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Chapter 1

Abstract

This work appears to complement an existing
project, ”Bio-inpired reverse engineering of regula-
tory networks”[STH09], proposes a new algorithm
inspired in the artificial development technique per-
forming reverse engineering over regulatory networks.
The present project studies that article addressing
possible weaknesses and scalability issues. Neverthe-
less, during the investigation some updates have been
performed over the algorithm, improving the previ-
ous results in some scenarios. Moreover DARBNs
have been used as representation, looking for an alter-
native update schema and its possible improvements
over results. Lastly, software reusable tools have been
implemented and documented to allow additional ex-
periments.
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Chapter 2

Introduction

2.1 Background

Genes are the most essential part of the live, the
most basic representation of all living forms over the
earth. The complexity of the entire world can be
represented by them and however they are relatively
simple. Only four bases are enough to represent all
the life of the world. Obviously it is not so simple.
Thinking about all the complexity of the living
beings; in the different cellular types that compose
them and also in the gene-encoded information
needed to allow the life, is easy imaging that only
the gene explicit representation is not enough. For
example, the brain of a newborn baby has millions
and millions of neurons interconnected that allow
the basic vital functions. This information comes
directly from the genetic information (is not learned)
and it determines the interconnection of a huge
number of neurons making possible the life. It can
not be encoded in a direct way into the (around of)
26,000 genes of the human genome. In the last years
the science has showed that the complexity of the
living beings is not the direct result of the number
of genes; it is product of complex mechanisms of
genetic regulation.

During years, single genes have been studied look-
ing for the relation between them and phenotypic
characteristics; several important discoveries have
been done using this approach (some genetic diseases
and some very concrete characteristics have been
mapped), but finally the regulatory networks has
been introduced to explain this huge complexity.

Using this approach the phenotypic characteristics
can be understood studying the topology and the
dynamics of the regulatory network. This network
has much more information than the information
encoded in the gene sequences.

Regulatory networks are the base concept used to
perform the work described by this report. Regula-
tory networks are the abstraction that represents the
interactions and regulatory relations between DNA
and the substances present in the cell. The cell con-
tains proteins, that can be structural (to for example
build the cell membrane), enzymes (to activate chem-
ical processes) and transcription factors (to regulate
the expression of the genes, e.i. the phenotype).

2.2 Modeling regulatory net-

works

As a simplified model, the regulatory networks
can be represented as a graph where the genes are
nodes and transcription factors are edges. The
genes can be switched on or switched off by other
genes using transcription factors that connect both
genes. When a node is connected with others, the
expression it depends of the states of the related
nodes. The combination of active and inactive genes
into the network determines the resultant phenotype.

To modeling this kind of networks, Dr. Stuart
A. Kauffman proposed in 1969 random boolean net-
works (RBN) as representation of regulatory net-
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works; before the Kauffman’s proposal, differential
equations were the only available model to represent
regulatory networks. These equations were proposed
by Francois Jacob and Jacques Monod. Unfortu-
nately the proposed model was focused on the con-
centration of proteins more than in the activation of
genes.
Kauffman hypothesized that the attractors of the

RBNs correspond with the cellular fates or kinds of
cells; after years of this theory, it has been ratified
trough experiments by other researchers. Finally,
the Kauffman’s model captures the essential aspects
about the gene interactions with a relative simple
model.

To perform this project RBN will be used as rep-
resentation, following the Kauffman’s model.

2.3 Motivation

This project continues an ongoing project developed
by researchers of Crablab; the project uses a simple
developmental technique to achieve real biological re-
sults. The goal of this work is refining the technique
and further investigate the scalability limitations of
it. ”Bio-inspired Reverse Engineering of Regulatory
Networks” [STH09] is the article published that in-
vestigates the search of regulatory networks models
using incomplete topology of a regulatory network
as data, RBNs as representation and the algorithm
proposed in the previous project. Yeast cell regula-
tory network is the model used to perform the exper-
iments.
The cited technologies have been studied using sev-

eral specialized articles and simulation tools have
been built to achieve previous results and refine con-
clusions. Special emphasis has been done over algo-
rithm’s design, model’s representation and optimiza-
tions performed. All these points will be detailed
since an important part of this work is study scala-
bility and produce reusable tools.
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Chapter 3

Concepts

3.1 Regulatory networks

Regulatory networks have been introduced in the pre-
vious section, in this section all the important details
related with them will be described in all the im-
portant concepts related with the experimentation.
Topology, reference model, dynamics and attractors
are fundamental concepts to understand this work.

Yeast cell is the reference cellular type used
to perform this project. It has been chosen paying
attention to several points:

• The previous project uses this network to evalu-
ate the proposed approach, because that results
to compare are available.

• It is a well known model and particularly simple
case of study.

• It is appropriate to this project’s scope.

• The existence of several previous articles study-
ing it, helps to refine conclusions and find others
insights.

3.1.1 Topology

The network’s topology is an abstraction of the cell’s
chemical dynamics, describing which substance af-
fects all the others to which it is connected. Topol-
ogy can be abstracted, represented and implemented
by a digraph. This abstraction simplifies the cel-
lular structure which is expressed as a simple and

schematic system composed by nodes and directed
edges.
According to this abstraction, the nodes repre-

sent genes and edges represent transcription
factors. Transcription factors are proteins that bind
to the start of the DNA sequences (known as pro-
moter region), thereby they can activate o deactivate
the expression of the bound gene up with them. This
abstraction can be seen in the figure 3.1. The genes of
the yeast cell are represented by circles, transcription
factors are directed edges of different colors. The red
color means negative regulation or deactivation. The
green color means positive regulation o activation.
The yellow arrows represent negative self regulation.
1

The cell’s chemical dynamics are much more com-
plex than the used representation; in this sense
[LLL+04] says: ”In Prince, the arrows in the net-
work have very different time scales of action, and
a dynamic model would involve various binding con-
stants and rates”. It means that in the real world
the bound transcription factors up to the gene have
different thresholds and more complex behaviors that
regulates the gene expression, however in this work
a simplified model is applied and only one boolean
function is used to update the gene status. This func-
tion is called transition rule and it is defined math-
ematically at (3.1), this simplified transition rule has

1An erratum was found in [STH09] (”Experiments and re-
sults”) about self regulation inputs, the author says: ”The
model also has ‘self-degradation’ (yellow loops) on those nodes
that are not negatively regulated by others.”, this affirmation
is not true to the node Swi5. It can be checked in [LLL+04].
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Figure 3.1: Yeast cell’s regulatory network. Digraph representation.
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been extracted from [LLL+04].

Si(t+ 1) =







1,
∑

j aijSj(t) > 0

0,
∑

j aijSj(t) < 0

Si(t),
∑

j aijSj(t) = 0
(3.1)

Each node’s state i will be determined at time t+1
as Si = 1 or Si = 0 (active or inactive respectively
state of the gene), depending of the

∑

j result at time
t where j is the set of regulatory inputs of the gene
i.
According with checked articles as [Wue98a] and

[LLL+04], the DNA sequences content by genes and
the regulation relations between them represent the
genotype of the cell. This information contains all
the possible manifestations of the final individual.

3.1.2 Dynamics

The dynamics of the network describe how the gene’s
expression occurs over time according to the net-
work’s structure, kind of transcription factors (posi-
tive or negative regulation) and the signals received
by the cell. It is important to study this aspect to see
which states are the most stable; typically the net-
work’s dynamics becomes cyclically stable over sev-
eral states of the all possibles. The graphical rep-
resentation of the changes from a network state to
others is represented in figure 3.3, it shows network’s
states transitioning to the next states and creating
attractor’s basins.
A network state is defined as the set of genes ac-

tive in the regulatory network. For example, paying
attention to a simple network, represented in the fig-
ure 3.2 a potential network state could be defined as
S(0) = [A = 0, B = 1, C = 1] (or directly as 011
according to the ordered nodes).
The activation or deactivation of the genes de-

termines the phenotypic characteristics of the cell.
For example, in human cells, the expression of the
genes can determinate the cellular destiny (duplica-
tion, apoptosis, etc.) and the cellular kind (liver,
kidney, etc.). Is possible to see the cell in a deter-
minate state paying attention to expression of each
gene, each combination of turned on/off genes will
portray a determinate phenotype.

Figure 3.2: Simple regulatory network.

The dynamics make possible to express much
more information than the information directly
encoded by the DNA sequences contained by the
genes. Fox example, according to Kauffman’s model,
the representation of the yeast cell have 2n possible
phenotypic states (it is because each node expression
is a boolean value with two possible values, S = 0
(off) or S = 1 (on), where n corresponds with the
number of nodes present in the network (for the
reference cell only eleven nodes). It means 2048
possible states are possible from a small set of genes.

Dynamics are deterministic; it means, every
execution will produce the same space state with the
same pathways, same attractors and same ”garden-
of-Eden” states (no previous states). This is a key
point on this work. Asynchronous random boolean
networks are non deterministic and this characteristic
makes it not valid for this experimentation.

3.1.3 Stable network states

During the dynamics execution the network changes
the inner state combining the different genes turned
on/off, since the expression of a gene influences, di-
rectly or indirectly, all the rest in the network genes
the state is updating over the time, but gradually
several states are repeated again and again. These
network states, more stable than the rest are attrac-
tors of the regulatory network. Sometimes, when a
particular attractor is set, it keeps the network state
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fixed not changing along the time or it changes but
as part of a cycle (several states in a loop), chang-
ing sequentially between an small set of states; both
situations are different kind of attractors. It can be
seen in figure 3.3, gray nodes represent the attractor
states.

Figure 3.3: Potential subset of network dynamics
graph representation. Gray nodes represents attrac-
tors.

The stable states correspond with regular pheno-
types of the cell, the design of regulatory network’s
dynamics does it more robust and stable the genetic
expression and prevents the occurrence of mutations
into the individual respect a small perturbations of
the network. This property can be seen in [LLL+04],
article with the robustness of yeast cell-cycle as main
investigation topic.

3.1.4 Update schema

It exists a debate about to whether the synchronous
update schema is appropriate to represent regula-
tory networks behavior. Kauffman did it in his work
(1993) and was criticized by other authors that be-
lieve in the asynchronous approach. The nature’s
events do not occur sequentially, but several authors,
in contrast, think that a synchronous is an appro-
priate approach. [STH09] and [LLL+04] uses this
approach to perform their experiments, but [Ger02]
says: ”We are agree with the critic that the syn-
chronicity was an assumption without a base, but we
do not believe that genetic regulatory networks are
random. They should be most probably modeled better

with DARBNs, if we can model the updating periods
for each gene.”.
DARBNs (deterministic asynchronous random

boolean network) [?], are RBNs that updates asyn-
chronously the network according to fixed parameters
(transitions and periods), but the dynamics are not
random (is deterministic). This approach is studied
in this work.
The main problem of the asynchronous update

schema is that the resultant dynamics schema is non
deterministic, getting random results in each execu-
tion. This is not a valid approach to this work.

11



Chapter 4

Implementation

One of the goals of this project is to refine and
address the problems of the developmental inspired
algorithm written by Cristina Costa in [STH09]. To
perform this target, previous work has been analyzed
and the same principles has been implemented, in
some cases, optimizing them in terms of scalability
and possible hardware implementation.

The main points to accomplish such goal are:

• Understand how the regulatory networks work,
their representation and fundamental biology.

• Implement RBN simulation to study network’s
dynamics (also implementing DARBN).

• Implement artificial developmental algorithm
described by [STH09].

Some implementation details are not fully de-
scribed in the previous article and the aspects like
data structures, fixed point’s calculation algorithm or
phenotype distance calculation. These implementa-
tion details have been open to interpretation, others
like individual representation and RBN implementa-
tion has been rewritten seeking simplicity. All the
code has been written from scratch.
During the software’s design several aspects have

taken priority over the rest: The lower level of ab-
straction and highest simplicity of used data
structures and algorithm’s temporal and spa-
tial complexity optimization to make a poten-
tial implementation over hardware architecture easier
and potential reuse of the code as well.

During the design and implementation stages, the
system has been splited in several modules making it
easier to build a complete experimentation platform
which are:

• RBN Tools
Over the rest of the components have been build
these tools. Contains RBN, DARBN and ARBN
implementation, attractor calculation, utilities
and interfaces to extend the basic functionality.

• Developmental algorithm
It is the engine of the experimentation process; is
implemented following the [STH09] notes. Also
it contains fitness functions, individual imple-
mentation and interfaces to extend the module.

• Simulators (RBN Simulator and Develop-
mental Algorithm simulator)
These tools have been created to allow the
easy execution by the user without programming
skills, using execution parameters providing a
fast experimentation.

These components can be checked in figure 4.1.
This figure shows the system’s architecture and how
the different modules are related each others.

In the next points, the details over the listed com-
ponents will be described using graphics for a better
compression and highlighting any important design
or optimization’s decision.

12



Figure 4.1: System’s modules.

4.1 RBN Tools

4.1.1 Random boolean networks

Designing an implementation of a random boolean
network is a well known challenge, there are many
papers published about it with examples and tools
that solve this challenge. Here, several implemen-
tations have been checked and tested attempting to
find the most suitable implementation according to
the previously described criteria.
There are several approaches to represent the net-

work’s structure through data structures: Object ori-
ented (using different object instances to represent it,
linking the instances to objects references), the repre-
sentations used in the reference project (using a table
that describes each node as a column and each input
as a signed integer number) or through boolean ar-
rays that represent all the possible connections of the
network (chosen approach).
According to the chosen approach each RBN of the

system uses the next structures to represent it:

• Inputs matrix
Represents the existence of an input relation

between nodes. if inputs[toNode][fromNode] =
true the input relation exists. This structure is
implemented by a bidimensional boolean array
with size n2, where n is the number of nodes in
the network.

• Regulation matrix
Represents the regulation nature of an input
relation between nodes. This matrix’s val-
ues are not representative if the same input is
not expressed in the inputs matrix. If regula-
tion[toNode][fromNode] = true express a posi-
tive regulation, regulation[toNode][fromNode] =
false represents a negative regulation. This
structure is implemented by a bidimensional
boolean array with size n2.

• Periods matrix (p)
According to [Ger04] each node of a DARBN
has an update period that determines its update
behavior. Only for DARBN. This structure is
implemented by a unidimensional integer array
with size n.

• Translations matrix (q)
According to [Ger04] each node of a DARBN has
a translation that determines its update behav-
ior. Only for DARBN. This structure is imple-
mented by a unidimensional integer array with
size n.

The figure 4.2 represents these structures and
shows how each matrix represent a different prop-
erty of the regulation relation. This representation,
using boolean values can be implemented over hard-
ware architectures directly with bits.

• Simplicity
Arrays of booleans are simple representation. It
could be represented using bits. ([Had08] points
the easy implementation of these structures di-
rectly over hardware and the similarities between
them).

• Fast evaluation
Performing boolean operations is really fast. De-
pending on the architecture it takes only one
clock cycle to be evaluated; in more advanced

13



Figure 4.2: RBN representation using boolean matrices.

architectures (like GPGPU) it could be done in
the same time over all the matrix.

• Flexibility
Allows the representation of all possible con-
nections with a fixed size, meaning that is not
needed to control the structure’s size in the al-
gorithms.

Unfortunately this representation has the problem
of the complexity. Algorithmic complexity to cal-
culate a network’s state is always n2 (see 4.3); with
other implementations like the used in [HJS] the com-
plexity is nk where k ≤ n; only in a full connected
network k = n. However, this approach has been cho-
sen for simplicity and potential parallelism facilities
since it is suitable to check different values of k for
each node and is suitable to perform very optimized
bit representation over hardware architectures.

This implementation is deterministic and syn-
chronous and is named Clasical random boolean
networks (CRBN).

4.1.2 Deterministic asynchronous

random boolean networks

DARBN is a new kind of RBN proposed by Carlos
Gershenson in [Ger02]. This implementation is more
realistic than the classic one (used by Kauffman) be-
cause the update scheme is not synchronous. Sev-
eral authors do not agree with the classical approach,
they think that the regulation process in the nature
does not occurs in a synchronous way. However asyn-
chronous schemas are not deterministic and the au-
thors do agree that regulatory networks in the nature
are deterministic. DARBNs have both properties.
About these ideas the author says ([Ger04]): ”I agree
with the criticisms to the synchronous assumption:
genes do not march in step. But I do not believe that
they are random. Having this in mind, I proposed De-
terministic Asynchronous RBNs (DARBNs)”. In the
same way Li says in the article ”The yeast cell-cycle
network is robustly designed” [LLL+04]: ”Making the
time constants of all arrows the same could have dis-
astrous consequences in network dynamics. However,
we are saved for this particular network because of
its intrinsic sequential nature. We have tested the

14



dynamics with varied time scales of action (phospho-
rylation and transcriptional activation) for different
arrows and obtained similar results.”. Both affir-
mations could indicate potential applying the
previous work’s algorithm to calculate pheno-
typical distances.
DARBN introduces two variables more for each

node, Pi and Qi(Pi, Qi ∈ N, Pi < Qi), Pi is called pe-
riod and (Qi) is called translation. Both parameters
remain fixed and determine when a node is updated.
With Pi = 1, Qi = 0 the DARBN will work like a
CRBN.
In this project the search of regulatory networks us-

ing DARBN to calculate the individual’s phenotype
is experimented.

4.1.3 Space state

One of the most important questions of this work
has been to choose a proper and optimal state space’s
representation. The spacial and algorithmic complex-
ity of the space state calculation is a very important
point and a potential bottle neck of the developmen-
tal algorithm.
In the first implementation of the state space it

was represented trough an object’s model, relating
each state to others by references. This schema was
the literal representation from the graph theory to
OOP implementation; it was valid and elegant but
needed a big amount of memory and the cost of
calculate the distance between phenotypes was high.
Since this operation is used intensively during the
developmental algorithm’s execution is needed to
keep it simple following the same spirit of the RBN
representation.

As a solution, other representation was found
using only one array of integer positive numbers.
This representation keeps the algorithmic complexity
in O(2n) (see 4.3). Complexity will grow exponen-
tially with the number of nodes. Fortunately the
networks proposed to experiment are small networks
n = 11, with a practical upper limit of about
n = 26 ([Wue98a]). When n > 26 then hardware
implementation approach is the most viable
option.

According to the proposed representation, the
attractors calculation can be done at the
same time that the space state calculation is
performed without incrementing the temporal
complexity’s order.

To understand this representation a key point
should be defined: It is possible to represent
a network state as an integer number. For
example, paying attention to the figure 4.4, it
illustrates a possible state of a very simple network.
In this representation the green nodes are active and
the the red one is inactive. This particular network
state can be represented as S = A = 1, B = 0, C = 1,
as a simplification is possible to express it as a list
of ordered boolean values (or bit string) where each
position corresponds to a determinate network’s
node: S = 101 and it can be converted to an
integer number doing a base change: S = 5. Is very
important to respect a fixed node’s positions and
the same most-significant bit position order. In the
implementation the bit strings are expressed
as little endian.

Figure 4.4: Simple network state representation.

To this representation each array’s position (index)
represents a state into the space state and the value
at this position represents the state that will go after
it (it works like a pointer to the next state). The
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RBN

+inputs: boolean[][]

+regulation: boolean[][]

CRBN

+next(state:boolean[]=boolean[])

DARBN

+periods: integer[]

+translations: integer[]

+next(state:boolean[]=boolean[])

ARBN

+next(state:boolean[]=boolean[])

Figure 4.3: RBN Tools classes diagram.

figure 4.5 represents a possible instance of this struc-
ture, each position’s value has the reference of
the destiny state from the state represented
by the index. It is possible to draw a parallel be-
tween the state space’s representation with the graph
showed in figure 4.5 and the space state represented
as an array in the figure 3.3, both represent the same
information.

Figure 4.5: Integer array as space state representa-
tion.

This representation has several advantages:

• Simple implementation
The structure is a low level structure, suitable to
be implemented using hardware.

• Very good to compare as phenotype

One of the best properties of this representation
is the possibility of use it in developmental or ge-
netic algorithms as phenotype. It is really simple
and fast to compare phenotypical distances and
has also a great accuracy (because it includes at-
tractor’s cycles, the fixed points and the garden-
of-Eden states).

4.1.4 Basin size

The basin size is the summatory of all states (garden-
of-Eden states and transitional states) in the attrac-
tor’s pathways. This property is used in the previ-
ous work to compare the individual’s phenotypes. In
this work the phenotypical distance calculation has
been re implemented because the representation to
the space state used (see 4.1.5). However the basin
size is still calculated to ensure the attractor’s exis-
tence as feedback.

To calculate this property of the attractor nodes
an extra step during the space state algorithm’s ex-
ecution. Two extra arrays of integers are needed to
count the basin size and cache the final attractor of a
given state (to avoid check all the states between ac-
tual node and its attractor). For each new calculated
state, the new state’s basin size (basin size[state])
value will be updated adding the content of the pre-
vious state to the actual basin size. It will happen
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for each state. This change in the algorithm 2 adds
several operations with complexity O(1) so the algo-
rithmic complexity of the space state does not change
and the spatial complexity grows to (3 ∗ 2n).

4.1.5 Phenotypical distance

Checking the phenotypical distance between individ-
ual is pretty easy since the space state representation
is calculated. It is just the Hamming distance
between two integer’s arrays, which is pretty simple
and efficient to perform. Is specially interesting that
over hardware architectures it would be faster.

In the previous work, Cristina Costa, saiys: ”Then,
the fitness of this network is determined by executing
it (according to the transition rule shown in 1) to all
and each of the given initial conditions and measur-
ing the Hamming distance between the obtained final
attractor and the yeast network’s final attractor for
that initial condition, which can only be one of the
seven attractors”([STH09]).
With this affirmation the author does not

clarify if it is representing all the possible
phenotypes, in the previous work the author only
considers only a type of attractor (at least explicitly)
in the phenotype: the fixed point. It could be
a mistake evaluating potential individuals
and specially applying this schema to find
other regulatory networks (the yeast cell
only has fixed points as attractors). During
the experimentation phase, the different kinds of
attractors have been found applying CRBN and
DARBN approaches. In the articles [Wue98a] and
[Wue98b], it can be seen the different types of
states: Fixed points and cycles as stable states, and
garden-of-Eden and transitional states.

In order to make it sure that this problem does
not happen, this implementation checks the dis-
tance of the entire space state which contains all the
states, not only fixed points. Since the basin size is
also checked (to perform the fitness calculation) in
the previous project and also in this, any attractor
present should have exactly the same number of pre-
vious states (garden-of-Eden and transitional states,

i.e. all the pathways involved states).

4.1.6 RBN Simulator

The RBN Simulator is only an entry point. The pack-
age RBN Tools can be used as library (as Develop-
mental algorithm package does) and as simulator to
run and analyze RBN, ARBN and DARBN networks.

The simulator tools accept parameters and can
be extended through experiments implementation.
(B.0.1 for usage and design information).

4.2 Developmental algorithm

4.2.1 Algorithm

Maybe the most important component of the system
is the search algorithm, it comes directly from the ref-
erence project and such algorithm is a developmental
inspired algorithm. The author says: ”Nature’s
way of handling complexity clearly points in the
direction of a non one-to-one mapping from genotype
to phenotype. Biological development is nature’s
way of coping with scaling. It provides a plan of the
phenotype, describing how the organism is to be built
rather than a blueprint containing explicit infor-
mation about every detail of the proposed phenotype”.

It performs a search over a generated random pop-
ulation of individuals; each individual has random
edges into the network regulated by probability, de-
pending on the probability value (0.0 < Pi < 1.0),
the a particular node’s input could be present in the
genotype or not; if the existence of the regulation
factor makes the individual better the probability of
inclusion will grow. After several iterations the best
regulation factor’s probability tends to 1.0 (always
included) or 0.0 (never included). Probabilities are
adjusted along the iterations.

The algorithm is described by (1) with pseudocode,
and a diagrammatic representation in figure 4.6.
Small improvements have been done: For example,

avoid the occurrences variable in the probabilities ad-
justment process. It will be fixed non normalized val-
ues. Also in the original article the adjustment was
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B C

p=0.5

p=0.8

p=1.0

p=0.2 p=0.5

p=0.0

A

B C

A

B C

Individual representation
last fitness = 0.57

Random generated genotype network using probabilities

Random generated network using probabilities

with better fitness the network probabilities 
adjustment is performed

Generate a potential genotype
using individuakl probabilities (p)

Generate a potential genotype
using individuakl probabilities (p)

Calculate phenotype and calculate fitness

Calculate phenotype and calculate fitness

if fitness does not improve
the probabilities will no be adjusted

Figure 4.6: Algorithm graphical representation.
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updatedPi = Pi ∗ 0.8+normalized occurrencei ∗ 0.2.
The implementation done in this project allows ad-
justment of the probability weight and the normal-
ized occurrence weight, in that way the adjustment
can be more progressive or less. Experimentation
shows that updatedPi = Pi ∗ 0.95 + 0.05 have a less
number of local maximums but needs more iterations
to find a correct genotype, it works better with diffi-
cult cases.

4.2.2 Individual representation

An individual in the context of this report means
”generated network” by the system and ”potential
solution”. Typically an individual will be part of a
population and it will be adjusted or developed in
each iteration.

The individual’s representation is a very important
implementation detail, since it conditions the com-
plexity of the implemented algorithms. Individuals
that compose the population are intensively checked
time after time in each iteration, evaluating the fit-
ness, calculating dynamics and adjusting probabili-
ties. This is a heavy process that needs the best
possible implementation.

To keep the abstraction level lower and reduce the
algorithmic and procedural complexity, simple struc-
tures have been used and algorithms have been opti-
mized.

Figure 4.7: RBN - Individual classes diagram.

As can be seen in the figure 4.7 an individual dec-
orates a RBN (could be any subclass like a DARBN)
delegating the tasks related with states calculation.
The individual only aggregates two matrices to keep
the probabilities and occurrences used in the devel-
opmental algorithm.

4.2.3 Fitness function

After implementing the system the fitness function
has been changing and been perfecting along the pro-
gramming stage. The function, at the end, is pretty
simple, based on the phenotypic distance between ref-
erence network and generated individual network. It
is as follows:

fitness(i) =
2n − distance(i)

2n

The best advantages of this fitness function im-
plementation are that grows slowly with the pheno-
type distance minimization, it allows to the algorithm
to get better individual along the time progressively
without sharp changes. Especially for this algorithm
this issue is very important because the probabilities
adjustment is only done after getting a better fitness
than before.

4.2.4 Developmental Algorithm Sim-

ulator

The Developmental Algorithm Simulator is the en-
try point to the user. It accepts parameters that will
be specified in B.0.3 and dumps algorithm execution
traces to study the experiment result. It can be ex-
tended through fitness function implementation.

4.3 Complexity

Unfortunately the inherent complexity to this prob-
lem is really high. As can be seen in [HJS], Hawick
proposes an efficient binary representation very sim-
ilar to the used in this implementation. The author
presents the time complexity of calculate the true ta-
ble (concept similar to space state but non valid to
the current problem that needs a transition rule to
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calculate the state’s transitions) is 22
k

and the spa-
tial complexity is n2k (k is always de same for each
node in the article’s networks). Paying attention to
the complexity of find attractors the authors Cheng
and Hongsheng, in their article ”A Linear Represen-
tation of Dynamics of Boolean Networks” ([CQ10])
affirm: ”finding fixed points and cycles of a Boolean
network is an NP-complete problem”.

To exemplify better the complexity of the problem,
the implemented algorithms (1, 2 and 3) complexity
will be studied:

• Complexity of calculate next network’s
state from the actual state
It requires to check all the inputs to all the nodes
if k is the number of inputs and n the number
of nodes and in this implementation (due to the
input’s representation) k = n always; the com-
plexity is O(n2) (See algorithm pseudocode in
3).

• Complexity of calculate space state
The space state has always 2n possible states and
is mandatory examine all the states to calculate
the network dynamics; for each state the next
state from the actual is calculated. The com-
plexity to this operation is 2nn2 that O(2n) <

2nn2 < O(n!) (See algorithm pseudocode in 2).

• Complexity of run developmental algo-
rithm
In the general algorithm the space state is calcu-
lated for each individual in the population (P)
between 1 and maximun iterations (I) times.
The complexity is O(2n) < ip2nn2 < O(n!) (See
algorithm pseudocode in 1).

This complexity could be improved changing some
details in the representation, like representing only
the needed inputs instead all possible inputs, however
this approach has been not done because the current
fits better with a possible hardware representation
and because is easier to parallelize.

Algorithm 1 Developmental algorithm’s pseu-
docode
i = 0;
found = 0;
population = random population(size);
while i ¡ max iterations AND found 6= false do
for all individual in population do
phenotype = dynamics(individual);
found = fitness(phenotype);
adjustment(individual);

end for
i = i+1

end while

Algorithm 2 Dynamics algorithm’s pseudocode

space state size = 2nodes;
dynamics = integer[nodes];
for all actual in space state length do
dinamycs[actual] = individual.next(actual);

end for
return dinamycs

Algorithm 3 Calculate next state from actual algo-
rithm’s pseudocode

next = integer[nodes];
for all node in individual.nodes do
active inputs = individual.active(node, actual);
next[node] = transition rule(active inputs);

end for
return next
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4.4 Scalability

Undeniably the inherent complexity of this domain is
a huge problem simulating large regulatory networks,
the inner mechanism which allows the possibility of
express a big amount of phenotypic information is
in addition the most difficult point to compute. As
has been noted along this report through references,
several authors have attempted to optimize their im-
plementations and algorithms to improve the process
performance which it still need a big amount of time
and memory to compute. Nevertheless there are some
options to get results in less time; after studying the
problem, paying attention to the improvement pos-
sibilities and implementing them using software, it
has been concluded that the only option is the par-
allelization of the implementation (this conclu-
sion is also present in [Had08]). As it can be seen
in the previous sections each data structure and al-
gorithm have been designed thinking in a possible
hardware implementation, keeping every key point
simple and fortunately several good characteristics
have been found that make possible to implement
this problem in a more scalable way. The main char-
acteristics are:

• The hardware implementation is plausible
The binary character of the automatons allows
to implement several key points, like the calcu-
lation of state transitions or the full space state,
directly using large arrays of bits with binary op-
erators. This approach will give a big speedup to
the execution not only because the higher time
performance of a possible hardware implemen-
tation, but also because some operations poten-
tially could decrease their complexity: The net-
work state transition calculation could improve
their complexity from O(n2) to O(1) if the hard-
ware architecture allows to process all the po-
sitions of big arrays in parallel. The real bot-
tleneck using a classical programming approach
is perform the process sequentially. The paral-
lelization creates new implementation’s possibili-
ties that make it possible to achieve a much bet-
ter processing time. Unfortunately some parts
of the problem, more abstract (like the develop-

mental process) are more difficult to implement
using hardware but apparently they are still pos-
sible or in the worst case a potential mixed im-
plementation (software and hardware) could be
plausible.

• The independency between each step of
the algorithm
It means, for example, the space state calcula-
tion (n22n) could be splited in j subsets dis-
tributing them over several processors working
on parallel. It would be specially good to per-
form the space state representation in a dis-
tributed way. Unfortunately the proposed al-
gorithm to calculate the attractor’s basin size is
not possible without a shared memory approach,
moreover it could be done in a separated step
after the space state calculation with still good
time profits.

The functional and data parallelism are good to im-
plement RBNs operations, besides some parts of the
developmental algorithm as evaluation of individuals
and probabilities adjustment has good characteris-
tics to do a parallel implementation. The transition
rule and phenotypic distance could be potentially im-
plemented using hardware because the simplicity of
them.

4.5 Optimizations

In addition some optimizations could be done and
have been implemented in some cases also in the ex-
perimentation software of this project. The most
important optimization is to include cache mech-
anism for some calculations. For example, the im-
plementation done needs to transform integer num-
bers to boolean arrays. This could be done directly
in hardware but in the implementation of an extra
algorithm is needed, obviously this calculation could
be done once and save it an static resource getting a
speedup.

Other small optimization is preventing unnecessary
operations. For example, for some individuals the
probabilities adjustment could be avoided when has
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0 or 1 as probability, saving iterations along the pro-
cess.
In networks with a fixed k a more optimal imple-

mentation could be done saving unnecessary inputs
matrix and regulation matrix memory with the same
advantages; however in the checked regulatory net-
works a fixed number of inputs for each node is not
a regular scenario.

22



Chapter 5

Experimentation

After the stages of background reading and imple-
mentation the next step is the experimentation phase.
Several tools have been buildt to perform this phase
and during the experimentation several implementa-
tions improvements and approach adjustment have
been done to get a better understanding of the global
scenario. Only after experimentation it is possible to
get own conclusions.1

5.1 Previous approach

The first step during this work’s creation was to
achieve the same results that the researches achieve
in the previous project, it is, find regulatory networks
through the developmental algorithm using classic
random boolean networks. This step ensures the un-
derstanding of the problem and helps to find possi-
ble weak points and errors in the previous work
(as has happened with some erratum and possible
optimizations).
In the previous work, the author introduces a par-

ticular instance of individual to perform the exper-
imentation over. The individual is described in the
sections VI (”Experiments and results”) and subsec-
tion B (” Applying the Artificial Development (AD)
reverse engineering method”). The author says:
”Figure 6a explicitly shows the genotype used in the
experiments shown here: a list of 39 interactions and
their probabilities of being in the network. The net-

1Along this investigation several experiments with the same
parameters has been performed, these experiments parame-
ters, results and charts are attached to this report as appendix.

work used, the yeast cell-cycle Boolean network, is
fully described by the items 1 to 29 in the list (when
P =1). In order to perform a reverse engineering in-
vestigation using this network, we have to pretend we
don’t know some of its interactions, as we did in Sec-
tion VI-A. In the experiment shown here, this is done
by assigning different probabilities P to the ’correct’
interactions (1 to 29), as if we were not sure they
should be in the network that models the system, and
by including other random interactions (30 to 39)”.2

Therefore a first phase of experimentation is per-
formed with the previous approach and same param-
eters.3.
All the experiments present in the experiments ap-

pendix where the name starts with ”Costa2009” are
those experiments based on the previous work ap-
proach, when the name starts with ”Leon2011” are
experiments based in the new approach.

5.1.1 Same scenario experimentation

The first experiments were oriented to reproduce the
previous project’s results. The experiment described
in A.1 shows that the achieved implementation has
the same capabilities to cover the previous experi-
ment, such copies several random inputs from the

2There was found a mistake into this affirmation. Author
affirms that the network is ”fully described by items 1 to 29 in
the list” but it is not correct. The described and used yeast
cell regulatory network has a total of 34 inputs, and because
that it needs 34 positions in the previous work’s individual
representation.

3All the experiments has been performed using the Develop-
mental Algorithm Simulator with different parameter’s values
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reference network and introduces random inputs be-
cause, potentially, in a real scenario some known in-
puts and some potential inputs will be present in the
individual’s genotype.
After performing the experiment with the parame-

ters described in A.1 the conclusion is that the algo-
rithm implementation works. In all the experiment
instances a solution has been found with fitness =
1.0. Sometimes, when population size ≈ 100, it hap-
pens before iterate the algorithm, i.e. randomly. This
issue evidences that the chosen experimentation case
is specially next to the phenotype.
Studying the charts, sharp changes in the fitness

representation occurs during the execution in all
the instances. It is related with the probabilities
weight used to calculate the new genotypic proba-
bilities (4.2.1). In this example the weight used is
Pi = 0.8 + 0.2. This behavior could be a po-
tential problem in the application of the algo-
rithm to more complicated networks; it favors
the local maximums, and with smaller popu-
lations or more complex scenarios (more ran-
dom inputs) is easy to not find a good indi-
vidual, it happens because the probabilities grows
too fast. When the individual is easy to find (as
the current) the iterations are always < 80. To
check this aspect the experiment A.2 performs the
same parameters excepts the weight adjustment to
Pi = 0.95 + 0.05 getting a smoother behavior and
finding fitness = 1.0 individual. In A.2 is possible
also to see the pre-search match (good individual by
random), it is related with the population size. Other
important detail is that with this parameters the the
iterations are always < 140.
The experiment A.3 studies the algorithm behav-

ior with a more complex network. In this scenario
the network has the same copied inputs but it also
has more randomly generated inputs than in the pre-
vious experiments. It produces a bigger genotypic
distance and, indeed, the difficulty of finding a suit-
able individual grows. According to the charts the
genotype adjustment is smoother and the algorithm
needs more steps (because the bigger genotypic dis-
tance) but it still finds a solution. The experiment
A.3 has the same principles but with also more geno-
typic distance than previously. It needs more steps

but always finds a solution too. To evidence the prob-
lem of the sharp adjustment other experiment A.5
with more genotypic distance (but less distance than
A.3 and A.4) and adjustment Pi = 0.8+0.2, has been
performed; these charts show the problem; the local
maximum happens around iteration 120 and individ-
uals with fitness = 1.0 never emerge.

5.1.2 Different scenario experimenta-

tion

In the previous project, the search of new individu-
als has always random copied inputs from the refer-
ence network. To check the potential capabilities of
the proposed algorithm, an experiment A.9 with even
more phenotypic distance than the previous experi-
ments has been performed. This experiment doesn’t
copy any input from the reference network (assign
Pi = 1 over an input involves the perpetuation of
this genotypic characteristic). The full genotype is
always included (Pi > 0.0 for each input) but it does
not guarantee the expression of it; this is inherent
of the previous project, and is justified because if an
input has Pi = 0.0 then it will never be expressed,
an then the individual can not be found. The algo-
rithm’s results were promising, in all the runs
a good individual was found. It took about 600
iterations (much more than previous experiments)
and the chart shows how the individuals are well ad-
justed, starting at iteration 0 with fitness < 0.1 and
finding individuals with fitness = 1.0. The same ex-
periment with Pi = 0.8 + 0.2 does not find a valid
solution.

5.2 DARBN approach experi-

mentation

One of the most important motivations to accomplish
this project has been trying to find plausible regula-
tory networks using an asynchronous and determin-
istic approach. In the background reading phase sev-
eral affirmations of researchers have been found sup-
porting the bigger similarity of the asynchronous and
deterministic approach, looking like a better option
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to perform a more realistic simulation. This work
has been build over these ideas, trying to find a better
way to achieve the global goals. To do that tools have
been implemented, documentation has been read and
experiments has been performed. In this report only
a few of the experiments has been collected because
the results were always similar.
The experiments A.10, A.10 and A.6 have been

performed using a DARBN network. The results are
always similar. The fitness grows from fitness < 0.1
to 0.6 ≥ fitness < 0.8 but fitness = 1.0 is never
found. These experiments have as parameters a small
possible values to periods (P ) and translations (Q),
and together with the dynamics calculation process
ensures to perform the state transition (evaluating
each state several times to ensure the state transition)
but still with these advantages the algorithm never
finds a solution. Other experiment has been done
to check possible better scenarios, the experiment
A.10 copies almost all the reference genotype in each
random individual. With the classic approach the
fitness = 1.0 is found always in the initial random
population, in the ARBN approach is never found
after thousands of steps.
The proposed approach that uses ARBNs

has genotypic representation and the pro-
posed algorithm is not capable to find solu-
tions. The inclusion of two more variables (pe-
riods and translations) involves a bigger space
of solutions, and with the used technology and
implementations no satisfactory solutions or
promising signs have been found.
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Chapter 6

Conclusions

After accomplishing the experimentation and
studying the results several useful conclusions have
been found. It was confirmed that the previous
project’s approach, using CRBNs, works with the
proposed parameters but it does not work when
the genotypic distance is incremented, however
performing small improvements it works very well
also in experiments that involves a big genotypic
distance (experiment A.7), which makes it promising
to use this methods over other more complex models.
Unfortunately the new approach, using DARBNs
instead CRBN, does not work very well, It seems
that the inclusion of new variables to generate the
network dynamics makes the space solution bigger
and the method never finds a good solution. It
is unclear if the problem is the use of DARBNs
or the product between the algorithm and the
DARBNs, but together are not a good method.
Other approaches could be checked, modifying the
algorithm allowing it to adjust all the variables
(inputs regulation, p and q) but it would probably
imply a bigger solution space.

Other important conclusion is about the huge
complexity of the handled domain. The internal
details of the regulatory networks show the incredible
possibilities of these networks and how they can be
represented with a very simple structures; the second
point opens a big field of potential implementation
approaches using hardware, distributed computation
and, possibly, new emerging technologies (as, curi-
ously, DNA computing that allows huge parallelism).

According with the experimentation, has been
found several possible weak points about the previ-
ous project, these details are sometimes related with
parametric values or with details that could be not
considered (to check it would be necessary check the
algorithm’s code). The possible weaknesses found in
the previous project are:

• Possible problem of phenotypic expres-
sions being ignored was pointed out
It was pointed the possible problem of pheno-
typic expressions ignored. The previous work
only talks about fixed points, but there are more
kinds of attractor. To yeast cell this is not rel-
evant because does not have cycles but apply-
ing the same algorithm with other problems it
could not work. In this project the cycles have
been found in phenotypes of potential individu-
als and specially when the DARBN as genotype
approach is applied.

• Too high adjustment
As shows the section 5.1.1 and the experiment
A.5, the adjustment weights chosen in the previ-
ous project were too high and in difficult searches
it could derive in local maximums, non finding
the target network.

• Erratum found in the report
Some erratum have been detected in the previous
project. These details have been collected as foot
notes in this report.

• Immutable regulation
The actual algorithm does not allow the po-
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tential adjustment over the regulation na-
ture of an input. When, randomly, an input is
designated as positive or negative it will remain
with the same regulation during all the execu-
tion. This issue conditions the final genotype,
therefore the phenotype too, and this property
can not be adjusted with the actual implemen-
tation. On the other hand this lack makes the
space solution smaller.

• Big initial random generation dependency
Since the algorithm does not include a mecha-
nism like mutation, all the potential genotypes
are conditioned by the first random generation.
If an input has Pi = 0 will never be expressed,
therefore when randomly (at the individual cre-
ation step) a correct input is not set as possible
0 < Pi < 1 is pruning the potential effectivity of
the algorithm. On the other hand, with the cur-
rent implementation, it is possible to ensure that
all the inputs could be potentially abject setting
the parameter random inputs as n2, but it makes
the space of solutions bigger (and is inherently
huge with less random inputs really).

Finally, after accomplishing this project some ideas
about possible alternative ways to solve the prob-
lem have emerged. According to conclusions, solving
some algorithm’s existing limitations and improving
the implementation to improve the speed of execution
could be accomplished to achieve better results.
Potential algorithm improvements:

• Parallelization

• Hardware implementation

• More flexible genotypic adjustment

Additionally a small set of simulation tools has
been build and could be used in other investigations.
All the software artifacts are described in the section
B, explaining how to use and extend them.
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Appendix A

Experiments appendix

A.1 Experiment Costa2009

Max iterations 1000
Population size 50
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 6
Probability weight 0.8
Ocurrences weight 0.2
Maximun period (p) 1
Max transition (q) 0
Time per iteration 258 miliseconds
Best fitness found 1.0
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A.2 Experiment Costa2009r1

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 6
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 1
Max transition (q) 0
Time per iteration 596 miliseconds
Best fitness found 1.0
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A.3 Experiment Costa2009r2

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 10
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 1
Max transition (q) 0
Time per iteration 521 miliseconds
Best fitness found 1.0
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A.4 Experiment Costa2009r3

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 10
Random inputs 10
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 1
Max transition (q) 0
Time per iteration 521 miliseconds
Best fitness found 1.0
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A.5 Experiment Costa2009r4

Max iterations 1000
Population size 50
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 10
Random inputs 6
Probability weight 0.8
Ocurrences weight 0.2
Maximun period (p) 1
Max transition (q) 0
Time per iteration 267 miliseconds
Best fitness found 0.8125
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A.6 Experiment Leon2011r1

Max iterations 100
Population size 1000
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 5
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 2
Max transition (q) 1
Time per iteration 4818 miliseconds
Best fitness found 0.65625
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A.7 Experiment Leon2011r2

Max iterations 500
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 30
Random inputs 0
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 3
Max transition (q) 2
Time per iteration 468 miliseconds
Best fitness found 0.52197
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A.8 Experiment Leon2011r3

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 0
Random inputs 5
Probability weight 0.8
Ocurrences weight 0.2
Maximun period (p) 1
Max transition (q) 0
Time per iteration 513 miliseconds
Best fitness found 0.84375
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A.9 Experiment Leon2011r4

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 0
Random inputs 20
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 1
Max transition (q) 0
Time per iteration 520 miliseconds
Best fitness found 1.0
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A.10 Experiment Leon2011r5

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 6
Probability weight 0.95
Ocurrences weight 0.05
Maximun period (p) 3
Max transition (q) 2
Time per iteration 469 miliseconds
Best fitness found 0.57861
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A.11 Experiment Leon2011r6

Max iterations 1000
Population size 100
Transition rule YeastTR [STH09]
Fitness function SPDistance (4.2.3)
Reference RBN type CRBN
Copied inputs 19
Random inputs 6
Probability weight 0.8
Ocurrences weight 0.2
Maximun period (p) 3
Max transition (q) 2
Time per iteration 465 miliseconds
Best fitness found 0.34473

35



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

F
itn

es
s

Iteration

Fitness by iteration

Best individual in iteration
Best fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

F
itn

es
s

Iteration

Fitness by iteration

Best individual in iteration
Best fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

F
itn

es
s

Iteration

Fitness by iteration

Best individual in iteration
Best fitness

36



Appendix B

Implemented tools

The implemented tools have been written using
Java. It means that to execute the provided tools
mandatory use the java technology. Both tools are
packaged as jar executables, and to run them is used
the command ”java jar tool.jar”.
The tools uses the console as communication chan-

nel with the researcher by lines of text. To use the
tools the is needed to specify the execution parame-
ters. For help inline execute it with the flag ”-h”.

B.0.1 RBN Tools

Usage

This tool was designed to works as library but also
runs as executable. The goal is allow the researcher
to study a concrete network’s dynamics. Is possi-
ble to see information about the network’s attractors
and several steps from an initial network state. Also
is possible to run a concrete topology with different
kinds of RBN.

B.0.2 Parameters

B.0.3 Extending tools

The system has been designed to be easily extensible.
Both simulator implements interfaces to extend the
functionality and perform new experiments.
RBN tools implement different kinds of RBN

(CRBN, DARBN and ARBN). It is possible to ex-
tend with a new kind of RBN inheriting from RBN
class and implementing a simple method nextStep

(that depends of the RBN update schema and char-
acteristics).

Additionally, RBN Tools allow the creation of
new experiments. To do that is necessary to im-
plement the interface Experiment and the corre-
sponding TransitionRule. An experiment instance
will configure the RBN’s topology and contains the
transition rule implementation. As an example can
be checked the implemented experiment class Yeast-
CellCRBN. To use a new implementation is valid to
compile the class, include it in the classpath and run
the simulator with the parameter -e set with the
full described new class name and namespace.

Developmental-Algorithm-Tools

Usage

This tools allows to the researcher to use the de-
scribed developmental algorithm. The algorithm is
fixed but all the implied parameters can be set using
running options. This tools runs the algorithm and
shows for each iteration the progress. Works creating
a trace files and directories to save them. It allows
the study of the performed experiments. Is specially
useful to run experiments as a batch process. The
directory name to save it is provided as parameter,
and if it already exists only the fitness trace will be
dump. The idea is perform the same experiment sev-
eral times and observe de behavior. This implemen-
tation always uses an DARBN to run dynamics (with
maxp=1 and maxq=0 a CRBN behavior will be per-
formed).
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B.0.4 Parameters

This tool allows the user to set several parameters
that are important into the algorithm. These param-
eters can be checked inline using the parameter -help.

• -copiedInputsFromInputNetwork Number
of copied inputs from the reference genotype.

• -experiment Name of the experiment (manda-
tory, a directory will created with it).

• -fitness Fitness function to use during the exe-
cution.

• -help Prints helps.

• -inputNetwork Experiment (from RBN-Tools)
to use as genotype.

• -iterations Number of max iterations.

• -maxP Set maxP parameter to indivuduals.

• -maxQ Set maxQ parameter to indivuduals.

• -ocurrencesWeight Adjustment ocurrence
weight.

• -populationSize Number of individual during
the execution.

• -probabilityWeightAdjustment probabilities
weight.

• -randomInputs Number of total inputs gener-
ated randomly in the network.

• -rbnKind Type of RBN to simulate the exper-
iment.

• -verbose

B.0.5 Extending tools

Developmental-Algorithm-Tools can be extended eas-
ily through the implementation of available interfaces
present on the package. The only implementable in-
terface is the FitnessFunction interface. It allows
to create new ways to evaluate the individuals. To
use it is enough to include the compiled class into the

classpath and specify the parameter fitness to the
full qualified name of the implemented class. To per-
form more interesting extensions it can be combined
with the RBN-Tool interfaces, changing the network
topology, transition rule, etc.

B.0.6 Code

Comments about source code.

• The code is full documented using javadoc sys-
tem, it can be found package with the source
code.

• The code is compiled and packaged using Maven.

• To run the system is needed Java 1.6 interpreter.

• The system executable is packaged as .jar.
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