
Master of Science in Computer Science
June 2011
Eric Monteiro, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Open Source, Distributed IS
Development
A Study of the Development and Implementation of a Hospital
Information System in India

Samson Valland
Per Øyvind Øygard

Abstract

Open-Source software has become increasingly more common in IT-organisations.

Despite this the focus of studies on open-source has largely been focused on

large system software. In our thesis we have worked on a software develop-

ment project in Shimla, India, to create a hospital management system for

the district hospitals in the state of Himachal Pradesh. Through our studies

we have looked at the challenges of developing and implementing an open-

source IS system in low-resource environment. Our results show that such

an undertaking can be succesful, but that distributed development poses a

lot of challenges, and that the use of open-source software, while free, still

necessitates a lot of work and close communication with the community.

ii

acknowledgments

We have been fortunate to had good and helpful people around us throughout

the whole process of writing this thesis both in India and Norway. We would

especially like to thank:

• Eric Monteiro for firm and useful guidance

• The HISP India organisation for letting us come to India and collabo-

rate on their project.

• The HISP India Shimla team for taking good care of us during our

stays in Shimla.

• Mari Tharaldsen for proofreading

• Family and friends for moral support

Contents

Acronyms vii

1 Introduction 1

1.1 Research Question . 2

1.2 Organisation of the report . 3

1.3 Contributions of the thesis . 4

2 Literature 5

2.1 Health Information Systems 5

2.2 Distributed Software Development 9

2.2.1 Challenges . 9

2.3 Open Source Software . 11

2.3.1 The Open Source Philosophy 11

2.3.2 Open Source Methodology 13

2.4 Agile Software Development 13

2.4.1 Background . 14

2.4.2 Common activites . 15

2.4.3 Extreme Programming 16

2.4.4 Scrum . 16

2.5 Standardisation . 18

2.5.1 Motivation . 19

2.5.2 Trade-offs/Approaches 20

3 Methods 22

3.1 Research method . 22

iii

iv CONTENTS

3.1.1 Action Research . 23

3.1.2 Interpretive case study 24

3.2 Data collection methods . 25

3.2.1 Observation . 25

3.2.2 Document analysis . 27

3.2.3 Questionnaire . 27

3.2.4 Interviews . 27

3.3 Scope and limitations . 28

3.4 Reflections . 28

4 Research context 29

4.1 India . 29

4.1.1 Himachal Pradesh . 31

4.1.2 Shimla . 32

4.2 DDU Hospital . 32

4.2.1 Departments . 34

4.3 HISP . 39

4.3.1 DHIS . 41

4.4 HISP India . 41

4.5 Shimla Team . 42

4.6 OpenMRS . 43

4.6.1 Design Characteristics 44

4.6.2 OpenMRS community 48

5 Development 54

5.1 Initial Development . 54

5.2 Development Handover . 57

5.3 Development Process . 58

5.4 Hospital Core Module . 60

5.5 The Blood Bank Module . 62

5.6 The RKS finance module . 64

6 Implementation 66

6.1 Progress . 66

CONTENTS v

6.2 Reception . 67

6.2.1 OPD . 68

6.2.2 IPD . 69

6.2.3 Blood bank . 69

7 Arenas of Communication 72

7.1 Face to Face . 72

7.2 Teleconferencing . 74

7.3 E-mail . 76

7.4 Redmine . 78

8 Discussion 81

8.1 Distributed Development . 81

8.1.1 Project Obstacles . 82

8.1.2 Theoretical Analysis 84

8.2 Implementation . 87

8.2.1 Patient load . 88

8.2.2 Inexperience . 89

8.2.3 Lack of motivation . 89

8.3 Standardisation . 90

8.3.1 Designing Standards 91

8.3.2 The Hospital Core Module 93

8.4 Improvements . 95

8.4.1 Improved Documentation and Communication 96

8.4.2 Increase Focus on Development Processes 97

8.4.3 Risk Estimation . 100

8.4.4 Improved Cooperation With the OSS Commmunity . . 101

9 Conclusion 104

Bibliography 109

List of Figures

2.1 HIS-classifications . 6

2.2 A typical Scrum process . 17

2.3 Shared knowledge representing a standard (adopted from Vaish-

navi and Kuechler) . 19

3.1 Action research . 24

4.1 Map of India . 30

4.2 The DDU Hospital . 33

4.3 The DDU Area . 34

4.4 Patient workflow at DDU . 35

4.5 One of the two desks at the registration unit 36

4.6 A filled-out lab-requisition slip 38

4.7 OpenMRS high-level architecture 46

4.8 Simplified OpenMRS data model 47

5.1 Project timeline . 55

5.2 Proposed solution . 61

6.1 A normal queue of patients waiting to get in to OPD 69

6.2 Two team members using the system while the physician is

helping the patient at the eye OPD clinic. 70

6.3 A nurse at one of the wards talking about the IPD module . . 71

vi

Acronyms

DHIS District Health Information System.

EMR Electronic Medical Record.

HIS Health Information System.

HISP Health Information System Programme.

HMIS Health Management Information System.

HospIS Hospital Information System.

HospMIS Hospital Management Information System.

ICT Information and Communications Technology.

IPD In-Patient Department.

IS Information System.

IT Information Technology.

OPD Out-Patient Department.

OSS Open Source Software.

PHC Primary health care.

vii

Chapter 1

Introduction

Open Source Software (OSS) development is a field that in the last decade has

seen a number of studies. The results have by now shown that despite claims

to the contrary, the OSS movement has been capable of producing software

that is both successful and of a high quality. These studies are, however, in

large part limited to older and larger projects, particularly looking at Apache,

Linux, and similar low-level applications. While these are valuable insights,

they are in many ways not comparable to the growing number of smaller

OSS projects where the focus is user-level applications. Where the classical

OSS projects are often driven by a few developers’ need to “scratch their

own itch”, focusing on personal issues and pet-peeves, commercial adoption

has increasingly changed this. Commercial entities are seeing the value of

leveraging the OSS model both as a way to harness the work already produced

by others, as well as enticing others to contribute to their own projects.

Dealing with customer demands and strict deadlines in this way is quite

foreign to what many would consider the classical OSS way of conducting

development, and poses many problems which potentially undermine the very

advantages that OSS are meant to provide.

1

2 CHAPTER 1. INTRODUCTION

The project we have had the opportunity to work on is the development of a

Hospital Management Information System (HospMIS) in India. The system

is based on an American made open-source Electronic Medical Record (EMR)

system called OpenMRS. OpenMRS represents a change in the classical OSS

direction, away from the low-level server application, and towards a field

that has previously been dominated by a few large multi-national companies.

Health informatics is an area that, with a few exceptions, has seen very

little traction from the open-source world, despite a rising demand from the

third world. The challenges in such an undertaking are numerous, from

strict requirements in implementation and functionality, to the difficulty of

cooperating with the open-source community in what is a very complex and

time-restricted project. In addition to these technical challenges, the nature

of working in a distributed team with relatively few resources available create

a highly complex project which bears few likenesses to either classical OSS

projects, or the classical cases of Health Information System (HIS) that are

common in scientific studies.

Our goal in this project has been to examine the effects of this complex de-

velopment environment upon the development and implementation process.

We hope this can aid us in further understanding of how OSS best can be

leveraged in costumer-oriented and resource-limited projects.

1.1 Research Question

Any HIS development projects presents enormous challenges in terms of im-

plementation and standardisation, and in many ways this goes doubly so for

a system developed and implemented in a third world country. The lack

of resources inherent in such a project adds numerous obstacles, not least

in terms of time. Experience and frameworks for development is also of-

ten poor, and local knowledge about the use of information systems lacking.

Through our work our goal has been to look at the processes used in the

1.2. ORGANISATION OF THE REPORT 3

development and implementation of the system, and try to understand the

challenges and solutions involved, and how such a process could feasibly be

improved in future projects.

To this end we have created four research questions which we hope will help

highlight some of the most important aspects of the development:

RQ1: How is the development process of an information system affected by

a distributed and low-resource environment?

RQ2: What are the biggest obstacles in implementing a successful, comput-

erised health information system at a low-resource, paper based health

facility?

RQ3: What efforts have been made to standardise the system?

RQ4: What steps could be taken to improve the development and implemen-

tation of the system?

1.2 Organisation of the report

The report is comprised of nine chapters. The first chapter, Introduction,

presents the case and the research questions of the report.

Chapter two presents the theoretical framework used in the report, start-

ing with HIS. We continue by describing distributed software development,

open-source software, and finally agile development methods and software

standardisation.

In chapter three we present the research setting of the project, including

India, Health Information System Programme (HISP), the local team and

4 CHAPTER 1. INTRODUCTION

the software used, OpenMRS. We continue in chapter four with the research

and data collection methods used in the project.

Chapter five consist of the results of our study, starting with the develop-

ment process of the product. We continue by describing the implementation

process in chapter six, and the communication practices in the project team

in chapter seven.

Finally in chapter eight we analyse our findings with regards to our research

questions, and in chapter nine, we summarise and conclude our results and

experiences from the project.

1.3 Contributions of the thesis

First and foremost with this thesis we seek to look at the use of an OSS

project within another OSS project. This is in itself not an uncommon

phenomenon, but the novelty of OpenMRS and the limitations of the HISP

project make for a very complex project which is very different from most OSS

projects commonly studied, as well as a field that is still poorly understood.

It is our belief that this thesis can help shed some light on the obstacles

involved in the development of localised OSS projects, and how development

and implementation processes can be improved in future projects.

Secondly, we have looked at the interaction between the developers in the

OpenMRS project and the HISP project. The size of both of these projects

makes for a very interesting case that we think can help both the OSS com-

munity and other organisations making use of OSS to better understand how

to efficiently communicate and cooperate.

Chapter 2

Literature

In this chapter we will describe the theory upon which we have founded

our analysis. This includes health information systems, agile development

methods, and distributed development.

2.1 Health Information Systems

A HIS is a system that integrates data collection, processing, reporting, and

use of information necessary for improving health service effectiveness and ef-

ficiency through better management at all levels of health services[Lippeveld et al., 2000].

It is not a specific type of application, but a collection of tools, systems, users,

routines, etc. that together seek to improve health services. To better un-

derstand its definition, it might help to look at the definition of Information

System (IS) in general: Heeks defines IS as “systems of human and techni-

cal components that accept, store, process, output and transmit information.

They may be based on any combination of human endeavours, paper-based

methods and IT”[Heeks et al., 2002] This implies that IS does not necessarily

5

6 CHAPTER 2. LITERATURE

need to involve IT at all, and when it does, IT can be presented as a compo-

nent alongside humans and organisations. If you look more into the thought

of Information Technology (IT) as an equal component, some state that the

interplay between these technical, human and organisational factors can best

be addressed by conceptualising IS as social networks. [Walsham, 2001b]

Most health information systems consist of many different systems. Some

with specialised purposes, others more overlapping and aiming to combine

functions and objectives. Standardisation and interconnectivity between the

subsystems can often be crucial for improving health services. Figure 2.1

shows how different HIS can be classified and linked, based on their areas of

usage:

Health Information System(HIS) classifications:

Hospital Management Information System
(HospMIS)

Health Management Information System
(HMIS)

Government

Electronic Medical Record
(EMR)

Type 3:
National level (strategic)

Type 2:
District level (tactical)

Type 1:
Clinical level (operational)

Complexity

Locality

Aggregated facility-
based statistics

Reports and
statisticsPolicies

Guidelines, routines, etc.

Figure 2.1: HIS-classifications

The different subsystem can be described as following:

Electronic medical record(EMR) A medical record is a systematic doc-

2.1. HEALTH INFORMATION SYSTEMS 7

umentation of a patient’s individual medical history and care. EMRs

have existed for more than 30 years, but the majority (90%) of hospitals

worldwide are still using paper-based medical records.

Health Management Information System(HMIS) These are typically

aimed at aiding Primary health care (PHC) decisions and provide useful

statistics based on aggregated data, for instance programme monitoring

and evaluation systems for monitoring tuberculosis, maternal and child

health, family planning and epidemiologies.

Electronic Health Records(EHR) systems The term electronic health

records is often mixed up with EMRs, but there is a noteworthy dif-

ference – While an EMR is most often maintained and used within

an institution, an EHR’s aim is to gather and generate a thoroughly

record of a patient’s health history regardless of institutions he has

been visiting. In Norway (among most western countries), there is an

ongoing process to develop and implement nation-wide EHR systems

through linking public hospitals’ EMR systems together, but there are

many challenges related to standardisation, privacy and socio-technical

issues.

Hospital Information System(HospIS) As with HIS, a collective term

for IS related to running hospitals. For instance, HospMIS and EMR

often forms the basics hospitals’ HospIS.

Hospital Management Information System(HospMIS) Systems to sup-

port tasks related to accounting, personnel, supplies, etc.

Vital registrations systems Births and deaths registration systems.

There is practically no one who questions the value of HIS in the western

world, but its relevance in developing countries has been discussed. Wal-

sham and Sahay[Walsham and Sahay, 2006] concluded that “the debate has

been resolved with a clear yes answer.” Also, Information and Communica-

tions Technology (ICT)-initiatives are by many considered to be the most

8 CHAPTER 2. LITERATURE

effective measure to improve the quality and efficiency in the health care sec-

tor. The Case of eHealth [Silber, 2003], cited in [Helsedepartementet, 2004],

presented at the European Commision’s first high-level conference on eHealth

in 2003, states that “eHealth is the single-most important revolution in health

care since the advent of modern medicines, vaccines, or even public health

measures like sanitation and clean water.”

Even though ICT-initiatives in the health sector and the idea of HIS for im-

proving the overall quality of health services has been around since the start

of the IT-era, it is still a field with large potential, also for the most devel-

oped countries of the world. For instance, in England they have an ongoing

project implementing a nationwide electronic health record system for sec-

ondary care. A qualitative analysis report[Lippeveld et al., 2000]concludes

that “experiences from the early implementation sites, which have received

considerable attention, financial investment and support, indicate that deliv-

ering improved health care through nationwide electronic health records will be

a long, complex, and iterative process requiring flexibility and local adaptabil-

ity both with respect to the systems and the implementation strategy.” This

is not a unique case; most western countries dedicates a large proportion of

budget funding to the field. In Norway in 2008 the government spent over

217 billion NOK in total on health expenditures, of which nearly 800 million

NOK were spent on IT-consultancy.1 Norway is one of the leading coun-

tries on the use of ICTs in the health sector. It was the world’s first country

who got an almost complete distribution of electronic medical records among

general physicians, and was also the first to implement a full patient record-

system in a hospital, as early as in 1993. As of today, 100% of the public

hospitals use electronic medical records. In addition many other digital in-

formation systems are common, such as tools for image analysis, diagnosis

support, electronic health record systems for special care, and so forth.

1Source: Statistics Norway - Health Accounts, 2006-2008: http://www.ssb.no/

english/subjects/09/01/helsesat_en/(June 11, 2011)

http://www.ssb.no/english/subjects/09/01/helsesat_en/
http://www.ssb.no/english/subjects/09/01/helsesat_en/

2.2. DISTRIBUTED SOFTWARE DEVELOPMENT 9

2.2 Distributed Software Development

Outsourcing and distributed development has in recent years become increas-

ingly more common in the software development industry. As early as 2000 it

was reported that 70% of US companies had outsourced [Carmel and Agarwal, 2000]

parts of their business process. Since then the numbers have only gone up,

with an increased focus on outsourcing as a cost-cutting measure [Scardino et al., 2006].

Even disregarding direct outsourcing to emerging markets, an increasingly

global marketplace has forced many companies to adapt to a more distributed

working process. In this chapter we will look at some of the challenges and

pitfalls commonly encountered in a distributed development environment.

2.2.1 Challenges

Distributed teams are not a new idea, but the prevalence of high-speed Inter-

net has massively increased the possibilities for remote collaborations. The

Internet has also contributed to a much more global market, which in turn

feeds the need for local expertise, and collaborations between different teams.

While the advantages of such arrangements are many, the problems associ-

ated with distributed teams are both numerous and well documented - and

if not avoided, potentially crippling for any project.

Communication is a challenge for any project. Insufficient communication

can lead to both mistrust and faulty products, if not complete failure. This

is, as most people can probably guess, an even bigger challenge when teams

are split up and face-to-face time is reduced. Teams will often be split across

continents and time-zones, necessitating asynchronous modes of communi-

cation, like e-mail. E-mail is widely used in most companies today, but

problems arise when email is the main source of communication. Where you

in a collocated environment can have a ten minute discussion on a subject

and reach an agreement, an email discussion can in many cases take days due

10 CHAPTER 2. LITERATURE

to lack of work-time overlap, and the relative low bandwidth of expression

in email. The result is stalled processes and frustrated team-members.

In the cases where synchronous communication like teleconferencing is made

possible, there are still many issues which hinder efficient knowledge-transfer.

Lori Kiel [Kiel and Eng, 2003] describes teleconferencing between a Canadian

and a German team, where language barriers and cultural differences cause

severe problems.

German participants reported frustration at not being able to fol-

low or participate in the discussion. Canadians often interpreted

the silence coming from the other office as an indication that no

one in Germany wanted to participate or add to the discussion,

and carried forward with the meeting.

In addition to cultural and lingual problems, teams will often be split un-

evenly, with management and customer-facing contacts being separated from

the developers. Such a split is hard to avoid since you can’t move the cus-

tomer, but it nevertheless often creates an extra imbalance in the relationship

between the different teams.

Knowledge sharing is a very important part of the development process.

Perry[Perry et al., 2002] report that on average their developers would spend

75 minutes a day in “unplanned interpersonal interaction.” There is little

reason to believe this number is any different for us, as informal communi-

cation is an important way of sharing knowledge. This lack of face-to-face

communication necessitates other means of communication instead. Inter-

net Relay Chat (IRC) and Instant Messaging are common forms of remote

communication, though they are limited in their ability to serve as informal

communication, thus rarely as good as the real thing. In cases where you are

unable to properly share knowledge, you quickly run the risk of losing tacit

knowledge, which can create problems at later points.

2.3. OPEN SOURCE SOFTWARE 11

2.3 Open Source Software

Linux is subversive. Who would have thought even five years ago

(1991) that a world-class operating system could coalesce as if

by magic out of part-time hacking by several thousand develop-

ers scattered all over the planet, connected only by the tenuous

strands of the Internet? Certainly not I.

([Raymond et al., 2001])

The Internet has ushered in many changes in the software industry, and one

of the most prominent of these is the Open Source movement. What used to

be a closed market controlled by large, monolithic vendors like Microsoft and

IBM, has flourished into a web of companies and individuals exchanging ideas

and collaborating together to create free and open software. Despite much

skepticism, this method of development has proven to not only be viable,

but to produce high quality software which today powers everything from

phones to mission-critical computer clusters. In this chapter we will look at

the background and philosophy of the OSS movement, and the methods and

practices employed to facilitate collaboration.

2.3.1 The Open Source Philosophy

While what most people will consider Open Source originates in the late 80s,

the idea of shared intellectual property goes back much further. One of the

more prominent examples is the Motor Vehicle Manufacturers Association

founded by Henry Ford and other car manufacturers in 1911 to facilitate

cross-licensing and ensure fair competition. The result was that car man-

ufacturers were able to share technology and patents amongst each other

without exchanging money. [Flink, 1976] In the software world the practice

of sharing code was also common practice in the beginning. Computers were

generally limited to researchers and academics, and it was considered natu-

12 CHAPTER 2. LITERATURE

ral to distribute the source code with the programs so others could modify

and contribute back. Throughout the 70s, as computers become increasingly

more powerful, and software more complex, this started to change. While free

software didn’t disappear, larger companies realised that there was money to

be made, and used restrictive licenses to prevent modification and distribu-

tion. An example of this clash between the free and commercial culture can

be seen in Bill Gates’ now-famous “Open Letter to Hobbyists” [Gates, 1976],

where he implied that what many called sharing was in fact stealing. This

state of affairs continued throughout the 80s, with free software remaining

limited to academic and hobbyist circles.

The modern free software movement and philosophy can in many ways be

traced back to Richard Stallman and the GNU Project. The GNU Project

was started in 1983 with the stated goal of developing “a sufficient body

of free software [...] to get along without any software that is not free.”

[Stallman, 1985]. Their software was unified under a common license, called

the GNU Public License which was published in 1989. The GPL stipulates

that any software that uses GPL licensed code, must also release their own

source code. The GPL was pioneering in that it introduced “copyleft”, which

gives users the right to distribute copies or modified versions of a work, as

long as the license is kept intact. Essentially, this means any piece of software

which uses GPL licensed code, must also carry a GPL license. This “viral”

method of enforcing openness, has been a point of contention in the software

world, with many opposing the FSF’s methods Skaff referanse. There is,

however, little doubt that the GNU Project was successful in their goal, as

in combination with Linus Torvalds’ Linux kernel, the GNU/Linux operat-

ing system is today used on everything from mobile phones to enterprise

computer clusters. Ekspander litt, Free vs OSS The success of Linux

has garnered attention from many parts of the IS community, notably from

Apple and Google who both use Open Source software in combination with

proprietary software to great effect.

2.4. AGILE SOFTWARE DEVELOPMENT 13

2.3.2 Open Source Methodology

While there today are many differing grades of OSS, some of the most suc-

cessful products have been developed, distributed and supported on a volun-

tary basis by and for the users themselves [Von Hippel, 2005]. This seeming

altruism, and the ways in which high quality software is able to crystalise

out of seeming chaos, has been the focus of many studies over the years.

[Lerner and Tirole, 2002] phrase the question as “Why should thousands of

top-notch programmers contribute freely to the provision of a public good?”.

Raymond (2000), one of the leading OSS advocates argued that there are at

least three motives for why someone would want to create or contribute to a

project. First they may want to use the piece of software themselves. Second,

they may enjoy the programming itself. And last, they may view contribut-

ing to important projects as a way of enhancing their own reputation among

their peers. Surveys among programmers by Hertel and Niedner (2003) and

Lakhani and Wolf (2003) have proved to support Raymon’s views.

2.4 Agile Software Development

As famously noted by Fred Brooks in his 1986 paper on software development,

there is no silver bullet. Despite this there have been numerous attempts over

the years, and many claimed success stories, at finding new development

practices which can drastically improve programming efficiency and reduce

the number of software bugs. In an industry where failure rates are estimated

to be between 50-70% [Erickson et al., 2005] this doesn’t come as much of a

surprise. This trend has in no way stopped, but in recent years there has

been a move away from the more monolithic and all-encompassing processes

of old, and towards leaner, more agile methodologies. In this chapter we will

explore some of the techniques associated with Agile development, and the

potential advantages and drawbacks they offer.

14 CHAPTER 2. LITERATURE

2.4.1 Background

There is no formal definition of what an agile development method is. The

term is based on The Agile Manifesto [Manifesto, 2001] which states:

We are uncovering better ways of developing software by doing

it and helping others do it. Through this work we have come to

value:

Individuals and interactions over processes and tools Working

software over comprehensive documentation Customer collabora-

tion over contract negotiation Responding to change over follow-

ing a plan

That is, while there is value in the items on the right, we value

the items on the left more.

This manifesto was created by a group of 17 software developers gathered

in Snowbird, Utah to discuss lightweight development methods. This event

was the result of many different directions of research into alternate software

development techniques throughout the nineties. The dot-com boom, and an

increasingly growing and changing software industry, was demanding faster

time-to-market and shorter product-life-cycles. This was fundamentally in-

compatible with the established software development practices like Waterfall

which emphasise linear development processes with well defined and separate

specification and implementation phases. eXtreme Programming and Scrum

were two of the leading champions of this new way of thinking about software

development. These were both born out of corporate environments and as

such had already been tested in the field.

Four years after the manifesto, a survey[Dyb̊a and Dingsoyr, 2008] of Euro-

pean and American companies revealed that 14% of them were using agile

methods, and that 49% of them were aware of and interested in adopting

2.4. AGILE SOFTWARE DEVELOPMENT 15

them. It might be rash to attribute all of this to the agile movement; indeed

it might be tempting to argue that agile was simply able to fill a void created

by an IT industry hungry for new ideas and a possible edge, but regardless

of reasons, it is today one of the most talked about subjects in the software

development industry.

2.4.2 Common activites

Erickson describes agility as a “means to strip away as much of the heaviness

[..] as possible to promote quick response to changing environments.” In

essence, agile methods seek to split the development process into smaller,

more manageable chunks without long-term plans. This is done to keep

the project as flexible as possible, and to prevent you from having to make

decisions until as much relevant information as possible is available.

Agile methods also place a lot of emphasis on person-to-person communica-

tion. Customer contacts are particularly important throughout the process to

answer developer questions and clarify implementation issues. They should

also be present during iteration meetings to represent the customer’s interests

during planning.

Most agile methodologies use daily face-to-face meetings among team mem-

bers. During these meetings team members can explain what they have done

previously, and what they plan to do. It also gives an opportunity to discuss

problems and roadblocks with which they are struggling.

Another important distinction between agile and more formal methodologies

is the focus on working software ahead of documentation. Software is seen

as the primary measure of progress, and together with face-to-face meetings

form the basis of the development cycle.

16 CHAPTER 2. LITERATURE

2.4.3 Extreme Programming

This concept can be seen as one of the ancestors to agile methodology as it

was introduced a few years earlier (in the late nineties). It received its name

from the concept of focusing on best practices at an “extreme level”. These

practices are as following:

• The Planning Game

• Small releases

• Metaphor

• Simple design

• Testing Refactoring

• Pair programming

• Collective ownership

• Continuous integration

• 40-hour-week

• On-site customer

• Coding standards

Arguably the most famous, and what many associates with XP, is the pair

programming practice. This is a programming technique where two pro-

grammers sit together in front of a computer, and while one is coding, the

other reviews each line of code subsequently. Studies have shown that this

technique can be very beneficial, leading programmers to produce shorter

and less error prone code.

2.4.4 Scrum

Early on, around year 2000, the practice was considered a mere buzz. It has

sustained regardless, and many companies find the methodology useful. Due

to its early use in the industry it has also been researched significantly more

than most other agile methodologies, and is as such considered quite mature.

2.4. AGILE SOFTWARE DEVELOPMENT 17

However, despite its popularity, many companies have failed to implement it

completely. 40-hour weeks and pair programming especially have proven to

be less used than the other practices.

Scrum is an iterative, incremental methodology for project management and

-control. Today it is one of the most used and known agile methodologies.

It is known for its high level of repetition through series of iterations, called

sprints, which are usually from 2-4 weeks long. The product backlog is the

core of the entire project. This can most easily be explained as a prioritised

list of requirements from the customer. This list is updated at each sprint

start to allow for flexibility in project planning. Like all agile methodologies

it also focuses on high interaction with the customer; conducting meetings at

the end and preferably also at the start of each sprint. These aspects leads

to an extremely high visibility of the progression, available resources, and

upcoming issues.

~2 WEEKS

24H

PRODUCT
BACKLOG

SPRINT
BACKLOG SPRINT

POTENTIALLY
SHIPPABLE
PRODUCT
INCREMENT

DAILY SCRUM
MEETING

SPRINT PLANNING
MEETING

Figure 2.2: A typical Scrum process

18 CHAPTER 2. LITERATURE

2.5 Standardisation

Standardisation can be beneficial for both users and producers, and since

Henry Ford first introduced the assembly line, the idea has become crys-

tallised. The idea also applies well to newer areas of economics, such as ICT.

When developing large, complex information systems or infrastructures, de-

sign and diffusion of standards is a crucial aspect. There is a great demand

for standardisation, and there is even a common notion that it must be en-

forced in order to succeed. On the other hand, a large body of literature

has proven that this is not simple, and that highly generic and standardised

systems do not travel well. The larger the systems, the more complex and

harder to standardise and distribute they become. As mentioned earlier in

the HIS-chapter, information systems could be conceptualised as social sys-

tems where the interplay between the different components/actors such as

users, management or technology is the focus of interest. One should not look

at the technological part of an information system as an isolated product, it

will always be influenced by the social context in which it has been devel-

oped, implemented and used in. They are not ‘pure’ technology, but rather

socio-technical systems [Hanseth, 2000]. This thought implies that success-

fully adapting a completely “standardised”, black box system in many cases

is impossible. Rolland and Monteiro (2002) states that:

it is necessary to strike a balance between sensitiveness to local

contexts and a need to standardize across contexts ([?])

In relation to our project it is also worth mentioning the cultural gap which

further contributes to increasing the difference in practice, and creates an

even bigger tension between standardisation and localisation.

2.5. STANDARDISATION 19

Work

Knowledge

Knowledge
Work

Module A

Module B

Shared knowledge
representing a standard

Figure 2.3: Shared knowledge representing a standard (adopted from Vaish-
navi and Kuechler)

2.5.1 Motivation

One of the biggest benefits of standardisation might be the economical.

Ole Hanseths paper [Hanseth, 2000] presents the basic lessons learned by

economists who have studied standardisation processes. Economics of stan-

dards have certain characteristics and concepts that are very interesting to

look at, such as increasing returns and positive feedback, network externali-

ties, and installed base.

Increasing returns means that the more a product is produced, sold and

used, the more valuable or profitable it becomes. This applies especially well

to the IT sector, and software are definitely a type of product with these

characteristic. Most of the production costs occur in the initial design and

development process. When you have developed the software, duplication

costs are negligible, which exponentially lowers the unit costs the more units

are sold. Another aspect that is even more important for IS and Information

Infrastructures, is the positive feedback gained as more users are using the

product. A perfect example of this is the Internet. Its value grows as more

20 CHAPTER 2. LITERATURE

and more people are using it.

Effects of positive feedback(often called network effects): Network

externalities, it is better to be connected to a bigger network.

• Network externalities and positive feedback can lead to path depen-

dency. Newer version needs to be compatible or build on the installed

base. (ex. email)

• Increasing returns can lead to lock-in. High switching costs etc. Not

only caused by hw/sw, also information structures, complex networks.

Gateways(ex. telefon og tv over internett)

• Possible inefficiency: Not given the best solution wins(ex. VHS over

BETA, MS over Apple)

The previous list points out the more general possible effects of standardiza-

tion, but let us try to find some more relevant reasons for standardization in

the case of IS:

Enforce some notion of control and coherence across the different context.

“Standardization enables coordination, which in turn enables the exercise of

control over distance” (Law 1986, cited in Rolland & Monteiro 2002)

2.5.2 Trade-offs/Approaches

Many countries have attempted, or more correctly are in the process of, stan-

dardising their health care systems which in the longer run will hopefully lead

to a national standard health system. Many different approaches have been

tried with different levels of success. [Coiera, 2009] looks at three different

strategies in three very large initiatives in UK, USA and Australia.

2.5. STANDARDISATION 21

• UK (top-down): The English National Health System (NHS) National

Program for IT (NPfIT) in many ways serves as an international beacon

for healthcare reform, because of its clear message that major restruc-

turing of health services is not possible without a pervasive information

infrastructure. Yet no one can deny that there have been plenty of set-

backs, misgivings, clinical unrest, delays, cost overruns, and paring

back of promised functionality, culminating in demands from some po-

litical quarters to shut down the program. The NPfIT was bound to

experience some difficulties purely on the basis of its scale and com-

plexity.

• US (bottom-up): The United States, with its highly fragmented and

decentralized health system, sits at the other extreme.

• Australia (middle): Australia have directed their initial public e-health

investments into developing nation-scale standards, well before contem-

plating any actual systems being built. By definition, there is always a

lag between standards as published and as implemented on the ground.

Chapter 3

Methods

This chapter describes the research and data collection methods used in our

empirical work, carried out during the stay in India.

3.1 Research method

Research methods can be classified as quantitative or qualitative based on

characteristics such as data collection methods, research goal and approach.

One should choose the method based on what you aim to study[Silverman, 2005].

As the name implies, quantitative research methods focuses on numbers and

the assumption that numbers can represent strong scientific evidence for a

phenomena. Quantitative research was originally developed to study natural

phenomena in the natural sciences, but have over the years been accepted in

the social sciences, including methods like surveys, laboratory experiments

and mathematical modelling. Nevertheless, research in social sciences tends

to be based on qualitative methods, which were developed for studying social

22

3.1. RESEARCH METHOD 23

and cultural phenomena. Common qualitative methods are action research,

case study, ethnography and grounded theory.

Quantitative research is most often used to prove specific theories and provide

understanding about natural phenomena, while qualitative research aims to

provide insights and in-depth knowledge to better understand a social phe-

nomenon. Qualitative methods are increasingly being employed in IS re-

search, due to a general shift towards focusing on managerial and organ-

isational issues instead of technical issues. To gain deep insights and un-

derstanding of the challenges of distributed software development, we have

chosen to use an interpretive case study approach.

3.1.1 Action Research

Action research implies action taking, more specifically meaning that the

researcher contributes in a project or organisation (normally related to the

subject of study), and works together with the other members to solve a

problem. HISP can be regarded as an ongoing action research project. Ac-

tion research focuses on solving real life problems, with an emphasis on the

interaction taking place. Through this process the researcher gains new the-

oretical and practical knowledge. Susman and Evered describes the process

by outlining 5 phases, illustrated in figure 3.1 [Susman and Evered, 1978].

In our case we contributed to the project by developing two modules for the

OpenMRS system being developed. We worked individually on one module

each for the duration of our stay. Through this we worked closely with the

other members of the development team, and gained a good understanding

of the practices, processes, and communication methods in the project.

24 CHAPTER 3. METHODS

Development
of a client-system

infrastructure

SPECIFYING LEARNING
Identifying general

findings

DIAGNOSING
Identifying or defining

a problem

EVALUATING
Studying the

consequences
of an action

ACTION TAKING
Selecting a course

of action

ACTION PLANNING
Considering alternative

courses of action
for solving a problem

Figure 3.1: Action research

3.1.2 Interpretive case study

According to Klein and Myers, IS research can be classified as interpretive

if it is assumed that ”our knowledge of reality is gained only through social

constructions such as language, shared meanings, documents, tools, and other

artifacts” [Klein and Myers, 1999] Interpretive Research was conceived as a

counter method to Positivism. Positivism looks at reality as fixed and mea-

surably independent of the observer. Interpretive research is more flexible,

saying that knowledge is only gained through social constructions such as

language, meanings, documents and other artefacts. As our goal is to gain

deeper insights and build on the social constructs of the Shimla team, our

approach can be classified as interpretive. Case study is a commonly used

method in qualitative IS research, and entails that the researcher conducts

an in-depth study of an event, activity, process, person or group of individu-

als over a certain time: a case. A variety of data collection methods can be

used, often interviews and observations.

3.2. DATA COLLECTION METHODS 25

3.2 Data collection methods

Our research is based on qualitative collection methods commonly used in

case studies, namely observation, interviews, questionnaires and document

analysis. Here we will give a short account of each of the methods and

describe how we specifically collected the various data.

3.2.1 Observation

We took actively part in the development team in Shimla, and interacted

with a number of people on a daily basis. The size of the team varied from

about 10 to 15 people, depending on people’s obligations (such as meetings

at the hospital or other instances). Some of the members came from HISP

India centrally, or other regional offices, and only stayed for a couple of days

or weeks to fix something specific or do a smaller task. The core group of

members who were almost always at the office was about 8 people. This size

was easy to deal with and we could quickly establish a picture of the whole

team, the hierarchy of the members and their roles and characteristics, as

well as become familiar with them on a personal level. The office had an open

space solution, which made it easy to observe what was going on during the

work hours.

We initially wrote daily logs, but due to long and exhaustive days at the

office, this was often postponed and done in batches a couple of times per

week instead. By doing this, we were able to keep track of the progress, and

make good notes of different events and discussions that arose during our

stay.

People we interacted with during our stay:

26 CHAPTER 3. METHODS

• In Shimla:

Project leader The head of the office in Shimla and project coordi-

nator of the OpenMRS implementation

Health Information Officer Medical Doctor with a master’s degree

in Medical Science and Technology

Implementers 3-4 people with various IS and HIS backgrounds.

System administrator Situated in New Delhi most of the time, but

on site for a period at the end of our stay.

Senior developer Stayed one and a half week after our first arrival,

before leaving the project

Vietnamese developers Two developers from Vietnam came to Shimla

at the beginning of April, with the purpose of staying for 6 months.

Trainee developer Newly educated developer, hired a month before

our first arrival.

• Other:

HISP India Manager Most of the time situated in New Delhi.

Remote developer Left Shimla a week before our arrival, currently

working from Vietnam.

System architect Based in Dublin, Ireland.

OpenMRS core developer Based in Seattle, USA, twelve and a half

hour behind Indian time

In addition we were in touch with the OpenMRS community through mailing

lists and IRC chat. In the beginning it were on a daily basis, but later,

especially this spring, it have been very little.

3.2. DATA COLLECTION METHODS 27

3.2.2 Document analysis

Much data was gained electronically, through chatting, mail correspondences,

document sharing, and Skype meetings. Since the project team is not only

situated in Shimla, but consisting of team members scattered all over the

globe, there was a lot of communication, and as such documents constitute

a noteworthy part of our analysis alongside the other types of collected data.

3.2.3 Questionnaire

A small questionnaire for all the team members was conducted. Because of

the team size, we did not achieve any statistically solid, quantifiable data, but

the collected data was aiding us in forming a clearer picture of the team, and

team members’ assumptions and opinions about certain issues or phenomena.

3.2.4 Interviews

We conducted a semi-structured interview with the project leader. This

was the only prepared interview we conducted, but we also gained much

qualitative data through informal conversations that can be regarded as un-

structured interviews with other team members. A lot of our information

was gathered through these informal conversations, as it was easier for team

members to discuss things more freely and in-depth when not at work. We

took notes whenever these occasions occurred, and the formal interview with

the project leader was recorded and transcribed later.

After our last stay in Shimla we also conducted a final telephone interview

with the senior developer in Vietnam which proved very helpful.

28 CHAPTER 3. METHODS

3.3 Scope and limitations

Our research was conducted over two visits. The first period approximately

five weeks, between October 20th, and November 26th 2010. The second was

about seven weeks, from february the 15th to april the 9th. During these

two periods we took part in the development of the project’s OpenMRS

implementation taking place locally, and interacted with and observed the

people associated with it.

Other development taking place in Shimla was not taken into consideration in

our research. We did not research the implementation at the hospital, nor did

we interact with any of the users or focus on that aspect of the development

process. The stage at which the development was did not warrant this type

of research, and we focused instead on the internal development process.

Finally, we have not focused on the HIS aspects of the system.

3.4 Reflections

Overall our data collection was fairly passive. Most of the time spent in

India was spent developing the different modules, and as such we gained a

quite one-sided view of the system development as a whole. In hindsight we

would likely have had better data if we had taken a more active part in the

implementation and training effort at the hospital.

Our communication with the other developers staying in Shimla could also

have been better. While there was a somewhat difficult language barrier due

to their poor english, it would likely have helped us if we had put more of

an effort into investigating their experiences and point of view in the system

development process.

Chapter 4

Research context

In this chapter we will describe the context of the project, including India,

HISP, and OpenMRS.

4.1 India

The Republic of India is situated in South-Asia, with borders to Pakistan,

China, Bhutan, Nepal, Bangladesh and Burma. It is the seventh-largest

country by geographical area and the second-most populous, with over 1.2

billion inhabitants1. It consists of 28 states, each ruled by a governor ap-

pointed for 5-year terms by the federal president. The states have primary

control over education, health, police, and local government. States are fur-

ther divided into districts. There are also seven Indian union territories,

which are sub-national administrative divisions ruled directly by the federal

government. India is popularly called the world’s largest democracy, and

1Source: Census of India 2011, http://www.censusindia.gov.in/

2011-prov-results/prov_results_paper1_india.html (June 11, 2011)

29

http://www.censusindia.gov.in/2011-prov-results/prov_results_paper1_india.html
http://www.censusindia.gov.in/2011-prov-results/prov_results_paper1_india.html

30 CHAPTER 4. RESEARCH CONTEXT

Figure 4.1: Map of India

have been so for more than 60 years, since their independence from Britain

in 1947.

India is a strikingly diverse country, it resembles more a continent than a

single country. There are a vast number of different languages, climates, cul-

tures and customs. Although hard to measure exactly, the most recent census

of 2001 states that 29 languages have more than a million native speakers, 60

have more than 100,000 and 122 have more than 10,000 native speakers. Of-

ficially, the Indian constitution approves 22 ”scheduled languages”, which are

languages that may be used by states in official correspondence. In Himachal

Pradesh, Hindi is their “scheduled language”, as well as the federal primary

official language, together with English as secondary official language. Hindi

4.1. INDIA 31

is by far the most common language, spoken by about three-fifths of the

population, in one form or another.

The last 15 years or so India have had an astonishing rapidly economic

growth, partially due to their out-sourcing service accomplishment in the

software and ICT sector. Walsham states:

It is likely that India will remain a major player in the ICT indus-

try for years to come and thus its global image as an ICT success

story will continue ([?])

On the other hand there are a lot of things that are not so simple. In

respect to the increasing wealth from this out-sourcing industry, it have been

questioned how much this benefits the poor. The under-five child mortality

rate was as of 2009 66 (6.6%)2 and the percentage of malnourished children

under five being shockingly 46%.

4.1.1 Himachal Pradesh

Himachal Pradesh (HP) is one of the northern-most states of India, situated

at the foot of the western Himalayas. It is divided into 12 districts: Kangra,

Hamirpur, Mandi, Bilaspur, Una, Chamba, Lahul and Spiti, Sirmaur, Kin-

naur, Kullu, Solan and Shimla. It is a very hilly area, with elevation ranging

from about 350 to 6000 meters above sea level. This leads to a diverse cli-

mate, from hot and sub-humid in the southern low-lands, to a cold, alpine

and glacial climate in the northern, mountainous parts. Above 2200 meters

snowfalls are common in the winter, which lasts from late November till mid

March. As of the latest census from 2001, about 6.1 million people live in

the state.

2Source:Unicef: http://www.childinfo.org/mortality_ufmrcountrydata.php

(June 11, 2011)

http://www.childinfo.org/mortality_ufmrcountrydata.php

32 CHAPTER 4. RESEARCH CONTEXT

HP is considered to have one of the better health care situations in India.

For instance, the infant mortality rate in HP is below one third of the Indian

average. The chillier climate is probably one of the main reasons for this,

as they do not have as many tropical diseases nor the same sanitary needs

as in most parts of India. When compared to the western world, however,

the numbers are still quite high, in 2006 totalling 36 deaths out of 1000. In

Norway, by comparison, this number is 2.8 out of 1000.

4.1.2 Shimla

Shimla is the state capital of Himachal Pradesh. From 1864 it was used as the

summer capital by the British Raj. Due to the burning heat in the Calcutta

area, the British made the effort of moving most of their administration up to

this much chillier place every summer. It has about 400 000 citizens, which

makes it a relatively small city by Indian standards.

4.2 DDU Hospital

Deen Dayal Upadyay Hospital(DDU) is the selected pilot hospital for the

project, and is located near the Shimla town centre. The official numbers

states that it holds about 300 beds, but in reality there are a maximum 200

beds. DDU is an old heritage hospital and was opened in 1885. The 125

year old buildings are in a very bad condition, as there are strict rules and

guidelines for repairing heritage buildings. It is built entirely of wood, and

during the rainy season there are lots of leaks, causing bad conditions and

posing a risk to computers and other electronic equipment. There are also a

lot of monkeys in the area, vandalising the buildings and power- and network

cables. Nevertheless, due to its location and the lack of other public hospitals

4.2. DDU HOSPITAL 33

Figure 4.2: The DDU Hospital

nearby, it is a much visited hospital. There are an average of about 1200 out-

patient(OPD) visits per day. There is a simple map floor plan drawing of

the area below(fig. 4.3).

34 CHAPTER 4. RESEARCH CONTEXT

20m

Emergency

Wards

Pharmacy

Radiology

Gyno

Wards &
Administration

Parking

Lab

Medical OPD
Eye OPD

Dental OPD

General OPD
Blood bank

Obsterics

Pediatric

BillingRegistration

Figure 4.3: The DDU Area

4.2.1 Departments

Registration

Every patient coming to the hospital first has to visit the registration depart-

ment. Here they have to provide their name, age and address which then get

4.2. DDU HOSPITAL 35

Registration

Billing

General OPD Specialist OPDs:

Inventory

Pharmacy

EMR

Blood Bank

Lab

IPD (wards)

Medical
Dental
Eye
Gyno
Pediatric
Orthopedic
Etc.

Pasient Flow

Figure 4.4: Patient workflow at DDU

entered into OpenMRS. In the same process they also get a further referral,

for most of the patients being general OPD. When this is done, a patient

slip, containing their name and newly created id, among the rest of the de-

mographic data and the name of the department they have been referred to,

gets printed out on a dot-matrix printer and given to the patient. This is

the only form of identification and proof the patient has to get further in

the process. It is very important that he keeps the slip, as we will see later

in this description of the departments. Although this is not the right place

to make an analysis or critique of the system, it is worth noting that this is

the starting point of a patients life in the system, hence the root of many of

today’s biggest issues with it. The demographic data registered is often too

incomplete to be unique for the patient, and the generated, unique ID is too

long for a patient to remember. This may seem absurd for someone coming

from a country where everyone is used to memorising a unique number and

using it from an early stage in life, but this is the situation and a source

of great issue, considering the redundancy in the data base building up and

the tracking of revisiting patient(who will most likely get registered as a new

one). It is hard to do anything about it - many of the patient do not know

how their names are spelled correctly, or what their address is, or even what

their correct date of birth is - they often vaguely know their age.

36 CHAPTER 4. RESEARCH CONTEXT

Figure 4.5: One of the two desks at the registration unit

General OPD

The hospital has one general Out-Patient Department (OPD). This is the

busiest of all the OPDs. It is operated by one or two physicians, depending

on the work load and the doctors’ availability. When a patient arrives, he

will present his slip to the physician or a data clerk, and will then receive

a consultation by the physician. The physician will decide what to do next,

in most cases (50-70% of the visits) he will prescribe drugs and give the

patient some instructions before sending him home. In the rest of the cases

he will refer the patient further, to some of the specialist OPDs, an In-Patient

Department (IPD) ward or to some of the investigation units. When there

is an investigatory procedure that needs to be done(i.e. a blood test or an

x-ray), the doctor fills out a requisition slip for the patient, containing his

ID, instructions and type of investigation. Before the tests are carried out,

the slip needs to be stamped at the billing unit for confirmation on received

payment.

4.2. DDU HOSPITAL 37

Billing

Before the patient can leave the hospital, he has to pay for the services

provided. This is often the first time since the registration OpenMRS is

used. The patient gives the identification slip to the billing clerk, who looks

up the patient in the system and registers the items he should be billed for

based on what the physicians have written down. If there are tests that are

yet to be performed, the clerk also register these based on what’s written on

their lab tests-slip. Finally a bill is printed, the patient pays and the papers

get stamped with the date. The patient is then free to go, unless there are

remaining tests to carry out.

Laboratory

DDU have a laboratory capable of performing many of the most common

and useful tests at a hospital. They have a medical robot which makes it

possible to analyse up to a hundred blood tests in one single batch each day.

The patients bring their requisition slips(as shown in fig. 4.6) from the

physicians, pre-paid and approved with a date-stamp at the registration,

and samples(blood or urine) are taken. The lab technicians make a work list

to keep track of the tests. The requisition slip is kept, and when the tests

are done, the results are returned to the patient, often together with other

sheets of paper with results. The patient then has to return to the physician

who requested the test to get a follow-up consultation.

Specialised OPDs

The specialised OPDs are:

38 CHAPTER 4. RESEARCH CONTEXT

Figure 4.6: A filled-out lab-requisition slip

• Surgical:

– General

– Obstetrics and gynaecology

– Orthopaedic

– Ear, nose, throat(ENT)

– Dental

• Medical:

– General Medicine

– Paediatrics

– Skin

– Casualty (though grouped in Medical OPD it caters for emergency

services of all the Specialties, but as it does not have direct ac-

cess to any of the OT’s it is currently grouped under Medical.

4.3. HISP 39

Further understanding is needed to decide its functionality, which

may even require it as a separate classification. Most Hospital

information systems have emergency as a separate module.)

The specialised OPDs work in much the same way as the general.

Pharmacy

There is one pharmacy located inside the hospital grounds, and many other

drug stores located nearby. None of these are run by the hospitals, but

there are no restrictions on where to buy their prescribed drugs, although

you won’t find the less common drugs in other stores than the one located

on-site.

Wards

The hospital has about 200 beds, distributed on [tall] different wards, clas-

sified by patient groups and gender(all wards are either male or female).

Every in-patient has a small paper-based record-sheet where all the informa-

tion gets registered and updated. Each ward has a small office the nurses

uses for record-keeping.

4.3 HISP

The Health Information System Programme (HISP) was initiated in 1994

by researchers from Norway and South Africa as a pilot project to establish

40 CHAPTER 4. RESEARCH CONTEXT

a research and development programme for developing health information

systems. Since then it has expanded into a global network active in about

15 countries, mainly in Africa and Asia. The countries are:

• South Africa

• Mozambique

• Norway

• India

• Malawi

• Tanzania

• Vietnam

• Ethiopia

• Nigeria

• Botswana

• Zambia

• Zanzibar

• Sierra Leone

• Tajikistan

• Mali

Their aim is to improve the health care systems in developing countries by

increasing health care workers’ capacity to make good decisions based on

accurate health care data. Their vision is:

”Development and implementation of sustainable and integrated

health information systems that empower communities, health work-

ers and decision makers to improve the coverage, quality and ef-

ficiency of health services.”

HISP is not a singular, defined project, but is spread globally as a loose

network of projects and partners involving various academic institutions and

governmental and non-governmental health institutions. It follows a partic-

ipatory approach to support local management of health care delivery and

information flows in selected health facilities, districts, and provinces, and its

continued expansion within and across developing countries.[Braa et al., 2004]

4.4. HISP INDIA 41

4.3.1 DHIS

District Health Information System (DHIS) is a management and data col-

lection tool developed by HISP to capture and analyse aggregated health

data. The development started in 1996 and has been ongoing since, through

an iterative process consisting of different HISP members. The first releases

of the system, 1.3 and 1.4, were based on Microsoft Access for data storage

and Visual Basic together with Excel for user interaction. The software was

already free but dependent on other commercial and proprietary components,

which was considered a big drawback, and they chose to port the whole ap-

plication to Java in subsequent versions. Another important motivation for

the conversion was that it made them able to benefit from using other, pow-

erful open source tools and software such as Spring, Hibernate and JUnit.

The development of the new, open source and web-based version started in

2003 at the University of Oslo. The first release came in February 2008, af-

ter a long, collaborative development process involving students, researchers

and experienced developers in Norway, India, South Africa, Ethiopia, and

Vietnam.

4.4 HISP India

HISP India is an Indian NGO (non-governmental organisation) and part of

HISP. Its main activity since the start in late 2000, has been development and

implementation of DHIS in different parts of India. It consists of a multidis-

ciplinary group of workers with backgrounds in informatics, medicine, public

health, computer science, anthropology and development studies. Over the

years of implementation, the organisation has grown and gained much knowl-

edge, together with a growing governmental support.

The state government of Himachal Pradesh contacted HISP India after an

42 CHAPTER 4. RESEARCH CONTEXT

unsuccessful two-year process where they had attempted to find a company

willing to develop a HIS for their district hospitals.

The Request for Proposal (RFP) that HP had submitted was substantially

as follows:

1. Deploying a Health Management Information System (HMIS) to en-

compass information gathering, knowledge management and facilitate

decision making.

2. To develop and provide health information infrastructure, to help in

daily operations, clinical practice and ensuring quality of service pro-

vided to the citizens in an efficient way.

3. Effective utilisation of resources (human, capital etc.).

4. Adhering to standards and leveraging the latest technology develop-

ments in the health practice.

While HISP India had no experience developing such a system, they were

nevertheless very interested in learning, and were over time able to work out

a suitable implementation plan along with the HP state government.

4.5 Shimla Team

The team in Shimla consists of a number of implementers, developers, and

health-care professionals. The project leader has a background from the

Indian government, and has worked in various parts of HISP previously. To-

gether with three others she oversees specification, implementation, training

and communication with the people at the hospital. Each implementer is

assigned one or more modules as their chief responsibility. The doctor on

4.6. OPENMRS 43

the team is responsible for overseeing the medical consistency and usability

of the system as a whole.

In addition to the OpenMRS project the office is also responsible for the

deployment of DHIS in the state. There is some overlap of work for some

people doing OpenMRS planning and training, but for the most part DHIS

work is done by other employees who don’t work with OpenMRS.

The local team initially requested three software developers for the duration

of the project. The work involved was estimated to require quite a bit of

skilled labor from the start, and to continue for a long time as the scope

of the project expanded throughout the state. This was initially fulfilled

with the help of various students and Ph.D candidates associated with HISP,

who worked on site in Shimla. However, due to their academic background

and for various personal reasons, these developers were only available for a

short period and the last of the initial developers left Shimla shortly after

we joined the project. In addition to this there is one trainee developer

recruited locally. Many attempts were made by the HISP India manager

to recruit skilled developers, but it proved to be very hard due to the costs

associated and the fact that few developers are available outside the major

technological hubs in India. The trainee turned out to lack the skills necessary

to help much in terms of software development.

4.6 OpenMRS

OpenMRS is an open source software project developing a medical record

system platform to benefit health care in developing countries. The project

was conceived in 2004 by Paul Biondich and Burke Mamlin from the Re-

genstrief Institute, Indiana, USA during a visit to Kenya. They recognized

the need to scale up the treatment of HIV in Africa, and in cooperation

44 CHAPTER 4. RESEARCH CONTEXT

with Hamish Fraser of Partners in Health 3 and Chris Seebregts of the South

African Medical Research Council, they founded OpenMRS.

While the focus was to be on treatment of HIV and TB in sub-Saharan

Africa, it was quickly decided that OpenMRS was to be a full featured EMR

system. A broader aim was for OpenMRS to be an open source, collaborative

project as a foundation for EMR development in “the field”, the developing

countries.

4.6.1 Design Characteristics

Upon project start, OpenMRS evaluated other EMR-initiatives in develop-

ment countries, and formed a belief that

”overwhelming need for basic clinical data management (often to

provide data to funding agencies) along with the need for rapid

response in the face of limited technical resources led to many

disparate, “stovepipe” efforts which often stored non- coded values

and rarely scaled well.”

[Seebregts et al., 2009]

To overcome these challenges their solution has been to try to make Open-

MRS highly flexible and modular. Through providing a foundation and the

building blocks for new projects to start implementing and tailor the sys-

tem to their needs easily, they hope to succeed and make more sustainable

EMR-implementations than others before them. They earnestly admit that

OpenMRS can be seen as “just another stovepipe”, but hope that by us-

ing open source tools, promoting localization through a modular design, and

sharing the work, it can be a seed to something bigger.

3http://en.wikipedia.org/wiki/Partners_In_Health

http://en.wikipedia.org/wiki/Partners_In_Health

4.6. OPENMRS 45

The core of OpenMRS is a web application programmed in Java using a

number of other open source components, including:

MySQL Widely used relational database management systems

Tomcat Apache servlet application for Java web applications

Hibernate Object to relational mapping and persistence application

Spring Application framework

Apache Subversion(SVN) Revision control and code sharing tool. Open-

MRS maintain their own SVN server for the code of both the applica-

tion and also all the modules.

The high level architecture is illustrated in figure ??.

Data model

The core data model is an enterprise-quality data repository based on 30 years

of experience from the development of Regenstrief Medical Record System,

combined with practical experience from Partners in Health and other de-

velopmental partners. We will not describe the model in too much detail,

but have created a very simplified model to illustrate the most important

domains (fig. 4.8):

Patient Basic information about patients in this system. Can be seen as the

center of the model, since the majority of data getting stored relates

to individual patients.

46 CHAPTER 4. RESEARCH CONTEXT

Figure 4.7: OpenMRS high-level architecture

Concept Concepts are defined and used to support strongly coded data

throughout the system.

Encounter Contains the metadata regarding health care providers’ inter-

ventions with a patient.

Observation This is where the actual health care information is stored.

There can be several observations per Encounter.

Among these domains, “Concept” could need some further explanation. A

concept can in practice be almost anything, but a rule of thumb is to use it

sparsely and create well-defined concepts to avoid ambiguity and redundancy.

Concepts can also have sub-concepts. A good example is a blood type-

concept. There are eight different types of blood - eight concepts. But one

4.6. OPENMRS 47

Patient

Concept

Encounters ObservationContains

Has

1

∞
Has

1

∞

1 ∞

Answer Set

∞ ∞

Figure 4.8: Simplified OpenMRS data model

must not forget the concept of a blood type. Therefore, one should create

one blood type group-concept, and a concept for each individual blood type.

These individual blood types serves as answer concepts of the parent blood

type concept. The purpose of the concept dictionary is that one can easily

create flexible semantic relationships and context-dependent metadata for

almost anything throughout the whole application.

Application Programming Interface

In addition to its scalability, the data model is tightly constrained. This leads

to a high complexity and an inherent barrier for new developers to start cod-

ing. OpenMRS uses an Application Programming Interface (API) to hide the

database transactions and make it possible for developers to use the model

in a normal object-relational manner, such as “getObservations(patient)”.

Hibernate provides this object/relational persistence layer between Java and

the data base, regarded as the backbone of OpenMRS. The API solution also

provides a higher level of data integrity as it limits the ways of interaction

48 CHAPTER 4. RESEARCH CONTEXT

with the underlying data model.

Spring/MVC

OpenMRS uses the Model-View-Controller(MVC) design pattern. This is a

vastly used architectural pattern. The purpose of this is to isolate business

logic from the user interaction and by doing so reducing the architectural de-

sign complexity and elevate the flexibility. Spring is the tool used to manage

this.

4.6.2 OpenMRS community

As in many other open source projects, the OpenMRS community is big and

scattered. At the same time, the group of core developers considered the

biggest contributors are not so vast and mainly based in the US. Most of the

communication happens electronically, and OpenMRS uses a number of dif-

ferent internet-based collaboration and communication tools. Each tool has

their functions and together they cover all forms for needed communications.

OpenMRS are doing what they can to make their community grow, and they

have recently stepped up their efforts. Their web pages are newly redesigned

and they have started to promote themselves through external social network

channels such as Twitter and Facebook. On their wiki-page they post some of

their collected activity data, and this is a month-by-month summary for the

last 3 months. Since it does not go further back than the three last months,

it is likely to believe they have just started with this collection. However, the

stats clearly show that the activity and interest in OpenMRS has increased

over the last months.

4.6. OPENMRS 49

2010 Sep Oct Nov Dec

Announcement List 232 236 244 253

Dev List 281 293 309 322

Implementers List 306 317 329 340

Twitter Followers 695 762 840 900

Facebook Fans 875 1,367 1,463 1,5

OpenMRS ID’s 498 580 679

2011 Jan Feb Mar Apr May

Announcement List 260 266 280 292 297

Dev List 347 354 381 376 377

Implementers List 351 348 349 354 359

Twitter Followers 969 1,008 1,076 1,143 1,217

Facebook Fans 1,57 1,59 1,605 1,616 1,848

OpenMRS ID’s 784 829 931 1,044 1,124

We will briefly describe the most important means of communication in the

project, their purpose and advantages below.

Mailing lists

The OpenMRS community maintains several mailing lists, divided by specific

roles or functionalities, namely:

50 CHAPTER 4. RESEARCH CONTEXT

• Announcements

• Developers

• Implementers

• Users

• SVN Commits

• Security Updates

• Infrastructure Status

• Interns

• Mentors

The developers-mailing list is the most active of the lists above, and serves as

one of the primary channels of communication among developers. Compared

to other asynchronous forms for communication over the Internet, mail is

most likely the one with highest chances of getting received and read. On

the other hand, people do not like spam, and if you send an e-mail on the

mailing list it should be of a certain level of importance and relevance to the

receivers. This turns out to not always be the case, and many developers

have a very low threshold for using mail.

Although the majority of the active contributors to the mailing list are also

the ones who have been working in or on OpenMRS the longest, there are

a lot of new and inexperienced developers who use the list. These normally

receive answers to their questions within a day of asking. Since everyone sees

the mail and at the same time knows that everyone else on the mailing list

can also see it, people feel obligated to answer if they can.

Wiki

OpenMRS provides a comprehensive wiki that serves as the main documen-

tation pool, though primarily for developers and implementers. It consists of

user guides for entry and setting up the development environment, together

with more detailed documentation on both modules and the core system.

4.6. OPENMRS 51

The most important information seems to be up to date, but module-specific

documentation is often missing or highly outdated. One page had a header

bluntly stating that “This User Guide is basically useless. Needs to be re-

written.”. It is also not mandatory for a developer to create any documen-

tation on what he is making, which is probably one of the main reasons

for this issue. In open source – and especially highly distributed – projects,

documentation is an important source of knowledge, and the lack of such doc-

umentation can be frustrating, especially for new contributors. This is also

the case in OpenMRS and a good example can be found on the developers

mailing list:

From: Sender 1

Just a friendly reminder: the [...] module is completely worthless to everyone
else besides its main developers until someone writes the widget reference in
the wiki...

From: Sender 2

It’s required by the [...] module.

From: Sender 3*

Wow, [Sender 1], calling me out! :)
There is a wiki page for the module - [Link] It demonstrates how to use it
by default (granted no reference here of all possible options, but I wouldn’t
call it useless). There is also a page that demonstrates the widgets in action
if you’ve installed the module, available here: [Link] If you are a developer,
you can look at the source of this page to see the variety of ways/options
that the page demonstrates the tag can be used. So, agree that a reference
of all options would be nice (and I encourage anyone to help take this on),
but it should still be usable in it’s present form...

From: Sender 1

sorry [Sender 3], i wasn’t meaning to call you out. i’ve just noticed that this
module is required by a number of modules [...] but I haven’t found myself
eager to read through .java files to see what the module really does whenever
i need a textbox. You’ve done all this work to make ui stuff easier – share
the wealth.

*Sender 3 is the main developer of the module

52 CHAPTER 4. RESEARCH CONTEXT

IRC

In many cases, the most responsive way of communication is through the

OpenMRS Internet Relay Chat(IRC)-channel. Usually some of the core de-

velopers are logged in, and for urgent and apparently easy-to-answer ques-

tions, this might the best place to ask. The chat room also appears to be very

informal, and people do not hesitate to ask seemingly too small questions.

On the other hand, the informality leads to a lack of initiative and to no one

feeling obligated to answer your request. The activity is therefore close to

zero, and a look at the log underpins this - the following excerpt from the

log of December 11th was the only human activity this day:

13:24:27 *** user has joined #openmrs

13:24:42 <user> hello everybody

13:25:01 <user> i need a help to install openmrs codebase

13:25:23 <user> can anybody help me

13:27:02 <user> can anybody help me

13:28:40 *** user has quit IRC

Events

Since 2006 OpenMRS has arranged a series of workshops and conferences,

the largest one being the annual Implementers Network Conference. A paper

from 2009 on OpenMRS Implementers Network states [Seebregts et al., 2009]

that:

”Although internet-based collaboration tools have proven to be

highly effective in supporting OpenMRS implementations, regu-

lar face-to-face meetings and training courses are fundamentally

important to supporting this process. It seems unlikely that Open-

4.6. OPENMRS 53

MRS would have reached the same level of success in Africa with-

out an annual meeting and training courses.”

As the community keeps growing, so does the frequency of events. They have

also started to plan meetings in other regions besides South Africa and the

US, where most of their activity has been focused so far.

Chapter 5

Development

In this chapter we will give an account of the fieldwork in respect to the de-

velopment conducted in Shimla from the middle of October to end-November

2010, and the middle of february to the middle of april 2011. We participated

in the project as system developers primarily with the goal of developing two

modules for the HISP India OpenMRS project. In addition to our work on

the project, we will also describe the work leading up to our first arrival, and

the development methodology used. The overall timelines for our two stays,

including the initial project startup, is illustrated in figure 5.1.

5.1 Initial Development

Development of the OpenMRS modules was initially started in May of 2010

by four developers located in Shimla. One of them had done some work with

OpenMRS previously, although not to a large extent, and as such they had

to figure out a lot of things on their own throughout the process. There was

not a lot of communication with the people at OpenMRS which exacerbated

54

5.1. INITIAL DEVELOPMENT 55

May June July August September

Weekly OpenMRS Conference calls

October November

Ou
r a

rr
iva

l

Ou
r d

ep
ar

tu
re

Pr
oj

ec
t s

ta
rt

Co
ns

ul
ta

nc
y

Initial development

Week 43 Week 47Week 46Week 45Week 44

Im
plem

entation at DDU

Last developer leaves

DDU visit

Blood bank testing

Diwali

Im
pl

em
en

ta
tio

n

HI
SP

 C
on

fe
re

nc
e

Ho
li

February March April May

De
pa

rtu
re

Se
co

nd
 a

rr
iva

l

In
te

gr
at

ed
 s

te
st

in
g

Local Developers

Vietnamese Developers

Local Developers

Vietnamese Developers

2011 Spring

2010

Figure 5.1: Project timeline

this fact. After laying the groundwork they continued producing a number

of modules over the following months, amongst them registration, billing,

inventory and pharmacy. There were a lot of developer changes throughout

this period, with the result being that by the beginning of September only

two developers were working on the project. Due to losing the developer with

OpenMRS experience, they were also left without a link to the OpenMRS

community. In an attempt to alleviate this they contacted OpenMRS cen-

56 CHAPTER 5. DEVELOPMENT

trally and inquired about possibilities for support. They were subsequently

put in contact with an Indian company located in Bangalore which agreed

to send a consultant to the Shimla office and discuss their design and mod-

ules with them. This visit turned out to be very useful, as it was quickly

discovered that the team had fundamentally misunderstood the underlying

architecture of the OpenMRS model, as well as the complexities and rigour

required of a full hospital system. In addition there were found significant

gaps between the requirements and the implementations. As a result of this,

all modules had to be either scrapped or significantly rewritten.

Registration had to be redone completely, billing had to be redone

completely, inventory had to be redone, and pharmacy; all had to

be redone. (...) It was a huge resource cost... Very huge resource

cost. - Project leader

Development was restarted shortly after by the two developers remaining in

Shimla. As a result of the previous problems, it was decided in discussions

with the developers at OpenMRS that some guidance was needed. To help

with this one, of the OpenMRS core developers offered to host weekly meet-

ings to discuss the architecture and design of the system, and to answer any

questions the team might have regarding OpenMRS.

Prior to our arrival, an e-mail was sent out to everyone associated with the

project to introduce the people involved. Two Ethiopian developers and

a Vietnamese consultant were introduced as starting development on the

project along with us. Due to reasons unknown, this never happened, and

we ended up being the only new developers on the project.

5.2. DEVELOPMENT HANDOVER 57

5.2 Development Handover

When we arrived in Shimla the development was headed by one developer

locally, and one developer who had left a week before we arrived and was

working remotely. A third developer working remotely from Vietnam had

joined the project shortly before. At that point development of registration

and billing was wrapping up, while development of inventory, blood bank

and the RKS finance module was starting up.

The development of RKS and the blood bank was lead by the local developer,

and had been started shortly before our arrival. Since he was the only devel-

oper on site we were put under his tutelage. After having stayed six months

in Shimla, he was eager to leave, and as such was attempting to wrap up

his obligations. He helped us set up the development environments and gave

us the documentation he had, but mostly left us to our own devices unless

explicitly asked. Being as things usually are, there was a certain amount of

learning and setup involved, so while he continued his work on the blood

bank we were assigned to familiarise ourselves with the system.

For the remainder of his time in Shimla, the local developer continued work-

ing on the RKS module, blood bank module and a security module, primarily

coding but also occasionally instructing us to the point where he felt the re-

sponsibility for the team could be passed on to us. By the time he left, all

modules were more or less operational, though lacking any kind of testing

which he considered “the implementer’s job”. There was a lot of skepticism

and attempts at discouragement when he finally did leave, which came as

little surprise considering he was the only senior developer on site, but assur-

ances were made that we had any and all information we needed, and would

be able to finish development.

58 CHAPTER 5. DEVELOPMENT

5.3 Development Process

The development process used can perhaps best be described as a sort of

waterfall. Requirements for the different modules were initially collected,

discussed, and agreed upon in cooperation with the state government. Af-

ter requirements were finalised, the design for the system was discussed and

agreed upon internally before actual development was started by the respon-

sible developer. While there were internal discussions on each module, a lot

of the responsibility for design and planning ended up with the responsible

developer, as the implementation team had little experience and were unable

to provide much in the way of criticism.

While there was no use of any formal development methods, this had not

been the intention from the start. The project leader in an interview re-

vealed that an iterative agile-style development methodology had been both

recommended by OpenMRS developers, as well as discussed and agreed upon

locally during the planning phase of the project. Despite these plans an it-

erative process was never used, and the team instead ended up developing

systems in solid blocks, with bug and conformance testing being performed

before implementation at the hospital. This was a cited as a critical factor

in the initial development failure due to significant deficiencies not being dis-

covered until fixing them was too costly. This was less of an issue while we

were there, but the testing and implementation period still bore marks of

being very hasty.

One notable incident occurred during the development of the blood bank

when a security issue was discovered. Both the system architect and the

OpenMRS developer agreed that this was a fundamental issue since it would

expose confidential blood testing data to non-blood bank personnel. It was

quickly decided that the local developer would create a module to fix the

issue, and this was done in about a day just before he left the project. During

the next meeting when the module was discussed, this was a point of concern

5.3. DEVELOPMENT PROCESS 59

for the architect who felt that one day would not be enough to produce a fully

secure solution, and that the module could not be trusted without further

developer testing. Therefore it was decided that the remote developer and

system architect would do testing and report back for next week’s meeting.

The next week this had not been done due to a lack of a working copy with

which they could test. This quickly derailed the conversation onto other

issues, and nothing further was decided on the issue of the module. This

issue was not revisited until two weeks after we had left Shimla, at which

point the blood bank was already operational at the hospital, despite the

security issue having been labeled as a showstopper bug.

Another problem during development was the inherent complexity of the

system. Due to this, a substantial part of our stay was spent making ourselves

familiar with the system and the different components and APIs. Since the

trainee developer was in the same situation, she was assigned to work with

us. This proved difficult as she was far less experienced than we had initially

assumed from her introduction mail:

From: trainee software developer
(...)I am just new with Hibernate and Spring so taking training from [lead
developer]. So this shows my weekness and need more experience on this. I
am trying that I will cover these in few days and start working on it ASP.

After discussing this with the senior developer who had attempted to mentor

her for the past month, it quickly became clear that she was lacking funda-

mental programming experience, and the lack of experience would make it

very hard for her to keep up. Considering we were struggling quite a bit

ourselves, we ended up unable to provide much in the way of guidance, and

she was not able to help with actual programming while we were there.

60 CHAPTER 5. DEVELOPMENT

5.4 Hospital Core Module

Right before we left Shimla the first time, concerns about modules’ need

to communicate with each other, especially between Billing and others that

were going to need Billing’s services in order to properly work. The Core

Developer revealed under one of the weekly Skype meetings that OpenMRS

had poor support for this, and that it would be harder than the local de-

velopers had first thought. It turned out that modules could not use each

others’ Application Programming Interface (API) without an explicitly de-

clared dependency, which made many of the planned features impossible as

the modules were cross-dependant on each other. The system architect did

not like these news, as he expressed himself in an email about this addressing

the core developer:

At one point during the conversation last week you mentioned

that modules only had access to one another’s api if they had

an explicit dependency declared. This is a an important piece of

architectural information which should be pretty obvious but which

I hadn’t been aware of.

Soon after the issue became apparent, the architect came up with a solution

by making a module that would “wrap” and combine the module’s APIs,

much like an extension to OpenMRS’ core. Adapted from his proposal we

have made the following two figures(5.2) to illustrate how it should work

(though simplified, and not correctly in respect to the real system, they

show the concept):

All the team members thought this seemed like a good idea, and even the

OpenMRS core developer was positive. It was added to the weekly Open-

MRS core developer meeting (not the same as the project’s weekly meeting),

which the system architect and the senior vietnamese developer attended, to

5.4. HOSPITAL CORE MODULE 61

Registration

Clinical Encounters

Blood Bank

Billing Stores

Pharmacy
Patient Obs Orders

Identifier Encounter

OpenMRS Core

1.

Registration

Clinical Encounters

Blood Bank

Billing

Stores

Pharmacy

Patient Obs Orders

Identifier Encounter

OpenMRS Core

Billable service

Stock ItemAmbulance

Staff

Patient Flow

Hospital System Core

2.

The old design The proposed design

Figure 5.2: Proposed solution

explain their plan. Under the meeting the rest of the core developers seem

to have agreed, and they came up with a reasonable approach which was to

start by bundling the relevant modules’ data module into a single module,

and later on split out services and methods as it matured. The Vietnamese

developer became the responsible developer, and started the development in

late December. About mid February the first version was tested in Shimla.

The hospital core module made the other dependent modules useless with-

out all of them being deployed as it contained all the business logic for the

modules. They also had to be rewritten substantially since the whole data

model moved out, so it had been a quite big refactoring of the whole sys-

tem. Around end March the first version of the system with the hospital core

module was installed at DDU.

When discussing the module in May at the conference, there was a lot of

concern about an overly large amount of logic being moved into the hospital

core module. The feeling among many of the team members was that it

destroyed modularisation and made the core module too volatile as it had to

be updated every time a new database function was required. No decision

regarding this was reached at the time, but in a later interview with the re-

62 CHAPTER 5. DEVELOPMENT

sponsible developer he could reveal that rewrites for the core were planned,

and that a lot of the business logic would be moved back to the original

modules, thereby making the core less volatile. The hope is that by retain-

ing only the methods that are strictly necessary for communication between

modules, a much more flexible architecture can be achieved.

5.5 The Blood Bank Module

A blood bank is a storage compartment for blood, normally at a hospital,

where blood is collected and preserved for later transfusion. The blood comes

from voluntary donations or by other collection methods, such as blood do-

nation camps. There are eight different types of blood, with different char-

acteristics that make many of them incompatible with each other, meaning

that you can only receive certain blood type(s), depending on your own. A

number of deadly or serious injurious diseases can be transmitted via blood,

the most well-known being HIV and viral hepatitis. Blood can also only

be used within a limited period of time before it expires. Because of these

reasons, it is crucial that the donation, storage and transfusion of blood is

highly controlled. An electronic blood bank system can be of good help in

minimising these risks.

At the time of our first arrival, requirements and use cases for the Blood

Bank had been gathered from the hospital. The documentation consisted of

requirements and use cases, and was seemingly complete and highly detailed.

The functionalities proposed for the blood bank system can be summed up

as:

• Add/register blood donor

• Add donor data from questionnaire

5.5. THE BLOOD BANK MODULE 63

• Assign blood tests of collected blood unit

• Register blood test results

• Update the blood bank stock

• Issue blood units from the stock

• Pre-generated blood donor IDs

Blood donors are treated as patients in the system, but they are also given a

unique blood donor ID in addition to the patient ID. A requirement related

to this, is the ability to pre-generate donor IDs before registering the donor.

These pre-generated IDs are to be used in blood camps, which is the most

common method for collecting blood at the hospital. The blood camps take

place off-site, thus they will not have access to the system or any possibility

to register donors on the fly.

As the basic functionality of the module had been implemented by the senior

developer, bringing a first version to completion was done without any major

issues. It was successfully tested and implemented at the hospital before we

left Shimla in November. There were no available developers to take over

the development, and a few weeks after we left, the module stopped working

at the hospital. We tried to help them through e-mail, but the technical

complexity of the problem made us unable to fix the problem remotely back

in Norway. Therefore, the module was given a low priority by the team

and left unfixed. There was a lot of fixing to be done when we returned in

February, which led the module to stay unimplemented until the end of our

second stay. A lot of technical and architectural changes were done to the

overall system, and a substantial part of the time during our second stay

was spent refactoring, instead of further development and implementation

of new functionalities. As expected, due to the short uptime, there waas

no additional feedback from the hospital workers since last time. If a local

developer had had the time to take on the development, and fixed pressing

issues between our stays, a lot of time would probably have been saved.

64 CHAPTER 5. DEVELOPMENT

5.6 The RKS finance module

RKS, or “Patient Welfare Committee” in English, is a management structure

used in many states in India to increase the financial self governance of local

hospitals. These committees, consisting of government officials, members

of associated NGOs, elected representatives, and others, are free to set user

charges for patients and use the resulting revenue to buy supplies, equipment,

pay salaries, and conduct repairs. In practical terms the DDU collects money

from user charges relating to patient procedures, rent for hospital buildings

like the pharmacy, interest payments, ambulance charges, etc.

At its heart, the RKS module is a financial planning and analysis system for

these committees, as well as the state government. Currently the hospital’s

daily and yearly income and expenses are tallied on paper, and transferred

into Excel for calculation. The goal of the module is to transition away from

this paper-and-excel hybrid system, and replace it with a fully automated

system which can give immediate breakdowns of earnings, in-depth overviews

of expenses in the different departments of the hospital, as well as budgeting

tools. In other words, a very lightweight accounting system tailored for

RKS. The use of the billing and inventory modules means a large amount of

financial data is already available in the system, ready to be used.

The plans for the module were already laid down by the time we arrived in

Shimla. The lead programmer had designed a solution using Palo Server,

an OLAP-database with the ability to pivot, aggregate and select numbers

in different dimensions, allowing users to easily present breakdowns in terms

of days, months, departments, or other relevant data. Palo uses heavily

programmed Excel sheets as input and output front-ends, which was part of

the reason for choosing to use it. Currently the clerks at DDU create and

use Excel sheets to make accounting sheets, and budgets.

After evaluating the requirements that could be found, we concluded that

5.6. THE RKS FINANCE MODULE 65

Palo was needlessly large and complex, and that a solution made by hand

could achieve the same functionality, while being better suited for the hospital

environment. This work was, however, started fairly late due to planning

issues, and was not finished in time for our departure from Shimla.

After returning to Shimla in February, it was decided that since the previous

version had not been completed, it would be wiser to continue ahead with

the originally planned Palo version. Work on this version continued for the

duration of the stay, but due to the complexity of communcation between

OpenMRS and Palo, neither this version was completed. This proved to be

a big disappointment both for us and the team, as HISP had promised its

delivery along with the other modules.

During our final interview with the senior developer, the responsiblity for

the RKS module was planned for some newly hired developers. As none of

the other developers were particularly knowledgable about Palo and RKS,

they were unsure about which path to choose. The feeling from the senior

developer was that Palo might be too heavy, and that a lighter homemade

solution might be easier to create as it would be quite similar to the other

modules created, and not involve a seperate system and API. This was,

however, not decided upon at that point, and discussions will likely continue.

Chapter 6

Implementation

In this chapter we will give an account of the implementation work during

our two stays in Shimla. During both visits the majority of team members

were working on implementing the system at DDU. Although we have not

taken part in the implementation ourselves, we will try to give the best

possible picture of it based on our interaction with the implementers and

hospital workers, as it comprises a part of the project that in many ways is

as important as the development.

6.1 Progress

Since the system is module-based, the implementation could start gradually

by one module at a time. The plan has been to do the implementation of

modules incrementally along with the development, starting with the parts

that seemed easiest both technically and implementation-wise. In september

they started installing registration and billing at each respective counter.

Both modules were among a few that the team had started development of

66

6.2. RECEPTION 67

in May, but these two were the only that turned out to be usable. The rest

had to be completely remade. Technically, the registration module was an

extension of the patient registration functionality OpenMRS already had,

but the billing module was built from scratch. They were also good starting

points seen from an implementation perspective. Both departments were

simple with one or two clerks at each counter registering patients or handling

payments. This meant that you did not have to train a great number of

personnel, and the tasks done were easy with few possible use cases. Starting

with patient registration in this early stage was also helpful, testing how the

system’s performance would develop over time as well as getting a patient

data foundation to use in relation to other modules’ development.

After these two, implementation of blood bank, laboratory and OPD fol-

lowed, and by the end of November these were installed and the training of

personnel at had started. When we returned in February, IPD, inventory

and pharmacy modules were also implemented. Except from blood bank,

the first implemented modules had been altered since last time. The imple-

menters seemed to have put in place good routines for training. Depending

on a module’s complexity and the number of workers that were going to use

it, the implementers trained them differently. For billing and registration

there were only a couple of clerks that would need training, while for IPD

a number of nurses were the users. For larger numbers of users they would

divide them into groups and conduct intensive training lessons. By now all

the workers at DDU have received between 20 and 30 hours of training in

total.

6.2 Reception

During our stays we have visited the hospital a couple of times and had the

opportunity to see the implemented modules in use at the actual work places.

68 CHAPTER 6. IMPLEMENTATION

6.2.1 OPD

The most complex module to implement seems to be the OPD module. Even

though all the physicians been given a substantial amount of training by now,

and are proven capable of using the module, most of them are reluctant. Time

is a key factor here. As all the out patient-departments are crowded with

patients, especially in the morning, they see it as a big hinderance to waste

time by registering patient data on a computer. Especially as they still have

to write symptoms and drug prescriptions on patients’ paper slips in addition.

Many physicians think that a clerk should be there to do the computer work.

Many of the team’s implementation workers have been spending a lot of time

during work hours doing so. Partly as a testing effort, partly for additional

demonstration with the aim of teaching the physicians how it is done. The

physicians are nevertheless positive to the system, and think it can be helpful

and benefit their work.

There is one OPD unit where implementation has gone better than the rest,

at the medical OPD. This seems to be due to its lower patient load, and

the fact that there is only one physician working here. Another small, but

noteworthy difference is that the physician here has placed the computer

right in front of himself on the desk. Like in picture 6.2, the other OPDs

have turned the computer away from their working area. One can wonder

if the computer has been moved after attempting to use the system, or if

the system is not used because the computer is turned away. The answer is

probably a combination.

6.2. RECEPTION 69

Figure 6.1: A normal queue of patients waiting to get in to OPD

6.2.2 IPD

The IPD module is one of the newest and smallest modules, at least in a

functionality perspective. The nurses who will use it seem unsatisfied with

its capabilities. They feel limited, they “can’t even see the numbers of bed

available at the ward”. Before the module gets more functionality, it is

unlikely to be used extensively. The upshot is that they seem to have a

good understanding of how to use it, and will probably adapt easily to newer

versions as the module mellows.

6.2.3 Blood bank

On our visit to the blood bank at the end of March, the system was not in

use, and from our observations it seems doubtful that it has ever been used

70 CHAPTER 6. IMPLEMENTATION

Figure 6.2: Two team members using the system while the physician is
helping the patient at the eye OPD clinic.

after the initial installation. The workers are obligated to use a paper-based

record for both donation and issuing of blood. As long as they have to do

this, they wont use the module since it means twice as much work. Apart

from this, there does not seem to be much else that keeps them from using it.

This module has seemingly not been much prioritised by the implementation

team so far. As were the responsible developers of it, the module have not

been altered since in the fall It is also not connected to the rest of the system

for the moment. [KOmmentar: SKRIVE LITT MEIR HER]

6.2. RECEPTION 71

Figure 6.3: A nurse at one of the wards talking about the IPD module

Chapter 7

Arenas of Communication

One of the biggest challenges in a distributed development project, is com-

munication. Ensuring that information is shared equally, and that develop-

ment is properly coordinated can be difficult under the best of circumstances.

When you are dealing with actors spanning five different locations with up

to 14 hour time differences, however, this takes on a completely different

dimension.

In this chapter we will look at the different forms and arenas of communica-

tion used within the project, and their impact on the development process,

both negative and positive.

7.1 Face to Face

As we and the entire implementation team was located in Shimla, face-to-face

communication was a big part of how we learnt about the project. Especially

the senior developer who was on site for the two first weeks, was a big help

72

7.1. FACE TO FACE 73

in getting us acquainted with OpenMRS and the system as a whole.

The work environment and structure, while quite friendly and informal, was

very different from what we were used to. Shouting was frequently used when

talking to subordinates or peers, whether in person or on the phone. This

was very alien and awkward for us at first, though nobody seemed to harbour

any grudges and usually settled their arguments quite quickly. There were

also a lot of complaints, even from the project manager, though it was rare

for anything to be done about it.

Towards the end of our stay there was a more serious conflict about the

distinction between patients and donors in the blood bank. It had at one

point, before our arrival, been decided that donors should also be patients

to simplify the development. During testing the health information officer

discovered this, and in discussions with the other implementers rather vocally

disagreed with it. He was concerned that on semantic grounds this was

nonsensical, and would cause bloat in the database as donors who never

set foot within the hospital would permanently be entered into the patient

records. Due to the development process this was discussed shortly before

implementation was to take place, meaning there was no time to make the

change even if one had wanted to. The project leader disagreed however,

and the argument continued back and forth for days. In the end nothing

came out of it, though the health information officer shared with us his grave

disappointment at not being listened to in what was his area of expertise.

The situation was quite different when it came to technical issues. Due to a

low understanding from the implementers, what the developers decided to do

was usually accepted without complaints. This proved somewhat frustrating

since by the time the senior developer had left we were left without any local

‘community-of-practice’ [Walsham, 2001a] and, by this, anyone with whom

we could easily confer when we were stuck or had questions about the system.

We were advised to keep in close touch with the remote developers, but this

proved less than satisfying due to the latency and the differing work hours.

74 CHAPTER 7. ARENAS OF COMMUNICATION

Another problematic issue which occurred was the decision of how to imple-

ment the RKS module. Both we and many of the senior HISP staff were

sceptical of the senior developer’s choice of using Palo. It required a separate

server instance and the use of Excel, and it was unclear why this solution

was especially well suited. He happily demoed the application, but when

queried whether it really was the best solution, he would often simply say

“It’s used by lots of fortune five hundred companies, just check their home-

page.”. While the project leader trusted his word that it could be done, she

often jokingly pleaded to us to “please don’t use the Palo”. We attempted

multiple times to discuss the issue with the senior developer, but were usu-

ally met with tired exasperation as he simply wanted to follow his plans and

finish up.

In the end, after the senior developer left, we convinced the HISP and project

leaders that an equally viable solution could be produced in a simpler fash-

ion, and got the go-ahead to plan such an implementation. However, after

developing a model and starting discussion of it with the system architect, it

was quickly realised that fundamental requirements documents existed which

we had never been provided with or seen. These had been placed on Red-

mine, but had gone unnoticed. After reading the full requirements it quickly

became evident why the senior developer had chosen to go with Palo, as the

requirements would be a lot more work to implement manually than initially

assumed. This fundamental breakdown in communication caused the module

development to go way over schedule, and we were unable to finish it by the

time we left Shimla.

7.2 Teleconferencing

Due to the distributed nature of the project, Skype, as well as mobile phones,

was often used when discussing issues with remote actors. This included

everything from regularly scheduled meetings, to bug reports and status up-

7.2. TELECONFERENCING 75

dates. Skype was used most of the time internally in the project as many of

the actors were located in different countries, making regular phone calls ill

suited.

Perhaps the most important use of Skype was for the weekly developer call

between the development team, the lead implementers, the head of HISP

India, and a member of the OpenMRS core developer team. This meeting

was used to discuss progress of module development, any issues that might

need resolving, and planning for future development. Due to the large time

differences, the meeting was usually held during the evening Indian time,

which was early morning US. This in itself was a source of some annoyance,

though nothing much could be done about it.

The meetings were useful in many ways. It was more or less the only time

the entire team was “together”, and able to discuss matters and progress, not

to mention that the OpenMRS developer was able to give valuable input on

plans and decisions. Because of this, most development decisions were made

at these meetings. There were, however, a lot of problems running these

meetings efficiently. A frequent problem was the lack of a meeting agenda,

with the side effect that tangential, and often inconsequential, issues took

up a lot of time. This was a frequent complaint from most of the people in

the call, but in the end little was done about it. This lack of planning also

resulted in one meeting having to change the topics significantly due to one

of the key people unexpectedly not joining, as well as confusion around the

starting time of another meeting with the result that the Shimla office had

to sit around for an hour waiting for the meeting.

Besides these organisational issues there were also problems related to the

audio quality, as well as some of the participants’ English. Audio quality

was often bad due to the conference service used. Some of the participants

were also not great English speakers. This resulted in misunderstandings

and often hesitance on their part. In one meeting, while we were attempting

to explain an issue to the architect and the OpenMRS developer, we were

76 CHAPTER 7. ARENAS OF COMMUNICATION

interrupted by the project leader who wanted to explain “what I think [he]

is trying to say is...”, which turned out to be completely mistaken, and thus

derailed the conversation.

In the end, the result was that the majority of the talking was mostly done by

three people, with occasional comments by others when they were explicitly

asked.

7.3 E-mail

E-mail was in many ways the primary way of keeping in touch. Project

announcements, milestones, and development builds were usually distributed

in this fashion. When we first arrived in Shimla, most information was

distributed by lengthy CC lists in email. As a result, potentially important

mails were as a result frequently only sent to a handful of project members,

with subsequent confusion when some people had quite literally not received

the memo. As an example, the initial introduction mail to the project started

out with five recipients and five copies. Over the course of two days, an

additional six copies were added which ended up in different branches of the

thread, resulting in later copies not getting the rest of the thread as people

replied “incorrectly”. This was to some extent alleviated when a mailing list

was set up for the project after a few weeks. This list was used extensively

throughout our stay, though primarily by and for the development team.

There were, however, still frequent misunderstandings:

From: Vietnam developer

Hi, I uploaded the database dump file which I got from [sysadmin] on 13 Nov
http://.... This is the database that I am using for development. If we have
a newer version please upload it there.

7.3. E-MAIL 77

From: Samson

After a quick look it seems to be dumped for patient data, which is good.
Nevertheless, I think it is not a good idea to upload the whole db onto
redmine, especially with no user restriction(I downloaded the file without
logging in).

From: Project leader

Why on earth have we uploaded the patient database on redmine who needs
the database and for what? if anyone needs database pls get in touch with
(sysadmin). and only database we can share is the testing database (used for
application testing in our office). please do not ask for hospital db... we are
not authorised to take or share it have removed the db from redmine. and
(sysadmin) pls cross check before sending db

From: sysadmin

Please do not upload database on redmine if anyone wants anythings let me
know.

From: Vietnam developer

That is a test database, no real patient data, which i am using for develop-
ment, I see no issue of uploading a development database for other developer
to work on it. Samson did you really find real patient data in that database

From: System architect

I asked [developer] to upload the database to redmine. And of

course without patient data. In fact I do hope that (developer)

doesn’t have any patient data. We HAVE to be able to share this

database. (...)
Now it is gone! Will you please check that there is no real patient data and
put it back soonest. I have been asking for this for some weeks now.

The style of writing emails was quite different within the project. Especially

the system architect had a habit of writing long mails, which caused some

friction with the local team. There was a feeling that the emails were often

both unnecessary and disruptive, and while they were read, the content was

frequently ignored even though the architect was technically in charge. There

was also a certain amount of indignation involved due to what was considered

nitpicking from someone who didn’t do any coding themselves. While this

78 CHAPTER 7. ARENAS OF COMMUNICATION

was never explicitly voiced in writing, it did result in some passive aggressive

replies and snide comments from the senior developer: “Ah, [architect] has

sent a long email again! That’s the only thing he can do. He know shit!“.

While the project manager didn’t directly approve of this, she too would often

comment on this when they were on Skype. Much the same indignation was

directed to the OpenMRS developers.

From: OpenMRS core developer
(System architect), your emails are long. :-) Here are my responses–I hope I
cover everything. [...] 4. Restrict by Encounter module (i.e. what to do) I
agree that building a Restrict by Encounter module is a fundamental key step.
[Local developer], I would recommend that you sketch out the design you’re
proposing, and email this to the developers@openmrs.org mailing list for
feedback. We also have a “Design Review” call on Wednesday 9am Eastern
where it would be appropriate to get feedback on this module from others
(especially including [Main OpenMRS developers]).

The senior developer never replied to this, but was very clear that he was

unwilling to “waste my time listening to them for two hours only to talk

for ten” on the OpenMRS call, despite this being the head developers of

OpenMRS who would be able to provide valuable input.

7.4 Redmine

Redmine is one of the tools deployed to ease collaboration in the team. Red-

mine is “a flexible project management web application” 1, with support for

wikis, forums, roadmaps, source code management, and bug tracking, among

other things. When we arrived in Shimla, Redmine was a relatively newly

implemented system, intended to clear up a lot of confusion around docu-

ments, and make it easier to distribute and disseminate information. The

transfer of information was in many ways in its infancy, with only a small

number of documents having been uploaded to the repository.

1www.redmine.org, (June 11, 2011)

7.4. REDMINE 79

One of the main problems with Redmine was that the installation had per-

formance issues which rendered it more or less useless. It could take minutes

for the page to load, if it did not time out. Everybody knew about this,

but nobody did anything further about it than complain informally. As time

went by and the performance issues did not disappear, people started ig-

noring it. When they were told to put documents up on the site, they did

not answer, or circulated the files on email or Skype. In the cases where

things were uploaded to Redmine, they often went unnoticed by the people

for whom they were intended, with similar results of bewilderment when the

documents were referred to. It was also the intention to use Redmine for bug

tracking, but a shared Google Docs spreadsheet was used instead.

Nothing was done about the performance issues until the system architect

expressed his concerns by e-email:

From: System architect

I am aware that the redmine server seems still to be very slow.

[sysadmin], can you please advise what to do about this? The

issue has been raised repeatedly. If it is for reasons beyond your

control (eg. bandwidth of link to your server) then we must consider

moving this to a commercial hosting. It’s really not that expensive.

[project manager]? US$9 per month?
Meanwhile we must persist ..

This got the project manager’s attention, which shortly thereafter led to the

system administrator fixing the problem.

From: Project Manager

(. . .)if we need new site to host this redmine, even if it means more money,
let us do it..as is crucial for us

When the performance problems were fixed, people started using it more

frequently, but for bug tracking people continued to use the Google spread-

sheet as a draft for the bugs, and when the testing was done they moved the

80 CHAPTER 7. ARENAS OF COMMUNICATION

findings over to the Redmine bug tracking system. Despite the cumbersome

process of registering bugs both places, people tolerated this. They seemed

to be very satisfied with the Google spreadsheet, as they felt this had less

formality than Redmine. On the other hand, the formality was one of the

benefits of Redmine. If you reported a bug on Redmine, it was assured that

it was properly tested. The system also sent out a mail to every member

attached to that project.

This confusion around document management did unfortunately not change

in a significant degree while we were on site.

Chapter 8

Discussion

In this chapter we will analyse some of the challenges faced throughout the

development and implementation process of the project, and attmept to an-

swer the research questions we posed in the beginning of the thesis.

8.1 Distributed Development

The challenges of distributed development present themselves in many ways.

In our case large parts of the development process was conducted in different

countries, and coordinated via mail and telephone. In such a process there

are a number of things which can go wrong or be confused, both in terms

of implementation, testing and the actual development. It places a large re-

quirement on both the diligence and the communication skills of the different

parties involved, and can, if underestimated, result in both slowdowns and

direct failures. The gains are, however, often significant, in that you can

leverage resources and expertise which would otherwise be unavailable, and

as such it can often worth the risk. In our case, an already tricky situation

81

82 CHAPTER 8. DISCUSSION

was made even more difficult due to deadlines and a limited amount of ex-

perience with the software products used, and as such the complexity was

raised significantly.

8.1.1 Project Obstacles

One of the earliest and biggest obstacles we encountered was difficulty of

coordinating work across timezones. The project architect, who was intended

to be the technical lead, was working remotely and often not able to keep

up what the other developers were doing on a daily basis. Development for

each module was delegated to one developer who was in charge of making

sure that it proceeded smoothly. Information about the development progress

was largely restricted to the developer responsible, and as such it was difficult

for others to keep updated and provide feedback on the development process.

This problem became very evident during our first stay in Shimla, during the

development of a security module for the Blood Bank. Due to the inherent

structure of the OpenMRS system, information about blood tests entered into

the blood bank, which could potentially contain classified information such

as the result of AIDS tests, would become available to a large amount of staff

with generic system privileges. This was seen as a show-stopping problem for

blood bank module, and responsibility was assigned to the lead developer.

The development of this module proceeded swiftly before his departure from

project, and what he assured was a working solution was delivered in code

form. In subsequent meetings after his departure, the subject of this module

was discussed, and it quickly became evident that nobody besides the original

developer had verified its functionality, or indeed attempted to run it. The

architect also expressed significant doubts as to whether the module would

provide secure enough for the purpose.

I have serious doubts about whether [the developer] would have

had time to write a fully secure module in only one day. [...] I

8.1. DISTRIBUTED DEVELOPMENT 83

think we need to do a thorough code review before we can use it.

Later attempts to run it showed that the module did indeed seemingly work,

but code-level inspection of the robustness of the module was never per-

formed, despite stated plans to do so at the weekly meeting. Prior to the

development of the module, there were discussions with the OpenMRS devel-

opers about the feasibility of such a module, and a general approach was more

or less agreed on. The lack of documentation, however, more or less doomed

the module since it proved hard for others to both use and understand the

module, and the other developers were hesitant to take responsibility of it.

In the end the module was never deployed, despite it initially having been

labeled as critical.

This particular case, which was in no way unique, highlights some of the

intra-team problems of communication that arose during our initial stay in

Shimla. The architect had significant problems communicating with the

other developers, and was by many seen as both overly concerned with design,

as well as insignificant due to the fact that he did not participate in the actual

development of the system. The architect later ended up leaving the project,

and while we can only speculate as to his reasons for doing so, there is little

doubt that he had significant problems communicating with the rest of the

team. Such a problem is in no way uncommon in distributed situations, and

especially for leaders it can be challenging to retain influence and respect

when you are not able to interact with the team directly.

For us as junior developers on the team the distance also proved to be prob-

lematic in that after the lead developers stay in Shimla ended, we were left

without a ”community of practice” or any other developers to confer with.

This proved to be highly problematic as we were in many cases not suffi-

ciently comfortable with the system to make decisions about ways to develop

our modules, as well as ending up spending significant amounts of time on

relatively trivial problems due to a lack of mentors with with to discuss.

84 CHAPTER 8. DISCUSSION

Attempts were made to improve communication with both the vietnamese

developers as well as the architect, but in the end the latency of such commu-

nication slowed us down greatly. Especially the initial development of RKS

was very delayed due to the complexity of the system, and our inexperience

with the plans the lead developers had laid out.

Documentation was also a significant problem throughout our stay. While

Redmine had been planned as a collaboration platform initially, this did not

happen for a long while due to server issues which rendered it exceedingly

slow. After complaints during one weekly meeting, and a somewhat strained

email thread, the problem was resolved. Despite this, however, Redmine did

not see significant use, and a lot of documents were distributed solely by

mail. The architect made repeated calls to use Redmine, but there were few

changes in the use among the implementors. By the end of our stay is was

more or less only used as a repository for builds of the different modules. This

lack of knowledge sharing was especially evident during the RKS handover

during which a lot of time was wasted on what turned out to be only parts

of the actual requirements. The actual requirements document had been

uploaded to Redmine, but despite asking for it were not made aware of its

existence until later discussions with the architect regarding module features.

8.1.2 Theoretical Analysis

To understand the project actors it is perhaps more useful to look at them

from a background and point-of-view perspective. Without a doubt the

biggest differences between them lie in the differing national backgrounds,

as well as technical experience, and project goals. With this in mind some

very distinct groupings are visible.

First and foremost the different actors involved in the project during our stay

came from very different backgrounds. While all of the local implementors

8.1. DISTRIBUTED DEVELOPMENT 85

were native Indians, who had previously worked with HIS in academia or

in government, all members of the development team were foreigners, both

from other parts of Asia as well as Europe. While this isn’t in and of itself

a problem, it does cause very different views on how the development and

implementation process should best be conducted. The Irish architect for

instance, when visiting the local premises, was shocked to see that what was

termed the ”server-room” was little more than a padlocked closet with a

window. Without such local background knowledge it is impossible to make

well-informed decisions about the directions to take during the developent

process. This in turn means that a close dialog with the local implementors

and the rest of the team is necessary to ensure that all participants of the

process are on the same page with regards to the premises and the goals of

the project.

This also applies to the technical backgrounds of the actors. The imple-

mentation team was largely from Health Information backgrounds, and with

some exceptions had little technical background in the field of IS develop-

ment. On the other end of the spectrum, the architect, and in many ways

us, come from an academic background and have a broader interest in the

product beyond just the end product. This difference in views became very

evident throughout the development process in that the architect would write

long mails on the subject of software modularity and security, which would

largely be ignored by the local team because they often either didn’t under-

stand the problem, or see it as a problem. One particular example is the

discussion around data sharing. The practice prior to our arrival in Shimla

was distribution of a database which contained all the data that was required

to run the system. This database was both brittle and confusing as it con-

tained snapshots of a running system, and as such was dependant on running

the correct versions of the modules, whichever version that may be. Many

of these databases also contained live data from the hospital, in strict vio-

lation of guidelines. The data issue was quickly solved through the use an

OpenMRS data export module which could efficiently export and import spe-

cific chunks of data, streamlining the process of distributing necessary data.

86 CHAPTER 8. DISCUSSION

The architect was very enthusiastic about this since he was having problems

keeping a working and stable copy of the system running for his own testing

purposes. The implementors, however, didn’t really see the use of this, and

were fairly dismissive. The other developers, while more understanding of

the problem, had little use for such a solution since they already had working

systems up and running, and had no problems with the current deployment

process. Because of this, the alternative method of exporting data quickly

fell by the roadside, and was never used beyond some minor testing done by

us.

In many ways, the most direct result of the differing backgrounds was evident

in the views on the process and the goal. While it for us was an opportunity

to both learn and to contribute to OSS, the prevailing view among the imple-

mentors and many of the developers was very focused on ”getting it done”,

in many cases with little regard for the maintainability and sustainability of

the solution. They were under strict contractual obligations to deliver a cer-

tain amount of modules by a certain date, and failures to do so would cause

problems both within the organization and with the relationship to the state

and the hospital. Considering these diverging views on what the purpose

and the goal of the project would be, it comes as little surprise that there

were significant issues with the communication between the different groups.

Ensuring that everyone involved are on the same page with regards to project

goals is important to make sure everyone pulls in the same direction, but can

at the same time be quite difficult when the cultural gap is similarly large.

According to Orlikowski and Gash[Orlikowski and Gash, 1994]:

The frames of reference held by organizational members are im-

plicit guidelines that serve to organize and shape their interpre-

tations of events and organizational phenomena and give these

meaning.

8.2. IMPLEMENTATION 87

Ågerfalk et.al. [Agerfalk et al., 2005] add:

Culture can have a huge effect on how people interpret a certain

situation, and how they react to it. Hence, having shared (or

overlapping) frames of reference is a precondition for people to

succeed in communication and collaboration.

This view correlates with a lot of the experiences we’ve had while working on

the project. The cultural differences in ways of discussing were immediately

evident to us when we came there, a much stronger hierarchy and more

confrontational style of communicating than we were used to. In addition

to the strong divide between developers and implementors, the practice of

assigning modules to individual developers made planning far more difficult

than it should have been. Many of the things discussed require relatively

high-bandwith communication to get across safely, and in many cases e-mail

is not sufficient to fill this role. In the end, parts of the project failed, and a

lot of time was wasted.

Practically all of issues encountered are known issues associated with dis-

tributed development [Sengupta et al., 2006]. It seems evident from our case,

that these issues are a clear and present danger to any distributed project,

and if not recognized early and handled properly, can cause significant prob-

lems.

8.2 Implementation

The primary motivation for the implementation of a new HIS from the state’s

side has always been an increased capability to track patients and diseases

at a local level. Taking this a step further, and going for a full HospMIS in

addition to Health Management Information System (HMIS) efforts (like the

88 CHAPTER 8. DISCUSSION

ongoing implementation of DHIS) might turn out to be a burger too big to

handle. Arguably, hospital systems based on EMRs are, at least technically,

more complex than HMIS. Since success in the HMIS domain has also been

rather limited across the developing world, some may argue that maybe the

district hospitals are not ready for a project like this. There are reasons to

believe that there is much to learn from the literature and research on this

subject. HospMIS’ have been around in the west for quite a time, and the

primary obstacle is not necessarily the technical part related to development,

but largely in the socio-technical implementation challenges. In this chapter

we will try to summarise what we believe are the biggest obstacles related to

the implementation effort.

8.2.1 Patient load

One of the biggest differences between Indian and Norwegian hospitals is, as

one might expect from the population density, the patient load. An Indian

doctor can on an average day attend up to as many as 150 patients in a 6 hour

day, many times the number that any western doctor would expect. This

also means a proportionally shorter time with each patient (2.5 minutes per

patient on average!), the direct consequence of which is that any extra time

spent with a computer system compared to a paper based system, will be a

very hard sell. Most of the doctors we talked to after the final installation

were very clear on that they would rarely have time to use a computer system.

Most of this was related to pure patient overload. There was, however, one

exception to this. The doctor in the medical OPD had a lighter load, and

was very positive to the use of the system.

While it’s easy to claim that the patient load is too high to make a computer

system viable, it should, however, be mentioned that the current implementa-

tion calls for a paper based system in addition to the computer based system.

It is in out opinion likely that a full conversion to a computer based system

8.2. IMPLEMENTATION 89

would make it more viable. This is, however, easier said than done.

8.2.2 Inexperience

Another important difference between the west and India, though decreasing

over the last years, is the so-called “digital divide”. While in Norway there

is practically one computer per capita, there are in India about .051. The

majority of the health workers have very sparse experience with computers,

especially the older ones, and can have a hard time understanding the basic

concepts of how to use a computer, never mind use the computer system.

This adds to the implementation challenge. The implementation of a Hosp-

MIS affects most parts of a hospital. Maintaining an electronic record of a

patient necessitates input in all stages of patient interaction, from check in,

lab tests, medications, and to discharge. DDU is no exception to this. As

described earlier, the patient goes from registration, through clinic checkups,

and, if necessary, is checked in to a ward, or proceeds to billing to pay for pro-

cedures and lab tests. Both registration and billing have been computerised

for some time, and while these were both part of the new implementation, the

presence of trained clerks helps the further transition go smoother. Any hope

that a successful implementation is to have, needs to be based on thorough

training of the employees at the hospital.

8.2.3 Lack of motivation

Many of the health workers we talked to complained of a lack of functionality,

as well as a lack of advantages for their working day. Much of this is related

to the fact that many of the modules are in prototype stages, but there is

little doubt that for some a computer system might not be a huge advantage.

1According to International Telecommunication Union, as of 2005 India had about 1.5
computers per 100 capita.

90 CHAPTER 8. DISCUSSION

The blood bank is one of the less patient-congested departments, and one

could believe that this lead them to be more adaptive to change. So far this

has not been the case. This seems mainly to be due to their well-working

paper-based routines that management seemingly force them to continue

using. So far there also are very few benefits with the computer system

compared to this. Before there is to be any hope that the new system will

be used, it a) needs to fulfil all the criteria the management has, so they

can cut out the paper record, and b) must have additional user friendly

features that make it more attractive than the current paper-based system

for the workers. The latter relates not only to this module - the nurses using

the IPD module, for instance, were clearly dissatisfied with this module’s

present functionality. They missed everything from simple things like it being

able to show information about beds available, to more complex things like

administering patients and change patient data.

8.3 Standardisation

One of the most fundamental principles in the development of large IS

projects is the use of standards. For different actors to be able to communi-

cate efficiently and accurately, a set of shared standards need to be present

at the bottom. [Braa et al., 2007] state that “HIS standards have national

importance and the role and involvement of health authorities will always be

significant”. It seems evident that HIS by their very nature are even more

dependant on such a set of well-established standards to ensure thorough

and consistent processes. Without going further into discussing why this is,

we would instead like to focus on how to approach and establish standards

in large and complex projects such as our case. We will attempt to analyse

what has been done with respect to standardisation, and what the result has

been.

8.3. STANDARDISATION 91

8.3.1 Designing Standards

A number of papers about standardisation, especially in the healthcare do-

main, suggest that standards should be approached bottom-up. [Berg and Timmermans, 2000]

say “the phoenix of universality rises from the ashes of local chaos”, which

can be interpreted as: To have the best chances to successfully implement

a health information system, one should not enforce standards upon the

users, but let standards “evolve” throughout development and implementa-

tion. From the start of the project, this has been the intended course of

action. The development has been conducted in a participatory manner,

with the team working closely with the hospital employees.

Through meetings and feedback the team gathers requirements and insight

in the work situation. After analysing the current practices, an optimised

workflow can be created with the help of computer systems. Throughout this

process interaction and training with the hospital employees is conducted,

preparing them for the new way of conducting their day-to-day activitie.

This step is in many ways one of the most difficult and critical in the imple-

mentation. While the goal of a bottom-up approach is to ensure that local

procedures and processes are taken into consideration when building the sys-

tem, part of the goal of such a system is also to optimise bottle-necks and

provide new functionality. This requires very close cooperation with hospital

actors to ensure smooth transition.

The project is not only trying to achieve HIS standards, but work stan-

dards as well. When the state health department released the RFP, they

received a lot more proposals than anticipated, however, most of them were

interpreted as “unrealistic and utopian, even for western-world hospital stan-

dards!” (HISP Project Manager). Some of the proposals had previously been

bought and implemented at other hospitals in India, but had proven dissatis-

fying. The majority were also proprietary and prohibitively expensive, which

caused the state health department to reconsider the wisdom of springing for

92 CHAPTER 8. DISCUSSION

such a system. They questioned whether spending money on technology

and unproven IS was the best idea compared to hiring more staff, improving

infrastructure and purchasing equipment. After a lengthy process, this led

them to reject all the proposals, opting instead to contact the national gov-

ernment for advice. Through the government they were put in touch with

HISP India who helped them create plans for developing a system partly from

scratch, alongside plans to improve the health working standards through the

implementation.

Unlike in the western world, where Hospital Information System (HospIS)

and HospMIS based on EMR have been of great interest for decades, and

are becoming increasingly common, there have not yet been any great ICT

initiatives of this kind in India, or in any other developing countries. Most

initiatives have been focusing on PHC, and because of this development

efforts have been on concentrated around HMIS solutions for aggregated

facility based statistics. Throughout a project’s duration there are many

decisions one has to face that it can be hard to predit the outcome of, and

which can later have unforeseen impact. The initial choice of software is a

good example of this. HISP India had two choices when they started this

project, a) implement a HospMIS built for and on western standards or b)

build their own system from scratch. They chose the latter, in accordance

with the state health department (who in many ways had already had the first

alternative available). Based on this, and that they wanted the system to be

open-source, they landed on the decision to base the system on OpenMRS, an

already successful and established product in the HIS world. While it’s hard

to speculate what the result would ultimately have been if a more classical

HospMIS product had been chosen, and even though it’s too early to say the

outcome of the current system, our observations during our stay points to the

state being well served by the system in its current form. Basing a system

on local practices and processes is critical when attempting to introduce HIS

in an environment where both resources and experience are in short supply.

Any system based around idealised standards will inevitably fail.

8.3. STANDARDISATION 93

8.3.2 The Hospital Core Module

Because of the fact that the system is still in its infancy, and currently has not

been deployed in any other sites beyond DDU, it’s hard to say how successful

the standards created will be. The great litmus test will be when the imple-

mentation at DDU is finalised, and the distribution to other hospitals begins.

Due to the nature of the nineteen other planned implementations, there will

be far less time and resources dedicated, which necessitates a solid base sys-

tem which requires a minimum of customization, but which at the same time

meets the local requirements and is easily adapted to local processes. To

what degree the system will be generic or possible to easily customise at

each hospital, can be crucial for success. The hospital core module will play

an important role here as it both creates a framework for controlled customi-

sation, as well as restricts more direct customisation of individual modules.

It is an example of how the need for standards can emerge, but also a good

example of what the consequences of your choices can be further down the

road. It also demonstrates that OpenMRS is missing fundamental pieces for

the core of a complete HospMIS system, and might not have been a perfect

match for the task.

In order to further investigate the standardisation effort, we have chosen to

look at the pros and cons of this module to get a clearer picture of its meaning

and importance.

Pros

1. Standardised module communication

The initial issue which prompted the creation of the core module was

intra-system communication between the different modules. Cross-

dependencies between the modules is something that isn’t supported

in OpenMRS, and which necessitated a workaround. The prevailing

94 CHAPTER 8. DISCUSSION

opinion after discussions with core OpenMRS developers and within

the team, was that a third overarching module had to be created to

facilitate communication. This proved to work fairly well, and in terms

of the initial goal, the core module was a success.

2. Customisability

Since the module is centralised and able to communicate with the other

running modules, it can serve as a configuration point for different as-

pects of the system, and as such make the system more understandable

and user-friendly.

3. Generification

The initial plans for the module also included plans for dashboard func-

tionality which would provide overviews of the the different depart-

ments on a day-to-day basis. Such functionality would, on the long

term, likely be required in some form or another to create a more uni-

fied administrative interface for a hospital. Such functionality would

be difficult to implement in a standalone module.

Cons

1. Less Flexibility

The module lead to a more rigid system in total, as all the business

logic of the different modules was moved into the core to facilitate

communication. In practice this makes it impossible to pick and choose

modules as they are no longer standalone.

2. Lock-in

“Lock-in is not only created by hardware and software. In-

formation itself, its structures in databases as well as the

semantics of the individual data elements, is linked together

8.4. IMPROVEMENTS 95

into huge and complex networks that create lock-ins.”

([Hanseth, 2000])

The core module creates lock-in in that it contains most of the busi-

ness logic of the system, and can not easily be switched out or upgraded

without affecting all the other running modules. This makes customi-

sation very difficult.

3. Time Consuming

At the time of the development of the core module, there was a shortage

of developers on the team. Given the time constraints, the uncertainty

of the core module and the necessary development, it may have been

wiser to focus on developing the scheduled modules.

While there is little doubt that the core module will go a long way towards

standardising and bringing the system together, this has a definite cost in

terms of potential customisation and maintainability at later points. It’s

impossible to say at this point whether this tradeoff will be worth it, though

so far it has solved the problems it was created to fix.

8.4 Improvements

While the project so far has been a success in terms of their stated goals,

there has throughout the process been quite a few obstacles and challenges

which has caused both delays and redesigns of the different modules. In this

section we’ll look at some of the points we feel it would be worthwhile to

investigate for future projects.

96 CHAPTER 8. DISCUSSION

8.4.1 Improved Documentation and Communication

One of the largest challenges of any organization is management of experience

and knowledge. Even though a lot of resources are explicit in the form of

paper or computer data, ensuring that the right people see these at the right

time, can be a point of difficulty. In addition, a lot of experience is tacit, or

hidden, often due to employees not realizing its importance, which further

complicates efficient knowledge transfer. A good knowledge management

strategy can in many cases mean the difference between a smooth transition

process, and a costly redevelopment.

Knowledge manifests itself in all parts of a modern organization; in the minds

of its employees, in the tools and technologies used, and in the structure of

the organisation itself. In all levels there is both explicit and tacit knowl-

edge about how best to operate and adjust, which has been built up over a

long period of time. Especially in the IT-industry, but also in many other

service-oriented businesses, this knowledge is the bread and butter of the

organisation. Without the know-how of your employees, and the business

practices to best employ those skillsets, you are left without a product.

[Rus and Lindvall, 2002] have described some of the risks involved with poor

knowledge management:

• Loss of knowledge due to attrition

• Lack of knowledge, and an overly long time to acquire it due to steep

learning curves.

• People repeating mistakes and performing rework because they forgot

what they learned from previous projects.

• Individuals who own key knowledge becoming unavailable.

8.4. IMPROVEMENTS 97

In a project where a large part of the actors involved, such as ourselves, are

transient, this is an even greater risk. Indeed one of the earliest obstacles

we encountered was the work left behind by the senior developer who left

the project shortly after our arrival. Despite a conscious effort in advance

to ensure that we had all the information necessary to continue his work,

it quickly became evident that this hadn’t been the case. While there was

process in place to facilitate knowledge transfer, the simple fact was that

omission of tacit knowledge, either through forgetting or not considering it

important, became a problem for us later on. There was little in the way

of documentation to help us understand the problems we were attempting

to solve, and a large effort had to be done to uncover why certain decisions

were made, and what the best way to proceed would be.

Such problems are common, and particularly in a distributed project it’s

important to ensure that documentation is taken seriously by everyone in-

volved. As [Szulanski, 1996] points out, ”Individuals who do not understand

why particular practices are effective may not be adept at communicating

their knowledge to others.” It is our belief that a large amount of time and

effort could have been saved if more time had been dedicated to planning and

documenting the decisions taken throughout the development process, and

ensuring that everyone made the necessary steps to document their work.

It is far cheaper to create documentation that isn’t needed than to need

documentation and not have it.

8.4.2 Increase Focus on Development Processes

From the start of the project the development process has proven problem-

atic. Despite plans for an iterative process, the team ended up assigning the

modules to individual developers, and developing in what can be called a

waterfall model. While this in itself isn’t necessarily a problem, it turned

out to be devastating in this particular case, as there were fundamental mis-

98 CHAPTER 8. DISCUSSION

understandings in the way the team had developed their modules. Because

of the architectural problems inherent in the design, all but one of them had

to be scrapped, and development was severely set back. In the words of the

project leader:

What happened is after the module was done by the developer,

as per him, it was given for testing, and then realizes there’s so

many drawbacks into it, because you know, the requirements were

not [followed].

Despite the obvious disadvantages the development process had, no particu-

lar changes were implemented after development was restarted, and during

the time we spent on the project this continued in more or less the same fash-

ion. While there were no problems of a similar magnitude at a later stage,

there were nevertheless a lot of hitches throughout the project. During our

second stay, the entire implementation team had to spend over a week redo-

ing data imports of the entire hospital inventory due to a database change

in the latest version of the inventory module. While this was in itself not

catastrophic, it was very costly in terms of man-hours.

A similar problem occurred after our first stay in Shimla. Some time after

we had left, we received a mail from the project leader regarding the blood

bank module we had developed.

From: Project leader
pls this is urgent, blood bank module is not working. if not done urgently
we will have to remove from there re-develop blood bank. pls consider this
urgent. (..)

It’s hard to say what the cause of these specific problems were, but it seems

clear that the amount of testing performed before implementation was in-

sufficient. The question then becomes, what method can be employed to

improve the development process and the system quality? While the project

8.4. IMPROVEMENTS 99

leader wasn’t familiar with Agile, she was quite clear on the problems they

had faced:

“Had we followed the shorter releases I think it would’ve been

much better, and as an implementer I know then what has been

built, and as a developer he knows, you know, if it actually matches

the requirements.”

Unfortunately, even in the case of blood bank where there was followup

from the implementer, there was still very little in the way of testing during

development. Anything beyond superficial testing was scheduled right before

implementation, leaving virtually no time to actually fix severe bugs. Such

bugs did not occur at the time, which may have seemed like a blessing, but

it didn’t take many weeks after our departure before lists of bugs started

appearing in our mailboxes despite repeated warnings that we would not

have time to fix them later.

While it’s not surprising that implementers did not have time to actually

test the modules for conformance at all times, it seems very short-sighted to

postpone all such testing until the very last minute. Especially due to the

initial requirements failure of the first four modules one would imagine that

such a thing would be prioritised.

Mapping a method like XP or Scrum to this case is, however, not nec-

essarily easy as agile methods were created for smaller co-located teams.

[Ramesh et al., 2006] noted that many changes had to be made to fit with

the traditional agile model. Much like those cases, the OpenMRS project

has a very real need for an upfront and somewhat finalised requirements list

due to contractual obligations, as well as synchronisation issues due to time

differences. It is however, our belief, that with flexible planning, and through

the use of collaborative tools, an agile process can be achieved that would

greatly benefit the project.

100 CHAPTER 8. DISCUSSION

The question remains whether or not the resource restrictions of the project,

and the level of skill of the development team would be sufficient to accom-

modate a high-maintenance agile process. This is, however, beyond the scope

of our study.

8.4.3 Risk Estimation

A lot of the problems we witnessed during our time on the project can best

be described as planning issues. Many of the software solutions used have

later turned out to poor fits, and require more work than previously assumed.

While it’s impossible to have perfect knowledge of a solution in advance, a

pattern does seem to emerge in terms of a distinct lack of risk estimation.

When OpenMRS was first picked, very few on the team had any familiarity

with the project. Only one of the developers had previously worked with.

This proved to be costly, as there in the first months of the development pro-

cess were fundamental misunderstandings in terms of the OpenMRS Data

model, and how the planned modules should best interact with the Open-

MRS core. Even well after this, when the redevelopment of the modules was

well underway, there were still a lot of confusion with regards to OpenMRS.

What has later become obvious is that OpenMRS, while a promising system,

has a quite different direction and focus than the HISP project does. This

has proven to create a lot of problems in terms of module architecture. As

the health information officer put it on the questionnaire: “On the project

front both implementers and developers should educate/be educated as to the

functionalities and limitations of OpenMRS.” If a common understanding of

the capabilites of the software you’re using is not established prior to the

project planning, you run the risk of wasting significant amounts of time

doing things the wrong way.

The choice of Palo was perhaps even more haphazard than the choice of

8.4. IMPROVEMENTS 101

OpenMRS. The plans for RKS were laid out by one developer, who had

investigated the problem and the options. As it turns out he did not end

up creating the actual module, instead passing it on to us. At the time we

started this work, there was virtually nobody on the team with a complete

understanding of the planned solution, or the feasability of the solution. As

it turns out, the solution was feasible, albeit far from simple. In the end, it

took significantly longer to create than planned, and was ultimately scrapped,

with great cost.

Similarly, the choice of creating the hospital core module, was a time invest-

ment which proved to have more drawbacks than anticipated. While there

was a definite need for the core module, it later had to be scaled back due to

the tight coupling it created between the modules. This kind of risk, while

impossible to completely eliminate, can be greatly minimised through more

thorough planning and risk estimation. While doing so will necessarily re-

quire more work which isn’t directly productive, it will in most cases be a

small price to pay when compared to the potential fallout of a project gone

wrong.

8.4.4 Improved Cooperation With the OSS Commmu-

nity

Any project based on an OSS system, is dependant on either good contact

with the core developers, or strong project developers who themselves can

solve deficiences and problems. Unlike a commercial system where there is

a contract in place with regards to support, the creators of a Free and Open

Source Software (FOSS) system bear no obligations towards its users. It is

a hierarchy based around sharing, with those who choose not to participate

in the process often having to sit on the sidelines. When deciding to base

your software on a system like OpenMRS you are essentially staking a bet

on the direction that the core developers are taking their system, and have

102 CHAPTER 8. DISCUSSION

to either cooperate with the developers to ensure that your needs are met in

the development process, or hope that they have the same goals in mind as

you.

With regards to OpenMRS, it initially seemed like the goals were unifiable,

though it after a while became evident that the leadership of OpenMRS,

while very interested in the HISP effort, were not overly keen on taking

OpenMRS in the same direction. Despite this there was initially a lot of

cooperation between the two teams, with OpenMRS providing the team with

direct weekly support from one of the core developers. Shortly after we left

Shimla the first time, this weekly meeting was changed to a public meeting

instead of one dedicated to the HISP project, and cooperation between the

two teams quickly dwindled.

When we later asked the HISP leader whether he considered contributing

any of the work back to OpenMRS, his response was one of skepticism. Due

to what he perceived as a lack of interest on OpenMRS’ part, he considered

it a waste of time to contribute back, and instead wanted the team to focus

on their own project. Such a sentiment is understandable given the divergent

goals of the two projects, though in the long run it’s questionable whether

it will be productive. Given that the system is based on OpenMRS, they

either have the choice of continuing down the path that OpenMRS developers

are paving in new version, creating their own version of OpenMRS through

forking, or abandoning the system altogether and create their own core on

which to base the modules. For the time being they have chosen to continue

with OpenMRS. In a later interview the senior developer noted that he was

preparing the modules for the latest version of OpenMRS. He did, however,

express doubt about the future. The prospect of OpenMRS being able to

break their modules in new version, is, understandably, worrying.

While it’s hard to make predictions about which direction the project leaders

should take with regards to OpenMRS, it seems to us that their best bet is

to continue cooperating closely with the OpenMRS project. OSS is by and

8.4. IMPROVEMENTS 103

large a meritocracy, and if HISP is to have any say in the direction that

OpenMRS is taking, it would be wise of them to maintain a presence, and

to contribute back to the project to gain support for their views. Otherwise,

as passive observers, they risk the project moving ahead without them, and

being left with a dying platform which they are ill equipped to maintain.

Chapter 9

Conclusion

Throughout our time working on this project we have seen the system go from

a fledgling set of independent modules, to a complex system implemented and

used on a daily basis at a major Indian district hospital. By all accounts,

the system has so far been a success. Much of the reason for this is the

solid base that OpenMRS has provided, in addition to the hard work laid

down by the HISP developers and implementors over the past year. While it’s

heartening to see that a fairly generic system like OpenMRS can be expanded

to work in a hospital setting, our work nevertheless shows that care should be

taken when planning and choosing such a system. Despite the success, there

have been a lot of problems which could likely have been avoided through

better planning and communication with the OpenMRS community. One

should not be blinded by the prospect of free software; there are definite costs

attached to adapting such a system, and skilled developers and implementors

are no doubt needed.

Our research also shows that working in a distributed development comes

with significant risks and pitfalls, which it can be very hard to avoid if not

carefully planned for. Especially in a research project like this where many

104

105

of the actors are transient participants, it is extremely important to ensure

that knowledge is retained within the project. Many of the problems we faced

throughout our stay were sustained from a lack of proper documentation and

planning. The failure to complete the RKS module can to some degree be

attributed to this, though there were many other causes which contributed

as well. It is also important to consider the risks involved when planning

the structure of the system. While things have turned out for the best so

far, OpenMRS and the hospital core module still pose risks for the future

development and expansion of the system.

While it’s too early to tell what the result will be when the system is moved to

the nineteen other district hospitals in Himachal Pradesh, it is our opinion

that the idea of an open and free HospMIS has proven itself sound, and

that the future bears a lot of promise for such systems. We also think that

there is a lot of potential for further research on the future development and

expansion of the system, particularly in the fields of software standardisation.

Bibliography

[Agerfalk et al., 2005] Agerfalk, P., Fitzgerald, B., Holmstrom, H., Lings, B.,

Lundell, B., and Conch’uir, E. (2005). A framework for considering oppor-

tunities and threats in distributed software development. In International

Workshop on Distributed Software Development, pages 47–61. Citeseer.

[Berg and Timmermans, 2000] Berg, M. and Timmermans, S. (2000). Or-

ders and their others: on the constitution of universalities in medical work.

Configurations, 8(1):31–61.

[Braa et al., 2007] Braa, J., Hanseth, O., Heywood, A., Mohammed, W.,

and Shaw, V. (2007). Developing health information systems in develop-

ing countries: the flexible standards strategy. Management Information

Systems Quarterly, 31(2):9.

[Braa et al., 2004] Braa, J., Monteiro, E., and Sahay, S. (2004). Networks of

action: sustainable health information systems across developing countries.

Mis Quarterly, 28(3):337–362.

[Carmel and Agarwal, 2000] Carmel, E. and Agarwal, R. (2000). Offshore

Sourcing of Information Technology Work by America’s Largest Firms.

American University, Washington DC.

[Coiera, 2009] Coiera, E. (2009). Building a national health it system from

the middle out. Journal of the American Medical Informatics Association,

16(3):271.

106

BIBLIOGRAPHY 107

[Dyb̊a and Dingsoyr, 2008] Dyb̊a, T. and Dingsoyr, T. (2008). Empirical

studies of agile software development: A systematic review. Information

and Software Technology, 50(9-10):833–859.

[Erickson et al., 2005] Erickson, J., Lyytinen, K., and Siau, K. (2005). Ag-

ile modeling, agile software development, and extreme programming: the

state of research. Research,” Journal of Database Management, 16(4):88–

100.

[Flink, 1976] Flink, J. (1976). The car culture.

[Gates, 1976] Gates, B. (1976). An open letter to hobbyists. Homebrew

Computer Club Newsletter, 2(1):2.

[Hanseth, 2000] Hanseth, O. (2000). The economics of standards. From

control to drift: The dynamics of corporate information infrastructures,

pages 56–70.

[Heeks et al., 2002] Heeks, R. et al. (2002). Information systems for public

sector management. Institute for Development Policy and Management,

Manchester, UK.

[Helsedepartementet, 2004] Helsedepartementet (2004). S@mspill 2007.

Elektronisk samarbeid i helse-og sosialsektoren. Oslo, 2004.

[Kiel and Eng, 2003] Kiel, L. and Eng, P. (2003). Experiences in distributed

development: A case study. In GSD’03 The International Workshop on

Global Software Development, page 44. Citeseer.

[Klein and Myers, 1999] Klein, H. and Myers, M. (1999). A set of princi-

ples for conducting and evaluating interpretive field studies in information

systems. MIS quarterly, 23(1):67–93.

[Lerner and Tirole, 2002] Lerner, J. and Tirole, J. (2002). Some simple eco-

nomics of open source. The journal of industrial economics, 50(2):197–234.

108 BIBLIOGRAPHY

[Lippeveld et al., 2000] Lippeveld, T., Sauerborn, R., and Bodart, C. (2000).

Design and implementation of health information systems. World Health

Organization Washington, DC.

[Manifesto, 2001] Manifesto, A. (2001). Manifesto for agile software devel-

opment. Retrieved November, 29:2006.

[Orlikowski and Gash, 1994] Orlikowski, W. and Gash, D. (1994). Techno-

logical frames: making sense of information technology in organizations.

ACM Transactions on Information Systems (TOIS), 12(2):174–207.

[Perry et al., 2002] Perry, D., Staudenmayer, N., and Votta, L. (2002). Peo-

ple, organizations, and process improvement. Software, IEEE, 11(4):36–45.

[Ramesh et al., 2006] Ramesh, B., Cao, L., Mohan, K., and Xu, P. (2006).

Can distributed software development be agile? Commun. ACM, 49:41–

46.

[Raymond et al., 2001] Raymond, E. et al. (2001). The cathedral and the

bazaar: musings on Linux and open source by an accidental revolutionary.

O’Reilly & Associates, Inc.

[Rus and Lindvall, 2002] Rus, I. and Lindvall, M. (2002). Introduction:

Knowledge management in software engineering. IEEE Software, 19(3):26–

38.

[Scardino et al., 2006] Scardino, L., Potter, K., Young, A., Stone, L.,

Da Rold, C., Huntley, H., Dreyfuss, C., Longwood, J., Tramacere, G.,

and Maurer, W. (2006). Gartner on Outsourcing, 2006-2007. Gartner

Research Report G, 144477.

[Seebregts et al., 2009] Seebregts, C., Mamlin, B., Biondich, P., Fraser, H.,

Wolfe, B., Jazayeri, D., Allen, C., Miranda, J., Baker, E., Musinguzi, N.,

et al. (2009). The OpenMRS implementers network. International Journal

of Medical Informatics, 78(11):711–720.

BIBLIOGRAPHY 109

[Sengupta et al., 2006] Sengupta, B., Chandra, S., and Sinha, V. (2006). A

research agenda for distributed software development. In Proceedings of

the 28th international conference on Software engineering, ICSE ’06, pages

731–740, New York, NY, USA. ACM.

[Silber, 2003] Silber, D. (2003). The case for eHealth. European Institute of

Public Administration.

[Silverman, 2005] Silverman, D. (2005). Doing qualitative research: A prac-

tical handbook. Sage Publications Ltd.

[Stallman, 1985] Stallman, R. (1985). The gnu manifesto. Dr. Dobb’s Jour-

nal of Software Tools, 10(3):30–35.

[Susman and Evered, 1978] Susman, G. and Evered, R. (1978). An assess-

ment of the scientific merits of action research. Administrative science

quarterly, 23(4):582–603.

[Szulanski, 1996] Szulanski, G. (1996). Exploring Internal Stickiness: Im-

pediments to the Transfer of Best Practice Within the Firm. Strategic

Management Journal, 17:27–43.

[Von Hippel, 2005] Von Hippel, E. (2005). Open source software projects as

user innovation networks. Perspectives on free and open source software,

pages 267–278.

[Walsham, 2001a] Walsham, G. (2001a). Knowledge Management::: The

Benefits and Limitations of Computer Systems. European Management

Journal, 19(6):599–608.

[Walsham, 2001b] Walsham, G. (2001b). Making a World of Difference: It

in a Global Context. John Wiley & Sons, Inc., New York, NY, USA.

[Walsham and Sahay, 2006] Walsham, G. and Sahay, S. (2006). Research

on information systems in developing countries: Current landscape and

future prospects. Information Technology for Development, 12(1):7–24.

	Title Page
	Acronyms
	Introduction
	Research Question
	Organisation of the report
	Contributions of the thesis

	Literature
	Health Information Systems
	Distributed Software Development
	Challenges

	Open Source Software
	The Open Source Philosophy
	Open Source Methodology

	Agile Software Development
	Background
	Common activites
	Extreme Programming
	Scrum

	Standardisation
	Motivation
	Trade-offs/Approaches

	Methods
	Research method
	Action Research
	Interpretive case study

	Data collection methods
	Observation
	Document analysis
	Questionnaire
	Interviews

	Scope and limitations
	Reflections

	Research context
	India
	Himachal Pradesh
	Shimla

	DDU Hospital
	Departments

	HISP
	DHIS

	HISP India
	Shimla Team
	OpenMRS
	Design Characteristics
	OpenMRS community

	Development
	Initial Development
	Development Handover
	Development Process
	Hospital Core Module
	The Blood Bank Module
	The RKS finance module

	Implementation
	Progress
	Reception
	OPD
	IPD
	Blood bank

	Arenas of Communication
	Face to Face
	Teleconferencing
	E-mail
	Redmine

	Discussion
	Distributed Development
	Project Obstacles
	Theoretical Analysis

	Implementation
	Patient load
	Inexperience
	Lack of motivation

	Standardisation
	Designing Standards
	The Hospital Core Module

	Improvements
	Improved Documentation and Communication
	Increase Focus on Development Processes
	Risk Estimation
	Improved Cooperation With the OSS Commmunity

	Conclusion
	Bibliography

