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Problem Description

In cooperation with Sintef Fisheries and Aquaculture, within the SimFrame project under
the Create program, we are studying the combined use of data-driven machine learning
(ML) and case-based reasoning (CBR) for improved data analysis and decision support
in fish farming (“fiskeoppdrett”). A prototype CBR system is under development, for
decision support in the management of reduced fish death ratio.

In a prestudy project a set of relevant parameters were identified by studying a set
of machine learning methods applied to an existing data set. This thesis work will start
out from:

• an extended data set, including an additional set of relevant parameters, and pos-
sible combined indicators identified by the domain experts

• the current state of the CBR system under development at Sintef, developed in
myCBR

And based on that:

• study the past machine learning methods applied to the extended data set.

• develop a CBR system framework based on the jColibri platform.

• implement a demonstrator system and test it on available data.

Assignment given: 13. January 2011
Supervisor: Agnar Aamodt, IDI
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Abstract

Fish farming is a million dollar business world wide, and fish is in fact the third most
important export product after oil/gas and metal in Norway1. There are a lot of different
aquaculture sites which produce fish along our long coast line and they all have some
differences in the production rates and procedures. The fish farmer at these sites hold
valuable information about the production, which is almost impossible to derive only
from empirical data.

In this thesis we introduce Glaucus, a Case-Based Reasoning system which aims to
help the fish farmers with their decision making when conduction sorting operations at
their aquaculture sites. The system is built in Java and uses the jColibri development
framework for Case-Based Reasoning. It retrieves cases based on similarity function from
myCBR and jColibri in addition to custom made ones. The case base is generated from
real world data and the case queries are populated by a combination of user input and
data from a database with continuous data flow.

Our approach is just the beginning of what we hope will be a even greater journey
towards a complete decision support system that will meet the expectations of the fish
farmers.

Keywords: Case-Based Reasoning, Machine learning, Fish farming, jColibri, my-
CBR

1http://www.ssb.no/fiskeri_havbruk_en/
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Chapter 1

Introduction

In this thesis we assess the use of Case-Based Reasoning within the domain of fish farming.
Fish farming is a form of aquaculture where the purpose is to breed/produce fish which
are to be utilized by consumers. Fish farming is current, and is covered by news on
a daily basis, both negative and positive[Sved, 2011, Ringseth, 2011, Holstad, 2011a,b].
Our focus has been on specific human interactions with the fish, where we have looked
at the sorting of the fish. Sorting is executed when the variation in size of the fish within
one aquaculture production unit is too big. Exactly what “too big” is in this situation
is mainly up to the fish farmers. When a sorting operation is done, we want to capture
the information at hand within a case structure, and also encapsulate the knowledge and
intuition of the fish farmer with it. The goal is to combine sensor data with the knowledge
of the fish farmer. By having all the sites within a company collaborating and sharing
experience with each other you can, in theory, have equally good production rate and
avoid mistakes.

Case-Based Reasoning uses past experiences to solve new problems. Situations have
a way of reoccurring and when they do, why not take advantage of the experience from
last time. This is the foundation of Case-Based Reasoning and also what we want to
utilize in this thesis. The decisions of a fish farmer are based on both knowledge and
intuition. The knowledge is a combination of sensor data and the understanding of the
historical data leading up to the relevant day. The intuition is mainly experience with
similar situations and some good old gut feeling. It is this last part which is difficult to
capture in a regular computer program.

As mentioned earlier we introduce the system Glaucus, a Case-Based Reasoning sys-
tem which aims to help the fish farmers with their decision making when conducting
sorting operations at their aquaculture sites. Glaucus, shown in Figure 1.1, is a Greek
god who began his life as a mortal. He discovered, by accident, a magical herb which
could bring the fish he had caught back to life. One day he decided to eat the magical
herb, which then turned him into a fish-like figure. He started to grow a tail, instead of
legs, and fins instead of arms. He also became immortal and was forced to dwell at sea
forever. It is said that he frequently rescues sailors and fishermen in storms, being that
he was once one of them. He is therefore known as the fisherman’s sea god.

The project is done in collaboration with an internal group at SINTEF Fishery and
Aquaculture. We have our own system, and made our own choices, but we have gotten
the opportunity to sit-in on several meetings, both internal and also a few where they
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Figure 1.1: Scylla and Glaucus

met their clients. They are in the start phase of creating a similar system as our Glaucus,
and our assignment was given, among other factors, to test out the technology they are
planning to use, e.g. the Java framework jColibri. It has been great to get first-hand
experience with how a scientific project is done in the real world.

In the following Sections we introduce the goals for the project and we also look at
some of the motivations for making a decision support system in the fish farming domain.

1.1 Goals
Our goal in this master thesis is to study the potential for, and develop a Case-Based
Reasoning demonstrator system for decision support in the fish farming domain. The
test application is to help the fish farmers to know under which conditions to carry out
a sorting operations in order to lower the amount of dead fish.

• Assess the use of Case-Based Reasoning in the fish farming domain

• Build a decision support system based on Case-Based Reasoning, with emphasis on
fish deaths caused by human interactions that may involve massive losses

– The operation considered is sorting

1.1.1 Methodical goals

The methodical goals are supplements to the main goal and describe how we are going
to achieve our goal.
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• Investigate the use of the jColibri development framework to create a Case-Based
Reasoning application

• The cases should consist of both single parameters and trends over time

• Use myCBR to create similarity functions

• Case matching will be done based on a combination of single parameters and trends

• The output of the system will be a risk assessment of the situation/case

• Take into account that further data material can be added over time

• Create a graphical user interface

1.2 Motivation

We have completed a specialization project[Garaas and Hiåsen Stevning, 2010] in the
previous term where we worked within the same domain, fish farming. Our goal there
was to use different machine learning methods(among them Neural Network and Decision
Tree) to classify causes of deaths in fish farming, given some chosen attributes. This was
a global approach, where we found a generalization for the data set as a whole, on the
basis of the provided data from sensors and observations logged by the fish farmer, and
later mapped into a database. No considerations were taken to the opinion of the fish
farmers/experts and specific happenings/cases. This is what we want to include in this
project. Case-Based Reasoning captures specific events like the human mind does, and
stores it for later use. But unlike the mind, the case base can store a large amount of
cases and it should be pretty easy to discover it again at any time given strong indexing.
This can be seen as a local approach if compared to the previous study, as we now are
going to work with specific cases/happenings, and not a global generalization.

The main motivation, from the application side, is to help the fish farmers make good
choices when it comes to when and how they interact with the fish, and in this way reduce
the loss of fish to a minimum. There is also a motivation in the technological aspect of
the project, by getting to develop a Case-Based Reasoning system in a real-world setting.
The health and well being of the fish is also of course in mind.

As mentioned earlier our thesis is written in collaboration with SINTEF Fishery and
Aquaculture, more specific with the SimFrame project in the CREATE program[SINTEF,
2009]. The SimFrame project’s main objective is to development a framework for simu-
lation, optimization and monitoring of all aspects of modern fish farming1.

1.3 Chapter Overview

In the next chapter we look at some background information, both related to fish farm-
ing and to the different approaches we aim to use during the project. In Chapter 3 we

1http://www.sintef.no/Projectweb/CREATE/About-CREATE/Objective/
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assess some of the related research within fish farming combined with Case-Based Rea-
soning. Chapter 4 describes the approaches and methods used during the project, and
also proposes the initial architecture for Glaucus.

In Chapter 5 we list the different milestones in the project and also in which chapters
each milestone is documented in detail. Chapter 6 describes the analysis part of this
project, where we look at the supplied data set and look for inconsistencies. Next is
Chapter 7, where we document the work we did before the discussion over the case
structure started. Chapter 8 is related to the work we did in our specialization project in
autumn 2010, where we used machine learning algorithms to find patterns in a data set.
Chapter 9 describes the process of knowledge acquisition and case structure generation
in our project.

In Chapter 10 we describe the final architecture of the system through a couple of
diagrams and describe where each of the individual parts of the architecture are docu-
mented. In addition we look at the case base with regards to the case representation and
how cases and queries are generated. Next up is Chapter 11, where we introduce the
similarity functions we have used in Gaucus.

Chapter 12 describes Glaucus, including some test runs and basic descriptions of
the different Case-Based Reasoning components used from the jColibri framework. In
Chapter 13 we use some of jColibri’s built-in methods to evaluate the system, before we
in Chapter 14 discuss the results and propose some future work.
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Part I

Insight
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Chapter 2

Background

This chapter is divided into four main parts; Aquaculture: Brief History and Statistics,
Fish Farming, Machine Learning and Case-Based Reasoning. The two latter parts are
related to the the Methodologies we use in our solution for the problem description.
The former are related to the domain itself, in addition to some research in the domain.
Chapter 3 will cover the research most related to our field of study.

Aquaculture or aqua farming, is the broad term for farming organisms in freshwater
and seawater. It involves controlling the environment with regard to aspects such as
temperature, pollution, feeding and medication in order to farm a specific aqua-based
organism. The output from the farming process is often food to be consumed by humans
or by other farmed animals. A big advantage with the farming approach is that we can
cultivate much more of a specific organism than what is available in the wild.

2.1 Aquaculture: Brief History and Statistics

Aquaculture is practiced word-wide and has its roots back in China as long ago as 2000
BC[Rabanal, 1988]. The practice may be even older, but due to the lack of written texts
there are no factual evidence of this, just a hypothesis that aquaculture was handed
down from one generation to another, usually from those who were found in seat of
power. China is to date the largest producer of aqua-based organisms, while other Asian
countries, South America and Europe follow. Figure 2.1 shows the transportation of
fry(small fish) on the southern coast of China1.

Figure 2.1: Fry transport in Nan-hai Station, Kwangtung Province

1http://www.fao.org/docrep/005/AC862E/AC862E07.htm
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China had in 2008 a production of approximately 42.7 million ton, mainly carps and
oysters. Table 2.1 illustrates the aquaculture production in the years 2006 to 2008 for the
ten countries in the world with the highest production. The numbers are taken from the
FAO(Food and Agriculture Organization of the United Nations) data set[FAO, 2008a],
with consultation with the SOFIA reports produced by FAO[FAO, 2008b, 2010].

Country 2006 2007 2008
China 39 359 174 F 41 172 951 42 669 744
Indonesia 2 479 247 F 3 121 379 3 854 844
India 3 180 865 3 112 242 3 478 692
Vietnam 1 693 727 F 2 123 400 F 2 497 400 F
Philippines 2 092 274 2 214 785 2 407 698
Thailand 1 407 001 1 351 075 1 374 024
Japan 1 223 953 1 286 027 1 187 774 F
Bangladesh 892 049 945 812 1 005 542
Chile 832 329 F 806 166 F 870 845 F
Norway 712 373 841 560 843 730

Table 2.1: Aquaculture production(tons) by top 10 countries: 2006 - 2008. The character
“F”(FAO estimate) indicates that there was no actual registered production number, but
that the value is calculated given different variables and assumptions.

Note that there is a clear dominance of Asian countries on the list and it is estimated
that Asia accounts for about 98% of carp, 95% oyster and 88% shrimps and prawns
world-wide[FAO, 2008b]. Aquatic plant production in aquaculture accounts for about
93% of the worlds total supply, and of this approximately 72% is from China. By looking
at salmon in the table we see that there are two main actors, Norway and Chile, with
33% and 31% of production respectably. Export of production overall is dominated by
China, Norway and Thailand.

2.2 Fish Farming

Fish farming is a specific type of aquaculture in the same way as shrimp farming, oyster
farming and seaweed farming. Fish farming is the process of breeding, feeding and taking
care of fish, and later selling them to consumers. A popular type of farmed fish is the
salmon. Wild salmon is born in freshwater, moves to seawater and goes back to freshwater
to reproduce. The fish is considered to be very healthy given the large amount of vitamin
D, omega-3 fatty acid and proteins. Studies have, however, shown that the omega-3 fatty
acid level is a bit lower in farmed fish than in wild fish[Frøysa, 2011], and that farmed fish
contain high levels of dioxins[Hites et al., 2004]. These are among the issues and questions
raised in the aquaculture domain including others like water quality management, early
warning systems and fish disease diagnosis. A typical Norwegian fish farming site is
shown in Figure 2.2.

On an aquaculture site there are several production units. In each production unit
there are fish in various sizes depending on the time they have been in “production”. On
each site, or on the production units, there are many different types of operations which
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Figure 2.2: Tristein, one of SalMar’s fish farming sites which we visited outside the coast
of Sør-Trøndelag

are conducted in a production cycle such as De-lousing, Slaughtering, Sorting and De-
ployment. In our thesis we focus on cases where the Sorting operation is used. A Sorting
operation is, as stated previously, a way of managing the size difference on the site. When
the difference in fish size in each production unit reaches a certain threshold(estimated
by the fish farmers), they sort the fish from the affected production units into groups of
similar fish sizes in separate units. Related to this we see an increase of fish death before
and after sorting, and our aim is to create a system which recognizes when there is a risk
for increased fish death.

A big advantage with salmon farming is the low feed ratio. The feed ratio tells us how
much feed we need in order to get one amount of fish. According to FAO the amount
of feed needed to produce one pound of farmed salmon is one and a half pound. If we
compare the ratio to other related industries, we get the figures shown in Table 2.2, where
we range from least effective to most effective.

Wild Salmon 10:1 to 15:1
Beef 10:1
Pork 5:1
Chicken 2:1
Farmed Salmon 1.5:1

Table 2.2: Feed Ratio comparison(pounds)

2.3 Research in the domain

Fish disease diagnosis and treatment is a field which has received a lot of attention over
the past decade[Zeldis and Prescott, 2000]. Fish disease diagnosis is a quite complicated
process which require a lot of expertise, time and resources. There are several studies
which describe expert systems and decision support systems for fish disease diagnosis,
and a lot of work the last years has and is being done by the one of the biggest producers
in aquaculture, China.
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The methods used to acquire knowledge, learn, query and present the results vary
from mathematical theorems and Rule-Based Reasoning to Case-Based Reasoning, and
presentation of the results with technologies such as web applications[Zhang et al., 2004,
Li et al., 2006b] and Short Message Service(SMS)[Guirong, 2009].

The different studies use methods of determining diseases from data collected in the
environment such as water temperature and oxygen level, and data collected through
examining the fish with regards to symptoms and other features. The output of each ex-
pert system is also varying in that some choose to give a diagnosis with related treatment
plans, while others adopt a more simple solution by presenting the k-nearest cases and let
the user decide which is the most likely diagnosis or treatment. This can be related to the
field of Case-Based Reasoning where we have knowledge-light and knowledge-intensive
applications, as described in Section 2.5.

2.3.1 Knowledge Acquisition

A common issue in creating an expert system, such as in the combined field of aquacul-
ture and computer science, is the bottleneck that is knowledge acquisition[Forsythe and
Buchanan, 1989]. Knowledge acquisition is the process of gathering information from the
field and using it in some way. Typically it involves retrieving information from one to
several experts and/or documentation, representing it in some way and translating it into
a way that machines can understand.

We have personal experience with this while working on our specialization project in
the autumn of 2010[Garaas and Hiåsen Stevning, 2010]. In the study we used Fayyad
et. al’s KDD(Knowledge Discovery in Databases) process[Fayyad et al., 1996] to extract
relevant data from a given database and apply common machine learning methods with
the help of the data mining software, Weka 3.6[Hall et al., 2009]. The process was in-
depth and time-consuming which is what one might expect from learning something
from a new field. Figure 2.3 illustrates a simple knowledge acquisition process2 where
a knowledge engineer queries the domain expert and formalizes the information into
structured knowledge.

Figure 2.3: Simple Knowledge Acquisition process

However, the bottleneck of knowledge acquisition is not only related to databases, but
also how to use the experts in the field to your advantage. Experts, such as veterinarians,
are not people you can find plenty of. In a specific region, ranging from several hundred
kilometers to country-lengths, there may be only a few people who have the qualified

2http://www.generation5.org/content/2005/PDAMum.asp
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expertise in a certain area. The demand for a specific expert may then be quite high
based on how many people or organizations require his/her expertise. To acquire the
knowledge that these individuals possess is a high priority and an essential part in order
to “spread” the information in a region, although it is quite time-consuming[Zhu and Li,
2008, Fu et al., 2009, Zhang et al., 2004, Li et al., 2009, 2006a].

A common way to retrieve knowledge is to hold interviews with the experts, discussing
the different aspects of the field or presenting cases to see how and what the expert
emphasizes in the problem solving. In relation to presenting cases, it is also possible to
observe the experts working in their natural habitat, to see if there are things they do
that may be important, but they are not aware of them self.

2.3.2 Image processing

Image processing has become a quite popular technique to solve many of the problem we
have today. There are a range of different uses for image processing, including Surface
Grading Systems(grade the quality of wood panels for the building industry), passport
control and general recognition. Fish diagnosis and disease detection is one of the latest
additions to a long list applicable uses for this technology.

The common way to create an application with this technology is to first preprocess
the images captured from the various aquaculture environments. The images may be
noisy, which will reduce the chance of getting a positive classification of the disease a fish
may be carrying. There are many ways to optimize the quality and usage of the image,
including noise removal, edge sharpening, leveling, edge detection and binarization[Jeong-
Seon et al., 2007].

When the preprocessing is done it is common to extract some features which can be
used to classify the image. The different ways to classify the problem ranges from the use
of techniques like principal component analysis[Jeong-Seon et al., 2007] and Case-Based
Reasoning[Lou et al., 2007].

A well-known system in the fish farming domain is Fish-Expert. Fish-Expert[Li et al.,
2002] is a web-based system which diagnoses fish by using rules and images. The images
are gathered from the environment and depicts different types of diseases and symptoms.
The system can diagnose 126 types of diseases among primarily freshwater fish, in total
nine. The reasoning technique used is rule-based, with 300 rules, and it has approximately
400 images in its database at its disposal. The system has obtained very good results
and the farmers are overall very happy with the system. When a farmer experiences
issues with his fish, he takes a picture of the fish and supplies the system with pond(site)
information in the form of observed data. The reasoning system uses the provided image
and information to find the the disease through forward chaining inference. If the disease
is not found additional data must be provided, such as a microscopic examination and
water quality information. A combination of Fish-Expert and Glaucus would be an
interesting concept, where we could use Fish-Expert as an autonomous agent who finds
diseases in the fish after a Sorting operation. This could be regarded as future work, and
a more in-depth study would be necessary to assess if this is feasible.
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2.3.3 Warning Systems

Warning systems are popular in China as shown by the use of finding diseases in the
most up and coming fish type, flounder. A warning system has been implemented with
a architecture divided into three different parts; warning module, knowledge module and
maintenance module. The system monitors trends, water quality and flounder symptoms
and warns the responsible people when something is wrong[Xing et al., 2009].

There has also been conducted research in monitoring the environment in different
studies, such as with CORMS AI[Vafaie and Cecere, 2005]. CORMS AI is a decision
support system for monitoring the US maritime environment with the combination of
rule-based and case-based reasoning. The system has been in operation since 2003 and
identifies suspect data and network disruption accurately and reliably. The system assist
the NOAA’s Center for Operational Oceanographic Products and Services personnel in
monitoring maritime environment.

Related to the environment is the concern for the water quality in China. A partic-
ular work has been done in developing a knowledge-based early warning system for fish
disease/health via water quality management, EWS-FDWQ[Li et al., 2006b, 2009]. In-
vestigations in northern China show that most outbreaks of diseases are caused by water
pollution. The loss of revenue due to diseases and water quality was at USD 1.4 and 1.9
billion in 2003 and 2004. EWS-FDWQ aims to monitor the water quality and provide a
tool to warn of potential fish diseases and enhance the management of pond ecosystem.

2.4 Machine Learning

Machine Learning is a scientific discipline within the domain of Artificial Intelligence[Russell
and Norvig, 2002]. The discipline is based on using empirical data, such as from sensors,
hand written data and databases, to let computers learn and evolve their behavior. A
learner(machine learning method) first tries to learn a concept or capture some patterns
from a given data set, and then make an intelligent decisions based on this[Mitchell,
1997b] .When a concept has been learned the method is fed some data and then is asked
to make a decision on what to do or classify the data instance. This type of learning is
called eager, which means that the learner tries to find a global solution for the whole
data set or to generalize before more problems are added. This is in contrast to Case-
Based Reasoning which is a lazy learner. In this Section we will look at the so called
eager learners, while Section 2.5 will cover a lazy learner, Case-Based Reasoning.

How can we build computer systems that automatically improve with experi-
ence, and what are the fundamental laws that govern all learning processes?

Tom M. Mitchell

The above quote is taken from an article called The Discipline of Machine Learn-
ing[Mitchell, 2006], and it illustrates the question in what Machine Learning tries to
answer. Machine Learning has been influences by a broad range of field, including Com-
puter Science, Statistics and Psychology. Computer Science and Statistics have had the
most influence on Machine Learning to date with how we build machines that solve
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problems and what can be inferred from the data. Psychology and other related fields
however, have had some degree of influence, but the human knowledge of the brain in
both animals and humans is too weak to make a great impact. There is however high
hopes that this will change in the near future. Case-Based Reasoning has taken another
turn, where psychology has had a great impact. More about this can be found in the
Section 2.5

Figure 2.4: The Star Wars protocol droid, C-3PO

Over the years we have seen lots of real-world applications in different fields, such
as Computer Vision, Surveillance- and Warning systems, Speech Recognition, Robots,
Automotive Vehicles and AI in Games. Machine Learning has evolved from being small
laboratory demonstrations to full scale commercial systems, and it in fact works[Mitchell,
1997a].

In Speech Recognition we have systems which will make it easier for people who want
to perhaps limit their use of the keyboard and mouse, or because they have a disability
which makes it hard to use applications. Microsoft, with arguably the most wide known
solution, usual ships their operating systems with Windows Speech Recognition3 which
makes it possible for a user to dictate emails, manage applications or browse the Internet.

Surveillance- and Warning systems are systems that in some way monitor their en-
vironment and does some action based on its observations. In Chapter 3, we will look
at systems using Machine Learning and/or Case-Based Reasoning to monitor or warn of
danger in the fish farming domain.

Robots and Automotive Vehicles are tightly coupled fields, as seen in popular science
fiction movies, such as Star Wars(see C-3PO in Figure 2.4) and Blade Runner. There is
much promise and potential in this field, and we have various systems ranging from the
polite robot ASIMO(Figure 2.5)[Sakagami et al.], cars running autonomous in high speed
desert-driving[Thrun et al., 2007], to intelligent vacuum cleaners.

In order to create systems and application which have or simulate intelligent behavior,
we need to use some practical approaches. There are a range of different approaches such
as:

• Decision Tree Learning
3http://windows.microsoft.com/en-US/Windows7/What-can-I-do-with-Speech-Recognition
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Figure 2.5: The humanoid robot created by Honda: ASIMO

• Genetic Programming

• Artificial Neural Networks

• Clustering

• Bayesian Networks

• Support Vector Machines

We will not describe these approaches in detail here, but in Section 4.7 and Chapter 8
we look at four different approaches to learn from a data set in the fish farming domain.
This is the same four approaches we worked with in our specialization project.

2.5 Case-Based Reasoning
Case-Based Reasoning, or CBR, is a branch on the big machine learning tree that has
been around for approximately thirty years. It originated from separate work done at the
University of Texas and Yale University, among others, in the U.S, with Bruce Porter and
Roger Schank as two important initiative-takers and researchers. Schank is maybe most
known for his dynamic memory model[Schank, 1983] and Porter for his Protos[Bareiss,
1989] system. Both have served as great inspiration to researchers across the globe.

CBR uses past experiences to solve new cases, much like our own brain. Learning
in Artificial Intelligence has usually referred to the learning of generalizations. CBR is
a lazy learning algorithm, as opposed to many other machine learning algorithms which
are eager(e.g. Decision Trees, Bayes Net). A lazy learner awaits the generalization until
after it receives a query.

David B. Leak points out five areas that CBR can contribute to the rest of the
AI-community, e.g. areas that have proven them selves to be challenging for other AI-
methods[Leak, 1996]. These are listed below:

1. Knowledge Acquisition

• In theory, it is not necessary to do extensive knowledge acquisition while cre-
ating a CBR system, as we relay on specific cases instead of a all-including
domain model.

2. Knowledge Maintenance
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• The CBR system is always updated, and learns from experience.

• It starts out with a collection of “start-cases” which will be maintained as the
system encounters new cases.

3. Increasing problem-solving efficiency

• Reusing of old solutions increases the problem-solving efficiency and there is
no need to create solutions to similar problems from scratch each time when
you can use an old, maybe adjusted, solution.

4. Increasing quality of solutions

• With bad or non-existing domain models

5. User acceptance

• A user will more likely approve of a solution that once worked on a similar
problem given in a case format, than derived rule-chains. Cunningham et al.
show that Case-Based Explanation is considered more convincing than the
rule-based alternative through a series of tests on faculty staff and students at
Trinity College Dublin[Cunningham et al., 2003].

The basic idea behind CBR is that problems have a way of reoccurring in a similar
way. The solution we applied last time, may therefore also apply for this new but quite
similar problem. Take for instance a doctor examining a patient with a set of given
symptoms. While listing the symptoms the doctor is reminded of a previous case, a
patient with the same symptoms who came in a couple of weeks ago. The patient was
treated with antibiotics and told to hold the bed, and he recovered in no time. Might
the same treatment work in this instance?

A case can have many forms, ranging from simple data, information or knowledge.
In regards to this, the data may be non-readable sensor data, while information is data
with a meaning, and knowledge is some learned information. It is only when a case is
interpreted as knowledge that we can say that we have a real Case-Based Reasoning
system. Systems that interpret cases just as data uses case-based methods to retrieve
and index the cases[Aamodt, 2004].

There are two main styles of CBR, problem solving CBR and interpretive CBR[Kolodner,
1992]. Problem solving CBR is when you use old cases to create a solution to a new case.
It is in other words heavily dependent of adaption mechanisms. Interpretive CBR is when
you interpret a new case by using the context of old situations. They are both very much
alike when it comes to the dependency of retrieval mechanisms and retaining of cases in
order to learn from experience. There is also another way a Case-Based Reasoner learns,
and this is that it can become more efficient as it remembers old solutions and adapts
these, instead of creating/deriving them from scratch each time.

2.5.1 The CBR Cycle

Aamodt and Plaza proposed to divide the process of CBR into subprocesses, the four
RE’s[Aamodt and Plaza, 1994]. The processes are:
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• Retrieve similar case(s)

• Reuse the information stored in these cases to create a solution the new problem

• Revise this solution by trying it out in the real-world or asking a domain expert

• Retain the revised solution for later use

The four steps are illustrated in Figure 2.6 where we start the cycle with a new
case(problem).

Figure 2.6: CBR-cycle

2.5.2 Case representation

A case is usually built from the most important features. The process of finding these
features are a difficult process, and also very biased where subjectiveness can be an issue.
One person or expert will emphasis one aspect of a situation, while another person may
think something else is important. The goal is to find the golden mean. A typical case is
composed of a description, also known as the problem, and a solution to the given case.
In more advanced cases one might also incorporate justifications and results of applying
the solution.

Case-Based Reasoning is a common denominator for a widely set of different systems
that uses past experiences to cope with new problems, like described in general above.
These systems range from knowledge-light approaches on one side, to more knowledge-
intensive on the other. In a knowledge-light CBR approach the knowledge of the system
is only based on the content of the cases. In knowledge-intensive CBR general domain
knowledge is added to the system as well. This supplemented knowledge can be used
among other factors to enrich the cases, describe relationship between entities or find more
advanced similarities between attributes [Aamodt, 2004]. A knowledge-light approach is
usually used when the system should operate in a domain which is unknown or difficult
to understand. It can also be used when you want to partially bypass the knowledge
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acquisition bottleneck mentioned in Section 2.3.1, where for instance the adaption logic
will be found inside the already acquired cases instead of in the general domain knowledge.

Figure 2.7[Aamodt, 2004] demonstrates the two extreme points of CBR, with the first
simple KNN systems at the left and the CREEK [Aamodt, 2004] system at the right,
where the cases contains complex attributes and general knowledge to both adaption and
to enrich the cases.

Figure 2.7: Case complexity

The case base should include both positive and negative cases. A positive case is one
that successfully solved a goal or subgoal of the Case-Based Reasoner. The case base
should have enough cases to cover all of its goals and subgoals. A negative case is one
that failed, which can be as or even more, useful than a successful one. This means that
the Case-Based Reasoner will avoid mistakes, or at least only make the mistake once.

2.5.3 Similarity Mechanisms in CBR

When we look at two different cases, such as a query case and a case from the case
base, we have to formalize a way of representing how similar they are each other. The
similarity between two cases is often calculated by reviewing how similar its individual
features are, with weights on each. A taxonomy has been suggested to divide the similarity
mechanisms into four different categories [Cunningham, 2009]. These categories and their
subcategories are illustrated in Figure 2.8

Figure 2.8: Similarity Mechanisms in CBR

The similarity mechanisms are highly dependent of the representation of the feature
values. A case can range from a simple feature vector to very complex case structures.
Cunningham categorizes case representations in three types; 1. feature-value repre-
sentation, 2. structural representation and 3. sequences and strings.
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1. Cases built up from simple numeric feature values ranging normalized from 0.0 to
1.0. Can be both internal and external value representations.

2. The feature values in the case can have an internal structure more sophisticated
than a feature vector, like a hierarchical structure, a semantic network or another
non-atomic structure.

3. A bag-of words(free text) or a sequence of words/strings

Direct Mechanisms This is the dominant strategy according to Cunningham. In
most cases the features will be represented by vectors and the similarity is computed
directly based on these vectors. A k-nearest neighbor is usually used to find the k most
similar cases and then the class is determined by these in some way(e.g a majority vote
or a distance weighted vote). These mechanisms has a computational advantages, tied
to feature-valued representation of cases.

Transformation-based Mechanisms The basic idea is to try to transform one
case into another case, instead of evaluate the distance/similarity between objects. Edit
Distance is the most basic, where you count number of transformations that have to be
executed to transform one string into another.

Information Theoretic Mechanisms Information theory offers several ways of de-
termine the similarity between cases. One of them is compression-based similarity works
directly on the raw case data. If two documents/cases are very similar the compressed
and combined documents/cases will not be much greater than the compressed size of a
single document/case. Information-based similarity has some of the same characteristics
as transformation-based similarity.

Emergent Measure Mechanisms Includes different ways of using machine learning
to find similarity, using significant processing power to produce a characterization of the
data. Random forests and Cluster Kernels are of the internal type, and they uncover new
relationships from analysis within the data set. Where the first one typically creates a lot
of unpruned decision trees that work together; an ensemble technique. Cluster Kernels
are semi-supervised learning algorithms. Web-based Kernels are external by bringing new
knowledge from outside the data set by searching the web.

2.5.4 Knowledge representation in CBR

Richter’s knowledge containers model[Richter, 2005], Figure 2.9, is a known method of
structuring a Case-Based Reasoning system.

There are in all four knowledge containers:

• The Case Base contains the cases

• The Similarity Measure contains the different similarity measures

• TheAdaption Knowledge (also known as The Solution Transformation) contains
the information needed to adapt an old solution case from the case base to best
suit the new problem case.

• The Vocabulary contains all the information about the attributes and which data
structures that are used to represent them
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Figure 2.9: Richter’s Knowledge Containers

The boundaries between the different knowledge containers are fluid, in the way that
information can be moved from one container to another. Each container can also have
several sub-containers if necessary.

2.5.5 Well-known CBR systems

There have been many Case-Based Reasoning system implemented over the years. Below
we have listed some of the earlier and to our knowledge, most known work/study done
in the real-world, and also a commercial solution in the oil drilling industry.

CYRUS

Kolodner’s CYRUS[Kolodner, 1983] was the first implemented CBR system and was
based on Schank’s dynamic memory theory. It was a system which featured travels and
meetings of an US Secretary of State.

PROTOS

PROTOS[Bareiss, 1989, Porter et al., 1990] is a Case-Based problem solving and learning
system for heuristic classification tasks, made by Bruce W. Porter and Ellis R. Bareiss.

CREEK

Creek[Aamodt, 2004] is a knowledge-intensive CBR approach, with tight coupling be-
tween general domain knowledge and cases. It is targeted at addressing problems in
weak or open theory domains.

DrillEdge

Verdande Technology was formed by a group of professors and students from the Norwe-
gian University of Science and Technology(NTNU), and is founded on the CBR principle
and uses it in the domain of oil drilling. Their product DrillEdge[Sørmo, 2009], is formed
from the basis of CREEK, more specific TrollCreek. The product is in their own words:
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designed to reduce risk, increase rate of penetration and reduce non-productive
time while drilling. We help operators to re-use knowledge in order to diagnose
and avoid costly drilling problems before they escalate.

Verdande Techonology
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Chapter 3

Related Research

Studying related research has not been a major focus in our thesis, as we have focused
more on getting a functional system up and running. We have however chosen to list
some related research below.

In Chapter 2 we mentioned some of the work and studies being conducted in the field
of Aquaculture/Agriculture. The most relevant work is however related to the different
approaches in the domain when using Case-Based Reasoning. The early warning system
EWS-FDWQ[Li et al., 2006b] mentioned in Section 2.3.3 uses a Case-Based approach.
The knowledge and cases are stored in a relation database, which makes it easy to create
new, update and delete cases.

As mentioned in Section 2.3.2, a web-based expert system, Fish-Expert, was created.
The authors of the paper proposed in 2008 a way to deal with some of the issues related
to the system[Zhu and Li, 2008], such as:

• The system had too complex rules to be understood by those without deep knowl-
edge

• The inference engine does not work efficiently and is quite time-consuming

The proposition was to use CBR so that one would not be so heavily dependent
on general domain knowledge, but instead use previously solved cases. The system de-
velopers interviewed several fish experts who had plenty of knowledge, represented the
knowledge in a structured way before they created case representations and indexing.

Wang and Li presented in 2009 a fish disease diagnosis system using SMS(Short Mes-
sage Service) to communicate with the users[Guirong, 2009]. The system uses CBR
to solve problems and allegedly has an incredible accuracy of approximately 93.6% for
fresh-water-fish.

The CBR approach was also adopted in relation with Rule-Based Reasoning for fish
disease diagnosis[Fu et al., 2009]. A generic algorithm was proposed in order to solve the
problem feature vector space and to integrate CBR and RBR.

Zhu and Li demonstrated a two-step case-retrieve model in fish disease diagnosis with
the help of CBR[Zhu and Li, 2008]. The cases in the knowledge-base consists of an
object(fish), the given symptoms and the treatment given. The similarity assessment
between a query and the case-base is done by a clustering algorithm to find which part
of the case-base the query belongs to. A simple nearest neighbor algorithm is then used
to find the closest matching cases.
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CBR in combination with image processing has also been studied[Lou et al., 2007],
where the user uploads an image of a fish and the system finds the most similar im-
age(case) in the case base. Features are extracted from the image, based on pre-processing
of the image, and a case is created and used as a query for the case base.

Yuan, Mao and Zhao proposed in 2010 a novel interference method that is a com-
bination of CBR, grey theory and Back propagtion Artificial Neural Network[Hongchun
et al.]. The system uses the four RE’s briefly mentioned in Section 2.5, but the retrieval
step is replaced by the combination of grey theory and Neural Networks to find simi-
lar cases. The system has been successfully applied to the Vannamei expert system for
disease diagnosis and treatment.

Our group is also working on creating a commercial CBR system which is based on
the SimFrame architecture[Tidemann et al., 2011]. A demonstrator system was created
based on Protegé and myCBR and it was there discovered that there was need for a
structured registration portal for fish mortality. The hand-written reports, which the
cases were based on, were lacking in quality, both in regards to missing attributes and
different names for the same thing.

CARMA[Branting et al., 1999] proposed the use of model based adaption as a tech-
nique for integrating case-based reasoning and model-based reasoning. The main moti-
vation for this was that the domain of biological systems is limited by incomplete models
and empirical data. So since the different approaches, case-based reasoning and model-
based reasoning, could not understand the domain alone, why not incorporate them.
The technique is then to use case-based reasoning to find an approximate solution, while
model-based reasoning is used to adapt this solution to a more precise solution. When
evaluating the performance they found that using this approach in the domain of range-
land pest management yielded good results as opposed to the individual methods on their
own.

In addition to the domain related work above, there has been work done at our
department at NTNU, Department of Computer and Information Science, with regards
to the framework we are basing our system on. Bacchus[Gravem, 2010], a combined Case-
Based Reasoning and Bayesian reasoner for decision support in choosing wine to specified
meal is introduced. The system uses the jColibri framework to achieve its Case-Based
Reasoning capabilities, and we have drawn inspiration and knowledge from this thesis.
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Chapter 4

Methodological Approach

In this Chapter we describe how we planned to reach the goals we specified in Section
1.1. The following issues will be addressed:

Equipment describes the different tools which are used in the project.

jColibri will give an overview of the jColibri framework with emphasis on the example
Travel Recommender.

Protegé + myCBR describes a knowledge-base framework and its sub components.

Weka describes the Weka software, and how it will be used in our project.

Hibernate will give a basic description of how it can be used and why.

Acquiring and analyzing the new data from the fish farming sites.

Machine Learning Methods we will use on the new data set.

Knowledge Acquisition will describe how we aim to gather knowledge in order to
create the CBR system.

Putting it all together will propose the initial implementation of Glaucus.

Evaluating the final system will cover how we aim to evaluate the final system.
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4.1 Equipment

The following development frameworks, software and other equipment are used during
the project:

4.1.1 Database

MySQL1 is the worlds most popular open source database and it has a variety of different
tools which are used during the majority of the project.

MySQL Community Server2 is the worlds most popular open source database.
The database is easy to handle and maintain, while also having a great and
active community at your disposal if you should ever face an issue or problem.

MySQL Workbench (GUI Tool)3 is a visual database design application which
is used maintain and manage the database schemata.

MySQL Connector/J 5.1.154+ Connector/MXJ is the official JDBC driver
for MySQL. It will be used in the development of the Java application.

4.1.2 Development Frameworks

jColibri5 is a Case-Based Reasoning framework written completely in Java.

Protegé6 is a free, open source ontology editor and knowledge-base framework. The
framework is written in Java and it supports several plug ins.

MyCBR7 is an open source case-based reasoning tool which is built on top of
Protegé as a plug in. The tool enables fast and easy prototyping of a CBR
system.

Weka 3.68 is an application for data mining tasks. It includes a vast collection of ma-
chine learning algorithms which can be used directly on some data set or through
Java code. The tools included in are data pre-processing, classification, regression,
clustering, association rules and visualization. The software is also open source.

Hibernate9 is an open source Java persistence framework. It provides a way to map an
object-oriented domain model to a relational database.

1http://www.mysql.com/
2http://www.mysql.com/downloads/mysql/
3http://www.mysql.com/downloads/workbench/
4http://www.mysql.com/downloads/connector/j/
5http://gaia.fdi.ucm.es/projects/jcolibri/
6http://protege.stanford.edu/

78http://mycbr-project.net/
8http://www.cs.waikato.ac.nz/ml/weka/
9http://www.hibernate.org/

24



4.1.3 IDE’s and Misc

Netbeans IDE 6.7.1 and 6.910 is an IDE(Integrated Development Environment) which
is part of an open-source project called Netbeans. The IDE is written in Java and
it aims to give developers a rock-solid development environment in a broad range
of languages. The IDE can be run on any system where a Java Virtual Machine is
installed and has support for a wide range of third-party software such as MySQL
database, GlassFish and Versoning Control Tools. Netbeans 6.7.1 is used to create
UML diagrams.

TeXnicCenter11 is an IDE for developing latex documents under theWindows-platform.
This is used to document our work.

EndNote X412 is a reference managment software. The program is used to keep track
of your bibliography and references when writing documents such as articles and
reports.

Gephi13 is used to illustrate the relationship between the different fish groups in the
provided data set.

Gliffy14 is a online diagram software. We use this to create diagrams of various types in
the project.

10http://netbeans.org/index.html
11http://www.texniccenter.org/
12http://www.endnote.com/
13http://www.gephi.org/
14http://www.gliffy.com/
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4.2 jColibri
jColibri is a Java framework for creating Case-Based Reasoning systems. The framework
is a product of the Group for Artificial Intelligence Applications, short GAIA, which is a
group composed of professors and student interested in the field of Artificial Intelligence at
the Complutense University of Madrid. The first thing we need to know is the motivation
and history behind the framework.

4.2.1 History

The group’s approach to Case-Based Reasoning came from integrating applications that
combined both general domain knowledge and case specific knowledge. COLIBRI(Cases
and Ontology Libraries Integration for Building Reasoning Infrastructures) is the product
of Belén Díaz-Agudo’s Phd thesis[GAIA, 2011] with the guidance of Pedro A. González-
Calero, in which they propose a domain independent architecture in order to design
knowledge intensive CBR systems.

COLIBRI

COLIBRI[Díaz-Agudo et al., 2002a] is based on knowledge acquisition from a library
of independent ontologies and CBROnto[Díaz-Agudo et al., 2002b]. CBROnto is a on-
tology with CBR terminology which guides the case representation and CBR problem
solving methods to solve CBR tasks. COLIBRI and CBROnto were developed in the
languages/environments LISP and LOOM, and are therefore quite unusable by users not
familier with Desciption Logic(DL). In order to broaden the community jColibri was
created. COLIBRI is the predecessor of jColibri 1.x and jColibri 2.x.

jColibri

jColibri, illustrated in Figure 4.1, is as mentioned above a further development of the
architecture COLIBRI. It was originally created by Juan José Bello while Antonio A.
Sanchez-Ruiz Granados greatly contributed to the project[GAIA, 2011]. The design of
the framework consist of a number of XML-files and Java classes organized around the
following four elements:

Tasks and Methods which are supported by the framework. They are described by
XML-files.

Case Base which are supported, along with connectors to support different persistences
such as database and file system.

Cases are provided in the framework in form of abstract classes and interfaces to support
an actual real-world case.

Problem solving methods are represented by actual code in the framework.

One of the main issues with a framework is how to use it. jColibri supports a semiau-
tomatic configuration(authoring) tools which helps the user create a CBR system through
a dynamic graphical interface. This feature is as of June 10, 2011, not implemented in
jColibri 2.x.
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Figure 4.1: jColibri framework structure

jColibri 2

jColibri 2 is a major release where most of the features from the jColibri 1.x framework
has been reimplemented. Juan A. Recio-Garcia is the main developer on the jColibri 2
project and he also completed the first version of the framework. The development of the
second version of the framework was also the base of his Phd[Recio-García, 2008].

The main reason for the reimplementation of jColibri is to make the framework eas-
ier to extend with your own code and to make it more robust. The framework is also
designed as regards to separating the problem solving techniques and the domain knowl-
edge. Authoring tools as those present in jColibri 1.x are not included but they are under
development.

Figure 4.2: jColibri 2 framework architecture

A useful feature in jColibri which will be addressed in Section 4.5 is the support
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for the use of Hibernate. Hibernate will make it easier to map the database to their
corresponding Java classes. This will limit the amount of actual SQL queries we would
have to generate and use in our application.

Figure 4.3: Persistence architecture

jColibri’s two layered persistence architecture, illustrated in Figure 4.3, is composed
of Connectors and In-memory organization of cases. The Connectors are interfaces which
know how to communicate and load cases from a physical medium. There are currently
three types of Connectors in jColibri; DatabaseConnector, PlainTextConnector and On-
tologyConnector. The most appropriate Connector for us would be the DatabaseCon-
nector, since its easier to maintain and debug a database if problems should occur. The
DatabaseConnector also supports Hibernate internally.

Each Connector is configured through XML configuration files, which state which
class in the project is the Description for the Case, and which is the Solution. We also
supply the Hibernate configuration file, which will be covered in more detail in Section
4.5. Basically its a file which says how class objects are mapped to tables in a given
database schema.

The second layer in the architecture is related to how the cases are organized once
they are loaded to memory. There are three basic in-memory organizations of cases sup-
ported in jColibri; LinealCaseBase, CachedLinealCaseBase and IDIndexedLinealCase-
Base. There is also a Interface which makes it possible for developers to create their own
representations if the would like to.

Mechanisms for Retrieving, Reusing, Revising and Retaining cases are included and
the code is well documented. For the purpose of learning how to use the framework we use
the jColibri tutorial[Recio-García et al., 2008] and implement the Travel Recommender
system. The Travel Recommender system is a test example created by the authors of
jColibri, and it uses many of the components required to build a working CBR system.

4.2.2 jColibri 2 tutorial

jColibri can be downloaded from the jColibri web site15. There are three versions avail-
able from the site(June 10, 2011), and we will focus on using version 2.1. The Travel
Recommender system is a system which has a case base consisting of different trips, or
cases. Each case is composed of several simple attributes in a flat structure. Id, holiday
type, number of persons and duration are among the list of available attributes. The

15http://gaia.fdi.ucm.es/projects/jcolibri/

28



solution of the case is composed of the price and hotel. The CBR cycle starts with the
user input.

Figure 4.4: Configure Query Dialog

The user inputs some attributes for the desired trip, Figure 4.4, and the system finds
the the most similar trip in the case base based on some similarity functions. The selection
of the most similar cases is related to the retrieve step in the CBR cycle. The K nearest
cases are then displayed to the user, and we get the option of adapting(Reuse step) the
solution according to the values set in the query.

The revise step is handled by the domain expert, which is in this case the user. The
solution which Travel Recommender recommends may not be available at this time, and
the user has to revise the solution.

As the last task in the cycle(Retain) we can save the new case so it can be used later.
This tutorial demonstrates a very simple CBR application where the jColibri framework
can be used. In addition to the tutorial, there are a dozen different examples in the
jColibri source of how to use different features in the framework. There are methods
and features for evaluating the application, visualizing the case base, using ontologies,
compound attributes, textual CBR extension and so on. The different types of methods
will be covered in more detail in the actual implementation chapters.

Case Components and Similarity

A case component or compound attribute is an attribute which contains numerous simple
attributes. In the Travel Recommender system the TravelDescription is in itself a com-
pound attribute, where we have simple attributes such as id, duration and holiday type.
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Every compound attribute must implement the CaseComponent interface and redefine
the getAttribute method.

Similarity in jColibri works in two ways, global(for compound attributes) and local(for
simple attributes). A common Global similarity function is Average, where we average
over some collection, while Local similarity function such as Equal, Interval and Threshold
work on simple attributes. In the instance of TravelDescription the similarity between a
case and query is calculated by averaging(global) over the similarity between each simple
attribute(local), where each attribute is assigned their own local similarity function.

In the jColibri framework it is possible to create own similarity functions by either
implementing the GlobalSimilarityFunction interface or the LocalSimilarityFunction in-
terface.

4.3 Protegé + myCBR

Protégé is an open source ontology editor and knowledge-base framework. The Protégé-
Frames and Protégé-OWL editors are the two main ways of modeling the ontologies.
These ontologies can be exported into a variety of formats including RDF(S), OWL, and
XML Schema. It is, as jColibri, based on Java and also a flexible base for rapid proto-
typing and application development. Protégé is, according to their website, supported by
a strong community of developers and academic, government and corporate users, who
are using Protégé for knowledge solutions in areas as diverse as biomedicine, intelligence
gathering, and corporate modeling.

Figure 4.5: myCBR logo

myCBR is another open source tool, made for Case-Based Reasoning system devel-
opment. Which can be downloaded as a plug-in to Protégé from the website16. To-
gether with Protégé, myCBR offers advanced functionality for defining and visualizing of
object-oriented case representation. It is easy to use through a clear graphical user inter-
face, which enables quick testing and prototyping. It is developed at the DFK(Deutsces
Forschungszentrum für Künstliche Intelligenz GmbH). It is also possible to use the my-
CBR retrieval engine as a standalone application.

4.3.1 Usage with jColibri

One of the main advantages of using Protegé + myCBR is to create our own custom
similarity functions. The issue is, how do we use them with the jColibri framework? The
jColibri developers(GAIA) in cooperation with the myCBR developers(German Research
Center for Artificial Intelligence DFKI GmbH) developed a contribution to the framework
which contains wrapper methods for using similarity measures/functions created with
myCBR.

16http://www.mycbr-project.net/download.html
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Example of use

The first step in order to use the wrapper is to create the similarity function. This is
done by creating an attribute in Protegé, such as the one pictured in Figure 4.6. We have
chosen to set this attribute as a symbol, where we have three allowed values.

Figure 4.6: Attribute in Protegé

The second step is to a create the similarity function for this attribute. This step is
done in the Similarity Measure Editor Tab, usually located to the wide right in Protegé.
In the editor we have several options, and we will chose Similary mode=Table and Sym-
metry=Symmetric. This is a quite simple way to measure similarity between symbols
where we have allowed values. Figure 4.7 illustrates the values we have given the similar-
ity between allowed values. Given that you have a value of Low in your case base, and a
query with value Medium, you would get a similarity of 0.5. This is also true vice versa.

Figure 4.7: testAttribute similarity

The third step is to export the similarity measure. This is done by using the menu
system located in the top of Protegé, more precisely through MyCBR->Export Similarity
Measure...
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Listing 4.1: XML file for testAttribute
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <SMFunction smfname=" de f au l t " model_instname=" t e s tA t t r i bu t e " type="Symbol">
3 <QuerySymbol symbol="Low">
4 <CBSymbol sim=" 1 .0 " symbol="Low" />
5 <CBSymbol sim=" 0 .5 " symbol="Medium" />
6 </QuerySymbol>
7 <QuerySymbol symbol="Medium">
8 <CBSymbol sim=" 0 .5 " symbol="Low" />
9 <CBSymbol sim=" 1 .0 " symbol="Medium" />
10 <CBSymbol sim=" 0 .5 " symbol="High" />
11 </QuerySymbol>
12 <QuerySymbol symbol="High">
13 <CBSymbol sim=" 0 .5 " symbol="Medium" />
14 <CBSymbol sim=" 1 .0 " symbol="High" />
15 </QuerySymbol>
16 </SMFunction>

The final part is to set up the similarity measure with an attribute in your system.
This is done as shown in Listing 4.2.

Listing 4.2: testAttribute similarity Java code
1 NNConfig c on f i g = new NNConfig ( ) ;
2 c on f i g . addMapping (new Attr ibute ( " t e s tA t t r i bu t e " , TestClass . c l a s s ) , new

MyCBRTableSimilarity ( "path/ t e s tA t t r i bu t e . xml" ) ;

32



4.4 Weka
WEKA is an open source data mining tool developed at the University of Waikato in New
Zealand. The abbreviation stands for Waikato Environment for Knowledge Analysis.

Weka is a collection of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a dataset or called from your
own Java code. Weka contains tools for data preprocessing, classification,
regression, clustering, association rules, and visualization. It is also well-
suited for developing new machine learning schemes.

- Weka web17

We use the Weka explorer and its preprocessing tool, illustrated in Figure 4.8, to
examine the database, and also to run the same machine learning algorithms as we did
in our specialization project[Garaas and Hiåsen Stevning, 2010]. The machine learning
approaches were Decision Tree J48, Naive Bayes, Bayes Net and Neural Network. The
machine learning was not the focus in this project, but mainly a way to prove that
our assumptions about having a better data set, would improve the performance of the
algorithms and to confirm that this is in fact a better data set.

Figure 4.8: Preprocessor

17http://www.cs.waikato.ac.nz/ml/weka/index.html
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4.5 Hibernate
Hibernate is an Object/Relational Mapping solution in Java. The way it works is that
it maps all data from an object model representation to a relation model representation,
and vice versa. With this in mind we can set up Hibernate between our object model,
such as Java classes, and the database.

4.5.1 Hibernate Mapping

Given a Java class such as the one in Figure 4.9 we can create objects of it. In order
to store instances of it in a database we would however have to create a table in the
database schema, extract the values from the FishDeath object and use SQL-queries and
the JDBC API directly. With more than one class, and lots of different relationship to
keep track of, this would be a quite time-consuming task. This is where Hibernate has
its strength for developers.

Figure 4.9: Fish Death Class

The first thing required to do is to map the Java class to a table in the database
schema. Listing 4.3 illustrates how a possible mapping could look like. The two fist lines
denote the format of the file. Line four states that this is a class named FishDeath in
the my.cbr.database.model package, together with some additional arguments. Once the
name of the class is established, we are going to list the properties from the class which
are going to be saved to the table in the database. Each property is listed in the file,
with the exact same name as in the class file. If you want the property to have another
name in the table, this can be achieved through the use of an additional parameter,
column=”some column name”. Each table also needs to have an identification column.
Line numbers five to seven show how you set up the id to auto-increment. There are also
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many other generator types which may be useful if increment does not fit the current
situation.

Listing 4.3: Hibernate mapping file for FishDeath
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <!DOCTYPE hibernate−mapping PUBLIC "−//Hibernate /Hibernate ␣Mapping␣DTD␣

3.0//EN" " ht tp : // h ibe rnate . s ou r c e f o r g e . net / hibernate−mapping−3.0 . dtd">
3 <hibernate−mapping>
4 <c l a s s dynamic−i n s e r t=" f a l s e " dynamic−update=" f a l s e " mutable=" true " name=

"my. cbr . database . model . FishDeath" op t im i s t i c−l o ck=" ve r s i on "
polymorphism=" imp l i c i t " s e l e c t−before−update=" f a l s e ">

5 <id name="deathID">
6 <genera tor c l a s s=" increment "/>
7 </ id>
8 <property name=" cause "/>
9 <property name="count"/>
10 <property name="deathDate"/>
11 <many−to−one c l a s s="my. cbr . c a s e d e s c r i p t i o n s . CaseSo lut ion " name="

so lu t i on ID " not−nu l l=" f a l s e "/>
12 </ c l a s s>
13 </hibernate−mapping>

Relationships with other classes/tables are given by using one of one-to-one, many-
to-one, one-to-many or many-to-many. Depending of the type, you may also be required
to set up something similar in the class which this current class has a relationship to.
The relationship given by this mapping is that a CaseSolution can have many FishDeath
instances, but on FishDeath instance can only have one CaseSolution.

Listing 4.4: Hibernate mapping file for CaseSolution
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <!DOCTYPE hibernate−mapping PUBLIC "−//Hibernate /Hibernate ␣Mapping␣DTD␣

3.0//EN" " ht tp : // h ibe rnate . s ou r c e f o r g e . net / hibernate−mapping−3.0 . dtd">
3 <hibernate−mapping>
4 <c l a s s dynamic−i n s e r t=" f a l s e " dynamic−update=" f a l s e " mutable=" true " name=

"my. cbr . c a s e d e s c r i p t i o n s . CaseSo lut ion " op t im i s t i c−l o ck=" ve r s i on "
polymorphism=" imp l i c i t " s e l e c t−before−update=" f a l s e ">

5 <!−− Use the same ID as CaseDescr ip t ion −−>
6 <id name="caseID">
7 <genera tor c l a s s=" f o r e i g n ">
8 <param name="property ">ca s eDe s c r i p t i on</param>
9 </ genera tor>
10 </ id>
11 <one−to−one c l a s s="my. cbr . c a s e d e s c r i p t i o n s . CaseDescr ipt ion " cons t ra ined

=" true " name=" ca s eDe s c r i p t i on "/>
12 <!−− Added l a z y l oad ing in order to counter a problem with

p e r s i s t e n t bag−−>
13 <bag cascade=" a l l " i nv e r s e=" true " lazy=" f a l s e " name=" f i s hdea th " tab l e="

FishDeath">
14 <key column=" so lut i on ID " not−nu l l=" true "/>
15 <one−to−many c l a s s="my. cbr . database . model . FishDeath"/>
16 </bag>
17 <property name=" r i s k "/>
18 <property name="aggregatedCount "/>
19 <property name="deathRatio "/>
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20 </ c l a s s>
21 </hibernate−mapping>

For the CaseSolution, which is referenced by FishDeath, to be able to know which
FishDeath instances it is hooked to we have to use Collection mapping. To do this
we create a property in CaseSolution which is a subtype of java.util.Collection, such as
java.util.List. A List in the Hibernate mapping environment is denoted as a bag, while
there are also similar types such as map and set. Lines 13-16 in Listing 4.4 states that
the CaseSolution class has a bag named fishdeath, and that this bag contains instances
of the class my.cbr.database.model.FishDeath. The id of CaseSolution is also put on the
many side(FishDeath) to maintain the relationship(line 14 key column). The inverse and
cascade parameters indicate that this class is the owner of the referenced one. What
this means is that when we come to the point where we want to store the objects in a
database, we only need to supply the session with the owner object. The session will
automatically insert the objects which are coupled to the owner object.

4.5.2 Hibernate Configuration File

When all Hibernate mappings are configured we pass these to a Hibernate configuration
file. This is the file where we input parameters such as which database to use, SQL
dialect, drivers and other things relevant for the session factory. Listing 4.5 shows a
typical format of the configuration file. We specify that in this instance we want to use a
MySQL database, root as username, show SQL under run-time and if there are changes
in the mapping files update the database schema. The hibernate mapping files are added
with the <mapping resource=””/> blocks.

Listing 4.5: Hibernate configuration file
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <!DOCTYPE hibernate−c on f i gu r a t i on PUBLIC "−//Hibernate /Hibernate ␣

Conf igurat ion ␣DTD␣ 3.0//EN" " ht tp : // h ibe rnate . s ou r c e f o r g e . net / hibernate−
con f i gu ra t i on −3.0 . dtd">

3 <hibernate−c on f i gu r a t i on>
4 <se s s i on−f a c t o r y>
5 <property name=" h ibe rnate . d i a l e c t ">org . h ibe rnate . d i a l e c t . MySQLDialect</

property>
6 <property name=" h ibe rnate . connect ion . d r i v e r_c l a s s ">com . mysql . jdbc .

Dr iver</ property>
7 <property name=" h ibe rnate . connect ion . u r l ">jdbc :mysq l : // l o c a l h o s t : 1 3 3 7 /

FishFarmingCaseBase ? c reateDatabase I fNotEx i s t=true&amp ; s e r v e r . ba s ed i r
=C:\dbtemp\mxj−tmp</property>

8 <property name=" h ibe rnate . connect ion . username">root</property>
9 <property name=" h ibe rnate . connect ion . poo l_s ize ">1</property>
10 <property name=" h ibe rnate . hbm2ddl . auto">update</property>
11 <property name=" h ibe rnate . show_sql">true</property>
12 <mapping r e sou r c e="my/ cbr / database /model/ r e s ou r c e s /FishDeath .hbm. xml"/>
13 <mapping r e sou r c e="my/ cbr / c a s e d e s c r i p t i o n s / r e s ou r c e s /CaseSolut ion .hbm.

xml"/>
14 </ se s s i on−f a c t o r y>
15 </hibernate−c on f i gu r a t i on>
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4.5.3 Storing data

The final step is to create some objects of both CaseSolution and FishDeath, couple
them together and save them to session. The Java code given in Listing 4.6 shows that
we create a object of CaseSolution, and then create multiple FishDeath objects which are
added to CaseSolution’s Collection property, the List fishDeath. Each fishDeathObject
is set to point to its owner, namely CaseSolution.

Listing 4.6: Java store CaseSolution and FishDeath
1 CaseSo lut ion ca s eSo lu t i on = new CaseSolut ion ( ) ;
2 // Create FishDeath o b j e c t s and i n s e r t some data
3 // For each FishDeath o b j e c t do :
4 ca s eSo lu t i on . addFishDeath ( f i shDeathObject ) ; // add to c o l l e c t i o n
5 f i shDeathObject . s e tSo lu t i on ID ( ca s eSo lu t i on ) // s e t r e l a t i o n s h i p wi th

ca s eSo lu t i on
6
7 try {
8 // Load con f i g u ra t i on and s e s s i on
9 Conf igurat ion c f g = new Conf igurat ion ( ) ;
10 c f g . c on f i gu r e ( "my/ cbr / database / r e s ou r c e s /Hibernate_conf ig . c f g . xml" )

;
11 Ses s ionFactory s f = c f g . bu i ldSe s s i onFac to ry ( ) ;
12 Se s s i on s e s s i o n = s f . openSess ion ( ) ;
13
14 org . h ibe rnate . Transact ion t r an sa c t i on = s e s s i o n . beg inTransact ion ( ) ;
15 s e s s i o n . save ( ca s eSo lu t i on ) ;
16 t r an sa c t i on . commit ( ) ;
17
18 s e s s i o n . c l o s e ( ) ;
19 } catch ( Exception e ) {
20 org . apache . commons . l ogg ing . LogFactory . getLog ( t h i s . g e tC la s s ( ) ) . e r r o r

( e ) ;
21 }

When we have created the objects needed we create a configuration with the hibernate
configuration file. A SessionFactory can then be acquired from the configuration, which
will make it possible to open a session. The CaseSolution object is saved to session and
the transaction is committed. The data is now safely stored in the database.

4.5.4 Loading data through jColibri

In order to load the data back from the database we will use some of the features given to
us by jColibri. This will be addressed later in the documentation of the implementation.

To be able to load data in jColibri we are going to use what is called a Connector in
jColibri. A Connector, as mentioned in Section 4.2, is a Interface between the application
and the physical medium where the cases are stored. This Connector knows how to get
the data from the database, and store them to the in-memory organization indicated by
the developer. Listing 4.7 is a typical configuration file for the DataBaseConnector.

Listing 4.7: DataBaseConnector configuration file
1 <?xml ve r s i on=" 1 .0 " encoding="ISO−8859−9"?>
2 <DataBaseConf igurat ion>
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3 <HibernateCon f i gF i l e>my/ cbr / database / r e s ou r c e s /Hibernate_conf ig . c f g . xml
</HibernateCon f i gF i l e>

4 <Descr ipt ionMappingFi le>my/ cbr / c a s e d e s c r i p t i o n s / r e s ou r c e s /
CaseDescr ipt ion .hbm. xml</Descr ipt ionMappingFi le>

5 <DescriptionClassName>my. cbr . c a s e d e s c r i p t i o n s . CaseDescr ipt ion</
DescriptionClassName>

6 <Solut ionMappingFi le>my/ cbr / c a s e d e s c r i p t i o n s / r e s ou r c e s /CaseSo lut ion .hbm
. xml</Solut ionMappingFi le>

7 <SolutionClassName>my. cbr . c a s e d e s c r i p t i o n s . CaseSo lut ion</
SolutionClassName>

8 </DataBaseConf igurat ion>

The first thing which is added is the HibernateConfigFile, which is the one created in
Listing 4.5 under Section 4.5.2. The next thing is to specify the mapping and class files
for Case Description and Solution. Note that when you add these you have to remove the
mapping from the Hibernate Config File, or you will receive an exception when running
the application. Listing 4.8 shows how you would retrieve the cases from the database in
Java through jColibri.

Listing 4.8: Load case from database
1 // Custom embedded (mxj ) MySQLDBServer
2 MySQLDBServer . i n i t ( ) ;
3
4 // crea t e a new LinealCaseBase
5 t h i s . caseBase = new LinealCaseBase ( ) ;
6
7 // Set the Connector
8 t h i s . connector = new DataBaseConnector ( ) ;
9
10 // i n i t i a l i z e the connector by us ing the database con f i g f i l e
11 t h i s . connector . initFromXMLfile ( j c o l i b r i . u t i l . F i le IO . f i n dF i l e ( CBRApplication

.DATABASE_CONFIG_FILE) ) ;
12
13 // s t o r e a l l data in Linea l Case Base
14 t h i s . caseBase . i n i t ( t h i s . connector ) ;
15
16 java . u t i l . Co l l e c t i on<CBRCase> ca s e s = th i s . caseBase . getCases ( ) ;
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4.6 Acquiring and analyzing the data
In this project we are provided with a data set similar to that in our specialization
project[Garaas and Hiåsen Stevning, 2010] autumn 2010. An analysis was then completed
with this data set, and we have used some of the outcome in this project. In addition,
an analysis of the new data is important in order to get an overview of how the data is
distributed in the database. It is important not to take any assumptions when it comes
to a new data set as there can be several changes that affect the system architecture.
The MySQL Workbench is used to create a database diagram, in order to visualize the
complete relationships between the entities. The plan from there was to use this model to
pick out tables from this model, one by one, and examine them by using the preprocessor
tool in Weka. The sequence of the analysis was as follows:

1. Find a table in the model

2. Look up its attributes by using the preprocessor in Weka

3. Run through the values of each attribute, look for missing values and corrupted
data

4. Also find out what the data in the table represents

5. Use its foreign keys to find its connecting tables and do the same procedure for
them

This analyzing process is crucial in our journey towards a final attribute set, which can be
used as a case in our system. A more detailed explanation and the result of this analysis
can be found in the Chapter 6.
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4.7 Machine Learning Methods

Machine Learning is as stated in Section 2.4 a scientific discipline within Artificial In-
telligence. Its main focus is to learn a concept from a given set of empirical data, such
as from sensors. In our specialization project we focused on using four different machine
learning methods/approaches to learn which cause of death was most likely given a set of
attributes. In this thesis we aim to follow up on what we did then, and see if the changes
made to the data set have any influence on the results.

The Machine Learning methods used in the specialization project were:

Decision Tree: J48 is a algorithm which is based on the the popular C4.5, developed
by J. Ross Quinlan[Quinlan, 1993]. In the tree structure leaves represent classi-
fication, while branches represent conjunctions of the attributes that lead to the
classification. A typical tree is illustrated in Figure 4.10[Mitchell, 1997b]. The
question here is whether one should go out on some kind of activity, such as tennis
or surfing, given some information from relevant attributes. This tree says that if
the Outlook is sunny and the Humidity is high, then you should not go out. How-
ever, if the Outlook is overcast, you should go. The method is quite popular and
also easy to extract rules from by traversing the tree, such as in the form of if-then.

Figure 4.10: Decision Tree

Neural Network is a term that is often referred to as Artificial Neural Network(ANN)[Kröse
and Smagt, 1993] in Computer Science. The model is composed of different nodes
which mimic the properties of an actual biological neuron. ANNs are often used to
model relationships between input and output in a data set, and from there find
patterns. There are three main types of nodes in the network, including; input,
hidden and output nodes. A node is given one or many inputs, where each input is
assigned a weight, including a bias input which is used together with the neurons
function to compute the output. The way we train or network is that we feed it
with training examples and let it create new nodes and adjust the weights of the
inputs. In Figure 4.1118 you can see a Neural Network with multiple input nodes,
some hidden nodes and a output node. All node relationships are weighted.

Bayesian Net is a probabilistic graphical model which represents a set of variables/at-
tributes and their conditional dependencies in a directed acyclic graph. A typical

18TDT4171 - Lecture 8(2010) Norwegian University of Science and Technology
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Figure 4.11: Neural Network

example used in theory books and lectures at universities is to model the relation-
ship between diseases and symptoms. Given a list of symptoms, the Bayesian Net
should be able to calculate the presence of available diseases. The network in Figure
4.1219 shows that there are two separate events which can cause the grass to be wet,
a sprinkler or rain. By taking advantage of the conditional probability formula, we
can calculate the probability of it raining given that the grass is wet. For us this
means we can train the net to understand the domain, and then input some test
cases and see if it calculates the correct solution.

Figure 4.12: Simple Bayes Net

Naive Bayes is strongly related to Bayesian Net. It is based on applying the Bayes’
theorem with a naive independence assumption. Basically, the Naive Bayes assumes
that the presence or absence of an attribute is unrelated to the presence or absence
of another. For example, an animal is considered a bird if it has a beak, feathers
and wings. The Naive Bayes classifier assumes that all these features/attributes
independently contribute to its classification(a bird), even though this might not
always be the case because features may depend on one another. Figure 4.13 illus-
trates the example given above. Naive Bayes calculate the probability that this is
a bird(Yes or No) given the presence of the independent features.

The attributes collected in the specialization project were based on a attribute selec-
tion algorithm found in Weka 3.6. The attribute selection was given a set of attributes

19http://upload.wikimedia.org/wikipedia/en/0/0e/SimpleBayesNet.svg
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Figure 4.13: Naive Bayes

along with some data, and it outputs the most usable attributes from top to bottom.
These attributes was the ones with the strongest influence of the classification of a spe-
cific cause. In the end we had a list of the following 6 attributes:

• Cause

• Count

• VaccineType

• DateTime

• SerialNumber

• StartTime

The attributes were based on only a subset of the tables and data in the available
data set, but a more detailed selection and analysis would not have been feasible due to
the time-constraint. The aim for this part is to see the changes in the data set through
the methods of machine learning, and to confirm the assumption we had about improving
the performance of the algorithm with a better, more adequate data set. To do this we
run each of the four mentioned methods/approaches, note the results and discuss the
difference between both the methods in the data set and across data sets.

4.8 Knowledge Acquisition

Knowledge acquisition is as stated in Section 2.3.1 a common issue when creating an
expert system. Our approach to knowledge acquisition was:

• a in-depth analysis of the data set at hand

• continuous meetings with the internal group to get the latest update and informa-
tion that they had acquired

• meetings with experts within the field

The knowledge acquisition is described in detail in Chapter 9.
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4.9 Putting it all together
In this section we introduce Glaucus, a Case-Based Reasoning system which retrieves
and reuses the solution from cases which are similar to a query case in the fish farming
domain. We use the tools and technologies presented in the previous sections and describe
the architecture of the system and how we intended to build the cases in our system. This
architecture is what we aimed to create from a early stage, and there are some difference
between this and the actual architecture. The reason we decided to include the outdated
architecture in this thesis is for the reader to see the planning phase of our project, and
see what changes it was exposed to.

4.9.1 Initial Architecture for Glaucus

As mentioned above we decided to propose the system architecture illustrated in the
component diagram in Figure 4.14 based on the different requirements and technologies
presented in the previous sections. The system consists of the core case based reasoning
functionality, similarity functions, user interface and database connections.

Figure 4.14: Component Diagram

The core case based reasoning is provided by the jColibri framework, and it includes
different methods for each of the four phases, Retrieve, Reuse, Revise and Retain. The
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similarity functions are both provided by the framework and support for the functions
created in myCBR. In order to create a case base we use Hibernate to take our object-
oriented data model to a relation model and vice versa. The database server chosen
in this application is MySQL, and we use a special Java utility package called MySQL
Connector/MXJ to deploy our databases with the application. The user interface is based
on that of the TravelRecommender.

A more detailed view is shown in Figure 4.15, which is a basic class diagram. The
class diagram shows which components may be needed in the system and the relationship
between them. The final system deviates from the initial architecture, but the structure
is basically the same.

4.9.2 Case representation and solution

In order to represent the information gathered from the knowledge acquisition, we will
use some of the techniques provided by the jColibri framework. A case in our system is
represented by a description and a solution. The case description will be as explained in
Section 4.2 a Case Component or Compound Attribute, in addition to including several
other Compound Attributes. A case in the jColibri framework will have the structure as
for instance the following(bold are compound attributes):

• CaseDescription

– id

– date

– AquacultureSite

∗ id
∗ capacity

• CaseSolution

– id

– risk

The actual case in the system will include many more attributes, but this just illus-
trates the basic structure of the components which are used in a case. The similarity in
the system is composed by several different functions, both represented in the framework
and external. In relation to what was said about the four different categories for simi-
larity mechanism, in Section 2.5.3, we will concentrate on using direct mechanisms. For
the example case structure listed above we can for instance use a similarity measure like
this(functions inside parenthesis):

• CaseDescription (Global: Average)

– id (Local: Equal)

– date (Local: Date interval)

– AquacultureSite (Global: Average)

44



Figure 4.15: Class Diagram
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∗ id (Local: Equal)
∗ capacity (Local: Threshold)

Note that each compound attribute needs a global similarity function.

4.10 Evaluating the final system
When creating a Case-Based Reasoning system, or any other system for that matter, it is
important to evaluate and test it. In our project we aimed to use functions and methods
provided by the jColibri framework in order to see the strength of the case base and the
reasoning of the system.

A more thorough test phase was not feasible due to the time constraint of the project.
It is however recommended that a test run with a domain expert is committed in later
versions of the system. This will evaluate the utility of the system.
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Part II

Utilization
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Chapter 5

Work process

The work process throughout a thesis is not always a straight line, and we have there-
for chosen to include this chapter for covering the basic milestones and possible bumps
along the way. The Tables 5.1, 5.2 and 5.3 include what we consider as the milestones
throughout the project, and each one of them is described with references to where in
the document they can be found.

Milestone Description
Literature studies The first part of the project involved basi-

cally around research. The result from these
studies can be found in the Chapters 2 and
3

Knowledge acquisition In addition to studying articles and other
written materials and the data set, we
gathered information through meetings with
the internal group at SINTEF, and experts
within the fish farming domain. This is cov-
ered in Chapter 9

Prototyping While doing research, some time was also
spent on prototyping to test out some of the
technologies like different parts of the jCol-
ibri framework and so on

Graphical User Interface During our prototyping, we implemented the
TravelRecomender system provided by jCol-
ibri. This application became a template for
us when we were going to make our own GUI.
A walk through of the system with figures is
shown in Chapter 12

Table 5.1: WorkProcess
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Milestone Description
Implementing basic methods Before we received our new data set, we

started to implement some skeletal code,
with the basic method that we were going
to use from the jColibri framework. This is
documented in Section 4.9.

Analyzing the new data After receiving the new data set an analysis
of this was necessary. The result from the
analysis can be found in Chapter 6

Evaluating attributes Through the analysis we got valuable knowl-
edge about the data set, and we used this
to evaluate and find attributes that could be
included in a case structure. The attribute
evaluation can be found in Chapter 7

Machine learning on the new data set We executed four machine learning algo-
rithms on the data set received in this
semester. The work done can be found in
Chapter 8

Establishing a case structure We used the attributes that came as a re-
sult from our evaluation to create a case
structure. We consulted the attributes with
the internal group at SINTEF before settling
with them. The case structure and how we
created it can be found in Chapter 9 and Sec-
tion 10.1

Creating the case base We created a case generator described in Sec-
tion 10.13 to create all the cases that consti-
tutes the case base

Implementing the similarity functions With all the attributes in place, we could cre-
ate the similarity function for each of them.
We used both myCBR and built-in functions
in the jColibri framework, in addition to cus-
tomizing our own, Chapter 11

Table 5.2: WorkProcess2
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Milestone Description
Generating the query case To start the CBR-cycle we need a query case.

We have chosen to generate this by using
some user input, and some data from the
database. How we did this can be found in
Section 10.14.

Implementing the case retrieval With a query case in place, the k most sim-
ilar cases are retrieved from the case base.
How this is done can be found in Chapter 12
Section 12.2.3

Implementing reuse, revise and retain Even though our focus was on the retrieval
part of the system, we have included some
minor functionality for the last three RE’s as
well. The work done can be found in Chapter
12

Evaluating the application In the end, an evaluation of the system was
done. The evaluation can be found in Chap-
ter 13

Table 5.3: WorkProcess3
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Chapter 6

Acquiring and analyzing the data

This chapter contains information about what we did to gather information about the
domain, and how we carried out the analysis of the data set at hand. We have worked
with two different data sets during our project. At the beginning we worked with the data
set from our specialization project from last semester, which will be referred to as the old
data set from here on. Both data sets contains information on fish farming. The data
ranges from daily sensor information like sea temperature and oxygen levels, to logged
information like fish groups and their feedings. The data set we received in the middle of
this project was quite similar to the old one, but contained more entries and attributes.
It was among others, an addition from two to four aquaculture sites.

The first step in our specialization project was to analyze the data and clean it up, so
it would be suited for machine learning methods in Weka. This analyzing process was also
important to get to know the data and the structure of it. We went through each table
in the database to discover missing values and how the data material was distributed
throughout the database. This process was repeated also now when we received the new
data set. The outcome of this data analysis was a foundation for the attribute selection
process, and in the end a case structure. The data set mainly consists of the same tables
as the previous data set, but there were also some completely new table additions to the
data set. The tables of the old and new database are explained in the following sections.
We have chosen to use Weka and its preprocessing tool to help with the analyzing process,
like we did in the specialization project.

6.1 Table analysis
Our old date set is found in a database called simframepilotver01, and it is the first
version of the data foundation we base our system on. A thorough examination of sim-
framepilotver01 was done in our specialization project autumn 2010. Many of the same
tables are still present in the new data set, simframepilotver02, but some attributes and
entries have also been removed and some have been added. Some of the tables had gotten
new attributes, and some also remained the same only with more data in them. So it was
also necessary with a new review of the old tables, especially to look for missing values
so they will not be taken into account when finding case attributes later on. The tables
that we used to find our attributes in our specialization project are shown in Table 6.1,
together with a short description.

53



Table Description
Startfishgroup Contains the information about the ori-

gin of the fish groups
Causeofdeath States the deaths occurred with cause

and count
Deadcount Connected to the causeofdeath table

and links fish group and date to the
deaths

Fishgroup Connects the startfishgroup informa-
tion to the existing groups and where
they can be found

Aquacultureprodunit Identifies all the production units with
fish and which location it belongs to

Measurementnumerical Contains sensor data measured at each
site

Resulttype States the different types of measure-
ment types

Feeding Records of the feeding done in the pro-
duction units

Observation When and where an observation is done
Observationtype Types of observation done
Observationprocedure How the observation was obtained
Sensor Contains all the operative sensors
Sensorplatform Where the sensor is installed with a in-

stall date
Referencepoint Connects obervations and measure-

ments to sites and production units
Aquaculturesite The different sites that produce fish

with capacity numbers and owner
Company The companies that own the sites
Coordinatesystem One type in the system

Table 6.1: Old Tables
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Most of these tables are still present in the new data set, but some of the tables have
been completely removed, or empties for data entries, these are listed in the next Section.

6.1.1 Empty tables

The data set presented to us in the database is not complete. This has its natural
explanation, as the project of creating a Case-Based Reasoning system is just in its
initial phase. The data in place in the database is information derived from handwritten
forms and logged sensor data, modeled into the database past tense of the episodes. The
internal group at SINTEF has developed a web-based registration form, which is going
to populate the database automatically in the future, to secure the data quality, but this
is not available for us yet. The database at hand is developed to suit this registration
form to some extent, so for now, it contains empty tables. All the empty tables have
been removed to ease the process of getting an overview of the data set and selecting the
case attributes.

• sensor

• feedstore

• feedstore_has_feeddelivery

• aquacultureprodunit_has_feedstore

• feedbarge

• feeddelivery

• sensor_has_observation

6.1.2 Tables containing empty columns and missing values

Even though a table is present with data entries inside, it is not always complete. There-
fore it is important to identify empty columns and fields inside the tables as well. This
has to be taken into consideration while choosing the case attributes, since there is no
use for attributes with no data in them.

• deadcount

– AggregatedCount

• fishgroup

– StartCount

– EndCount

– StartMeanWeight

– EndMeanWeight

– UnitOfWeight
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– EndTime has some missing values

• aquaculturesite

– SystemSiteID

– SiteName

– UnitOfCapacity

– LocationLatitude

– LocationLongitude

• company

– only one entry is complete

• startfishgroup

– HatcheryID

– CompanyGenerationID

• operation

– NoOfPeople

• aquacultureprodunit

– CompanyUnitId

– Circumference

– Depth

– Area

– Volume

– UnitOfDepth

– UnitOfArea

– UnitOfVolume

• feeding

– FeedStore_idFeedStore

– UnitOfAmount

• resulttype

– Definition

• observation

– CoordinateX

– CoordinateY
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– CoordinateZ

• referencepoint

– CoordinateX

– CoordinateY

– CoordinateZ

– AquacultureProdUnit_idAquaCultureProdUnit has some missing values

• measurementnumerical

– Sensor_idSensor

– CoordinateX

– CoordinateY

– CoordinateZ

6.2 New tables

Now we were left with the new tables in our database, and they are described in this
section. Some of them have a more detailed explanation than the old tables, since their
containing information was new to us. Some of the new tables are only “connection
tables”, which means they connects two tables together that have a connection.

6.2.1 Operation

Figure 6.1 illustrates the Operation table. The entries are read as rows, where one row
represents an operation executed, with what kind of operation it was together with start
and end time of it. idOperation contains the key values which is unique and identifies the
specific operation. OperationType_IdOperationType contains key values that identifies
which kind of operation type that has been used in the specific operation; a pointer to the
operationtype table. It is necessary to apply a filter to get usable information from the
Weka preprocessor since the key values are of a numeric type. Weka has several built-in
filter features, also one to fix this, called NumericToNominal. This filtering is shown in
the Figures 6.2a and 6.2b.

As seen now in the nominal representation of the OperationType_IdOperationType,
it is obvious that it is only four of the operation types that are in use, with the majority
of the type ’2’ which corresponds to the operationtype ’Sorting using well-boat’ if we look
up the key value ’2’ in the operationtype table. The columns containing the attributes
for Start- and EndTime need no further explanation, as they basically contain the start
and end time of the operation. The last attribute is NoOfPeople, but this is completely
empty.
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Figure 6.1: Output from the table operation

(a) OperationType_IdOperationType before con-
verting

(b) OperationType_IdOperationType after convert-
ing

Figure 6.2: Operation Attributes conversion numeric to nominal
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6.2.2 OperationType

The table contains the names of the different types of operation that are being used or
is going to be used, that are stated in the operation table. The four operation types we
found was in use in the operation table can now be named in this table, and they are:

1. Sorting using well-boat(id=2)

2. De-lousing using well-boat(id=5)

3. De-lousing using tarpaulin (id=6)

4. De-lousing feed treatment (id=8)

The rest of the entries in this table can be found in Figure 6.3.

Figure 6.3: Output from the table OperationType

6.2.3 Aquacultureprodunit_Has_Operation

A connection table that states which aquaculture production unit the operations have
been executed on. Edit: During our case generation we found that this table contained
faulty data, and we had to create our own tables for dealing with the sorting operations.
More on that in Chapter 9, Section 9.1.1.

6.2.4 Fishgroupreleation

The table fishgrouprelation contains information on the movement of fish groups when
e.g. a sorting has been completed. The columns/attributes in the table can be seen in
Figure 6.4. The idSendingFishGroup, and idReceivingFishGroup states the id of the fish
groups the fish has moved between. The SendReceiveQuantity is the amount of fish sent,
StartSend and EndSend are the time of the movement. The start- and end-time are the
same. Edit: A last attribute Sorting_idSorting has been added by our side later on to
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connect it to the sorting table we have created. This was due to the problems we met
using the Aquacultureprodunit_Has_Operation to create cases. More about this can be
found in Chapter 9, Section 9.1.1.

Figure 6.4: Fishgrouprelation table output

6.2.5 Fishgroup_Has_StartFishGroup

A connection table that connects fishgroup to startfishgroup

6.2.6 Fishgroup_Has_Vaccine

Yet another connection table which states which vaccines the different fishgroups have
received.

6.2.7 Observationprocedure

This table contains different types of observation procedures that are possible to execute.
It has two entries:

1. Manual readout

2. Manual Count

60



This table is connected to the Observationtype table by the Observation_idObservation
attribute.

6.2.8 Empty tables

In addition to the tables mentioned there were also some of the newly added tables that
were empty. These are listed below.

• Equipment

• EquipmentType

• Equipment_Has_Equipment

• Task

• TaskType

• Task_Has_Equipment

• Task_Has_Observation

• StartFishgroup_Has_Vaccine
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6.3 Result
After completing the steps above we were now left with only the tables which contained
data. A recap of all the tables present in the database with descriptions can be found in
Table 6.2.

6.4 Database model
A database model of these tables can be found in Figures 6.5 and 6.6. Then we examined
all these tables to find attribute suggestions to possibly include in the cases. A detailed
study of the attributes in these tables can be found in Chapter 7.
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Table Description
Vaccine The vaccines fish can get
Fishgroup_has_vaccine A connection table which links which

vaccine each fish group has received
Fishgrouprelation Contains the tracking of the movement

of the fish after e.g. a sorting
Operation The operations executed on a site is

kept here
Operationtype States the names of the operations
Aquacultureprodunit_has_operation A
Fishgroup_has_startfishgroup Links the start fish group to the exist-

ing fish groups
Startfishgroup Contains the information about the ori-

gin of the fish groups
Causeofdeath States the deaths occurred with cause

and count
Deadcount Connected to the causeofdeath table

and links fish group and date to the
deaths

Fishgroup States the different fish groups with
their corresponding companies and in
which production unit they can be
found

Aquacultureprodunit Identifies all the production units with
fish and which location it belongs to

Measurementnumerical Contains sensor data measured at each
site

Resulttype States the different types of measure-
ment types

Feeding Records of the feeding done in the pro-
duction units

Observation When and where an observation is done
Observationtype Types of observation done
Observationprocedure How the observation was obtained
Sensor Contains all the operative sensors
Sensorplatform Where the sensor is installed with a in-

stall date
Referencepoint Connects obervations and measure-

ments to sites and production units
Aquaculturesite The different sites that produce fish

with capacity numbers and owner
Company The companies that own the sites
Coordinatesystem One type in the system

Table 6.2: All Tables
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Figure 6.5: Database model part 1
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Figure 6.6: Database model part 2
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Chapter 7

Attribute selection

After getting an overview of the database through the analysis presented in the previous
chapter, we chose to list up all the attributes we regarded as most important. This as-
sessment was done prior to our meetings, concerning the case structure, with the internal
group, and it set the foundation for most of the discussion during the meetings. The
unique key values that link tables together are also listed in this attribute selection. This
was the first step towards setting a final case structure which is described in Chapter 9
and 10.1. Each Section below represents a table from the database, where a table may
consist of several attributes and unique keys.

The naming formats for attributes and keys depend on their type, where they vary
between normal, identification and key attributes. The normal attribute starts with an
uppercase character for each word in the name, such that for instance “start time” will be
StartTime. The identification attribute identifies each entry in the table and is started
by two lowercase characters “id” preceding the table name with the naming convention
as for normal attributes. An identification attribute for the table “causeofdeath” will
for instance be given by idCauseOfDeath. The last type, key attribute, is related to
referencing other tables through their identification attributes. The attribute is started
with the referenced table name preceding the underscore symbol(_) and the referenced
identification attribute. To reference the table “deadcount” the following notation is used;
DeadCount_idDeadCount

7.1 Causeofdeath

The table causeofdeath has to do with the different instances of death. Table 7.1 shows
the whole table, we see every attribute important for the system. The reference to the
table deadcount is necessary in order to do the matching in our queries.

7.2 Deadcount

Table 7.2 shows the attributes which are important in the deadcount table. It links a
death occurrence entry in the causeofdeath table to when it happened and in which fish
group.
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Name Description
idCauseOfDeath The id of a specific death occurrence
Cause The cause of death of the fish
Count The number of fish that died of a spe-

cific cause
DeadCount_idDeadCount A key value to the table deadcount

which says in which group the fish that
died came from and the date it hap-
pened

Table 7.1: causeofdeath

Name Description
idDeadCount The id that is used in causeofdeath
DateTime The date the fish died
FishGroup_idFishGroup A key value to the table fishgroup

which says in which fish group the
death has occured in

Table 7.2: deadcount

7.3 Fishgroup

The StartTime and EndTime of a fish group are recorded and these can be used further
in an application. Which Company each fishgroup belongs to may also prove useful. In
addition, Table 7.3 shows a reference to the aquacultureprodunit table which should be
used to do query matching. The StartTime attribute states the time a new fish group has
been established. This happens after an operation like sorting or that a new fish group
has been put in the sea, after being hatched in a hatchery. The EndTime can be both
when the fish has been sorted into new production units, or sent of to slaughtering.

Name Description
idFishgroup The id of a specific fish group
StartTime The start time of the fish
EndTime When the fish group ends
Company_idCompany A key value to the table company, it

says which company the fish belongs to
AquacultureProdUnit_idAquacultureProdUnit A key value to the aquacultureprodunit

table which states the corresponding
production unit the fish is/was in

Table 7.3: fishgroup
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7.4 Fishgrouprelation

Table 7.4 shows the columns/attributes present in the fishgrouprelation table. This table
contains information on the movement of the fish, as new fish groups are created and
ended when a fish group is moved from one production unit to another in a sorting.

Name Description
idSendingFishgroup The id of the fish group that is being

sent
idReceivingFishGroup The id of the receiving fish group
SendReceiveQuantity Number of fish being sent
StartSend When the sending started
End Receive When the receiving ended

Table 7.4: fishgrouprelation

Edit: The column Sorting_idSorting is added to connect this table to the sorting table
that we created due to the data set problem explained in Subsection 9.1.1.

7.5 Company

Table 7.5 shows the company table which is referenced in Table 7.3. Only one company
is linked to the production sites.

Name Description
idCompany The id to the company
CompanyName The name of the company

Table 7.5: company

7.6 Aquacultureprodunit

Aquacultureprodunit is a table which has a lot of fields, but lacks content. The only
useful feature for us will be the reference to aquaculturesite. The description is given in
Table 7.6.

Name Description
idAquacultureProdUnit The id of the specific production unit
AquacultureSite_idAquacultureSite A key value to the table aquaculturesite

which states the corresponding fish-
farming site to the production unit

Table 7.6: aquacultureprodunit
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7.7 Feeding

In the feeding table there are several important attributes which we want to use in an
application. Feeding is, as indicated by studies[Craig and Helfrich, 2009], quite impor-
tant and represent approximately 40-50% of the production costs. Table 7.7 shows the
attributes we think can be used. There is also a reference to the table aquaculturesite
which is used with our queries.

Name Description
idFeeding The id of the feeding
AquacultureSite_idAquacultureSite A key value to the aquaculturesite table

which states the corresponding produc-
tion unit the feeding was done in

Amount The amount of feed given
FeedType The type of feed used
StartTime The start time of the feed
EndTime The time the feed ended

Table 7.7: feeding

7.8 Aquaculturesite

Name Description
idAquacultureSite The id of the site
Capacity The capacity of the fishfarming site
Company_idCompany A key value to the table company

Table 7.8: aquaculturesite

The table aquaculturesite contain many attributes with missing values, so not many
of these are useful a present time. We have however the Capacity of each site and also a
coupling to different companies. This is shown in Table 7.8.

7.9 Aquacultureprodunit_has_operation

aquacultureprodunit_has_operation is just a table which deals with many-to-many car-
dinality between the tables aquacultureprodunit and operation. There are two attributes
which should be used to couple these two tables together. Those are shown in Table 7.9.

Edit: As mentioned earlier, this table contained faulty data, and are not used in the
development of the end system. See Section 9.1.1 for details.
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Name Description
AquacultureprodUnit_idAquacultureProdUnit A key value to the table aquaculture-

produnit which states the correspond-
ing unit

Operation_idOperation A key value to the operation executed

Table 7.9: aquacultureprodunit_has_operation

7.10 Operation
Table 7.10 shows the table we mentioned above, operation. It has three attributes which
might be of interest, namely StartTime, EndTime and a reference to which operationType
this is.

Name Description
idOperation The id of the specific operation
OperationType_idOperationType A key value to the table operationtype

which states which type of operation
StartTime The time the operation started
EndTime The time the operation ended

Table 7.10: operation

7.11 Operationtype
OperationType, Table 7.11, is a table for describing the different operations present in the
domain. The interesting attribute(s) are shown in the table. The operations conducted
in the domain may include operations such as: Deployment by well-boat, Sorting using
well-boat and De-lousing using water flushing.

Note that it was at a later stage we narrowed our scope to the Sorting operations,
more precisely the Sorting using well-boat.

Name Description
idOperationType The id of the type of operation
Description The name of the operation type

Table 7.11: operationtype
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7.12 Fishgroup_has_vaccine
Just as the table aquacultureprodunit_has_operation 7.9, fishgroup_has_vaccine is a
table which connects the two tables fishgroup and vaccine. The relevant attributes can
be found in Table 7.12

Name Description
FishGroup_idFishGroup A key value to the table fishgroup

which states the corresponding group
of fish

Vaccine_idVaccine A key value to the table vaccine

Table 7.12: fishgroup_has_vaccine

7.13 Vaccine
Table 7.13 shows the attributes we think are the most important from vaccine, which is
the id and name of it.

Name Description
idVaccine The id of the vaccine
Description The name of the vaccine

Table 7.13: vaccine

7.14 Fishgroup_has_startfishgroup
The third connecting link between different tables, fishgroup_has_startfishgroup, shown
in Table 7.14 has just a couple of identification attributes which will be used in queries
to map where the fish originated from.

Name Description
FishGroup_idFishGroup A key value to the table fishgroup

which states the corresponding group
of fish

StartFishGroup_idStartGroup A key value to the table startfishgroup

Table 7.14: fishgroup_has_startfishgroup

7.15 Startfishgroup
Startfishgroup, Table 7.15, has four attributes which are of interest at current time due
to some missing values in other attributes. SpiecesID and SpiecesOrigin are information
about the fish, while the two other are used to couple tables together.
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Name Description
idStartGroup The id of the startfishh group
AquacultureProdUnit_idAquacultureProdUnit A key value to the table aquaculture-

produnit
HatcheryCompanyID The same as the Com-

pany_idCompany
SpiecesID The id of the fish spieces
SpiecesOrigin The origin of the spieces

Table 7.15: startfishgroup

7.16 Referencepoint

Referencepoint has two attributes which seem important in addition to its id. They are
described in Table 7.16. The referencepoint connects observations and measurements to
production sites and units.

Name Description
idReferencePoint The id of the referencepoint
AquacultureSite_idAquacultureSite A key value to the table aquaculturesite
AquacultureProdUnit_idAquacultureProdUnit A key value to the table aquaculture-

produnit

Table 7.16: referencepoint

7.17 Observation

Table 7.17 displays the attributes which say something about the environment. It states
how the observation was done and where, which can be found by following the key values
to its table.

Name Description
idObservation The id of the observation
ReferencePoint_idReferencePoint A key value to the table referencepoint
ObservationType_idObservationType A key value to the table observation-

type
ObservationProcedure_idObservationProcedure A key value to the table observation-

procedure
DateTime The time of when the observation has

been done

Table 7.17: observation
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7.18 Observationprocedure
Table 7.18 has to do with how an operation is conducted. It has a description and also
a reference to the observationtype table.

Name Description
idObservationProcedure The id of the observation procedure
Description The name of the procedure
ObservationType_idObservationType A key value to the table observation-

type

Table 7.18: observationprocedure

7.19 Observationtype
Table 7.19 shows the description of each observation.

Name Description
idObervationType The id of the type of observation
Description The name of the observation

Table 7.19: observationtype

7.20 Measurementnumerical
Measurementnumerical, shown in Table 7.20, has a observation coupled to it along with a
value for the given observation. Useful in monitoring the environment, like wind, oxygen
levels and temperature.

Name Description
idMeasurementNumerical The id of the measurement
Observation_idObservation A key value to the table observation

which states which observation that has
been registered

Value The value of the observation
ResultType_idResultType A key value to the table that states the

type of measurement done

Table 7.20: measurementnumerical

7.21 Resulttype
The Table 7.21 shows the type of result the measurement done is. This is useful when
we want to e.g. only find the sea temperature registered in the Table 7.20.
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Name Description
idResultType The id of the result type
ResultTypeName States what kind of result type that is

used

Table 7.21: resulttype
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Chapter 8

Machine Learning Experiments

The Machine Learning part of this project is as stated in Chapter 4 Section 4.7, a way
for us to pick up some loose ends with regards to our specialization project autumn 2010
[Garaas and Hiåsen Stevning, 2010]. In this chapter we use our new data set with the
same four machine learning approaches, divided into the following sections:

1. Decision Tree: J48(Section 8.1)

2. Neural Network(Section 8.2)

3. Bayes Net(Section 8.3)

4. Naive Bayes(Section 8.4)

More about each algorithm can be found in the Section 4.7.
The different approaches are fed with data from various tables in a database. The

data is composed of different attributes such as cause of death, count and vaccine type.
The attributes are located in a range of tables, and each attribute’s inclusion is based on
the the work we did in our specialization project autumn of 2010. Some of the attributes
are however changed due to refactoring of the database. VaccineType which was part of
the table startfishgroup is now a own table called Vaccine which has attributes idVaccine
and Description. Description is the same as startfishgroup’s VaccineType. SerialNum-
ber has also been removed from AquacultureProdUnit. In order to fix this issue we
used idAquacultureProdUnit which, after consulting the old data from the specialization
project, yields the same results. These changes are illustrated in the Table 8.1 below.
The changes are emphasized and bold.

specialization project Attributes New Attributes
causeofdeath.Cause causeofdeath.Cause
causeofdeath.Count causeofdeath.Count

startfishgroup.VaccineType vaccine.Description
deadcount.DateTime deadcount.DateTime

aquacultureprodunit.SerialNumber aquacultureprodunit.idAquacultureProdUnit
fishgroup.StartTime fishgroup.StartTime

Table 8.1: Attribute Comparison
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In order to retrieve the data from the the database the SQL query shown in Listing
8.1 is used.

Listing 8.1: SQL query for data selection
1 s e l e c t aquacu l tureprodun i t . idAquacultureProdUnit , causeo fdeath . Cause ,

causeo fdeath . Count , deadcount . DateTime , f i s hg roup . StartTime , vacc ine .
Desc r ip t i on

2 from causeofdeath , deadcount , f i shgroup , s t a r t f i s hg r oup ,
f i shgroup_has_start f i shgroup , f ishgroup_has_vaccine , vacc ine ,
aquacu l tureprodun i t

3 where
4 causeo fdeath . DeadCount_idDeadCount=deadcount . idDeadCount and
5 deadcount . FishGroup_idFishGroup=f i shg roup . idFishGroup and
6 f i shgroup_has_star t f i shgroup . FishGroup_idFishGroup=f i shg roup . idFishGroup

and
7 f i shgroup_has_star t f i shgroup . StartFishGroup_idStartGroup=s t a r t f i s h g r oup .

idStartGroup and
8 f ishgroup_has_vaccine . FishGroup_idFishGroup=f i shg roup . idFishGroup and
9 f ishgroup_has_vaccine . Vaccine_idVaccine=vacc ine . idVacc ine and
10 f i shg roup . AquacultureProdUnit_idAquacultureProdUnit=aquacu l tureprodun i t .

idAquacultureProdUnit ;

By using Weka 3.6 to retrieve the data some keywords are worth mentioning, illus-
trated in Table 8.2.

Keyword Value
Number of Instances 42905
Number of Attributes 6

Causes of Death 36

Table 8.2: Data Set Information

The following sections show some output from the different machine learning meth-
ods along with a comparison between the different methods and the results gained in
specialization project in Section 8.5. Each machine learning method is run with regards
to classifying the cause of death, attribute Cause, given the data.

The configurations of each machine learning method are based on earlier work in our
specialization project. Each machine learning method has default values for different
options and attributes, which means that it is not certain that an optimal solution can
be found. It is common to tweak the options so that the results improve, and this is
unique for each data/problem set. However, since optimizing is not our main objective,
we have run the machine learning methods with both the default values and the values
found from improving our solution in the specialization project. The results point to that
using the adjusted option values will give a better solution, and the results given in the
following sections are therefore retained with regards to these.
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8.1 Decision Tree: J48

As described earlier in Chapter 4 Section 4.7,Decision Tree learning is one of the simplest
machine learning methods, and can be easily ported to if-then statements. A special
type of decision tree is the J48 which is based on the very popular C4.5. J48 is just
one of many methods included in Weka. Using this machine learning method with the
configurations given in Listing 8.2 gives us the results in Listing 8.3. Line 3 in the run
configuration, Listing 8.2, names which machine learning method should be run together
with some attributes such as C = confidenceFactor(how much pruning should be done)
and M = minNumObj(minimum number of instances per leaf node). We use a 10-fold
cross-validation to test how good the decision tree is.

Listing 8.2: Decision Tree: J48 Run configuration
1 === Run in format ion ===
2
3 Scheme : weka . c l a s s i f i e r s . t r e e s . J48 −C 0.15 −M 4
4 Relat ion : QueryResult
5 In s t ance s : 42905
6 Att r ibut e s : 6
7 idAquacultureProdUnit
8 Cause
9 Count
10 DateTime
11 StartTime
12 Desc r ip t i on
13 Test mode : 10− f o l d cros s−va l i d a t i o n

The results are quite good, as shown in Listing 8.3. The correctly classified instances
is equal to 94.6% which is much more than we expected. The time to build is also quite
low which makes this method very good.

Listing 8.3: Decision Tree: J48 Summary
1 Number o f Leaves : 652
2 S i z e o f the t r e e : 1293
3 Time taken to bu i ld model : 3 .75 seconds
4
5 === S t r a t i f i e d cros s−va l i d a t i o n ===
6 === Summary ===
7
8 Cor rec t ly C l a s s i f i e d In s tance s 40581 94.5834 %
9 I n c o r r e c t l y C l a s s i f i e d In s tance s 2324 5 .4166 %
10 Kappa s t a t i s t i c 0 .9167
11 Mean abso lu t e e r r o r 0 .0043
12 Root mean squared e r r o r 0 .0496
13 Re la t i v e abso lu t e e r r o r 11 .7821 %
14 Root r e l a t i v e squared e r r o r 36 .8651 %
15 Total Number o f In s tance s 42905
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8.2 Neural Network

Neural Networks are based on the concept of the human brain. And As described earlier
in Chapter 4 Section 4.7, the network is composed of multiple input, hidden and output
nodes in a directed graph. Each layer of nodes are connected to the next all the way
through the output nodes. Every node in the network, except input nodes, are processing
elements which takes some input from the previous layer coupled with adjusted weights,
and forwards a value based on its function to the next layer. Such nodes are called
neurons. Listing 8.4 shows the configuration for the Neural Network in Weka. The default
option values usually seen on line 3 are adjusted such that L = learningRate(the amount
the weights are updated), M = momentum(momentum applied to the weights during
updating) and H = hiddenLayers(defines the number of hidden layers in the network) are
working better with the provided data. A percentage split of 66% is used as testing.

Listing 8.4: Neural Network Run configuration
1 === Run in format ion ===
2
3 Scheme : weka . c l a s s i f i e r s . f un c t i on s . Mul t i l ayerPercept ron −L 0.05 −M

0.05 −N 500 −V 0 −S 0 −E 20 −H 4
4 Re lat ion : QueryResult
5 In s t ance s : 42905
6 Att r ibut e s : 6
7 idAquacultureProdUnit
8 Cause
9 Count
10 DateTime
11 StartTime
12 Desc r ip t i on
13 Test mode : s p l i t 66.0% tra in , remainder t e s t

The time it took to build the model was roughly 600 seconds / 10 minutes. That is
a very long time for a method which Correctly Classifies 77.5% of the instances, even for
a complex algorithm like this. The ouput is shown in Listing 8.5 below.

Listing 8.5: Neural Network Summary
1 Time taken to bu i ld model : 599 .2 seconds
2
3 === Evaluat ion on t e s t s p l i t ===
4 === Summary ===
5
6 Cor rec t ly C l a s s i f i e d In s tance s 11315 77.5638 %
7 I n c o r r e c t l y C l a s s i f i e d In s tance s 3273 22.4362 %
8 Kappa s t a t i s t i c 0 .6229
9 Mean abso lu t e e r r o r 0 .0194
10 Root mean squared e r r o r 0 .1009
11 Re la t i v e abso lu t e e r r o r 53 .3403 %
12 Root r e l a t i v e squared e r r o r 74 .5114 %
13 Total Number o f In s tance s 14588
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8.3 Bayes Net

A Bayes Net is a probabilistic graphical model which represents a set of variables and their
conditional dependencies via a directed acyclic graph. The method is described in more
detail in Chapter 4 Section 4.7. In order to get the Bayes Net to work with Weka we have
to run the data trough a filter to make all attributes nominal. This is illustrated in Line 4
in Listing 8.6 where a unsupervised filter, Discretize, is used. This filter takes all numeric
attributes in the data set and turns it into nominal attributes. The run configuration
is shown in Listing 8.6 and on line 3 we find that we are using a SimpleEstimator to
calculate the conditional probability table once the net has been created. In addition
we find that the search algorithm used is SimulatedAnnealing which finds a well scoring
network structure. The method of testing is based on 10-fold cross-validation.

Listing 8.6: Bayes Net Run configuration
1 === Run in format ion ===
2
3 Scheme : weka . c l a s s i f i e r s . bayes . BayesNet −D −Q weka . c l a s s i f i e r s . bayes .

net . s earch . l o c a l . SimulatedAnneal ing −− −A 10.0 −U 10000 −D 0.999 −R 1 −S
BAYES −E weka . c l a s s i f i e r s . bayes . net . e s t imate . SimpleEstimator −− −A 0.5

4 Re lat ion : QueryResult−weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . D i s c r e t i z e−
B10−M−1.0−Rf i r s t−l a s t

5 In s t ance s : 42905
6 Att r ibut e s : 6
7 idAquacultureProdUnit
8 Cause
9 Count
10 DateTime
11 StartTime
12 Desc r ip t i on
13 Test mode : 10− f o l d cros s−va l i d a t i o n

The results are shown in Listing 8.7 where the correctly classified instances are roughly
77.7%. The time it took to build the model was 145 seconds which is acceptable.

Listing 8.7: Bayes Net Summary
1 Time taken to bu i ld model : 145 .05 seconds
2
3 === S t r a t i f i e d cros s−va l i d a t i o n ===
4 === Summary ===
5
6 Cor rec t ly C l a s s i f i e d In s tance s 33354 77.7392 %
7 I n c o r r e c t l y C l a s s i f i e d In s tance s 9551 22.2608 %
8 Kappa s t a t i s t i c 0 .6311
9 Mean abso lu t e e r r o r 0 .0166
10 Root mean squared e r r o r 0 .0925
11 Re la t i v e abso lu t e e r r o r 45 .8193 %
12 Root r e l a t i v e squared e r r o r 68 .7019 %
13 Total Number o f In s tance s 42905

81



8.4 Naive Bayes
A Naive Bayes classifier is a simple probabilistic classifier based on using Bayes’ theorem
with strong independence assumptions. Naive Bayes assumes that the presence/absence
of a feature is unrelated to any other feature in the same scope. The Naive Bayes is
run with the default values and the filtered data mentioned in Section 8.3, the Discretize
filter. Listing 8.8 shows the configuration where we also use a 10-fold cross-validation to
test the method.

Listing 8.8: Naive Bayes Run configuration
1 === Run in format ion ===
2
3 Scheme : weka . c l a s s i f i e r s . bayes . NaiveBayes
4 Re lat ion : QueryResult−weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . D i s c r e t i z e−

B10−M−1.0−Rf i r s t−l a s t
5 In s t ance s : 42905
6 Att r ibut e s : 6
7 idAquacultureProdUnit
8 Cause
9 Count
10 DateTime
11 StartTime
12 Desc r ip t i on
13 Test mode : 10− f o l d cros s−va l i d a t i o n

The results show the lowest Correctly Classified Instances by the selected machine
learning methods, which is quite surprising and disappointing. The method correctly
classifies approximately 70% of the instances, while the time to model is the fastest of
the methods, at 0.03 seconds. This is most likely because the assumption about the
attributes being totaly independet did not hold. The results are depicted in Listing 8.9.

Listing 8.9: Naive Bayes Summary
1 Time taken to bu i ld model : 0 .03 seconds
2
3 === S t r a t i f i e d cros s−va l i d a t i o n ===
4 === Summary ===
5
6 Cor rec t ly C l a s s i f i e d In s tance s 30067 70.0781 %
7 I n c o r r e c t l y C l a s s i f i e d In s tance s 12838 29.9219 %
8 Kappa s t a t i s t i c 0 .5734
9 Mean abso lu t e e r r o r 0 .0212
10 Root mean squared e r r o r 0 .1104
11 Re la t i v e abso lu t e e r r o r 58 .412 %
12 Root r e l a t i v e squared e r r o r 81 .9867 %
13 Total Number o f In s tance s 42905
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8.5 Comparison and Discussion

In this section we look at how the performance of the machine learning methods com-
pare to each other and also across the different data sets used in this project and the
specialization project.

8.5.1 Comparing the methods

The most interesting values from the results are shown in Table 8.3. There is one method
which really sticks out in regards to correctly classified instances. The Decision Tree: J48
correctly classifies nearly 94.6% of the given instances. The method which is nearest is
the Bayes Net, with approximately 77.74%. This is a difference of 17%, which is huge.
We should also note that the execution time is quite varying in the different methods.
The Neural Network and Bayes Net have nearly the same amount of correctly classified
instances, but the time it took to create the model is in favour of the Bayes Net with
rougly seven and a half minutes. The Decision Tree and Naive Bayes are the methods
which use the shortest time.

Type Correctly Classified Time to Build Model
Decision Tree: J48 94.5834% 3.75 seconds
Neural Network 77.5638% 599.2 seconds
Bayes Net 77.7392% 145.05 seconds
Naive Bayes 70.0781% 0.02 seconds

Table 8.3: New Data

8.5.2 Comparing the data sets

In our specialization project we got the machine learning results as shown in Table 8.4.
We concluded with that the Decision Tree: J48 was the overall best method due to its
classification and time to build, even though the Bayes Net was slighly better with regard
to classification.

Type Correctly Classified Time to Build Model
Decision Tree: J48 70.1545% 0.28 seconds
Neural Network 65.4093% 1331.06 seconds
Bayes Net 70.853% 766.92 seconds
Naive Bayes 60.5946% 0.03 seconds

Table 8.4: specialization project Data

By combining the two tables, Table 8.3 and Table 8.4, we can easily see the difference
between the machine learning methods on the different data sets in Table 8.5. We see
an increase of about 24, 12, 7 and 10 percent to Decision Tree, Neural Network, Bayes
Net and Naive Bayes respectively. The time to build the model also went down on all of
the methods except for the Decision Tree which increased with roughly three and a half
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seconds. Our conclusion is that the data is more complete in this batch, something that
also is shown in the amount of instances increasing from 6862 to 42905.

specialization project Data New Data
% correct timeToModel % correct timeToModel

Decision Tree: J48 70.1545% 0.28 seconds 94.5834% 3.75 seconds
Neural Network 65.4093% 1331.06 seconds 77.5638% 599.2 seconds
Bayes Net 70.853% 766.92 seconds 77.7392% 145.05 seconds
Naive Bayes 60.5946% 0.03 seconds 70.0781% 0.02 seconds

Table 8.5: Data Set Comparison

Weka gives us the ability to study the result even more thoroughly by using various
graphical representations of data. We have chosen to illustrate the threshold curve, like
we did in our specialization project as well. The minimum probability required to classify
an instance is called the threshold value. For each threshold value Weka calculates the
several performance values, e.g. True Positives, False Negatives, False Positive Rate and
True Positive Rate. Each of the performance variables can be used for the x- or y-axis.
We have chosen to use the False Positive Rate as x and true Positive Rate as y. The color
of the graph is the threshold value. This is a so called ROC curve[Fawcett, 2004] which
is a good technique for visualizing and selecting classifiers based on performance.

To compare classifiers we may want to reduce ROC performance to a single
scalar value representing expected performance. A common method is to cal-
culate the area under the ROC curve, abbreviated AUC [Hanley and McNeil,
1982].

-[Fawcett, 2004]

The AUC of a classifier corresponds to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance. The
AUC is shown at the top of the graph; a higher number here indicates better performance
as the classifier is able to get high true positive rates with low false positive rates quicker.
We have illustrated the ROC curves for cause “Tapersyndrom” and the J48 algorithm
now and in the specialization project in Figure 8.1 and 8.2. The “Tapersyndrom” cause
was chosen because it was the cause with the most instances disregaring the “unknown”
cause such as Unspecified, Unknown, Andre Dødsårsaker. And as for the classification
correctness values earlier, the improved performance of the J48 algorithm on the new
data set is obvious.

This machine learning experiment has shown that the data set provided in this project
is stronger than the one in our specialization project. By conducting this experiments
we gained insight into how the data set is composed and gave us a good foundation for
further work with case structuring.
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Figure 8.1: Threshold Curve J48 for TAPERSYNDROM of the new data

Figure 8.2: Threshold Curve J48 for TAPERSYNDROM of the specialization project
data
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Chapter 9

Creating a case structure

In this chapter we explain the steps taken to crate a case structure based on the work
done in the previous chapters and other factors like information gained through different
meetings which are described in this chapter. One of our main focuses has been the
establishment of a rich but yet simple case structure. It is a fine line between too many and
too few attributes present in a case, and also how the attributes present are represented.
In Section 2.5.2 we went through the structure of a case, and the numerous forms it can
have. Our goal was to create a case structure which would cover the different features
that a fish farmer would take into consideration when deciding to do an operation. On the
quest to find the final structure we went through several meetings with different groups,
that had different viewpoints.

9.1 Knowledge Acquisition
Knowledge acquisition is important while designing a system, as pointed out earlier in
Section 2.3.1, especially when it comes to understanding why and how the system is
needed. The first meeting concerning the case structure was with the internal group
at SINTEF Fisheries and Aquaculture. At this meeting it was decided that our focus
should be at the sorting operations, as there was some talk in the beginning of including
more operations. The internal group would also concentrate their work around the same
operation type. The new restriction of the domain further specialized our assignment,
and it helped us get a better grasp on how the development was going proceed.

The following meeting was with Arnfinn Aunsmo, Manager Biology and Nutrition at
SalMar. As preparation to the meeting we had gone through our new data material and
drawn up a list of possible attributes which would affect a operation. These attributes can
be found in Chapter 7. The meeting was hands-on experience with knowledge acquisition,
when people from different backgrounds meet to discuss a common subject. One of the
mistakes we made was to assume that everyone has insight into the data set we were
given, but this was not the case. We also learned that as a group, the fish farmers would
find it difficult to believe a decision support system which only gave previous data as
output. The predictions about the future was also of concern for the same reasons and
we were advised to output a risk associated with the sorting operation from the system.
A combination of human assessment with the data would also be appropriate. With these
two meetings in mind we worked out a case structure with the following main attributes:
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• Operation Time

• Oxygen level

• Temperature

• Capacity

• Fish group

• Vaccine

• Species Origin

• Feeding

• Biomass

• Cause

• Dead Count

• Risk

The middle of April 2011 marked the last touches on the case structure and some last
minute input. The case structure was made final on a workshop with the internal group at
SINTEF, where some additional attributes were added. They pointed out that the start-
fish group information was important to maintain, and that it would be interesting to
involve starving time before an sorting. The starving is being done so that the equipment
like the fishing nets and so on will be littered with excrements from the fish as little as
possible. We also had a discussion regarding the biomass numbers registered in the data
set, which were not measurements, but really calculated using the amount of feed given
the fish and temperature in the water. The biomass was an attribute which we wanted
to include if there was sufficient development time and knowledge. Since this was not
the case we opted to not include it in this project. We also decided to track deaths up
to two weeks after a sorting has been carried out. The same time line was used when
monitoring environmental changes before the operation, to get temperature and oxygen
trends.

Some other aspects of the process of retrieving knowledge was that it worked like a
type of evaluation of the data set. If we could find any issues with the data set then
that would contribute much to our project, and also for the internal group which were
in the startup phase of their project. What we found when we started to work on the
implementation is that there were some issues with the tables concerning the operations
in the system. Section 9.1.1 describes the issue, and also how we “solved” it in our system.

In our system we also assumed that an aquaculture production unit could receive fish
from multiple production units, but not the other way round. The reason for this was
that in working with a many-to-many relation between receiving and sending production
units, there would be to much work given our development time in the project. More
about this is covered in Section 9.1.2.
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9.1.1 Inconsistencies in the data set

When we were working with writing SQL-statements to create cases from our data, we
discovered some inconsistencies within the database. This led us to change the structure
of how the cases were going to be built. An explanation will now be given of how we
discovered the problem. The problem was due to operations not being correctly connected
to the production unit it had been executed on. First we chose to look at operations for
a given date. We chose the date 2010-07-05, and all the operations done on this date are
marked with green in Figure 9.1

Figure 9.1: operation table

Second we used the identification of the operations to find which production unit it
was registered to, this is shown in Figure 9.2, also marked with green. It was here that
we discovered that something may be wrong. We thought it was strange that only one
production unit had played a part in all these sorting operations.

Our third step was to investigate the fishgroup table, a table which states where
the different fish group are located(production unit) and their start- and end time. We
looked for the production units marked as green in Figure 9.2, unit 1414. There were
two instances of these in the table. We also registered that a lot of other fish groups also
had start- or end-times on the same date as we were looking at, marked in red. This is
illustrated in Figure 9.3.

To investigate this further, we looked at the table fihgrouprelation seen in Figure 9.4,
to see if there had been more fish group movements this day. The two fish groups that
are registered at the production unit 1414 are marked with green. But as you can see
there were also here signs of more sorting operation being done the same day, and to get
an overview we created a kind of flow diagram, seen in Figure 9.5, to see were the fish
moved to and from. The ovals represents the different fish groups, the small rectangles
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Figure 9.2: The table aquaproductionunit_has_operation

Figure 9.3: fishgroup table
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are their production unit and the arrows point in the directions of where the fish groups
moved. The green ovals are the fish groups that resulted in the sort, e.g. where the fish
groups ended up after the sorting of the day were completed.

Figure 9.4: fishgrouprelation table

Figure 9.5: Fishgroup movement

It was now obvious that something did not add up. There were both more fish
groups and production units included in the sorting than was stated in the productio-
nunit_has_operation table shown in Figure 9.2. The additional fish groups and their
production units are marked of in red in the Figure 9.3 and the relationship between the
fish groups is also marked with red in the Figure 9.4.

91



The findings were discussed in detail at an emergency meeting close to Easter 2011.
It confirmed our beliefs about something being wrong in the database, more accurately
some issues regarding the parsing of the raw data from XML to the database. Fortunately
for us our assignment focused on operations connected to sorting, and this data can be
generated from the fishgrouprelation table, which is shown in Figure 9.4.

Generating the Sorting table

The quick and dirty solution for us was to create a table called Sorting. The Sorting
table was generated with the following three fields:

• idSorting

• DateTime

• AquacultureSite_idAquacultureSite (foreign key to AquacultureSite)

In order to populate the table we used the SQL-query in Listing 9.1. What this query
does is that it finds each distinct Sorting operation and insert some of the attributes into
the Sorting table.

Listing 9.1: Inserting Sorting data
1 i n s e r t i n to s imf ramep i l o tve r02 . s o r t i n g (DateTime ,

Aquacu l tureS i te_idAquacu l tureS i te )
2 s e l e c t d i s t i n c t StartSend , Aquacu l tureS i te_idAquacul tureS i te
3 from s imf ramep i l o tve r02 . f i s h g r oup r e l a t i o n , s imf ramep i l o tve r02 . f i shgroup ,

s imf ramep i l o tve r02 . aquacu l tureprodun i t
4 where idSendingFishGroup=idFishGroup and
5 AquacultureProdUnit_idAquacultureProdUnit=idAquacultureProdUnit

An extra field(column) was also inserted into fishgrouprelation in order to link each
instance or sub sort to the main sorting operation. The population of this field was
actually done manually due to some trouble with the creation of the SQL-query. The
time it took to do this was about fifteen minutes, so not much loss of time.

Figure 9.6: Sorting and fishgrouprelation

9.1.2 Fish group relationship

A sorting operation is an operation which is done on multiple production units, many
receiving and many sending. When we started the work on this project our aim was
to include both many receiving and many sending production units in the final system.
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After much evaluation we came to the conclusion that we should concentrate on a one-
to-many relationship in our work. This was due to the share amount of data which is
distributed among the different production units and the complexity of their relationship
with respect to the fish groups. Figure 9.7 gives an abstract view of the relationship
between the fish groups in the system.

Figure 9.7: The relationship between the different fishgroups

The small blue circles represent a fish group while the red arcs represent a relationship
to another fish group. The green arrow indicates which of the fish groups are sending
and which are receiving.

The second reason for the proposal of using the one-to-many relationship is tightly
coupled with the first point. When using the one-to-many relationship we are able to
concentrate on handling similarity easier and make the data model less complex. This
would also mean that we would get the time to actually implement a system given our
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time schedule.

9.2 Field Trip

To get a better idea of what all of our data and attributes really meant, we got the
opportunity to visit one of SalMar’s fish farming sites, at Tristein outside Vallersund, in
early spring. Figure 9.8 is from when we were shown around the facility.

Figure 9.8: Field trip to Tristein

We got a nice tour where the everyday routines were explained to us. One of the
most interesting things we got to see was the feeding mechanism. The feed was kept in
containers below deck, and it was distributed from here into long pipes and out to the
different production units in the sea. The site had at the moment 10 production units,
distributed as a matrix of 2x5, and each had its own feeding routine. A fun observation
we made was that there seemed to be a couple of cut off toilet brushes near the feeding
tubes. The reason for this was that when feeding the fish through the feeding pipes it
would sometimes clog due to the amount of feed and dust that over time stuck to the sides
of the pipe. If this happened the usually used a specialized form made from expanded
polyester and plastic to scrape the inside of the cable by applying pressure in one end
and push the form through. What they actually experienced was that using the toilet
brushes provided much better results! This was one of many fun facts we were treated
with from the personnel at Tristein.

They also showed us how they monitor the daily life of the fish by sensor data and
real-time video surveillance on computer screens indoor, see Figure 9.9.

The technical aspect of the work the fish farmers do was quite surprising to us, and
we did not expect to find one of them sitting in front of multiple computer screens. The
trip was very informative and helped us understand the system we were going to build
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Figure 9.9: Fish farmer at work at Tristein

much better. It was especially helpful when it came to the choosing of the final attributes
for the case structure.

9.3 The final case structure

After all these different inputs and inspiration we felt suited to define our case structure.
Our description case, or query case, became as shown below:

1. case id

2. operation date

3. site

4. sending production unit

5. receiving production unit

6. current temperature

7. temperature trend

8. current oxygen level

9. oxygen trend

10. hatchery

11. species origin
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12. vaccine

13. site capacity

14. fish count in unit

15. starving days

The solution case, or the output of the system became

1. risk

2. cause

3. count

Now we had our attributes and we needed to create a structure we could use with
jColibri. Compound attributes are as indicated in Section 4.2 attributes which contain
numerous simple attributes. In our attribute list we saw that there were instances where
we could utilize this technique. The list below is a rough sketch of what we intended the
case structure to look like before implementing it. The compound attribute are marked
with bold while those marked with italic are lists.

• Case Description

– caseID

– dateTime

– AquacultureSite

∗ siteId
∗ capacity

– receivingProdUnit

∗ id
∗ speciesOrigin
∗ hatcheries
∗ Vaccines
∗ receiveAmount

– sendingProdUnits

∗ id
∗ individCount
∗ startvationDays

– Temperature

∗ currentInstance
· value
· date

∗ trend
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∗ pastInstances

– Oxygen

∗ currentInstance
· value
· date

∗ trend
∗ pastInstances

• Case Solution

– caseID

– Risk

– fishDeath

– percentage dead

– aggregated count

With the attributes set we were now ready to implement them in a case structure
by using the jColibri framework and start to generate our case base, and to design our
systems architecture.
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Chapter 10

Architecture and case base

In this chapter we look at the final architecture of Glaucus and the case base. The
architecture is essentially the same as the one we proposed at the start of the analysis of
the technologies and approaches, Chapter 4. One of the changes made to the architecture
is the use of multiple databases on different locations. Our initial plan was to have
a embedded database in Glaucus which would serve as the case base, while another
database outside the application would serve as the database for continuous data flow to
our application. This is illustrated in Figure 4.14 in Chapter 4, Section 4.9. What we
ended up doing was to create two databases, one for the case base and one for the data,
in a embedded database server. The reason we did this was to be able to deploy the
application without having the user use their time with setting up their own database
server outside the application. In a commercial system we would however divide the two
as in the proposed architecture. The implementation for the embedded database server
is described in Chapter 12.

In our proposed architecture we did not know which data models or similarity func-
tions we needed in the system. The Case Description, Solution and data models we put
aside to its own chapter in Chapter 10.1, and in Figure 10.2 they are marked as green
packages named models and casedescriptions. The similarity functions in Glaucus are
described in detail in Chapter 11, where we give a detailed explanation of the each of the
functions used ranging from jColibri’s built-in functions, myCBR similarity functions, in
addition to our own custom made ones. The ones that we made our selfs are illustrated
in Figure 10.1 and shown as a green package in Figure 10.2.

The rest of the classes/components in Figure 10.2 such as dialogs and CBRApplication
are discussed in more detail in Chapter 12.
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Figure 10.1: Java classes for generated similarity
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Figure 10.2: Core Architecture
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10.1 Case representation and solution
Based on the findings in Chapter 9 we had to formalize our case structure. There was to
our knowledge two obvious ways to do this in the combination jColibri, Hibernate and
MySQL, although there may be others as well. The first alternative is to create the data
model with classes in Java. Once the classes are ready, use hibernate to map the classes
into tables in the MySQL database. This is done by creating the hibernate mappings
described in Section 4.5 for each class and then opening a session with the hibernate.auto
field set to either create or update.

The second way is actually the other way around, create the relation model first,
add Hibernate mappings and reverse engineer the classes using a IDE such as Netbeans
or Eclipse. Since we had most experience and knowledge with working from a object-
oriented view, we opted for the first alternative. The classes representing the data model
are as follows:

• CaseDescription

• AquacultureSite

• AquacultureProdUnit

• HatcheryCompanyID

• Vaccine

• SpeciesOrigin

• MeasurementType

• MeasurementInstance

1. TemperatureInstance

2. OxygenInstance

• CaseSolution

• FishDeath

In addition to these classes, some of the hibernate mappings will be discussed, but
not in as great detail as in Section 4.5. All diagrams are created using the UML plugin
in Netbeans 6.7.1. Note that this feature was removed from later versions due to funding
issues1.

1Netbeans IDE 7.0 has external support: http://netbeans.org/features/uml/
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10.2 CaseDescription

Figure 10.4 illustrates the data model used in our application. The CaseDescription class
is composed of several attributes, ranging from simple datatypes to more complex objects.
The most simple attributes are caseID and dateTime, which are of type java.util.Integer
and java.util.Date respectably. The caseID represent the identification of this case, while
the dateTime is the date of the operation. The other attributes in the class are made up
of Compound Attributes(see Section 4.9.2) and java.util.List<Object>.

10.3 AquacultureSite

Each case is connected to a specific aquaculture site, and this is given by the class
AquacultureSite shown in Figure 10.3. The class has two attributes which are deemed
important in our view, siteID and capacity. The siteID is represented by an Integer, and
in our data set we have sites one to six, although only 1, 2, 4 and 6 are used. The capacity
indicates the maximum amount of fish in ton that the site supports.

Figure 10.3: AquacultureSite Class

10.4 AquacultureProdUnit

The CaseDescription also has two other attributes named receivingProdUnit and send-
ingProdUnits. The receivingProdUnit is of type AquacultureProdUnit, while sending-
ProdUnits is a java.util.List of AquacultureProdUnit. An aquaculture production unit is
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Figure 10.4: Data Model
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where the fish live and feed in most of its time during production. The class diagram for
AquacultureProdUnit is shown in Figure 10.5.

The class diagram may lead to some confusion when you look at two of the attributes,
ID and aquacultureProdUnitID, both of type Integer. In the development of the system
we initially said that a CaseDescription could have many sending production units, but
that a production unit only had one case, or what is called a many-to-one relation. The
attribute aquacultureProdUnitID was used for this purpose. It was later discovered that
this would not work since we have several cases with the same production units. The
quick and dirty solution was just to add an attribute called ID which is incremented for
each production unit regardless of it already being in the table. This is of course not the
optimal solution since we would get several rows displaying the same thing.

Figure 10.5: AquacultureProdUnit Class

The other attributes in the class are individCount, receivingCount and starvation-
Days. The individCount is of type Double and it indicates the amount of fish in the
production unit before the actual sorting operation. In a receiving production unit, this
attribute would normally be null. The same would apply to starvationDays, which indi-
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cates how long the fish in the production unit has been starved prior the sorting. The
last attribute is related to the receiving production unit, more precisely the amount of
fish received from the sending production units.

The remaining attributes are not actually given in the attribute list in Figure 10.5.
They are however displayed on the full class diagram in Figure 4.15 with relationship
arrows and labels. From this figure we can see that we have three different attributes,
each an object of their own class. HatcheryCompanyID is specified in more detail in
Section 10.5, while Section 10.6 and 10.7 explain Vaccine and SpeciesOrigin respectably.

10.5 HatcheryCompanyID
Figure 10.6 is the HatcheryCompanyID, which indicates where the fish in the production
unit where hatched. It only has one attribute, hatcheryID. HatcheryID is an Integer
which tells you which hatchery this is.

Figure 10.6: HatcheryCompanyID Class

10.6 Vaccine
Figure 10.7 shows the class diagram for Vaccine which tells us what kind of vaccine the
fish group in the production unit was treated with. Each vaccine treats different diseases,
often multiple, and its quite unusual to vaccinate against all diseases. The fish farmers
are said to “choose” the diseases they want the fish to get in order to get the diseases
where they have their main expertise.

Each vaccine in the system has an attribute named vaccineID, which of type Integer,
and a name of the vaccine, which is of type String. In this application we operate with
the following four vaccines:

1. Pentium Forte

2. Alphaject 6-2
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Figure 10.7: Vaccine Class

3. PD

4. Alphaject Micro 6

10.7 SpeciesOrigin

SpeciesOrigin indicates what kind of origin this fish group has. In our system all the
fish are of type Atlantic salmon, also known as Salmo salar. There are however different
origins for each fish group, and in our system we operate with the following SpeciesOrigins:

1. AquaGen

2. MOWI

3. SALMOBREED

4. terningen

5. Slørdal

Figure 10.8 displays the class for SpeciesOrigin. The class has two attributes, an
Integer named speciesName and a String named speciesName, populated by the values
given in the enumarted list.
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Figure 10.8: SpeciesOrigin Class

10.8 MeasurementType

MeasurementType, shown in Figure 10.9, is a generic class, where E extends Measure-
mentInstance. The different MeasurementInstances are described in Section 10.9. Each
CaseDescription is connected to one instance of MeasurementType<E> where E is Tem-
peratureInstance, named temperature, and an attribute called oxygen which is also of
type MeasuremnetType<E>. In the oxygen attribute E is of type OxygenInstance.

Each MeasurementInstance has an Integer named ID and a String named Trend. As
mentioned above, the class is generic, which means that the attribute currentInstance is
of type E, as is the instances stored in the List pastInstances. The Trend attribute is
based on an approximation done to the pastInstances. In our application we have used a
basic Linear Approximation to the data. The last attribute in the class is strongly related
to the Trend, as it is the numbers generated from the Linear Approximation. Based on
these numbers we set the Trend to either of six different values including Increasing,
Weakly Increasing, Stable, Weakly Decreasing, Decreasing and Unknown.

10.9 MeasurementInstance

MeasurmentInstance is an Interface which is used to record a measurement instance in
the system. There are several types of measurements in the system, although we only use
two, temperature and oxygen. Figure 10.10 shows the interface and its methods. The
classes that implement the MeasurementInstance interface must implement and create
their own versions of the methods.

In each sub class we also create the relevant attributes for the methods. Each sub
class therefore has an Integer named measurementID, a Date called date and a value
of type Double. Each measurementinstance is also connected to the MeasurementType
through an attribute called measurementType.
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Figure 10.9: MeasurementType

Figure 10.10: MeasurementInstance
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Figure 10.11 illustrates the implementation of a MeasurementInstance. Temperature-
Instance implements the interface MeasurementInstance and redefines the methods, in
addition to creating the appropriate attributes.

Figure 10.11: TemperatureInstance

10.10 CaseSolution
The CaseSolution, pictured in Figure 10.12, is the solution for this case. The class includes
a caseID which is the same as for CaseDescription, a risk of type String, a death ratio of
type Double and an aggregated death count of the type Integer. The deathRatio attribute
is calculated by dividing the aggregated death count by the amount of fish received by
the receiving production unit. The risk is then based on using this ratio to set the one
of the following risks:

1. No death

2. Low

3. Low/Medium

4. Medium

5. Medium/High

6. High

The aggregated death count is calculated by using another attribute present in Cas-
eSolution, a List of FishDeath. The attribute is called fishDeath and includes instances
of FishDeath, which are described in more detail in Section 10.11. What is basically done
is that we iterate through the list of FishDeath and add the death count of each to the
aggregated count.

110



Figure 10.12: CaseSolution
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10.11 FishDeath
FishDeath is a class for handling the death which occurs. When fish die in a production
unit, a entry is created in a table called causeofdeath. An entry has the date it was
registered, the count and the cause of death. The same thing is present in the FishDeath
class, as seen in Figure 10.13.

Figure 10.13: FishDeath

The class has four attributes; deathID, count, cause and deathDate. The causes of
death which occur in the cases we have are highly dominated by causes related to me-
chanical injury/damage, as one would expect when working only with sorting operations.
There is also a high occurs of causes such as Unspecified and Unknown.
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10.12 Hibernate Mappings

In order to map the data model in a object-oriented view to the relation view we use
Hibernate. In Section 4.5 we took a look at how we map the CaseSolution and FishDeath
to the tables in the database, in addition to the relationship between them. The mappings
used for the above Java classes are pretty similar, but one of the mappings we used in
the implementation is an interesting one.

MeasurementInstance is an Interface which in itself should not be created instances
of, but the classes who implement it however should be able. What we did at first was
to create a mapping file for each of the classes which implemented the interface. The
mapping files where approximately equal if you disregard the class and table name set at
one of the first lines.

It seemed as there should be a more elegant solution to this, and the answer was using
something called union-subclass. What is done is that the mapping for the Interface is
set up in the same way you would any other class, with an abstract=true in the class tag
as shown in Line 4 in Listing 10.1. Then for each subclass of the Interface create a tag
called union-subclass. What this tag says is that the Interface has a subclass which has
the same properties as the parent class, plus the properties added inside the tag, if there
are any. In this case we do not have any additional properties to add, we just specify the
name of the subclass.

Listing 10.1: Hibernate mapping file for MeasurementInstance
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <!DOCTYPE hibernate−mapping PUBLIC "−//Hibernate /Hibernate ␣Mapping␣DTD␣

3.0//EN" " ht tp : // h ibe rnate . s ou r c e f o r g e . net / hibernate−mapping−3.0 . dtd">
3 <hibernate−mapping>
4 <c l a s s ab s t r a c t=" true " dynamic−i n s e r t=" f a l s e " dynamic−update=" f a l s e "

mutable=" true " name="my. cbr . database . model . measurement .
MeasurementInstance " op t im i s t i c−l o ck=" ve r s i on " polymorphism=" imp l i c i t "
s e l e c t−before−update=" f a l s e ">

5 <id name="measurementID">
6 <genera tor c l a s s=" increment "/>
7 </ id>
8 <property name="date "/>
9 <property name="value "/>
10 <many−to−one c l a s s="my. cbr . database . model . measurement . MeasurementType"

name="measurementType" not−nu l l=" f a l s e "/>
11 <union−s ubc l a s s name="my. cbr . database . model . measurement .

TemperatureInstance "/>
12 <union−s ubc l a s s name="my. cbr . database . model . measurement . OxygenInstance "

/>
13 <union−s ubc l a s s name="my. cbr . database . model . measurement . FeedInstance "/>
14 </ c l a s s>
15 </hibernate−mapping>

The result of the mappings are shown by the generation of the database schema in
Figure 10.14.
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Figure 10.14: Database Schema
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10.13 Generating Cases

Based on the completion of the case representation in the previous sections, we could start
to create instances for our case base. We have made an activity diagram to illustrate the
program flow in the case generation process. The diagram is shown in Figure 10.15. The
first thing that happens when creating the cases in the case base is that a connection
has to be established to the database with all the data regarding the fish. When the
connection is established we query the database for the information in the sorting table,
which contains information about all the sorting that has been executed.

Figure 10.15: Activity Diagram Case generation

For each distinct sub-operation, where we regard one receiving unit and many sending
units as a sub-operation, we create a new case. The information gathered from each sub-
operation is registered to a sending and receiving fish group which are used to retrieve
information related to those specific fish groups. We use the retrieved site attribute to
get the related capacity, and populate a new AquacultureSite object. The operation date
is also extracted and set in the case description.

The AquacultureSite and date are used further to create objects of Temperature and
Oxygen in order to monitor the environment in the from date minus x days to the given
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date. For each of Temperature and Oxygen, its pastInstances are passed to a linear
approximation calculation in order to get the trends.

The receiving fish group is used to find the related hatcheries, vaccines and species
origin that the sending units contain. We also retrieve the amount of fish the receiving
fish group gets from the sending production units. Note that this is only possible during
case generation, since this is data which is not in real-time. The retrieved data is set in
the receiving production unit. For the sending production unit we set the individ count
and starvation days.

Finally, we need to create the case solution. This is done by searching for deaths
registered at the receiving production unit in the following 14 days after the operation
date. A risk evaluation is done based on the aggregated count of dead fish in this period,
compared to how many fish are present in the receiving unit. A death ratio is also
calculated to give the user a number representation of the risk.

10.13.1 Case distribution

The generated case base has 109 distinct cases. Table 10.1 illustrates the distribution of
the risk in the solution, across the cases. What we see is that 101 of the 109 cases have a
low risk, and we conclude that this is due to the already good work the fish farmers do at
their sites. A negative case in the system is difficult to retrieve because is has to happen
first, and the fish farmers are apparently very good at judging the environmental data and
observations before an operation. But there is always room for improvement, and once
more data will be made available there might be some changes to the distribution. The
risk assessment is also quite primitive, which may affect the distribution shown below.

Risk Number of cases
Low 101
Low/Medium 1
Medium 0
Medium/High 1
High 6

Table 10.1: Case Solution Distribution

10.14 Query case generation

When the user is starting up the application, the first thing he must do is to create a
query case. We have chosen to help the process of creating the query, so the process is
half input from the user, and half look ups in the database. The process it self looks quite
like the case generating described above, as it uses some of the same methods. Figure
10.16 is a sequence diagram of the generation of the query case.

All the methods referred to in the CaseGeneration class within the generateQueryCase
method are all also included in the normal case generation. The user inputs the sending
production units, the site id, starvation days and operation date, and the system uses
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Figure 10.16: Query case generation
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these inputs to find the whole query, by using the methods setMeasurements, findFish-
Info, findIndividCount and mapFishInfoToNewUnit. A more illustrative walk through of
system in use is shown in Section 12.4 in Chapter 12.
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Chapter 11

Similarity Assessment

Now that we have established our Case Description and Case Solution, we have to rep-
resent the way we find the similarity between two cases and their attributes. We have
already covered some of the basic concepts in Sections 2.5 and 4.3. The similarity func-
tions we have used are the following:

Built in(jColibri):

• Equal

• Iterval

MyCBR:

• DateSimilarity

• TrendSimilarity/MyCBRTableSimilarity

Custom:

• ListInterval

• ListSimilarity

• ProdUnitAttributeSimilarity
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11.1 Built-in

11.1.1 Equal

Equal returns either 1 or 0 depending on whether object one is identical to object 2. The
class’ compute method uses the equal method implemented in the superclass Object, in
the form of: object1.equals(object2). It is important that if you would like to use this
similarity measure with compound attributes, that you redefine the class’ equals method
in order for this to work properly.

11.1.2 Interval

The Interval similarity returns the similarity of two numbers inside an interval. The
similarity measure is applicable to java.lang.Number, and works therefore great with
java.lang.Double. The class takes one parameter, the interval of the type double. The
similarity is measured by taking 1 minus the absolute value of x minus y divided by the
interval:

sim(x, y) = 1− |x− y|
interval

(11.1)

Example

The Case Description has an attribute called temperature(compound attribute), which is
of type Temperature. In Temperature we have an attribute called currentInstance which
states the latest temperature value and date. For the temperature value we have used
the Interval similarity and the interval is set to 4. Given a case in the case(x) base with a
currentInstance of 8.5 and a query(y) with 9.4 we find a similarity of 0.775(see Equation
11.2).

sim(x, y) = 1− |x− y|
interval

sim(8.5, 9.4) = 1− |8.5− 9.4|
4

= 1− 0.9

4
= 0, 775

(11.2)

Equation 11.3 shows an example where there is not much similarity between the case
and query.

sim(x, y) = 1− |x− y|
interval

sim(15, 11.2) = 1− |15− 11.2|
4

= 1− 3.8

4
= 0, 05

(11.3)
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For the oxygen attribute the interval is set to 10.

11.2 MyCBR

11.2.1 DateSimilarity

The DateSimilarity measure is applicable for datatypes of java.util.Date. The similarity
measure is taken from a prototype system created at SINTEF Fisheries and Aquaculture
autumn 2010. The system was created in myCBR, which made it possible to use in our
system through the wrapper function described in Section 4.3.1. Figure 11.1 shows the
graphical representation of the similarity function created in myCBR, while Listing 11.1
is the representation in XML.

Figure 11.1: Date Similarity

Listing 11.1: XML file for Date similarity
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <SMFunction smfname=" de f au l t " model_instname="date " type=" In t eg e r " maxval="

465 .0 " minval=" 100 .0 " modeDiffOrQuotient="0">
3 <SamplingPoint xValue="−365.0" yValue=" 1 .0 " />
4 <SamplingPoint xValue="−187.0" yValue=" 0 .0 " />
5 <SamplingPoint xValue=" 0 .0 " yValue=" 1 .0 " />
6 <SamplingPoint xValue=" 187 .0 " yValue=" 0 .0 " />
7 <SamplingPoint xValue=" 365 .0 " yValue=" 1 .0 " />
8 </SMFunction>

The similarity function works with Integers, while we in our system have a java.util.Date.
In order to get Date and the similarity function to work with each other we had to trans-
form the Date to a number. What we did was to create our own class called DateSimi-
larity, which implements the LocalSimilarityFunction and all its methods, and copy the
related XML parsing from MyCBRNumberAdvancedSimilarity.

Inside the compute method we used a class called Calendar to get the day of the year
for a given Date. By doing this we can represent our Date without taking into consid-
eration the year, which means that 20.04.2011 is most likely quite similar to 25.04.2005.
The Java code for this is shown in Listing 11.2.

Listing 11.2: Date similarity Java conversion
1 Calendar ca l endar = Calendar . g e t In s tance ( ) ;
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2 // Get the query r ep r e s en t a t i on
3 ca l endar . setTime ( queryDate ) ;
4 i n t queryDateOfYear = ca lendar . get ( Calendar .DAY_OF_YEAR) ;
5
6 // Get the query r ep r e s en t a t i on
7 ca l endar . setTime ( caseDate ) ;
8 i n t caseDateOfYear = ca lendar . get ( Calendar .DAY_OF_YEAR) ;
9
10 // f i nd the s im i l a r i t y
11 double r e s = smf . ge tS imi la r i tyBetween ( queryDateOfYear , caseDateOfYear , nu l l

) ;

Listing 11.3, Line 19, illustrates the point made above with the similarity between
two date which are close in days but not in years. Testing 2 in Line 20 shows that the
dates, given in Lines 10-17, are not similar at all, where the query will be located near
the -182 mark on the x-axis in Figure 11.1, giving it a value of approximately zero on the
y-axis.

Listing 11.3: Date similarity Java test
1 DateS imi l a r i ty da t eS im i l a r i t y = new DateS imi l a r i ty ( "my/ cbr / s im i l a r i t y /

r e s ou r c e s /date . xml" ) ;
2 SimpleDateFormat sd f = new SimpleDateFormat ( "yyyy−MM−dd" ) ;
3 t ry {
4 // Test ing 1
5 Date ourCase = sd f . parse ( "2005−04−25" ) ;
6 Date query = sd f . parse ( "2011−04−20" ) ;
7 double compute = da t eS im i l a r i t y . compute ( ourCase , query ) ;
8 System . out . p r i n t l n ( "Test ing ␣ 1 : ␣"+compute ) ;
9
10 // Test ing 2
11 ourCase = sd f . parse ( "2005−04−20" ) ;
12 query = sd f . parse ( "2011−10−25" ) ;
13 compute = da t eS im i l a r i t y . compute ( ourCase , query ) ;
14 System . out . p r i n t l n ( "Test ing ␣ 2 : ␣"+compute ) ;
15 } catch ( Exception ex ) {
16 ex . pr intStackTrace ( ) ;
17 }
18
19 Test ing 1 : 0.9732620320855615
20 Test ing 2 : 0.005617977528089901

11.2.2 TrendSimilarity

The similarity for the trends in the system is built the same way as the example in Section
4.3.1. Figure 11.2 demonstrates the allowed values we have and the relationship between
each value. Given a query with Increasing trend and a case with Stable trend we find a
similarity of 0.5. The numbers are not based on any research, but rather on intuition.
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Figure 11.2: Trend Similarity

11.3 Customized

11.3.1 ListInterval

ListInterval is just a reimplementation of Interval, Section 11.1.2, where it takes the input
as two java.util.List. What it does is to take the size of the case list and compare it to
the size of the query list by using the equation shown in Equation 11.1.

The ListInterval can be used with any kind of List, but in our application it is used
with the sending production units. This is however not the default similarity function for
the sending production units.

11.3.2 ProdUnitAttributeSimilarity

ProdUnitAttributeSimilarity does a more thorough similarity assessment of the sending
production units. It still takes two object of List, where the list now must contain ob-
jects of AquacultureProdUnit. Inside each AquaculteProdUnit we have multiple different
attributes, such as starvationDays and individCount. One List contains several Aqua-
cultureProdUnit’s where each contains a value for a given attribute. As Equation 11.4
indicates, we take the interval similarity of each attribute and summarize them. Each
attribute may have different interval values.

combinedSimilarity(x, y) =
n∑

a=attribute

1− |x.a− y.a|
a.interval

(11.4)

The total similarity is the value from Equation 11.4 divided by the number of distinct
attributes, as shown in Equation 11.5.

sim(x, y) =
combinedSimilarity(x, y)

distinctAttributes
(11.5)

11.3.3 ListSimilarity

ListSimilarity is related to the similarity between the receiving production units. The
input to the compute method must be two object of java.util.List or null. In our system
we have a List for each vaccine, species origin and hatchery. The similarity is calculated
by using Equation 11.6, where hits(x,y) is the number of equal objects in case x and
query y and maxListSize is the size of the largest List.

sim(x, y) =
hits(x, y)

maxListSize
(11.6)
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The hits are calculated by using the code shown in Listing 11.4.

Listing 11.4: List Similarity calculation
1 // Set i n i t i a l v a l u e s
2 i n t denominator = caseO . s i z e ( ) ;
3 L i s t f i r s t = caseO ;
4 L i s t second = queryO ;
5
6 // Check i f the query case i s the l a r g e s t l i s t
7 i f ( queryO . s i z e ( ) > denominator ) {
8 denominator = queryO . s i z e ( ) ;
9 second = caseO ;
10 f i r s t = queryO ;
11 }
12
13 // compute the h i t s
14 i n t h i t s = 0 ;
15 f o r ( Object v1 : f i r s t ) {
16 i f ( second . conta in s ( v1 ) )
17 h i t s++;
18 }
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Chapter 12

The implemented system

This chapter describes the system features and includes a walk through of the whole
system, where the functionality described in the previous chapters is put into action.

12.1 Libraries
List of libraries which are used in the application:

• jColibri

– antlr-2.7.6.jar
– asm-attrs.jar
– asm.jar
– c3p0-0.9.0.jar
– cglib-2.1.3.jar
– Chart2D.jar
– commons-

collections-
3.2.jar

– commons-
logging-1.1.jar

– dom4j-1.6.1.jar
– hibernate3.jar
– InfoVisual-

CB.jar

– jcolibri2.jar

– jdom-1.0.jar

– jta.jar

– junit.jar

– log4j-1.2.14.jar

• jCalendar

– jcalendar-
1.3.3.jar

– looks-2.0.1.jar

• jFreeChart

– jfreechart-
1.0.13.jar

– jcommon-
1.0.16.jar

• myCBR wrapper

– myCbr.jar

– myCBRSimilarityFunctions.jar

• MySQL

– mysql-connector-
java-5.1.14-
bin.jar

– mysql-connector-
mxj-gpl-5-0-11-
db-files.jar

– mysql-connector-
mxj-gpl-5-0-
11.jar

– stax-api-1.0.1.jar
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12.2 CBR Application
When building a Case-Based Reasoning system using the jColibri framework you need to
implement the interface jcolibri.cbrapplications.StandardCBRApplication. This interface
contains the following four methods; configure, precycle, cycle and postcycle. The con-
figure method sets up the application with regards to creating the objects of a case base,
connector and so on. The precycle reads the cases from the case base into an in-memory
case base structure. The cycle method executes the CBR cycle given a specific query.
The postcycle is run to shut down the application, typically closing the connector and
database server. The following subsections describe how we have used and implemented
the methods in our system.

12.2.1 Configure

The configure method starts a database server, and initializes a database connector with
the database configuration file. Then it creates a CachedLinealCaseBase, which only
persists cases when closing the application, if the system is being run in evaluation mode.
If this is not the case, it organizes the cases into a normal LinealCaseBase, where cases
can be stored without closing the application. The method also initializes the similarity,
result, revision and retain dialogs. The query dialog is initialized in the main method.

12.2.2 Precycle

The first thing that happens in the precycle method is that all the cases are being loaded
through the connector into the case base. Each case is printed out with its solution
attached to it, although this is just for debugging puposes. A check is done to see if every
case has a solution, since there are some holes and missing data in our data set. The
cases without solution are removed from the case base.

12.2.3 Cycle

The cycle method executes the CBR cycle with the query set in the query dialog. There
are two different ways through the cycle method. One if you are running the application
in evaluation mode, and one where the application is run in normal mode.

Normal mode

The first thing that happens is that the similarity dialog is set visible to the user. When
the user has assessed the similarity configurations, the application uses the similarity
configurations to retrieve the k-nearest neighbors by using the two methods NNScoring-
Method.evaluateSimilarity and SelectCases.selectTopK. NNScoringMethod.evaluateSimilarity
computes the similarity between the query and each case in the case base. The cases are
stored in a list where the first instance is the most similar while the last is the least
similar case. The SelectCases.selectTopK is used to retrieve the K first cases from this
list. The K is set by the user in the similarity dialog.

The retrieved cases are printed out(debugging) and shown in the result dialog. The
program flow from here is quite straight forward. First the user chooses which case he

126



wants to use from the retrieved ones, where the first case shown is the most similar.
When the solution from this case has been applied to the current case, we are shown a
revise dialog. The revise dialog is meant to be used by the user to correct the application
with regards to the actual solution/outcome. If the solution was correct the user may
simply press next in the dialog. If however, the solution was not correct, the user can
act as the domain expert and revise the solution for this current case. Regardless of the
scenarios, we are met with a new dialog called retain. In this dialog the user can either
choose to store the query case with the applied solution, or simply ignore it.

The CBR cycle is now complete and the user can start over with a new query or end
the application. If the user opts to end the application, postcycle is called to close the
appropriate objects used.

Evaluation mode

The evaluation mode is a mode for evaluating the CBR system with regards to its cor-
rectness. The user dialogs from the normal mode are not used in this mode. The system
uses the default similarity configurations to compute the similarity of the cases.

We have used two different evaluation methods provided in the jColibri framework;
HoldOutEvaluator and LeaveOneOutEvaluator. The different evaluators uses the similar-
ity configuration to evaluate the system in each way, and then output a graph visualizing
the outcome of the evaluation. The evaluation of the system is described in more detail
in Chapter 13.

Visualization mode

A last minute feature which was added to Glaucus was a method for visualizing the case
base. The visualization methods provided by jColibri estimate the distance each case in
the case base has with the other cases. The visualization will therefore show where the
different cases are clustered according to the distance between them.

12.2.4 Postcycle

Shuts down the application by closing the connector and database server.

12.3 Deploying with pre-configured database
Our application is deployed with a pre-configured database, which reduces the installation
barriers for the end-user. We accomplish this by using an embedded database server in
the form of MySQL, with Connector/MXJ. What MySQL Connector/MXJ does is that
it makes the MySQL database appear to be a Java component, not depending on the
platform used.

The MySQL Connector/MXJ can be downloaded from the MySQL website1, and it
includes two libraries which are of interest to us:

• mysql-connector-mxj-gpl-5-0-11
1http://dev.mysql.com/downloads/connector/mxj/
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• mysql-connector-mxj-gpl-5-0-11-db-files

The mysql-connector-mxj-gpl-5-0-11-db-files is where our database will be stored,
more precisely in a .jar-file called data_dir. The data_dir contains the normal database
schemas such as mysql, where user profiles are stored, and test, which is just a test
database. The step-by-step walkthrough to creating the custom db-files.jar is located in
the mysql reference manual2.

Listing 12.1 shows how the MySQL server is started through the Java code. The
databasedir in Line 1 is the local folder we want the related server and database files
to be stored. The start method of the MysqlResource starts an instance of the MySQL
server on the port specified.

Listing 12.1: Start MySQL server Java code
1 MysqldResource mysqldResource = new MysqldResource ( databaseDir ) ;
2
3 // Database p r op e r t i e s
4 Map database_options = new HashMap( ) ;
5 database_options . put ( MysqldResourceI .PORT, In t eg e r . t oS t r i ng ( port ) ) ;
6 database_options . put ( MysqldResourceI . INITIALIZE_USER , " true " ) ;
7 database_options . put ( MysqldResourceI . INITIALIZE_USER_NAME, userName ) ;
8 database_options . put ( MysqldResourceI . INITIALIZE_PASSWORD, password ) ;
9
10 // Star t l o c a l s e r v e r
11 mysqldResource . s t a r t ( " t e s t−mysqld−thread " , database_options ) ;

A normal java.sql.Connection can now be obtained by calling DriverManager.getConnection(jdbc-
url, properties). In order to stop the server the shutdown method for MysqlResource has
to be called. If this is not done the server will continue to run after the application is
done executing.

2http://dev.mysql.com/doc/refman/5.6/en/connector-mxj-usagenotes-customdb.html
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12.4 Application walk through
The first thing the user will meet while running Glaucus system is a question if you wold
like to create the case base. This has to be done the first time the application is being
run. The dialog is shown in the Figure 12.1.

Figure 12.1: Startup

12.4.1 Creating the query(new case)

After creating the case base, the query dialog in Figure 12.2 appears. The user has to
fill in the appropriate inputs in the open text fields. In this example production unit
“1506” is sending fish to production unit “1509” at aquaculture site “6”. The fish have
been starved for “8” days, and the date is “2010-08-05”. This information present in a
case in the case base, as our application is dependent on real-time data from the site to
be tested properly, something we do not have access to at this point.

Figure 12.2: Query Dialog

When all inputs are provided, the user has to click on the “Get all attributes” button,
and the system will collect the rest of the attributes out from the database and fill in the
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rest of the attribute slots in the query. We decided to do this both because of the ease of
the user, and also to know that the input data is correct and consistent. How the query
is generated can be seen more detail in the sequence diagram in Chapter 10.1, Section
10.14 Figure 10.16. The result of clicking the “Get all attributes” button with the values
provided in Figure 12.2 is shown in Figure 12.3.

Figure 12.3: Whole query

With the rest of the attributes collected, the user has the opportunity to visualize
the oxygen and temperature trend for the last 14 days. The trends for this test case are
shown in Figure 12.4a and 12.4b. If the user is satisfied with the complete query, he can
now click the “Set query” button to get to the next dialog. Should he not be, it is possible
to change the input to the system and repeat the steps described above.

(a) Temperature (b) Oxygen

Figure 12.4: Visualization of the Trends
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12.4.2 Retrieving similar cases

After the query case has been set, the user gets to the similarity dialog illustrated in
Figure 12.5. Each attribute has its own similarity function attached to it, and the user
can choose from a couple of functions with attached weights, or he can choose to let them
all be in the default configuration. It is also possible to select how many retrieved cases
to get. When finished the user has to click the “Set similarity configuration” button. The
K nearest cases are calculated and sent to the next dialog for review.

Figure 12.5: Similarity dialog

12.4.3 Reuse a case

Now the result dialog, illustrated in Figure 12.6 pops up. It is possible to alternate
between the retrieved cases at the top of the dialog. The similarity number is also shown
here, closer to “1” is more similar. The outcome, or result, of the retrieved cases is shown
at the bottom of the dialog. The user is supplied with the aggregated number of fish
death the following 14 days after the operation, together with a percentage of dead fish
compared to all the fish in the receiving production unit, and a risk factor of either Low,
Low/Medium, Medium, Medium/High or High. The user can also choose to visualize
the deaths in a diagram, shown in Figure 12.7, where he can see the total death for each
cause of death in the period.
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Figure 12.6: Retrieved case 1

Figure 12.7: Visualization of deaths
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The case returned in this instance has a similarity of “1”, not very surprising, since
the query case used was an example from the case base itself. All the operations done at
the same site at the given date are registered as sub sorting operations, and illustrated
in Figure 12.8

Figure 12.8: All operations

Retrieved case number 2 is shown in Figure 12.9. This case is exactly like the last one,
and this has its natural explanation, when we look at the Figure 12.8. The only thing
that has changed in this retrieved case is the result, since more fish died in the following
14 days in this receiving unit. The distribution of the different causes of death are shown
in Figure 12.10.

It is also not surprising that the two next cases retrieved are from the same day and
the same site, as shown in Figure 12.8. The cases share many features, including site and
environmental measurements.

The fifth retrieved case can be seen in Figure 12.11. This is a sorting that has
been done a week after the four others, as can be seen from the operation date. The
environment has changed a little, but not much, and the similarity number at the top of
the page reflects this.
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Figure 12.9: Retrieved case 2

Figure 12.10: Visualization of deaths, case 2
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Figure 12.11: Retrieved case 5
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12.4.4 Revise and Retain the case

After examining the retrieved cases, the user can choose the case he thinks has the best
solution to his query and click on the “Next” button. The dialog which appears now is the
revise dialog, shown in Figure 12.12. This dialog is meant to be used if there where any
deviations from the proposed solution to what actually happened. The user can change
the solution to what the real outcome was, or let it stay as it was in the retrieved case.
When the user is satisfied, he can go on by clicking the “Set revision” button, which will
take him to the retain dialog shown in Figure 12.13. The user can now decide to retain
the case for later use, or to discard it. The retaining is done by checking the check box
and clicking the “Apply” button.

Figure 12.12: Revise dialog
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Figure 12.13: Retain dialog

The user has now completed the whole CBR cycle, and can now choose to exit or to
go again.
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Part III

Results
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Chapter 13

Evaluating the system

This chapter contains the evaluation done on our system Glaucus. A good way of eval-
uating a CBR system, is to get an expert within the domain to examine the retrieved
cases, and evaluate if the results are satisfying. We did not have time or the opportunity
to do this, so the only “user tests” we have performed is by checking if the system returns
the right cases by creating query cases which already exists in the database. The system
walk through in Chapter 12 Section 12.4 proves that it does just that.

In addition we have used the built in library in jColibri to evaluate instead. We have
used two different evaluators, The LeaveOneOut Evaluator and The HoldOut Evaluator.
The results can be found in the following two sections.

13.1 Leave One Out Evaluator
This methods uses all the cases as queries. In each cycle one case is used as query. The
code for the evaluator is shown in Listing 13.1. The “this” used in Line 2 is a object
of the CBRApplication, which contains the basic methods for a CBR application in the
jColibri framework.

Listing 13.1: LeaveOneOutEvaluator code
1 LeaveOneOutEvaluator eva luato r = new LeaveOneOutEvaluator ( ) ;
2 eva lua to r . i n i t ( t h i s ) ;
3 eva lua to r . LeaveOneOut ( ) ;
4
5 System . out . p r i n t l n ( Evaluator . getEvaluat ionReport ( ) ) ;
6 j c o l i b r i . eva lua t i on . t o o l s . EvaluationResultGUI . show ( Evaluator .

getEvaluat ionReport ( ) , "Evaluat ion " , t rue ) ;

In addition to the code in Listing 13.1, two lines of code must be added inside the
cycle method straight after the part where we have retrieved the most similar cases. This
code is shown in Listing 13.2.

Listing 13.2: LeaveOneOutEvaluator code inside cycle
1 Double r e s u l t = new Double ( eva l . i t e r a t o r ( ) . next ( ) . getEval ( ) ) ;
2 Evaluator . getEvaluat ionReport ( ) . addDataToSeries ( " S im i l a r i t y " , r e s u l t ) ;

The result variable is the similarity between the best matching case and query, 1 to 0.
This number is added to a data series which is used to create a graphical representation of
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the overall similarity for all cases. This code is also applicable to the HoldOutEvaluation
code listed below in Section 13.2.

13.1.1 Output from evaluation

Table 13.1 illustrates some of the key numbers from the evaluation. The Number of
Cycles is actually the number of cases in the case base, since each case is used as a query
to the CBR cycle. Each cycle uses approximately 2.6 seconds and 286.5 seconds overall.

Number of Cycles: 109
Time per Cycle: 2629.1100917431195 ms
Total time: 286573 ms

Table 13.1: Leave One Out Evaluator Result

Figure 13.1 shows the graphical representation of the similarity of each case. Case
one(1) is on the far left, while case one hundred and nine(109) is on the far right. The
similarity for each case is mostly in the 1.0 - 0.8 region with some exceptions.

Figure 13.1: Leave One Out Evaluation Chart

13.2 Hold Out Evaluator

This method splits the case base in two sets: one used for testing where each case is used
as query, and another that acts as normal case base. This process is performed several
times and the test cases are selected randomly from the case base for each repetition.

Listing 13.3: HoldOutEvaluator code
1 HoldOutEvaluator eva luato r = new HoldOutEvaluator ( ) ;
2 eva lua to r . i n i t ( t h i s ) ;
3 eva lua to r . HoldOut ( _testPercentage , _numOfRep) ;
4
5 System . out . p r i n t l n ( Evaluator . getEvaluat ionReport ( ) ) ;
6 j c o l i b r i . eva lua t i on . t o o l s . EvaluationResultGUI . show ( Evaluator .

getEvaluat ionReport ( ) , "Evaluat ion " , t rue ) ;
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13.2.1 Result, 5 % split and 4 repetitions

With 109 cases in the casebase and a split in 5 % we get 5 test cases. The result with
exact similarity numbers from the first repetition are shown in the Table 13.2. The test
cases all score a similarity of 0.85 or above with the case base, which is quite good.

Test Case 1 repetition
1 1.0
2 0.8962910714285715
3 0.8571428571428571
4 0.9707767857142857
5 0.8858097880061114

Table 13.2: Output HoldOut 5% split first repetition

The number of cycles is equivalent to number of test cases times repetitions. In this
case it is twenty(20), as in four(5 test cases) times four(4 repetitions). The reason for
the high Time per Cycle is a bit of a mystery, and we are not quite sure why this has
happened. The time should be less for each cycle since the case base size is reduced by
5% compared to that of Leave One Out Evalution in Section 13.1.

Number of Cycles: 20
Time per Cycle: 5278.3 ms
Total time: 105566 ms

Table 13.3: Hold Out Result 5%

The whole result is illustrated in Figure 13.2, with all cases from all repetitions.

Figure 13.2: Hold Out Evaluation chart, 5% 4 rep

13.2.2 Result, 10 % split and 4 repetitions

A split on 10 % and 109 cases in the casebase, results in 10 test cases. The first repetition
can be seen in Table 13.4. Also here we aquire quite good results with a minimum
similarity of 0.83 for test case 3 in the first repetition.
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Test Case 1 repetition
1 0.885214880952381
2 0.8571428571428571
3 0.8340272472625415
4 1.0
5 0.9704035714285715
6 1.0
7 0.9563154761904763
8 1.0
9 0.8571428571428571
10 1.0

Table 13.4: Output HoldOut 10% split first repetition

The Time per Cycle has also halved from the 5% split evaluated above. The reasons
are to us unknown, and the same run on other machines yield the same results. Number
of cycles are forty(40), with a total run time of 104.7 second.

Number of Cycles: 40
Time per Cycle: 2617.8 ms
Total time: 104712 ms

Table 13.5: Hold Out Result 10%

The graphical representation of the run is shown in Figure 13.3. As the figure shows,
there are not many times the query case receives a similarity below 0.8 with a case from
the case base.

Figure 13.3: Hold Out Evaluation chart, 10% 4 rep

The results we have obtained, illustrated in Figures 13.1, 13.2 and 13.3, point to a
system which is able to find similar cases in our case base. We base this on the observation
of overall similarity which roughly varies between 0.8 and 1 in all of the above evaluation
modes. The evaluation of the system was however, not the most important factor in this
project, and we only use this part as proof of concept. A more explicit evaluation would
in the future be of interest and in the next chapter we discuss the need for a thorough
evaluation of the system, both with additional methods and with a domain expert.
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Chapter 14

Conclusion and Future Research

In this thesis we have presented Glaucus, a Case-Based Reasoning system for decision
support in the fish farming domain. The system uses past cases(situations) to solve a
new case(situation), which is created on the basis of user input and continuous data flow
from the aquaculture site. Glaucus is specialized at working with situations which are
related to fish sorting operations between aquaculture production units on the site. We
have seen that the mortality rate before and after an operation is increasing, but it varies
to some degree. Glaucus recognizes the current situation from the case base and uses the
outcome/result of that situation to output a risk with the current situation. The case
base(memory of situations) is composed of real-world situations which we have captured
from raw data in an industrial database supplied by SINTEF Fisheries and Aquaculture.

Glaucus is built in the programming language Java, with the support of frameworks
and technologies such as jColibri, myCBR, Hibernate, MySQL and Weka. The work we
have done has been in parallel with a group at SINTEF Fisheries and Aquaculture, and
our hope is that the job we have done will serve as a foundation for future work, not just
at SINTEF, but also for other interested students.

One minor weakness with the system is that it is based on continuous data flow from
the fish farmers and sensor data. Therefore it is quite difficult to test the system with a
hypothetical case. This is related to how we create our query case through a combination
of sensor data and input from our Graphical User Interface. Extending the system to
work with hypothetical cases would be a nice feature in future versions.

With regards to future work we look especially at the possibility of adding additional
data to the system. The data most suited would be data which describe the different
procedures in connection with the sorting operation, such as; What kind of boat is used?
How many people are handling the fish? What kind of equipment is used during the
operation? Are there any environmental data from outside the water? There are countless
possibilities for extending the data basis. The reason we see this as important is that the
fish death seem to vary on different sites, given relatively equal situations. There might
be something in the procedures at the different sites which make the big difference.

As testing of the system is concerned, we have used methods integrated in the jColibri
framework, which use cases from the existing case base as test cases to the system. This
is not the optimal way of testing a system of this type, but due to time constraints both
we nor a domain expert had time to test the system in detail. We do however, have great
confidence in such type of system in the fish farming domain, and we believe that we, in
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the not so distant future, will see commercial CBR systems used as decision support in
the fish farming domain.

14.1 Evaluation of goals

14.1.1 Assess the use of CBR in the fish farming domain

Our system is just a foundation for what we hope will be a bigger and more comprehensive
system in the future. The assignment focused on exploration of Case-Based Reasoning
in a domain which is not well-known; fish farming. We have assessed the work/studies
with Case-Based Reasoning in combination with aquaculture through a theoretical study.
The related research we have focused on has roughly speaking been from the last couple
of year up to a decade old. It is quite clear that the amount of research is increasing
world-wide and we also hope this is a start of something big here in Norway. The studies
done seem very positive about the usefulness of Case-Based Reasoning in the fish farming
domain, and we have also shown that a CBR approach might be beneficial in the domain.

14.1.2 Create a decision support system based on CBR

Our second and largest goal was to create a decision support system based on CBR in
the fish farming domain, with emphasize on fish death during certain human interactions
with the fish. The operation considered was sorting operations.

Frameworks

In the study we investigated the use of the jColibri framework to create a CBR application
and also tried to incorporate some of the contribution made to the framework, such as with
myCBR wrapper functions and ARFFConnector. The implementation was a success as it
works within its given limits. We did however have certain problems with the framework
due to its complexity and some insufficient documentation. A lot of time was used on
debugging the application when we had problems with the mapping structure between
data models, Hibernate and jColibri.

Some of the problems/issues were strongly related to the use of Hibernate, where we
had no prior experience and knowledge. The simple examples were simple enough to
understand, but when we started implementing a rich case structure, we started to get
lots of different issues with simple mapping files, objects which were already saved to
session and lazy loading of objects. Most of the issues were solved by debugging and
reading documentation and forum posts with similar issues.

A problem in particular was the use of inheritance in case components. Initially we
created a abstract Java class called MeasurementInstance. The class had four fields/at-
tributes with getters and setters. We then created two children, classes TemperatureIn-
stance and OxygenInstance which inherited MeasurementInstance. The reason we did
this was that we wanted each individual MeasurementInstance to be its own type if we
ever wanted to add something new to them. The problems started to come when we tried
to assign similarity functions to TemperatureInstance and OxygenInstance. For instance,
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we tried to use a simple Interval similarity on each classes value-attribute, as shown in
Listing 14.1.

Listing 14.1: jColibri issue
1 NNConfig nnConfig = new NNConfig ( ) ;
2 nnConfig . addMapping (new Attr ibute ( " value " , TemperatureInstance . c l a s s ) , new

In t e r v a l ( param) ) ;
3 nnConfig . addMapping (new Attr ibute ( " value " , OxygenInstance . c l a s s ) , new

In t e r v a l ( param) ) ;

When we used this configuration we got an exception that the field “value” was not
found in TemperatureInstance or in OxygenInstance. What we found out is that the jCol-
ibri code uses a call to Class.getField(“value”) which essentially looks for a field declared
in the given class. Our solution was to create an Interface called MeasurementInstance
and let the children create the fields and methods them selfs. This was however after we
tried to just use the MeasurementInstance alone for each of Temperature and Oxygen.
The problem with that is that you link the similarity to a specific class and not to the
variable names and there is therefore no way to assign to separate similarity functions to
objects of the same class.

Case Structure

The case structure in Glaucus was discussed in detail during several meetings between
people with different views and disciplines. It was a long process which ended the last
week before the easter break and was also of subject to discussion and arguments between
the project members throughout the implementation.

The case structure is composed of several different case components ranging from
simple numbers, to complex attributes, which again are composed by other components.
Trends are a big part of the case structure where we use past instances of environmental
measurements to find abstractions which are more readable by humans.

The case generation was a part we used a lot of effort. Our vision was that it should
be easy to add own attribute with a couple lines of code. We had to abandon this vision
due to the amount of work this would take, which essentially would make the system
non functioning with regards to the Case-Based Reasoning phases. There was simply not
enough time to construct a system based on this.

Other Methodical goals

The risk assessment in Glaucus is very primitive. It relies on using the aggregated death
count and the amount of fish in a production unit to establish a simple High - High-
/Medium - Medium - Medium/Low - Low scale. A more sophisticated risk assessment is
left as future work.

The use of Protegé and myCBR was a success and it was fairly easy to implement
the generated similarity functions in the jColibri framework. A further use of this would
probably be with the use of ontologies, which would be very interesting.

As far as the Graphical User Interface goes, we simply based it on the GUI used in
the Travel Recommender system from the jColibri 2 tutorial. The interface is neat and
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very easily expendable, but a more suitable replacement in the future would perhaps be
with a web application.

14.2 Future Research
There are many issues and aspects which should be taken into consideration with further
work with this application. One of the main focuses should be to have a reference group
or domain expert who can evaluate the application in order pinpoint obvious flaws with
the system.

The Case Structure of Glaucus, described in Chapters 9 and 10.1, is also subject to
future work. There are some attributes which were omitted in our final structure in order
to get a working system. One important attribute related to fish farming is the feeding, as
was emphasized by Arnfinn Aunsmo at on of our meetings during the project. We actually
made the data models for the feeding attribute but never got around to implement the
data field population due to the strict time schedule we had for the implementation
part of the project. Another attribute which was taken into consideration was tracking
of “normal” or daily fish death prior to an operation. If we track the death we could
establish a normal death trend and maybe use this to predict and evaluate the solution
of a case based on this.

The monitoring systems at the fish farming sites we have data from are being up-
graded, which means that in the future there will be data available for each individual
aquaculture production unit and not just global data for the specific site. Additional
information about each specific operation is also due to be available, with variable such
as:

• Which type of boat has been used during the operation

• How many people worked during the operation

• Which procedures where followed

The air temperature is also an attribute which could be of interest due to the nature of
how the fish are sorted during a sorting operation. The fish are actually handled outside
the water, which may have a direct correlation with fish death.

In our system we concentrated on creating cases based on many sending production
units to one receiving production unit. The actual relationship in a case in the domain
when we look at Sorting operations are many to many. This means that what we have
made cases of are actually sub operations. What we envision is a case structure based on
something similar to this:

• Case

– OperationDate

– OperationType

– Site

– List of sub operations(such as our cases)
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An example of a case would then possible be the following:

• Case 5

– OperationDate: 2011-05-06
– OperationType: Sorting using Well-boat
– Site: 2
– Sub operations:

∗ Sub operation: 1
· Sending prod units: 1412, 1414, 1415
· Receiving prod unit: 1420
· additional attributes++

∗ Sub operation: 2
· Sending prod units: 1412, 1413
· Receiving prod unit: 1421
· additional attributes++

∗ additional sub operations++

The significance of the time between a fish group has been deployed and it is sorted
could also be important. In a later version this should be taken into consideration. The
possibility for analyzing which type of fish dies could also be interesting to look at. Is
there a normal distribution of death among the fish if we look at the size and weight of
the fish. Are smaller fish more vulnerable to sorting operations or is it the other way
around?

In this project we also took a look at generating case descriptions and solution dynam-
ically through the use of a contribution to jColibri, ARFFConnector. ARFFConnector
is a connector for (Weka) ARFF-files, and can be used to generate the case components
without having to write the code for it. It would be interesting to see if it is possible to
use this to create complex case components with several compound attribute in a rapid
way. This would make it very easy to extend the system with additional attributes if
they should be made available on a later stage.

The similarity functions presented in Glaucus, Chapter 11, are based on the built-
in function in jColibri, myCBR similarity functions and some custom made. A further
assessment on which similarity functions are most applicable for each attribute in the data
set should be conducted. The choices made in this regard for our system is lousily based
on assumptions about the domain and some discussion with co-workers. In the similarity
configuration dialog for Glaucus there is a possibility for weighting each feature/attribute
through some graphical sliders. These are set to a default value for the slider, which is
one(1). One possibility is for the system to learn these weights through training when we
input cases into the system. Wettschereck and Aha proposed a framework of automated
weight-setting methods which set weights to feature according to their relevance with
little or no domain knowledge[Wettschereck and Aha, 1995]. It would be interesting to
try this or something similar.

Another aspect should be to extend the system with functionality for use of different
operations, such as De-lousing and Deployment. The operation supported by our system
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is the Sorting operation, more precisely Sorting using well-boat. The De-lousing operation
is an operation which has a very high cost, often in millions, and it is therefore very
important that the fish death connected to the operation is as low as possible. The
industry has however started to assess the use of wrasse(fish) to eat the lice as opposed
to chemical treatment. An example where things did not work out in favor of some fish
farmers was in December 2009, in Flekkefjord[Fish.no, 2009]. Fish worth millions died
after a chemical De-lousing operation on two aquaculture sites. The operation was done
to be sure that they did not have any lice even though they also used wrasse to hold the
amount of lice down.

There is no direct general domain knowledge in our system. The system does not
know whether the water is hot or cold, it only has a numerical value without knowledge
of the significance of it. There are some basic abstraction in the systems such as the
temperature and oxygen trends which are calculated from the Linear Approximation of
environmental data. A typical scenario where the general domain knowledge would be
used is if for instance the water temperature was above a certain threshold, hot, and the
oxygen level was below another, low. Low oxygen level combined with a high temperature
should immediately be regarded as a scenario where we should not do the operation. The
general domain knowledge should be acquired through working with or interviewing the
fish farmers, in order to see what they emphasize in their decision making process.

There should also be some kind of adaption in the system. The Reuse phase of the
CBR cycle is in our system limited to only reuse the exact solution from the retrieved
case. There are methods for adaption provided by the jColibri framework, and this would
be a very interesting point to look at in the future. Our plan was originally to look at
adaption, although it was out of the scope of the assignment, if time was on our side.

Another interesting point is to look at the possibility of using some kind of prediction
in the system. A possible scenario is that the fish farmers are determined to do a sorting
operation on a site a week into the future. What our system essentially does is that it
create a query case based on the environmental data for the x last measurement instances
from the operation date. If for instance todays date is 2011-06-01 and we propose an
operation on 2011-06-08, we would in a best case scenario have environmental data in
the past and too 2011-06-06(today). When this case is used a query for the system, the
retrieved cases’ solution might not be applicable for this query case due to changes in
the environment the last seven days. By predicting the future temperatures, as shown in
Figure 14.1, we can retrieve the cases which are more similar based on the approximations
of the past instances.

This also opens up a whole new chapter where we might also look at predicting the
environment after the operation has been committed. Lets say that a sorting operation
has been acted out, given relatively good environmental data and positive solutions.
What if the environment changes drastically over the next fourteen days? The fish might
be very vulnerable and weak after being exposed to some tough processing in the sorting
operation. If this is the case there might be lots of unnecessarily death in the production
unit.

In our example in Figure 14.1 we use a linear approximation to find a function for the
data points in the form of y = a + bx. There might be other approximations which are
better than this one, and this should also be examined in the future.

The risk assessment in Glaucus in pretty primitive. The risk is calculated by dividing
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Figure 14.1: Temperature prediction

the total death count after an operation by the amount of fish present in the production
unit. What we get from this simple arithmetic operation is a decimal number between 0
and 1. The risk assessment is then based on if-then statement where for instance a high
risk could be given by a number above 0.2 or 20% death. A more complex risk assesment
would be quite useful, and again it comes down to interviewing the people with the right
knowledge to find out what they regard as high and low risks. There might be additional
attributes which are considered besides the death count, such as the cause of death. Two
thousand(2000) fish which died from mechanical injuries might not be as bad as three
hundred(300) fish which died due to sores.

Use of additional technologies such as ontology, which is supported by jColibri[Recio-
garcía et al., 2006], machine learning or perhaps model base adaption[Branting et al.,
1999] are all things that might be worth taking a look at in the future.
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