
Master of Science in Computer Science
June 2011
Anders Kofod-Petersen, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Myrmidia
The Warhammer Fantasy Battle Army Builder

Glenn Rune Strandbråten

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page i — #1 i
i

i
i

i
i

i

Problem Description

Warhammer fantasy battle and 40k are two strategic games using miniature figures,
where each of two players control one army. One of the challenges is constructing
a “good” army, based on the rules of the games. Choices made as to the nature of
the troops, their equipment, and so forth is typically a function of opponents and
player style.

With the numerous races and units available in the Warhammer universe, may the
task of selecting a good lineup become difficult and much experimentation may be
required in order to create a “good” army. This project aims to develop a decision
support system for army building for the Warhammer fantasy battle game. The
system will, by relying on prior experiences and CBR help the player create their
army; be able to explain the army composition based on the rules applied and why
the prior knowledge were used.

Assignment given: 13. January 2011
Supervisor: Anders Kofod-Petersen

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page ii — #2 i
i

i
i

i
i

ii

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page iii — #3 i
i

i
i

i
i

iii

Abstract

In this thesis, I present an approach to a case-based reasoning system with ex-
planation capabilities in the Warhammer Fantasy Battle domain. This product
is meant to support Warhammer gamers in their initial army lineup, by provid-
ing suggestions based on previously successful games against an opposing horde.
Explanations will be used in order to convey the reasoning behind the solution,
to present the data the solution is based upon and why certain changes were made.

The created product is capable of creating the army lineup and give partially
satisfactory explanations, based on the goals set both for the application as a
whole and explanations. Although a full domain model is not implemented, are
the results promising; with the inclusion of more domain knowledge and cases, will
a fully competent and accurate system be achievable.

Keywords: Artificial Intelligence, Case-base reasoning, Explanation aware computing,
Warhammer Fantasy Battle

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page iv — #4 i
i

i
i

i
i

iv

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page v — #5 i
i

i
i

i
i

v

Preface

This report constitutes my master thesis, which has been written and developed during
the 10th semester of my Master of Science studies in Computer Science at the Norwegian
University of Science and Technology (NTNU). The thesis is a continuation of the work
done in the course TDT4500 – Intelligent Systems, Specialization Project. This work
were performed at the department of Computer and Information Science (IDI), group
for Artificial Intelligence between January 20th and June 9th, 2011.

I would first like to thank my supervisor Anders Kofod-Petersen. His invaluable feed-
back, knowledge and insight helped improve the quality of my work.

Secondly I would like to thank WarTrond for their time and effort in providing me
with the initial data for the case-base.

Thirdly a thanks to my fellow students at ITV-363-Ugle for the discussions, talks and
much needed breaks during the semester.

Finally a thanks to my family and friends for all the support they have given me during
my education.

Trondheim, June 8, 2011

Glenn Rune Strandbr̊aten

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page vi — #6 i
i

i
i

i
i

vi

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page vii — #7 i
i

i
i

i
i

Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.2 Goals . 2

1.3 Structure of the Thesis . 3

2 Warhammer 5

2.1 Races and Units . 5

2.2 Army creation . 8

3 Design 11

3.1 Domain model . 11

3.1.1 Phase 1 . 11

3.1.2 Phase 2 . 13

3.1.3 Phase 3 . 14

3.2 Fundamental design . 17

3.2.1 Case structure . 17

3.3 Technologies used . 19

3.3.1 jColibri . 19

3.3.2 Apache Derby . 20

3.3.3 Hibernate . 21

4 Implementation 25

4.1 CBR . 25

4.1.1 CBR framework . 26

4.1.2 Similarity (Retrieve) . 28

4.1.3 Adaptation (Reuse) . 31

4.1.4 Revise and Retain . 36

4.2 Explanations . 38

4.2.1 Explanation framework . 40

4.3 Warhammer and case representation . 43

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page viii — #8 i
i

i
i

i
i

viii Contents

5 Testing and results 45
5.1 Unit weight similarity . 45
5.2 Case adaption . 46
5.3 Race exchange . 47
5.4 Generated explanations . 47

6 Discussion 49
6.1 Case-based reasoning . 49

6.1.1 The case-base . 50
6.1.2 Retrieve . 50
6.1.3 Reuse . 51
6.1.4 Revise . 52
6.1.5 Retain . 53

6.2 Explanation . 53
6.3 Evaluation of goals . 54

6.3.1 G1: Determine explanation goals 54
6.3.2 G2: Create the domain model . 55
6.3.3 G3: System creation . 55
6.3.4 G4: Evaluation . 55

6.4 Future work . 56

7 Conclusion 59

Bibliography 61

A Glossary 65

B Test results 67
B.1 Unit weights . 67
B.2 Adaption result . 71
B.3 Race exchange result . 72
B.4 Explanation prints . 73

C Cases 79

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page ix — #9 i
i

i
i

i
i

List of Figures

2.1 A Warhammer Dwarf Lord unit . 8

3.1 Phase 1 database schema . 12
3.2 Phase 2 database schema . 13
3.3 Phase 3 database schema . 16
3.4 The create query UI . 19
3.5 Embedded Derby Architecture . 21
3.6 An example class for Hibernate mapping 22

4.1 The CBR cycle . 26
4.2 CBR class diagram . 27
4.3 Similarity weight configuration UI . 30
4.4 The retrieval result UI . 31
4.5 The revise UI . 37
4.6 The retain UI . 38
4.7 The CBR knowledge containers . 39
4.8 Explanation class diagram . 42
4.9 Warhammer and case class diagram . 44

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page x — #10 i
i

i
i

i
i

x List of Figures

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page xi — #11 i
i

i
i

i
i

List of Tables

2.1 Dwarf lord & Beastmen Chaos Spawn unit characteristics. 7
2.2 Army creation summary . 9

3.1 Example of a simple case query . 17
3.2 Example of a more extensive case query 18

4.1 Unit type similarity lookup table . 35
4.2 Army type similarity lookup table . 35
4.3 Weapon type similarity lookup table . 36

B.1 Unit similarity weight, Test: 1 . 67
B.2 Unit similarity weight, Test: 2 . 68
B.3 Unit similarity test: Empire . 69
B.4 Unit similarity test: Dwarfs . 70
B.5 Unit similarity test: High Elves . 71
B.6 Adaption result - unit preference error . 72
B.7 Race unit exchange table . 73

C.1 The 10 cases in the case-base . 79
C.2 Case army A1 . 80
C.3 Case army A2 . 81
C.4 Case army A3 . 81
C.5 Case army A4 . 82
C.6 Case army A5 . 83
C.7 Case army A6 . 84
C.8 Case army A7 . 85
C.9 Case army A8 . 86

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page xii — #12 i
i

i
i

i
i

xii List of Tables

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 1 — #13 i
i

i
i

i
i

Chapter 1

Introduction

This work is the continuation of my specialization project (Strandbr̊aten, 2010), where I
studied different: artificial intelligence approaches; explanation aware computing; exist-
ing technology, frameworks and libraries; existing products within the problem domain;
and the Warhammer Fantasy Battle domain. The goal of the preliminary project was
to get an overview of the existing products, technology and to create a rough outline for
the architecture to be used in this master thesis project.

Case-Based Reasoning (CBR) is an emerging field within Artificial Intelligence, with
many application areas and several projects are created with CBR at its core. Briefly put
is CBR using knowledge about previously recorded events, to help solve newly arisen
problems. The knowledge is stored as cases which consists of the problem descrip-
tion, the problem solution and its effectiveness. Some examples of CBR applications
are: CASEY (Koton, 1988), CARMA (Branting et al., 1999), JULIA (Hinrichs, 1992),
CREEK (Aamodt, 1994) and AmICREEK (Kofod-Petersen and Aamodt, 2009).

Explanation-aware computing is the act of supplying applications with enough knowl-
edge to be able to explain its reasoning and thought processes to the user. By supplying
such data, can the application help raise the users confidence in the results provided by
the application. The concept of explanation-aware computing is covered in e.g.: Leake
(1995a), Sørmo et al. (2005), Roth-Berghofer (2004); Roth-Berghofer and Cassens (2005)
and Doyle et al. (2003). And examples of explanation-aware applications: ACCEPTER
(Leake, 1995b) and SWALE (Kass and Leake, 1988).

The rest of this chapter gives the motivation and background for the work performed
in this thesis in Section 1.1; the goals of the thesis is described in Section 1.2; and the
chapter is concluded with the structure of the thesis in Section 1.3.

1.1 Motivation and Background

Since early in high school, when I was lured into a Dungeons & Dragons (D&D)1 session
for the first time by close friends, the game and concept have intrigued me. The con-

1Dungeons and dragons official site: http://www.wizards.com/DND/

http://www.wizards.com/DND/

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 2 — #14 i
i

i
i

i
i

2 Goals

cept of venturing into a fantasy realm with a fictional character, battling monsters and
generally have a lot of fun with friends is great. While we never had any serious games
and the rules were bent or broken more often than not, they still formed the basis of our
fun.

While Warhammer2 was a known phenomena and to some extent very similar to
D&D it was never brought up as a gaming system to try. When this assignment was
offered at the university as a master thesis assignment I saw it as a great opportunity
to get to learn the game, and at the same time work on something that I have a great
interest for. During the discussions with the supervisor that offered the assignment; we
talked about the possibility to change it into a D&D project, but this was discarded as
the problem area is different; i.e.: In D&D you create one player; keep and develop that
player for years. In Warhammer you must create and manage an entire army, where
the army often is unique to the imminent battle, and as such is it better suited as an
artificial intelligence task.

This task is suited as an artificial intelligence task and more precisely a CBR system,
because of the almost unlimited number of possible unit and equipment permutations
available; even when constricted by the rule set. Conventional statistics calculations
becomes unmanageable when faced with a close to limitless supply of permutations.
If you could remove all the permutations which technically is within the rule set, but
gamers would find unsound or unmanageable, are the remaining number of permutations
staggering. This is made even more complex by not having any legal limit on the number
of points which can be used in a battle, resulting in exponentially more permutations
when the points increase.

Technically this project offers challenges with respect to domain modeling, interpre-
tation of the game rules and the explanation depth. Explanation aware computing is
an area within computer science which is unknown to me; and as such will this project
be a great introduction into this field. Furthermore as this problem domain resembles
that of scheduling and planning in AI, links between these concepts may be drawn and
evaluated, as a means to a possible problem solution.

1.2 Goals

The goals of this project are:

G1 Determine which explanation goals the system should support.

G2 Determine what information the system require to function, and how best to rep-
resent the domain model.

G3 Create the system.

G4 Evaluate the results (system).

2Warhammer Fantasy Battle official site: http://www.games-workshop.com/gws/

http://www.games-workshop.com/gws/

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 3 — #15 i
i

i
i

i
i

Introduction 3

1.3 Structure of the Thesis

This thesis is meant to be read as a whole from beginning to end, and later chapters
may refer to or build upon previous chapters. The remainder of this thesis is organized
into six chapters.

In Chapter 2 the reader is introduced to Warhammer Fantasy Battle along with the
most prominent rules for creating an army. Chapter 3 details the evolution of the domain
model; the fundamental design and case structure; as well as the technologies used in the
system. The implementation of the systems three major components (CBR, explanation
and Warhammer- case representation) are described in Chapter 4. In Chapter 5 will the
testing and their subsequent results be presented, while Chapter 6 features discussions
about various aspects of the process. Including choices made towards the functionality
in the four CBR steps and in in regards to the explanation capabilities; evaluation of
the goals set forth in 1.2; and future work. Chapter 7 concludes the thesis.

A glossary containing all abbreviations and terminology used in this document can
be found in Appendix A. The tables containing the test results is located in Appendix B
and all cases represented in the system is located in Appendix C.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 4 — #16 i
i

i
i

i
i

4 Structure of the Thesis

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 5 — #17 i
i

i
i

i
i

Chapter 2

Warhammer

Warhammer Fantasy Battle is a miniature figure board game, where each player leads an
army to battle against another player. There are several races to choose from and each
race have many different and unique units that can be added to the army. Each unit
in Warhammer can have multiple different miniatures; some with or without optional
equipment. These miniatures are made in plastic/iron on a 25mm scale and each units
sits upon a square/rectangular socket. The miniature figures is delivered unpainted and
sometimes unassembled, in official tournaments and games with hard core gamers are
unpainted miniatures illegal and cannot be used. In these tournaments/games, must a
player have the exact miniatures for his/hers setup, if his/hers spearmen have shields,
then he/she must use points to equip those shields during the army creation and vice
versa. These rules are more commonly relaxed in private matches or in less formal
settings, although unpainted units are frowned upon. By supplying the units in an
unpainted form, can each and every player bring something unique to his/hers army, by
choosing the exact color scheme to be used on all the units; and this also appeals to the
collector aspect of the game.

Strict rules govern the game play and army creation process. On the battlefield
the individual units strength and abilities are matched against the opponent, and in
conjunction with the lay of the land and the roll of the dice determine the winner. This
essentially mean that the same two armies can do battle several times and the results
will most likely be different each time.

2.1 Races and Units

There are 15 races to choose from and each race have a host of different units that can
be bought and added to the players collection; additionally one unit may have different
equipment from another unit of the same race and type. The average number of units
available to a race are 437

15 ≈ 29. Each unit is differentiated from the others based on it’s
classification and characteristics.

Classification determines what type of unit it is, and is divided into the following

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 6 — #18 i
i

i
i

i
i

6 Races and Units

categories (Games Workshop, 2009, p.80-87 & 134):

• Cavalry (Ca) units are man-sized riders on war beasts, usually warhorses or similar
creatures. They specialize in deadly charges into the enemy units.

• Chariots (Ch) are wheeled war vehicles drawn by beasts and crewed with armed
warriors.

• Infantry (In) units are all the human sized foot troops in the game, regardless of
race. They normally represents the core of your army.

• Monsters (Mo) are the larges units on the battlefield and amongst the most pow-
erful units in the game. Dragons and Greater Daemons are examples of monsters.

• Monstrous Beasts (MB) are lesser than monsters, but still formidable foes, like
the Great Eagle.

• Monstrous Cavalry (MC) are much the same as ordinary cavalry, but tougher, and
the riders uses monsters as mounts instead of horses.

• Monstrous Infantry (MI) are man-shaped units which is two or three times the
size of normal infantry, but still fight on foot. This includes Trolls, Ogres and
Minotaurs.

• Swarms (Sw) are magically summoned hordes of small creatures like rats, snakes
or insects, their numbers compensate for their individual weakness.

• Unique Units (Un) are bizarre mechanical constructs or magical monstrosities that
require a unique rule set by themselves.

• War Beasts (WB) are hunting animals like dogs or wolves which cover distances
quickly and are dangerous in close combat.

• War Machines (WM) are powerful units which can be used to fight whole regi-
ments of units or breach walls. The Empire Great Cannon is an example of a war
machine.

Additionally some units are either a lord or a hero, these are powerful units which leads
the army to war. They are not separated in their own classification, but can belong to
any classification (usually infantry with the ability to purchase a mount). Lords are the
most powerful unit in an army, with fearsome martial- or magical might. Heroes are
lesser in might than lords, but still worth a score of ordinary warriors.

Characteristics describe all the aspects of a unit through nine associated attributes.
Each attribute have a numeric value in the range from 0 to 10, all these attributes are
uniquely described in a table for each unit and associated classification1. Some units
have a random attribute value which is determined by a dice roll and will be depicted in

1An attribute value zero can be represented in the table as both a “0” and a “-”.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 7 — #19 i
i

i
i

i
i

Warhammer 7

the table as: e.g.: 2D6, this describes that you should roll two six-sided dice to determine
the value, when needed in battle. This random value may or may not be added to a
constant attribute value. The following list is a description of the nine characteristics
(Games Workshop, 2009, p.3):

• Attacks (A) relates to how many times the unit can attack in this round.

• Ballistic skill (BS) reflects how accurate the unit is with its ranged weapons.

• Initiative (I) is how fast the unit reacts, and reflects the order in which the units
strike in close combat.

• Leadership (Ld) reflects how courageous, determined and self-controlled a unit is.

• Movement Allowance (M) determines the distance, in inches, a unit can move on
the battlefield under normal circumstances.

• Strength (S) determines the strength of the unit. It is related to how hard the
unit hits with its weapon, and the damage dealt in close combat.

• Toughness (T) is the units ability to resist physical damage and pain.

• Wounds (W) is the amount of damage that a unit can take before it is incapaci-
tated or killed.

• Weapon skill (WS) determines how skilled a unit is with its weapon or how vicious
the beast is.

An example of two unit characteristics is presented in Table 2.1.

Table 2.1: Dwarf lord & Beastmen Chaos Spawn unit characteristics.

Unit M WS BS S T W I A Ld Type
Dwarf lord 3 7 4 4 5 3 4 4 10 In
Chaos Spawn 2D6 3 0 4 5 3 2 D6+1 10 MB

The Dwarf lord depicted in Figure 2.1 have basically the same stats as mentioned in
the characteristic above, but may have additional information based on the equipment
he carries. As a lord this unit is capable of leading the entire army to war upon the
battlefield.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 8 — #20 i
i

i
i

i
i

8 Army creation

Figure 2.1: A Warhammer Dwarf Lord unit (Image: Anders Kofod-Petersen)

2.2 Army creation

Each individual unit have a base cost associated with it, this cost represents how good
the unit is. As the player adds better equipment, e.g.: weapons and armor to the unit,
the cost increases.

When preparing for a battle the two players determine the total army points for each
player to be used during the game. Common values are 1000, approximately an hours
worth of game play; 2000-3000 points, for an evenings battle; and 4000 or more points,
for an entire day (Games Workshop, 2009, p.132). To create the army the player selects
the units he/she wants to use for the battle while using as many points possible, but
still under the total alloted points. As it is difficult to use exactly all the points, both
armies are usually of a different value, but as close to the limit as possible.

There are however a few rules that must be followed when creating the army, you
cannot choose ten of the meanest unit there is and be done with it. The player should
first select a General, which represents the player and leads the army on the battlefield.
A General must be either a Lord or Hero unit. The rest of the army is selected based on
rules governing the following unit categories: Lords, Heroes, Core Units, Special Units
and Rare Units. All equipments and/or mounts purchased to individual units or groups,
counts towards the total point usage within each category. If each unit in the group is
meant to get the purchased item is the cost cumulative; E.g.: Shields with a cost of 1,
purchased for a group of 20 Spearmen, will add a cost of 20 to the group. There is also
restrictions on how many units of the same type can be included in the army (Games
Workshop, 2009, p.134-135).

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 9 — #21 i
i

i
i

i
i

Warhammer 9

As Lords & Heroes are described in Section 2.1 it is only mentioned that you can
spend up to 25% of the army points on Lords and Heroes respectivley, the no limit under
duplicate choices are not entirely correct, most lords and some heroes are unique and
can only be included once in each army. Core units are the basic units of your army
and the ones you will have the most off, e.g.: basic footmen and cavalery. You must
use a minimum of 25% of the army points on core units. Special units are elite troops
which perform great on their own or, as motivators for lesser soliders. You can spend
as much as 50% of the points on these units. Rare units are wery powerful units, e.g.:
monsters, weird war machines and elite soliders of unsurpassed skill. You can use up to
25% of the points on these units. When choosing special and rare units there is a limit
to how many duplicates you can have of these units. Special units can have three units
of the same type while rare can only have two, i.e.: you can only have two dragons, but
you may also have other rare units. The final rule governing the army creation reflects
how many formations the army must consist of: An army must have at least three unit
formations in addition to any lords and heroes in the army. “An army just isn’t a army
unless it has planty of warriors in its ranks” (Games Workshop, 2009, p.134). These
rules are summarized in Table 2.2.

Table 2.2: Army creation summary (Games Workshop, 2009, p.135).

The army must consist of at least three units, and one lord or hero to be the
general.

Points limit Duplicate choices
Lords Up to 25% No limit
Heroes Up to 25% No limit
Core 25% or more No limit
Special Up to 50% Up to 3 (6 if you use 3000 or more army points)
Rare Up to 25% Up to 2 (4 if you use 3000 or more army points)

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 10 — #22 i
i

i
i

i
i

10 Army creation

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 11 — #23 i
i

i
i

i
i

Chapter 3

Design

This chapter describes aspects of the design and reasoning behind that design as well
as a description of the technologies used. First is the evolution of the domain model
explained, where every major iteration of the design process is described in Section 3.1.
Then in Section 3.2 is the fundamental design described, before the chapter is concluded
in Section 3.3 with a description of the technologies used by the system.

3.1 Domain model

The data in the domain model are a collaboration of two data sources: official warham-
mer rulebooks (Core rulebook and specific army rulebooks) and data from real-world
battles fought and recorded by WarTrond (Trondheim Warhammer club). Data from
the official rulebooks are all the general domain knowledge acquired, this knowledge
includes: playable races (e.g.: Dwarfs, High Elves, Skaven and Lizardmen); race specific
units, equipment and mounts; general equipment; and the rules necessary to create an
army. The data from WarTrond are used to model the initial cases into the case base
and this data consists of: The army composition of the player (i.e.: what race, units and
equipment were used by the player); the number of points available to create the army;
the opponents race and the outcome of the match.

The domain model have been through several development phases and each phase is
described along with the reasoning behind the model in Sections 3.1.1 to 3.1.3.

3.1.1 Phase 1

In this phase were the ultimate goal to create a small straightforward model with only
basic information and a simple similarity measure. This domain model consisted only
of the cases (Player race, opponent race, outcome, player units) strictly encoded into
it with no focus on normalization or reuse of data. When adding a few (two) cases
to the case base and querying with advantageous data (i.e.: create queries that fit the
small domain) I found that the calculated similarity coincided adequately with the target

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 12 — #24 i
i

i
i

i
i

12 Domain model

cases. Since this were a simple calculation, where much of the information was ignored,
I found that the most important feature (in this simple similarity calculation) are the
number of available army points. As a result would the most similar case be classified
by the points even though the case had the wrong opponent and even resulted in defeat.

By implementing and testing this first phase several lessons were learned; opponent
race and outcome must be weighted high and most probable exclude the case if it is
wrong. The amount of points, while important should not be responsible for the majority
of the similarity value, and then have less weight than in the first phase. The last lesson
(and one I were aware of from the beginning) is that this simple scheme and model have
far to little information to be of any help during the explanation phase.

A description of the database schema depicted in Figure 3.1 follows. Case is the pri-
mary table containing the case ID, player- and opponent race, outcome and army points.
The Case Unit-, Unit Equipment- and Unit Utility tables are many-to-many relational
tables. The one and two letter fields in Unit and UtilityUnit denotes Warhammer unit
information that were encoded into the case structure.

Figure 3.1: Phase 1 database schema

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 13 — #25 i
i

i
i

i
i

Design 13

3.1.2 Phase 2

After the “successful” test in phase 1 a new database model were created; where focus
were put into creating a more detailed and more normalized database; which could be
used to properly describe a case and supply more explanatory power to the system.
Figure 3.2 depicts the new and improved database schema. When this new schema was
completed, the implementation were postponed until a discussion had been held to ratify
it. The results of the discussion is transcribed below.

Figure 3.2: Phase 2 database schema

Decided to drop the SimilarUnits table, this table were intended to help the system
know that Unit(X) is similar to Unit(Y) when it comes to unit stats and usage area on
the battlefield. The key reason this table were dropped is because such static informa-
tion could result in poorer similarities and army lineups. By keeping this information

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 14 — #26 i
i

i
i

i
i

14 Domain model

dynamic and incorporating it into the reuse step of the CBR-cycle we would get the
same functionality as the table and we can use this dynamic information to improve the
justification parts of an explanation e.g.: 20xHelbadiers is similar to 15xSpearmen with
a similarity of 78%, but 1xSteam Tank have a similarity of 0.01% with 15xSpearmen1.

Decided to connect the equipment and utility units to the unit table through many-
to-many relational tables instead of the existing connection to Case Content, this is
because each unit should be fully aware of what equipment and support units it possesses.

Decided against the removal of unit base stats, since these stats can be used in the
reuse and explanation phases in order to adapt and justify the changes made to the
initial case. This decision is linked to the decision to drop the SimilarUnits table.

Decided to add special rules associated with units into the domain model,this infor-
mation is important when a battle is fought and as a result to some extent useful when
the army lineup is made, but the usage of this information in the system is reserved for
future work on the system, or if time suffice.

This schema were never implemented in full, as apparent shortcomings or redundan-
cies were discovered while working on the implementation; these shortcomings consisted
of improperly described equipment, missing database relations and missing normaliza-
tion. The changes introduced by these discoveries and the above discussion resulted
in the database schema presented in the next section which is the schema used in the
system implementation.

3.1.3 Phase 3

This section describes the database schema depicted in Figure 3.3. Some aspects of this
schema is similar if not identical to the schema discussed in Section 3.1.2; the changes
being the result of the discoveries made during the discussion and partial implementation
of schema 2.

Additional fields were introduced in the the underspecified Equipment table to more
accurately convey the necessary knowledge about the equipment: Range, Modifier, Us-
ableBy and DefaultEq. It could be argued that the Range and Modifier fields should
be merged together as they both is used to describe the properties of the item; but
since range is a specific concept that relates to how far a ranged weapon (e.g.: bow or
pistol) can be fired, or the AoE of an enchanted item/battle standard; and the modifier
is used to convey if the item have a special effect, enhance the units core attributes (e.g.:
strength or attack) it was decided to keep them apart. UsableBy is used to denote if all
races can use the item or to restrict it to a special race as most items are unique to a
race and DefaultEq denotes if the item is belonging to a unit by default.

The Army Unit Equipment and Unit Equipment tables convey parts of the same
knowledge, both are related to a unit and that units equipment. The differences and
reason for having both is that the Unit Equipment table dictates what equipment a unit
can equip while the Army Unit Equipment table specifies what the unit have equipped

1These similarites are not accurate and only provided to demonstrate the example

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 15 — #27 i
i

i
i

i
i

Design 15

in this army configuration. Similar tables and reasoning exists for the different utility
units.

In the Unit table are the following fields added: MinNumber, MaxNumber, Mag-
icPoints & WeaponType, with this information is the unit fully in control of all the
knowledge associated with that one unit. The min- and max numbers indicate the min-
imum and maximum number of units a group (formation) must/can have in order to
comply with the game rules, a max number of 0 indicates that there is no legal upper
limit to the formation size. Some units have the possibility to buy additional magical
items to use and the MagicPoints field indicates how many point that unit can spend
on those items. Finally is the WeaponType field used to determine the primary weapon
type of the unit (excluding purchases of magical items), the available values are: melee,
ranged, long weapon and great weapon. A unit is characterized as melee unless one of
the other are true. This information is used to calculate the similarity between units.

In UnitUtility table were the Required, NumUnits & PromotionUnit fields added.
Required is used to inform the program that this utility unit is required to be attached
to the main unit (e.g.: a crew is often attached to a war machine). NumUnits indicate
how many units the utility unit consist of (e.g: a war machine crew typically consists of
three units), and PromotionUnit dictates that the utility unit is an upgraded version of
the main unit (e.g.: a crossbowman may be upgraded to a marksman), upgraded units
typically have one of their characteristics incremented by one.

Finally is Armies and Army Units new tables, Armies is used to hold the player race
and army point values, the armies id is in turn used to bind units to that particular
army and to bind the army to one or more cases. The Army Unit table have all the
information about the unit setup in a particular army, which units are present, what
equipment they have, which utility units they utilize and how many unit there are in
each formation.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 16 — #28 i
i

i
i

i
i

16 Domain model

Figure 3.3: Phase 3 database schema

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 17 — #29 i
i

i
i

i
i

Design 17

3.2 Fundamental design

This system is called Myrmidia; she is the patron goddess of warfare, war craft and
soldiers in some areas of the Warhammer Fantasy world, which makes her the perfect
deity in which to dedicate this system. The system consists primarily of four components:
Its knowledge (domain model), the CBR component, the explanation component and the
Warhammer component. The domain model were thoroughly described in the previous
section (Section 3.1). The other components will be covered in greater detail in the
implementation chapter (Chapter 4) with the exception of the CBR component which
is partially covered in Section 3.2.1, by revealing the case structure and the versatility
of the queries.

3.2.1 Case structure

jColibri supports the distinction between the problem description, solution and justifi-
cation of the case. All three distinctions are included in the CBRCase class supplied
by the framework. In Myrmidia however are there no distinction between the problem
description and its solution, as both are contained within the same class structure and
essentially contains exactly the same features.

A query must at the very least contain features indicating which race the player
wants to use, the opponents chosen race and the army points to be used to create the
army, as indicated in Table 3.1.

Table 3.1: Example of a simple case query

Case Player race: Empire
Opponent race: Skaven
Army points: 2500

While the simple query contains all the information the system need to create a query
and retrieve the similar cases from the case base, it does cast a wide net. By taking the
time to specify more information the query grows more restrictive and the results from
the similarity calculations might differ. In Table 3.2 is an example of how the query have
grown to accommodate other features. There is no restrictions on how many Case-Units
the query can contain, nor what legally equipable equipment is supplied in each unit;
Figure 3.4 displays the user interface to create these queries. There is no guarantee that
the requested units and/or equipment/mounts is present in the final solution, as the
automated adaptation have few constraints when it tries to change the case to fit both
the query and the game rules; where the game rules have precedence over the query.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 18 — #30 i
i

i
i

i
i

18 Fundamental design

Table 3.2: Example of a more extensive case query

Case Player race: Empire
Opponent race: Skaven
Army points: 2500

Case-Unit Name: Crossbowmen
Formation size: 10

Case-Unit Name: Arch Lector
Formation size: 1
Equipment: Mace of Helstum

Armour of Fortune
Potion of Speed

Utility unit: Barded warhorse

There are a few factors that led to the decision of not separating features and creating
description/solution features where the most prominent of these are:

1: Difficult to categorize the features and by so doing restrict them to be a description
or solution feature.

2: It felt restrictive and impairing on the functionality of Myrmidia and the users
possibility to define the perfect query for their needs.

3: All the features feels like they belong in both the query and the solution, by being
unable to separate the features two options remained: (1) to create two case hierarchies
where all features are present in both, or (2) to have the query (problem description) and
solution be part of the same hierarchy. The latter were chosen in an effort to minimize
the code; and to create two identical case structures where the only difference are an
implied conceptual difference, is unnecessary.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 19 — #31 i
i

i
i

i
i

Design 19

Figure 3.4: The create query UI

3.3 Technologies used

This section describes the various technologies utilized in Myrmidia and the reason for
using them. jColibri is described in Section 3.3.1, while Apache Derby is described in
Section 3.3.2 and finally is Hibernate described in Section 3.3.3.

3.3.1 jColibri

jColibri is a CBR framework for Java developed and maintained by the Department of
Software Engineering and Artificial Intelligence at Complutense University of Madrid.
Myrmidia uses jColibri version 2.0, but a third major release is forthcoming2. The
framework is fully implemented in Java and includes several out-of-the-box features and
extensive interfaces to create new functionality and/or tweak the functionality to fit the
project under development. jColibri is easy to setup and integrate into a project since all
configuration is done through a few XML files. As it supports a wide range of database

2April 2011 - jCOLIBRI 3 & COLIBRI Studio almost ready: http://gaia.fdi.ucm.es/

projects/jcolibri/ Accessed: 2 May, 2011

http://gaia.fdi.ucm.es/projects/jcolibri/
http://gaia.fdi.ucm.es/projects/jcolibri/

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 20 — #32 i
i

i
i

i
i

20 Technologies used

drivers and utilizes Hibernate for POJO mappings is the framework available for use by
most Java CBR applications. Additionally can ontologies be included through the use of
the OntoBridge functionality, which simplifies the use of ontologies to create knowledge
intensive CBR applications (Garcia et al., 2008).

Through the use of interfaces in all core components of jColibri, can any application
specific classes be easily and seamlessly integrated into and used in conjunction with
features out-of-the-box. The similarity calculations are divided by what is called local-
and global similarity functions (Dı́az-Agudo and González-Calero, 2001). The local sim-
ilarity functions are used to calculate the class specific similarity or even feature specific
similarity (E.g.: Object X have two features A and B. A local similarity function is
assigned to calculate the similarity of feature A and another for feature B while a third
function calculates the similarity of Object X with the two features as variables in the
computation). The global similarity function calculates the case similarity (E.g.: Objects
X, Y and Z are objects of different classes which all contribute to the case similarity; and
each have one or more different local similarity functions attributed them. The global
similarity function calculates the case similarity by using the calculated local similarity
of the three objects as variables in the computation).

jColibri in Myrmidia

jColibri were chosen because of its ease-of-use framework, and the effort could then be
moved from how to make it work to how should this be implemented? In Myrmidia is most
of the jColibri functionality changed or adapted from the initial framework operations
in order to fit the projects needs. While some of the functionality is mere clones with
one line of code added/removed, others are completely written from scratch (through
the use of interfaces) to achieve the desired functionality. Most of these changes are
with the local- and global similarity functions and these are more thoroughly described
in Section 4.1.2.

3.3.2 Apache Derby

The Apache Derby database solution is a open source, full-featured relational database
management system (RDBMS), based on Java technology (JDBC) and SQL. Apache
Derby is written entirely in Java, this makes any software based on Apache Derby
and Java, as platform independent as Java is by itself. Additionally is the database
files generated by Apache Derby, platform independent. This means that the database
folder (with data) can be copied onto any Java enabled platform and be accessible by
the application without the need to change the data or data representation (Apache
Software Foundation, 2010).

Two database driver modes are supplied: a server/client mode and a embedded mode.
The server/client are the default configuration and is the standard database approach.
The database is located on a server and all the clients (programs) access that server
to acquire data from the database. Embedded mode does not require a server to run
the database, nor a separate process on the client machine; the database management

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 21 — #33 i
i

i
i

i
i

Design 21

system runs within the same JVM as the “client” (program) which requests the data.
Figure 3.5 displays how the embedded Apache Derby architecture is bundled within the
JVM. There is one major drawback by using this embedded approach, only one client on
the host machine may have a connection with the database at any time, that one JVM
may have many connections, but another JVM process will get an access violation and
be prevented from accessing the database.

JDBC

DERBY

Application

Database files

JVM

Figure 3.5: Embedded Derby Architecture http://db.apache.org/derby/papers/

DerbyTut/embedded_intro.html

Apache Derby in Myrmidia

Apache Derby with the embedded mode activated is the current RDBMS in Myrmidia.
The ease of use, bundled with no database server requirement nor a separate RDBMS
process on the host machine, made it ideal for prototyping the database and Myrmidia
in general. By bundling the database folder together with the application will any user
be able to use a local copy of Myrmidia without the need to setup his own database
server or being connected to the Internet.

A known drawback which resolution is reserved for future work is that: Since each
user have his/hers own local copy of the database, will the CBR portion of Myrmidia
be restricted to learn from that one user, instead of the whole user base. This limits
the learning capabilities of the system and prevents more uniform results across the user
base.

3.3.3 Hibernate

Hibernate is a Object/Relational mapping tool developed in Java and designed to sim-
plify the process of mapping data in Java objects to database tables and vice versa.
Mapping information encoded in XML files or as annotations in the Java class files pro-
vides Hibernate with all the necessary information to map data between database and
POJO objects. To enable Hibernate mapping for a class must all class variables, which

http://db.apache.org/derby/papers/DerbyTut/embedded_intro.html
http://db.apache.org/derby/papers/DerbyTut/embedded_intro.html

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 22 — #34 i
i

i
i

i
i

22 Technologies used

is to be mapped, have getter and setter functions. A huge advantage with Hibernate is
that although the persistence process is automated and hides much of the work for the
user, the underlying technology is not hidden. Developers can execute custom commands
through either the Hibernate Query Language (HQL) or through native SQL (Bernard
et al., 2011).

The below frame illustrates a simple example of Hibernate XML mapping for the
class depicted in Figure 3.6. Each property in the Person class is mapped with its name
and the name of the column in the Person table to map the data.

<hibernate-mapping>
<class name=“Person” table=“Person”>
<id name=“id” type=“integer”>
<generator class=“increment”/>

</id>
<property name=“firstName” column=“First” type=“varchar(30)”/>
<property name=“lastName” column=“Last” type=“varchar(30)”/>

</class>
</hibernate-mapping>

Figure 3.6: An example class for Hibernate mapping

Hibernate in Myrmidia

Since Hibernate is the default persistence tool in jColibri, the jColibri tutorial (Garcia
et al., 2008) uses Hibernate and finally since Hibernate is a powerful persistence tool it
is chosen in Myrmidia. In Myrmidia is hibernate used for the initial data fetching when
a CBR query is posted to the system, and when HQL queries are sent to fetch additional
data during CBR query construction and result adaptation. Because of difficulties with

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 23 — #35 i
i

i
i

i
i

Design 23

configuring Hibernate properly it is however not responsible for the storing of new cases
into the case base. For that task the query is first passed through a preparation stage
which updates all the case data IDs to be new unique IDs and then parsed into native
SQL. This is not ideal, but Hibernate insisted in trying to update existing cases instead of
creating new ones, in addition to insert data into “static” tables. After several attempts
to correct these errors it was decided to remove that part of the persistence functionality
and instead perform that mapping manually.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 24 — #36 i
i

i
i

i
i

24 Technologies used

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 25 — #37 i
i

i
i

i
i

Chapter 4

Implementation

In this chapter will most of the implementation work be described through examples,
class-diagrams and equations. Not every aspect of the application will be described in
this way, but rather the major components and how they interact within those compo-
nents. The components/packages that will be described is CBR in Section 4.1, explana-
tions in Section 4.2 and some of how Warhammer and a case is represented in Section
4.3. The sections for CBR and explanations will begin with a brief introduction to those
concepts as they not are discussed elsewhere in this thesis.

4.1 CBR

The inspiration for CBR came from a desire to understand how people
remember information and are in turn reminded of information; and that
subsequently it was recognized that people commonly solve problems by
remembering how they solved similar problems in the past.

-Watson (1998)

The standard definition of CBR was formulated by Riesbeck and Schank (1989): “A
case-based reasoner solves problems by using or adapting solutions to old problems.”

The CBR component of this application consists of the four steps in the CBR cycle
as described by Aamodt and Plaza (1994). They stipulate the four steps as Retrieve,
Reuse, Revise and Retain; where Retrieve is the process of acquiring the cases from the
case-base; Reuse is the process of using and adapting the acquired data to fit the new
problem; Revise is the process of evaluating the solution, testing it and finally determine
its usefulness; and finally Retain is the process of storing the relevant pieces of data back
into the case-base. Figure 4.1 depicts the CBR cycle as described by Aamodt and Plaza.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 26 — #38 i
i

i
i

i
i

26 CBR

Figure 4.1: The CBR cycle (Aamodt and Plaza, 1994)

The remaining parts of this section describes how Myrmidia have implemented CBR,
beginning with the similarity functions utilized in the retrieve step to limit the cases
into a manageable sub-set of cases based on the k-NearestNeighbour (kNN) algorithm in
Section 4.1.2. Section 4.1.3 describes the similarity function and adaptation rules used
during the reuse step, while the revise and retain steps are described in Section 4.1.4.

4.1.1 CBR framework

Most of the CBR framework is presented in rich detail in the subsequent sections (4.1.2,
4.1.3 and 4.1.4 and is displayed in Figure 4.2; In order to preserve readability of the
class diagram are all attributes and operations hidden. The components in the figure
are not explicitly explained, but rather implicitly linked to the explanation of the CBR-,
similarity- and adaption processes.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 27 — #39 i
i

i
i

i
i

Implementation 27

Figure 4.2: CBR class diagram

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 28 — #40 i
i

i
i

i
i

28 CBR

4.1.2 Similarity (Retrieve)

First off is all valid cases in the case-base collected, then the similarity calculations
matches the retrieved cases with the query posted to the system, in an effort to find
the k nearest neighbouring cases. The kNN algorithm were chosen since it quickly can
distinguish between cases based on the similarity between them.

The similarity is calculated based on a weighted sum of three components: army,
opponent and outcome. Of these three are the army component the most complex
and is in itself a result of several weighted similarities. The different equations used
to calculate the similarity are presented below. All the equations presented here will
use abbreviations on the variable names to limit the equation space requirements. All
abbreviations will follow the same naming conventions to be easily understandable, and
each abbreviation will be explained in the associated equation text, an W following
the abbreviation will always mean that the variable denotes the variables weight in the
calculation.

Equation 4.1 is the equation used to calculate the weighted average of the three com-
ponents. A = “Army”, Opp = “Opponent” (the opponent race), and Out = “Outcome”;
which constitutes the entire case.

Similarity =

∑
A×AW + Opp×OppW + Out×OutW∑

AW + OppW + OutW
(4.1)

Equation 4.2 calculates the first component in Equation 4.1 and is also a weighted
average of its components. This equation calculates how similar the army in the case is
to the army in the query. A = “Army”, PR =”Player race” (the similarity between the
race the player wish to use and the race in the case), AP = “Army points” (similarity
between the desired army points and the case army points) and AU = “Army unit” (the
similarity between units in the query and units in the case).

A =

∑
PR× PRW + AP×APW + AU×AUW∑

PRW + APW + AUW
(4.2)

Equation 4.3 is used in both Equations 4.1 and 4.2 to calculate the similarity of the
query race and case race as either the opponent or the player. Race equals Opp (in
Equation 4.1) or PR (in Equation 4.2) depending on the context in which the equation
is used.

Race =

{
1 if query race equals case race
0 if query race not equals case race

(4.3)

Equation 4.4 is used in Equation 4.1 to calculate the similarity between the desired
outcome (victory) to the actual outcome of the case.

Out =

1 If the query outcome equals the case outcome
0.5 If the query = Victory and case = Draw, and vice versa
0 If the case equals defeat

(4.4)

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 29 — #41 i
i

i
i

i
i

Implementation 29

Equation 4.5 is used in Equation 4.2 to calculate the similarity between the case-
and query army points. The case or query may contain the wild card value 0, which
means that the case does not know how many points were used to create it, or the player
does not know how many points he should use. The former are a method to help cope
with poorly defined cases (cases missing attributes) and the latter is a what if scenario,
which probably never will occur. The similarity is based on the difference between the
case- and query points, divided by the range(interval) in which the similarity should be
valid. By default is the interval set to 500 points.

AP =

 1 If the query- or the case army points equals 0

x ∈ [0, 1] 1−
∣∣∣∣Case points−Query points

Interval

∣∣∣∣ (4.5)

Equation 4.6 is used by Equation 4.2 to calculate the similarity between the units
in the query and units in the case. AU = “Army unit”, UF = “Unit fraction”, NF =
“Number fraction”, EF = “Equipment fraction” and UtF = “Utility unit fraction”. AU
is the fraction of unit in the query found in the case e.g.: There are four units in the
query and two of them are present in the case will give a unit fraction of: 2

4 = 0.5. The
denominator is not a fixed value as is the case with most average calculations, but is set
to reflect the number of unknowns in the equation which is greater than 0. This is made
deliberately to prevent the similarity from being punished if the case contains equipment
and/or utility units and the query does not. E.g.: If the query does not contain any
items and utility units reduce the denominator from 4 to 2.

AU =

1 query does not specify any units
0 none of the query units are present in the case

x ∈ [0, 1] UF+NF+EF+UtF
Denominator

(4.6)

Equation 4.7 is used by Equation 4.6 to calculate the fraction of the sum of the
queried equipment, found in the case e.g.: The query contains three units with 2 items
each, the case contains all three units, but with only one of the queried items each will
give a equipment fraction of: 3

6 = 0.5. The exact same formula is used if/when a query
contains units with utility units.

EF =

n∑
i=1

found equipment in unit[i]

n∑
j=1

queried equipment in unit[j]

(4.7)

Equation 4.8 is used by Equation 4.6 to calculate the fraction of the sum of the
queried unit formation sizes. The similarity is based on the difference between the case
unit formation size and the query unit formation size, divided by the range(interval)
the similarity should be valid. By default is the interval set to 5. To illustrate the

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 30 — #42 i
i

i
i

i
i

30 CBR

equation imagine a query which contains a formation of 20 archers and a formation
of 20 swordsmen. The case have a formation of 20 archers, the swordsmen formation

contains only 15 units. The similarity for the archers would be 1−
∣∣∣20−20

5

∣∣∣ = 1; for the

swordsmen would the similarity be 1 −
∣∣∣15−20

5

∣∣∣ = 0; and the total similarity would be

archer similarity+swordsmen similarity
Found units = 1+0

2 = 0.5.

NF =

∑
1−

∣∣∣∣Case unit formation size−Query unit formation size

Interval

∣∣∣∣
Number of query units found in case

(4.8)

The calculated similarity is then used by the kNN algorithm to sort the cases in
descending order and to collect a sub-set of the k cases with the highest similarity. All
the weights used by the similarity calculations above can be configured by the user before
the query is sent to the retrieve step along with the variable k.

All the weights in the above equations can be set by the user through the user
interface depicted in Figure 4.3, as well as the number of cases to retrieve (the k in the
kNN algorithm) and the interval in which army points similarities are valid.

Figure 4.3: Similarity weight configuration UI with random weights

Retrieval results

In order to give the user more control over the process and the results of the case retrieval,
is the results displayed in its own user interface prior to adaption. This gives the user
the possibility to accept or decline cases which in his/hers eyes are inappropriate, but no

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 31 — #43 i
i

i
i

i
i

Implementation 31

manual changes are permitted at this time, since the software is dealing in partially static
data. Figure 4.4 displays the user interface and the retrieval result of the query. To help
improve the users confidence and to help approve the cases is this where transparency
(more details in Section 4.2.1) explanations can be viewed.

Figure 4.4: The retrieval result UI

4.1.3 Adaptation (Reuse)

The reuse step of the CBR-cycle is initiated when one or more of the retrieved cases
(from the kNN algorithm) is approved by the user. A retrieved case is first passed
through a naive adaption before a more exhaustive adaption may be performed.

The naive adaption is used to exchange data in the query with data in the case, the
data exchanged is effectively the player- and opponent races, the army points and any
units in the query is exchanged based on the following logic:

for each unit in query do
if unit exist in case then

case unit size = query unit size
case unit equipment = query unit equipment
case unit utility unit = query unit utility unit

else
find most similar unit
case most similar unit = query unit

end if
end for

Finally is the outcome of the case set to unknown.
When the compulsory naive adaption is completed the exhaustive adaption process

is started, this process may or may not perform any adaption on the retrieved cases.
The amount of adaption performed is dependent upon a set of rules and whether or not
any of those rules are violated. The rules are based upon the general rules a person

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 32 — #44 i
i

i
i

i
i

32 CBR

must adhere to when manually creating a army roster and some rules created to help
the CBR reasoner. Each rule in turn have a set of associated rules or actions performed
if violated. Below is a description of each stipulated rule which may be violated and a
brief description of the solution:

No army general: The army have no lord or hero units, or the only hero unit in the
army is a battle standard bearer. As the army must have a general the solution
to this rule is to add a new random hero or lord unit.

OK: No violated rules were found and the adaptation is completed.

Too many duplicate rare units: The rules stipulate that there is a limit on how
many rare units there may be in the army. This rule is violated when the number
of duplicates exceeds that limit and the solution is to delete any offending units
from the case.

Too many duplicate special units: The rules stipulate that there is a limit on how
many special units there may be in the army. This rule is violated when the
number of duplicates exceeds that limit and the solution is to delete any offending
units from the case.

Too few core points: The rule stipulates that the total amount of core points used
is less than the required 25% of the availalbe army points. There is encoded in
a complex solution for this problem and several actions may be performed. The
first cource of action is to fire the Too few groups and too few units in group
rule actions, since this rule is dependent upon that those two not are violated. If
these actions do not solve the problem are there two other actions that may be
performed. (1) Increase core group costs by adding units or giving the group full
command. (2) Create a new core unit group.

Too few groups: The rules stipulate that there must be at least 3 unit groups in
addition to any lords and heroes in the army, for it to be an army. The solution is
to randomly select if a core, rare or special group should be added, and then find
the unit within that group which is the least similar to existing units of that type
in the case.

Too few points total: If the difference between used army points and available army
points is greater than a threshold value of 10 points will this rule be violated.
Depending on the difference may one of three actions be performed: (1) add units
to existing groups, (2) add equipment/utility units to existing groups or (3) add
a new random group (core, special, rare, hero or lord).

Too few units in group: There exists one or more groups in the army which violates
its minimum group size requirement. Each unit in the Warhammer universe as
they are described in the various Warhammer race rulebooks have a minimum
number of units which is required in a unit group. The solution is to increase the

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 33 — #45 i
i

i
i

i
i

Implementation 33

number of units in the group so that they is greater than or equal to the minimum
group size.

Too many hero points: A maximum of 25% of the available army points may be used
on hero units. If the number of hero points exceeds this limit one of the following
actions are taken: (1) If the difference between used points and legal points is less
than 50 points, find the most expensive hero unit and remove the equipment or
utility unit, which reduces the difference closest to zero. (2) If the difference is
greater than 50 points, remove the least expensive hero unit.

Too many lord points: A maximum of 25% of the available army points may be used
on lord units. If the number of lord points exceeds this limit one of the following
actions are taken: (1) If the difference between used points and legal points is less
than 50 points, find the most expensive lord unit and remove the equipment or
utility unit, which reduces the difference closest to zero. (2) If the difference is
greater than 50 points, remove the least expensive hero unit.

Too many points total: If the total used points exceeds the available army points
triggers this rule violation. There are several actions that are attempted in order
to solve this problem: (1) Check if any of the other rules that govern the amount
of points used are violated (too many hero, lord, rare or special points; too many
units in group, too many duplicate special or rare units). If this don’t solve the
problem then depending on the difference between used points and available points
can the following actions be performed: (2) Reduce the number of units in groups,
(3) Remove equipment/utility units from a group or (4) Remove a random group.

Too many rare points: A maximum of 25% may be used on rare units, if this limit is
exceeded the following action is performed: (1) first check if the too many duplicate
rare units rule is violated and then perform the actions associated with that rule
violation. (2) Depending on the difference between used points and available
points either reduce group size or delete a group.

Too many special points: A maximum of 50% may be used on special units, if this
limit is exceeded the following action is performed: (1) first check if the too many
duplicate special units rule is violated and then perform the actions associated
with that rule violation. (2) Depending on the difference between used points and
available points either reduce group size, remove equipment/utility units or delete
a group.

Too many units in group: There exists one or more groups in the army which vio-
lates its maximum group size requirement. Some units in the Warhammer universe
as they are described in the various Warhammer race rulebooks have a maximum
number of units which is required in a unit group. Other units have no max limit,
only the theoretical limit imposed by the available army points. The solution is
to decrease the number of units in the group so that they is less than or equal to
the maximum group size.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 34 — #46 i
i

i
i

i
i

34 CBR

Wrong race: This rule is fired if the retrieved case have another player race than the
query case, and is the first rule returned by the rule verification process. The
solution is to go through the retrieved case and exchange every unit in the case
with its most similar counterpart in the query race. By default is the existing unit
size kept, unless it would cause rule violations in regard to minimum/maximum
unit sizes.

It is important to note than only one of the above actions is performed and then again
only one part-action (if several actions are available) in each loop iteration. This is to
make sure that the rules are validated after each change, since one rule violation may be
fixed by fixing another rule, since many of the rules are interdependent on each other.

Similarity in the adaptation phase

The adaptation phase have its own unique similarity function used when finding the
least similar and the most similar units. The main unit similarity equation is displayed
in Equation 4.9 and as the case similarity in Equation 4.1 is it also a weighted sum
of its components. An explanation of the abbreviated component names follow, an
abbreviation ending i a W always denotes that components weight: US=Unit similarity,
Ch = Characteristics, UT=Unit type, AT=Army type, C=Cost, W=Weapon type and
M=Magician. Each of the components of the equation is further described below.

US =
Ch× ChW + UT×UTW + AT×ATW + C× CW + WT×WTW + M + MW

ChW+UTW+ATW+CW+WW+MW
(4.9)

Since the characteristic values are stored as strings (to enable notation of special val-
ues like 2D6 in addition to regular numbers) are there two different methods to calculate
one characteristic (e.g.: strength, toughness and initiative) and the one used is depen-
dent upon it being a number or a string. For the string similarity is a simple equality
equation 4.10 used while an interval equation 4.11 is used to calculate the numbers, and
the interval in which the similarity is valid is 2. Finally is the entire unit characteristic
computed as the average of the similarity of the nine individual characteristics as in
Equation 4.12

Char =

{
1 The characteristic value is an exact match
0 The characteristic value is not a match

(4.10)

Char = 1−
∣∣∣∣Existing unit characteristic− Replace unit characteristic

interval

∣∣∣∣ ,∈ [0, 1] (4.11)

Ch =

n∑
i=1

Char[i]

9
(4.12)

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 35 — #47 i
i

i
i

i
i

Implementation 35

The cost (C) similarity is calculated as an interval similarity, the same way as each
unit characteristic and Equation 4.11 can be used to convey the function, although the
text inside the equation would be slightly different.

The unit type (UT) similarity is found through the lookup table displayed in Ta-
ble 4.1, where the similarity between all the different unit types in Warhammer. These
numbers are by no means found through any scientific approach, but is rather found
through a this feels appropriate approach. The feels appropriate approach is used in all
the similarity lookup tables in this section.

Table 4.1: Unit type similarity lookup table

Ca Ch In MB MC MI Mo Sw Un WB WM
Ca 1.0 0.75 - - 0.65 - - - - - -
Ch 0.75 1.0 - - 0.50 - - - - - -
In - - 1.0 - - 0.65 - - - - -

MB - - - 1.0 0.5 0.5 0.8 - - - -
MC 0.65 0.5 - 0.5 1.0 0.5 0.8 - - - -
MI - - 0.65 0.5 0.5 1.0 0.8 - - - -
Mo - - - 0.8 0.8 0.8 1.0 - - - -
Sw - - - - - - - 1.0 - - -
Un - - - - - - - - 1.0 0.45 0.45
WB - - - - - - - - 0.45 1.0 0.35
WM - - - - - - - - 0.45 0.35 1.0

The army type (AT) similarity is found through the lookup table displayed in Ta-
ble 4.2.

Table 4.2: Army type similarity lookup table

Core Lord Hero Special Rare
Core 1.0 - - - -
Lord - 1.0 0.75 - -
Hero - 0.75 1.0 - -

Special - - - 1.0 0.5
Rare - - - 0.5 1.0

The weapon type (WT) similarity is found through the lookup table displayed in
Table 4.3.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 36 — #48 i
i

i
i

i
i

36 CBR

Table 4.3: Weapon type similarity lookup table

Ranged Melee Great weapon Long weapon
Ranged 1.0 - - -
Melee - 1.0 0.5 0.3

Great weapon - 0.5 1.0 0.55
Long weapon - 0.3 0.55 1.0

Magician (M) similarity is the last component of the unit similarity equation and
this is a simple boolean comparison which returns a value of 1 if the two units have the
same magician value or a value of 0 if they differ.

4.1.4 Revise and Retain

The revise and retain steps in Myrmidia is somewhat merged together in order to achieve
the desired performance from the system. They work in conjunction over two steps
through separate user interfaces, in order to store the new cases and update the outcome.
The two interfaces are named Revise and Retain respectively, but both perform parts of
the two operations.

Revise

The revise step in Myrmidia is a completely manual task where the user can change
almost every aspect of the case, but some restrictions does apply. The restrictions can
be categorized as either limitations or invalidators. The limitations are merely features
the user interface cannot change, but if changed would not invalidate the result; these
features are the opponent race and the battle outcome. Invalidators on the other hand
would, if changed, void the validity of the retrieved case; these features are the player
race and army points. What can be changed: is what units are included in the army,
how many of each unit and their equipment/utility units.

The easiest approach to an semi-automated revise step is a simple re-ranking of
the cases based on their new data and then let the user perform the remaining manual
tweaks. At the other end of the scale is a fully automated revision system, or a more
thorough discussion on these points see Section 6.1.4.

When a user is satisfied with one or more of the cases and wants to test those in real
world battles he/she then approves the case and it is stored into the case-base, and the
storage process is one of the results of the revise/retain merge. This preliminary storing
of the case cannot be acquired during the retrieve step. This safeguard is to prevent the
system to base a new solution on unverified knowledge. Since the data is stored into
a “inaccessible” vault can the application and computer be safely shut down while the
game is played.

Figure 4.5 displays the user interface window presented to the user during the revise
step. The interface permits the user to change the above mentioned aspects of the case.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 37 — #49 i
i

i
i

i
i

Implementation 37

Figure 4.5: The revise UI

Retain

As a result of the partial merging between the revise and retain steps in the cycle is there
one revision action that must be performed in the retain step; which is to set the result
of the battle. Figure 4.6 displays the retain user interface and the outcomes a battle
may have. The result determines what action the retain process performs in regard to
the unknown case:

• If the case resulted in victory or a draw is that value updated in the case-base;
which effectively removes the case from the case vault, and makes it available as
a case in the system.

• If the case remains unknown it also remains in the case vault and remains inac-
cessible.

• Finally if the case resulted in defeat is that case deleted, what happens with the
army represented in the case is however dependent upon one additional criteria.
If the army in the case is used successfully in another case it will remain, if the

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 38 — #50 i
i

i
i

i
i

38 Explanations

army however were exclusive to the defeated case will that army be purged from
the database.

Figure 4.6: The retain UI

4.2 Explanations

Explanations are one of the primary human methods to reason and reach a solution to
a problem. The purpose of an explanation is to explain a solution, the reasoning path
that lead to this particular solution and how a system work, including how to handle the
system. (Schank, 1986; Roth-Berghofer, 2004). Our use of explanations, its depth, scope
and content are directly related to the users general domain knowledge, and the context
in which the explanation is given. Explanations must be both inclusive and instructive
(Roth-Berghofer, 2004). An explanation is divided into: explanandum, explanans, facts
and general laws. Where explanandum is the question to be answered, explanans are
the answer to the question, the facts and laws are what we know, and in turn base our
explanation on.

Sørmo et al. (2005) describe five explanation goals for explanations in CBR appli-
cations: transparency, justification, relevance, conceptualization and learning. They do
also point out that any explanation-aware CBR system are not bound to support all
five goals, but rather a sub-set of goals dependent upon the systems need to explain.
What knowledge the system have and/or what knowledge must be added to the system
in order to fulfill a goal is also dependent upon the decision of which goals to support.
Transparency is how did the system find the data it based its decision on. E.g.: In a CBR
system, where cases are found based on their similarity values; how are those similarity
values calculated and what are the similarity of the selected cases. Justification is to
explain why the solution is a good solution, as a means to increase user confidence in the
solution. Relevance is to explain how relevant features or questions asked by the system
is towards creating the solution. Conceptualization the ability to explain concepts and

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 39 — #51 i
i

i
i

i
i

Implementation 39

the terminology used by the system, and finally there is learning ; Learning should be
employed by systems designed to teach the user something about its domain, and while
learning is represented to a certain degree in all the goals, is this goal only about learn-
ing. The learning should not be to teach the user how the system operates or reasons,
as that knowledge may be abstract and difficult to obtain by a user, but rather how the
user can perform similar functions in terms the user can understand.

Richter introduced the concept of knowledge containers (Richter, 1995), and Roth-
Berghoefer builds on this concept (Roth-Berghofer, 2004). Knowledge containers is
a method to compartmentalize the knowledge contained in the CBR knowledge-base;
there are four such containers: Vocabulary, Similarity measure, Adaptation knowledge
and Case-base. Figure 4.7 depicts the interrelationship between these four containers.
The vocabulary container is the all-encompassing container and contains all the defin-
ing data in the system e.g.: attributes, predicates and domain structure. While the
three remaining containers are quite self-explanatory, are a brief description given; The
similarity measures container know how to calculate the similarity between cases and
query; The adaptation knowledge container, how to adapt stored cases to fit the descrip-
tion/problem; and the case-base container contains the actual cases the system consists
of. Individually can these containers explain quite accurately their own role in the pro-
cess, but more importantly their combined knowledge can satisfy most if not all of the
goals outlined by Sørmo et al. (2005).

Figure 4.7: The CBR knowledge containers (Roth-Berghofer, 2004)

.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 40 — #52 i
i

i
i

i
i

40 Explanations

4.2.1 Explanation framework

An explanation engine were built, which in conjunction with several task-dedicated
classes and an explanation interface, tracks all changes and operations performed on
each retrieved case in order to generate the desired explanations. Figure 4.8 displays the
class diagram for the explanation classes, to keep the diagram legible is all attributes
and operations hidden.

The Explanation interface contains only one method generateExplanation() which
returns the explanation string generated by the implementing component. All imple-
menting classes are responsible to generate their respective parts of the explanation.

Control of the explanation generation process, and the storing of the explanation data
is performed in the ExplanationEngine singleton. While this class does not implement
the Explanation interface since it require multiple specialized operations to generated
the desired explanation (case) and explanation type (transparency, justification). The
class have separate arrays to keep track of the explanation objects tied to each retrieved
case.

The ExchangeRaceExplanation with the help of Exchange keeps track of the unit ex-
changes when case race and player race don’t match. ExchangeRaceExplanation contains
an array with exchange objects as well as the case identification, while each Exchange
object knows which units where exchanged and the similarity between them.

Since the similarity calculation is so complex as it is, and is divided in two main
classes (with several auxiliary classes), are the explanation component responsible for
keeping track of those changes also split in two: CaseExplanation and ArmyUnitExpla-
nation. CaseExplanation stores all the similarities and data associated with the query,
except that which is associated with any units in the query, this is handled by the
ArmyUnitSimilarity class.

Changes made during adaptation are based around the set of possible rule violations
as described in 4.1.3 and the response to those violations. The Actions enumeration class
contains all the possible responses, while the AdaptionRule class maps those response
actions to their natural language equalivient.

To map the actions taken when a rule violation is encountered where the Action
class created, this records: the violation, the set of actions performed and the unit the
action were performed on.

Finally there is the AdaptionExplanation class which is used to generate an expla-
nation based on the data within it. As a method to distinguish the explanations each
object is keyed with the case identifier.

This application supports two of the explanation goals discussed by Sørmo et al.
(2005): transparency and justification. Transparency is supported by the CaseExpla-
nation branch in Figure 4.8 and partly by the ExchangeRaceExplanation branch, if
applicable. The main transparency explanation, displays some informative text in con-
junction with all the major calculated similarity values and their equations; in an effort
to convey to the user how a case were ranked and subsequently selected by the kNN
algorithm. Justification explanations are supported through the AdaptionExplanation-
and ExchangeRaceExplanation branches. The ExchangeRaceExplanation is a partial

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 41 — #53 i
i

i
i

i
i

Implementation 41

merger between transparency and justification, but is mostly a justification component.
A justification explanation first displays the results of the ExchangeRaceExplanation
(if applicable) which contains informative information about how the exchange process
works and which units where exchanged along with their similarity. The remaining part
of the justification explanation comes from the AdaptionExplanation component and
consist of the set of rules which were violated by the army during the adaption phase
and what actions were taken to rectify those violations.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 42 — #54 i
i

i
i

i
i

42 Explanations

Figure 4.8: Explanation class diagram

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 43 — #55 i
i

i
i

i
i

Implementation 43

4.3 Warhammer and case representation

The representation of Warhammer related classes and how they are connected to cases
are very similar to how it is represented in the database; and the representation is
displayed in the class diagram in Figure 4.9. To maintain readability of the diagram is
all attributes and operations hidden.

The Unit- and UtilityUnit classes inherits from the CoreUnit class which contains
most of the similar components for the two generalized classes. Unit is the representa-
tion of a Warhammer unit, regardless of unit- and army type, a unit contains absolute
knowledge of itself; from characteristics, name, race and cost to what equipment/utility
unit it can purchase. It was decided to not include the standard equipment of a unit
into the model, this knowledge adds little to the unit representation; and by including
the main weapon type of the unit is the weapon classification of the unit maintained.
A UtilityUnit is first and foremost an additional unit belonging to another unit, or can
be purchased by another unit; it is most often either a mount (horse or beast) or a
promoted (enhanced) version of the base unit, but may also be crew-members the base
unit requires. In most other aspects are the Unit- and UtilityUnit classes identical.

SpecialRule contains only the rule id and rule name, the effect of the special rule is
omitted since the effects rarely matter when selecting the army roster. The inclusion
of the special rule field is to help a player to remember which special rules are in effect
during gameplay, but have no effect at all in the application. Special rules are added to
units and equipment and more than one rule may be added to both units and equipment.

Equipment is the representation of e.g.: weapons, magical items, armor and stan-
dards. All items have absolute knowledge about themselves and include the items char-
acteristics and/or bonus(es) when used.

The ArmyUnit class is the first of three classes that are directly associated with a
case. It contains which unit, how many units the formation consists of, and the purchased
equipment and/or utility units. A key reason to have this class in the representation is
to allow all unit knowledge to be contained within one class hierarchy, this is especially
linked to the possibility to let units have control of what they can equip, and then the
army unit what this particular unit is equipping in this case. It also ensures that units
in the database is represented only once, but the unique ID (unit name) is used to link
it to all the instances it is used.

An army contains which army units the army consists of along with the available
army points and player race. By separating this in its own class/table can one army be
used in several cases without the need to represent the date multiple times.

Finally the case is the top most class in the hierarchy, it contains which army is used
against which opponent race and the final battle outcome. When a case is loaded from
the case base is all the knowledge about the case represented within it. This were a
primary concern during design in order to minimize the number of multiple loads of the
same data from the database; as well as remove the need to access several hierarchies to
acquire all the data.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 44 — #56 i
i

i
i

i
i

44 Warhammer and case representation

Figure 4.9: Warhammer and case class diagram

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 45 — #57 i
i

i
i

i
i

Chapter 5

Testing and results

Since the preliminary domain knowledge and cases available to the system is incomplete,
is performance testing difficult to perform. Each component and function have however
been tested by itself and as a whole, unfortunately is such testing difficult to accurately
report. This section will cover some of the testing which have been performed and in
Section 6.4 is it mentioned what kind of full scale test the system should be put through
when completed. All detailed test results are available in Appendix B.

5.1 Unit weight similarity

One type of tests which have been conducted is tests concerning the unit similarity
weights. In order to maximize the unit similarity calculations and adaption matching
results the associated weights should be set accordingly. The tests were conducted by
calculating two relatively dissimilar units, within the same race, with every possible
weight configuration; the weight configuration were in turn only valid within the [0.1-
1.0] interval with an increment of 0.1 for each iteration which gives each weight ten
possible values. The ten possible values for the six different weights gives a total of
106 = 1 000 000 possible permutations.

The results of these calculations are not very surprising, since the calculations is
based on different features of the unit; it is reasonable to believe, that feature values
which by themselves reduce the similarity, will be given no weight by any automated
calculations. While on the other hand features which adds to the similarity is given
much weight. The end result of these calculations were that the weights are a mixture
of 0.1 and 1.0 values.

After the “best” weight permutations had been found these weights were used to
calculate the similarity between one unit in a race and all the other race units. The
results were then evaluated as either satisfactory (OK) or not (Fail) and the ratio between
the two were calculated. This ratio can give a hint towards the overall applicability of
the weights.

The results of these test reveals that one universal unit similarity weight configuration

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 46 — #58 i
i

i
i

i
i

46 Case adaption

is difficult if not close to impossible to find. This is based on the observations that what
is “good” for some units are far from accurate with other units and especially races.
As a middle ground could a default weight configuration be calculated and associated
with each race. Because of these results were the unit similarity weights locked into
the default value of 1.0 for all weights until more extensive testing and better results is
collected. Another possible solution to this problem is to rework the entire unit similarity
equation, and create something that is better able to distinguish between units.

A similar testing scheme were considered for the case similarity weights, this is
however reserved for future work, when more cases and consequently better results are
possible. Even though the unit similarity testing did not result in a “good” universal
weight configuration do I believe that a similar approach on the cases (1) is a good idea
to test the similarity equations and (2) will provide better results.

The result of these tests are presented in Appendix B.1.

5.2 Case adaption

The case adaption stage is a very complex function with several random elements in-
volved, which makes it unpredictable and difficult to control. A specialized test were
conducted; in order to verify that neither the random elements involved in the adaption
process nor the rule set verification, causes errors. The rule set verification in essen-
tially an infinite loop which can only be broken if no rule violations are detected. This
specialized test posted a static query to the system which returned five cases and sent
each case through the adaptation 10 000 times totaling 50 000 cases through the adap-
tion engine. Several small bugs were fixed during these tests, these bugs were mostly
concerned with deadlocks in some of the automated rule violation procedures, but also
some associated with the random elements. The random elements most often emerged
after some thousand iterations.

After the successful resolution of the adaption engine errors some tests were con-
ducted in order to verify the soundness of the adapted cases. The results of these tests
indicate that in cases which required much adaption (typically cases with few army
points being used as the basis for cases with many army points), are prone to adding
the same unit several time. This is obviously the result of searching for the most similar
unit, but a countermeasure for this incident were included in the process. The counter-
measure is supposed to get the next most similar unit if the most similar unit is already
used, unless all eligible units are used at least once. Since the conducted tests reveal
that the adaption process have an affinity for certain units, is the countermeasure flawed
or does not function at all. This type of unit affinity impacts the diversity of the army
and may impair the armies overall effectiveness.

Another problem area which emerged during testing is when the lords and/or heroes
uses more than 25% percent of the points. These offending lords/heroes have a tendency
to loose all their purchased equipment, so it is clear that this part of the adaption should
be redesinged.

Based on the results of these test and the amount of work sometimes required to

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 47 — #59 i
i

i
i

i
i

Testing and results 47

adapt the case is it likely that the entire adaption logic should be re-implemented and
made more intelligent. In the current implementation is it possible for a change made
to fix an rule violation, can trigger another rule violation. The adaption engine may as
a result swap between several problems until it finds an acceptable configuration.

The result of the test were the unit affinity along with few lord/hero equipment
choices becomes apparent are presented in Appendix B.2.

5.3 Race exchange

An interesting application feature is its ability to create a new army from the ground,
by basing it on an existing army from another race. The functionality were developed
to act in the event that the one or more of the kNN results are of another race than
the target race. This event can occur if: there are no cases with the target race in the
case-base; the existing cases in the case-base are less similar than other cases with anther
race; or if k is larger than the number of cases with the target race. It is interesting to
test this feature both to verify that it performs as expected and to verify the soundness
of the created army.

For this purpose were Dwarf cases withheld until the very end of the project; by
querying for non-existent dwarf cases would the system be forced to create dwarf armies
based on unrelated data. No apparent errors were found as a result of the exchange
itself, but the same countermeasure which should prevent many duplication units during
regular adaption is also present here. The functionality which checks if the original unit
had full command status; if the replacement unit is eligible for full command and then
apply full command is working flawlessly. Since the exchange race functionality is rather
stupid is the regular adaption process required in the majority of the exchanged races to
apply rule violation fixes. This is preferable to making the exchange functionality more
intelligent as it will introduce new complexity and multiple possible error sources.

The result of one of these tests are presented in Appendix B.3.

5.4 Generated explanations

There are three possible explanations which can be generated during the CBR-cycle and
each of them should be used to (1) convey useful information (2) in a structured manner.
Each explanation were generated in turn and the output studied to evaluate these two
goals.

The best explanation is the one created to explain the race exchange process. The
information presented is a merger of both transparency and justification and it is struc-
tured, readable and understandable.

Transparency explanations contains all the necessary data to inform the user of how
a case were found and classified as similar. It could however been better structured to
ease readability.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 48 — #60 i
i

i
i

i
i

48 Generated explanations

Justification explanations have a bad layout and poor readability, this is partially
because it tries to convey much information, and the adaption process is far from optimal.
With a better adaption process (which requires fewer redundant operations) would the
explanations be simpler. This could by itself result in better understandability and
readability of the explanation. This explanation type would probably be better served
with a specialized user interface than the plain text representation it currently posses.

The result of this test are presented in Appendix B.4.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 49 — #61 i
i

i
i

i
i

Chapter 6

Discussion

In this chapter will a discussion concerning the two major components of the system
(CBR and explanations) be presented. The discussion may include why various design
decisions were taken, what options were considered, and/or results of the decisions.

In addition to the major components will this chapter discuss the project goals, as
described in Section 1.2; and a list of future work which should be done before a fully
functional system is made available for the end users.

Section 6.1 discusses CBR in general and each step in the cycle respectively. While
explanations in relation to explanation goals are covered in Section 6.2, an evaluation of
the project goals is presented in Section 6.3. The chapter is concluded in Section 6.4,
where ideas for future work is described.

6.1 Case-based reasoning

CBR are widely used in domains with sparse knowledge or where the knowledge is
difficult to translate into rules. Examples of CBR systems are: CARMA (a hybrid
of CBR and Model Based Reasoning for rangeland grasshopper control, Branting et al.
(1999)) and CASEY (a medical diagnostics tool, Koton (1988)) In this particular domain
are the domain well understood, the rules however can be classified as both simple and
complex. The standard rules are quite simple and easy to translate into a small rule-set,
this small rule-set is the one most likely to be used by the application. However each race
and many units have special rules or alterations to the general rule-set that can make
it all quite complex, for this reason is most of the class specific rules dropped and the
application only focuses on the general rules for army creation. Another component in
the decision to use CBR is that the knowledge of armies, units and battles can be viewed
as a case without any difficulties. Finally CBR offers the possibility to learn and get
more accurate predictions over time, this is a huge benefit over rule-based systems which
also were considered. For a full overview of what artificial intelligence approaches were
considered the diligent reader is encouraged to read the discussion- and/or technology
review chapters in my specialization project (Strandbr̊aten, 2010).

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 50 — #62 i
i

i
i

i
i

50 Case-based reasoning

Section 6.1.1 discusses the extent of the conceptualized knowledge in the domain
model, which cases where included and why. The four steps in the CBR cycle is discussed
in Sections 6.1.2, 6.1.3, 6.1.4 and 6.1.5 respectively.

6.1.1 The case-base

The contents of the knowledge- and case-bases are incomplete, only a few number of
races and cases (armies) have been modeled into them. There are several reasons for
why much of the knowledge is missing. One reason is that we (my supervisor and
me), through discussions realized that in order to begin the development of the system
and implement the core functionality; only a small set of data were needed. A unique
rulebook is required for each race to be modeled and only a small set of such rulebooks
were easily available to us. The Warhammer universe is under constant evolution and
many of the races are currently only available for previous versions of the game. The
current main rulebook is of the 8th edition, while much of the army books still are 6th

or 7th editions. As a result were I reluctant to add too much information as it most
probably would result in much redundant work to update the information when the new
editions of the rulebooks is released. Finally the initial cases span only a small set of
races, although more than those modeled. The cases selected for modeling is based on
which races whose rulebooks where available and also which races where best represented
in the acquired armies.

At current there are three races fully modeled into the domain model (Empire,
Dwarfs and High Elves), additionally is all the core items (e.g.: magical weapons and
armor, enchanted items and battle standards), which is available for all races included in
the domain model. None of the included races are 8th edition books1 and will probably
require an update when new editions arrive, but they represent those races present in
most cases. There are ten cases in the case-base at present (2 Empire-, 5 High Elves-
and 3 Dwarf cases) spread between 8 armies.

It could be argued that the above number of cases is insufficient to create an accurate
and reliable CBR system, and I agree. However the cases added to the case-base reflects
the currently available domain knowledge and represents those races which where most
represented in the acquired data. But most importantly; the data is sufficient, and in
some cases preferable, when testing the core CBR functionality step-by-step.

6.1.2 Retrieve

In a standard CBR system will all cases in the case-base be retrieved when a query
is submitted, before that systems selection scheme extracts the subset of cases to be
used. During system conceptualization in the specialization project was it decided that
system created cases. with no known outcome (e.g.: have not yet been played) where
to be excluded from this initial retrieval. This is to prevent unknown and potentially

1As of May 2011 are only two of the races updated to 8th editions: Orcs & Goblins and Tomb
Kings

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 51 — #63 i
i

i
i

i
i

Discussion 51

erroneous data to be used as the foundation for new cases. To achieve this a separate
database or tables were envisioned.

A better and less labor intensive approach is to tag new cases with unknown and
then prevent retrieval of cases with that tag. The tag can be envisioned as the key to
a safe and all cases tagged with a specific value (unknown) is located inside that safe.
This approach reduces the number of copy/delete operations in the database since there
is only one field which must be updated, in order to remove the case from the protection
of the safe, and give the CBR engine access to it. The old approach with two separate
databases would have required a complete data copy of the case from one database/table
to another.

The similarity equations descried in Section 4.1.2 evolved over time into what they
are today. In early builds of the system (with a database model as described in Section
3.1.1) a simple similarity equation were used. The very first similarity were based on the
the army points, player- and opponent races and the outcome in a weighted average. An
interval value (like today, Equation 4.5) were used on the points, while an enum distance
equation were responsible for the three remaining feature similarity calculations (player
race, opponent race and outcome). The next evolution of the similarity included a
way to check if a query unit is present in the case, but only based on the unit name.
Equipment/Utility units and unit numbers where not part of this simple calculation.
These similarity equations were ultimately scrapped in order to accommodate the change
made to the domain model, although some core ideas from the original similarity equation
survived.

When creating a CBR system or an expert system in general it can often be as
difficult to get the domain expert to accurately translate his/hers knowledge into rules
as to create the knowledge to be contained in the domain model. Another facet of this
problem is to create reliable, efficient and correct similarity measures as is implied with
the above discussion of the similarity measure evolution. The users of Myrmidia is given
complete control over how variables in the case similarity calculations are performed.
Through a dedicated compulsory user interface: is the user requested to either approve
the default weight configuration¨along with the army points interval and number of cases
to retrieve; or to set their own values. This measure of control is given to the user in the
attempt to remove some of the uncertainty concerned with the experts decisions. Figure
4.3 displays this specialized user control UI.

6.1.3 Reuse

The reuse step contains two adaptation techniques naive and exhaustive. These two
techniques emerged naturally during the implementation without much planning in ad-
vance. The naive technique arose when changing the retrieved case to reflect the query
and where the initial adaption phase. However merely matching the query data is in-
sufficient for the adaption phase, e.g.: telling the case that it should utilize 3000 points,
but not giving the program the ability to change the army composition (adding/remov-
ing units) is problematic. Thus the exhaustive approach emerged, here are all the rules

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 52 — #64 i
i

i
i

i
i

52 Case-based reasoning

verified and associated actions performed when a rule is violated.

As a precaution against queries containing data that by itself violated one or more
rule is the exhaustive approach given supreme authority on the adaptation result. This
can result in a case which contains none of the queried units, but it was decided that the
rules should be the most important factor. Additionally is the adaptation process in its
present state constrained enough; in an attempt to simplify the process is the queried
units no longer referenced in the exhaustive process. To counter this potential disregard
for query units, does the naive and exhaustive approaches work sequentially: First is the
naive adaptation performed and those changes have the possibility to trigger the more
exhaustive adaptation, if and only if any rule is violated. This results in cases which
with high probability contains at least some of the queried units.

6.1.4 Revise

Section 4.1.4 focused on the how the revision step of the CBR cycle were implemented,
this section will focus on the why. During development some consideration went into
how this step should be implemented and thoughts ranged from manual to its opposite
fully automated or a mix of the two. In reality would probably even a fully automated
step contain the possibility for manual tweaks, but rarely needed. A completely manual
process have the advantage that the user is in complete control and the program defaults
to “expert” decisions. There is the chance that the user is no expert, but even an
accomplished user (and most enthusiastic or even casual gamers are one of the two, at
least when it comes to their army/race of choice) will be able to perform the case revision
(if needed).

A fully automated approach could have several implementations; as a simulator which
acts out a game and ranks the adapted cases based on their score in this simulation.
Another approach could be to simply re-rank the adapted cases based on query and
other cases (where the case have another player race) which fought successfully against
the desired opponent. The simulator approach is far too complex to include alongside
everything else and would probably fit better as its own assignment (master thesis), but
the more relaxed revise approach could prove useful. In truth an attempt on this were
made, but difficulties with the implementation and much other work which also required
attention removed it from the production pipeline. Another factor is that only a simple
re-ranking between the adapted case and the query would be realistic since the case-base
still is far too little to be able to fetch other cases to compare with.

The result of the problems faced, and the realization that only a partial automated
revise step could be made; is that the revise step became manual and work on this
process could be postponed until after the user interface creation at the end of the
implementation period if more time were available.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 53 — #65 i
i

i
i

i
i

Discussion 53

6.1.5 Retain

Most CBR systems needs a mechanism to manage and delete redundant cases. Smyth
and Keane (1995) discusses the utility problem and approaches to fix or minimize the
problem in CBR application.

The utility problem occurs when the cost associated with searching for rel-
evant knowledge outweighs the benefit of applying this knowledge.
-Smyth and Keane (1995)

In a CBR system is this most often associated with case-bases which grows to an
unmanageable size; cases in the case-base may fall under several classifications: pivotal,
spanning, support and auxiliary cases. Pivotal cases are cases which cannot be reached
by any other means, and should only be deleted as a last resort. Spanning cases link
(or span) areas in the problem domain that are covered by other individual cases, and
deletion of a spanning case may have no negative effect on the systems capability. Sup-
port cases are a group of spanning cases, whose deletion by itself or the entire group
rarely have a negative effect on the system. Auxiliary cases have absolutely no effect on
the systems capabilities, but may reduce the efficiency, and are the first that should be
removed

Myrmidia’s deletion policy is not too complex nor is it based on a random approach.
In order to help maintain performance and capability of the system will all cases desig-
nated as a defeat be deleted from the system. The associated army is deleted if and only
if it does not exist in another case, either one which is unclassified or a successful case
(victory, draw). Cases that fall under this deletion policy may be regarded as auxiliary
cases.

This approach were selected since a losing case will bring no new and/or advanta-
geous knowledge to the system; although it is true, that an army which previously were
defeated, can be victorious against the same or another opponent, at a later date. An-
other reason is that by regarding defeat cases as undesirable a quick and easy deletion
scheme could be utilized.

6.2 Explanation

Section 4.2.1 describes how the explanation framework is built. In this section is some
of the reasoning behind that framework described. In order to generate explanations the
application must (1) be able to track the system operations as they occur, or (2) be able
to reproduce those operations when the explanations is to be generated. There are pros
and cons to both approaches; Approach 1 will require more computational power during
those operations and more memory to remember them, but it will remain consistent and
ensure that everything is stored as it occurs. Approach 2 consumes computational power
and memory only when needed, but requires that the same computations is performed
multiple times. In addition what happens to the accuracy of the explanation when there
are random elements involved?

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 54 — #66 i
i

i
i

i
i

54 Evaluation of goals

The first approach seems the most viable, especially since there is a degree of ran-
domness connected with the adaptation process. Another reason for choosing option
1 is the absurd nature of doing the same operations multiple times, even if you could
guarantee the accuracy of the operations with the random elements involved.

6.3 Evaluation of goals

This section will evaluate how well this system reaches the goals stipulated in Section
1.2, if at all. Each goal is covered in its own section in the order they where listed (Goal
1-4).

6.3.1 G1: Determine explanation goals

Section 4.2 briefly describes the five explanation goals outlined by Sørmo et al. (2005).
Out of these five goals are three selected to be supported by this application: trans-
parency, justification and conceptualization.

Transparency is necessary in order to convey how the system reached its solution.
This is usually done by making the data the solution is based upon available for review.

Justification were selected since its primary objective is to increase the users confi-
dence in the solution provided by the system, by explaining why the solution is a “good”
solution. By providing this kind of explanation the the users gets an understanding of
how the system found the answer, it is also a means of learning and the user may use a
similar approach during later manual army creations.

Conceptualization is selected since it can teach the user about terminology used
by either the system or the domain (Warhammer). Valid conceptualization questions
could be e.g.: “What is a halberd?” (domain question’) or “What is a case?” (system
question).

While the three selected explanation goals supplement some learning on their own,
teaching is not a goal in itself. For this reason is the learning goal discarded. Relevance,
which is mostly used in conversational system as a means to convey the relevance of an
asked question is unnecessary.

Three explanation goals for the system were selected during the project conceptual-
ization, but only two of those made in into the product. In my opinion is the generated
transparency explanations the best explanation the system can produce. They give
an accurate overview of how the process functions; which calculations are performed;
and the result of those calculations. The mix of transparency and justification in the
explanations generated when the entire army (race) is exchanged is also good and pro-
vide detailed information about how the process works and the similarities between the
exchanged units. The resulting justification explanations could use a lot more work.
While the justification explanation functionality is poorly constructed there is also a
concern that as a result of this poor implementation some unit/action mappings might
be incorrect. Finally the missing explanation goal conceptualization; this goal where not

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 55 — #67 i
i

i
i

i
i

Discussion 55

scrapped or neglected, but postponed since it was decided to use the remaining time to
construct a rough user interface to simplify functionality testing and usage.

6.3.2 G2: Create the domain model

The process of developing the domain model is thoroughly described in Section 3.1 and
will not be further discussed here. When filling the model with data, and later when
that data is accessed and utilized in the application some shortcomings where discovered.
The modeling of equipment especially suffers from poorly understood and conceptualized
requirements. The equipment cost should have been separated from the equipment, as
many items is used or can be used by different units in different races at different cost.
This results in multiple table entries which makes the domain model harder to maintain
and consequently is the table no longer adhering to the third normal form (3NF).

Since there is some problems with the domain is this goal not completely reached,
but it is close, and thus considered fulfilled. Additionally is this problem mentioned as
suggested work to be performed in future work in Section 6.4.

6.3.3 G3: System creation

Throughout this document have the design (Chapter 3), implementation (Chapter 4)
and testing (Chapter 5) of the system been introduced. Collectively does these chapters
help define the system and how it were created, and in essence fulfill the requirements
for goal 3.

From the specialization project an architectural overview have been available with
a clear indication of what is to be made, and the tools to use. Minor modifications and
shift of focus have been conducted after the specialization project completed, in order
to meet the goals and emerging concerns. The design diagrams where created after the
completion of the implementation through the use of backwards engineering.

Even though a design were lacking during implementation I feel confident that a good
system have been made with structured class hierarchies and task dedicated classes. A
full API2 have been generated for this system and is included as parts of the digital
documentation3 of the system.

6.3.4 G4: Evaluation

The final system evaluation is performed in this section, it will be based partly on the
results of the test performed in Chapter 5 and partly on the evaluation of the three
previous goals (Sections 6.3.1 to 6.3.3). Since it is premature to conduct a full system

2The API is also available at my website: http://www.seperothproductions.com/Scholar/
Myrmidia/API/

3Digital documentation and deliveries available through DAIM: https://daim.idi.ntnu.
no/

http://www.seperothproductions.com/Scholar/Myrmidia/API/
http://www.seperothproductions.com/Scholar/Myrmidia/API/
https://daim.idi.ntnu.no/
https://daim.idi.ntnu.no/

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 56 — #68 i
i

i
i

i
i

56 Future work

test; with associated battles and outcome recordings, will such test and/or elaborations
on the subject not be part of this evaluation.

Testing conducted on the unit similarity proves the complexity of the domain and
the necessity for a AI/CBR system instead of an statistical approach. The statistical
approach would have had the same calculation difficulties, but would in addition been
more static in its final configuration. A CBR system by its very nature is dynamic and
will grow more competent as relevant data are added to its knowledge; which is also one
of the major reasons a rule-based system where discarded in the specialization project.

The remaining test also revealed a series of weaknesses which must be addressed in
order to achieve high efficiency, performance and reliability. A suggestion on what the
remaining work is, are presented in Section 6.4.

Finally is it my opinion that the system have achieved all of its set goals, since each
goal is rather lofty and have much room for interpretation. However; while each goal is
reached, are not all of them achieved to the best of their potential. Much work is still
needed before a truly helpful decision support system is created and deployed.

6.4 Future work

Even though a substantial amount of work have been performed during this semester,
is the application as a whole, still in its infancy. The primary focus in this assignment
have been to create the foundations for the entire application, and reserve much of
the specialization work or “fine tuning” for future work. In this section I propose an
unranked non-exhaustive list of ideas on how to build upon and/or improve the current
work.

1: Improve the knowledge in the case-base, especially the amount of knowledge by
modeling even more races and improved cases. Another is to change how equipment is
modeled in the database, most prominent is to split the equipment cost into a separate
table. The need for this became apparent late in the development when the same item
had to be added many times in the table to accommodate the different costs, e.g.:
Musician and Standard bearers are modeled six or seven times each.

2: Improve the adaption process in order to reduce the number of needed operations.
It was also discovered during testing that the adaption engine favors single units above
others, even though measures where taken to prevent this e.g.: Captains of the Empire
and Halberdiers are preferred over other Empire units and appear often when much
adaption is needed. This problem may be improved by supplying better cases and
knowledge which will reduce the number of needed adaptations.

3: Improve the user interface, the user interface provided is quickly implemented and
poorly executed since the focus lay elsewhere in this assignment.

4: Implement the explanation goal conceptualization. This is one of the planned
explanation types, but time did not suffice.

5: Implement a partially automated revise step, which could include e.g.: re-ranking
of the adapted cases and suggestions on how to further improve the case before deploy-
ment.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 57 — #69 i
i

i
i

i
i

Discussion 57

6: After adding more data to the domain model and case-base should an extensive
test/verification of the system be performed. This is not done now since the program
currently is very restricted in applicable player races. The test could be performed as a
tournament in association with a Warhammer club and could be executed in one of two
ways depending on what statistics are desirable to collect. (1) All armies are created by
this system, and then fight battles with the created armies. This could be used to verify
the soundness of the created armies as well as the integrity of the cases present in the
case-base. (2) Split the army creation process between hand-crafted and system-crafted
armies and arrange the matches so that the two types fight each other. The results from
this approach could verify the performance of the system and if the cases created are fit
for the task they were created.

7: Perform calculations on the case similarity weights to improve the matching be-
tween query-case and/or case-case. Inspiration for this test can be drawn from the unit
similarity test performed and detailed in Section 5.1 and Appendix B.1.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 58 — #70 i
i

i
i

i
i

58 Future work

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 59 — #71 i
i

i
i

i
i

Chapter 7

Conclusion

In this thesis have I presented an explanation aware decision support system based on
CBR technology. This system is designed to help Warhammer gamers to create the
army they should use against a specified foe. The work have primarily been focused on
creating all the necessary components the system need and then weave them together,
into the first system iteration.

This CBR system uses knowledge of previously successful battles in order to make
its recommendation, these battles are supplied by professional hobby gamers at the local
Warhammer community (WarTrond). Through data recorded during retrieval and adap-
tion stages are justification and transparency explanations generated; these explanations
accurately describes the reasoning behind the recommendation, but could be presented
in a better manner.

The most prominent problem found during testing is the adaption process’ affinity
towards utilizing a selected few units during case/army adaption. This affinity reduces
the: versatility of the army, the effectiveness and the probability of victory.

It is my opinion that the resulting program of this master thesis, supply a great
foundation and build block for future master students which desires to continue this
work. Much work is still needed in order to create a truly helpful decision support
system, which can be deployed and used by Warhammer gamers worldwide.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 60 — #72 i
i

i
i

i
i

60

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 61 — #73 i
i

i
i

i
i

Bibliography

Aamodt, A. (1994). Explanation-Driven Case-Based Reasoning. In: S. Wess, K. Althoff,
M. Richter (eds): Topics in case-based reasoning, pages 274–288.

Aamodt, A. and Plaza, E. (1994). Case-based Reasoning; Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications, 7(1):39–59.

Apache Software Foundation (2010). Getting started with Derby. Apache Software
Foundation. http://db.apache.org/derby/docs/10.7/getstart/getstartderby.
pdf, Last accessed: 2011-04-06.

Bernard, E., Ebersole, S., and King, G. (2011). Hibernate EntityManager User
Guide. Technical report, hibernate.org. http://docs.jboss.org/hibernate/

entitymanager/3.6/reference/en/pdf/hibernate_reference.pdf Last Accessed:
4 May, 2011.

Branting, L. K., Hastings, J. D., and Lockwood, J. A. (1999). Integrating Cases and
Models for Prediction in Biological Systems. AI Applications, 11:29–48.

Dı́az-Agudo, B. and González-Calero, P. A. (2001). A Declarative Similarity Framework
for Knowledge Intensive CBR. In Int. Conf. on Case-Based Reasoning ICCBR-2001
(2001, pages 158–172. Springer.

Doyle, D., Tsymbal, A., and Cunningham, P. (2003). A review of explanation and ex-
planation in case-based reasoning. Technical report, Department of computer Science.
Trinity.

Games Workshop (2009). Warhammer Rulebook. Games Workshop, 8th edition.

Garcia, J. A. R., Diaz-Agudo, B., and Gonzáles-Calero, P. (2008). jCOLIBRI 2 Tu-
trial. Technical report, Group for Artificial Intelligence Applications Universidad
Complutense De Madrid.

Hinrichs, T. R. (1992). Problem Solving in Open Worlds: A Case Study in Design.
Psychology Press.

http://db.apache.org/derby/docs/10.7/getstart/getstartderby.pdf
http://db.apache.org/derby/docs/10.7/getstart/getstartderby.pdf
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/pdf/hibernate_reference.pdf
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/pdf/hibernate_reference.pdf

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 62 — #74 i
i

i
i

i
i

62 Bibliography

Kass, A. M. and Leake, D. B. (1988). Case-Based Reasoning Applied to Constructing
Explanations. In Kolodner, J., editor, Proceedings of 1988 Workshop on Case-Based
Reasoning, pages 190–208. Morgan Kaufmann.

Kofod-Petersen, A. and Aamodt, A. (2009). Case-based Reasoning for Situation-aware
Ambient Intelligence: A Hospital Ward Evaluation Study.

Koton, P. (1988). Reasoning about evidence in causal explanations. In Proceedings of
the Seventh National Conference on Artificial Intelligence (AAAI-88), pages 256–261.
AAAI Press.

Leake, D. B. (1995a). Abduction, Experience, and Goals: A Model of Everyday Abduc-
tive Explanation. JOURNAL OF EXPERIMENTAL AND THEORETICAL ARTI-
FICIAL INTELLIGENCE, 7:407–428.

Leake, D. B. (1995b). Goal-Based Explanation Evaluation. In Goal-Driven Learning,
pages 251–285. MIT Press.

Richter, M. M. (1995). The knowledge contained in similarity measures. Invited Talk at
the First International Conference on Case-Based Reasoning, ICCBR’95, Sesimbra,
Portugal.

Riesbeck, C. K. and Schank, R. C. (1989). Inside Case-Based Reasoning. Erlbaum.

Roth-Berghofer, T. (2004). Explanations and Case-Based Reasoning: Foundational Is-
sues. In Funk, P. and Calero, P. A. G., editors, Proceedings of the 7th European
Conference on Case-based Reasoning (ECCBR 2004), volume 3155 of Lecture Notes
in Computer Science, pages 389–403. Springer.

Roth-Berghofer, T. R. and Cassens, J. (2005). Mapping Goals and Kinds of Explana-
tions to the Knowledge Containers of Case-Based Reasoning Systems. In Proceedings
ICCBR 2005, pages 451–464. Springer.

Schank, R. C. (1986). Explanation Patterns: Understanding Mechanically and Cre-
atively. Lawrence Erlbaum Associates.

Smyth, B. and Keane, M. T. (1995). Remembering To Forget: A Competence-Preserving
Case Deletion Policy for Case-Based Reasoning Systems. pages 377–382. Morgan
Kaufmann.

Sørmo, F., Cassens, J., and Aamodt, A. (2005). Explanation in Case-Based Reasoning:
Perspectives and Goals. Artificial Intelligence Review, 24(2):109–143.

Strandbr̊aten, G. R. (2010). Warhammer Fantasy Battle Army Builder. TDT4500 -
Specialization Project at NTNU, Department of Computer and Information Science,
group for Artificial Intelligence.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 63 — #75 i
i

i
i

i
i

Bibliography 63

Watson, I. (1998). CBR is a methodology not a technology. In Research & Development
in Expert Systems XV, pages 213–223. Springer, London.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 64 — #76 i
i

i
i

i
i

64 Bibliography

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 65 — #77 i
i

i
i

i
i

Appendix A

Glossary

3NF Third normal form, database normalization law
A Attacks (Related to: Warhammer)
A posteriori Knowledge found through experience/knowledge known in

hindsight
A priori Knowledge known in advance
AI Artificial Intelligence
Aka Also known as
AoE Area of Effect
API Application Programmer Interface
BS Ballistic skill (Related to: Warhammer)
BSB Battle Standard Bearer (Related to: Warhammer)
Ca Cavalry (Related to: Warhammer)
CBR Case-Based Reasoning
Ch Chariots (Related to: Warhammer)
D&D Dungeons and Dragons
E.g. Exempli gratia: For the sake of example (in English usually

shortened to “for example”)
Et al. Et alii: And others
Framework Is an abstraction in which common code providing generic

functionality, can be selectively overridden or specialized by
user code

Full Command Term used to denote that a unit/formation have an musician,
standard bearer and a promoted unit(Related to: Warham-
mer)

HQL Hibernate Query Language
I.e. Id est: “that is (to say)”/“in other words”/“which means”

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 66 — #78 i
i

i
i

i
i

66

In Infantry (Related to: Warhammer)
I Initiative (Related to: Warhammer)
Ld Leadership (Related to: Warhammer)
JDBC Java Database Connectivity
JVM Java Virtual Machine
kNN k-NearestNeighbour
M Movement Allowance (Related to: Warhammer)
Mo Monsters (Related to: Warhammer)
MB Monstrous Beasts (Related to: Warhammer)
MC Monstrous Cavalry (Related to: Warhammer)
MI Monstrous Infantry (Related to: Warhammer)
MMORPG Massively Multi player Online Role-Playing Game
NTNU Norwegian University of Science and Technology
POJO Plain Old Java Object
RBS Rule-Based Systems
RDBMS Relational Database Management System
S Strength (Related to: Warhammer)
SQL Simple Query Language, language used to query data from a

database
Sw Swarms (Related to: Warhammer)
T Toughness (Related to: Warhammer)
(G)UI (Graphical) User Interface
UML Uniformed Modeling Language
Un Unique Units (Related to: Warhammer)
Utility Unit Is the classification given to mounts, crewmen and units which

are given a promotion that reqular “units” can be improved
with (Related to: Warhammer)

Vice versa And the other way around
vs. Versus, Used to link two or more opposing or contrasting el-

ements
W Wounds (Related to: Warhammer)
WB War Beasts (Related to: Warhammer)
WFB Warhammer Fantasy Battle
WM War Machines (Related to: Warhammer)
WS Weapon skill (Related to: Warhammer)

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 67 — #79 i
i

i
i

i
i

Appendix B

Test results

In this appendix is all the test result data listed in their associated tables along with
some explanation of the results and how they where found. Some of this information
will be similar to that of Chapter 5.

B.1 Unit weights

Tables B.1 and B.2 displays the weights calculated as the best possible permutation
based on similarities between two units. The results is as expected since all features
with large differences will reduce the similarity while similar features will count more.

Table B.1: Unit similarity weight, Test: 1

Empire Archers vs. Empire Steam Tank
Weight Value
Characteristics 0.1
Unit type 0.1
Army type 1.0
Weapon type 0.1
Cost 1.0
Magician 1.0

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 68 — #80 i
i

i
i

i
i

68 Unit weights

Table B.2: Unit similarity weight, Test: 2

Empire Emperor Karl Franz vs. Empire Steam Tank
Weight Value
Characteristics 0.1
Unit type 0.1
Army type 1.0
Weapon type 0.1
Cost 0.1
Magician 1.0

A third similarity test where also conducted between Emperor Karl Franz and
Archers, the results of this comparison however, where identical to the results in Ta-
ble B.2 and is therefore not displayed in its own table.

To increase the result confidence, were a random unit (not one of the units used
during the weight calculation) selected as the control unit. The control unit were then
compared to each unit in the target race using the previously calculated weights as well
as the default weights (all weights set to 1.0). This approach were used in the three
races present in the database and the results are summarized in Tables B.3, B.4 and
B.5. Each of the unit similarities calculated by using the two best weight configurations
were then evaluated as either OK or Fail based on how well the similarities matches
usage areas and to a certain degree the default similarities. Finally will the OK/Fail
ratio give a pointer to the applicability of the weight configuration, the higher the ratio
the better the configuration is.

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 69 — #81 i
i

i
i

i
i

Test results 69

Table B.3: Unit similarity test: Empire

Race Empire
Control unit Halberdier
Weight 1 Unit similarity weight, Test: 1 (B.1)
Weight 2 Unit similarity weight. Test: 2 (B.2)
Unit name Default Weight 1 Evaluation Weight 2 Evaluation
Arch Lector Of Sigmar 0.383 0.208 OK 0.153 OK
Archers 0.667 0.542 OK 0.867 Fail
Balthasar Gelt 0.383 0.208 OK 0.153 OK
Battle Wizard 0.383 0.208 OK 0.153 OK
Captain of the Empire 0.55 0.625 OK 0.82 Fail
Crossbowmen 0.667 0.542 OK 0.867 Fail
Emperor Karl Franz 0.476 0.606 Fail 0.79 Fail
Flagellant Warband 0.531 0.62 OK 0.813 Fail
Free Company Fighter 0.883 0.708 Fail 0.953 Fail
General of the Empire 0.55 0.625 Fail 0.82 Fail
Grand Theogonist Volkmar 0.5 0.5 Fail 0.2 OK
Great Cannon 0.204 0.426 OK 0.681 Fail
Greatswords 0.592 0.729 OK 0.837 OK
Halberdiers 1 1 OK 1 OK
Handgunners 0.667 0.542 OK 0.867 Fail
Helblaster Volley Gun 0.204 0.426 OK 0.681 Fail
Helstorm Rocket Battery 0.204 0.426 OK 0.681 Fail
Knight of the Inner Circle 0.383 0.583 OK 0.753 Fail
Knights 0.55 0.625 Fail 0.82 Fail
Kurt Helborg 0.494 0.611 Fail 0.798 Fail
Ludwig Schwarzhelm 0.365 0.579 Fail 0.746 Fail
Luthor Huss 0.425 0.688 Fail 0.77 Fail
Master Engineer 0.55 0.625 Fail 0.82 Fail
Mortar 0.204 0.426 OK 0.681 Fail
Outriders 0.333 0.458 OK 0.733 Fail
Pistoliers 0.333 0.458 OK 0.733 Fail
Spearmen 1 1 OK 1 OK
Steam Tank 0.185 0.421 Fail 0.674 Fail
Swordsmen 0.883 0.708 OK 0.953 OK
Templar Grand Master 0.328 0.569 Fail 0.731 Fail
Warrior Priest 0.55 0.625 Fail 0.82 Fail
Wizard Lord 0.383 0.208 OK 0.153 OK

OK/Fail ratio 1.667 0.391

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 70 — #82 i
i

i
i

i
i

70 Unit weights

Table B.4: Unit similarity test: Dwarfs

Race Dwarfs
Control unit Dwarf warrior
Weight 1 Unit similarity weight. Test: 1 (B.1)
Weight 2 Unit similarity weight. Test: 2 (B.2)
Unit name Default Weight 1 Evaluation Weight 2 Evaluation
Bolt Thrower 0.389 0.847 Fail 0.756 Fail
Cannon 0.389 0.847 Fail 0.756 Fail
Daemon Slayer 0.611 0.903 Fail 0.844 Fail
Dragon Slayer 0.667 0.917 Fail 0.867 Fail
Dwarf Lord 0.63 0.907 Fail 0.852 Fail
Dwarf warriors 1 1 OK 1 OK
Flame Cannon 0.389 0.847 Fail 0.756 Fail
Grudge Thrower 0.389 0.847 Fail 0.756 Fail
Gyrocopter 0.463 0.866 Fail 0.785 Fail
Hammerers 0.583 0.708 OK 0.833 OK
Ironbreaker 0.667 0.917 OK 0.867 OK
Longbeards 0.833 0.958 OK 0.933 OK
Master Engineer 0.667 0.917 Fail 0.867 Fail
Miners 0.583 0.708 OK 0.833 Fail
Organ Gun 0.389 0.847 Fail 0.756 Fail
Quarrellers 0.667 0.542 Fail 0.867 OK
Runelord 0.667 0.917 Fail 0.867 Fail
Runesmith 0.667 0.917 Fail 0.867 Fail
Slayers 0.667 0.917 Fail 0.867 Fail
Thane 0.667 0.917 Fail 0.867 Fail
Thunderers 0.667 0.542 Fail 0.867 OK

OK/Fail ratio 0.312 0.4

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 71 — #83 i
i

i
i

i
i

Test results 71

Table B.5: Unit similarity test: High Elves

Race High Elves
Control unit Spearmen
Weight 1 Unit similarity weight. Test: 1 (B.1)
Weight 2 Unit similarity weight. Test: 2 (B.2)
Unit name Default Weight 1 Evaluation Weight 2 Evaluation
Alith Anar 0.426 0.481 Fail 0.77 Fail
Archers 0.833 0.583 OK 0.933 Fail
Archmage 0.383 0.208 OK 0.153 OK
Caradryan 0.55 0.625 Fail 0.82 Fail
Dragon Mage of Caledor 0.383 0.208 OK 0.153 OK
Dragon Princes of Caledor 0.383 0.583 Fail 0.753 Fail
Ellyrian Reavers 0.5 0.875 Fail 0.8 Fail
Eltharion 0.444 0.486 Fail 0.778 Fail
Great Eagle 0.346 0.574 Fail 0.739 Fail
Korhil 0.55 0.625 Fail 0.82 Fail
Lion Chariot of Chrace 0.314 0.66 OK 0.726 Fail
Lothern Sea Guard 0.833 0.958 OK 0.933 OK
Mage 0.383 0.208 OK 0.153 OK
Noble 0.55 0.625 Fail 0.82 Fail
Phoenix Guard 0.667 0.917 OK 0.867 OK
Prince 0.494 0.611 Fail 0.798 Fail
Repeater Bolt Thrower 0.204 0.426 Fail 0.681 Fail
Shadow Warriors 0.5 0.5 OK 0.8 Fail
Silver Helms 0.383 0.583 OK 0.753 OK
Spearmen 1 1 OK 1 OK
Sword Masters of Hoeth 0.592 0.729 OK 0.837 OK
Teclis 0.383 0.208 OK 0.153 OK
Tiranoc Chariot 0.222 0.431 Fail 0.689 Fail
Tyrion 0.291 0.56 Fail 0.716 Fail
White Lions of Chrase 0.592 0.729 Fail 0.837 Fail

OK/Fail ratio 0.923 0.562

B.2 Adaption result

Table B.6 displays the results of an adaption process on an Empire army. As evidenced
by the content of this army is its unit diversity slim. Five formations of Halberdiers
totaling a number of 151 Halberdiers and three captains without any equipment and/or
assigned as the battle standard bearer. The overwhelming precense of Halberdiers and

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 72 — #84 i
i

i
i

i
i

72 Race exchange result

the total lack of ranged units with the exception of the war machines makes this army
a difficult one to play.

Table B.6: Adaption result - unit preference error

Unit name Equipment Utility unit Cost
Arch Lector of Sigmar 125
Helblaster Volley Gun 110
10xFlagellant Warband 100
Captain of the Empire 50
Captain of the Empire 50
29xHalberdiers Full command 165
18xGreatswords Full command 210
18xSwordmasters of Hoeth Full command 350

Banner of Sorcery
Helblaster Volle Gun Full command 110
29xHalberdiers Full command 165
31xHalberdiers Full command 175
Captain of the Empire 50
Great Cannon 300
Templar Grand Master Channeling staff Barded warhorse 197

The tricksters shard
Berserker sword

32xHalberdiers Full command 180
10xFlagellant Warband 100
30xHalberdiers Full command 200
18xGreatswords Full command 210

Total cost: 2497

B.3 Race exchange result

One of the results of the exchange race functionality tests are presented below. This test
is performed on the dwarven race before any dwarf cases where added to the case-base.
The complete textural explanation is not presented here, but the important information
is extracted and placed in a Table B.7

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 73 — #85 i
i

i
i

i
i

Test results 73

Table B.7: Race unit exchange table

Player query race Dwarf
Player case race High Elves
Opponent query race High Elves
Opponent case race High Elves
Query/Case similarity 88.88%
Outcome Victory
Case unit Exchanged unit Similarity
Spearmen Dwarf warriors 86.48%
Sword Masters of Hoeth Ironbreakers 89.81%
Noble Thane 81.48%
Teclis Runelord 62.96%
Caradryan Thane 81.48%
Great Eagle Gyrocopter 66.66%
Spearmen Dwarf warriors 86.48%
Repeater Bolt Thrower Organ Gun 66.66%
Korhil Thane 81.48%
Repeater Bolt Thrower Organ Gun 66.66%
Great Eagle Gyrocopter 66.66%
Sword Masters of Hoeth Ironbreakers 89.81%

Other actions where performed during this adaption in order to guarantee that all
rules are followed, but those actions are not transcribed here as they not are part of this
test. Although the results of this exchange is far from optimal, and most probably would
not be accepted by any gamer without some modification; can it be used as the starting
position, from which manual changes could be made in contrast to create everything
from scratch.

B.4 Explanation prints

This section displays the unformatted explanations as they appear in the application
when a user requests them.

The first box contains the Transparency explanation:

Case #6 have a s i m i l a r i t y o f 0.8888888888888888 with the query .
Based on the weighted average o f three components :
(ArmySimilarity , OpponentSimi lar i ty and OutcomeSimilar ity) .

Army S i m i l a r i t y = 0.6666666666666666 and have a weight o f 1 . 0 .

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 74 — #86 i
i

i
i

i
i

74 Explanation prints

Army s i m i l a r i t y i s based on the weighted average o f :
P layerRaceS imi la r i ty , ArmyPointSimi lar ity and ArmyUnitSimilar ity

Army po in t s (2500) in query have a s i m i l a r i t y o f 1 . 0 with the
army po in t s (2500) in the case , and have a weight o f 1 . 0

Query p laye r race (High Elves) have a s i m i l a r i t y o f 0 . 0 with
the p laye r race (Dwarfs) in the case , and have a weight
o f : 1 . 0

ArmyUnit S i m i l a r i t y = 1
The query were empty so the assumed ArmyUnit s i m i l a r i t y
i s : 1

Opponent S i m i l a r i t y = 1 .0 and have a weight o f 1 . 0
Query opponent race (High Elves) have a s i m i l a r i t y o f 1 . 0 with

the opponent race (High Elves) in the case

Outcome S i m i l a r i t y = 1 .0 and have a weight o f 1 . 0
Query outcome (Victory) have a s i m i l a r i t y o f 1 . 0 with the

outcome (Victory) o f the case

This g i v e s the s i m i l a r i t y c a l c u l a t i o n :
s i m i l a r i t y = (armySimi lar i ty ∗armyWeight

+opponentS imi la r i ty ∗opponentWeight
+outcomeSimi la r i ty ∗outcomeWeight)
/(armyWeight+opponentWeight∗outcomeWeight)

s i m i l a r i t y = (0 .6666666666666666∗1 .0+1.0∗1 .0+1.0∗1 .0)
/(1 .0+1.0+1.0)

s i m i l a r i t y = (2 .6666666666666665)/3 .0
s i m i l a r i t y = 0.8888888888888888

The second box contains the justification explanation:

The un i t / format ion : Empire : Handgunners , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s)
taken :

L e a s t S i m i l a r U n i t : Found the l e a s t s i m i l a r un i t to the
un i t s / format ions a l r eady in the army with the g iven
army type . To add the l e a s t s i m i l a r un i t i s probably
a good idea , in order to improve the army .

Added Full Command : Added f u l l command to the un i t to
i n c r e a s e po int usage and un i t e f f i c i e n c y

The un i t / format ion : Empire : Bal thasar Gelt , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added General : Added a gene ra l s i n c e the re were no gene ra l in
the army

The un i t / format ion : Empire : Great Cannon , where changed based on :

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 75 — #87 i
i

i
i

i
i

Test results 75

Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :
L e a s t S i m i l a r U n i t : Found the l e a s t s i m i l a r un i t to the

un i t s / format ions a l r eady in the army with the g iven army type .
To add the l e a s t s i m i l a r un i t i s probably a good idea , in
order to improve the army

The un i t / format ion : Empire : Mortar , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

L e a s t S i m i l a r U n i t : Found the l e a s t s i m i l a r un i t to the
un i t s / format ions a l r eady in the army with the g iven army type .
To add the l e a s t s i m i l a r un i t i s probably a good idea , in
order to improve the army

The un i t / format ion : Empire : Outr iders , where changed based on :
Error : TOO MANY POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Removed Special Group : Removed a s p e c i a l group to reduce the
t o t a l po in t s used , or to reduce the number o f s p e c i a l po in t s ;
s i n c e the used s p e c i a l po in t s exceeded the a v a i l a b l e s p e c i a l
po in t s

The un i t / format ion : Empire : Greatswords , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added Full Command : Added f u l l command to the un i t to i n c r e a s e
po int usage and un i t e f f i c i e n c y

I n c r e a s e d U n i t S i z e : Inc r ea sed the un i t s i z e , s i n c e the re were
too few un i t s in the format ion to meet the minimum s i z e
requirement

The un i t / format ion : Empire : Knightly Orders , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added Full Command : Added f u l l command to the un i t to i n c r e a s e
po int usage and un i t e f f i c i e n c y

The un i t / format ion : Empire : Handgunners , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added Full Command : Added f u l l command to the un i t to i n c r e a s e
po int usage and un i t e f f i c i e n c y

The un i t / format ion : Empire : Crossbowmen , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added Full Command : Added f u l l command to the un i t to i n c r e a s e
po int usage and un i t e f f i c i e n c y

I n c r e a s e d U n i t S i z e : Inc r ea sed the un i t s i z e , s i n c e the re were
too few un i t s in the format ion to meet the minimum s i z e
requirement

The un i t / format ion : Empire : Ha lberd ie r s , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added Full Command : Added f u l l command to the un i t to i n c r e a s e
po int usage and un i t e f f i c i e n c y

I n c r e a s e d U n i t S i z e : Inc r ea sed the un i t s i z e , s i n c e the re were
too few un i t s in the format ion to meet the minimum s i z e
requirement

The un i t / format ion : Empire : Mortar , where changed based on :

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 76 — #88 i
i

i
i

i
i

76 Explanation prints

Error : TOO MANY POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :
Removed Special Group : Removed a s p e c i a l group to reduce the

t o t a l po in t s used , or to reduce the number o f s p e c i a l po in t s ;
s i n c e the used s p e c i a l po in t s exceeded the a v a i l a b l e s p e c i a l
po in t s

The un i t / format ion : Empire : Great Cannon , where changed based on :
Error : TOO MANY POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Removed Special Group : Removed a s p e c i a l group to reduce the
t o t a l po in t s used , or to reduce the number o f s p e c i a l po in t s ;
s i n c e the used s p e c i a l po in t s exceeded the a v a i l a b l e s p e c i a l
po in t s

The un i t / format ion : Empire : Kurt Helborg , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Added General : Added a gene ra l s i n c e the re were no gene ra l in
the army

The un i t / format ion : Empire : Bal thasar Gelt , where changed based on :
Error : TOO MANY LORD POINTS, where the f o l l o w i n g ac t i on (s) taken :

Removed Character : Removed a charac t e r to reduce the t o t a l
po in t s used

The un i t / format ion : Empire : Crossbowmen , where changed based on :
Error : TOO FEW POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

L e a s t S i m i l a r U n i t : Found the l e a s t s i m i l a r un i t to the
un i t s / format ions a l r eady in the army with the g iven army type .
To add the l e a s t s i m i l a r un i t i s probably a good idea , in
order to improve the army

I n c r e a s e d U n i t S i z e : Inc r ea sed the un i t s i z e , s i n c e the re were
too few un i t s in the format ion to meet the minimum s i z e
requirement

The un i t / format ion : Empire : Crossbowmen , where changed based on :
Error : TOO MANY POINTS TOTAL, where the f o l l o w i n g ac t i on (s) taken :

Decrea sed Uni t S i z e : Deceased format ion s i z e to br ing i t below
the maximum format ion s i z e l im i t , or to dec r ea se po int usage

The third box contains the Transparency/Justification explanation generated when
a race is exchanged:

The army race were changed from High Elves to Dwarfs , s i n c e the
case army did not f i t the query army . Al l un i t s were exchanged
with the most s i m i l a r cor re spond ing un i t in the new race . The
most s i m i l a r un i t i s determined based on un i t c h a r a c t e r i s t i c s ;
s i m i l a r i t y t a b l e s between Army−, Unit , and Weapon types ; the
un i t s base co s t ; and i f the un i t i s a magician or not .

High Elves : Repeater Bolt Thrower where exchanged with :

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 77 — #89 i
i

i
i

i
i

Test results 77

Dwarfs : Organ Gun . The s i m i l a r i t y between them i s : 0 .66
High Elves : Sword Masters o f Hoeth where exchanged with :

Dwarfs : I ronbreaker . The s i m i l a r i t y between them i s : 0 .89
High Elves : Korhi l where exchanged with : Dwarfs : Thane .

The s i m i l a r i t y between them i s : 0 .81
High Elves : Noble where exchanged with : Dwarfs : Thane .

The s i m i l a r i t y between them i s : 0 .81
High Elves : Great Eagle where exchanged with :

Dwarfs : Gyrocopter . The s i m i l a r i t y between them i s : 0 .66
High Elves : Great Eagle where exchanged with :

Dwarfs : Gyrocopter . The s i m i l a r i t y between them i s : 0 .66
High Elves : T e c l i s where exchanged with : Dwarfs : Runelord .

The s i m i l a r i t y between them i s : 0 .62
High Elves : Sword Masters o f Hoeth where exchanged with :

Dwarfs : I ronbreaker . The s i m i l a r i t y between them i s : 0 .89
High Elves : Caradryan where exchanged with : Dwarfs : Thane .

The s i m i l a r i t y between them i s : 0 .81
High Elves : Repeater Bolt Thrower where exchanged with :

Dwarfs : Organ Gun . The s i m i l a r i t y between them i s : 0 .66
High Elves : Spearmen where exchanged with :

Dwarfs : Dwarf war r i o r s . The s i m i l a r i t y between them i s : 0 .86
High Elves : Spearmen where exchanged with :

Dwarfs : Dwarf war r i o r s . The s i m i l a r i t y between them i s : 0 .86

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 78 — #90 i
i

i
i

i
i

78 Explanation prints

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 79 — #91 i
i

i
i

i
i

Appendix C

Cases

Each of the ten included cases are presented in detail in this appendix, note that while
all cases are presented as they appear in the case base they will have varying level of
detail. This discrepancy in detail reflects the original source material and also helps to
demonstrate the flexibility of the system. Unfortunately does four of the cases result in
defeat, this is far from optimal, and as discussed in Section 6.1.5 will all future cases
classified as defeat be deleted from the case-base. It is however deemed necessary to
include these cases in this test case-base in order to increase the number of cases. When
the application moves from testing/development to deployment should these cases have
been replaced with other more preferable cases classified as either victory or draw.

Table C.1: The 10 cases in the case-base

Case ID Army ID Army points Opponent Outcome
1 A2 1500 Wood Elves Victory
2 A1 2500 Bretonnia Defeat
3 A5 1750 Dwarfs Defeat
4 A3 2500 Daemons of Chaos Defeat
5 A4 2500 Warriors of Chaos Defeat
6 A3 2500 High Elves Victory
7 A3 2500 Warriors of Chaos Victory
8 A6 2500 Orcs and Goblins Victory
9 A7 2500 Orcs and Golbins Victory
10 A8 1750 High Elves Victory

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 80 — #92 i
i

i
i

i
i

80

Table C.2: Case army A1

Army ID: A1 - Empire
Unit name Equipment Utility unit Cost
Arch Lector of Sigmar Mace of Helstrum 255

Armour of Fortune
Potion of Speed

Wizard Lord Level 4 Barded steed 276
Rod of Power
Opal Amulet

Captain of the Empire BSB 138
Full plate armour
Griffon Standard

Warrior priest Armour of Meteoric Iron 119
Two hammers

Master Engineer Repeater Pistol 75
38xHalberdiers Full command 210
20xSpearmen Shields 140

Full command
20xSwordsmen Full command 145
10xCrossbowmen 80
10xHandgunners Repeater Handgun Marksman 105
19xGreatswords Full command 220
Mortar 75
Mortar 75
Great Cannon 100
Great Cannon 100
Helstrom Rocket Battery 115
Steam Tank 300

Total cost: 2498

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 81 — #93 i
i

i
i

i
i

Cases 81

Table C.3: Case army A2

Army ID: A2 - Empire
Unit name Equipment Utility unit Cost
Templar Grand Master 145
Warrior Priest 90
Battle Wizard Level 2 100
40xHalberdiers 200
20xGreatswords 200
12xKnights 276
10xHandgunners 80
10xCrossbowmen 80
5xOutriders 105
Captain of the Empire BSB 75

Total cost: 1276

Table C.4: Case army A3

Army ID: A3 - High Elves
Unit name Equipment Utility unit Cost
Teclis 475
Noble BSB 135

Armour of Caledor
Korhil 140
Caradryan 175
33xSpearmen Musician 312

Standard bearer
32xSpearmen Full command 313
18xSwordmasters of Hoeth Full command 350

Banner of Sorcery
18xSwordmasters of Hoeth Full command 300
Repeater Bolt Thrower 100
Repeater Bolt Thrower 100
Great Eagle 50
Great Eagle 50

Total cost: 2500

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 82 — #94 i
i

i
i

i
i

82

Table C.5: Case army A4

Army ID: A4 - High Elves
Unit name Equipment Utility unit Cost
Archmage Book of Hoeth 360
Prince Armour of Caledor 247

Great weapon
Bow of the Seafarer

Noble BSB 172
Heavy armour
Sacred Incense
Potion of Toughness

10xArchers 110
10xArchers 110
27xSpearmen Full command 243

War banner
10xLothern Seaguard 120
Lion Chariot 140
18xSwordmasters of Hoeth Full command 355

Razor Banner
Talisman of Loec

14xPhoenix Guard Full command 290
Banner of Sorcery

6xDragon Princes 180
5xEllyrian Reavers Bow 112

Musician
Great Eagle 50

Total cost: 2489

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 83 — #95 i
i

i
i

i
i

Cases 83

Table C.6: Case army A5

Army ID: A5 - High Elves
Unit name Equipment Utility unit Cost
Archmage 360
Noble BSB 142
Korhil 140
30xSpearmen 320
10xArchers 110
18xSwordmasters of Hoeth 345
14xPhoenix Guard 290
Great Eagle 50

Total cost: 1757

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 84 — #96 i
i

i
i

i
i

84

Table C.7: Case army A6

Army ID: A6 - Dwarfs
Unit name Equipment Utility unit Cost
Dwarf lord Rune of Preservation Shieldbearers 271

Rune of Resistance
Rune of Stone
Rune of the Furnace
Master rune of Spite
Great weapon

Runesmith Master rune of balance 149
Rune of Spellbreaking
Great weapon

Thane BSB 145
Strollaz rune

Dragon Slayer 50
25xDwarf warriors Full command 275

Great weapon
25xLongbeards Full command 325

Shields
10xThunderers Shields 150
20xHammerers Full command 320

Master rune of Grugni
20xIronbreakers Full command 310

Rune of Determination
Cannon Rune of Forging 130

Rune of Burning
10xMiners Standard bearer 125

Musician
Grudge Thrower Rune of Accuracy 130

Rune of Penetration
Organ Gun 120

Total cost: 2500

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 85 — #97 i
i

i
i

i
i

Cases 85

Table C.8: Case army A7

Army ID: A7 - Dwarfs
Unit name Equipment Utility unit Cost
10xThunderers Shields 150
10xQuarrellers Shields 120
29xDwarf warrior Full command 344

Shields
Great weapon

10xMiner Steamdrill Prospector 145
Grudge Thrower Handgun/brace Engineer 175

2xRune of Penetration
Rune of Accuracy

Cannon Handgun/brace Engineer 145
Rune of Forging

19xIronbreakers Full command 277
23xHammerers Full command 306
2xOrgan Gun 240
Thane BSB 145

Master rune of Gromil
Rune of cleaving
Rune if Striking

Runesmith Great weapon 149
Master rune of Balance
Rune of Spellbreaking

Master engineer Brace of pistols 80
Dwarf lord Great weapon Shieldbearers 221

Rune of Resistance
Rune of Preservation
Rune of Stone

Total cost: 2497

i
i

“Master*Thesis” — 2011/6/8 — 16:42 — page 86 — #98 i
i

i
i

i
i

86

Table C.9: Case army A8

Army ID: A8 - Dwarfs
Unit name Equipment Utility unit Cost
Dwarf lord Master rune of Gromril Shieldbearers 271

Rune of Warding
Rune of Spellbreaking
Rune of Guarding
Great weapon

Runesmith Master rune of Fear 149
Great weapon

Thane BSB 130
Master rune of Defence

25xDwarf warriors 275
10xThunderes Shields 150
10xQuarrelers Shields 120
25xHammerers Full command 330
Cannon Rune of Forging 125
Grudge Thrower 80
Organ Gun 120

Total cost: 1750

	Title Page
	Introduction
	Motivation and Background
	Goals
	Structure of the Thesis

	Warhammer
	Races and Units
	Army creation

	Design
	Domain model
	Phase 1
	Phase 2
	Phase 3

	Fundamental design
	Case structure

	Technologies used
	jColibri
	Apache Derby
	Hibernate

	Implementation
	CBR
	CBR framework
	Similarity (Retrieve)
	Adaptation (Reuse)
	Revise and Retain

	Explanations
	Explanation framework

	Warhammer and case representation

	Testing and results
	Unit weight similarity
	Case adaption
	Race exchange
	Generated explanations

	Discussion
	Case-based reasoning
	The case-base
	Retrieve
	Reuse
	Revise
	Retain

	Explanation
	Evaluation of goals
	G1: Determine explanation goals
	G2: Create the domain model
	G3: System creation
	G4: Evaluation

	Future work

	Conclusion
	Bibliography
	Glossary
	Test results
	Unit weights
	Adaption result
	Race exchange result
	Explanation prints

	Cases

