2.0 Analysis 2.1 Introduction For undetermined reasons, the pilot did not maintain adequate altitude during a night circling approach in IMC and the aircraft flew into the ground short of the runway. The aircraft was equipped for the flight in accordance with the regulatory requirements and field examination of the wreckage gave no indication of a pre-occurrence mechanical problem contributing to the accident. The pilot did not express any concerns about the aircraft during the flight and the passengers received no warning of the impending impact with the ground. The accident is highly characteristic of a CFIT occurrence. The analysis will discuss why the accident occurred and address the following latent factors and safety deficiencies: organizational and management factors environmental conditions circling procedures search and rescue survivability 703 accident rate cockpit video digital recording 2.2 Organizational and Management Factors Several available system defences were missing or not used. An after-hours CARS observer/ communicator call-out was not requested and Fort Liard did not have equipment such as AWOS with a voice generated module; therefore, the pilot did not have a valid altimeter setting available for the approach or a current weather report for Fort Liard. The airport facilities were minimal for a night, IFR, non-precision approach, and the aircraft was not fitted with a radio altimeter or a GPWS. Radio altimeters and GPWS are recognized defences against CFIT accidents and have been proven to enhance safety in high-risk operational environments. Single-pilot IFR requires a pilot to perform under conditions of high workload, and the combination of pilot inexperience, a night IFR flight in IMC conditions, single-pilot operation, minimal approach aids, and a circling procedure placed the pilot in a high risk situation. Had a radio altimeter with an altitude warning or a GPWS been installed in the aircraft, the likelihood of this accident occurring would have been reduced. The quality of rest that the pilot obtained during the five hours that he was booked into a day room could not be determined. It is known that he interrupted his rest period at least three times, once to eat lunch, and twice to make phone calls. The performance of a night, non-precision, circling approach in IMC at the end of the duty day would have commanded a high degree of skill, attention, and task loading. While there was no indication that the pilot was suffering from chronic fatigue, he may have been experiencing the effects of acute fatigue. Whether acute fatigue was a factor in the occurrence could not be determined. A safety management system is a management process by which an organization identifies aviation risks and develops programs and procedures to minimize those risks. The reasons for an occurrence can often be traced back to identifiable organizational and management factors. An examination of whether the company's policies, procedures, and practices are in concert and accurately reflect a sound safety philosophy is key to understanding the role of such factors in an occurrence. In this occurrence, there were clear indications that, although the management system appeared to have all the resources in place to provide operational guidance and support, there were deficiencies in its application that led to conflicting messages, and a potential for a less than optimal focus on safety. For example: while a CARS operator could be called out after hours for a fee, the company practice was not to do so, thus the pilot did not have an altimeter setting appropriate for the approach, nor the latest weather for the airport; the system that the company had in place to track crew flight and duty times to prevent fatigue and ensure that pilots did not exceed the number of hours that CAR allows for in a specified period of time was not an ideal source for information relating to qualifications for specific operations, such as single pilot IFR and night. Therefore, while the pilot held the licences and endorsements necessary for the flight, he did not meet the night recency requirements necessary to carry passengers, as stated in the CAR. As well, the pilot only met the single pilot IFR requirements of CAR 723.86 (1) by utilizing flight time that would not qualify as flight experience for a higher licence, and therefore he probably did not have the minimum time required for single pilot IFR. while a CARS operator could be called out after hours for a fee, the company practice was not to do so, thus the pilot did not have an altimeter setting appropriate for the approach, nor the latest weather for the airport; the system that the company had in place to track crew flight and duty times to prevent fatigue and ensure that pilots did not exceed the number of hours that CAR allows for in a specified period of time was not an ideal source for information relating to qualifications for specific operations, such as single pilot IFR and night. Therefore, while the pilot held the licences and endorsements necessary for the flight, he did not meet the night recency requirements necessary to carry passengers, as stated in the CAR. As well, the pilot only met the single pilot IFR requirements of CAR 723.86 (1) by utilizing flight time that would not qualify as flight experience for a higher licence, and therefore he probably did not have the minimum time required for single pilot IFR. Although not required by regulations, the aircraft was not equipped with any equipment to warn the pilot of an impending flight into terrain, despite the high-risk environment in which this company operated. These examples demonstrate that, at the time of the occurrence, deficiencies in the safety management of the company placed risk management responsibilities almost entirely on the pilot and negated the potential for safe operation. Further, the nature of the deficiencies were such that they could have been identified through a more effective safety management system. While the company had taken the initiative to voluntarily appoint a safety officer and there appeared to be a safety program in place, the program may not have been directed at the needs. 2.3 Environmental Conditions The pilot had obtained thorough weather briefings and was cognizant of the warm front was approaching Fort Liard. Between the time the aircraft left Yellowknife and it arrived at Fort Liard, the weather conditions at Fort Liard worsened, as forecast, due to the arrival of the warm front, and the ceiling and visibility were reduced significantly in snow. Night visual approaches are demanding, especially in areas where the lack of adequate external visual clues are not compensated for with other defences, and the visual manoeuvring necessary to accomplish the circling approach in the existing environmental conditions would have been challenging for a single pilot. Provided the pilot had initially achieved visual reference to the runway, he would have been attempting to fly the aircraft visually with a partial instrument scan, rather than with primary reference to the instruments, in an environment that provided few external visual clues because of darkness and reduced visibility. His primary forward and vertical runway visual approach references would have been the PAPI lights and the runway lights. The runway was located very close to the town site, and, in the existing conditions, illumination from the residential and street lights may have diminished the cues provided by the airport lighting. The falling snow and the lack of functioning flashing strobe runway identification lights would have further reduced the conspicuity of the runway environment. 2.4 Circling Procedures Descent below the MDA on an IFR approach during the circling phase is predicated on the pilot maintaining sufficient visual reference to complete the landing safely. The pilot may have been using a non-typical circling procedure, which would have required him to re-establish visual contact with the runway environment on final approach; however, this could not be determined. Loss of visual reference to the runway at any point during the circling procedure requires a pilot to initiate a missed approach and conduct another approach or proceed to the alternate airport. At impact, the aircraft was on a heading of approximately 015, approximately 1.3 nm WSW of the airport and 0.3 nm left of the runway centreline. This would indicate that the pilot had insufficient visual reference to align the aircraft with the runway during the final approach, and that he had elected to continue the approach without the necessary visual references. The use of the Fort Simpson altimeter setting was unauthorized, as the approach chart did not provide for a remote altimeter setting. Use of this altimeter setting would have resulted in the pilot operating the aircraft 200 feet lower than what was indicated on the altimeter, and may have contributed to a loss of vertical situational awareness. 2.5 Search and Rescue The ELT functioned at impact and the accident occurred in close proximity to the community; however, 10 hours passed between the time of the occurrence and the time rescue personnel arrived at the accident site. Although the SARSAT system functioned as designed, the predicted position of the ELT was at the outer limits of the acceptable range of accuracy for the system. Opportunities for local community searchers to identify and access the accident site earlier were hampered by initial inaccuracy of the SARSAT location information, by the time required to locate SAR aircraft to the Fort Liard area, and by darkness and poor weather conditions. The availability of a 406 ELT may have reduced the SAR time significantly. 2.6 Survivability Neither the pilot nor the right front seat passenger were wearing their available shoulder harness. It is probable that the level of injury sustained by these occupants would have been significantly less had the shoulder harnesses been utilized. 2.7 703 Accident Rate At present, the accident rate per 100 000 hours in Canadian 703 Air Taxi operations is approximately 10 times greater than the equivalent rate in 705Airliner operations. The difference is due largely to the more stringent operating standards that apply to 705 operations, and to the proportionately greater utilization of well supported airport environments by higher level commercial operations. This would suggest that more effort is required on the part of industry and the regulator to reduce the continuing high accident rate in 703 category operations. 2.8 Cockpit Video Digital Recorder (CVDR) The pilot was unable to provide useful information regarding the final minutes of the flight and the aircraft was not fitted with a flight recording device. Investigators therefore were unable to determine if the altitude deviation resulted from procedural error, situational awareness error, distraction, or another undetermined reason. The availability of a CVDR would have allowed investigators to reconstruct the actual flight path of the aircraft, to better determine why the altitude deviation occurred. 3.0 Conclusions 3.1 Findings as to Causes and Contributing Factors For undetermined reasons, the pilot did not maintain adequate altitude during a night circling approach in IMC and the aircraft struck the ground. The pilot and front seat passenger were not wearing available shoulder harnesses, as required by regulation, which likely contributed to the severity of their injuries. 3.2 Findings as to Risk The aircraft was not fitted with, and was not required to be fitted with, a GPWS or a radio altimeter. The pilot used an unauthorized remote altimeter setting that would have resulted in the cockpit altimeters reading approximately 200 feet higher than the actual altitude. The pilot did not meet the night recency requirements necessary to carry passengers, as specified in CAR 401.05 (2). Risk management responsibilities had been placed almost entirely on the pilot. While the company had taken the voluntary initiative to appoint a safety officer, and appeared to have a safety program in place, the program may not have been directed at the needs. 3.3 Other Findings