
Master of Science in Computer Science
June 2011
Lasse Natvig, IDI
Marius Grannæs, Energy Micro

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Energy Aware RTOS for EFM32

Angelo Spalluto

Energy Aware RTOS for EFM32

Angelo Spalluto

Master of Science in Computer Science
Submission date: 18 June
Supervisor: Lasse Natvig
Co-supervisor: Marius Grannæs, Energy Micro

Norwegian University of Science and Technology
Department of Computer and Information Science

2

3

Problem Description
This thesis is a continuation of Martin Tverdal's master thesis. Energy Micro
is a Norwegian semiconductor company, located in Oslo, which focuses on 32-bit
microcontrollers with ultra low energy consumption. The EFM32 microcontroller
family is based on the ARM Cortex-M3. FreeRTOS is a small and free open source
OS targeted for embedded devices.

Martin's thesis ported FreeRTOS to the EFM32 and implemented rudimentary
support for energymodes and using the RTC(Real Time Counter) for tickless idle.
This thesis aims to improve on this work making the approach more robust.

Central subtasks are:
* Including general hooks in FreeRTOS for:

- Controlling sleep modes in a generic way;
- Extending the task control structures for sleep mode control;
- Using other systems than systick for keeping time in FreeRTOS;
- Implement support for Tickless kernel;

* Using these hooks in a EFM32 speci�c port of FreeRTOS, which has the fol-
lowing functionality

- Using the RTC for keeping track of time;
- Enabling the use of energy modes through an intuitive API;

Assignment given: 15 January 2011
Supervisor: Lasse Natvig,IDI
Co-supervisor: Marius Grannæs, Energy Micro

4

Abstract
Power consumption is a major concern for portable or battery-operated de-

vices. Recently, new low power consumption techniques have been used to achieve
acceptable autonomy battery-powered systems. FreeRTOS is a real-time kernel de-
signed especially for embedded low-power MCUs. Energy Micro develops and sells
energy friendly microcontrollers based on the industry leading ARM Cortex-M3
32-bit architecture. The aim of this thesis is to propose a new FreeRTOS Tickless
Framework solution that exploits the power modes provided by EFM32. Three dif-
ferent solutions have been proposed, such as FreeRTOS RTC, FreeRTOS Tickless
with prescaling and FreeRTOS Tickless without prescaling. The simulations showed
that the Tickless Framework saves energy from 15x to 44x more than Original ver-
sion of FreeRTOS. Using a self-made benchmark the battery (1500 mAh) lifetime
has been increased from 11 days to 487 days.

5

Acknowledgements
First of all, I want to dedicate this thesis to my parents, my sister Antonella and
my girlfriend Veronica. Without their support, I would have been truly lost.

A special eternal thanks to Veronica, for her love and patience to wait me. More-
over, I would also to thank all of my relatives and Emanuele.

I would express gratitude to my supevisor, professor Lasse Natvig at the Depart-
ment of Computer and Information Science at NTNU, for his guidance and to
gave me this opportunity. I would also thank Marius Grannæs from Energy Micro
for his help and support. A special thank to my o�ce mate Stefano Nichele, for
making the time at NTNU a so pleasant.

6

Contents

I Introduction and Background 19

1 Introduction 21
1.1 Motivation . 21

1.1.1 Green Computing . 22
1.1.2 Embedded System . 22
1.1.3 Real Time Operating System (RTOS) 23
1.1.4 Government support . 23

1.2 Previous work . 23
1.3 Goals . 24
1.4 Thesis organization . 25

2 EFM32 Energy friendly microcontroller 27
2.1 Energy friendliness applications . 27
2.2 Ten important technology factors for EFM32 28
2.3 Energy modes in EFM32 . 30

2.3.1 Energy Modes . 31
2.3.2 Transition among sleep modes 31

2.4 Timing in EFM32 . 33
2.4.1 Oscillators and peripheral clock 33
2.4.2 Real Time Counter (RTC) . 34
2.4.3 System Timer Cortex-M3 . 34

2.5 EFM32 Development kit . 34
2.6 About Energy Micro . 36

3 FreeRTOS 37
3.1 About FreeRTOS . 37
3.2 FreeRTOS kernel . 37

3.2.1 Tasks . 37
3.2.1.1 Task Control Block (TCB) 38
3.2.1.2 Task Lists . 39
3.2.1.3 Idle Task . 40

3.2.2 Co-routines . 40
3.2.3 Time management . 41

3.3 Example Demo Project . 43

7

8 CONTENTS

3.4 License and Platform supported . 43

4 Time Management in a RTOS 45
4.1 RTOS overview . 45
4.2 Periodic Interrupt Timer . 45
4.3 Totally Tickless kernel . 46
4.4 Tickless RTOS on the market . 47

II Methodology 49

5 Energy Management Framework 51
5.1 Problem description . 51
5.2 Issues of sleep modes with ISRs . 52

5.2.1 Troubles involved using only a Task Power Management Frame-
work . 52

5.2.2 Energy losses without using sleep mode inside ISRs 54
5.3 Proposed solutions . 56

5.3.1 Limited memory solution . 56
5.3.1.1 Advantages . 57
5.3.1.2 Shortcomings . 58

5.3.2 List sleep mode solution . 58
5.3.2.1 Advantages . 59
5.3.2.2 Shortcomings . 59

5.3.3 Array sleep mode solution . 59
5.3.3.1 Task's data structure (TPMF) 60
5.3.3.2 ISR's data structure (IPMF) 61
5.3.3.3 Global Power Management Framework (GPMF) . . 66
5.3.3.4 Advantages . 68
5.3.3.5 Shortcomings . 68

5.4 GPMF . 69
5.4.1 GPMF module . 69
5.4.2 GPMF Reference Manual . 71

5.4.2.1 xPMSetSleepMode() 71
5.4.2.2 xPMSetSleepModeFromISR() 72
5.4.2.3 ucPMGetSleepMode()/ ucPMGetSleepModeFromISR() 72
5.4.2.4 xPMLockSleepModeFromISR 73
5.4.2.5 xPMUnlockSleepModeFromISR/ xPMUnlockSleep-

Mode . 74
5.4.2.6 vPMIdleSleepMode 75
5.4.2.7 xPMUpdateSleepModesInc/ xPMUpdateSleepMod-

esDec . 76
5.4.2.8 ucTaskGetCurrentTCB/ucTaskPutCurrentTCB . . 77

5.5 Porting Power Management Framework (PPMF) 77
5.5.1 PPMF module . 78
5.5.2 PPMF Reference Manual . 79

CONTENTS 9

5.5.2.1 PPMF con�guration 79
5.5.2.2 xPMGoToSleepMode_NUM_ 80
5.5.2.3 xPMGoToSleepMode 81
5.5.2.4 vPMInit . 82

5.6 Porting for EFM32 (Energy Micro) 82
5.6.1 PPMF Reference Manual for EFM32 83

5.6.1.1 PPMF con�guration values 83
5.6.1.2 vPMInit . 83
5.6.1.3 vPMGoToSleepModeEM1 84
5.6.1.4 vPMGoToSleepModeEM2/vPMGoToSleepModeEM3/

vPMGoToSleepModeEM4 84
5.7 Goals achieved . 85

6 Keeping time in FreeRTOS with a RTC 87
6.1 Advantages of using a RTC as Tick Timer 87
6.2 Tips to con�gure a RTC in FreeRTOS 89
6.3 Porting for EFM32 (Energy Micro) 89

6.3.1 Changes in prvSetupTimerInterrupt 90
6.3.2 RTC Handler function . 91
6.3.3 How to con�gure Power Manager Module (GPMF) 91

6.4 Crystal Oscillator accuracy . 92
6.4.1 Crystal screening . 93
6.4.2 Temperature Compensation 93

6.4.2.1 Software temperature compensation 94
6.4.2.2 Hardware temperature compensation 94

6.5 Goals achieved . 95

7 Tickless Kernel for FreeRTOS 97
7.1 Advantages of using a Tickless System 97
7.2 Ways to awake the core from sleeping state 98

7.2.1 Task or co-routine to schedule 98
7.2.2 An asynchronous ISR occurs 98
7.2.3 An asynchronous ISR unblocks a Ready Task 99

7.3 Drawbacks of previous Tickless solution 99
7.3.1 Switching between FreeRTOS and RTC 100
7.3.2 Ticks lost at wake up time . 100
7.3.3 Maximum time in sleep state 102
7.3.4 Tickless threshold . 103
7.3.5 Checking next upcoming co-routine 103

7.4 Tickless GPMF . 103
7.4.1 Tickless GPMF Module . 103
7.4.2 Possible states for Tickless GPMF 105
7.4.3 Interaction of Tickless GPMF with FreeRTOS (vPMIdleSleep-

Mode) . 106
7.4.4 xPMBreakEvenTime . 109
7.4.5 RTC_IRQHandler . 109

10 CONTENTS

7.4.6 vTaskUpdateTickCountFromISR 110

7.4.7 xTaskNextTick . 110

7.4.8 xCoRoutineNextTick . 110

7.4.9 vPMTicklessFromISR . 111

7.5 How to con�gure Tickless GPMF for EFM32 114

7.6 RTC's problem . 114

7.7 Summary . 114

III Results 117

8 Simulations 119
8.1 Benchmark . 119

8.1.1 vLightLevel . 120

8.1.2 vTemperature . 120

8.1.3 Sending Accelerometer values 120

8.2 Advanced Energy Monitoring (AEM) and energyAwarePro�ler . . . 124

8.3 Power consumptions among di�erent FreeRTOS versions 124

8.3.1 Original FreeRTOS 7.0.1 . 125

8.3.2 FreeRTOS RTC 7.0.1 . 125

8.3.3 FreeRTOS Tickless 7.0.1 with prescaling 125

8.3.4 FreeRTOS Tickless 7.0.1 without prescaling 126

8.3.5 Results Summary . 126

8.4 Benchmark's Screenshot . 131

8.5 Battery lifetime . 132

IV Discussion 135

9 Conclusions and Future work 137
9.1 Conclusions . 137

9.2 Future work . 139

V Appendix 141

A PPMF for EFM32 143

B Tickless Framework 155
B.1 vPMIdleSleepMode() . 155

B.2 xPMBreakEvenTime() . 157

B.3 RTC_Handler() . 157

B.4 vTaskUpdateTickCountFromISR() 158

B.5 xTaskNextTick() . 159

B.6 xCoRoutineNextTick() . 159

CONTENTS 11

B.7 prvCheckPendingReadyListTickless() and prvCheckDelayedListTick-
less() . 160

B.8 vPMTicklessFromISR() . 161

12 CONTENTS

List of Tables

3.1 Tasks . 41

5.1 Evaluation of proposed solutions . 56

8.1 Tasks running on FreeRTOS . 120

13

14 LIST OF TABLES

List of Figures

2.1 EFM32 Target Applications [4] . 28
2.2 Block diagram of EFM32[5] . 28
2.3 Energy Mode indicator[5] . 29
2.4 Energy Modes [5] . 31
2.5 EFM32 transitions among energy modes [5] 32
2.6 RTC resolution vs Over�ow [5] . 35
2.7 MCU board [9] . 35
2.8 Mainboard Hardware layout [9] . 36

3.1 Task state transition [10] . 39
3.2 Time management in FreeRTOS . 42
3.3 How exceptions and tasks run in FreeRTOS 43

5.1 Wrong use of Power Management framework without considering
sleep modes inside ISRs . 53

5.2 Correct use of Power Management Framework with sleep modes is-
sued inside ISRs . 54

5.3 Behaviour of the system without using power modes provided by MCU 55
5.4 Behaviour of the system using power modes provided by MCU . . . 55
5.5 Functioning of limited memory solution 58
5.6 Power management Framework with list sleep mode solutions 59
5.7 Task Power Management Framework (TPMF) 60
5.8 Possible use of Task Power Management Framework (TPMF) 61
5.9 ISR Power Management Framework (IPMF) 63
5.10 Possible use of ISR Power Management Framework (IPMF) with

Simple Sleep Mode(SSM) . 64
5.11 Possible use of ISR Power Management Framework (IPMF) with

Lock Sleep Mode(LSM) . 64
5.12 Possible use of ISR Power Management Framework (IPMF) with

Lock Sleep Mode(LSM) and Simple Sleep Mode(SSM) 65
5.13 Global Power Management Framework (GPMF) 66
5.14 Example of Global Power Management Framework (GPMF) func-

tioning . 67
5.15 GPMF module . 69

15

16 LIST OF FIGURES

5.16 PPMF module . 78

6.1 Example using FreeRTOS with a Systick module 88
6.2 Example using FreeRTOS with a RTC as tick timer 88
6.3 Typical Tuning Fork Crystal Frequency vs Temperature[25] 92
6.4 TCXOs compensation [27] . 95

7.1 FreeRTOS with a Tickless module 98
7.2 Sequence Tickless diagram [3] . 99
7.3 Wrong Tickless solution . 101
7.4 Tickless solution . 101
7.5 Tickless GPMF module . 104
7.6 States arisen using Tickless Framework 106
7.7 Interaction between FreeRTOS and Tickless Framework 108
7.8 Updating of xTickCount when FreeRTOS uses the Tickless Framework109
7.9 Example of interleaved ISRs . 112
7.10 Flow sequence diagram of vPMTicklessFromISR() 113

8.1 Sequence diagram of Task vLightLevel() 122
8.2 Sequence diagram of Accelerometer 123
8.3 Power consumption with di�erent versions of FreeRTOS. a) Original

FreeRTOS 7.0.1 b) FreeRTOS RTC 7.0.1 128
8.4 Power consumption with di�erent versions of FreeRTOS. a) FreeR-

TOS Tickless 7.0.1 with prescaling b) FreeRTOS Tickless 7.0.1 with-
out prescaling . 129

8.5 Power consumption of all FreeRTOSes 130
8.6 Time vs Current representation for FreeRTOS RTC 7.0.1 with reso-

lution of 977 µs . 131
8.7 Expected battery lifetime using a common battery of 1500mAh . . . 133

Listings

3.1 Task Control Block (TCB) . 38
5.1 New Task Control Block (TCB) with sleep mode �eld 56
5.2 Prototype ad implementation of xPMSetSleepMode() 71
5.3 Prototype and implementation of xPMSetSleepModeFromISR() . . . 72
5.4 Prototype and implementation of ucPMGetSleepMode() and ucP-

MGetSleepModeFromISR() . 72
5.5 Prototype and implementation of xPMLockSleepModeFromISR() . . 73
5.6 Prototype and implementation of xPMUnlockSleepModeFromISR()

and xPMUnlockSleepMode() . 74
5.7 Prototype and implementation of vPMIdleSleepMode() 75
5.8 Prototype and implementation of xPMUpdateSleepModesInc() and

xPMUpdateSleepModesDec() . 76
5.9 Prototype and implementation of ucTaskGetCurrentTCB() and uc-

TaskPutCurrentTCB() . 77
5.10 Constants de�nition in PowerManager.h 79
5.11 Constants de�nition in FreeRTOSCon�g.h 80
5.12 Prototype of xPMGoToSleepMode_NUM_ de�ned in PowerMan-

ager.c . 80
5.13 Prototype of xPMGoToSleepMode() de�ned in PowerManager.c . . . 81
5.14 Prototype of vPMInit() de�ned in PowerManager.c 82
5.15 PPMF con�guration values for EFM32 83
5.16 Prototype and implementation of vPMInit() 83
5.17 Prototype and implementation of vPMGoToSleepModeEM1 84
6.1 New prvSetupTimerInterrupt for FreeRTOS with RTC 90
6.2 RTC Handler used to con�gure the tick timer 91
A.1 PowerManager.h . 143
A.2 PowerManager.c . 144
B.1 vPMIdleSleepMode() . 155
B.2 xPMBreakEvenTime() . 157
B.3 RTC IRQHandler() . 157
B.4 vTaskUpdateTickCountFromISR() 158
B.5 xTaskNextTick() . 159
B.6 xCoRoutineNextTick() . 159
B.7 prvCheckPendingReadyListTickless() prvCheckDelayedListTickless() 160

17

18 LISTINGS

B.8 vPMTicklessFromISR() . 161

Part I

Introduction and Background

19

Chapter 1

Introduction

"PCs and monitors account for 39% of the information and telecommunications
industry's carbon emissions, which is equal to a full year of CO2 emissions from
approximately 43.9 million cars."

- Climate Savers Computing[1]

"We want to take an industry-leading approach to energy conservation. The tech-
nology is now available to make signi�cant improvements in conservations, and we
set out to deploy technology to both conserve energy and cut costs."
- Jay Taylor, Regulatory Engineer Strategist at Dell

1.1 Motivation

In the last �ve years, IT systems have dramatically increased the amount of energy
used in computing centers. Nowadays, energy conservation is getting the major
concern factor for companies that manufacture hardware components and design
software algorithms. According to a research carried out by Climate Savers Com-
puting [1], another source that cause a waste of energy, is the carelessness of people
to leave PCs on all nights. The results show, that, if a company left 10.000 PCs
on overnight, it wastes 1.5 million KWh with losses close to 285.000 e, and carbon
emissions around 887 tons of CO2. According to the same research, U.S. govern-
ment predict that the electricity prices will increase up to 35% in the 2030. Thus,
the grows of power consumption is involving both governments and IT industry to
take immediate countermeasures against this phenomenon.
In the following sections I have outlined the reasons why it is useful to carry out
research in these �elds. Especially, the main goal of my Master thesis is to give a
green contribution in those services and products, touched every day from a huge
amount of people.

21

22 CHAPTER 1. INTRODUCTION

1.1.1 Green Computing

People in last two decades, associate the term Green Computing or green IT to
indicate those techniques that use computers and their resources in an environ-
mentally responsible manner. Green Computing develops and studies new possible
techniques to reduce the impact of energy consumption in new technological de-
vices. Recently, companies, organization and individuals, increasingly rely a new
strategic energy solutions that allow them to save a considerable amount of money.
Moreover, new companies are emerging due to the importance of manufacturing
low power components such as multicore processors, LED display, new storage de-
vices and low power MCU. Equally important, is the impact of energy algorithms
that allow to manage the usage of resources much more e�ciently, reducing the
correlated energy consumption. Currently, many new algorithms are applied in a
wide range of contexts such as scheduling algorithm, resource allocation, encoding
algorithm and peripheral management. Energy aware systems cutback energy up
to 30% using energy e�cient coding. Furthermore, these new green-IT solutions
reduce the emissions of greenhouse gasses in the world, involving a good aid to the
entire environment.

1.1.2 Embedded System

The impact of power consumption does not only leverage the �eld of desktop com-
puters or data centers, but even portable devices commonly known as Embedded
Systems. Embedded systems are small computers designed to perform dedicated
tasks. Basically, these systems are employed in real time environments with strict
time deadlines. Lately, many Embedded systems are applied in some areas such
as automotive, medical devices, defence and maritime systems. The main aspect
concern embedded systems is power consumption. This is particularly important
for those applications that really need to save power during their life time.
Some examples of energy devices are energy metering systems (Power, water, gas
and smart meters), home and building automation (remote, light and climate con-
trol), alarm and security systems (motion sensors, burglary alarms). Replacing a
battery in some devices might be very expensive. This means, the system should
be conscious of the amount of power it is using, taking appropriate steps to con-
serve battery life. Therefore, in order to extend their battery life, aggressive energy
conservation techniques are needed to save energy in I/O devices. Due to reasons
just explained, Embedded systems contain low power processor architecture called
RISC. These architectures, provide high level performance and limited amount of
energy consumption. Some examples of RISC processors are ARM, ATMEL AVR,
Power PC, MIPS and SPARC.
There are several other methods to conserve power in embedded systems, such
as clock control, power sensitive processors, low-voltage ICs, and circuit shutdown.
Some of these techniques must be addressed by the hardware designer during the
selection among di�erent ICs systems.

1.2. PREVIOUS WORK 23

1.1.3 Real Time Operating System (RTOS)

As already mentioned above, the style of algorithm implementation in these devices
a�ect signi�cantly the �nal power consumption. In fact, writing a stand-alone
application (endless loop) is much more energy expensive than using a speci�c
operating system called Real Time Operating System (RTOS).
The roles of RTOS is to keep active a processor only when the system has to
compute some operations. On the contrary, if an idle state occurs the RTOS pushes
the whole system in an idle task. The OS should know in advance when to wake
up the core unit and when to move it to idle state. On the other hand, a RTOS
might provide to the user an internal framework that handles the power state of
a MCU in e�cient way. Although this feature represents a useful solution to cope
energy consumption in portable devices, it is still quite hard to �nd modern RTOSes
equipped with a well designed Power Manager (PM). Nevertheless, some vendors of
RTOSes have already included features to handle sleep states. The support in this
area is still poor, especially for open source companies that provide RTOSes. This
plays up for those customers that are get used to work with open source platform.
In last years, the amount of �rms and private people that are making use of open
source RTOSes is rising. In fact, adopting a proprietary solution a customer invests
a considerable amount of money around 1-5K efor normal RTOSes and more than
5K efor complex platforms. Needless to say, the motivation of using an open source
platform is due to the large amount of money that a customer can save in a �nal
product

1.1.4 Government support

Recently, US governments announced a funding initiative equal to $52 billion to
support energy friendly companies [2]. The investment are partitioned as follow,
$3.4 billion for smart grids, $2.4 billion for batteries and e-cars, $43 billion for
energy technology, $3.2 billion in power e�ciency grants, a broadband internet
initiative and lighting e�ciency standard.
Furthermore, despite the disastrous impacts the 2008 worldwide �nancial crash,
the demand of developing new energy solutions and products never slumped. This
means that the market of small devices does not risk a collapse of sales. Therefore,
governmental institutions are more involved to fund new initiatives.

1.2 Previous work

The contribution of my thesis is based on previous work done by Martin Tverdal.
The aim of his thesis [3] was to provide a porting for FreeRTOS in EFM32 mi-
crocontrollers. Basically, Martin covered two main points, Tickless system and
management of energy modes. Nevertheless, his contribution still need an addition
work, in order to be considered as a valuable porting for FreeRTOS.
My Master thesis involves an additional work in those points that needed a major
improvement. Martin provided a Tickless support (see section 4.3) for EFM32,
based on using only a Real Time Counter (RTC) during idle state of system. As

24 CHAPTER 1. INTRODUCTION

he observed in his report, this kind of approach saves a huge amount of power
consumption. He implemented the same approach used in Linux (version 2.6.34)
before it was changed in the �nal solution currently used, Totally tickless system.
One of the improvement of my master thesis is to use in FreeRTOS the last so-
lution adoped in Linux. Furthermore, Martin provided only a speci�c porting of
Energy Modes for FreeRTOS. He did not develop a Generic Framework even able
to deal with other platforms. The work done by Martin was not totally approved
by FreeRTOS. Also in this case, my thesis presents a di�erent way to handle energy
modes both in EFM32 and other platform compatible in FreeRTOS.
Besides, more information about work did by Martin are discussed and analyzed
in methodology section.

1.3 Goals

The goals of my thesis allow to split up the work and de�ne the correlated mile-
stones. In this chapter it is reported a brief description for each of them.

1. Implement a generic energy management framework for FreeRTOS.
Implement a speci�c porting for EFM32.

The purpose of this section is to propose a Generic Power Management Frame-
work capable to deal with the power modes provided by most Microcontrollers.
This framework must be able to handle the requests arisen from tasks and inter-
rupts.

2. Introduce support to keep time in FreeRTOS using RTC timer in-
stead of Systick timer. Implement a speci�c porting for EFM32

FreeRTOS keeps track of time using a register inside the SYSTICK module of
CORTEX-M3. The unit core raises an interrupt every time the register is up-
dated. Upon interrupt, FreeRTOS updates its internal variable called xTickCount.
The new support changes the resource of timer from CORTEX-M3 to a timer gen-
erated by RTC. At the completation of this goal is expected to reduce the overhead
introduced in Martin's solution.

3. Implement FreeRTOS support for Tickless kernel on EFM32

This support avoids to introduce inside the system a periodic interrupt generated
from CORTEX-M3. The system provides a dynamic timer without using a period
interrupt. This requires to redesign the scheduler of FreeRTOS. When an idle task
occurs, it have to wake the core up at the upcoming task or if an asynchronous
event occurs. Also in this case we use the RTC timer as main timer of the system.

4. Develop a Benchmark to perform simulations

1.4. THESIS ORGANIZATION 25

This goal is used to demonstrate the behavior of the system using the new FreeR-
TOS solution. The benchamrks is used to perform some simulations with di�erent
versions of FreeRTOS.

5. Establish a contact with FreeRTOS maintainer

Establish a contact with FreeRTOS's mantainer to understand which are the lim-
itations of the new proposed FreeRTOSes. Achieve the possibility to integrate
these changes o�cially in FreeRTOS would enhance the contribution of my work
for Energy Micro.

1.4 Thesis organization

The report has been divided in the following �ve parts: Introduction, Methodology,
Results, Conclusion and Appendix. Below are described the chapters included in
each of these parts.

Chapter 1 Provides motivations and goals of the Master thesis.

Chapter 2 Provides a description of Energy Micro company and a further ex-
planation about Development Kit used in this work.

Chapter 3 Provides a general overview about RTOSes and some basic notions
of the Time management �eld. This part is useful to understand the changes in
FreeRTOS.

Chapter 4 Provides a general overview about FreeRTOS and it gives an explana-
tion about its main data structures.

Chapter 5 Provides an explanation how to use the Energy Management Frame-
work developed for FreeRTOS.

Chapter 6 Provides an explanation of the Framework used to keep track of time
in FreeRTOS using a RTC timer.

Chapter 7 Provides an explanation of the Framework used to implement the
Tickless support fo FreeRTOS kernel.

Chapter 8 Provides the results of the simulations performed for three di�erent
types of FreeRTOS. The Original FreeRTOS 7.0.1, FreeRTOS RTC 7.0.1, FreeR-
TOS Tickless 7.0.1 with prescaler and FreeRTOS Tickless without precaler.

Chapter 9 Remarks the results and the main points of the whole thesis.

26 CHAPTER 1. INTRODUCTION

Chapter 2

EFM32 Energy friendly

microcontroller

"Energy Micro's mission is to make the world's most energy friendly electronics."

- Geir Førre, President and CEO of Energy Micro

"I have tried it tonight, and have to say your energy pro�ler rocks so incredible
hard!! I love it. It is so fast and smooth, and that it warps to the exact line of code
that generated a particular amount of current is amazing."
- Happy Energy Micro's Customer

2.1 Energy friendliness applications

Recently, the explosion of battery sensitive electronics devices, caused a necessity
to design and develop low power devices. Energy Micro has addressed this issue
by introducing in the market their Energy friendly products 32-bit EFM32 MCU.
The 32-bit EFM32 MCU is the world's most energy friendly microcontroller for use
in energy sensitive applications. In the next sections (2.2) is described which are
the important technology factors that allow EFM32 to be de�ned as most energy
microcontroller. In this chapter the main important features useful are discussed
to understand the related work of thesis. More information are available on Energy
Micro website. Figure (2.1) shows all of the possible EFM32 target applications.

Figure (2.2) shows the block diagram of EM32. Figure (2.3) shows the indicators
color for each energy mode (see section 2.3.1) where it works for.

27

28 CHAPTER 2. EFM32 ENERGY FRIENDLY MICROCONTROLLER

Figure 2.1: EFM32 Target Applications [4]

Figure 2.2: Block diagram of EFM32[5]

2.2 Ten important technology factors for EFM32

At the designing step of EFM32 family, were de�ned ten important factors that
make EFM32 di�erent from other microcontrollers. Below, there is a brief descrip-
tion for each of them.

1 Very low active power consumption

One of the most important factor in EFM32, is to have a very low active power
when the processor is running. EFM32 tries to keep the power as low as possible.
Using a clock of 32Mhz and running code in Flash memory, EFM32 only consumes

2.2. TEN IMPORTANT TECHNOLOGY FACTORS FOR EFM32 29

Figure 2.3: Energy Mode indicator[5]

180 µA/MHz.

2 Reduced processing time

Processing time is another factor that strongly a�ects the energy consumption
in a microcontroller. In fact, the processor must spend as much time as possible
in deep state. The core unit used by Energy Micro to meet these requirement is
ARM Cortex-M3 [6]. The performance of Cortex-M3 allows EFM32 to solve com-
plex problems in few clock cycles.

3 Very fast wake-up time

EFM32 keeps as low as possible the wake-up time of MCU when it moves from
deep sleep modes to active mode. In fact, before starting execution of code, MCU
waits the oscillators' stabilization. The energy spent to wake-up the oscillators is
wasted, because no processing can be done in this period. Hence, reducing the
wake-up time is important to reduce the overall energy consumption. EFM32 has
reduced the wake up time for deep sleep up to 2 µs.

4 Ultra-low standby current

Energy wasted in standby state is another important factor to take into account
for reducing the energy consumption of MCU. In this state, EFM32 reduce the
leakage current as much as possible.
The Deep Sleep mode includes RAM and CPU retention, Power-on Reset and
Brown-out Detection safety features, and a Real Time Counter while only using
900 nA. In Shuto� mode the consumption is only 20 nA.

5 Autonomous peripheral operations

The peripherals in EFM32 are designed to operate with minimum intervention
of CPU. In fact, EFM32 peripherals can run without using the CPU, therefore

30 CHAPTER 2. EFM32 ENERGY FRIENDLY MICROCONTROLLER

reducing considerably power consumption.

6 PRS Peripheral Re�ex System

PRS allows the peripherals to communicate directly with each other without in-
volving the CPU. In the meanwhile the CPU is sleeping, a peripheral can produce
a signal and it triggers the reaction of another peripherals.

7 Energy modes

EFM32 provides the possibility to use di�erent energy modes during its life time.
More information are given in next section (2.3.1).

8 Energy e�cient peripherals

EFM32 provides a set of low power peripherals that contribute with other fac-
tors to reduce energy consumption. Peripherals are:

• LCD controller driving 4x40 segments at only 0.55 µA;

• Low Energy UART, full communication at 32 kHz while consuming only 100
nA;

• 12-bit ADC performing 1 million samples/sec at only 200 µA;

• Analog Comparator using as little as 150 nA;

• Hardware accelerator for 128/256-bit AES encryption and decryption in only
54/75 cycles;

9 AEM Advanced Energy Monitoring

EFM32 provides an advanced energy monitoring system (AEM) which gives an
instant feedback on the power consumption of the prototype application. This tool
also integrates a full J-Link from Segger for easy debugging and programming.

10 EnergyAware Software

The energyAware software suite includes energy code examples, CMSIS libraries
and a Pro�ler that reads the kits Advanced Energy Monitoring (AEM) system data
and enables simple graphical visualization and optimization of application.

2.3 Energy modes in EFM32

As already explained above, one of the important feature of EFM32 is the possi-
bility to use di�erent Energy Modes (EM0-EM4). The Figure (2.4) shows an high
overview of Energy modes in EFM32. Some parts of this section is taken from my
Specialization project[7].

2.3. ENERGY MODES IN EFM32 31

Figure 2.4: Energy Modes [5]

2.3.1 Energy Modes

Energy Mode 0

In EM0, When the CPU is running code from �ash does not consume less than 180
µA/MHz. All peripherals can also be activated.

Energy Mode 1

In EM1, the CPU is sleeping and the power consumption is only 45 µA/MHz.
The peripherals including, DMA, PRS and memory system is still available.

Energy Mode 2

In EM2 the high frequency oscillator is turned on, but with the 32 kHz oscil-
lator running. Low energy peripherals (LCD, RTC, LETIMER, PCNT,WDOG,
LEUART, I2C, ACMP) are still available, giving a high degree of autonomous op-
eration with a current consumption of 0.9 µA.

Energy Mode 3

In EM3 the low-frequency oscillator is disabled, but there is still full CPU and
RAM retention, as well as Power-on Reset and Brown-out Detector, with a con-
sumption of only 0.6 µA. Even in this mode, the wake-up time is in the range of
few microseconds.

Energy Mode 4

In EM4, the current is down to 20 nA and all chips functionality is turned on
except the pin reset and the power on reset. All pins are put into their reset state.

2.3.2 Transition among sleep modes

The unit that manages the transitions among the energy modes, is called Energy
Management Unit (EMU). As I described previously, the system has �ve energy

32 CHAPTER 2. EFM32 ENERGY FRIENDLY MICROCONTROLLER

modes and the transition among these modes can occur di�erently. Some parts of
this section is taken from my Specialization project[7].

• A transition from EM0 to a low energy mode can only be triggered by soft-
ware;

• A transition from EM1-EM3 to EM0 can be triggered by an enabled interrupt
or event;

• A transition from EM4 can only be triggered by a pin reset or power-on reset;

An energy mode is selected by �rst con�guring some control registers (EM4CTRL,
EMVREG,EM2BLOCK) in EMU_CTRL. If SLEEPONEXIT bit is 1, the transi-
tion into a low energy mode can optionally be delayed until the end of lowest
priority Interrupt Service Routine (ISR). Figure (2.5) shows the transitions among
energy modes.

Figure 2.5: EFM32 transitions among energy modes [5]

CORTEX-M3 processor is suitable for low-power designs and it has power-saving
mode support (SLEEPING and SLEEPDEEP). The processor can enter in sleep
mode using Wait for Interrupt (WFI) or Wait for Event (WFE) instructions.
Essentially, CORTEX-M3 has separated clocks for essential blocks, so clocking

2.4. TIMING IN EFM32 33

circuits for most parts of the processor can be stopped during sleep. The two
sleep states (SLEEPING and SLEEPDEEP) provided by CORTEX-M3 are cho-
sen setting SLEEPDEEP bit. This bit is situated in System Control Block(SCB) of
Cortex-M3 System Control Register. If SLEEPDEEP bit is set to 0, then EFM32
chooses EM1 (SLEEPING), otherwise if it is set to 1 EM2 (SLEEPDEEP) is cho-
sen.
In EFM32, EM3 is di�erent from EM2 only because the low frequency clocks are
stopped, but the CORTEX core is still in SLEEPDEEP.

WFI (Wait For Interrupt) To wake up the processor from WFI mode, the
interrupt will have to be higher priority than the current priority level and higher
than the level set by BASEPRI register or mask registers (PRIMASK and FAULT-
MASK). After the core is woken-up by WFI instruction, if the Priority Mask Reg-
ister (PMR) is not set, the execution proceeds in ISR. Otherwise if PMR is set, the
execution proceeds at the instruction after WFI[8].

WFE (Wait For Event) If the interrupt triggered during sleep has lower or
equal priority than the mask registers or BASEPRI registers and if the SEVON-
PEND is set, it could still wake the processor from sleep. When the core is woken
up by WFE instruction, execution proceeds at the next instructions of WFE. If
the pending interrupt has high priority, then execution proceeds in ISR[8].

2.4 Timing in EFM32

2.4.1 Oscillators and peripheral clock

Most of the content of this section is taken from my Specialization project[7].
EFM32 supports the following oscillators:

• 1-28 MHz High Frequency RC Oscillator (HFRCO);

• 4-32 MHz High Frequency Crystal Oscillator (HFXO);

• 32 kHz Low Frequency RC Oscillator (LFRCO);

• 32.768 kHz Low Frequency Crystal Oscillator (LFXO);

• 14 MHz auxiliary RC oscillator (AUXHFRCO) used for �ash programming
and debug trace;

• 1 kHz separate RC oscillator ULFRCO (Ultra Low Frequency RC Oscillator).
This oscillator is often used by WDOG Timer, it runs in EM3.

The system has di�erent prescaler for High Frequency Core Clocks (HFCORE-
CLK) and Peripheral Clocks(HFPERCLK). The core clock of the system is gen-
erated by HFXO or HFRCO. The di�erences are in terms of e�ciency of wake-up
time. The wake-up time of HFXO is around 400 µs whereas HFRCO only 0.6 µs.
EFM32 always uses HFRCO. This clock is also used when it wants to wake up
from EM2 or EM3 and when a reset occurs.

34 CHAPTER 2. EFM32 ENERGY FRIENDLY MICROCONTROLLER

2.4.2 Real Time Counter (RTC)

Real Time Counter is used to keep track of time in low energy modes. In EFM32,
RTC uses a 32 Khz oscillator that can run in EM2 consuming at most 0.9 µA. The
features of RTC [5] are:

24-bit counter: The register where it is stored the value of counter is: RTC_CNT.
The counter is incremented every clock cycle. When it exceeds the maximum value
of RTC_CNT, it starts to counting again from 0.

Two compare registers (COMP0, COMP1): When in RTC_CTRL regis-
ter the bit COMPT0TOP is set to 1. Then, the RTC count up to COMP0. If
the bit COMP0 in RTC_IEN is set, then an interrupt is raised when the counter
reaches COMP0. Furthermore, COMP0 and COMP1 can also be used as compare
match. When the counter reaches their value, a device can be woken-up.

Clock Source: RTC clock source and its prescaler are de�ned in Clock Man-
agement Unit (CMU). The clock depends by prescaler and the RTC Frequency
equation is

fRTC =
fLFACLK

2RTC_PRESC

RTC_PRESC is a 4 bit value, while LFACLK has a frequency of 32khz. The
resolution of RTC depends by the result of equation. The Figure 2.6 shows RTC
resolution vs Over�ow. Furthermore, in many cases, using prescaling can cause an
increase of power consumption. If the clock is prescaled by four there is a major
consumption of energy because the prescaler uses more power than RTC [5].

2.4.3 System Timer Cortex-M3

CORTEX-M3 has own unit to keep track of time. The counter of core (24-bit)
is stored in Current Value Register and since in this case the counter is a basic
countdown timer, then the value of register is decremented every clock cycle.
When the counter reaches 0, a Reload Register set again the value of Current
Value of Register. The core clock can be generated either by HFXO or HFRCO
(see section 2.4). The System Tick (SYSTICK) is generated according to the
resolution (value stored in an internal register) of the core. The core generates
a periodic interrupt (even when the system is in sleep mode) used by OS to keep
track of time.

2.5 EFM32 Development kit

In this project I have used the EFM32 Development Kit provided by Energy Micro.
THE DVK comes with a separate MCU board and prototyping board which are
plugged into the motherboard. EFM32 DVK supports a USB connector that can
be used to power the board and provide a live debug session to IDEs such as IDE

2.5. EFM32 DEVELOPMENT KIT 35

Figure 2.6: RTC resolution vs Over�ow [5]

Embedded WorkBench. The Figure 2.7 shows MCU board, while Figure 2.8 shows
the mainboard hardware layout of EFM32 DVK.

Figure 2.7: MCU board [9]

36 CHAPTER 2. EFM32 ENERGY FRIENDLY MICROCONTROLLER

Figure 2.8: Mainboard Hardware layout [9]

2.6 About Energy Micro

Energy Micro is a Norwegian semiconductor company focusing on 32 bit micro-
controllers with ultra low energy consumption. Energy Micro develops, markets
and sells the world's most energy friendly microcontrollers, based on the industry
leading ARM Cortex-M3 32-bit architecture. The company was founded in 2007
by experienced semiconductor professionals with previous expertise from Chipcon,
Texas Instruments, Atmel and Nordic Semiconductor[4].

Chapter 3

FreeRTOS

"Last year, FreeRTOS was o�cially downloaded more than 77,500 times. This
degree of popularity often surprises industry insiders, because FreeRTOS does not
have a marketing budget and has not been featured in any industry surveys."

- Richard Barry as Guest editor for EETimes

3.1 About FreeRTOS

FreeRTOS is a free real-time operating system kernel for a small embedded systems.
Since most of the code is written with C programming language (around 4000 lines
of code), it has been ported to many di�erent platforms.
FreeRTOS provides the following scheduling alorithm: preemptive, cooperative and
hybrid con�guration options. It supports the Cortex M3 Memory Protection Unit
(MPU)and it is designed to be small (4K -9K), simple and easy to use. Further, it
provides mechanisms for tasks to communicate and share data safely such as queues,
binary semaphores, counting semaphores, recursive semaphores and mutexes for
communication and synchronization between tasks. FreeRTOS supports both tasks
and co-routine. In addition, FreeRTOS does not have restriction on the number of
tasks that can be created no restrictions imposed on priority assignment.

3.2 FreeRTOS kernel

3.2.1 Tasks

In real time applications the workload is divided in many tasks. But since the
processor can handle only one task per time, the system needs some policy to
decide when use a task rather than another one. In this section is explained the
main structure of a task and the list of tasks' state.

37

38 CHAPTER 3. FREERTOS

3.2.1.1 Task Control Block (TCB)

FreeRTOS provides for each task a data structures where are stored all the useful
information about its context. Listing (3.1) shows the structure of a normal TCB.
Nevertheless, upon creation of task, the system provides to create only those �elds
needed for a task (it depends on FreeRTOS' con�guration) and discarding the
useless ones.

1 /*
2 * Task control block. A task control block (TCB) is allocated to each task,
3 * and stores the context of the task.
4 */
5 typedef struct tskTaskControlBlock
6 {
7 volatile portSTACK_TYPE *pxTopOfStack; /*< Points to the location of the last ←↩

item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE STRUCT←↩
. */

8

9 #if (portUSING_MPU_WRAPPERS == 1)
10 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of ←↩

the port layer. THIS MUST BE THE SECOND MEMBER OF THE STRUCT. */
11 #endif
12

13 xListItem xGenericListItem; /*< List item used to place the TCB in ready ←↩
and blocked queues. */

14 xListItem xEventListItem; /*< List item used to place the TCB in event ←↩
lists. */

15 unsigned portBASE_TYPE uxPriority; /*< The priority of the task where 0 is ←↩
the lowest priority. */

16 portSTACK_TYPE *pxStack; /*< Points to the start of the stack. */
17 signed char pcTaskName[configMAX_TASK_NAME_LEN];/*< Descriptive name ←↩

given to the task when created. Facilitates debugging only. */
18

19 #if (portSTACK_GROWTH > 0)
20 portSTACK_TYPE *pxEndOfStack; /*< Used for stack overflow checking on ←↩

architectures where the stack grows up from low memory. */
21 #endif
22

23 #if (portCRITICAL_NESTING_IN_TCB == 1)
24 unsigned portBASE_TYPE uxCriticalNesting;
25 #endif
26

27 #if (configUSE_TRACE_FACILITY == 1)
28 unsigned portBASE_TYPE uxTCBNumber; /*< This is used for tracing the ←↩

scheduler and making debugging easier only. */
29 #endif
30

31 #if (configUSE_MUTEXES == 1)
32 unsigned portBASE_TYPE uxBasePriority; /*< The priority last assigned to the ←↩

task - used by the priority inheritance mechanism. */
33 #endif
34

35 #if (configUSE_APPLICATION_TASK_TAG == 1)
36 pdTASK_HOOK_CODE pxTaskTag;
37 #endif
38

39 #if (configGENERATE_RUN_TIME_STATS == 1)
40 unsigned long ulRunTimeCounter; /*< Used for calculating how much CPU time ←↩

each task is utilising. */
41 #endif
42 } tskTCB;

Listing 3.1: Task Control Block (TCB)

3.2. FREERTOS KERNEL 39

The main drawback of using tasks is due to the huge amount of space occupied
in memory. In fact, for each task is allocated a TCB structure.

3.2.1.2 Task Lists

In FreeRTOS the tasks are event-driven. This means that a task process its work
only when an event occurs like expiring of a timeout or synchronization events (e.g.
queues, semaphores etc). For this reason, the kernel must guarantee for each task
that is being scheduled to the right time and without any delay. Since no more
than one task can be scheduled in the same time, the kernel needs to save the
context of those tasks not running. Thus, the kernel needs to handle more than
one state. The Figure 3.1 shows the interactions among these states.

Figure 3.1: Task state transition [10]

FreeRTOS implements states using a list of items. Lists implemented in FreeR-
TOS are:

40 CHAPTER 3. FREERTOS

READY LIST: The tasks in this list are able and ready to run, but are not
in running state because their priority is lower than priority of current task run-
ning. For every priority there is a list of tasks (more tasks can have same priority)
ready to run ReadyTasksList[n].

TERMINATING LIST: This list contains those tasks that have been deleted
but their memory has not been freed, yet. Name of list is TasksWaitingTermination.

SUSPENDED LIST: When the kernel invokes the function to suspend task
(or all tasks), the tasks are added in SuspendedTaskList. If the kernel wants to
resume a task/s from a suspended list, resume function is called.

PENDING LIST: When the scheduler is suspended, some tasks can expire their
timeout and they need to be moved in ready list, but since these tasks can not
be moved in ready list are temporarily placed in PendingReadyList. They will be
moved to the ready list when the scheduler is resumed.

DELAYED LIST: This list contains the tasks that are delayed for a while. The
tasks in this list are sorted by wake up time. The name of list is DelayedTaskList.

OVERFLOW DELAYED LIST: This list contains those tasks that endure
an over�ow in wake up time. In fact, when a delay is added for a task, might occur
that the sum of current time and delay time can involve an over�ow. The name
of list is Over�owDelayedTaskList. For example, if the system use a counter of 9
bits, then an over�ow occurs every 512 ticks. If a task issues a request of delay of
20 ticks and the current tick number is 505, then the task is added in over�ow list
with a delay of 14 ticks. When the system raises an interrupt due to tick over�ow,
then the content of Over�owDelayedTaskList and DelayedTaskList is swapped.

3.2.1.3 Idle Task

The processors always needs something to execute, therefore must be at least one
task to be scheduled. An idle task is automatically created by scheduler at the
beginning of program, in this way the processor is held busy over all of time. The
idle task has the lowest possible priority, in this way it never prevents a higher
priority application task from entering the running state. Furthermore, the idle
task is responsible for releasing resources not longer used by other tasks. The
idle task has a role very important inside a RTOS. The usage of idle task is well
explained in next chapters.

3.2.2 Co-routines

Co-routines are often used in those cases when there is a strong need to save the
amount of memory (very small microcontroller) occupied by tasks. In fact, co-
routines are conceptually similar to tasks but with a main limitation of the stack

3.2. FREERTOS KERNEL 41

Tasks Priority Period
Task 1 2 10 ms
Task 2 7 20 ms

Table 3.1: Tasks

usage. Besides, they share the same stack unlike tasks that have an own stack.
The consequence in this case is due to losing the content of a variable whenever a
routine is blocked. Additionally, co-routine use prioritized cooperative scheduling.
These routines are managed in the same way of tasks and they use the same set of
lists.

3.2.3 Time management

In FreeRTOS, the time is handled using the Systick module provided by CORTEX-
M3 (see section 2.4.3). The core, triggers an interrupt according to the frequency
set in FreeRTOS. Usually, the rate frequency of this interrupt is around 1000Hz
(1ms) or 100Hz (10ms), this is called tick rate. FreeRTOS measures time as num-
ber of ticks, where each tick corresponds to an interrupt raised by Cortex core.
For this reason, FreeRTOS saves the number of ticks in its internal variable called
xTickCount. The system provides two types of this variable, one with 32bits and
another one with only 16 bits. The following equation shows how often the over�ow
occurs.

Timesec =
2N ∗ resolution
sec_one_day

Where N is the number of bits, resolution is expressed in seconds and one_day_sec
contains the number of seconds in one day, respectively 86400.
According to the equation shown above, using a variable of 32 bits with a res-
olutions of 1ms, an over�ow occurs approximately every 50 days. While, if the
resolution is 10ms, the over�ow occurs every 500 days (less than 1 and half year).
It is important to remark that every time an over�ow occurs, FreeRTOS swaps the
lists of DelayedList with DelayedOver�owList (see section 3.2.1.2).
Moreover, when the system receives an interrupt, it updates the xTickCount vari-
able. After that, it checks if a task with higher priority is present in Ready List. If
any, it performs a context switching with the new ready task. The role of xTick-
Count is extremely important for the correct functioning of FreeRTOS. If some
interrupts are neglected, the system might miss the deadline of some tasks. An
example how FreeRTOS schedules tasks, is shown in Figure (3.2).

The table 3.1 contains the list of tasks with corresponding deadline and priority.
For the sake of simplicity, the two tasks are always in ready list and the duration

42 CHAPTER 3. FREERTOS

Figure 3.2: Time management in FreeRTOS

of each task is only a tick timer (10 ms). Task1 occurs every 10 ms with a lower
priority than Task2 that occurs every 20ms. A tick rate arises every 10 ms. Upon
interrupt(red stain), FreeRTOS updates the value of xTickCount variable and it
checks if a new task with higher priority is ready in Ready List. If any, it performs
a context switched with the new task. In the example, the context switching is
performed only two times (20ms and 40ms when the task 2 is ready to be executed).
This example gives only an idea how FreeRTOS handles its internal time manage-
ment. Next chapters discuss with all possible drawbacks of this model. Moreover,
the number of clock cycles occurring between two ticks is strictly dependent by the
oscillator's frequency. If the oscillator is 10MHz, then a clock cycle occurs every
10 µs, therefore each tick interrupt employs 10000 clock cycles.

The previous example roughly illustrates the way as FreeRTOS organizes tasks
and timing. The next following chapters propose other possible approaches of us-
ing timing module. It is necesary to analyse with more details how FreeRTOS
interfaces its kernel with CORTEX-M3. All the concepts introduced so far, are
still valid, but it is not clear how FreeRTOS performs a context switching and how
it handles exceptions (systick). The exception are asynchronous events and they
can occur any time, therefore FreeRTOS needs to keep the kernel protected when
is being interrupted. It must also be able to resume the system from the blocked
instruction. Thereafter, it makes sure that the system is running the highest pri-
ority task without missing other important deadlines.
A context switching is also dependent by external exceptions. The system can
perform a context switch in two cases, when the tick timer expires or if after an
interrupt a task with higher priority becomes the new running task. The core in-
ternally handles all external interrupts and context switching. In particular, the
context switching is perfomed by an exception called pendSV. The unique burden
of FreeRTOS is to schedule interrupts and tasks with a well de�ned priority. Basi-
cally, exceptions have higher priority than any tasks. FreeRTOS con�gures (some

3.3. EXAMPLE DEMO PROJECT 43

exceptions have �xed priority) the priority of systick timer and pendSV, as the
lowest priority interrupts. Thus, any exceptions have higher priority than systick
and pendSV but they have higher priority than tasks.
Figure (3.3) shows an example how exceptions and tasks are handled in FreeRTOS.
In the example, Task A has higher priority than Task B. The systick handler always
issues a request of context switching, hence, after its execution a pendSV is always
performed. This allows to run the highest priority task every time the system is
being resumed.

Figure 3.3: How exceptions and tasks run in FreeRTOS

Initially, Task B is running and is being interrupted by a systick exception.
Since the handler issues a request of context switching, FreeRTOS checks if a
task with higher priority is ready. FreeRTOS switches to Task A and it continues
to run until an ISR occurs. In the meanwhile that the ISR is executed a systick
exception also occurs, hence, the systick is being performed and a context switching
is executed. The system keep running mantaining the same rules. FreeRTOS
updates the xTickCount variable every tick exception.

3.3 Example Demo Project

FreeRTOS provides a demonstration project for each platform supported. The
demo is a ready application that can be run on the development kit of vendors
without warnings or errors. The aim of demo project is to help the customer to be
familiar with FreeRTOS environment and getting started with it.
The demo project provided by FreeRTOS is an application that works with LEDs
and LCD.

3.4 License and Platform supported

FreeRTOS is licensed under the GNU General Public License (GPL), with an excep-
tion. If FreeRTOS is linked to other independent modules using only the FreeRTOS
API interface the code can be distributed under di�erent licenses than GPL. This
exception makes it possible to use FreeRTOS in commercial applications without

44 CHAPTER 3. FREERTOS

paying any royalties.
FreeRTOS is ported in many platforms, o�cialy support 23 architectures (counting
ARM7 and ARM Cortex M3 as one architecture each). A list of the currently sup-
ported architectures are: Altera, Atmel, Cortus, Energy Micro, Freescale, Fujitsu,
Luminary Micro, Microchip, NEC, NXP, Renesas, Silicon Labs, ST Microelectron-
ics, Texas Instruments, Xilinx, x86 (real mode).
For each supported platform, the code includes a demo project demonstrating how
to use the code on that speci�c platform. Some parts of this section is taken from
my Specialization project[7].

Chapter 4

Time Management in a RTOS

4.1 RTOS overview

A real-time system must satisfy bounded response-time constraints, otherwise it
can produce catastrophic consequences. Real-time systems are classi�ed as hard,
�rm or soft systems.

Hard real-time Are those systems where the failure of a response-time constraints
lead producing serious risk of the whole system (e.g. death of people, nuclear re-
actor, control systems).

Firm real-time Are those systems with hard deadlines, but where a certain low
probability of missing a deadline can be tolerated (e.g. food processing plant sys-
tem).

Soft real-time Are those systems with soft real time constraints which require
time execution of tasks at coarse temporally resolution, but missing a deadline do
not cause catastrophic event.(e.g. vending machines)

Time management unit has an important role in a RTOS because it guarantees
that tasks are scheduled on the right time. In some systems, the Time Manage-
ment Unit represents an issue to overcome. In fact, this unit involves an increase of
power consumption introduced in the whole system. In this section are discussed
those techniques that reduce the bad e�ects of Time Unit Management.

4.2 Periodic Interrupt Timer

Usually, operating system implements time management using a periodic interrupt
triggered by hardware timers. Periodic interrupts are implemented using hardware
clock interrupts called ticks (see section 3.2.3). The periodic interrupt approach
has several limitations in terms of power consumption and e�ciency. For example,

45

46 CHAPTER 4. TIME MANAGEMENT IN A RTOS

if the programmer provides a bad driver, then the system risks to spend a long
time in its functions. Therefore many tick interrupts are being lost [14]. Thus, a
task can miss its deadline. Possible drawbacks of periodic interrupt, are:

Wasting energy in workless timer ticks Also in idle state, the tick period-
ically wakes the processor up and cause the execution of handler. In embedded
system the idle state sometimes takes a lot of time (e.g. hours or even days) and
this cause a huge amount of energy wasted [17].

Resolution accuracy A further issue about periodic interrupt is due to the res-
olution of systick timer. In fact, the system usually wakes up every 1/10 ms and
this can become a limitation if an application requires a lower resolution. The
value to set as resolution time is a bit tricky because if the resolution is too high,
the number of ticks increase, then also the energy consumption rise. But if the
resolution is too low the system lose time e�ciency[13].

Overhead in�icted by Hardware interrupts The tick interrupt introduces
a further overhead even when the system is performing a task. Indeed, the job exe-
cution is interrupted every tick rate and the system endures repeatedly preemption
between job and interrupt handler. The overhead introduced on a serial program
depends from frequency and number of processes. The performance of the system
decreases around 1% - 1.5% [16]. The whole overhead introduce in the system is
classi�ed as direct and indirect overhead. The direct factor is the time to perform
the context switching and running instructions inside the handler routine. While
the indirect overhead is the di�erence between the total overhead and the direct one.
Find a way to determine the amount of the indirect overhead is a tricky job, this
value should be attributed to external e�ects. Furthermore, since a task is inter-
rupted many times by tick interrupts, this causes a growth its time execution. This
factor must to be kept into account when the system works with strictly deadline
environment. Exceeding a deadline can compromise the performance of the system.

Nowadays, most of the common operating system are adopting di�erent approaches
to cope issues presented above. One of the way to overcome this problem is to
adopt a totally tickless system. Moreover, in order to guarantee a better resolution
of tick timer a hrtimer representation has been implemented in some Operating
System[15]. This new approach is used by modern platforms. Currently, some
embedded system uses hrtimers representation. Since in FreeRTOS the time is
represented only with an internal variable, I thought to keep using this representa-
tion and disregard the htimers support. This choice is due to the fact that otherwise
FreeRTOS needs to be redesigned.

4.3 Totally Tickless kernel

Originally, Linux kernel (from 2.6.13) used an implementation similar to the ap-
proach used by Martin Tverdal[3]. In the latest versions, Linux has implemented

4.4. TICKLESS RTOS ON THE MARKET 47

a totally tickless system. I want to draw brie�y the approach used by Martin
Teverdal in his thesis. He removed the tick interrupt only when the system was in
idle state. Additionally, his approach provide to move the core unit in a sleep state
when there were not tasks to schedule. In this case FreeRTOS bene�ts of a further
performance improvement but still does not solve the drawbacks explained above.
In Totally Tickless kernel in spite of generating an interrupt every tick rate it
generates a new tick only when a next event is ready to be processed. This ap-
proach allows to wake processor up only when it needs to be awake and not every
time. Hence, this strategy guarantees best performance and it reduces the e�ect of
drawbacks analyzed above. Using a totally tickless kernel, the scheduler can also
schedule tasks with a lower time resolution and never interrupt the execution of a
task. Even though this new solution can represent a good approach to overcome
the issues described above, the tickless system introduces a further problem. In
fact, the kernel introduces an additional overhead to compute the next events to
perform in the near future. The experiments in [13] show that this approach is still
better than previous one.
To implement a totally tickless kernel the OS still needs to use a time counter, but
not the timer embedded in core unit. A possible timer to keep track of time in
FreeRTOS is the RTC unit.

4.4 Tickless RTOS on the market

Most RTOS for small microcontrollers are able to run on many di�erent devices
including wireless sensor nodes (WSN), but their general approach does not ex-
ploit the energy saving capabilities of modern MCUs. Using this strategy allows
WSNs nodes to have the longest possible runtime such as months or even in years.
Nowadays, the market o�ers a limited amount of RTOS able to deal with these
requirements. Some new OSes like TinyOS [19] and Contiki [18] follow an event-
driven approach but still they do not guarantee all functionality provided in most
common OS like FreeRTOS.
A totally tickless strategy has been adopted by famous desktop OSes but not in
RTOSes. Linux provides even in embedded system a distribution that includes
these features, but it is not always possible to apply Linux in WSN nodes. By the
way, a new RTOS equipped with totally tickless system is TiROS (Tickless Real-
Time Operating System) [20]. TiROS is a pre-emptive priority based real-time task
scheduler for embedded systems with limited memory resources. It was developed
at Sandia National Laboratories and is released as open-source. It is more closely
comparable in resource usage to FreeRTOS. A proprietary RTOS that provides a
tickless system is QKernel [21] developed and deployed by Quasarsoft.
Recently, RTOSes like FreeRTOS and eCOS are growing a lot and, extremely,
they require a support to handle power management in WSN nodes and tiny mi-
crocontrollers. As already explained above, the aim of this thesis is to introduce in
FreeRTOS an energy aware support for as many platforms as possible.

48 CHAPTER 4. TIME MANAGEMENT IN A RTOS

Part II

Methodology

49

Chapter 5

Energy Management

Framework

"Demand for power management chips continues to grow, and our end-equipment
customers want innovation that saves energy. We have a small but signi�cant pres-
ence in Cork working on innovation that gives our customers access to products that
solve any energy management issue."
- Steve Anderson, Senior Vice President of TI's Power Management Business

Recently, most of MCUs available on the market, provide a support to manage
di�erent sleep modes inside the microcontroller itself. Nowadays, only few propri-
etary RTOSes, o�er a support to handle sleep modes of MCUs. Thus, the aim of
this chapter, is to propose and present a module that accomplishes the ful�llment
of these needs in FreeRTOS.
The chapter has been organized with the following structure: section (5.1) gives
an overview regarding reasons why it is useful to build a new Power Management
Framework (PMF), section (5.2) proposes some examples of issues arise when a
programmer tries to use the energy features provided in modern MCU. Section
(5.3) shows three possible di�erent solutions to develop a new PMF, focusing on
pros and cons of each approach. Section (5.4) explains the chosen solution and
it also shows its functioning. In section (5.5) there is a detailed explanation how
make a porting of new architecture using the proposed PMF. Afterwards, section
(5.6) explains the porting made for EFM32. The last section (5.7) summarizes
which goals have been ful�lled in this chapter.

5.1 Problem description

There are several reasons why it is useful to embed a Power Management Frame-
work in a RTOS, such as:

51

52 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

• Using an high level framework allows to handle internal sleep modes1 in
e�cient manner.

• the MCU can save a huge amount of energy during all tasks. Tasks can lead
automatically the MCU in the right sleep mode whenever an idle task occurs;

• Achieve power friendly applications with a minimal e�ort;

• Currently, power management is only provided in some proprietary RTOSes,
such as AVIX-RT [22], CMX-SYSTEM [23] and IAR-SYSTEM [24];

The power management framework introduced in this chapter is a continuation
of the work done by Martin Tverdal in his thesis [3]. On the contrary, the new
framework introduces a more robust approach to handle sleep modes for EFM32.
Indeed, in this case, the system is also able to manage issues regarding management
of sleep modes in ISRs. The porting made for EFM32 is more full-bodied because
it guarantees that the energy modes are only used by PMF.

5.2 Issues of sleep modes with ISRs

Unlike tasks, the management of interrupts is much more di�cult, hence, this re-
quires to undertake a deep research in those cases when power modes are used.
This section shows issues involved in the system when the Power Management
Framework neglects to use power modes (see section 5.2.2) inside interrupts. Be-
sides, this section shows also an example of misleading use (see section 5.2.1) of
the framework developed by Martin Tverdal.

5.2.1 Troubles involved using only a Task Power Manage-
ment Framework

This section presents those drawbacks that arise, when the system uses only a Task
Power Management Framework (TPMF)2. The framework developed by Martin
Tverdal [3] manages sleep modes using only TPMF. I think that this is the main
drawback of his approach.
Adopting this strategy, the system is subjected to meet some undesired situation,
such as: use of not ideal sleep mode for idle task (therefore, wasting more energy
than predicted) or move the MCU in a wrong power modes (therefore, block the
system and compromise its functioning).
Before getting started with the explanation of Figures (5.1,5.2), I would highlight
some useful and important points to understand the meaning of the next examples.
For the sake of simplicity, I decided to report on y-axis only those power modes

1Sleep mode allows to save a consistent amount of energy in the mean while that MCU is

running. Besides, in order to achieve a further saving of energy, each energy mode provides to

shut-down unecessary peripherals. The di�erences among sleep modes is linked to the number of

peripherals turned o� and the amount of energy saved.
2This Framework provides to handle the requests coming from tasks to stay in a sleep state.

TPMF does not manage requests coming by ISRs.

5.2. ISSUES OF SLEEP MODES WITH ISRS 53

present in CORTEX-M3, such as Running, Sleep Mode and Deep Sleep Mode. On
the other hand, the x-axis represents how tasks and ISRs are scheduled over time.
When there are not tasks to schedule, the system arises an idle task where the
system can move the MCU in one of the power modes. The color of each task and
ISR is the power mode where they can stay after their executions. Respectively,
green for sleep mode and blue for deep sleep mode. In some examples, the request
to stay in a sleep mode might last long until another event occurs. Finally, the
next fourth examples make use of two handlers, called ADC_Handler (used to
sample the output signal of a joystick) and USART_Handler (used to send data
on a serial cable, such as RS232). The administrator is the entity that manages
the requests coming from tasks and ISRs and it also decides which energy mode to
use during idle task.

Figure 5.1: Wrong use of Power Management framework without considering sleep
modes inside ISRs

In Figure (5.1) is shown how the system behaves when it does not consider the
necessity of an ISR to stay in a sleep mode after its execution. This situation,
involves in a misleading use of sleep mode inside an idle task. In fact, the admin-
istrator chooses a wrong power mode for both idle tasks.
Initially, an USART_Handler is being performed by MCU. Let's suppose that after
its execution, it does not allow to go in a power modes lower than 2 (because it
needs to use another peripheral that can not work only in mode 3 or 4). After that,
Task1 is scheduled, during its execution it receives a request by programmer to use
sleep mode 2 for future idle tasks (if any). Afterwards, the system receives another
interrupt and it executes the ADC_Handler. The constraint of this interrupt is
to stay in sleep mode 1 until Task4 occurs (it needs to wait for an answer from a
device that runs in mode 1).
When the idle task occurs, the administrator has to provide the ideal sleep mode
for it. Since the administrator handles only the requests coming from tasks, it
moves the system in mode 2. Actually, the system needs to run in mode 1 because
this was a request coming by ADC. Here, the system can enter in a undesired state

54 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

and it might compromise its functioning. If the system manages this issue (hence,
if the wrong mode did not turn o� the MCU),Task3 is executed. After that, an
idle task occurs and it meets again the same problem. After MCU schedules Task4
(if the system overcomes the previous traps) it can use mode 2 for future incoming
idle tasks.
Whereas, the second Figure (5.2) shows how the system would behave using

Figure 5.2: Correct use of Power Management Framework with sleep modes issued
inside ISRs

a framework that also deals with ISRs' constraints. Now, the administrator can
choose the most suitable sleep mode for incoming idle tasks.
The example shows that now the system can communicate the right power modes
for both idle tasks. Unlike the �rst example, now the ADC_Handler issues a re-
quest to stay in sleep mode 1 until Task3 instead of Task4. This involves to put
the second idle task in power mode 2 instead of 1 (as needed in �rst example).

5.2.2 Energy losses without using sleep mode inside ISRs

This section aims to show which are the advantages of adopting a management of
power modes for ISRs. The use of sleep modes can achieve good results if each idle
task is pushed in its ideal power mode. If the idle task uses a wrong sleep mode
the system can have two possible problems, such as: waste energy or enter in a
jeopardizing state (as shown in previous examples).
Figure (5.3) shows how the system behaves without using sleep modes. Moreover,
the example outlines the case when nested ISRs (FreeRTOS manages nested ISRs)
occur and how the system handles this burden. In fact, before using nested ISRs is
necessary to understand which are the possible consequences involved in the system
switching among ISRs. If the nested ISR performs a request to stay in a di�erent
sleep mode, this must be take into account if we want to preserve the system from
the problems described above.

Initially, USART_Handler is performed until an ADC interrupt occurs. Since
the latter has a higher priority respect to �rst handler, ADC_Handler is nested (it

5.2. ISSUES OF SLEEP MODES WITH ISRS 55

Figure 5.3: Behaviour of the system without using power modes provided by MCU

Figure 5.4: Behaviour of the system using power modes provided by MCU

needs to stay in power mode 1 until Task3 occurs) and it performs its instructions.
After that, the MCU return to USART_Handler (it needs to stay in mode 2 after
its execution). An idle task occurs and the administrator does not have any idea
about which power mode is needed to use for all tasks. It runs the idle task in
running mode without saving energy. Actually, the system could run in power
mode 1 saving some energy.
Afterwards Task3 occurs and the ADC_Handler does not need anymore to stay
in mode 1. When the next idle task occurs, the administrator has the same doubts
as before and it leads to run the idle task again in running mode. Actually, now
the system could run in mode 2 instead of 1 (other energy is being wasted) . At
the end Task4 is executed and it does not a�ect the power management.
Figure (5.4) shows how the previous example would behave respecting the requests
(sleep modes) done by tasks and ISRs. It is important to remark that since idle
tasks occurs periodically, the energy saved in each period is replicated for the whole
system execution.

56 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Limited memory List Array
Footprint low medium medium
Overhead high high low
Data Structure simple complex simple

Table 5.1: Evaluation of proposed solutions

5.3 Proposed solutions

In this section are being proposed some possible solutions to manage the sleep
modes in FreeRTOS. The parameters used to evaluate the complexity of each so-
lution are:

• Space occupied in kernel footprint;

• Overhead introduced in the system;

• Data structure's complexity;

All solutions require that users must de�ne the sleep mode to go in idle task
directly inside the body of task or ISR. Other possible ways have been thought, but
according to the reasons explained in the fall project [7] they have been discarded.
All proposed solutions change the structure of TCB (for more details see section
3.2.1.1) created for each task. Thus, the power management framework uses the
TCB to store the sleep mode of each task. Then, inside the TCB it has been added
a new �eld called ucSleepMode. This variable keeps track of the current sleep mode
of that task and it is constantly kept updated.
Listing (5.1) shows the code added in FreeRTOS to insert the new �eld inside TCB.

1 #if (configUSE_POWERMANAGER == 1)
2 unsigned portCHAR ucSleepMode; /*< Used to store the sleep mode of each task */
3 #endif

Listing 5.1: New Task Control Block (TCB) with sleep mode �eld

In Table (5.1) are illustrated the three solutions (List memory, List and Ar-
ray) explained in the following sections. According to the three factors highlighted
above, it is possible to understand the possible impact of these solutions. In next
sections (5.3.1, 5.3.2, 5.3.3), there is a more detailed explanation about the func-
tioning of all of them.

5.3.1 Limited memory solution

This �rst solution has been thought to use as less space as possible. Indeed, the
solution provides to store the sleep mode of each task in own TCB. This value
is stored in a 8 bit variable, but only 4 bits are used, while the other 4 bits are
reserved for a future use.

5.3. PROPOSED SOLUTIONS 57

Furthermore, the system keeps track about the lowest sleep mode using a fur-
ther 8 bits variable stored inside the Power Management. The purpose of this
variable, called LSleepMode, is to store the lowest sleep mode according to the re-
quests received by all tasks. In practice, if a task requires to stay in sleep mode
1 and another one in sleep mode 2, this variable contains sleep mode 1, because
there is a task that needs to stay in a higher level.

The functioning of power framework is reported as follow.

1. When a task is being created inside the variable ucSleepMode of TCB is
copied the default sleep mode (it is the highest possible sleep mode);

2. The LSleepMode is kept updated every time a new task is being created,
removed or it changes its sleep mode;

3. Whenever there is an idle task, the system reads the value of LSleepMode
and it uses this value to move the MCU in the right sleep mode;

4. If a task is being deleted, the system provides to keep updated the value of
lowestSleepMode;

Figure (5.5) illustrates a possible scenario of limited memory solutions with
three tasks. For the sake of simplicity, the example works only with two sleep
modes such as sleep mode 1 (green square) and sleep mode 2 (blue square). In the
example are shown only tasks, without reporting their deadlines and periods (these
assumptions are also valid for other examples reported in following sections).
In Figure (5.5) the requests generated by the programmer are redirected to the
administrator, then the programmer does not know what is going on inside the
PMF.
The �rst three steps create respectively Task1, Task2 and Task3. After their
creation the LSleepMode is equal to 1 because creation implies to initialize TCB
with sleep mode 1. After that, programmer sends a request to Task3 to change
its sleep mode from 1 to 2 but this does not a�ect the value of LSleepMode (still
sleep mode 1). Right away, an idle task occurs and administrator communicates
that it can move in sleep mode 1. Afterwards, the programmer issues a request of
removing Task1 and Task2. The administrator changes the value of LSleepMode
with sleep mode 2 only after removing Task2 , because the only task available is
Task3 (sleep mode 2). Finally, the new idle task can run in sleep mode 2.

5.3.1.1 Advantages

The good thing of adopting this kind of solution is to use a limited amount of
memory. In fact, with n tasks, the memory wasted in the whole system is:

Space_used = (n+ lowestSleepMode) ∗ (8bits)

Additionally, the complexity of data structure is very low, because there are used

58 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Figure 5.5: Functioning of limited memory solution

only two variables, one to track the lowest sleep mode and another one for the TCB
of each task.

5.3.1.2 Shortcomings

The main drawback of this solution is due to the fact that there is a considerable
overhead in the whole system. Every time a task is deleted or changes its sleep
mode, lowestSleepMode must be kept updated. A di�erent use of this variable
might check the sleep modes of all tasks only when there is the need, (idle task).
But, even in this case, the system introduces an high overhead, because all tasks
must be checked, this means that the PMF must go through all TCBs' tasks.

5.3.2 List sleep mode solution

The second solution uses an array of sleep modes. For each position (therefore for
each sleep mode) there is a list of those tasks that requested to stay in. This idea
comes out from looking the way how FreeRTOS manages the events and task in
its kernel. The functioning of power framework is very simple, every time there is
a new task, this is added to the list of sleep mode where it belongs to. If a task is
deleted, it is removed from the list where it belongs to.

The Figure (5.6) shows an high level abstraction of the interactions among
tasks and sleep modes. There are two possible kind of requests, one coming by
programmers and tasks and another one by idle tasks. Whenever an idle task
occurs, the administrator searches inside the array of lists the most suitable sleep
mode for idle task. It is also responsible to update the data structure every time
a task changes its context. The data structure consists of an array where in each
position (sleep mode) there is a list of those tasks belonging in that sleep mode. It
is important to remark that tasks are ordered as list of their pointers. Respectively,
Task2, Task3 and Task5 are in sleep mode 1. While, Task4 in sleep mode 2 and
Task6 in sleep mode 3. For the reasons presented in the following section (5.3.2.2)
it has not been proposed any example about a possible functioning case of this
idea.

5.3. PROPOSED SOLUTIONS 59

Figure 5.6: Power management Framework with list sleep mode solutions

5.3.2.1 Advantages

There are not particular advantages linked to this solution, but actually it does
not use a large amount of memory. Indeed, the data structure uses only pointers
to link the tasks belonging for each sleep mode.

5.3.2.2 Shortcomings

There are several drawbacks connected to this solution because it involves an high
overhead inside the system. This solution is a bit heavy since it needs to write the
whole code to handle the lists of TCBs and it would introduce a further overhead
for insertion and deletion of tasks. Additionally, the whole data structure is not as
e�cient as the �rst solution and the complexity of the whole algorithm is mainly
complicated. This solution has been dropped right away because it implies many
changes inside PMF.

5.3.3 Array sleep mode solution

This idea is a continuation of Martin's thesis [3]. Actually, I preferred to continue
using the same solution because it is the easiest and it does not involve an high
overhead inside the system. The idea has been enhanced introducing a support for
management of sleep mode also for ISRs.
I divided the solution in two sub-frameworks called TPMF (Task Power Manage-
ment Framework)(see section 5.3.3.1) and IPMF (ISR Power Management Frame-
work)(see section 5.3.3.2). In each framework are explained their modality of func-
tioning and are also proposed some examples. Finally, there is a description of

60 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

the real framework implemented in FreeRTOS, called GPMF (Global Power Man-
agement Framework) (see section 5.3.3.3). GPMF is a combination of TPMF and
IPMF.

5.3.3.1 Task's data structure (TPMF)

The data structure is composed by an array of sleep modes. For each position
(therefore for each sleep mode) there is a counter that keeps track the number of
tasks belonging in that sleep mode. Moreover, the �eld ucSleepMode of TCB (see
Listing 5.3 in section 5.1) informs which sleep mode is used for every task.

Figure 5.7: Task Power Management Framework (TPMF)

The Figure (5.7), illustrates the data structures used to handle the tasks re-
quests. The administrator is the entity in charge to manage the incoming requests
issued by programmers and idle tasks. The example shows that two tasks have re-
quested to stay in sleep mode 1, while three in sleep mode 2 and one in sleep mode 3.

The functioning of Task Power Management Framework (TPMF) is reported below.

1. When a task is being created, it updates own TCB with a default sleep mode
(de�ned by TPMF) and it also updates the corresponding sleep mode position
inside the array;

2. If a task changes own sleep mode during its execution, then TPMF provides
to keep updated the corresponding positions inside the array (ucSleepTasks)
and own TCB;

5.3. PROPOSED SOLUTIONS 61

3. If a task is being deleted, the TPMF removes the reference of its sleep mode
inside ucSleepTasks;

4. If an idle task occurs, the administrator searches inside the array the lowest
sleep mode.

5. If the programmer does not de�ne any sleep modes inside Task's body, a
default mode is used to manage idle task. This value is de�ned by Global
Power Management Framework (GPMF) (see section 5.3.3.3);

Figure 5.8: Possible use of Task Power Management Framework (TPMF)

Figure (5.8) shows a possible example how to manage sleep modes using TPMF.
The operations used in TPMF, are: create a new task, remove a task and change
the sleep mode of a task.
The example illustrates that three tasks are created in �rst stages (3 green squares).
TPMF's administrator provides to keep updated the number of tasks associated
for each sleep mode inside ucSleepMode.
At the fourth stage, programmer (user) changes the sleep mode associated to Task3
from sleep mode 1 to 2, therefore ucSleepMode is immediately updated (1 blue
square). An idle task (sleepyhead) occurs and the administrator searches inside
ucSleepMode the most suitable sleep mode. The green arrow before idle task means
that idle task can sleep in sleep mode 1 (green). Afterwards, Task1 and Task2 are
removed. Thus, ucSleepMode has only the sleep mode of Task3 (blue). Thus, next
idle task goes in sleep mode 2 (blue).

5.3.3.2 ISR's data structure (IPMF)

Unlike tasks, ISRs have a di�erent behavior because they can occur everywhere.
Besides, the system might have the need to stay in a di�erent sleep mode after
their execution.
Thus, there are some factors that do not allow to manage the sleep modes very
easily. Some of those factors are reported below.

• ISRs does not have own structure (like TCB for tasks);

• ISRs are asynchronous events and it is not easy to manage all of them;

62 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

• The number of ISRs is not constant for all applications and it depends from
the number of resources that the developer is intended to use;

• In some cases it is possible to have nested ISRs, therefore there is a need to
keep a sleep mode frozen for a while;

• An ISRs can accomplish its job in di�erent ISRs, hence even in this case, there
is a need to hold a sleep mode locked until the end of last ISR's execution;

• It is not easy to predict for how long the sleep mode set inside an ISR must
be held valid after its execution;

The ISR Power Management Framework (IPMF) outlined in this section is the
entity in charge to handle the sleep mode issued by each ISR. For the reasons
explained in section (5.2) IPMF must be able to deal with all possible pitfalls.
Therefore, this solution can set a sleep mode inside an ISR in two di�erent ways,
such as:

• Simple Sleep Mode(SSM): The sleep mode de�ned inside the ISR is kept valid
only until the �rst idle task is met. Afterwards, the value de�ned in that ISR
is not taken into account for further idle tasks. See Figure (5.10);

• Lock Sleep Mode(LSM): The sleep mode de�ned inside the ISR is locked for
a while. There are two places where it is possible to unlock the frozen sleep
modes, such as: ISR or Task. See Figure (5.11);

Thus, it is up to developer to choose the way to set a sleep mode inside an ISR.
If there are nested ISRs or their execution is divided in di�erent times, then it is
more useful to lock a sleep mode. Even though the use of this feature seems to be
user friendly, it must be used carefully, because the system might work for a while
in a not ideal sleep state. Additionally, an application can also lock concurrently
many sleep modes. The data structure used to manage the sleep modes for ISRs
has a di�erent meaning. The IPMF implements both LSM and SSM. Regarding
the SSM case, the system saves the ISR's sleep mode (in usSleepISR) only until
the completation of the �rst idle task. While in LSM case, it is used an array to
store the locked sleep modes. Each position of array (ucSleepLockISR) corresponds
to a sleep mode, thus when a sleep mode is being locked or unlocked the related
sleep mode position is updated.

The Figure (5.9) shows the data structure used to manage the ISRs requests. In
spite of IPMF, now the array ucSleepLockISR is used to keep on track the number
of ISRs locked for each sleep mode. Moreover the example shows that two ISRs
have requested to lock sleep mode 1, while an ISR locked to stay in sleep mode 2
and another one in sleep mode 3. This array is only used when the LSM feature is
chosen by the programmer, otherwise the ISR makes a normal allocation of sleep
mode inside the variable ucSleepISR. Finally, the variable ucFlagISR is used to
manage the end of the �rst idle task (used to satisfy the requirement of Simple
Sleep Mode (SSM)). The functioning of IPMF is reported below.

5.3. PROPOSED SOLUTIONS 63

Figure 5.9: ISR Power Management Framework (IPMF)

1. If the developer intends to use a Lock Sleep Mode (LSM), the system provides
to increment or decrement the corresponding value in the array (whenever
locking or unlocking operations occur);

2. If the developer intends to use Simple Sleep Mode (SSM), the system stores
its value inside ucSleepISR;

3. When an idle task occurs, IPMF checks both ucSleepISR and the array of
locked sleep modes (ucSleepLockISR). IPMF returns the most suitable sleep
mode among requestes done by all ISRs;

4. If the programmer does not de�ne any sleep modes inside ISRs, a default
mode is used to manage idle task. This value is de�ned by Global Power
Management Framework (GPMF) (see section 5.3.3.3);

The three following examples show a possible use of both features described
above, SSM and LSM. Respectively, there is an example for each modality (one for
SSM and one for LSM) and another one that shows a possible combination when
both of them are merged.

Figure (5.10) shows a possible example to manage the sleep modes using SSM
in IPMF. Initially, the system starts with a default con�guration (red). This state
is used whenever a programmer does not express any requests to move in speci�c
sleep mode (default value is de�ned in an internal variable of the system).
The programmer sets a SSM in mode 2 inside the ISR′1s body (the request can be
issued everywhere inside the body). Then, the administrator provides to update
the content of ucSleepISR variable with chosen sleep mode.
Afterwards, an idle task occurs and the administrator searches which is the sleep
mode stored in ucSleepISR (if any). It found mode 1 (green), but if it does not

64 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Figure 5.10: Possible use of ISR Power Management Framework (IPMF) with
Simple Sleep Mode(SSM)

�nd anything, it returns the default mode. Right away, the administrator pushes
ucSleepISR in a default state, thus it avoids that the content of that variable is
used again for future idle tasks. After idle task, ISR2 occurs and the programmer
communicates sleep mode 2, now IPMF proceeds same actions it did before (but
with a di�erent sleep mode).

Figure 5.11: Possible use of ISR Power Management Framework (IPMF) with Lock
Sleep Mode(LSM)

Figure (5.11) shows a possible example to manage the sleep modes using LSM in
IPMF. At the �rst step, ISR1 needs to lock sleep mode 2. Then, the administrator
provides to update the value inside ucSleepLockISR with a new request for sleep
mode 2. After that, an idle task (sleepyhead) occurs and its sleep mode is modality
2, as shown by blue arrow. Afterwards, a new lock request comes from ISR2 for
sleep mode 1, this involves to use modality 1 (green) for next idle task. Right
away, after idle task in Task1, the programmer unlocks the sleep mode 1. From
this point forward, the sleep mode 2 is back valid. In fact, this is used for last idle
task before to unlock it in ISR3. After that the system enters in a default state

5.3. PROPOSED SOLUTIONS 65

(red).
As shown in the example, locking sleep mode for a while, might force the system to
use an unintentional sleep mode during idle task. So, this involves to use locking
functionality only when the programmer knows exactly the instants when tasks
and ISRs occur. Otherwise, the programmer may push the system in a loop forced
sleep mode, in other words, if an ISR occurs very often, this will always force its
sleep mode. Thus, other tasks or ISRs will never acquire the control of idle task.
Some possible cases when it is useful to use LSM are: nested ISRs or when the
system is waiting an answer from a peripheral.

Figure 5.12: Possible use of ISR Power Management Framework (IPMF) with Lock
Sleep Mode(LSM) and Simple Sleep Mode(SSM)

Figure (5.12) shows a possible example to manage the sleep modes using both
LSM and SSM in IPMF. The purpose of this example is to show how IPMF really
works in the �nal framework and how LSM and SSM interact each other.

In the �rst step, both LSM and SSM are in a default state. After that, ISR1

locks sleep mode 2 with LSM while ISR2 sets simple mode 1 with SSM. The admin-
istrator provides to update their requests inside ucSleepISR and ucSleepLockISR.
Now, when idle task occurs (sleepyhead) the administrator checks which is the
structure that contains the highest sleep mode. The idle task goes in sleep mode 1
(green) because ucSleepISR has higher priority than ucSleepLockISR. At the same
time, the administrator provides to restore ucSleepISR with its default value (this
operation inhibits its value for future idle tasks).
From this point forward, only the sleep modes locked in ucSleepLockISR are taken
into account. In fact, when idle task occurs, it goes in sleep mode 2 (blue) because
this mode has been locked previously by ISR1. Afterwards, Task3 occurs and it
issues the necessity to unlock sleep mode 2. After that, both data structures work
in default state until a new request occurs.
This example shows a simple case how it is possible to use the whole IPMF. Fur-
thermore, if necessary, IPMF handles even the possibility to issue requests by LSM

66 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

and SSM inside the same ISR. It is important to remark that IPMF can only issue
a request inside ISR's body, but those requests can be unlocked both inside ISRs
and Tasks.

5.3.3.3 Global Power Management Framework (GPMF)

GPMF is the entity in charge to select the most suitable sleep mode in idle task. It
embeds both TPMF and IPMF features, thus whenever an idle task needs to know
its sleep mode, GPMF searches the value inside its data structures. Respectively,
ucSleepTasks for TPMF and ucSleepISR and ucSleepLockISR for IPMF. If none of
them de�ne a sleep mode for idle task, then, GPMF according with an its internal
value, it de�nes a default value to use for idle task. How to de�ne the default value
is explained in following section (see section 5.4.1).

Figure 5.13: Global Power Management Framework (GPMF)

Figure (5.13) illustrates an overview of its internal data structures. It is com-
posed by structures used in IPMF and TPMF. Additionally, it provides an internal
value DEFAULT_VALUE used to keep stored the default value . The administra-
tor is the entity in charge to deal with external incoming requests.

5
.3
.
P
R
O
P
O
S
E
D
S
O
L
U
T
IO
N
S

6
7

Figure 5.14: Example of Global Power Management Framework (GPMF) functioning

68 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Figure (5.14) shows an example of using GPMF among tasks and ISRs. At the
beginning, the data structure of tasks (ucSleepMode) is initialized with some values
(in order to reduce the steps of the example), while the other structures ucSleep-
ISR and ucSleepLockISR are in default state. After that, ISR1 occurs and the
programmer locks both sleep mode 1 and sleep mode 2, these changes are pushed
inside corresponding data structure, ucSleepLockISR.
Upon Task3, the programmer changes its sleep mode and he also unlocks sleep
mode 1 (locked in previous ISR). When idle task(sleepyhead) occurs, the adminis-
trator noti�es that the ideal sleep mode for idle task is mode 1 (green), as shown on
the green arrow. After that, the programmer sets mode 1 using SSM inside ISR2.
For the next idle task, the sleep mode 1 is hold by ucSleepISR and ucSleepMode,
then idle task goes in sleep mode 1(green). While, the next ISR unlocks sleep mode
2 and it also �xes a mode 2 in ucSleepISR. Right now, ucSleepLockISR is set as
default state. The next request removes the last task in mode 1 and it allowes to
move the incoming idle task in mode 2 (blue).

Moreover, GPMF moves idle task in a lowest sleep mode only if IPMF agrees with
TPMF. Upon idle task, the administrator searches the content of all data struc-
ture (ucSleepISR, ucSleepLockISR and ucSleepMode) and it returns that value in
common among them.
In the next sections, I will explain the steps necessary to port GPMF in a new
platform (see section 5.5) and its porting for EFM32 (Energy Micro) (see section
5.6).

5.3.3.4 Advantages

This solution allows to build a framework with a very low overhead in terms of
code and complexity. Moreover, the data structure used to implement this solution
with n tasks, p sleep modes and m locked ISRs, is:

Space_used = (n+ p+m+ ISR_sleep_mode+ ucF lagISR) ∗ (8bits)

Nevertheless, this formula takes into account only those variable used as data struc-
ture. In fact, GPMF does not consider some other variables used for internal
management (inside functions) and other constants used internally (such as DE-
FAULT_VALUE).
Additionally, the functions provided to developers are easy to use and they do not
involve a burden for GPMF (see section 5.4.2).

5.3.3.5 Shortcomings

The main drawback of this feature is due to the fact that system freezes a sleep
state for a while, thus if it takes a long time, then the system is forced to work for
a �xed sleep mode. Furthermore, an excessive use of locking sleep modes is useless.

5.4. GPMF 69

5.4 GPMF

In order to lead an easy interaction between programmers and GPMF, this section
is aimed to present with more details its internal features (see section 5.4.1,5.4.2).
GPMF is a Generic Framework, therefore, it is not been designed to run on a
speci�c platform. These customers eager to use its functionality, before to getting
started with it, they have to porting their architecture with GPMF.
In practice, each platform has a di�erent device hardware, hence, GPMF needs to
know instructions and features belonging of that platform. It provides a section
(PPMF) where it is possible to de�ne compatible functions with the new architec-
ture (see section 5.5).

5.4.1 GPMF module

The whole GPMF module is divided in three di�erent parts, such as FreeRTOS,
GPMF and programmer interface. The Figure (5.15) shows how these three entities
interact and communicate each other.

Figure 5.15: GPMF module

GPMF Framework (in the middle) is the main part of the whole module. It
provides to have an high level of abstraction between system and programmers,
therefore it avoids the possibility to lead the system in a jeopardy state. Fur-
thermore, the interaction with GPMF can occur in two di�erent ways, one is the
interaction with programmers (user side) and another one between its framework
and FreeRTOS (system side). Now, GPMF is able to cope the needs discussed in
section (5.1).
GPMF module is composed of three di�erent sub-modules, such as Task Framework
(TPMF) , ISR Framework and Porting Framework (PPMF). The �rst two frame-
works have been widely discussed respectively in section (5.3.3.1) and (5.3.3.2).

70 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Whereas, PPMF is the place where customers3 can provide a porting of their plat-
forms (the image of worker means that PPMF is built for each architecture). This
part is not visible to programmers and mostly it does not a�ect the interactions
with TPMF and IPMF (except for vPMInit()).

The part regarding user side allows programmer to use the functions provided
by TPMF and IPMF. The programmer, before using any functions has to invoke
vPMInit() at the beginning of program (before the scheduler and creation of
tasks) . Nevertheless, the use of this function depends of the platform used. The
purpose of this function is to allow customers to initialize some internal registers
useful for the power management. Hence, this function is compulsory only if the
customer declares to use it, otherwise it can be discarded (this is the reason why
the arrow is grey). ISR Framework (see section 5.3.3.2) provides the possibility to
use SSM or LSM inside ISRs. The function used to set a Simple Sleep Mode for
ISR is xPMSetSleepModeFromISR(). This function sets a sleep mode (given as
input) only until the �rst idle task is met. The function used to Lock Sleep Mode
is xPMLockSleepModeFromISR(). On the contrary, the function used to un-
lock a previous locked sleep mode is xPMUnlockSleepModeFromISR (). Both
functions receive as input the sleep mode to lock or unlock. The last function avail-
able in IPMF ucPMGetSleepModeFromISR() returns the current power modes
where the system can go to. Task framework (see section 5.3.3.1) provides the
possibility to de�ne power modes for tasks and also a small part for ISRs. Func-
tion xPMSetSleepMode() provides to set a sleep mode (given as input) for a
task. Whereas ucPMGetSleepMode() is the duality function described in IPMF.
xPMUnlockSleepMode() is another function available in TPMF and it allows to
unlock the sleep mode (given as input) previously locked inside an ISR.

The part regarding system side manages the interaction between GPMF and FreeR-
TOS. In this section have been reported only those modules that interact with
GPMF, such as Task.c and Idle Task. The task module contains the TCB (see
section 3.2.1.1) allocated for each task. Then, when a task being removed, GPMF
has to know in which sleep mode that task was for. The function used to accom-
plish this request is xPMUpdateSleepModesDec(). It removes the associated
sleep mode inside ucSleepTasks. On the contrary, when a task has been created,
the framework has to know in which sleep mode it wants to go. The function used
in this case is called xPMUpdateSleepModesInc() and it also updates ucSleep-
Tasks.
During task execution GPMF might receive a request to associate a sleep mode for
the task running. Hence, it updates ucSleepTasks and it also need to inform the
TCB that its sleep mode (ucSleepMode) might be changed. Since GPMF does not
have the authorization to change the value of TCB, two functions have been de�ned
inside task module4. These functions are called ucTaskPutCurrentTCB() and

3Customers are those companies that provide Microcontrollers, such as Energy Micro, Texas

Instruments, STMicroelectronicas, etc...
4Task module is composed by task.c and task.h. Here, the system de�nes all the functions

used to interact with TCB

5.4. GPMF 71

ucTaskGetCurrentTCB(). The �rst function looks for storing the power mode
(given as input) inside ucSleepMode, while the second provides to return the value
contained in ucSleepMode.
Whereas, when an idle task occurs, the module of idle task establishes a commu-
nication with GPMF. Actually, FreeRTOS uses vApplicationIdleHook() to
inform GPMF when it needs to go in idle (the color of arrow is red because this
function is provided by FreeRTOS). GPMF communicates the sleep mode to use
for idle task using vPMIdleSleepMode(). This function is widely discussed in
PPMF (see section 5.5) because it is one of the functions that need a porting.

5.4.2 GPMF Reference Manual

This section gives a detailed explanation for each function provided by the whole
framework.

5.4.2.1 xPMSetSleepMode()

1 #include "PowerManager.h"
2

3 portBASE_TYPE xPMSetSleepMode (unsigned portCHAR xMode)
4 {
5 portBASE_TYPE xReturn;
6

7 portENTER_CRITICAL();
8 /*Check if the value given in input is valid*/
9 if (xPMCheckMode(xMode) == pdTRUE){

10 ucSleepTasks[ucTaskGetCurrentTCB()]--;
11 vTaskPutCurrentTCB(xMode);
12 ucSleepTasks[xMode]++;
13 xReturn = pdTRUE;
14 }else{
15 xReturn = errINSERT_NOT_VALID_SLEEPMODE;
16 }
17 portEXIT_CRITICAL();
18

19 return xReturn;
20 }

Listing 5.2: Prototype ad implementation of xPMSetSleepMode()

Description
This function provides to associate a sleep mode for a Task. This function can be
invoked everywhere inside the task's body.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.

Return values
pdTRUE: Sleep mode has been set successfully inside data structure.

errINSERT_NOT_VALID_SLEEPMODE: Sleep mode passed as input is not a valid
value. The value must be within the range of con�gDEFAULT_SLEEPMODE and

72 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

con�gSLEEPMODES.

Note
This function uses ucTaskPutCurrentTCB() and ucTaskGetCurrentTCB()
to interact with TCB stored inside task module.

5.4.2.2 xPMSetSleepModeFromISR()

1 #include "PowerManager.h"
2

3 portBASE_TYPE xPMSetSleepModeFromISR (unsigned portCHAR xMode)
4 {
5 portBASE_TYPE xReturn;
6

7 /*Check if the value given in input is valid*/
8 if (xPMCheckMode(xMode) == pdTRUE){
9 ucSleepISR = xMode;

10 ucFlagISR = 1;
11 xReturn = pdTRUE;
12 }else
13 xReturn = errINSERT_NOT_VALID_SLEEPMODE;
14

15 return xReturn;
16 }

Listing 5.3: Prototype and implementation of xPMSetSleepModeFromISR()

Description
This function sets a sleep mode for the ISR where is being called. The approach
used to set the sleep mode is SSM.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.

Return values
pdTRUE: Sleep mode has been set successfully inside data structure.

errINSERT_NOT_VALID_SLEEPMODE: Sleep mode passed as input is not a valid
value. The value must be within the range of con�gDEFAULT_SLEEPMODE and
con�gSLEEPMODES.

Note
The sleep mode is kept valid until the �rst idle task is executed.

5.4.2.3 ucPMGetSleepMode()/ ucPMGetSleepModeFromISR()

1 #include "PowerManager.h"
2

3 unsigned portCHAR ucPMGetSleepMode (void)
4 {
5 unsigned portCHAR i, ucReturn = configDEFAULT_SLEEPMODE;
6

5.4. GPMF 73

7 portENTER_CRITICAL();
8

9 /*Check which is the suitable mode between tasks and LockISRs*/
10 for (i=0; i<configSLEEPMODES; i++)
11 if ((ucSleepTasks[i] > 0) || (ucSleepLockISR[i] > 0)){
12 ucReturn = i;
13 break;
14 }
15

16 /*Check which is the suitable mode among simple ISR, tasks and LockISR */
17 if ((ucFlagISR) && (ucReturn > ucSleepISR))
18 ucReturn = ucSleepISR;
19

20 portEXIT_CRITICAL();
21

22 return ucReturn;
23 }

Listing 5.4: Prototype and implementation of ucPMGetSleepMode() and
ucPMGetSleepModeFromISR()

Description
This function retrieves the current sleep mode among the data structures used to
save the requests done by tasks, SSM and LSM.

Return values
xMode: Lowest sleep mode found among Tasks, SSM and LSM.

Note
Initially, the function checks the sleep mode inside the array of tasks and Locked
ISRs. Then, if SSM has a request of a sleep mode higher than the value found in
previous structures it becomes the new power mode.
ucPMGetSleepModeFromISR() has the same body but the instructions are per-
formed without using critical region. The functions used to delimit a critical regions
are portENTER_CRITICAL()and portEXIT_CRITICAL().

5.4.2.4 xPMLockSleepModeFromISR

1 #include "PowerManager.h"
2

3 portBASE_TYPE xPMLockSleepModeFromISR (unsigned portCHAR xMode)
4 {
5 /*Check if the value given in input is a valid one*/
6 if (xPMCheckMode(xMode) == pdTRUE){
7 ucSleepLockISR[xMode]++;
8 return pdTRUE;
9 }else

10 return errINSERT_NOT_VALID_SLEEPMODE;
11 }

Listing 5.5: Prototype and implementation of xPMLockSleepModeFromISR()

Description
This function locks a sleep mode for the ISR where is being called.

74 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.

Return values
pdTRUE: Sleep mode has been locked successfully inside data structure.

errINSERT_NOT_VALID_SLEEPMODE: Sleep mode passed as input is not a valid
value. The value must be within the range of con�gDEFAULT_SLEEPMODE and
con�gSLEEPMODES.

Note
This function can be invoked only inside an ISR. Besides, this function can be used
as an alterantive solution to xPMSetSleepModeFromISR() whenever the appli-
cation needs to keep a sleep mode locked for a while (including more idle tasks).
Since the use of this function can involve in a misleading use of sleep modes, it
must be used only when it is necessary. The function can lock more sleep modes
and it also handles nested ISRs.

5.4.2.5 xPMUnlockSleepModeFromISR/ xPMUnlockSleepMode

1 #include "PowerManager.h"
2

3 portBASE_TYPE xPMUnlockSleepModeFromISR (unsigned portCHAR xMode)
4 {
5 /*Check if the value given in input is a valid one*/
6 if (xPMCheckMode(xMode) == pdTRUE){
7 /*If a request is issued and its value is equal zero, it means that there is no←↩

ISR to unlock*/
8 if (ucSleepLockISR[xMode] == 0)
9 return errCOULD_NOT_UNLOCK_SLEEPMODE;

10 else{
11 ucSleepLockISR[xMode]--;
12 return pdTRUE;
13 }
14 }else
15 return errINSERT_NOT_VALID_SLEEPMODE;
16 }
17

18

19 portBASE_TYPE xPMUnlockSleepMode (unsigned portCHAR xMode)
20 {
21 portBASE_TYPE xReturn;
22

23 portENTER_CRITICAL();
24

25 /*Check if the value given in input is a valid one*/
26 if (xPMCheckMode(xMode) == pdTRUE){
27 /*If a request is issued and its value is equal zero, it means that there←↩

is no ISR to unlock*/
28 if (ucSleepLockISR[xMode] == 0)
29 xReturn = errCOULD_NOT_UNLOCK_SLEEPMODE;
30 else{
31 ucSleepLockISR[xMode]--;
32 xReturn= pdTRUE;
33 }
34 }else
35 xReturn = errINSERT_NOT_VALID_SLEEPMODE;

5.4. GPMF 75

36

37 portEXIT_CRITICAL();
38

39 return xReturn;
40 }

Listing 5.6: Prototype and implementation of xPMUnlockSleepModeFromISR()
and xPMUnlockSleepMode()

Description
This function unlocks a sleep mode locked with xPMLockSleepModeFromISR().
Respectively, xPMUnlockSleepModeFromISR() unlocks a sleep mode inside an
ISR, whereas xPMUnlockSleepMode() inside a Task.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.

Return values
pdTRUE: Sleep mode has been set successfully inside data structure.

errINSERT_NOT_VALID_SLEEPMODE: Sleep mode passed as input is not a valid
value. The value must be within the range of con�gDEFAULT_SLEEPMODE and
con�gSLEEPMODES.

errCOULD_NOT_UNLOCK_SLEEPMODE: Attempt to unlock a wrong sleep mode.

Note
If the function tries to unlock a sleep mode not locked previously, the function
discards the request and returns errCOULD_NOT_UNLOCK_SLEEPMODE.
xPMUnlockSleepModeFromISR() has the same body but the instructions are
performed without using critical region. The functions used to delimit a critical
regions are portENTER_CRITICAL()and portEXIT_CRITICAL().

5.4.2.6 vPMIdleSleepMode

1 #include "PowerManager.h"
2

3 portBASE_TYPE ucPMIdleSleepMode (void)
4 {
5 unsigned portCHAR sleep;
6 portBASE_TYPE xReturn;
7

8 vTaskSuspendAll();
9 portENTER_CRITICAL();

10

11 /* Retrieve the sleep mode to use for idle task */
12 sleep = ucPMGetSleepMode();
13 xPMGoToSleepMode(sleep); /* Go in sleep mode */
14 /* Reset ucFlagISR if SSM issues a request before idle task */
15 ucFlagISR = 0;
16

17 portEXIT_CRITICAL();
18 xTaskResumeAll();

76 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

19

20 return xReturn;
21 }

Listing 5.7: Prototype and implementation of vPMIdleSleepMode()

Description
This function is called by the system when the idle task occurs. It provides to move
the MCU in the right sleep mode.

Return values
xMode: Lowest sleep mode found among Tasks, SSM and LSM.

errCOULD_NOT_GOTO_SLEEPMODE: Attempt to go in a wrong sleep mode

Note
If the customer declares to use vPMInit() and the programmer does not use it,
then the function could not work properly. This function does not manage the
tickless feature. In next chapters is proposed a new vPMIdleSleepMode that
removes the tick interrupts that occur during idle task.

5.4.2.7 xPMUpdateSleepModesInc/ xPMUpdateSleepModesDec

1 #include "PowerManager.h"
2

3 /* This function is used inside prvInitialiseTCBVariables() to keep updated ←↩
ucSleepTasks

4 after creation of a task*/
5 void vPMUpdateSleepModesInc (unsigned portCHAR xMode)
6 {
7 ucSleepTasks[xMode]++;
8 }
9

10 /* This function is used inside vTaskDelete(xTaskHandle pxTaskToDelete) to keep ←↩
updated ucSleepTasks

11 after deletion of a task*/
12 void xPMUpdateSleepModesDec (unsigned portCHAR xMode)
13 {
14 ucSleepTasks[mode]--;
15 }

Listing 5.8: Prototype and implementation of xPMUpdateSleepModesInc() and
xPMUpdateSleepModesDec()

Description
xPMUpdateSleepModesInc() and xPMUpdateSleepModesDec are used to
update the task data structure from task module. Both are system functions and
they can not be used by programmers.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.

5.5. PORTING POWER MANAGEMENT FRAMEWORK (PPMF) 77

Note
xPMUpdateSleepModesInc() is used when the system creates a new task.
xPMUpdateSleepModesDec() is used when the system deletes a task.

5.4.2.8 ucTaskGetCurrentTCB/ucTaskPutCurrentTCB

1 #include "PowerManager.h"
2

3 #if (configUSE_POWERMANAGER == 1)
4 PRIVILEGED unsigned portCHAR ucTaskGetCurrentTCB(void){
5 return pxCurrentTCB->ucSleepMode;
6 }
7

8 PRIVILEGED void ucTaskPutCurrentTCB(unsigned portCHAR mode){
9 pxCurrentTCB->ucSleepMode = mode;

10 }
11

12 #endif

Listing 5.9: Prototype and implementation of ucTaskGetCurrentTCB() and
ucTaskPutCurrentTCB()

Description
ucTaskGetCurrentTCB() and ucTaskPutCurrentTCB are used to interact
with the sleep mode �eld (ucSleepMode) stored inside the TCB. Both are system
functions and they can not be used by programmers.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system.
Used only in ucTaskPutCurrentTCB().

Return values
xMode: Sleep mode associated to a TCB. Used only in ucTaskGetCurrentTCB().

Note
Both of them refer to the current TCB used by the system. This means, that the
operation are proceeded only with the running task. Declaration and de�nitions of
these functions is situated inside task module.

5.5 Porting Power Management Framework (PPMF)

The previous sections describes the functioning of the whole module, GPMF. As
explained above, GPMF is a Generic Framework with the possibility to porting it
in any platform.
The porting space includes some functions and constants that must be modi�ed ac-
cording to the architecture intended to use with GPMF. Therefore, these functions
must be modi�ed directly by customers and they have to follow some constraints,
so, in this way, the whole framework works properly. In section (5.5.1) there is a
description about the functioning of PPMF module (functions and data structures

78 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

to �ll). Whereas, in section (5.5.2) there is a small manual reference about the
whole framework.

5.5.1 PPMF module

According to a research carried out for those customers that provide a porting
for FreeRTOS, I noticed that most of their MCUs handle the power modes using
di�erent sleep modes. Some companies o�er MCUs equipped by seven power modes
and others with two or three power modes. The porting for a new platform is
divided into two parts called constants porting and functions porting. Figure (5.16)
shows the module employed to handle porting operations.

Figure 5.16: PPMF module

In constants porting, PPMF includes some internal de�nitions, such as: Power
(configUSE_POWERMANAGER), Default Mode (configDEFAULT_SLEEPMODE),
Num Modes (configSLEEPMODES) and Name modes. The customer has to adapt
the value of these constants to the new architecture.
The constant configUSE_POWERMANAGER is used to enable GPMF in FreeRTOS.
If its value is 0, the system does not use GPMF's features otherwise it does. Be-
sides, configSLEEPMODES contains the number of sleep modes (it also includes
running mode) provided by MCU. While the constants Name modes are used to
give a name for each power mode (running mode is also included). The value to as-
sign of each power mode goes from 0 (running mode) to N (deepest sleep mode). It
is mandatory to assign 0 for RUNNING MODE. As I discussed in section (5.3.3.3),
GPMF uses a default sleep mode when the user does not make used of its fea-
tures. Thus, customer has to de�ne inside con�gDEFAULT_SLEEPMODE the
sleep mode that he wants to use as default state. Hence, according to the value
used in Name modes, if configDEFAULT_SLEEPMODE is equal to 0, FreeRTOS
uses as default state the RUNNING mode. If the customer intends to use the sleep
mode 1, he has to put in configDEFAULT_SLEEPMODE the reference number as-
signed to mode 1.

5.5. PORTING POWER MANAGEMENT FRAMEWORK (PPMF) 79

The instructions needed to push a MCU in a sleep mode are di�erent among cus-
tomers. For this reason, function porting consists to write the instructions needed
to move the MCU in each sleep mode. These functions have the following pro-
totype xPMGoToSleepMode_NUM_(), where the last word NUM refers the sleep
mode associated to it. Actually, this is a conventional standard used to allow com-
patibility with the whole framework, but the customer can choose another name.
Hence, the system does not undergo any consequences. When PPMF receives a
call (vApplicationIdleHook()) by idle task, PPMF uses a system function
vPMIdleSleepMode() (see section 5.4.2.6) to �nd the ideal sleep mode to go in.
Now it knows the sleep mode and it uses xPMGoToSleepMode() to interface with
power modes. xPMGoToSleepMode() receives the sleep mode (given as input)
and it invokes the associated function (provided by customer). When the MCU
receives an interrupt or an event, vPMIdleSleepMode() provides to wake it up.
The function xPMGoToSleepMode() needs to know the name of those functions
provided by customer. Thus, it requires some small changes. It is forbidden to
change the name of this function because it is being invoked in some other system
functions, such as vPMIdleSleepMode(). The last function provided in PPMF
is called vPMInit() and it is used only in some cases. Indeed, the customer inside
the body of this function can declare some particular operations before FreeRTOS
starts to run. If the customer does not want to use it, the function need to have
an empty body.

5.5.2 PPMF Reference Manual

This section gives a detailed explanation how to set the values for both parts de-
scribed above, such as constant porting and function porting. The implementation
of the whole framework is divided into two �les, such as PowerManager.h and
PowerManager.c (both inside the source folder of FreeRTOS).

5.5.2.1 PPMF con�guration

The constants are de�ned in the following �les FreeRTOSCon�g.h and Power-
Manger.h. The latter provides to set those constants used only in GPMF.

1 #ifndef PM_H
2 #include "FreeRTOS.h"
3 #include "projdefs.h"
4 #include "task.h"
5

6 #if (configUSE_POWERMANAGER == 1)
7

8 /*Number of possible sleep modes*/
9 #define configSLEEPMODES N

10

11 /*PAY ATTENTION!!!
12 The order of sleep modes must be ascending and the running mode must always be 0←↩

*/
13 #define RUNNING 0
14 #define MODE1 1
15 #define MODE2 2

80 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

16 #define MODE3 3
17 /*Insert a voice for each sleep mode */
18

19 /*Default sleep mode used when the programmer does not use GPMF’s features. If ←↩
the value is 0, GPMF uses as default mode the RUNNING state.

20 configDEFAULT_SLEEPMODE contains the reference of that sleep mode to use as ←↩
default. If I want to use mode 1 as default, then I copy the

21 value of MODE 1.
22 */
23 #define configDEFAULT_SLEEPMODE 1 /* Mode 1 as Default value */
24

25 #endif
26 #endif

Listing 5.10: Constants de�nition in PowerManager.h

While, the declaration inside FreeRTOSCon�g.h is used to enable GPMF. Make
sure that con�gUSE_POWERMANAGER contains 1.

1 #ifndef FREERTOS_CONFIG_H
2

3 /*Insert next define within FREERTOS_CONFIG_H delimitators in FreeRTOSConfig.h */
4 #define configUSE_POWERMANAGER 1
5

6 #endif /* FREERTOS_CONFIG_H */

Listing 5.11: Constants de�nition in FreeRTOSCon�g.h

5.5.2.2 xPMGoToSleepMode_NUM_

Before writing the body of this function, remember to change also the prototype
in PowerManager.h.

1 #include "PowerManager.h"
2

3 #if (configUSE_POWERMANAGER == 1)
4

5 /*Generic function used to move the MCU in power modes 1 */
6 void vPMGoToSleepMode1(void)
7 {
8 /* Include all instructions needed to moce the MCU in power mode 1*/
9

10 }
11

12 /*Generic function used to move the MCU in power modes N. Replace N with ←↩
referred sleep mode*/

13 void vPMGoToSleepMode_N_(void)
14 {
15

16 /* Include all instructions needed to moce the MCU in power mode N*/
17

18 }
19 #endif

Listing 5.12: Prototype of xPMGoToSleepMode_NUM_ de�ned in
PowerManager.c

Description
The function includes those instructions used to move the MCU in mode N. After

5.5. PORTING POWER MANAGEMENT FRAMEWORK (PPMF) 81

this function the MCU switches in FreeRTOS. Customer has to provide the in-
structions (if any) also needed to wake up MCU. After its execution, PPMF does
not check if the MCU has awakened succesfully.

Note
The customer can also change the name of this function.

5.5.2.3 xPMGoToSleepMode

This function is used in vPMIdleSleepMode() when an idle task occurs. The
purpose of this function is to move the MCU in the sleep mode received by GPFM.

1 #include "PowerManager.h"
2

3 #if (configUSE_POWERMANAGER == 1)
4

5 portBASE_TYPE xPMGoToSleepMode (unsigned portCHAR xMode)
6 {
7 switch(mode)
8 {
9 case RUNNING:

10 /*Insert code (if necessary)*/
11 break;
12 case MODE1:
13 //vPMGoToSleepMode1(); /*Possible use*/
14 break;
15 case MODE2:
16 //vPMGoToSleepMode2(); /*Possible use*/
17 break;
18 case MODE3:
19 //vPMGoToSleepMode3(); /*Possible use*/
20 break;
21 case MODEN:
22 //vPMGoToSleepModeN(); /*Possible use*/
23 break;
24 default:
25 return errCOULD_NOT_GOTO_SLEEPMODE;
26 }
27 return pdTRUE;
28 }
29

30 #endif

Listing 5.13: Prototype of xPMGoToSleepMode() de�ned in PowerManager.c

Description
Function used as a bridge between the idle task and those functions provided by
customer.

Parameters
xMode: The sleep mode must be a value within the range allowed by the system).

Return values
pdTRUE: MCU has been moved in sleep state successfully.

errCOULD_NOT_GOTO_SLEEPMODE: Attempt to go in a wrong sleep mode.

82 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Note
The customer has to adapt the switch case if there are more or less sleep modes.
Besides, he has to invoke each xPMGoToSleepMode_NUM_() inside new switch
case. It is forbidden to change the name of this function because it is used in other
system functions.

5.5.2.4 vPMInit

1 #ifndef FREERTOS_CONFIG_H
2

3 /* Init function used to initialize registers*/
4 void vPMInit (void)
5 {
6 /* Instructions needed to initialize some useful registers or something else*/
7 }
8

9 #endif

Listing 5.14: Prototype of vPMInit() de�ned in PowerManager.c

Description
This function must be called compulsory at beginning of the program (before the
scheduler and tasks creation). If the customer does not want to use it, the pro-
grammer can discard its use.

Note
Inside the body of this function the customer can de�ne some register's initializa-
tion or something else useful for GPMF.

5.6 Porting for EFM32 (Energy Micro)

One of the goals of my thesis requires to make a porting of the whole GPFM for
EFM32. In order to porting EFM32 for GPMF, I have con�gured variables values
and functions present in PPMF for Energy Micro. Actually, Energy Micro gave me
the possibility to use their library EFM32lib5 to manage the energy modes.
EFM32 library has already provided some functions to manage sleep modes and I
used most of the content of these functions. Moreover, I improved some functions
in order to make a more e�cient and robust porting with my GPFM Framework.
Technical information about the use of energy modes and their internal manage-
ment are dealt in section (2.3.1, 2.3.2). Besides, a more detailed explanation of
EMU (Energy Management Unit) of EFM32 is outlined in [5].

5EFM32lib contains the Energy Micro Peripheral Support utilities for the EFM32G series of

microcontrollers.

5.6. PORTING FOR EFM32 (ENERGY MICRO) 83

5.6.1 PPMF Reference Manual for EFM32

This section illustrates for each function which are my changes and how they impact
in the �nal functioning. The �nal code for the whole framework realized for EFM32
is shown in Appendix A. Next sections highlight only the considerable chunks of
code.

5.6.1.1 PPMF con�guration values

1 #ifndef PM_H
2 #include "FreeRTOS.h"
3 #include "projdefs.h"
4 #include "task.h"
5

6 #if (configUSE_POWERMANAGER == 1)
7

8 /*Number of energy modes. It is also included the running mode*/
9 #define configSLEEPMODES 5

10

11

12 The order of sleep modes must be ascending and the running mode must always be ←↩
0*/

13 #define RUNNING 0
14 #define EM1 1
15 #define EM2 2
16 #define EM3 3
17 #define EM4 4
18

19 /* If the programmer does not use sleep mode, then GPFM at least use mode 1 ←↩
when idle task occus */

20 #define configDEFAULT_SLEEPMODE 1
21

22 #endif
23 #endif

Listing 5.15: PPMF con�guration values for EFM32

Description
EFM32 provides 4 energy modes plus the runnig state. The default value used in
idle task is EM1, thus even if the programmer does not de�ne any EMs (in Tasks
and ISRs), the system can save some energy using EM1.

5.6.1.2 vPMInit

1 #ifndef FREERTOS_CONFIG_H
2

3 /* Init function used to initialize registers*/
4 void vPMInit (void)
5 {
6 /*Lock EMU in init function*/
7 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
8 }
9

10 #endif

Listing 5.16: Prototype and implementation of vPMInit()

84 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Description
The EMU of EFM32 gives the possibility to lock (EMU_LOCK) the use of EM during
program execution. Then, if the programmer tries to change an energy mode, the
MCU discards his request and keep running without performing that operation [5].
Since EFM32 library does not use this feature, I thought to lock the Energy Modes
from the beginning until the end. In this way, the framework has the full control
of EMU and the programmer does not alter the behaviour of the system. So, the
only way to declare a sleep mode is to use GPMF.

5.6.1.3 vPMGoToSleepModeEM1

1 #include "PowerManager.h"
2

3 #if (configUSE_POWERMANAGER == 1)
4

5 /*Generic function used to move the MCU in power modes 1 */
6 void vPMGoToSleepModeEM1(void)
7 {
8 /*Unlock EMU registers*/
9 EMU->LOCK = EMU_LOCK_LOCKKEY_UNLOCK;

10

11 /*It is used to gurantee that the user can not change EMs in the rest of ←↩
program*/

12 EMU->CTRL |= EMU_CTRL_EM2BLOCK;
13

14 /*If EMU register was locked, then lock it again */
15 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
16

17 /* Enter Cortex-M3 sleep mode */
18 SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;
19 __WFE(); /*If I want to wake up with WFI. Then, use __WFI()*/
20

21 }
22

23 #endif

Listing 5.17: Prototype and implementation of vPMGoToSleepModeEM1

Description
Additionally, the EMU provides also another feature (EMU_CTRL_EM2BLOCK) to
lock an energy mode. This possibility is valid only when the system is running in
mode 1. If the programmer tries to set EM2 or lower, the system discards again
this request. Actually before to set this bit I need to unlock the register previously
set in vPMInit(). My point of view is that repetitive locking and unlocking might
introduce an higher energy consumption. Thus, I left it only to show the possibility
to use this feature. Besides, the system is awakened when any event occurs. If I
want to wake it up only when an interrupt occurs, I have to use __WFI(). The
di�erence among WFI and WFE are discussed in section (2.3.2).

5.6.1.4 vPMGoToSleepModeEM2/vPMGoToSleepModeEM3/ vPMGo-
ToSleepModeEM4

These functions are the same used in EFM32 libray except for those operations
done over the two bits introduced above (EMU_CTRL_EM2BLOCK) and EMU_LOCK.

5.7. GOALS ACHIEVED 85

When the MCU is awakened, the HFRCO core is automatically restored. Thus,
xPMRestoreSleepMode() restores (except HFRCO) of those oscillators (if any) en-
abled before to move the MCU in sleep mode.

5.7 Goals achieved

The contribution of my work compared with initial motivation presented in sec-
tion (1.1), tries both to cope some issues presented embedded system �eld and
also proposes a green approach to solve it. Indeed, this framework allows to save
energy in accordance with green computing perspective which proposes new pos-
sible ways to accomplish same job but wasting less energy. The framework copies
issues (see section 1.1.3, 5.1) regarding power management in today's open source
RTOSes. Moreover, this framework represents a valid initial alternative to handle
sleep modes in any open source platform with a low overhead.
This chapter is a ful�llment of the goal number one proposed in section (1.3). Devel-
oping an energy framework and make its porting for EFM32 were the requirements
of this goal.

86 CHAPTER 5. ENERGY MANAGEMENT FRAMEWORK

Chapter 6

Keeping time in FreeRTOS

with a RTC

"You may delay, but time will not."

- Benjamin Franklin,was an American political theorist, politician, postmas-
ter, scientist, musician, inventor, satirist, civic activist, statesman.

This chapter aims to propose and discuss the main bene�ts of using a Real Time
Counter (RTC) as tick timer for a RTOS. Furthermore, it also deals with a possible
drawback encountered when the oscillator of RTC works in extreme temperatures
environment.
The chapter is organized as follow, sections (6.1, 6.2) illustrate advantages and
some useful considerations regarding the use of RTC as tick timer in FreeRTOS.
Section (6.3) describes the changes applied in FreeRTOS in order to port the new
solution for EFM32. Finally, section (6.4) discusses the temperature problems that
a�ect the behaviour of RTC oscillator. This section also provides an evaluation of
possibile solutions currently used to cope temperature issue.

6.1 Advantages of using a RTC as Tick Timer

Basically, most of RTOSes use a module provided by the internal core to handle
the timekeeping of the system. As described in 2.4.3, CORTEX-M3 manages the
timing using the SysTick module.
Furthermore, FreeRTOS uses an internal variable (see section 3.2.3) to keep up-
dated the timing of the system. Upon a systick interrupt module, the kernel permits
to update the value of this variable. Since FreeRTOS schedules tasks according to
timer value, it is necessary to update the variable also when the idle task occurs
(see section 3.2.1.3). Most likely, in idle state the system runs in one of the two
sleep modes, such as sleep mode and deep sleep mode (see section 2.3.1).
Unfortunately, FreeRTOS can use only one (sleep mode) of these two sleep modes,

87

88 CHAPTER 6. KEEPING TIME IN FREERTOS WITH A RTC

because when it goes in the lowest sleep mode (deep sleep mode) the systick mod-
ule is turned o�. In addition, during idle state, the system periodically awakes the
core to handle the systick interrupt and to update the xTickCount variable. This
causes to waste a considerable amount of energy.

Figure 6.1: Example using FreeRTOS with a Systick module

Figure (6.1) illustrates a classic example how FreeRTOS behaves when it makes
use of a systick module. Every time a tick occurs, it handles the interrupt of
systick and updates the value of xTickCount. After updating, it returns to sleep or
schedule a new task. For the reason explained above, the core never goes in deep
sleep mode.
As we can see on the example, the major drawback of using a systick timer is
due to the lack of using the deepest sleep mode and the possibility to stay in idle
state without being interrupted. The �rst issue can be solved replacing the systick
module with a RTC timer. While a possible solution that copes the second problem
is widely discussed in next chapter.

Figure 6.2: Example using FreeRTOS with a RTC as tick timer

6.2. TIPS TO CONFIGURE A RTC IN FREERTOS 89

The idea to use a RTC as main timer for FreeRTOS enables to put the MCU also
in deep sleep mode. Di�erently, the new solution must handle the RTC Handler
instead of the systick interrupt. Figure (6.2) shows how FreeRTOS runs using the
RTC. It can choose to stay in one of the two sleep modes according to the needs
of the microcontroller.

6.2 Tips to con�gure a RTC in FreeRTOS

As is described above, FreeRTOS has been built to support the Systick Timer pro-
vided by CORTEX-M3. This involves to perform some changes inside the kernel
in order to enable that it works also with RTC. However, the new FreeRTOS uses
the same variables and constants de�ned for Systick module. Some further consid-
erations must be take into account when we want to use this new solution.
Indeed, one of the main concern of using a RTC in FreeRTOS is the value of its
internal crystal oscillator. Most of RTCs are designed around a standard frequency,
such as 32.768 Khz. FreeRTOS de�nes a constant (configTICK_RATE_HZ) where
the user can declare in Hz the desired resolution to use in the system. The RTC
frequency must be a multiple of this resolution. The division between RTC fre-
quency and kernel resolution represents the number of clock cycles necessary to
accomplish the tick rate (time to wait before the RTC issues an interrupt). If the
result of this division is not an integer number, then it is being truncated to the
upper or lower value. Therefore, this causes to use a wrong tick timer because it
will be triggered with a tick before or after. The system would schedule a task with
some delay (or before). This drifting value is correlated to the resolution used by
the system and it increases with a higher tick rate (10ms or 100ms).
For example, using a resolution of 100Hz the result of the division between the crys-
tal oscillator (32768 Hz) and the resolution of the system is 327,68. This means
that a tick occurs every 327,68 clock cycles. Thus, the system will round o� this
number to 327 or 328. If the system truncates the number to 327, the tick would
occur ahead almost a clock cycle before (0,68). This error is cumulative and it
a�ects in a negative way over the time scale.
Therefore, some valid frequencies to use with RTC can be 128Hz with a time res-
olution of 7.8ms and 1024Hz with a time resolution of 977 µs. This could be a
burden in some cases, but it is extremely important to de�ne carefully the value of
tick rate. In the following sections are proposed some possible parameters tailored
for some applications running on FreeRTOS.

6.3 Porting for EFM32 (Energy Micro)

As is shown in Figure (6.2) the new FreeRTOS con�gures a RTC as main timer of
the system. Basically, the changes applied inside the kernel are strictly coupled to
the timer setup and RTC handler. The functions changed in FreeRTOS are:

• prvSetupTimerInterrupt: It con�gures the kernel timer in order to gen-
erate the tick interrupt at the required frequency (configTICK_RATE_HZ).

90 CHAPTER 6. KEEPING TIME IN FREERTOS WITH A RTC

The timer must be con�gured before the scheduler starts to schedule tasks.

• RTC Handler: It provides to update the internal time variable (xTick-
Count) and reset the tick interrupt.

6.3.1 Changes in prvSetupTimerInterrupt

In the original version of FreeRTOS, prvSetupTimerInterrupt con�gures the inter-
nal (SYSTICK) registers of CORTEX-M3. While, in the new version it sets the
RTC parameters and the time (resolution) interleaved between two ticks. The new
function is shown in Listing (6.1).

1 /*
2 * Setup the RTC timer to generate the tick interrupts at the required
3 * frequency.
4 */
5 void prvSetupTimerInterrupt(void)
6 {
7 /* Enable the clock source for RTC */
8 CMU->HFCORECLKEN0 |= CMU_HFCORECLKEN0_LE;
9 CMU->OSCENCMD = CMU_OSCENCMD_LFXOEN;

10 while (!(CMU->STATUS & CMU_STATUS_LFXORDY)) ;
11

12 CMU->LFCLKSEL &= ~(_CMU_LFCLKSEL_LFA_MASK);
13 CMU->LFCLKSEL |= CMU_LFCLKSEL_LFA_LFXO;
14

15 /* Enable RTC clock */
16 CMU->LFACLKEN0 |= CMU_LFACLKEN0_RTC;
17

18 /* Set Prescaler. Prescaling is 1 */
19 CMU->LFAPRESC0 &= ~(_CMU_LFAPRESC0_RTC_MASK);
20 CMU->LFAPRESC0 |= CMU_LFAPRESC0_RTC_DIV1;
21

22 /* Define the time for next tick */
23 RTC->COMP0 = ((RTC_FREQ/PRESC)/configTICK_RATE_HZ);
24

25 /* Wait until all registers are updated */
26 while (RTC->SYNCBUSY & RTC_SYNCBUSY_COMP0);
27

28 /* Set lowest priority (7)*/
29 NVIC_ClearPendingIRQ(RTC_IRQn);
30 NVIC_SetPriority (RTC_IRQn,7);
31

32 /* Enable interrupt*/
33 RTC->IEN = RTC_IEN_COMP0;
34 NVIC_EnableIRQ(RTC_IRQn);
35

36 /* Start Counter */
37 RTC->CTRL = RTC_CTRL_COMP0TOP;
38 RTC->CTRL |= RTC_CTRL_EN;
39 while (RTC->SYNCBUSY & RTC_SYNCBUSY_CTRL);
40 }

Listing 6.1: New prvSetupTimerInterrupt for FreeRTOS with RTC

Initially the function sets the internal registers of EFM32 to enable the RTC
clock (line 7-16). The RTC may also use a prescaling factor (line 18-20) that is not
required in this case (prescaling is widely used and discussed in the next chapter).
The function con�gures the number of clock cycles necessary to accomplish a tick

6.3. PORTING FOR EFM32 (ENERGY MICRO) 91

(line 23). As happened in SYSTICK, the tick handler must have the lowest inter-
rupt priority. Thus, using the CMSIS framework it is possible to set and enable
a lowest priority for RTC (line 28-34). After that, the RTC is being started (line
36-39) and it will periodically interrupt FreeRTOS to notify that a new tick has
just elapsed.

6.3.2 RTC Handler function

As already explained in section 2.4.2, the RTC provides two possible compare reg-
isters. Now COMP0 is used to handle the tick interrupt. The new timer handler
is shown in Listing (6.2).
Therefore, every time the kernel de�nes (line 7-9) a new wake up time, it loads in
this register the number of clock cycles necessary to trigger a new tick. The number
of clocks is the division between RTC_FREQUENCY and configTICK_RATE_HZ
(see section 6.2 for more details).
As happened in SysTick module, it is necessary to increment (line 16-21) the
variable (xTickCount) containing the number of ticks elapsed since the system
is started. In addition, the RTC Handler must also issue (line 11-14) a pendSV
(context switching) request (see section 3.2.3).

1 void RTC_IRQHandler (void)
2 {
3 unsigned long ulDummy;
4

5 if (RTC->IF & RTC_IF_COMP0){
6

7 /* Set next tick time */
8 RTC_IntClear(RTC_IFC_COMP0);
9 RTC_CompareSet(0,(RTC_FREQ/configTICK_RATE_HZ));

10

11 /* If using preemption, also force a context switch. */
12 #if configUSE_PREEMPTION == 1
13 *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
14 #endif
15

16 /* Increment xTickCount */
17 ulDummy = portSET_INTERRUPT_MASK_FROM_ISR();
18 {
19 vTaskIncrementTick();
20 }
21 portCLEAR_INTERRUPT_MASK_FROM_ISR(ulDummy);
22 }
23

24 }

Listing 6.2: RTC Handler used to con�gure the tick timer

6.3.3 How to con�gure Power Manager Module (GPMF)

The new solution of FreeRTOS adds some more parameters inside GPMF. The
values to con�gure in PowerManager.h module are:

• RTC_ FREQ: Standard value of RTC frequency is 32768;

92 CHAPTER 6. KEEPING TIME IN FREERTOS WITH A RTC

• PRESC (if any) : Default value of prescaler is 1;

It is recommended to use 128Hz for a resolution of 8ms (real is 7.8ms) and
1024Hz for a resolution of 977 µs. If a higher resolution is required, 62.5ms can be
achieved using a frequency of 16Hz. The resolution value (configTICK_RATE_HZ)
must be con�gured in FREERTOSconfig.h.
In order to avoid the problem of truncation (see section 6.2) it is also important to
adjust the value of portTICK_RATE_MS (inside portmacro.h) to 1024. This al-
lows a correct division between configTICK_RATE_HZ and portTICK_RATE_MS.

6.4 Crystal Oscillator accuracy

For some RTOSes is important (see Chapter 3) to schedule tasks within a limited
amount of time. Thus, the role of using a precise system timer module represents
the main concern when there is a need to guarantee the reliability of the whole
system. In this section, is presented a design issue that may hurt the correct
behaviour of the system.
EFM32 DVK provides two Low Frequency Oscillators called LFXO and LFRCO.
Since LFXO is more stable and precise than LFRCO, therefore, RTC uses the
LFXO. Although LFXO might enhance the precision of RTC, it does not provide
a high accuracy over a wide temperature range.

Figure 6.3: Typical Tuning Fork Crystal Frequency vs Temperature[25]

As is shown in Figure (6.3) the crystal's frequency characteristic depends on
the shape of the crystal. The crystal is cut such that its frequency behaves as a
parabolic curve centered at 25 ◦C . The curve can be modeled with the following
equation:

6.4. CRYSTAL OSCILLATOR ACCURACY 93

F = F0[1 + β(T − T0)
2]

Where F0 is the typical parabolic coe�cient for an RTC oscillator, usually is
equal to -0.04[ppm/T 2]. Whereas T0 is the turnover temperature and T is the
temperature. F0 is the frequency deviation at room temperature (+25 ◦C). The
response of crystal's frequency is strictly dependent of the above factors.
As Figure (6.3) shows, the accuracy slumps at the extreme of temperature's axis.
A crystal oscillator of this type loses 8 minutes per year at 20 degrees Celsius
above (or below) room temperature[26]. Hence, it is not safe to use this kind of
oscillator in environment that su�ers rapidly changes of temperatures. Indeed, it
might compromise the reliability of the whole system. In order to avoid the above
issue, some hardware or software solutions might be used to overcome this problem.
Some of these solutions are reported below [25][26]:

• Crystal screening;

• Calibration registers;

• Temperature compensation;

6.4.1 Crystal screening

This solution delegates the burden to manufacture a precise crystal problem to sup-
pliers. Hence, this requires that suppliers should minimize the deviation of crystal's
frequency at room temperature during cutting operation and before shipment. Nev-
ertheless, crystal screening strategy does not remove the problem completely. Even
though the temperature accuracy will be improved to 5ppm, this is not enough to
de�nitely remove its inaccuracy (high and low temperatures). Moreover the man-
ufacturer can also control the crystal turnover temperature tuning with the angle
of the crystal. But this is a di�cult and costly operation. In practice this strategy
is rarely used and does not allow to achieve good results.
One further solution is to include the tuning-fork crystal in the same package of
RTC device. This strategy reduces issues regarding the layout of Printed Circuit
Board (PCB) and designer's workload. Also this approach does not remove the
bad accuracy problem introduced in the oscillator when the system is exposed to
extreme temperatures. Adding a crystal in the same package introduces a higher
cost to the whole system.

6.4.2 Temperature Compensation

It is possible to achieve a better accuracy over a wide range of temperature us-
ing a temperature compensation strategy. This compensation might be employed
via Hardware or Software. The �rst solution requires to introduce a temperature
compensated crystal oscillator (TCXO) as clock source for the RTC. While, the
second option requires a periodic measurement of temperature. According the tem-
perature sampled, is possible to adjust the RTC clock source via software (using

94 CHAPTER 6. KEEPING TIME IN FREERTOS WITH A RTC

a look-up table). The next two following sections outline the main pros and cons
using these two approaches.

6.4.2.1 Software temperature compensation

This strategy does not attempt to alter the parabolic curve of oscillator, but it
adjusts the time according to the current temperature. The goal of this solution
is to add or subtract clock cycles according to the chip temperature. Moreover it
requires to use a temperature sensor (as close as possible to the RTC) that regularly
samples the temperature of chip. Afterwards, the sampled value is used as index
in a look-up table to retrieve the corresponding frequency deviation. This table
contains a map of data presented in Figure (6.3).
Unlike the above solution, software compensation guarantees more accuracy and
it also does not introduce an extra-fabrication cost. A careful evaluation of this
strategy outlines some possible drawbacks encountered when it is being used in a
real environment. First of all, it is not possible to achieve a good accuracy at the
extreme temperatures. Secondly, it is required to periodically measure the RTC
temperature, therefore introducing an unavoidable overhead in the whole system.
The adjustment of curve is not performed in real time but with a certain frequency.
As last downside, some amount of non-volatile memory is also required (wasting
energy) to keep the calibration data accessible during runtime.
Because each crystal has a di�erent behavior, a custom prior calibration is needed
for each oscillator. In some cases this might represent a further burden for the
programmer.

6.4.2.2 Hardware temperature compensation

Another option to better enhance the accuracy of crystal oscillator is to make use of
a temperature-compensated crystal oscillator (TXCO). The goal of this oscillator
is to de�nitely remove the imperfection of crystal oscillator when it is employed in
extreme environment. Indeed, this new oscillator provides good accuracy and it
automatically compensates the frequency error.
Figure (6.4) illustrates how the compensation occurs in TXCO. The red curve
represents the a�ected frequency and dashed line shows how it is being compensated
in order to achieve a better frequency (green curve). Recalling the Figure (6.3),
now the parabolic curve is �atten as much as possible to 0ppm over -40 ◦C and 85
◦C.
On the market it is possible to �nd di�erent TXCO with a di�erent frequency
stability. The accuracy might vary between 1.5ppm and 5ppm over -40 ◦C and
+85 ◦C. The cost of these oscillators vary between 4-15 e. These oscillators are
widely used in embedded applications, such as: GPS/Telematics devices, handheld
devices, power metering, security systems and medical patient monitoring.

As it is mentioned in section 6.4.1 it is also possible to integrate the crystal,
inside the RTC package. This represent the best solution on the market. Because
the single package combines either the advantages of using a TXCO (highly accu-
rate) and also avoiding the design workload burden. On the contrary, the main

6.5. GOALS ACHIEVED 95

Figure 6.4: TCXOs compensation [27]

downside of this solution is the cost of the whole package.

6.5 Goals achieved

This chapter represents the �rst way to enhance the high energy impact introduced
by systick timer. After the development of a power energy framework (GPMF),
the new RTC solution allows to greatly reduce the amount of energy wasted. Also
an Energy Micro's customer has implemented for himself an approach like this. He
tried to use a RTC in order to minimize the power impact involved using a systick
timer.
This chapter tries to ful�ll the initial concerns explored in section 1.1. Finally, the
RTC solution accomplishes the goal number two presented in section 1.3.

96 CHAPTER 6. KEEPING TIME IN FREERTOS WITH A RTC

Chapter 7

Tickless Kernel for FreeRTOS

The aim of this section is to improve the solutions proposed in previous chapters.
Combining the Energy Management Framework and the advantages of using a
Totally tickless system allows to achieve good results in terms of energy saved.
The chapter has been organized as follow, section 7.1 presents the advantages of
using a Tickless strategy, section 7.2 explains how the system can be awakened
when it is sleeping. While section 7.3 discusses the drawbacks of the Tickless
solution proposed by Martin Tverdal. Moreover, sections 7.4, 7.5 explain how the
Tickless Framework works and how it is used for EFM32. Finally, section 7.6 deals
with a drawback of using the Tickless Framework.

7.1 Advantages of using a Tickless System

As I described in previous chapter, the main bene�t of using a RTC helps the
whole system to save more energy. But the RTC solution still does not allow to
de�nitely remove the overhead introduced by the original FreeRTOS. This chapter
aims to remove the overhead of the tick timer introduced in the idle task. Recalling
Figure 6.2, it is notable that during idle task the system is periodically awakened
to update the content of the xTickCount variable. The tickless version removes all
ticks occurred when the core is sleeping. In practice, a Tickless approach allows to
place the core in the lowest available sleep mode and awake the MCU only when
the next task must be scheduled. Therefore, the core is being awakened only when
it is needed (save more energy). The amount of energy saved depends from the
granularity used by the scheduler. The wasted energy increases with the lower
resolutions. Figure 7.1 shows how the system would behave if we use a Tickless
approach. The system is never interrupted when it runs in one of the power modes.
On the other hand, the Tickless strategy introduces a slight overhead when the
MCU is moved in sleep mode. Next sections explain when it is appropriate to use
a Tickless approach instead of keep using a normal RTC solution.

97

98 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

Figure 7.1: FreeRTOS with a Tickless module

7.2 Ways to awake the core from sleeping state

When the core runs in one of the power modes, the RTC is programmed to awake
the MCU only when the next task occurs. But, if an asynchronous interrupt occurs
when core is sleeping, FreeRTOS must handle its ISR and update the xTickCount
variable. Therefore, in order to manage e�ciently the RTC we have to add some
new features inside the GPMF. The system can wake the core up in one of the
following ways:

1. Task or co-routine to schedule;

2. An asynchronous ISR occurs;

3. An asynchronous ISR unblocks a Ready Task;

7.2.1 Task or co-routine to schedule

This is the case that happens every time the system is pushed in the idle state. The
system before to go sleeping retrieves the time of next ready task or co-routine. The
RTC is con�gured to awake FreeRTOS at the time to schedule the task/routine.
The main limitation of this case is linked to the time that the RTC can stay in the
idle state without that an over�ow of its internal counter occurs.

7.2.2 An asynchronous ISR occurs

This is the scenario when an event interrupts the core before the expected wake up
time. Since this is an asynchronous event it can not be predicted in advance. After
the execution of its ISR, the xTickCount variable must be updated with the time
elapsed since the core was moved in the sleep state. Afterwards, the MCU returns
to sleep only if there are not other ISRs waiting to be performed. If any, the ISRs
are scheduled with tail-chaining technique [28].

7.3. DRAWBACKS OF PREVIOUS TICKLESS SOLUTION 99

7.2.3 An asynchronous ISR unblocks a Ready Task

This case behaves as the previous one with the di�erence that the ISR unblocks a
task after its execution. If the ISRs make use of the FreeRTOS API they might un-
lock a task that was waiting on an event (e.g. queues, semaphores). Consequently
FreeRTOS schedules the unblocked tasks. Yet, the xTickCount variable must be up-
dated before starting to schedule new tasks. Usually, FreeRTOS requires that users
have to call at the end of each ISR a function (portEND_SWITCHING_ISR()) that
noti�es to the scheduler that a task has been unblocked.

7.3 Drawbacks of previous Tickless solution

The goal of this section is to outline the drawbacks of the solution proposed by
Martin Tverdal. This section does not aim to diminish the work did by Martin
Tverdal but to improve it with a more accurate approach.

Figure 7.2: Sequence Tickless diagram [3]

I want to recall the sequence tickless diagram shown in his thesis. In Figure
7.2, the diagram shows that the system disables all interrupts when it goes in sleep
modes (except those above configMAX_SYSCALL_INTERRUPT_PRIORITY). The
system checks the time of the next upcoming task or co-routine and it uses this
value to set the wake up time of the RTC. When an event occurs, the system
calculates (using the RTC counter) the time slept in a power mode. Since the

100 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

core in tickless mode does not use the same time scale used in running mode it
converts the RTC (RTC counter) time to FreeRTOS time (xTickCount). This
overhead is added every time the system is being awakened. As consequence, the
execution of the event (interrupt) is also delayed proportionally to the time spent
to translate this value. After that, interrupts are enabled and all pending ISRs are
being executed. The main drawbacks of this approach, are:

• Overhead introduced at wake up time;

• Delayed time for pending ISRs;

• Issues of switching between FreeRTOS and RTC (viceversa);

• Ticks lost due to the execution of many ISRs;

• Maximum time in sleep state (without awaking);

• Tickless threshold;

• Pitfalls of checking next upcoming routine;

The �rst two problems have already been discussed above. While all the other
drawbacks are faced more accurately in the next sections. The Tickless GPMF
strategy proposes a solution that �x problems listed above.

7.3.1 Switching between FreeRTOS and RTC

When the system is running, the SYSTICK module provides to update the xTick-
Count variable. On the contrary, when the core is sleeping and it is being awakened
by an event, the system retrieves the time elapsed in sleep state reading the inter-
nal value of the RTC counter. Therefore, when the system comes back in running
state it updates the xTickCount variable with the number of ticks elapsed since
the core was sleeping.
Using this approach, the system uses two di�erent time scales. A further problem
is due to the error introduced switching from FreeRTOS to RTC and viceversa. In
fact, Martin tried to overcome this problem truncating the number of RTC ticks
when the system returns in running mode. This truncation does not guarantee
that the system takes into account all elapsed ticks. My idea is to use the RTC
counter as the main timer for the whole system. In this way the system is not
forced to switch from di�erent time scale and it is also more accurate. In addition,
as explained in chapter 6.1 the RTC introduces a series of advantages in FreeRTOS.

7.3.2 Ticks lost at wake up time

One of the main drawback of Martin's solution is the way such his tickless approach
handles the case when several ISRs occur simultaneously at wake up time. As I
said above, an ISR can issue a context switching after its execution. When the
MCU is awakened from several events it must handle all pending ISRs (according

7.3. DRAWBACKS OF PREVIOUS TICKLESS SOLUTION 101

their priority) before to schedule the unblocked tasks. The system might spend a
considerable amount of time to handle all ISRs and the time elapsed during their
execution is not well evaluated because the RTC Handler will be handled only one
time.
In practice, since the RTC has the lowest priority it will be performed as last inter-
rupt. As consequence, if a tick was occurred for other three times, those ticks were
lost because the system had to handle the �rst tick. Therefore, FreeRTOS would
update xTickCount variable only one time instead of three. The next following
tasks would be executed with a delay equal to the ticks lost. This situation might
occur when more than one devices (ADC or DAC) perform with a �ne grained
resolution.
For example, when the system is performing the ISR of the ADC, if a request
arrives from DAC it puts the latter request in a pending list. The system never
goes outside of the ISRs execution as long as the two interrupts are not overlapped
anymore.

Figure 7.3: Wrong Tickless solution

Figure 7.4: Tickless solution

The example in Figure 7.3 illustrates how the system behaves using the tickless
approach developed by Martin. While the Figure 7.4 shows how the system would
behave handling the time correctly. For the sake of simplicity, let's assume that
ADC has higher priority than DAC and RTC. DAC has higher priority than RTC.
Task1 will be scheduled at tick number 1006 and Task2 at tick number 1010.
In Figure 7.4 the time is represented in red using the wrong time and in black the
real time. At tick number 1000 the system goes to sleep for 6 ticks. Two events

102 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

(ADC, DAC) as well as the RTC handler occur simultaneously after 5 ticks. Let's
assume that ADC and DAC are overlapped for 5 times because they sample a value
for many times. The system consumes 5 ticks without is being take it into account.
When the RTC Handler is performed, it updates the xTickCount to a wrong value
1006 instead of 1010. Right now, Task2 can be scheduled but since the xTickCount
does not contain the correct value it will move the system to a sleep mode for others
3 ticks. This problem causes a need to schedule Task2 four ticks later (missing its
deadline). This is a very dangerous situation that can compromise the reliability
of the system. Moreover the system does not recognize that it is scheduling tasks
with some delay. The delay increases in respect to the resolution of the system.
For example, if the resolution of the �rst example was 10 ms FreeRTOS would
schedule Task2 with a delay of 40ms.
On the other hand, Figure 7.4 shows the correct functioning of the previous exam-
ple. Also in this example both tasks are scheduled with some delay because the
ADC and DAC defer their execution. But Task2 is scheduled immediately when it
is ready to be scheduled (1011 instead of 1014). The reasons why the RTC Handler
is cancelled are better explained in next sections.

7.3.3 Maximum time in sleep state

The main goal of Tickless approach is to keep the system in the idle state as
long as possible. As I described in previous chapter, FreeRTOS uses an internal
variable (COMP0 see section 2.4.2) to store the number of clock cycles needed to
accomplish the next wake up time (tick rate). The RTC counter (CNT) variable
uses only 24 bits, therefore, a number higher than 224 is not allowed in the RTC.
Since the Tickless solution requires to store a number of clock cycles greater than
those needed for a tick rate. It stores 224 when the Tickless requests to store a
number that exceeds the maximum value. Therefore, the RTC is awakened every
224 as long as the Tickless reaches the next idle task. Using a resolution of 100
µs the RTC can stay in idle state at most for 28 minutes. If an application takes
longer idle tasks (e.g. days, hours) the system would awake the core for several
times before it reaches the next routine/task to schedule. I think that awaking the
core for several times might consume more energy (mostly for lower resolution).
The strategy proposed to overcome this problem is to use the prescaler provided
from the RTC. The prescaler allows to maximise the time in idle state because
it divides the original RTC frequency (32768) with a prescaler factor. In section
2.4.2 is shown a table that illustrates for each prescaler factor the corresponding
resolution and over�ow. The over�ow represents the maximum time that the MCU
can stay in idle state. It is necessary to �nd a trade-o� between system's resolution
and maximum time of the idle state.
As said in section 2.4.2, the prescaler also introduces an increase of the power
consumption. In order to understand which solution achieves better results, the
new Tickless Framework proposes both solutions (with prescaling and without
prescaling).

7.4. TICKLESS GPMF 103

7.3.4 Tickless threshold

Even though the Tickless approach aids to save more energy than a normal system.
In some cases, it is not always appropriate to use a Tickless strategy (drawback
proposed in section 7.3) because it consumes more energy. As I said before, if
many ISRs occur at the same time the system might schedule tasks with some
delay. Therefore, it is not safe to go in Tickless mode when the idle task takes few
ticks. A threshold value called break even point de�nes the minimum ticks needed
to cover the e�ort introducing the Tickless features.
The threshold value is not easy to calculate because it might be di�erent among
di�erent platforms. Moreover, the break even point is chosen according to the tick
system resolution and some external devices. Next section presents an example
how to con�gure the break even time for EFM32.

7.3.5 Checking next upcoming co-routine

The system before to go in sleep mode it checks if there are any tasks or routines
ready to be executed. Since task and routine make use of two di�erent modules to
handle their internal framework. The time task variable (xTickCount) is not always
kept updated with the time routine variable (xCoRoutineTickCount). Therefore,
the system might take a wrong decision if these two variables are not synchronized
each others.
It is necessary to update the time routine variable (xCoRoutineTickCount) when-
ever tasks update the xTickCount. Since the routines are scheduled only when
there are not tasks, the number of ticks to update in xCoRoutineTickCount can
be very large. Hence, every time the system returns to routine it would spend a
lot of time to perform all missed ticks. This causes a waste of energy and time.
In order to avoid this problem, every time a tick timer occurs (RTC Handler), the
new Tickless FreeRTOS updates either the time variable of task and also routine.

7.4 Tickless GPMF

This section describes the functioning of the new Tickless GPMF module. As I said
in section 7.3.3, this new Framework provides two di�erent versions of FreeRTOS,
one with prescaling and the other one without prescaling. The two solutions have
the same code except when the Framework uses the RTC. The following sections
point out the most important functionS developed for the new Framework.

7.4.1 Tickless GPMF Module

The Tickless GPMF module (Figure 7.5) is divided in two parts, such as GPMF
and Tickless Framework. The GPMF module uses its internal functions (see sec-
tion 5.4.1) to interact with Tickless Framework.
On the other hand, the Tickless Framework manages the case when the system
makes use of the tickless features. As I described in section 5.4.1, the whole mod-
ule provides an interactions with FreeRTOS (system side) and programmers (user

104 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

side). The Tickless Framework mainly interacts with system side because before
to go in sleeping mode it needs to acquire several information from the system.
Basically, the main goal of the tickless system is to reduce as low as possible its
complexity. The proposed Tickless Framework interacts with programmers exploit-
ing an existing API provided by FreeRTOS (portEND_SWITCHING_ISR). This
approach allows programmers to use e�ciently the new user's APIs. The GPMF
module interacts with programmers and FreeRTOS as happened before.

Figure 7.5: Tickless GPMF module

The part regarding the system side is the most important part of the whole
framework. New functions have been implemented inside the task and routine mod-
ule. In addition, also the tick handler (RTC) plays an important role in the new
RTOS. Before to move in a sleep mode, the Tickless Framework retrieves the time
of the next upcoming task and routine to be scheduled. FreeRTOS is held in sleep
state as long as there are not ready tasks. The function that checks which is the
time when the next task must be scheduled is called xTaskNextTick(). While
xCoRoutineNextTick() checks which is the next routine to schedule. Since the
system can sleep for several ticks, when the core is awakened it has to keep updated
the xTickCount variable. Therefore, a function that performs an immediate up-
dating has been implemented, it is called vTaskUpdateTickCountFromISR().
The function can be called only inside the body of an ISR.
Furthermore, this new framework controls the number of ticks needed to amortize
the e�ort involved by tickless. If the system does not satisfy the threshold, it contin-
ues to run with a normal tick rate. The name of function that checks the break-even
point is called, xPMBreakEvenTime(). This function needs to know the value of
the xTickCount variable. This is performed by xTaskGetTickCountTickless().
All the above functions (except for the UpdateTickCountFromISR) are used when
FreeRTOS noti�es that an idle task has occurred. Therefore, they are employed in
a unique function called vPMIdleSleepMode(). When the system is moved in
a sleep state, it is awakened by RTC_IRQHandler(). If the tickless is enabled,

7.4. TICKLESS GPMF 105

the xTickCount is being updated with the number of ticks elapsed since the core
was sleeping. Otherwise, it only increments the xTickCount variable. When the
system runs for a long time in sleep state the co-routine are not synchronized with
the xTickCount variable. Therefore, the prvCheckDelayedListTickless()
provides to keep updated the co-routine module.

The part regarding the user side allows to help the tickless module when the
system itself is not able to manage alone the new framework. In order to reduce
the complexity of the system level, FreeRTOS receives some noti�cations sent by
programmers. It provides an internal API called portEND_SWITCHING_ISR used
only inside the body of an ISR. It is used to force a context switching when the
ISR has unblocked a task after its execution.
The idea is to substitute portEND_SWITCHING_ISR with a new internal func-
tion called vPMTicklessFromISR(). The new function is changed in order to
manage either the normal case and the Tickless Framework. In practice, the only
burden of the programmer is to use this new function in place of the old function
implemented in FreeRTOS.

7.4.2 Possible states for Tickless GPMF

The new Tickless Framework solution works using di�erent states during its ex-
ecution. This section describes the meaning of each state and how they can be
employed inside the new framework. The idea is to split the execution of the appli-
cation in well-known states because in this manner the system knows which is the
best decision to undertake every time. We divided the Tickless GPMF solution in
four states, such as:

RUNNING This state includes all tasks and ISRs operations. It identi�es that
the system is in running mode and it is being interrupted every tick.

TICKLESS This state indicates that the system does not use anymore the tick
interrupt. Now the system is moved in one of the sleep modes and it will be
awakened when one of the following cases presented in section 7.2 occurs.

PREEMPTED This state indicates that the system was in TICKLESS mode
and it was interrupted by an asynchronous event (except for RTC). This event
made a request of performing a context switching after its execution.

NOPREEMPTED This state indicates that the system was in TICKLESS
mode and it was interrupted by an asynchronous event (except for RTC). After
the execution of the ISR it is not required any context switching.

Both PREEMPTED and NOPREEMPTED states can be interleaved each other.
These two states can not occur when the system is in RUNNING state because they
are always preceded by TICKLESS. Moreover these two states are able to retrieve
the time elapsed since the core was moved in TICKLESS state. This represents the

106 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

Figure 7.6: States arisen using Tickless Framework

main advantage of using the Tickless GPMF approach because it overcomes the
problem discussed in section 7.3.2. The system becomes RUNNING at the beginning
of an idle task or at the end of a RTC Handler. While it becomes TICKLESS only
when the idle task is sure that there are not other tasks/routines to schedule.
Figure 7.6 shows an example how these states are handled during run time. Initially,
the system is RUNNING until the core is moved in a sleep mode (TICKLESS). The
ADC wakes the core up and it also needs to issue a context switching after its
execution, therefore the state is moved in PREEMPTED state. The next time that
the core is awakened by the DAC it does not issue a context switching after its
execution, hence its state is NOPREEMPTED.

7.4.3 Interaction of Tickless GPMF with FreeRTOS (vPMI-
dleSleepMode)

This section explains how the Tickless GPMF module interacts with FreeRTOS.
The Tickless Framework is used only when there are not ready upcoming tasks/rou-
tines to schedule. FreeRTOS has been modi�ed that when an idle task occurs it
calls vPMIdleSleepMode (Tickless Framework) and it continues to behave normally
when it is being awakened. The state of the GPMF module is stored inside the
xPMTicklessENB variable. One of the main bene�t of using Tickless GPMF is
to add an overhead proportional to the type (see sections 7.2) of the wake up time.
For example, if an ISR issues a context switching it involves a higher overhead than
awaking a core for scheduling a ready task.
Figure 7.7 illustrates how FreeRTOS and Tickless Framework interact each other.
On the left side are represented steps performed by FreeRTOS, while on the right
side are represented those stages performed before to move the core in TICKLESS
state. FreeRTOS calls vPMIdleSleepMode when there are not tasks or routines
ready to be scheduled.
Initially, the function disables either interrupts and task scheduler because the next
following instructions must be executed in mutual exclusion. Any interrupts arisen
at this time are moved in pending state (if the core is moved in sleep state with
pending ISRs it will be immediately awakened). Now, the function retrieves the
time when the next tasks or routines will be scheduled. According to the values of
next task/routine, it is possible to check if it is a�ordable to enter in a TICKLESS
state or keep using the running mode. This job is accomplished by a Break even

7.4. TICKLESS GPMF 107

function (xPMBreakEvenTime()). If a task or a routine will be scheduled in few
ticks, the system is left in running mode and it will not use the tickless features.
Otherwise, the system is con�gured as Tickless mode and the core is moved at the
lowest possible power mode. The power mode is retrieved from GPMF module.
The system is put in sleep state for the time needed to wait the next upcoming
task or routine. A core will always be awakened by two possible events, such as
an asynchronous event (generic ISR) or time expired event (RTC Handler). Any
event, immediately causes for enabling all interrupts and resume the task sched-
uler. After that, if the awakened event was an expired event, the RTC Handler
provides to update the xTickCount variable with the time slept in tickless mode.
In addition, the state of FreeRTOS is changed in RUNNING mode.
On the contrary, if the awakened event was a generic ISR it must update the state
of the system (PREEMPTED or NOPREEMPTED) and the xTickCount variable with
the current time. It is compulsory that every ISR (except for RTC) must call
in their body the vPMTicklessFromISR function. It will provide to update the
state of the system and the xTickCount variable. The system does not return to
FreeRTOS scheduler until all pending ISRs are executed. Note: the RTC Handler
is always the last ISR to be executed because it has the lowest priority. The system
performs the ready task (due to time expired or an asynchronous event with pre-
emption) or the idle task (asynchronous event without preemption) when there are
not other ISRs to execute. The Appendix B.1 reports the code that implements
the �ow diagram illustrated in Figure 7.7. The code also outlines the di�erences
between prescaling and no prescaling solution.

108 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

Figure 7.7: Interaction between FreeRTOS and Tickless Framework

7.4. TICKLESS GPMF 109

7.4.4 xPMBreakEvenTime

Even though the Tickless Framework allows to save a considerable amount of en-
ergy it is not always convenient to use it when the system waits only for few ticks.
In fact, if in the meanwhile some interrupts occur they could delay the upcoming
tasks (the e�ort of tickless is not fully compensated). Therefore, before going in
sleep mode, the Tickless Framework checks if it is worthwhile to go sleeping or keep
running. This function uses a threshold value (MinTICK) to determine which is
the minimum numbers of ticks necessary to compensate the e�ort introduced from
the Tickless Framework. The threshold value is a bit tricky to calculate because it
might dependent by several factors.
Actually, EFM32 uses a threshold value equal to two and it depends from the RTC
counter. If the value of the nextTask or nexRoutine are equal to zero, it means
that they run at the same priority of the idle task. Therefore, a system does not
use the Tickless Framework when the nexRoutine or nextTask are equal to zero or
less than threshold value. The code of this function is reported in Appendix B.2.

7.4.5 RTC_IRQHandler

The RTC Handler can be employed in two possible ways, such as tick expira-
tion and tickless expiration. The tick expiration is used in place of the SYSTICK
module and it allows to keep the system updated over the time. When the core
receives a tick expiration it updates the xTickCount variable and it issues a con-
text switching. Moreover, the RTC handler con�gures the RTC in order to awake
the core for the next tick timer. On the other hand, the tickless expiration occurs

Figure 7.8: Updating of xTickCount when FreeRTOS uses the Tickless Framework

when the tickless mode has expired its timeout. Now, the xTickCount variable is
directly updated with the number of ticks elapsed (minus 1 tick) since the core
was sleeping. The function vTaskUpdateTickCountFromISR() provides to
update the xTickCount variable. This function updates the variable with one tick
less than time de�ned (retrieved from nextTask or nextRoutine) when the core
was moved in tickless state. The reason is due to the fact that tasks are be-
ing unblocked using only the function vTaskIncrementTick(). The core also

110 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

updates the routine module with the number of ticks missed using the function
prvCheckDelayedListTickless(). Afterwards, the core sets the new tick
timer, perform a context switching and it increments the xTickCount variable.
Figure 7.8 shows how xTickCount variable is updated in Tickless Framework. The
core must be awakened at 109 because at 110 a task is ready to be executed. Again,
the core is woken up a tick before because the function that provides to unblock the
tasks is vTaskIncrementTick(). The system changes its current state to RUNNING
at the end of the RTC Handler. The code of this function is reported in Appendix
B.3 and it is an improved version of that one proposed in 6.3.2. The code also
outlines the di�erences between prescaling and no prescaling solution.

7.4.6 vTaskUpdateTickCountFromISR

As is described in section 7.4.5 this function is used to update the xTickCount
variable when more than one ticks must be added. This allows to update the
variable on-shot instead of updating the variable every tick. A problem arises
when the variable over�ows because it restarts the counter from 0. If this case is
not handled properly, the system might miss some tasks. Furthermore, it would not
be able to swap the two delayed listed (see section 3.2.1.2). When over�ow occurs,
the function sets xTickCount at portMAX_DELAY . From this point forward it
updates the remained ticks one per time and the swap operation is performed
correctly. The code of this function is reported in Appendix B.4.

7.4.7 xTaskNextTick

This function retrieves the next upcoming task to execute. It is used inside
ucPMIdleSleepMode() to check if it is a�ordable to use the tickless mode.
Basically, this function returns 0 if there are ready tasks. Otherwise, it returns
the tick when the �rst task must be scheduled. This tick number is automatically
stored inside xNextTaskUnblockTime. The code of this function is reported in
Appendix B.5.

7.4.8 xCoRoutineNextTick

This function is used to retrieve the next upcoming routine to schedule. This new
function updates the whole co-routine module before to get the tick of the next
routine. This is the main di�erence from the function developed by Martin. Using
his function the system was not always synchronized with FreeRTOS (see section
7.3.5). Reported in Appendix B.6.
The following functions prvCheckPendingReadyListTickless() and prvCheckDe-
layedListTickless() are used to update the routine module (xCoRoutineTickCount,
xLastTickCount and xPassedTicks). They have been implemented as contribution
of the Tickless Framework (code is reported in Appendix B.7). After their ex-
ecution, the function checks that there are not ready routines to schedule with
the lowest priority. Also this function returns 0 when there are ready routines to
schedule. Otherwise returns the tick of the �rst routine to schedule.

7.4. TICKLESS GPMF 111

7.4.9 vPMTicklessFromISR

This is the most important function contained inside the Tickless GPMF module.
It is the only function that interacts with users and it must be used in place of
the portEND_SWITCHING_ISR. This function must be compulsorily used inside
the body of each ISR (except for RTC Handler). It can get in input two possible
values, such as pdTRUE or pdFALSE. These values have the same meaning of the
parameters given in input for portEND_SWITCHING_ISR. Figure 7.10 illustrates
the behavior of vPMTicklessFromISR().
If the function is called during RUNNING state (right side) it issues a context
switching, if required. While, if the system runs in tickless mode (left side) it
can be awakened by an event that might require to issue a context switching
(PREEMPTED) or not (NOPREEMPTED). As I said before, vPMTicklessFromISR() is
able to retrieve the time elapsed since the core was sleeping. Therefore, the func-
tion must add some more controls in both states (PREEMPTED, NOPREEMPTED)
because the time is retrieved in a di�erent manner. The system must handle also
the case when preempted ISRs are interleaved with nopreempted ISRs. It is im-
portant to remark that when the core enters in PREEMTPED state it can not return
back to NOPREEMPTED state. When the ISR issues a context switching (in tickless
mode), it retrieves the number of ticks elapsed since the last time xTickCount was
checked. The function marks the state as PREEMPTED and a context switching is
being issued. From this point forward, at least a task must be scheduled, therefore
it needs to set the timer that will periodically preempt the task. The function also
deletes the pending RTC request (if any) waiting to be performed. In fact, the
RTC has already been programmed to issue the next tick.
On the contrary, if the ISR does not issue any context switching, the new state is
marked as NOPREEMPTED. The function still retrieves the time elapsed in tickless
state or the time elapsed since last ISR has occurred. The xTickCount variable
must be updated regardless if the state was PREEMPTED or NOPREEMPTED.
The function uses the RTC to retrieve the time when it runs in PREEMPTED or
NOPREEMPTED state. If many nopreempted ISRs occur at the same time, they are
executed one after the other according to their priority. The RTC counter is reset
only in PREEMPTED state. Figure 7.9 shows a possible scenario when ISRs require
to stay in both states. For the sake of simplicity it is not reported the period of the
task and are used two generic ISRs, respectively ISR1 does not require preemption
and ISR2 with preemption.

Initially, the system enters in tickless mode at tick equal 0 and it changes
its state from RUNNING to TICKLESS. After that, ISR1 wakes the core up and
the function gets how many ticks have elapsed in Tickless state and it updates
xTickCount variable. The state is changed from TICKLESS to NOPREEMPTED.
When ISR2 is executed, it takes one tick to perform its job and this value is updated
in xTickCount. The ISR2 issues a context switching and the state is changed
from NOPREEMPTED to PREEMPTED. From this point forward, the system can not
return back to NOPREEMPTED (except if the system goes at once in TICKLESS
state). The RTC counter is reset to 0 because if the task is immediately executed
it has to be preempted. The ISR1 is executed at once, it updates the xTickCount

112 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

Figure 7.9: Example of interleaved ISRs

variable with the two ticks elapsed from when ISR2 was executed. Now the task is
ready to be executed until the tick interrupt occurs (note that the state remains
still in PREEMPTED state). Upon the execution of the tick interrupt the state is
immediately moved in RUNNING state and it continues to update normally the
xTickCount variable. The code of this function is reported in Appendix B.8. The
code also outlines the di�erences between prescaling and no prescaling solution.

7
.4
.
T
IC
K
L
E
S
S
G
P
M
F

1
1
3

Figure 7.10: Flow sequence diagram of vPMTicklessFromISR()

114 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

7.5 How to con�gure Tickless GPMF for EFM32

The Tickless framework is enabled when the values of configTICKLESS and
configUSE_POWERMANAGER are equal to 1. The constant configPRESC indi-
cates if the Tickless Framework uses the prescaler. The constant is equal 1 when
the prescaler is used. These constants are present inside FreeRTOSConfig.h.

configPRESC = 1 The prescaler must be con�gured with the desired resolu-
tion of RTC. Table 2.6 inside the section 2.4.2 proposes the possible resolutions to
use with prescaling. Function prvSetupTimerInterrupt() inside port.c needs to
change its prescaler value. The value of CMU_LFAPRESC0_RTC_DIV256 (PRESC
= 8) must be changed according to the desired prescaler. For instance, with
prescaler of 5 the value must be replaced with CMU_LFAPRESC0_RTC_DIV32.
It is also needed to change the value of PRESC present inside PowerManager.h.
This value contains the resolution of the prescaler. For instance, using a prescaler
of 5 (977 µs) it must be replaced with 32 and using a prescaler of 8 (7.8ms) it
must replaced with 256. Finally, FreeRTOS's resolution must be con�gured inside
FreeRTOSConfig.h. Section 6.3.3 explains with more details how to con�gure
configTICK_RATE_HZ.

configPRESC = 0 The prescaler is not used. The value of PRESC present inside
PowerManager.h must be equal to 1 and the value of configTICK_RATE_HZ
follows the same hints proposed before. It is not required to con�gure other values.

7.6 RTC's problem

The vPMTicklessFromISR allows to retrieve the time elapsed also when many
ISRs are executed continuously. This function retrieves the time present inside
the counter of the RTC. When the RTC reads the CNT value it might not return
the right value. Sometime it returns the value with a margin error that is never
higher than 2 ticks. If the system uses a higher resolution it could introduce a time
drifting that might vary in accordance to the value read from the counter.
This is the reason why the RTC Handler does not use the CNT value to update the
xTickCount variable (it updates xTickCount with the number of ticks computed
before to move the core in sleep state). Unfortunately, when an asynchronous
event wakes the core up, the only way to retrieve the time elapsed is to use the
RTC value. The same problem was also analysed by Martin Tverdal in his work.
Currently, the problem has been noti�ed to my supervisor at Energy Micro and we
are currently working to cope this trouble.

7.7 Summary

The solution presented in this chapter represents the combinations of those solu-
tions explained previously. This new Framework has been implemented using a

7.7. SUMMARY 115

di�erent approach than Martin's solution. While the previous solution used an ap-
proach where the overhead of the framework was completely released to the system.
The new framework implements a module as �exible as possible during runtime.
Finally, the new Tickless Framework has been implemented in two di�erent ways,
with prescaling and without prescaling. The reason of this choice is to understand
in which way the Tickless solution performs better. It is not easy to understand
without simulations which one introduces a higher power consumption. Next chap-
ter shows the results of both solutions.

116 CHAPTER 7. TICKLESS KERNEL FOR FREERTOS

Part III

Results

117

Chapter 8

Simulations

"It is the weight, not numbers of experiments that is to be regarded."

- Isaac Newton,was an English physicist, mathematician, astronomer, natural
philosopher, alchemist, and theologian.

This chapter aims to discuss the energy results achieved with a benchmark tai-
lored developed for this thesis. The chapter outlines the advantages of using the
new versions of FreeRTOS proposed in chapter 6 and 7.
It has been organized as follow, section 8.1 discusses the main tasks and functions
used inside the benchmark, section 8.2 explains the tools used to measure the cur-
rent consumption drawn by the MCU and external devices. Section 8.3 decribes
which are the results achieved for each FreeRTOS. Section 8.4 shows a screenshot
of the simulations. Finally, section 8.5 illustrates the lifetime of the benchmark
running on the di�erent versions of FreeRTOS.

8.1 Benchmark

One of the initial goal de�ned in section 1.3 is to develop a benchmark for EFM32.
The benchmark is used to simulate the behavior of the di�erent versions of FreeR-
TOS. In order to emphasise the importance of the idle task, this application spends
most of the time running in the idle state.
The benchmark works as follow, it samples the Ambient Light value every 12 sec-
onds and the value of the internal Temperature every 60 seconds. Moreover, using
an asynchronous event it is also possible to retrieve and send via USART the val-
ues (X,Y,Z) of the Accelerometer. The event is being triggered when is pressed
the button SW1 present on the DVK board. Table 8.1 shows the two tasks run-
ning on FreeRTOS, respectively vLightLevel() and vTemperature(). The �rst task
samples the value of the external light and display it on the screen. It is displayed
using the ring symbol (enabling the internal spaces according to the light sampled
) present inside the LCD. The second task dispays on the screen the temperature

119

120 CHAPTER 8. SIMULATIONS

Task Name Description Frequency(seconds)
vLightLevel Sample Ambient Light 12
vTemperature Sample internal Temperature 60

Table 8.1: Tasks running on FreeRTOS

of the internal sensor (using I2C). The application makes use of the efm32 library
provided by Energy Micro. Moreover, it has been built combining di�erent parts of
the code present in some application notes provided by Energy Micro. The three
following subsections explain with more details the functioning of tasks and the
asynchronous event used in the benchmark.

8.1.1 vLightLevel

As shown in Table 8.1, this task occurs every 12 seconds. Figure 8.1 shows the
steps that occur since the task is triggered and the value is displayed on the screen.
In this example, it is visible how the GPMF module has been used either in the
Task's body and the Handler of ADC. The function of the GPMF module are those
functions with the red colour.
Initially, the task sets the sleep mode as EM1 because the task needs to execute
the ADC (ADC works only with EM1). The value between Task and ADC are
exchanged by means of queues provided by FreeRTOS API. Since the ADC takes
some time to sample these values, the Task is being blocked on a semaphore until
it is unblocked by ADC. When the ADC Handler occurs, it puts the sampled value
inside the queue and it also unblocks the semaphore locked by the Task. After that,
the ADC is turned o� and the vPMTicklessFromISR (see section 7.4.9) checks if
some other tasks with higher priority must be scheduled. The value is displayed
on the screen when the core returns back to vLightLevel(). The task does not need
anymore to stay in EM1, therefore it communicates that the vLightLevel can stay
in EM2. After 12 seconds the task is executed again.

8.1.2 vTemperature

This task occurs every 60 seconds and it displayes on the screen the Temperature
present on the DVK. Since this task does not use the ADC of EFM32 but an exter-
nal device, it does not need to stay in EM1. Therefore, the task marks immediately
its state as EM2.

8.1.3 Sending Accelerometer values

As is explaiend above, pressing the button SW1 is possible to send the values of
Accelerometer via USART. The data are sent to USART only using the Handler
of some devices, such as ADC, DMA and Leuart. Figure 8.2 shows the main steps
performed by ISRs. When the button (SW1) is being pressed, the GPIO Handler
is being executed and it sets the DMA to transfer the data from ADC to memory.

8.1. BENCHMARK 121

As long as the ADC is enabled, the system must run in EM1. When the ADC
Handler occurs, it changes the sleep mode from EM1 to EM2 because the only
devices enabled are DMA and LEUART (both can run in EM2). The DMA sets
the channel to transfer the data from memory to Leuart. It clears the interrupt
and unlock the EM2 when all data have been transmitted. Finally, when the leuart
completes the transfer it returns back to FreeRTOS.

122 CHAPTER 8. SIMULATIONS

Figure 8.1: Sequence diagram of Task vLightLevel()

8
.1
.
B
E
N
C
H
M
A
R
K

1
2
3

Figure 8.2: Sequence diagram of Accelerometer

124 CHAPTER 8. SIMULATIONS

8.2 Advanced Energy Monitoring (AEM) and en-
ergyAwarePro�ler

The DVK of EFM32 provides software and hardware tools that display the real-
time energy consumption of the application running on the board. These two tools
are called Advanced Energy Monitoring (AEM) and energyAwarePro�ler.
The AEM built into DVK retrieves the real current values of the application run-
ning on the board and it displays these values on the LCD display located on the
lower left side of the DVK. The dynamic range of the AEM varies from a mini-
mum of 100nA to a maximum of 50mA. It measures either the current drawn by
the MCU and the current drawn by other system components. The AEM uses a
current sensor that samples the current �owing through the VMCU. It displays
the data on the LCD and it also sends (voltage, current and timing) them through
USB. It samples data with a rate of 60Hz (16.6ms) when measuring currents below
200 µA and 120Hz (8.3ms) when measuring currents above 200 µA. When AEM
measures currents above 200 µA the maximum error is 0.1mA and below 200 µA
the accuracy increases to 1 µA. The AEM detects changes in current consumption
as small as 100nA.
The energyAwarePro�ler gets data from the AEM on the kits via USB and dis-
plays these information in a current vs time representation. In order to represent
the real-time current, the energyAwarePro�ler combines the program counter sent
from AEM and the correlated value found inside the object �le running on the
MCU. The current consumption is displayed by default on a logarithmic scale, but
it can also be changed in a linear representation. The energyAwarePro�ler allows
to save the trace of data in CSV(comma separated values).

8.3 Power consumptions among di�erent FreeRTOS
versions

The following sections outline the energy consumption involved using the new ver-
sions of FreeRTOS. The simulations have been performed for the latest version of
FreeRTOS 7.0.1 and the new proposed solutions, FreeRTOS RTC 7.0.1 and FreeR-
TOS Tickless 7.0.1. The latter has been simulated with and without prescaling.
The results of simulations (running the benchmark described in previous section)
have been processed and analysed using the CSV �les provided by energyAwarePro-
�ler. The tests have been performed for each version of FreeRTOS with di�erent
time resolutions. It is important to note that two versions of FreeRTOS (RTC and
Tickless) use a di�erent resolution (see section 6.2 and 6.3.3).
In order to fairly compare the energy consumption of the di�erent versions of
FreeRTOS, it has been used a resolution (7.8ms) common among all versions. The
following simulations report both on y-axis and x-axis a linear representation. The
power consumption in mW is reported on the y-axis and the time interval in ms
on the x-axis. Finally, the benchmark has been run without sending the data of
the accelerometer. The reason of this choice is due to the fact that in this way all

8.3. POWER CONSUMPTIONS AMONGDIFFERENT FREERTOS VERSIONS125

results have been compared in the same manner.

8.3.1 Original FreeRTOS 7.0.1

This is the latest FreeRTOS version available on the website. The �rst simulation
has been performed using the benchmark without using any sleep modes. In prac-
tice, FreeRTOS is always running over the time. The tests Figure 8.3 a) have been
performed varying FreeRTOS resolution with 1ms, 7.8ms and 100ms.
The chart reports only the simulation of No sleep with resolution of 1ms. Simula-
tions (no reported in the graph) with other resolutions (7.8ms and 100ms) consume
less power because the system is interrupted less times than solution using 1 ms.
The power dissipated by the MCU is steady to 18 mW and the average current is
5.59 mA.
The chart shows also the power consumption of the original version of FreeRTOS
when it uses the sleep modes during idle tasks. For the same reasons explained
in section 6.1 FreeRTOS can not use a sleep mode lower than EM1. Also for this
case, the simulations have been performed for the three resolutions listed above
(1ms, 7.8ms and 100ms). Results show that FreeRTOS consumes less energy using
a resolution of 100ms and it dissipates more energy using a resolution of 1 ms.
The power consumption decreases with increasing of the resolution. Therefore, a
good compromise between resolution and power dissipation is 7.8ms. Using the
resolution of 100ms and 7.8ms the average current oscillates around 1.93mA.

8.3.2 FreeRTOS RTC 7.0.1

This is the version of FreeRTOS proposed in chapter 6 with a RTC as tick timer.
It also allows to use the EM2 when the core runs in idle state.
Figure 8.3 b) illustrates the simulations performed using the three di�erent reso-
lutions, such as 977 µs, 7.8ms and 62.5ms (see sections 6.2 and 6.3.3). Also with
FreeRTOS RTC is con�rmed the trend that the power consumption decreases with
increasing of the resolution. Using a resolutoin of 977 µs the average current is 343
µA and with a resolution of 7.8ms and 62.5ms the current is respectively 182 µA
and 150 µA. As consequence the power dissipation decreases with increasing the
resolution.

8.3.3 FreeRTOS Tickless 7.0.1 with prescaling

This is the version of FreeRTOS proposed in chapter 7. The tickless approach
removes all ticks when the core is running in the idle task, therefore it needs to
stay in a sleep state as long as the next task/routine occurs. The prescaling version
enables the prescaler because it can keep the core in sleep state for a long time (the
no prescaler version over�ows more often).
The simulations for prescaler version have been performed using resolution of 977
µs, 7.8ms and 62.5ms (see sections 6.2 and 6.3.3). One of the drawback of using the
prescaler version is due to the energy overhead introduced by the RTC with larger
resolution[5]. The Figure 8.4 a) shows that using the Tickless with a resolution of

126 CHAPTER 8. SIMULATIONS

977 µs does not a�ect the performance of the whole system. It provides an average
current of 146 µA and a power dissipation of 500 µW. The results for FreeRTOS
Tickless with resolution of 7.8ms are slightly higher than those discussed for 977
µs. On the contrary, increasing the resolution of FreeRTOS Tickless with 62.5ms
it consumes more energy. Indeed, the prescaler in this case introduces a higher
energy overhead with a double increase of the energy consumption. The power
dissipation with prescaling is higher than 1 mW and the current oscillates around
315 µA. The Tickless strategy with prescaling must be avoided when the system
uses a larger resolution.

8.3.4 FreeRTOS Tickless 7.0.1 without prescaling

This is the FreeRTOS Tickless solution without the use of prescaler. As is men-
tioned in previous section, if the system uses a no prescaling approach it awakes
the core in idle state more often. On the other hand, this version of FreeRTOS is
not a�ected by prescaler's overhead.
Figure 8.4 b) shows the results achieved of using a no prescaling strategy with the
three common resolutions of 977 µs, 7.8ms and 62.5ms (see sections 6.2 and 6.3.3).
Without using prescaler, the system behaves more better for all resolutions because
the overhead of presclaer is null. The best results are achieved using a resolution
of 7.8 ms. All simulations have a current that oscillates between 129 µA and 137
µA. While the power varies between 431 µW and 460 µW.
It is important to note that this version of FreeRTOS consumes less energy with
increasing of resolution (opposite than no prescaling).

8.3.5 Results Summary

Figure 8.5 outlines the results of the three di�erent versions of FreeRTOS with a
resolution of 7.8 ms. Only in this case, the chart uses on the y-axis a logaritmic
scale. According to the simulations described in previous sections, the worst re-
sults are achieved using the Original FreeRTOS 7.0.1 (blue line). Basically, the
main drawback of Original version is due to the limitation of not using during idle
state an energy mode lower than EM1. The results are more worse when the core
does not use the sleeping state (brown line). Furthermore, the power dissipation
remains steady for both versions.
The FreeRTOS RTC 7.0.1 solution (green line) outperforms theOriginal FreeRTOS
version and it also introduces few spikes during its execution. It also outperforms
the FreeRTOS Tickless prescaling solution (violet line) because the latter intro-
duces very large spikes during its execution. When the spikes of prescaling occur,
they also exceed the power dissipated from the Original FreeRTOS. The FreeRTOS
Tickless no prescaling(celestine line) solution represents the best choice among all
FreeRTOSes. It also dissipates some spikes during its execution but they do not
a�ect the �nal outcome.
Even though the results show that Tickless and RTC solution represent a good
approach. This is not always true for all applications, because the benchmark
used in these simulations introduces several idle states. Therefore, the choice of

8.3. POWER CONSUMPTIONS AMONGDIFFERENT FREERTOS VERSIONS127

the FreeRTOS solution depends from the type of the application to use. When
the application uses larger idle task, the FreeRTOS Tickless solution is the win-
ner strategy. Otherwise, using the FreeRTOS RTC solution is a good compromise
when the type of application is unknown and the resolution of the system is not a
limitation. Finally, the FreeRTOS Tickless prescaling solution it is convenient only
with a low resolution.

128 CHAPTER 8. SIMULATIONS

Figure 8.3: Power consumption with di�erent versions of FreeRTOS. a) Original
FreeRTOS 7.0.1 b) FreeRTOS RTC 7.0.1

8.3. POWER CONSUMPTIONS AMONGDIFFERENT FREERTOS VERSIONS129

Figure 8.4: Power consumption with di�erent versions of FreeRTOS. a) FreeRTOS
Tickless 7.0.1 with prescaling b) FreeRTOS Tickless 7.0.1 without prescaling

1
3
0

C
H
A
P
T
E
R
8
.
S
IM

U
L
A
T
IO
N
S

Figure 8.5: Power consumption of all FreeRTOSes

8.4. BENCHMARK'S SCREENSHOT 131

8.4 Benchmark's Screenshot

The energyAwarePro�ler displays the behavior of the application in three di�erent
windows, such as the code listing window, current graph and function listing. The
graph window shows in real time the current consumption of the running applica-
tion.

Figure 8.6: Time vs Current representation for FreeRTOS RTC 7.0.1 with resolu-
tion of 977 µs

The Figure 8.6 shows a screenshot of the benchmark when the MCU was running
on FreeRTOS RTC 7.0.1 with resolution of 977 µs. The �rst spike (red annota-
tion) corresponds to the pendSVHandler, therefore when the RTC issues a context
switching. The second spike is the instant when the core handles a request to send
the accelerometer values via LEUART. The microcontroller handles the handler of
DMA (blue annotaion), Leuart (green annotaion) and also ADC (blue annotation
overlapped on the DMA). After that, the system manages the task to sample the
temperature on the DVK or to sample the value of the light ambient sensor.
The energy consumed in idle state is slightly higher than 100 µs. According to the
observation did from my supervisor at Energy Micro, the core should consume less
energy when it runs in idle state. I think that the reason why the core runs in sleep
mode with a current consumption above 100 µA is due to the memory footprint
caused by FreeRTOS. Even though FreeRTOS provides a small footprint varying
from 4-9 Kbytes, it however involves to consume more energy than a stand-alone
application.
My supervisor is also investigating if the problem is caused because I have used
during simulation a revision A of the MCU board1 and an oldest version of the
DVK board.

1Energy Micro released three di�erent versions of the MCU board. The latest version is C,

the oldest is A.

132 CHAPTER 8. SIMULATIONS

8.5 Battery lifetime

The Figure 8.7 illustrates the lifetime of the benchmark using a battery (e.g. ultra
duracell alkaline battery) of 1500mAH 3V. The Figure 8.7 shows the number of days
expected to run the application (ignoring battery self-discharge) for each version
of FreeRTOS.
The lifetime of the Original FreeRTOS is around one month. Moreover, the lifetime
of the system decreases (11 days) if it does not use any sleep modes. While the
lifetime of the FreeRTOS RTC solution increases with increasing the resolution of
the system. It can stay alive for at most 416 days.
Even though the lifetime of the FreeRTOS Tickless prescaling solution achieves
good results (428 days). The lifetime of the system decreases with increasing
of its resolution. However, the lifetime of each resolution is never worse than
lifetime of the corresponding resolution in FreeRTOS RTC. The FreeRTOS Tickless
no prescaling solution guarantees the longest lifetime and it behaves in the same
manner also varying the resolution of the system. The best results are achieved
using a resolution of 7.8ms. The new Tickless solution, in the best case saves energy
for 44x more than Original FreeRTOS. In the worst case it saves energy for more
than 15x (with any resolution).

8
.5
.
B
A
T
T
E
R
Y
L
IF
E
T
IM

E
1
3
3

Figure 8.7: Expected battery lifetime using a common battery of 1500mAh

134 CHAPTER 8. SIMULATIONS

Part IV

Discussion

135

Chapter 9

Conclusions and Future work

"The biggest surprise for me was in the question, "Please select all of the operating
systems you are considering using in the next 12 months." The number one choice
was FreeRTOS. The reason I was so astounded was that FreeRTOS didn't even
show up in the study last year. That's quite a gain-from not on the chart to the
number one position!"

- Richard Nass, editorial director of Embedded Systems Design magazine and
the Embedded Systems Conferences.

9.1 Conclusions

Recently, the market of low-cost and low-power 32-bit MCUs is growing rapidly.
The grow of the new generation of low-cost 32-bit MCU integrates 16 to 256 kbytes
of RAM and new advanced peripherals. As consequence, the new developed soft-
wares reach a high level of complexity that can not be hide using the stand-alone
applications. Therefore, the development of tailored operating systems allows users
to achieve excellent bene�ts. They are built to save energy and achieve high per-
formance in real time environments. FreeRTOS is a real-time kernel that is de-
signed especially for embedded low-power MCUs, reaching a considerable popular-
ity growth over its six year life [29].
The EE Times Group conducts every year through its readers, a survey regarding
the environment they work in and the design process they employ. The research is
carried out along di�erent perspectives, such as speci�c vendor choices, real time
operating systems, cutting-edge processors and so forth. Finally, the survey also
aims to understand how the users use or plan to employ the analyzed factors in
their projects. The survey outlines the limited use of commercial RTOSes inside
the new projects. On the contrary, open source operating systems are on the rise,
from 26% last year to 32% this year (from 21% in 2008). The biggest hit there is

137

138 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

against the commercial OSes, which fell from 47% to 38%[30]. The survey showed
that readers plan to use FreeRTOS as operating system for upcoming projects.
This trend is being con�rmed looking the statistics of the number of times that
FreeRTOS was download last years, 77,500 times.
The objective of this thesis is to propose and investigate the results of using a
Tickless Power Aware Framework with the latest version of FreeRTOS 7.0.1. The
thesis proposes three di�erent approaches FreeRTOS RTC, FreeRTOS Tickless with
prescaling and FreeRTOS Tickless without prescaling that can be used according to
the needs of users. The pros and cons of each solution have been widely discussed
in previous chapters.
The initial problem assignment of the thesis was to propose only an Energy Man-
agement Framework (called GPMF) combined with a RTC solution. The goal was
to implement the Energy Framework above the Tickless solution proposed by Mar-
tin. I believed that was better to build a new Tickless Framework that was strictly
coupled with the features provided by GPMF. Moreover, either the report and the
code developed by Martin Tverdal allowed me to design a new Framework that was
based on some issues that he partially faced in his thesis.
The FreeRTOS Tickless approach is a valuable alternative to employ only in those
cases when the application introduces large and often idle tasks. Even though the
new FreeRTOS solution might introduce some burden for systems that work in
extreme temperature environment. It is possible to overcome these issues applying
the techniques proposed in section 6.4. Therefore, it is worthwhile to apply these
changes only when the trade-o� between �nal cost and energy saved is well com-
pensated.

The results showed that the Tickless framework solution with prescaling produces
a higher power consumption than solution without prescaler. Thus, the results have
clari�ed the doubt (see section 7.3.3) regarding which solution (prescaling and no
prescaling) wastes more power. The prescaler produces an amount of energy that
hurts the performance of the whole system.
Even though the Tickless Framework obtains excellent results without prescaler.
In order to achieve these results the programmer must follow the limitation of using
a new function in place of the standard FreeRTOS' API. This might be a further
burden for programmers. The battery lifetime chart shows that FreeRTOS RTC
achieves outstanding results with large resolution. Hence, my view is that this
solution can achieve good results also when FreeRTOS has sporadic and few idle
tasks. Finally, the results showed that in the best case the new Tickless Framework
(without prescaling) saves energy for 44x more than Original FreeRTOS. While
in the worst case it saves energy for more than 15x (with any resolutions). The
battery (1500 mAh) lifetime has been increased from 11 days (No sleep) to 487
days (using the developed benchmark).

Although this thesis is a continuation of a previous work, I faced several challenges
due to the lack of my initial background and the little support received from the
FreeRTOS' maintainer. The latter has been the main issue to overcome whenever

9.2. FUTURE WORK 139

it was necessary to undertake some technical decisions on the FreeRTOS' kernel.
Therefore, the possible pitfalls of each solutions have been widely discussed with
my supervisor at Energy Micro and the FreeRTOS' community (the o�cial forum
of FreeRTOS). I sent to the maintainer the new proposed versions of FreeRTOSes.
It is hard to believe that the Tickless solution can be approved.
Moreover, for none of the supported ports in FreeRTOS it is not provides a module
that manage the sleep modes. GPMF module has been designed to make a porting
for any platforms. Thus, I think that this module can be used in FreeRTOS with
little changes.

This master thesis could be considered as a valuable contribution to enhance the
existing version of FreeRTOS. Combining this work with EFM32 allows to achieve
excellent results in terms of the energy saving. Currently, some Energy Micro's
customers are testing the new version of FreeRTOS in their applications.
Finally, I want to note that I spent some time to study and understand the di�erent
layers that compose the whole system. Using an approach bottom-up, the layers
are divided as follow, cortex-core, CMSIS library, EFM32 MCU board, DVK board,
efm32library, FreeRTOS kernel and AEM.

9.2 Future work

The previous chapters outline for every proposed strategies, the possible drawbacks
of adopting them in the real environment. The possible improvement to apply in
each solution are strictly dependent of two factors, Hardware modi�cation and
costs.
The latter is the main limitation that a�ects the �nal user. In fact, the proposed
techniques might also a�ect the �nal cost of the system. It is important to �nd a
good compromise between cost and �nal performances.
The Hardware solution requires to change the original hardware of EFM32. At this
level there are several possible techniques that can be employed to enhance the ex-
isting hardware. One of the main limitation of the RTC counter is the number of
bits reserved for its counter (24 bits). Using a counter with more bits, e.g. 32bits,
it would allow to keep the core in the idle state for longer time. This would allow to
drop de�nitely the Tickless no prescaling solution and use only the prescaling one.
Furthermore, another important HW modi�cation would be to provide a support
of TXCO oscillator with EFM32. This would allow to keep the core running also
in extreme temperature environment. If this HW approach is too expensive, an
alternative solution would be to use a software approach with a look up table that
stores for each temperature the corresponding drifting.
One of the main problem of Tickless solution is due to the marginal error that can
occur when the time is being retrieved by the RTC. I have warned this problem
to my supervisor at Energy Micro and he is currently investigating the reason why
the RTC behaves in this manner. Therefore, it is necessary to develop a solution
that �xes this problem.
However, some other possible improvements to perform in the code are strictly cou-

140 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

pled to the feedback of FreeRTOS' maintainer. It is not clear, if the modules of the
co-routine and timers can have advantages of using a Power Manager Framework.
This would allow to use a more robust and reliable Power Manager Framework. I
think that before to implement these new feature, it is necessary to wait an answer
from maintainer.

Part V

Appendix

141

Appendix A

PPMF for EFM32

In this Appendix are shown only �les regarding GPMF (PowerManager.h and Pow-
erManager.c). In order to use the GPFM module with FreeRTOS it is also nec-
essary to use the new version of �les task.c, task.h and FreeRTOSCon�g.h (These
are �les used in FreeRTOS). Those �les are not listed in this Appenidix because
the changes have already discussed in previous section.

Here is shown the code in PowerManager.h.

1 #ifndef PM_H
2

3 #include "FreeRTOS.h"
4 #include "projdefs.h"
5

6 #if (configUSE_POWERMANAGER == 1)
7

8 /*Number of possible sleep modes*/
9 #define configSLEEPMODES 5

10

11 /* This value is the default sleep mode used by power manager in idle task. If
12 * the value is 0, then the Power Manager uses as default mode the running state.
13 * Usually, this value must be set up to the next sleep mode after running state.
14 */
15 #define configDEFAULT_SLEEPMODE 1
16

17 /* PAY ATTENTION!!!
18 The order of sleep modes must be ascending and the running mode must always be 0←↩

*/
19 #define RUNNING 0
20 #define EM1 1
21 #define EM2 2
22 #define EM3 3
23 #define EM4 4
24

25 /* ----------- Functions used by users to deal with sleep modes -------------*/
26 void vPMInit (void);
27 portBASE_TYPE xPMSetSleepMode (unsigned portCHAR xMode);
28 portBASE_TYPE xPMSetSleepModeFromISR (unsigned portCHAR xMode);
29 unsigned portCHAR ucPMGetSleepMode (void);
30 unsigned portCHAR ucPMGetSleepModeFromISR (void);
31 portBASE_TYPE xPMLockSleepModeFromISR (unsigned portCHAR xMode);
32 portBASE_TYPE xPMUnlockSleepModeFromISR (unsigned portCHAR xMode);
33 portBASE_TYPE xPMUnlockSleepMode (unsigned portCHAR xMode);

143

144 APPENDIX A. PPMF FOR EFM32

34

35 /* Internal function used inside by Power Manager to deal with sleep modes and ←↩
Tickless */

36 void vPMIdleSleepMode (void) PRIVILEGED_FUNCTION;
37

38 /* Functions used internally by FreeRTOS to allow a communication between GPMF ←↩
and Tasks */

39 void vPMUpdateSleepModesInc (unsigned portCHAR xMode);
40 portBASE_TYPE xPMUpdateSleepModesDec (unsigned portCHAR xMode);
41

42 #endif
43

44 #endif

Listing A.1: PowerManager.h

Here is shown the code in PowerManager.c.

1 #include "PowerManager.h"
2 #include "efm32.h"
3

4 #if (configUSE_POWERMANAGER == 1)
5

6 /* Macro definitions */
7 #define xPMCheckMode(mode) ((mode >= configSLEEPMODES) || (mode < 0) ? ←↩

errINSERT_NOT_VALID_SLEEPMODE : pdTRUE)
8

9 /* This array keeps track about how many tasks want to stay in each sleep mode*/
10 PRIVILEGED_DATA static unsigned portCHAR ucSleepTasks [configSLEEPMODES] = {0};
11

12 /* This array keeps track about how many "locked ISRs" want to stay in each sleep←↩
mode*/

13 PRIVILEGED_DATA static volatile unsigned portCHAR ucSleepLockISR [←↩
configSLEEPMODES] = {0};

14

15 /* This variable save the highest sleep mode requested by ISRs */
16 PRIVILEGED_DATA static volatile unsigned portCHAR ucSleepISR;
17

18 /* Flag is 1 if an ISR done a request to move in a sleep mode. Otherwise flag is ←↩
0 */

19 PRIVILEGED_DATA static volatile unsigned portCHAR ucFlagISR;
20

21 /* This value is used to keep update the CMU status. Since when MCU goes in sleep
22 * mode the value inside CMU->STATUS can suffer a misleading value. Then is a
23 * responsability of PM to keep update this value.
24 * This variable is only used for Energy Micro
25 */
26 PRIVILEGED_DATA static volatile portBASE_TYPE xPMStatus;
27

28 /* ------ Internal functions used by Power Manager for porting EFM32 in FreeRTOS ←↩
------ */

29 static portBASE_TYPE xPMGoToSleepMode (unsigned portCHAR xMode) ←↩
PRIVILEGED_FUNCTION;

30 static void vPMGoToSleepModeEM1(void) PRIVILEGED_FUNCTION;
31 static void vPMGoToSleepModeEM2(void) PRIVILEGED_FUNCTION;
32 static void vPMGoToSleepModeEM3(void) PRIVILEGED_FUNCTION;
33 static void vPMGoToSleepModeEM4(void) PRIVILEGED_FUNCTION;
34 static void vPMRestoreSleepMode(void) PRIVILEGED_FUNCTION;
35

36 /**
37 * @brief
38 * Initialise Power Management Framework.
39 *
40 * @details
41 This function initialise internal registers used to manage efficiently GPMF.
42 * @note

145

43 This function must be invoked before the scheduler starts. For EFM32 it is
44 necessary to use it.
45 **/
46

47 void vPMInit (void)
48 {
49 /*Lock EMU function*/
50 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
51

52 }
53 /***
54 * @brief
55 * Set a sleep mode in tasks’ body.
56 *
57 * @details
58 This functions provides to set a sleep mode during task execution. If the
59 sleep mode passed as input it is not a valid value, then the function returns
60 an error value errINSERT_NOT_VALID_SLEEPMODE.
61 Otherwise it returns a valid value pdTRUE.
62 *
63 * @note
64 This function can only be invoked in tasks body and not inside ISRs.
65

66 * @par
67 Get in input the value of sleep mode to go in.
68 **/
69 portBASE_TYPE xPMSetSleepMode (unsigned portCHAR xMode)
70 {
71 portBASE_TYPE xReturn;
72

73 portENTER_CRITICAL();
74 /*Check if the value given in input is valid*/
75 if (xPMCheckMode(xMode) == pdTRUE){
76 ucSleepTasks[ucTaskGetCurrentTCB()]--;
77 vTaskPutCurrentTCB(xMode);
78 ucSleepTasks[xMode]++;
79 xReturn = pdTRUE;
80 }else{
81 xReturn = errINSERT_NOT_VALID_SLEEPMODE;
82 }
83 portEXIT_CRITICAL();
84

85 return xReturn;
86 }
87

88 /**
89 * @brief
90 * Set a sleep mode in ISRs’ body.
91 *
92 * @details
93 This functions provides to set a sleep mode during ISR execution. If the
94 sleep mode passed as input it is a not valid value, then the function returns
95 an error value errINSERT_NOT_VALID_SLEEPMODE.
96 Otherwise it returns a valid value pdTRUE.
97 *
98 * @note
99 The sleep mode passed as input is valid only until the system meets the first

100 idle task. For the following idle tasks the sleep mode is being discarded.
101 This function can only be invoked in ISR’s body.
102 * @par
103 Get as input the value of sleep mode to go in
104 **/
105 portBASE_TYPE xPMSetSleepModeFromISR (unsigned portCHAR xMode)
106 {
107 portBASE_TYPE xReturn;
108

109 /*Check if the value given in input is valid*/
110 if (xPMCheckMode(xMode) == pdTRUE){

146 APPENDIX A. PPMF FOR EFM32

111 ucSleepISR = xMode;
112 ucFlagISR = 1;
113 xReturn = pdTRUE;
114 }else
115 xReturn = errINSERT_NOT_VALID_SLEEPMODE;
116

117 return xReturn;
118 }
119

120 /**
121 * @brief
122 * Get the current sleep mode where the MCU can be moved in.
123 *
124 * @details
125 According to requests done with functions like xPMSetSleepModeFromISR or
126 xPMSetSleepMode the function aims to know in which sleep mode the MCU can be
127 moved in. The function returns the value of current sleep mode.
128 *
129 * @note
130 This function can be invoked only in tasks’ body.
131

132 **/
133

134 unsigned portCHAR ucPMGetSleepMode (void)
135 {
136 unsigned portCHAR i, ucReturn = configDEFAULT_SLEEPMODE;
137

138 portENTER_CRITICAL();
139

140 /*Check which is the suitable mode between tasks and LockISRs*/
141 for (i=0; i<configSLEEPMODES; i++)
142 if ((ucSleepTasks[i] > 0) || (ucSleepLockISR[i] > 0)){
143 ucReturn = i;
144 break;
145 }
146

147 /*Check which is the suitable mode among simple ISR, tasks and LockISR */
148 if ((ucFlagISR) && (ucReturn > ucSleepISR))
149 ucReturn = ucSleepISR;
150

151 portEXIT_CRITICAL();
152

153 return ucReturn;
154 }
155

156 /**
157 * @brief
158 * Get the current sleep mode where the MCU can be moved in (FromISR).
159 *
160 * @details
161 According to requests done with functions like xPMSetSleepModeFromISR or
162 xPMSetSleepMode the function aims to know in which sleep mode the MCU can be
163 moved in. The function returns the value of current sleep mode.
164 *
165 * @note
166 This function can be invoked only in ISRs’ body.
167 **/
168

169 unsigned portCHAR ucPMGetSleepModeFromISR (void)
170 {
171 unsigned portCHAR i, ucReturn = configDEFAULT_SLEEPMODE;
172

173 /*Check which is the suitable mode between tasks and LockISRs*/
174 for (i=0; i<configSLEEPMODES; i++)
175 if ((ucSleepTasks[i] > 0) || (ucSleepLockISR[i] > 0)){
176 ucReturn = i;
177 break;
178 }

147

179 /*Check which is the suitable mode among simple ISR, tasks and LockISR */
180 if ((ucFlagISR) && (ucReturn > ucSleepISR))
181 ucReturn = ucSleepISR;
182

183 return ucReturn;
184 }
185

186 /**
187 * @brief
188 * This function locks a sleep mode inside an ISR.
189 *
190 * @details
191 The sleep mode is locked if there is a need to keep the value of sleep mode
192 for a while. The way to unlock this value is to use the following functions
193 xPMUnlockSleepModeFromISR or xPMUnlockSleepMode.
194 *
195 * @note
196 This function can be invoked only in ISRs’ body. Besides, this function
197 can be used as an alterantive solution to xPMSetSleepModeFromISR.
198 Since the use of this function can involve in a misleading use of
199 sleep modes, then the function must be used only when it is necessary.
200 The function can lock more sleep modes and also nested ones.
201 * @par
202 Get in input the value of sleep mode to lock.
203 **/
204

205 portBASE_TYPE xPMLockSleepModeFromISR (unsigned portCHAR xMode)
206 {
207 /*Check if the value given in input is a valid one*/
208 if (xPMCheckMode(xMode) == pdTRUE){
209 ucSleepLockISR[xMode]++;
210 return pdTRUE;
211 }else
212 return errINSERT_NOT_VALID_SLEEPMODE;
213 }
214

215 /**
216 * @brief
217 * This function unlocks a sleep mode previously locked with ←↩

xPMLockSleepModeFromISR.
218 *
219 * @details
220 This function unlocks a sleep mode only inside inside an ISR’s body. If the ←↩

function
221 tries to unlock a sleep mode not locked previously, then the function
222 discards the request and returns an error code. Otherwise it returns a
223 valid number pdTRUE.
224 *
225 * @note
226 Function to call only inside ISR.
227 * @par
228 Get in input the value of sleep mode to unlock.
229 **/
230

231 portBASE_TYPE xPMUnlockSleepModeFromISR (unsigned portCHAR xMode)
232 {
233 /*Check if the value given in input is a valid one*/
234 if (xPMCheckMode(xMode) == pdTRUE){
235 /*If a request is issued and its value is equal zero, it means that there is no←↩

ISR to unlock*/
236 if (ucSleepLockISR[xMode] == 0)
237 return errCOULD_NOT_UNLOCK_SLEEPMODE;
238 else{
239 ucSleepLockISR[xMode]--;
240 return pdTRUE;
241 }
242 }else
243 return errINSERT_NOT_VALID_SLEEPMODE;

148 APPENDIX A. PPMF FOR EFM32

244 }
245

246 /**
247 * @brief
248 * This function unlocks a sleep mode previously locked with ←↩

xPMLockSleepModeFromISR
249 *
250 * @details
251 This function unlocks a sleep mode only inside an task’s body. If the function
252 tries to unlock a sleep mode not locked previously, then the function
253 discards the request and returns an error code. Otherwise it returns a
254 valid number pdTRUE.
255 *
256 * @note
257 Function to call only inside task.
258 * @par
259 Get in input the value of sleep mode to unlock.
260 **/
261

262 portBASE_TYPE xPMUnlockSleepMode (unsigned portCHAR xMode)
263 {
264 portBASE_TYPE xReturn;
265

266 portENTER_CRITICAL();
267

268 /*Check if the value given in input is a valid one*/
269 if (xPMCheckMode(xMode) == pdTRUE){
270 /*If a request is issued and its value is equal zero, it means that there←↩

is no ISR to unlock*/
271 if (ucSleepLockISR[xMode] == 0)
272 xReturn = errCOULD_NOT_UNLOCK_SLEEPMODE;
273 else{
274 ucSleepLockISR[xMode]--;
275 xReturn= pdTRUE;
276 }
277 }else
278 xReturn = errINSERT_NOT_VALID_SLEEPMODE;
279

280 portEXIT_CRITICAL();
281

282 return xReturn;
283 }
284

285 /**
286 * @brief
287 * This function is used in IDLE TASK and can be used:
288 POWER MANAGER: It only pushes the MCU in sleep modes;
289 *
290 * @details
291 This function is directly called inside the IDLE TASK. The user DOESN NOT
292 have to call it in vApplicationIdleHook.
293 *
294 * @note
295 If the user does not use the vPMInit, then ucPMIdleSleepMode does not
296 work properly.
297 **/
298

299 portBASE_TYPE ucPMIdleSleepMode (void)
300 {
301 unsigned portCHAR sleep;
302 portBASE_TYPE xReturn;
303

304 vTaskSuspendAll();
305 portENTER_CRITICAL();
306

307 /* Retrieve the sleep mode to use for idle task */
308 sleep = ucPMGetSleepMode();
309 xPMGoToSleepMode(sleep); /* Go in sleep mode */

149

310 /* Reset ucFlagISR if SSM issues a request before idle task */
311 ucFlagISR = 0;
312

313 portEXIT_CRITICAL();
314 xTaskResumeAll();
315

316 return xReturn;
317 }
318

319 /**
320 * @brief
321 * This function is a porting for Energy Micro. Besides, it provides to move the
322 MCU in the sleep mode received as input.
323 *
324 * @details
325 According to the value received as input, the function enables the MCU in
326 the right sleep mode. If the sleep mode got as input is not valid, then
327 the function returns an error value (-1).
328 *
329 * @par
330 Get in input the value of sleep mode.
331 **/
332

333 static portBASE_TYPE xPMGoToSleepMode (unsigned portCHAR xMode)
334 {
335 switch(xMode)
336 {
337 case RUNNING:
338 break;
339 case EM1:
340 vPMGoToSleepModeEM1();
341 break;
342 case EM2:
343 vPMGoToSleepModeEM2();
344 break;
345 case EM3:
346 vPMGoToSleepModeEM3();
347 break;
348 case EM4:
349 vPMGoToSleepModeEM4();
350 break;
351 default:
352 return errCOULD_NOT_GOTO_SLEEPMODE;
353 }
354 return pdTRUE;
355 }
356

357 /**
358 * @brief
359 * This function is a porting for Energy Micro. Move the MCU in EM1
360 *
361 * @details
362 The function before to go in EM1 it sets the CTRL register and it
363 unlocks the EMU register locked in vPMInit.
364 *
365 * @note
366 The MCU is awakened with an event (WFE)
367 **/
368

369 static void vPMGoToSleepModeEM1(void)
370 {
371 /*Unlock EMU registers*/
372 EMU->LOCK = EMU_LOCK_LOCKKEY_UNLOCK;
373

374 /*It is used to gurantee that the user can not change EMs in the rest of program←↩

*/
375 EMU->CTRL |= EMU_CTRL_EM2BLOCK;
376

150 APPENDIX A. PPMF FOR EFM32

377 /*If EMU register was locked, then lock it again */
378 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
379

380

381 /* Enter Cortex-M3 sleep mode */
382 SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;
383 __WFE();
384

385

386 }
387

388 /**
389 * @brief
390 * This function is a porting for Energy Micro. Move the MCU in EM2
391 *
392 * @details
393 The function before to go in EM2 it REMOVES the CTRL register and it
394 unlocks the EMU register locked in vPMInit. Besides, it keeps updated the
395 value of CMU->STATUS (explained above). When the MCU is woken up it enables
396 all oscillators that were enabled before to go in a sleep mode.
397 *
398 * @note
399 The MCU is awakened with an event (WFE)
400 **/
401

402 static void vPMGoToSleepModeEM2(void)
403 {
404

405 /*Save the content of STATUS before to move in EM2. This is useful because the ←↩
HW can alter

406 the value of STATUS register in the meanwhile when the MCU is in EM2 */
407 xPMStatus = (CMU->STATUS);
408

409 /* Unlock EMU registers */
410 EMU->LOCK = EMU_LOCK_LOCKKEY_UNLOCK;
411

412 /*Remove the flag to block EM2 and lower (if any)*/
413 EMU->CTRL &= ~EMU_CTRL_EM2BLOCK;
414

415 /*If EMU register was locked, then lock it again */
416 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
417

418 /* Enter Cortex-M3 deep sleep mode */
419 SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
420 __WFE();
421

422 }
423

424 /**
425 * @brief
426 * This function is a porting for Energy Micro. Move the MCU in EM3
427 *
428 * @details
429 The function before to go in EM1 it REMOVES the CTRL register and it also
430 unlocks the EMU register locked in vPMInit. Besides, it keeps updated the
431 value of CMU->STATUS (explained above). When the MCU is woken up it enables
432 all oscillators that were enabled before to go in a sleep mode.
433 *
434 * @note
435 The MCU is awakened with an event (WFE). The only difference
436 with EM2 is that the function takes care about CMU->LOCK register, if this
437 register was enabled before sleep, then it sets the register again with ←↩

LOCKED.
438 **/
439

440 static void vPMGoToSleepModeEM3(void)
441 {
442 portBASE_TYPE xPMStatusLockCMU;

151

443

444 /* Save the content of STATUS before to move in EM2. This is useful because the←↩
HW can alter

445 the value of STATUS register in the meanwhile when the MCU is in EM2 */
446 xPMStatus = (CMU->STATUS);
447

448 /* Unlock EMU registers */
449 EMU->LOCK = EMU_LOCK_LOCKKEY_UNLOCK;
450

451 /*Remove the flag to block EM2 and lower (if any)*/
452 EMU->CTRL &= ~EMU_CTRL_EM2BLOCK;
453

454 /*If EMU register was locked, then lock it again */
455 EMU->LOCK = EMU_LOCK_LOCKKEY_LOCK;
456

457 /* CMU registers may be locked */
458 xPMStatusLockCMU = CMU->LOCK & CMU_LOCK_LOCKKEY_LOCKED;
459 CMU->LOCK = CMU_LOCK_LOCKKEY_UNLOCK;
460

461 /* Disable LF oscillators */
462 CMU->OSCENCMD = CMU_OSCENCMD_LFXODIS | CMU_OSCENCMD_LFRCODIS;
463

464 /*If CMU register was locked, then lock it again */
465 if (xPMStatusLockCMU)
466 CMU->LOCK = CMU_LOCK_LOCKKEY_LOCK;
467

468 /* Enter Cortex-M3 deep sleep mode */
469 SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
470 __WFE();
471

472 vPMRestoreSleepMode();
473

474 }
475

476 /**
477 * @brief
478 * This function is a porting for Energy Micro. Move the MCU in EM4
479 *
480 * @details
481 The function moves the MCU directly in EM4. Only a reset can awake the MCU.
482 *
483 * @note
484

485 **/
486 static void vPMGoToSleepModeEM4(void)
487 {
488 unsigned portCHAR i;
489

490 /* Unlock EMU registers */
491 EMU->LOCK = EMU_LOCK_LOCKKEY_UNLOCK;
492

493 for (i = 0; i < 4; i++)
494 {
495 EMU->CTRL = (2 << _EMU_CTRL_EM4CTRL_SHIFT);
496 EMU->CTRL = (3 << _EMU_CTRL_EM4CTRL_SHIFT);
497 }
498 EMU->CTRL = (2 << _EMU_CTRL_EM4CTRL_SHIFT);
499 }
500 /**
501 * @brief
502 * This function is used to restore the oscillators after EM2 or EM3
503 *
504 * @details
505 The functions restore those oscillators were enabled before to move the
506 MCU in sleep mode. This operation is accomplished thanks to xPMStatus that
507 keeps track which oscialltors were enabled before to go in sleep mode.
508 *
509 * @note

152 APPENDIX A. PPMF FOR EFM32

510 The HFRCO core is automatically restored by the system.
511 **/
512 static void vPMRestoreSleepMode(void)
513 {
514 portBASE_TYPE xPMStatusLockCMU;
515

516 /* CMU registers may be locked */
517 xPMStatusLockCMU = CMU->LOCK & CMU_LOCK_LOCKKEY_LOCKED;
518 CMU->LOCK = CMU_LOCK_LOCKKEY_UNLOCK;
519

520 /* Restore oscillators used before to drop in EM2/EM3 */
521 CMU->OSCENCMD = xPMStatus & (CMU_STATUS_AUXHFRCOENS | CMU_STATUS_HFXOENS | ←↩

CMU_STATUS_LFRCOENS | CMU_STATUS_LFXOENS);
522

523 /* If the oscillator used for clocking core is not HFRCO, then I restore the ←↩
right one */

524 switch (xPMStatus & (CMU_STATUS_HFXOSEL | CMU_STATUS_HFRCOSEL | ←↩
CMU_STATUS_LFXOSEL | CMU_STATUS_LFRCOSEL))

525 {
526 case CMU_STATUS_LFRCOSEL:
527 /* Wait for LFRCO to stabilize */
528 while (!(CMU->STATUS & CMU_STATUS_LFRCORDY)) ;
529 CMU->CMD = CMU_CMD_HFCLKSEL_LFRCO;
530 break;
531

532 case CMU_STATUS_LFXOSEL:
533 /* Wait for LFXO to stabilize */
534 while (!(CMU->STATUS & CMU_STATUS_LFXORDY)) ;
535 CMU->CMD = CMU_CMD_HFCLKSEL_LFXO;
536 break;
537

538 case CMU_STATUS_HFXOSEL:
539 /* Wait for HFXO to stabilize */
540 while (!(CMU->STATUS & CMU_STATUS_HFXORDY)) ;
541 CMU->CMD = CMU_CMD_HFCLKSEL_HFXO;
542 break;
543

544 default: /* CMU_STATUS_HFRCOSEL */
545 /* If core clock was HFRCO core clock, it is automatically restored by ←↩

system */
546 break;
547 }
548

549 /* Restore CMU register locking */
550 if (xPMStatusLockCMU)
551 CMU->LOCK = CMU_LOCK_LOCKKEY_LOCK;
552

553 }
554

555 /**
556 * @brief
557 * This function is internally used by Power Manager and can not be used in
558 application level.
559 *
560 * @details
561 This function updates the number of tasks that stay in the sleep mode
562 given as input. It increments the number of tasks in ucSleepTasks array.
563 *
564 **/
565 void vPMUpdateSleepModesInc (unsigned portCHAR xMode)
566 {
567 ucSleepTasks[xMode]++;
568 }
569

570 /**
571 * @brief
572 * This function is internally used by Power Manager and can not be used in
573 application level.

153

574 @ret
575 Return pdTRUE if the referred sleep mode has been decremented succesfully
576 Return pdFAIL if the referred sleep mode did not contain any task
577 * @details
578 This function updates the number of tasks that stay that sleep mode
579 given as input. It decrements the number of tasks in ucSleepTasks array.
580 *
581 **/
582 portBASE_TYPE xPMUpdateSleepModesDec (unsigned portCHAR xMode)
583 {
584 if (ucSleepTasks[xMode] == 0)
585 return pdFAIL;
586 else{
587 ucSleepTasks[xMode]--;
588 return pdTRUE;
589 }
590 }
591 #endif

Listing A.2: PowerManager.c

154 APPENDIX A. PPMF FOR EFM32

Appendix B

Tickless Framework

Here are reported those functions discussed in chapter 7.

B.1 vPMIdleSleepMode()

This function is implemented inside PowerManager.c.

1 void vPMIdleSleepMode (void)
2 {
3 unsigned portCHAR sleep;
4 portTickType TickNextTask;
5 portTickType TickNextRoutine = portMAX_DELAY;
6

7 #if ((configTICKLESS == 1) && (configUSE_POWERMANAGER == 1))
8

9 if (xTickPass == 0){
10

11 /* Make sure the eventregister is set to 0. Otherwiswe core keep running←↩

*/
12 __SEV();
13 __WFE();
14

15 /* Suspend either tasks and Interrupts */
16 vTaskSuspendAll();
17 portENTER_CRITICAL();
18

19 /* Tickless mode is starting*/
20 xPMTicklessENB = TICKRUNNING;
21 CounterBefore = 0;
22 Counter = 0;
23

24 /* Retrieve the sleep mode to use in idle state */
25 sleep = ucPMGetSleepMode();
26

27 /* RTC does not work beyond EM2. So, I have to force EM2 as max sleep ←↩
mode */

28 if (sleep > EM2)
29 sleep = EM2;
30

31 TickNextTask = xTaskNextTick();
32 #if (configUSE_CO_ROUTINES == 1)
33 TickNextRoutine = xCoRoutineNextTick();
34 #endif

155

156 APPENDIX B. TICKLESS FRAMEWORK

35

36 /* Break even checks if it is worthwhile to use tickless mode */
37 if ((xPMBreakEvenTime(TickNextTask,TickNextRoutine) == pdPASS)){
38

39 #if (configUSE_CO_ROUTINES == 1)
40 if (TickNextTask <= TickNextRoutine)
41 TickToWakeup = (TickNextTask - xTaskGetTickCountTickless()) - 1;
42 else
43 TickToWakeup = (TickNextRoutine - xTaskGetTickCountTickless()) - 1;
44 #else
45 TickToWakeup = (TickNextTask - xTaskGetTickCountTickless()) - 1;
46 #endif
47

48 #if (configPRESC == 0)
49 /* No prescaling */
50 TickToWakeup = TickToWakeup * (RTC_FREQ/configTICK_RATE_HZ);
51 #endif
52

53 if (TickToWakeup > MAXRTCOUNT)
54 TickToWakeup = MAXRTCOUNT;
55

56 vPMSetRTC(TickToWakeup);
57 xPMGoToSleepMode(sleep); /* Go in sleep mode */
58 /* Tickless starts right now */
59 xPMTicklessENB = TICKLESS;
60 }else{
61 /* No tickless mode, I stay in sleep mode until next tick occurs */
62 vPMSetRTC(((RTC_FREQ/PRESC)/configTICK_RATE_HZ));
63 RTC_IntClear(RTC_IFC_COMP0);
64 NVIC_ClearPendingIRQ(RTC_IRQn);
65 xTickPass = 1;
66 xPMGoToSleepMode(sleep); /* Go in sleep mode */
67 }
68

69 /* Reset ucFlagISR if SSM issues a request before idle task */
70 ucFlagISR = 0;
71

72 /* Re-enable either interrupts and tasks */
73 portEXIT_CRITICAL();
74 xTaskResumeAll();
75 }
76 #endif
77

78 #if ((configTICKLESS == 0) && (configUSE_POWERMANAGER == 1))
79

80 vTaskSuspendAll();
81 portENTER_CRITICAL();
82

83 /* Retrieve the sleep mode to use for idle task */
84 sleep = ucPMGetSleepMode();
85 xPMGoToSleepMode(sleep); /* Go in sleep mode */
86 /* Reset ucFlagISR if SSM issues a request before idle task */
87 ucFlagISR = 0;
88

89 portEXIT_CRITICAL();
90 xTaskResumeAll();
91 #endif
92

93 }

Listing B.1: vPMIdleSleepMode()

B.2. XPMBREAKEVENTIME() 157

B.2 xPMBreakEvenTime()

This function is implemented inside PowerManager.c.

1

2 static portBASE_TYPE xPMBreakEvenTime (portTickType xNextTickTask, portTickType ←↩
xNextTickCoRoutine){

3

4 portCHAR NumTickBreakEven;
5

6 /* If xNextTickTask or xNextTickCoRoutine is equal 0. It means that a task
7 * or co-routine needs to run with same priority of idle task (or pending).
8 * Thus, we cannt go in sleep mode. Break even time is not satisfied.
9 */

10

11 #if configUSE_CO_ROUTINES == 1
12 if ((xNextTickTask == 0) || (xNextTickCoRoutine == 0))
13 return pdFAIL;
14 #else
15 if (xNextTickTask == 0)
16 return pdFAIL;
17 #endif
18

19 NumTickBreakEven = MinTICK; /* Mimimum ticks required to use tickless mode←↩

*/
20

21 /* If the number ticks for a task or a co-routine is less than break even
22 * condition (sum of all factors) the MCU does not use Tickless mode.
23 */
24 #if configUSE_CO_ROUTINES == 1
25 if ((NumTickBreakEven >= (xNextTickTask - xTaskGetTickCountTickless←↩

())) || (NumTickBreakEven >= (xNextTickCoRoutine - ←↩
xTaskGetTickCountTickless())))

26 return pdFAIL;
27 else
28 return pdPASS;
29 #else
30 if (NumTickBreakEven >= (xNextTickTask - xTaskGetTickCountTickless())←↩

)
31 return pdFAIL;
32 else
33 return pdPASS;
34 #endif
35

36 return pdFAIL;
37 }

Listing B.2: xPMBreakEvenTime()

B.3 RTC_Handler()

This function is implemented inside PowerManager.c.

1 void RTC_IRQHandler (void)
2 {
3 unsigned long ulDummy;
4

5 if (RTC->IF & RTC_IF_COMP0){
6

7 if ((xPMTicklessENB == TICKLESS)){
8

158 APPENDIX B. TICKLESS FRAMEWORK

9 #if configPRESC == 1
10 vTaskUpdateTickCountFromISR(TickToWakeup);
11 #else
12 vTaskUpdateTickCountFromISR(TickToWakeup/(RTC_FREQ/configTICK_RATE_HZ));
13 #endif
14

15 #if (configUSE_CO_ROUTINES == 1)
16 /* I keep update the coroutine tick. Thus, I avoid to perform
17 * (waste time and energy) all missed ticks when coroutine-
18 * scheduling is being called.
19 */
20 prvCheckDelayedListTickless();
21 #endif
22 }
23

24 /* Set next tick time */
25 RTC_IntClear(RTC_IFC_COMP0);
26 RTC_CompareSet(0,((RTC_FREQ/PRESC)/configTICK_RATE_HZ));
27

28 /* If using preemption, also force a context switch. */
29 #if configUSE_PREEMPTION == 1
30 *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
31 #endif
32

33 if (xPMTicklessENB != TICKLESSNOPREEMPTED)
34 {
35 ulDummy = portSET_INTERRUPT_MASK_FROM_ISR();
36 {
37 vTaskIncrementTick();
38 }
39 portCLEAR_INTERRUPT_MASK_FROM_ISR(ulDummy);
40 }
41

42 /* Reset the tickless variable in running mode */
43 xPMTicklessENB = TICKRUNNING;
44 xTickPass = 0;
45 }
46

47 }

Listing B.3: RTC IRQHandler()

B.4 vTaskUpdateTickCountFromISR()

This function is implemented inside task.c.

1 void vTaskUpdateTickCountFromISR(portTickType xNumTicks)
2 {
3 unsigned portBASE_TYPE uxSavedInterruptStatus;
4 portTickType temp,i;
5

6 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
7

8 /* I update the variable immediately with N-1 ticks. After that, on the last ←↩
tick

9 * I run vTaskIncrementTick to check if the timeout of some tasks is ←↩
expired.

10 */
11 if (xNumTicks > 1)
12 {
13 temp = xTickCount + (xNumTicks - 1);
14

15 /*An overflow occurs, I manage it swapping the two delayed lists*/

B.5. XTASKNEXTTICK() 159

16 if (xTickCount > (xTickCount + xNumTicks))
17 {
18 xTickCount = portMAX_DELAY;
19 vTaskIncrementTick(); /* Exchange two delayed list */
20 if ((xTickCount + xNumTicks) > 0)
21 for (i = 0; i < temp; i++)
22 vTaskIncrementTick(); /* Update all ticks after 0 */
23 }else
24 {
25 xTickCount = temp;
26 vTaskIncrementTick();
27 }
28 }
29

30 /* I update the variable with only 1 tick*/
31 if (xNumTicks == 1)
32 vTaskIncrementTick();
33

34 portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
35

36 }

Listing B.4: vTaskUpdateTickCountFromISR()

B.5 xTaskNextTick()

This function is implemented inside task.c.

1 portTickType xTaskNextTick (void) {
2

3 if (uxTopReadyPriority > tskIDLE_PRIORITY || xPendingReadyList.uxNumberOfItems ←↩
> 0 || pxReadyTasksLists[tskIDLE_PRIORITY].uxNumberOfItems > 1)

4 return 0;
5

6 /*If there are no tasks to schedule, then I return the time of first task to ←↩
wake up (delayed list) */

7 return xNextTaskUnblockTime;
8 }

Listing B.5: xTaskNextTick()

B.6 xCoRoutineNextTick()

This function is implemented inside routine.c.

1 portTickType xCoRoutineNextTick (void) {
2

3 /* If xCoRoutineTickCount is not synchronized with xTickCount, then the next ←↩
two functions update either xCoRoutineTickCount and all lists*/

4 prvCheckPendingReadyListTickless();
5

6 prvCheckDelayedListTickless();
7

8 /* Now I can check if there is a co-routine ready to be executed. If any, ←↩
return 0*/

9 if((uxTopCoRoutineReadyPriority > 0) || (xPendingReadyCoRoutineList.←↩
uxNumberOfItems > 0) || (pxReadyCoRoutineLists[0].uxNumberOfItems > 0))

10 return 0;

160 APPENDIX B. TICKLESS FRAMEWORK

11

12 if((pxDelayedCoRoutineList != NULL) && (pxDelayedCoRoutineList->←↩
uxNumberOfItems > 0))

13 return (pxDelayedCoRoutineList->xListEnd.pxNext->xItemValue);
14 else
15 return portMAX_DELAY;
16 }

Listing B.6: xCoRoutineNextTick()

B.7 prvCheckPendingReadyListTickless() and prvCheck-
DelayedListTickless()

Thes functions are implemented inside routine.c.

1 void prvCheckDelayedListTickless(void)
2 {
3 corCRCB *pxCRCB;
4 portTickType temp;
5

6 temp = xTaskGetTickCountTickless();
7

8 /* I update variable when an overflow occurs */
9 if (xLastTickCount > temp)

10 {
11 xCoRoutineTickCount = portMAX_DELAY - 1; /* Remove delayed tasks (if any) ←↩

before to overflow */
12 xPassedTicks = 2 + temp; /* I update two ticks before portMAX_DELAY and all ←↩

ticks beyond 0 */
13 }
14

15 /* I update variable in normal case */
16 if (xLastTickCount < temp)
17 {
18 xPassedTicks = 1;
19 xCoRoutineTickCount += (temp - xLastTickCount) - 1;
20 }
21

22 while(xPassedTicks)
23 {
24 xCoRoutineTickCount++;
25 xPassedTicks--;
26

27 /* If the tick count has overflowed we need to swap the ready lists. */
28 if(xCoRoutineTickCount == 0)
29 {
30 xList * pxTemp;
31

32 /* Tick count has overflowed so we need to swap the delay lists. If there ←↩
are

33 any items in pxDelayedCoRoutineList here then there is an error! */
34 pxTemp = pxDelayedCoRoutineList;
35 pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList;
36 pxOverflowDelayedCoRoutineList = pxTemp;
37 }
38

39 /* See if this tick has made a timeout expire. */
40 while(listLIST_IS_EMPTY(pxDelayedCoRoutineList) == pdFALSE)
41 {
42 pxCRCB = (corCRCB *) listGET_OWNER_OF_HEAD_ENTRY(pxDelayedCoRoutineList);
43

B.8. VPMTICKLESSFROMISR() 161

44 if(xCoRoutineTickCount < listGET_LIST_ITEM_VALUE(&(pxCRCB->←↩
xGenericListItem)))

45 {
46 /* Timeout not yet expired. */
47 break;
48 }
49

50 portENTER_CRITICAL();
51 {
52 /* The event could have occurred just before this critical
53 section. If this is the case then the generic list item will
54 have been moved to the pending ready list and the following
55 line is still valid. Also the pvContainer parameter will have
56 been set to NULL so the following lines are also valid. */
57 vListRemove(&(pxCRCB->xGenericListItem));
58

59 /* Is the co-routine waiting on an event also? */
60 if(pxCRCB->xEventListItem.pvContainer)
61 {
62 vListRemove(&(pxCRCB->xEventListItem));
63 }
64 }
65 portEXIT_CRITICAL();
66

67 prvAddCoRoutineToReadyQueue(pxCRCB);
68 }
69 }
70

71 xLastTickCount = xCoRoutineTickCount;
72 }
73

74 static void prvCheckPendingReadyListTickless(void)
75 {
76 /* Are there any co-routines waiting to get moved to the ready list? These
77 are co-routines that have been readied by an ISR. The ISR cannot access
78 the ready lists itself. */
79 while(listLIST_IS_EMPTY(&xPendingReadyCoRoutineList) == pdFALSE)
80 {
81 corCRCB *pxUnblockedCRCB;
82

83 /* The pending ready list can be accessed by an ISR. */
84 portENTER_CRITICAL();
85 {
86 pxUnblockedCRCB = (corCRCB *) listGET_OWNER_OF_HEAD_ENTRY((&←↩

xPendingReadyCoRoutineList));
87 vListRemove(&(pxUnblockedCRCB->xEventListItem));
88 }
89 portEXIT_CRITICAL();
90

91 vListRemove(&(pxUnblockedCRCB->xGenericListItem));
92 prvAddCoRoutineToReadyQueue(pxUnblockedCRCB);
93 }
94 }

Listing B.7: prvCheckPendingReadyListTickless() prvCheckDelayedListTickless()

B.8 vPMTicklessFromISR()

This function is implemented inside PowerManager.c.

1 void vPMTicklessFromISR(portBASE_TYPE xHigherPriorityTaskWoken){
2

3 portTickType Add = 0, temp;

162 APPENDIX B. TICKLESS FRAMEWORK

4

5 /* If tickless is running I need to check if context switched is required */
6 if (xPMTicklessENB != TICKRUNNING){
7

8 /* Context switching is required */
9 if (xHigherPriorityTaskWoken == pdTRUE){

10 /* This section calculates the time elapsed since the first ISR occured.
11 Time is stored in Add. This value is immediately added in xTickCount.
12 */
13 switch (xPMTicklessENB){
14

15 case TICKLESS:
16 #if configPRESC == 1
17 Add = RTC_CounterGet();
18 #else
19 Add = (RTC_CounterGet()/(RTC_FREQ/configTICK_RATE_HZ));
20 #endif
21 break;
22

23 case TICKLESSNOPREEMPTED:
24 #if configPRESC == 1
25 Add = RTC_CounterGet() - CounterBefore;
26 #else
27 Add = (RTC_CounterGet()/(RTC_FREQ/configTICK_RATE_HZ)) - ←↩

CounterBefore;
28 #endif
29 CounterBefore = 0;
30 break;
31

32 case TICKLESSPREEMPTED: /* Number of ticks elapsed since last check*/
33 #if configPRESC == 1
34 Add = RTC_CounterGet() - CounterBefore;
35 #else
36 Add = (RTC_CounterGet()/(RTC_FREQ/configTICK_RATE_HZ)) - ←↩

CounterBefore;
37 #endif
38 CounterBefore = 0;
39 break;
40

41 default: Add = 0;
42 }
43

44 /* If using preemption, also force a context switch. */
45 #if configUSE_PREEMPTION == 1
46 *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
47 #endif
48

49 /* Now the RTC behaves as a normal tick timer. It does not work in a
50 tickless mode anymore.
51 */
52 if (((xPMTicklessENB == TICKLESS) || (xPMTicklessENB == ←↩

TICKLESSNOPREEMPTED))){
53 xPMTicklessENB = TICKLESSPREEMPTED; /* Now the system runs in ←↩

preempted mode */
54

55 /* Reset Counter of RTC again */
56 RTC->CTRL &= ~(RTC_CTRL_EN_DISABLE);
57 while (RTC->SYNCBUSY & RTC_SYNCBUSY_CTRL);
58

59 /* Set RTC as tick timer */
60 RTC_CompareSet(0,((RTC_FREQ/PRESC)/configTICK_RATE_HZ));
61

62 /* Start Counter of RTC again */
63 RTC->CTRL |= RTC_CTRL_EN;
64 while (RTC->SYNCBUSY & RTC_SYNCBUSY_CTRL);
65 }
66

67 /* I clear all pending interrupt because I have already updated the

B.8. VPMTICKLESSFROMISR() 163

68 variable of xTickCount. */
69 RTC_IntClear(RTC_IFC_COMP0);
70 NVIC_ClearPendingIRQ(RTC_IRQn);
71 }
72

73 /* If context switching is not required I only have to keep xTickCount ←↩
updated */

74 if (xHigherPriorityTaskWoken == pdFALSE){
75

76 /* I check the number of ticks lost during execution of ISRs */
77 if ((xPMTicklessENB == TICKLESS)||(xPMTicklessENB == TICKLESSNOPREEMPTED←↩

)){
78

79 #if (configPRESC == 1)
80 temp = RTC_CounterGet();
81 #else
82 temp = (RTC_CounterGet()/(RTC_FREQ/configTICK_RATE_HZ));
83 #endif
84 if (Counter == 0)
85 Add = temp;
86 else
87 Add = temp - CounterBefore;
88

89 /* Right now the system runs in nopreempted tickless mode */
90 xPMTicklessENB = TICKLESSNOPREEMPTED;
91 Counter ++;
92 CounterBefore = temp;
93 }
94

95 /* If a previous ISR was running in PREEMPTED TICKLESS MODE, I keep
96 counting the number of ticks lost after last executed ISR.
97 */
98 if (xPMTicklessENB == TICKLESSPREEMPTED){
99 #if configPRESC == 1

100 Add = RTC_CounterGet() - CounterBefore;
101 #else
102 Add = (RTC_CounterGet()/(RTC_FREQ/configTICK_RATE_HZ)) - CounterBefore;
103 #endif
104 CounterBefore = 0;
105 }
106 }
107 /* Update the number of ’ticks lost’ in xTickCount variable*/
108 vTaskUpdateTickCountFromISR(Add);
109 }else
110 {
111 /* This section issues a context switching when we use this function as
112 portEND_SWITCHING_ISR.
113 */
114 if ((xHigherPriorityTaskWoken != pdFALSE)){
115 /* If using preemption, also force a context switch. */
116 #if configUSE_PREEMPTION == 1
117 *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
118 #endif
119 }
120 }
121

122 }

Listing B.8: vPMTicklessFromISR()

164 APPENDIX B. TICKLESS FRAMEWORK

Bibliography

[1] The Climate Savers Computing Initiative is a nonpro�t group of eco-conscious
consumers, businesses and conservation organizations dedicated to reducing the
energy consumption of computers. http://www.climatesaverscomputing.org/

[2] State of the Union 2011: WINNING THE FUTURE. Conference hold 25 Jan-
uary 2011. http://www.whitehouse.gov/state-of-the-union-2011

[3] Martin Tverdal. Operating system directed power reduction on EFM32. Master
thesis project.

[4] EFM32 IntroductionWhite Paper. http://downloads.energymicro.com/pdf/efm32
Available at: _introduction_white_paper.pdf (Accessed 17 Febraury 2011)

[5] Energy Micro "Reference Manual EFM32G Microcontroller Family". Available
at: http://www.energy.com/downloads (Last Access 17 June 2011)

[6] An Introduction to the ARM Cortex-M3 Processor Shyam Sadasivan 2006.
http://www.energymicro.com/images/stories/technlogy/arm_introtocortex-
m3.pdf

[7] Angelo Spalluto. Green Computing: Energy Aware RTOS for EFM32.
TDT4592 fall semester 2010.

[8] Joseph Yiu. The de�nitive guide to the ARM-Cortex-M3.

[9] Application note: EFM32_dvk_manual. Energy Micro. Available at:
http://www.energymicro.com/downloads/tools-documents

[10] FreeRTOS website. www.freertos.org

[11] Chi-Hong Hwang and Allen C.-H. Wu. 2000. A predictive system shutdown
method for energy saving of event-driven computation. ACM Trans. Des. Au-
tom. Electron. Syst. 5, 2 (April 2000), 226-241. DOI=10.1145/335043.335046
http://doi.acm.org/10.1145/335043.335046

[12] Srinivasan, B.; Pather, S.; Hill, R.; Ansari, F.; Niehaus, D.; , "A �rm real-
time system implementation using commercial o�-the-shelf hardware and free
software," Real-Time Technology and Applications Symposium, 1998. Proceed-
ings. Fourth IEEE , vol., no., pp.112-119, 3-5 Jun 1998 doi: 10.1109/RT-
TAS.1998.683194

165

166 BIBLIOGRAPHY

[13] Giovani Gracioli, Danillo Moura Santos, Roberto de Matos, Lucas Fran-
cisco Wanner, and Antônio Augusto Fröhlich. 2008. One-Shot
Time Management Analysis in EPOS. In Proceedings of the 2008 Interna-
tional Conference of the Chilean Computer Science Society (SCCC '08). IEEE
Computer Society, Washington, DC, USA, 92-99. DOI=10.1109/SCCC.2008.13
http://dx.doi.org/10.1109/SCCC.2008.13

[14] J Stultz, N Aravamudan, D.H. (2005) We Are Not Getting Any Younger: A
New Approach to Time and Timers: Ottawa Linux Symposium Proceedings,
OLS2005 Proceedings

[15] T. Gleixner, D. Niehaus. Hrtimers and Beyond: Transforming the Linux Time
Subsystems: Ottawa Linux Symposium Proceedings, OLS2006 Proceedings.

[16] Dan Tsafrir. 2007. The context-switch overhead in�icted by hard-
ware interrupts (and the enigma of do-nothing loops). In Proceedings
of the 2007 workshop on Experimental computer science (ExpCS '07).
ACM, New York, NY, USA, , Article 4 . DOI=10.1145/1281700.1281704
http://doi.acm.org/10.1145/1281700.1281704

[17] C. Michael Olsen and Chandra Narayanaswami. 2006. PowerNap: An E�-
cient Power Management Scheme for Mobile Devices. IEEE Transactions on
Mobile Computing 5, 7 (July 2006), 816-828. DOI=10.1109/TMC.2006.103
http://dx.doi.org/10.1109/TMC.2006.103

[18] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki - A
Lightweight and Flexible Operating System for Tiny Networked Sensors. In
Proceedings of the 29th Annual IEEE International Conference on Local Com-
puter Networks (LCN 04). IEEE Computer Society, Washington, DC, USA,
455-462. DOI=10.1109/LCN.2004.38 http://dx.doi.org/10.1109/LCN.2004.38

[19] http://www.tinyos.net/

[20] http://tiros.sourceforge.net/

[21] http://www.quasarsoft.com/

[22] AVIX-RT, The Hybrid RTOS. Available at: http://www.avix-rt.com/ (Ac-
cessed 18 March 2011)

[23] CMX Systems, Inc. Available at: http://www.cmx.com/index.htm (Accessed
18 March 2011)

[24] RTOS-the heart of good power management. Available at:
http://www.iar.com/website1/1.0.1.0/1197/1/ (Accessed 18 March 2011)

[25] Application note: Temperature Compensated Calendar. Energy Micro Avail-
able at: http://cdn.energymicro.com/dl/an/pdf/an0006_efm32_calendar.pdf
(Accessed 28 May 2011)

BIBLIOGRAPHY 167

[26] Application note 3566: Timekeeping Accuracy, Automatic and A�ordable.
Available at: http://pdfserv.maxim-ic.com/en/an/AN3566.pdf (Accessed 28
May 2011)

[27] Understanding TCXOs. MPD Microwave Product Digest.
Ramon M. Cerda, Crystek Crystals Corp. Available at:
http://www.mpdigest.com/issue/Articles/2005/apr2005/crystek/Default.asp
(Accessed 28 May 2011)

[28] Datasheet and Manual: EFM32 Cortex-M3 Ref-
erence Manual. Energy Micro Available at:
http://cdn.energymicro.com/dl/devices/pdf/d0002_efm32_cortex-
m3_reference_manual.pdf (Accessed 28 May 2011)

[29] Buy or roll your own OS? Neither with FreeRTOS. Available at:
http://www.eetimes.com/discussion/ guest-editor/4027638/Buy-or-roll-your-
own-OS-Neither-with-FreeRTOS- (Last Access 17 June 2011)

[30] The results for 2010 are in!. Available at:
http://www.eetimes.com/design/embedded/4008920/The-results-for-2010-
are-in- (Last Access 17 June 2011)

	Title Page
	I Introduction and Background
	Introduction
	Motivation
	Green Computing
	Embedded System
	Real Time Operating System (RTOS)
	Government support

	Previous work
	Goals
	Thesis organization

	EFM32 Energy friendly microcontroller
	Energy friendliness applications
	Ten important technology factors for EFM32
	Energy modes in EFM32
	Energy Modes
	Transition among sleep modes

	Timing in EFM32
	Oscillators and peripheral clock
	Real Time Counter (RTC)
	System Timer Cortex-M3

	EFM32 Development kit
	About Energy Micro

	FreeRTOS
	About FreeRTOS
	FreeRTOS kernel
	Tasks
	Task Control Block (TCB)
	Task Lists
	Idle Task

	Co-routines
	Time management

	Example Demo Project
	License and Platform supported

	Time Management in a RTOS
	RTOS overview
	Periodic Interrupt Timer
	Totally Tickless kernel
	Tickless RTOS on the market

	II Methodology
	Energy Management Framework
	Problem description
	Issues of sleep modes with ISRs
	Troubles involved using only a Task Power Management Framework
	Energy losses without using sleep mode inside ISRs

	Proposed solutions
	Limited memory solution
	Advantages
	Shortcomings

	List sleep mode solution
	Advantages
	Shortcomings

	Array sleep mode solution
	Task's data structure (TPMF)
	ISR's data structure (IPMF)
	Global Power Management Framework (GPMF)
	Advantages
	Shortcomings

	GPMF
	GPMF module
	GPMF Reference Manual
	xPMSetSleepMode()
	xPMSetSleepModeFromISR()
	ucPMGetSleepMode()/ ucPMGetSleepModeFromISR()
	xPMLockSleepModeFromISR
	xPMUnlockSleepModeFromISR/ xPMUnlockSleepMode
	vPMIdleSleepMode
	xPMUpdateSleepModesInc/ xPMUpdateSleepModesDec
	ucTaskGetCurrentTCB/ucTaskPutCurrentTCB

	Porting Power Management Framework (PPMF)
	PPMF module
	PPMF Reference Manual
	PPMF configuration
	xPMGoToSleepMode_NUM_
	xPMGoToSleepMode
	vPMInit

	Porting for EFM32 (Energy Micro)
	PPMF Reference Manual for EFM32
	PPMF configuration values
	vPMInit
	vPMGoToSleepModeEM1
	vPMGoToSleepModeEM2/vPMGoToSleepModeEM3/ vPMGoToSleepModeEM4

	Goals achieved

	Keeping time in FreeRTOS with a RTC
	Advantages of using a RTC as Tick Timer
	Tips to configure a RTC in FreeRTOS
	Porting for EFM32 (Energy Micro)
	Changes in prvSetupTimerInterrupt
	RTC Handler function
	How to configure Power Manager Module (GPMF)

	Crystal Oscillator accuracy
	Crystal screening
	Temperature Compensation
	Software temperature compensation
	Hardware temperature compensation

	Goals achieved

	Tickless Kernel for FreeRTOS
	Advantages of using a Tickless System
	Ways to awake the core from sleeping state
	Task or co-routine to schedule
	An asynchronous ISR occurs
	An asynchronous ISR unblocks a Ready Task

	Drawbacks of previous Tickless solution
	Switching between FreeRTOS and RTC
	Ticks lost at wake up time
	Maximum time in sleep state
	Tickless threshold
	Checking next upcoming co-routine

	Tickless GPMF
	Tickless GPMF Module
	Possible states for Tickless GPMF
	Interaction of Tickless GPMF with FreeRTOS (vPMIdleSleepMode)
	xPMBreakEvenTime
	RTC_IRQHandler
	vTaskUpdateTickCountFromISR
	xTaskNextTick
	xCoRoutineNextTick
	vPMTicklessFromISR

	How to configure Tickless GPMF for EFM32
	RTC's problem
	Summary

	III Results
	Simulations
	Benchmark
	vLightLevel
	vTemperature
	Sending Accelerometer values

	Advanced Energy Monitoring (AEM) and energyAwareProfiler
	Power consumptions among different FreeRTOS versions
	Original FreeRTOS 7.0.1
	FreeRTOS RTC 7.0.1
	FreeRTOS Tickless 7.0.1 with prescaling
	FreeRTOS Tickless 7.0.1 without prescaling
	 Results Summary

	Benchmark's Screenshot
	Battery lifetime

	IV Discussion
	Conclusions and Future work
	Conclusions
	Future work

	V Appendix
	PPMF for EFM32
	Tickless Framework
	vPMIdleSleepMode()
	xPMBreakEvenTime()
	RTC_Handler()
	vTaskUpdateTickCountFromISR()
	xTaskNextTick()
	xCoRoutineNextTick()
	prvCheckPendingReadyListTickless() and prvCheckDelayedListTickless()
	vPMTicklessFromISR()

