
May 2007
Torulf Mollestad, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Survey of Combining Association
Rules for Pre-warning of Oil Production
Problems

Per Kristian Helland

Problem Description

This project aims to explore the problem of how to reveal future problems in a production process,
produce appropriate alarms and thereby allowing efficient handling
of an unwanted and potentially dangerous situation. Data mining techniques will be applied to
uncover event patterns in time series generated from sensors monitoring the oil production, and
prototypes for utilization of such patterns will be implemented.

Assignment given: 16. January 2007
Supervisor: Torulf Mollestad, IDI

Abstract

Periods of sub-optimal production rates, or complete shut-downs, add negative numbers to the revenue
graph for oil companies. Oil and gas are produced from several reservoirs and through many wells with
varying gas/oil proportion, making it a complex process that is difficult to control. As a part of a three-
step process for utilizing data in the oil production domain, this thesis derive methods for combining
event patterns, called restricted association rules, in time series in order to warn about future anomalies in
oil production processes. Two problems have been considered: Network learning and network reasoning.
The suggested solution consists of building an Association Rules Network (ARN) from the rule set given
as input. After transforming the hypergraph-based ARN to a directed acyclic graph, correlations between
nodes are found by applying the shortest-path principle. Motivated by the shortcomings of this simple
solution, it is shown how a method for learning Bayesian networks with support for representation of
temporal dependencies can be derived from the initial ARN. The concept, named Temporal Bayesian
Network of Events (TBNE), is a powerful, but yet complex solution that enjoys the properties of Bayesian
network reasoning while at the same time representing temporal information. This thesis has shown that
it is theoretically feasible to combine restricted association rules in order to create a network structure
for reasoning. It is concluded that the final choice of solution must be based on a carefully consideration
of the trade-off between complexity and expressiveness, and that a natural continuation is testing the
suggested concepts with real data.

Preface

"Knowledge is power." — Francis Bacon (1561–1626)

The challenges I have faced during the work of this master thesis have been both exciting and frustrating.
Luckily, the satisfaction of a good idea beats the frustration of being stuck with a difficult problem for
three days.

I have written this thesis as a fifth year student of the Master studies in Computer Science at the Norwe-
gian University of Science and Technology. My background is mainly from the field of machine learning
and AI, but statistics is also a field of interest. As a part of a two-man army working on the same prob-
lem case at ConocoPhillips, I would like to thank Joacim Christiansen for his help and support. Our
discussions have been crucial to the final results.

Torulf Mollestad, my supervisor, has shared his expertise and experience, but also challenged me to think
and re-think about my thoughts and suggestions. His support and advice has been invaluable to me along
the way.

Trondheim, 31/05/2007

Per Kristian Helland

2

Contents

1 Introduction 7
1.1 Research goals . 7

1.1.1 Problem description . 8
1.1.2 Limitations of scope . 9

1.2 Background and motivation . 9
1.3 Data to Decision: The greater picture . 10

1.3.1 Remote decision making . 10
1.3.2 Problem case . 11
1.3.3 Guidelines for data utilization . 12

1.4 Report outline . 15

2 Preliminaries 16
2.1 Probability theory . 16
2.2 Expert systems . 18

2.2.1 Rule-based systems . 19
2.2.2 Probabilistic expert systems . 19

2.3 Association rule mining . 21
2.4 Hypergraph theory . 23

3 Learning network structures 25
3.1 Assumptions on learning input . 25

3.1.1 Rule syntax and semantics . 26
3.1.2 Rule cleaning . 28

3.2 Association rules network . 28
3.2.1 Learning ARN . 29
3.2.2 Improving the ARN algorithm . 31

3.3 Bayesian networks . 33
3.3.1 Learning Bayesian networks . 33
3.3.2 Time modelling in Bayesian networks . 35
3.3.3 Issues by combining Bayesian networks and association rules 36

4 Reasoning in network structures 39
4.1 Reasoning in ARN . 40

4.1.1 Fundamentals of ARN reasoning . 40
4.1.2 Transforming an ARN to a DAG . 41
4.1.3 Explaining correlation between nodes . 42
4.1.4 Reasoning with temporal information in ARN 44

4.2 Reasoning in Bayesian networks . 45

3

4.2.1 Fundamentals of Bayesian network reasoning 45
4.2.2 Reasoning with temporal information in Bayesian networks 47

4.3 Comparing the suggested reasoning schemes . 48

5 Discussion and conclusion 52
5.1 Suggested solutions . 52

5.1.1 A simple solution . 52
5.1.2 An advanced solution . 54

5.2 Evaluating the overall solution . 55
5.3 Contributions . 57
5.4 Conclusion . 57

Bibliography 59

A Data and calculations 63
A.1 Marginalization example of Chapter 2.2.2 . 63
A.2 Data for the example of Chapter 4.3 . 64

List of Tables

1.1 Step 1: Data preprocessing . 13
1.2 Step 2: Discovering dependencies between events . 14
1.3 Step 3: Knowledge utilization . 15

2.1 Conditional probability table for having a headache . 20
2.2 Conditional probability table for having fever . 20

3.1 Possible rule structures . 26
3.2 Possible ordering of events . 27
3.3 Assumptions made on rule syntax and semantics . 28
3.4 CPT for the DLH node . 36

4.1 Explanation of transformed hyperedge weights . 42
4.2 Reasoning with temporal information in ARNs. 45
4.3 Comparing the reasoning mechanisms of ARN and TBNE 49

5.1 Properties of the suggested solutions . 55

A.1 Calculation of the marginal probability Pr(Headache = yes) 64
A.2 Node A . 64
A.3 Node B . 64
A.4 Node C . 65
A.5 Node D . 65
A.6 Node E . 65
A.7 Node F . 65
A.8 Node X . 65

5

List of Figures

1.1 Example illustrating sub-optimal production . 8
1.2 Integrated operations . 11
1.3 Production process 2/4 J . 11
1.4 A simplified low pressure separator . 12
1.5 Illustration of the overall three-step data mining vision. 13

2.1 Bayesian network for the headache domain . 20
2.2 Illustrations of probability evolution for the headache example 21
2.3 Example of B-arc and F-arc . 23
2.4 B-graphs . 23

3.1 Definition of temporal relations using the rule X1, X2 → Y 27
3.2 ARN with reverse hyperedge . 30
3.3 Bayesian network example . 33
3.4 Bayesian network learning . 34
3.5 A TBNE example . 36

4.1 Illustration of hypergraph transformations. 41
4.2 Illustrations of the weight functions. 43
4.3 Illustration of the triangulation process . 46
4.4 The join tree and junction tree for the triangulated graph in Figure 4.3c 46
4.5 Generic network learned from a fictitious rule set . 49
4.6 TBNE and ARN after transformation . 50
4.7 TBNE after the occurrence of A and E respectively . 50

6

Chapter 1

Introduction

For oil companies, the combination of today’s record-high oil prices and stakeholders strict demands for
return on investments, combined with sparse oil and gas resources, brings forth the need for business
optimization. Onshore operation centres (OOC) are extensively supporting offshore operations using
state of the art communication technology. This reduces the need for offshore personnel and is a cost
effective way of managing operations. It also introduces the possibility for additional monitoring systems
that can be operated onshore.

Oil production is a non-trivial process and it differs in nature from reservoir to reservoir. More sophis-
ticated technology makes it possible to do drilling operations that would have been impossible only few
years ago, like horizontal drilling. The new possibilities also increase the complexity of oil production
since e.g. oil and gas are produced from several reservoirs and through many wells with varying gas/oil
proportion.

In oil production periods of unplanned sub-optimal production rates, or complete shut-downs, add nega-
tive numbers to the revenue graph. For instance, ConocoPhillips loses 1.4 million Danish Kroner (about
175 000 Euro) in income for each hour an oil well is not in production [21]. On average, ConocoPhillips
calculates with around 40 unplanned well shut downs per year, and the total costs become severe. A
system that could give an early warning about possible future anomalies in the oil production, and do
this in time for the operators to react, would therefore be valuable in order to reduce costs.

1.1 Research goals

Monitoring oil production processes is done in order to ensure that they are effective. Such monitoring
usually involves several sensors, which are used to depict a variety of attributes of the process over time.
Example of attributes are temperature, pressure and valve openings, among others. Measurements are
done on those parts of the system which are considered critical for the operation and process stability. The
choice of attributes to monitor is critical, and are mainly performed by domain experts. The frequency
of sampling is chosen by the user and may vary from a few milliseconds to many days dependent on
the attribute in question. The observation data, and measurement of production rates, are stored in time
series databases.

7

For ConocoPhillips elimination of production loss is an important goal, and research on ways of pre-
dicting production stops and loss of quality in production is an area of commitment. Both complete
shut-downs and sub-optimal production rates result in a considerable loss of money. An example of
a possible production rate time series is given in Figure 1.1. It illustrates a characteristic full stop in
production and an interval of sub-optimal production (shaded area).

Figure 1.1: Example illustrating sub-optimal production

In general, methods for searching large volumes of data for patterns belongs to the field of data mining.
One goal is to characterise the general properties of a data collection and/or perform inference on the
current data in order to make predictions. The monitoring of sensors in oil production produces a large
amount of data, providing a breeding ground for a data mining hypothesis that patterns can be found in
the historical data, and subsequently be applied to real time production data in order to warn about future
production rate anomalies.

1.1.1 Problem description

ConocoPhillips wants to explore the problem of how to reveal future problems in a production process,
produce appropriate alarms and thereby allowing efficient handling of an unwanted and potentially dan-
gerous situation. This particular master thesis aims to investigate how a set of uncovered event patterns
in time series, called restricted association rules, can be utilized. More specific, the goal is to reach
a conclusion of the feasibility of combining restricted association rules in order to warn about future
production problems.

The problem is divided into two sub-problems:

1. Network learning: How to learn a network structure from restricted association rules that makes
it possible to define some kind of reasoning mechanism to decide whether an alarm should be
given or not.

2. Network reasoning: How to define the reasoning mechanism for failure prediction in the learned
network. An alarm system will have to deal with uncertain information, and the reasoning must
define how the system’s belief of a future production anomaly should be stated.

In a broader perspective the thesis contributes to the field of expert systems, i.e. the problem of codifying

8

and utilizing knowledge obtained from experts or other sources. The thesis should have a theoretical
approach to the problem as real production process data will not be available.

1.1.2 Limitations of scope

This master thesis’ main goal is to reach a conclusion of the feasibility of combining restricted association
rules in order to warn about future production problems. It is, however, not an implementation task, and
challenges of integrating suggested solutions with existing systems in ConocoPhillips will neither be
considered.

It is also important to note the difference between predicting the production rate and predicting possible
production anomalies. Predicting production rate may be seen as predicting a graph based only on the
history of this single graph, analogue to predicting a stock price. Predicting possible production anoma-
lies is a broader problem concerning prediction of variables contributing to a higher level production
anomaly. This work contributes to the latter, with the ultimate goal of giving early warnings of faults in
order to make them avoidable.

1.2 Background and motivation

ConocoPhillips was founded in 2002 after the merging of Conoco Inc. and Phillips Petroleum Company.
It is among the largest non-government controlled energy companies worldwide, having, at year-end
2005, 38 400 employees and assets of $165 billion USD [3]. ConocoPhillips’ core activities worldwide
are:

• Petroleum exploration and production.

• Petroleum refining, marketing, supply and transportation.

• Natural gas gathering, processing and marketing.

• Chemicals and plastics production and distribution.

The oil industry is one of the largest and most profitable industries in the world. It is also one of the most
cost aware industries. Since the price of oil is standardized, oil companies concentrate on cutting internal
production costs and optimizing production.

ConocoPhillips Norge accounts for about 14 percent of the oil and gas production in ConocoPhillips
worldwide. It has a total of 1735 employees and is the third-largest energy company in Norway [21]. In
January 2005, ConocoPhillips started a program called From Good to Great which directly involves over
700 employees. The goal of From Good to Great is to improve processes and increase efficiencies to cut
costs and optimize production. The hierarchy of these goals are:

1. Maximize production and increase the process regularity.

2. Reduce costs.

9

Fault detection is a key issue in the development of complex oil production facilities. Several techniques,
including alarms on sensors and process simulation, have been tried to avoid failures or loss in production
with varying degree of success. Monitoring based on process knowledge is mainly done by domain
experts, but as the complexity of these systems grow this becomes a difficult task to manage. Such
monitoring requires a tremendous amount of a priori knowledge of the system behaviour for each facility,
whereas a large part of this knowledge is often tacit and not easily obtained. For example deriving a
complete set of production rules for a facility is usually a time consuming task, and too expensive to
do for each facility. In addition, re-use of knowledge from other facilities is also limited, because each
facility is usually more or less different from others. Another aspect is introducing new operators, which
in general is a huge challenge because of the tacit and not easily obtained knowledge. Therefore another
goal is to make this knowledge easily available to new operators.

Prediction problems has received great attention in the statistical and financial domain, e.g. attempts to
predict stock prices, but results have been relatively bad with respect to correctness of predictions. While
the stock market is a non-deterministic process with a huge amount of uncertainty, the oil production
process can be assumed to be deterministic and describable by a finite set of states. Oil production is
limited by physical laws and tend to operate in a closed environment. This and the hypotheses that there
exists a logical and statistical correlation between sensor data and production anomalies that may be
found, motivates for a possible data mining solution.

1.3 Data to Decision: The greater picture

One pillar of From Good to Great is Data to Decision (D2D). D2D directly involves around 40 employees
and is the IT infrastructure to support From Good to Great. It is applicable in one oil field in the North Sea
named Ekofisk. This field represents approximately 10% of the oil company’s worldwide oil production.
The daily field production is an estimated 375 000 barrels of oil, equaling around 22 million USD in
daily revenues [21]. D2D deals with the problem of how the vast number of stored data related to oil
production can be used to make faster and better decisions.

1.3.1 Remote decision making

An ultimate goal for data utilization in the context of predicting production anomalies is to create a
failure prediction system. A likely scenario for a system of that kind is that it will be integrated in an
OOC. An OOC is a digital operation centre located onshore which is connected to offshore drilling and
production facilities by fibre wires. Figure 1.2 places OOCs in the greater picture of what is called
Integrated Operations (IO), the future of oil production where technology that gathers competence, data
and applications in real-time, independent of distance, is extensively utilized. Information sent from
operational instruments makes it possible to monitor and control the platforms remotely. Daily meetings
between the operational management located onshore and offshore has brought the two environments
closer. In addition, real-time data is distributed to collaborators, like maintenance actors. A focus area
for the OOC of ConocoPhillips Norway is production optimization, and elimination of production loss
is an important goal.

The technology available at an OOC makes it possible to operate a failure prediction system there, and
the vision is to build a system that receives real-time sensor data from oil production as input, and con-

10

Figure 1.2: Integrated operations

tinuously processes the data in order to discover important events and reason about possible failures.
Ideally the production state should be visualised on a large screen, showing events and their dependen-
cies. If a warning is given, the system should explain the cause and suggest corrective actions. Such
a system will probably reduce the amount of tacit knowledge needed when monitoring oil production
because this knowledge is communicated through the visualised production state. The ability to predict
more complex situations early will probably be increased since the prediction, which might include a
great amount of data, is handled by computers.

1.3.2 Problem case

The specific production process that has been used as a test case in D2D is named "2/4 J" and is sketched
in Figure 1.3.

Figure 1.3: Production process 2/4 J

11

This simplified figure shows how 3-phase flows of gas, oil and water are lead into a high pressure or a
low pressure separator. The water is cleaned and then discharged into the sea, while oil and gas is sent
to onshore refineries. Throughout this process sensors1 are monitoring various attributes, as mentioned
earlier.

An emulsion is a mixture of two immiscible substances, and for a 3-phase separator this can happen for
oil/water. The problem case targeted is the prediction of emulsification in the low pressure separator of
the 2/4 J process. A sketch of the separator is shown in Figure 1.4.

Figure 1.4: A simplified low pressure separator

As shown, oil and water leave the vessel at the bottom through different valves, and the gas leaves the
vessel at the top. If the water level is to high, both water and oil will flow over the edge. A high
amount of water gives low quality oil, and hence a lower price. If emulsification occurs, the water level
is impossible to measure, and corrective actions have to be done.

1.3.3 Guidelines for data utilization

This study is related to D2D and in particular to the work done by Senior Consultant at SAS Institute, and
Associate Professor II at NTNU, Torulf Mollestad [40, 41]. Mollestad has developed a general guideline
for data utilization in the oil production domain, and under his supervision a project thesis investigating
this guideline was written by Christiansen and Helland [18] autumn 2006. Figure 1.5 shows the suggested
three-step process, going from sensor data to an operational system.

1The terms "sensor" and "tag" are used alternating.

12

Figure 1.5: Illustration of the overall three-step data mining vision.

The process illustrated by Figure 1.5 is not trivial, and each step is next explained in more detail.

1. Data preprocessing includes data loading, data cleaning, event discovery and variable clustering, as
explained in Table 1.1.

Task Description
Data loading The process of loading sensor data from the database where it is

located. The amount of available data is in many cases greater
than what is manageable for further processing. A decision of
what sampling rate to use must be taken.

Data cleaning The process of filling in missing values, smoothing out noise and
correction of data inconsistency.

Event detection The process of discovering unusual and/or important events in the
time series. An event must be explainable to a user in order to be
useful. Basic techniques as threshold measures are often suitable
because they are computational efficient and easy to interpret.

Variable clustering The process of removing variables (event series) that do not influ-
ence on production loss. Removing such uncorrelated variables,
which also may be seen as noise, is beneficial because it may
reduce running times and improve the results of association rule
mining algorithms.

Table 1.1: Step 1: Data preprocessing

For the particular problem case of emulsification in the low pressure separator of process 2/4 J, Mollestad
has developed a framework for finding relevant properties of sensor data. The framework, that conforms
to the step of data preprocessing, can be divided into two main tasks:

• Data transformation: Let domain experts select tags (sensors) that are considered potentially rel-
evant. Apply transformation functions to each time series (data from selected tags) in order to

13

derive binary event time series. Examples of transformation functions are: Extremely high/low
levels, high volatility in data, long/dramatic shifts in the data, passing of (predefined) critical lev-
els, and user defined functions. In order to continue to the next step, a target event must be defined
by domain experts.

• Variable clustering: Cluster the binary event time series in order to identify events that co-occur
with the target event. The goal of this process is to remove uninteresting and/or non-significant
variables, and the resulting events are those related to problem situations, i.e. they are potential
warning signals.

For the 2/4 J process, 119 tags were selected as potentially relevant, and the transformation process
generated 1050 event time series. The target event defined by experts was identified to happen 22 times
in the data from December 2005 to December 2006. The variable clustering then reduced the set of
binary event time series to about 200.

2. Discovering dependencies between events (rule mining) includes the concepts of sliding window
extraction, event sequence mining, restricted association rules, interestingness measures and rule clean-
ing, as explained in Table 1.2.

Task Description
Sliding window extraction The process of splitting a sequence of different events into groups

of events occurring within some fixed time interval.
Restricted association rules Association rules which describes association between occur-

rences of events or combination of events, taking temporal re-
lations into account. Such rules may be found in the historical
data and used to predict future events.

Interestingness measures Primarily mathematical expressions that represent the interesting-
ness of rules. Such expressions may be used to efficiently prune
the search space during rule mining, but also in rule cleaning/se-
lection.

Rule cleaning The process of identifying interesting rules and removing non-
interesting, redundant or unwanted rules. Such a process may be
done automatically or by a human expert using an interactive rule
cleaning tool.

Table 1.2: Step 2: Discovering dependencies between events

Parallel to this thesis work on the second step has been done by Christiansen [17]. The main findings of
Christiansen’s work is that association rules suited for prediction differs from regular association rules.
By restricting the rule mining task, rules suited for prediction can be targeted and efficiently discovered
from time series. The number of rules found is usually vast, but by removing redundant rules and ranking
them with respect to interestingness and information content, a small subset of rules can be obtained.
Association rules found in this specific way are theoretically well suited for application in reasoning
structures, and are believed to give good predictive performance.

3. Knowledge utilization is the final step and involves learning of a network structure, definition of
network reasoning and operational use, and the concepts are further explained in Table 1.3.

Part one and two of the third step conform with the problem description of Chapter 1.1.1 and are the
focus areas of this thesis.

14

Task Description
Network learning The task of building a network based on the discovered restricted

association rules and their dependencies.
Network reasoning The process of drawing inferences appropriate to the situation,

i.e. update the belief on events in order to predict failures.
Operational use Consists of to parts: (1) How to make suggestions of corrective

actions (technical), and (2) how to integrate the system with other
monitoring systems (system integration).

Table 1.3: Step 3: Knowledge utilization

1.4 Report outline

The remainder of this report is structured as follows. Chapter 2 introduces important concepts related
to the problem to be discussed. The main goal of this chapter is to form a theoretical foundation for the
following discussions. In Chapter 3 a method for learning a network structure from a set of restricted
association rules is derived. The method relates to the concept of Association Rules Network (ARN).
Due to shortcomings of the ARN concept, Bayesian networks are introduced as an alternative. Chapter 4
gives a detailed study of how to reason in the networks introduced, and compares them by analysing an
example. Finally, Chapter 5 considers a short-term solution that can be implemented and tested imme-
diately at ConocoPhillips, followed by a discussion taking a long-term view on the issue. A discussion
is also given considering the overall process of network learning and reasoning, as well as the three-step
process of data utilization in the oil production domain. The chapter also discusses this master thesis’
contributions to the field of expert systems before it ends with a conclusion.

15

Chapter 2

Preliminaries

This chapter describes the concepts of probability theory, expert systems, association rules and hyper-
graphs. Understanding probability theory is fundamental in order to discuss the effect of combining
rules in a reasoning network. When all is said and done, the goal is to express the degree of belief the
system has on a production failure, hence having an understanding of probability is important. Expert
systems codify and utilize knowledge obtained from experts or other sources. A brief introduction is
given so that the reader unfamiliar with the concept will have an understanding of the field of research.
In the preceding step of the suggested process described in Chapter 1.3.3 the concept of association rule
mining is crucial. Restricted association rules, as they will be named here, are given as input to the learn-
ing process, so basic terminology is introduced. Finally, one of the main suggestions of how to learn a
reasoning network from a rule set is built upon the notion of hypergraphs. Since this concept is not very
common, a section describing basic hypergraph theory ends this chapter.

As the chapter name indicates, the intention is to introduce underlying theory necessary to understand
what follows. Readers familiar with some or all of these concepts may skip the relevant parts.

2.1 Probability theory

Incomplete and uncertain information is unavoidable in practical artificial intelligence (AI) systems1 and
must be dealt with in a careful matter. A broad range of possible solutions have been suggested over
the past decades. In a review of the subject, Parsons and Hunter [46] split uncertainty formalisms in
two main directions; numerical2 and symbolic methods. The overall solution described in Chapter 1.3.3
clearly emphasizes a use of the former method.

Numerical methods include probability theory, evidence theory (also called Dempster-Shafer theory)
and possibility theory. These methods are, among others, evaluated in the light of expert systems by Ng
and Abramson [44]. Uncertainty is connected to the amount of belief one has of one or more events to
occur. How this belief should be assigned is a contentious issue, but traditionally the belief assigned is a
number between 0 and 1, where 0 is assigned to facts known to be false and 1 is assigned to facts known
to be true. Some theories limits the total belief that may be assigned in such way that the sum of all

1Expert systems belongs to the class of AI systems.
2The term quantitative methods is also in use.

16

the beliefs becomes 1, but this is not a constraint in e.g. possibility theory. Similarly, probability theory
limits the belief of a hypothesis based on the belief assigned to its negation. As pointed out by [46],
an essential feature of artificial intelligence applications is to combine beliefs that results from several
different information sources. This is also something that the theories threat in different ways.

The term "probability" can be interpreted in several ways, none of which can claim to be the only correct
interpretation. Three views have dominated since the turn of the century [44]:

• Objectivistic: Probability is a measure for the limit of an event’s relative frequency in a large
number of trials. In other words, it is guaranteed by the law of large numbers [22] that the percent-
age of an event’s occurrences will approach an objective probability given enough observations.
Another term used is "frequency probability".

• Subjectivistic: Probability is a measure of a person’s belief in a certain proposition. With this
view, it is possible that two person faced with the same evidence can have different degrees of
confidence in a given proposition’s truth. Other terms for subjective probability are "Bayesian"
and "personal".

• Logical: Probability is a measure for inferential soundness. It measures, out of logical necessity,
the extent to which one set of propositions confirms the truth of another. Logical probability is
also referred to as "necessary probability".

As written by [46], belief may be distributed on the basis of statistical information, physical possibility, or
purely subjective assessment by an expert, to mention some. Also, given the result of a belief distribution,
what is interesting is how the assigned beliefs may be manipulated. These questions are the core of
Chapter 3 and 4 respectively.

Lindley [36] claims that probability theory is based on three laws that define the behaviour of probability
measures:

1. The convexity law states that the probability measure for an event A given information H is such
that:

0 ≤ Pr(A|H) ≤ 1

2. The addition law refers to the probability of the union of two events. For two exclusive events (that
is, they cannot both occur) this becomes:

Pr(A ∪B|H) = Pr(A|H) + Pr(B|H)

or just
Pr(A ∪B) = Pr(A) + Pr(B)

If the two events are not exclusive, the calculation becomes:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Furthermore, for a set of n mutually exclusive and exhaustive events Ai, the sum of the probabili-
ties is equal to 1: ∑

i=1,...,n

Pr(Ai) = 1

17

3. The multiplication law gives the probability of two events A and B occurring together, that is, the
probability of the intersection of A and B:

Pr(A ∩B|H) = Pr(A|H) · Pr(B|A ∩H)

or just
Pr(A ∩B) = Pr(A) · Pr(B|A)

The probability Pr(B|A) is the conditional probability of B given A, meaning the probability of
B knowing that A has occurred.

From the laws above the famous Bayes’ theorem can be derived:

Pr(A|B) =
Pr(B|A) · Pr(A)

Pr(B)

The theorem is important since it makes it possible to compute the conditional probability relating two
events from the "reverse" conditional probability. Note that the probability of event A given event B
is generally different from the probability of B given A, but that there is a definite relationship which
Bayes’ theorem states. The various probabilities is further explained below:

• Pr(A) is the marginal probability of A, also called A’s prior probability.

• Pr(A|B) is the conditional probability of A given B, as explained earlier, and is often referred to
as the posterior probability.

• Pr(B|A) is the likelihood of A given fixed B, L(A|B)

• Pr(B) is the marginal probability of B, and in this case it acts as a normalizing constant.

To sum up, Bayes’ theorem may be written as

posterior =
likelihood× prior

normalizing constant
∝ likelihood× prior.

One important application of probability theory is Bayesian networks [49], a network structure represen-
tation that encodes the joint probability distribution for its domain. Bayesian networks consists of a set
of variables and a set of directed edges between them, where each variable has a finite set of mutually ex-
clusive states, and together with the directed edges they form a directed acyclic graph (DAG). Combined
with the structural information of the networks, conditional probabilities make it possible to reason more
efficiently. Bayesian networks are further investigated in Chapter 3 (learning) and Chapter 4 (reasoning)
respectively.

2.2 Expert systems

The traditional view of expert systems can be summarized as put by [20]:

"Expert systems are attempts to crystallize and codify the knowledge and skills of one or
more experts into a tool that can be used by non-specialists."

18

In the case of ConocoPhillips’ production processes, it is not necessarily the case that experts are in
possession of the desirable knowledge. Hence, it is also a goal to discover new knowledge of the produc-
tion process. Anyway, without stressing the use of the term expert, such systems consist of two parts; a
knowledge base and an inference engine.

The knowledge base contains domain-specific knowledge of a problem. The inference engine is the
system’s brain, in that it reason about the information in the knowledge base together with information
available for the application at hand, in order to reach some conclusion. Having this in mind, the quality
of the system is limited to the quality of the knowledge base. If the contents of the knowledge base is
poor, this will reflect the quality of the inferences. A clean separation of both components is preferable
in order to be able to improve the knowledge base if more information is acquired, and it also facilitates
learning from the experience of making mistakes [20].

According to Onisko et al. [45] there exists two major classes of expert systems, known as rule-based
systems and probabilistic expert systems. Rule-based systems are based on logical rules. The symbolic
reasoning mechanism has two main methods: (1) Forward chaining, that is, making valid deductions
from a given set of assertions, and (2) Backward chaining that is the reverse operation (determine whether
assertions exist that can validate a conjectured property).

2.2.1 Rule-based systems

One of the most widely discussed rule-based expert systems is MYCIN [53], a clinical consultation
program. It is based upon the concept of Certainty factors (CF) whose simple and intuitive appeal
makes it interesting to briefly summarize, while at the same time bringing a historical perspective to the
forthcoming discussions.

With CF, the consequent of rules with the form

IF 〈evidence〉THEN 〈hypothesis〉

is assigned a numerical weight in the interval [−1, 1]. The CF is computed from the degree of belief,
MB, and the degree of disbelief, MD, that are defined as follows:

MB =

{
1 if Pr(h)=1
max[Pr(h|e),P r(h)]−Pr(h)

1−Pr(h) else

MD =

{
1 if Pr(h)=0
min[Pr(h|e),P r(h)]−Pr(h)

Pr(h) else

The formula for CF is then CF = MB−MD
1−min(MB,MD) , which gives a number between -1.0 (total disbelief)

and 1.0 (total belief). It is tempting to interpret CF as statements of conditional probabilities, but as
pointed out by Spiegelhalter et al. [20] this can lead to inconsistency in that an arbitrary set of rules
might not be compatible with any overall probability distribution. If, on the other hand, this is the case,
it is not certain that the distribution is unique.

2.2.2 Probabilistic expert systems

Probabilistic expert systems, also called normative systems, are cross-over products from the field of AI
and statistics. They are graphical tools for knowledge representation and are based on the mathematical

19

foundation of probability theory. Even though the knowledge base probabilities are given by an expert,
reasoning is done applying a mathematical formalism. The idea of using the graphical structure to make
inference modular, hence introducing the important property of local computations, was probably first
introduced by Pearl [48]. One of the most prominent tools for this kind of expert systems are Bayesian
networks. As mentioned in Chapter 2.1, a more thorough investigation of Bayesian networks is given
in the succeeding chapters. Nevertheless, a simple example concludes this chapter in order to illustrate
some important properties of Bayesian networks, as they play an important role in the understanding of
probabilistic expert systems.

Figure 2.1: Bayesian network for the headache domain

Suppose one wish to reason about headache, and that there are two possible causes, namely the flu or
a malfunctioned ventilation system at work. Having the flu can also cause fever. A Bayesian network3

for this simple domain is shown in Figure 2.1. Table 2.1 shows the conditional probabilities for having a
headache, while Table 2.2 shows the conditional probabilities for having fever. In addition, the probabil-
ities for having the flu or that the ventilation system is malfunctioned are 0.01 and 0.15 respectively.

Flu Bad ventilation Headache=yes Headache=no
Yes Yes 0.99 0.01
Yes No 0.90 0.10
No Yes 0.30 0.70
No No 0.05 0.95

Table 2.1: Conditional probability table for having a headache

Flu Fever=yes Fever=no
Yes 0.80 0.20
No 0.05 0.95

Table 2.2: Conditional probability table for having fever

To calculate the marginal probability for having a headache, i.e. the probability of headache regardless
of other events, one has to sum over all combinations of states for fever, flu and bad ventilation. Thus,

Pr(Headache = yes) =
∑
Fl

∑
BV

∑
Fe

Pr(Headache = yes, Fever, F lu,Bad ventilation) = 0.0958.

3Figures in this examples are screen shots from Netica [43], a software package for Bayesian networks, decision nets and
influence diagrams. Calculations are also made using Netica.

20

The interested reader can find the full calculation in Appendix A.1.

If one day headache occurs, this observation is stated in the Bayesian network in order to update the other
events. To find the most likely cause, one most carry out the marginalisation process to obtain Pr(Flu =
yes|Headache = yes) = 0.0954 and Pr(Bad ventilation = yes|Headache = yes) = 0.481.

Suppose that later the same day, fever is observed. This changes the probabilities to 0.628 and 0.293
respectively. Thus, observing fever has increased the belief in flu causing the headache and at the same
time decreased the belief in a malfunctioned ventilation system as the cause. This effect is called ex-
plaining away since a tentative conclusion (bad ventilation is the most probable cause for headache) is
withdrawn on the basis of further information (observing fever causes the flu to be the most probable
cause for headache). Illustrations of the probability evolution just explained are given in Figure 2.2.

(a) Initial probabilities (b) Probabilities after observing headache

(c) Probabilities after observing fever

Figure 2.2: Illustrations of probability evolution for the headache example

2.3 Association rule mining

The task of association rule mining was introduced in 1993 [1] and has since been used in many appli-
cation domains. Looking back to the starting point, the motivation for mining association rules was the
great amount of basket data; items purchased on a per-transaction basis. Finding association and patterns
between products can be an important knowledge when it comes to decision making and marketing.

Adopting the formal definition given by [28], let I = {x1, ..., xn} be a set of distinct literals, called
items (e.g. articles). Also, let the database D be a multi-set of subsets of I where each T ∈ D is called
a transaction (e.g. if T consists of articles bought by one particular customer, then D consists of all such
purchases). A set of items, X ⊆ I, is referred to as an itemset, or more often a k-itemset where k = |X|.
An association rule is on the form X → Y where X and Y are itemsets and X ∩ Y = ∅ (following the
example so far, X can be bread and Y milk). Two important measures are defined from this:

21

1. Support: A transaction T ∈ D supports an itemset X ⊆ I if X ⊆ T holds. The support of the
rule X → Y is the percentage of transactions in D that contain X and Y . This is defined as

supp(X → Y) =
#(X and Y)
#(T ∈ D)

(2.1)

2. Confidence: The confidence of a rule X → Y is the percentage of transaction in D containing X
that also contain Y . This is defined as

conf(X → Y) =
supp(X → Y)

supp(X)
(2.2)

An itemset is called frequent4 if it satisfies a specified minimum support threshold. Rules that support
both a minimum support threshold and a minimum confidence threshold are called strong [50]. As
mentioned by several authors (e.g. [42] and [28]), two main problems exists for association rule mining:
(1) low algorithm performance and (2) results including a vast number of non-interesting rules. First, the
theoretical number of rules grow exponentially with |I|. The support and confidence measures are often
used to split the task into two sub-problems [1]. A large number of algorithms have been developed to
efficiently prune the search space and the Apriori algorithm [2] is maybe the most famous. The algorithm
takes advantage of the fact that all non-empty subsets of a frequent itemset must also be frequent. By
joining frequent (k-1)-itemsets to generate candidate k-itemsets, pruning the candidate set can be done by
deleting those containing any subset that is not frequent. Second, the number of possible rules generated
from the final set of frequent items can be quite large, and even if it is not, finding truly interesting
information is a non-trivial task. This problem introduces the problem of deriving robust and usable
interestingness measures for association rules.

In addition to support and confidence, many alternative interestingness measures have been developed.
Liu et al. [37] suggests two subjective measures; unexpectedness (an interesting rule is one that is
unknown to the user or contradicts the user’s existing knowledge) and actionability (an interesting rule
is one that a user can do something with to his advantage). Klemettinen [34] et al. use templates which
are pattern expressions that describe the form of rules that are to be selected or rejected.

Another measure is lift (first introduced as interest by Brin, et al. [11]) which is defined as

lift(X → Y) =
conf(X → Y)

supp(Y)
(2.3)

A lift value greater than 1 indicate an increase in probability of the consequent given the antecedent
(itemsets containing X tend to contain Y more often than itemsets that do not contain X), while a lift
value smaller than 1 indicates a negative correlation between the items. If the lift value is (near) 1 then
the items appear together as often as expected due to random chance.

4The term large itemset was originally used by [1]

22

2.4 Hypergraph theory

A review article on hypergraph theory, explaining terms, concepts and applications, is written by Gallo
et al. [25], and acts as a guideline for what follows. Definition 1 defines the concept of hypergraphs:

Definition 1. A hypergraph H = (V,E) is a pair where V is the set of nodes5 and E ⊂ 2V . Each
element of E is called a hyperedge.

A directed hypergraph is a hypergraph with directed hyperedges or hyperarcs.

Definition 2. A directed hyperedge (hyperarc) is an ordered pair, e = (X, Y), of (possibly empty)
disjoint subsets of nodes.

The node sets X and Y from Definition 2 are often referred to as tail (T (e)) and head (H(e)), respec-
tively. A hyperarc is called a B-arc (Backward hyperarc) if |H(e)| = 1 (Figure 2.3a), and F-arc (Forward
hyperarc) if |T (e)| = 1 (Figure 2.3b).

(a) B-arc (b) F-arc

Figure 2.3: Example of B-arc and F-arc

A B-graph, or B-directed hypergraph, is a hypergraph where all hyperarcs are B-arcs. Similarly an F-
graph is a hypergraph whose hyperarcs are F-arcs, and a BF-graph is one with both F-arcs and B-arcs.
As it will be clear from Chapter 3, it is assumed that rules will be on the form X1, . . . , Xn → Y , i.e. the
consequents are singletons. Furthermore, it will be argued that B-graphs are useful for representing such
rules, hence only B-graphs will be considered further. An example of a B-graph is seen in Figure 2.4a.

(a) A B-graph example (b) B-graphs with hypernodes indicated

Figure 2.4: B-graphs

5The term "vertex" is often used instead of "node".

23

Since an edge can span several nodes, the notion of hypernodes must be defined, formally done in
Definition 3.

Definition 3. Given a B-graph B with hyperedges {e1, . . . , em}, the hypernodes induced by the hyper-
edge ei are the tail T (ei) and the head H(ei) considered as single entities.

As shown in Figure 2.4b the hypernodes corresponding to the hypergraph of Figure 2.4a are:
{{A,B} , {C} , {D} , {C,E} , {X}}. Note that e.g. E is a node, but not a hypernode.

24

Chapter 3

Learning network structures

Learning network structures from data is a non-trivial process where care must be taken as the process
heavily influences how reasoning can be done. Other issues like the kind of input data, validity of cor-
relations between elements and user requirements must also be considered. This chapter first derives
assumptions made on input data. Rule syntax, rule semantics and rule cleaning are considered in the
light of the overall process of utilizing data to predict oil production anomalies. Thereafter, the concept
of Association Rules Network (ARN) is then described. ARN is a hyper-graphical model for repre-
senting rules whose consequents are singletons. Motivated by the lack of an overall framework with a
purpose beyond simple use of the information encoded by the network structure, Bayesian networks are
introduced next. Bayesian networks are among the most well-known tools for modelling variables and
their probabilistic dependencies.

3.1 Assumptions on learning input

Being a part of an overall process, the network learning task receives its inputs from the preceding step
of rule mining. Christiansen [17] studies this step in details and defines a rule syntax and rule semantics
that can be used to target rules suited for prediction. It is argued that a restricted form of rule syntax is
needed to ensure that rules unwanted for prediction are avoided. When combining rules in a reasoning
structure, the rule syntax also becomes important in order to build a sound reasoning structure. Further,
it is argued that the handling of time in a reasoning structure relies on a clear interpretation of the rules,
and how they relate to the time of occurrences of events. Besides rule syntax and semantics, the network
learning task depends on another part of the rule mining process called rule cleaning. Rule cleaning is the
process of identifying rules which are suited for prediction from a large rule set. Normally, rule mining
algorithms return a vast number of rules, so a process is needed for selecting the rules which are truly
interesting and well suited for prediction.

In the following, assumptions made on the rule mining task are given. Using the notation of [17], rule
syntax and semantics and rule cleaning are discussed separately.

25

3.1.1 Rule syntax and semantics

Rule syntax can be divided into three components: (1) Rule structure, (2) information about statistical
strength of a rule and (3) information about time in a rule. Rule structure is the most important of
the components when in comes to the isolated task of learning a network structure because some rule
structures make the construction of a reasoning structure difficult. In general a rule, X→ Y, consists of
two parts: the antecedent (left side, X) and the consequent (right side, Y). X and Y are sets of elements
(events) with sizes |X| ≥ 1 and |Y| ≥ 1. This gives four combinations of the number of events in the
antecedent and the consequent, as described in Table 3.1.

Rule structure Example
single→ single A→ B
single→ multiple A→ B,C
multiple→ single A,B→ C
multiple→ multiple A,B→ C,D

Table 3.1: Possible rule structures

The previous work of Christiansen and Helland [18] states that the best suited rule structure for integra-
tion in a reasoning structure is rules on the form multiple → single. The choice of discarding rules
with multiple events on the consequent side is made mainly because they are difficult to interpret. In the
case of using rules in a network for reasoning, having only one consequent element is more intuitive.
Rules with a single event in the antecedent does not support combinations of events as a trigger, while
rules that allow for multiple events in the antecedent make it possible to find combination of events that
together contribute to a failure. Hence, the assumed rule structure is multiple→ single.

Information about statistical strength of a rule concerns what kinds of measures that are computed for
each rule. Christiansen [17] recommends that support, confidence and lift are included in the rule syntax.
He also uses these measures to derive other interestingness measures for each rule, hence the rule syntax
should not be limited to the three mentioned only.

The last aspect of the rule syntax is the amount of time information included. It is here argued that
the rule syntax should not limit the possible reasoning mechanisms by leaving out information about
time. Theoretically it is possible to derive statistical distributions for the time between events in a rule. A
question must at the same time be asked what kind of information the operator will find useful. Adding
too much information of time will not only complex the reasoning scheme, it can also confuse the users
of the system. It is therefore assumed that information about the minimum time and maximum time
between the antecedent and the consequent is included in the rule syntax.

When it comes to rule semantics, it has already been stated that the handling of time in a reasoning
structure relies on a clear interpretation of the rules, and how they relate to the time of occurrences of
events. Given a rule structure on the form multiple → single the required temporal order of events
imposed by a rule becomes important in two ways; the order imposed between the antecedent and the
consequent (rule ordering), and the order imposed among the events on the antecedent side of the rule
(antecedent ordering). This gives four possible combinations of ordering among events, as seen in Table
3.2.

Consider first rule ordering: A parallel rule imposes no temporal order between the antecedent and the
consequent, while a serial rule imposes a total order between the antecedent set and the consequent,

26

Rule ordering Antecedent ordering
parallel parallel
parallel serial
serial parallel
serial serial

Table 3.2: Possible ordering of events

requiring that events in the antecedent occur before the consequent. As an example, consider the rules
A → B and B → A. With a serial rule these two rules differ, in opposite to a parallel ordering where
they constitute the same rule. Considering the case of predicting failures in oil production, which is
an ongoing time-spanning process, it is only interesting to predict events forward in time. Hence, rules
given as input to the learning process are assumed to be serial.

According to Table 3.2 also the antecedent elements can have a parallel or a serial ordering. Take as
example the two rules A,B → C and B,A→ C. Only when the antecedent is defined to be serial these
two rules differ. The consequence of using a parallel antecedent is that a belief in the specific ordering
of events causing the consequent is repressed. This could lead to loss of information, but according
to Maintenance Optimisation Engineer Fredrik Høymer Fossan at ConocoPhilips, the domain relations
mainly correspond to the occurrence of certain events within a specific time interval [24]. Since a parallel
antecedent makes less restrictions on the type of network that can be used, it is assumed that the input
rules conform to this property.

Having assumed that rules will have the structure multiple → single with a serial rule ordering and a
parallel antecedent ordering, it is possible to define the notion of time. Figure 3.1 explains the temporal
relations to be considered, using the rule X1, X2 → Y as an example.

Figure 3.1: Definition of temporal relations using the rule X1, X2 → Y

From this four time limits are defined:

• Minimum reaction time limit: Part of the rule syntax, but should conform to the minimum
reaction time for the operator.

• Maximum reaction time limit: Part of the rule syntax.

• Minimum rule time limit: Same as minimum reaction time limit.

• Maximum rule time limit: Defined by the width of the sliding window [17].

Table 3.3 summarizes the assumptions made on rule syntax and semantics.

27

Rule structure multiple→ single
Statistics Support, confidence and lift as a minimum, but other mea-

sures can also be included.
Time information Minimum and maximum time between the last event in the

antecedent and the consequent event.
Rule ordering Serial
Antecedent ordering Parallel
Reaction time limit Lower and upper bound are a part of the rule syntax, but the lower

should conform to the minimum reaction time for the operator.
Rule time limit Lower bound is the same as minimum reaction time, and upper

bound is defined by the width of the sliding window used for rule
mining

Example
A,B → C
(min: 10, max: 60)
(sup: 7%, conf: 90%, lift: 7)

Table 3.3: Assumptions made on rule syntax and semantics

3.1.2 Rule cleaning

Rule mining in general produces a vast number of rules, and a difficult problem is how to find the small
part of the resulting rule set that is really interesting [52]. The process of finding the set of interesting
rules is here known as rule cleaning. As the network learning process itself has no influence on the rule
cleaning process, some assumptions must be made on the final set of rules:

• The rules consists of events that are understandable to the user.

• The rules are relevant and interesting to such an extent that no further pre-processing must be done
on the rule set.

• An event that represents an anomalous situation that is to be avoided, is assumed to occur as
consequence in one or more rules.

A particular situation that must be commented is when two rules have the same consequent. Take as an
example the rules A → C and B → C; what about the rule A,B → C? According to the rule cleaning
assumptions this depends on whether the rule is seen as interesting or not. This heavily restricts the
kind of reasoning mechanisms that can be suggested, so it is assumed that communication with the rule
mining step is possible so that extra information can be retrieved if needed.

3.2 Association rules network

Given the goal of prediction, the intuitive way of seeing the problem of learning a network structure from
a set of rules is to build it recursively from the goal node. ARN, as introduced by Chawla et al. [14], is a
hyper-graphical model for representing rules whose consequents are singletons. More specific, rule sets
are represented and visualized as flow networks, using a hyper-graphical notation with weighted edges.

28

Definition 4 is that of [15] with two exceptions: (1) The goal node (item) z does not has to be frequent,
and (2) the hyperedge weights do not have to be the confidence of the rules. These two exceptions follows
directly from the overall solution where the preceding step is that of discovering dependencies between
events. The rules of interest do not have to be frequent (it might be rare) and confidence is just one of
several possible measures of interestingness (so it is not excluded either).

Definition 4. Given a set of association rules R and a goal item z which appears as a singleton in a
consequent of a rule r ∈ R. An association rules network, ARN(R, z), is a weighted B-graph such that

1. There is a hyperedge which corresponds to a rule r0 whose consequent is the singleton item z.

2. Each hyperedge in ARN(R, z) corresponds to a rule in R whose consequent is a singleton. The
weight on the hyperedge is some interesting measure of the rule.

3. Any node p 6= z in the ARN is not reachable from z.

An important property is the definition of a goal node, which every other node in the ARN are B-
connected to. It corresponds to the notion of a failure node for the oil production process. If there exists
several state of failures modelled as an event, an ARN must be built for each of them.

The earliest ARN learning algorithm [14] does not remove cycles. The authors note that a solution could
have been to add a constraint that a node which has served as a consequent cannot be an antecedent.
However, they reject that solution as that would destroy the uniqueness of the network. In order to
exclude cycles from an ARN while retaining reachability to the goal node, Chawla et al. [15] defines
the notion of node level, as introduced in Definition 5. Note that the definition of non-goal node level is
here slightly changed on the original article: A "+ 1" is added to in order to increase the count (if not, all
nodes would have been given the level zero).

Definition 5. 1. The level of the goal node is zero.

2. The level of a non-goal node v, is defined as
l(v) = min {l(u)|∃e such that v ∈ T (e) and u = H(e)} + 1

3. The level of a hypernode c is defined as l(c) = min{l(s)|s ∈ c}

As an example, consider Figure 2.4b in Chapter 2.4, in which l(X) = 0, l(E) = 1, l(C) = 1, l(D) = 2,
l(B) = 2, l(A) = 2, l({C,E}) = 1 and l({A,B}) = 2.

From the definition of node level, the definition reverse hyperedges [15] can be derived, which is impor-
tant since they generate redundant paths from a node to the goal.

Definition 6. A hyperedge e in an ARN is called a reverse hyperedge if l(T (e)) < l(H(e)).

3.2.1 Learning ARN

Informally, an ARN is learnt by first fixing an element c and finding all rules whose consequent is c.
In the next stage the antecedents of the selected rules play the role of consequents. [15] introduces a
breadth-first like algorithm for learning an ARN from a rule set R and a goal node c. It is an improved
version of the one in [14] in that it removes circular paths and redundant and backward edges. The
prevention of redundancies (cycles and reverse hyperedges) is based on two conditions:

29

• Condition 1: A node which has served as a consequence during ARN generation cannot be an
antecedent across levels for a rule whose consequent is at a higher level.

• Condition 2: The goal attribute can appear with only one value in the ARN, namely the one in the
goal node.

Consider the following set of rules:

A→ B A→ C

B → D C → E

C → F D → A

D → E E, F → X

Figure 3.2 shows the ARN learnt from the rules. The dashed edge from D to A, corresponding to the
rule D → A, is a reverse hyperedge and will not be a part of the final network. The learning algorithm
is further discussed in Chapter 3.2.2.

Figure 3.2: ARN with reverse hyperedge

The concept of ARNs has not been investigated by many authors, and a review of the publications within
the field has not revealed any suggestions of how to add time semantics to the networks. Time semantics
should not complicate the network in such a way that standard propagation techniques1 cannot be used.
Since both nodes and edge weights must be updated continuously as events occur, an idea is to use some
sort of overall time mechanism in order to adjust the weights according to the rules time of validity.
This would not alter the propagation techniques, as required. Chapter 4.1.4 continues the discussion on
temporal information in ARNs.

1The statement "standard propagation techniques" refers to the propagation techniques that belongs to each individual type
of network when no extra semantics are added to nodes or edges.

30

3.2.2 Improving the ARN algorithm

The ARN learning algorithm described in the literature [15] has some flaws that must be corrected in
order to reach the goal of learning a network structure from a set of rules. In Algorithm 1 these flaws
are taken care of, and each correction is explained in the following. The algorithm assumes that the goal
node occurs as a singleton consequent item in at least one rule, and has a time complexity of O(kn)
where n is the number of distinct items and k is the number of rules.

• Line 1: Initialization of visited[i] =∞,∀i and level[i] =∞,∀i is added.

• Line 2: For the consequent, c, the level is initialized to 0 (level[c] = 0).

• Line 7: The variable s is never updated in the original algorithm. It is assumed that the intended
meaning is to avoid edges between nodes constituting a hypernode (with two or more nodes). For
the temporal nature of the problem domain this is not desirable, so the variable is removed. A con-
sequence is that the function Rules.getRules(R, u, s) is transformed to Rules.getRules(R, u).
In addition an assumption is done on the rule base that it does not contain rules where the conse-
quent element is also a part of the antecedent.

• Line 9: a is defined precisely to be a set of elements (possible of size 1). In line 10 it is the set,
which represents the notion of a hypernode, that is set to have level = ∞. For an explanation of
the difference between a node and a hypernode see Definition 3 of Chapter 2.4.

• Line 9: the Rules.getAntecedents() is called with argument r, not u as in the original algorithm.

• Line 30: Cycles between hypernodes on the same level are not necessarily removed based on
confidence, but based on a user selected interestingness measure. Note that such a measure cannot
be symmetric in order to distinguish rules like A→ B from B → A.

• Line 35: The variable u is updated at the end of each loop. u is set to be the next element of the
queue q of elements that have played the role as antecedent. This queue is thus first-in, first out
(FIFO).

ARN is an intuitive and simple concept, but it does not conform to a greater framework with a purpose
beyond simple use of the information encoded by the network structure. A more consistent concept
should be investigated where the network structure and network reasoning are close connected. This is
the subject for Chapter 3.3.

31

Data: Rules R, Consequent c
Result: A directed hypergraph G representing an ARN which flows into c
/* visited[i] = 1 if i has been visited as a consequent */
Initialize visited[i]← 0, level[i] =∞, ∀i;1

level[c] = 0;2

visited[c]← 1;3

u← c;4

Add u to queue q;5

repeat6

RuleSubset← Rules.getRules(R, u);7

/* Get all rules whose consequent is u */
for all rules r ∈ RuleSubset do8

a← Rules.getAntecedents(r);9

level[a] =∞;10

for all elements w ∈ a do11

if level[w] < level[a] then12

level[a] = level[w];13

end14

end15

if level[a] ≥ level[u] then16

for all elements w ∈ a do17

if visited[w] = 0 then18

Add w to q;19

visited[w] = 1;20

level[w] = level[u] + 1;21

end22

end23

G.addHyperEdge(r, u);24

/* Directed hyperedge flowing into u */

end25

end26

if q is empty and G is singleton then27

return G = ∅;28

else if q is empty and G is not singleton then29

G.removeLevelCycles();30

/* Remove level cycles based on interestingness measure */
return G;31

end32

end33

Delete u from q;34

u← next(q);35

until false;36

Algorithm 1: The corrected ARN learning algorithm

32

3.3 Bayesian networks

A Bayesian network is a network structure representation that encodes the joint probability distribution
for its domain and consists of a set of variables and a set of directed edges between them. Each variable
has a finite set of mutually exclusive states, and together with the directed edges they form a directed
acyclic graph (DAG). For each variable Y with parents X1, ..., Xn, the conditional probability table
(CPT) P (Y |X1, ..., Xn) is given. As noted by [31], the definition of a Bayesian network does not refer to
causality, so it is not required for the links to represent causal impact. When learning Bayesian networks
it is often easier for humans to think of the connection between two nodes as causal. The emphasis
should, however, be put on avoiding to include conditional independences which do not hold in the real
world. Figure 3.3 shows an example of a Bayesian network. It encodes the joint probability for the
variables represented by the nodes A-H, in addition to a set of independence assumptions as explained
next.

Figure 3.3: Bayesian network example

A complete specification of a probability distribution requires vast numbers. As an example, consider
n binary random variables; the complete distribution is specified by 2n − 1 joint probabilities. The
built-in independence assumptions for Bayesian networks can reduce this number dramatically. This is
due to the fact that in a Bayesian network, each variable is independent of its non-descendants in the
graph given the state of its parents. In Figure 3.3 this leads to the conclusion that node F is independent
of every other node given D and E, while node E is independent of A-D and G given C. Thus, the
joint probability distribution can be uniquely determined by the local conditional distributions, i.e. the
conditional distribution of a variable given its parents.

3.3.1 Learning Bayesian networks

Research on Bayesian network learning gained speed by the publishing of "Learning Bayesian networks:
The combination of knowledge and statistical data", an article by Heckerman et al. [27] that soon was
considered required reading for Bayesian network researchers. It describes a Bayesian approach for
learning Bayesian networks from a combination of user knowledge and statistical data. Figure 3.4 shows
a view of the Bayesian network learning task.

The task of learning a network from a set of restricted association rules, differs from the method of [27]
in two ways:

33

Figure 3.4: Bayesian network learning

• No prior knowledge of the network structure exists.

• The data to be learnt from is not stored in database form, but consists of rules.

It is now suggested that the network structure learnt by Algorithm 1 can be used as a basis for learning a
Bayesian network. To do this some adjustments must be made as discussed below:

• Network structure: In general, each hyperedge e has to be replaced by single edges. This is done
by removing e and then add one edge between each node v ∈ T (e) and H(e). By doing this the
network structure becomes a DAG as requested. Note that a node can be a part of several hyper-
edges leading to the same consequence, so a test must be made in order to avoid redundancies. As
an example consider the rules A,B → X and B,C → X . The process of replacing hyperedges
by single edges will create two edges from B to X , but only one is necessary.

• Conditional probability tables: The CPT for each variable Y with parents X1, . . . , Xn must
be specified. From the process of mining restricted association rules is it possible to derive the
required numbers by calculating the confidence for the necessary combination. As an example
consider the rule A,B → C. The CPT for C includes: conf(A,B → C), conf(A,¬B → C),
conf(¬A,B → C) and conf(¬A,¬B → C).

• Composite2 rules: As mentioned in Chapter 3.1.2 a situation may arise that two rules have the
same consequent, e.g. A → C and B → C. However, Bayesian networks do not distinguish
{A→ C,B → C} from {A,B → C}, and the CPT for C will be as above for both situations. If
the correspondent composite rule (A,B → C) is not a part of the input rule set, communication
with the rule mining process is needed to obtain the full CPT. In the opposite case redundancies
will be created, so a simple test must be performed while transforming hyperedges: For each
hyperedge e, remove any single edge from v ∈ T (e) to H(e) before accomplishing the hyperedge
replacement.

Considering the challenge of composite rules as discussed above, it might be tempting to delete a general
rule (e.g. A → C) from the rule set when a more specific one exists (e.g. A,B → C). However, this
cannot be done due to the cross-level restriction of the network learning algorithm. Recall that the level

2A rule is called composite if the number of antecedent elements is of size two or greater.

34

of a hypernode is defined to be the lowest level of its single elements. A composite rule might be skipped
from the network due to the cross-level restriction, while at the same time it is possible that a single rule
whose antecedent is of a higher level will be a part of the network. This justifies why general rules must
exist in the presence of more specific ones.

3.3.2 Time modelling in Bayesian networks

Bayesian networks do not provide a direct mechanism for representing temporal dependencies. In [18]
an overview of Bayesian network variants that incorporate the notion of time is given. None of Temporal
Bayesian networks (TBN) [57], Dynamic Bayesian Networks (DBN) [39, 33] or hidden Markov models
(HMM) [51] are deemed suitable for the overall solution proposed. A suggestion is given to alter the
node semantics such that a node’s conditional probability table reflects the probability that the event will
occur within some time if one or more of its parents occur. This approach has in fact been introduced
by Arroyo-Figueroa and Sucar [8, 5, 4] as Temporal Nodes Bayesian Network (TNBN), and later as
Temporal Bayesian Network of Events (TBNE) [7]. They apply the method to the dynamic domain of
fossil power plant diagnosis, among others.

As pointed out by the founders of TBNE it is complicated to extend Bayesian networks semantics to
deal with temporal relationships. The main problem is to represent each node with its dependence rela-
tionships over multiple points of time. The motivation behind the development of TBNE is the fact that
in many cases there are few state changes in the temporal range of interest. At the same time, it is also
expedient to make a simple network where standard probability propagation techniques for diagnosis and
prediction can be used. The goal is to represent a complex system evolving over time, with the following
main properties: (1) Given evidence about the past and present state of the system, predict the system’s
future state, and (2) given a future state determine the most probable cause.

A TBNE is a Bayesian network of events in discrete time where each temporal node represents an event
or state change of a variable, and the arcs represent causal-temporal relationships between the nodes. A
temporal node is defined as a set of ordered pairs (σ, τ) where σ is the state or value variable and τ is
the time interval associated with each state variable attribute. The conditional probability distribution for
each node is defined as the probability of each ordered pair (σi, τi) given the ordered pair of its parents
(σj , τj). There is a default state of no change that corresponds to the initial value (or the normal value),
associated to the full temporal range of the node. It is pointed out that while previous approaches are
based on point models of time, and as such require that events occur instantaneously, it is often more
natural to consider events taking place over time intervals.

In a TBNE temporal information is relative, meaning that there is not an absolute temporal reference.
The temporal intervals on each node are relative to its parents. Relative times are transformed to absolute
based on the timing of the observations; an initial event is used as a temporal reference for the other
events. In other words, the actual timing of the events represented in the network is dynamic.

Figure 3.5 shows a TBNE example as presented by [4] which models a drum level system in a fossil
power plant (detailed knowledge about this process is not necessary in order to understand the following).
Consider the node labelled DHL (Drum Level High condition) and its parent, FWF (Feedwater Flow
increment). Table 3.4 gives the probability of the state and corresponding time interval for DHL given
the state and time interval of FWF. Remember that the time intervals are relative.

In order to learn a TBNE, the arguments from Chapter 3.3.1 still hold. In addition, time intervals must

35

Figure 3.5: A TBNE example

FWF True, [10–27] True, [27–135] False, [10–135]
True, [25–144] 92% 5% 3%
True, [144–248] 8% 91% 1%
False, [10–27] 2% 2% 96%

Table 3.4: CPT for the DLH node

be defined. By altering the node semantics as just described, the number of states of a node needed
to represent the state change of the process potentially increases. In other words, a consequence is
an additional number of assignments in the joint probability distribution, increasing the complexity.
However, based on the preceding rule syntax discussion it is clear that for the overall solution suggested
only two intervals will be defined for each node: True, [Minimum time, Maximum time] and False, [0,
Maximum rule time limit]. This is information available to the learning process.

As previously discussed, a situation may occur that a composite rule is "missing" in the input rule set. In
the same way as for CPT-values, time intervals must be retrieved from the mining process. This shows
the need for an overall strategy when developing a complete solution, i.e. the three recommended steps
cannot be done in total isolation. Note that the Bayesian learning approach briefly mentioned in Chapter
3.3.1 does not include support for temporal information. For the process of learning a TBNE, [7] uses
an expert to define both the network structure and the time intervals. Using this method restricts the size
of the system to be modelled, and enforces the need for a domain expert with thorough knowledge of the
processes. To turn the situation, restricted association rules might be seen as a replacement for expert
knowledge. In addition, the rule mining process might find associations unknown to the user.

3.3.3 Issues by combining Bayesian networks and association rules

Other authors have applied Bayesian networks and association rules together for various purposes. Fauré
et al. [23] uses a Bayesian network together with association rules in an iterative process. A network
is initially built by considering a priori expert domain knowledge. When mining rules, this network is
used to exclude rules describing known dependencies. The association rules remaining are then used
to update the Bayesian network, using an expert-driven annotation process. Motivated by the fact that

36

in data mining the patterns which diverge the most from the background knowledge are deemed most
interesting, Jaroszewicz and Simovici [30] also use a Bayesian network to represent a priori knowledge.
They, however, use this knowledge to measure the degree of interest for mined itemsets. The most
interesting itemsets are iteratively used to update the background knowledge. A third application of the
combination of association rules and Bayesian networks are given by Lamma et al. [35]. They propose
an improvement for the Simple Learning Algorithm (SLA) [16], which is a well known algorithm for
learning Bayesian networks, by using association rules to infer the initial structure of the network.

A review of the publications within the field made by [18] did not reveal any common applications of
Bayesian networks as decision structures based solely on mined association rules. The reason for this is
twofold: First, there is a disagreement about the concept of causality [32]. Bowes et al. [10] argue that
association rules are semantically weak, meaning that such rules do not necessarily imply any deeper
relationships between the involved variables. Further, they conclude that mined rules must be evaluated
by a domain analyst, something which is both time-consuming and difficult. As an alternative, causal in-
ference algorithms (like the Bayesian approach to Bayesian network learning) are proposed. It is claimed
that where association rule generation techniques find surface associations, causal inference algorithms
identify the structure underlying such associations. Tse and Liu [56] agree that causal inference algo-
rithms always extract relationships that are stronger than association rules, since their elicitation is based
on rigid statistical testing. A problem is, however, that the tests can be too rigid that some subtle, but
novel rules would be rejected during the testing process. Association rules, on the other hand, can be
mined with novelty in mind (e.g. setting a low support threshold). Another problem, pointed out by
Karimi and Hamilton [32], is that Bayesian networks find causality even in domains where the existence
of causal relations itself is a matter a debate. An example given by [54] is the rule "Minister is caused by
Prime", found by analysing words in political texts using Bayesian network methods.

It should be clear from the discussion above that the concept of causality is not a one-sided issue since
there is a balance between the strength of relationship and novelty. Considering the overall process
described in Chapter 1.3.3 there is a belief in the concept of rule interestingness, i.e. novelty should be
weighted at least as much as strength of relationship. When it comes to network learning and reasoning
the focus is also on the relationship between the rules as a set, not on each individual rule.

Second, association rules and Bayesian networks are in fact examples of methods from different research
traditions within the field of data mining, as explained by Hollmén et al. [29]: Probabilistic modelling
consists of what can be called global techniques and views data mining as the task of approximating
the joint distribution. The idea is to develop modelling and description methods that incorporate an
understanding of the generative process producing the data. The other tradition can be described as
the technology of fast counting [38] and can be seen as a collection of local techniques. The goal is
often to discover frequently occurring patterns. Each pattern and its frequency indicate only a local
property of the data, and a pattern can be understood without having information about the rest of the
data. Association rules belong to this tradition.

Mannila [38] explains that the process of mining association rules can be seen as a search for simple
descriptions that are true for a reasonably large fraction of the data set. The author argues, however, that
even though each pattern can be understood in isolation, the algorithms are complete. In other words
they find all patterns from a class of patterns that satisfy certain conditions, hence also some global
information is provided. Simply speaking, the association rules themselves are local, but the collection
of rules gives global information of the data set.

As noted by [29, 38] there are in general many distributions that can explain the observed frequent

37

sets. Suppose the frequencies f(X) for all subsets X are known such that f(X) ≥ σ. For σ = 0 the
frequencies of frequent set determine the distribution uniquely; however, σ = 0 means 2|R| frequent sets,
and therefore the approach is infeasible. For σ > 0 methods like inclusion-exclusion [47] can be used,
but that is beyond the scope of this discussion. The important realisation is that a collection of rules
provides global information that might be utilized in some manner.

38

Chapter 4

Reasoning in network structures

Having built a network from a set of rules, the next step is to define how to reason in such a represen-
tation. The process of reasoning is tightly connected to inference. The interpretation of the latter term
is domain dependent: In statistics, it is the process of drawing conclusions about a parameter one is
seeking to measure or estimate, while in logic, it is the derivation of conclusions from given information
or premises by any acceptable form of reasoning [12]. Inferences are classified as either deductive or
inductive. They differ in that in the deductive case the truth of the premises guarantees the truth of the
conclusion, whereas in the inductive case the truth of the premise lends support to the conclusion without
giving absolute assurance. Bayesian inference is a member of the inductive class and uses probability
theory as the framework for induction. More specific it uses Bayes’ formula to compute the conditional
posterior probability that the hypothesis is true, given what was observed. The calculation involves
the unconditional prior probability that the hypothesis is true, as well as the conditional probabilities
of getting what was observed given the hypothesis and given the alternative. With this as background,
reasoning can be said to be the process of drawing inferences appropriate to the situation [13].

For network structures as considered here, the ability and computational feasibility of propagation is an
important property. Propagation can be seen as the process of spreading something abroad or into new
regions. This chapter deals with the question of how to define the network reasoning mechanisms for
updating the system’s belief in a failure. Using the terms just introduced, the goal is to define how to
propagate evidences of occurred events in order to reason about oil production failures.

The question has already been asked in the literature how to translate the probabilities obtained for an
event in advice to an operator [6]. It is thus important that the specialist environment of oil production
agrees in advance how e.g. "70% probability of a production anomalie in 2 hours if event E occurs"
should be interpreted. Motivated by the fact that even a simple formalism can be valuable if recom-
mandations are understandable to the user, this chapter first discusses how reasoning can be done in
Association Rules Networks. ARN does not have a clear formalism of reasoning, and the suggestion is
to use correlation between nodes expressed by using the concept of shortest-path in graphs. Next, fun-
damentals of reasoning in Bayesian networks are introduced, and importance is put on reasoning with
temporal information. Finally, a comparison of the suggested reasoning schemes ends this chapter.

39

4.1 Reasoning in ARN

Reasoning in ARN has been minimally discussed in the literature. Starting with blank pages, it is possible
to think of several ways of reasoning, using e.g. other uncertainty formalisms than that of probability
theory, or even measures initially not related to uncertainty at all.

4.1.1 Fundamentals of ARN reasoning

Chawla et al. [15] suggest that an ARN goal node can be explained by the hyperpaths leading to it, thus
they see the reasoning process as the problem of finding optimal1 hyperpaths in cycle free B-graphs. If
Vmax is the set of all maximum level nodes in an ARN, then for each v ∈ Vmax let be Pv be the set of all
hyperpaths from v to the goal node. The authors define two cost measures based on confidence for each
hyperpath p:

1. Weight(p) =
∑
ei∈p

log2(conf(ei))

2. Info(p) = −
∑
ei∈p

conf(ei)log2(conf(ei))

It is suggested that Weight(p) can be interpreted as the strength of the correlation between the source
and the goal node, and Info(p) can be interpreted as the total information gain along the path from the
source to the goal node. The optimal path in Pv using one of the two measures can be seen as the best
explanation for dependence of the goal node on v.

The general problem of finding optimal hyperpaths in hypergraphs has been studied by Ausiello et al.
[9]. An algorithm of time complexity O(|H|+nlogn) is reported, where |H|, the size of the hypergraph,
is

∑
ei∈E

(|T (ei)|+1). In general, running times for directed graph shortest-path algorithms are lower than

those of hypergraphs. There exists a broad range of shortest-path algorithms for such graphs, many
which are deduced by e.g. [19]. The algorithms vary with the purpose and constraints on the graph. A
well known class of problem is the single-source shortest-path problem: Given a graph G = (V,E), find
the shortest path from a given source node s ∈ V to each node v ∈ V . Algorithms solving this problem
can also solve other problems like the single-destination shortest-path problem: Find a shortest path to a
given destination node t from each node v. This can be reduced to a single-source problem by reversing
the direction of each edge in the graph.

If the graph considered is a directed acyclic graph (DAG), an algorithm called Dag−Shortest−Paths
can be used. It has a total running-time of Θ(V + E), something which is linear in the size of an
adjacency-list representation of the graph [19]. This favourable running-time is achieved by using the
fact that the nodes of a DAG can be topological sorted. A topological sort of a DAG, G = (V,E), is
a linear ordering of all its nodes such that if G contains an edge (u, v), then u appears before v in the
ordering. Another benefit of DAGs is that shortest paths are always well defined since even if there are
negative-weight edges, no negative-weight cycles can exists. This makes less constraints on the set of
possible measures for optimal paths.

1The term optimal path is used together with shortest path since a short path will provide information about the optimal
explanation of correlation between two nodes.

40

4.1.2 Transforming an ARN to a DAG

Both the linear running time of finding the shortest path and the handling of negative-weight edges
motivates for a transformation of an hyperhraph-based ARN to a DAG. The transformation of a B-graph
to a DAG must therefore be considered. Taking the network structure itself as a starting point, hyperedges
must be replaced by single edges, as for the learning process of Bayesian networks in Chapter 3.3.1.
ARN, however, does distinguish {A→ C,B → C} from {A,B → C}, so care must be taken in order
to preserve this information in the DAG. In general, components of a former hyperedge must be labelled
with this information in order to put correct weights on the edges.

The scheme for putting weights on components of a former hyperedge can be illustrated by the rule
A,B → C which initially is modelled with a hyperedge from A and B to C. In general there are two
cases that must be considered: When there is no edge between A and B (Situation 1: Figure 4.1a) and
when such an edge exists (Situation 2: Figure 4.1b).

(a) Situation 1 (b) Situation 2

Figure 4.1: Illustration of hypergraph transformations.

For both situation 1 and situation 2, there are again four cases that must be considered, i.e. combinations
of A and B, in order to set the correct edge weights, as shown in Table 4.1. The table cells should
be interpreted as giving the rule from where to retrieve the correct weight. As an example consider a
situation where event A has occurred. According to the table the edge from A to C should be given the
weight of the rule A→ C and the edge from B to C should be given the weight of the rule A,B → C.

As the Table 4.1 shows, the two situations are similar but for one case, that is when none of A and B
have occurred and the weight for the edge from B to C is needed. The weight in this situation can be
found like this:

1. If the path considered (in the shortest-path algorithm) includes the edge between A and B (note that
this edge might be one of an earlier hyperedge including other nodes), the measure for A,B → C
must be used.

41

Edge from A to C Edge from B to C
`````````````̀Occurred events

Situation
1 2 1 2

1. None A→ C A→ C B → C Special situation
2. A A→ C A→ C A,B → C A,B → C

3. B A,B → C A,B → C B → C B → C

4. A and B A,B → C A,B → C A,B → C A,B → C

Table 4.1: Explanation of transformed hyperedge weights

2. Paths not including the edge from A to B must use the measure for B → C.

Also note that there will never be a path from A to B not including the direct edge between the two as
the notion of node level in the ARN learning algorithm ensures this.

The example described can be generalized to account for hyperedges where |T (e)| = n, n > 2. Each
node in a former hypernode constellation must keep a list of the other former members, and their status
(occurred/not occurred). This list must also be updated with temporarily information of what former
member nodes that have been visited during the current shortest-path algorithm pass.

4.1.3 Explaining correlation between nodes

For the specific problem considered, using single-source shortest-path, the shortest path from each oc-
curred node should be calculated. Any path including an occurred node that is not the source of the path
is redundant and can be left out. Another way of using the information encoded by the ARN is to turn
the single-source shortest-path problem to a single-destination shortest-path problem. By doing this it
is possible to find every node whose shortest path to the goal node conforms to a pre-defined level of
correlation. The algorithm should be stopped when the level of correlation is diminished, or it comes up
against a node that has occurred. In the same way the temporal information can be used, stopping the
shortest-path algorithm when the path exceeds a pre-defined amount of time from the root node. It is
important that the principles of Chapter 4.1.2 are carefully considered when turning the edge directions
in order to execute single-destination shortest-path. In fact, Table 4.1 can be used as it is, taking the
special situation into account. A check must be performed if the path includes the edge from B to A
whether it also includes the edge from C to B (remember that the edges are turned).

The edge weights in ARNs do not have to be probabilistic measures. As long as the path measure gives
some sort of explanation of the correlation between the source and the goal node, the measure itself
is subordinate. As previously mentioned Weight(p) and Info(p) have been suggested as alternative
measures [15]. The latter, being the total information gain along the path from the source to the goal
node, is not suited for the domain at hand. Since information gain is the change in entropy, the uncer-
tainty associated with a random variable, from a prior state to a state that takes some information as
given, probabilities on both ends of the scale (0 to 1) are treated more or less similarly. In short, the
reason for this relates to the amount of information a random variable provides, and in such a context
low probabilities can give as much information as a high ones. This is illustrated by Figure 4.2a that
shows the graph of the function f(x) = x · log2(x). It should be clear from this that the shortest-path
concept presented here needs a monotonically increasing/decreasing function in order to unambiguously
represent the amount of belief in a future oil production anomaly.

42



Weight(p) is previously stated as representing the strength of correlation between the source and the
goal node. Taking a deeper look into the formula it sums the logarithm of the edge weights, in this case
the confidence of the rules, which is the same as multiplying the weights and then scaling the answer by
taking the logarithm of it. As an example consider a path, p, consisting of the two edges e1 = 0.8 and
e2 = 0.9:

Weight(p) = log2(0.8) + log2(0.9) = −0.47 = log2(0.8 · 0.9)

By multiplying the confidence of the rules, an assumption about rule independence is made. This is due
to the definition of statistical independence that states that any collection of events is mutually indepen-
dent if, and only if, for any finite subset A1, . . . , An of the collection it is true that Pr(A1 ∩ · · · ∩An) =
Pr(A1) · · ·Pr(An). Hence Weight(p) is a log-scaled probabilistic measure assuming rule indepen-
dence. In proportion to the non-scaled value, log-scaling leads to a greater punishment of lower values.
Figure 4.2b shows the graph of the function f(x) = log2(x). Note that Weight cannot be used straight-
forward since it, in terms of shortest path, credits the lowest correlation values. This can be fixed by
using Weight(p) =

∑
ei∈p

−log2(conf(ei)) instead. From now on Weight should be interpreted this

way.

(a) Graph of the function f(x) = x · log2(x). (b) Graph of the function f(x) = log2(x).

Figure 4.2: Illustrations of the weight functions.

As mentioned the edge weights in ARNs do not have to be probabilistic measures. Christiansen [17]
discusses a range of interestingness measures for rules, and concludes that support, confidence, lift
and J-measure [55] constitute a complement set of measures needed to clean a rule set. J-measure
is an information-theoretic measure that combines a bias toward more frequently occurring rules (the
antecedent probability), with the degree of surprise in going from a prior probability (the consequent
probability) to a posterior probability (the probability of the consequent after observing the antecedent).
It is here important to distinguish the interestingness measures used for rule cleaning as well as remov-
ing level cycles when learning (see Algorithm 1) from the one used as correlation measure, since not
every measure can be combined in a meaningful way. This is the case for J-measure as the antecedent
probability is used directly in the calculation of it. To see the inconvenience of this property, consider
the simple network of two rules, A→ B and B → C. If A has occurred, the correlation between A and
B can be found directly by applying the selected rule weight. In order to find the correlation between A
and C, the measured correlation between A and B is used as the system’s belief in B, and this should
be combined with the weight of the last rule in order to find the desired correlation. By using J-measure,
this would be meaningless since it contains the marginal probability of B. The same argument hold for
A; the event has for sure occurred, so the marginal probability does not matter.

The use of several interestingness measures to clean rules is justified in that they complement each other.
Take for example J-measure; it is a symmetric measure that credits both probable and improbable rules,

43



but by only selecting rules with a lift value greater than 1, it becomes asymmetric with respect to positive
correlations. Lift also strengthens the belief on confidence as a provider of information contained in a
rule as it can be used to prune rules explaining negative correlations. Recall the assumption made that
input rules are relevant and interesting. Having a rule set with these properties, one must find the measure
that best explains correlation between nodes. Of the four measures suggested by [17], confidence has
already been mentioned, and it will be further discussed in Chapter 4.3. It is, however, important to
realize that the ARN reasoning mechanism is flexible when it comes to edge weights as long as the best
correlation between two nodes can be explained by a shortest path.

4.1.4 Reasoning with temporal information in ARN

To the author’s knowledge there has been no research on representing temporal information in ARNs.
The temporal information is useful for two purposes: (1) It can be used to update the edge weights, and
(2) it provides information to the operator. Since temporal information can alter the edge weights a pass
must be made over the network before running the optimal-path algorithm in order to set the correct
values. In order to describe this process, the notion of an event’s living time must be defined. The life
analogy is also used for rules.

Definition 7. An event’s living time is the time from when it first occurs to it must be considered without
influence. When an event occurs, it is brought to life, and when its living time is up, it dies (or gets killed).

The following list explains how living times for events and rules can be found:

• The width of the sliding window used for rule mining defines an upper limit for an event’s living
time, so it is chosen as a measure.

• A rule’s living time is the maximum reaction time which is given as a part of the rule, as ex-
plained in Chapter 3.1.1. At runtime, a countdown must be initiated with the occurrence of the
last antecedent element of a rule. When the number of antecedent elements is one, this is without
complications. For composite rules, however, this could lead to a situation where an antecedent
event dies before the rule does. A composite rule is pruned and not given as input to a learning
process if it does not provide extra information with respect to the corresponding single rules. In
other words, the antecedent elements of such rules can together be presumed to have a major influ-
ence on the consequent (negative or positive) compared to the effect of each of them alone. Hence
it is reasonable to utilize composite rules, even though one or more of the antecedent elements are
dead for a period of time.

Tables 4.2a and 4.2b sum up the runtime temporal behaviour of events and rules.

ARN reasoning is a blank page with respect to the extent of research on, and applications of, Bayesian
networks. It is built on the principle of simplicity and consequently it lacks expressiveness. Thus,
Chapter 4.2 explores reasoning in Bayesian networks which can be viewed as offering expressiveness at
the expense of complexity.

44



Incident Action
Event occurs Time-stamp

event
A living event re-occurs Re-stamp

event
Event exceeds sliding
window width

Kill it

(a) Utilization of event temporal information

Incident Action
All antecedent events are
alive

Time-stamp
rule

An antecedent event dies Do nothing
An antecedent event gets
re-stamped before the rule
dies

Re-stamp
rule

Rule time exceeds given
living time

Kill it

(b) Utilization of rule temporal information

Table 4.2: Reasoning with temporal information in ARNs.

4.2 Reasoning in Bayesian networks

Bayesian network reasoning is the process of propagating effects of occurring events to the rest of the net-
work. In Bayesian networks, effects are spread regardless of the direction of the directed edges between
nodes. Below, fundamentals of Bayesian network reasoning are described, followed by an explanation
of the consequences of introducing time. Special importance is attached to the TBNE reasoning mecha-
nisms.

4.2.1 Fundamentals of Bayesian network reasoning

In general, evaluating Bayesian networks is NP-hard [31], hence requiring the need for efficient inference
algorithms. Inference can be done by sampling (using e.g. Monte Carlo techniques - see for instance
[26] for an introduction) or by using heuristic-based algorithms for exact inference. If the variables
considered are continuous (or a mixture of discrete and continuous) sampling techniques are the only
choice. In the problem at hand, methods for exact inference can be used. A summary of the process,
based on the elaborate review given by Jensen and Nielsen [31], is given next. Note that the process
described is not visible to the user, and that the extensiveness of the method reflects the NP-complete
nature of Bayesian networks.

Exact inference is based on a structure called junction tree. This structure is compiled offline, i.e. in
the construction phase, using moralization and triangulation. Moralization is the process of "marrying"
nodes with one or more common children. In other words, an edge is drawn between any two nodes in
the directed graph having an edge pointing to the same node. Considering Figure 4.3a it is easy to see
that there are two node-pairs that must be married, namely {D, E} and {E, G}. The moralization step
ends with the removal of edge directions, with the result of Figure 4.3b.

An undirected graph is triangulated if, and only if, every cycle of length four or greater contains an edge
that connects two non-adjacent nodes in the cycle. Inference complexity is exponential in clique-sizes, so
emphasis should be made to minimize the clique-sizes of the network. A clique is defined as a complete
set (all nodes are pairwise linked) that is not a subset of another complete set. Triangulations with a
minimal maximum clique-size is NP-hard so heuristics must be used. Taking Figure 4.3b as a starting
point, the cycle that must be altered is {A, B, D, E, C}. Adding an edge between B and C leaves the
cycle {B, D, E, C}. To complete the triangulation an edge between D and C is added, as shown in Figure

45



4.3c. Note that this is not a unique solution (an edge between B and E could have been added in the last
step).

(a) Bayesian network (b) Moralized graph (c) Triangulated graph

Figure 4.3: Illustration of the triangulation process

The triangulated graph has the property that a join tree can be built from it. A join tree is built by
organizing the set of cliques from the undirected graph in a tree. In a join tree, for any pair of nodes
V,W all nodes on the path between V and W contain the intersection V ∩W . Consider the join tree in
Figure 4.4a. On the path between the nodes {A,B,C} and {C,E,G} we find the intersection variable C.

(a) Join tree (b) Junction tree

Figure 4.4: The join tree and junction tree for the triangulated graph in Figure 4.3c

Finally, each edge in the junction tree is labelled with the intersection of the adjacent cliques. These
labels are called separator sets, or separators, and the resulting structure forms a junction tree. In this
structure, nodes can pass messages to calculate the marginal distributions, hence it is making exact
inference possible. Figure 4.4b shows the junction tree for the triangulated graph in Figure 4.3. The
circles represents cliques while the squares represents separators.

This explains the underlying structure used when building a system for exact inference in Bayesian
networks. Several implementations of the junction tree propagation algorithm exists, and an example of
probability updating is given in Chapter 2.2.2.

46



4.2.2 Reasoning with temporal information in Bayesian networks

In Chapter 3.3.2 the temporal representation TBNE is introduced. An important property of this repre-
sentation is that it makes it possible to reason using the same algorithms as classic Bayesian networks.
As mentioned, the temporal intervals of each node are relative to its parents. In addition, an initial event
is used as a temporal reference for the other events. The actual time interval of occurrence for each event
is determined by a three-step process [7]:

1. Event detection and time interval definition
The time of occurrence for the initial event, tinit, is utilized as a temporal reference for the network.
This initial node can be either a root node, an intermediate node or a leaf node. In the first case, the
actual value of the node can be determined since root nodes are instantaneous events. In the two
other cases, the value of the variable cannot be determined because the event could be associated
to any time interval for the state. A second observation has to be made in order to determine the
interval. When the next event is detected, its time of occurrence, tposterior, is utilized for defining
the time interval associated with the real time occurrence function, α = |tinit − tposterior|. The
value of α is used to set the time interval of the child node considering the parent node as the initial
event. This step is applied recursively to subsequent events.

2. Propagation of the evidences
Having obtained the value of a node (time interval and associated state), the effect of this value is
propagated through the network.

3. Determination of the past and future events
With the posterior probabilities it is possible to estimate the potentially past and future events based
on the probability distribution of each temporal node.

In order to deal with situations where there are not enough information (e.g. only one event is observed,
which corresponds to an intermediate node), [7] suggests using scenarios. The node is instantiated to
all intervals corresponding to the observed state, and the posterior probabilities of the other nodes are
obtained for each scenario. When other events occur, the scenarios are evaluated accordingly to the
new information. As previously argued, time semantics should not complicate the network in such a
way that standard propagation techniques cannot be used. Even though the concept of TBNE fulfils this
requirement, one should be aware of the complexity of introducing scenarios. By using scenarios several
parallel networks will exist until enough information is available.

Also note that restricting the number of states to true/false, does not in general restrict the number of
state changes defined per node. In fact, the definition of the number of time intervals and their duration
for each node is free (multiple granularity) and can be see as a trade off between the complexity and the
accuracy needed for depicting the knowledge of the temporal domain. In Chapter 3.1.1 the possibility
of deriving statistical distributions for time between events is mentioned. If desirable this could be
combined with the option of multiple granularity in order to give more accurate temporal information,
but as mentioned this is a trade-off between complexity and the need for such information.

47



4.3 Comparing the suggested reasoning schemes

TBNE/Bayesian networks and ARN are two different concepts representing the trade-off between com-
plexity and expressiveness. In Bayesian networks each node has associated with it a conditional prob-
ability table that quantifies the effects that the parents have on the node. Taking the graph as a whole,
the conditional probabilities and the structure can be used to determine the marginal probability or like-
lihood of each node holding one of its states. Changing one of these marginal probabilities, the effect is
propagated throughout the network, updating the other probabilities. This powerful, but complex process
contrasts the one of ARNs that uses a simple approach where effects propagate in one direction only. The
ARN reasoning process does not produce answers of exact probability, but offers flexibility in the way
correlation between nodes are measured, and runs in linear time.

As an example consider the difference of the simple approach of assuming independence, as for the
Weight-measure, and the comprehensive mathematical model used by Bayesian networks. The example
consists of two rules:

• A→ B with confidence = 0.8

• B → C with confidence = 0.9

Assuming that event A has occurred, Weight(A 7→ B 7→ C) = 0.47, as shown in Chapter 4.1.3 (with
the sign reversed). Without the log-scaling this value becomes 0.72. In the Bayesian network case the
calculations becomes as follows:

Pr(C|A) = Pr(C,B|A) + Pr(C,¬B|A)

=
Pr(A,B, C)

Pr(A)
+

Pr(A,¬B,C)
Pr(A)

=
Pr(A)Pr(B|A)Pr(C|A,B)

Pr(A)
+

Pr(A)Pr(¬B|A)Pr(C|A,¬B)
Pr(A)

= Pr(B|A)P (C|B) + Pr(¬B|A)Pr(C|¬B)
= 0.8 · 0.9 + Pr(¬B|A)Pr(C|¬B)
= 0.72 + 0.2 · Pr(C|¬B)

In other words, the Bayesian calculation takes into consideration the probability of C when B is true
and when B is false, while the simple ARN approach underestimates the value by only considering the
positive example. It is worth noting that the value of Pr(¬B|A), corresponding to the rule A → ¬B,
can be expected to be very low if the network in general consists of rules with high values of confidence.
The underestimate, however, becomes even greater in cases where a node has more than one parent since
the number of possible state combinations grows exponential.

Nevertheless, it should not be concluded that ARN does not provide valuable information to the user. By
using the ARN approach, it is the different values within the ARN that will be compared. Recall that the
question of how to translate probabilities in advice to the operator does not have a clear answer. Hence,
it is important that the system’s belief of a production failure is expressed in an understandable, unam-
biguous manner, regardless of the underlying calculations. The important task is the one of translating

48



various calculated results to user-friendly terms, and this is an iterative, expert-driven task that must be
executed with care for each domain considered.

Table 4.3 summarizes the reasoning mechanisms of ARN and TBNE.

Property ARN TBNE
Complexity Linear-time shortest path algo-

rithms can be used by transform-
ing the hypergraph to a DAG

NP-hard, heuristics must be used

Effect of occurring events A shorter path to the goal node
may be found

Propagated throughout the net-
work

Expressiveness Node correlations can be calcu-
lated using several measures, but
the interpretation of the answers
must be carefully investigated

The marginal distribution for
each node is available

Table 4.3: Comparing the reasoning mechanisms of ARN and TBNE

An example that illustrates the discussed differences between ARB and TBNE, is given next. The ficti-
tious rule set found in Chapter 3.2.1 is used as a starting point, but rule weights and time intervals are
added. Maximum rule time is set to 60 minutes, and the full specifications can be found in Appendix
A.2. Reasoning in ARN will be done by the single-source shortest-path-principle, using the Weight-
function with confidence as input. Screen shots from Bayesian network reasoning are created by using
Netica [43]. Note that Netica does not support the full concept of TBNE, but the example is chosen
carefully in order to avoid ambiguities. Finally, the goal node, representing an anomalous situation, is
the node labelled X.

As previously shown, the network built from the rule set will be like the one of Figure 4.5.

Figure 4.5: Generic network learned from a fictitious rule set

The generic network is next transformed to both a TBNE and a DAG-ARN, as shown in Figure 4.6
(temporal intervals are omitted in order to increase readability). The dotted line surrounding nodes E and
F symbolises that they have previously constituted the tail of a hyperedge. For the sake of simplicity,

49



only TBNE-figures will be used for illustration from now on.

(a) Initial TBNE (b) Initial ARN

Figure 4.6: TBNE and ARN after transformation

Assume now that event A occurs. TBNE uses a Bayesian network reasoning mechanism to update the
marginal probabilities of the other nodes, and the result can be seen in Figure 4.7a. It shows among
others that the probability of the goal node, X, is calculated to be 3.90%. As for ARN, consider first the
two paths leading to E: Weight(A 7→ B 7→ D 7→ E) = −log2(0.6)− log2(0.65)− log2(0.6) = 2.095
and similar Weight(A 7→ C 7→ E) = 1.484. In other words, the latter represents the part of the shortest
path going from A to X via E. Finally, Weight(A 7→ C 7→ E 7→ X) = 6.543 and Weight(A 7→ C 7→
F 7→ X) = 7.243, so the path via E is in fact the shortest path from A to X in the network. If this value
should cause an alarm, the path can be used as an explanation of the correlation between the source and
the goal node.

(a) TBNE after the occurrence of A (b) TBNE after the occurrence of E

Figure 4.7: TBNE after the occurrence of A and E respectively

50



After only 30 minutes, event E occurs, and the TBNE updates the marginal probability of X to 6.24%,
as seen in Figure 4.7. Note also the increase of belief in C that has been raised from 55.0% to 75.5%,
and should become a candidate for careful monitoring. According to the temporal intervals, this prob-
ability will hold for another 25 minutes. Taking a look at ARN, there are two paths to be considered:
Weight(E 7→ X) = 5.059 and Weight(A 7→ C 7→ F&E 7→ X) = 4.921. The including of E in the
latter path conforms to the scheme of Table 4.1. This also explains why the path from A just becomes
the shortest one, since the probability of X given E and F is much higher than if just one of them has
occurred. Finally, the temporal information presented to the user is "If C within 25 minutes⇒ F within
55 minutes after C⇒ X within 50 minutes after F".

This example illustrates some of the differences between TBNE and ARN. Consider first the explanation
of the goal node. TBNE calculates its marginal probability and a visual inspection of the network is
needed in order to discover the influencing nodes. The ARN method explains its findings by stating the
path from the source to the goal node. In the example above it would not be unnatural to explain several
paths, at least after the occurrence of E. Implicit this also highlights another difference since in TBNE
the choice of node(s) to monitor does not affect the reasoning. By using ARN, the reasoning mechanism
needs to know in advance the node to which the shortest path shall be calculated. This is important since
there might be situations where other nodes than the one representing an anomalous situation should
be monitored (and alarms possibly given). Finally, the previously discussed underestimation of ARN
reasoning is illustrated since the path A 7→ C 7→ E 7→ X does not take into account the increased
probability of F (and hence underestimates the belief in X).

Even though the example is fictitious, it illustrates a likely property of the domain in that the proba-
bility of the target node is small under certain conditions. Truly interesting and novel relations for the
target event, with a high probability, are assumed to be found when the number of antecedent elements
increases [17]. If this is the case, a careful consideration should be done before using ARN due to the
underestimation property.

51



Chapter 5

Discussion and conclusion

The combining of local and global data mining techniques should be done stepping carefully between
the two research traditions. On the other hand, an important realisation is that only a single successful
prediction of an oil production anomaly will save ConocoPhillips from a major loss of income. Thus,
details from a discussion between the two traditions are subordinate to suggestions of how a system that
will help the operators to do their job even better can be made. Looking back at the motivation and the
problem description it is clear that a pragmatic view on the case is reasonable.

This chapter first considers a short-term solution that can be implemented and tested immediately at
ConocoPhillips, followed by a discussion taking a long-term view on the issue. Emphasis is put on
discussing consequences of choices made. Next this is also done for the overall process of network
learning and reasoning, considering the three-step process of data utilization in the oil production domain
as well. Finally, this master thesis’ contributions to the field of expert systems are discussed, before a
conclusion is given at the end of the chapter.

5.1 Suggested solutions

For ConocoPhillips it is valuable to receive suggestions on how oil production data can be utilized in a
short-term view. Taking such a solution as a starting point, a discussion on its strengths and weaknesses
is also desirable. This knowledge should then be used as foundation for a more advanced solution, taking
a long-term view on the issue.

5.1.1 A simple solution

The preceding chapters have shown that the concept of ARN constitutes a simple, but effective solution
to the problem. By transforming the network to a directed acyclic graph (DAG), linear running times can
be achieved for the reasoning algorithms. The Dag − Shortest− Paths algorithm is well known, and
the only obstacle to overcome is to implement the dynamic edge-weight scheme of Table 4.1. In order
to explain correlations between nodes, the Weight-measure is suggested, using confidence as input.
Reasoning should be done calculating the shortest path from every occurring node, giving a warning
if the value exceeds a pre-defined threshold. In what follows, important properties of this solution are

52



discussed.

Complexity
The transformation of a B-graph to a DAG is previously justified by the reduced running time of the
shortest-path algorithms. This is, however, not a one-sided issue, as the transformation results in a non-
trivial edge-weight scheme. If the resulting network is small, the reduced running time is ignorable.
Normally, rule mining processes produce a vast number of rules, but the rule cleaning operation preced-
ing the network learning might reduce this number considerably. It is therefore advisable to chose the
type of network after the structure learning, evaluating each case for itself.

Independent of the type of network, the temporal behaviour of events and rules adds complexity to the
network. Recall the summary of living times as given in Table 4.2. The updating scheme itself is trivial,
but it requires frequently traversals of the network in order to perform the updates.

Correlations
The Weight-measure is previously shown to be an underestimate of the probability since it assumes
independence between variables. Its main advantage is the simple calculation, using a measure that can
be easily calculated during rule mining. It biases high confidence levels, and the log-scaling makes the
total score to drop dramatically when total confidence falls beneath 0.3 (see Figure 4.2b). For domains
where small values of confidence can be expected, the suitability of the method must be thoroughly
considered. If this is mainly the case for rule where the target node acts as a consequence, as mentioned
in Chapter 4.3, a solution is to monitor nodes preceding the target.

In principle any interestingness measure can be used, as long as the results are interpretable. The ARN
shortest-path method requires communication with domain experts in order to decide what range of
values that should cause a warning (or multiple ranges for graded warnings).

Type of reasoning
A drawback of the suggested reasoning method, i.e. calculating the shortest path from every occurring
node, is the lack of utilization of temporal information. The operator might be interested in rules where
the maximum time from the goal node is limited to e.g. 8 hours. A question can also be asked whether it
is necessary to calculate the shortest path every time a node occurs. Both of these concerns can be dealt
with using the principle of single-destination shortest-path. In fact, by setting thresholds in advance, a
network can be learnt including only those nodes meeting the operator’s requirements. By doing this, if
the network is small enough, it is possible to reduce the online monitoring to be that of a visual inspection
of the network only.

The main advantage of the suggested reasoning method is the information completeness with respect
to the recently suggested alternatives since they restrict the number of nodes in the network, hence,
leaving out information of possibly novel correlations. Even though it can be argued that the temporal
information could be better utilized than in the suggested solution, the information is presented with each
rule constituting a shortest path. Thus, it is up to the operator to take advantage of this information. This
is the core of expert systems: They shall help users doing a better job, not replace them.

To sum up ARN shortest-path provides a simple and intuitive solution to the failure prediction problem.
Temporal information is easily encoded and the shortest-path algorithms are considered well known.
Independent of the network size, fast reasoning mechanisms exists. The simplicity is also the main
drawback of the solution since the answers provided are inaccurate. Use of domain experts is required
in order to obtain the range of values that should cause a warning.

53



5.1.2 An advanced solution

TBNE represents a more comprehensive solution built upon the framework of Bayesian networks. The
combination of encoding temporal information and at the same time keeping the standard propagation
mechanisms of such networks is what makes TBNE appealing. Transforming the ARN network structure
to a TBNE is easily done, but requires communication with the rule mining process in order to retrieve
missing values for the various CPTs. As for the simple solution, important properties of this one is
discussed next.

Complexity
As described earlier Bayesian networks are complex structures, considering both learning and reasoning.
Since the learning problem is dealt with, it is mainly the reasoning process that adds complexity to the
solution considered. The NP-complete nature of Bayesian network reasoning limits the practicable size,
but it is the encoding of temporal information that should be given most attention. There exists a range
of commercial available implementations of various reasoning algorithms for Bayesian networks, but to
the author’s knowledge this is not the case for TBNEs. In other words, a solution based on the concept
of TBNE must either be built from scratch or adapted to an available solution.

Correlations
In Bayesian networks in general, the marginal probability of every node is calculated based on the infor-
mation provided by the other nodes. For TBNE in particular, the temporal information adds important
knowledge of a node’s state. Also recall that effects are spread regardless of the direction of the directed
edges between nodes, hence it is not appropriate to speak of node correlations as previously done for
ARNs. Even though probability is a known term to most people, it is difficult to exactly explain the
difference between 70% and 80% probability of an event. Domain experts should be consulted before
deciding the thresholds for warnings.

In the Bayesian network introduction of Chapter 3.3 it was stated that emphasis should be put on avoiding
to include conditional independences which do not hold in the real world. By learning networks from
rules, it is difficult to prove whether such independences exist or not. On the other hand, the easy learning
of temporal intervals from rules might outnumber this disadvantage. One way of seeing this problem is
to view it in the light of the weighing between global and local methods, and take it into account when
evaluating the overall solution. It is also possible to let a domain expert remove errors from the resulting
networks. Note that by using an expert the solution is biased towards his knowledge, and for the complex
domain at hand this might not be preferable.

To sum up TBNE, as a temporal extension of Bayesian networks, provides a sustained framework for
probabilistic reasoning. It is a powerful tool where marginal probabilities can be found for every node
of interest. Its complexity is also what makes it difficult to implement, especially taking the temporal
properties into account. By using rules as a basis for such networks, it is also important to be aware of
unwanted conditional independences that might be encoded.

A comparison of the most important properties of the two solutions is given in Table 5.1.

54



Simple, ARN-base Advanced, TBNE-based
Complexity Simple Major, especially due to encod-

ing of temporal information
Correlations Weight is used as distance mea-

sure. The distance from every
occurred node to the goal node
is calculated

Calculates the marginal proba-
bility for every node. A visual
inspection of the network can be
done in order to discover which
nodes that influence the target
node most

Variants Several implementation variants
can be considered

If a finer granularity of the tem-
poral intervals is supported by
the rule mining process, this can
be implemented in the TBNE

Role of domain expert Interpret correlation measure in
order to set warning thresholds

Interpret probabilities in order to
set warning thresholds, maybe
prune network in order to re-
move unwanted independences

Main drawbacks Inaccurate correlation measures
that can be difficult to interpret

Complexity, might encode inde-
pendences that does not hold in
the real world

Main advantages Simple to implement, fast rea-
soning mechanism

Accurate calculations, the
framework of Bayesian net-
works is well known

Table 5.1: Properties of the suggested solutions

5.2 Evaluating the overall solution

Having considered two specific solutions to the learning and reasoning problem, this section provides
a more general discussion of the subjects, also considering the recommended three-step process of data
utilization in the oil production domain.

Considering the assumptions on learning input from Chapter 3.1, one of them should be discussed more
thoroughly. Take the parallel antecedent assumption: It is likely that some information is lost with respect
to the alternative of using serial antecedents, but the amount is unknown. A disadvantage of restricting
the antecedent to be serial is its impact on possible reasoning networks as e.g. Bayesian networks cannot
be used without greater modifications of the concept. The strict requirement of events occurring in a
given order might quickly lead to a complex situation as an event can be a part of several rules, playing
a different role in each of them. Hence, the choice of using parallel antecedents is a trade-off between
expressiveness and complexity.

Another important subject is time, and the question must be asked what consequences leaving temporal
information out of the process will have. As already seen the encoding and use of temporal information
adds complexity to the process, especially when it comes to the concept of Bayesian networks. The main
argument for using temporal information is expressiveness, i.e. the additional information it gives the
operator. At the same time it has been argued that the operator does not need an exact distribution of
the time, but a coarse description of what the system believe will happen. A solution could have been to
drop temporal information from the learning and reasoning process, and provide some general properties

55



of the rules instead. This solution depends on the nature of the rules. If most rules lies within the same
temporal interval, the solution could be as good as the alternative, but if the intervals vary a lot, dropping
the temporal information might cause dropping extremely important information as well.

Argumentation can also be given for the opposite view that the temporal information suggested is too
coarse-grained. TBNE supports the encoding of several temporal intervals for a node, so more accurate
statements of temporal relations can be expressed. The consequence of a finer granularity is increased
complexity of the network. In short, the encoding of temporal information is a choice concerning the
user’s need, the availability of the information (from the rule mining process) and a balance between
expressiveness and complexity.

Looking back to the guidelines for data utilization (Chapter 1.3.3) and the particular problem case of
emulsification in the low pressure separator of process 2/4 J (Chapter 1.3.2), the framework of Mollestad
[40, 41] outputs a set of tags that are relevant to the target, and constitutes the input data for the next
step of discovering dependencies between events. The work of Christiansen [17] shows that it is possible
to mine restricted association rules and clean the (possible huge) set of rules in order to give as input
to the learning process only the most interesting and relevant ones. With the results of this thesis it
is therefore likely that the overall solution will add valuable information to the task of pre-warning
anomalous situations in oil production processes, and in particular to the problem case of process 2/4 J.

Nevertheless, a question must be asked whether other solutions can be suggested with the knowledge
obtained from the previously discussions of network learning and reasoning. As written in Chapter 3.3.1
Bayesian networks can be learned by combining user knowledge and statistical data. In order to carry
out such a process the data should be stored in database form. The output from the first step of the
overall solution can be seen as a continuous time line of events, hence it must be transformed to fulfil
the database requirement. A solution to this might be to use the notion of sliding windows, i.e. to let
each sliding window be a database row. Assuming this method can be used, the next issue to consider is
temporal information. The founders of TBNE obtained time intervals for each node based on knowledge
about the modelled process combined with data from a simulator [7]. This method limits the size of
domain to be modelled and also violates the thoughts of discovering new and novel relations in the data.
As mentioned in Chapter 3.3.3 Bayesian networks and association rules have been applied together in
iterative processes to overcome the latter issue. An extension of these thoughts in order to comprise
temporal information should not be deemed impossible.

This short discussion shows that other approaches than the one suggested is possible. It does, however,
require a different view on how to solve the problem. The three step of the overall solution used as a
model are dependent on each other and they are developed from a holistic point of view. In general, the
main advantage of this model is its intuitive appeal and the possibility of combining large amounts of
data and automated processes with expert knowledge. For the step of knowledge utilization, as discussed
in this thesis, the user gets a framework for combining rules in order to be pre-warned of anomalous
events. It is up to the user to select target node, node(s) to monitor, and the various alarm thresholds.
Cooperation between knowledge engineers and domain experts in the process of setting up the system
is crucial in order to achieve success. Finally, there is no such thing as the solution, i.e. every case is
different an must be treated thereafter.

56



5.3 Contributions

This thesis contributes to the field of expert systems by combining thoughts from both rule-based systems
and probabilistic expert systems. More specific, its most novel suggestions are:

• Building a network structure from rules by further developing the concept of ARN. Most impor-
tantly are:

– The improvement of the learning algorithm described in the literature.

– Transformation of an ARN hypergraph to a DAG.

– Reasoning in the transformed ARN, including temporal information.

• The combination of association rules and Bayesian networks, methods which origin from two
different research traditions. The rules are used both for building the network structure and for
setting the values of the CPTs. Further, it suggests using the temporal information encoded by the
rules to extend the solution to the concept of TBNE.

5.4 Conclusion

In this thesis methods have been derived for combining event patterns in time series, called restricted
association rules, in order to warn about future anomalies in oil production processes. It conforms to the
third step of knowledge utilization in a guideline for data utilization in the oil production domain devel-
oped by Mollestad [40, 41]. Two parts of the knowledge utilization step have been explored: Network
learning and network reasoning.

Network learning is the problem of how to learn a network structure from restricted association rules. A
concept called Association Rules Network (ARN) [14] is proposed as a framework for learning a network
structure from a set of rules. ARN is a hyper-graphical model for representing rules whose consequents
are singletons. Weak points in the description of the ARN learning algorithm reported in the literature
are uncovered, and based on this an improved version is presented.

Network reasoning is the process of propagating evidences of occurred events to the rest of the network
in order to update the system’s belief of oil production failures. Reasoning in ARN is done by calculating
correlation between nodes based on the shortest-path principle, so to reduce the complexity of reasoning
the hypergraph-based ARN is transformed to a DAG. By doing this, linear running time algorithms can
be used. It is proven that by computing the shortest path by the Weight-function when confidence is used
as edge weights, the ARN reasoning mechanism underestimates the real probability values. However,
as even exact measures of probability is not easily translated to the operators, the results of the ARN
reasoning process stands for itself. Thorough investigation of what values that should raise an alarm
must be done by domain experts in advance of operational use. Due to its simplicity and intuitive appeal
the ARN method is suggested as a solution, taking a short-term view on the issue.

Bayesian networks are one of the most well known concepts of probabilistic reasoning. Motivated by the
shortcoming of ARN the relations between association rules and Bayesian networks have been investi-
gated. It is pointed out that there do not exists any common applications of such networks based solely on
mined association rules, and that they in fact are examples of methods from different research traditions

57



within the field of data mining. Another obstacle is the lack of direct support for representing temporal
dependencies in Bayesian networks. Based on this, a concept named Temporal Bayesian Network of
Events (TBNE) [7] is introduced. TBNE enjoys the properties of Bayesian network reasoning while at
the same time representing temporal information. This is achieved by altering the node semantics such
that a node’s conditional probability table reflects the probability that the event will occur within some
time of its parents.

The problem of learning TBNE from a set of restricted association rules is suggested solved by taking the
hypergraph-based ARN as a starting point and transforming it to a valid Bayesian network structure. The
temporal intervals and corresponding probabilities for each node can partly be obtained from the rules,
but communication with the rule mining process is required in order to retrieve missing values. Where
ARN stands for simplicity, TBNE offers expressiveness at the expense of complexity, hence TBNE is
suggested implemented in the longer term.

In a broader perspective the thesis contributes to the field of expert systems by combining thoughts
from both rule-based systems and probabilistic expert systems. It is important to stress the role of the
expert, not just in operational mode, but also when setting up the system. Both the network structure and
interpretation of reasoning results should be developed in cooperation between knowledge engineers and
domain experts.

This thesis has shown that it is theoretically feasible to combine restricted association rules in order
to create a network structure for reasoning. It is concluded that the final choice of solution must be
based on a careful consideration of the trade-off between complexity and expressiveness. For further
work a natural continuation is testing the concepts of ARN and TBNE with real data. In particular,
an interesting goal of research is to explore exactly how the node correlations provided by the ARN
reasoning mechanism should be interpreted in a given domain. Also, a study should be done to measure
the size of the underestimate of using confidence, with respect to the exact values. Further, a closer
integration with the rule mining process should be carried out in order to evaluate the size and nature of
the rule set given as input to the learning task. Finally, an interesting study would have been to compare
the performance of the overall solution used as a model for this thesis with a solution based solely on
Bayesian learning methods.

58



Bibliography

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages 207–216, Washington, D.C., 26–28 1993.
2.3, 2.3, 4

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 20th Int. Conf.
Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann, 12–15 1994. 2.3

[3] ConocoPhillips - 2006 Annual Report. http://www.conocophillips.com, 30 May 2007. 1.2

[4] G. Arroyo-Figueroa, Y. Alvarez, and L. Sucar. SEDRET - an intelligent system for the diagnosis
and prediction of events in power plants. Expert Systems with Applications, 18:75–86, 2000. 3.3.2,
3.3.2

[5] G. Arroyo-Figueroa and L. Sucar. A temporal bayesian network for diagnosis and prediction.
In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99),
pages 13–20, San Francisco, CA, 1999. Morgan Kaufmann. 3.3.2

[6] G. Arroyo-Figueroa and L. Sucar. Temporal bayesian network of events for fault diagnosis and
prediction in thermal power plants. In J. M. Agosta, O. Kipersztok, K. B. Laskey, K. W. Przytula,
and I. Rish, editors, Proceedings of the First Bayesian Applications Modeling Workshop, 2003.
http://www.intel.com/research/events/UAI03_workshop. 4

[7] G. Arroyo-Figueroa and L. E. Sucar. Temporal bayesian network of events for diagnosis and pre-
diction in dynamic domains. Applied Intelligence, 23(2):77–86, 2005. 3.3.2, 3.3.2, 4.2.2, 4.2.2,
5.2, 5.4

[8] G. Arroyo-Figueroa, L. E. Sucar, and A. Villavicencio. Probabilistic temporal reasoning and its
application to fossil power plant operation. Expert Systems with Applications, 15:317–324, 1998.
3.3.2

[9] G. Ausiello, G. F. Italiano, and U. Nanni. Hypergraph traversal revisited: Cost measures and
dynamic algorithms. In MFCS ’98: Proceedings of the 23rd International Symposium on Mathe-
matical Foundations of Computer Science, pages 1–16, London, UK, 1998. Springer-Verlag. 4.1.1

[10] J. Bowes, E. Neufeld, J. E. Greer, and J. Cooke. A comparison of association rule discovery and
bayesian network causal inference algorithms to discover relationships in discrete data. In AI ’00:
Proceedings of the 13th Biennial Conference of the Canadian Society on Computational Studies of
Intelligence, pages 326–336, London, UK, 2000. Springer-Verlag. 3.3.3

59

http://www.intel.com/research/events/UAI03_workshop


[11] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, pages 255–264. ACM Press, 1997. 2.3

[12] Inference defined by Encyclopedia Britannica. Encyclopedia Britannica Online: http://www.
britannica.com/eb/article-9042389. Last visited 25 April 2007. 4

[13] Reasoning defined by Encyclopedia Britannica in the article "Artificial Intelligence". Encyclopedia
Britannica Online: http://www.britannica.com/eb/article-219080. Last visited 25 April
2007. 4

[14] S. Chawla, B. Arunasalam, and J. Davis. Mining open source software (OSS) data using associ-
ation rules network. Technical Report TR535, School of IT, University of Sidney, Sidney, NSW,
Australia, 2003. 3.2, 3.2, 3.2.1, 5.4

[15] S. Chawla, J. Davis, and G. Pandey. On local pruning of association rules using directed hyper-
graphs. In ICDE ’04: Proceedings of the 20th International Conference on Data Engineering, page
832, Washington, DC, USA, 2004. IEEE Computer Society. 3.2, 3.2, 3.2, 3.2.1, 3.2.2, 4.1.1, 4.1.3

[16] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning bayesian networks from data: an
information-theory based approach. Artificial Intelligence, 137(1-2):43–90, 2002. 3.3.3

[17] J. Christiansen. A Framework for Discovering Interesting Rules from Event Sequences with the
purpose of Pre-warning Oil Production Problems. Master’s thesis, Norwegian University of Science
and Technology, 2007. 1.3.3, 3.1, 3.1.1, 3.1.1, 4.1.3, 4.3, 5.2

[18] J. Christiansen and P. K. Helland. Mining time series in order to predict loss in oil production.
Technical report, Norwegian University of Science and Technology, 2006. 1.3.3, 3.1.1, 3.3.2, 3.3.3

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second
Edition. The MIT Press, September 2001. 4.1.1

[20] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter. Probabilistic Networks and
Expert Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. 2.2, 2.2.1

[21] J. de Jongh and ConocoPhillips. Business and Company Background COP, internal document.
2006. 1, 1.2, 1.3

[22] R. Durrett. Probability: theory and examples. Duxbury Press, second edition, 1996. 2.1

[23] C. Fauré, S. Delprat, J.-F. Boulicaut, and A. Mille. Iterative bayesian network implementation by
using annotated association rules. In S. Staab and V. Svatek, editors, Proceedings of the 15th Inter-
national Conference on Knowledge Engineering and Knowledge Management EKAW’06, October
2006. 3.3.3

[24] F. H. Fossan. "Masteroppgave - domenespørsmål". Personal email. Fredrik Høymer Fossan is a
Maintenance Optimisation Engineer at ConocoPhilips. The mail is dated 11 May 2007. 3.1.1

[25] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications. Discrete
Applied Mathematics, 42(2-3):177–201, 1993. 2.4

[26] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo Methods in Prac-
tice. Chapman and Hall, London, 1996. 4.2.1

60

http://www.britannica.com/eb/article-9042389
http://www.britannica.com/eb/article-9042389
http://www.britannica.com/eb/article-219080


[27] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination
of knowledge and statistical data. In KDD Workshop, pages 85–96, 1994. 3.3.1, 3.3.1

[28] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining — a general
survey and comparison. SIGKDD Explorations, 2(1):58–64, 2000. 2.3, 2.3

[29] J. Hollmén, J. K. Seppänen, and H. Mannila. Mixture models and frequent sets: Combining global
and local methods for 0–1 data. In SIAM International Conference on Data Mining (SDM’03), San
Fransisco, may 2003. 3.3.3

[30] S. Jaroszewicz and D. A. Simovici. Interestingness of frequent itemsets using bayesian networks
as background knowledge. In KDD ’04: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 178–186, New York, NY, USA, 2004.
ACM Press. 3.3.3

[31] F. V. Jensen and T. D. Nielsen. Bayesian Networks and Decision Graphs II. Forthcoming. 3.3,
4.2.1

[32] K. Karimi and H. J. Hamilton. Finding temporal relations: Causal bayesian networks vs. c4.5. In
ISMIS ’00: Proceedings of the 12th International Symposium on Foundations of Intelligent Systems,
pages 266–273, London, UK, 2000. Springer-Verlag. 3.3.3

[33] U. Kjaerulff. dHugin: A computational system for dynamic time-sliced Bayesian networks. Inter-
national Journal of Forecasting, Special Issue on Probability Forecasting, 11:89–111, 1995. 3.3.2

[34] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting
rules from large sets of discovered association rules. In CIKM ’94: Proceedings of the third in-
ternational conference on Information and knowledge management, pages 401–407. ACM Press,
1994. 2.3

[35] E. Lamma, F. Riguzzi, A. Stambazzi, and S. Storari. Improving the sla algorithm using association
rules. In AI*IA, pages 165–175, 2003. 3.3.3

[36] D. V. Lindley. Making decisions. John Wiley and Sons Ltd, second edition, 1985. 2.1

[37] B. Liu, W. Hsu, S. Chen, and Y. Ma. Analyzing the subjective interestingness of association rules.
IEEE Intelligent Systems, 15(5):47–55, 2000. 2.3

[38] H. Mannila. Local and global methods in data mining: Basic techniques and open problems.
In ICALP ’02: Proceedings of the 29th International Colloquium on Automata, Languages and
Programming, pages 57–68, London, UK, 2002. Springer-Verlag. 3.3.3

[39] V. Mihajlovic and M. Petkovic. Dynamic bayesian networks: A state of the art. Technical Report
TR-CTIT-01-34, Enschede, October 2001. 3.3.2

[40] T. Mollestad. ConocoPhillips (COP) - Event modelling. Forthcoming. 1.3.3, 5.2, 5.4

[41] T. Mollestad. Warning process problems using an event-based interpretation to time series. Forth-
coming. 1.3.3, 5.2, 5.4

[42] M. N. Moreno, S. Segrera, and V. F. López. Association rules: Problems, solutions and new
applications. In III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pages 317–
323, 2005. 2.3

[43] Norsys software corp., Netica. http://www.norsys.com, 12 March 2007. 3, 4.3

61



[44] K.-C. Ng and B. Abramson. Uncertainty management in expert systems. IEEE Expert: Intelligent
Systems and Their Applications, 5(2):29–48, 1990. 2.1

[45] A. Onisko, P. J. F. Lucas, and M. J. Druzdzel. Comparison of rule-based and bayesian network
approaches in medical diagnostic systems. In AIME ’01: Proceedings of the 8th Conference on AI
in Medicine in Europe, pages 283–292, London, UK, 2001. Springer-Verlag. 2.2

[46] S. Parsons and A. Hunter. A review of uncertainty handling formalisms. In Applications of Uncer-
tainty Formalisms, pages 8–37, London, UK, 1998. Springer-Verlag. 2.1

[47] D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query ap-
proximation on binary transaction data. IEEE Transactions on Knowledge and Data Engineering,
15(6):1409–1421, 2003. 3.3.3

[48] J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In Proceedings
of the Second National Conference on Artificial Intelligence, pages 133–136, 1982. 2.2.2

[49] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. 2.1

[50] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowledge Discov-
ery in Databases, pages 229–248. AAAI/MIT Press, 1991. 2.3

[51] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989. 3.3.2

[52] J. Roberto J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense
databases. Data Min. Knowl. Discov., 4(2-3):217–240, 2000. 3.1.2

[53] E. H. Shortliffe and B. G. Buchanan. A model of inexact reasoning in medicine. Mathematical
Biosciences, 23(3–4):351–379, 1975. 2.2.1

[54] C. Silverstein, S. Brin, R. Motwani, and J. D. Ullman. Scalable techniques for mining causal
structures. In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data
Bases, pages 594–605, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. 3.3.3

[55] P. Smyth and R. M. Goodman. An information theoretic approach to rule induction from databases.
IEEE Transactions on Knowledge and Data Engineering, 4(4):301–316, 1992. 4.1.3

[56] P. Tse and J. Liu. Mining associated implication networks: Computational intermarket analysis. In
ICDM ’02: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02),
page 689, Washington, DC, USA, 2002. IEEE Computer Society. 3.3.3

[57] J. D. Young and E. Santos. Introduction to temporal bayesian networks. In M. Gasser, editor, 1996
Midwest Artificial Intelligence and Cognitive Science Conference, April 1996. 3.3.2

62



Appendix A

Data and calculations

The appendix contains data and calculations explicitly referred to in the text.

A.1 Marginalization example of Chapter 2.2.2

In Chapter 2.2.2 it is stated that, given the variables and conditional probabilities in the given example,
the marginal probability for having a headache is 0.0958. In other words

Pr(Headache = yes) =
∑
Fl

∑
BV

∑
Fe

Pr(Headache = yes, Fever, F lu,Bad ventilation) = 0.0958.

Calculations of marginal probabilities in Bayesian networks are a complex task, and the full calculation
of Pr(Headache = yes) is here shown to give the reader not familiar with the concept a deeper under-
standing of it. Note that for the sake of simplicity, the variables are named the following way: Headache
(H), Fever (Fe), Flu (Fl) and Bad ventilation (BV).

Pr(H = yes) =
∑
Fl

∑
BV

∑
Fe

Pr(H = yes, Fe, F l, BV )

=
∑
Fl

∑
BV

∑
Fe

Pr(BV ) · Pr(Fl|BV ) · Pr(Fe|Fl,BV ) · Pr(H = yes|Fe, F l, BV )

=
∑
Fl

∑
BV

∑
Fe

Pr(BV ) · Pr(Fl) · Pr(Fe|Fl) · Pr(H = yes|Fl,BV )

In other words, for all combinations of states for Fl, BV and Fe, the product
Pr(BV ) · Pr(Fl) · Pr(Fe|Fl) · Pr(H = yes|Fl,BV ) must be calculated. The sum of these products
is the desired value, i.e. the marginal probability of having a headache. The final calculations are shown
in Table A.1.

63



Fl BV Fe Product Sum
Yes Yes Yes 0.01 · 0.15 · 0.80 · 0.99 0.00119
Yes Yes No 0.01 · 0.15 · 0.20 · 0.99 0.00030
Yes No Yes 0.01 · 0.85 · 0.80 · 0.90 0.00612
Yes No No 0.01 · 0.85 · 0.20 · 0.90 0.00153
No Yes Yes 0.99 · 0.15 · 0.05 · 0.30 0.00223
No Yes No 0.99 · 0.15 · 0.95 · 0.30 0.04232
No No Yes 0.99 · 0.85 · 0.05 · 0.05 0.00210
No No No 0.99 · 0.85 · 0.95 · 0.05 0.03997

Total sum: 0.0958

Table A.1: Calculation of the marginal probability Pr(Headache = yes)

A.2 Data for the example of Chapter 4.3

The following tables specify the CPTs for the example of Chapter 4.3. The time intervals are written
using TBNE notation. In a TBNE, each temporal node is defined as a set of ordered pairs (σ, τ ) where
σ is the state or value variable and τ is the time interval associated with each state variable attribute.
The conditional probability distribution for each node is defined as the probability of each ordered pair
(σi, τi) given the ordered pair of its parents (σj , τj).

True False
10% 90%

Table A.2: Node A

A True, [5–55] False, [0–60]
True 60% 40%
False 2% 98%

Table A.3: Node B

64



A True, [5–55] False, [0–60]
True 55% 45%
False 3% 97%

Table A.4: Node C

B True, [5–45] False, [0–60]
True, [5–55] 65% 35%
False, [0–60] 1% 99%

Table A.5: Node D

C D True, [5–40] False, [0–60]
True, [5–55] True, [5–45] 90% 10%
True, [5–55] False, [0–60] 65% 35%
False, [0–60] True, [5–45] 60% 40%
False, [0–60] False, [0–60] 1% 99%

Table A.6: Node E

C True, [5–45] False, [0–60]
True, [5–55] 60% 40%
False, [0–60] 4% 96%

Table A.7: Node F

E F True, [5–50] False, [0–60]
True, [5–40] True, [5–45] 10% 90%
True, [5–40] False, [0–60] 3% 97%
False, [0–60] True, [5–45] 2% 98%
False, [0–60] False, [0–60] 1% 99%

Table A.8: Node X

65


