
Master of Science in Computer Science
June 2011
Magnus Lie Hetland, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Using the Signature Quadratic Form
Distance for Music Information
Retrieval

Håkon Haugdal Hitland

Problem Description

The Signature Quadratic Form Distance (SQFD) is a recently introduced
distance measure for content-based similarity. It makes use of feature signa-
tures, a flexible way to summarize the features of a multimedia object.

Though feature signatures can represent various types of content, most of
the research on SQFD to date has focused on image retrieval.

Investigate how the SQFD can be applied to music information retrieval
tasks, e.g., query by humming.

Assignment given: 15. January 2011
Supervisor: Magnus Lie Hetland

Abstract

This thesis is an investigation into how the signature quadratic form distance
can be used to search in music.

Using the method used for images by Beecks, Uysal and Seidl as a starting
point, I create feature signatures from sound clips by clustering features
from their frequency representations. I compare three different feature types,
based on Fourier coefficients, mel frequency cepstrum coefficients (MFCCs),
and the chromatic scale.

Two search applications are considered.

First, an audio fingerprinting system, where a music file is located by a short
recorded clip from the song. I run experiments to see how the system’s
parameters affect the search quality, and show that it achieves some robust-
ness to noise in the queries, though less so that comparable state-of-the-art
methods.

Second, a query-by-humming system where humming or singing by one user
is used to search in humming/singing by other users. Here none of the tested
feature types achieve satisfactory search performance. I identify and discuss
some possible limitations of the selected feature types for this task.

I believe that this thesis serves to demonstrate the versatility of the feature
clustering approach, and may serve as a starting point for further research.

i

ii

Contents

1 Introduction 1

2 Background 3

2.1 Music information retrieval . 3

2.2 Signature quadratic form distances 4

2.3 Sound processing . 7

3 Design 9

3.1 Search modes . 10

3.1.1 Audio fingerprint . 10

3.1.2 Query-by-humming . 11

3.2 Feature types . 11

3.2.1 Fourier . 11

3.2.2 MFCC . 11

3.2.3 Chroma . 12

3.3 Parameters . 12

3.3.1 Cluster count . 12

3.3.2 Vector size . 13

3.3.3 Position weight . 13

3.3.4 Window size . 13

3.4 Comparison with other systems 13

3.4.1 Beeck et al. 14

3.4.2 Logan and Salomon . 14

iii

4 Experiments 15

4.1 Exact search . 15

4.2 Melody search . 16

4.3 Parameters . 17

5 Results 19

5.1 Audio fingerprinting . 19

5.1.1 Feature type . 20

5.1.2 Clusters . 20

5.1.3 Vector size . 21

5.1.4 Position weight . 21

5.1.5 Window size . 22

5.1.6 Discussion . 22

5.2 Query-by-humming . 23

5.2.1 Feature type . 23

5.2.2 Clusters . 23

5.2.3 Vector size . 24

5.2.4 Position weight . 24

5.2.5 Window size . 24

5.2.6 Discussion . 24

6 Conclusion 28

A Acronyms 30

iv

List of Figures

2.1 Some feature signatures and their distances with the SQFD . . 6

3.1 An illustration of the search process 9

5.1 MRR by feature type and noise level 25

5.2 Recognition rate by feature type and noise level 26

5.3 Distribution of mean reciprocal ranks (MRRs) for tested con-
figurations, 10 second query 27

v

List of Tables

5.1 Base configurations for audio fingerprint 20

5.2 MRR with varying C at 0 dB 20

5.3 MRR with varying V at 0 dB 21

5.4 MRR with varying PW at 0 dB 22

5.5 MRR with varying W at 0 dB 22

5.6 Base configurations for query-by-humming 23

5.7 Top-10 with varying C . 23

5.8 Top-10 with varying V . 24

5.9 Top-10 with varying PW . 24

5.10 MRR with varying W . 24

vi

Chapter 1

Introduction

With the prevalence of computers, search has become a part of everyday life
for most people. The most established ways to search for information today
is in structured data, such as a database, or in unstructured text, such as a
web search engine.

However, we sometimes want to search for content in ways that do not fit well
with the textual search paradigm. Maybe you only remember the melody
from a certain song, and want to find the title. Or maybe you want to find
all the photos from your vacation that show a beach.

With these applications in mind, research is being done on various techniques
for content-based search, where instead of basing the search on manually
entered descriptions, the search is done by looking for similarity between the
content and the query. Popular content types are images, audio or video.

Research in content based search started picking up pace in the nineties;
Ghias et al. [11] published their influential paper on a query-by-humming
system in 1995, and this decade was also a turning point for content based
image retrieval [24].

We are currently at a stage where this technology is starting to reach con-
sumers. The Shazam music service, which lets people search a music database
by recording a sound clip with their phone, was launched in 2002 [9]. Google
made a “similar images” feature available as part of their image search in
2009 [15]. We are likely to see more and more of these services appear as
advances in the field make them viable.

Often, advances in one field of research can be also be adapted to related
problems. The earth mover’s distance (EMD) [23] was originally introduced
to measure distance between images, but has since been applied to a variety

1

of content types, including music [20] and text [29].

The signature quadratic form distance (SQFD) [2] is a more recently intro-
duced distance measure with many similarities to the EMD. Advantages over
the EMD include indexability [21] and lower computation time. However, no
research has as of yet tried to apply the SQFD to music information retrieval.

In this thesis I investigate the suitability of the SQFD for music retrieval
tasks.

Specifically I will investigate the following research questions:

Can the SQFD be used to build an audio fingerprinting system?

Can the SQFD be used to build a query-by-humming system?

I chose these problems largely because they can both be implemented with a
relatively simple framework around a melodic similarity function. They also
have the advantage of allowing quantitative tests against a ground truth,
which is not the case for more subjective ‘playlist generation’ tasks as seen
in [20].

My focus will be on investigating the parameters of the system and the effect
they have on search quality. I will not be considering the speed and efficiency
of the search. However, as the distance function I am using is known to
support efficient search through indexing, modifying the system to be more
efficient should be a relatively straight-forward task.

The structure of the thesis is as follows: Chapter one, the introduction,
presents the research questions and gives an overview of the thesis structure.
Chapter two, background, aims to give an overview of the concepts that will
be used in developing my system. Chapter three, design, gives an overview
of the search system, and explains my method for creating feature signatures
from audio clips. Chapter four, experiments, explains how I test the perfor-
mance of the system. Chapter five, results, shows how the system performs
with varying parameters. Finally, I present my conclusion and further work
in chapter six.

2

Chapter 2

Background

2.1 Music information retrieval

Ever since the advent of the computer age the amount of stored digital in-
formation in the world has been growing at an exponential rate, to the point
where our ability to utilise the vast amounts of data available mostly de-
pends on what methods we have to sift and search through it to discover
information relevant to us.

This is also the case with music; the large music services iTunes and Spotify
both claim over 13 million songs available. These large music databases must
also maintain metadata for each piece of music to allow customers to search
for the tracks they want, typically by artist, title or genre. But manually
maintained textual metadata has its limits. Customers may want to find
songs they have heard but do not know the titles of. Or they could be
looking for more songs in the style of their current collection.

The field of music information retrieval (MIR) deals with ways to extract data
from the music files themselves. The tasks range from focused searches, like
searches for a specific song, or detecting plagiarism, to broad classification
like tempo detection, genre classification and “similar song” functionality [7].

The music data is typically stored either in symbolic form, like MIDI format,
or as a audio recording. While the earliest efforts on the topic mostly focused
on symbolic data, MIR tasks in sound data are increasingly a focus [27].

Music tasks relevant for this thesis are:

Audio fingerprinting concerns recognising a previously seen audio clip
given a signature of either the whole clip, or a sample of it. Besides simple

3

search, it is used in applications such as automatic music tagging, and in
filtering distribution channels for copyright protected material [7]. Most real-
world tasks are complicated because the query will differ from the source file
due to noise, distortion and lossy compression [1] [12].

Shazam [30] is one example of an audio fingerprinting system. Shazam is a
commercial offering from Shazam Entertainment Ltd., providing identifica-
tion of recorded music from mobile devices. The service identifies recordings
based on local peaks in the frequency spectrum. It uses hashing to index
local pairs of such peaks in the music database. When looking up a query, it
looks for a sequence of peak pairs in the query that also occur in the same
sequence somewhere the database.

Query-by-humming concerns finding a song based on a singing or hum-
ming query from an user. For search applications this often more convenient
for the users, who will seldom have a recording at hand of the very file they
want to find. Unfortunately, this is also a considerably harder task than
audio fingerprinting. Users are likely to transpose, sing off-key, and drop or
insert extra notes [5].

Most of the early systems, like the one by Ghias et al. [11], try to transcribe
the user query to notes before searching the database, which adds the problem
of inaccurate transcription. Most systems to date have stored the database
in symbolic format, though some attempts have been made at searching in
audio databases, with varying results [19, 25].

An interesting approach, used by services like Soundhound and Tunebot
[13], consists of matching queries against recordings of other users singing
the melodies. This lets them “crowdsource” the problem of transcribing
melodies to their users.

The International Society for Music Information Retrieval (ISMIR) holds an
annual international conference on the topic of music information retrieval.
Coupled with this, an large evaluation campaign known as the Music In-
formation Retrieval Evaluation eXchange (MIREX) is held. MIREX com-
prises a wide range of music information retrieval tasks, including a query-
by-singing/humming task.

2.2 Signature quadratic form distances

The SQFD is a way to measure the similarity between two objects.

The SQFD works on feature signatures consisting of sets of points, where

4

each point has a weight and a set of coordinates. If the points are generated
by clustering, they are also called weighted centroids. I use the definition of
a feature signature from [2], page 697:

Definition 1 Given any feature space FS ⊆ Rk, we define a feature signa-
ture Q of length nq as a set of tuples from FS ×R+:

Q := {〈cqi , w
q
i 〉, i = 1, . . . , nq}

The same page also gives the definition of the SQFD itself:

Definition 2 Given two feature signatures Q = {〈cqi , w
q
i 〉| i = 1, . . . , n}

and P = {〈cpi , w
p
i 〉| i = 1, . . . ,m}, the Signature Quadratic Form Distance

SQFDA between Q and P is defined as:

SQFDA(Q,P) :=
√

(wq| − wp) ·A · (wq| − wp)T ,

where A ∈ R(n+m)×(n+m) is the similarity matrix, wq = (wq1, . . . , w
q
n) and

wp = (wp1, . . . , w
p
m) are weight vectors, and (wq| − wp) =

(wq1, · · · , wqn,−w
p
1, . . . ,−wpm).

To make the similarity matrix, we must define a similarity function that
gives the similarity between two centroids. Beck et al. present three different
distance functions, and conclude that of them, the Gaussian function

fg(x, y) = e−α · d2(ri,rj)

yield the highest retrieval performance for their tests. [4] For the SQFD
evaluations in this thesis I have used the Gaussian similarity function with
α = 1.

Figure 2.1 gives some insight in the behaviour of the SQFD distance. We can
see that if the change we make to the signature is very small, the distance
to the original will also be very small, and in general, the distance between
“similar” distances will be small.

Several other distance functions for feature signatures exist besides the SQFD.
Among the well known ones are the Hausdorff distance [14], the weighted
correlation distance [18], and the EMD [23]. A comparative study of such
distances can be found in [3].

Beecks, Uysal and Seidl introduced SQFDs as a generalisation of quadratic
form distances (QFDs), and applied it to image similarity searching. [2] They

5

2

1

2 2

1

2

1 2

2

1

4

d = 2.00

d = 2.31
d = 2.00

Figure 2.1: Some feature signature and their distances with the SQFD.
Centroids are drawn at their position in a two-dimensional feature space,
with a number denoting their weight.

show the SQFD measure to be significantly faster to calculate than the EMD
while providing comparable search results for the image retrieval task. To
generate a feature signature for an image, they use k-means clustering on
the individual pixels, where each pixel include position, colour, contrast and
coarseness information. The centroid of each clusters become a point, with
the number of pixels in the cluster as its weight.

Another relevant use of feature signatures is found in [20], where Logan and
Salomon use the EMD to measure similarity between songs. They gener-
ate a signature for each song by splitting the song into frames, finding the
mel-frequency cepstral coefficients (MFCC) of each frame, and clustering
the MFCCs using k-means clustering. The clusters are then converted to a
signature just like for the image.

Feature signatures has also been used on symbolic music representations.
Typke et al. describe a melodic similarity measure using a variant of the
EMD [26], and use this as a part of a query-by-humming system [28]. Their
approach differs from the typical histogram-based usage in that they do not
generate the signatures by clustering. Instead, they represent each note as a
weighted point, where the features of the point are the onset time and pitch

6

delta, and the weight is the duration of the note.

One property of the SQFD that make it well suited for search applications
is that is is indexable; this makes it possible to find signatures resembling
a query by looking at only a small subset of the signatures in a database.
The SQFDs is indexable due to being a Ptolemaic metric [21]. This means
it satisfies two sets of constraints, both of which can be used to speed up
searches.

A distance function d(x, y) is a metric if:

• d(x, y) = 0↔ x = y; The distance is 0 only for identical objects.

• d(x, y) = d(y, x); The distance is symmetric.

• d(x, z) ≤ d(x, y)+d(y, z); The distance satisfies the triangle inequality.

A distance function d(x, y) is a Ptolemaic distance if it satisfies Ptolemy’s
inequality:

d(x, v) · d(y, u) ≤ d(x, y) · d(u, v) + d(x, u) · d(y, v)

2.3 Sound processing

The natural format for recording and playback of sound on a computer is
a time series of samples from the wave signal, but while this format is easy
to record and store, it is not well suited for signal analysis, as slight pertur-
bations can change the signal at this level drastically, and similarities that
are apparent to the ear can be hard to spot. The human ear does not sam-
ple the waveform, but instead detects sounds as combinations of frequencies.
A system that is intended to reflect human perception of melodies should
therefore also use the frequency domain representation as a basis.

A well-known way of converting a digital signal from the time domain to the
frequency domain is the discrete Fourier transform. By applying the discrete
Fourier transform to overlapping windows of the signal, we get a picture of
the frequency spectrum over time. The Fourier transform works on complex
numbers. When analysing the signal we use only the magnitude, discarding
the phase information in the signal, which is encoded in the angle of the
coefficient. To reduce spectral leakage, distortion in the Fourier signal caused
by the windowing, windows should be multiplied by a windowing function.
One such window is the Hamming window.

7

The Fourier coefficient representation is useful for many audio analysis ap-
plications, but when used for music a couple of problems show up: If one
frequency is present in the signal, the harmonic frequencies will also appear,
which makes it harder to determine the fundamental frequencies. And it
does not reflect the logarithmic nature of the octave scale.

The mel cepstrum [22] is intended to solve these problems. After first taking
the magnitudes of the Fourier transform, the resulting signal is mapped onto
the (roughly logarithmic) mel scale, the power is mapped to the logarithmic
scale, and finally the discrete cosine transform, another frequency domain
transform, is applied to get the result. The additional frequency transform
consolidates the harmonics with their fundamental frequency, and the trans-
form to the mel scale makes the signal more correlated to the experience of
a human listener.

A related representation of sound that is also based on human perception is
the chromatic system [17, 8]. It uses the musical concepts of an octave. To
increase a tone by one octave, the frequency is doubled. An octave can be
divided into 12 semitones on a chromatic scale. Several different chromatic
scales have been used in music, but for the purposes of search we use equal
temperament, where the frequency ratio between adjacent semitones is a fac-
tor of 12

√
2. Pitches that are one or more whole octaves apart are experienced

as very similar, an effect called octave equivalency. In the pitch class model,
each frequency is mapped to one of the 12 semitones on the scale, discarding
octave information.

8

Chapter 3

Design

In this chapter I describe the music search system I have developed. An
overview of the system is shown in Figure 3.1.

Figure 3.1: An illustration of the search process

The basic framework is quite simple. To perform a search, the query is
converted to a feature signature, and all feature signatures in the database
is ranked according to their distance to the query signature. The difficulty
thus lies in converting the database and query files to signatures.

To use the SQFD to index music, we must first device a way to convert a
sound clip into a feature signature. A natural starting point is the paper of

9

Beecks et al. [2], where they create feature signatures for images by using
k-clustering. I have chosen to use a very similar approach, using features
from the frequency domain.

A sliding window of length W samples is used to pick windows for frequency
analysis. The step size of the window is W

2
, to smooth features in the spec-

trum. The window is multiplied with a Hamming window and then frequency
transformed. The V −1 first values, corresponding to the lowest frequencies,
are saved in a vector, together with a position, weighted by PW . This is simi-
lar to how Logan et al. stores coefficients [20]. The vectors from each window
are then clustered with k-means clustering, where the number of clusters is
C. Finally, the centroid of each cluster becomes a point in the signature,
with weight equal to the number of vectors in the point.

3.1 Search modes

The mode of operation is slightly different for the audio fingerprint search,
and the query-by-humming search.

3.1.1 Audio fingerprint

For the audio fingerprint task, we would like to be able to identify a snippet
from any point in the file. For this I use a sliding window with a fixed step
size of 0.25 seconds. I generate one signature at each position, and store it
in the database with an association to its originating file.

This overlapping windowing trick is a standard technique for audio finger-
printing [6], however for this application it is typical to use much smaller
windows and step sizes, as the features they observe are on a smaller scale.

To perform a search, I compare the query signature with all signatures in
the database, and rank each file according to the closest of the signatures
associated with it.

It is possible to be smarter about this, for instance by windowing the query
as well, and searching the database for sequential matches. Some such tricks
are detailed in [1]. However, in addition to taking time to implement, this
would add complexity to the system, and may obscure the dynamics when
investigating the setting of the parameters. As the implementation of these
techniques will necessarily have a codependency with the partitioning of the
data and the efficency of lookups, I feel that they are more naturally inves-

10

tigated together with indexing.

3.1.2 Query-by-humming

The specific query-by-humming task I will be investigating is that of compar-
ing the humming of two users. For this task, all queries will start at the same
position (the start of the song) and be of the same length. These condition
match those of the variants query-by-singing/humming subtask in MIREX
2009 and 2010.

The organization of the query-by-humming database is slightly simpler than
for the audio fingerprinting. As the queries I compare all start at the same
position and have the same length, only one signature is associated with
each query. Excepting that difference, the search proceeds just as with the
fingerprint.

3.2 Feature types

I have tested three different feature types, all based on the frequency domain.

3.2.1 Fourier

The first of the feature types is based on the Fourier transform.

The Fourier transform is one of the most obvious and well-known ways of
transforming a signal to the frequency domain, and therefore serves as a nice
baseline.

The window is first transformed using the standard discrete fast Fourier
transform. The values are converted from complex to real by taking the
absolute value, and then mapped to the logarithmic scale.

vi = log10(|Xi|)

I discard the zeroth value, containing the DC component.

3.2.2 MFCC

The second feature type I have tested is based on the mel frequency cepstral
coefficients.

11

The MFCC is the feature used by Logan et al. in [20], and seems to be a
common feature choice for sound search [10, 7].

To get the MFCCs we first do a discrete Fourier transform on the window
and take the absolute values of the result, just like for the Fourier based
feature. I then run a triangular filter bank over the result to rescale the
frequencies to the mel scale. For simplicity I have used an exponential mel
curve. The number of mel coefficients is determined by the number of filters
in the filter bank. Logan et al. used 40 cepstral coefficients, while Casey et
al. report that around 20 is the usual value [7]. I have used a value of 30 for
my experiments.

The values from the filter bank is run through a discrete cosine transform to
get the final cepstral coefficients.

3.2.3 Chroma

The third feature type maps the frequency spectrum onto the chromatic
scale, yielding a chroma vector. To generate the chroma vectors I have used
Matlab code published by Ellis and Poliner [8].

This feature type was added because I thought it would be better suited for
melodic comparison than the Fourier and MFCC. Dividing the spectrum into
pitch classes should avoid interference from characteristics of the user’s voice
in the query-by-humming task.

Note that the W parameter has no effect on this feature type; the code uses
its own windowing at its default value. The vector size V has no effect either;
all vectors are of length 13 — the position and the twelve pitch classes.

3.3 Parameters

Besides the feature type, I will consider four parameters of the system. I list
and discuss them here.

3.3.1 Cluster count

The cluster count, C, determines how many clusters to create in the k-
clustering stage. As each cluster becomes a point in the feature signature,
this parameter will also affect the size of the database and the speed of signa-
ture comparisons, which makes a high C parameter somewhat of a tradeoff.

12

The C parameter seems likely to depend on the length of the query.

The intuitive expectation is that the clustering will roughly correspond to
note events. If so, the tempo of the song could affect the optimal parameter
here. Possible alternatives to fixed-k-clustering would be clustering with a
varying k based on the input data, or to distinguish notes based on a beat
tracking algorithm [8].

3.3.2 Vector size

The vector size, V , determines how many of the coefficients to store in the
centroid. In addition to the temporal position, V − 1 coefficients are stored,
from the lowest frequency and up.

This parameter is not relevant for the chroma feature type.

3.3.3 Position weight

The position weight, PW , affects the value of the position component of vec-
tors. Centroids v̄i in a query is assigned a position component of PW i. This
lets position play a role in clustering and comparison. When PW = 0, the
system is equivalent to a bag-of-features model. When PW is high, clustering
is dominated by the position, and becomes equal to partitioning into equal
time slices.

3.3.4 Window size

The window size, W , determines how large the window used for the Fourier
transform is. This affects both the Fourier and the MFCC feature types, but
not the chroma feature. This parameter has two distinct effects. First, it
affects the number of vectors before clustering, as a smaller window means
a smaller step size, and thus more vectors. Second, it affects the frequencies
covered by the vector — the first V − 1 coefficients will be a different range
if picked from a 128 or a 1024 sized Fourier transform.

3.4 Comparison with other systems

It might be helpful to compare the system directly to the work of Beeck et
al. [2] and Logan and Salomon [20]:

13

3.4.1 Beeck et al.

The main difference compared to my system lies in the feature space. My
feature space is audio, in a frequency based representation, with one temporal
coordinate. Beeck et al. use a feature space for images, with colour, position,
coarseness and contrast information.

3.4.2 Logan and Salomon

The feature representation used is fairly similar to the MFCC feature type in
this thesis. An important difference lies in the lack of a temporal coordinate;
this makes their clustering a bag-of-features model. They do not generate
signatures with a sliding window for exact search, as I do. Instead they make
one signature for each song, for the purpose of finding similar songs. Lastly,
they use the EMD for comparison while I use the SQFD.

14

Chapter 4

Experiments

This chapter explain how I have evaluated the performance of the system.
This includes what data sets I have used, how I have selected the queries,
and what criteria I have used to assess the results.

4.1 Exact search

For testing the exact music search, I used public domain MP3 files of classical
music, sourced from the Musopen library1. The files were downsampled to
8 kHz and mixed to a single channel. One search query was generated from
a random position in each song.

To test the algorithm’s robustness against noise, the search is run several
times with different levels of white Gaussian noise added to the query. The
noise is scaled to achieve the desired signal-to-noise ratio.

The noise levels and query lengths have both been chosen to correspond with
those of Wang [30] — queries are tried with signal-to-noise ratios (SNRs) of
−15,−12,−9,−6,−3, 0,+3,+6,+9,+12 and +15 dB with lengths of 5, 10
and 15 s. This makes for in total 20 · 11 · 3 = 660 queries.

For each query, the files are ordered from most to least likely, and the rank
of the file the query originates from is used to calculate the score.

I use two score functions. One is the average recognition rate. This simply
counts the ratio of queries where the correct answer is the top ranked.

The other is the mean reciprocal rank (MRR) of the search results. The

1http://www.musopen.com/

15

http://www.musopen.com/

mean reciprocal rank is defined by the following equation, where n is the
total number of queries, and ri is the ranking of the sound file the ith query
was generated from, in a search on that query.

MRR =
1

n

n∑
i=1

1

ri
(4.1)

The recognition rate has the advantage of being fairly intuitive, while the
MRR is defined a bit more opaquely. On the other hand, the MRR has the
advantage of being more granular, as it will give partially credit if the correct
result appears close to the top.

For tuning the parameters I have selected a fairly small data set, consisting of
only 20 songs. This is mostly to keep the running times manageable. Running
660 queries on three different feature types can take hours on a 2.00 GHz Intel
Core 2 Duo, and the parameter space to investigate is sizeable. However, this
does leave a rather large variance that must be kept in mind when comparing
the results.

I had originally intended to verify selected configurations on a much larger
test set. The purpose would be to guard against overfitting, and to see how
well the results achieved would scale, both of which are serious concerns with
such a small data set.

Unfortunately I did not have enough time left at the end to run this larger
test. This does negatively influence my ability to draw strong conclusions
from my experiments. Even so, many of the effects observed are significant
enough to be convincing even at small scales.

4.2 Melody search

To test the melody distance measure, I have used Roger Jang’s MIR-QBSH
corpus. It consists of 4431 recordings. The recordings are from 195 persons,
singing 48 different melodies. All recordings are 8 second long wav files with
an 8 kHz sample rate.

The corpus also includes manually transcribed fundamental frequencies for
each query, and a MIDI file for each of the 48 melodies. These were not used
in the testing.

To test the melodic similarity measures, I want to see if a melody sung by
one person can be used to identify recordings of the same melody sung by

16

other people. For this, 100 of the recordings choosen at random are used as
queries to search the rest of the recordings.

The score for a query is the number of the top 10 search results that are the
same melody as the query. The total score for a configuration is the mean of
the individual query scores. This score should be somewhat comparable to
the MIREX 2009/2010 variants QBSH results.

I also calculate the mean average precision (MAP) for the configurations.
The definition is as follows, where n is the total number of queries, R is the
number of relevant results, and rj is the ranking of the jth relevant result.

MAP =
1

n

n∑
i=1

APi (4.2)

APi =
1

R

R∑
j=1

j

rj
(4.3)

A result is relevant if the recording is of the same melody as the query.

4.3 Parameters

Testing the effect of each parameter individually will be of little use if the
starting parameters are bad. Ideally I would want to start with a set of
known good parameters, but the system differs enough from the related work
that parameters are unlikely to be directly transferable. To determine an
acceptable set of configurations to use as a baseline, I started by best-guessing
a set of parameters based on previous work where I could. I then used a hill
climbing approach to reach the baseline configurations shown in chapter 5.
The starting values were as follows:

With little to go on for the cluster count C, I simply picked the a size of 20,
the same as used in [2].

For V , Logan and Salomon’s system is roughly comparable. [20] They find
the best performance from using 19 MFCC features, leading me to set a
starting V of 20.

I chose the starting value 5 for PW experimentally by running the clustering
on a set of features and observing at which point the the position coordinate
started dominating the clustering.

17

For W , Logan and Salomon seem to have choosen a value of 409. I chose to
start with a value of 512.

18

Chapter 5

Results

In this chapter I summarise and discuss the results of the experiments I have
performed.

There are two sections, one for the audio fingerprinting task and one for the
query-by-humming task.

They are both organised in a similar manner. They start with presenting
the maximum obtained scores on the training set, with a discussion of what
configuration of parameters showed the best performance. The effect of each
parameter is then considered in isolation.

5.1 Audio fingerprinting

The best MRR scores seen during tuning are summarised in Figure 5.1, and
the best recognition rate in Figure 5.2. Each graph also shows the expected
value and standard error of a purely random ranking.

The MRR and recognition rate can be seen to correspond very closely. In
looking at the parameters I will list the MRR, as it is the most granular of
the two.

At low levels of noise, most configurations manage a perfect score up to
around 0 dB, where the recognition rate drops sharply. This suggests that
the scores at noise levels of −3 dB, 0 dB and 3 dB will be the most relevant
for discriminating between the configurations.

Figure 5.3 shows the MRRs of all configurations that were tested for these
noise levels. One configuration for each feature type was chosen for use
in further testing. The scores of the selected configurations are shown in

19

blue. Configurations that differ from the chosen configurations in only one
parameter is shown in yellow, while configurations differing in two or more
parameters are shown in red. While there was too much variance to pick any
configurations as conclusively ‘best’, they at least seem to be ‘good’.

It is worth noting the presence of several configuration that were outright
‘bad’. Picking the parameters hapazardly one might, if one were unlucky,
end up with a configuration that does no better than random.

The choosen configurations were:

Feature type Clusters Vector size Position weight Window size

Fourier 30 20 0.1 256
MFCC 5 20 0.1 256
Chroma 20 - 0.1 -

Table 5.1: Base configurations for audio fingerprint

These are the parameters that are used in the following sections, unless
otherwise noted.

5.1.1 Feature type

As can be seen from Figure 5.3, all feature types did well at the 0 and 3 dB
signal-to-noise ratio. At −3 dB, the chroma feature did noticeably better
than the the Fourier and MFCC features.

5.1.2 Clusters

Table 5.7 shows how the retrieval score varied with the the number of clusters.

C
Feature type 1 5 15 20 30

Fourier 0.42 0.74 0.82 0.89
MFCC 0.96 0.89 0.75 0.63
Chroma 0.54 0.90 0.98 1.00 1.00

Table 5.2: MRR with varying C at 0 dB

20

The results here were rather unexpected. While the Fourier and Chroma
features seem to benefit from getting grouped into many clusters, the MFCC
feature show the completely opposite effect. The MRR score continue to
increase significantly all the way up to C = 1.

This seems very counterintuitive given the close relation of the Fourier and
MFCC. But even though the Fourier features and the MFCC features are
similar, they represent quite different ways of viewing the spectrum, and to
some degree also different parts of the spectrum. By picking only the lowest
frequency coefficients, the Fourier features are dropping a large part of the
spectrum, in a way the MFCC features are not. I believe that this could be an
issue of global versus local features. The Fourier and chroma features seem
to be clustering around note-like events, as expected. Meanwhile, the MFCC
could be viewing aspects that change relatively slowly during recording. In
that case, clustering will just add noise, and smoothing the feature out by
averaging it into a single centroid is preferable.

If this is the case, we would expect the MFCC to fare poorly in the query-
by-humming search, as focusing on features of the recording or voice there
would be counterproductive.

5.1.3 Vector size

The vector size, V , determines how many components to include for each
centroid. The parameter only applies to the Fourier and MFCC feature
types — for chroma V is always 13; the position and 12 pitch classes.

V
Feature type 15 20 25

Fourier 0.83 0.89 0.98
MFCC 0.92 0.89 0.89

Table 5.3: MRR with varying V at 0 dB

The Fourier feature improves significantly here when adding more coeffi-
cients. No significant change is seen for the MFCC.

5.1.4 Position weight

As discussed in subsection 3.3.3, the role of the position weight PW is to allow
the position of features in time to influence the clustering and matching. If

21

PW = 0, the position has no influence, and the system is effectively a bag-
of-features. If PW is high, the position dominates the clustering and makes
it a static partitioning.

PW
Feature type 0.0 0.05 0.1 0.2 5.0

Fourier 0.50 0.86 0.89 0.83 0.27
MFCC 0.78 0.89 0.89 0.90 0.65
Chroma 0.54 0.89 1.00 0.90 0.67

Table 5.4: MRR with varying PW at 0 dB

The parameter is affecting the scores as you would expect, with middle values
significantly outperforming either extreme. It is clear that the addition of
the position coordinate offers a considerable advantage over bag-of-features
clustering for this task.

5.1.5 Window size

As with the vector size, the window size W applies only to the Fourier and
MFCC feature types.

W
Feature type 128 256 512 1024

Fourier 0.95 0.89 0.63 0.29
MFCC 0.98 0.89 0.64 0.58

Table 5.5: MRR with varying W at 0 dB

Small vector sizes, at least down to 128, seem to do better than large ones,
presumably because more of the spectrum is included in the centroids.

5.1.6 Discussion

By far the most surprising result was in how differently the Fourier feature
and the MFCC feature behaved with respect to C. Generally options that
tended towards including a larger part of the spectrum did better. For solving
a specific task, you could probably perform the selection of discriminating
features much more intelligently than just “pick the n first coefficients.”

22

While the results are directly comparable, we can see that Wang [30] gets
slightly better performance on a database of 10000 songs.

5.2 Query-by-humming

For the query-by-humming task, my chosen configurations were these:

Feature type Clusters Vector size Position weight Window size MAP Top-10

Fourier 30 20 0.1 512 0.73 3.49
MFCC 30 20 0.1 512 0.43 1.47
Chroma 5 - 0.1 - 0.27 0.77

Table 5.6: Base configurations for query-by-humming

These are the parameters that are used in the following sections, unless
otherwise noted.

5.2.1 Feature type

Unexpectedly, the Fourier features is doing quite well here, while the chroma
features, which were expected to do well here, do poorly.

5.2.2 Clusters

Table 5.7 shows how the retrieval score varied with the the number of clusters.

C
Feature type 1 5 15 20 30

Fourier 0.93 2.74 3.30 3.36 3.49
MFCC 1.72 0.54 0.54 0.64 0.84
Chroma 0.51 0.77 1.39 1.48 1.47

Table 5.7: Top-10 with varying C

23

5.2.3 Vector size

V
Feature type 15 20 25

Fourier 3.54 3.49 3.18
MFCC 0.78 0.84 0.83

Table 5.8: Top-10 with varying V

5.2.4 Position weight

PW
Feature type 0.0 0.05 0.1 0.2 5.0

Fourier 1.05 3.51 33.49 3.24 1.43
MFCC 0.41 0.68 0.84 0.69 0.67
Chroma 0.54 0.66 0.77 0.67 0.66

Table 5.9: Top-10 with varying PW

5.2.5 Window size

W
Feature type 512 1024

Fourier 1.96 3.49
MFCC 0.84 0.57

Table 5.10: MRR with varying W

5.2.6 Discussion

Considering the lack of specialisation to the task, the features did very well,
especially the Fourier features, unexpectedly enough.

It is worth noting, though, that the top scorer in the comparable MIREX
task for 2010 scored 9.135. [16]

24

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

M
R

R

Fourier
MFCC
Chroma
Random

(a) 5 second queries

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

M
R

R

Fourier
MFCC
Chroma
Random

(b) 10 second queries

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

M
R

R

Fourier
MFCC
Chroma
Random

(c) 15 second queries

Figure 5.1: MRR by feature type and noise level

25

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

H
it

ra
te

Fourier
MFCC
Chroma
Random

(a) 5 second queries

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

H
it

ra
te

Fourier
MFCC
Chroma
Random

(b) 10 second queries

−15 −12 −9 −6 −3 0 3 6 9 12 15
0

0.5

1

SNR in dB

H
it

ra
te

Fourier
MFCC
Chroma
Random

(c) 15 second queries

Figure 5.2: Recognition rate by feature type and noise level

26

−3 0 3
0

0.5

1

SNR in dB

M
R

R

Fourier
MFCC
Chroma
Random

Figure 5.3: Distribution of MRRs for tested configurations, 10 second query

27

Chapter 6

Conclusion

I have demonstrated a method of searching music by using feature signatures
and the signature quadratic form distance, and shown that the method is
robust enough to handle noisy queries. I have also applied the method to a
query-by-humming task, though the method as-is falls short of the current
state of the art.

Through testing with different configurations I have gained some insight into
how the parameters affected performance. Of note is the significant change
the addition of a position component gave compared to only a bag-of-features
model, and in general the importance of accurate clustering. The parameters
of the system affect search performance a great deal, and must be chosen
with some care to achieve good results. It was also a surprise how geared the
MFCC features tended to be towards global feature matching.

Though the signature based method showed satisfactory performance for
audio fingerprinting, many well-performing solutions for this problem already
exist. For many cases algorithms such as those described in [30], [1] are likely
to be a better choice. However, there are cases the SQFD based measure
may offer benefits. One example would be a mixed-media database, where
the ability to use the same form of signature for indexing both images and
sound may make for a simpler system.

The results for the query-by-humming performance also hint that it is gener-
isable to be able to search for more approximate kinds of similarity, and it is
relatively easy to customise for different kinds of features in order to search
for specific kinds of similarity.

As I was not able to run a large-scale test, I can say little about how well
the fingerprinting method will scale to larger databases. With respect to my

28

research question, though, I believe I have gathered enough data to say that
the method is feasible, though some improvements to the speed and accuracy
may be required before it is practical.

I had not expected to achieve what one would call a good accuracy on the
query-by-humming feature, and this did to some extent prove true. The
guiding philosophy in applying these simple features on the problem can be
summarised as “try something simple before you try something complex.”
With this in mind I was positively surprised at how well the system did
perform. While I cannot conclusively answer my second research question, I
believe the method shows promise also for query-by-humming search, and is
worth investigating further.

I see two main directions to take in further work. One is to move on to
improve the speed of the search. A natural way to start would involve inves-
tigating the indexability of the signatures using metric or Ptolemaic indexing,
which has been shown to yield considerable speedups for image data [21]. An
effective way to retrieve similar signatures would also allow for testing the
audio fingerprinting on much larger databases. Windowing longer queries
and looking for sequential matches in time might also give the search greater
accuracy

Another direction of inquiry would be looking at different kinds of audio
features. The clustering method is quite general, and can be applied to most
features that can be extracted from the audio stream. Interesting properties
might be invariance to distortion from lossy audio compression. For the
signature to be be viable for query-by-humming tasks, particularly desirable
properties would be invariance to voice differences, and to transposition of
the query. Improvements to the signature could also enable use in other music
information retrieval tasks that require approximate melodic matching, e.g.
cover song identification.

29

Appendix A

Acronyms

EMD earth mover’s distance

MAP mean average precision

MIR music information retrieval

MFCC mel-frequency cepstral coefficients

MRR mean reciprocal rank

PTD proportional transportation distance

QFD quadratic form distance

SNR signal-to-noise ratio

SQFD signature quadratic form distance

30

Bibliography

[1] S. Baluja and M. Covell. Content fingerprinting using wavelets. In
Visual Media Production, 2006. CVMP 2006. 3rd European Conference
on, pages 198–207. IET, 2006.

[2] C. Beecks, M.S. Uysal, and T. Seidl. Signature quadratic form distances
for content-based similarity. In Proceedings of the 17th ACM interna-
tional conference on Multimedia, pages 697–700. ACM, 2009.

[3] C. Beecks, M.S. Uysal, and T. Seidl. A comparative study of similarity
measures for content-based multimedia retrieval. In Multimedia and
Expo (ICME), 2010 IEEE International Conference on, pages 1552–
1557. IEEE, 2010.

[4] C. Beecks, M.S. Uysal, and T. Seidl. Signature quadratic form dis-
tance. In Proceedings of the ACM International Conference on Image
and Video Retrieval, pages 438–445. ACM, 2010.

[5] D. Byrd and T. Crawford. Problems of music information retrieval in
the real world. Information Processing and Management, 38(2):249–272,
2002.

[6] P. Cano, E. Batle, T. Kalker, and J. Haitsma. A review of algorithms
for audio fingerprinting. In Multimedia Signal Processing, 2002 IEEE
Workshop on, pages 169–173. IEEE, 2002.

[7] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and
M. Slaney. Content-based music information retrieval: current direc-
tions and future challenges. Proceedings of the IEEE, 96(4):668–696,
2008.

[8] D.P.W. Ellis and G.E. Poliner. Identifying cover songs with chroma fea-
tures and dynamic programming beat tracking. In Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference
on, volume 4, pages IV–1429. IEEE, 2007.

31

[9] Shazam Entertainment. About shazam. http://www.shazam.com/

music/web/about.html. Online; accessed 2011-05-08.

[10] J.T. Foote. Content-based retrieval of music and audio. In Proceedings
of SPIE, volume 3229, page 138, 1997.

[11] A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by hum-
ming: musical information retrieval in an audio database. In Proceed-
ings of the third ACM international conference on Multimedia, pages
231–236. ACM, 1995.

[12] J. Haitsma and T. Kalker. A highly robust audio fingerprinting system.
In Proc. ISMIR, volume 2002, pages 144–148. Citeseer, 2002.

[13] A. Huq, M. Cartwright, and B. Pardo. Crowdsourcing a real-world on-
line query by humming system. 2010.

[14] D.P. Huttenlocher, G.A. Klanderman, and WA Rucklidge. Compar-
ing images using the hausdorff distance. IEEE Transactions on pattern
analysis and machine intelligence, pages 850–863, 1993.

[15] Google Inc. Similar images graduates from google labs.
http://googleblog.blogspot.com/2009/10/similar-images-

graduates-from-google.html, September 2009. Online; accessed
2011-05-08.

[16] ISMIR. Mirex 2010 qbsh results. http://www.music-ir.org/mirex/

wiki/2010:Query-by-Singing/Humming_Results, July 2010. Online;
accessed 2011-05-08.

[17] K. Lee. Automatic chord recognition from audio using enhanced pitch
class profile. In Proceedings of the International Computer Music Con-
ference. Citeseer, 2006.

[18] W.K. Leow and R. Li. The analysis and applications of adaptive-binning
color histograms. Computer Vision and Image Understanding, 94(1-
3):67–91, 2004.

[19] W.N. LIE and C.K. SU. Content-based retrieval of mp3 songs based on
query by singing. In ICASSP, 2004.

[20] B. Logan and A. Salomon. A music similarity function based on signal
analysis. In ICME 2001, 2001.

32

http://www.shazam.com/music/web/about.html
http://www.shazam.com/music/web/about.html
http://googleblog.blogspot.com/2009/10/similar-images-graduates-from-google.html
http://googleblog.blogspot.com/2009/10/similar-images-graduates-from-google.html
http://www.music-ir.org/mirex/wiki/2010:Query-by-Singing/Humming_Results
http://www.music-ir.org/mirex/wiki/2010:Query-by-Singing/Humming_Results

[21] J. Lokoč, M.L. Hetland, T Skopal, and C. Beecks. Ptolemaic indexing
of the signature quadratic form distance. In Proceedings of the Fourth
International Conference on SImilarity Search and APplications, SISAP
’11, 2011. To appear.

[22] P. Mermelstein. Distance measures for speech recognition, psychological
and instrumental. Pattern Recognition and Artificial Intelligence, 116,
1976.

[23] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision,
40(2):99–121, 2000.

[24] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based image retrieval at the end of the early years. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(12):1349–
1380, 2000.

[25] J. Song, S.Y. Bae, and K. Yoon. Mid-level music melody representation
of polyphonic audio for query-by-humming system. In International
Symposium on Music Information Retrieval. Citeseer, 2002.

[26] R. Typke, P. Giannopoulos, R.C. Veltkamp, F. Wiering, and
R. Van Oostrum. Using transportation distances for measuring melodic
similarity. In Proceedings of the 4th International Conference on Music
Information Retrieval (ISMIR 2003), pages 107–114, 2003.

[27] R. Typke, F. Wiering, and R.C. Veltkamp. A survey of music informa-
tion retrieval systems. In Proceedings of the 6th International Conference
on Music Information Retrieval, pages 153–160. Citeseer, 2005.

[28] R. Typke, F. Wiering, and R.C. Veltkamp. Mirex symbolic melodic
similarity and query by singing/humming. MIREX 2006, page 19, 2006.

[29] X. Wan and Y. Peng. The earth mover’s distance as a semantic measure
for document similarity. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 301–302.
ACM, 2005.

[30] A. Wang. An industrial strength audio search algorithm. In Interna-
tional Conference on Music Information Retrieval (ISMIR), 2003.

33

	Title Page
	Introduction
	Background
	Music information retrieval
	Signature quadratic form distances
	Sound processing

	Design
	Search modes
	Audio fingerprint
	Query-by-humming

	Feature types
	Fourier
	MFCC.2
	Chroma

	Parameters
	Cluster count
	Vector size
	Position weight
	Window size

	Comparison with other systems
	Beeck et al.
	Logan and Salomon

	Experiments
	Exact search
	Melody search
	Parameters

	Results
	Audio fingerprinting
	Feature type
	Clusters
	Vector size
	Position weight
	Window size
	Discussion

	Query-by-humming
	Feature type
	Clusters
	Vector size
	Position weight
	Window size
	Discussion

	Conclusion
	Acronyms

