
Master of Science in Computer Science
June 2011
Tor Stålhane, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Semi-automatic Test Case Generation

Olav Undheim

PROBLEM DESCRIPTION

Requirements in CESAR can be described using a set of templates called
boilerplates. The information that can be obtained using a combination of
requirements written in boilerplates and a domain ontology opens several
opportunities for automatic and semi-automatic analysis.

This project focuses on using this information to generate tests based on a
selected test strategy. The following activities are needed:

• Study the tools and methods currently applied in the CESAR project

• Study other published tools and methods relevant to the problem –
(semi) automatic selection of test strategy and test cases

• Build a tool prototype and test it out on students and – time allowing
– in an industrial environment.

Assignment given: 17. January 2011
Supervisor: Tor Stålhane, IDI

v

vi

ABSTRACT

In the European research project CESAR, requirements can be specified using
templates called boilerplates. Each statement of a requirement consists of
a boilerplate with inserted values for the attributes of the boilerplate. By
choosing attribute values from a domain ontology, a consistent language can
be achieved. This thesis seeks to use the combination of boilerplates and a
domain ontology in a semi-automatic test generation process.

There are multiple ways to automate the test generation process, with various
degrees of automation involved. One option is to use the boilerplates and the
domain ontology to create a test model that can be used to generate tests.
Another option is to use the information from the domain ontology to assist
the user when he creates tests. In this thesis, the latter option is investigated
and a tool named WikiTest is developed.

WikiTest uses Semantic MediaWiki and Semantic Forms to utilize the on-
tology and assist the user in the test creation process. Using a Cucumber
syntax, the tests can be specified in a relatively free format that does not
sacrifice the ability to automate test execution. An experiment is conducted,
where the results show that WikiTest is easier to use and leads to a higher
test case quality than the alternatives can do. Being able to inspect the
domain ontology while creating tests did not give the same results as when
the ontology was integrated directly in the tool.

Keywords: Acceptance test driven development, Boilerplates, Cucumber,
Domain ontology, Test generation, Semantic MediaWiki

vii

viii

PREFACE

This thesis is the result of the Master Thesis course TDT4900, conducted
during the Spring of 2011. The course belongs to the section for Program and
Information Systems at the Norwegian University of Science and Technology
(NTNU). The work of this thesis is a continuation of the specialization course
TDT4520 conducted during the Fall of 2010.

I would like to thank my supervisor, Tor Stålhane, for his valuable help and
input throughout the project. Thanks to the students who participated in the
experiment, and the professors and PhD students who took part in the focus
group. Special thanks are given to my fellow students at Fiol for making the
semester extra enjoyable.

Trondheim, June 11, 2011

Olav Undheim

ix

x

CONTENTS

Contents xi

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Motivation . 1
1.2 Project Context . 2
1.3 Problem Description . 2
1.4 Project Scope . 3
1.5 Report Outline . 3

2 Research Agenda 5
2.1 Research Questions . 5
2.2 Research Methodology . 6

I Background 9

3 Software Requirements 11
3.1 Requirements in Software Engineering 11
3.2 Boilerplates . 12
3.3 Domain Ontologies . 14

4 Software Testing 19
4.1 Test Methods . 20
4.2 Test Coverage . 20

xi

4.3 Test Levels . 21
4.4 Test Approach for Further Work 24
4.5 Cucumber . 27

5 Technology Platform 31
5.1 Technology Platform Options 31
5.2 Wiki Comparison . 34
5.3 Semantic MediaWiki . 36

II Development of a Tool 39

6 Tool Requirements 41
6.1 Early Outlook . 41
6.2 Focus Group . 43
6.3 User Stories . 47

7 Tool Implementation 51
7.1 Setup and Installation . 51
7.2 Importing a Domain Ontology 54
7.3 Creating a Feature . 55
7.4 Autocomplete . 59
7.5 Creating a Domain Concept 60
7.6 Navigation . 62
7.7 Missing Tests . 63
7.8 Ontology Browser . 64

III Experiment 65

8 Definition 67
8.1 The GQM Process . 67
8.2 Goal . 68
8.3 Questions . 69
8.4 Metrics . 72
8.5 GQM Summary . 77

9 Planning 79
9.1 Context Selection . 79
9.2 Hypotheses Formulation . 80
9.3 Variables Selection . 82
9.4 Selection of Subjects . 82

xii

9.5 Experiment Design . 82
9.6 Instrumentation . 83
9.7 Validity Evaluation . 84

10 Operation 93
10.1 Preparation . 93
10.2 Execution . 93
10.3 Data Validation . 94

11 Data Analysis 95
11.1 Measurements . 95
11.2 Hypotheses Testing . 111
11.3 Summary of Hypotheses . 117

12 Interpretation 119
12.1 Participant Feedback . 119
12.2 Validity Discussion . 122
12.3 Conclusion . 123

IV Evaluation 125

13 Results 127
13.1 Approach Selected . 127
13.2 Tools and Methods . 128
13.3 Tool Requirements . 128
13.4 Empirical Evaluation . 129

14 Discussion 131
14.1 Further Work . 134

15 Conclusion 135

References 142

Appendices

A Wiki Code A-1

B Experiment Data B-1

xiii

xiv

LIST OF FIGURES

3.1 Different levels of requirements 12
3.2 Boilerplates in DOORS . 13
3.3 Data property (left) and object property (right) 15
3.4 Annotations in Protègè . 16
3.5 A boilerplate for a steam pressure requirement 17

4.1 The V-model in software development 22
4.2 Generate abstract tests directly 24
4.3 Generate test model . 24
4.4 Dimensions of model-based testing 25
4.5 TMap test lifecycle . 27
4.6 Process overview with Cucumber 27
4.7 Cucumber start game . 28

7.1 Semantic Gardening import 54
7.2 Composition of the feature form 56
7.3 Visualization of an example feature 58
7.4 Edit a feature using a form . 58
7.5 Ontology browser . 64

8.1 The GQM hierarchy . 67
8.2 GQM tree . 77

11.1 Programming experience . 96
11.2 Wiki experience . 97
11.3 Written automatic test before 98
11.4 Experience with Cucumber . 99
11.5 Feature coverage . 100
11.6 Scenario completeness . 100
11.7 Syntactic correctness . 101
11.8 Ambiguity score . 101

xv

11.9 Verifiability . 102
11.10Ontology makes the domain easier to understand 102
11.11Ontology makes it easier to write tests 103
11.12Steam boiler help . 103
11.13Difficulty of using the Cucumber syntax 104
11.14Cucumber help . 105
11.15Rather write tests in free format 105
11.16Ease of use . 106
11.17More help for WikiTest . 106
11.18Overview of tests . 107
11.19User interface satisfaction . 108
11.20Time used at the assignment 109
11.21Enough time to do the assignment 109
11.22Time used per feature . 110
11.23Time used per scenario . 110

12.1 Ishikawa diagram for group A 120
12.2 Ishikawa diagram for group B 121
12.3 Ishikawa diagram for group C 122

xvi

LIST OF TABLES

5.1 Comparison of wikis . 35

7.1 Software in the minor installation 52
7.2 Software in the full installation 52

8.1 Summary of goal, questions and metrics 77

9.1 High priority validity threats 90
9.2 Medium priority validity threats 91

11.1 Summary of extra measurements 116
11.2 H0-hypotheses that could not be rejected 117
11.3 Alternative hypotheses accepted 118

13.1 Groups in the experiment . 129

B.1 Average points per feature between the three groups B-2
B.2 Average points per feature between text editor and wiki B-2
B.3 Average points per feature between no ontology and ontology . B-3
B.4 Points grouped by experience B-3
B.5 Points grouped by experience B-4
B.6 Points grouped by experience B-4
B.7 Syntactic correctness between the three groups B-5
B.8 Syntactic correctness between text editor and wiki B-5
B.9 Number of subjects who used at least one Cucumber backgroundB-6
B.10 Number of subjects who used at least one Cucumber backgroundB-6
B.11 Ontology makes the domain easier to understand B-7
B.12 Overview of tests between the three groups B-7
B.13 Overview of tests between text editor and wiki B-8
B.14 User interface satisfaction between the three groups B-8
B.15 User interface satisfaction between text editor and wiki B-9

xvii

B.16 Ease of use . B-9
B.17 Efficiency per scenario between the three groups B-10
B.18 Efficiency per scenario between text editor and wiki B-10
B.19 Efficiency per scenario between no ontology and ontology . . . B-11
B.20 Feature completion score between the three groups B-11
B.21 Feature completion score between text editor and wiki B-12
B.22 Scenario completeness score between the three groups B-12
B.23 Scenario completeness score between text editor and wiki . . . B-13
B.24 Ambiguity score between the three groups B-13
B.25 Ambiguity score between text editor and wiki B-14
B.26 Verifiability score between the three groups B-14
B.27 Verifiability score between text editor and wiki B-15
B.28 Ontology makes it easier to write test B-15
B.29 Steam boiler help . B-16
B.30 Difficulty of using the Cucumber syntax B-16
B.31 Difficulty of using the Cucumber syntax B-17
B.32 Rather write tests in free format B-17
B.33 Cucumber help . B-18
B.34 Cucumber help . B-18

xviii

ABBREVIATIONS

AGEDIS Automated Generation and Execution of Test Suites for Dis-
tributed Component-based Software

ANOVA Analysis of variance

ATDD Acceptance Test Driven Development

BAT Business Acceptance Testing

BDD Behavior Driven Development

CESAR Cost-efficient methods and processes for safety relevant em-
bedded systems

D-MINT Deployment of Model-Based Technologies to Industrial Test-
ing

FIT Framework for Integrated Test

GNLQ A tool created in the CESAR project

GQM Goal, question, metric

IDE Integrated Development Environment

MBT Model-Based Testing

MOGENTES Model-based Generation of Tests for Dependable Embedded
Systems

NTNU Norwegian University of Science and Technology

OWL Web Ontology Language

RCP Rich Client Platform

xix

RMM Requirement Meta Model

RSL Requirement Specification Language

SMW Semantic MediaWiki

SRS Software Requirements Specification

SUT System Under Test

TDD Test Driven Development

TMap Test Management Approach

UAT User Acceptance Testing

UML Unified Modeling Language

xx

CHAPTER 1

INTRODUCTION

This chapter explains the context and foundation for the rest of the thesis.
First, the motivation and context sections define the background for the
project. Then, the problem definition states the main goals of the thesis,
and the scope definition explains what is chosen to be within the boundaries
of the problem definition and what will be left out. This chapter ends with
a report outline, which describes the structure of the rest of the thesis.

1.1 Motivation
In agile software development, acceptance tests are used as a passing crite-
ria for a requirement. The acceptance tests are supposedly written by the
customer, although in many cases the customer lacks the time or knowledge
to do so. A situation where a customer without programming knowledge is
able to write tests is highly desirable. In this regard, tool support will be
important to reduce the effort it takes for a customer to create automatic
acceptance tests. Automatic test case generation has been a wishful dream
for many software developers over the past decades. Even as early as in the
1970s, software developers and researchers wrote articles about this possibil-
ity [1, 2]. Finding a way to automate parts of the test creation process would
be beneficial to the software development process.

1

2 CHAPTER 1. INTRODUCTION

1.2 Project Context
CESAR (Cost-efficient methods and processes for safety relevant embedded
systems) is a European project that focuses on software development in in-
dustrial automation and transportation domains (automotive, aerospace and
rail). One of the main goals is to reduce software development time and
effort by 30-50%. An important focus area is requirement formalization in
order to facilitate automatic test and code generation. One way to achieve
this is to use methods for requirement engineering that express requirements
in a formalized way. Important topics are domain ontologies, requirement
specification languages (RSL) with an underlying requirements meta model
(RMM), automatic test code generation and tool development. This thesis
is based on the CESAR’s goals of innovations in the topics of test definitions
and test execution. Two of the goals in CESAR reads as follows [3, p. 34]:

• Automatic test specification from the SRS: For each system requirement
a test should be automatically specified, in order to determine whether
the system satisfies the requirement

• Customizable test generation: It should be possible to define rules,
which allow the user to generate a customized set of tasks

The execution of tests, comparison of the actual output to a test oracle, and
analysis of the outcome are also parts of the goals.

1.3 Problem Description
This thesis seeks to explore the creation of executable acceptance tests based
on domain knowledge and requirements. A main goal is to create a tool
that can use requirements, in the form of boilerplates [4][5], and a domain
ontology [6], to automate parts of the test creation process. As a part of
this goal, it will be important to empirically validate the usefulness of the
automation process selected.

1.4. PROJECT SCOPE 3

1.4 Project Scope
The process chain from requirements engineering to acceptance testing is a
long process which involves stakeholders with different priorities. This thesis
seeks to explain this process and identify where improvements can be made.
The focus will be at the stage where requirements are already specified, and
how acceptance tests can be specified for the requirements and afterwards
executed. There are several ways automation could be used to aid the test
specification process, but the scope will be on a collaboration tool which uses
a domain ontology to aid the users. Total automation of test case generation
is not part of the scope, and neither is creating a tool for the actual execution
of the tests, i.e. a test runner. Time will rather be spent studying how tests
can be created and later executed in an already existing test execution tool.
In other words, a tool should be made for the specification of tests, but not
for running the tests.

1.5 Report Outline
This thesis is organized as follows. Chapter 2 states the research questions
to be considered. Then follows the four main parts of the thesis. The first
part is a background of topics related to the research questions. The second
part describes the implementation of a tool for acceptance tests. The third
part explains how an experiment was designed and the operation of the ex-
periment. The fourth and last part describes the results and discussion of
the thesis, followed by the conclusion.

4 CHAPTER 1. INTRODUCTION

CHAPTER 2

RESEARCH AGENDA

This chapter describes the research which is to be carried out in the thesis.
The first section defines the research questions, while the second section
discuss the research methods applicable to software engineering, and which
methods will be used to answer the research questions.

2.1 Research Questions
This thesis is a continuation of the specialization project conducted during
the Fall of 2010 [7], which primarily was a literature study. The research
agenda of this thesis is to continue the work, but now with focus on tool
implementation and empirical validation. The following research questions
are posed:

RQ1: Which of the earlier identified approaches using boilerplates
and domain ontologies should be used for further work?
In the work leading up to this thesis, a thorough examination of domain
ontologies and boilerplates in the context of test automation was performed
[7]. In the end, three approaches for the use of boilerplates and ontologies
were proposed. The first approach was to create a tool to create abstract
test cases directly from the boilerplates and the ontology. The second was
to create a behavioral test model, and then use this test model as input
to an existing model-based testing (MBT) tool. The third was to create a
tool which use the boilerplates and ontology to provide assistance in the test
creation process. The first research question is to further explore these three
approaches and select one of them as the basis for the rest of the thesis.

5

6 CHAPTER 2. RESEARCH AGENDA

RQ2: For the approach selected in RQ1, which relevant tools and
methods already exist?
This research question seeks to identify which tools exist and which can be
used in the approach. Identifying existing tools and methods is important
both in order to avoid duplication of work, and to be able to identify where
further improvements can be made. In general, open-source tools will be
preferred over commercial tools because of cost issues and the possibility for
further development.

RQ3: For the approach selected in RQ1, what are the requirements
for a new tool used in the approach?
After identifying which tools and methods already exist in RQ2, it will be
important to identify what features a new tool should have. Effort will
be on analyzing the core needs of the users, and prioritize these for later
development.

RQ4: What is the effect of applying the tool-supported approach
in an empirical setting?
The fourth and last research question focus on evaluating the usefulness of
the approach as a whole, and the tool in particular. The empirical evaluation
should not take place too late in the development process, as there should
be time to improve the tool based on the feedback from the experiment.

2.2 Research Methodology
The goal of research is to produce new knowledge. The research methods
selected here will be applied to answer the research questions. This includes
a study of existing literature, processes and products used in the area of
automatic acceptance testing.

In [8], four research methods relevant for software engineering are described:

• The scientific method: After observing the world, a model is built
to simulate the observation.

• The engineering method: First study the existing solutions, then
propose changes and finally analyze the results of the changes.

• The empirical method: First, a model is proposed through hypoth-
esis. Then, the model is evaluated empirically.

2.2. RESEARCH METHODOLOGY 7

• The analytical model: First, a formal theory is proposed. Then,
this theory is evaluated up against empirical observations.

We will use a mixture of the engineering method and the empirical method.
The engineering method is used for RQ1, the selection of an approach to
improve, and RQ2, the study of existing solutions. The changes proposed in
RQ3 are also part of the engineering method. These changes are evaluated
in RQ4, by the use of the empirical method.

A major part of the research will be to create a prototype tool for the process
that is selected. In the act of doing this, two empirical methods will be used.

Focus group

The focus group is a qualitative research method which will be used in
the requirement elicitation and in the early stage of the development.
The focus group is a group of participants who together discuss some
object, in this case the functionality of the tool to be created. The use
of a focus group is used to investigate RQ3.

Experiment

The experiment will be used to answer RQ4. It will be performed on a
group of students to evaluate the use of a domain ontology process and
the tool itself. The experiment is defined around a set of hypotheses,
which can be found in Chapter 9.2.

8 CHAPTER 2. RESEARCH AGENDA

Part I

Background

9

10

CHAPTER 3

SOFTWARE REQUIREMENTS

This chapter is the first of three background chapters that provide the foun-
dation for the rest of the thesis. Some content from the specialization project
[7] is repeated in order to keep this thesis relatively autonomous. The back-
ground chapters are used to answer RQ1, the identification of different ways
to use boilerplates and domain ontologies for semiautomatic test creation,
and the selection of one of these approaches. The chapter starts with a
general discussion about requirements in software engineering, followed by a
description of boilerplates and domain ontologies.

3.1 Requirements in Software Engineering
In engineering, a requirement is a singular need of the system. In software
engineering, requirements are split into two groups. The first group is func-
tional requirements, which says something about what the system should
do. The second group is non-functional requirements, which says something
about the quality of the system, for example its reliability or performance.
A more detailed classification of requirements is given in Figure 3.1 [9]. The
figure shows the connections between different types of requirements. The
business requirement is a high level goal, which can be divided into subgoals
as seen from the user. These user level goals can be divided into more specific
product level goals.

Requirement engineering, the creation of requirements, starts with an elicita-
tion phase where the objective is to discover potential needs. The needs are
converted into requirements that are analyzed and formally specified. In or-

11

12 CHAPTER 3. SOFTWARE REQUIREMENTS

Product level

User level

Business level
Business

Requirements

User

Requirements

Functional

Requirements
Constraints

Quality

Attributes
Business Rules

 Requirements

Specification

Data

Requirements

Nonfunctional

Requirements

External

Interfaces

Requirements

Figure 3.1: Different levels of requirements

der to be testable, a requirement needs to be specified in a precise way. Each
requirement must be reviewed to see that these requirements were actually
what the customer wanted. The cost of having incorrect requirements grows
larger the later they are found. Finding and fixing a software problem after
delivery may be a hundred times more expensive than finding and fixing it
during the requirements and design phase [10]. Creating acceptance tests at
the same time as the requirements are specified is a way to make sure that
the requirements will in fact be possible to test.

Well formulated requirements have certain characteristics. Many checklists
and questionnaires exist in the literature stating the characteristic of a good
requirement. Typical characteristics are consistency, cohesion, completeness,
traceability and verifiability [11].

3.2 Boilerplates
In the industry, requirements are often created using unstructured, plain text.
Free text offers the freedom to formulate the requirements as you want, but
with that, the risk of ambiguity and inconsistency increases. Boilerplates are
templates to structure requirements. The requirements will still be written
with a natural language, but with a semi-formal structure [4].

A simple example of a boilerplate is: “The <user> shall be able to <capa-
bility>”. Several boilerplates exist, so you can select the most appropriate
for the requirement you need. Then, you fill in the attributes using your
own terms. In the former example, <capability> could be changed to “rent

3.2. BOILERPLATES 13

a book”. Each requirement consists of a boilerplate with specific attributes
[4]. Using boilerplates is a way to be consistent; to be precise and use the
same vocabulary in all the requirements. Figure 3.2 shows how boilerplates
look in DOORS, a requirement tool extended with boilerplates.

Figure 3.2: Boilerplates in DOORS

Boilerplates are similar to user stories. One difference, however, is that user
stories are often written using the same, following format: “As a <user> I
want to <capability> so that <business value>”. With boilerplates, many
more templates exist and a part of the process is to identify the template
that fits the most. Attributes of boilerplates are: User, Capability, Quantity,
Time Unit, Event, Operational condition, System function, Action, Entity,
State, Effect. The same boilerplates can be used both for functional and
non-functional requirements.

Related work has been done with more formal templates. For real-time
embedded systems, as is a focus in the CESAR project, Wei-Tek Tsay et al.
has investigated the possibilities of verification patterns [12][13]. An approach
using a restricted English grammar provided by Konrad and Cheng [14] was
evaluated in a case study with 289 informal behavioral requirements [15]. The
grammar looks like natural language, but allows an automatic translation
into linear time logic. Although both the approach of Wei-Tek Tsay and
Konrad and Cheng are more formal than boilerplates, they give an indication
of the interest in formalized requirements that can be analyzed automatically.
While there were about 30 original boilerplates made by Jeremy Dick [5], in
the CESAR project it was discovered that it was beneficial to add more,
including the possibility to recursively merge one boilerplate with another.

14 CHAPTER 3. SOFTWARE REQUIREMENTS

This makes it possible to create boilerplates of any length, but it makes
it correspondingly more difficult to use the boilerplates in automatic test
generation.

3.3 Domain Ontologies
A domain ontology is a formal specification of conceptual knowledge in a
domain [16]. In this context, the domain is the problem domain in which
the system is going to be used. The ontology contains information about
the concepts and relationships of the domain. Concepts can have different
meanings and uses depending on which domain they are used in, which is
why we create specific ontologies for each domain. The ontologies provide
insight into the rules, constraints and axioms amongst concepts in a domain.

In [6], a domain ontology is used with the tool GNLQ, which will be further
described in Section 3.3.4. With the help of this tool, the requirements are
first analyzed using natural language processing, and new concepts are dis-
covered. An analyst or a domain expert identifies the newly found concepts
that are relevant and should be added to the existing ontology. These valid
concepts are further defined and then added to the knowledge base. The do-
main ontology provides a common vocabulary which can be used to improve
communication among stakeholders. It can also be used to reason over a
system, checking information for completeness, consistency and correctness.
From the viewpoint of requirements, a domain ontology can be used both to
elicit new requirements and to check existing ones.

Protege (Protégé) is a free, open source ontology editor and knowledge-base
framework1. Protege gives support for consistency checking (“can a class
have any instances?”), classification (“is A subclass of B?”) and instance
classification (“which classes do an individual belong to?”). Web Ontology
Language (OWL) ontologies consists of:

• Entities
– Individuals: instances in the domain
– Classes: sets that contain individuals
– Properties: binary relations

• Expressions: represents complex notions, e.g. restrictions
• Axioms: statements that are asserted to be true in the domain

1http://protege.stanford.edu/

3.3. DOMAIN ONTOLOGIES 15

3.3.1 Data Properties
Data properties can be represented in many ways: string, int, float, boolean
and so on. The restriction types that may be used are some (existential),
only (universal), min, max and exactly. For a given property P, a minimum
cardinality restriction specifies the number of P relationships that an indi-
vidual must participate in. Data properties are similar to the entity qualifiers
in boilerplates. Figure 3.3 shows how a data property and an object property
is represented in an ontology.

Figure 3.3: Data property (left) and object property (right)

3.3.2 Object Properties
Object properties specify relationships between individuals, such as “has_a”
or “gets_speed_signal_from”. The name of the object property may make
sense to a human, but it has no syntactic function. It is possible to specify
that the properties are: functional, inverse functional, transitive, symmetric,
antisymmetric, reflexive and irreflexible. One possibility is to create a set of
predefined names for object properties that a test tool could search for and
use in a generation process. For instance, the <operational condition> in
boilerplates uses the connectors “in|within|outside|between|
after|before|while”. A tool could be configured to search for these terms and
interpret them depending on their meaning.

3.3.3 Annotations
Annotations are used as extra information for a class or a relationship in the
ontology. Typical annotations are “label”, “comment” and “versionInfo”, but
it is also possible to create your own annotations. From a testing point of
view, annotations such as comments can give extra information, but they
lack utility for automatic test generation. Since it is possible to create your
own annotations, it is possible to create specific annotations to aid the test
generation process. These annotations need to be standardized, meaning
that they all had the same format, so that a test tool could make use of
them. Since the ontologies can be reused, this test information would have

16 CHAPTER 3. SOFTWARE REQUIREMENTS

to be general so that it could be used for different applications using the
same domain ontology.

Figure 3.4: Annotations in Protègè

3.3.4 GNLQ
GNLQ is a “knowledge based guided requirements elicitation tool” [17]. It is
developed as a plugin to Eclipse, and is a part of the CESAR project, where
it has a role in requirements engineering2. It is described here as the output
of GNLQ is likely to be used in the tool that will be created later in the
thesis.

GNLQ takes an OWL domain ontology as input. Classes in the ontology, for
example a sensor, can have relationships to other classes. A class may also
have failure modes, e.g. commission, omission and stuck. In GNLQ, it is
possible to adjust an existing domain ontology, or to create a new one from
scratch. In order to add requirements, a user picks the boilerplates that fit
the requirement and then select classes from the ontology as attributes to
the boilerplate requirement. The output of the tool is a domain ontology in
OWL and boilerplate requirements specified in XML.

Figure 3.5 shows a screen shot of a requirement in GNLQ. The boilerplate to
be filled out is “if <state> greater than <quantity> then the <object> shall
<action> <entity>”. With attributes filled in, the boilerplate says “if Steam
Pressure greater then critical pressure level then the steam boiler shall open
Safety Valve”’.

2http://sourceforge.net/projects/gnlq/

3.3. DOMAIN ONTOLOGIES 17

Figure 3.5: A boilerplate for a steam pressure requirement

If a tool is to be made that uses the ontology and the boilerplates made
from GNLQ, then the tool could either be a standalone application or be
integrated into GNLQ. In both approaches the tool would use the same input
and it should thus not be difficult to go from one approach to the other. As
GNLQ is still in the alpha release phase, it may be better to create a separate
application at first to reduce the coupling.

18 CHAPTER 3. SOFTWARE REQUIREMENTS

CHAPTER 4

SOFTWARE TESTING

Software testing is the process of uncovering evidence of defects in a program.
Often, a distinction is made between discovering a defect (testing), and find-
ing the cause of the defect and fixing it (debugging) [18, p. 2]. While quality
is sometimes defined as meeting requirements, testing gives an indication of
the extent to which the requirements are met. A distinction is made between
testing to see if the system meets the requirements, called verification, and
testing to see if the requirements are actually what the customer wanted,
called validation.

Quality has to be built in, not tested in. Testing is the instrument that can
provide insight into the quality of an information system. Testing can seldom
find all the defects in a piece of software, but will give an indication as to the
quality of the software. Testing can increase trust in the product’s behavior.

There are multiple terms used to express that something is a bug. Although
the meanings are similar, there are some important distinctions [18, p. 9].
A defect is a flaw in the program that can lead to a fault, which may be
undetected for a long time. A fault can lead to an error, which means that
the system is in an erroneous state. If no corrective action is taking, the
error may lead to a failure, which the end user can observe. There is hardly
any difference between a defect and a fault, and the two terms are often used
interchangeably.

There is an important difference between static testing and dynamic testing.
Examples of static testing are reviews, walkthroughs and inspections, while
dynamic testing is testing the software by executing it.

19

20 CHAPTER 4. SOFTWARE TESTING

4.1 Test Methods
Tests are classified as either black box, white box or gray box, depending on
what information the tests are derived from.

4.1.1 Black Box Testing
Black box testing (functional testing) uses only the external interface of the
item under test. For a given set of input, a specific output is expected. The
tester does not need to know anything about the implementation or the code.
Instead, the tests are based on requirements and functionality; the only thing
that matters is the external visible properties of the software under test. A
negative effect of this is that a lot of different input may lead to the same
execution path of the program, and are thus essentially testing the same
thing, while some parts of the code may not have been tested at all.

4.1.2 White Box Testing
White box testing (structural testing) uses knowledge of the internal logic of
the code when constructing a test. Instead of testing the functionality, the
internal structure of the code is used to define test cases. This information
can be used to achieve a certain test coverage. White box testing is usually
done at the unit level, and debugging is always a white box activity. Both
static and dynamic testing are part of white box testing.

4.1.3 Gray Box Testing
Gray box testing is a combination of black box and white box testing. The
tester designs the tests based on some knowledge of the internal properties
of the software, but the tests are executed as black box tests. An example is
state diagrams, which can be used to design the tests. The advantage of gray
box testing is that you can look for assumptions made by the system, and
then test these, instead of trying to guess which assumptions the developer
has made in the program.

4.2 Test Coverage
Test coverage is defined as the number of units tested divided by the total
number of units. A unit can be a requirement, a code line or something else.
Coverage methods differ depending of the units they measure. In general,

4.3. TEST LEVELS 21

there are two ways to measure coverage. The first is functional based testing,
which measures the program’s conformance to the specification or require-
ments. The second is structural coverage, which measures units in the actual
software code. The idea of coverage is that the quality of a test is measured
by the degree that the test covers the program.

According to [19], structural coverage based on control flow is the metrics
most suitable for automated collection and analysis. The metrics are similar,
but have different qualities. The simple metrics, such as statement coverage,
is easy to understand, collect and analyze. It does, however, not provide a
good measurement of the thoroughness of the system test, as 100% state-
ment coverage will often leave many defects undetected in the system. Other
evaluation criteria are important as well, such as maintainability and the re-
lationship between design documents and code. Some typical test coverages:

• Statement coverage measures the amount of individual statements
that has been encountered at least once in the code.

• Branch coverage, also named decision coverage, checks if every branch
in the program has been executed. This means that boolean expres-
sions has been evaluated to both true and false, all outcomes of a switch
statement has been covered, and so on.

• Condition coverage, also named predicate coverage, is the extent
that boolean sub-expression has been covered.

• Path coverage is the number of routes through a given part of the
code that has been executed.

4.3 Test Levels
Testing can be performed at different levels in the code. A test level is a
group of test activities that are managed and executed collectively. Testing
at multiple abstraction levels makes it easier to detect faults at an earlier
stage of the development process. Figure 4.1 shows the V-model of software
testing [20]. The left hand side shows the layers of specification and design,
while the right hand shows the corresponding test levels.

22 CHAPTER 4. SOFTWARE TESTING

Figure 4.1: The V-model in software development

4.3.1 Unit Testing
In unit testing individual units of code, such as a method or a class, is tested.
These tests are most often written by the developers themselves. The test
cases can either be written after coding, which has been the traditional way,
or before the coding, as done in Test Driven Development (TDD). A possible
disadvantage of unit testing is that the test cases are written to suit the
programmer’s implementation, and not necessarily the specification of the
system.

4.3.2 Integration Testing
Integration testing is done to test several units working together in collabora-
tion. Some people also call this interface testing. The modules put together
to be tested are most often coded by different developers, and it’s thus im-
portant to test that the interaction between the modules works as specified.

4.3. TEST LEVELS 23

There are several ways to perform integration testing. A bottom-up approach
uses drivers, while a top-down approach uses stubs. Another approach to in-
tegration testing is the big bang method, where all the components are put
together and tested at once. The main goal of the integration test level is to
discover inconsistencies in the combination of units.

4.3.3 System Testing
System testing is performed on the system as a whole. The system is tested
to check its compliance to the system’s requirements. As no internal knowl-
edge of the system is needed in this phase, a black box test method is used.
Different kinds of tests focus on different aspects of the system: functional
requirements, performance, scalability, reliability, usability and so on. Sys-
tem testing is performed by a test team, and the test cases are derived from
the high level specification.

4.3.4 Acceptance Testing
Acceptance testing is the final test before the system is delivered to the
customer. The test is performed in a simulated or real environment. There
are two categories of acceptance testing. User Acceptance Testing (UAT)
is performed by the customer, while Business Acceptance Testing (BAT) is
undertaken within the development company to ensure that the system will
pass the UAT.

4.3.5 Regression Testing
Regression testing is to rerun tests that passed before after doing changes
to the code. Parts of the system that worked before may stop working as a
side effect of a code change. If a system has a lot of tests that takes a long
time to run, it is beneficial to only rerun the tests that test code that may
have been affected by the changes. Regression testing is a time-consuming
process, and should be automated.

24 CHAPTER 4. SOFTWARE TESTING

4.4 Test Approach for Further Work
This section provides a discussion of RQ1, the selection of a test approach.
The three possible approaches were defined in Chapter 2.1. The first ap-
proach is to generate abstract test cases directly from the boilerplates and
the ontology. User involvement is needed both as a test oracle, and to trans-
late the abstract tests into executable ones. The approach is visualized in
Figure 4.2.

Figure 4.2: Generate abstract tests directly

The problem with this approach is the complexity of generating tests directly.
An idea was to create a test pattern for each boilerplate. In other words,
each boilerplate would have a statically defined way of being tested, where the
boilerplate defined which test pattern would be used and the domain ontology
was used to generate test data. The concepts in the domain ontology would
need data or object properties for the test data to be created. This way
had merit with the initial 30 boilerplates, but when boilerplate recursion and
more boilerplates were added, the test pattern creation becomes a dynamic
task.

The second approach is to create a behavioral test model based on the boiler-
plates and the ontology, and then use this test model as input to an existing
MBT tool. The approach is displayed in Figure 4.3.

Figure 4.3: Generate test model

In order to discuss this approach, we will explain the model-based testing
process. Model-based testing (MBT) has several dimensions, as shown in

4.4. TEST APPROACH FOR FURTHER WORK 25

Figure 4.4. MBT can be used for all test phases of a system, from unit
testing to system testing. An important question of MBT approaches is
how the model is specified. The model can be represented as states, sets,
grammars and several other ways. A typical example is UML state diagrams,
which could be extended with test annotations which is then used in the test
case generation. After the test model is created, test specifications can be
generated by traversing the model.

Figure 4.4: Dimensions of model-based testing

The major obstacle to the second approach is the construction of the model.
It requires a lot of time and effort, and not all systems are easily modeled.
Changes to the ontology or boilerplates which will lead to changes in the
model will have to be done manually, and only then the tests can be regen-
erated automatically. This approach has merit if it is possible to do a partial
automation of the test model construction based on boilerplates and the do-
main ontology. As discussed in [7], there has been three research projects the
latest years: AGEDIS (2001-2004), D-MINT (2007-2009) and MOGENTES
(2008-2010). These projects have looked at MBT tools and the construction

26 CHAPTER 4. SOFTWARE TESTING

of such. Even though a lot of efforts have been made, the weakness of this
second approach is the lack of a good MBT tool to work against.

The third approach suggested involves creating an assistance-tool that guides
the user through the test creation process by using information from the do-
main ontology. Given an existing ontology and a set of boilerplate require-
ments, the tool could create partial tests based on the requirements, and have
the user fill in the rest. Another possibility is that the tool identifies which
domain concepts are used in a boilerplate, analyze the concepts and make
test suggestions based on the attributes and relationships of each concept.

The third approach is the least automated, but has the advantage that the
scope of the development task is closer to what can be achieved in a master
thesis project. Most importantly, the approach does not exclude the other
options of test automation. After all, if an automatic test specification tech-
nique is discovered during the development of the tool, then the technique
can be incorporated as another way of aiding the user. If no ways of auto-
matically generating tests are found, the tool will still be useful, but with
more work put on the user. In an approach involving MBT tools, it is “all
or nothing”, in the sense that if not a proper test model is used as a basis,
then useful tests cannot be created.

The answer to RQ1 is that the third approach will be used, where the focus
is on creating a tool that supports the user in the test creation process.
In [7], possible test automation tools were described. Two tools, FitNesse
and Cucumber, were evaluated, where Cucumber came out in front for our
needs. The choice of an automation tool is important, as the test created
in our approach will need to executed. A description of Cucumber and its
implications for the approach will now be given.

4.5. CUCUMBER 27

4.5 Cucumber
Good tool support is essential for test automation. Different tools belong to
different phases of the life-cycle, as shown in Figure 4.5 [21].

Figure 4.5: TMap test lifecycle

Cucumber is used in the specification and execution phases. In the approach
selected for RQ1, a tool will use the information from a domain ontology to
aid the user in a test specification process. The focus is on executable tests,
meaning tests that can be run. Thus, the test format has to be writable and
readable by customers without much IT experience, and at the same time be
possible to automate. This is where Cucumber will be used.

Figure 4.6: Process overview with Cucumber

The main elements of Cucumber are features and scenarios. A feature is a
high-level requirement, and consists of one or many scenarios. The scenarios
are acceptance tests for that requirement. The step definitions, the elements
of a scenario, can be implemented in most programming languages. The
choice of execution tool (e.g. JUnit) for the actual running of the tests is
freely selectable. The test results are fed back to the user through Cucumber.

28 CHAPTER 4. SOFTWARE TESTING

4.5.1 Boilerplate Example with Step Definitions
In Cucumber, tests (or behavior, as it is called in BDD) are written in plain
text using a few simple keywords. Figure 4.7 shows a typical Cucumber
example. It defines who the user is (a code-breaker), what they want to do
(start a game) and why (be able to break the code). The general format in
Cucumber is [22]:

• Feature: a title of the behavior (requirement)
• Story: a description of the requirement
• Scenario(s): examples of the behavior

Figure 4.7: Cucumber start game

One way to use Cucumber with boilerplates is to have a separate feature
for every boilerplate, where the story is the actual boilerplate requirement.
Although this will go against the standard story-format, the story is just
a text description and is not used for anything executable. It is, however,
important to use the Given, When, Then, And, But keywords, which are
keywords in the Gherkin domain-specific language [23]. Given is the context
and preconditions for the scenario. When is what the feature is talking about
- the actual action. Then is a check of the postconditions to see that the right
thing happened in the When stage.

We will now look at how a boilerplate can be transformed into a scenario.
The boilerplate requirement is: “If <the ignition is turned on by car key>
while <either of the doors are opened> then <the alarm horn> shall <beep
3 times> within <2 seconds>. As a scenario, this can look like:

Given either of the doors are opened
When the ignition is turned on

4.5. CUCUMBER 29

Then the alarm horn beeps 3 times within 2 seconds

As we can see, it is relatively easy to transform the boilerplate requirement
to a scenario test. This is because of the freedom you get when you write
scenarios. In some situations, you have the same scenario many times, but
only with different values being tested. By using a scenario outline, the
scenario is written once and different values for the scenario are specified in
a table.

Additionally, it is possible to write a background before the scenarios. A
background has any number of Given steps. These steps belong to all the
scenarios for the feature. This means that if you have Given steps common to
all scenarios, you can put them into the background. The advantage of doing
this is that the tests are clear about the data being set up. The disadvantage
is that everything is common. You cannot vary some parts of the data for
the different scenarios.

4.5.2 Wiki-style Cucumber
In order to use the extra information about concepts and relations which
the domain ontology gives us, it would be useful to have a wiki for the
Cucumber tests, as was done with FitNesse for Fit. At the time of writing,
this has not been done, but since Cucumber is steadily changing it may be
added if developers think it would be useful. However, it would be useful
to incorporate the extra information from the ontologies directly where the
tests are created, providing functionality such as the possibility to click on a
concept in one requirement to see other requirements where the same concept
is involved. The focus will thus be on creating the abstract tests and let
the test engineers write the implementation of the test scripts. The actual
programming language (Ruby, Java, C++ etc) will not matter since the
abstract test cases are just text; the invoking of the code in step definitions
is done using regular expressions.

30 CHAPTER 4. SOFTWARE TESTING

CHAPTER 5

TECHNOLOGY PLATFORM

The overall goal is to create a test process with a tool that can assist in the
specification of tests. This chapter takes a look at the different technology
platforms that can be used. An important aspect is what current tools and
methods already exist for the given technology platform.

5.1 Technology Platform Options
There are three main options when it comes to technology platforms. The
first is to create a plug-in to Eclipse, the second is to create a standalone
application, and the third is to create a web-based application.

5.1.1 Eclipse Plug-in
Creating an Eclipse plug-in has the advantage of being compatible with
GNLQ, described in Chapter 3.3.4, which is also a plug-in to Eclipse. It
is possible to extend GNLQ, or to create a separate plug-in. As GNLQ is
still in the early development stage, less risk is taken by creating a separate
plug-in and use the output (boilerplates and ontology) of GNLQ as input for
the new plug-in.

If an Eclipse plug-in is developed, then the tests need to be specified in
Eclipse. This is fine if the developers already use Eclipse, but it puts a
restriction on the IDE of developers, and the customers may not be familiar
with Eclipse. Fortunately, the Eclipse Rich Client Platform (RCP) can be
used to create a standalone application of the plug-in, if that is needed [24].

31

32 CHAPTER 5. TECHNOLOGY PLATFORM

Creating an Eclipse plug-in makes it possible to reuse existing features and
functionality in Eclipse, including keyboard shortcuts and drag and drop.

5.1.2 Standalone Application
Developing a local-based client puts few restrictions on design and function-
ality. Any programming language can be used. The disadvantages is that the
development have to start from scratch, although libraries may offer some of
the functionality. The application needs to to be installed on every computer
where it will be used.

5.1.3 Web Application
A web application removes the need of any installation. As the users can
work with the same data, no effort is needed to share the tests. However,
the complexity increases when multiple users can edit the same data on the
same time. The software can be used independent of operating system, but
cross-browser compatibility needs to be taken into consideration.

The major weakness of web applications is limited graphical functionality, as
not everything that can be done in a standalone application can be done in
a web browser. Another usability concern is the latency, which will depend
on the network speed and the amount of data that is loaded. Care should be
taken so that if a large domain ontology is used, it should not degrade the
response time of the application.

5.1.4 Selection
In order to select one of the three platforms to use, it is necessary to inves-
tigate the tools and solutions that already exist for each platform. If it is
possible to reuse tools or functionality, more time can be used implementing
the core functionality of the new tool. As an example, the creation of a
version control system for the test specifications would take too much time
compared to the research benefits it would give.

Although the requirements for a new tool are described in Part 3: Devel-
opment, the most important requirements were already known at the time
that this investigation was performed. Users would have to write test spec-
ifications together, and be able to browse the requirements and tests. The
functionality resembles what can be found in a typical requirement man-
agement tool, but with added functionality of test specification based on a

5.1. TECHNOLOGY PLATFORM OPTIONS 33

domain ontology. In addition to requirement management tools, the use of
a wiki could provide the functionality we are looking for.

The functionality that could already exist is support for a) domain ontologies,
b) collaboration and c) testing/Cucumber. The Eclipse based wiki called
EclipseWiki1 had potential to be used as a basis to build on. It did, however,
lack in several aspects compared to what can be found in existing web based
wikis. Gwtwiki2 provides a Java Wikipedia API, but this is mainly used to
convert Wikipedia syntax to HTML, and the other way around. Even though
the wiki support inside of Eclipse seems to be lacking, a tool supporting
Cucumber in Eclipse has been created. This tool, called QuBiT3, is developed
with Xtext and provides syntax highlighting and auto-complete on Cucumber
keywords.

In the search for tools that supported either domain ontologies, collaboration
or Cucumber, the potential of a wiki with support for ontologies, of which
many exist, emerged. It would cover two of the three goals, and Cucumber-
support could be added on top of the wiki. Most mature wikis are web-based,
and the conclusion of the technology platform is that a web-based wiki with
ontology support should be used.

1http://eclipsewiki.sourceforge.net/
2http://code.google.com/p/gwtwiki/
3https://github.com/QuBiT/cucumber-eclipse-plugin

34 CHAPTER 5. TECHNOLOGY PLATFORM

5.2 Wiki Comparison
This section provides a discussion of wikis that can be used for further de-
velopment. The wiki needs to have some kind of support for ontologies, and
it has to be possible to add new functionality to the wiki. Several semantic
wikis exist:

• KiWi - EU-funded project combining the wiki philosophy with meth-
ods of the Semantic Web.

• Knoodl - Tool for creating ontologies. Wikis can be created by the
community from within Knoodl. Each community has its own wiki,
integrating its specific vocabulary.

• OntoWiki - Open-source semantic wiki, acts as an ontology editor.

• Semantic MediaWiki - Extension of MediaWiki, integrates the RDF
triples in the wikitext.

• Wikidsmart - Adds semantics to Confluence. Made by zAgile.

Kiwi, Knoodl and OntoWiki are wikis that support the managing of on-
tologies. MediaWiki and Confluence have a wider range of application, and
do not have ontologies as their only goal. The two biggest contenders for
further use are Wikidsmart, adding semantics to Confluence, and Semantic
MediaWiki, which adds ontology support to MediaWiki.

The best-known semantic wiki software is probably Semantic MediaWiki,
which has extensive documentation, maturation, extensions and possibili-
ties for adding new functionality. Wikidsmart’s main advantage is that it
uses Confluence, which is tailored for software development companies. The
ultimate goal should be to incorporate the tests that are created with any
requirement management tool that is already used in the company. For many
companies, this might be the products of Atlassian, namely Confluence and
Jira.

The limiting factor of Wikidsmart is that it builds on top of Confluence,
which in turn requires a license. A zero-cost license program is available
for non-profit organizations and open source projects, but there are some
requirements to be regarded as a qualified open source project, such as a
public site, public availability to Confluence, and so forth. This is a serious
impediment in a project like this, and makes the choice of a wiki platform
easier. Ultimately, Semantic MediWiki offers more ontology support, and

5.2. WIKI COMPARISON 35

the multitude of documentation and tools that already exist makes it more
efficient to use this wiki server when creating a tool as a proof of concept.
If the approach of using a semantic wiki for test creation has merit, effort
should be made to incorporate it in enterprise wikis used by companies today.

Table 5.1, which is based on WikiMatrix4, displays some of the differences
between Confluence, MediaWiki and SMW+. SMW+ is a commercial ex-
tension of Semantic MediaWiki developed by Ontoprise GmbH.

Confluence MediaWiki SMW plus
Version 3.5 1.16.5 1.5.3 b1

Open source No Yes Yes
Programming language Java PHP PHP

Development status Mature Mature Mature
Interface languages 15 languages 140 languages 3 languages
Syntax Highlighting Yes Yes (plugin) Yes (plugin)

Webserver Tomcat, JBoss etc Any PHP PHP 5.0+

Table 5.1: Comparison of wikis

4www.wikimatrix.org

36 CHAPTER 5. TECHNOLOGY PLATFORM

5.3 Semantic MediaWiki
The term wiki stems from Ward Cunningham, who in 1994 invented the first
wiki, called WikiWikiWeb [25]. A wiki consists of a set of editable pages that
are connected by hyperlinks. Information should be easy to find, and easy to
edit, so that everyone may contribute. Users are the primary contributors,
and the participation of the users determines the site’s success. The wikis
use wikitext, which is natural language with special syntax constructs for the
layout of the text. Several markup languages for wikis exist.

5.3.1 MediaWiki

MediaWiki is mostly known for being the wiki used for Wikipedia. Medi-
aWiki is a robust wiki engine that is capable of creating large wiki farms
where one or more servers host multiple individual wikis [26]. The mini-
mum hardware requirement is 256MB of RAM and 40MB of available storage
space, although more is recommended if the site has a lot of traffic.

The features of MediaWiki include [26]:
• Easy navigation: Search, go-button, random page, special page, print-

able versions of articles
• Easy editing, formatting and referencing to other pages
• Look and feel changes, for the whole site or individual pages
• File uploading
• User management
• History of changes, possibilities to roll back changes

5.3.2 Ontologies in SMW
Semantic MediaWiki (SMW) is an extension MediaWiki, where semantic
annotations are added to the original functionality. A limit of most wikis is
how content is queried. E.g., if you want a list of the ten biggest cities with a
female major over 50 years, you would have to update the list manually. With
semantic annotations, it would be possible to create this list dynamically,
so that the query is defined once and the content of the list is dynamic.
This concept of structuring the data on the web comes from the vision of
the semantic web. Formalizing information and adding metadata makes it
possible for computers to reason over data.

A semantic wiki uses a domain ontology to structure the data. In “Semantic

5.3. SEMANTIC MEDIAWIKI 37

wiki engines: a state of the art” [27], two approaches for semantic wikis
are identified. The first is called wikis for ontologies, where wiki pages are
concepts and links are properties. The problem is to keep the ontology
consistent. Nothing prevents a user from entering two relations with similar
semantics, such as “has-monarch” and “has-king” [27]. The second approach
is called ontologies for wikis, where the main use is to create instances of
concepts. Our use of Semantic MediaWiki will employ the second approach,
where an existing ontology is used as a basis for creating new instances,
for example adding a person “John Doe” who is an instance of the concept
“Person”.

An example of semantic annotations on MediaWiki is the following. On
a page called “Norway”, the population can be saved as [[Has population::
4,946,488]]. In the SMW database, this is stored as: Norway (subject) Has
population (predicate) 4,946,488 (object). This information can be used in
queries to for example list all countries with more than five million inhabi-
tants. When the page about Norway is updated with a new population, it
will be reflected in the list.

The main obstacle with ontology for wiki is that its main purpose is creation
of instances that belong to a certain concept from the ontology. In our case,
the objective is to create tests (Cucumber scenarios) based on the information
that can be found in the ontology. This is a task of using the concepts and
relations, and not adding new instances. The only use for instances may be
if concrete test data needs to be added. If a test use the concept “Person”,
an instance of person can be created which serve as test data, for example
by having properties such as age, address and phone number.

5.3.3 Extensions
For MediaWiki, almost 1000 extensions exist. At the time of writing, 57 ex-
tensions are specific to Semantic MediaWiki. The Halo extension is perhaps
the most significant one, providing an intuitive graphical interface for oper-
ations on semantic data, including a semantic toolbar, advanced annotation
mode, auto-completion, graphical query interface and an ontology browser.
As mentioned earlier, SMW+ is a bundle of extensions, where the Halo ex-
tension is included. The extensions provided in SMW+ are modified by
Ontoprise in order to increase the efficiency when the extensions are working
together. This has the weakness that updates made to extensions will not be
reflected through SWM+ before Ontoprise makes the corresponding update.

38 CHAPTER 5. TECHNOLOGY PLATFORM

Annotating data in semantic wikis requires more from the users than the
plain markup language. Some functionality has been added to SMW to ease
the editing. This includes forms and auto-completion, as well as a WYSIWIG
editor. Semantic Forms is an extension to MediaWiki that allows users to
add, edit and query data using forms. It is possible to create forms for
adding new concepts and properties, and for adding instances for concepts
in the ontology. The forms support autocompletion based on content from
the wiki. Semantic Forms is one of the extensions that are often updated,
and the latest version is not always provided by SMW+.

Out of a set of 216 known active, public SMW-based wikis, the ten most
popular SMW-based extensions are [28]:

1. Semantic Forms - 85%
2. Semantic Result Formats - 33%
3. Semantic Drilldown - 30%
4. Semantic Maps - 25%
5. Semantic Compound Queries - 19%
6. Semantic Google Maps - 7%
7. Semantic Internal Objects - 6%
8. Semantic Forms Inputs - 6%
9. Semantic Tasks - 5%
10. Halo - 3%

Part II

Development of a Tool

39

40

CHAPTER 6

TOOL REQUIREMENTS

This part of the thesis describes the development of a semantic wiki tool
called WikiTest. The main focus of this chapter is RQ3 (see Chapter 2): the
identification of functionalities for a collaboration tool that can be used in a
test specification process. The requirements that are found will be prioritized
according to their research interest. The scope of the thesis does not make it
possible to implement everything, thus only the most important functionality
will be implemented.

6.1 Early Outlook
In the latest years, several articles have described how a wiki can be used in
a software engineering process [29][30]. How to write and track requirements
has been a common topic for the wikis. Little has been written about how
wikis can be used for test specification.

It is useful to look at some of the experiences that others had when they used
wikis as a collaboration tool in software engineering. As shown in “Extending
and Integrating Wikis to Improve Software Documentation” [31], current
wikis should be better integrated with IDEs. Other challenges of enterprise-
wide wikis were found in a survey performed by Romberg [32]:

• Usability: The appearance of text completely changes between view-
ing and editing. Learning wiki-syntax is a slow process. No direct
feedback is given, making errors more likely.

• Productivity: Some operations are more complicated than they should
be, such as “find and replace”, which reduce productivity.

41

42 CHAPTER 6. TOOL REQUIREMENTS

• Growth and overview: Large wikis can become poorly structured if
no one takes responsibility for keeping the wiki content organized.

• Multiple companies: Who will host the wiki and what happens to
the information on the wiki when the project is over.

• Offline access: Although wireless internet access becomes more and
more common, offline access may still be a problem for people doing
extensive traveling.

In “Support for High-Quality Requirements Engineering in a Collaborative
Setting” [33], a tool called SmartWiki was implemented. The tool is built on
Semantic MediaWiki and is used to write requirements. It has been evaluated
in multiple projects over a three year period. In this tool, the most interesting
functionality is perhaps the heuristic feedback that is given to the user when
he writes requirements. The text is analyzed, and if ambiguous words are
found, the user is notified so that he can rewrite the requirement. Since the
wiki was evaluated both in university teaching and industrial projects, it is
interesting to see the challenges that were described. One challenge was that
the setup and familiarization was found to be time consuming. Even though
the wikitext syntax is simple, some training and hints should be given to
enhance the productivity. Another challenge was that in industrial settings,
MediaWiki did not always provide enough separation of user rights. Some
people should only be able to see certain documents in the wiki.

The vision of this wiki, WikiTest, is to be a tool that can assist the customers
and developers to create tests. The core functionality is to start with a
domain ontology and requirements, let the user write tests and let the user
be able to implement code for these tests.

6.2. FOCUS GROUP 43

6.2 Focus Group
A focus group, as described in Chapter 2.2, was used to elicit potential
requirements for the tool. The focus group was held the 14th of April. Four
professors and three PhD candidates from NTNU participated. The author
of the thesis acted as a facilitator, which made it a total of eight participants.

In the start of the focus group, the following five topics were presented:
1. Domain ontologies
2. Boilerplates
3. Writing test specifications in Cucumber
4. Implementing and running tests in Cucumber
5. MediaWiki

The majority of the participants were already familiar with domain ontolo-
gies. A few of the participants had experience with acceptance testing tools
such as FitNesse, but not with Cucumber. As part of the initial presenta-
tion, a few Cucumber tests were written and run to show the tool in use. An
open discussion, centered around some key questions, was initiated after the
presentation. One such question was what help and instructions would be
needed to use the tool, especially for someone without much IT experience.
Another question was how the ontology information could be used to write
tests, and what functionality would be needed in the wiki. Each question
discussed in the focus group will be described in the following sections.

Domain Specific Languages
The first topic that came up was how tests could be written using a template.
One suggestion was to define a grammar using Xtext, which makes it easy
to create an editor with syntax highlighting and autocompletion. As an
example, when you enter “a” and click space, “And” would come up as a
suggestion (since it is a Cucumber keyword). The ontology would provide
the “clean” objects, while the DSL would describe how the concepts from
the ontology could be used as text. Creating a grammar from the ontology
would make it possible to analyze the correctness of the tests. For example,
if steam and valve are used in a sentence, it would be possible to verify based
on the ontology that the context they are used in is valid.

Illustrative quotation from the focus group:
“The state has to be valid according to the domain model. For
example, a person with Age, where the age is 17, would mean that

44 CHAPTER 6. TOOL REQUIREMENTS

the person is deducted to be a minor. On a similar note, how do
we know what meaning Open has? We know that it comes after
Valve. Valve qualifies for the use of Open. When you say “valve
is open”, is there something that checks that this is a legal state?”

Valid states was a hot theme during the focus group. The participants that
raised their opinion, felt that checking if a state was legal would be more help-
ful than autocompleting keywords. One participant worried about customers
writing something in the When step that would not make sense according to
the model. When a tester would implement the test he will know a lot about
testing, but perhaps not enough about the domain to know that the When
step does not make sense according to the domain.

Writing Tests
One participant suggested to use a “boilerplate” for the Given/When/Then
combination. It could look like “Given a <concept> with <state>, When ...”.
Another suggestion was to use wiki forms. This would make it easier for the
user to create the tests without making errors. There were some discussion
about it, as some participants felt it was fine to write text using wikitext.
The use of forms compared to wikitext with autocomplete may be a good
topic to analyze in an experiment involving students.

Illustrative quotation:
“Often, the starting state is large and complex. This is followed
by a small “trigger”, and then a description of the wanted end
state.”

Visualizing the Ontology
It may be beneficial to display the domain ontology to the user, but this
will probably not scale well. It is easy to fill in test information for a small
domain. When the domain grows large, it becomes more difficult to make
sure the concepts are used correctly, and it is difficult to get an overview of
which concepts can be used.

Illustrative quotation:
“Keeping an overview over a lot of components is difficult. An
example is in a steam boiler domain with a lot of different valves.
The user will need help to find the component he is looking for.”

6.2. FOCUS GROUP 45

Test Coverage
Checking if all nodes have been included in at least one test would be useful.
We could use some kind of “model coverage” that shows the coverage for
what is specified in the domain ontology. For example, if the system says
that you have tests for nine out of ten requirements, it has to say which parts
need more tests.

When Enough is Enough
The question about when a test case is specified enough was raised. This
quote represents the issue:

Illustrative quotation:
“We want two things. We want something that is simple, and we
want something that can support us when we write tests. What
happens today is that often an Excel sheet is used, where one
row is a test and there is a column called “status”. We want that
every requirement have at minimum one test. If not, it is not a
requirement.

The biggest problem is to say when “enough is enough” in the
tests. That is, when are the tests specific enough, when are the
states properly specified. This is not specific to the use of a wiki
for test specification, but it is a general problem when writing
tests.”

It would be beneficial to have some way to say when tests are specified
good enough. It is a common problem that the initial state is not properly
specified, and so it becomes up to the tester to judge how the initial state
should look like. Often, there is no documentation of what states the system
could actually be in, making it more problematic to create a proper test.

Test Hierarchy
Creating states that are compositions of other states, and inheritance of
states, would be useful. Tests often have similar starting states, with only a
minor difference. It should be possible to reuse tests and states, and specify
variation points for these tests and states. A steam boiler could have an
“operating state”, where the temperature is between a min and max value,
the pressure is between the min and max value, and so forth. Then it would

46 CHAPTER 6. TOOL REQUIREMENTS

be possible to use this operating state and alter it, such as adding too much
water in the tank, creating an erroneous state from the normal state.

Reuse of states from another test would make it possible to have some kind
of “network” around a starting node, where the starting state is the same
with only minor variations. Thus you achieve a link between tests, and the
tests that are not linked to any other tests should be further investigated.
Perhaps those separate tests are special conditions that need extra care, i.e.
extra tests to achieve a higher coverage.

6.3. USER STORIES 47

6.3 User Stories
The requirements for the wiki tool span a wide range of functionality. Even
though only some of the requirements will be implemented in the prototype,
the identification of possible functionality is important to analyze the validity
of a wiki-based test approach. The requirements are split into categories.
Some of the requirements are general, which means there are multiple ways
to implement the functionality. The best way to implement the requirement
may vary from company to company, depending on their needs.

The requirements are written using the following format: As a <user> I
want to <capability or action> so that <benefit or purpose>. This is a user
story consisting of who, what and why. The generic term “user” will be used
if the user type is common for customers, developers, testers and so forth.

R1: Import ontology
As an ontology-responsible, I want to import an existing domain ontology so
that it can be used in the wiki.

R2: Import requirements
As a requirement-responsible, I want to import requirements so that already
written requirements can be used in the wiki.

R3: Export features
As a developer, I want to be able to export all features in the wiki to .feature-
files so that I can write test code for the features.

R4: Export printable documents
As a customer, I want to be able to export printable documentation of re-
quirements and tests so that I can get it on paper.

R5: Export ontology
As an ontology-responsible, I want to be able to export the ontology to OWL
or RDF format so that I can use the ontology in other systems.

48 CHAPTER 6. TOOL REQUIREMENTS

R6: Access control
As an administrator, I want to have access control so that only certain users
can view or edit certain features.

R7: IDE integration
As a developer, I want to integrate the wiki with an IDE so that I can make
changes in the wiki from within my IDE.

R8: View test results
As a customer or project leader, I want to be able to watch the test results
from all implemented scenarios so that I can see the progress of the project.

R9: Domain suggestions
As a user writing tests, I want to receive suggestions from the wiki of relevant
domain concepts so that I can create better tests.

R10: Step suggestions
As a user writing tests, I want to receive a list of earlier written step defini-
tions so that I can reuse them in my scenarios.

R11: Analyze words
As a user writing tests, I want to receive feedback if my tests are written
ambiguously so that I can write avoid using ambiguous words.

R12: Test pattern suggestions
As a tester writing tests using boilerplates, I want to receive a list of typi-
cal ways to test the requirement so that I can reuse knowledge of how the
boilerplate is usually tested.

R13: Display tests
As a user, I want the features and scenarios to be visually formatted so that
they are easy to read.

R14: List missing tests
As a tester, I want to be able to get a list of all features without tests so that
I can write tests for these features.

R15: Domain concept information
As a developer, I want to be able to see information about a domain concept
used in a feature so that I can understand what the feature really means.

6.3. USER STORIES 49

R16: Hierarchy of features
As a tester, I want to group features so that I can more easily manage a large
amount of features.

R17: Model coverage
As a tester, I want to be able to see a test/model coverage so that I can find
out which parts of the domain ontology are not used in any tests.

R18: History
As a tester, I want to see the change-log for a specific feature so that I can
roll back the changes to an earlier version.

R19: Watch-list
As a tester, I want to be able to put a feature on my watch-list so that I can
get information if anyone make changes to the feature.

50 CHAPTER 6. TOOL REQUIREMENTS

CHAPTER 7

TOOL IMPLEMENTATION

This chapter describes the setup and implementation of WikiTest. The im-
plementation is based on the most important requirements of Chapter 6.3.
Each section in this chapter describes a different implementation topic. The
first section “Setup and Installation” is not directly related to any user story,
but has to be in place for the user stories to be implemented.

When a web-based wiki was selected as a technology platform, a large amount
of wikis could be used. One of the reasons why Semantic MediaWiki was
selected as the wiki engine was because of the large number of extensions.
Each extension has its use and place. This reduces the need to write a lot of
code; the work is to identify what existing functionality can be reused.

7.1 Setup and Installation
MediaWiki and its extensions are under constant development. Especially
the semantic extension, SMW, is often updated. This section gives some
pointers to the installation of MediaWiki and the extensions used for test
specification. A point to note is that when the versions change, the installa-
tion process may change as well. If a wiki-based test process is to be used in
the industry, it will be important that the approach is general and that the
newest versions of MediaWiki and extensions can be used.

Two setups will be described. One of the setups will include only a few
extensions. This is the minor one, which will be used in the experiment
described in Chapter 8. The other setup use a wider range of extensions

51

52 CHAPTER 7. TOOL IMPLEMENTATION

to provide more functionality, but is more tedious to install as well. The
extensions are shown in Table 7.1 and Table 7.2.

Software Version
MediaWiki 1.16.2
PHP 5.2.4
MySQL 5.0.51a
Semantic MediaWiki 1.5.6
Semantic Forms 2.1.2
ParserFunctions 1.3.0

Table 7.1: Software in the minor installation

Software Version
MediaWiki 1.16.2
PHP 5.3.5
MySQL 5.5.9
Semantic MediaWiki 1.5.2_1
Semantic Forms 2.0.0_1
ParserFunctions 1.3.0
ScriptManager Extension 1.0.1_0
SMWHalo Extension 1.5.2_2
ARCLibrary 1.0.0_0
Semantic Forms Inputs 0.3
Semantic Gardening extension 1.3.3_0
WYSIWYG extension 1.4.0_3

Table 7.2: Software in the full installation

The main difference lies in the inclusion of the SMWHalo extension. The mi-
nor version was used on a dedicated server at NTNU (folk.ntnu.no), while the
full version was deployed locally on a laptop. On the full version, SMWHalo
was used, which has adjusted Semantic Forms and Semantic MediaWiki. The
adjustments are the reason for the underscore in the version number of these
extensions. SMWHalo provides interesting functionality, such as an ontology
browser, but is difficult to install on the server at NTNU, and it did not allow
the newest version of Semantic Forms to be used.

7.1. SETUP AND INSTALLATION 53

The first thing to do is to install MediaWiki 1. A web server such as Apache
or IIS is needed, as well as PHP version 5.2.3 or later. As database, either
MySQL with version 4.0 or higher, or PostgreSQL with version 8.1 or higher,
may be used. MediaWiki is downloaded and extracted on the web server.
When you access the web site for the first time, an installation script guides
you through the rest of the installation.

Installing Semantic MediaWiki consists of three steps2. The first is to down-
load and extract the files to the extension folder of the wiki you created
when you downloaded MediaWiki. The second is to insert the two first lines
given in Listing 7.1 into the bottom of LocalSettings.php. The third is
to enter the wiki, go to the Special:SMWAdmin page and click on "database
installation and upgrade", and then “data repair and upgrade”. This creates
the database tables that are needed to use SMW. For the minimalistic in-
stallation, Semantic Forms and ParserFunctions is yet to be installed. The
installation procedure is the same as for SMW; download and extract it to
the MediaWiki extension folder.

Listing 7.1: LocalSettings.php
inc lude_once (" $IP/ e x t e n s i o n s /SemanticMediaWiki/SemanticMediaWiki . php ") ;
enableSemant ics (’ example . org ’) ;
inc lude_once (" $IP/ e x t e n s i o n s /SemanticForms/SemanticForms . php ") ;
require_once (" $IP/ e x t e n s i o n s / ParserFunct ions / ParserFunct ions . php ") ;

This concludes the installation of the minimalistic version with the fewest
extensions. In order to use SMWHalo, it is recommended to use the De-
ployment framework 3. This is a framework that, once installed, makes it
possible to install extensions from a command line.

1http://www.mediawiki.org/wiki/Download
2http://semantic-mediawiki.org/wiki/Help:Installation
3smwforum.ontoprise.com/smwforum/index.php/Help:Installing_the_Deployment_Framework_1.3

54 CHAPTER 7. TOOL IMPLEMENTATION

7.2 Importing a Domain Ontology
This is related to requirement R1 import ontology and R2 import require-
ments. Semantic MediaWiki uses a domain ontology to structure informa-
tion. New concepts may be added from within the wiki, but a more common
situation for a company using a semantic wiki is to import an existing ontol-
ogy. Semantic MediaWiki already have support for the import of an ontology
through the Special:Import ontology page, but it has been found to be
buggy and is disabled in version 1.0 [34]. An extension called Semantic Gar-
dening, which requires SMWHalo, can instead be used to import ontologies.

To upload files on the wiki, MIME type verification should be turned off. This
is done by adding $wgVerifyMimeType=false; to LocalSetting.php. In
addition, OWL files should be added to the file extensions:
$wgFileExtensions[] = "owl";. Afterwards, the ontology can be im-
ported using the gardening bot, as shown in Figure 7.1.

Figure 7.1: Semantic Gardening import

If the minimalistic approach without SMWHalo is used, there are two op-
tions. If the ontology is large, the best approach is to use the Python
Wikipedia Bot4. An example of code using the bot is given in [34]. If the
ontology is small, the easiest is to import it manually. A mapping from the
ontology to WikiTest is:

4http://en.wikipedia.org/wiki/Wikipedia:Creating_a_bot

7.3. CREATING A FEATURE 55

• Add all domain concepts to the main namespace of the wiki
(e.g. wiki/Foo), and annotate each page with category and label.

• Add all domain properties to the property namespace (e.g. wiki/Prop-
erty:Foo) and annotate each page with a label.

The labels act as a way to mark each domain concept and property that is
imported from the domain ontology. This makes it possible to retrieve all
pages that come from the domain ontology. Note that there are pages in the
property namespace of the wiki that do not come from the domain ontology.
“Modification date” is one such special property that is used by the wiki
itself.

Requirements can be imported in a similar fashion, either by using a script
if the amount of requirements is large, or manually if the amount of re-
quirements is low. Even though the initial basis for the tool was to use
requirements formulated in boilerplates, this is not a prerequisite in the wiki.

7.3 Creating a Feature
A Cucumber feature will have its own page in the wiki. At a minimum, it will
consist of a feature title, a requirement description and at least one scenario.
It may also consist of other parts, such as a Cucumber background. We want
to make a form from which the user can create features. This form needs
to include templates for specifying the requirement, the background and the
scenarios.

Figure 7.2 shows the general idea of how forms, templates and pages are
connected. The form is made up of three templates: one for the feature, one
for the background and one for the scenario(s). Form definitions, templates
and properties are parsed on the fly to create the form. In the figure, the
“control steam pressure” page is an instantiation of the feature form, where
the requirement and one scenario is filled out.

Form definitions are stored in the Form namespace of the wiki, templates are
stored in the Template namespace, categories are stored in the Category

namespace and properties are stored in the Property namespace. The in-
stantiation of the feature form, e.g. “control steam pressure”, is stored in
the main namespace. Since the page is made using the form, it will be in the
“Feature” category. Going to wiki/Category:Feature will list all feature
pages.

56 CHAPTER 7. TOOL IMPLEMENTATION

Page: Max water flow

{{Feature

|Requirement=The steam boiler shall be able t

}}

{{Background}}

{{Scenario

|Title=Control steam pressure using thermostat

|Given=The Electric heating element is on

|When=Heating water

|Then=Steam should be delivered

Page: Deliver water

{{Feature

|Requirement=The steam boiler shall be able to

}}

{{Background}}

{{Scenario

|Title=Control steam pressure using thermostat

|Given=The Electric heating element is on

|When=Heating water

|Then=Steam should be delivered

Form: Feature

Feature template:

Requirement: {{{field|Requirement}}}

Background template:

Given: {{{field|Given}}}

Scenario template:

Given: {{{field|Given}}}

When: {{{field|When}}}

Template: Feature

{|

| {{{Requirement|}}}

|}

Template: Background

{{#if:{{{Given|}}}

| '''Background:'''

Given {{{Given|}}}

| }}

Template: Scenario

{|

Scenario: {{{Title|}}}

|Given {{{Given|}}}

|When {{{When|}}}

|Then {{{Then|}}}

|}

Page: Control steam pressure

{{Feature

|Requirement=The steam boiler shall be able to...

}}

{{Background

|Given=

}}

{{Scenario

|Title=Control steam pressure using thermostat

|Given=The Electric heating element is on

|When=Heating water

|Then=Steam should be delivered

Create / Edit

Calls

Figure 7.2: Composition of the feature form

Forms are associated with a category or a namespace to allow editing with
the form instead of the source code (wikitext). This means that the feature
can be edited in the same manner as it was created.

7.3. CREATING A FEATURE 57

The complete code for the feature form is given in Appendix A.1. The syntax
depends on which version of Semantic Form is used. Here, Semenatic Forms
2.1.2 is used. The feature, background and scenario templates are given
in Listing A.2, A.3 and A.4. The most noteworthy is the use of a parser
function, #if :{{{Given|}}}, in the background feature. This is used to
only render the background if any Given steps are written. In the scenario
template, the syntax for formatting the step definitions is:
| Given {{#arraymap :{{{ Given | } } } | \ n | x | [[Given : : x]] | \ n\n ; And\n}}

This displays the steps so that if more than one step is written, the next
one is started on a new line with the And keyword in front of it. Another
implementation approach needs to be taken if the But keyword shall be
supported as well.

An example of how the wikitext of a feature page will look is shown in Listing
7.2. The WikiTest visualization of this feature is shown in 7.3.

Listing 7.2: Steam boiler feature
{{ Feature
| Requirement=The steam b o i l e r s h a l l be ab le to

c o n t r o l steam p re s s u r e us ing thermostat o f e l e c t r i c a l heat ing element
}}
{{Background}}
{{ Scenar io
| T i t l e=Control steam pre s su r e us ing thermostat
| Given=the e l e c t r i c heat inge element i s on
|When=heat ing water
| Then=steam should be d e l i v e r e d
}}

58 CHAPTER 7. TOOL IMPLEMENTATION

Figure 7.3: Visualization of an example feature

Editing the wikitext directly would be prone to errors. Figure 7.4 shows how
the edit would look like when a form is used.

Figure 7.4: Edit a feature using a form

7.4. AUTOCOMPLETE 59

7.4 Autocomplete
A semantic form has fields where the user can enter values. Each field can
be connected to a semantic property, which is specified when the form is
created. A scenario has the fields Given, When and Then. The fields are
connected to properties with the same name. When a field has a property,
it can have autocomplete based on previously written values of the property.
This section about autocompletion is related to the two requirements R9 and
R10, which cover domain suggestions and step suggestions.

The difference in WikiTest, compared to a content-driven wiki, is that each
of the fields should not have autocomplete only based on the property, but
also autocomplete based on domain concepts. The autocomplete provided by
Semantic Forms 2.1.2 is located in SF_Utils.php, shown in Listing 7.3. For
Semantic Forms 2.0.0_1, used by SMWHalo, the same code can be found in
SF_FormsInput.php.

Listing 7.3: SF_Utils.php
/∗∗

∗ Creates an array o f va lue s that match the s p e c i f i e d source name
∗ and type , f o r use by both J a va s c r i p t autocomplet ion and comboboxes .
∗/

s t a t i c func t i on getAutocompleteValues ($source_name , $source_type) {
$names_array = array () ;
// the query depends on whether t h i s i s a property , category , concept
// or namespace
i f ($source_type == ’ property ’ | |

$source_type == ’ a t t r i b u t e ’ | | $source_type == ’ r e l a t i o n ’) {
$names_array = s e l f : : getAl lValuesForProperty ($source_name) ;

} e l s e i f ($source_type == ’ category ’) {
$names_array = s e l f : : getAl lPagesForCategory ($source_name , 10) ;

} e l s e i f ($source_type == ’ concept ’) {
$names_array = s e l f : : getAllPagesForConcept ($source_name) ;

} e l s e { // i . e . , $source_type == ’ namespace ’
// switch back to blank f o r main namespace
i f ($source_name == " Main ")

$source_name = " " ;
$names_array = s e l f : : getAllPagesForNamespace ($source_name) ;

}
re turn $names_array ;

}

To account for both property values and domain concepts, the method is
extended with the code given in Listing 7.4.

60 CHAPTER 7. TOOL IMPLEMENTATION

Listing 7.4: Modified SF_Utils.php
i f ($source_type == ’ property ’ | |

$source_type == ’ a t t r i b u t e ’ | | $source_type == ’ r e l a t i o n ’) {
$properties_names_array = array () ;
$domain_names_array = array () ;
$properties_names_array = s e l f : : getAl lValuesForProperty ($source_name) ;
i f ($source_name != ’ Label ’) {

$domain_names_array = s e l f : : getAl lValuesForProperty (’ Label ’) ;
}
$names_array = array_merge ($properties_names_array , $domain_names_array) ;

}

Ulitmately, the autocomplete should be “intelligent”, in the sense that only
related concepts are proposed. This would mean the whole sentence would
be analyzed before suggesting the next word. Perhaps it would be necessary
to analyze the whole page, so that the suggestion for a Then step would take
the values of Given and When into consideration.

An intelligent autocomplete was not implemented in this WikiTest version.
A simple improvement of the autocompletion would be to use a breadth first
search starting from the last entered word. Thus, if the last word the user
entered was “boiler”, then all relationships the boiler has would be given
as suggestions, followed by all concepts of these relationships. More words
could be found by doing the same procedure for the related concepts of the
boiler. Just a simple improvement like this would make the autocomplete
substantially more valuable for the user.

7.5 Creating a Domain Concept
If a domain concept is forgotten during the creation of the domain ontology,
it can be added later. In the wiki, this is done in the same manner as for
creating a feature. A template looking like the one in Listing 7.5 shows the
simplicity of how this can be done in the wiki. The domain class will get its
own page, which will have a label and be marked as being in the domain class
category. The label is an annotation that all domain classes and properties
has. It will usually be named the same as the domain class page, but the
user is given the freedom to use a different label, such as an abbreviation, if
wanted.

7.5. CREATING A DOMAIN CONCEPT 61

Listing 7.5: Template:CreateClass
<noinclude>
This i s the " CreateClass " template .
I t should be c a l l e d in the f o l l o w i n g format :
<pre>
{{ CreateClass
| Label=
}}
</pre>
Edit the page to see the template t ext .
</noinc lude><inc ludeon ly >
’ ’ Label : [[Label : : { { { Label | } } }]] ’ ’
[[Category : Domain c l a s s]]
</inc ludeon ly >

The template is used as part of the form shown in Listing 7.6. In addition
to HTML styling for the form, the only extra element specified here is a free
text input field in the bottom. This text field can be used to describe the
domain concept. It could be a good practice to write a thorough explanation
about each domain concept, especially in domains with difficult concepts, or
where the turnover of developers is high.

Listing 7.6: Form:CreateClass
<noinclude>
This i s the " CreateClass " form .
To c r e a t e a page with t h i s form , ente r the page name below ;
i f a page with that name a l ready e x i s t s , you w i l l be sent to a form to
e d i t that page .

{{#forminput : form=CreateClass | s i z e =50|
button text=Create or e d i t a domain c l a s s | autocomplete on namespace=Main}}

</noinc lude><inc ludeon ly >
<div id ="wikiPreview " s t y l e =" d i s p l a y : none ; padding−bottom : 25px ;
margin−bottom : 25px ; border−bottom : 1px s o l i d #AAAAAA;"></div>
{{{ f o r template | CreateClass | l a b e l=Name o f the c l a s s

in the domain onto logy }}}
The l a b e l w i l l u s u a l l y be the same name as the name o f the c l a s s

you are c r e a t i n g .
{ | c l a s s =" formtable "
! Label :
| {{{ f i e l d | Label | mandatory }}}
| }
{{{end template }}}

’ ’ ’ In format ion about the domain c l a s s (f r e e t ex t) : ’ ’ ’

{{{ standard input | f r e e t ex t | rows=10}}}

{{{ standard input | save }}} {{{ standard input | preview }}}
{{{ standard input | cance l }}}

</inc ludeon ly >

62 CHAPTER 7. TOOL IMPLEMENTATION

7.6 Navigation
The first thing a user sees when he access the wiki is the main page and
the sidemenu. The typical user will use hyperlinks to navigate in the wiki.
The alternative is the search field, but it is likely to be used only if the user
already know what to search for. Providing good links which represent the
functionality of the site has a significant importance of the usefulness of the
wiki. Information has no use if the user cannot find it.

The Main_Page is part of the main namespace and can be edited directly
from the page itself by clicking the edit button. A simplistic main page may
provide links to lists of features, categories and properties. From these lists,
the user can navigate to a specific page. The main page in the experiment
performed in Chapter 8 had the following content:

Listing 7.7: Main page content
Use the menu on the l e f t to nav igate around in the wik i .
You can search f o r domain concepts us ing the search f i e l d .

== View ==
[[Features | View a l l f e a t u r e s]]
[[: Category : Domain c l a s s | View a l l domain c l a s s e s]]
[[: Property : Label | View a l l domain p r o p e r t i e s (r e l a t i o n s h i p s)]] .
You can c l i c k on a property to see which domain c l a s s e s use that property .

== Create ==
[[: Form : Feature | Create a new f e a t u r e]]

Even more important is the menu on the left side of the wiki, which is called
the sidebar. It provides a search field and links that are accessible on all
pages of the wiki. In the experiment, the sidebar consisted of a search field,
a group of “view” links, a group of “create” links, and a “toolbox”. The
wikitext is given in Listing 7.8.

Listing 7.8: MediaWiki:Sidebar
∗ SEARCH

∗ view
∗∗ mainpage | mainpage−d e s c r i p t i o n
∗∗ Features | Features
∗∗ Category : Domain_class | Domain c l a s s e s
∗∗ Property : Label | Domain p r o p e r t i e s
∗∗ S p e c i a l : P r o p e r t i e s | A l l p r o p e r t i e s
∗∗ Miss ing_tes t s | Miss ing t e s t s
∗ c r e a t e
∗∗ Form : Feature | Feature
∗∗ Form : CreateClass | Domain c l a s s
∗∗ S p e c i a l : CreateProperty | Domain property

∗ TOOLBOX

7.7. MISSING TESTS 63

The “view” group consists of links to pages that provide list of elements,
such as all features or missing tests. The “create” group consists of forms
that can be used to create new content in the site. The toolbox is a special
MediaWiki command. It provides functionality such as “what links here”,
related changes, special pages, printable version and more. In addition, a
“browse properties” is provided by the toolbox, which makes it possible to
see the semantic properties of that page.

7.7 Missing Tests
For large domains with hundreds of requirements, it is useful to find all re-
quirements that do not have any corresponding acceptance tests. This is an
implementation of requirement R15, list missing tests. In order to list all
features without tests, we make a template using the extension ParserFunc-
tions. The “missing test” page shown in Listing 7.9 uses a query to find all
pages of the Feature category. The output of this query is formatted using
the MissingTestsTemplate, shown in Listing 7.10, which renders all pages
lacking the Then step. The assumption is that a feature page with a missing
Then step has not a (properly) defined scenarios.

Listing 7.9: Page:MissingTests
This page l i s t s f e a t u r e s without any s c e n a r i o s .
In order to make sure every requirement has at l e a s t one te s t ,
every f e a t u r e should have a s c e n a r i o .

== Features without s c e n a r i o s ==

{{#ask : [[Category : Feature]]
| ?Then
| format=template
| template=Miss ingTests
}}

Listing 7.10: Template:MissingTests
{{# i f : {{{2}}} | | <p> {{{1}}} </p> }}

64 CHAPTER 7. TOOL IMPLEMENTATION

7.8 Ontology Browser
SMWHalo provides an Ontology Browser, which is shown in Figure 7.5. It
is one of the advantages of using the SMWHalo extension, but comes at the
expense of not always being able to use the newest versions of other exten-
sions, such as Semantic Forms. The ontology browser is an already existing
functionality that covers requirement R16, domain concept information, as
it can be used to find out more about a concept in the ontology.

Figure 7.5: Ontology browser

The ontology browser provides a list of all the properties in the wiki. Se-
lecting a property, such as “delivers”, gives a list of all instances that use
this property. This way, the content of the ontology can be navigated. A
potential improvement is to add a graphical display of the nearest ontology
concepts for a given concept.

Part III

Experiment

65

66

CHAPTER 8

DEFINITION

This chapter describes the goal definition of the experiment. The goal defi-
nition of the experiment is established using the Goal/Question/Metric ap-
proach, which is explained in the first section of the chapter. The goal, ques-
tions and metrics are defined subsequently. Section 8.5 provides a summary
of the experiment definition using the GQM approach.

8.1 The GQM Process
Goal/Question/Metric (GQM) is an approach created by V. Basili and D.
Weiss during the early 1980s [35]. The approach is used to guide the definition
of measurements in software engineering.

Quantitative level

Operational level

Conceptual level Goal

Question

Metric Metric

Question

Metric Metric Metric

Figure 8.1: The GQM hierarchy

GQM is a goal-driven systematic technique. It is divided into three levels [36].
The uppermost level is the conceptual level - the goal. The goal is about some
object, such as product or a process. Each goal has a number of questions,

67

68 CHAPTER 8. DEFINITION

which is the operational level. The questions try to characterize the object
based on a quality characteristic of the object. Each question is associated
with one or more metrics, which is the collected data used to answer the
question [37]. The measurements can either be objective or subjective.

8.2 Goal
GQM uses a template for the formulation of goals. Several GQM templates
exist, but they all have the same basic structure. The template contains in-
formation about the object to study, the purpose, the focus, the stakeholders
and the context. A goal template for GQM is [8]:

Analyze object(s) of study
for the purpose of purpose
with respect to their quality focus
from the point of view of the perspective
in the context of context.

The experiment goal is linked to RQ4, defined in Chapter 2, and is used to
create the hypotheses defined in Chapter 9.2. The experiment goal, with a
slight modification of the goal template, will be:

Analyze WikiTest
for the purpose of evaluating the tool
with respect to its usefulness for writing acceptance tests
from the point of view of customers and developers
in the context of acceptance tests for requirements with an un-
derlying domain ontology.

The end goal is to determine the usefulness of the tool for customers and
developers who want to specify acceptance tests that can be automated.
By “usefulness” we mean quality characteristics such as usability, efficiency,
correctness and completeness of tests. These quality characteristics were
prioritized when eliciting the requirements in the third research question,
RQ3, defined in Chapter 2. An important point is that the prerequisite of
the tool is that a domain ontology exists.

8.3. QUESTIONS 69

8.3 Questions
Four questions are identified which are further defined in hypotheses H1-
H11, which can be found in Chapter 9.2. Each question focuses on a specific
quality characteristic, with one or more corresponding metrics. An overview
of the questions and metrics are given in Table 8.1, at the end of this chapter.

Question 1: Test case quality

What is the quality of the created tests in terms of completeness and
correctness?

A good test will be complete, correct, consistent, unambiguous and verifiable.
This question aims to find out if these characteristics are different in the tests
created depending on the method used to create them; if a domain ontology
is used or if the WikiTest tool is used.

General experience with testing, tools and programming knowledge may have
an influence on the quality of tests. The following metrics are used to assess
the experience of the participants in the experiment:

• M1: Programming experience
• M2: Wiki experience
• M3: Ontology experience
• M4: Automatic test tool experience
• M5: Cucumber experience

The quality of the tests will be judged syntacticly and semantically by five
different metrics.

• M6: Is the feature completely covered by scenarios?
• M7: Is the scenario complete?
• M8: Is the scenario syntacticly correct?
• M9: Is the scenario unambiguous?
• M10: Is the scenario verifiable?

For each of the metrics M6 to M10, a subjective score is given by the author of
the thesis of either 2 (correct), 1 (partly correct) or 0 (not correct). Weighting
each of the five metrics equally, the overall test case quality will be defined
as the sum of these metrics.

70 CHAPTER 8. DEFINITION

Question 2: Understandability

Is WikiTest easy to understand?

This questions seeks to answer how easy or difficult WikiTest is to use, and
what extra help the user feels he needs. In addition to WikiTest itself, it will
be important to find out how easy it is to understand the Cucumber way of
specifying tests, and how easy it is to use a domain ontology. If Cucumber or
ontologies are difficult to grasp, then the WikiTest tool should add features
that make them easier to understand.

• M11: Does using a domain ontology make it easier to understand the
domain?

• M12: Is it easy to understand how to write tests using the Cucumber-
style?

• M13: Is it easy to understand WikiTest?

The measurements are taken by using a post-experiment survey using a five
point Likert scale, asking the participants of the perceived ease of use. In
addition, the participants will be asked if more help was needed in order to
understand the domain ontology, the Cucumber-style or the WikiTest tool.

Question 3: Usability

Is WikiText pleasant to use?

Usability, as well as understandability, will be important if business cus-
tomers are to be able to write tests. It will be important to determine how
easy it is to create, view, edit and delete test specifications. In addition, it
will be important to assess how pleasant WikiTest is to use, and what func-
tionality of WikiTest needs to be improved. The measurements are made by
using a post-experiment survey using a five point Likert scale.

• M14: Is it easy to get an overview of all the tests using the tool?
• M15: Is it pleasant to use the WikiTest tool?

8.3. QUESTIONS 71

Question 4: Efficiency

What is the efficiency of test creation when using WikiTest?

The efficiency of test creation is important. Using a domain ontology may
lead to extra work, at least for small test specifications where the tester is
likely to know the domain without the use of an ontology. The same argument
goes for WikiTest; it is probably faster to write a few tests in any text editor,
but once the amount of tests is large, the wiki-tool may be faster. In the
experiment, only a few features with corresponding tests will be used.

• M16: How much time is used in total for all tests?
• M17: How much time is used per feature on average?
• M18: How much time is used per scenario on average?

The measurements will be calculated by taking the time from when the pre-
experiment survey is submitted to the time the post-experiment survey is
started. Metric M17 is found by taking M16 and dividing it by the number
of features. Metric M18 is found by taking M16 and dividing it by the number
of scenarios.

72 CHAPTER 8. DEFINITION

8.4 Metrics
Metric 1 - Programming experience

Measurement procedure: Perform a survey before the experiment.
Question: What kind of programming experience do you have?
Alternatives:
1. Only programming classes
2. Programming classes and hobby projects (creating a web site etc)
3. Worked 2 to 8 weeks in a software company
4. Worked more than 8 weeks in a software company

Expected result: More than 80% will have some experience (alternative
1 or 2). Less than 20% will have any industrial experience.

Metric 2 - Wiki experience
Measurement procedure: Perform a survey before the experiment.
Question: What is your experience withWikis (for example Wikipedia)?
Alternatives:
1. None
2. Read articles, for example on Wikipedia
3. Edited at least one article on a wiki
4. Have had my own wiki server

Expected result: More than 80% will answer that they have read wiki
articles.

Metric 3 - Ontology experience
Measurement procedure: Perform a survey before the experiment.
Question: Have you had any experience with domain ontologies?
Alternatives:
1. None
2. Heard about it
3. I have used a domain ontology
4. I have created or edited a domain ontology

Expected result: It is not likely that more than a few, less than 20%,
knows anything about domain ontologies.

Metric 4 - Test tool experience
Measurement procedure: Perform a survey before the experiment.
Question 1: Have you written an automatic test (for example using
JUnit)?
Question 2: Have you used an acceptance testing tool (for example
FitNesse)?

8.4. METRICS 73

Expected result: All the participants will have taken a Java program-
ming course, where JUnit has already been written. Some people,
25-50%, may have written automatic tests. Most likely there will not
be more than 20% that have used an automatic acceptance tool.

Metric 5 - Cucumber experience
Measurement procedure: Perform a survey before the experiment.
Question: Do you have any experience with the test tool Cucumber?
Alternatives:
1. No
2. Heard about it
3. Used it to write a feature
4. Used it to write a feature and implemented the executable test

Expected result: More than 90% will not have used or heard about
Cucumber before the experiment.

Metric 6 - Feature coverage
Measurement procedure: Subjective evaluation of the features after the
experiment by the author of the thesis.
Question: Is the feature completely covered by scenarios?
Alternatives:
1. Yes
2. Partly
3. No

Expected result: A complete set of scenarios for a feature is difficult
to achieve even for domain experts. Although a non-strict grading
scheme will be used, most features will probably be classified as “partly”
complete. The average grade is expected to be between 1,0 and 1,5.

Metric 7 - Scenario completeness
Measurement procedure: Subjective evaluation of the scenarios after
the experiment by the author of the thesis.
Question: Is the scenario complete?
Alternatives:
1. Yes
2. Partly
3. No

Expected result: Creating complete scenarios may be easier to achieve
than creating complete features, as it requires less overview of the whole

74 CHAPTER 8. DEFINITION

domain. Specifying an appropriate initial state (the Given step in Cu-
cumber), is expected to be the most difficult. The average is expected
to be between 1,3 and 1,8.

Metric 8 - Syntactic correct scenario
Measurement procedure: Subjective evaluation of the scenarios after
the experiment by the author of the thesis.
Question: Is the scenario syntacticly correct?
Alternatives:
1. Yes
2. Partly
3. No

Expected result: Syntactic correctness will be judged according to the
Cucumber-syntax, which involves using the right keywords at the right
places. This should be fairly intuitive, and it is expected that most
answers will be given a full score. The expected average is more than
1,8.

Metric 9 - Unambiguous scenario
Measurement procedure: Subjective evaluation of the scenarios after
the experiment by the author of the thesis.
Question: Is the scenario unambiguous?
Alternatives:
1. Yes
2. Partly
3. No

Expected result: Again, the grading will not be strict as the partici-
pants have limited knowledge about the domain. However, scenarios
which are clearly vague or can be interpreted in a number of ways will
get a reduced score (alternative 2 or 3). It is expected that the ma-
jority of the scenarios will not be ambiguous, with the average lying
somewhere between 1,6 and 1,9.

Metric 10 - Verifiable scenario
Measurement procedure: Subjective evaluation of the scenarios after
the experiment by the author of the thesis.
Question: Is is possible to actually verify the scenario?
Alternatives:
1. Yes
2. Partly
3. No

8.4. METRICS 75

Expected result: Only a few scenarios will not be verifiable. Expected
average is more than 1,8.

Metric 11 - Domain ontology understandability
Measurement procedure: Survey after the experiment.
Likert statement: Using a domain ontology made it easier to under-
stand the domain?
Alternatives:
1. Strongly disagree
2. Disagree
3. Neutral
4. Agree
5. Strongly agree

Expected result: Using a domain ontology should make it a little easier
to understand the domain (alternative 4). The average will be between
“neutral” and “agree” (3 and 4).

Metric 12 - Cucumber understandability
Measurement procedure: Survey after the experiment.
Likert statement: Writing tests with the Cucumber-style (Given/When/Then)
was easy
Alternatives:
1. Strongly disagree
2. Disagree
3. Neutral
4. Agree
5. Strongly agree

Expected result: Agree or strongly agree, as the Cucumber-style is not
complex by any means.

Metric 13 - WikiTest understandability
Measurement procedure: Survey after the experiment.
Likert statement: The wiki was easy to use
Alternatives:
1. Strongly disagree
2. Disagree
3. Neutral
4. Agree
5. Strongly agree

Expected result: Most participants will agree, meaning the average
should be close to “agree”.

76 CHAPTER 8. DEFINITION

Metric 14 - Ease of browsing tests
Measurement procedure: Survey after the experiment.
Likert statement: Using a wiki (or text editor) made it easy to get an
overview of the tests
Alternatives:
1. Strongly disagree
2. Disagree
3. Neutral
4. Agree
5. Strongly agree

Expected result: Using a text editor may be easier when the amount
of requirements and tests is low. It is expected that the average will
be between “neutral” and “agree”.

Metric 15 - Pleasant to use
Measurement procedure: Survey after the experiment.
Likert statement 1: The user interface of the wiki was pleasant to use
Likert statement 2: The user interface of a text editor (Microsoft Word
etc) made it pleasant to write tests
Alternatives:
1. Strongly disagree
2. Disagree
3. Neutral
4. Agree
5. Strongly agree

Expected result: Both the group using the wiki and the group using
the text editor will be “neutral” or “agree”.

Metrics 16 to 18 - Time used
Measurement procedure: Use the time stamp of when the pre-experiment
survey is submitted to the time the post-experiment survey is started.
Metric 16: Total time used
Metric 17: Time used per feature
Metric 18: Time used per scenario
Expected result: Using the text editor may be faster than using a wiki,
but the difference is expected to not be over 20% for any of the metrics.

8.5. GQM SUMMARY 77

8.5 GQM Summary
Goal Object WikiTest

Purpose Evaluate
Focus Usefulness for test creation
Viewpoint Customers and developers
Context Acceptance testing using a domain ontology

Question Q1 Test case quality
Metrics M1 Programming experience

M2 Wiki experience
M3 Ontology experience
M4 Test tool experience
M5 Cucumber experience
M6 Feature coverage
M7 Scenario completeness
M8 Syntactic correct scenario
M9 Unambiguous scenario
M10 Verifiable scenario

Question Q2 Understandability
Metrics M11 Domain ontology understandability

M12 Cucumber understandability
M13 WikiTest understandability

Question Q3 Usability
Metrics M14 Ease of browsing tests

M15 Pleasant to use
Question Q4 Efficiency
Metrics M16 Time in total

M17 Time per feature
M18 Time per scenario

Table 8.1: Summary of goal, questions and metrics

Q2

M1 M11 M14 M12

Q3 Q1

Goal

Q4

M10 M13 M15 M18 M17 M16

Figure 8.2: GQM tree

78 CHAPTER 8. DEFINITION

CHAPTER 9

PLANNING

This chapter describes the planning of the experiment based on the goals
defined in Chapter 8. This includes selecting the experiment environment,
subjects, the hypothesis and instrumentation. In addition, threats to validity
are investigated.

9.1 Context Selection
The closer the experiment setting is to an industrial setting, the more valid
the results will be. However, this is costly and time consuming compared
to a simpler experiment involving less risks as the experiment is likely to be
easier to control. The experiment will be conducted off-line, as opposed to
on-line, which means it is not performed in a real industrial setting. Having
the experiment off-line is more natural when the WikiTest tool is still in an
early phase of the development. An on-line experiment could be a natural
continuation if the approach is to be evaluated in a larger setting.

The experiment will be carried out using students. The reason is the same
as having the experiment off-line; it is cheaper and involves less risk which is
applicable for early phase evaluation. The main focus will be on customers of
software projects, who may not have much programming experience, if any
at all. Second year computer science students will be used.

The problem given in the experiment will be about a steam boiler. The
advantage is that the domain is simple and thus comprehensible, but at the
same time the domain is large enough to provide room for errors and different

79

80 CHAPTER 9. PLANNING

interpretations. Another advantage is that the domain ontology for the steam
boiler already exists. The ontology was not created just for the experiment,
which means the ontology has not been created based on the knowledge that
students would use it in an experiment. A disadvantage is that the problem
domain may be difficult to understand in the short time the experiment will
last, which could have been avoided by using a familiar problem, for example
the creation of a web shop.

9.2 Hypotheses Formulation
A hypothesis is a statement that seek to explain some phenomenon or event.
The hypothesis is stated so that if the null hypothesis can be rejected, then
conclusions can be drawn [38]. The null hypothesis is what is assumed to be
true. We have chosen a significance level of 5%. If the p-value is less than
5%, we will reject the null hypothesis.

The hypotheses are used to answer research question number four, RQ4,
which is defined in Chapter 2. The hypotheses are used to investigate dif-
ferent characteristics of the test creation process, such as test case quality,
efficiency, understandability and usability. These characteristics were derived
in the GQM process in Chapter 8.

The null hypothesis will be listed first, followed by the alternative hypothesis
that we are investigating. For H1, the null hypothesis states WikiTest has
no effect on test quality. An alternative hypothesis, H11, states that the
use of WikiTest leads to higher test quality. There is a second alternative
hypothesis H12, which states that the use of WikiTest leads to lower test
quality. Both H11 and H12 needs to be included to make up the whole
sample space. We will, however, only show H11 to specify that this is what
we are looking for. The procedure that will be used is to first see if there is a
significant difference, and then if the mean value of WikiTest is higher than
the alternative. If there is a significant difference, but where the difference
of the mean values are the opposite of what we are investigating, then we
cannot draw a conclusion with a one-tailed test.

Question 1: Test case quality
H10: Using WikiTest has no effect on test quality
H11: Using WikiTest leads to higher test quality

9.2. HYPOTHESES FORMULATION 81

H20: Using a domain ontology has no effect on test quality
H21: Using a domain ontology leads to higher test quality

H30: Experience does not lead to a difference in test quality
H31: More experience leads to higher test quality

H40: There is no difference in syntactic correctness when using WikiTest or
a text editor
H41: The syntactic correctness is higher using WikiTest compared to a text
editor

H50: Using WikiTest or a text editor leads to the same amount of people
writing Backgrounds
H51: More people will write Backgrounds when using WikiTest compared to
a text editor

Question 2: Understandability

H60: Understanding the domain is equally easy using either WikiTest or
Protégé
H61: It is easier to understand the domain using WikiTest compared to
Protégé

Question 3: Usability

H70: There is no difference in how easy it is to get an overview of the tests
when using WikiTest or a text editor
H71: WikiTest makes it easier to get an overview of the tests compared to a
text editor

H80: There is no difference between WikiTest and a text editor in how pleas-
ant it is to write tests
H81: WikiTest makes it more pleasant to write tests compared to a text
editor

H90: There is difference in ease of use between WikiTest and Protégé
H91: WikiTest is easier to use than Protégé

82 CHAPTER 9. PLANNING

Question 4: Efficiency
H100: There is no difference in test efficiency between a text editor and
WikiTest
H101: There is a difference in test efficiency between a text editor and
WikiTest

H110: Using a domain ontology has no effect on test efficiency
H111: Using a domain ontology leads to a difference in test efficiency

9.3 Variables Selection
The independent variables are the use of a domain ontology, and the use of
WikiTest or a text editor. The dependent variables are the test quality and
efficiency.

9.4 Selection of Subjects
Subject selection is closely connected to the generality of the experiment. In
this experiment, the subjects are all second year computer science students.
The students participating have signed up voluntarily as part of collecting
money for a student trip. About 30 students will participate, 10 for each
treatment.

9.5 Experiment Design
The experiment consists of one factor with three treatments. The factor is
the tool used to create the tests. The treatments are:

1. None. Only a text editor is used to write the tests.

2. Ontology. Protégé will be used to view the domain ontology and a
text editor will be used to write the tests.

3. WikiTest. WikiTest will be used both for the domain ontology and
writing the tests.

Treatment one and two use a text editor, while treatment three uses a Wiki.
Treatment two and three use a domain ontology, while treatment one does
not have this information.

9.6. INSTRUMENTATION 83

The students will be assigned randomly to each treatment. In addition, the
experiment design principle called balancing is used so that each treatment
has the same number of subjects.

ANOVA [39] will be used to compare the groups. t-test [8] will be used when
comparing the wiki to a text editor, WikiTest to Protégé and the domain
ontology versus no ontology. for the evaluation of the hypotheses.

9.6 Instrumentation
Two surveys will be performed for each subject; one before the experiment
and one after. The surveys will be answered using an online questionnaire.
This makes it easier to analyze the results. In addition, using an online survey
tool makes it possible to log the time from the pre-experiment questionnaire
is submitted to the time the post-experiment questionnaire is started. This
gives us information about how much time it takes to use the two approaches.

The instruction set will provide information about:
• Assignment description and tasks
• Steam boiler information
• Cucumber information

The ABB boiler pilot application has six functional boilerplate requirements
and four safety requirements, for a total of ten requirements. The task will
contain:

• Two functional requirements. These are complete features where the
scenarios are filled in.

• Two functional and two safety requirements where only the requirement
text is written at the top of a feature, the student will fill in the rest.

• One functional and one safety requirement with poorly defined tests,
which the student shall try to improve.

• For the last functional and safety requirement (one of each) the com-
plete feature has to be filled in by the student, simulating a situation
where a requirement is discovered during the test specification.

For the two groups using a domain ontology, a few domain specific questions
will be asked. These control questions are used to make the students a little
more familiar with the ontology.

84 CHAPTER 9. PLANNING

9.7 Validity Evaluation
Incorrect data are dangerous, even more so than having no data at all. As
for experiments, the validity of the results is crucial if any conclusions can
be made. Thus, it is important to identify any threats to validity already at
the planning phase of the experiment.

Wohlin et al. provide a checklist of validity threats [8]. This list will be used
to investigate the validity threats for this particular experiment. The threats
in the list are divided into four categories, depending on what kind of threat
it is. Conclusion validity refers to the ability to justify the relationships that
are found in the experiment. Internal validity refers to the validity of the
cause-effect relationship. Construct validity is the link between theory and
the observation. External validity is the degree to which the results can be
generalized to a larger scope.

Each threat will be given a priority of either high, medium or low. The
priority is given based on the threat’s importance for this experiment only,
and is not an evaluation of the priority of the threats in general. A threat
with high priority is a threat that is particular important due to the nature
of the experiment, which means that the threat will need to be mitigated
or accepted as an aspect that may skew the results of the experiment. A
threat with medium priority is a lesser threat, but will still be important to
consider. This could either be that the probability of the threat occurring is
low, or that the impact it has when it occurs is low. A low priority threat is
any threat not applicable to this experiment, or where both the chance of it
occurring and the impact it has when it occurs, is low.

9.7.1 Conclusion Validity
Low statistical power (High)
Statistical power is the probability that the test will reject the null hypothesis
if the null hypothesis is false. If we have low statistical power, the risk of not
being able to reject an erroneous hypothesis increases. This threat is often
high in master thesis experiments involving students, where the number of
subjects involved may be low. When comparing the difference between using
a domain ontology and not using it, it is possible to aggregate group B and C,
which both use the ontology, and compare it to group A, which does not use
the ontology. When comparing the difference between using a text editor and
WikiTest, it is possible to aggregate group A and B, which both use a text
editor, and compare it to group C, which use WikiTest. This aggregation

9.7. VALIDITY EVALUATION 85

will make it possible to get higher statistical power, as compared to when
the three groups are compared individually.

Fishing and the error rate (Medium)
Fishing in a statistical context refers to playing around with data until you
turn up something that supports your hypothesis. When conducting inves-
tigations using the rather arbitrary significance level 0.05, it means that 1
out of 20 investigations will give a significant result just due to luck. When
multiple investigations are performed, the chance increases of finding at least
one investigation which rejects the null hypothesis. This may happen in this
experiment, due to the high number of hypothesis that are tested.

Reliability of measures (Medium)
Reliability of measures refers to the ability to get the same outcome if the
experiment is performed multiple times. The instrumentation papers and
questionnaires are static and would be the same for multiple experiments,
which provides the same foundation for each experiment. However, human
judgment is used to grade the quality of the tests, and this measure may
not be reliable if different people do the grading. The reliability of grading
the tests written in the experiment is mitigated by creating a set of grading
instructions for the different aspects of test case quality. As an example, the
syntactic grade is reduced by 1 point if one error in the use of Cucumber
keywords and syntax is wrong, and reduced with 2 points if more than one
error is found.

Violated assumptions of statistical tests (Low)
Some might argue that transforming the five point ordinal Likert scale to
a five point ratio scale should be avoided. Doing this seems to be com-
mon in many research papers nowadays, as pointed out by Blaikie in [40].
Statisticians such as John Tukey argue that an over-purified view of what
measurements are like should not dictate how data is to be analyzed [41].
The use of a ratio scale should not pose a big threat to the validity of the
experiment.

Reliability of treatment implementation (Low)
The instructions and work flow are about the same for the three treatments
applied in the experiment, and should not pose much of a threat.

Random irrelevancies in experimental setting (Low)
The experiment will be performed in a lecture hall at NTNU, where noise and
distractions should be at a minimum. A potential factor is that each subject

86 CHAPTER 9. PLANNING

brings his own PC, where things such as virus may disturb the experiment.
This is not regarded as a big threat, as the process of writing tests does not
suffer much from a sudden, short interrupt.

Random heterogeneity of subjects (Low)
Some extent of heterogeneity will always exist in experiment, but using stu-
dents at the second year of computer science at NTNU provides a group that
will have taken the same courses, providing the same minimum foundation
for everyone. Certainly, there is a chance that some students may have ex-
tensive programming or test experience, which the rest does not have. This
threat will be mitigated by the use of a pre-experiment survey where each
subject states his experience level within programming, automated testing,
acceptance testing, testing with Cucumber, and so forth. If just one or two
participants have much more experience than the rest, the results for these
participants could be excluded to reduce this threat

9.7.2 Internal Validity
Instrumentation (High)
The instrumentation is important for the experiment as a whole. Each sub-
ject will have quite a lot of material to read, and it is important that this
information is not written in a way that helps one of the groups more than
the others. Group B and C will need to answer some domain specific ques-
tions to make sure that they at least try to use the domain ontology. These
control questions will not cover topics that may help these two groups writing
the tests afterwards. The instrumentation is a core part of the experiment
and the quality of the instrumentation is regarded as a high priority.

Selection (Medium)
The subjects are volunteers, which means they may be more motivated than
the average student. A way to mitigate parts of this threat is to not give out
more information than necessary before the experiment is started. Another
problem with the selection is that the students may not be an accurate
representation of customers of IT projects. On the other hand, the students
are a good representation of junior programmers.

Ambiguity about direction of causal influence (Medium)
The nature of the experiment is to compare WikiTest to a text editor, and
to compare the use of a domain ontology to not using an ontology. In the
midst of doing this comparison, there may be causal influences that are not
properly identified before the experiment is started. It is a threat, but not a

9.7. VALIDITY EVALUATION 87

critical one, as the main goal is to assess the usefulness of WikiTest.

Diffusion or imitation of treatments (Medium)
There is a threat that one group learns about the treatment of another group,
such as if the participants sit too close and can look at each others work.
This is not a threat when it comes to the test quality, as it does not matter
if a subject writing tests in a text editor learns about the wiki. On the
other hand, it may affect the response of that subject in the post-experiment
questionnaire. Knowing the another group used a wiki, the subject may
answer more negatively (or positively) on questions regarding the use of a
text editor.

Compensatory rivalry (Medium)
This is related to diffusion or imitation of treatments. A subject first has to
learn about another treatment for it to be a threat. There is a threat that
subjects using the wiki may deduct that this is the new method, and give it a
higher or lower score that he would have done under different circumstances.

Interaction with selection (Medium)
There is a chance of selection-maturation where group A that does not use a
domain ontology has the least amount of material to read, and may be able
to spend more time writing tests. This threat will be investigated by asking
the subjects if they had enough time to write tests.

History (Low)
Not applicable since the treatments are applied to everyone at the same time.

Maturation (Low)
There is a chance that the subjects learn how to write better tests as they
wrote more tests, thus the tests written last may have higher test quality.
This does not pose a threat, however, as this is a common factor for all the
three groups.

Testing (Low)
The test is not repeated, and no feedback will be given to the subjects during
the experiment, so this does not pose a threat.

Statistical regression (Low)
Not applicable as the subjects are not classified based on any previous ex-
periment.

88 CHAPTER 9. PLANNING

Mortality (Low)
Since the subjects are paid only if the attend the experiment, they are not
likely to drop out during the execution of the experiment, as could happen
if the experiment was conducted purely online without any form for reward.

Compensatory equalization of treatments (Low)
This is a low threat as there is no extra compensation to any of the treat-
ments.

Resentful demoralization (Low)
This resembles compensatory rivalry, but where the subject put less effort
into doing a good job to lower the score of his treatment. To some extent,
it is possible to identify this by looking at the number of tests the subject
wrote. If he wrote very few, and still said he had enough time, it may be an
indicator that the subject did not put in the same effort as others.

9.7.3 Construct Validity
Mono-method bias (High)
Mono-method bias refers to the way the measurements are performed. It is a
high threat in some parts of this experiment, such as the human judgment of
test case quality, which can not be cross-referenced with other measurements.
For other parts, such as asking the subjects if the interface is pleasant to use,
it can be cross-referenced by asking if more help was needed with the tool.

Hypothesis guessing (High)
Hypothesis guessing is a high threat as the subjects know they are attending
an experiment where not everyone will do the same (the different instruc-
tions depending on the group) and they may guess what the hypotheses is.
Especially in the post-experiment questionnaire, the questions may give a
pointer to what the hypotheses is. As the types of questions in the survey is
quite disperse, it should be hard to guess the hypotheses.

Experimenter expectancies (High)
Most of the material for the experiment is made by the author of this thesis,
which is a threat as the instrumentation could be tailored to give a specific
result. Fortunately, the domain ontology and the requirement specification
are made in another context (CESAR). In other words, the domain ontology
and requirements were not created to be used only for this experiment. It
would be possible to further reduce this threat by involving other people,
who do not know anything about the hypotheses, in the grading of the test

9.7. VALIDITY EVALUATION 89

case quality.

Inadequate preoperational explication of constructs (Medium)
Test case quality is divided into five areas to make it more explicit. It is
possible that some constructs are not sufficiently defined in the planning stage
and must be defined after the experiment. This will have a bad impact on
the validity of the experiment. Anything defined after the actual experiment
will have to be commented.

Mono-operation bias (Medium)
Mono-operation bias is a threat if if only a single independent variable is
used. A solution is to implement multiple versions, e.g. different problem
domains, to make sure the results are valid for other domains than the steam
boiler.

Confounding constructs and levels of constructs (Medium)
This threat is identified by asking the subjects about their experience. It
will be a problem if a majority of the subjects in one group has much more
experience than the subjects in another group, as it will make it difficult to
see if the difference is because of the experience or the treatment.

Interaction of different treatments (Low)
Not applicable as only one treatment is used.

Interaction of testing and treatment (Low)
The subjects will only know that they are to write tests for a given set of
requirements, and that these tests should follow a specific syntax. They will
not know if the goal is to write the most tests, be finished the fastest or to
use the most domain concepts.

Restricted generalizability across constructs (Low)
This threat is concerned with side effects. The most important one is test
efficiency, which will be measured to see if there is a large different between
the treatments. Having open questions in the post-experiment questionnaire
makes it possible for the subjects to write about concerns which was not
explicitly covered earlier in the experiment.

Evaluation apprehension (Low)
The fear of being evaluated should not be a threat as the subjects are vol-
unteers, anonymous and used to be graded based on their work.

90 CHAPTER 9. PLANNING

9.7.4 External Validity
Interaction of selection and treatment (Medium)
The selection of people used as subjects have an impact on the ability to
generalize the results. This is a medium threat as the students are an ap-
proximate representation of programmers, but they do not reflect the views
of customers of IT projects.

Interaction of setting and treatment (Low)
The setting is different from real use as the subjects work alone, and not
together as is likely to happen when the tests are created. The domain
ontology and the steam boiler requirements document from the industry
helps to create a more realistic setting.

Interaction of history and treatment (Low)
The day the experiment is performed should not be a high threat to the
validity.

9.7.5 Validity Summary
There is a trade-off between the four types of validity. Putting more effort
on one may reduce another. As Table 9.1 shows, there are five threats of
high risk in the experiment. Three of these are construct validity threats,
which is about the ability to generalize the results. This is mostly because
experiments in general are easy to control, but the more they are controlled
the more artificial they become, which in turn makes it harder to generalize
the results.

Type Threat
Conclusion Low statistical power
Internal Instrumentation
Construct Mono-method bias

Hypothesis guessing
Experimenter expectancies

Table 9.1: High priority validity threats

Low statistical power may make it difficult to get any significant results. This
is a threat because it may be difficult to get enough subjects to participate.
This risk will be reduced by involving the second year computer science
excursion committee early on so they can promote the experiment early. It
is also possible to include excursion committees from other field of studies to

9.7. VALIDITY EVALUATION 91

increase the number of subjects, although this will increase the heterogeneity
of the subjects.

Instrumentation is critical for the experiment, and care needs to be taken
when creating the tasks and instructions. The threat of mono-method bias
and experimenter expectancies can be reduced by being explicit about how
the test quality will be graded, and involve another person outside the ex-
periment to go over the experiment plans. Hypothesis guessing is natural
for subjects to do when they attend the experiment, but since the post-
experiment questionnaire touch a wide range of topics, it should difficult to
guess the hypotheses.

Table 9.2 displays the validity threats classified as medium risks in this ex-
periment. There is a total of eleven such threats, with all validity types
represented.

Type Threat
Conclusion Fishing and the error rate

Reliability of measures
Internal Selection

Ambiguity about direction of causal influence
Diffusion or imitation of treatments
Compensatory rivalry
Interaction with selection

Construct Inadequate preoperational explication of constructs
Mono-operation bias
Confounding constructs and levels of constructs

External Interaction of selection and treatment

Table 9.2: Medium priority validity threats

92 CHAPTER 9. PLANNING

CHAPTER 10

OPERATION

In this chapter, the operation of the experiment is explained. The operation
consists of three steps: preparation, execution and data validation.

10.1 Preparation
The preparation is based on the planning described in Chapter 9. The par-
ticipants were recruited through a class excursion committee for the second
year students taking Computer Science at NTNU. The committee is given
some money, according to a standard rate at NTNU, for each student that
attends the experiment. Before the experiment, the only thing they knew
was that the experiment’s theme was that it had to with testing, and that
they had to bring their own PC.

10.2 Execution
The experiment was held on the 4th of May in a classroom at NTNU with a
total of 38 students. The experiment lasted from 14:15 to 16:00, a total time
of 105 minutes. About 15 minutes were used on a presentation describing
how the experiment would be executed, as well as some information about
the steam boiler and Cucumber. The same information was given to each
participant through hand-outs; the participants did not have to memorize
the information given in the presentation. The hand-outs had a description
of the assignment and a link to a webpage the participant should access.
Each group had a different webpage, with the specific instructions for that
group.

93

94 CHAPTER 10. OPERATION

The online survey tool Surveygizmo (http://www.surveygizmo.com/) was
used for the pre-experiment and post-experiment questionnaires. Group A
and B wrote the features in text files, while group C used WikiTest to write
the features. Each participant in group C had their own wik, where the on-
tology data was set up for each participant. If the purpose of the experiment
was to assess the capabilities of collaboration, it would make sense to use the
same wiki for all the subjects in group C.

10.3 Data Validation
38 students participated: 12 in group A, 13 in group B and 13 in group C.
A possible source of error is that some participants have misunderstood the
instructions, not delivered the files or not taken it seriously.

One participant in group C reported problems with his PC during the ex-
periment, and the participant also wrote about it in the post-experiment
comments. This student had only time to write two features, and did not
deliver the pre-experiment questionnaire. Another participant, from group
B, did either not understand the instructions, or (more probably) did not
take the experiment seriously. His delivery consisted of two features, where
one of them was written as a poem not relevant to the experiment. This
participant answered the domain questions, but had not tried to create any
features properly. For the data of the two participants, the following options
were possible:

1. Exclude only the written features, but keep the comments from the
questionnaires

2. Exclude the written features and post-experiment questionnaire, but
keep the pre-experiment questionnaire

3. Exclude everything

The post-experiment questionnaire was based on the work done creating the
Features, and as such doing little work creating Features gives less experience
to talk about. The pre-experiment questionnaire might be valid, but it has
little use by itself. The participant of group C did not answer the pre-
experiment questionnaire, while the participant from group B did (although
he did not take the latter part of the experiment serious). As such, the best
option is likely the third one. All the data from the two participants were
excluded from the analysis.

CHAPTER 11

DATA ANALYSIS

This chapter contains the analysis of the data collected in the experiment.
First, descriptive statistics for each measurement is given. Then, the hy-
potheses are tested using statistical tests. A discussion of the data calcula-
tions and their implications is given in Chapter 12.

11.1 Measurements
This section will describe the data collected for the metrics defined in Section
8.4. For group A, 12 out of 12 delivered the pre-experiment questionnaire.
For group B, 10 out of 12 delivered, and for group C, 11 out of 12 delivered.
The measurements are visualized in diagrams to make it easier to get an
overview of the data. Each measurement will be compared to the expected
value of the metric given in Chapter 8.4.

95

96 CHAPTER 11. DATA ANALYSIS

11.1.1 Metric 1 - Programming experience
Figure 11.1 shows the programming experience of the subjects distributed
over the three groups, where each group has 12 subjects. As can be seen,
no participant has more than 8 weeks of industrial experience, and only four
participants has more than 2 weeks of industrial experience. It was expected
that over 80% would belong to option one or two, and the actual result
was about 88%. Although the industrial experience does not give an exact
measure of the subjects actual programming experience, it is enough to get
an idea of the experience of the subjects as a whole.

0

2

4

6

8

10

Only

programming

classes

Classes and

hobby projects

2-8 weeks in a

software

company

8+ weeks in a

software

company

Programming experience

A

B

C

Figure 11.1: Programming experience

Group A has a larger amount of subjects with only programming experience
from school compared to the other groups. If experience is a factor, then
that may have an effect when comparing the use of domain ontology (B and
C) to not using a domain ontology (A). When comparing a text editor (A
and B) to the use of a wiki (C), the distributions are similar.

11.1. MEASUREMENTS 97

11.1.2 Metric 2 - Wiki experience
It was expected that more than 80% would have read wiki articles. The
actual experience of the subjects in group C was higher, as 36% had done
more that just read articles. Two subjects had even had their own wiki
server, which is more than expected. From a generalizability point of view,
the wiki experience of the subjects is likely to resemble the general experience
of programmers, more so than the average IT customer who is expected to
have less experience.

None; 0

Read

articles; 7
Edited

articles; 2

Had own

server; 2

Wiki experience

Figure 11.2: Wiki experience

11.1.3 Metric 3 - Ontology experience
The expected ontology experience was that only a few would know anything
about it. The pre-experiment survey showed that only 1 of 10 subjects in
group B had heard about it, while none out of 11 subjects in group C had
any knowledge about it. This is in conformance with the expectancies which
assumed that less than 20% would have any experience with ontologies.

98 CHAPTER 11. DATA ANALYSIS

11.1.4 Metric 4 - Test tool experience
None of the subjects had ever used any acceptance testing tool, such as
FitNesse. Figure 11.3 shows that 13 subjects had written an automatic test,
for example using JUnit, while 20 had not. The distribution between the
three groups is fairly equal. It was expected that 25-50% would have written
tests, and less than 20% would have used an automatic acceptance tool. The
results were as expected, as 43% had written tests before, while 0% had used
acceptance testing tools.

0

2

4

6

8

10

A B C

Have you ever written an automatic test

before (for example using JUnit)?

Yes

No

Figure 11.3: Written automatic test before

11.1.5 Metric 5 - Cucumber experience
As Figure 11.4 shows, only a few had even heard about Cucumber before the
experiment. This was expected, and should be a good representation of an
IT customer. The downside is that there is less use analyzing the test quality
based on Cucumber experience when the large majority has no experience
with the tool. As with the programming experience, the experience of the
subjects is quite homogeneous.

11.1. MEASUREMENTS 99

0

2

4

6

8

10

12

No Heard about it Wrote feature Wrote feature

and implemented

Cucumber experience

A

B

C

Figure 11.4: Experience with Cucumber

11.1.6 Metric 6 - Feature coverage
Figure 11.5 shows a box plot of the feature coverage for the three groups.
For each subject, the feature coverage is found by giving each feature a score
of 0 (the scenarios do not cover the requirement), 1 (the scenarios partly
cover the requirement) or 2 (the scenarios cover the requirement). Then, for
a particular participant the score for each feature is summarized and divided
by the number of features that the participant have tried to write. This
means that the features that do not have any scenarios are not included in
the average. In the definition of the feature coverage metric, it was expected
that the majority of the features would be partly complete, with an average
between 1.0 and 1.5. It turned out that most subjects managed to write
scenarios that covered the scope of the requirement, and that the expectancy
was too low.

100 CHAPTER 11. DATA ANALYSIS

1

1,2

1,4

1,6

1,8

2

2,2

A B C

Figure 11.5: Feature coverage

11.1.7 Metric 7 - Scenario completeness
Specifying complete scenarios was more difficult for the participants than
feature coverage, although all the groups had an average within the expected
interval from 1.3 to 1.8. The reason why the feature coverage gave higher
results than expected, and scenario completeness did not, might be because
the steam boiler requirements were detailed (as opposed to general). This
makes it easier to get complete coverage for the feature, but does not make
it easier to specify a complete scenario.

0,8

1

1,2

1,4

1,6

1,8

2

2,2

A B C

Figure 11.6: Scenario completeness

11.1. MEASUREMENTS 101

11.1.8 Metric 8 - Syntactic correct scenario
Writing features and scenarios with correct syntax was easy for the majority.
In group A, 8 out of 12 got a full score. In group B, 7 out of 12 got a full
score. In group C, 9 out of 12 got a full score. The results agreed with the
expected average of more than 1.8.

1

1,2

1,4

1,6

1,8

2

2,2

A B C

Figure 11.7: Syntactic correctness

11.1.9 Metric 9 - Unambiguous scenario
Figure 11.8 shows the ambiguity score for the groups, where the higher score
is the less ambiguous the scenarios are. The mean for group A, B and C is
1.82, 1.92 and 1.98, respectively. The expected mean was between 1.6 and
1.9, so two of the groups had a higher mean than expected.

1

1,2

1,4

1,6

1,8

2

2,2

A B C

Figure 11.8: Ambiguity score

102 CHAPTER 11. DATA ANALYSIS

11.1.10 Metric 10 - Verifiable scenario
The verifiability of the scenarios for each group is given in Figure 11.9. The
mean for group A, B and C is 1.80, 1.78 and 1.91, respectively. Group B had
a mean less than the expected minimum value, which was 1.8 points.

1

1,2

1,4

1,6

1,8

2

2,2

A B C

Figure 11.9: Verifiability

11.1.11 Metric 11 - Ontology understandability
This metric is collected in a survey after the experiment and is only relevant
for group B and C. More people in group B think that using a domain
ontology helped to understand the steam boiler domain. In addition, Figure
11.11 shows how many think the ontology makes it easier to write tests.

0

2

4

6

8

Strongly

disagree

Disagree Neutral Agree Strongly

agree

Using a domain ontology made it easier to

understand the domain?

B

C

Figure 11.10: Ontology makes the domain easier to understand

11.1. MEASUREMENTS 103

0

2

4

6

8

Strongly

disagree

Disagree Neutral Agree Strongly

agree

Using a domain ontology made it easier to write

tests?

B

C

Figure 11.11: Ontology makes it easier to write tests

It is also interesting to see how many would like more help about the steam
boiler for all the three groups. Figure 11.12 shows that no one strongly
disagree that they would like more help. Four subjects strongly agree that
they would like more help, two from group A and two from group B.

0

1

2

3

4

5

6

7

Strongly

disagree

Disagree Neutral Agree Strongly

agree

I would like more help about the steam boiler when

writing the tests?

A

B

C

Figure 11.12: Steam boiler help

104 CHAPTER 11. DATA ANALYSIS

11.1.12 Metric 12 - Cucumber understandability
It was expected that the Cucumber syntax would be easy to understand
and use. As shown in Figure 11.13, group C had a higher variation in their
answers than the other groups. It is possible that the effect of using the
wiki creates a higher variance within the group compared to a text editor.
The cause of this should be explored further, such as by reading the post-
experiment comments from the participants of the experiment.

0

2

4

6

8

10

12

Strongly

disagree

Disagree Neutral Agree Strongly

agree

Writing tests with the Cucumber-style

(Given/When/Then) was easy?

A

B

C

Figure 11.13: Difficulty of using the Cucumber syntax

Figure 11.14 shows how many would like more help about Cucumber, and
Figure 11.15 shows how many would rather write tests in a free format, as
opposed to using Cucumber.

11.1. MEASUREMENTS 105

0

1

2

3

4

5

6

7

Strongly

disagree

Disagree Neutral Agree Strongly

agree

I would like more help about the Cucumber style

when writing the tests?

A

B

C

Figure 11.14: Cucumber help

0

2

4

6

8

10

Strongly

disagree

Disagree Neutral Agree Strongly

agree

I would rather write tests in a free format (not use

any keywords etc)?

A

B

C

Figure 11.15: Rather write tests in free format

106 CHAPTER 11. DATA ANALYSIS

11.1.13 Metric 13 - WikiTest understandability

The understandability of WikiTest is specific to group C, and the pre-
experiment expectation is that most subjects will agree. The same question
about the perceived ease of use was asked to group B, but then in the context
of Protégé.

0

1

2

3

4

5

6

7

Strongly

disagree

Disagree Neutral Agree Strongly

agree

Ease of use

(B) Protege was easy to

use?

(C) The wiki was easy to

use?

Figure 11.16: Ease of use

Figure 11.17 shows how many in group C would like more help about the
wiki. This is another way of finding out if WikiTest was easy to use.

0

2

4

6

8

10

Strongly

disagree

Disagree Neutral Agree Strongly

agree

I would like more help about how to use the wiki

functionality when writing the tests?

C

Figure 11.17: More help for WikiTest

11.1. MEASUREMENTS 107

11.1.14 Metric 14 - Ease of browsing tests
The metric “ease of browsing tests” is used to investigate how easy the text
editor or wiki is to use when the amount of features grows large. As this
experiment only used 10 features, the measurement might not represent its
intention. Group A and C were within the expected interval value between
3.0 and 4.0. Group B had a lower score than expected, with an average at
2.8.

0

2

4

6

8

Strongly

disagree

Disagree Neutral Agree Strongly

agree

Using [X] to write tests made it easy to get an

overview of the tests?

A (Text editor)

B (Text editor)

C (Wiki)

Figure 11.18: Overview of tests

108 CHAPTER 11. DATA ANALYSIS

11.1.15 Metric 15 - Pleasant to use
The expected result of how pleasant the user interface is to use is that most
subjects will be neutral or agree. It would be a warning sign of poor wiki
implementation if the text editor is a lot easier to use than the wiki, but as
can be seen in Figure 11.19, the majority of subjects who used the wiki liked
the user interface. If the goal is to compare the user interface of the wiki and
text editor, it would make sense that the subjects used both and compare
them to each other, but this was not done in the experiment.

0

2

4

6

8

10

Strongly

disagree

Disagree Neutral Agree Strongly

agree

The user interface

made it pleasant to write tests?

A (Text editor)

B (Text editor)

C (Wiki)

Figure 11.19: User interface satisfaction

11.1.16 Metrics 16 to 18 - Time used
Metrics 16 is the total time used, which is listed for each participant in Figure
11.20. Figure 11.21 shows little difference in how many needed more time
than they got. Only four subjects said they did not have enough time to
complete the whole experiment.

11.1. MEASUREMENTS 109

0

10

20

30

40

50

60

70

80

90

100

A B C

Figure 11.20: Time used at the assignment

0

2

4

6

8

10

12

A B C

I had enough time to do the assignment?

Yes

No

Figure 11.21: Enough time to do the assignment

110 CHAPTER 11. DATA ANALYSIS

Metric 17 is the time used per feature, which is depicted in Figure 11.22.

0

2

4

6

8

10

12

14

16

18

20

A B C

Figure 11.22: Time used per feature

Metric 18 in Figure 11.23 shows how many minutes is used per scenario for
the different groups. Again, the values between the groups are quite similar,
and the mean is within the expected difference of 20%.

0

2

4

6

8

10

12

14

16

A B C

Figure 11.23: Time used per scenario

11.2. HYPOTHESES TESTING 111

11.2 Hypotheses Testing
This section tests the hypotheses posed in Chapter 9.2. The data has been
tested using ANOVA when comparing the mean of the three groups. t-test
has been used when the wiki is compared to the text editor, and when the
use of an ontology is compared to not using an ontology. The data of the
statistical tests can be found in Appendix B. Throughout the hypotheses
testing, the significance level used is 5%. This means that the p-values need
to be 0.05 or smaller to be defined as statistical significant.

11.2.1 Question 1: Test case quality
The question of test case quality involves five hypotheses. H10 says that using
WikiTest has no effect on test quality, while H11 says that using WikiTest
leads to higher test quality. To get the complete sample space, we need a
third hypothesis, H12, stating that the use of WikiTest leads to lower test
quality. As explained in 9.2, we will look for a one-tailed p-value of 0.05
or less, and look at the means to make sure the result is the way we are
investigating (H11, not H12).

The test case quality is found by combining M6-M10. The ANOVA in Table
B.1 shows the average points per feature between the three groups. Group
A and B has a mean of 9.1 each, while C has a mean of 9.6. The difference is
not significant with a p-value of 0.0583. However, we really want to compare
the difference between the use of WikiTest and a text editor, which is found
by using a t-test. The results are found in Table B.2. With a mean of 9.1
for text editor and 9.6 for wiki, the difference is significant with a p-value of
0.00117 and the wiki has a higher mean. Thus, we reject H10 and accept
H11, concluding that WikiTest leads to higher test quality.

A similar test is performed on the effect of an ontology. H20 says that using
a domain ontology has no effect on test quality, while H21 states that the
use of a domain ontology leads to higher test quality. Table B.3 shows that
the mean is 9.1 for no ontology and 9.3 when using an ontology, which is not
significant with a p-value of 0.154. The conclusion is that we cannot reject
H20. Using a domain ontology has no effect on test quality.

The third hypothesis investigates the effect of experience on test quality.
H30 says that experience does not lead to a difference in test quality, while
H31 says that more experience leads to higher test quality. When designing
the experiment, it was not know what type of experience the subjects would

112 CHAPTER 11. DATA ANALYSIS

have. If everyone had the same experience, it would not be possible to
investigate this hypothesis. As it turned out, only one participant had heard
of domain ontologies (metric 3), so this was not investigated. Wiki experience
(metric 2) had a majority of participants who had read articles, but there
were not enough participants who had more experience than this. The three
experience metrics analyzed are programming experience (M1), automatic
test tool experience (M4) and experience with Cucumber (M5). As this is a
multiple analysis, the significance level becomes (1 − 0.05)3 = (1 − 0.14). To
continue to use 5% as the significance level, each of the following experience
will need a p-value less than 0.017, since (1 − 0.017)3 = (1 − 0.05).

The results for programming experience is given in Table B.4. Since most
of the subjects did not have industrial experience, we decided to use two
groups. The first group is those with only programming experience from
school, while the second group is everyone who has more experience than
that. The mean for the first group is 9.1, while the mean of the second
group is 9.4. The p-value is 0.117, so we cannot reject H30 with regards to
programmer experience.

Automatic test tool experience is displayed in Table B.5, where the subjects
who has written an automatic test before has a mean of 9.30, while the
subjects who has not written any automatic tests has a mean of 9.28. The
difference is neither big nor significant, with a p-value of 0.447.

The last experience metric to investigate is Cucumber experience, which is
analyzed in Table B.6. There are two groups, those who have heard about
Cucumber before and those who have not. The means are 9.12 and 9.32,
respectively. The group with less experience has a higher score so we cannot
draw any conclusion, as H31 only state that more experience leads to higher
test quality.

None of the experience metrics give any significant results, so H30, saying
that experience does not lead to a difference in test quality, is not
rejected.

H40 states that there is no difference in syntactic correctness when using
WikiTest or a text editor, while H41 states that the syntactic correctness is
higher using WikiTest than a text editor. It is first interesting to see the
difference between the groups, which is displayed in Table B.7. The mean
for group A, B, C is 22.4, 21.7 and 23.5, respectively. There is no significant
difference between each group (p=0.262). The objective is to investigate the

11.2. HYPOTHESES TESTING 113

difference between the text editor and the wiki. The text editor has a mean
of 1.836, while the mean of the wiki is 1.963. This is significant with a p-value
of 0.0215, as shown in Table B.8. H40 is rejected in favor of H41.

The fifth hypothesis is regarding the use of backgrounds. H50 express that
using WikiTest or a text editor leads to the same amount of people writ-
ing Backgrounds, while H51 says that more people will write Backgrounds
when using WikiTest compared to a text editor. This hypothesis is used
to investigate if the wiki can make it easier to use special functionality of
the Cucumber syntax, which could manifest itself through more participants
writing backgrounds. The ANOVA in Table B.9 shows that 3 subjects in A,
5 in B and 9 in C wrote at least one background, which is significant with
p=0.0432. Using a t-test in Table B.10 makes the difference clearer between
the text editor and the wiki, with a p-value of 0.009. Thus, H50 is rejected
in favor of H51.

11.2.2 Question 2: Understandability
The question of understandability has one hypothesis, which is related to
which tool is better in order to understand the domain. H60 says “under-
standing the domain is equally easy using either WikiTest or Protégé”, while
H61 says “it is easier to understand the domain using WikiTest compared to
Protégé”. Table B.11 shows the t-test comparing WikiTest and Protégé in
terms of understanding the domain. The mean for WikiTest is 3.42 and the
mean for Protégé is 3.33. This is not significant with a p-value of 0.3906.
H60 is not rejected.

11.2.3 Question 3: Usability
Usability is related to three hypotheses. The first is H70, which says there
is no difference in how easy it is to get an overview of the tests when us-
ing WikiTest or a text editor. The alternative hypothesis H71 states that
WikiTest makes it easier to get an overview of the tests compared to a text
editor. The difference between the groups is given in the ANOVA - Table
B.12. The t-test in Table B.13 shows that WikiTest is better with a mean of
3.83, compared to 3.08 of the text editor. This is significant with p=0.01765,
so H70 is rejected in favour of H71.

H80 states that there is no difference between WikiTest and a text editor in
how pleasant it is to write tests, while H81 states that WikiTest makes it
more pleasant to write tests compared to a text editor. The comparison of

114 CHAPTER 11. DATA ANALYSIS

the groups is given in Table B.14, while the comparison of the wiki to text
editor is given in Table B.15. The satisfication of the text editor is 2.79,
while the wiki has a mean of 3.83. This is significant with p=0.00092. We
reject H80 in favor of H81.

H90 says that there is difference in ease of use between WikiTest and Protégé.
The alternative hypothesis, H91, propose that WikiTest is easier to use than
Protégé. The ease of use is shown in Table B.16. Protégé has a mean of 2.75
and WikiTest has a mean of 3.92. This is significant at the 0.00285 level.
Thus, we reject H90 and use H91.

11.2.4 Question 4: Efficiency
The fourth and last question is regarding efficiency. There are two hypothesis;
one comparing the efficiency of WikiTest to a text editor, and another for the
use of a domain ontology. Table B.17 shows that the efficiency per scenario
between the three groups is close.

H100 states that there is no difference in test efficiency between a text editor
and WikiTest, while H101 says there is a difference in test efficiency between
a text editor and WikiTest. The results can be found in Table B.18 that
displays the test efficiency. There we see that the means are almost similar
and the two-tail p-value is 0.9448. The two-tailed valued is used as we are
looking both for proof that the text editor is more efficient, and that the
wiki is more efficient. The null hypothesis H100, that says there is no
difference in test efficiency between a text editor and WikiTest, is
not rejected.

H110 states that using a domain ontology has no effect on test efficiency,
while H111 states that using a domain ontology leads to a difference in test
efficiency. As can be seen in Table B.19, the means are almost the same.
With a two-tailed p-value of 0.881, we do not reject H110. Using a
domain ontology has no effect on test efficiency.

11.2.5 Exploring Further
During the execution and evaluation of an experiment, new ideas might come
up based on patterns in the data. The weakness of this approach is the chance
of a false positive. Analyzing large amount of data will eventually show a
significant result, even if it does not exist. The following analyses explore
parts of the data collected, which can be used as ideas for new hypotheses.

11.2. HYPOTHESES TESTING 115

As the metrics for test case quality are divided in five parts, it is possible
to analyze each part separately. The results of analyzing metric 6, feature
coverage, is shown in Table B.20 and B.21. There is no significant difference
between the three groups, but comparing the text editor and the wiki gives
the average scores of 1.79 and 1.88, respectively. This is significant with
p=0.02; the feature coverage is higher using the wiki than the text editor.

The scenario completeness metric shows no significant difference between the
groups (Table B.22) and between the wiki and text editor (Table B.23). The
ambiguity score, on the other hand, shows a difference. Table B.24 shows
that the average for group A is 1.82, group B has 1.92 and group C has 1.98.
There is a significant difference between the groups with p=0.0254. Looking
at the difference in Table B.25, the significance level is even larger when
comparing the text editor to the wiki, with a p-value of 0.00325.

The verifiability score is not significant between the groups, as shown in Table
B.26, with p=0.13. When comparing the text editor to the wiki, a significant
difference with p=0.0066 is found, as shown in Table B.27.

Another topic to further investigate is the effect of a domain ontology. When
comparing Protégé andWikiTest, the statement “the ontology makes it easier
to write tests” has an average score of 3.0 and 3.58, respectively. That means
that more participants using WikiTest agreed that the ontology made it easier
to create tests (Table B.28). The result is significant with a p-value of 0.0397.

A question was asked to find out if the subjects felt that more steam boiler
help was needed. Table B.29 shows hardly any difference between the groups,
with p=0.93.

The last topic to cover is the use of Cucumber. The difficulty of using the
Cucumber syntax shows no significant difference between the groups, neither
between the groups nor between text editor and wiki. There is no difference
in how many subjects answer that they would rather write tests in a free
format. The numbers can be found in Table B.30, B.31 and B.32. When
asked if more help was needed concerning the Cucumber syntax, there is no
difference between the groups (Table B.33) or the text editor and wiki (Table
B.34).

Table 11.1 summarize the results for the topics which was further investi-
gated. The analysis displays some more information about which metrics

116 CHAPTER 11. DATA ANALYSIS

made WikiTest score better. In test quality, it was everything except sce-
nario completeness. Another thing to note is that the subjects using WikiTest
felt the ontology made writing tests easier. This was perhaps because the
auto-complete functionality in WikiTest made it more explicit how the do-
main ontology concepts was used, as some participants wrote about in their
post-experiment comments.

Measurement Type P-value
Feature coverage Groups 0.2568
Feature coverage Wiki/Text 0.0271
Scenario completeness Groups 0.6204
Scenario completeness Wiki/Text 0.3201
Ambiguity Groups 0.0254
Ambiguity Wiki/Text 0.0033
Verifiability Groups 0.1322
Verifiability Wiki/Text 0.0066
Ontology makes writing easier Wiki/Protégé 0.0398
Steam boiler help Groups 0.9318
Cucumber syntax Groups 0.8290
Cucumber syntax Wiki/Text 0.3402
Write tests in free text Groups 0.6860
Cucumber help Groups 0.2889
Cucumber help Wiki/Text 0.4211

Table 11.1: Summary of extra measurements

11.3. SUMMARY OF HYPOTHESES 117

11.3 Summary of Hypotheses
38 subjects attended the experiment. The data from two subjects were ex-
cluded, as one did not take the whole experiment seriously and the other had
computer problems. The data collected was found using a questionnaire be-
fore the experiment, and one questionnaire after the experiment. The data
from these questionnaires were subjective answers, mostly using questions
where the answer could be picked from a five point Likert scale. In addition,
the tests that were written were handed in and evaluated by the author, grad-
ing each feature and scenario based on five criteria. The time used from the
pre-experiment questionnaire was delivered to the time the post-experiment
questionnaire was used as an indicator of the time used writing features.

The data collected was statistically tested using ANOVA when comparing
the three groups, t-test when comparing the wiki to a text editor, and a t-test
when comparing the use of a domain ontology. A total of eleven hypotheses
were proposed. Five of them could not be rejected, as shown in Table 11.2.
The key hypothesis were H1, H2 and H3. There were a difference in test
quality when comparing the wiki to a text editor (H1), but no difference was
found when comparing the use of a domain ontology (H2). Additionally, no
difference in test quality was found when looking at subjects with different
levels of experience (H3).

ID Hypothesis P-value
H2 Using a domain ontology has no effect on test quality 0.154
H3 Experience does not lead to a difference in test quality 0.117
H6 Understanding the domain is equally easy using either 0.391

WikiTest or Protégé
H10 There is no difference in test efficiency between a text 0.945

editor and WikiTest
H11 Using a domain ontology has no effect on test efficiency 0.881

Table 11.2: H0-hypotheses that could not be rejected

H10 and H11 looked at the difference in test efficiency. It was possible that
a side effect of using WikiTest would be that the overall test specification
efficiency would decrease. Since neither H10 or H11 could be rejected, no
significant difference in test efficiency was found, and we conclude that the
side effect did not occur.

The six hypotheses that could be rejected are shown in Table 11.3. Syntactic

118 CHAPTER 11. DATA ANALYSIS

correctness (H4) and the use of backgrounds (H5) are “specific” hypotheses,
which means that they look at the strengths of the wiki. It was hypothesized
that using the syntax correctly was easier when using forms in the wiki,
and that the wiki makes it easier to use special constructs of the Cucumber
functionality, such as backgrounds. Both these hypotheses gave significant
results.

ID Hypothesis P-value
H1 Using WikiTest leads to higher test quality 0.0012
H4 The syntactic correctness is higher using WikiTest 0.0215
H5 More people will write Backgrounds when using WikiTest 0.0090
H7 WikiTest makes it easier to get an overview of the tests 0.0177
H8 WikiTest makes it more pleasant to write tests 0.0009
H9 WikiTest is easier to use than Protégé 0.0029

Table 11.3: Alternative hypotheses accepted

H7, H8 and H9 is related to the user interface of the wiki. One of the core
ideas of acceptance testing is to involve the customer. High usability is a
necessity in this regard. The hypotheses indicate that using WikiTest makes
it easier to get an overview of the tests, it is more pleasant to write tests,
and it is easier to use than Protégé.

CHAPTER 12

INTERPRETATION

In this chapter, the data calculation and statistical testing from Chapter 11 is
discussed. The content of this chapter involves a subjective judgment of the
results found using the statistical tests. The answers from the open questions
in the post-experiment questionnaire will be used when discussing the data,
and the interpretation will be done with threats to validity in mind.

12.1 Participant Feedback
To represent the comments given by the participants, an Ishikawa diagram
will be displayed for each group. The Ishikawa diagram, also called a fishbone
diagram, is used to represent cause and effect relationships for a topic. The
Ishikawa diagram could be used to find the root cause of a defect or problem.
Here, the diagram will be used to structure the comments from the post-
experiment questionnaire. The three questions posed were:

1. What did you feel you could need help with, what was confusing?

2. What extra functionality would you want for writing Cucumber fea-
tures and scenarios?

3. Additional comments (things not covered by the other questions)?

119

120 CHAPTER 12. INTERPRETATION

Only the third question, which asks about additional comments, is neutral
in the sense that it does not ask for opinions of a certain category. The
first and second comments asks about what the subject needed more help
with, and what extra functionality was wanted to write Cucumber tests. The
main angle of the questions is what can be improved. As an afterthought,
it would have been useful to ask both for what worked well and what could
need improvement. The feedback from the group using only a text editor is
shown in Figure 12.1.

Group A

feedback

Steam boiler

Hard to understand

Would like more

info/details

Confusing control unit

Text editor

Cucumber

How to write

scenario titles

Missed OR

keyword

Autocomplete

Would like specialized IDE

Highlight keywords

Auto indentation

List of features

Want more help to

define things properly

Need more help to

understand the domain

Great way to write tests

Two features looked

almost the same

How detailed scenarios

Figure 12.1: Ishikawa diagram for group A

The comments from group A can be divided into three categories: Cucumber,
steam boiler and text editor. Several subjects from this group wanted more
help about the steam boiler. One person wanted a keyword, “OR”, which
do not exist in the Gherkin language used in Cucumber. The addition of an
OR construct is an interesting thought, and would make it easier to create
more complex tests. The feedback from the group using a text editor with
a domain ontology is given in Figure 12.2. Although the comments relate,
the main concern here is how Protégé is difficult to use. Some text editor
comments are also in common with group A, including a need of syntax
highlighting and auto-formatting of text.

12.1. PARTICIPANT FEEDBACK 121

Group B

feedback

Tests

Too general

More strict tests

How to write

good tests

Text editor

Cucumber

What scenarios

are needed

Autoformatting

Autocomplete for

Given, When, Then
Highlighting

Would like

something better

Execution of tests
Nice way to force

specific tests

Level of detail

Protege

Difficult interface

Bad descriptions

(buttons)

Hard to

understand

Difficult domain

Not intuitive

Figure 12.2: Ishikawa diagram for group B

The comments from the group using WikiTest is given in Figure 12.3. The
main topic was the auto-complete functionality in the wiki. Some liked it,
while others felt it was disturbing. It was suggested that the auto-complete
need an option to turn it on and off, which seems like a good idea considering
the conflicting feedback. One subject felt more intelligent auto-completion
was needed, which was also considered in the requirement specification of the
wiki tool.

122 CHAPTER 12. INTERPRETATION

Group C

feedback

Steam boiler

Need help with steam

boiler functionality

Cucumber

How detailed

should tests be

Requirements should

have proper grammar
Easy to understand

Difficult to find good

scenario titles

WikiTest

Autocomplete needs

on\off option

More intelligent

autocomplete

Autcomplete word only

placed at end of line

Very nice for test

writing

Would not like WikiTest

without autocomplete

Given/When difference

Figure 12.3: Ishikawa diagram for group C

For all the groups, at least one participant wanted more help with the
Given/When keywords, which were hard to distinguish. Mixing these two
keywords were the most common source of syntactic error when the tests were
evaluated. Several subjects commented that it was difficult to find good ti-
tles for scenarios and features. This may be because the features often had
a single scenario, with a title that was close to the feature title. Perhaps the
difficulty of the steam boiler domain, as noted by some subjects, were a fac-
tor that made it difficult to find good scenario titles. It was also commented
that it was difficult to find a good abstraction level of the Cucumber tests,
i.e. how detailed the scenarios should be.

12.2 Validity Discussion
In Chapter 9, five threats were regarded as high priority threats. The first
was the possibility of low statistical power. Hypothesis 2, the effect of a
domain ontology on test quality, had mean score of 9,11 and 9,34, and a
p-value of 0,154. It is possible that a significant difference could have been
found if the number of subjects was increased. However, if we look more
closely at Table B.1, group A and B have almost identical results, so the
difference in ontology score comes solely from group C, which used the wiki.
Overall, the possibility of low statistical power did not affect the experiment.

12.3. CONCLUSION 123

Instrumentation was a high threat. In order to run the experiment, 14 sep-
arate wikis was set up using separate database tables on the same server.
If the server did not manage the load, the experiment would have to be
aborted. As it turned out, it took a long time to load the first time the
subjects entered, but other than that, the server handled the workload.

There were three high priority construct validity threats. The first was the
mono-method bias, as the test case quality was graded based on subjective
judgment. To reduce it, the features were graded by taking one from each
group, before doing another round. This removed some risks, such as grading
the first deliveries different from the last ones. Hypothesis guessing was
certainly possible, and combined with experimenter expectancies, the results
may have been influenced. It is worth to mention the Hawthorne effect [42],
which says that the subjects of an experiment may behave differently when
they know they are being part of an experiment. When judging the test case
quality, it seemed that everyone except one subject had done a good effort,
and the Hawthorne effect did not seem to create any artificial differences
between the groups.

12.3 Conclusion
The outcome of the experiment was that six out of the eleven hypotheses
could be rejected. The most important finding was the WikiTest lead to a
higher test quality. It was easier to use the correct syntax with WikiTest, and
the use of backgrounds increased. H7, H8 and H9 were related to usability,
and WikiTest was significantly easier to use than Protégé. It was easier to
get an overview of the tests, and the participants felt it was more pleasant
to write tests using WikiTest.

It was not possible to show that the use of a domain ontology increased the
test quality. It is possible that access to a domain ontology is only really
helpful if a tool can use it to help the user, instead of the user himself having
to navigate around in the ontology in search for the correct relationships
which he wants to create tests for.

A large majority felt that Cucumber was easy to use, and disagreed that
they would rather write tests in a free format. Considering only one par-
ticipant had even heard about Cucumber before the experiment, this should
be regarded as a confirmation that picking Cucumber as a specification and

124 CHAPTER 12. INTERPRETATION

execution tool was a good choice.

Part IV

Evaluation

125

126

CHAPTER 13

RESULTS

This thesis is made up of four parts. The first part presented the background
theory of software requirements, software testing and possible technology
platforms. The second part described the identification of functionality for
a new tool and the development of the prototype tool called WikiTest. The
third part was an evaluation of the usefulness of this tool in an experiment
involving students. This fourth part will give the evaluation of the thesis,
starting by answering the research questions posed in Chapter 2.

13.1 Approach Selected
Automation in software testing span a wide range of possibilities. Being able
to automate repetitive tasks offers a chance of great time and cost savings.
But, there is a risk. If the effort needed to create the automation frame-
work is high, the time and cost savings may evaporate. Most model-based
test approaches seen in the literature are constrained by the limitations and
difficulties of creating a good test model.

The answer to RQ1 - selecting a test approach, is given in Chapter 4.4. The
approach selected is one that utilizes a domain ontology to provide assistance
for users writing tests. This approach was chosen to limit a problem often
seen in automatic test generation projects, where the ideas grow too far
away from what is possible to implement given the available resources of the
project. The main reason to use an assisted test specification approach is the
potential for further use, as a small improvement is more easily incorporated
in the test process used by a company in the industry.

127

128 CHAPTER 13. RESULTS

13.2 Tools and Methods

RQ2 is concerned with the exploration of tools and methods that already
exist for the approach selected in the section above. As described in Chapter
4.5, Cucumber was preferred as the test execution tool. This is because
Cucumber, with its use of step definitions, offers a relatively free style of test
specification without sacrificing the ability to automate the tests.

Chapter 5 describes possible technology platforms for the creation of a user-
assisting tool. There are methods in the literature and in the industry that
utilize wikis for requirement management. Using a wiki seems like a good
choice for test specification as well. An advantage is that the tests can be
more closely connected to the requirements when a wiki is used to store the
requirements, the domain information and the tests. Confluence and Jira are
specialized wikis for software development, and their widespread adoption in
the industry attest to the benefits of wikis in such settings.

Semantic MediaWiki was chosen as the wiki engine to use. A wide range of
wiki engines exists, but MediaWiki has already proven to be a mature and
well documented wiki server which is easy to install. In addition, MediaWiki
has good support for semantic information, which is the most interesting
functionality from the research perspective of this thesis.

13.3 Tool Requirements

Although wikis are already being used as a tool in software development,
using a wiki with a domain ontology for test specification is something new.
As part of this new approach, it is necessary to elicit possible requirements
for such a tool. This functionality elicitation is the focus of RQ3, which is
answered in Chapter 6. In addition to collecting ideas from articles, a focus
group was used to explore what requirements a tool should have.

The main goals for the tool is to facilitate the use of an ontology in order to
give intelligent suggestions for the user when he writes tests. The tool should
provide information about the syntax of the tests so that the customer can
write syntactically correct tests without knowing all the specifics of the exe-
cution tool that is used. Another use of the ontology is “ontology coverage”,
which is a test coverage looking at which concepts and properties that have
been used in tests.

13.4. EMPIRICAL EVALUATION 129

13.4 Empirical Evaluation
The fourth research question, RQ4, looks at the applicability of WikiTest in
an empirical setting. An experiment involving 38 students was conducted,
where the students wrote features and scenarios for a steam boiler. The
students were divided in the following three groups:

Group Tool Ontology
A Text editor No
B Text editor Yes
C Wiki Yes

Table 13.1: Groups in the experiment

The results of the experiment can be found in Chapter 11.3. The conclusions
that can be drawn are:

• H1: Using WikiTest leads to higher test quality (p=0.00117)

• H2: Using a domain ontology has no effect on test quality (p=0.154)

• H3: Experience does not lead to a difference in test quality (p=0.117
for programming experience and p=0.447 for test tool experience)

• H4: The syntactic correctness is higher using WikiTest (p=0.0215)

• H5: More people will write Backgrounds when usingWikiTest (p=0.009)

• H6: Understanding the domain is equally easy using either WikiTest
or Protege (p=0.3906)

• H7: WikiTest makes it easier to get an overview of the tests (p=0.01765)

• H8: WikiTest makes it more pleasant to write tests (p=0.00092)

• H9: WikiTest is easier to use than Protege (p=0.00285)

• H10: There is no difference in test efficiency between a text editor and
WikiTest (p=0.9448)

• H11: Using a domain ontology has no effect on test efficiency (p=0.881)

130 CHAPTER 13. RESULTS

CHAPTER 14

DISCUSSION

The objective of this thesis was to look at the possibilities for using boiler-
plates and a domain ontology for semi-automatic selection of test strategy
and generation of test cases. The assignment was related to the work done in
the CESAR project. Exploration of test automation, with a focus on MBT
tools, has been performed in other research projects, such as AGEDIS [43],
D-MINT [44] and MOGENTES [45]. The decision to create a tool that can
assist the user, instead of creating tests directly, was partly based on the
conclusions of these three projects. As we did not find an efficient way to
translate the domain ontology to an MBT model, choosing an MBT approach
for acceptance test creation would still require significant manual work.

The advantage of the tool-assisted approach is that it provides a range of
possibilities, as the ontology can be used in different ways to help the user.
When the user writes a test, the ontology can be used to give suggestions for
which domain concepts are valid in the given context. The ontology can be
used to reason about test coverage (“ontology coverage”), and can be used to
provide a common vocabulary for the customers and the testers. The main
disadvantage of the approach is the lack of automation. In the prototype
created, the semi-formal structure of the boilerplates is not utilized. The
boilerplates are merely included as the requirement text in the feature pages.
The WikiTest approach is tightly connected to the Cucumber way of spec-
ifying tests. We believe this is a necessary reduction of generalizability in
order to be able to implement and automatically execute the tests at a later
stage. Another test execution tool could also be used. The main difference
would be the layout of the semantic forms that are used to create the tests.

131

132 CHAPTER 14. DISCUSSION

Using a web-based wiki as the technology platform was in our experience a
good choice. Most wiki engines provide a number of important functionalities
that would otherwise have to be implemented from scratch. This includes
a history of changes, previews, discussion, search, version control, access
control, import and export. Feedback from the experiment showed that
WikiTest was pleasant to use and gave a good overview of the tests. This
was important, as usability is an important factor if customers are to use
the tool. Choosing MediaWiki as the wiki engine was an obvious choice
in the start of the project due to the amount of extensions that existed.
In hindsight, using the enterprise-wiki Confluence would have been closer to
what is actually used in the industry, but it would require an academic license.
ZAgile Wikidsmart is a promising addition to Confluence, as it adds support
for semantic information. If Confluence was used, a larger implementation
effort would be needed from our side to reach the same level of functionality
as Semantic Forms provides in SMW.

The requirements in Chapter 6 were written to provide a foundation for a
tool-assisted approach. The focus group was used to discuss the potential
requirements for such an approach, with a focus on how the domain ontol-
ogy could be used. It would be useful to include developers, testers and
customers from the industry to elicit a wider range of requirements. Due
to the amount of existing functionalities provided by MediaWiki extensions,
the implementation became a composition of tweaking extensions in PHP
and using wiki syntax to create the wiki pages. This in turn lead to a a
group of extensions solving multiple requirements, which made the link from
requirements to implementation more difficult to track.

In the experiment, there were two important aspects which could have been
better. First, to evaluate the experiment instrumentation on one or two
people before the actual experiment would be a good way to improve the
experiment instructions and documentation without much effort. The second
is to use more than one person when judging the quality of the tests. Even
though this risk was reduced by grading the features by five different metrics,
the subjective judgment is a threat to the validity of the experiment.

The findings from the experiment indicate that the test quality increases
when WikiTest is used, but not when only looking at the effect of the domain
ontology. We believe the reason is that the ontology has to be integrated
in the tool and not just be source of information on the “sideline”. It is
interesting to point out that when asked about how easy the Cucumber style
was to use, the group using WikiTest had a higher disparity than the other

133

groups, as shown in Table 11.13. The participant feedback showed that not
everyone felt that the autocomplete functionality of the wiki was helpful.
We believe more people would like the autocomplete if only relevant/valid
concepts were included, but with a possibility to turn it on or off.

The tool provides a way to enforce syntactic correctness of the tests, as
shown by hypothesis H4. The use of special constructs, as seen by H5,
increases in the wiki. We find it likely that syntactic correctness would
increase if another execution tool was used instead of Cucumber, as the wiki
provides a way to validate the input from the user, such as saying that a
text field is required. An initial fear was that the time it takes to write tests
would increase considerably when using the wiki instead of a text editor. As
shown in H10, no significant difference in test efficiency was found. A small
difference in efficiency could anyways be acceptable if it leads to an overall
increase in test quality.

Experience did not have an effect on test quality. It is likely that the differ-
ences in experience were not big enough among the participants, and that a
group of experienced testers would have shown a difference. Another expla-
nation may be that since the tests are only specified, and not implemented,
the programming experience or test tool experience does not matter.

134 CHAPTER 14. DISCUSSION

14.1 Further Work
Recommendations for further work will be divided into whether the continued
work would be performed in an academic or industrial setting. In an academic
setting, the major point of interest is how the most relevant words from the
domain ontology can be provided to the user. This is the task of suggesting
the most relevant words based on what is already written. A similar task is
to find a way to determine when the states are specified “enough”, meaning
that each step in the test are valid and contain enough information so that
they actually make sense from a domain perspective.

In an industrial setting, a company should pursuit a more direct approach.
The implementation could be tailored to whatever enterprise-wiki the com-
pany uses, with the goal of using the domain ontology as a natural tool in the
development process. The wiki can make use of the ontology more accessible
for everyone, and domain information can be stored here. The tests should
be specified in the wiki in the syntax of the execution tool of that specific
company or project.

Given more time on this thesis, the next goal would be to evaluate the tool
in an industrial setting. Before this goal, the changes proposed by the par-
ticipants of the experiment should be implemented. The top three most
important functionality yet to be implemented are:

• More intelligent autocomplete
• Export all feature-pages to feature files
• Hierarchy of features. Provide a possibility to group related features.

CHAPTER 15

CONCLUSION

The purpose of this thesis was to explore the combination of boilerplates
and a domain ontology for test creation. The approaches identified involved
different degrees of automation. The approach selected for further study
involved the creation of a tool that could guide or assist users when they
specify tests. To do this, Semantic MediaWiki was used to create a tool that
we named WikiTest. This tool is based on utilizing the wiki with its underly-
ing domain ontology. Cucumber tests are created using Semantic Forms. The
fields of the tests are filled in with domain specific suggestions using AJAX
autocomplete. The domain concepts and relationships are easily accessible
through the wiki, and provide a common vocabulary for the domain.

A set of possible requirements for a user-assisting tool was identified. One
minimal installation with the newest Semantic Forms version was shown, as
well as a larger installation using SMWHalo, Semantic Gardening and other
extensions provided by the German company Ontoprise. Chapter 7 describes
how the requirements were implemented, and what extensions were used.
MediaWiki has the advantage of providing a multitude of extensions, which
means the implementation details becomes a mixture of extensions, PHP
code, wiki parser functions and regular wikitext. The goal was not to create
a polished product, but to show how the tool-supported approach could be
implemented using already existing features. As the versions of extensions
and MediaWiki change, the WikiTest-specific code needs to be adapted as
well.

135

136 CHAPTER 15. CONCLUSION

WikiTest was evaluated in an experiment, where students were asked to cre-
ate tests for a steam boiler domain. The experiences and impressions of
the participants were collected both before and after the experiment was
conducted. Each student delivered the Cucumber features he had created,
which had been written using either a text editor (such as Microsoft Word)
or WikiTest. The features were given grades based on their coverage, com-
pleteness, correctness, ambiguity and verifiability. These five metrics were
combined to make up a total score for the test quality of the features.

The results of the experiment showed that the approach using the wiki gave a
significant higher test quality than the text editor. The syntactic correctness
was higher, and more participants used at least one Cucumber background.
The participants felt it was easier to get an overview of the tests and it was
more pleasant to write tests. Compared to the ontology editor Protégé, a
significant amount felt WikiTest was easier to use.

The use of a domain ontology compared to not having an ontology did not
show the same significant difference. It is likely that the domain ontology
needs to be utilized in some concrete way in order for it to have an effect
on test case quality. Just being able to browse the ontology does not seem
to give the same results as when the ontology is directly connected to the
test specification process. The integration of the ontology in a wiki such as
Semantic MediaWiki offers many possibilities, and we believe this approach
could be utilized in software development wikis such as Confluence. Fur-
ther work would involve implementing more functionality and perform an
empirical evaluation of WikiTest in an industrial setting.

137

The four research questions are summarized here.

• Approach for further work (RQ1): As described in Chapter 4.4,
we decided against an MBT approach and instead created a tool that
would provide user-assistance based on the ontology in the test speci-
fication process.

• Tools and methods (RQ2): Cucumber, offering a relatively free
style of test specification without sacrificing the ability to automate
the tests, was used as test execution tool (Chapter 4.5). Semantic
MediaWiki was chosen as the wiki engine to use, as it has a large set
of semantic extensions (Chapter 5).

• Requirements for a new tool (RQ3): The tool should give sug-
gestions when the user writes tests, provide information about the test
syntax and provide an “ontology coverage” (Chapter 6).

• Empirical evaluation of the tool (RQ4): WikiTest was found to
give higher test case quality. It leads to more syntactic correct tests,
gives a better overview of the tests and is more pleasant to use. The
use of a domain ontology does not lead to higher test quality when used
with the ontology tool Protege.

138 CHAPTER 15. CONCLUSION

REFERENCES

[1] W. H. Jessop, J. R. Kane, S. Roy, and J. M. Scanlon. ATLAS-An Auto-
mated Software Testing System. In Proceedings of the 2nd international
conference on Software engineering, 1976.

[2] C. V. Ramamoorthy, Siu bun F. Ho, andW. T. Chen. On the Automated
Generation of Program Test Data. IEEE Transactions On Software
Engineering, 4:293–300, 1976.

[3] CESAR. Refined pilot application description and success evaluation
criteria for Automation and Railway domain. Unpublished, August 2010.

[4] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineer-
ing. Springer, 2005.

[5] Jeremy Dick. Requirements boilerplates. Accessed: 2010-11-15,
http://freespace.virgin.net/gbjedi/books/re/boilerplates.htm.

[6] Tor Stålhane, Inah Omoronyia, and Frank Reichenbach. Ontology-
guided requirements and safety analysis. Proceedings of the 6th Inter-
national Conference on Safety of Industrial Automated Systems, 2010.

[7] Olav Undheim. Specialization project: Semi automatic test case gener-
ation. Norwegian University of Science and Technology, 2010.

[8] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. Experimentation in software engineering:
an introduction. Kluwer Academic Publishers, 2000.

[9] Linda Westfall. Software requirements engineering: What, why, who,
when and how, 2005.

[10] Barry Boehm and Victor R. Basili. Software Defect Reduction Top 10
List. Computer, v. 34:135–137, 2001.

139

140 REFERENCES

[11] Alan M. Davis. Software Requirements: Objects, Functions, and States,
Second Edition. Prentice Hall, 1993.

[12] W. T. Tsai, R. Paul, and L. Yu. Rapid Pattern-Oriented Scenario-
Based Testing for Embedded Systems. Software Evolution with UML
and XML, pages 222–262, 2005.

[13] Wei-Tek Tsai, Lian Yu, Feng Zhu, and Ray Paul. Rapid Embedded
System Testing Using Verification Patterns. IEEE Softw., 22:68–75,
2005.

[14] Sascha Konrad and Betty H.C. Cheng. Realtime specification patterns.
In ICSE 2005: Proc. 27th Int. Conf. Softw. Eng., 2005.

[15] Ernst Sikora, Bastian Tenbergen, and Klaus Pohl. Requirements en-
gineering for embedded systems: An investigation of industry needs.
Requirements Engineering: Foundation for Software Quality, pages 151–
165, 2011.

[16] T. R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies,
43:907–928, 1995.

[17] Inah Omoronyia. GNLQ. http://idi.ntnu.no/ inah1/cesar/, Accessed:
2010-11-12.

[18] Kshirasagar Naik and Priyadarshi Tripathy. Software Testing and Qual-
ity Assurance: Theory and Practice. WILEY, John Wiley & Sons, Inc.,
2008.

[19] Structural Coverage Metrics. http://www.math.unipd.it/ tullio/is-
1/dispense_2003/software_testing_metrics. Information Processing
Limited, 1997.

[20] Matt Archer’s Blog. http://mattarcherblog.wordpress.com/2008/12/08/the-
testing-v-model-catch-22/, Accessed: 2010-10-11.

[21] Bart Broekman and Edwin Notenboom. Testing Embedded Software.
Addison-Wesley, 2002.

[22] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy, Bryan
Helmkamp, and Dan North. The RSpec Book Behaviour Driven Develop-
ment with RSpec, Cucumber, and Friends. The Pragmatic Programmers
LLC., 2010.

REFERENCES 141

[23] David de Florinier and Gojko Adzic. The Secret Ninja Cucumber Scrolls:
Strictly Confidential. Neuri Limited, 2010.

[24] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform:
Designing, Coding, and Packaging Java Applications. Addison-Wesley
Professional, 2005.

[25] Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration
on the Web. Addison-Wesley Professiona, 2001.

[26] Jeff Orlof and Mizanur Rahman. MediaWiki 1.1. Packt Publishing,
2010.

[27] Thomas Meilender, Nicolas Jay, Jean Lieber, and Fabien Palomares.
Semantic wiki engines: a state of the art. 2010.

[28] Yaron Koren. Wikimedia data summit. Sebastopol, CA, 2011.

[29] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-based
stakeholder participation in requirements engineering. IEEE Software,
24:28–35, 2007.

[30] Shailey Minocha and Peter G. Thomas. Collaborative learning in a
wiki environment: Experiences from a software engineering course. New
Review of Hypermedia and Multimedia, 13:187–209, 2007.

[31] Filipe Figueiredo Correia. Extending and integrating wikis to improve
software documentation. In Wikis for Software Engineering, 2008.

[32] Tim Romberg. Wiquila – a wiki rich client that mixes well with other
sources of software project information. In Wikis4SE: wikis for software
engineering, 2008.

[33] Eric Knauss, Olesia Brill, Ingo Kitzmann, and Thomas Flohr.
SmartWiki: Support for High-Quality Requirements Engineering in a
Collaborative Setting. Wikis for Software Engineering, pages 25–35,
2009.

[34] Semantic MediaWiki. Ontology import. Accessed: 30.03.2011,
http://semantic-mediawiki.org/wiki/Help:Ontology_import.

[35] Victor R. Basili and David M. Weiss. A methodology for collecting
valid software engineering data. IEEE Trans. Software Eng., 10:728–
738, 1984.

142 REFERENCES

[36] Rini van Solingen and Egon Berghout. Goal/Question/Metric Method.
Mcgraw Hill Higher Education, 1999.

[37] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal
question metric approach. In Encyclopedia of Software Engineering.
Wiley, 1994.

[38] Birger Madsen. Statistics for Non-Statisticians. Springer-Verlag Berlin
Heidelberg, 2011.

[39] Andrew Rutherford. Introducing Anova and Ancova : a GLM approach.
London : SAGE, 2000.

[40] Norman Blaikie. Analysing Quantitative Data. Sage Publications, 2003.

[41] John Tukey. The Collected Works of John W. Tukey, Voll III: Phi-
losophy and Principles of Data Analysis. Wadsworth & Brooks/Cole,
1985.

[42] Ritch Macefield. Usability studies and the hawthorne effect. Journal of
usability studies, 2:145–154, 2007.

[43] Alan Hartman. Agedis final project report, February 2004.

[44] D-MINT. Common Approach to Architecture-Driven Testing. whitepa-
per.

[45] MOGENTES Consortium. State of the art survey - part a: Model-based
test case generation, 2008.

APPENDIX A

WIKI CODE

Listing A.1: Form:Feature
<noinclude>
This i s the " Feature " form .
To c r e a t e a page with t h i s form , ente r the page name below ;
i f a page with that name a l ready e x i s t s , you w i l l be sent to a form to
e d i t that page .

{{#forminput : form=Feature | s i z e =50| button text=Create or e d i t a f e a t u r e |
autocomplete on category=Feature }}

</noinc lude><inc ludeon ly >
<div id ="wikiPreview " s t y l e =" d i s p l a y : none ; padding−bottom : 25px ;
margin−bottom : 25px ; border−bottom : 1px s o l i d #AAAAAA;"></div>
{{{ f o r template | Feature }}}
{ | c l a s s =" formtable "
! Requirement : {{# i n f o : Write the requirement f o r t h i s f e a t u r e .
The requirement can be wr i t t en as a user story , b o i l e r p l a t e or as f r e e t ext . }}
|−
| {{{ f i e l d | Requirement | s i z e =110| mandatory | input type=text with autocomplete |
va lue s from property=Label | l i s t | d e l i m i t e r= }}}
| }
{{{end template }}}

{{{ f o r template | Background | l a b e l=Background (shared s t e p s)}}}
The use o f a background i s opt iona l , and i s only needed
i f you have s t ep s that are common f o r a l l s c e n a r i o s .
{ | c l a s s =" formtable "
! Given :
| {{{ f i e l d | Given | input type=tex ta r ea with autocomplete |
va lue s from property=Given | l i s t | d e l i m i t e r= | rows=2}}}
| }
{{{end template }}}

{{{ f o r template | Scenar io | mu l t ip l e | l a b e l=Scenar i o s (add as many as wanted) |
add button text=Add s c e n a r i o }}}

A-1

A-2 APPENDIX A. WIKI CODE

{ | c l a s s =" formtable "
! T i t l e :
| {{{ f i e l d | T i t l e | s i z e =105| mandatory }}}
|−
! Given :
| {{{ f i e l d | Given | input type=tex ta r ea with autocomplete |
va lue s from property=Given | l i s t | d e l i m i t e r= | rows =2|mandatory }}}
|−
! When :
| {{{ f i e l d |When | input type=tex ta r ea with autocomplete |
va lue s from property=When| l i s t | d e l i m i t e r= | rows =2|mandatory }}}
|−
! Then :
| {{{ f i e l d | Then | input type=tex ta r ea with autocomplete |
va lue s from property=Then | l i s t | d e l i m i t e r= | rows =2|mandatory }}}
| }
{{{end template }}}

{{{ standard input | save }}} {{{ standard input | cance l }}}
</inc ludeon ly >

Listing A.2: Template:Feature
<noinclude>
This i s the " Feature " template .
I t should be c a l l e d in the f o l l o w i n g format :
<pre>
{{ Feature
| Requirement=
}}
</pre>
Edit the page to see the template t ext .
</noinc lude><inc ludeon ly >
{ |
| {{{ Requirement |}}}
| }

[[Category : Feature]]
</inc ludeon ly >

Listing A.3: Template:Background
<noinclude>
This i s the " Background " template .
I t should be c a l l e d in the f o l l o w i n g format :
<pre>
{{Background
| Given=
}}
</pre>
Edit the page to see the template t ext .
</noinc lude><inc ludeon ly >
{{# i f :{{{ Given |}}} |
<t a b l e border="0">
<tr>
<td s t y l e =" c o l o r : b lue " > ’ ’ ’ Background : ’ ’ ’ </ td>

A-3

</tr>
<tr>
<td s t y l e ="padding− l e f t : 15 px">Given {{#arraymap :

{{{ Given | } } } | \ n | x | [[Given : : x]] | < br/>And ;}}</td>
</tr>
</table >
| }}
[[Category : Background]]
</inc ludeon ly >

Listing A.4: Template:Scenario
<noinclude>
This i s the " Scenar io " template .
I t should be c a l l e d in the f o l l o w i n g format :
<pre>
{{ Scenar io
| T i t l e=
| Given=
|When=
| Then=
}}
</pre>
Edit the page to see the template t ext .
</noinc lude><inc ludeon ly >
{ |
| s t y l e =" c o l o r : b lue " | ’ ’ ’ Scenar io : {{{ T i t l e | } } } ’ ’ ’
|−
| s t y l e ="padding− l e f t : 15 px " | Given {{#arraymap :{{{ Given | } } } |
\n | x | [[Given : : x]] | \ n\n ; And\n}}

|−
| s t y l e ="padding− l e f t : 15 px " |When {{#arraymap :{{{When| } } } |
\n | x | [[When : : x]] | \ n\n ; And\n}}

|−
| s t y l e ="padding− l e f t : 15 px " | Then {{#arraymap :{{{ Then | } } } |
\n | x | [[Then : : x]] | \ n\n ; And\n}}

| }
[[Category : Scenar io]]
</inc ludeon ly >

APPENDIX B

EXPERIMENT DATA

In the descriptive statistics that follows, the letter A, B or C is used to denote
the different groups.

• A: The group using a text editor but no ontology
• B: Text editor and domain ontology (Protégé)
• C: WikiTest (which includes the domain ontology)

After removing the data of two subjects due to data validation, each group
had exactly 12 subjects each. Out of the total 36 participants, three did not
answer the pre-experiment questionnaire. However, everyone delivered the
main assignment and the post-experiment questionnaire.

B-1

B-2 APPENDIX B. EXPERIMENT DATA

Anova: Single Factor
Groups Count Sum Average Variance

A 12 109.3393 9.1116 0.4222
B 12 109.1167 9.0931 0.4298
C 12 115.0286 9.5857 0.0529

Variation Source SS df MS F P-value F crit
Between Groups 1.8713 2 0.9357 3.1020 0.0583 3.2849
Within Groups 9.9540 33 0.3016
Total 11.8253 35

Table B.1: Average points per feature between the three groups

t-Test: Two-Sample Assuming Unequal Variances
A+B C

Mean 9.102331349 9.585714286
Variance 0.407566607 0.052908163

Observations 24 12
Hypothesized Mean Difference 0

df 32
t Stat -3.305036216

P(T<=t) one-tail 0.001173875
t Critical one-tail 1.693888748
P(T<=t) two-tail 0.002347749
t Critical two-tail 2.036933343

Table B.2: Average points per feature between text editor and wiki

B-3

t-Test: Two-Sample Assuming Unequal Variances
A B+C

Mean 9.111607143 9.339384921
Variance 0.422201125 0.29417479

Observations 12 24
Hypothesized Mean Difference 0

df 19
t Stat -1.045768995

P(T<=t) one-tail 0.154395245
t Critical one-tail 1.729132812
P(T<=t) two-tail 0.30879049
t Critical two-tail 2.093024054

Table B.3: Average points per feature between no ontology and ontology

t-Test: Two-Sample Assuming Unequal Variances
Programming experience

School only More than school
Mean 9.124107143 9.386678005

Variance 0.437623203 0.17654799
Observations 12 21

Hypothesized Mean Difference 0
df 16

t Stat -1.239484688
P(T<=t) one-tail 0.116519711
t Critical one-tail 1.745883676
P(T<=t) two-tail 0.233039422
t Critical two-tail 2.119905299

Table B.4: Points grouped by experience

B-4 APPENDIX B. EXPERIMENT DATA

t-Test: Two-Sample Assuming Unequal Variances
Experience: Written an automatic test before?

Yes No
Mean 9.305494505 9.281904762

Variance 0.163398417 0.363480368
Observations 13 20

Hypothesized Mean Difference 0
df 31

t Stat 0.134539311
P(T<=t) one-tail 0.446922926
t Critical one-tail 1.695518783
P(T<=t) two-tail 0.893845853
t Critical two-tail 2.039513446

Table B.5: Points grouped by experience

t-Test: Two-Sample Assuming Unequal Variances
Experience with the test tool Cucumber

Heard about it None
Mean 9.117857143 9.322151361

Variance 0.821683673 0.200277603
Observations 5 28

Hypothesized Mean Difference 0
df 4

t Stat -0.493329743
P(T<=t) one-tail 0.323818757
t Critical one-tail 2.131846786
P(T<=t) two-tail 0.647637514
t Critical two-tail 2.776445105

Table B.6: Points grouped by experience

B-5

Anova: Single Factor
Groups Count Sum Average Variance

A 12 22.39286 1.866071 0.072791
B 12 21.66667 1.805556 0.083754
C 12 23.55 1.9625 0.004943

Variation Source SS df MS F P-value F crit
Between Groups 0.150369 2 0.075184 1.396714 0.261653 3.284918
Within Groups 1.776373 33 0.053829
Total 1.926742 35

Table B.7: Syntactic correctness between the three groups

t-Test: Two-Sample Assuming Unequal Variances
A+B C

Mean 1.835813 1.9625
Variance 0.075825 0.004943

Observations 24 12
Hypothesized Mean Difference 0

df 28
t Stat -2.11991

P(T<=t) one-tail 0.021505
t Critical one-tail 1.701131
P(T<=t) two-tail 0.04301
t Critical two-tail 2.048407

Table B.8: Syntactic correctness between text editor and wiki

B-6 APPENDIX B. EXPERIMENT DATA

Anova: Single Factor
Groups Count Sum Average Variance

A 12 3 0.25 0.2045
B 12 5 0.4167 0.2652
C 12 9 0.75 0.2045

Variation Source SS df MS F P-value F crit
Between Groups 1.5556 2 0.7778 3.4607 0.0432 3.2849
Within Groups 7.4167 33 0.2247
Total 8.9722 35

Table B.9: Number of subjects who used at least one Cucumber background

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 0.333333333 0.75
Variance 0.231884058 0.204545455

Observations 24 12
Hypothesized Mean Difference 0

df 23
t Stat -2.549610534

P(T<=t) one-tail 0.008957149
t Critical one-tail 1.713871528
P(T<=t) two-tail 0.017914297
t Critical two-tail 2.06865761

Table B.10: Number of subjects who used at least one Cucumber background

B-7

t-Test: Two-Sample Assuming Unequal Variances
Protégé Wiki

Mean 3.416666667 3.333333333
Variance 0.628787879 0.424242424

Observations 12 12
Hypothesized Mean Difference 0

df 21
t Stat 0.281312443

P(T<=t) one-tail 0.390612006
t Critical one-tail 1.720742903
P(T<=t) two-tail 0.781224012
t Critical two-tail 2.079613845

Table B.11: Ontology makes the domain easier to understand

Anova: Single Factor
Groups Count Sum Average Variance

A 12 40 3.3333 1.6970
B 12 34 2.8333 1.0606
C 12 46 3.8333 0.6970

Variation Source SS df MS F P-value F crit
Between Groups 6 2 3 2.6053 0.0890 3.2849
Within Groups 38 33 1.1515
Total 44 35

Table B.12: Overview of tests between the three groups

B-8 APPENDIX B. EXPERIMENT DATA

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 3.083333333 3.833333333
Variance 1.384057971 0.696969697

Observations 24 12
Hypothesized Mean Difference 0

df 30
t Stat -2.204453638

P(T<=t) one-tail 0.017651524
t Critical one-tail 1.697260887
P(T<=t) two-tail 0.035303048
t Critical two-tail 2.042272456

Table B.13: Overview of tests between text editor and wiki

Anova: Single Factor
Groups Count Sum Average Variance

A 12 39 3.2500 0.9318
B 12 28 2.3333 1.1515
C 12 46 3.8333 0.5152

Variation Source SS df MS F P-value F crit
Between Groups 13.7222 2 6.8611 7.9213 0.0015 3.2849
Within Groups 28.5833 33 0.8662
Total 42.3056 35

Table B.14: User interface satisfaction between the three groups

B-9

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 2.791666667 3.833333333
Variance 1.21557971 0.515151515

Observations 24 12
Hypothesized Mean Difference 0

df 31
t Stat -3.405186077

P(T<=t) one-tail 0.000922808
t Critical one-tail 1.695518783
P(T<=t) two-tail 0.001845616
t Critical two-tail 2.039513446

Table B.15: User interface satisfaction between text editor and wiki

t-Test: Two-Sample Assuming Unequal Variances
Protégé Wiki

Mean 2.75 3.916666667
Variance 0.931818182 0.810606061

Observations 12 12
Hypothesized Mean Difference 0

df 22
t Stat -3.061684674

P(T<=t) one-tail 0.002856957
t Critical one-tail 1.717144374
P(T<=t) two-tail 0.005713914
t Critical two-tail 2.073873068

Table B.16: Ease of use

B-10 APPENDIX B. EXPERIMENT DATA

Anova: Single Factor
Groups Count Sum Average Variance

A 12 0.0637 0.0053 4.28E-06
B 10 0.0543 0.0054 5.55E-06
C 11 0.0596 0.0054 4.68E-06

Variation Source SS df MS F P-value F crit
Between Groups 1.04E-07 2 5.18E-08 0.01081 0.9893 3.316
Within Groups 0.000144 30 4.79E-06
Total 0.000144 32

Table B.17: Efficiency per scenario between the three groups

t-Test: Two-Sample Assuming Unequal Variances
A+B C

Mean 0.005361988 0.005417825
Variance 4.62234E-06 4.6757E-06

Observations 22 11
Hypothesized Mean Difference 0

df 20
t Stat -0.070061776

P(T<=t) one-tail 0.472420152
t Critical one-tail 1.724718243
P(T<=t) two-tail 0.944840304
t Critical two-tail 2.085963447

Table B.18: Efficiency per scenario between text editor and wiki

B-11

t-Test: Two-Sample Assuming Unequal Variances
A B+C

Mean 0.005307 0.005423
Variance 4.28E-06 4.83E-06

Observations 12 21
Hypothesized Mean Difference 0

df 24
t Stat -0.15165

P(T<=t) one-tail 0.440367
t Critical one-tail 1.710882
P(T<=t) two-tail 0.880733
t Critical two-tail 2.063899

Table B.19: Efficiency per scenario between no ontology and ontology

Anova: Single Factor
Groups Count Sum Average Variance

A 12 21.2143 1.7679 0.0503
B 12 21.6333 1.8028 0.0269
C 12 22.5821 1.8818 0.0095

Variation Source SS df MS F P-value F crit
Between Groups 0.0819 2 0.0409 1.4169 0.2568 3.2849
Within Groups 0.9532 33 0.0289
Total 1.0351 35

Table B.20: Feature completion score between the three groups

B-12 APPENDIX B. EXPERIMENT DATA

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 1.78531746 1.881845238
Variance 0.037208009 0.009523326

Observations 24 12
Hypothesized Mean Difference 0

df 34
t Stat -1.993786591

P(T<=t) one-tail 0.027123264
t Critical one-tail 1.690924255
P(T<=t) two-tail 0.054246529
t Critical two-tail 2.032244509

Table B.21: Feature completion score between text editor and wiki

Anova: Single Factor
Groups Count Sum Average Variance

A 12 20.0603 1.6717 0.0577
B 12 18.9359 1.5780 0.0727
C 12 18.9237 1.5770 0.0896

Variation Source SS df MS F P-value F crit
Between Groups 0.0710 2 0.0355 0.4844 0.6204 3.2849
Within Groups 2.4189 33 0.0733
Total 2.4900 35

Table B.22: Scenario completeness score between the three groups

B-13

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 1.624840669 1.576978114
Variance 0.064630622 0.08955678

Observations 24 12
Hypothesized Mean Difference 0

df 19
t Stat 0.474935203

P(T<=t) one-tail 0.320123407
t Critical one-tail 1.729132812
P(T<=t) two-tail 0.640246813
t Critical two-tail 2.093024054

Table B.23: Scenario completeness score between text editor and wiki

Anova: Single Factor
Groups Count Sum Average Variance

A 12 21.8631 1.8219 0.0306
B 12 23.0500 1.9208 0.0224
C 12 23.7500 1.9792 0.0024

Variation Source SS df MS F P-value F crit
Between Groups 0.1516 2 0.0758 4.1139 0.0254 3.2849
Within Groups 0.6082 33 0.0184
Total 0.7599 35

Table B.24: Ambiguity score between the three groups

B-14 APPENDIX B. EXPERIMENT DATA

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 1.871378968 1.979166667
Variance 0.027863857 0.002367424

Observations 24 12
Hypothesized Mean Difference 0

df 30
t Stat -2.924655007

P(T<=t) one-tail 0.003254272
t Critical one-tail 1.697260887
P(T<=t) two-tail 0.006508543
t Critical two-tail 2.042272456

Table B.25: Ambiguity score between text editor and wiki

Anova: Single Factor
Groups Count Sum Average Variance

A 12 21.5476 1.7956 0.0212
B 12 21.3500 1.7792 0.0545
C 12 22.9071 1.9089 0.0078

Variation Source SS df MS F P-value F crit
Between Groups 0.1198 2 0.0599 2.1524 0.1322 3.2849
Within Groups 0.9182 33 0.0278
Total 1.0380 35

Table B.26: Verifiability score between the three groups

B-15

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 1.787400794 1.908928571
Variance 0.036258863 0.007807282

Observations 24 12
Hypothesized Mean Difference 0

df 34
t Stat -2.614018807

P(T<=t) one-tail 0.006619037
t Critical one-tail 1.690924255
P(T<=t) two-tail 0.013238074
t Critical two-tail 2.032244509

Table B.27: Verifiability score between text editor and wiki

t-Test: Two-Sample Assuming Unequal Variances
Protégé Wiki

Mean 3 3.583333333
Variance 0.909090909 0.265151515

Observations 12 12
Hypothesized Mean Difference 0

df 17
t Stat -1.864783997

P(T<=t) one-tail 0.039785258
t Critical one-tail 1.739606726
P(T<=t) two-tail 0.079570517
t Critical two-tail 2.109815578

Table B.28: Ontology makes it easier to write test

B-16 APPENDIX B. EXPERIMENT DATA

Anova: Single Factor
Groups Count Sum Average Variance

A 12 37 3.0833 1.1742
B 12 39 3.2500 1.4773
C 12 38 3.1667 0.8788

Variation Source SS df MS F P-value F crit
Between Groups 0.1667 2 0.0833 0.0708 0.9318 3.2849
Within Groups 38.8333 33 1.1768
Total 39 35

Table B.29: Steam boiler help

Anova: Single Factor
Groups Count Sum Average Variance

A 12 45 3.7500 0.2045
B 12 46 3.8333 0.1515
C 12 44 3.6667 0.9697

Variation Source SS df MS F P-value F crit
Between Groups 0.1667 2 0.0833 0.1886 0.8290 3.2849
Within Groups 14.5833 33 0.4419
Total 14.7500 35

Table B.30: Difficulty of using the Cucumber syntax

B-17

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 3.791666667 3.666666667
Variance 0.172101449 0.96969697

Observations 24 12
Hypothesized Mean Difference 0

df 13
t Stat 0.421425262

P(T<=t) one-tail 0.340164637
t Critical one-tail 1.770933396
P(T<=t) two-tail 0.680329274
t Critical two-tail 2.160368656

Table B.31: Difficulty of using the Cucumber syntax

Anova: Single Factor
Groups Count Sum Average Variance

A 12 26 2.1667 0.3333
B 12 27 2.2500 0.5682
C 12 29 2.4167 0.6288

Variation Source SS df MS F P-value F crit
Between Groups 0.3889 2 0.1944 0.3812 0.6860 3.2849
Within Groups 16.8333 33 0.5101
Total 17.2222 35

Table B.32: Rather write tests in free format

B-18 APPENDIX B. EXPERIMENT DATA

Anova: Single Factor
Groups Count Sum Average Variance

A 12 39 3.2500 0.7500
B 12 31 2.5833 0.8106
C 12 34 2.8333 1.6061

Variation Source SS df MS F P-value F crit
Between Groups 2.7222 2 1.3611 1.2895 0.2889 3.2849
Within Groups 34.8333 33 1.0556
Total 37.5556 35

Table B.33: Cucumber help

t-Test: Two-Sample Assuming Unequal Variances
Text editor Wiki

Mean 2.916666667 2.833333333
Variance 0.862318841 1.606060606

Observations 24 12
Hypothesized Mean Difference 0

df 17
t Stat 0.202250875

P(T<=t) one-tail 0.421060615
t Critical one-tail 1.739606726
P(T<=t) two-tail 0.842121229
t Critical two-tail 2.109815578

Table B.34: Cucumber help

	Title Page
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Project Context
	Problem Description
	Project Scope
	Report Outline

	Research Agenda
	Research Questions
	Research Methodology

	I Background
	Software Requirements
	Requirements in Software Engineering
	Boilerplates
	Domain Ontologies

	Software Testing
	Test Methods
	Test Coverage
	Test Levels
	Test Approach for Further Work
	Cucumber

	Technology Platform
	Technology Platform Options
	Wiki Comparison
	Semantic MediaWiki

	II Development of a Tool
	Tool Requirements
	Early Outlook
	Focus Group
	User Stories

	Tool Implementation
	Setup and Installation
	Importing a Domain Ontology
	Creating a Feature
	Autocomplete
	Creating a Domain Concept
	Navigation
	Missing Tests
	Ontology Browser

	III Experiment
	Definition
	The GQM Process
	Goal
	Questions
	Metrics
	GQM Summary

	Planning
	Context Selection
	Hypotheses Formulation
	Variables Selection
	Selection of Subjects
	Experiment Design
	Instrumentation
	Validity Evaluation

	Operation
	Preparation
	Execution
	Data Validation

	Data Analysis
	Measurements
	Hypotheses Testing
	Summary of Hypotheses

	Interpretation
	Participant Feedback
	Validity Discussion
	Conclusion

	IV Evaluation
	Results
	Approach Selected
	Tools and Methods
	Tool Requirements
	Empirical Evaluation

	Discussion
	Further Work

	Conclusion
	References
	Wiki Code
	Experiment Data

