The conduct of a vessel involves the simultaneous observation of a host of cues, the interpretation of those cues and the selection of an appropriate course of action. In confined waters, with a vessel being constantly manoeuvred, the bridge navigation team (pilots and ship's officers) need to know the unique characteristics of the area in order to assess them. In such situations, the watch kept by the bridge navigation team is all the more critical and demanding, since any delay in decision making has the potential to jeopardize the safety of the vessel. BRM is a navigational technique that helps to improve the efficiency of the bridge navigation team's decision making. BRM involves making judicious use of all available resources to ensure that the navigation of the vessel is properly executed. For effective BRM, it is essential that the pilot discuss with the other members of the navigation team the passage plan the pilot intends to follow. It is essential that deviations from the plan that have the potential to compromise the safe navigation of the vessel be queried. It is also important that an atmosphere conducive to communication be fostered by the pilot and the vessel's personnel and that it be maintained throughout the passage. Equally qualified members of the navigation team, either the vessel's personnel or the pilot, can conduct a vessel in confined waters. What distinguishes the pilot from the vessel's personnel is knowledge of local conditions. This expertise enables the pilot to assess the cues observed and take action faster. On the other hand, the vessel's personnel has greater knowledge of the vessel's characteristics and crew. To reduce the risk of an accident, it is essential that the pilot and the vessel's personnel pool their knowledge and work together. BRM helps to optimize the contribution of each member of the navigation team. The bridge of the IRVING ARCTIC is not designed to optimize communication among members of the navigation team. The port and starboard radars, used respectively by the vessel's personnel and the pilot, are some 10 m apart. The ergonomics of this conventional bridge, compared to an integrated bridge system, are less conducive to the flow of information necessary for effective BRM; the navigation equipment is more spread out. Consequently, the navigation personnel and the pilot cannot monitor all the instruments at once without leaving their respective positions. To reduce the effect of these poor ergonomics, it is essential that the members of the navigation team--including the pilot--make an extra effort to communicate among themselves. The presence of ice flows along the edge of the channel and the reported glare of the sun on the radar screen may account for the pilot mistaking a piece of ice for spar buoyQ50. Using radar information and visual cues, the pilot had determined that the vessel was south of the intended track. Although he was aware of other cues, the pilot elected to rely on a point of reference on the radar that he believed to be buoy Q50 but which was, in fact, a piece of ice. He became perceptually confused; upon recognizing the error, the pilot gave helm orders to regain the centre of the channel. As a BRM regime was not implemented, communication between the pilot and the OOW with respect to navigation was less than optimal. The OOW had just plotted the vessel's position indicating that the vessel was south of mid-channel, but this information was not conveyed to the pilot. The OOW was aware that a belated course alteration to starboard was inappropriate. The overdue course alteration was not noticed in time because there was no interaction between the pilot and the vessel's personnel. As there was no BRM and no passage plan known to all the members of the navigation team, the vessel's personnel were unable to analyse the cues quickly and effectively, to seek clarification from the pilot and/or recognize pilot error at an early stage and effect timely remedial measures to ensure safe transit.Analysis The conduct of a vessel involves the simultaneous observation of a host of cues, the interpretation of those cues and the selection of an appropriate course of action. In confined waters, with a vessel being constantly manoeuvred, the bridge navigation team (pilots and ship's officers) need to know the unique characteristics of the area in order to assess them. In such situations, the watch kept by the bridge navigation team is all the more critical and demanding, since any delay in decision making has the potential to jeopardize the safety of the vessel. BRM is a navigational technique that helps to improve the efficiency of the bridge navigation team's decision making. BRM involves making judicious use of all available resources to ensure that the navigation of the vessel is properly executed. For effective BRM, it is essential that the pilot discuss with the other members of the navigation team the passage plan the pilot intends to follow. It is essential that deviations from the plan that have the potential to compromise the safe navigation of the vessel be queried. It is also important that an atmosphere conducive to communication be fostered by the pilot and the vessel's personnel and that it be maintained throughout the passage. Equally qualified members of the navigation team, either the vessel's personnel or the pilot, can conduct a vessel in confined waters. What distinguishes the pilot from the vessel's personnel is knowledge of local conditions. This expertise enables the pilot to assess the cues observed and take action faster. On the other hand, the vessel's personnel has greater knowledge of the vessel's characteristics and crew. To reduce the risk of an accident, it is essential that the pilot and the vessel's personnel pool their knowledge and work together. BRM helps to optimize the contribution of each member of the navigation team. The bridge of the IRVING ARCTIC is not designed to optimize communication among members of the navigation team. The port and starboard radars, used respectively by the vessel's personnel and the pilot, are some 10 m apart. The ergonomics of this conventional bridge, compared to an integrated bridge system, are less conducive to the flow of information necessary for effective BRM; the navigation equipment is more spread out. Consequently, the navigation personnel and the pilot cannot monitor all the instruments at once without leaving their respective positions. To reduce the effect of these poor ergonomics, it is essential that the members of the navigation team--including the pilot--make an extra effort to communicate among themselves. The presence of ice flows along the edge of the channel and the reported glare of the sun on the radar screen may account for the pilot mistaking a piece of ice for spar buoyQ50. Using radar information and visual cues, the pilot had determined that the vessel was south of the intended track. Although he was aware of other cues, the pilot elected to rely on a point of reference on the radar that he believed to be buoy Q50 but which was, in fact, a piece of ice. He became perceptually confused; upon recognizing the error, the pilot gave helm orders to regain the centre of the channel. As a BRM regime was not implemented, communication between the pilot and the OOW with respect to navigation was less than optimal. The OOW had just plotted the vessel's position indicating that the vessel was south of mid-channel, but this information was not conveyed to the pilot. The OOW was aware that a belated course alteration to starboard was inappropriate. The overdue course alteration was not noticed in time because there was no interaction between the pilot and the vessel's personnel. As there was no BRM and no passage plan known to all the members of the navigation team, the vessel's personnel were unable to analyse the cues quickly and effectively, to seek clarification from the pilot and/or recognize pilot error at an early stage and effect timely remedial measures to ensure safe transit. All relevant BRM elements were not applied throughout the passage and communication between the pilot and the navigational personnel was less than optimal. A passage plan had not been discussed between the pilot and the vessel's personnel. The vessel's personnel used a traditional method of navigation that did not allow for close monitoring of the vessel's progress. The vessel's personnel were unable to analyse the conduct of the vessel quickly and effectively. Although the pilot acquired radar and visual cues that the vessel was south of mid-channel, he turned his attention to a buoy. The ergonomics of the vessel's conventional bridge design, as compared to an integrated bridge system, are less conducive to easy communication between the members of the bridge navigation team. The pilot relied on a buoy to make a course alteration and mistook a piece of ice for spar buoy Q50. The vessel's personnel did not advise that the vessel was south of mid-channel. The pilot was perceptually confused, and allowed the vessel to leave the channel. The vessel struck a shoal on the edge of the channel, at full speed.Findings All relevant BRM elements were not applied throughout the passage and communication between the pilot and the navigational personnel was less than optimal. A passage plan had not been discussed between the pilot and the vessel's personnel. The vessel's personnel used a traditional method of navigation that did not allow for close monitoring of the vessel's progress. The vessel's personnel were unable to analyse the conduct of the vessel quickly and effectively. Although the pilot acquired radar and visual cues that the vessel was south of mid-channel, he turned his attention to a buoy. The ergonomics of the vessel's conventional bridge design, as compared to an integrated bridge system, are less conducive to easy communication between the members of the bridge navigation team. The pilot relied on a buoy to make a course alteration and mistook a piece of ice for spar buoy Q50. The vessel's personnel did not advise that the vessel was south of mid-channel. The pilot was perceptually confused, and allowed the vessel to leave the channel. The vessel struck a shoal on the edge of the channel, at full speed. The striking of the IRVING ARCTIC on a shoal on the edge of the channel can be attributed to both the pilot's misinterpretation of a visual cue and the vessel's navigation personnel having not effectively monitored the conduct of the vessel. The pilot placed emphasis on what he believed to be a spar buoy, to the point of disregarding other visual and radar cues. The pilot became perceptually confused before realizing his error. Communication between the vessel's navigating personnel and the pilot was less than optimal. The navigation techniques used on board were such that the vessel's personnel did not correct the navigation error in time to prevent the vessel from leaving the channel. The vessel struck a shoal before the pilot could bring her back to the middle of the channel.Causes and Contributing Factors The striking of the IRVING ARCTIC on a shoal on the edge of the channel can be attributed to both the pilot's misinterpretation of a visual cue and the vessel's navigation personnel having not effectively monitored the conduct of the vessel. The pilot placed emphasis on what he believed to be a spar buoy, to the point of disregarding other visual and radar cues. The pilot became perceptually confused before realizing his error. Communication between the vessel's navigating personnel and the pilot was less than optimal. The navigation techniques used on board were such that the vessel's personnel did not correct the navigation error in time to prevent the vessel from leaving the channel. The vessel struck a shoal before the pilot could bring her back to the middle of the channel. In July 1997, a few months after this occurrence, a task force was created to develop a BRM training program. The task force--with representatives of shipowners, maritime training schools, pilotage authorities, and mariners' and ship officers' unions--developed course content and set instructor qualifications, course length, enrolment numbers and certification criteria.Safety Action In July 1997, a few months after this occurrence, a task force was created to develop a BRM training program. The task force--with representatives of shipowners, maritime training schools, pilotage authorities, and mariners' and ship officers' unions--developed course content and set instructor qualifications, course length, enrolment numbers and certification criteria.