graph nodes do not precisely match the
name of the specified use cases in section 4.5. This is the case because in order to
provide a better understanding we grouped together use cases that were conceptually
close, linked to one specific functionality. The names used are those mentioned in
subsection 5.4.2.

42

5.4 RTM story dependencies

CRUD account

Create account

Log into account

Update accountDelete accountLog out of account

Figure 5.3.: Account dependency tree

CRUD reminder

Create task

Create account

Log into an account

Delete taskShow tasks Read task Update task

Log out Update account Delete account Create note

Read noteUpdate note Delete note Complete taskPostpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority Change language

Move task to list

Create list

Weekly planner

Read list Update listDelete list Set default list

Unset default list

Add contact

Read contact Delete contact

Share task with contacts Send task to contacts

Share list with contacts Publish list for contacts Publish list for anyone

Accept shared listReject shared listShare task with groups

Create group

Send task to groups

Read group Delete group Add contact to group Remove contact from group Share list with groups Publish list for groups Archive lists

Unarchive listsCreate reminder

Read reminderUpdate reminder Delete reminderSend reminder

Figure 5.4.: Reminder dependency tree

43

Chapter 5 Test stories

CRUD contact CRUD group

Create task

Create account

Log into an account

Delete task Show tasks Read task Update taskLog out Update account Delete account Create note

Read note Update note Delete note

Complete taskPostpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority Change language

Move task to list

Create list

Weekly plannerRead listUpdate listDelete listSet default list

Unset default list Share task with contacts

Add contact

Send task to contacts

Share list with contacts

Publish list for contacts

Publish list for anyone

Accept shared listReject shared list Share task with groups

Create group

Send task to groupsShare list with groups Publish list for groups

Archive lists

Unarchive lists

Create reminder

Read reminder Update reminder Delete reminder Send reminderRead contactDelete contact Read groupDelete groupAdd contact to group Remove contact from group

Figure 5.5.: Contact dependency tree

CRUD location

Default location

Create task

Create account

Log into an account

Delete task Show tasksRead task Update taskLog out Update account Delete account Create note

Read note Update note Delete note

Complete taskPostpone task Duplicate task

Uncomplete task

Set priority

Update priorityDelete priority

Create reminder

Read reminder Update reminder Delete reminderSend reminder Change language

Move task to list

Create list

Weekly planner Read list Update list Delete listSet default list

Unset default list

Add contact

Read contact Delete contactShare task with contacts Send task to contacts Share list with contacts Publish list for contacts Publish list for anyone

Accept shared list Reject shared list

Share task with groups

Create group

Send task to groups Read group Delete groupAdd contact to group Remove contact from group Share list with groups Publish list for groupsArchive lists

Unarchive lists

Create location

Read locationUpdate location Delete location Set default location

Unset default location

Figure 5.6.: Location dependency tree

5.5. RTM Test stories

In this section, we use an example of the full set of test stories of a relevant use case
of RTM, the same from section 4.5. All this project’s test-stories are available in
Appendix B.

44

5.5 RTM Test stories

CRUD location

Default location

Create task

Create account

Log into an account

Delete taskShow tasks Read task Update task

Log out Update account Delete account Create note

Read note Update note Delete note Complete task Postpone taskDuplicate task

Uncomplete task

Set priority

Update priorityDelete priority

Create reminder

Read reminder Update reminder Delete reminderSend reminderMove task to list

Create list

Read list Update list Delete listSet default list

Unset default list

Add contact

Read contact Delete contact

Share task with contacts Send task to contacts

Share list with contactsPublish list for contactsPublish list for anyone

Accept shared listReject shared listShare task with groups

Create group

Send task to groups

Read group Delete group Add contact to group Remove contact from groupShare list with groups Publish list for groupsArchive lists

Unarchive lists

Create location

Read locationUpdate location Delete location Set default location

Unset default locationWeekly plannerChange language

Figure 5.7.: Planner and language dependency tree

5.5.1. Update priority from a task

5.5.1.1. Test story 1: Modification of a priority from a task

Test objective: Update a priority from a task (Main success scenario sec. 4.5.1.1).

Alice wants to update the priority from a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.

The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.

Alice informs the system that she wants to update the priority of the task. The
system provides her with an interface with the current priority value that she can
modify, along with a caption which instructs the allowed range values. In this case,
the priority is the highest possible, but in case it did not have any assigned one it
would simply be blank.

Alice chooses this time the second highest priority for the task. The system informs
Alice that the priority has been modified successfully for the task “Go to the cinema
with Bob (Saturday evening)”. Now the task has the second highest priority.

45

Chapter 5 Test stories

5.5.1.2. Test story 2: Increasing the priority of a task

Test objective: Increment the current priority of a task (Extension 4a sec. 4.5.1.1).
Alice wants to increment the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to read more information about
it.
The system provides Alice with further information about the task, like a map with
the exact location of the post office and Carol’s contact details.
Alice informs the system that she wants to increment the priority from the task.
The system informs Alice that the priority has been incremented successfully for the
task “Go to the post office to send a package to Carol (Monday morning)” and now
the task has one level above standard priority, because it did not have any priority
assigned before.

5.5.1.3. Test story 3: Decreasing the priority of a task

Test objective: Decrement the current priority of a task (Extension 4b sec. 4.5.1.1).
Alice wants to decrement the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to decrement the priority from the task.
The system informs Alice that the priority has been decremented successfully for
the task “Go to the cinema with Bob (Saturday evening)”. Now the task has the
second highest priority.

5.5.1.4. Test story 4: Failed update of a priority (priority out of bounds)

Test objective: Attempt to increment a priority from a task which was already set
as the highest priority (Extension 6a + Extension 4a sec. 4.5.1.1).

46

5.5 RTM Test stories

Alice wants to increment the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to increment the priority from the task.
The system informs Alice that the priority can not be incremented because the task
“Go to the cinema with Bob (Saturday evening)” already had the highest possible
priority.

5.5.1.5. Additional notes

These test stories represent each of the different possible scenarios that belong to
the use case in sec. 4.5.1.1 . The three first stories completely cover the main success
scenario, and both extensions 4a and 4b. The extension 6a, even if it is already
covered with one test story, it might prove not be enough to guarantee its validity,
because it is so open-ended. With this test story, we validate that the use case can
detect anomalous states, but not that it can detect them all. The main reason for
this, is that it is not reasonable to take into account every possible error-producing
sequence of actions at this stage. Moreover, some of this invalid states are not known
in advance.
However, this does not mean that any other possible error besides this will not be
detected. To start with, the way the use case and the test stories are built, they hint
a more or less restrictive interface. This interface, for example, already restricts any
user to be able to modify only the priority of his/her own tasks.
In order to keep the test stories short and to the point, we assumed the instantiation
of some classes prior to the story beginning. An example of this would be the tasks
that appear to Alice when she logs into the system. We assumed that these tasks
had been created previously, because it is legitimate. The use case for task creation
sec. A.1.1 is a dependency of the use case for updating the priority of a task sec. 5.5.1,
as can be seen in Fig. 5.1. Therefore, we could simply have added the necessary steps
to create some use cases just after the step where Alice logs in. Nevertheless, we
thought this was just unnecessary.

47

Chapter 5 Test stories

C
R

U
D

 li
st

D
ef

au
lt

lis
t

Sh
ar

e/
pu

bl
is

h
lis

t &
 c

on
ta

ct
s

Sh
ar

e/
pu

bl
is

h
lis

t &
 g

ro
up

s
Pu

bl
is

h
lis

t a
ny

on
e

A
cc

ep
t l

is
t

A
rc

hi
ve

 li
st

C
re

at
e

ta
sk

D
el

et
e

ta
sk

Sh
ow

 ta
sk

s

C
re

at
e

ac
co

un
t

Lo
g

in
to

 a
n

ac
co

un
t

C
re

at
e

gr
ou

p
A

dd
 c

on
ta

ct

M
ov

e
ta

sk
 to

 li
st

C
re

at
e

lis
t

R
ea

d
lis

t
U

pd
at

e
lis

t
D

el
et

e
lis

t
Se

t d
ef

au
lt

lis
t

U
ns

et
 d

ef
au

lt
lis

t

Pu
bl

is
h

lis
t a

ny
on

e

A
cc

ep
t s

ha
re

d
lis

t

Sh
ar

e
lis

t w
ith

 c
on

ta
ct

s

R
ej

ec
t s

ha
re

d
lis

t

A
rc

hi
ve

 li
st

s

U
na

rc
hi

ve
 li

st
s

Pu
bl

is
h

lis
t f

or
 c

on
ta

ct
s

U
np

ub
lis

h
lis

t f
or

 c
on

ta
ct

s
Sh

ar
e

lis
t w

ith
 g

ro
up

s

Pu
bl

is
h

lis
t f

or
 g

ro
up

s

U
np

ub
lis

h
lis

t f
or

 g
ro

up
s

U
np

ub
lis

h
lis

t a
ny

on
e

Figure 5.8.: List dependency tree

48

5.5 RTM Test stories

C
R

U
D

 lo
ca

tio
n

C
R

U
D

 a
cc

ou
nt

D
ef

au
lt

lo
ca

tio
n

C
R

U
D

 ta
sk

Sh
ow

 ta
sk

s

Sh
ar

e/
se

nd
 ta

sk
 &

 g
ro

up
s

C
R

U
D

 g
ro

up

C
R

U
D

 n
ot

e
Ta

sk
 c

om
pl

et
io

n
Po

st
po

ne
 ta

sk
D

up
lic

at
e

ta
sk

C
R

U
D

 p
rio

rit
y

Sh
ar

e/
se

nd
 ta

sk
 &

 c
on

ta
ct

s

C
R

U
D

 c
on

ta
ct

C
R

U
D

 re
m

in
de

r
C

R
U

D
 li

st

D
ef

au
lt

lis
t

Sh
ar

e/
Pu

bl
is

h
lis

t &
 c

on
ta

ct
s

Pu
bl

is
h

lis
t a

ny
on

e

A
cc

ep
t l

is
t

Sh
ar

e/
Pu

bl
is

h
lis

t &
 g

ro
up

s

A
rc

hi
ve

 li
st

W
ee

kl
y

pl
an

ne
r

C
ha

ng
e

la
ng

ua
ge

Figure 5.9.: Compact version of the system’s dependency tree

49

6. Testing strategy

6.1. Overview

The aim of this chapter is to explain what a testing strategy is, why we are using
one, which approach we took and how the strategy ended up being. In section 6.2
we define what a testing strategy is and how we are going to apply it in the context
of the Test-Driven Conceptual Modelling (TDCM). In section 6.3 we discuss why
a strategy is needed. In section 6.4 we introduce the model we used to determine
the value of each use case. Finally, in section 6.5, section 6.6 and all subsequent
sections, we comment on the followed methodology and show how the strategy was
applied, by dividing all the use cases in different groups.

6.2. Method

In order to apply the TDCM it is convenient to define first a testing strategy. A
testing strategy consists on:

1. Determining which is the set of stories that will be tested.
2. Decide in which order the stories will be processed.

All use cases will have several different stories, written in a way as to represent all
possible situations. The prioritisation will be decided according to two criteria:

1. Use case value provided to the stakeholders, according to the Kano Model in
section 6.4.

2. Dependencies that each use case requires in order to be executed as seen in
section 5.4.

Considering these criteria, the algorithm we use to select each time the following
use case to test could be roughly described as:

1. Select the use case which provides the most value that has not yet been tested.
2. Select all the use cases that the previous one depends on (i.e. are required for

its execution).
3. Order the selected use cases according to their dependencies.
4. Select the first use case from the ordered subset and process all its test stories.

51

Chapter 6 Testing strategy

Along this section, we are going to further discuss and develop the reasoning behind
these main ideas.

6.2.1. Coverage

Each grouping of prioritised use cases represents a subset of the use cases the system
has. Each subset includes the contents of the previous one (and hence, by recursivity,
all the previous ones). In this manner, because each subset contains all the previous
subsets’ use cases and some additional ones, we can guarantee that eventually the
least prioritised subset of use cases will hold all the system’s use cases. This way we
will accomplish, in an orderly manner, the objective of testing the system’s complete
conceptual schema.

6.2.2. Goals

The subsets have been designed to fulfill one main goal. This goal is, for each subset,
to provide enough and only enough use cases to achieve coherent functionalities
that complement each other and at the same time provide reasonable (and ever
increasing) value, capabilities and appeal that the average user would expect of a
standalone software system.

6.3. The importance of value assessment

Because we live in a finite world, all kind of resources are scarce to a greater or lesser
extent. Hence, optimization of the ratio value/cost is something constantly looked
for and there is an extensive corpus about the topic. This is of special interest,
considering the fact that for most of the aspects, the increase on value - and more
importantly the perceived value - is not proportional to its required amount of
resources and effort.
To present-day software projects and their foreseeable future, a tendency can be seen
where more and more of the budget is actually spent on person-hours, rather than
equipment or any other resources. An additional constraint in software production
is calendar time, which can be exemplified by the rapidly evolving systems, user
needs and constant obsolescence, making deadlines extremely important in a project
success.
All this brings us to the conclusion that it would be wise to invest some time in
optimising, prioritising and selecting in which order we are going to test and develop
the system’s use cases once they are known. Not only this is useful for our relatively
narrow conceptual modelling stage, but it could (and should) also be applied to
further stages (e.g. implementation and planning of future upgrades/additional

52

6.4 Functionality prioritisation: the Kano Model

features) without any significant modification, proving the effort even more cost-
effective.
Assessing the generated value of some functionalities has always been a tough chal-
lenge [12]. Due to the nature of the TDCM, we are going to pinpoint the small set
that conforms this issue and provide a sensible solution (or a way to deal with it
effectively) to it, as it is present in almost all our scope.
The persistence of this problem (inadequate value assertion) is especially true in
the context of software design, where even the needs to be solved are not clearly
envisioned by their future users and hence translated into a software solution poorly
conceived, usually not meeting their unreasonable expectations. The Second-system
Effect [3] and what is known as Feature Creep or just Featuritis are clear examples
of this.

6.4. Functionality prioritisation: the Kano Model

The Kano Model, named after its inventor, Dr. Noriaki Kano, is an analysis
model first presented in 1984 [11] where he unveils the fact that performance on
certain requirements produces higher levels of satisfaction than others. Its goal is to
identify and classify the different user requirements into a defined set of categories
whose degree of completion / perceived value follow some recognised patterns.
With this classification in mind, it is possible to effectively order and prioritise the
user requirements in the most convenient way, also taking into account how much
they should be emphasised/focused. It is also possible to maximise user satisfaction
given a limited amount of resources available (i.e. not being able to fully implement
them all). And most importantly in our context, its principles are directly applicable
with little to no modification as a roadmap to foster sensible use case selection.

6.4.0.1. Example scenario

In order to better understand the different requirements, we will be using the same
example for all the properties. Let’s imagine a daily newspaper that publishes each
day a weekly a weather forecast. These forecasts are computed each day using a
software system with a dedicated computer that takes the current weather station
readings. We also know that the printed edition of the newspaper is in black and
white.
All those requirements were categorised into 4 distinct classes of qualities1 :

1Being the original categories written in Japanese, there is no universally accepted translation
into English for them. Other authors referred them (or their equivalent counterparts) in their
papers with alternative nomenclatures such as “Dissatisfier, Satisfier, Critical, Neutral” [4] ,
“Minimum requirement, Value enhancing, Hybrid and Unimportant as determinant” [1] and

53

Chapter 6 Testing strategy

6.4.1. Must-be (a.k.a. Basic)

These attributes are expected and more often than not considered to be common
sense enough not to be necessary to make them explicit. They are also the ones
with a greater potential to cause insatisfaction if they are not sufficiently fulfilled,
as probably would render the whole system unusable or impractical. Nevertheless,
outperforming the needed degree of achievement will not produce any further satis-
faction to the end user.

Context 1

With our example scenario2 in mind, one such requirement would be computational
speed. If the software takes more than one day to make the prediction on the given
hardware it is definitely not fit, and not desirable at all. On the other hand, if
the software is extremely fast and takes just milliseconds to compute the weather
forecast is not something that adds value for the newspaper manager in comparison
to another software that takes 10 seconds to do the computation, even if it is orders
of magnitude faster.

Context 2

Dealing again with the example scenario3, another requirement would be the period
of the actual forecast. If the software can only compute 3 days ahead it is definitely
not usable in the context of a weekly forecast. On the other hand, a 30-day prediction
would not be any more valuable in that context than a 10-day one.

6.4.2. Attractive (a.k.a. Excitement)

These attributes are usually neither expected nor required by the user. Because of
this, if they are not implemented nobody is going to miss them, and hence no dissat-
isfaction will be produced. On the other hand, if they are implemented successfully
and provide some innovation/interesting feature they will produce a great amount
of satisfaction for the effort invested into it, as it is something that will surpass
expectations.

“Flat, Value-added, Key, Low” [23] just to name a few. In this document we will use none of
these.

2See sec. 6.4.0.1
3See sec. 6.4.0.1

54

6.4 Functionality prioritisation: the Kano Model

Context 1

With our example scenario4 in mind, one such requirement would be the temperature
sensation. It is known that wind, humidity and other factors affect the human tem-
perature feeling. If the software predicting the weather forecast could also predict
the temperature sensation it will probably be greatly appreciated, as a distinctive
factor to be published in the newspaper. If the software does not predict it, it will
probably go unnoticed, as other published forecasts currently in the market do not
offer such a feature.

6.4.3. One-dimensional (a.k.a. Performance)

The name derives from the fact that ideally the curve value/effort could be repre-
sented in a single dimension along the whole spectrum of efforts, that is, that instead
of a curve it would be in fact a straight line. Furthermore, it would indicate a high
correlation between effort increase and increase and perceived value which would be
directly proportional. In reality, this is a simplification, and further consideration of
other factors like de Law of diminishing (marginal) returns[5] should be taken into
account.
This could be summarised as satisfaction if the feature is represented and dissatis-
faction if it is not (or not enough). Usually these kind of attributes are the ones
more actively looked for, and the ones used to compare a product (software) to each
other, as they represent the “core” of the perceived value.

Context 1

With our example scenario5 in mind, one such requirement would be the prediction
accuracy. If the software’s prediction hit-rate is an unimpressive 60%, probably it is
beyond any utility and it will cause dissatifaction because it is not fit to be published
in the paper. On the other hand, if the accuracy is 95% probably the newspaper
manager will be quite content, as it is a very good result. Furthermore, he will
still be much more satisfied with a software that has a hit-rate of 98%, because this
means that the miss rate is reduced to less than a half.

6.4.4. Secondary

These attributes have no apparent value (neither negative nor positive) to the final
user, and hence, do not cause satisfaction or dissatisfaction whatsoever. There
is nothing to be gained by putting effort into these attributes, so they should be
avoided whenever possible.

4See sec. 6.4.0.1
5See sec. 6.4.0.1

55

Chapter 6 Testing strategy

Context 1

With our example scenario6 in mind, one such attribute would be the ability of
the software to produce colour symbols for the sun/clouds and other forecasting
graphics as well as black and white. The newspaper manager will not be satisfied or
dissatisfied with the fact that it can produce colour graphics, because it is something
he/she will not be using in the foreseeable future, and hence it has no value for
him/her.

6.4.5. Reverse7

These attributes cause dissatisfaction to the user, and hence should be avoided
whenever there is not an evident and big enough advantage to at least counterbalance
it.

Context 1

With our example scenario8 in mind, one such attribute would be watermarks. The
fact that the software adds publicity of itself - in the form of watermarks - in the
printout graphic of the weather forecast, dissatisfies the newspaper manager. This
happens because one important source of income for the newspaper is publicity
printed in it. It also dissatisfies him because everyone will know where to obtain
the forecast and substitute the need to check the newspaper. Nevertheless, if this is
counterbalanced with the version being free of charge (which would satisfy him/her)
it might be enough for the newspaper manager to accept using the software to
publish the forecast.

6.4.6. Graphical representation

After having defined each possible requirement category - according to the Kano
Model - we are going to visualise them represented in a cartesian drawing. It is
important to understand that each requirement should be analysed independently
from any others. Hence, in a same working system is common to have different
requirements that follow different curves.
The axis of abscissas represents the degree of fulfillment of the requirement or more
informally how well the requisite is being covered. The higher value of X, the more
thoroughly the feature has been developed. On the other hand, the vertical axis
represents the costumer satisfaction, which is highly correlated with the perceived

6See sec. 6.4.0.1
7This attribute is not part of the original set, and sometimes it is not taken into consideration
8See sec. 6.4.0.1

56

6.4 Functionality prioritisation: the Kano Model

Figure 6.1.: The Kano Model illustrated
The curves regarding Secondary and Reverse requirements have not been included.
We have done so because they are not looked after and should be avoided whenever
possible (in order to attain them effort has to be wasted, and no value is produced).
Furthermore, it makes the drawing less cluttered.

utility the system has for them. Again, a high value on the Y scale implies happiness
on the part of the user, at least regarding that aspect.

Basic

As we can see in the drawing, these requirements are along the whole curve (i.e. in all
possible scenarios) the ones that provide less satisfaction per amount of resources
put. Furthermore, one can see that even if infinite fulfillment could be achieved
on them, it would not be enough to make any costumer satisfied, even moderately.
This means that these requirements alone by themselves are of no value for the user.
Therefore, they should be developed only enough to let all the other requirements
be build on the top of them and work smoothly. The extra amount of resources to
make the basic requirements really outperform the user needs is of low value. There
is one point where the perceived gained value is infinitesimal in comparison to the
fulfillment, because the perceived enhancements are each time less significant for the
user. This information reinforces what we already said in sec. 6.4.1.

57

Chapter 6 Testing strategy

Performance

As we already discussed earlier in sec. 6.4.3, the degree of fulfillment affects the
satisfaction in the same way along all its spectrum. We can confirm this intuition by
noticing that the function follows an ascending straight line. It is worthy of remark
that this line passes through the center of the graph, where both axis intersect.
Furthermore, the angle is approximately 45 degrees or what is the same, the line
equation follows this formula x = y + 0, splitting the graphic in two equal-sized
halves. The exaggerated precision of this information must be taken with a grain
of salt thought, but it serves as an illustration of the trend that those requirements
follow. This trend shows us that further performance will bring noticeable additional
amounts of user happiness, and hence it should be maximised whenever there are
the necessary conditions.

Excitement

This kind of requirements are the ones with more beneficial potential. Their main
advantage, as we saw in sec. 6.4.2, is that they will not dissatisfy the user in any
case, so all attempts to fulfill them are good opportunities, even if only partially
functional. This fact is further stressed as we can observe that for any degree of
effort or fulfillment put, the user will experience more happiness with this kind of
requirements than with any other. Nevertheless, a system to properly work needs
the basic requirements and maybe even some of the performance, because the lack of
them could provide more dissatisfaction than what we would achieve with excitement
requirements to outweigh it.

Indifference

The grey square surrounding the area where both axis cross represents the results
a user would expect or just do not care about. This is why there are no extremes.
The user expects the system to have more or less accomplished functionalities of the
types and to the degree found within the square. All the features found beyond (i.e.
outside of) it will most probably be noticed by the user for their notability. Failure
to achieve this gray area is bound to cause some serious disappointment and have
negative implications. On the other hand, exceeding the boundaries could even end
up with additional rewards for the developing party.

6.4.7. Limitations

Classification of requirements

The main limitation that would prevent the utilisation of this model is the apparent
difficulty in assessing which requirement belongs to each category. Even if the de-

58

6.4 Functionality prioritisation: the Kano Model

veloping team has proven expertise and long experience developing similar systems,
it is up to the final users to decide if it suits their needs. After all, they are the ones
who know more accurately their business strategy. And at the same time they are
the ones that know less the capabilities of the technology. This is why prototyping is
encouraged along its usage, because the stakeholders can better assess the progress
if they can try it and see it work.

Table 6.1.: The Kano Model questionnaire matrix

Besides this cooperation between parties, this approach offers a standardised ques-
tionnaire that helps stakeholders decide which category each requirement fits with-
out having to consciously think or have a deep knowledge about it. Each survey asks
the user about every feature. Specifically, how would he/she feel if the functionality
was not present, or on the other hand, how would he/she feel if it was present. Once
the answers are gathered, developers only need to categorise them according to the
matrix in sec. 6.4.7 .
Because the main goal of this project is to investigate the benefits of using Test-
Driven Conceptual Modelling (TDCM) and specifically the power of Conceptual
Schema Testing Language (CSTL), the survey was skipped altogether. Nevertheless,
the construction and evaluation has not been blindfold, because prior to this section,
the system has been used extensively in order to become familiar with it.

Modification of requirements

The Kano Model acknowledges the fact that software systems are not static entities,
because the stakeholders want them to adapt to their ever changing needs and
challenges. The methodology says that once the novelty is over, the features that
once were considered excitement start to become flatter in the graphic, more like a

59

Chapter 6 Testing strategy

straight line, and their behaviour is slowly modified until they become performance
requirements. Similarly, performance requirements eventually become basic, because
the user is so dependant and reliant on them that their view upon the matter also
changes.
Because this project does not span a very long period of time, this fact has not been
taken into consideration.

6.5. Methodological approach

In order to fulfill the goal, we will make use of the dependency tree as shown in
sec. 5.4. Each of the subsets will be self-contained, meaning that there will not be
any use case whose dependencies are not entirely satisfied. Furthermore, this way
we can ensure that the additionally provided value on each iteration is real, as it
would not only maximise the value attainable on each one (we are ordering them
accordingly), but also guarantee that it is usable and understandable, as it has all
required use cases to be correctly executed and fully exploited. This philosophy is
not dissimilar to that of prototyping [12].

6.5.1. Graphical representation

The graphical representation we use to visualise the selected use cases in each subset,
is not dissimilar to that in sec. 5.4.1.3. Nevertheless, we are revising it again, as there
are some minor changes.
The use cases dependencies are presented here in the form of directed graphs. These
are the parts that constitute them :

1. Nodes: each node represents a single use case. The name on a node is usually
the same one as its use case or a close abbreviation. Depending on their colour,
each node has additional meaning:

a) White: these nodes represent the use cases being added this iteration to
the subset being analysed. Each subset is announced in the figure name.

b) Dark gray: these nodes represent the use cases that other white nodes
depend upon. The main difference between white nodes that also have
dependant use cases and dark gray ones, is that the later would not belong
to the subset additions of this iteration, and are just added because they
are needed despite being from different groupings.

2. Edges: each edge going from one node to another node represents that the
first use case has at least one dependency with the second one. We can also
notice that there are no mutually dependant use cases, so each edge has one
and only one arrow end. Similarly to what happened with nodes, each colour
brings additional meaning.

60

6.6 Subset 1: Basic use cases (i)

a) Light gray: these edges represent some of the dependencies that nodes
added in previous iterations have with other nodes.

b) Dark gray: these edges represent the dependencies that dark gray nodes
have with other nodes.

c) Black: these edges represent the dependencies that white nodes have with
other nodes.

3. Groups of nodes: to make it easier to discern, nodes have been grouped into
“boxes” which contain a small subset of highly cohesive nodes. This further
layer of abstraction should help visualisation and accentuate particular existent
relationships between nodes. They only have one colour representation :

a) Light gray: they represent the use cases added to the subset this iteration
and the others needed for them to work.

In order to improve the graph’s readability, some of the nodes that depart or arrive
at the same node have been simplified and unified. In some cases, this makes only
one edge colour visible, but it should not seriously affect the overall understanding.
The different subsets are grouped and described in the following classes:

6.6. Subset 1: Basic use cases (i)

Rational

The purpose for this subset of use cases is to implement a very limited set containing
the most basic9 requirements and only those. This decision was made because
this is the first subset, and consequently, it should focus in making the system
usable and testable. With the chosen use cases, the system can already achieve
the minimum functionalities to cover the most important needs of the user. Even
if those necessities would be barely covered and some use cases would certainly be
missed, there would be just enough of them to fulfill the role of a simplistic task
manager. The rule of thumb is that all additional petitions a user would request
from this point on should be in the form of “Wouldn’t it be nice if” or “I would also
like to” meaning that they can already make use of the system as it is.

Use cases

The use cases that comprise this set are :

Create task: The inclusion of this use case is self-explanatory. Without the ability
to create tasks there can not be a task manager system.

9See sec. 6.4.1

61

Chapter 6 Testing strategy

Create task

Create account

Log into an account

Delete taskShow tasks

Figure 6.2.: Dependency tree of Basic use cases (i)

Delete task: The ability to delete previously created tasks is essential in a task
manager. It lets the user know which tasks are pending giving him/her the
option to delete those that are not. It also lets him/her delete any task with
incorrect or outdated information he/she could have entered and create a new
task again with the amendments.

Show tasks: A task manager must have means to let the user retrieve which tasks
are into it. Nevertheless, not all the potential for this use case is needed at
this point, such as complex filtering patterns and/or orderings, so it should be
revisited later on to refine those aspects as soon as they are found desirable
and plausible.

Create account: If the system was intended to be single user this would not be
strictly necessary. Even if privacy is paramount to us, there would be other
means beyond the system to prevent undesired access. Because the system
is conceived as multiuser from the very beginning this is not the case, so an
account system is mandatory.

Log into an account: There is no use for any account if it can not be accessed,
thus, this use case must be implemented as well. A log out it is not really
needed at this point because the user could be asked to log in every time
he/she performs an action or, alternatively, the system could terminate the
user session after a lapse of inactivity time.

62

6.7 Subset 2: Basic use cases (ii)

6.7. Subset 2: Basic use cases (ii)

Rational

The purpose for this subset of use cases, is to implement a limited set containing all
the basic10 requirements that were not already included in sec. 6.6. Even if strictly
speaking we already included all of them before, there would probably still be some
users that would find the prior system too simplistic. Those users would probably
complain that they still are still lacking some additional features in order to be able
to use the system properly. All these use cases address those possibly perceived
missing functionalities that prevented the usage of the system to some users the
way they might expect.

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Create account

Log into an account

Create task

Delete task Show tasksRead taskUpdate task

Log out Update accountDelete account

Figure 6.3.: Dependency tree of Basic use cases (ii)

Read task: The ability to read tasks is necessary if further information beyond the
task name wants to be retrieved. The capabilities of this use case are beyond
the ones from Show tasks: on the facing page. Henceforth, the concept of task
must be expanded to fit all this additional knowledge.

10See sec. 6.4.1

63

Chapter 6 Testing strategy

Update task: Some of the information of a task may change in a period of time
prior to its completion, or may even be unknown when it is created. This use
case makes such modifications much more convenient than the deletion and
later creation of a task with the updated information. Furthermore, it lets the
user modify more of its properties, not only the task name.

Update account: The ability to modify account settings and information can prove
especially useful when someone thinks his/her account could have been com-
promised and wants to change the password in order to keep his/her privacy.
If this situation happens, it is much more desirable to update the account by
changing the password than the alternative of using only the subset1 use cases,
which would force a user to create a new account and reintroduce all his/her
tasks. There are many more situations where this use case could provide great
value to the user.

Delete account: The ability of account deletion is quite necessary from the point of
view of the user, as well as the point of view of the service provider. The first
one might not want to have to manually delete all the tasks and update all
his personal information to null values when he/she decides that he/she does
not want to use the system anymore (maybe because he/she thinks his/her
information is not safe there). The second one might want to delete inactive
accounts to free resources. Even if this problem could be solved by simply
adding more resources, being able to use the ones already present more effi-
ciently sometimes it is not a choice that can be rejected, because the additional
resources are not available. So in this sense the use case could be understood
as a basic one.

Log out of an account: The ability to log out permits the user be confident about
the safety of his/her privacy, because he/she can control when they make the
account inaccessible to those not knowing the password instead of having to
rely on the program detection of lack of activity to assume the user is not
anymore making use of the system. Additional means of protecting personal
possibly confidential data sometimes are relevant enough as deeming a system
unusable without them. Therefore, this use case can be considered basic in
most situations.

6.8. Subset 3: Performance use cases (i)

Rational

The purpose for this subset of use cases, is to build a set containing the most
fundamental performance 11 requirements. Ideally we would like to include all of
11See sec. 6.4.3

64

6.8 Subset 3: Performance use cases (i)

them at the same stage, because they are in the same spectrum or category according
to our satisfaction model 12, but we decided not to do it this way. One of the reasons
is because the use cases in this category are so plentiful that packaging them all
together would difficult comprehension. Another reason is that it would not really
be sticking to the philosophy of prioritisation to include such a massive (especially
in proportion to the whole amount of them) package of use cases at the same time.
Finally and most important, even though they are all performance use cases, they do
not share the same degree of “performance”. Some of them are closer to the basic13

category while some others are closer to the excitement14 one. Furthermore, the gap
between them is such as to naturally make such groupings as we are going to see in
the next subsection. In such situation, as we already justified in sec. 6.6, the best
thing to do is to start with the most basic ones that achieve coherent functionality.

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Create account

Log into an account

Create task

Delete task Show tasks Read taskUpdate task

Log out Update account Delete account

Create note

Read note Update noteDelete note

Complete task Postpone taskDuplicate task

Figure 6.4.: Dependency tree of Performance use cases (i)

12See sec. 6.4
13See sec. 6.4.1
14See sec. 6.4.2

65

Chapter 6 Testing strategy

Create and add a note to a task: The ability to add notes to tasks is certainly
a welcome feature for most of its users. It is an easy and flexible way to
add additional information to a task. Default fields always limit users to the
amount and kind of information they can input, as well as the format. This
simple mechanism empowers them to introduce anything they may desire that
was impossible to envision or predict by the designer. It is certainly not
necessary to work with the task manager, but greatly improves its usability
and appeal to the average user.

Read a note added to a task: There is no point in creating and adding notes to
tasks if their content is not accessible.

Update a note added to a task: Updating the information is usually preferable to
deletion and creation of the updated version.

Delete a note added to a task: Not strictly necessary, because many notes can be
added and updated, it is an efficient way to use resources and to keep control
of the number of notes and their thematic content. Furthermore, the ability to
create instances of any class should always be paired with the ability to delete
them whenever possible.

Complete task: The ability to mark a task as completed is not strictly necessary,
because finished tasks could always be deleted manually by the user. The
ability to complete them gives the user a neat way to filter15 them out, and
at the same time it provides the ability to keep his/her historical, which could
be checked in the future.

Postpone task: In our context, we know that task postponing is probably the most
common kind of task updates. The ability to postpone a task using this simpler
and more straightforward use case (in comparison with the former Update
task) will probably help the user save an additional amount of time.

Duplicate task: Frequently enough, the user needs to create a task which is virtu-
ally the same or very close to another one he/she already created. This use
case, with the aid of task updating should save the user time in comparison
to the creation of a new task and the consequent filling of all the properties.

6.9. Subset 4: Performance use cases (ii)

Rational

The purpose for this subset of use cases, is to implement a set containing most of
the performance 16 requirements. The use cases added in this subset should help the
15See Show tasks: on page 61
16See sec. 6.4.3

66

6.9 Subset 4: Performance use cases (ii)

user make his/her life easier, by helping him/her use the system more effectively,
effortlessly and comfortably.

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Create account

Log into an account

Complete task

Create task Change language

Delete task Show tasks Read task Update task

Log out Update account Delete account Create note

Read noteUpdate note Delete notePostpone task Duplicate task

Uncomplete task

Set priority

Update priorityDelete priorityCreate reminder

Update reminder Send reminder

Read reminder Delete reminder

Figure 6.5.: Dependency tree of Performance use cases (ii)

Uncomplete task: The ability to complete tasks is already in the system, so im-
plementing this makes sense. This was not included in the previous subset
because the use of it should be much more sporadic. Its main purpose is to
let a user uncomplete a task he/she completed before by error.

Set priority to a task: The ability to set priorities to tasks helps the user better
manage his/her pending tasks. Furthermore, it also makes it easier to find17

the most important ones at any point.
Update priority from a task: Updating task priorities is a logical mean to keep

ever-changing information correct.
17See Show tasks: on page 61

67

Chapter 6 Testing strategy

Delete priority from a task: Even if it is not strictly necessary, because we could
always update a task to a “standard” level of priority, it makes sense to have
the ability to delete priorities the same way they can be created.

Create reminder schedule: The ability to create reminder schedules in some con-
texts could be thought as an excitement18 feature instead of just a performance
one, for example if the reminder is sent by SMS. We already discussed that
the line that separates them can be fuzzy sometimes. Nevertheless, we include
it here as a performance due to the fact that the key objective of a task man-
ager is to make the user not skip a single task by having all of them present.
Reminders achieve this in an additional way, not needing the user to access
his/her account and check it constantly.

Read reminder schedule: The ability to read and see which reminder schedules are
set is essential once they can be created. This way the user knows if he/she
has to worry about setting a new one or the ones set already meet his/her
needs.

Update reminder schedule: The ability to update the reminder schedule, again is
a good alternative to deleting and creating it anew.

Delete reminder schedule: The ability to delete a reminder is almost as impor-
tant as the ability to create one. It is true that one could simply ignore the
reminders and this would suffice to some, but to most users this would be
unacceptable.

Send reminder: This is the most important use case dealing with reminders. No
matter what, if they can not be sent, they are completely useless.

Change language: The ability to change language might be basic to some users and
performance to most of them. Even if the interface is used with as little text
as possible, some text is unavoidable (especially in the form of explanations,
help or tips) and most people find themselves more comfortable when they
can interact in their native language.

6.10. Subset 5: Performance use cases (iii)

Rational

The purpose for this subset of use cases, is to include a set containing all the rest
of the performance 19 requirements. The use cases added in this subset should
contribute in helping the user get his/her tasks more organized and storing and
accessing task-related information faster.
18See sec. 6.4.2
19See sec. 6.4.3

68

6.10 Subset 5: Performance use cases (iii)

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Create account

Log into an account

Create task

Delete task Show tasksRead task Update task

Log out Update account Delete accountCreate note

Read note Update noteDelete note Complete task Postpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority

Create reminder

Read reminderUpdate reminder Delete reminderSend reminder

Change language

Move task to list

Create list

Weekly planner

Read listUpdate listDelete list Set default list

Unset default list

Add contact

Read contact Delete contact

Figure 6.6.: Dependency tree of Performance use cases (iii)

Create list of tasks: The ability to create lists lets the user customise and group
together tasks that may share some of their context. This extra layer of
abstraction, even if it is not strictly necessary, may help the user get to know
where every task is according to some patterns and focus more on the actual
job of managing them rather than having to filter them or tediously search
through all of them. This is especially true when the number of tasks grows
into a considerable size.

Read list of tasks: The ability to read the list of tasks is essential once you have
them. Without so many parameters and more readily available, is sure a
better and more convenient choice than simply use the already included use
case Show tasks: on page 62 in some cases.

Update list of tasks: This use case is the only reasonable way to update informa-
tion from a list of tasks. Deleting and creating anew a list with the modified
information is not an option when the number of tasks is in the order of hun-
dreds or even bigger. And for most users, lists of tasks do get this big in not
such a long time.

Delete list of tasks: The ability to delete lists is quite necessary from the hygienic
standpoint. The user may feel the need to delete unused lists in order to

69

Chapter 6 Testing strategy

avoid the clutter this would represent and being overwhelmed by much more
information than he/she is able to handle.

Move task to a list: The ability to move tasks to lists is what makes them useful.
It is quite self-explanatory why this use case is included at this point and not
afterwards (or before).

Set default list of tasks: The ability to set a default list of tasks, means that all
newly created tasks will be automatically classified as belonging to that list.
It is a way to save time when there is a predominant list of tasks. This again,
to some users might be considered an excitement20 feature instead of just
performance21 but we think otherwise.

Unset default list of tasks: The ability to unset default lists is just a logical pair
to the ability to set them.

Show weekly planner: Besides already having reminders, some users may still want
a more thorough mean to envision their schedules and appointments. Further-
more, a weekly planner can be printed and consulted anywhere without many
of the restrictions any software has.

Add contact: The addition of the ability to add a contact is a natural way to
expand the initial set of features of a task system. Most of the tasks will
usually involve other people. Being able to keep an agenda with both, the
people involved and the things to be done in one single place is convenient and
potentially a decent timesaver.

Read contact: Once the addition of contacts is in the system it just makes sense
to be able to read them.

Delete contact: For a reason analogous to the deletion of lists of tasks, the ability
to delete old unneeded contacts just makes more useful and accessible those
that are still in the system. Hence, it is positive to have such a use case at
this stage.

6.11. Subset 6: Excitement use cases (i)

Rational

Having already included all the basic and performance use cases, the next logical
step would be to include the excitement ones. As happened before, this set is split
in two, and the excitement use cases more close to being performance are included
here. The use cases added in this subset should give the user new possibilities to
interact with the system and the administration of his/her tasks collaboratively,
something that it is not essential to a task manager system.
20See sec. 6.4.2
21See sec. 6.4.3

70

6.11 Subset 6: Excitement use cases (i)

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Create account

Log into an account

Create listAdd contact Create task

Delete task Show tasks Read task Update task

Log out Update account Delete account Create note

Read note Update note Delete noteComplete taskPostpone task Duplicate task

Uncomplete task

Set priority

Update priority Delete priority

Create reminder

Read reminder Update reminder Delete reminder Send reminder

Change language

Move task to list Weekly planner Read list Update list Delete listSet default list

Unset default list

Read contact Delete contact

Share task with contacts

Send task to contacts Share list with contactsPublish list for contactsPublish list for anyone

Accept shared listReject shared listUnpublish list for contactsUnpublish list for anyone

Figure 6.7.: Dependency tree of Excitement use cases (i)

Share task with contacts: The ability to share a task with contacts within the
same system has lots of potential. A group of users could be doing the same
task, and just have a copy of it with the previous version of the system. The
problem, is that the required communication to keep its information up to
date with all members using other methods would waste a lot of resources
and would also suffer from delays, as everyone could not update the task
information instantly and at the same moment. So, despite being neither
necessary nor expected it could certainly be appreciated.

Send task to contacts: The ability to send tasks to contacts is very similar to
the ability to share them. The main difference, is that the user that sends
them, has his/her tasks moved to his/her outbox list, and consequently can
not modify it or alter it in any way. It is useful when someone has to assign
tasks and manage other people.

Share list with contacts: The same advantages that lists of tasks have over individ-
ual tasks are applied here. This could be a potential time saver in comparison
to share multiple tasks individually.

Publish list for contacts: The difference between publishing and sharing, is that
publishing only allows the other users to read the tasks, not to modify or
update them in any way. This can come handy when some user, for example
in a managerial position, wants to use tasks as a way to report progress, and
he/she should be the only one making modifications to them according to
plans, etc.

71

Chapter 6 Testing strategy

Publish list for anyone: Sometimes a user needs a list to be read for someone that
does not use the system. This is an easy way to accomplish it, without having
to send the task each time via other communication methods (e.g. e-mail)
when there are modifications.

Unpublish list for contacts: The necessary pair to publishing for contacts. Imagine
that some user is expelled from the group of people working with that list of
tasks. Once there is the ability to publish, this turns into a necessity.

Unpublish list for anyone: The reason for this use case to be here is analogous to
the one above it. It might not be desirable to have a list accessible by everyone.

Accept shared list: This use case provides an interesting twist to the Share list with
contacts. We let the other users decide if they want to accept a shared list.
And we also let the other party know if he/she conforms with the acceptance
of the list, so misunderstandings are avoided.

Reject shared list: This is the complementary pair to the above use case. We could
always leave some shared lists “on hold”, but, because the purpose was to make
things clear and avoid misunderstandings, it just seems logical that those lists
could be rejected as well.

6.12. Subset 7: Excitement use cases (ii)

Rational

The purpose for this subset is to include all the excitement use cases that did not
fit in the other one. The use cases presented here complement and expand the
concepts on the ones which were introduced in Excitement use cases (i). Basically,
they make collaborative administration easier, faster and more effective. They also
could hardly be understood without the previous ones.

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

Share task with groups: This is the equivalent of sharing tasks with contacts but
applied to groups. The same reasoning persists.

Send task to groups: As with the previous use case, this is the same we reviewed
in Excitement use cases (i) but applied to groups.

Create group: This use case could be described informally as being to contacts
what lists are to tasks. The difference that makes the creation of lists of tasks
be a performance requirement and the group an excitement one, is the focus.

72

6.13 Subset 8: Indifference use cases (i)

The group creation lets the user customise and join together contacts that may
share some of their context. But contacts play a much lesser role in a task
management system than tasks, hence it is not seen as a performance or basic
requirement. Nevertheless, it can still be very useful to have an efficient way
to manage them, and this is what makes it fit in the category of excitement.

Read group: This use case is a convenient way for a user to know who the members
of one of his/her groups are, which of his/her tasks are shared with them, etc.

Delete group: It just makes sense being able to delete groups once you can create
them. The argument for list deletion could be applied.

Add contact to group: Groups would be pointless without the addition of con-
tacts, as they would be empty.

Remove contact from group: Removal of contacts complements the addition of
them to groups. More suitable in most situations than the deletion of a whole
group.

Share list with groups: This use case is analogous as sharing a task with some
groups, with the advantage of being a list.

Publish list for some groups: The same explanation for publishing tasks for some
groups holds.

Unpublish list for some groups: The logical and needed counterpart to publishing
lists for groups.

6.13. Subset 8: Indifference use cases (i)

Rational

The purpose of this final subset of use cases is not very clear from the standpoint of
the end-user. It is true that a minority of users might find these use cases interesting
(and then this would make them fall into the excitement category), but to most of
them it simply falls in the indifference category. Locations, if better integrated might
prove useful, but in the Remember the Milk (RTM) system their appearance and
utility seems anecdotic. Likewise, the ability to archive and unarchive lists seem to
be something seldom useful at most. Because of this, the use cases names are just
going to be cited instead of being described or delved into why they belong to the
category.

Use cases

All the use cases belonging to the previous set are included in this one. These are
the additional use cases that comprise this set :

73

Chapter 6 Testing strategy

• Create location
• Read location
• Update location
• Delete location
• Set default location
• Unset default location
• Archive list of tasks
• Unarchive list of tasks

74

6.13 Subset 8: Indifference use cases (i)

C
re

at
e

ac
co

un
t

Lo
g

in
to

 a
n

ac
co

un
t

C
re

at
e

lis
t

A
dd

 c
on

ta
ct

C
re

at
e

ta
sk

D
el

et
e

ta
sk

Sh
ow

 ta
sk

s
R

ea
d

ta
sk

U
pd

at
e

ta
sk

Lo
g

ou
t

U
pd

at
e

ac
co

un
t

D
el

et
e

ac
co

un
t

C
re

at
e

no
te

R
ea

d
no

te
U

pd
at

e
no

te
D

el
et

e
no

te
C

om
pl

et
e

ta
sk

Po
st

po
ne

 ta
sk

D
up

lic
at

e
ta

sk

U
nc

om
pl

et
e

ta
sk

Se
t p

rio
rit

y

U
pd

at
e

pr
io

rit
y

D
el

et
e

pr
io

rit
y

C
re

at
e

re
m

in
de

r

R
ea

d
re

m
in

de
r

U
pd

at
e

re
m

in
de

r
D

el
et

e
re

m
in

de
r

Se
nd

 re
m

in
de

r

C
ha

ng
e

la
ng

ua
ge

M
ov

e
ta

sk
 to

 li
st

W
ee

kl
y

pl
an

ne
r

R
ea

d
lis

t
U

pd
at

e
lis

t
D

el
et

e
lis

t
Se

t d
ef

au
lt

lis
t

U
ns

et
 d

ef
au

lt
lis

t

R
ea

d
co

nt
ac

t
D

el
et

e
co

nt
ac

t
Sh

ar
e

ta
sk

 w
ith

 c
on

ta
ct

s
Se

nd
 ta

sk
 to

 c
on

ta
ct

s
Sh

ar
e

lis
t w

ith
 c

on
ta

ct
s

Pu
bl

is
h

lis
t f

or
 c

on
ta

ct
s

Pu
bl

is
h

lis
t f

or
 a

ny
on

e

A
cc

ep
t s

ha
re

d
lis

t
R

ej
ec

t s
ha

re
d

lis
t

Sh
ar

e
ta

sk
 w

ith
 g

ro
up

s

C
re

at
e

gr
ou

p

Se
nd

 ta
sk

 to
 g

ro
up

s
R

ea
d

gr
ou

p
D

el
et

e
gr

ou
p

A
dd

 c
on

ta
ct

 to
 g

ro
up

R
em

ov
e

co
nt

ac
t f

ro
m

 g
ro

up
Sh

ar
e

lis
t w

ith
 g

ro
up

s
Pu

bl
is

h
lis

t f
or

 g
ro

up
s

U
np

ub
lis

h
lis

t f
or

 g
ro

up
s

Figure 6.8.: Dependency tree of Excitement use cases (ii)
75

Chapter 6 Testing strategy

Create account

Log into an account

Create list

Create task

Delete task Show tasks Read task Update taskLog out Update account Delete accountCreate note

Read note Update note Delete note

Complete task Postpone taskDuplicate task

Uncomplete task

Set priority

Update priority Delete priority

Create reminder

Read reminder Update reminder Delete reminderSend reminder

Change language

Move task to list

Weekly planner

Read list Update list Delete list Set default list

Unset default list

Add contact

Read contact Delete contact Share task with contacts Send task to contactsShare list with contacts

Publish list for contactsPublish list for anyone Accept shared list Reject shared list

Share task with groups

Create group

Send task to groups Read group Delete groupAdd contact to groupRemove contact from group

Share list with groups Publish list for groups

Create location

Read locationUpdate location Delete locationSet default location

Unset default location

Archive lists

Unarchive lists

Figure 6.9.: Dependency tree of Indifference use cases (i)

76

7. Application of TDCM

7.1. Overview

The aim of this chapter is to give an insight on the application of Test-Driven
Conceptual Modelling (TDCM), concretely to our case study: the Remember the
Milk (RTM) system. In section 7.2 we talk about the tool we use to apply the
TDCM cycle and its language, the Conceptual Schema Testing Language (CSTL).
In section 7.3 we talk about what the TDCM cycle consists on, its philosophy and
its application. In section 7.4 we talk about the limitations of the TDCM in the
context of this project. In section 7.5 we show the RTM test cases in CSTL and how
a test story is translated from natural language to CSTL. Finally, in section 7.6 we
apply the TDCM to our case study, showing its different iterations and the evolution
of the conceptual schema.

7.2. CSTL Environment

7.2.1. Language

In this section we are going to briefly outline the CSTL language characteristics. It
is a language designed to write formal tests in the conceptual level. Some of the
details of its syntax are well beyond the scope of this document and a complete
definition can be found in [20].

7.2.1.1. Assertions

Assertions are the means of test cases to provide verdicts1 different than “Pass”.
Therefore, they are of key importance. We are going to discuss the different kinds
of assertions the CSTL provides, which are Consistency, Domain events occurrence
and Contents of an information Base (IB) state [20]
Consistency: The CSTL provides us with two instructions to check the consistency

of an IB state. They are a good way to ensure that all the conceptual schema
constraints are fulfilled. These simply are assert consistency and assert incon-

sistency.
1See subsubsection 7.2.2.3

77

Chapter 7 Application of TDCM

Domain events occurrence: The CSTL provides us with two instructions to check
domain events occurrence. These simply are assert occurrence eventId and
assert non-occurrence eventId. They are used to give confidence about the
defect-free nature of the events. Specifically, they can detect that :

1. The constraints of the event type may not allow the occurrence of valid
events.

2. The postconditions may not precisely define the intended effect of events.

3. The method of the effect operation may produce an IB state that does
not satisfy both the postconditions and the schema constraints.

Contents of an IB state: The CSTL provides us with four instructions to check do-
main events occurrence. Two of them are meant to check boolean conditions.
These are assert true booleanExpression and assert false booleanExpression.
The other pair is meant to check equality. These are assert equals valueEx-

pression1 valueExpression2 and assert not equals valueExpression1 valueEx-

pression2. Their purpose is to check that one or more derivation rules derive
the expected results, or that a navigational expression yields the expected res-
ults or that the effect of one or more domain events implies an expected result
in the IB.

7.2.1.2. Test cases

In CSTL, there are three kinds of test cases: concrete, abstract and abstract invocation[20].
We are only going to talk about concrete ones, as the other were not used in this
project.

A concrete test case is a set of statements that builds a state of the IB, defines
values of its variables, and executes one or more tests of one of the five test
kinds described in the previous section.

7.2.2. Processor

The CSTL Processor, is a java-based research prototype designer by Albert Tort. It
works as a standalone application and supports the specification, management and
execution of automated tests of executable conceptual schemas. Because of this,
it will be the main tool in our application of Test-Driven Conceptual Modelling
(TDCM), as it fully supports it.

The languages it uses to define and specify schemas, are an extended version of
USE[8] syntax and Object Constraint Language (OCL) from Unified Modelling
Language (UML). Automated conceptual test cases are written in the language
we described earlier, the CSTL.

78

7.2 CSTL Environment

Figure 7.1.: The CSTL Processor testing environment[20]

In figure Figure 7.1 we see the main elements of the CSTL Processor. In this project
we extensively used two of them, the Information processor and the Test processor,
which are referred below [22].

7.2.2.1. The Information processor

The information processor is able to setup Information Base (IB) states by creat-
ing, deleting and changing entities, attributes and associations. It also evaluates
OCL expressions of test assertions. It deals with language features such as derived
attributes, default values, multiplicities in attributes, domain events, temporal con-
straints, initial integrity constraints and generalisation sets.

7.2.2.2. The Test processor

The test processor implements the execution of the test cases and consists of the
presentation manager, the test manager and the test interpreter.

The test manager stores the CSTL programs in order to make it possible to ex-
ecute the test set at any time. When the conceptual modeller requests the
execution of the test programs, the test manager requests the test interpreter
to execute them. The test manager also keeps track of the test results and
maintains test statistics.

79

Chapter 7 Application of TDCM

Figure 7.2.: Screenshot of the test execution tab

The test interpreter reads and executes CSTL programs. For each test case, the
interpreter sets up the common fixture (if any), executes the statements of
each test case and computes the verdicts. The interpreter invokes the services
of the information processor to build the IB states according to each test case
and check the specified assertions.

The presentation manager provides means for writing CSTL test programs and
for displaying the results of their executions. Built-in editors are provided for
the definition of the conceptual schema, its methods and the test programs.
Moreover, after each execution of the test set, test programs’ verdicts are
displayed. Figure 7.2 shows a screenshot of the verdicts presentation screen.
The test processor indicates the number of the lines where test cases have
failed and gives an explanation of the failure in natural language.

7.2.2.3. Verdicts

Verdicts are the ultimate goal for concrete test cases. The CSTL processor can
provide the tester with three different types of verdict, and their purpose is to inform
him/her whether a test is passed, failed or there are errors. With this information,
the tester knows if he/she has to modify some information from the UML/OCL from
the conceptual schema or the methods file (if the final result is not a pass) or he/she
can continue developing the conceptual schema to represent further use cases.
The verdicts are reached using roughly this algorithm.

1. Analyse the conceptual schema. If there are any errors the verdict is “Error”
and the testing ends.

80

7.3 TDCM

2. For each test case do:

a) For each instruction belonging to the test case do :

i. If the instruction is not a valid instance of the corresponding metas-
chema, the verdict for this test case is “Error”, overriding any other
previous possible verdict. The testing of this case ends.

ii. If the instruction is of the assertion type2 then :

A. If it makes the assertion invalid, the verdict is “Fail”.

3. If there is any “Error” verdict, the final verdict is “Error”. If there are no
“Error” verdicts, but there are some “Fail” verdicts, then the final verdict is
“Fail”. In any other situation, the final verdict is a “Pass”.

7.3. TDCM

The Test-Driven Conceptual Modelling (TDCM) methodology, can be understood
as a cycle where a conceptual schema is defined incrementally in short iterations.
An iteration starts by adding new test cases to the passing test set of the previous
iteration.

The objective of each iteration is to change the schema, if necessary, so that it
includes the knowledge to correctly execute the new test case. The previous set of
tests in addition to the new test cases are the current test set for the iteration. A
TDCM iteration can only finish when the overall verdict of the current set of tests
is “Pass”.

As we have seen, each TDCM iteration, which is a particular instantiation of the
TDCM cycle, is guided by different stages. Those stages consist on writing a test
case, changing the schema and refactoring it and can be seen in Fig. 7.3. We describe
these tasks in the following subsections.

7.3.1. Write a test case

The first task of the TDCM cycle consists of setting up a new test case whose verdict
will be Pass once the conceptual schema includes the knowledge to be added in the
current iteration.[21]

According to the test initial verdict3, we can distinguish two different types of test
cases, the ones that pass and the ones that not.

2See subsubsection 7.2.1.1
3See sec. 7.2.2.3

81

Chapter 7 Application of TDCM

Figure 7.3.: TDCM cycle [21]

7.3.1.1. Tests whose initial verdict is “Error” or “Fail”

In the general case, the schema does not include that knowledge initially, and there-
fore the verdict will be Error or Fail. When this happens, progress is to be made
in the TDCM cycle, as new knowledge needs to be put into the conceptual schema,
making it evolve in order to end up with a “Pass” verdict.

7.3.1.2. Tests whose initial verdict is “Pass”

When the initial verdict of the new set of test cases is “Pass”, then the iteration
objective is already achieved and, consequently, the iteration finishes. Despite being
fruitless in terms of conceptual schema evolution, such iterations can be convenient
in order to increase the confidence about the already defined knowledge.

7.3.2. Change the schema

The objective of this task, is to obtain a global “Pass” verdict. The accomplishment
of this task, also marks the end of it. The conceptual modeller has to change the
schema, while remaining true to the knowledge it represents, to fix these errors or
failures. The testing environment provides additional information about the failure
or the error. At this point, changing the schema and checking if the new verdict for
the test cases becomes a “Pass” is the main activity to make progress in the TDCM.

There are several different possible outcomes that would not be a “Pass”, and all of
them have their own meanings that we are explaining in the following lines.

82

7.3 TDCM

7.3.2.1. The added tests do not “Pass”

This is by far the most common outcome to happen once we are in this task. Again,
there are two reasons for this:

1. Error verdict: the required knowledge is not defined in the schema. Informa-
tion about the error helps to find out required knowledge to be added to the
schema. In this way, TDCM drives the completeness of the schema according
to the user needs expressed in test cases.

2. Fail verdict: the schema needs to be changed because it does not produce the
expected result (the schema is not correct according to the test assertions).
The information about the failure provided by the testing environment helps
to find out the changes to be done in the schema in order to fix the failure.

7.3.2.2. The existing tests do not “Pass”

This less common outcome is discovered because each time all the tests are checked.
Again, there are two reasons for this:

1. Error verdict:

a) The conceptual schema has become incomplete: A schema element that
was necessary for a previous test case has been removed.

b) The IB state of a previous test case has become inconsistent: IB states
of previous test cases may become inconsistent when a new constraint is
added to the schema. Inconsistent states need to be updated to ensure
that test cases formalise consistent stories.

2. Fail verdict:

a) Previous defined knowledge ceases to be correct due to the last changes:
A derivation rule ceases to derive information as expected, an event oc-
currence ceases to produce the expected IB state or a domain event ceases
to be applicable as expected. The conceptual schema needs to be changed
to fix the failure.

b) Inconsistent requirements are revealed: If it is not possible to change
the schema to pass both the new test case and the previous failing test
cases, an inconsistency between requirements has been revealed. The
inconsistency must be resolved. Involved test cases may be changed, if
needed, to reflect updated expectations.

7.3.3. Refactor the schema

Refactoring aims to improve the quality of the conceptual schema
without changing the knowledge specified in it.[21]

83

Chapter 7 Application of TDCM

In this last step of the TDCM cycle, the conceptual modeller is encouraged to
refactor the schema and, afterwards, request the execution of the current test set
(the older ones we already had plus the ones added in this iteration), to check if it is
still valid or the refactoring process has not preserved the knowledge of the schema.

7.4. Limitations

The limitations of this section may be similar to those found in sec. 5.3. After all,
the project scope and the cases to be tested are the same, and the test-case stage
is strongly linked to that of test-story creation. We refer them in the following
subsections.

7.4.1. Scope

In this matter, like we saw in section 4.3 and in section 5.3, the scope has been a
limitation to the number of use cases that TDCM could be applied. This is because
RTM has 65 use cases and even more test stories and the project barely lasted 4
months.
The application of TDCM has not been exhaustive, and not all test stories have been
translated into CSTL. Nevertheless, due to the solid testing strategy we defined in
chapter 6, this has not affected significantly the overall results, as only the least
important use cases were left out. Having pointed that out, all test cases from the
Basic use cases subsets4 (i and ii), the Performance use cases subsets5 (i, ii and iii)
and a good amount of the Excitement use cases subsets6 (i and partially ii) were
modelled according to TDCM. This only left out the valueless use cases from the
Indifference subset7 and some from the Excitement subset (ii), which are in fact very
similar to the ones already tested from the Excitement subset (i).
We have tested all the stories from use cases that were in the domain events category
of the said subsets. The minority that were belonging to the “query” category were
skipped altogether. Those are the ones that do not modify the state of the IB, and
they were not tested not only because of time constraints, but also because there
are not interesting from the testing standpoint and there is not really much to test
about with assertion instructions, as they do not affect or alter the state in any way.
The complete code for the final version of the conceptual schema and methods
files is to be found in Appendix C and Appendix D, and they are not individually
commented because it would surpass again the scope of a project like this one. The

4See section 6.6
5See section 6.8
6See section 6.11
7See section 6.13

84

7.5 From test stories to formal test cases

complete code for the tests applied is omitted entirely, because its size is in excess
of 10,000 lines of code, and this was deemed too many pages in comparison with the
appeal it would bring to most of the readers.

7.4.2. Testing environment

These tests are to be executed using the CSTL processor, not in the real system
(the RTM). As such, there are some differences, which are significant. The nature
of the CSTL processor makes some of the tests obsolete. Furthermore, some of the
translations can not be exact, precise and literal, but only very close approximations.
So there are expected to be some minor differences that do not affect the rigour or
quality of the testings in any way.
The CSTL processor’s architecture, can prevent the execution of some of the cases
that in real life might cause the system to fail, or lead it to an inconsistent IB
state. This is one of its main strengths, because it would throw an “Error” verdict
from the very beginning. Nevertheless, this kind of verdict is not interesting in the
documentation of test stories, as it implies that some modifications are needed and
it is not correct. The final goal is for all test cases to have a “Pass” verdict.
On the other hand, there are situations that might cause malfunction or unexpected
behaviour that in real life could not happen, but in the CSTL environment are
possible. An example would be for a user to modify a task not belonging to him. In
real life, because of the interface, a user is not expected to select any task without
having the right permissions or authorisation, and in fact, they should not even be
aware of their existence. In the CSTL Processor, however, there is not a Graphical
User Interface (GUI) that limits this, and theoretically, more unexpected situations
than those conceived in the test stories could happen. They are not of a high value,
because in real life these situations could not happen. This is the reason why most of
them will go untested, even if some are indeed tested to demonstrate the robustness
and correctness that the conceptual schema achieves with the TDCM. It is also a
way to show that there are no missing invariants or preconditions that could be
exploited by malevolent parties.

7.5. From test stories to formal test cases

In this section we are going to show how the use cases we discussed in sec. 4.5 and
sec. 5.5 are finally made into formal test cases. But first, we need to know what a
test case is :

Test cases consist of sequences of expected Information Base (IB)
states (which may change through the occurrence of events) and as-
sertions about them.[22]

85

Chapter 7 Application of TDCM

In our project, we are using the CSTL language to encode tests. This gives some
more properties that define the structure of a test case:

It is assumed that the execution of each test case of a CSTL program
starts with an empty IB state. With this assumption, the test cases of
a program are independent each other, and therefore the order of their
execution is irrelevant.[20]

7.5.1. Update priority from a task

These test cases are entirely based on test-stories found in sec. 5.5.1

7.5.1.1. Test case 1: Modification of a priority from a task

Test objective: Update a priority from a task (Main success scenario sec. 4.5.1.1)

Before actually reaching the test objective, we first need to build an IB with enough
elements to let us test it. First of all we create a few accounts as seen in Algorithm 7.1:

Algorithm 7.1 IB Account creation

test Modi f i ca t ionOfAPr io r i ty {
na := new CreateAccount (username := ’ Al ice ’ ,

password := ’1234 ’ ,
c reat ionDate := 20111106) ;

assert occurrence na ;
assert equals na . username ’ Al ice ’ ;
assert equals na . password ’ 1234 ’ ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=1;

na2 := new CreateAccount (username := ’Bob ’ ,
password := ’4321 ’ ,
c reat ionDate := 20111106) ;

assert occurrence na2 ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=2;

Next we log Alice in, so she can later perform the update as seen in Algorithm 7.2:

86

7.5 From test stories to formal test cases

Algorithm 7.2 IB Log in

a l i c e := [Account . a l l I n s t a n c e s ()−>any (a |
a . username = ’ Al ice ’)] ;

assert fa l se a l i c e . i sLoggedIn ;
n log := new LogIntoAccount (username := ’ Al ice ’ ,

password := ’1234 ’ ,
i sLoggedIn := true) ;

assert occurrence nlog ;
assert true a l i c e . i sLoggedIn ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=2;

We add some tasks in the IB as seen in Algorithm 7.3:

Algorithm 7.3 IB Task creation (i)

assert true a l i c e . task−>s i z e ()=0;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=0;
ntask := new CreateTask (

d e s c r i p t o r := ’Go to the cinema with Bob ’ ,
c reat ionDate := 20111110 ,
dueDate := 20111112 ,
user := a l i c e) ;

assert occurrence ntask ;
assert true ntask . c reat ionDate =20111110;
assert true a l i c e . task−>s i z e ()=1;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=1;

We add some other more tasks in the IB as seen in Algorithm 7.4:

87

Chapter 7 Application of TDCM

Algorithm 7.4 IB Task creation (ii)

ntask2 := new CreateTask (
d e s c r i p t o r := ’Buy r i c e f o r lunch ’ ,
c reat ionDate := 20111110 ,
dueDate := 20111112 ,
user := a l i c e) ;

assert occurrence ntask2 ;
assert true a l i c e . task−>s i z e ()=2;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=2;

ntask3 := new CreateTask (d e s c r i p t o r := ’Go to the post
o f f i c e to send a package to Carol ’ ,
c reat ionDate := 20111110 ,
dueDate := 20111114 ,
user := a l i c e) ;

assert occurrence ntask3 ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;

We assign some priorities to tasks as seen in Algorithm 7.5:

Algorithm 7.5 IB Priority assignation

taskCinema := [Task . a l l I n s t a n c e s ()−>any (t |
t . d e s c r i p t o r = ’Go to the cinema with Bob ’ and
t . dueDate = 20111112 and
t . account . username−>i nc l u d e s (’ Al ice ’))] ;

assert true taskCinema . pr io−>isEmpty () ;
p r i o1 := new CreatePr io (user := a l i c e ,

task := taskCinema ,
l e v e l := 1) ;

assert occurrence pr io1 ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =1;

Finally, we are ready to reach the test objective as seen in Algorithm 7.6:

88

7.5 From test stories to formal test cases

Algorithm 7.6 Priority update test (i)

assert occurrence pr io1 ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =1;

prioUp2 := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
prioNew := 2) ;

assert occurrence prioUp2 ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =2;
assert consistency ;

7.5.1.2. Test case 2: Increasing the priority of a task

Test objective: Increment the current priority of a task (Extension 4a sec. 4.5.1.1).

The IB can be build like in the first test case. That is, we assume the code from
Algorithm 7.1, Algorithm 7.2, Algorithm 7.3, Algorithm 7.4 and Algorithm 7.5 to
be already defined. Therefore, we can directly test the objective in Algorithm 7.7.

Algorithm 7.7 Priority update test (ii)

test Modi f i c a t i onOfAPr io r i t y Inc r ea s e {
// the t e s t name shou ld be the one above

//and the code from f i g u r e s shou ld go here

pr i o In c := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
i n c r e a s e := true) ;

assert occurrence pr i o In c ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =2;
assert consistency ;

89

Chapter 7 Application of TDCM

7.5.1.3. Test case 3: Decreasing the priority of a task

Test objective: Decrement the current priority of a task (Extension 4b sec. 4.5.1.1).

The IB can be build almost like in the first test case. That is, we assume the
code from Algorithm 7.1, Algorithm 7.2, Algorithm 7.3 and Algorithm 7.4 to be
already defined. Therefore, we only need to assign some task priorities as seen in
Algorithm 7.8 before we can directly test the objective in Algorithm 7.9.

Algorithm 7.8 IB Priority assignation

taskCinema := [Task . a l l I n s t a n c e s ()−>any (t |
t . d e s c r i p t o r = ’Go to the cinema with Bob ’ and
t . dueDate = 20111112 and
t . account . username−>i nc l u d e s (’ Al ice ’))] ;

assert true taskCinema . pr io−>isEmpty () ;
p r i o1 := new CreatePr io (user := a l i c e ,

task := taskCinema ,
l e v e l := 3) ;

assert occurrence pr io1 ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =3;

Algorithm 7.9 Priority update test (iii)

test Modi f i cat ionOfAPr ior i tyDecrease {
// the t e s t name shou ld be the one above

//and the code from f i g u r e s shou ld go here

prioDec := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
dec r ea s e := true) ;

assert occurrence prioDec ;
assert true a l i c e . task−>s i z e ()=3;
assert true Task . a l l I n s t a n c e s ()−> s i z e ()=3;
assert true taskCinema . p r i o . l e v e l =2;
assert consistency ;

90

7.5 From test stories to formal test cases

7.5.1.4. Test story 4: Failed update of a priority (priority out of bounds)

Test objective: Attempt to increment a priority from a task which was already set
as the highest priority (Extension 6a + Extension 4a sec. 4.5.1.1).

The IB can be build like in the first test case. That is, we assume the code from
Algorithm 7.1, Algorithm 7.2, Algorithm 7.3, Algorithm 7.4 and Algorithm 7.5 to
be already defined. Therefore, we can directly test the objective in Algorithm 7.10.

Algorithm 7.10 Priority update test (iv)

test Inval idModi f icat ionOfAPrior i tyOutOfBounds {
// the t e s t name shou ld be the one above

//and the code from f i g u r e s shou ld go here

prioDec := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
dec r ea s e := true) ;

assert non−occurrence prioDec ;

p r i o Inc1 := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
i n c r e a s e := true) ;

assert occurrence pr i o Inc1 ;
assert true taskCinema . p r i o . l e v e l =2;

p r i o Inc2 := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
i n c r e a s e := true) ;

assert occurrence pr i o Inc2 ;
assert true taskCinema . p r i o . l e v e l =3;

p r i o Inc3 := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
i n c r e a s e := true) ;

assert non−occurrence pr i o Inc3 ;
assert consistency ;

91

Chapter 7 Application of TDCM

7.5.1.5. Additional notes

The first difference we notice is that test cases need to build up a Information Base
(IB) before they can test and execute the case itself. This is because test stories were
written in natural language and this information was implied. The IB was treated
as having been introduced earlier. But because all test cases must be independent
one from the other, each one has to build its own IB, so essentially they remain the
same as test stories in this aspect.

One other difference we see are assertions. Test stories assume that the system will
“know” when there is a wrong input or when use cases end with the expected result.
This knowledge that is implied in test stories has to be made explicit in test cases,
and assertions are precisely the way to do it. Furthermore, we see that all test cases
must end with “assert consistency”. It is the correct way to verify that there have
not been unexpected changes that would make the IB inconsistent at the end of
case.

The lack of an interface and real “interaction” between user and system is another
difference. This interaction is not necessary to test a conceptual schema, and almost
everything in relation to it is dropped in test cases (e.g. system messages).

There are also some possible legitimate test stories that would not make any sense as
test cases in Conceptual Schema Testing Language (CSTL). One example would be
a test story that does not input all the mandatory parameters, but asks the system
to proceed anyway. One such test case would not be valid, because to execute a
method, the test case needs all its parameters. This would simply output “Error”
and not a “Pass”, so it does not make sense to translate this kind of stories.

On the other hand, there are test cases that would make sense, even if they would
not from a test story standpoint. One example would be testing wether a user can
update a priority without being logged in or not. In a test story it would not make
sense, because in order to access to tasks one must log in first, as the interface
already places descriptions, but CSTL, being more technology independent and
general makes this test case a valid one, and necessary if all the invariants want to
be checked. This case is coded as follows in Algorithm 7.11, assuming the code from
Algorithm 7.1, Algorithm 7.2, Algorithm 7.3, Algorithm 7.4 and Algorithm 7.5 to
be already defined.

92

7.6 Iterations

Algorithm 7.11 Priority update test (v)

test Inva l idModi f i cat ionOfAPr ior i tyNotLoggedIn {
// the t e s t name shou ld be the one above

//and the code from f i g u r e s shou ld go here

nlogout := new LogOutAccount (user := a l i c e) ;
assert occurrence nlogout ;
assert fa l se a l i c e . i sLoggedIn ;

prioUp := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
prioNew := 2) ;

assert non−occurrence prioUp ;
assert consistency ;

Finally another example of test cases that make sense but not as test stories. We
assume the code from Algorithm 7.1, Algorithm 7.2, Algorithm 7.3, Algorithm 7.4
and Algorithm 7.5 to be already defined. Therefore, we only need to look at
Algorithm 7.12.

Algorithm 7.12 Priority update test (vi)

test Inva l idMod i f i ca t i onOfAPr io r i tyCont rad i c to ryAct ion {
// the t e s t name shou ld be the one above

//and the code from f i g u r e s shou ld go here

pr ioIncDec := new UpdatePrio (user := a l i c e ,
task := taskCinema ,
i n c r e a s e := true ,
d ec r ea s e := true) ;

assert non−occurrence pr ioIncDec ;
assert consistency ;

7.6. Iterations

The Test-Driven Conceptual Modelling (TDCM) methodology states that, accord-
ing to Test-Driven Development (TDD), each iteration must consist on one test.
Nevertheless, it also suggests that, as the modeller gains confidence, he/she may
introduce more than one new test each iteration.

93

Chapter 7 Application of TDCM

In the first few iterations, we only introduced one test at a time, but as the project
went on, we introduced several of them, even spanning more than one new use
case each time. These iterations, which are a summary8 of their final outcome, are
showed to grasp more details about the execution of TDCM. The algorithm followed
to determine which use case use is described in section 6.2. Classes, invariants,
relationships, etc. are created as they are required.

7.6.1. Iteration 1

This iteration involves the creation of the conceptual schema, because it did not
exist yet, and the first use case from section 6.6. This use case is “Create account”.

7.6.1.1. Test case codification

We encode a test similarly to how we did in section 7.5. This test is basically the
one seen in Algorithm 7.1, with its test name being “CreationOfAnAccount” and
ending with the instruction “assert consistency;”.

7.6.1.2. Conceptual schema codification

Being the first use case, we had to create the model. Not having any class of type
“Account”, we had to define it with its required attributes (Algorithm 7.13).

Algorithm 7.13 Account class

model RememberTheMilk

class Account
attributes

username : String
password : String
creat ionDate : Integer
emai l : String

end

At that point, we were ready to define the “Create account” event (Algorithm 7.16).

8We are not showing all the steps the whole process required (e.g. error messages as they appeared
during time or the modifications that were performed to correct them).

94

7.6 Iterations

Algorithm 7.14 Create account event

event CreateAccount
attributes

username : String
password : String
creat ionDate : Integer

operations
e f f e c t ()

end

Along with its postcondition (Algorithm 7.15).

Algorithm 7.15 Create account postcondition

context CreateAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a . oclIsNew () and

a . username = s e l f . username and
a . password = s e l f . password and
a . c reat ionDate = s e l f . c reat ionDate)

It is noteworthy that all its final attributes and relationships may not be present.
That is because they are not needed at this point. For example, as soon as we
introduce the “Log into an account” use case, the account must be able to keep
track for each user. A boolean attribute that indicates this, is the decision we took.
Another alternative, would have been creating subclasses of account, one which was
LoggedInAccount and another which represented NotLoggedInAccount. In any case,
modifications to some already codified classes and invariants are to be expected as
the size of the conceptual schema grows.

7.6.1.3. Methods codification

In Algorithm 7.16 we can see the codification for the “Create Account” method.

Algorithm 7.16 Create account method

method CreateAccount{
r e s := new Account (username := s e l f . username ,

password := s e l f . password ,
c reat ionDate := s e l f . creat ionDate ,
emai l := ’ ’) ;

}

95

Chapter 7 Application of TDCM

7.6.2. Iteration 2

7.6.2.1. Test case codification

We encode the second test case for “Create account” (Algorithm 7.17).

Algorithm 7.17 Create account test (ii)

test FailedCreationOfAnAccountDupplicatedName{
na := new CreateAccount (username := ’ Al ice ’ ,

password := ’12345678 ’ ,
c reat ionDate := 20111106) ;

assert occurrence na ;
assert equals na . username ’ Al ice ’ ;
assert equals na . password ’12345678 ’ ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=1;

na := new CreateAccount (username := ’ Al ice ’ ,
password := ’1234 ’ ,
c reat ionDate := 20111106) ;

assert non−occurrence na2 ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=1;
assert consistency ;

7.6.2.2. Conceptual schema codification

Some modifications had to be done in order for the new test to get a “Pass” verdict.
Some “Account” invariants were added (Algorithm 7.18).

Algorithm 7.18 Account invariants (i)

context Account inv usernameAccount Ident i f i e r :
Account . a l l I n s t a n c e s −>isUnique (username)

And some “Create account” preconditions were added as well (Algorithm 7.19).

Algorithm 7.19 Create account preconditions (i)

context CreateAccount in i inv usernameAccount Ident i f i e r :
Account . a l l I n s t a n c e s ()−> f o r A l l (a |

a . username <> s e l f . username)

96

7.6 Iterations

7.6.2.3. Methods codification

Methods only need to be codified or modified when a new use case is introduced.
Therefore, there are no changes at this point.

7.6.3. Iteration 3

7.6.3.1. Test case codification

We encode the third and last test case for “Create account” (Algorithm 7.20).

Algorithm 7.20 Create account test (iii)

test FailedCreationOfAnAccountNameTooLong{
na := new CreateAccount (username := ’ A l i c e Pleasance

L i d e l l from Wonderland ,
beneath Oxfordshire ’ ,

password := ’1234 ’ ,
c reat ionDate := 20111106) ;

assert non−occurrence na ;
assert true Account . a l l I n s t a n c e s ()−> s i z e ()=0;

7.6.3.2. Conceptual schema codification

Additional code had to be included in order for the new test to get a “Pass” verdict.
This are the “Account” invariants that were added (Algorithm 7.21).

Algorithm 7.21 Account invariants (ii)

context Account inv usernameMaxLength :
Account . a l l I n s t a n c e s −>f o r A l l (a | a . username . s i z e () >= 2

and a . username . s i z e () <= 50)

context Account inv passwordMaxLength :
Account . a l l I n s t a n c e s −>f o r A l l (a | a . password . s i z e () >= 4

and a . password . s i z e () <= 50)

And some “Create account” preconditions were added as well (Algorithm 7.22).

97

Chapter 7 Application of TDCM

Algorithm 7.22 Create account preconditions (ii)

context CreateAccount in i inv usernameMaxLength :
s e l f . username . s i z e () <= 50 and s e l f . username . s i z e () >= 2

context CreateAccount in i inv passwordMaxLength :
s e l f . password . s i z e () <= 50 and s e l f . password . s i z e () >= 4

7.6.3.3. Methods codification

As explained, there are no new methods.

7.6.4. Iteration 4

Having already codified and finished the “Create account” use case, we followed
with the next one in the list, “Log into account”. In this iteration we revisited the
“Account” class definition, to include the knowledge required for a user to be able
to log in. We added a new event “LogIntoAccount”, with its postcondition, method
and some preconditions. The rest of the process is analogous to that of previous
iterations.

98

Part III.

Results

99

8. Conceptual schema

8.1. Overview

This chapter is about the obtained Remember the Milk (RTM) conceptual schema
through Test-Driven Conceptual Modelling (TDCM) application.
In section 8.2 we see two different views of the structural schema, with its classes
and their associations, multiplicities and attributes. In section 8.3 we show the event
definition along with its postconditions and invariants of a relevant test case. The
rest of them are available in Appendix C. In section 8.4 there is a small summary
of statistics.

8.2. Structural schema

In Figure 8.1 we see RTM’s partial structural schema. The image is a screenshot
from the program Conceptual Schema Testing Language (CSTL) Processor uses to
check conceptual schema correctness (USEx). It shows a Unified Modelling Lan-
guage (UML) class diagram containing all classes belonging to the 50 use cases (out
of a total of 65) with the highest priority, according to the assessment we did in
chapter 6.
In this class diagram, we also see the different associations between classes and their
multiplicities. These classes and associations were created in order to get “Pass”
verdicts to all tests, which expressed the RTM system structural knowledge. As we
can see, these class diagram correctly represents the RTM knowledge.
In Figure 8.2 the attributes belonging to each class are shown. There are no asso-
ciation names or multiplicity numbers, because this way the image is clearer, but
they remain the same as in Figure 8.1.

8.3. Behavioural schema

Not visible in the structural schema, would be the events and their postconditions.
We present again that of “Update priority of a task”, as we did earlier (section 4.5,
subsection 5.5.1 and subsection 7.5.1).

101

Chapter 8 Conceptual schema

Figure 8.1.: RTM Partial conceptual schema (i)

Figure 8.2.: RTM Partial conceptual schema (ii)

In Algorithm 8.1 we can see the event definition.

102

8.3 Behavioural schema

Algorithm 8.1 Update priority definition

event UpdatePrio
attributes

user : Account
prioNew : Integer [0 . . 1]
i n c r e a s e : Boolean [0 . . 1]
dec r ea s e : Boolean [0 . . 1]
task : Task

operations
e f f e c t ()

end

In Algorithm 8.2 we can see its postcondition.

Algorithm 8.2 Update priority postcondition

context UpdatePrio : : e f f e c t ()
post : Pr io . a l l I n s t a n c e s ()−> e x i s t s (p |

−− f i r s t c l au s e

((s e l f . i n c r e a s e . i sUnde f ined () and s e l f . i n c r e a s e . i sUnde f ined ())
or (not (s e l f . i n c r e a s e=true) and not (s e l f . i n c r e a s e=true)))
implies p . l e v e l = s e l f . prioNew

and −− second c l au s e

((s e l f . i n c r e a s e=true) and not (s e l f . d ec r ea s e=true)
and p . l eve l@pre < 3) −− 3 i s the max . pr io . l e v e l

implies p . l e v e l = p . l eve l@pre +1
and −− t h i r d c l au s e

((s e l f . d ec r ea s e=true) and not (s e l f . i n c r e a s e=true)
and p . l eve l@pre > 1) −− 1 i s the min . pr io . l e v e l

implies p . l e v e l +1 = p . l eve l@pre
and −− f ou r t h c lause , uncond i t i ona l

p . task−>i nc l u d e s (s e l f . task)
and −− f i f t h c lause , uncond i t i ona l

p . task . account−>i nc l u d e s (s e l f . use r))

And finally inAlgorithm 8.3 we observe the event preconditions.

103

Chapter 8 Conceptual schema

Algorithm 8.3 Update priority preconditions

context UpdatePrio in i inv a l r eadyPr io :
s e l f . task . pr io−>notEmpty ()

context UpdatePrio in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UpdatePrio in i inv notIncreaseAndDecrease :
not ((s e l f . i n c r e a s e=true) and (s e l f . d ec r ea s e=true))

context UpdatePrio in i inv notOutOfUpperBounds :
Pr io . a l l I n s t a n c e s ()−> e x i s t s (p | ((s e l f . i n c r e a s e=true)

and not (s e l f . d ec r ea s e=true) implies p . l e v e l < 3)
and p . task−>i nc l u d e s (s e l f . task)
and p . task . account−>i nc l u d e s (s e l f . use r))

context UpdatePrio in i inv notOutOfLowerBounds :
Pr io . a l l I n s t a n c e s ()−> e x i s t s (p | (not (s e l f . i n c r e a s e=true)

and (s e l f . d ec r ea s e=true) implies p . l e v e l > 1)
and p . task−>i nc l u d e s (s e l f . task) and

p . task . account−>i nc l u d e s (s e l f . use r))

8.4. Statistical summary

All this statistical data that makes reference to the conceptual schema is provided
by USEx.

• The schema has 41 events1 and 41 postconditions (one of each event).
• It has 12 different classes, 4 of them being generalisations. Their association

count is 13 and their total number of attributes is 21.
• The schema has 250 invariants + preconditions.
• The number of different test cases that drove the development of this schema

is 79.

1This would be equivalent to 41 use cases instead of 50, but this is because we did not implement
any use case whose type was query. They do not change the conceptual schema, as no additional
attributes, classes or associations are needed for them. So the sentence where we said this
represents the 50 top priority use cases remains true.

104

9. Lessons learnt

9.1. Overview

The aim of this chapter is to describe what we have learnt from this project, focusing
on a retrospective view of the goals set in section 1.5.

In section 9.2 we describe the gathered experiences from the application of Test-
Driven Conceptual Modelling (TDCM) on a real-sized project. In section 9.3 the
complementary goal of suggesting modifications to the Remember the Milk (RTM)
system is explored.

9.2. TDCM

9.2.1. Feasibility

Beyond any doubt, this project reinforces the idea that TDCM is a viable solution
to build conceptual schemas of real-sized information systems. The schemas in
chapter 8, obtained by the application of TDCM, are a proof of this fact, because
they show the almost complete schema of RTM, a real-sized information system.

9.2.2. Advantages

At every point in its evolution, including the final version, schemas created by
applying TDCM are always correct and complete with respect to the defined test
cases. Such confidence is usually not possible to achieve when schemas are developed
using a method that does not test them.

We have also showed that it is possible for stakeholders to define test stories in
natural language that represent the system’s knowledge. These test stories can
later be translated into test cases. This active involvement of everyone that knows
the domain helps to ensure even more that all the knowledge is valid and relevant
according to their expectations and needs. Again, this approach may be not possible
with other methodologies when stakeholders lack technical skills in computer science
and more specifically in software engineering.

105

Chapter 9 Lessons learnt

9.2.3. Patterns of use

We have noticed that, because several test cases must be written for each use case
at conceptual modelling stage, the development of a conceptual schema by applying
TDCM is bound to take more time than applying other methodologies. Nevertheless,
in most cases, this extra time should be small relative to the overall time spent.
Furthermore, because validity is ensured through stakeholder participation, we can
state that the probability of the final system not meeting stakeholders’ expectations
due to the conceptual schema is greatly reduced. Additionally, because completeness
and correctness are ensured through automated testing, we can guarantee, as long as
tests correctly represent all the knowledge, that the conceptual schema is error-free
and represents exactly what we meant.
Modification of requirements because the conceptual schema does not represent what
stakeholders expected, specially at later stages (design, implementation, etc.) can
be extremely time consuming and resource intensive. Likewise, the resources needed
to fix an schema error detected at stages later than conceptual modelling, is orders of
magnitude higher. Because the correct application of TDCM prevents and minimises
these situations, we believe that the whole development time and resources spent on
a complete information system implementation will be significantly lower in most
cases, despite the conceptual modelling stage being usually longer.
Regarding time spent in subparts of TDCM application, our findings, which mostly
support previous TDCM applications [21, 18], are the following ones :

1. Iteration-wise, most of them took about the same time to resolve (i.e. get
a “Pass” verdict). This may look contradictory in relation to other project
results, because as the modeller familiarises with the domain and the language,
the time spend per iteration is expected to diminish. However, I chose to add
more tests per iteration instead of just reducing their time. Hence, in general,
the amount of time spent per test resolution was in fact decreasing.

2. The frequency of some types of errors varied along the TDCM application. For
example, syntax errors were much more frequent during the first iterations, as
I was not familiar with the Conceptual Schema Testing Language (CSTL).

3. There is not always a strong correlation between the time spent on a test to
obtain a “Pass” verdict and its number of errors/failures fixed. On one hand,
there are some kinds of errors, like missing relevant types which are trivial
to be fixed (they just need to be added). On the other hand, fixing a failing
assertion may require the modification of postconditions and invariants.

4. On average, the time spent writing test cases is much smaller than the time
needed to pass them. On one hand, this is because most of the test cases
are built on other test cases’ Information Bases (IB), so only few new events
and few new assertions are needed. On the other hand, the modification of the
schema and/or methods can require much more thought and time. This means

106

9.3 RTM

that most of the time is actively spent modifying the conceptual schema, and
not just writing tests.

9.3. RTM

9.3.1. Conceptual deficiencies

Thanks to the developed conceptual schema, we found that the system has no way
to differentiate the creator and original owner of a task/list from other users that
have had this task/list shared. Real-life testing of RTM system confirmed those
findings, which can lead to many different issues:

1. The original owner can not control who has modification or viewing rights on
the task/list once he/she shares it. The user that receives sharing rights, can
share it with more other users without the general owner being able to do
anything to prevent it.

2. The original owner of a list is unable to know who has sharing or reading rights
for it.

3. Everyone that has sharing rights on a task can see who else has those rights.
4. Anyone from the sharing parties can delete tasks, without any other parties

even getting any kind notice of this.
Most of these points are undesirable in a number of situations. We think that the
original owner of a task/list, if he/she wanted so, should have more rights on it, and
could control more precisely which rights to grant to other parties. A simple addition
of an association between the “Account” class to “List” and another one to “Task”
would allow for the development of use cases that permitted this. These associations
should probably have a multiplicity of 1 on the “Account” end and an * on the other
ends. This multiplicities would roughly mean that each list/task must have one and
only one original owner, and that each account can be the original owned of many
different tasks/lists. All this, again, should be developed in accordance with TDCM,
writing tests that represent the knowledge, etc.
The introduction of this association would also enable us to add a few more use
cases that were missed. This family of “Unshare” use cases would allow the original
owner of a task/list to revoke granted sharing privileges to other parties. It would
be similar to “Unpublish” use cases, but they were not possible before because the
system could not discern the original owner of a task/list.

9.3.2. Lack of validation

We included at least a validation step in all use cases that had to deal with user
input. RTM does not do this in most cases, or its ability to check for errors is

107

Chapter 9 Lessons learnt

highly defective. One example would be the user’s ability to create arbitrarily long
task names. There was no apparent limit, so we created a ~150,000 characters long
task name. RTM did not trunk the display of the task name, so when the task was
listed among the others, it was completely disrupting the interface and hindering
its usability considerably. Furthermore, a long enough task name could possibly
crash the account or the entire system. We solved this and other lack of validation
problems by adding invariants which prevented them when needed.

9.3.3. Additional features

With the Kano1 process of categorisation of use cases, we found that the system
is lacking “excitement” features, because the ones it actually has are going to be
downgraded to “performance” soon. Some interesting “excitement” features are
presented.

1. Social wish list: items in this special kind of list, would consist on activities you
intend or would like to do, but you would prefer to do in a group. The system
would aggregate them, and possibly use geolocation algorithms to provide
better matchings. Practical applications for this range from the rental of a
bus for a trip of a large group of people willing to go to an international music
festival to car-sharing.

2. List subscription: this would be the ability for a user to search for public
published lists and “subscribe” to them. The system would notify the user of
updates as the list is modified. Practical applications for this could be someone
releasing weekly recipes and their required ingredients list.

3. Tag2 subscription: this would be the ability for a user to search for (or create)
tags and subscribe to them. The system would notify him/her of updates as
new tasks with the correct permissions are assigned with those tags. Practical
applications for this could be the subscription of a football team or a specific
type of music.

4. Work request list: each user would have a list where they could request assist-
ance in some kind of task. Qualified workers would get permission to see the
tasks related to their field. Its philosophy would not be much different than
that of craigslist3. Furthermore geolocation algorithms could be taken into
account to provide even a better service. Practical applications of this would
range from soliciting a plumber to fix a pipe to soliciting a baby sitter for the
weekend.

5. Service recommendation: this would be the ability for RTM to analyse the
tasks/notes/etc. in search for keywords. With this information, RTM would

1See section 6.4
2Tags for tasks actually exist in RTM, but we considered them already included in the “Update

task” use case, as just another attribute.
3is a centralised network of online communities featuring free online classified advertisements.

108

9.3 RTM

recommend the user related products or services. A practical application for
this would be the highlighting of a disc title to a spotify, amazon, youtube or
itunes link. The user could disable the feature or restrict it if he/she did not
like it.

9.3.4. Counterintuitive Interface

Graphical User Interfaces (GUIs) are not the main topic on this project. However,
a study should be carried on to provide data to fix the GUI. One example of things
to fix would be list-related use cases. In order to create a new list, a user must go
to the “Settings” tab, then to the “Lists” tab and finally click on the smallish “Add
list” button for a new blank input box to appear and fill its name. It probably
is too many clicks and steps, but the inevitable problem is that “List” actions are
not unified. In order to share a list, a user must go to the “Tasks” tab, choose the
list and then share it. Having two such different processes for dealing with similar
things can be confusing and difficult to remember for end-users.
Another example in the “List” category, would be the fact that a user is not told in
any way when he/she has a new shared list pending of acceptance. The only means
a user has to know it is by regularly checking the “Settings” tab, then the “Lists”
tab and finally searching thoroughly for the small acceptance pending icon. This is
an unnecessary waste of time apart from being inconvenient.

109

10. Conclusions and further work

10.1. Overview

The aim of this chapter (section 10.2) is to revise the accomplishment levels of
the goals set in section 1.5 by summarising chapter 9. In section 10.3 we give the
next steps a project should follow if it was to continue the work presented in this
document, embracing related objectives.

10.2. Conclusions

10.2.1. Test-Driven Conceptual Modelling (TDCM)

• TDCM is a viable solution to build conceptual schemas of real-sized informa-
tion systems (subsection 9.2.1).

• TDCM-created schemas offer a higher degree of correctness and completeness
than methods with non-tested schemas (subsection 9.2.2).

• TDCM ensures that all stakeholder’s domain knowledge is represented in the
schema (subsection 9.2.2).

• Conceptual modelling takes some more resources applying TDCM than other
methodologies, because of test case definitions (subsection 9.2.3).

• TDCM minimises conceptual schema errors and ensures that stakeholders’ ex-
pectations are met. This causes a significant reduction over total development
costs (subsection 9.2.3).

• Our findings in TDCM application subparts support previous work[21, 18]
(subsection 9.2.3).

– In average, time spent per test resolution decreased with each iteration.
– Type of error frequency varied along the TDCM application.
– Time spent to “Pass” a test does not correlate with its number of error-

s/failures fixed.
– Time spent writing test cases is much smaller than spent modifying the

schema.

111

Chapter 10 Conclusions and further work

10.2.2. Remember the Milk (RTM)

• Necessary conceptual schema elements were missing and corrections were pro-
posed (subsection 9.3.1).

• User input validation was deemed insufficient (subsection 9.3.2).
• Additional “excitement” features according to Kano1 were suggested to replace

RTM’s current ones (subsection 9.3.3).
• RTM was found to have usability issues (subsection 9.3.4).

10.3. Further work

10.3.1. CSTL Processor

The Processor is still in prototype stage, and even if it is functional, there is room
for improvement. A list of suggestions is presented.
Portability: the system does not work neither in Mac OS X nor in Linux. However,

because it is java-based, it should be relatively easy to port it to those and
other platforms.

Speed: test-case execution speed is okay in an individual basis2. Nevertheless,
everything indicates that for bigger systems, the algorithm execution time
needs to be diminished.

Bugs: we detected some bugs, which have been reported to Albert Tort, the creator
of the tool3.

Shortcuts: a great and simple addition would be the ability to have some sort of
shortcuts for the most common tasks. Ctrl + S to save the current file and
another one to execute sets of test-cases.

Statistics: keeping track of statistics automatically, including complex or custom-
isable ones like the number of necessary changes for each type of error per
iteration, would help to gather valuable information about use patterns.

1See section 6.4
2When several test cases (say >20) were to be tested for each modification, the time it took

started to be annoying. When the number increased even more (say >40) the time it took
was simply not tolerable. I just removed all the previous tests and retested them every few
iterations to make sure they were still valid, but this is somehow against TDCM. The problems
could be related to my computer (a 2-year-old macbook pro) running the processor in a virtual
machine.

3One of them was related to the built-in text editor. When a test file is opened, if the editor
detects the click of the mouse on it followed by the press of any keys (for example arrow keys)
it believes that the file has been modified. When the modeller chooses to see another test case
he/she is incorrectly informed that there are unsaved changes and is asked to save them.

112

10.3 Further work

Other suggestions I would add were already mentioned in another project[17], but
they are still not completed:
Debugging: having access to the IB state at any moment would improve the process.

This could be accomplished by the addition breakpoints.
Error messages: more descriptive error messages that would help the modeller de-

tect and fix them.

10.3.2. TDCM Methodology

The TDCM methodology relies on test cases to drive the modeller to add domain
knowledge into the conceptual schema. Nevertheless, it could be possible for a
methodology, let’s call it TDCM+, to build the schema itself from the test cases and
the methods file alone. For example, in this hypothetical TDCM+, when testing
detected a missing type, instead of outputting an “Error” verdict and stopping
execution, it would add the relevant type to the schema. For other kind of errors or
failures, this process could be much more complex, but the same philosophy could
be applied. The TDCM+ cycle would then be reduced to (1) writing a new test
case and (2) refactoring the resultant schema.

10.3.3. Experimentation

TDCM experimentation should not end with this project, as there are still more
options to explore. Some of them are presented here.
Big scale projects. TDCM has not yet been tested in big projects. Such projects

could be for example Enterprise Resource Planning (ERPs) with many mod-
ules like Customer Relationship Manager (CRM), Business Intelligence (BI),
web services, etc.

Non-existing real-sized systems. TDCM has not yet been used to develop the con-
ceptual schema of any real-sized projects which did not exist (unlike RTM).

Finishing the remaining use cases from the RTM system would not be of much value,
as all the goals set have already been accomplished.

113

Part IV.

Appendixes and Bibliography

115

A. Use case specification

A.1. Task

A.1.1. Create a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to create a new task.
Main success scenario:

1. The actor indicates the system that he/she wants to create a new task.
2. The system provides the actor with a representation which contains all cur-

rently existing unfinished tasks and enough information to identify them.
3. The actor introduces a task (i.e. a sentence or string that describes a task).
4. The system validates all the information the actor has introduced.
5. The system creates a new task with the introduced information.
6. The system notifies the actor that the task has been successfully created.

Extensions:

4a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.2. Read a task

Scope: RTM task management system.
Primary actor: End-user.

117

Chapter A Use case specification

Preconditions: The user must be logged into the system (for further information
see sec. A.2.2 Log into an account)

Includes: none.
Trigger: The actor wants to access to all the information regarding an existing task.
Main success scenario:

1. The actor indicates the system that he/she wants to read an existing task.
2. The system provides the actor with a representation which contains all cur-

rently existing tasks and enough information to identify them.
3. The actor selects an existing task.
4. The system provides the actor with further information about the selected

task.

Extensions:

2a. The actor does not have any task in the system:
1. The system notifies the actor.
2. The use case ends.

A.1.3. Update a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to modify information of an existing task.
Main success scenario:

1. The actor indicates the system that he/she wants to modify an existing task.
2. The system provides the actor with a representation which contains all cur-

rently existing tasks and enough information to identify them.
3. The actor selects an existing task.
4. The system provides the actor with further information about the selected

task.
5. The actor modifies some information about the selected task.
6. The system asks the actor for confirmation.

118

A.1 Task

7. The actor confirms his/her modification/s.
8. The system validates all the information regarding the task.
9. The system updates the existing task with the modified information.

10. The system notifies the actor that the task has been successfully updated.

Extensions:

2a. The actor does not have any task in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.4. Delete a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to access to all the information regarding an existing task.
Main success scenario:

1. The actor indicates the system that he/she wants to delete an existing task.
2. The system provides the actor with a representation which contains all cur-

rently existing tasks and enough information to identify them.
3. The actor selects an existing task.
4. The system asks the actor for confirmation.
5. The actor confirms the deletion.
6. The system deletes the selected task.
7. The system notifies the actor that the task has been successfully deleted.

Extensions:

2a. The actor does not have any task in the system:
1. The system notifies the actor.
2. The use case ends.

119

Chapter A Use case specification

A.1.5. Create an assign a note to task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to create a new note and add it to an existing task.
Main success scenario:

1. The actor reads a task1.
2. The actor indicates the system that he/she wants to create a new note and

add it to the task he/she has read in the previous step
3. The system provides the actor with a representation which contains all notes

pertaining to the selected task and enough information to identify them.
4. The actor introduces text to a new blank note.
5. The actor indicates the system that he/she wants to save the note.
6. The system validates the introduced data.
7. The system creates a note with the introduced contents, additional metadata

(e.g. date of creation) and associates it with the task.
8. The system notifies the actor that the note has been successfully created and

assigned to the chosen task.

Extensions:

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.6. Read a note assigned to a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task

1See sec. A.1.2

120

A.1 Task

Trigger: The actor wants to read the information regarding an existing note from
a task.

Main success scenario:

1. The actor reads a task2.
2. The actor indicates the system that he/she wants to read an existing note

from the task he/she has read in the previous step.
3. The system provides the actor with a representation which contains all notes

pertaining to the selected task and enough information to identify them.
4. The actor selects one of the notes.
5. The system shows the actor the note’s contents and some additional metadata

(e.g. date of the note’s creation).

Extensions:

2a. The task does not have any note associated with it:
1. The system notifies the actor.
2. The use case ends.

A.1.7. Update a note assigned to a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to modify the information regarding an existing note from

a task.
Main success scenario:

1. The actor reads a task3.
2. The actor indicates the system that he/she wants to modify an existing note

from the task he/she has read in the previous step.
3. The system provides the actor with a representation which contains all notes

pertaining to the selected task and enough information to identify them.
4. The actor selects one of the notes.

2See sec. A.1.2
3See sec. A.1.2

121

Chapter A Use case specification

5. The system shows the actor the note’s contents and some additional metadata
(e.g. date of the note’s creation).

6. The actor modifies some information about the selected note.
7. The system asks the actor for confirmation.
8. The actor confirms his/her modification/s.
9. The system validates all the information regarding the note.

10. The system updates the existing note with the modified information.
11. The system notifies the actor that the note has been successfully updated.

Extensions:

2a. The task does not have any note associated with it:
1. The system notifies the actor.
2. The use case ends.

9a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.8. Delete a note assigned to a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to delete an existing note from a task.
Main success scenario:

1. The actor reads a task4.
2. The actor indicates the system that he/she wants to delete an existing note

from the task he/she has read in the previous step.
3. The system provides the actor with a representation which contains all notes

pertaining to the selected task and enough information to identify them.
4. The actor selects one of the notes.
5. The system asks the actor for confirmation.

4See sec. A.1.2

122

A.1 Task

6. The actor confirms the deletion.

7. The system deletes the selected note.

8. The system notifies the actor that the note has been successfully deleted.

Extensions:

2a. The task does not have any note associated with it:

1. The system notifies the actor.

2. The use case ends.

A.1.9. Complete a task

Scope: RTM task management system.

Primary actor: End-user.

Preconditions: The user must be logged into the system (for further information
see sec. A.2.2 Log into an account)

Includes: none.

Trigger: The actor wants to complete an existing unfinished task

Main success scenario:

1. The actor indicates the system that he/she wants to complete an existing
unfinished task.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an existing task.

4. The system updates the existing task marking it as finished.

5. The system notifies the actor that the task has been successfully completed.

Extensions:

2a. The actor does not have any uncomplete task in the system:

1. The system notifies the actor.

2. The use case ends.

123

Chapter A Use case specification

A.1.10. Uncomplete a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to uncomplete an existing finished task (i.e. mark a

completed task as not finished).
Main success scenario:

1. The actor indicates the system that he/she wants to uncomplete an existing
finished task.

2. The system provides the actor with a representation which contains all cur-
rently existing finished tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system updates the existing task marking it as not finished.

Extensions:

2a. The actor does not have any complete task in the system:
1. The system notifies the actor.
2. The use case ends.

A.1.11. Set priority to a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to set a priority to an existing task.
Main success scenario:

1. The actor reads a task5.
2. The actor indicates the system that he/she wants to modify the priority of

task he/she has read in the previous step.
5See sec. A.1.2

124

A.1 Task

3. The system provides the actor with a representation (e.g. a list or a colour
schema) which contains all possible priorities.

4. The actor selects one priority from the representation.
5. The system validates the introduced data.
6. The system sets a priority for the task according to the chosen value by the

actor.
7. The system notifies the actor that the priority has been successfully set to the

task.

Extensions:

2a. The task already has a set priority:
1. The system notifies the actor.
2. The use case ends.

5a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.12. Update priority from a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to change the priority from an existing task.
Main success scenario:

1. The actor reads a task6.
2. The actor indicates the system that he/she wants to modify the priority of

task he/she has read in the previous step.
3. The system provides the actor with a representation (e.g. a list or a colour

schema) which contains all possible priorities, modifications and the current
value.

4. The actor selects one priority from the representation.
6See sec. A.1.2

125

Chapter A Use case specification

5. The system temporarily sets the task’s priority to the chosen level.
6. The system validates the introduced data.
7. The system sets a priority for the task according to the temporary value.
8. The system notifies the actor that the task’s priority has been successfully

updated.

Extensions:

4a. The actor wants to increase the current priority of the task:

1. The actor indicates the system that he/she wants to increase the priority of
the task.

2. The system temporarily increments the task’s priority by one level.
3. The execution returns to item 6 of the main success scenario.

4b. The actor wants to decrease the current priority of the task:

1. The actor indicates the system that he/she wants to decrease the priority of
the task.

2. The system temporarily decrements the task’s priority by one level.
3. The execution returns to item 6 of the main success scenario.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.13. Delete priority from a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: sec. A.1.2 Read a task
Trigger: The actor wants to delete the priority from an existing task.
Main success scenario:

1. The actor reads a task7.
2. The actor indicates the system that he/she wants to delete the priority of task

he/she has read in the previous step.
7See sec. A.1.2

126

A.1 Task

3. The system asks the actor for confirmation.
4. The actor confirms the deletion.
5. The system deletes the selected priority.
6. The system notifies the actor that it has successfully deleted the priority from

the task.
Extensions:

2a. The task does not have any priority set:
1. The system notifies the actor.
2. The use case ends.

A.1.14. Postpone a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to postpone an existing unfinished task.
Main success scenario:

1. The actor indicates the system that he/she wants to postpone an existing
unfinished task.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an unfinished task.
4. The system updates the unfinished task making its due date the current day.
5. The system updates the information regarding the number of times this task

has been postponed, incrementing it by one.
6. The system notifies the actor that the task’s due date has been successfully

postponed, along with the new date.
Extensions:

2a. The actor does not have any unfinished task in the system:
1. The system notifies the actor.
2. The use case ends.

4a. The due date of the task has not yet passed:
1. The system updates the unfinished task making the due date one day later

than the currently set date.

127

Chapter A Use case specification

A.1.15. Share a task with contacts

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to share an existing unfinished task with some of his/her

contacts.
Main success scenario:

1. The actor indicates the system that he/she wants to share an existing unfin-
ished task with some of his/her contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system provides the actor with a graphical representation of his/her con-

tacts previously added.
5. The actor chooses the contacts he/she wants to share the task with.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the task information regarding who is the task shared

with.
10. The system assigns the task to all the contacts that were chosen by the actor.
11. The system notifies the actor that the task has been successfully shared.

Extensions:

2a. The actor does not have any uncomplete task in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

128

A.1 Task

A.1.16. Send a task to contacts

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to send an existing unfinished task with some of his/her

contacts.
Main success scenario:

1. The actor indicates the system that he/she wants to send an existing unfinished
task to some of his/her contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system provides the actor with a graphical representation of his/her con-

tacts previously added.
5. The actor chooses the contacts he/she wants to send the task to.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the task information regarding who is the sender of the

task.
10. The system assigns the task to all the contacts that were chosen by the actor.
11. The system moves the task to the actor’s “Sent” list.
12. The system notifies the actor that the task has been successfully sent.

Extensions:

2a. The actor does not have any uncomplete task in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

129

Chapter A Use case specification

A.1.17. Share a task with groups

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to share an existing unfinished task with some of his/her

groups of contacts.
Main success scenario:

1. The actor indicates the system that he/she wants to share an existing unfin-
ished task with some of his/her groups of contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system provides the actor with a graphical representation of his/her

groups previously added.
5. The actor chooses the groups he/she wants to share the task with.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the task information regarding who is the task shared

with.
10. The system assigns the task to all the contacts pertaining to the groups that

were chosen by the actor.
11. The system notifies the actor that the task has been successfully shared.

Extensions:

2a. The actor does not have any uncomplete task in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The groups the actor chose do not contain any contact :

130

A.1 Task

1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.18. Send a task to groups

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to send an existing unfinished task with some of his/her

groups of contacts.
Main success scenario:

1. The actor indicates the system that he/she wants to send an existing unfinished
task with some of his/her groups of contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing unfinished tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system provides the actor with a graphical representation of his/her

groups previously added.
5. The actor chooses the groups he/she wants to send the task to.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the task information regarding who is the sender of the

task.
10. The system assigns the task to all the contacts pertaining to the groups that

were chosen by the actor.
11. The system moves the task to the actor’s “Sent” list.
12. The system notifies the actor that the task has been successfully sent.

Extensions:

131

Chapter A Use case specification

2a. The actor does not have any uncomplete task in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The groups the actor chose do not contain any contact :
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.19. Show tasks

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to view some of his/her tasks according to some criteria.
Main success scenario:

1. The actor indicates the system that he/she wants to view some of his/her tasks
according to some criteria.

2. The system provides the actor with the necessary means for him/her to decide
a suitable ordering.

3. The actor decides which ordering he/she wants.
4. The system provides the actor with the necessary means for him/her to decide

which tasks are going to be filtered out.
5. The actor decides which filtering he/she wants.
6. The system provides the actor with a representation which contains all his/her

tasks that meet the filtering criteria ordered as he specified.

Extensions:

132

A.1 Task

2a. The actor does not have any task in the system:
1. The system notifies the actor.
2. The use case ends.

3a. The actor does not chose any ordering criteria:
1. The system chooses a criteria by default (e.g. due date > priority > alpha-

betical > creation date).
6a. The actor does not have any task in the system that meet the chosen criteria:

1. The system notifies the actor.
2. The use case ends.

A.1.20. Move a task to a list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to move an existing task to one of his/her lists other than

the one it already is in.
Main success scenario:

1. The actor indicates the system that he/she wants to move an existing task to
one of his/her lists other than the one it already is in.

2. The system provides the actor with a representation which contains all cur-
rently existing tasks and enough information to identify them.

3. The actor selects an existing task.
4. The system provides the actor with a graphical representation of all his/her

lists, excluding the one the task is already in and “Sent”.
5. The actor chooses the list he/she wants to send the task to.
6. The system asks the actor for confirmation.
7. The actor confirms the selections. The system validates the introduced data.
8. The system updates the task and list information regarding where does the

task belong to.
9. The system adjusts the task sharing and visibility permissions, if necessary, to

make it coherent with the list sharing and publishing properties.

133

Chapter A Use case specification

10. The system notifies the actor that the task has been successfully moved.

Extensions:

2a. The actor does not have any task in the system:
1. The system notifies the actor.
2. The use case ends.

4a. The task is in the “Sent” list :
1. The system notifies the actor that no task can be moved from the “Sent” list.
2. The use case ends.

4b. The actor account does not have any more lists besides “Sent” and “Inbox” :
1. The system notifies the actor that there is no other list to send the task.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.1.21. Duplicate a task

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to duplicate an existing task of his/hers.
Main success scenario:

1. The actor indicates the system that he/she wants to duplicate an existing task.
2. The system provides the actor with a representation which contains all cur-

rently existing tasks and enough information to identify them.
3. The actor selects an existing task.
4. The system creates a copy of the task, with the same values for all user-visible

attributes and keeping the same shared contacts.
5. The system notifies the actor that the task has been successfully duplicated.

Extensions:

134

A.2 Account

2a. The actor does not have any task in the system:

1. The system notifies the actor.

2. The use case ends.

4a. The selected task was already completed:

1. The system marks the task as not completed.

A.2. Account

A.2.1. Create an account

Scope: RTM task management system.

Primary actor: End-user.

Preconditions: The user must not be logged into the system.

Includes: none.

Trigger: The actor wants to create a new account.

Main success scenario:

1. The actor indicates the system that he/she wants to create a new account.

2. The system provides the actor with an interface which contains the necessary
means for him/her to create an account.

3. The actor introduces the necessary information (e.g. a username and a pass-
word).

4. The system validates all the information the actor has introduced.

5. The system creates a new account with the introduced information.

6. The system notifies the actor that the account has been created and is ready
for use.

Extensions:

4a. The introduced data fails the validation tests:

1. The system shows the validation errors encountered during the previous step.

2. The use case ends.

135

Chapter A Use case specification

A.2.2. Log into an account

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must not be logged into the system.
Includes: Create an account (A.2.1).
Trigger: The actor wants to log into an existing account.
Main success scenario:

1. The actor indicates the system that he/she wants to log into an existing ac-
count.

2. The system provides the actor with an interface which contains the necessary
means for him/her to log into an account.

3. The actor introduces the necessary information (e.g. a username and a pass-
word).

4. The system validates all the information the actor has introduced.
5. The system notifies the actor that he has successfully logged in.

Extensions:

1a. The actor does not have an account:
1. The actor creates an account (A.2.1)
2. The execution returns to the 1st step of the main success scenario.

4a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.2.3. Update an account

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to modify information of an existing account.
Main success scenario:

136

A.2 Account

1. The actor indicates the system that he/she wants to modify an existing ac-
count.

2. The system shows the actor further information about the account.
3. The actor modifies some information about the account.
4. The system asks the actor for confirmation.
5. The actor confirms the modification/s.
6. The system validates all the information regarding the account.
7. The system updates the existing account with the modified information.
8. The system notifies the actor that the account has been successfully modified.

Extensions:

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.2.4. Delete an account

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete an existing account.
Main success scenario:

1. The actor indicates the system that he/she wants to delete an existing account.
2. The system asks the actor for authentication.
3. The actor authenticates to verify he/she really is the owner of the account

(e.g. introduces the password again or submits a digital certificate).
4. The system validates the authentication.
5. The system asks the actor for confirmation.
6. The actor confirms the deletion.
7. The system logs off the actor.
8. The system deletes the account.

137

Chapter A Use case specification

9. The system notifies the actor that the account has been deleted.

Extensions:

4a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The system logs the actor off.
3. The use case ends.

A.2.5. Log out of an account

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to log out of an existing account.
Main success scenario:

1. The actor indicates the system that he/she wants to log out of an existing
account.

2. The system logs the user out.
3. The system notifies the actor that he/she is no longer logged in.

A.3. Reminder

A.3.1. Create a reminder schedule

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to create a new reminder schedule.
Main success scenario:

138

A.3 Reminder

1. The actor indicates the system that he/she wants to create a reminder sched-
ule.

2. The system provides the actor with an interface which contains all the neces-
sary parameters to customise and define a reminder schedule (e.g. via which
medium/s shall the reminders be sent or what time of the day should daily
reminders be emitted).

3. The actor fills in the required information according to his/her own desires.
4. The system asks for confirmation.
5. The actor confirms the creation.
6. The system validates the data introduced by the actor.
7. The system creates the reminder schedule.
8. The system notifies the actor that the reminder schedule has been created

successfully.

Extensions:

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.3.2. Read a reminder schedule

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to read all the information about his/her reminder sched-

ule.
Main success scenario:

1. The actor indicates the system that he/she wants to read his/her reminder
schedule.

2. The system provides the actor with an interface which contains all the ne-
cessary parameters to define a reminder schedule (e.g. via which medium/s
shall the reminders be sent or what time of the day should daily reminders be
emitted).

139

Chapter A Use case specification

3. The system fills all the fields that define the reminder schedule in, according
to the actor’s previously introduced information.

Extensions:

3a. The actor does not have any reminder schedule :
1. All the fields which would contain the parameters appear blank (not filled in).
2. The system notifies the actor that he/she does not have reminder schedules.

A.3.3. Update a reminder schedule

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to modify an existing reminder schedule.
Main success scenario:

1. The actor indicates the system that he/she wants to create a reminder sched-
ule.

2. The system provides the actor with an interface which contains all the neces-
sary parameters to customise and define a reminder schedule (e.g. via which
medium/s shall the reminders be sent or what time of the day should daily
reminders be emitted).

3. The actor modifies the information contained in some of the parameters or
fields according to his/her own desires.

4. The system asks for confirmation.
5. The actor confirms the modification.
6. The system validates the data introduced by the actor.
7. The system updates the reminder schedule.
8. The system notifies the actor that the reminder schedule has been updated

successfully.

Extensions:

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

140

A.3 Reminder

A.3.4. Delete a reminder schedule

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete an existing reminder schedule.
Main success scenario:

1. The actor indicates the system that he/she wants to delete a reminder schedule.
2. The system provides the actor with an interface which contains all the neces-

sary parameters to customise and define a reminder schedule (e.g. via which
medium/s shall the reminders be sent or what time of the day should daily
reminders be emitted).

3. The actor selects a previously introduced medium (i.e. already in the system
for this account).

4. The system asks for confirmation.
5. The actor confirms the deletion.
6. The system deletes the scheduled reminders for that medium.
7. The system notifies the actor that the reminder schedule has been deleted.

Extensions:

2a. The system does not have any specified reminder schedule medium:
1. The system notifies the actor.
2. The use case ends.

A.3.5. Send reminder

Scope: RTM task management system.
Primary actor: System.
Preconditions: none.
Includes: none.
Trigger: The clock time has been updated.
Main success scenario:

141

Chapter A Use case specification

1. The system accesses the reminder schedule notification information of all of
its user accounts.

2. The system checks the date these reminders should be sent.
3. The system checks if the reminders for these schedules has already been sent.
4. The system checks the mediums for each of these reminders that should have

been sent by the current date and have not already been sent.
5. The system checks the tasks each of these reminders that have to be sent.
6. The system sends the tasks to be reminded via each medium according to the

information gathered.

A.4. Customisation

A.4.1. Change language

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: none.
Includes: none.
Trigger: The actor wants to change the language of the display (interface).
Main success scenario:

1. The actor indicates the system that he/she wants to change the language.
2. The system provides the actor with an interface which contains all the available

languages (system translations).
3. The actor chooses one language.
4. The system asks for confirmation.
5. The actor confirms the selection.
6. The system updates the interface according to the selected language.

A.4.2. Show weekly planner

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)

142

A.5 Contact and group

Includes: none.
Trigger: The actor wants to see the chronologically ordered task plan for the week

in a printable-friendly format.
Main success scenario:

1. The actor indicates the system that he/she wants to see his/her weekly plan.
2. The system provides the actor with a representation of all his/her tasks due in

one week or less. They are ordered chronologically and are clearly separated
so it is easy to discern which day each task (or group of tasks) is due.

A.5. Contact and group

A.5.1. Add a contact

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to add a contact to his/her account.
Main success scenario:

1. The actor indicates the system that he/she wants to add a contact.
2. The system provides the actor with an interface which contains the necessary

means for him/her to add contacts.
3. The actor selects another user from the system.
4. The system validates all the information the actor has introduced.
5. The system adds the chosen user as a contact.
6. The system notifies the actor that the contact has been added successfully.

Extensions:

5a. The introduced username is not valid:
1. The system notifies the actor that the chosen username does not correspond

to any user registered in the system.
2. The use case ends.

5a. The user is already a contact of the actor:
1. The system notifies the actor that the chosen user is already his/her contact

and therefore can not be added again.
2. The use case ends.

143

Chapter A Use case specification

A.5.2. Read a contact

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to read information about one of his/her own added con-

tacts.
Main success scenario:

1. The actor indicates the system that he/she wants to read on of his/her con-
tacts.

2. The system provides the actor with a graphical representation of his/her con-
tacts previously added.

3. The actor chooses one of the contacts.
4. The system provides the actor with additional information about the contact.

Extensions:

2a. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

A.5.3. Delete a contact

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete one of his/her own added contacts.
Main success scenario:

1. The actor indicates the system that he/she wants to delete one of his/her
contacts.

2. The system provides the actor with a graphical representation of his/her con-
tacts previously added.

144

A.5 Contact and group

3. The actor chooses one of the contacts.
4. The system asks the actor for confirmation.
5. The actor confirms the deletion.
6. The system deletes the contact bind from the actor account.
7. The system notifies the actor that the user is no longer one of his/her contacts.

Extensions:

2a. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

A.5.4. Create a group

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to create a group.
Main success scenario:

1. The actor indicates the system that he/she wants to create a new group.
2. The system provides the actor with a representation which contains all cur-

rently existing groups the actor created.
3. The actor introduces a group name (i.e. a sentence or string that describes a

group).
4. The system validates all the information the actor has introduced.
5. The system creates a new group with the introduced information.
6. The system notifies the actor that the group has been created successfully.

Extensions:

4a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

145

Chapter A Use case specification

A.5.5. Read a group

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to read information about one of his/her own created

groups.
Main success scenario:

1. The actor indicates the system that he/she wants to read an existing group.
2. The system provides the actor with a representation which contains all cur-

rently existing groups the actor created.
3. The actor selects an existing group.
4. The system provides the actor with further information about the selected

group.

Extensions:

2a. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

A.5.6. Delete a group

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete one of his/her own created groups.
Main success scenario:

1. The actor indicates the system that he/she wants to delete an existing group.
2. The system provides the actor with a representation which contains all cur-

rently existing groups the actor created.
3. The actor selects an existing group.

146

A.5 Contact and group

4. The system asks the actor for confirmation.
5. The actor confirms the deletion.
6. The system deletes the selected group.
7. The system notifies the actor about the deletion of the selected group.

Extensions:

2a. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

3a. The selected group is not empty (it still has contacts associated with it):
1. The system notifies the actor informing that this group still has at least one

contact assigned to it, and therefore, it can not be deleted.
2. The use case ends.

A.5.7. Add a contact to a group

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to add one of his/her contacts to one of his/her own

created groups.
Main success scenario:

1. The actor indicates the system that he/she wants to add a contact to one of
his/her groups.

2. The system provides the actor with a graphical representation of his/her con-
tacts previously added.

3. The actor indicates the system that he/she wants to add one of the contacts
to a group.

4. The actor chooses one of the contacts.
5. The system provides the actor with a graphical representation of his/her

groups previously added.
6. The actor chooses one of the groups.
7. The system asks the actor for confirmation.

147

Chapter A Use case specification

8. The actor confirms the action.
9. The system adds the selected contact to the selected group.

10. The system notifies the actor about the insertion of the contact into the selec-
ted group.

Extensions:

2a. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The selected contact is already in the selected group:
1. The system notifies the actor that this contact is already in that group, and

therefore it can not be added.
2. The use case ends.

A.5.8. Remove a contact from a group

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to remove one of his/her contacts form one of his/her

groups.
Main success scenario:

1. The actor indicates the system that he/she wants to remove a contact from
one of his/her groups.

2. The system provides the actor with a graphical representation of his/her con-
tacts previously added.

3. The actor indicates the system that he/she wants to remove one of the contacts
from a group.

4. The actor chooses one of the contacts.

148

A.6 List of tasks

5. The system provides the actor with a graphical representation of all the groups
this contact belongs to.

6. The actor chooses one of the groups.
7. The system asks the actor for confirmation.
8. The actor confirms the action.
9. The system removes the contact from the selected group.

10. The system notifies the actor about the removal of the chosen contact from
the selected group.

Extensions:

2a. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

5a. The selected contact does not belong to any group:
1. The system notifies the actor informing that this contact does not belong to

any group, and therefore, it can not be removed from any.
2. The use case ends.

A.6. List of tasks

A.6.1. Create a list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to create a new list of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to create a new list.

149

Chapter A Use case specification

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor introduces a list name.
4. The system validates all the information the actor has introduced.
5. The system creates a new empty list with the introduced information.
6. The system notifies the actor that the list has been successfully created.

Extensions:

4a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.2. Read a list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to access to all the information regarding an existing list

of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to read an existing list.
2. The system provides the actor with a representation which contains all cur-

rently existing lists and enough information to identify them.
3. The actor selects an existing list.
4. The system provides the actor with further information about the selected list.

A.6.3. Update a list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)

150

A.6 List of tasks

Includes: none.
Trigger: The actor wants to modify information of an existing list of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to modify an existing list.
2. The system provides the actor with a representation which contains all cur-

rently existing lists except and enough information to identify them.
3. The actor selects an existing list.
4. The system provides the actor with further information about the selected list.
5. The actor modifies some information about the selected list (e.g. the name).
6. The system asks the actor for confirmation.
7. The actor confirms his/her modification/s.
8. The system validates all the information regarding the list.
9. The system updates the existing list with the modified information.

10. The system notifies the actor that the list has been successfully updated.

Extensions:

2a. The actor does not have any list in the system apart from “Sent” and “Inbox”:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.4. Delete a list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete an existing list of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to delete an existing task.

151

Chapter A Use case specification

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor selects an existing list.
4. The system asks the actor for confirmation.
5. The actor confirms the deletion.
6. The system deletes the selected list.
7. The system notifies the actor that the list has been successfully deleted.

Extensions:

2a. The actor does not have any list in the system apart from “Sent” and “Inbox”:
1. The system notifies the actor.
2. The use case ends.

4a. The selected list has some tasks assigned to it:
1. The system notifies the actor that the list still has some tasks assigned to it

and hence it can not be deleted.
2. The use case ends.

4b. The selected list is locked for deletion:
1. The system notifies the actor that the list is locked for deletion.
2. The use case ends.

A.6.5. Set default list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to set an existing list of tasks as the default one.
Main success scenario:

1. The actor indicates the system that he/she wants to set his/her default list.
2. The system provides the actor with a representation which contains all cur-

rently existing lists.
3. The actor selects a list.
4. The system asks the actor for confirmation.

152

A.6 List of tasks

5. The actor confirms the choice.
6. The system sets the selected list as default.
7. The system notifies the actor that the list has been successfully set as default.

Extensions:

2a. The actor already has a default list in the system:
1. The system notifies the actor.
2. The use case ends.

A.6.6. Unset default list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to unset the default list of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to unset his/her default list.
2. The system asks the actor for confirmation.
3. The actor confirms the choice.
4. The system sets the selected list as default.
5. The system notifies the actor that the list has been successfully set as default.

Extensions:

2a. The actor does not have any default list in the system:
1. The system notifies the actor.
2. The use case ends.

A.6.7. Share a list with some contacts

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)

153

Chapter A Use case specification

Includes: none.

Trigger: The actor wants to share an existing list of tasks with some of his/her
contacts.

Main success scenario:

1. The actor indicates the system that he/she wants to share an existing list with
some of his/her contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor selects an existing list.

4. The system provides the actor with a graphical representation of his/her con-
tacts previously added.

5. The actor chooses the contacts he/she wants to share the task with.

6. The system asks the actor for confirmation.

7. The actor confirms the selections.

8. The system validates the introduced data.

9. The system updates the list information regarding who is the list shared with
(with acceptance pending status).

10. The system assigns the list with all its tasks to all the contacts that were
chosen by the actor.

11. The system notifies the actor that the list of tasks has been successfully shared.

Extensions:

2a. The actor does not have any list in the system apart from “Sent” and “Inbox”:

1. The system notifies the actor.

2. The use case ends.

2b. The actor does not have any contact in the system:

1. The system notifies the actor.

2. The use case ends.

8a. The introduced data fails the validation tests:

1. The system shows the validation errors encountered during the previous step.

2. The use case ends.

154

A.6 List of tasks

A.6.8. Share a list with some groups

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to share an existing list with some of his/her groups of

contacts
Main success scenario:

1. The actor indicates the system that he/she wants to share an existing list with
some of his/her groups of contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor selects an existing list.
4. The system provides the actor with a graphical representation of his/her

groups previously added.
5. The actor chooses the groups he/she wants to share the list with.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the list information regarding who is the list shared with

(with acceptance pending status).
10. The system assigns the list with all its tasks to all the contacts pertaining to

the groups that were chosen by the actor.
11. The system notifies the actor that the task has been successfully shared.

Extensions:

2a. The actor does not have any list in the system apart from “Sent” and “Inbox”:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The groups the actor chose do not contain any contact :

155

Chapter A Use case specification

1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.9. Publish a list for some contacts

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to publish an existing list of tasks with some of his/her

contacts (i.e. wants to give some of his/her contacts reading permissions for
one of his/her list of tasks).

Main success scenario:

1. The actor indicates the system that he/she wants to publish an existing list
with some of his/her contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor selects an existing list.
4. The system provides the actor with a graphical representation of his/her con-

tacts previously added.
5. The actor chooses the contacts he/she wants to publish the list for.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the list information regarding who is the list published

for.
10. The system updates the task information regarding who is the task published

for, for all the tasks pertaining to the published list.
11. The system assigns the list with all its tasks to all the contacts that were

chosen by the actor.

156

A.6 List of tasks

12. The system notifies the actor that the list of tasks has been successfully pub-
lished for the chosen contact/s.

Extensions:

2a. The actor does not have any contact in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any list in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.10. Publish a list for some groups

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to publish an existing list of tasks for some of his/her

groups of contacts (i.e. wants to give some of his/her groups reading permis-
sions for one of his/her list of tasks).

Main success scenario:

1. The actor indicates the system that he/she wants to publish an existing list
of tasks for some of his/her groups of contacts.

2. The system provides the actor with a representation which contains all cur-
rently existing lists of tasks and enough information to identify them.

3. The actor selects an existing list.
4. The system provides the actor with a graphical representation of his/her

groups previously added.
5. The actor chooses the groups he/she wants to publish the list for.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.

157

Chapter A Use case specification

8. The system validates the introduced data.
9. The system updates the list information regarding who is the list published

for.
10. The system updates the task information regarding who is the task published

for, for all the tasks pertaining to the published list.
11. The system assigns the list with read-only permissions with all its tasks to all

the contacts pertaining to the groups that were chosen by the actor.
12. The system notifies the actor that the task has been successfully published for

the chosen group/s.

Extensions:

2a. The actor does not have any group in the system:
1. The system notifies the actor.
2. The use case ends.

2b. The actor does not have any list in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The groups the actor chose do not contain any contact :
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.11. Publish a list for anyone

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to publish an existing list of tasks for anyone, includ-

ing people from outside his/her contacts (i.e. wants to give anyone reading
permissions for one of his/her list of tasks).

Main success scenario:

158

A.6 List of tasks

1. The actor indicates the system that he/she wants to publish an existing list
of tasks for anyone.

2. The system provides the actor with a representation which contains all cur-
rently existing lists of tasks and enough information to identify them.

3. The actor selects an existing list.
4. The system asks the actor for confirmation.
5. The actor confirms the selection.
6. The system validates the introduced data.
7. The system updates the list information making it public.
8. The system updates the task information regarding who is the task published

for, for all the tasks pertaining to the published list.
9. The system assigns the list with read-only permissions with all its tasks to

everyone who has not already higher permissions.
10. The system notifies the actor that the task has been successfully published for

anyone.

Extensions:

2a. The actor does not have any list in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.12. Unpublish a list for some contacts

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to unpublish an existing list of tasks with some of his/her

contacts that had it published for them.
Main success scenario:

159

Chapter A Use case specification

1. The actor indicates the system that he/she wants to unpublish an existing list
with for some of his/her contacts.

2. The system provides the actor with a representation which contains all cur-
rently published lists for some contacts and enough information to identify
them.

3. The actor selects an existing list.
4. The system provides the actor with a graphical representation of his/her con-

tacts added to reading rights for the list.
5. The actor chooses the contacts he/she wants to unpublish the list for.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the list information regarding who is the list published

for.
10. The system updates the task information regarding who is the task published

for, for all the tasks pertaining to the published list.
11. The system unassigns the list with all its tasks to all the contacts that were

chosen by the actor.
12. The system notifies the actor that the list of tasks has been successfully un-

published for the chosen contact/s.

Extensions:

2a. The actor does not have any list published for some contacts in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.6.13. Unpublish a list for some groups

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)

160

A.6 List of tasks

Includes: none.
Trigger: The actor wants to unpublish an existing list of tasks for some of his/her

groups of contacts that had reading rights to it.
Main success scenario:

1. The actor indicates the system that he/she wants to unpublish an existing list
of tasks for some of his/her groups of contacts.

2. The system provides the actor with a representation which contains all cur-
rently published lists for some groups and enough information to identify them.

3. The actor selects an existing list.
4. The system provides the actor with a graphical representation of his/her

groups previously added to reading rights for the list.
5. The actor chooses the groups he/she wants to unpublish the list for.
6. The system asks the actor for confirmation.
7. The actor confirms the selections.
8. The system validates the introduced data.
9. The system updates the list information regarding who is the list published

for.
10. The system updates the task information regarding who is the task published

for, for all the tasks pertaining to the published list.
11. The system unassigns the list with read-only permissions with all its tasks to

all the contacts pertaining to the groups that were chosen by the actor.
12. The system notifies the actor that the task has been successfully unpublished

for the chosen group/s.

Extensions:

2a. The actor does not have any list published for some groups in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The groups the actor chose do not contain any contact :
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

161

Chapter A Use case specification

A.6.14. Unpublish a list for anyone

Scope: RTM task management system.

Primary actor: End-user.

Preconditions: The user must be logged into the system (for further information
see sec. A.2.2 Log into an account)

Includes: none.

Trigger: The actor wants to unpublish an existing list of tasks for anonymous access.

Main success scenario:

1. The actor indicates the system that he/she wants to unpublish an existing list
of tasks for anonymous access.

2. The system provides the actor with a representation which contains all cur-
rently published lists for anonymous access and enough information to identify
them.

3. The actor selects an existing list.

4. The system asks the actor for confirmation.

5. The actor confirms the selection.

6. The system validates the introduced data.

7. The system updates the list information making it private.

8. The system updates the task information regarding who the task is published
for, for all the tasks pertaining to the unpublished list.

9. The system unassigns the list with read-only permissions with all its tasks to
everyone who has not already higher permissions.

10. The system notifies the actor that the task has been successfully unpublished
for anonymous access.

Extensions:

2a. The actor does not have any published list for anonymous access in the system:

1. The system notifies the actor.

2. The use case ends.

6a. The introduced data fails the validation tests:

1. The system shows the validation errors encountered during the previous step.

2. The use case ends.

162

A.6 List of tasks

A.6.15. Accept a shared list

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: One of the actor’s contacts wants to share a list of tasks with him/her.
Main success scenario:

1. The actor indicates the system that he/she wants to manage his/her lists.
2. The system provides the actor with a representation which contains all cur-

rently existing lists and enough information to identify them.
3. The system indicates the actor that some of the lists are still pending for

acceptance, and that those lists are originally from some of his/her contacts.
4. The system marks the lists pending for acceptance so they can be easily iden-

tified.
5. The actor selects a list of tasks which is still pending for acceptance.
6. The system provides the actor with further information about the selected list

(e.g. who is the contact that shared it with him/her).
7. The system provides the actor with an interface to let him choose whether

he/she accepts the list or rejects it.
8. The user accepts the shared list.
9. The system validates the data.

10. The system updates the list information regarding who is the list shared with
(it removes the acceptance pending status).

11. The system updates the task information regarding who is the task shared
with, adding the username of the actor, for all the tasks pertaining to the
shared list.

12. The system notifies the actor that the list of tasks has been successfully shared,
accepted and are now accessible to him/her.

Extensions:

9a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

163

Chapter A Use case specification

A.6.16. Reject a shared list

Scope: RTM task management system.

Primary actor: End-user.

Preconditions: The user must be logged into the system (for further information
see sec. A.2.2 Log into an account)

Includes: none.

Trigger: One of the actor’s contacts wants to share a list of tasks with him/her.

Main success scenario:

1. The actor indicates the system that he/she wants to manage his/her lists.

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The system indicates the actor that some of the lists are still pending for
acceptance, and that those lists are originally from some of his/her contacts.

4. The system marks the lists pending for acceptance so they can be easily iden-
tified.

5. The actor selects a list of tasks which is still pending for acceptance.

6. The system provides the actor with further information about the selected list
(e.g. who is the contact that shared it with him/her).

7. The system provides the actor with an interface to let him choose whether
he/she accepts the list or rejects it.

8. The user rejects the shared list.

9. The system validates the data.

10. The system updates the list information regarding who is the list shared with
(it removes the acceptance pending status, along with the actors’ name).

11. The system removes the list of tasks from the actor’s account.

12. The system notifies the actor that the list of tasks has been successfully rejected

Extensions:

9a. The introduced data fails the validation tests:

1. The system shows the validation errors encountered during the previous step.

2. The use case ends.

164

A.6 List of tasks

A.6.17. Archive lists

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to archive some of his/her lists of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to archive some of his/her
lists.

2. The system provides the actor with a representation which contains all cur-
rently existing lists and enough information to identify them.

3. The actor selects the lists of tasks he/she wishes to archive.
4. The system asks the actor for confirmation.
5. The actor confirms the selections.
6. The system validates the introduced data.
7. The system marks the selected lists of tasks as archived and archives them.
8. The system notifies the actor that the list of tasks have been successfully

archived.

Extensions:

2a. The actor does not have any unarchived task in the system:
1. The system notifies the actor.
2. The use case ends.

4a. The actor has chosen at least one list of tasks that is already archived:
1. The system notifies the actor.
2. The use case ends.

4b. The actor does not have any unarchived task in the system:
1. The system notifies the actor that the list of tasks is pending acceptance, and

hence can not be archived.
2. The use case ends.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

165

Chapter A Use case specification

A.6.18. Unarchive lists

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to unarchive some of his/her archived lists of tasks.
Main success scenario:

1. The actor indicates the system that he/she wants to unarchive some of his/her
already archived lists.

2. The system provides the actor with a representation which contains all cur-
rently archived lists and enough information to identify them.

3. The actor selects the archived lists of tasks he/she wishes to unarchive.
4. The system asks the actor for confirmation.
5. The actor confirms the selections.
6. The system validates the introduced data.
7. The system marks the selected lists of tasks as unarchived and unarchives

them.
8. The system notifies the actor that the list of tasks have been successfully

unarchived.

Extensions:

2a. The actor does not have any archived task in the system:
1. The system notifies the actor.
2. The use case ends.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.7. Location

A.7.1. Create a location

Scope: RTM task management system.

166

A.7 Location

Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to create a new location.
Main success scenario:

1. The actor indicates the system that he/she wants to create a new location.
2. The system provides the actor with a graphical representation (e.g. a map

or a list with names and coordinates) which contains all currently existing
locations.

3. The actor introduces a position.
4. The system asks the actor for further information regarding the location (e.g.

custom location name).
5. The actor introduces further information.
6. The system validates all the information the actor has introduced.
7. The system creates a new location with the introduced information.
8. The system notifies the actor that the location has been successfully created.

Extensions:

3a. The actor knows the direction of the location:
1. The actor introduces the direction of the location (i.e. street number, street

name, town name, etc.).
2. The system shows the found locations which matches with the information

provided to the actor.

a) The system only found one location that matched the specified criteria:

i. The execution continues from the step 3a.4 of this extension.

b) The system did not find any location that matched the specified criteria:

i. The use case ends.

3. The actor chooses one of the locations supplied by the system.
4. The execution returns to the 4th step of the main success scenario.

6a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

167

Chapter A Use case specification

A.7.2. Read a location

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to read all the information regarding an existing location.
Main success scenario:

1. The actor indicates the system that he/she wants to read an existing location.
2. The system provides the actor with a representation (e.g. a map or a list with

names and coordinates) which contains all currently existing locations.
3. The actor selects a location.
4. The system shows further information about the location.

Extensions:

2a. The actor does not have any location in the system:
1. The system notifies the actor.
2. The use case ends.

A.7.3. Update a location

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to modify an existing location.
Main success scenario:

1. The actor indicates the system that he/she wants to modify an existing loca-
tion.

2. The system provides the actor with a representation (e.g. a map or a list with
names and coordinates) which contains all currently existing locations.

3. The actor selects a location.

168

A.7 Location

4. The system shows further information about the location.
5. The actor modifies some information about the location.
6. The system asks the actor for confirmation.
7. The actor confirms his/her modification/s.
8. The system validates all the information regarding the location.
9. The system updates the existing location with the modified information.

10. The system notifies the actor that the location has been successfully modified.

Extensions:

2a. The actor does not have any location in the system:
1. The system notifies the actor.
2. The use case ends.

8a. The introduced data fails the validation tests:
1. The system shows the validation errors encountered during the previous step.
2. The use case ends.

A.7.4. Delete a location

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to delete an existing location.
Main success scenario:

1. The actor indicates the system that he/she wants to delete an existing location.
2. The system provides the actor with a representation (e.g. a map or a list with

names and coordinates) which contains all currently existing locations.
3. The actor selects a location.
4. The system asks the actor for confirmation.
5. The actor confirms the deletion.
6. The system deletes the selected location.
7. The system notifies the actor that the location has been successfully deleted.

169

Chapter A Use case specification

Extensions:

2a. The actor does not have any location in the system:

1. The system notifies the actor.

2. The use case ends.

A.7.5. Set a default a location

Scope: RTM task management system.

Primary actor: End-user.

Preconditions: The user must be logged into the system (for further information
see sec. A.2.2 Log into an account)

Includes: none.

Trigger: The actor wants to set an existing location as the default one.

Main success scenario:

1. The actor indicates the system that he/she wants to set his/her default loca-
tion.

2. The system provides the actor with a representation (e.g. a map or a list with
names and coordinates) which contains all currently existing locations.

3. The actor selects a location.

4. The system asks the actor for confirmation.

5. The actor confirms the choice.

6. The system sets the selected location as default.

7. The system notifies the actor that the location has been successfully set as
default.

Extensions:

2a. The actor does not have any location in the system:

1. The system notifies the actor.

2. The use case ends.

2b. The actor already has a default location in the system:

1. The system notifies the actor.

2. The use case ends.

170

A.7 Location

A.7.6. Unset a default a location

Scope: RTM task management system.
Primary actor: End-user.
Preconditions: The user must be logged into the system (for further information

see sec. A.2.2 Log into an account)
Includes: none.
Trigger: The actor wants to unset the default location.
Main success scenario:

1. The actor indicates the system that he/she wants to unset his/her default
location.

2. The system asks the actor for confirmation.
3. he actor confirms the choice.
4. The system unsets the default location.
5. The system notifies the actor that the location has been successfully unset as

default.

Extensions:

2a. The actor does not have any default location in the system:
1. The system notifies the actor.
2. The use case ends.

171

B. Test stories

B.1. Task

B.1.1. Create a task

B.1.1.1. Test story 1: Creation of a task

Test objective: Create a task (Main success scenario).

Alice wants to add a task to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently pending tasks which are “Go to the cinema with Bob (Saturday evening)”
and “Go to the post office to send a package to Carol (Monday morning)”.

Alice asks the system to create a new task with the subject “Buy rice for lunch”
with due date Saturday morning.

The system confirms the creation of the new task, and the list of tasks now includes
it.

B.1.1.2. Test story 2: Failed creation (duplicated name)

Test objective: Attempt to create a task with a duplicated name (Extension 4a).

Alice wants to add a task to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently pending tasks which are “Go to the cinema with Bob (Saturday evening)”,
“Go to the post office to send a package to Carol (Monday morning)” and “Buy rice
for lunch (Saturday morning)”.

Alice asks the system to create a new task with the subject “Buy rice for lunch”
with due date Saturday morning.

The system rejects the creation of the new task and informs Alice that she already
has that same task scheduled (i.e. a task with the same name and date).

173

Chapter B Test stories

B.1.1.3. Test story 3: Failed creation (blank name)

Test objective: Attempt to create a task with a blank name (Extension 4a).

Alice wants to add a task to the system.
She logs into the system successfully. The system provides Alice with a list of her
currently pending tasks which are “Go to the cinema with Bob (Saturday evening)”,
“Go to the post office to send a package to Carol (Monday morning)” and “Buy rice
for lunch (Saturday morning)”.
Alice asks the system to create a new task without any subject or due date.
The system rejects the creation of the new task and informs Alice that every task
must at least have a subject.

B.1.1.4. Test story 4: Failed creation (name too long)

Test objective: Attempt to create a task with a too long name (Extension 4a).

Alice wants to add a task to the system.
She logs into the system successfully. The system provides Alice with a list of her
currently pending tasks which are “Go to the cinema with Bob (Saturday evening)”
and “Go to the post office to send a package to Carol (Monday morning)”.
Alice asks the system to create a new task with a 2000 word rice recipe as the subject
with due date Saturday at 12 p.m.
The system rejects the creation of the new task and informs Alice that the task
subject is too long.

B.1.2. Read a task

B.1.2.1. Test story 1: Reading of a task

Test objective: Read a task (Main success scenario).

Alice wants to read a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.

174

B.1 Task

B.1.2.2. Test story 2: Failed Read (no tasks)

Test objective: Attempt to read a task when the system has none (Extension 2a).

Alice wants to read a task from the system.
She logs into the system successfully. The system informs Alice that there are no
tasks.

B.1.3. Update a task

B.1.3.1. Test story 1: Modification of a task

Test objective: Update a task (Main success scenario).

Alice wants to update a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to update some of its information.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema, the task’s priority and Bob’s contact details.
Alice changes the subject description to “Go to the cinema with Bob and Carol
(Saturday evening)”.
The system asks Alice to confirm the modification. She confirms the modification.
The system informs Alice that the modification of the task has been successful, and
the list of tasks now includes the modified version of the subject description.

B.1.3.2. Test story 2: Failed update (no tasks)

Test objective: Attempt to update a task when the system has none (Extension
2a).

Alice wants to update a task from the system.
She logs into the system successfully. The system informs Alice that there are no
tasks.

B.1.3.3. Test story 3: Failed update (invalid data)

Test objective: Attempt to update a task in such a manner that would leave the
system in an invalid state (Extension 8a).

175

Chapter B Test stories

Alice wants to update a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to update some of its information.

The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.

Alice changes the subject description to a blank space. The system asks Alice to
confirm the modification. She confirms the modification.

The system informs Alice that the modification of the task is not possible because
it would lead to an error.

B.1.4. Delete a task

B.1.4.1. Test story 1: Deletion of a task

Test objective: Delete a task (Main success scenario).

Alice wants to delete a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to delete it.

The system asks Alice to confirm the deletion. She confirms the deletion.

The system informs Alice that the deletion of the task has been successful, and the
list of tasks now excludes the chosen task.

B.1.4.2. Test story 2: Failed deletion (no tasks)

Test objective: Attempt to delete a task when the system has none (Extension 2a).

Alice wants to delete a task from the system.

She logs into the system successfully. The system informs Alice that there are no
tasks.

176

B.1 Task

B.1.5. Create an assign a note to task

B.1.5.1. Test story 1: Creation and assignation of a note to a task

Test objective: Create and assign a note to a task (Main success scenario).

Alice wants to create and assign a note to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to create and assign a note to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the
cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.
Alice adds a new note to the task stating “Remember to bring 3D glasses to the
cinema”. Alice informs the system that she wants to save the note.
The system informs Alice that the note has been created and assigned successfully
to “Go to the cinema with Bob (Saturday evening)”. Now the list of notes assigned
to the task includes “Remember to bring 3D glasses to the cinema”.

B.1.5.2. Test story 2: Failed creation of a note (no content)

Test objective: Attempt to create a note with no content (Extension 6a).

Alice wants to create and assign a note to a task from the system.
She logs into the system successfully. The system provides Alice with a list of her
existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to create and assign a note to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the

177

Chapter B Test stories

cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.
Alice asks the system to create a new task note without any kind of content. Alice
informs the system that she wants to save the note.
The system rejects the creation of the new note and informs Alice that every note
must at least have some content.

B.1.6. Read a note assigned to a task

B.1.6.1. Test story 1: Reading of a note assigned to a task

Test objective: Reading of a note assigned to a task (Main success scenario).

Alice wants to read a note assigned to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to read a note assigned to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the
cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.
Alice chooses the note “Bring enough money to be able to invite him (Bob paid the
last time)” and informs the system that she wants to read more information about
it.
The system provides Alice with further information about the note she had previ-
ously entered, like the exact amount of money for each cinema ticket and the cost
of a medium sized popcorn bag.

B.1.6.2. Test story 2: Failed read (no notes)

Test objective: Attempt to read a note from a task when this has none (Extension
2a).

178

B.1 Task

Alice wants to read a note assigned to a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about its notes. The system
informs Alice that there are no notes assigned to this task.

B.1.7. Update a note assigned to a task

B.1.7.1. Test story 1: Modification of a note assigned to a task

Test objective: Update a note assigned to a task (Main success scenario).

Alice wants to update a note assigned to a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.

The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.

Alice informs the system that she wants to update a note assigned to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the
cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.

Alice chooses the note “Bring enough money to be able to invite him (Bob paid
the last time)” and informs the system that she wants to modify some information
about it. The system provides Alice with further information about the note she
had previously entered, like the exact amount of money for each cinema ticket and
the cost of a medium sized popcorn bag.

Alice modifies some of the information related to the note, such as adding the cinema
price for a medium sized glass of a coke.

The system asks Alice to confirm the modification. She confirms the modification.
The system informs Alice that the modification of the note has been successful, and
the note is now modified with the information added.

179

Chapter B Test stories

B.1.7.2. Test story 2: Failed update of a note (no notes)

Test objective: Attempt to update a note from a task when this has none (Exten-
sion 2a).

Alice wants to update a note assigned to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to update some of the information about its notes. The
system informs Alice that there are no notes assigned to this task.

B.1.7.3. Test story 3: Failed update of a note (no notes)

Test objective: Attempt to update a note from a task when this has none (Exten-
sion 2a).

Alice wants to update a note assigned to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to update a note assigned to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the
cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.
Alice chooses the note “Bring enough money to be able to invite him (Bob paid
the last time)” and informs the system that she wants to modify some information
about it. The system provides Alice with further information about the note she
had previously entered, like the exact amount of money for each cinema ticket and
the cost of a medium sized popcorn bag.
Alice modifies some of the information related to the note, such as adding the cinema
price for a medium sized glass of a coke.
The system asks Alice to confirm the modification. She confirms the modification.

180

B.1 Task

The system informs Alice that the modification could not be performed because
the note had been deleted after being shown to her and before she confirmed the
changes.

B.1.8. Delete a note assigned to a task

B.1.8.1. Test story 1: Deletion of a note assigned to a task

Test objective: Deletion of a note assigned to a task (Main success scenario).

Alice wants to delete a note assigned to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to delete a note assigned to the task. The
system provides Alice with a list of all her notes assigned to the task “Go to the
cinema with Bob (Saturday evening)”. The first one states “Bring enough money
to be able to invite him (Bob paid the last time)” and the other one contains some
information about the film and reviews.
Alice chooses the note “Bring enough money to be able to invite him (Bob paid
the last time)”. The system asks Alice to confirm the deletion. She confirms the
deletion. The system informs Alice that the deletion of the note has been successful,
and the note now does not appear in the task’s note list.

B.1.8.2. Test story 2: Failed note deletion (no notes)

Test objective: Attempt to delete a note from a task when this has none (Extension
2a).

Alice wants to delete a note assigned to a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to delete some of its notes. The system informs Alice
that there are no notes assigned to this task.

181

Chapter B Test stories

B.1.9. Complete a task

B.1.9.1. Test story 1: Completion of a task

Test objective: Completion of a task (Main success scenario).

Alice wants to complete a task from the system.

She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to complete it.

The system informs Alice that the completion of the task has been successful, and
the task now appears as completed.

B.1.9.2. Test story 2: Failed completion (no unfinished tasks)

Test objective: Attempt to complete an unfinished task when the system has none
(Extension 2a).

Alice wants to complete a task from the system.

She logs into the system successfully. The system informs Alice that there are no
unfinished tasks.

B.1.10. Uncomplete a task

B.1.10.1. Test story 1: Incompletion of a task (Main success scenario).

Test objective: Incompletion of a task (Main success scenario).

Alice wants to uncomplete a task from the system.

She logs into the system successfully. The system provides Alice with a list of all her
currently finished tasks which is only one, “Go to the theatre with Carol (yesterday
night)”.

Alice chooses the task “Go to the theatre with Carol (yesterday night)” and informs
the system that she wants to uncomplete it.

The system informs Alice that the incompletion of the task has been successful, and
the task now appears as not completed.

182

B.1 Task

B.1.10.2. Test story 2: Failed incompletion (no finished tasks)

Test objective: Attempt to uncomplete a finished task when the system has none
(Extension 2a).

Alice wants to uncomplete a task from the system.
She logs into the system successfully. The system informs Alice that there are no
finished tasks.

B.1.11. Set priority to a task

B.1.11.1. Test story 1: Assignation of a priority to a task

Test objective: Set a priority to a task (Main success scenario).

Alice wants to set the priority for a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to set a priority to the task. The system
provides her with an interface she can fill the desired priority in, along with a caption
which instructs the allowed range values.
Alice chooses the highest priority for the task. The system informs Alice that
the priority has been set successfully to “Go to the cinema with Bob (Saturday
evening)”. Now the task has the highest priority.

B.1.11.2. Test story 2: Failed assignation of a priority (the task already has a

priority)

Test objective: Attempt to set a priority to a task that already has one (Extension
2a).

Alice wants to set the priority for a task from the system.
She logs into the system successfully. The system provides Alice with a list of her
existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go

183

Chapter B Test stories

to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to set a priority to the task. The system
rejects the action and informs Alice that this task already has a priority.

B.1.11.3. Test story 3: Failed assignation of a priority (invalid priority)

Test objective: Attempt to set an out of range priority to a task (Extension 5a).

Alice wants to set the priority for a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to set a priority to the task. The system
provides the user with an interface she can fill the desired priority in, along with a
caption which instructs the allowed range values.
Alice inputs a non-valid priority for the task (e.g. ‘¿’). The system rejects the action
and informs Alice that this priority is out of range.

B.1.12. Update priority from a task

B.1.12.1. Test story 1: Modification of a priority from a task

Test objective: Update a priority from a task (Main success scenario sec. 4.5.1.1).

Alice wants to update the priority from a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.

184

B.1 Task

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to update the priority of the task. The
system provides her with an interface with the current priority value that she can
modify, along with a caption which instructs the allowed range values. In this case,
the priority is the highest possible, but in case it did not have any assigned one it
would simply be blank.
Alice chooses this time the second highest priority for the task. The system informs
Alice that the priority has been modified successfully for the task “Go to the cinema
with Bob (Saturday evening)”. Now the task has the second highest priority.

B.1.12.2. Test story 2: Increasing the priority of a task

Test objective: Increment the current priority of a task (Extension 4a sec. 4.5.1.1).

Alice wants to increment the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to read more information about
it.
The system provides Alice with further information about the task, like a map with
the exact location of the post office and Carol’s contact details.
Alice informs the system that she wants to increment the priority from the task.
The system informs Alice that the priority has been incremented successfully for the
task “Go to the post office to send a package to Carol (Monday morning)” and now
the task has one level above standard priority, because it did not have any priority
assigned before.

B.1.12.3. Test story 3: Decreasing the priority of a task

Test objective: Decrement the current priority of a task (Extension 4b sec. 4.5.1.1).

Alice wants to decrement the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go

185

Chapter B Test stories

to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to decrement the priority from the task.
The system informs Alice that the priority has been decremented successfully for
the task “Go to the cinema with Bob (Saturday evening)”. Now the task has the
second highest priority.

B.1.12.4. Test story 4: Failed update of a priority (priority out of bounds)

Test objective: Attempt to increment a priority from a task which was already set
as the highest priority (Extension 6a + Extension 4asec. 4.5.1.1).

Alice wants to increment the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to read more information about it.
The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.
Alice informs the system that she wants to increment the priority from the task.
The system informs Alice that the priority can not be incremented because the task
“Go to the cinema with Bob (Saturday evening)” already had the highest possible
priority.

B.1.13. Delete priority from a task

B.1.13.1. Test story 1: Deletion of a priority from a task

Test objective: Delete a priority from a task (Main success scenario).

Alice wants to delete the priority of a task from the system.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.

186

B.1 Task

Alice chooses the task “Go to the cinema with Bob (Saturday evening) and informs
the system that she wants to read more information about it.

The system provides Alice with further information about the task, like a map with
the exact location of the cinema and Bob’s contact details.

Alice informs the system that she wants to delete the priority from the task. The
system asks Alice to confirm the deletion. She confirms the deletion.

The system informs Alice that the deletion of the task’s priority has been successful,
and now the task does not have any priority.

B.1.13.2. Test story 2: Failed priority deletion (the task has no priority)

Test objective: Attempt to delete the current priority of a task (Extension 2a).

Alice wants to delete the priority of a task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.

Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to read more information about
it.

The system provides Alice with further information about the task, like a map with
the exact location of the post office and Carol’s contact details.

Alice informs the system that she wants to delete the priority of the task. The
system informs Alice that the task “Go to the post office to send a package to Carol
(Monday morning)” does not have any priority, and therefore, its priority can not
be deleted.

B.1.14. Postpone a task

B.1.14.1. Test story 1: Postponement of a task.

Test objective: Postponement of a task whose date is due (Main success scenario).

Alice wants to postpone an unfinished task from the system.

She logs into the system successfully. The system provides Alice with a list of all
her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)”, “Go to the post office to send a package to Carol (Monday morning)”
and “Go to the dentist (last week)”.

187

Chapter B Test stories

Alice chooses the task “Go to the dentist (last week)” and informs the system that
she wants to postpone it.
The system informs Alice that the postponement of the task has been successful,
and the task now appears due on that day and as it has been postponed once more.

B.1.14.2. Test story 2: Failed postponement a task (no finished tasks)

Test objective: Attempt to postpone an unfinished task when the system has none
(Extension 2a).

Alice wants to postpone an unfinished task from the system.
She logs into the system successfully. The system informs Alice that there are no
finished tasks.

B.1.14.3. Test story 3: Postponement of a not due task

Test objective: Postponement of a task which is not yet due (Extension 4a).

Alice wants to postpone an unfinished task from the system.
She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to postpone it.
The system informs Alice that the postponement of the task has been successful,
and the task now appears due on Tuesday morning and as it has been postponed
once more.

B.1.15. Share a task with contacts

B.1.15.1. Test story 1: Share a task with contacts

Test objective: Sharing of an unfinished task with some of the user’s contacts (Main
success scenario).

Alice wants to share an unfinished task from the system with some of her contacts
that also use the system.
She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.

188

B.1 Task

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to share it with some of her contacts.

The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.

Alice chooses the contact “Bob” and informs the system that she wants to share the
task with him. The system asks Alice to confirm the sharing.

She confirms the sharing. The system informs Alice that the sharing of the chosen
task with the chosen contacts has been successful. Now the task is marked as shared
with those contacts and the system assigns the task to all of them, in this case only
to Bob.

B.1.15.2. Test story 2: Failed sharing of a task (no unfinished tasks)

Test objective: Attempt to share an unfinished task when the system has none
(Extension 2a).

Alice wants to share an unfinished task from the system with some of her contacts
that also use the system.

She logs into the system successfully. The system informs Alice that there are no
unfinished tasks.

B.1.15.3. Test story 3: Failed sharing of a task (no contacts)

Test objective: Attempt to share an unfinished task when she does not have any
contact in the system (Extension 2b).

Alice wants to share an unfinished task from the system with some of her contacts
that also use the system.

She logs into the system successfully. The system informs Alice that there are no
contacts to share any task with.

B.1.15.4. Test story 4: Failed sharing of a task (some chosen contacts

already have the task)

Test objective: Attempt at sharing an unfinished task with some of the user’s con-
tacts, when some of them already have the task shared previously (Extension
8a).

Alice wants to share an unfinished task from the system with some of her contacts
that also use the system.

189

Chapter B Test stories

She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to share it with some of her contacts.
The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.
Alice chooses the contact “Bob” and informs the system that she wants to share
the task with him. The system asks Alice to confirm the sharing. She confirms the
sharing. The system rejects the sharing and informs Alice that the chosen task was
already shared with some of the chosen contacts.

B.1.16. Send a task to contacts

B.1.16.1. Test story 1: Send a task to some contacts

Test objective: Sending an unfinished task to some of the user’s contacts (Main
success scenario).

Alice wants to send an unfinished task from the system with some of her contacts
that also use the system.
She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to send it to some of her contacts.
The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.
Alice chooses the contact “Bob” and informs the system that she wants to send the
task to him. The system asks Alice to confirm the sending.
She confirms the sending. The system informs Alice that the sending of the chosen
task to the chosen contacts has been successful. Now the task’s sender is marked
with the “Alice” account username. The task has been moved to Alice’s “Sent” list
and the system has assigned to task to all the contacts that where chosen by Alice,
in this case to “Bob”.

B.1.16.2. Test story 2: Failed sending of a task (no unfinished tasks)

Test objective: Attempt to send an unfinished task when the system has none
(Extension 2a).

190

B.1 Task

Alice wants to send an unfinished task from the system with some of her contacts
that also use the system.

She logs into the system successfully. The system informs Alice that there are no
unfinished tasks.

B.1.16.3. Test story 3: Failed sending of a task (no contacts)

Test objective: Attempt to send an unfinished task when she does not have any
contact in the system (Extension 2b).

Alice wants to send an unfinished task from the system with some of her contacts
that also use the system.

She logs into the system successfully. The system informs Alice that there are no
contacts to send any task to.

B.1.16.4. Test story 4: Failed sending of a task (no chosen contact)

Test objective: Attempt at sending an unfinished task without specifying any of
the user’s contacts (Extension 8a).

Alice wants to send an unfinished task from the system with some of her contacts
that also use the system.

She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to send it to some of her contacts.

The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.

Alice does not choose anyone but asks the system to proceed. The system rejects
the sending and informs Alice that she must at least choose one of her contacts.

B.1.17. Share a task with groups

B.1.17.1. Test story 1: Share a task with groups

Test objective: Sharing of an unfinished task with some of the user’s groups of
contacts (Main success scenario).

191

Chapter B Test stories

Alice wants to share an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system provides Alice with a list of all her
currently unfinished tasks which are “Go to the cinema with my friends (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the cinema with my friends (Saturday evening)” and
informs the system that she wants to share it with some of her groups of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Friends” and informs the system that she wants
to share the task with them. The system asks Alice to confirm the sharing. She
confirms the sharing.
The system informs Alice that the sharing of the chosen task with the chosen groups
of contacts has been successful. Now the task is marked as shared with those contacts
in the groups and the system assigns the task to all of them, in this case Bob and
Carol.

B.1.17.2. Test story 2: Failed sharing of a task (no unfinished tasks)

Test objective: Attempt to share an unfinished task when the system has none
(Extension 2a).

Alice wants to share an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system informs Alice that there are no
unfinished tasks.

B.1.17.3. Test story 3: Failed sharing of a task (no groups of contacts)

Test objective: Attempt to share an unfinished task when she does not have any
groups of contacts in the system (Extension 2b).

Alice wants to share an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system informs Alice that there are no
groups of contacts to share any task with.

B.1.17.4. Test story 4: Failed sharing of a task (empty group)

Test objective: Attempt to share an unfinished task with some groups of contacts
that are empty (Extension 6a).

192

B.1 Task

Alice wants to share an unfinished task from the system with some of her groups of
contacts that also use the system.

She logs into the system successfully. The system provides Alice with a list of all her
currently unfinished tasks which are “Go to the cinema with my friends (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with my friends (Saturday evening)” and
informs the system that she wants to share it with some of her groups of contacts.

The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends”, “Coworkers” and “Unknown”.

Alice chooses the group of contacts “Unknown” and informs the system that she
wants to share the task with them. The system asks Alice to confirm the sharing.

She confirms the sharing. The system rejects the sharing and informs Alice that
some of the chosen groups of contacts did not contain any contact in it, in this case
the group “Unknown”.

B.1.17.5. Test story 5: Failed sharing of a task (already shared)

Test objective: Attempt at sharing an unfinished task with some of the user’s con-
tacts belonging to groups, when some of them already have the task shared
previously (Extension 8a).

Alice wants to share an unfinished task from the system with some of her groups of
contacts that also use the system.

She logs into the system successfully. The system provides Alice with a list of all her
currently unfinished tasks which are “Go to the cinema with my friends (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with my friends (Saturday evening)” and
informs the system that she wants to share it with some of her groups of contacts.

The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.

Alice chooses the group of contacts “Friends” and informs the system that she wants
to share the task with them. The system asks Alice to confirm the sharing.

She confirms the sharing. The system rejects the sharing and informs Alice that the
chosen task was already shared with some of the contacts belonging to the chosen
groups, in this case “Bob”.

193

Chapter B Test stories

B.1.18. Send a task to groups

B.1.18.1. Test story 1: Send a task to some groups

Test objective: Sending an unfinished task to some of the user’s groups of contacts
(Main success scenario).

Alice wants to send an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system provides Alice with a list of all
her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send some packages to Carol (Monday
morning)”.
Alice chooses the task “Go to the post office to send some packages to Carol (Monday
morning)” and informs the system that she wants to send it to some of her groups
of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Coworkers” and informs the system that she
wants to send the task to them. The system asks Alice to confirm the sending.
She confirms the sending. The system informs Alice that the sending of the chosen
task to the contacts belonging to the chosen groups has been successful.
Now the task’s sender is marked with the “Alice” account username. The task has
been moved to Alice’s “Sent” list and the system has assigned the task to all the
contacts that where belonging to the groups chosen by her, in this case to “Bob”
and “Charlie”.

B.1.18.2. Test story 2: Failed sending of a task (no unfinished tasks)

Test objective: Attempt to send an unfinished task when the system has none
(Extension 2a).

Alice wants to send an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system informs Alice that there are no
unfinished tasks.

B.1.18.3. Test story 3: Failed sending of a task (no groups)

Test objective: Attempt to send an unfinished task when she does not have any
groups of contacts in the system (Extension 2b).

194

B.1 Task

Alice wants to send an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system informs Alice that there are no
groups of contacts to send any task to.

B.1.18.4. Test story 4: Failed sending of a task (empty groups)

Test objective: Attempt to send an unfinished task to some groups of contacts that
are empty (Extension 6a).

Alice wants to send an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system provides Alice with a list of all her
currently unfinished tasks which are “Go to the cinema with my friends (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the post office to send some packages to Carol (Monday
morning)” and informs the system that she wants to send it to some of her groups
of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends”, “Coworkers” and “Unknown”.
Alice chooses the group of contacts “Unknown” and informs the system that she
wants to send the task to them. The system asks Alice to confirm the sending.
She confirms the sending. The system rejects the sending and informs Alice that
some of the chosen groups of contacts did not contain any contact in it, in this case
the group “Unknown”.

B.1.18.5. Test story 5: Failed sending of a task (no chosen)

Test objective: Attempt at sending an unfinished task without specifying any of
the user’s groups of contacts (Extension 8a).

Alice wants to send an unfinished task from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system provides Alice with a list of
all her currently unfinished tasks which are “Go to the cinema with Bob (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to send it to some of her groups of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These contacts are “Friends” and “Coworkers”.

195

Chapter B Test stories

Alice does not choose any group but asks the system to proceed. The system rejects
the sending and informs Alice that she must at least choose one of her groups of
contacts.

B.1.19. Show tasks

B.1.19.1. Test story 1: Show tasks

Test objective: Show the user his/her tasks in the system that meet some specified
criteria in an orderly fashion (Main success scenario).

Alice wants to view all her tasks that meet some criteria in an orderly way.

She logs into the system successfully. The system provides Alice with a list with
all the possible parameters related to ordering criteria. These include creation date,
priority and due date.

Alice informs the system that she wants the tasks ordered regarding their priority,
the ones with higher priority in first place.

The system provides Alice with a list with all the possible parameters related to
filtering tasks. These include keywords, the list the tasks belong to and who are
they shared with.

Alice informs the system that she wants to retrieve all the tasks due in less than
one week that are uncompleted and involve her contact “Bob”.

The system provides Alice with all her tasks according to the ordering and filtering
criteria, which in this case would only be “Go to the cinema with Bob (Saturday
evening)”.

B.1.19.2. Test story 2: Failed showing of tasks (no tasks)

Test objective: Attempt to show the user his/her tasks in the system that meet
some specified criteria in an orderly fashion (Extension 2a).

Alice wants to view all her tasks that meet some criteria in an orderly way.

She logs into the system successfully. The system informs Alice that there are no
tasks.

B.1.19.3. Test story 3: Show tasks with no ordering criterion

Test objective: Show the user his/her tasks in the system that meet some criteria
without any specific order (Extension 3a).

196

B.1 Task

Alice wants to view all her tasks that meet some criteria in an orderly way.
She logs into the system successfully. The system provides Alice with a list with
all the possible parameters related to ordering criteria. These include creation date,
priority and due date.
Alice informs the system that she wants to proceed without choosing any specific
criterion. The system provides Alice with a list with all the possible parameters
related to filtering tasks. These include keywords, the list the tasks belong to and
who are they shared with.
Alice informs the system that she wants to retrieve all the tasks due in less than
one week that are uncompleted and involve her contact “Bob”.
The system provides Alice with all her tasks according to the chosen filtering criteria.
As a ordering criterion it will use its default one (in this case with increasing due
date and using the priority, alphabetical order and creation date to break ties),
because Alice did not choose anything specific. The only task that meets all this is
“Go to the cinema with Bob (Saturday evening)”.

B.1.19.4. Test story 5: Show tasks (too restrictive filtering)

Test objective: Attempt to show the user his/her tasks in the system that meet
some specified criteria in an orderly fashion (Extension 6a).

Alice wants to view all her tasks that meet some criteria in an orderly way.
She logs into the system successfully. The system provides Alice with a list with
all the possible parameters related to ordering criteria. These include creation date,
priority and due date.
Alice informs the system that she wants the tasks ordered regarding their priority,
the ones with higher priority in first place.
The system provides Alice with a list with all the possible parameters related to
filtering tasks. These include keywords, the list the tasks belong to and who are
they shared with. Alice informs the system that she wants to retrieve all the tasks
due in less than one week that are uncompleted and do not involve her contacts
“Bob” or “Carol”.
The system informs Alice that she does not have any task in the system that meet
those selected filtering criteria.

B.1.20. Move a task to a list

B.1.20.1. Test story 1: Moving a task to a list

Test objective: Moving a task from its original list to another one (Main success
scenario).

197

Chapter B Test stories

Alice wants to move one of her tasks from one of her lists to another one.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to move it to one of her other lists.

The system provides Alice with a list of all her lists of tasks except from the one
she is already on and the list of tasks sent to contacts. These lists are “Personal”
and “Work”.

Alice chooses the list of tasks “Personal” and informs the system that she wants to
move the task there. The system asks Alice to confirm the movement. She confirms
the movement.

The system informs Alice that the movement of the chosen task to the selected
list has been successful. Now the task appears on the “Personal” list and does not
appear in the list named “Inbox” anymore.

B.1.20.2. Test story 2: Failed moving of a task to a list (no tasks)

Test objective: Attempt to move a task to another list when the system has none
(Extension 2a).

Alice wants to move one of her tasks from one of her lists to another one.

She logs into the system successfully. The system informs Alice that there are no
tasks.

B.1.20.3. Test story 3: Failed moving of a task to a list (restricted list)

Test objective: Attempt to move a task from the “Sent” list to another one (Ex-
tension 4a).

Alice wants to move one of her tasks from one of her lists to another one.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to move it to one of her other lists.

The system informs Alice that the movement of the chosen task is not possible
because it belongs to the “Sent” list which is restricted in task moving.

198

B.1 Task

B.1.20.4. Test story 4: Failed moving of a task to a list (no unrestricted lists)

Test objective: Attempt to move a task from one list to another one, when the
only other list available is the “Sent” one (Extension 4b).

Alice wants to move one of her tasks from one of her lists to another one.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)” and
“Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the post office to send a package to Carol (Monday
morning)” and informs the system that she wants to move it to one of her other
lists.
The system informs Alice that the movement of the chosen task is not possible,
because apart from the list the task is currently in (i.e. “Inbox”) there is only the
“Sent” list available, which is restricted in task moving.

B.1.20.5. Test story 5: Failed moving of a task to a list (no list chosen)

Test objective: Attempt to move a task from one list to another one without spec-
ifying which one (Extension 8a).

Alice wants to move one of her tasks from one of her lists to another one.
She logs into the system successfully. The system provides Alice with a list of all her
currently unfinished tasks which are “Go to the cinema with my friends (Saturday
evening)” and “Go to the post office to send a package to Carol (Monday morning)”.
Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to move it to one of her other lists.
The system provides Alice with a list of all her lists of tasks except from the one
she is already on and the list of tasks sent to contacts. These lists are “Personal”
and “Work”. Alice does not choose any list of tasks but still asks the system to
proceed. The system informs Alice that the movement of the chosen task is not
possible because no valid list was chosen.

B.1.21. Duplicate a task

B.1.21.1. Test story 1: Duplicate task

Test objective: Duplication of a task (Main success scenario).

Alice wants to duplicate one of her tasks.
She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go

199

Chapter B Test stories

to the post office to send a package to Carol (Monday morning)” and “Go to the
theater with Carol (yesterday night)”.

Alice chooses the task “Go to the cinema with Bob (Saturday evening)” and informs
the system that she wants to duplicate it.

The system informs Alice that the duplication of the chosen task has been done
successfully. Now, another task appears in the list with all the others. This new
task has the same properties (e.g. subject name, due date, shared contacts, etc.)
as the original one it was duplicated from except from (possibly) the creation date
and the text “ copy” appended to the task subject. This would render the new task
“Go to the cinema with Bob (Saturday evening) copy”.

B.1.21.2. Test story 2: Failed duplication of a task (no tasks)

Test objective: Attempt to duplicate a task when the system has none (Extension
2a).

Alice wants to duplicate one of her tasks.

She logs into the system successfully. The system informs Alice that there are no
tasks.

B.1.21.3. Test story 3: Duplicate a completed task

Test objective: Duplication of a completed task (Extension 4a).

Alice wants to duplicate one of her tasks.

She logs into the system successfully. The system provides Alice with a list of all
her existing tasks which are “Go to the cinema with Bob (Saturday evening)”, “Go
to the post office to send a package to Carol (Monday morning)” and “Go to the
theatre with Carol (yesterday night)”.

Alice chooses the task “Go to the theatre with Carol (yesterday night)” which hap-
pens to be completed and informs the system that she wants to duplicate it.

The system informs Alice that the duplication of the chosen task has been done
successfully. Now, another task appears in the list with all the others. This new
task has the same properties (e.g. subject name, due date, shared contacts, etc.)
as the original one it was duplicated from except from the creation date, the due
date and its completed status along with the completion date. This would render
the new task “Go to the theatre with Carol” with an incomplete status and with no
due date or completion date.

200

B.2 Account

B.2. Account

B.2.1. Create an account

B.2.1.1. Test story 1: Creation of an account

Test objective: Create an account (Main success scenario).

Alice wants to create an account in the system.

The system provides Alice with an interface with enough fields for her to create an
account. Alice introduces her desired username “Alice”. She also introduces her
desired password “1234”.

The system confirms the creation of the account with the introduced username “Al-
ice” and password. The system informs Alice that her account has been successfully
created and it is now ready for use.

B.2.1.2. Test story 2: Failed creation (duplicated name)

Test objective: Attempt to create an account with a duplicated username (Exten-
sion 4a).

Alice wants to create an account in the system.

The system provides Alice with an interface with enough fields for her to create an
account. Alice introduces her desired username “Alice”, which will be used as a
username. She also introduces her desired password “1234”.

The system rejects the creation of the account and informs Alice that there is already
an account using that very same username.

B.2.1.3. Test story 3: Failed creation (name too long)

Test objective: Attempt to create an account with a username too long (Extension
4a).

Alice wants to create an account in the system.

The system provides Alice with an interface with enough fields for her to create
an account. Alice introduces her desired username “Alice Pleasance Lidell from
Wonderland, beneath Oxfordshire”, which will be used as a username. She also
introduces her desired password “1234”.

The system rejects the creation of the account and informs Alice that the chosen
username is too long.

201

Chapter B Test stories

B.2.2. Log into an account

B.2.2.1. Test story 1: Log into an account

Test objective: Log into an account (Main success scenario).
Alice wants to log into her account in the system.
The system provides Alice with an interface with enough fields for her to log into an
account. Alice introduces her username “Alice”. She also introduces her password
“1234”.
The system informs Alice that she has just logged in successfully.

B.2.2.2. Test story 2: Log into an account (no account)

Test objective: Log into an account without having one (Extension 1a).
Alice wants to log into her account in the system.
The system provides Alice with an interface with enough fields for her to log into
an account. Alice does not have an account but she wants to use the system so she
now wants to create an account and inform the system.
The system provides Alice with an interface with enough fields for her to create an
account. Alice introduces her desired username “Alice”, which will be used as a
username. She also introduces her desired password “1234”.
The system confirms the creation of the account with the introduced username “Al-
ice” and password. The system informs Alice that her account has been successfully
created and it is now ready for use.
With the account created, Alice informs the system that she wants to log into her
account. The system provides Alice with an interface with enough fields for her to
log into an account. Alice introduces her username “Alice”. She also introduces her
password “1234”.
The system informs Alice that she has just logged in successfully.

B.2.2.3. Test story 3: Failed login (invalid password or username)

Test objective: Attempt to log into an account with an invalid password or user-
name (Extension 4a).

Alice wants to log into her account in the system.
The system provides Alice with an interface with enough fields for her to log into an
account. Alice introduces her username “Alice”. She also introduces her password
incorrectly “12345”.
The system informs Alice that the username or password are not correct and she
can not be logged in.

202

B.2 Account

B.2.3. Update an account

B.2.3.1. Test story 1: Update an account

Test objective: Update an account (Main success scenario).

Alice wants to update information regarding her account.
She logs into the system successfully. The system provides Alice with all the details
of her account which include “username: Alice”, “password: 1234” and “e-mail:“.
Alice fills in information regarding the e-mail. Now it is “e-mail: alice@wonderland.com”.
The system asks Alice to confirm the modification. She confirms the modification.
The system informs Alice that the update of the account has been done successfully.
Now the e-mail direction appears as “alice@wonderland.com”.

B.2.3.2. Test story 2: Failed update of an account (invalid data)

Test objective: Attempt to update an account with and invalid e-mail (Extension
6a).

Alice wants to update information regarding her account.
She logs into the system successfully. The system provides Alice with all the details
of her account which include “username: Alice”, “password: 1234” and “e-mail:“.
Alice fills in information regarding the e-mail. Now it is “e-mail: al”. The system
asks Alice to confirm the modification.
She confirms the modification. The system informs Alice that the update of the
account is not possible because the provided e-mail address appears to be invalid.

B.2.4. Delete an account

B.2.4.1. Test story 1: Delete an account

Test objective: Deletion of an account (Main success scenario).

Alice wants to delete her account.
She logs into the system successfully. The system asks Alice to provide further
authentication before it can delete the account, and provides her with an interface
with enough fields for her to provide a username and a password. Alice introduces
her username “Alice” and her password “1234”.
The system asks Alice to confirm the deletion of the account. She confirms the
deletion of the account.
The system logs Alice out and informs her that her account has been deleted suc-
cessfully. Now the account is not accessible by anyone.

203

Chapter B Test stories

B.2.4.2. Test story 2: Failed deletion of an account (invalid authentication)

Test objective: Attempt to delete an account with an invalid authentication (Ex-
tension 4a).

Alice wants to delete her account.
She logs into the system successfully. The system asks Alice to provide further
authentication before it can delete the account, and provides her with an interface
with enough fields for her to provide a username and a password. Alice introduces
her username “Alice” and her password “1233”.
The system informs Alice that she failed the authentication and logs her out.

B.2.5. Log out of an account

B.2.5.1. Test story 1: Log out of an account

Test objective: Log out of an account (Main success scenario).

Alice wants to log out of her account.
She logs into the system successfully. Alice informs the system that she wants to be
logged out. The system logs Alice out and informs her about that fact.

B.3. Reminder

B.3.1. Creation of a reminder schedule

B.3.1.1. Test story 1: Log out of an account

Test objective: Create a reminder schedule (Main success scenario).

Alice wants to create a new reminder schedule.
She logs into the system successfully. The system provides Alice with an interface
with all the necessary means for her to create and define a reminder schedule.
Alice asks the system to create a new reminder schedule. She informs the system
that she wants to be reminded 2 hours before the time a task is due. She also informs
that she wants to be reminded via e-mail using the account “alice@wonderland.com”
The system asks Alice to confirm the creation.
She confirms the creation. The system informs Alice that the creation of the schedule
has been done successfully. Now whenever a task is at 2 hours from being due, an
e-mail will be sent informing of that fact to Alice’s provided e-mail address.

204

B.3 Reminder

B.3.1.2. Test story 2: Failed creation of a reminder schedule (invalid

reminder method)

Test objective: Attempt to create a reminder schedule with and invalid reminder
method (Extension 6a).

Alice wants to create a new reminder schedule.

She logs into the system successfully. The system provides Alice with an interface
with all the necessary means for her to create and define a reminder schedule.

Alice asks the system to create a new reminder schedule. She informs the system
that she wants to be reminded 2 hours before the time a task is due. She also informs
that she wants to be reminded via e-mail using the account “alicewonderland.com”.

The system asks Alice to confirm the creation. She confirms the creation.

The system informs Alice that the creation of the schedule is not possible because
the provided e-mail address appears to be invalid.

B.3.2. Read a reminder schedule

B.3.2.1. Test story 1: Reading of a reminder schedule

Test objective: Reading a reminder schedule (Main success scenario).

Alice wants to read the existing reminder schedules.

She logs into the system successfully. The system provides Alice with an interface
with all the necessary means that define a reminder schedule.

In this case, the system shows Alice that she has a reminder schedule set at 2 hours
before the time a task is due. It also shows that this same schedule will send the
notifications via an e-mail account to alice@wonderland.com.

B.3.2.2. Test story 2: Reading of an unset reminder schedule

Test objective: Reading an unset reminder schedule (Extension 3a).

Alice wants to read the existing reminder schedules.

She logs into the system successfully. The system provides Alice with an interface
with all the necessary means that define a reminder schedule.

In this case, because Alice did not have any reminder schedule, all the information
is blank. The system informs Alice that she does not have any reminder schedule.

205

Chapter B Test stories

B.3.3. Update a reminder schedule

B.3.3.1. Test story 1: Update a reminder schedule

Test objective: Update a reminder schedule (Main success scenario).

Alice wants to update an existing reminder schedule.

She logs into the system successfully. The system provides Alice with an interface
with all the necessary means that define a reminder schedule.

In this case, the system shows Alice that she has a reminder schedule set at 2 hours
before the time a task is due. It also shows that this same schedule will send the
notifications via an e-mail account to alice@wonderland.com.

Alice modifies the reminder to be send every day there is a task due at 7 a.m.
She also modifies the method she would like to use from an e-mail to an SMS and
introduces her mobile phone number.

The system asks Alice to confirm the update. She confirms the update.

The system informs Alice that the update of the schedule has been done successfully.
Now, whenever a task is due, one SMS will be sent the same day at 7 a.m. informing
of that fact to Alice’s provided mobile phone number.

B.3.3.2. Test story 2: Failed update of a reminder schedule (invalid reminder

method)

Test objective: Attempt to update a reminder schedule with and invalid reminder
method (Extension 6a).

Alice wants to update an existing reminder schedule.

She logs into the system successfully. The system provides Alice with an interface
with all the necessary means that define a reminder schedule.

In this case, the system shows Alice that she has a reminder schedule set at 2 hours
before the time a task is due. It also shows that this same schedule will send the
notifications via an e-mail account to alice@wonderland.com.

Alice modifies the reminder to be send every day there is a task due at 7 a.m. She
also modifies the method she would like to use changing the e-mail address from
“alice@wonderland.com” to “aliceengland.com”.

The system asks Alice to confirm the update. She confirms the update.

The system informs Alice that the modification of the schedule is not possible,
because the provided e-mail address appears to be invalid.

206

B.3 Reminder

B.3.4. Delete a reminder schedule

B.3.4.1. Test story 1: Deletion of a reminder schedule

Test objective: Delete a reminder schedule (Main success scenario).

Alice wants to delete an existing reminder schedule.
She logs into the system successfully. The system provides Alice with an interface
with all the necessary means that define a reminder schedule. In this case, the
system shows Alice that she has a reminder schedule set at 2 hours before the time
a task is due. It also shows that this same schedule will send the notifications via
an e-mail account to alice@wonderland.com.
Alice informs the system that she wants to delete a reminder schedule and selects
the e-mail address alice@wonderland.com.
The system asks Alice to confirm the deletion. She confirms the deletion.
The system informs Alice that the deletion of the schedule associated with the e-mail
address has been successful. Now, she will not be receive any further notifications
for that set schedule on that e-mail address.

B.3.4.2. Test story 2: Failed deletion of a reminder schedule (no schedules)

Test objective: Attempt to delete a reminder schedule when the system has none
(Extension 2a).

Alice wants to delete an existing reminder schedule.
She logs into the system successfully. The system informs Alice that there are no
reminders in the system to be deleted.

B.3.5. Send reminder

B.3.5.1. Test story 1: Send a reminder

Test objective: Send a reminder a according to the user’s preferences (Main success
scenario).

The clock has advanced one more minute. Now it is 7 a.m.
The system retrieves the reminder schedules for all of its accounts, in this case
Alice’s, Bob’s, Carol’s and Charlie’s accounts. The systems checks if there are any
reminders due at 7 a.m. There is one reminder schedule set at 7 a.m.for Alice and
another one for Carol.
The system verifies that none of this reminders has been sent yet. It also checks
the medium it should use, SMS for Alice and e-mail for Carol. The system checks if

207

Chapter B Test stories

Alice has any tasks due today and finds out that indeed she has “Go to the cinema
with Bob (Saturday evening)”. On the other hand, Carol has no tasks to be sent
today.

The system verifies that Alice’s reminder has not yet been sent. The system sends
Alice an SMS informing her of her upcoming task for that day.

B.4. Customisation

B.4.1. Change language

B.4.1.1. Test story 1: Change the language

Test objective: Change the language (Main success scenario).

Alice wants to change the system’s language. The system provides Alice with a list of
all the languages available which include “Català”, “English” and “Norsk(bokmål)”.
Alice chooses “Norsk(bokmål)”.

The system asks Alice to confirm the language change. She confirms the language
change.

The system updates all its related information according to the chosen language.
Now all menus and system-generated text are written in “Norsk(bokmål)”.

B.4.2. Show weekly planner

B.4.2.1. Test story 1: Show weekly planner

Test objective: Generate and show a weekly planner (Main success scenario).

Alice wants to see her weekly plan.

She logs into the system successfully. The system provides Alice with a list of all
her tasks due in less than 7 days, ordered according to the due date and separated
according to the day they are due.

In this case “Go to the cinema with Bob (Saturday evening)” and “Go to the post
office to send a package to Carol (Monday morning)”.

208

B.5 Contact and group

B.5. Contact and group

B.5.1. Add a contact

B.5.1.1. Test story 1: Addition of a contact

Test objective: Add a contact (Main success scenario).

Alice wants to add a contact to her system’s account.

She logs into the system successfully. The system provides Alice with an interface
she can use in order to look for other users within the system. Alice introduces the
name “Charles Dodgson”.

The system confirms the addition of a new contact with username “Charles Dodg-
son” to Alice’s account, and her list of contacts now includes him.

B.5.1.2. Test story 2: Failed addition of a contact (invalid username)

Test objective: Attempt to add a contact whose username it is not in the system
(Extension 5a).

Alice wants to add a contact to her system’s account.

She logs into the system successfully. The system provides Alice with an interface
she can use in order to look for other users within the system. Alice introduces the
name “Lewis Carroll”.

The system informs Alice that the addition of the contact is not possible because
there is no account in the system with the name “Lewis Carroll”.

B.5.1.3. Test story 3: Failed addition of a contact (already added)

Test objective: Attempt to add a contact already added (Extension 5b).

Alice wants to add a contact to her system’s account.

She logs into the system successfully. The system provides Alice with an interface
she can use in order to look for other users within the system. Alice introduces the
name “Bob”.

The system informs Alice that the addition of the contact is not possible because
”Bob” is already in her contact list.

209

Chapter B Test stories

B.5.2. Read a contact

B.5.2.1. Test story 1: Reading of a contact

Test objective: Read a contact (Main success scenario).

Alice wants to read a contact from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.

Alice chooses the contact “Bob” and informs the system that she wants to read some
of his information.

The system provides Alice with further information about the contact, like in which
groups he is in and which tasks have been shared with him.

B.5.2.2. Test story 2: Failed reading of a contact (no contacts)

Test objective: Attempt to read a contact when the system has none (Extension
2a).

Alice wants to read a contact from her system’s account.

She logs into the system successfully. The system informs Alice that there are no
contacts to read.

B.5.3. Delete a contact

B.5.3.1. Test story 1: Reading of a contact

Test objective: Read a contact (Main success scenario).

Alice wants to delete a contact from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.

Alice chooses the contact “Bob” and informs the system that she wants to delete
him.

The system asks Alice to confirm the deletion. She confirms the deletion.

The system informs Alice that the removal of the contact has been successful, and
the list of contacts does not include the deleted contact anymore.

210

B.5 Contact and group

B.5.3.2. Test story 2: 2 Failed deletion of a contact (no contacts)

Test objective: Attempt to delete a contact when the system has none (Extension
2a).

Alice wants to delete a contact from her system’s account.
She logs into the system successfully. The system informs Alice that there are no
contacts.

B.5.4. Create a group

B.5.4.1. Test story 1: Creation of a group

Test objective: Create a group (Main success scenario).
Alice wants to create a group in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends” and “Coworkers”.
Alice asks the system to create a new group with the subject “Family”.
The system confirms the creation of a new group with name “Family” to Alice’s
account, and her list of groups now includes it.

B.5.4.2. Test story 2: Failed creation (duplicated name)

Test objective: Attempt to create a group with a duplicated name (Extension 4a).
Alice wants to create a group in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends”, “Coworkers” and “Family”.
Alice asks the system to create a new group with the subject “Family”.
The system rejects the creation of the new group and informs Alice that she already
has that group in the system (i.e. a group with the same name).

B.5.4.3. Test story 3: Failed creation (blank name)

Test objective: Attempt to create a group with a blank name (Extension 4a).
Alice wants to create a group in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends” and “Coworkers”.
Alice asks the system to create a new group without any subject.
The system rejects the creation of the new group and informs Alice that every group
must at least have a subject.

211

Chapter B Test stories

B.5.5. Read a group

B.5.5.1. Test story 1: Reading of a group

Test objective: Read a group (Main success scenario).

Alice wants to read a group from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends” and “Coworkers”.

Alice chooses the group “Friends” and informs the system that she wants to read
some of its information.

The system provides Alice with further information about the group, like which of
her contacts belong to it.

B.5.5.2. Test story 2: Failed reading of a group (no groups)

Test objective: Attempt to read a group when the system has none (Extension 2a).

Alice wants to read a group from her system’s account.

She logs into the system successfully. The system informs Alice that there are no
groups of contacts.

B.5.6. Delete a group

B.5.6.1. Test story 1: Deletion of a group

Test objective: Delete a group (Main success scenario).

Alice wants to delete a group from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends”, “Coworkers” and “Family”.

Alice chooses the group “Family” and informs the system that she wants to delete
it. The system asks Alice to confirm the deletion.

She confirms the deletion. The system informs Alice that the removal of the group
has been successful, and the list of groups does not include the deleted group any-
more.

212

B.5 Contact and group

B.5.6.2. Test story 2: Failed deletion of a group (no groups)

Test objective: Attempt to delete a group when the system has none (Extension
2a).

Alice wants to delete a group from her system’s account.

She logs into the system successfully. The system informs Alice that there are no
groups of contacts.

B.5.6.3. Test story 3: Failed deletion of a group (group not empty)

Test objective: Attempt to delete a not empty group (Extension 3a).

Alice wants to delete a group from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
previously added groups which are “Friends”, “Coworkers” and “Family”.

Alice chooses the group “Friends” and informs the system that she wants to delete
it.

The system informs Alice that the removal of the group is not possible because it
still has some contacts in it, in this case “Bob”.

B.5.7. Add a contact to a group

B.5.7.1. Test story 1: Addition of a contact to a group

Test objective: Add a contact to a group (Main success scenario).

Alice wants to add one of her contacts to one of her groups from her system’s
account.

She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.

Alice chooses the contact “Bob” and informs the system that she wants to add him
to one of her groups.

The system provides Alice with a list of her previously added groups which are
“Friends” and “Coworkers”. Alice chooses the group “Coworkers” and informs the
system that she wants to add him to that group.

The system confirms the addition of the contact named “Bob” to the group with
name “Coworkers” to Alice’s account, and updates the contacts’ and groups’ status
to reflect this fact.

213

Chapter B Test stories

B.5.7.2. Failed addition of a contact to a group (no contacts)

Test objective: Attempt to add a contact to a group when the system has no
contacts (Extension 2a).

Alice wants to add one of her contacts to one of her groups from her system’s
account.
She logs into the system successfully. The system informs Alice that there are no
contacts to add.

B.5.7.3. Failed addition of a contact to a group (no groups)

Test objective: Attempt to add a contact to a group when the system has no groups
(Extension 2b).

Alice wants to add one of her contacts to one of her groups from her system’s
account.
She logs into the system successfully. The system informs Alice that there are no
groups where to contact could be added.

B.5.7.4. Failed addition of a contact to a group (already added)

Test objective: Attempt to add a contact to a group when that contact is already
in that group (Extension 6a).

Alice wants to add one of her contacts to one of her groups from her system’s
account.
She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.
Alice chooses the contact “Bob” and informs the system that she wants to add him
to one of her groups.
The system provides Alice with a list of her previously added groups which are
“Friends” and “Coworkers”. Alice chooses the group “Friends” and informs the
system that she wants to add him to that group.
The system rejects the addition of the contact named “Bob” to the group with name
“Friends” to Alice’s account, informing that in fact that contact is already in.

B.5.8. Remove a contact from a group

B.5.8.1. Test story 1: Removal of a contact from a group

Test objective: Remove a contact from a group (Main success scenario).

214

B.5 Contact and group

Alice wants to remove one of her contacts from one of her groups from her system’s
account.

She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.

Alice chooses the contact “Bob” and informs the system that she wants to remove
him from one of her groups.

The system provides Alice with a list of all her groups Bob is in, which are “Friends”
and “Coworkers”. Alice chooses the group “Coworkers” and informs the system that
she wants to remove him from that group.

The system asks Alice to confirm the deletion. She confirms the deletion.

The system confirms the removal of the contact named “Bob” from the group with
name “Coworkers” from Alice’s account. The system updates Bob’s and the group’s
status to reflect this fact.

B.5.8.2. Test story 2: Failed removal of a contact from a group (no contacts)

Test objective: Attempt to remove a contact from a group when the system has
no contacts (Extension 2a).

Alice wants to remove one of her contacts from one of her groups from her system’s
account.

She logs into the system successfully. The system informs Alice that there are no
contacts to remove.

B.5.8.3. Test story 3: Failed removal of a contact from a group (no groups)

Test objective: Attempt to remove a contact from a group when the system has
no groups (Extension 2b).

Alice wants to remove one of her contacts from one of her groups from her system’s
account.

She logs into the system successfully. The system informs Alice that there are no
groups where to contact could be removed from.

B.5.8.4. Test story 4: Failed removal of a contact from a group (the contact

is not in any group)

Test objective: Attempt to remove a contact from a group when that contact does
not belong to any group (Extension 6a).

215

Chapter B Test stories

Alice wants to remove one of her contacts from one of her groups from her system’s
account.
She logs into the system successfully. The system provides Alice with a list of her
previously added contacts which are “Bob”, “Carol” and “Charlie”.
Alice chooses the contact “Charlie” and informs the system that she wants to remove
him from one of her groups.
The system rejects the removal of the contact named “Charlie” and informs that he
does not belong to any of her groups.

B.6. List of tasks

B.6.1. Create a list

B.6.1.1. Test story 1: Creation of a list of tasks

Test objective: Create a list of tasks (Main success scenario).

Alice wants to create a list of tasks in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice asks the system to create a new list with the subject “Work”.
The system confirms the creation of a new list of tasks with name “Work” to Alice’s
account, and her list of lists of tasks now includes it.

B.6.1.2. Test story 2: Failed creation (duplicated name)

Test objective: Attempt to create a list with a duplicated name (Extension 4a).

Alice wants to create a list of tasks in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice asks the system to create a new list with the subject “Personal”.
The system rejects the creation of the new list and informs Alice that she already
has that list of tasks in the system (i.e. a list with the same name).

B.6.1.3. Test story 3: Failed creation (blank name)

Test objective: Attempt to create a list with a blank name (Extension 4a).

216

B.6 List of tasks

Alice wants to create a list of tasks in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice asks the system to create a new list without any subject.
The system rejects the creation of the new list and informs Alice that every list must
at least have a subject.

B.6.2. Read a list

B.6.2.1. Test story 1: Reading of a list

Test objective: Read a list of tasks (Main success scenario).

Alice wants to read a list of tasks in her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list of tasks “Personal” and informs the system that she wants to
read some of its information.
The system provides Alice with further information about the list, like which tasks
are assigned to it. In this case it would be “Go to the cinema with Bob (Saturday
evening)”.

B.6.3. Update a list

B.6.3.1. Test story 1: Updating of a list

Test objective: Update a list of tasks (Main success scenario).

Alice wants to update a list of tasks from her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to update
some of its information.
The system provides Alice with further information about the list, like the tasks that
belong to it. In this case this is “Go to the cinema with Bob (Saturday evening)”.
Alice changes the name of the list to “Personal stuff”.
The system asks Alice to confirm the modification. She confirms the modification.
The system informs Alice that the modification of the list has been successful, and
the list of lists now includes the modified version of the name description.

217

Chapter B Test stories

B.6.3.2. Test story 2: Failed update (no editable lists)

Test objective: Attempt to update a list when the system does not have any ed-
itable ones (Extension 2a).

Alice wants to update a list of tasks from her system’s account.
She logs into the system successfully. The system informs Alice that there are no
editable lists (i.e. there is only the “Sent” and the “Inbox” lists).

B.6.3.3. Test story 3: Failed update (duplicated name)

Test objective: Attempt to update a list with a duplicated name (Extension 8a).

Alice wants to update a list of tasks from her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to update
some of its information.
The system provides Alice with further information about the list, like the tasks that
belong to it. In this case this is “Go to the cinema with Bob (Saturday evening)”.
Alice changes the name of the list to “Inbox”.
The system rejects the update of the list and informs Alice that she already has
that list of tasks in the system (i.e. a list with the same name).

B.6.3.4. Test story 4: Failed update (non-editable list)

Test objective: Attempt to update a non-editable list (Extension 8a).

Alice wants to update a list of tasks from her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Sent” and informs the system that she wants to update some
of its information.
The system rejects the update of the list and informs Alice that the list “Sent” is
non-updatable.

B.6.4. Delete a list

B.6.4.1. Test story 1: Deletion of a list

Test objective: Delete a list of tasks (Main success scenario).

218

B.6 List of tasks

Alice wants to delete a list of tasks from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Personal” and informs the system that she wants to delete it.

The system asks Alice to confirm the deletion. She confirms the deletion. The
system informs Alice that the deletion of the list has been successful, and the list of
lists now does not include “Personal” anymore.

B.6.4.2. Test story 2: Failed deletion (no editable lists)

Test objective: Attempt to delete a list when the system does not have any editable
ones (Extension 2a).

Alice wants to delete a list of tasks from her system’s account.

She logs into the system successfully. The system informs Alice that there are no
editable lists (i.e. there is only the “Sent” and the “Inbox” lists).

B.6.4.3. Test story 3: Failed deletion (non-empty list)

Test objective: Attempt to delete a non-empty list (Extension 4a).

Alice wants to delete a list of tasks from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Personal” and informs the system that she wants to delete it.

The system rejects the deletion of the list and informs Alice that the list “personal”
still has some tasks in it.

B.6.4.4. Test story 4: Failed deletion (deletion-locked list)

Test objective: Attempt to delete a delete-locked list (Extension 4b).

Alice wants to delete a list of tasks from her system’s account.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Sent” and informs the system that she wants to delete it.

The system rejects the deletion of the list and informs Alice that the list “Sent” is
delete-locked.

219

Chapter B Test stories

B.6.5. Set default list

B.6.5.1. Test story 1: Setting of the default list

Test objective: Set the default list (Main success scenario).

Alice wants to set the default list of tasks for her system’s account.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to set it as
her default list. The system asks Alice to confirm the setting.
She confirms the setting. The system informs Alice that the setting of the list as
the default one has been successful, and the default list is now “Personal”.

B.6.5.2. Test story 2: Failed setting of the default list (default list already

set)

Test objective: Attempt to set the default a list when the system already has one
(Extension 2a).

Alice wants to set the default list of tasks for her system’s account.
She logs into the system successfully. The system informs Alice that the default list
is already set.

B.6.6. Unset default list

B.6.6.1. Test story 1: Unsetting of the default list

Test objective: Unset the default list (Main success scenario).

Alice wants to unset the default list of tasks for her system’s account.
She logs into the system successfully. The system informs Alice that the default list
has been successfully unset. Now the system does not have a default list.

B.6.6.2. Test story 2: Failed unsetting of the default list (no default list)

Test objective: Attempt to unset the default a list when the system does not have
one (Extension 2a).

Alice wants to unset the default list of tasks for her system’s account.
She logs into the system successfully. The system informs Alice that there is no
default list to unset.

220

B.6 List of tasks

B.6.7. Share a list with some contacts

B.6.7.1. Test story 1: Sharing of a list with contacts

Test objective: Share a list with some of the user’s contacts (Main success sce-
nario).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to share it
with some of her contacts.
The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.
Alice chooses the contact “Bob” and informs the system that she wants to share the
list of tasks with him. The system asks Alice to confirm the sharing.
She confirms the sharing. The system informs Alice that the sharing of the chosen
list of tasks with the chosen contacts has been successful.
Now the list is marked as shared with those contacts (with acceptance pending
status) and the system assigns it to all of them, in this case only to Bob.

B.6.7.2. Test story 2: Failed sharing of a list of tasks (no unrestricted lists)

Test objective: Attempt to share a list of tasks when the system does not have any
unrestricted ones (Extension 2a).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.
She logs into the system successfully. The system informs Alice that there are no
unrestricted lists of tasks to share.

B.6.7.3. Test story 3: Failed sharing of a list of tasks (no contacts)

Test objective: Attempt to share a list of tasks when she does not have any contact
in the system (Extension 2b).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.
She logs into the system successfully. The system informs Alice that there are no
contacts to share any lists of tasks with.

221

Chapter B Test stories

B.6.7.4. Test story 4: Failed sharing of a list of tasks (chosen contacts

already have the list)

Test objective: Attempt to share a list of tasks with some of the user’s contacts,
when some of them already have the list shared previously (Extension 8a).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to share it
with some of her contacts.
The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.
Alice chooses the contact “Bob” and informs the system that she wants to share the
list of tasks with him. The system asks Alice to confirm the sharing.
She confirms the sharing. The system rejects the sharing and informs Alice that
the chosen list of tasks was already shared with some of the chosen contacts, in this
case with “Bob”.

B.6.8. Share a list with some groups

B.6.8.1. Test story 1: Sharing of a list with groups

Test objective: Share a list with some of the user’s groups (Main success scenario).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to share it
with some of her groups of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Friends” and informs the system that she wants
to share the list of tasks with them. The system asks Alice to confirm the sharing.
She confirms the sharing. The system informs Alice that the sharing of the chosen
list of tasks with the chosen groups of contacts has been successful.
Now the list is marked as shared with those contacts in the groups (with acceptance
pending status) and the system assigns it to all of them, in this case to Bob and
Carol.

222

B.6 List of tasks

B.6.8.2. Test story 2: Failed sharing of a list of tasks (no unrestricted lists)

Test objective: Attempt to share a list of tasks when the system does not have any
unrestricted ones (Extension 2a).

Alice wants to share a list of tasks from the system with some of her contacts that
also use the system.

She logs into the system successfully. The system informs Alice that there are no
unrestricted lists of tasks to share.

B.6.8.3. Test story 3: Failed sharing of a list of tasks (no groups)

Test objective: Attempt to share a list of tasks when she does not have any groups
of contacts in the system (Extension 2b).

Alice wants to share a list of tasks from the system with some of her groups of
contacts that also use the system.

She logs into the system successfully. The system informs Alice that there are no
groups of contacts to share any lists of tasks with.

B.6.8.4. Test story 4: Failed sharing of a list of tasks (empty group)

Test objective: Attempt to share a list of tasks with some groups of contacts that
are empty (Extension 6a).

Alice wants to share a list of tasks from the system with some of her groups of
contacts that also use the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Personal” and informs the system that she wants to share it
with some of her groups of contacts.

The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends”, “Coworkers” and “Unknown”.

Alice chooses the group of contacts “Unknown” and informs the system that she
wants to share the list of tasks with them. The system asks Alice to confirm the
sharing.

She confirms the sharing. The system rejects the sharing and informs Alice that
some of the chosen groups of contacts did not contain any contact in it, in this case
the group “Unknown”.

223

Chapter B Test stories

B.6.8.5. Test story 5: Failed sharing of a list of tasks (already shared)

Test objective: Attempt at sharing a list of tasks with some of the user’s contacts
belonging to groups, when some of them already have the list of tasks shared
previously (Extension 8a).

Alice wants to share a list of tasks from the system with some of her groups of
contacts that also use the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to share it
with some of her contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Friends” and informs the system that she wants
to share the list of tasks with them. The system asks Alice to confirm the sharing.
She confirms the sharing. The system rejects the sharing and informs Alice that the
chosen list of tasks was already shared with some of the contacts belonging to the
chosen groups, in this case “Bob”.

B.6.9. Publish a list for some contacts

B.6.9.1. Test story 1: Publication of a list of tasks for some contacts

Test objective: Publish a list of tasks for some of the user’s contacts (Main success
scenario).

Alice wants to publish a list of tasks from the system for some of her contacts that
also use it.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to publish
it for some of her contacts.
The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.
Alice chooses the contact “Bob” and informs the system that she wants to publish
the list of tasks for him. The system asks Alice to confirm the publication.
She confirms the publication. The system informs Alice that the publication of the
chosen list of tasks for the chosen contacts has been successful.
Now the list is marked as published for those contacts and the system will let them
all read the list, in this case only to Bob.

224

B.6 List of tasks

B.6.9.2. Test story 2: Failed publication of a list of tasks for some contacts

(no contacts)

Test objective: Attempt to publish a list of tasks when she does not have any
contact in the system (Extension 2a).

Alice wants to publish a list of tasks from the system for some of her contacts that
also use it.

She logs into the system successfully. The system informs Alice that there are no
contacts to publish any lists of tasks for.

B.6.9.3. Test story 3: Failed publication of a list for some contacts (chosen

contacts already have the list published for them)

Test objective: Attempt to publish a list of tasks for some of the user’s contacts,
when some of them already have access to the list, previously granted (Exten-
sion 8a).

Alice wants to publish a list of tasks from the system for some of her contacts that
also use it.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Personal” and informs the system that she wants to publish
it for some of her contacts.

The system provides Alice with a list of all her contacts that use the system. These
contacts are “Bob” and “Carol”.

Alice chooses the contact “Bob” and informs the system that she wants to publish
the list of tasks for him. The system asks Alice to confirm the publication.

She confirms the publication. The system informs Alice that the publication of the
chosen list of tasks for the chosen contacts has been successful.

The system rejects the publication and informs Alice that the chosen list of tasks
was already published for some of the chosen contacts, in this case “Bob”.

B.6.10. Publish a list for some groups

B.6.10.1. Test story 1: Publication of a list of tasks for some groups

Test objective: Publish a list of tasks for some of the user’s groups (Main success
scenario).

225

Chapter B Test stories

Alice wants to publish a list of tasks from the system for some of her groups of
contacts that also use it.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to publish
it for some of her groups of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Friends” and informs the system that she wants
to publish the list of tasks for them. The system asks Alice to confirm the publica-
tion. She confirms the publication.
The system informs Alice that the publication of the chosen list of tasks for the
chosen groups of contacts has been successful.
Now the list is marked as published for those contacts in the groups, and the system
will let them all read the list, in this case to Bob and Carol.

B.6.10.2. Test story 2: Failed publication of a list of tasks for some groups

(no groups)

Test objective: Attempt to publish a list of tasks when she does not have any
groups of contacts in the system (Extension 2a).

Alice wants to publish a list of tasks from the system for some of her groups of
contacts that also use it.
She logs into the system successfully. The system informs Alice that there are no
groups of contacts to publish any lists of tasks for.

B.6.10.3. Test story 3: Failed publication of a list of tasks for some groups

(empty group)

Test objective: Attempt to publish a list of tasks for some of the user’s groups of
contacts which are empty (Extension 6a).

Alice wants to publish a list of tasks from the system for some of her groups of
contacts that also use it.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to publish
it for some of her groups of contacts.

226

B.6 List of tasks

The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends”, “Coworkers” and “Unknown”.
Alice chooses the group of contacts “Unknown” and informs the system that she
wants to publish the list of tasks for them. The system asks Alice to confirm the
publication. She confirms the publication.
The system rejects the publication and informs Alice that some of the chosen groups
of contacts did not contain any contact in it, in this case the group “Unknown”.

B.6.10.4. Test story 4: Failed publication of a list of tasks for some groups

(already published)

Test objective: Attempt to publish a list of tasks for some of the user’s groups of
contacts, when some of them already have access to the list, previously granted
(Extension 8a).

Alice wants to publish a list of tasks from the system for some of her groups of
contacts that also use it.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.
Alice chooses the list “Personal” and informs the system that she wants to publish
it for some of her groups of contacts.
The system provides Alice with a list of all her groups of contacts that use the
system. These groups of contacts are “Friends” and “Coworkers”.
Alice chooses the group of contacts “Friends” and informs the system that she wants
to publish the list of tasks for them. The system asks Alice to confirm the publica-
tion. She confirms the publication.
The system rejects the publication and informs Alice that the chosen list of tasks
was already shared with some of the contacts belonging to the chosen groups, in
this case “Bob”.

B.6.11. Publish a list for anyone

B.6.11.1. Test story 1: Publication of a list of tasks for some groups

Test objective: Publish a list of tasks for some of the user’s groups (Main success
scenario).

Alice wants to publish a list of tasks from the system for anyone.
She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

227

Chapter B Test stories

Alice chooses the list “Personal” and informs the system that she wants to publish
it for anyone.

The system asks Alice to confirm the publication. She confirms the publication.
The system informs Alice that the publication of the chosen list of tasks for anyone
has been successful.

Now the list is marked as published for anyone, and the system will let them all
read the list.

B.6.11.2. Test story 2: Failed publication of a list for anyone (already

published)

Test objective: Attempt to publish a list of tasks for anyone, when it is already
public (Extension 8a).

Alice wants to publish a list of tasks from the system for anyone.

She logs into the system successfully. The system provides Alice with a list of her
currently existing lists of tasks which are “Inbox”, “Personal” and “Sent”.

Alice chooses the list “Personal” and informs the system that she wants to publish
it for anyone. The system asks Alice to confirm the publication.

She confirms the publication. The system rejects the publication and informs Alice
that the chosen list of tasks was already published for anyone.

B.6.12. Unpublish a list for some contacts

B.6.12.1. Test story 1: Unpublication of a list for some contacts

Test objective: Restrict previously granted reading access to a list of tasks to some
of the user’s contacts (Main success scenario).

This test story was omitted and written directly in CSTL as a test case.

B.6.12.2. Test story 2: Failed unpublication of a list for some contacts (Not

public for them)

Test objective: Attempt to unpublish for some of the user’s contacts a list of tasks
which was not previously published for them (Extension).

This test story was omitted and written directly in CSTL as a test case.

228

B.6 List of tasks

B.6.13. Unpublish a list for some groups

Test stories related to this test case were not written, because test cases were not
needed, as this use case did not make it into the presented conceptual schema
(chapter 8).

B.6.14. Unpublish a list for anyone

B.6.14.1. Test story 1: Unpublication of a list for anyone

Test objective: Unpublish for anonymous access a previously list published (Main
success scenario).

This test story was omitted and written directly in CSTL as a test case.

B.6.14.2. Test story 2: Failed unpublication of a list for anyone (Not public

for anyone)

Test objective: Attempt to unpublish for anonymous access a list which already
not allowed anonymous access (Extension).

This test story was omitted and written directly in CSTL as a test case.

B.6.15. Accept a shared list

B.6.15.1. Test story 1: Acceptance of a shared list

Test objective: Accept a shared list of tasks of some of the user’s contacts (Main
success scenario).

This test story was omitted and written directly in CSTL as a test case.

B.6.15.2. Test story 2: Failed acceptance of a shared list (Not a shared list)

Test objective: Attempt to accept a shared list that is not shared (Extension 9a).
This test story was omitted and written directly in CSTL as a test case.

B.6.16. Reject a shared list

B.6.16.1. Test story 1: Rejection of a shared list

Test objective: Reject a shared list of tasks of some of the user’s contacts (Main
success scenario).

This test story was omitted and written directly in CSTL as a test case.

229

Chapter B Test stories

B.6.16.2. Test story 2: Failed rejection of a shared list (Not a shared list)

Test objective: Attempt to reject a shared list that is not shared (Extension 9a).

This test story was omitted and written directly in CSTL as a test case.

B.6.17. Archive lists

Test stories related to this test case were not written, because test cases were not
needed, as this use case did not make it into the presented conceptual schema
(chapter 8).

B.6.18. Unarchive lists

Test stories related to this test case were not written, because test cases were not
needed, as this use case did not make it into the presented conceptual schema
(chapter 8).

B.7. Location

B.7.1. Create a location

B.7.1.1. Test story 1: Creation of a location

Test objective: Create a location (Main success scenario).

Alice wants to add a location to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice asks the system to create a new location. She introduces the position that she
wants the location to represent.

The system asks Alice to choose a name to identify the location. She chooses
“Shopping mall” as a name.

The system confirms the creation of the location with name “Shopping mall”, and
the representation of locations now includes it.

230

B.7 Location

B.7.1.2. Test story 2: Creation of a location, longer alternative

Test objective: Create a location using its physical address (Extension 3a).

Alice wants to add a location to the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.
Alice asks the system to create a new location. She introduces the address that she
wants the location to represent, which is “Barcelona”.
The system returns various matches with possible candidates, such as “Barcelona,
Spain” and “Barcelona, Brazil”. Alice chooses “Barcelona, Spain”.
The system asks Alice to choose a name to identify the location. She chooses
“Hometown” as a name.
The system confirms the creation of the location with name “Hometown”, and the
representation of locations now includes it.

B.7.1.3. Test story 3: Creation of a location using the street address

Test objective: Create a location using its physical street address (Extension 3a.2a).

Alice wants to add a location to the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.
Alice asks the system to create a new location. She introduces the address that she
wants the location to represent, which is “Barcelona plaça de Catalunya”.
The system asks Alice to choose a name to identify the location. She chooses
“Hometown main square” as a name.
The system confirms the creation of the location with name “Hometown main
square”, and the representation of locations now includes it.

B.7.1.4. Test story 4: Failed creation of a location using the street address

Test objective: Attempt to create a location using its physical street address (Ex-
tension 3a.2b).

Alice wants to add a location to the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

231

Chapter B Test stories

Alice asks the system to create a new location. She introduces the address that she
wants the location to represent, which is “Trinsic”.

The system informs Alice that it could not find “Trinsic” and rejects the creation of
the location.

B.7.1.5. Test story 5: Failed creation (duplicated name)

Test objective: Attempt to create a location with a duplicated name (Extension
6a).

Alice wants to add a location to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice asks the system to create a new location. She introduces the position that she
wants the location to represent.

The system asks Alice to choose a name to identify the location. She chooses “Alice’s
home” as a name.

The system rejects the creation of the new location and informs Alice that she
already has that same location (i.e. a location with the same).

B.7.1.6. Test story 6: Failed creation (blank name)

Test objective: Attempt to create a location with a duplicated name (Extension
6a).

Alice wants to add a location to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice asks the system to create a new location. She introduces the position that she
wants the location to represent.

The system asks Alice to choose a name to identify the location. She does not
introduce any name but asks the system to proceed.

The system rejects the creation of the new location and informs Alice that every
location must at least have a name to identify it.

232

B.7 Location

B.7.1.7. Test story 7: Failed creation (name too long)

Test objective: Attempt to create a location with a too long name (Extension 6a).

Alice wants to add a location to the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice asks the system to create a new location. She introduces the position that she
wants the location to represent.

The system asks Alice to choose a name to identify the location. She chooses a 1000
word description of the place as a name.

The system rejects the creation of the new location and informs Alice that the name
is too long.

B.7.2. Read a location

B.7.2.1. Test story 1: Reading of a location

Test objective: Reading a location (Main success scenario).

Alice wants to read a location from the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice chooses the location “Post office” and informs the system that she wants to
read more information about it.

The system provides Alice with further information about the location, like the
position on a map with the exact location of the post office and which tasks are
related to the position.

B.7.2.2. Test story 2: Failed read (no locations)

Test objective: Attempt to read a location when the system has none (Extension
2a).

Alice wants to read a location from the system.

She logs into the system successfully. The system informs Alice that there are no
locations.

233

Chapter B Test stories

B.7.3. Update a location

B.7.3.1. Test story 1: Modification of a location

Test objective: Update location (Main success scenario).

Alice wants to update a location from the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.
Alice chooses the location “Post office” and informs the system that she wants to
update some of its information.
The system provides Alice with further information about the location, like the
position on a map with the exact location of the post office and which tasks are
related to the position.
Alice changes the name of the location to “Post office headquarters”.
The system asks Alice to confirm the modification. She confirms the modification.
The system informs Alice that the modification of the location has been successful,
and the list of locations now includes the modified version of the name description.

B.7.3.2. Test story 2: Failed update (no locations)

Test objective: Attempt to update a location when the system has none (Extension
2a).

Alice wants to update a location from the system.
She logs into the system successfully. The system informs Alice that there are no
locations.

B.7.3.3. Test story 3: Failed update (duplicated name)

Test objective: Attempt to update a location with a duplicated name (Extension
8a).

Alice wants to update a location from the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.
Alice chooses the task “Alice’s home” and informs the system that she wants to
update some of its information.

234

B.7 Location

The system provides Alice with further information about the location, like the
position on a map with the exact location of the post office and which tasks are
related to the position.

Alice changes the name of the location to “Alice’s office”.

The system asks Alice to confirm the modification. She confirms the modification.

The system rejects the update of the location and informs Alice that she already
has that same location (i.e. a location with the same).

B.7.4. Delete a location

B.7.4.1. Test story 1: Deletion of a location

Test objective: Delete a location (Main success scenario).

Alice wants to delete a location from the system.

She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.

Alice chooses the location “Post office” and informs the system that she wants to
delete some of its information.

The system asks Alice to confirm the deletion. She confirms the deletion.

The system informs Alice that the removal of the location has been successful, and
the list of locations does not include the deleted location anymore.

B.7.4.2. Test story 2: Failed deletion (no locations)

Test objective: Attempt to delete a location when the system has none (Extension
2a).

Alice wants to delete a location from the system.

She logs into the system successfully. The system informs Alice that there are no
locations.

B.7.5. Set a default a location

B.7.5.1. Test story 1: Set the default location

Test objective: Set a location as the default one (Main success scenario).

235

Chapter B Test stories

Alice wants to delete a location from the system.
Alice wants to set a default location to the system. She logs into the system suc-
cessfully. The system provides Alice with a list of her currently existing locations
which are “Alice’s home”, “Alice’s office” and “Post office”.
Alice chooses the location “Alice’s office” and informs the system that she wants to
set it as default.
The system asks Alice to confirm the action. She confirms it.
The system informs Alice that the location “Alice’s office” has been successfully set
as the default location.

B.7.5.2. Test story 2: Failed setting of the default location (no locations)

Test objective: Attempt to set a location as the default one when the system has
none (Extension 2a).

Alice wants to delete a location from the system.
She logs into the system successfully. The system informs Alice that there are no
locations.

B.7.5.3. Test story 3: Failed setting of the default location (already has one)

Test objective: Attempt to set a location as the default one when the system al-
ready has one (Extension 2b).

Alice wants to delete a location from the system.
She logs into the system successfully. The system informs Alice that she already has
a default location along with its name, in this case “Alice’s office”.

B.7.6. Unset a default a location

B.7.6.1. Test story 1: Unset the default location

Test objective: Unset a location as the default one (Main success scenario).

Alice wants to unset the default location from the system.
She logs into the system successfully. The system provides Alice with a list of her
currently existing locations which are “Alice’s home”, “Alice’s office” and “Post
office”.
Alice informs the system that she wants to unset its default location. The system
asks Alice to confirm the action. She confirms it.
The system informs Alice that there is no longer a default location.

236

B.7 Location

B.7.6.2. Test story 2: Failed unsetting of the default location (does not have

one)

Test objective: Attempt to unset the default location when the system does not
have any set (Extension 2a).

Alice wants to unset the default location from the system.
She logs into the system successfully. The system informs Alice that she does not
have any location set as default.

237

C. Conceptual schema code

The code presented here is roughly ordered according to the chosen subsets. Never-
theless, its version is final.

239

Chapter C Conceptual schema code

C.1. Subset 1: Basic use cases (i)

Algorithm C.1 Account class

model RememberTheMilk enum Language {Norwegian , Catalan ,
Spanish , Engl i sh }

class Account attributes
username : String
password : String

creat ionDate : Integer
i sLoggedIn : Boolean
emai l : String
−− Assoc

−− Task [∗]

−− ReminderS [∗]

−− LanguageSet t ings [0 . . 1]

−− L i s t [∗]

−− L i s t [0 . . 1] // D e f a u l t L i s t

−− Account [∗] // con tac t s

−− Group [1] //owner

−− Group [1] //member

end

context Account inv usernameAccount Ident i f i e r :
Account . a l l I n s t a n c e s −>isUnique (username)

context Account inv usernameMaxLength :
Account . a l l I n s t a n c e s −>f o r A l l (a | a . username . s i z e () <= 50

and a . username . s i z e () >= 2)

context Account inv passwordMaxLength :
Account . a l l I n s t a n c e s −>f o r A l l (a | a . password . s i z e () <= 50

and a . password . s i z e () >= 4)

240

C.1 Subset 1: Basic use cases (i)

Algorithm C.2 Create account

event CreateAccount
attributes

username : String
password : String
creat ionDate : Integer
i sLoggedIn : Boolean [0 . . 1]

operations
e f f e c t ()

end

context CreateAccount in i inv usernameAccount Ident i f i e r :
Account . a l l I n s t a n c e s ()−> f o r A l l (a |

a . username <> s e l f . username)

context CreateAccount in i inv usernameMaxLength :
s e l f . username . s i z e () <= 50 and s e l f . username . s i z e () >= 2

context CreateAccount in i inv passwordMaxLength :
s e l f . password . s i z e () <= 50 and s e l f . password . s i z e () >= 4

context CreateAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a . oclIsNew () and

a . username = s e l f . username and
a . password = s e l f . password and
a . c reat ionDate = s e l f . c reat ionDate and
a . i sLoggedIn = fa l se)

241

Chapter C Conceptual schema code

Algorithm C.3 Log into account

event LogIntoAccount
attributes

username : String
password : String
i sLoggedIn : Boolean [0 . . 1]

operations
e f f e c t ()

end

context LogIntoAccount in i inv usernameAndPasswordMatch :
Account . a l l I n s t a n c e s ()−> e x i s t s (a |

a . username = s e l f . username and
a . password = s e l f . password)

context LogIntoAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a |

a . username = s e l f . username and
a . password = s e l f . password and
a . i sLoggedIn = true)

242

C.1 Subset 1: Basic use cases (i)

Algorithm C.4 Task class

class Task
attributes

d e s c r i p t o r : String
creat ionDate : Integer
dueDate : Integer
completed : Boolean
postponedTimes : Integer
sender : Account [0 . . 1]
−− Assoc

−−Account [1 . . ∗]

−−Note [∗]

−−Prio [0 . . 1]

−−L i s t [0 . . 1]

end

context Task inv descriptorMaxLength :
Task . a l l I n s t a n c e s −>f o r A l l (a | a . d e s c r i p t o r . s i z e () <= 200

and a . d e s c r i p t o r . s i z e () >= 4)

context Task inv t a s k I d e n t i f i e r :
not Account . a l l I n s t a n c e s −>e x i s t s (a , b | a <> b and

a . task . d e s c r i p t o r = b . task . d e s c r i p t o r and
a . task . dueDate = b . task . dueDate and
a . username = b . username)

association BelongsToAccount between
Task [∗]
Account [1 . . ∗]

end

243

Chapter C Conceptual schema code

Algorithm C.5 Create task

event CreateTask
attributes

user : Account
d e s c r i p t o r : String
creat ionDate : Integer
dueDate : Integer

operations
e f f e c t ()

end

context CreateTask in i inv descriptorMaxLength :
s e l f . d e s c r i p t o r . s i z e () <= 200 and

s e l f . d e s c r i p t o r . s i z e () >= 4

context CreateTask in i inv t a s k I d e n t i f i e r :
not Account . a l l I n s t a n c e s −>e x i s t s (a |

a . task . d e s c r i p to r −>i nc l u d e s (s e l f . d e s c r i p t o r) and
a . task . dueDate−>i nc l u d e s (s e l f . dueDate) and
a . username = s e l f . use r . username)

context CreateTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context CreateTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t . oclIsNew () and

t . d e s c r i p t o r = s e l f . d e s c r i p t o r and
t . c reat ionDate = s e l f . c reat ionDate and
t . dueDate = s e l f . dueDate and
t . completed = fa l se and
t . postponedTimes = 0
t . account−>i nc l u d e s (s e l f . use r))

244

C.1 Subset 1: Basic use cases (i)

Algorithm C.6 Delete task

event DeleteTask
attributes

user : Account
d e s c r i p t o r : String
dueDate : Integer
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context DeleteTask in i inv pr io rTaskEx i s tence :
Account . a l l I n s t a n c e s ()−> e x i s t s (a |

a . task . d e s c r i p to r −>i nc l u d e s (s e l f . d e s c r i p t o r) and
a . task . dueDate−>i nc l u d e s (s e l f . dueDate) and
a . username = s e l f . use r . username)

context DeleteTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteTask in i inv con f i rmedDe le t ion :
s e l f . con f i rmat ion = true

context DeleteTask : : e f f e c t ()
post : not Task . a l l I n s t a n c e s ()−> e x i s t s (t |

t . d e s c r i p t o r = s e l f . d e s c r i p t o r and
t . dueDate = s e l f . dueDate and
t . account−>i nc l u d e s (s e l f . use r))

245

Chapter C Conceptual schema code

C.2. Subset 2: Basic use cases (ii)

Algorithm C.7 Update account

event UpdateAccount
attributes

user : Account
emai l : String

operations
e f f e c t ()

end

context UpdateAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . i sLoggedIn = true and
a . emai l = s e l f . emai l)

context UpdateAccount in i inv i nva l idEmai l :
s e l f . emai l . s i z e () >= 5

context UpdateAccount in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

Algorithm C.8 Log out of an account

event LogOutAccount
attributes

user : Account
operations

e f f e c t ()
end

context LogOutAccount in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context LogOutAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . i sLoggedIn = fa l se)

246

C.2 Subset 2: Basic use cases (ii)

Algorithm C.9 Update task

event UpdateTask
attributes

user : Account
de sc r ip to rOld : String
dueDate : Integer
descr iptorNew : String

operations
e f f e c t ()

end

context UpdateTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t |

t . d e s c r i p t o r = s e l f . descr iptorNew and
t . dueDate = s e l f . dueDate and
t . account−>i nc l u d e s (s e l f . use r))

context UpdateTask in i inv t a s k I d e n t i f i e r :
Account . a l l I n s t a n c e s −>e x i s t s (a |

a . task . d e s c r i p to r −>i nc l u d e s (s e l f . d e s c r ip to rOld) and
a . task . dueDate−>i nc l u d e s (s e l f . dueDate) and
a . username = s e l f . use r . username)

context UpdateTask in i inv descriptorMaxLength :
s e l f . descr iptorNew . s i z e () <= 200 and

s e l f . descr iptorNew . s i z e () >= 4

247

Chapter C Conceptual schema code

Algorithm C.10 Delete account

event DeleteAccount
attributes

user : Account
username : String
password : String
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context DeleteAccount : : e f f e c t ()
post : not Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r)

context DeleteAccount in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteAccount in i inv userAndUsernameAndPasswordMatch :
Account . a l l I n s t a n c e s ()−> e x i s t s (a |

a . username = s e l f . username and
a . password = s e l f . password and
a = s e l f . use r)

context DeleteAccount in i inv con f i rmedDe le t ion :
s e l f . con f i rmat ion = true

248

C.3 Subset 3: Performance use cases (i)

C.3. Subset 3: Performance use cases (i)

Algorithm C.11 Note class

class Note
attributes

t ex t : String
−− Assoc

−−Task [1]

end

context Note inv textMinLength :
Note . a l l I n s t a n c e s −>f o r A l l (a | a . t ex t . s i z e () > 0)

association BelongsToTask between
Task [1]
Note [∗]

end

249

Chapter C Conceptual schema code

Algorithm C.12 Create note

event CreateNote
attributes

user : Account
text : String

task : Task
operations

e f f e c t ()
end

context CreateNote in i inv textMinLength :
s e l f . t ex t . s i z e () > 0

context CreateNote : : e f f e c t () post :
Note . a l l I n s t a n c e s ()−> e x i s t s (n | n . oclIsNew () and

n . t ext = s e l f . t ex t and
n . task = s e l f . task and
n . task . account−>i nc l u d e s (s e l f . use r))

context CreateNote in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

250

C.3 Subset 3: Performance use cases (i)

Algorithm C.13 Update note

event UpdateNote
attributes

user : Account
textNew : String

task : Task
note : Note

operations
e f f e c t ()

end

context UpdateNote in i inv textMinLength :
s e l f . textNew . s i z e () > 0

context UpdateNote : : e f f e c t ()
post : Note . a l l I n s t a n c e s ()−> e x i s t s (n | n . t ex t = s e l f . textNew

and n . task = s e l f . task and
n . task . account−>i nc l u d e s (s e l f . use r))

251

Chapter C Conceptual schema code

Algorithm C.14 Delete note

event DeleteNote
attributes

user : Account
task : Task

note : Note
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context DeleteNote : : e f f e c t ()
post : not Note . a l l I n s t a n c e s ()−> e x i s t s (n |

n = s e l f . note and
n . task = s e l f . task and
n . task . account−>i nc l u d e s (s e l f . use r))

context DeleteNote in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteNote in i inv con f i rmedDe le t ion :
s e l f . con f i rmat ion = true

252

C.3 Subset 3: Performance use cases (i)

Algorithm C.15 Complete task

event CompleteTask
attributes

user : Account
task : Task

operations
e f f e c t ()

end

context CompleteTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t |

t = s e l f . task and
t . completed = true and
t . account−>i nc l u d e s (s e l f . use r))

context CompleteTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context CompleteTask in i inv notAlreadyCompleted :
s e l f . task . completed = fa l se

253

Chapter C Conceptual schema code

Algorithm C.16 Postpone task

event PostponeTask
attributes

user : Account
task : Task
today : Integer

operations
e f f e c t ()

end

context PostponeTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and

t . dueDate >= s e l f . today and
t . account−>i nc l u d e s (s e l f . use r) and
t . completed = fa l se and
t . postponedTimes > 0)

context PostponeTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

Algorithm C.17 Duplicate task

event DuplicateTask
attributes

user : Account
task : Task

operations
e f f e c t ()

end

context DuplicateTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t |

t . d e s c r i p t o r = s e l f . task . d e s c r i p t o r . concat (’ copy ’) and
t . account−>i nc l u d e s (s e l f . use r) and
t . completed = fa l se)

context DuplicateTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

254

C.4 Subset 4: Performance use cases (ii)

C.4. Subset 4: Performance use cases (ii)

Algorithm C.18 Uncomplete task

event UncompleteTask
attributes

user : Account
task : Task

operations
e f f e c t ()

end

context UncompleteTask : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and

t . completed = fa l se and
t . account−>i nc l u d e s (s e l f . use r))

context UncompleteTask in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UncompleteTask in i inv alreadyCompleted :
s e l f . task . completed = true

Algorithm C.19 Priority class

class Prio
attributes

l e v e l : Integer
−− Assoc

−−Task [∗]

end

association PrioOfTask between
Task [∗]
Pr io [0 . . 1]

end

255

Chapter C Conceptual schema code

Algorithm C.20 Create priority

event CreatePr io
attributes

user : Account
l e v e l : Integer
task : Task

operations
e f f e c t ()

end

context CreatePr io in i inv noPrioYet :
s e l f . task . pr io−>isEmpty ()

context CreatePr io : : e f f e c t ()
post : Pr io . a l l I n s t a n c e s ()−> e x i s t s (p | p . oclIsNew () and

p . l e v e l = s e l f . l e v e l and
p . task−>i nc l u d e s (s e l f . task) and
p . task . account−>i nc l u d e s (s e l f . use r))

context CreatePr io in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

Algorithm C.21 Update priority (i)

event UpdatePrio
attributes

user : Account
prioNew : Integer [0 . . 1]
i n c r e a s e : Boolean [0 . . 1]
dec r ea s e : Boolean [0 . . 1]
task : Task

operations
e f f e c t ()

end

256

C.4 Subset 4: Performance use cases (ii)

Algorithm C.22 Update priority (ii)

context UpdatePrio : : e f f e c t ()
post : Pr io . a l l I n s t a n c e s ()−> e x i s t s (p |

−− f i r s t c l au s e

((s e l f . i n c r e a s e . i sUnde f ined () and s e l f . i n c r e a s e . i sUnde f ined ())
or (not (s e l f . i n c r e a s e=true) and not (s e l f . i n c r e a s e=true)))
implies p . l e v e l = s e l f . prioNew

and −− second c l au s e

((s e l f . i n c r e a s e=true) and not (s e l f . d ec r ea s e=true)
and p . l eve l@pre < 3) −− 3 i s the max . pr io . l e v e l

implies p . l e v e l = p . l eve l@pre +1
and −− t h i r d c l au s e

((s e l f . d ec r ea s e=true) and not (s e l f . i n c r e a s e=true)
and p . l eve l@pre > 1) −− 1 i s the min . pr io . l e v e l

implies p . l e v e l +1 = p . l eve l@pre
and −− f ou r t h c lause , uncond i t i ona l

p . task−>i nc l u d e s (s e l f . task)
and −− f i f t h c lause , uncond i t i ona l

p . task . account−>i nc l u d e s (s e l f . use r))

257

Chapter C Conceptual schema code

Algorithm C.23 Update priority (iii)

context UpdatePrio in i inv a l r eadyPr io :
s e l f . task . pr io−>notEmpty ()

context UpdatePrio in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UpdatePrio in i inv notIncreaseAndDecrease :
not ((s e l f . i n c r e a s e=true) and (s e l f . d ec r ea s e=true))

context UpdatePrio in i inv notOutOfUpperBounds :
Pr io . a l l I n s t a n c e s ()−> e x i s t s (p | ((s e l f . i n c r e a s e=true)

and not (s e l f . d ec r ea s e=true) implies p . l e v e l < 3)
and p . task−>i nc l u d e s (s e l f . task)
and p . task . account−>i nc l u d e s (s e l f . use r))

context UpdatePrio in i inv notOutOfLowerBounds :
Pr io . a l l I n s t a n c e s ()−> e x i s t s (p | (not (s e l f . i n c r e a s e=true)

and (s e l f . d ec r ea s e=true) implies p . l e v e l > 1)
and p . task−>i nc l u d e s (s e l f . task) and

p . task . account−>i nc l u d e s (s e l f . use r))

258

C.4 Subset 4: Performance use cases (ii)

Algorithm C.24 Delete priority

event Dele tePr io
attributes

user : Account
task : Task
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context Dele tePr io : : e f f e c t ()
post : not Prio . a l l I n s t a n c e s ()−> e x i s t s (p | p . l e v e l < 0 and

p . task−>i nc l u d e s (s e l f . task) and
p . task . account−>i nc l u d e s (s e l f . use r))

context Dele tePr io in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context Dele tePr io in i inv con f i rmedDe le t ion :
s e l f . con f i rmat ion = true

context Dele tePr io in i inv a l r eadyPr io :
s e l f . task . pr io−>notEmpty ()

Algorithm C.25 Reminder schedule class

class RemindS
attributes

previousTime : Integer [0 . . 1]
regularTime : Integer [0 . . 1]
methode : String
−− Assoc

−−Account [1]

end

association ReminderOfAccount between
Account [1]
RemindS [∗]

end

259

Chapter C Conceptual schema code

Algorithm C.26 Create reminder schedule

event CreateReminder
attributes

user : Account
methode : String
previousTime : Integer [0 . . 1]
regularTime : Integer [0 . . 1]

operations
e f f e c t ()

end

context CreateReminder : : e f f e c t ()
post : RemindS . a l l I n s t a n c e s ()−> e x i s t s (r | r . oclIsNew () and

r . methode = s e l f . methode and
r . account = s e l f . use r)

context CreateReminder in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

260

C.4 Subset 4: Performance use cases (ii)

Algorithm C.27 Update reminder schedule

event UpdateReminder
attributes

user : Account
methodeOld : String
methodeNew : String [0 . . 1]
previousTime : Integer [0 . . 1]
regularTime : Integer [0 . . 1]

operations
e f f e c t ()

end

context UpdateReminder in i inv alreadyThatReminder :
RemindS . a l l I n s t a n c e s ()−> e x i s t s (r s |

s e l f . methodeOld = r s . methode and
r s . account = s e l f . user)

context UpdateReminder : : e f f e c t ()
post : RemindS . a l l I n s t a n c e s ()−> e x i s t s (r s |

s e l f . previousTime >= 0 implies
r s . previousTime = s e l f . previousTime and

s e l f . regularTime >= 0 implies
r s . regularTime = s e l f . regularTime and

s e l f . methodeNew . s i z e () > 0 implies
r s . methode = s e l f . methodeNew and

r s . account = s e l f . user)

context UpdateReminder in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

261

Chapter C Conceptual schema code

Algorithm C.28 Delete reminder class

event DeleteReminder
attributes

user : Account
rem : RemindS

con f i rmat ion : Boolean
operations

e f f e c t ()
end

context DeleteReminder : : e f f e c t ()
post : not RemindS . a l l I n s t a n c e s ()−> e x i s t s (r s |

r s = s e l f . rem and
r s . account = s e l f . user)

context DeleteReminder in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteReminder in i inv con f i rmedDe le t ion :
s e l f . con f i rmat ion = true

context DeleteReminder in i inv alreadyReminder :
RemindS . a l l I n s t a n c e s ()−> e x i s t s (r s | r s = s e l f . rem and

r s . account = s e l f . user)

262

C.4 Subset 4: Performance use cases (ii)

Algorithm C.29 LanguageS class

class LanguageSett ings
attributes

lang : Language [0 . . 1]
−− Assoc

−−Account [∗]

end

context LanguageSett ings inv uniqueLang :
−−s i n g l e t o n pa t t e rn app l i e d to each language

not LanguageSett ings . a l l I n s t a n c e s ()−> e x i s t s (i1 , i 2 |
i 1 . lang = i2 . lang
and i 1 <> i2)

context LanguageSett ings inv uniqueLangName :
−−s i n g l e t o n pa t t e rn app l i e d to each language

LanguageSett ings . a l l I n s t a n c e s ()−>isUnique (lang)

association LanguageOfAccount between
Account [∗]
LanguageSett ings [0 . . 1]

end

class Catalan < LanguageSett ings
attributes

end

class Norwegian < LanguageSett ings
attributes

end

class Spanish < LanguageSett ings
attributes

end

class Engl i sh < LanguageSett ings
attributes

end

263

Chapter C Conceptual schema code

Algorithm C.30 Change language

event ChangeLanguage
attributes

user : Account [0 . . 1]
lang : Language

operations
e f f e c t ()

end

context ChangeLanguage in i inv loggedUserAccount :
not s e l f . u se r . i sUnde f ined () implies

(s e l f . user . i sLoggedIn=true)

context ChangeLanguage : : e f f e c t ()
post : LanguageSett ings . a l l I n s t a n c e s ()−> e x i s t s (s |

s . lang = s e l f . lang)

264

C.5 Subset 5: Performance use cases (iii)

C.5. Subset 5: Performance use cases (iii)

Algorithm C.31 List class

class L i s t
attributes

name : String
i s E d i t a b l e : Boolean
i s P u b l i c : Boolean

−− Assoc

−−Account [∗]

−−Task [∗]

end

association ListOfAccount between
Account [1 . . ∗]
L i s t [∗]

end

association ListHasTasks between
L i s t [∗]
Task [∗]

end

context L i s t inv uniqueNameUser :
not L i s t . a l l I n s t a n c e s ()−> e x i s t s (a , b | a <> b and

a . name = b . name and
a . account−>i n t e r s e c t i o n (b . account)−>notEmpty ())

−−a ta s k can only be in one l i s t per user

context L i s t inv uniqueTaskListUser :
not L i s t . a l l I n s t a n c e s ()−> e x i s t s (la , lb | l a <> lb and

l a . task−>e x i s t s (ta | lb . task−>i nc l u d e s (ta)) and
l a . account−>e x i s t s (aa | lb . account−>i nc l u d e s (aa)))

265

Chapter C Conceptual schema code

Algorithm C.32 Create list

event CreateL i s t
attributes

user : Account
name : String
e d i t a b l e : Boolean

operations
e f f e c t ()

end

context CreateL i s t : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l . oclIsNew () and

l . name = s e l f . name and
l . account−>i nc l u d e s (s e l f . use r) and
l . i s E d i t a b l e = s e l f . e d i t a b l e)

context CreateL i s t in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context CreateL i s t in i inv uniqueNameUser :
not L i s t . a l l I n s t a n c e s ()−> e x i s t s (a | a . name = s e l f . name

and a . account−>i nc l u d e s (s e l f . use r)

266

C.5 Subset 5: Performance use cases (iii)

Algorithm C.33 Update list

event UpdateList
attributes

user : Account
nameOld : String
nameNew : String
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context UpdateList : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l |

l . name = s e l f . nameNew and
l . account−>i nc l u d e s (s e l f . use r))

context UpdateList in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UpdateList in i inv conf irmed :
s e l f . con f i rmat ion = true

context UpdateList in i inv e d i t a b l e :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (a | a . name = s e l f . nameOld

and a . account−>i nc l u d e s (s e l f . use r)
and a . i s E d i t a b l e=true)

context UpdateList in i inv o l d L i s t E x i s t s :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (a |

a . name = s e l f . nameOld and
a . account−>i nc l u d e s (s e l f . use r))

context UpdateList in i inv newListDoesNotExist :
not L i s t . a l l I n s t a n c e s ()−> e x i s t s (a |

a . name = s e l f . nameNew and
a . account−>i nc l u d e s (s e l f . use r))

267

Chapter C Conceptual schema code

Algorithm C.34 Delete list

event De l e t eL i s t
attributes

user : Account
name : String
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context De l e t eL i s t : : e f f e c t ()
post : not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l |

l . name = s e l f . name and
l . account−>i nc l u d e s (s e l f . use r) and
l . i s E d i t a b l e = true)

context De l e t eL i s t in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context De l e t eL i s t in i inv conf irmed :
s e l f . con f i rmat ion = true

context De l e t eL i s t in i inv existsEmptyAndEditable :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (a | a . name = s e l f . name and

a . account−>i nc l u d e s (s e l f . use r) and
a . i s E d i t a b l e=true and
a . task−>s i z e () = 0)

268

C.5 Subset 5: Performance use cases (iii)

Algorithm C.35 Set default list

association DefaultListOfAccount between
Account [0 . . 1] r o l e ownerAccount
L i s t [0 . . 1] r o l e d e f a u l t L i s t

end

event Se tDe f au l tL i s t
attributes

user : Account
l i s t : L i s t

operations
e f f e c t ()

end

context Se tDe f au l tL i s t : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . d e f a u l t L i s t = s e l f . l i s t)

context Se tDe f au l tL i s t in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context Se tDe f au l tL i s t in i inv noDefau l tL i s tYet :
not Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . d e f a u l t L i s t . i sDe f i n ed () = true)

context Se tDe f au l tL i s t in i inv l istOwnedByUser :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . l i s t and

a . account−>i nc l u d e s (s e l f . use r))

269

Chapter C Conceptual schema code

Algorithm C.36 Unset default list

event UnsetDe fau l tL i s t
attributes

user : Account
operations

e f f e c t ()
end

context UnsetDe fau l tL i s t : : e f f e c t ()
post : not Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r

and a . d e f a u l t L i s t . i sDe f i n ed ())

context UnsetDe fau l tL i s t in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UnsetDe fau l tL i s t in i inv a l r e adyDe f au l tL i s t :
Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . d e f a u l t L i s t . i sDe f i n ed () = true)

270

C.5 Subset 5: Performance use cases (iii)

Algorithm C.37 Move task to list

event MoveTaskToList
attributes

user : Account
l i s t : L i s t
task : Task
operations

e f f e c t ()
end

context MoveTaskToList : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and

t . account−>i nc l u d e s (s e l f . use r) and
t . l i s t −>i nc l u d e s (s e l f . l i s t))

context MoveTaskToList in i inv ex i s t sL i s tAndEd i tab l e :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . l i s t and

a . i s E d i t a b l e=true)

context MoveTaskToList in i inv ex i s t sTask :
Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task)

context MoveTaskToList in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context MoveTaskToList in i inv ownsList :
s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context MoveTaskToList in i inv ownsTask :
s e l f . task . account−>i nc l u d e s (s e l f . use r)

context MoveTaskToList in i inv f r omEdi tab l eL i s t :
−− i f t he l i s t where the t a s k be l ong s f o r t ha t user (owner)

−−i s d e f i ned then the l i s t must be e d i t a b l e

s e l f . task . l i s t −>any (l |
l . account−>i nc l u d e s (s e l f . use r)) . i sDe f i n ed () implies

s e l f . task . l i s t −>any (l |
l . account−>i nc l u d e s (s e l f . use r)) .

i s E d i t a b l e=true
context MoveTaskToList in i inv t oEd i t ab l eL i s t :

s e l f . l i s t . i s E d i t a b l e = true

271

Chapter C Conceptual schema code

Algorithm C.38 Add contact

association AreContacts between
Account [∗] r o l e contac to r
Account [∗] r o l e contacted

end

event AddContact
attributes

user : Account
contact : Account

operations
e f f e c t ()

end

context AddContact : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a , b |

a = s e l f . use r and
b = s e l f . contact and
a . contacted−>i nc l u d e s (b))

context AddContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context AddContact in i inv notAlreadyAContact :
not Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . contacted−>i nc l u d e s (s e l f . contact))

context AddContact in i inv r e c i p r o c i t y :
Account . a l l I n s t a n c e s ()−> f o r A l l (a , b | a <> b and

a . contacted−>i nc l u d e s (b) implies
b . contactor−>i nc l u d e s (a))

272

C.5 Subset 5: Performance use cases (iii)

Algorithm C.39 Delete contact

event DeleteContact
attributes

user : Account
contact : Account

operations
e f f e c t ()

end

context DeleteContact : : e f f e c t ()
post : not Account . a l l I n s t a n c e s ()−> e x i s t s (a , b |

a = s e l f . use r and
b = s e l f . contact and
a . contacted−>i nc l u d e s (b))

context DeleteContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteContact in i inv beenContact :
Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . contacted−>i nc l u d e s (s e l f . contact))

context DeleteContact in i inv r e c i p r o c i t y :
Account . a l l I n s t a n c e s ()−> f o r A l l (a , b | a <> b and

a . contacted−>i nc l u d e s (b) implies
b . contactor−>i nc l u d e s (a))

273

Chapter C Conceptual schema code

C.6. Subset 6: Excitement use cases (i)

Algorithm C.40 Publish list for anyone

event PublishListForAnyone
attributes

user : Account
l i s t : L i s t

operations
e f f e c t ()

end

context PublishListForAnyone : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . i s P u b l i c = true and
l . account−>i nc l u d e s (s e l f . use r))

context PublishListForAnyone in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context PublishListForAnyone in i inv l istOwnedByUser :
s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context PublishListForAnyone in i inv l i s tNotAl r eadyPub l i c :
not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . i s P u b l i c = true and
l . account−>i nc l u d e s (s e l f . use r))

274

C.6 Subset 6: Excitement use cases (i)

Algorithm C.41 Unpublish list for anyone

event UnpublishListForAnyone
attributes

user : Account
l i s t : L i s t

operations
e f f e c t ()

end

context UnpublishListForAnyone : : e f f e c t ()
post : not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l |

l = s e l f . l i s t and
l . i s P u b l i c = true and
l . account−>i nc l u d e s (s e l f . use r))

context UnpublishListForAnyone in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context UnpublishListForAnyone in i inv l istOwnedByUser :
s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context UnpublishListForAnyone in i inv l i s t A l r e a d y P u b l i c :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . i s P u b l i c = true and
l . account−>i nc l u d e s (s e l f . use r))

275

Chapter C Conceptual schema code

Algorithm C.42 Send task to contact

event SendTaskToContact
attributes

user : Account
contact : Account [1 . . ∗]
task : Task

operations
e f f e c t ()

end

context SendTaskToContact : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and

s e l f . contact−>f o r A l l (b | t . account−>i nc l u d e s (b)) and
t . sender = s e l f . use r and
t . completed = fa l se)

context SendTaskToContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context SendTaskToContact in i inv notAlreadyCompleted :
s e l f . task . completed = fa l se

context SendTaskToContact in i inv t a sk InEd i t ab l eL i s t :
s e l f . task . l i s t −>s e l e c t (l |

l . account−>i nc l u d e s (s e l f . use r))−>notEmpty () implies
s e l f . task . l i s t −>any (l |

l . account−>i nc l u d e s (s e l f . use r)) .
i s E d i t a b l e=true

context SendTaskToContact in i inv contactsOfUser :
s e l f . contact−>f o r A l l (b |

s e l f . u se r . contacted−>i nc l u d e s (b))

276

C.6 Subset 6: Excitement use cases (i)

Algorithm C.43 Publish list for contacts

association CanBeReadBy between
L i s t [∗] r o l e l i stRO
Account [∗] r o l e r eader

end

event Publ i shListForContact
attributes

user : Account
contact : Account [1 . . ∗]
l i s t : L i s t

operations
e f f e c t ()

end

context Publ i shListForContact : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | l . reader−>i nc l u d e s (b)))

context Publ i shListForContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context Publ i shListForContact in i inv
l istNotAlreadyPublishedForSomeOfThem :

not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and
l . account−>i nc l u d e s (s e l f . use r) and

s e l f . contact−>f o r A l l (b | l . reader−>i nc l u d e s (b)))
context Publ i shListForContact in i inv l istOwnedByUser :

s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context Publ i shListForContact in i inv contactsOfUser :
s e l f . contact−>f o r A l l (b | s e l f . use r . contacted−>i nc l u d e s (b))

277

Chapter C Conceptual schema code

Algorithm C.44 Unpublish list for contacts

event Unpubl ishListForContact
attributes

user : Account
contact : Account [1 . . ∗]
l i s t : L i s t

operations
e f f e c t ()

end

context Unpubl ishListForContact : : e f f e c t ()
post : not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l |

l = s e l f . l i s t and
l . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | l . reader−>i nc l u d e s (b)))

context Unpubl ishListForContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context Unpubl ishListForContact in i inv
l istAlreadyPublishedForSomeOfThem :

L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and
l . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | l . reader−>i nc l u d e s (b)))

context Unpubl ishListForContact in i inv l istOwnedByUser :
s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context Unpubl ishListForContact in i inv contactsOfUser :
s e l f . contact−>f o r A l l (b | s e l f . use r . contacted−>i nc l u d e s (b))

278

C.6 Subset 6: Excitement use cases (i)

Algorithm C.45 Share list with contacts

association AcceptancePending between
L i s t [∗] r o l e l i s tAP
Account [∗] r o l e candidate

end

event ShareListWithContact
attributes

user : Account
contact : Account [1 . . ∗]
l i s t : L i s t

operations
e f f e c t ()

end

context ShareListWithContact : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | l . candidate−>i nc l u d e s (b)))

context ShareListWithContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context ShareListWithContact in i inv
l istNotAlreadySharedForSomeOfThem :

not L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and
l . account−>i nc l u d e s (s e l f . use r) and

s e l f . contact−>f o r A l l (b | l . account−>i nc l u d e s (b) or
l . candidate−>i nc l u d e s (b)))

context ShareListWithContact in i inv l istOwnedByUser :
s e l f . l i s t . account−>i nc l u d e s (s e l f . use r)

context ShareListWithContact in i inv e d i t a b l e L i s t :
s e l f . l i s t . i s E d i t a b l e = true

context ShareListWithContact in i inv contactsOfUser :
s e l f . contact−>f o r A l l (b |

s e l f . u se r . contacted−>i nc l u d e s (b))

279

Chapter C Conceptual schema code

Algorithm C.46 Accept shared list

event AcceptSharedList
attributes

user : Account
l i s t : L i s t

operations
e f f e c t ()

end

context AcceptSharedList : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r) and
not l . candidate−>i nc l u d e s (s e l f . use r))

context AcceptSharedList in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context AcceptSharedList in i inv l i s tPend ingAcceptance :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . candidate−>i nc l u d e s (s e l f . use r))

280

C.6 Subset 6: Excitement use cases (i)

Algorithm C.47 Reject shared list

event Rejec tSharedL i s t
attributes

user : Account
l i s t : L i s t

operations
e f f e c t ()

end

context Rejec tSharedL i s t : : e f f e c t ()
post : L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

not l . account−>i nc l u d e s (s e l f . use r) and
not l . candidate−>i nc l u d e s (s e l f . use r))

context Rejec tSharedL i s t in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context Rejec tSharedL i s t in i inv l i s tPend ingAcceptance :
L i s t . a l l I n s t a n c e s ()−> e x i s t s (l | l = s e l f . l i s t and

l . candidate−>i nc l u d e s (s e l f . use r))

281

Chapter C Conceptual schema code

Algorithm C.48 Share task with contacts

event ShareTaskWithContact
attributes

user : Account
contact : Account [1 . . ∗]
task : Task

operations
e f f e c t ()

end

context ShareTaskWithContact : : e f f e c t ()
post : Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and

t . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | t . account−>i nc l u d e s (b)))

context ShareTaskWithContact in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context ShareTaskWithContact in i inv
taskNotAlreadySharedForSomeOfThem :

not Task . a l l I n s t a n c e s ()−> e x i s t s (t | t = s e l f . task and
t . account−>i nc l u d e s (s e l f . use r) and
s e l f . contact−>f o r A l l (b | t . account−>i nc l u d e s (b)))

context ShareTaskWithContact in i inv taskOwnedByUser :
s e l f . task . account−>i nc l u d e s (s e l f . use r)

context ShareTaskWithContact in i inv uncompleted :
s e l f . task . completed = fa l se

context ShareTaskWithContact in i inv contactsOfUser :
s e l f . contact−>f o r A l l (b | s e l f . use r . contacted−>i nc l u d e s (b))

Algorithm C.49 Update account

context UpdateAccount : : e f f e c t ()
post : Account . a l l I n s t a n c e s ()−> e x i s t s (a | a = s e l f . use r and

a . i sLoggedIn = true and
a . emai l = s e l f . emai l)

282

C.7 Subset 7: Excitement use cases (ii)

C.7. Subset 7: Excitement use cases (ii)

Algorithm C.50 Group class

class Group
attributes

sub j e c t : String
−− Assoc

−−Account [1] owner

−−Account [∗] member

end

association isOwned between
Account [1] r o l e owner
Group [∗] r o l e ownedGroup

end

association belongsToGroup between
Account [∗] r o l e member
Group [∗] r o l e memberGroup

end

context Group inv uniqueSubjectUser :
not Group . a l l I n s t a n c e s ()−> e x i s t s (a , b | a <> b and

a . sub j e c t = b . sub j e c t and
a . owner = b . owner)

context Group inv membersAreUserContacts :
Group . a l l I n s t a n c e s ()−> f o r A l l (g |

g . member−>f o r A l l (m |
g . owner . contacted−>i nc l u d e s (m)))

283

Chapter C Conceptual schema code

Algorithm C.51 Create group

event CreateGroup
attributes

user : Account
sub j e c t : String

operations
e f f e c t ()

end

context CreateGroup : : e f f e c t ()
post : Group . a l l I n s t a n c e s ()−> e x i s t s (g | g . oclIsNew () and

g . sub j e c t = s e l f . s ub j e c t and
g . owner = s e l f . use r)

context CreateGroup in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context CreateGroup in i inv uniqueGroupSubject :
not Group . a l l I n s t a n c e s ()−> e x i s t s (g |

g . sub j e c t = s e l f . s ub j e c t and
g . owner = s e l f . use r)

284

C.7 Subset 7: Excitement use cases (ii)

Algorithm C.52 Delete group

event DeleteGroup
attributes

user : Account
sub j e c t : String
con f i rmat ion : Boolean

operations
e f f e c t ()

end

context DeleteGroup : : e f f e c t ()
post : not Group . a l l I n s t a n c e s ()−> e x i s t s (g |

g . sub j e c t = s e l f . s ub j e c t and
g . owner = s e l f . use r)

context DeleteGroup in i inv loggedUser :
s e l f . u se r . i sLoggedIn = true

context DeleteGroup in i inv conf irmed :
s e l f . con f i rmat ion = true

context DeleteGroup in i inv existsEmptyGroupOwnedByUser :
Group . a l l I n s t a n c e s ()−> e x i s t s (g |

g . sub j e c t = s e l f . s ub j e c t and
g . owner = s e l f . use r and
g . member−>s i z e () = 0)

285

D. Methods code

D.1. Subset 1: Basic use cases (i)

Algorithm D.1 Create account

method CreateAccount{
r e s := new Account (username := s e l f . username ,

password := s e l f . password ,
c reat ionDate := s e l f . creat ionDate ,
i sLoggedIn := false ,
emai l := ’ ’) ;

}

Algorithm D.2 Log into account

method LogIntoAccount{
l i := [Account . a l l I n s t a n c e s ()−>any (acc |

acc . username = s e l f . username and
acc . password = s e l f . password)] ;

l i . i sLoggedIn := true ;
}

287

Chapter D Methods code

Algorithm D.3 Create task

method CreateTask{
r e s := new Task (d e s c r i p t o r := s e l f . d e s c r i p t o r ,

c reat ionDate := s e l f . creat ionDate ,
dueDate := s e l f . dueDate) ;

r e s . account := s e l f . use r ;
r e s . completed := fa l se ;
r e s . postponedTimes := 0 ;
i f s e l f . l i s t . i sDe f i n ed () then

r e s . l i s t := s e l f . l i s t ;
e n d i f

}

Algorithm D.4 Delete task

method DeleteTask {
dt := [Task . a l l I n s t a n c e s ()−>any (t |

t . d e s c r i p t o r = s e l f . d e s c r i p t o r and
t . dueDate = s e l f . dueDate and
t . account−>i nc l u d e s (s e l f . use r))] ;

s e l f . u se r . task := s e l f . use r . task−>exc lud ing (dt) ;
i f [dt . account−>s i z e () = 0] then

d e l e t e dt ;
e n d i f

}

D.2. Subset 2: Basic use cases (ii)

Algorithm D.5 Update account

method UpdateAccount{
l i := [Account . a l l I n s t a n c e s ()−>any (acc |

acc = s e l f . use r and acc . i sLoggedIn = true)] ;
l i . emai l := s e l f . emai l ;

}

288

D.2 Subset 2: Basic use cases (ii)

Algorithm D.6 Log out of account

method LogOutAccount{
l i := [Account . a l l I n s t a n c e s ()−>any (acc |

acc = s e l f . use r)] ;
l i . i sLoggedIn := fa l se ;

}

Algorithm D.7 Update task

method UpdateTask{
ut := [Task . a l l I n s t a n c e s ()−>any (t |

t . d e s c r i p t o r = s e l f . d e s c r ip to rOld and
t . dueDate = s e l f . dueDate and
t . account−>i nc l u d e s (s e l f . use r))] ;

ut . d e s c r i p t o r := s e l f . descr iptorNew ;
}

Algorithm D.8 Delete account

method DeleteAccount {
ac := [Account . a l l I n s t a n c e s ()−>any (acc |

acc = s e l f . use r and acc . i sLoggedIn = true)] ;
ac . task := ’ ’ ;
while [Task . a l l I n s t a n c e s ()−> e x i s t s (t |

t . account−>s i z e () = 0)] do
d e l e t e [Task . a l l I n s t a n c e s ()−>any (t |

t . account−>s i z e () = 0)] ;
endwhile
d e l e t e ac ;

}

289

Chapter D Methods code

D.3. Subset 3: Performance use cases (i)

Algorithm D.9 Create note

method CreateNote{
r e s := new Note (t ext := s e l f . t ex t) ;
r e s . task := s e l f . task ;

}

Algorithm D.10 Update note

method UpdateNote{
r e s := [Note . a l l I n s t a n c e s ()−>any (n | n = s e l f . note)] ;
r e s . t ex t := s e l f . textNew ;

}

Algorithm D.11 Delete note

method DeleteNote {
r e s := [Note . a l l I n s t a n c e s ()−>any (n | n = s e l f . note)] ;
d e l e t e r e s ;

}

Algorithm D.12 Delete task postconditions

method CompleteTask{
r e s := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task)] ;
r e s . completed := true ;

}

290

D.4 Subset 4: Performance use cases (ii)

Algorithm D.13 Postpone task

method PostponeTask{
r e s := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task)] ;
r e s . postponedTimes := [r e s . postponedTimes +1] ;
i f [r e s . dueDate < s e l f . today] then

r e s . dueDate := s e l f . today ;
e l s e

r e s . dueDate := [r e s . dueDate +1] ;
e n d i f

}

Algorithm D.14 Duplicate task

method DuplicateTask {
tmp := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task)] ;
r e s := new Task (

d e s c r i p t o r := [tmp . d e s c r i p t o r . concat (’ copy ’)] ,
c reat ionDate := tmp . creat ionDate ,
dueDate := tmp . dueDate) ;

r e s . account := [tmp . account] ;
r e s . postponedTimes := tmp . postponedTimes ;
r e s . completed := fa l se ;
i f [tmp . completed = true] then

r e s . dueDate := 0 ;
e n d i f

}

D.4. Subset 4: Performance use cases (ii)

Algorithm D.15 Uncomplete task

method UncompleteTask{
r e s := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task)] ;
r e s . completed := fa l se ;

}

291

Chapter D Methods code

Algorithm D.16 Create priority

method CreatePr io {
r e s := new Prio (l e v e l := s e l f . l e v e l) ;
r e s . task := s e l f . task ;

}

Algorithm D.17 Update priority

method UpdatePrio{
r e s := [Prio . a l l I n s t a n c e s ()−>any (p |

p . task−>i nc l u d e s (s e l f . task))] ;
i f s e l f . i n c r e a s e . i sUnde f ined () then

s e l f . i n c r e a s e := fa l se ;
e n d i f
i f s e l f . dec r ea s e . i sUnde f ined () then

s e l f . d ec r ea s e := fa l se ;
e n d i f
i f [(s e l f . i n c r e a s e xor s e l f . d ec r ea s e)] then

i f [(s e l f . i n c r e a s e=true) and (r e s . l e v e l <3)] then
r e s . l e v e l := [r e s . l e v e l +1] ;

e n d i f
e n d i f
i f [(s e l f . i n c r e a s e xor s e l f . d ec r ea s e)] then

i f [(s e l f . d ec r ea s e=true) and (r e s . l e v e l >1)] then
r e s . l e v e l := [r e s . l e v e l −1];

e n d i f
e n d i f
i f [not (s e l f . i n c r e a s e xor s e l f . d ec r ea s e)] then

r e s . l e v e l := s e l f . prioNew ;
e n d i f

r e s . task := r e s . task−>inc lud ing (s e l f . task) ;
}

292

D.4 Subset 4: Performance use cases (ii)

Algorithm D.18 Delete priority

method Dele tePr io {
r e s := [Prio . a l l I n s t a n c e s ()−>any (p |

p . task−>i nc l u d e s (s e l f . task))] ;
d e l e t e r e s ;

}

Algorithm D.19 Create reminder

method CreateReminder{
r e s := new RemindS(methode := s e l f . methode) ;
r e s . account := s e l f . use r ;
i f s e l f . previousTime >0 then

r e s . previousTime := s e l f . previousTime ;
e n d i f
i f s e l f . regularTime >0 then

r e s . regularTime := s e l f . regularTime ;
e n d i f

}

Algorithm D.20 Update reminder

method UpdateReminder{

r e s := [RemindS . a l l I n s t a n c e s ()−>any (r s |
r s . methode = s e l f . methodeOld and
r s . account = s e l f . user)] ;

i f s e l f . previousTime>=0 then
r e s . previousTime := s e l f . previousTime ;

e n d i f
i f s e l f . regularTime>=0 then

r e s . regularTime := s e l f . regularTime ;
e n d i f
i f s e l f . methodeNew . s i z e ()>0 then

r e s . methode := s e l f . methodeNew ;
e n d i f

}

293

Chapter D Methods code

Algorithm D.21 Delete reminder

method DeleteReminder{
r e s := [RemindS . a l l I n s t a n c e s ()−>any (r s |

r s = s e l f . rem and
r s . account = s e l f . user)] ;

d e l e t e r e s ;
}

294

D.4 Subset 4: Performance use cases (ii)

Algorithm D.22 Change language (i)

method ChangeLanguage{
i f [(not s e l f . u se r . i sUnde f ined ())] then

idiom := [LanguageSett ings . a l l I n s t a n c e s ()−>any (i |
i . account−>i nc l u d e s (s e l f . use r))] ;

i f [idiom . i sUnde f ined ()= fa l se] then
idiom . account := idiom . account−>exc lud ing (s e l f . use r) ;

e n d i f

i f [(s e l f . lang=#Catalan)] then
i f [not (Catalan . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := new Catalan (lang := s e l f . lang) ;
id . account := id . account−>inc lud ing (s e l f . use r) ;

e n d i f
i f [(Catalan . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := [LanguageSett ings . a l l I n s t a n c e s ()−>any (i |

i . lang=s e l f . lang)] ;
id . account := id . account−>inc lud ing (s e l f . use r) ;

e n d i f
e n d i f

// the same code f o r Eng l i sh and Spanish as w e l l

i f [(s e l f . lang=#Norwegian)] then
i f [not (Norwegian . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := new Norwegian (lang := s e l f . lang) ;
id . account := id . account−>inc lud ing (s e l f . use r) ;

e n d i f
i f [(Norwegian . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := [LanguageSett ings . a l l I n s t a n c e s ()−>any (i |

i . lang=s e l f . lang)] ;
id . account := id . account−>inc lud ing (s e l f . use r) ;

e n d i f
e n d i f

e n d i f

295

Chapter D Methods code

Algorithm D.23 Change language (ii)

i f [(s e l f . lang=#Catalan)] then
i f [not (Catalan . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := new Catalan (lang := s e l f . lang) ;

e n d i f
i f [(Catalan . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := [LanguageSett ings . a l l I n s t a n c e s ()−>any (i |

i . lang=s e l f . lang)] ;
e n d i f

e n d i f
// the same code f o r Eng l i sh and Spanish as w e l l

i f [(s e l f . lang=#Norwegian)] then
i f [not (Norwegian . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := new Norwegian (lang := s e l f . lang) ;

e n d i f
i f [(Norwegian . a l l I n s t a n c e s ()−> e x i s t s (i |

i . lang=s e l f . lang))] then
id := [LanguageSett ings . a l l I n s t a n c e s ()−>any (i |

i . lang=s e l f . lang)] ;
e n d i f

e n d i f

296

D.5 Subset 5: Performance use cases (iii)

D.5. Subset 5: Performance use cases (iii)

Algorithm D.24 Create list

method CreateL i s t {
i f [not (L i s t . a l l I n s t a n c e s ()−> e x i s t s (l i |

l i . name = s e l f . name and
l i . account−>i nc l u d e s (s e l f . use r)))] then

r e s := new L i s t (name := s e l f . name) ;
r e s . i s E d i t a b l e := s e l f . e d i t a b l e ;
r e s . account := r e s . account−>inc lud ing (s e l f . use r) ;
r e s . i s P u b l i c := fa l se ;

e n d i f
}

Algorithm D.25 Update list

method UpdateList {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l i |

l i . name = s e l f . nameOld and
l i . account−>i nc l u d e s (s e l f . use r) and
l i . i s E d i t a b l e=true)] ;

r e s . name := s e l f . nameNew ;
}

Algorithm D.26 Delete list

method De l e t eL i s t {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l i |

l i . name = s e l f . name and
l i . account−>i nc l u d e s (s e l f . use r) and

l i . i s E d i t a b l e = true)] ;
d e l e t e r e s ;

}

297

Chapter D Methods code

Algorithm D.27 Move task to list

method MoveTaskToList{
i f [s e l f . l i s t . task−>i nc l u d e s (s e l f . task)= fa l se] then

s e l f . task . l i s t := s e l f . l i s t ;
e n d i f

}

Algorithm D.28 Set default list

method Se tDe f au l tL i s t {
a := [Account . a l l I n s t a n c e s ()−>any (a | a = s e l f . use r)] ;
a . d e f a u l t L i s t := s e l f . l i s t ;

}

Algorithm D.29 Unset default list

method UnsetDe fau l tL i s t {
a := [Account . a l l I n s t a n c e s ()−>any (a | a = s e l f . use r)] ;
d e l e t e a . d e f a u l t L i s t ;

}

Algorithm D.30 Add contact

method AddContact{
a := [Account . a l l I n s t a n c e s ()−>any (a | a = s e l f . use r)] ;
b := [Account . a l l I n s t a n c e s ()−>any (b | b = s e l f . contact)] ;
a . contacted := a . contacted−>inc lud ing (b) ;

}

298

D.6 Subset 6: Excitement use cases (i)

Algorithm D.31 Delete contact

method DeleteContact {
a := [Account . a l l I n s t a n c e s ()−>any (a | a = s e l f . use r)] ;
b := [Account . a l l I n s t a n c e s ()−>any (b | b = s e l f . contact)] ;
a . contacted := a . contacted−>exc lud ing (b) ;

}

D.6. Subset 6: Excitement use cases (i)

Algorithm D.32 Publish list for anyone

method PublishListForAnyone {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r))] ;
r e s . i s P u b l i c := true ;

}

Algorithm D.33 Unpublish list for anyone

method UnpublishListForAnyone{
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . i s P u b l i c = true and
l . account−>i nc l u d e s (s e l f . use r))] ;

r e s . i s P u b l i c := fa l se ;
}

299

Chapter D Methods code

Algorithm D.34 Send task to contact

method SendTaskToContact{
taskK := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task)] ;
taskK . sender := s e l f . use r ;
i f taskK . completed . i sUnde f ined ()=true then

taskK . completed := fa l se ;
e n d i f

I n t e g e r index := 1 ;
while s e l f . contact−>s i z e ()>=index do

taskK . account := taskK . account−>inc lud ing (
s e l f . contact−>asSequence()−>at (index)) ;

index := index +1;
endwhile

user := [Account . a l l I n s t a n c e s ()−>any (a | a = s e l f . use r)] ;
l i s t T := [L i s t . a l l I n s t a n c e s ()−>any (l |

l . account−>i nc l u d e s (user) and
l . task−>i nc l u d e s (taskK))] ;

l i s t S e n t := [L i s t . a l l I n s t a n c e s ()−>any (l |
l . account−>i nc l u d e s (user) and l . name = ’ Sent ’)] ;

userListsAss ignedToTask := [user . task−>any (t |
t=taskK) . l i s t] ;

userListsAss ignedToTask := [user . task−>any (t |
t . d e s c r i p t o r=taskK . d e s c r i p t o r) . l i s t −>

exc lud ing (l i s t T)] ;
userListsAss ignedToTask := [user . task−>any (t |

t=taskK) . l i s t −>inc lud ing (l i s t S e n t)] ;
}

300

D.6 Subset 6: Excitement use cases (i)

Algorithm D.35 Publish list for contacts

method Publ i shListForContact {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r))] ;
index := 1 ;
while s e l f . contact−>s i z e ()>=index do

s e l f . l i s t . r eader := s e l f . l i s t . reader−>inc lud ing (
s e l f . contact−>asSequence()−>at (index)) ;

index := index +1;
endwhile

}

Algorithm D.36 Unpublish list for contacts

method Unpubl ishListForContact {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r))] ;
index := 1 ;
while s e l f . contact−>s i z e ()>=index do

s e l f . l i s t . r eader := s e l f . l i s t . reader−>exc lud ing (
s e l f . contact−>asSequence()−>at (index)) ;

index := index +1;
endwhile

}

Algorithm D.37 Share list with contacts

method ShareListWithContact {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . account−>i nc l u d e s (s e l f . use r))] ;
index := 1 ;
while s e l f . contact−>s i z e ()>=index do

s e l f . l i s t . candidate := s e l f . l i s t . candidate−>inc lud ing (
s e l f . contact−>asSequence()−>at (index)) ;

index := index +1;
endwhile

}

301

Chapter D Methods code

Algorithm D.38 Accept shared list

method AcceptSharedList {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . candidate−>i nc l u d e s (s e l f . use r))] ;
r e s . account := r e s . account−>inc lud ing (s e l f . use r) ;
r e s . candidate := r e s . candidate−>exc lud ing (s e l f . use r) ;

}

Algorithm D.39 Reject shared list

method Rejec tSharedL i s t {
r e s := [L i s t . a l l I n s t a n c e s ()−>any (l | l = s e l f . l i s t and

l . candidate−>i nc l u d e s (s e l f . use r))] ;
r e s . candidate := r e s . candidate−>exc lud ing (s e l f . use r) ;

}

Algorithm D.40 Share task with contacts

method ShareTaskWithContact{
r e s := [Task . a l l I n s t a n c e s ()−>any (t | t = s e l f . task and

t . account−>i nc l u d e s (s e l f . use r))] ;
index := 1 ;
while s e l f . contact−>s i z e ()>=index do

s e l f . task . account := s e l f . task . account−>inc lud ing (
s e l f . contact−>asSequence()−>at (index)) ;

index := index +1;
endwhile

}

302

D.7 Subset 7: Excitement use cases (ii)

D.7. Subset 7: Excitement use cases (ii)

Algorithm D.41 Create group

method CreateGroup{
r e s := new Group(sub j e c t := s e l f . s ub j e c t) ;
r e s . owner := s e l f . use r ;

}

Algorithm D.42 Delete group

method DeleteGroup{
r e s := [Group . a l l I n s t a n c e s ()−>any (g |

g . sub j e c t = s e l f . s ub j e c t and
g . owner = s e l f . use r)] ;

d e l e t e r e s ;
}

303

Bibliography

[1] Brandt, D. Randall, "How service marketers can iden-
tify value-enhancing service elements", Journal of Ser-
vices Marketing 2 (3), pp. 35–41 (1988). Available from
http://www.emeraldinsight.com/journals.htm?articleid=1652453&show=abstract

[2] Brooks, Frederick P., “No Silver Bullet: Essence and Accidents of Soft-
ware Engineering”, Computer, Vol. 20, No. 4, pp. 10-19 (1987). Available from
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

[3] Brooks, Frederick P., “The Mythical Man-Month”, Addisson-Wesley,
(1975)

[4] Cadotte, E. R., Turgeon, N., "Dissatisfiers and satisfiers: suggestions
from consumer complaints and compliments", Journal of Consumer Satisfaction,
Dissatisfaction and Complaining Behavior 1, pp. 74–79 (1988). Available from
http://lilt.ilstu.edu/staylor/csdcb/articles/Volume1/Cadotte%20et%20al%201988.pdf

[5] Case, K. E., Fair, R. C., “Principles of Economics” (5th ed.), Prentice-Hall
(1999).

[6] Covey S., Merrill A. R., Merrill R. R., “First Things First: To Live,
to Love, to Learn, to Leave a Legacy”, Simon and Schuster, (1994)

[7] Griethuysen, J.J. van, “Concepts and terminology for the conceptual
schema and the information base”, ISO TC97/SC5/WG3 (1982)

[8] Gogolla, M., Bohling, J., Richters, M. “Validating UML and OCL
Models in USE by Automatic Snapshot Generation”, Software & Systems Mod-
eling, 4(4), pp. 386-398 (2005)

[9] Hevner, A. R., March, S.T., Ram S., “Design Science in Information
Systems Research”, Research MIS Quarterly 28(1), pp. 75-105 (2004)

[10] IEEE. Standard for Software Verification and Validation, Std 1012-1998b
(1998).

[11] Kano, N., Nobuhiku S., Fumio T., Shinichi T., "Attrac-
tive quality and must-be quality", Journal of the Japanese Soci-
ety for Quality Control 14 (2) pp. 39-48 (1984). Available from
http://ci.nii.ac.jp/Detail/detail.do?LOCALID=ART0003570680&lang=en

[12] Krogstie J., et al. “Integrating the understanding of quality in requirements
specification and conceptual modeling”, ACM SIGSOFT, Vol. 23 No. 1, pp.
86-91 (1998)

305

Chapter D Bibliography

[13] Lindland, O.I., Sindre, G., Solvberg, A., “Understanding Quality in
Conceptual Modeling”, IEEE Software, 11(2), pp. 42-49 (1994)

[14] Silver, M., Markus, M.L., Beath C.M., “The Information Technology
Interaction Model: A Foundation for the MBA Core Course”, MIS Quarterly,
Vol. 19, No. 3, pp. 361-390 (1995)

[15] Olivé, A., Cabot J., “A Research Agenda for Conceptual Schema-
Centric Development”, Conceptual modeling in Information Sys-
tems Engineering, Springer Verlag, pp. 319-334. Available from
http://jordicabot.com/papers/OliveCabotResearchAgenda.pdf

[16] Olivé, A., “Conceptual Modeling of Information Systems”, Springer, (2007)
[17] Ramírez, A. “Esquema Conceptual De Magento, Un Sistema De Comerç Elec-

trònic”, UPC (2011). Available from http://hdl.handle.net/2099.1/12294.
[18] Tort, A., “Development of the Conceptual Schema of a Bowl-

ing Game System by Applying TDCM”, UPC (2011). Available from
http://hdl.handle.net/2117/11196

[19] Tort, A., “Development of the Conceptual Schema of the
osTicket System by Applying TDCM”, UPC (2011). Available from
http://hdl.handle.net/2117/12369

[20] Tort, A., Olivé, A., “An approach to testing conceptual schemas”, Data &
Knowledge Engineering, 69(6), pp. 598-618 (2010)

[21] Tort, A., Olivé, A., Sancho, M. R., “An Approach to Test-Driven Devel-
opment of Conceptual Schemas”, Data & Knowledge Engineering, 69(6), pp.
598-618 (2011)

[22] Tort, A., Olivé, A., Sancho, M. R., “The CSTL Processor: A
Tool for Automated Conceptual Schema Testing”, (2011). Available from
http://www.springerlink.com/content/q22162u475671614/fulltext.pdf

[23] Venkitaraman, R.K, Jaworski, C., “Restructuring customer satisfaction
measurement for better resource allocation decisions: an integrated approach”,
Fourth Annual Advanced Research Techniques Forum of the American Market-
ing Association, (1993)

306

	Title Page
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Overview
	1.2 Context
	1.2.1 Conceptual modelling
	1.2.2 Validation of conceptual schemas
	1.2.3 Reverse engineering
	1.2.4 Test-Driven Conceptual Modelling

	1.3 Project context
	1.4 Motivation
	1.5 Objectives
	1.6 Methodology
	1.7 Document structure

	2 Background
	2.1 Overview
	2.2 Conceptual modelling
	2.2.1 Information systems
	2.2.2 Quality in conceptual schemas
	2.2.3 Principle of necessity

	2.3 Task management systems
	2.3.1 Characteristics
	2.3.2 Our case study: Remember the Milk

	3 Research approach
	3.1 Overview
	3.2 Design science research
	3.2.1 Definition
	3.2.2 Application

	3.3 Project management plan

	II Case study
	4 Use cases
	4.1 Overview
	4.2 Definition
	4.2.1 Elements
	4.2.2 Interactions

	4.3 Limitations
	4.3.1 Scope
	4.3.2 Existing system
	4.3.3 Technology independence

	4.4 Template
	4.5 RTM use case specification
	4.5.1 Update priority from a task

	5 Test stories
	5.1 Overview
	5.2 Definition
	5.3 Limitations
	5.3.1 Scope
	5.3.2 Interface
	5.3.3 Completeness

	5.4 RTM story dependencies
	5.4.1 Context
	5.4.2 Groupings nomenclature
	5.4.3 Graphical representation
	5.4.4 Graphical summary

	5.5 RTM Test stories
	5.5.1 Update priority from a task

	6 Testing strategy
	6.1 Overview
	6.2 Method
	6.2.1 Coverage
	6.2.2 Goals

	6.3 The importance of value assessment
	6.4 Functionality prioritisation: the Kano Model
	6.4.1 Must-be (a.k.a. Basic)
	6.4.2 Attractive (a.k.a. Excitement)
	6.4.3 One-dimensional (a.k.a. Performance)
	6.4.4 Secondary
	6.4.5 ReverseThis attribute is not part of the original set, and sometimes it is not taken into consideration
	6.4.6 Graphical representation
	6.4.7 Limitations

	6.5 Methodological approach
	6.5.1 Graphical representation

	6.6 Subset 1: Basic use cases (i)
	6.7 Subset 2: Basic use cases (ii)
	6.8 Subset 3: Performance use cases (i)
	6.9 Subset 4: Performance use cases (ii)
	6.10 Subset 5: Performance use cases (iii)
	6.11 Subset 6: Excitement use cases (i)
	6.12 Subset 7: Excitement use cases (ii)
	6.13 Subset 8: Indifference use cases (i)

	7 Application of TDCM
	7.1 Overview
	7.2 CSTL Environment
	7.2.1 Language
	7.2.2 Processor

	7.3 TDCM
	7.3.1 Write a test case
	7.3.2 Change the schema
	7.3.3 Refactor the schema

	7.4 Limitations
	7.4.1 Scope
	7.4.2 Testing environment

	7.5 From test stories to formal test cases
	7.5.1 Update priority from a task

	7.6 Iterations
	7.6.1 Iteration 1
	7.6.2 Iteration 2
	7.6.3 Iteration 3
	7.6.4 Iteration 4

	III Results
	8 Conceptual schema
	8.1 Overview
	8.2 Structural schema
	8.3 Behavioural schema
	8.4 Statistical summary

	9 Lessons learnt
	9.1 Overview
	9.2 TDCM
	9.2.1 Feasibility
	9.2.2 Advantages
	9.2.3 Patterns of use

	9.3 RTM
	9.3.1 Conceptual deficiencies
	9.3.2 Lack of validation
	9.3.3 Additional features
	9.3.4 Counterintuitive Interface

	10 Conclusions and further work
	10.1 Overview
	10.2 Conclusions
	10.2.1 Test-Driven Conceptual Modelling (TDCM)
	10.2.2 Remember the Milk (RTM)

	10.3 Further work
	10.3.1 CSTL Processor
	10.3.2 TDCM Methodology
	10.3.3 Experimentation

	IV Appendixes and Bibliography
	A Use case specification
	A.1 Task
	A.1.1 Create a task
	A.1.2 Read a task
	A.1.3 Update a task
	A.1.4 Delete a task
	A.1.5 Create an assign a note to task
	A.1.6 Read a note assigned to a task
	A.1.7 Update a note assigned to a task
	A.1.8 Delete a note assigned to a task
	A.1.9 Complete a task
	A.1.10 Uncomplete a task
	A.1.11 Set priority to a task
	A.1.12 Update priority from a task
	A.1.13 Delete priority from a task
	A.1.14 Postpone a task
	A.1.15 Share a task with contacts
	A.1.16 Send a task to contacts
	A.1.17 Share a task with groups
	A.1.18 Send a task to groups
	A.1.19 Show tasks
	A.1.20 Move a task to a list
	A.1.21 Duplicate a task

	A.2 Account
	A.2.1 Create an account
	A.2.2 Log into an account
	A.2.3 Update an account
	A.2.4 Delete an account
	A.2.5 Log out of an account

	A.3 Reminder
	A.3.1 Create a reminder schedule
	A.3.2 Read a reminder schedule
	A.3.3 Update a reminder schedule
	A.3.4 Delete a reminder schedule
	A.3.5 Send reminder

	A.4 Customisation
	A.4.1 Change language
	A.4.2 Show weekly planner

	A.5 Contact and group
	A.5.1 Add a contact
	A.5.2 Read a contact
	A.5.3 Delete a contact
	A.5.4 Create a group
	A.5.5 Read a group
	A.5.6 Delete a group
	A.5.7 Add a contact to a group
	A.5.8 Remove a contact from a group

	A.6 List of tasks
	A.6.1 Create a list
	A.6.2 Read a list
	A.6.3 Update a list
	A.6.4 Delete a list
	A.6.5 Set default list
	A.6.6 Unset default list
	A.6.7 Share a list with some contacts
	A.6.8 Share a list with some groups
	A.6.9 Publish a list for some contacts
	A.6.10 Publish a list for some groups
	A.6.11 Publish a list for anyone
	A.6.12 Unpublish a list for some contacts
	A.6.13 Unpublish a list for some groups
	A.6.14 Unpublish a list for anyone
	A.6.15 Accept a shared list
	A.6.16 Reject a shared list
	A.6.17 Archive lists
	A.6.18 Unarchive lists

	A.7 Location
	A.7.1 Create a location
	A.7.2 Read a location
	A.7.3 Update a location
	A.7.4 Delete a location
	A.7.5 Set a default a location
	A.7.6 Unset a default a location

	B Test stories
	B.1 Task
	B.1.1 Create a task
	B.1.2 Read a task
	B.1.3 Update a task
	B.1.4 Delete a task
	B.1.5 Create an assign a note to task
	B.1.6 Read a note assigned to a task
	B.1.7 Update a note assigned to a task
	B.1.8 Delete a note assigned to a task
	B.1.9 Complete a task
	B.1.10 Uncomplete a task
	B.1.11 Set priority to a task
	B.1.12 Update priority from a task
	B.1.13 Delete priority from a task
	B.1.14 Postpone a task
	B.1.15 Share a task with contacts
	B.1.16 Send a task to contacts
	B.1.17 Share a task with groups
	B.1.18 Send a task to groups
	B.1.19 Show tasks
	B.1.20 Move a task to a list
	B.1.21 Duplicate a task

	B.2 Account
	B.2.1 Create an account
	B.2.2 Log into an account
	B.2.3 Update an account
	B.2.4 Delete an account
	B.2.5 Log out of an account

	B.3 Reminder
	B.3.1 Creation of a reminder schedule
	B.3.2 Read a reminder schedule
	B.3.3 Update a reminder schedule
	B.3.4 Delete a reminder schedule
	B.3.5 Send reminder

	B.4 Customisation
	B.4.1 Change language
	B.4.2 Show weekly planner

	B.5 Contact and group
	B.5.1 Add a contact
	B.5.2 Read a contact
	B.5.3 Delete a contact
	B.5.4 Create a group
	B.5.5 Read a group
	B.5.6 Delete a group
	B.5.7 Add a contact to a group
	B.5.8 Remove a contact from a group

	B.6 List of tasks
	B.6.1 Create a list
	B.6.2 Read a list
	B.6.3 Update a list
	B.6.4 Delete a list
	B.6.5 Set default list
	B.6.6 Unset default list
	B.6.7 Share a list with some contacts
	B.6.8 Share a list with some groups
	B.6.9 Publish a list for some contacts
	B.6.10 Publish a list for some groups
	B.6.11 Publish a list for anyone
	B.6.12 Unpublish a list for some contacts
	B.6.13 Unpublish a list for some groups
	B.6.14 Unpublish a list for anyone
	B.6.15 Accept a shared list
	B.6.16 Reject a shared list
	B.6.17 Archive lists
	B.6.18 Unarchive lists

	B.7 Location
	B.7.1 Create a location
	B.7.2 Read a location
	B.7.3 Update a location
	B.7.4 Delete a location
	B.7.5 Set a default a location
	B.7.6 Unset a default a location

	C Conceptual schema code
	C.1 Subset 1: Basic use cases (i)
	C.2 Subset 2: Basic use cases (ii)
	C.3 Subset 3: Performance use cases (i)
	C.4 Subset 4: Performance use cases (ii)
	C.5 Subset 5: Performance use cases (iii)
	C.6 Subset 6: Excitement use cases (i)
	C.7 Subset 7: Excitement use cases (ii)

	D Methods code
	D.1 Subset 1: Basic use cases (i)
	D.2 Subset 2: Basic use cases (ii)
	D.3 Subset 3: Performance use cases (i)
	D.4 Subset 4: Performance use cases (ii)
	D.5 Subset 5: Performance use cases (iii)
	D.6 Subset 6: Excitement use cases (i)
	D.7 Subset 7: Excitement use cases (ii)

	Bibliography

