The aircraft became airborne near the departure end of the runway and remained at treetop level until disappearing from view. Although the exact flight profile is not known, the state of the wreckage and the length of the wreckage trail indicate that the aircraft struck the ground in controlled flight at a relatively low vertical speed. No discrepancies were found with the aircraft or engines that would have contributed to this occurrence. Runway22 at Gander is 10500 feet long, paved, and with no slope indicated. The departure path is over flat terrain. Even in an overloaded condition, the aircraft had ample runway to accelerate to flying speed. After lift-off, the pilot would have been able to keep the aircraft in ground effect over the runway and over the terrain off the end of the runway until the aircraft accelerated and was able to climb out. Radar data show that, once established in the climb with the gear and flaps up, the aircraft was able to maintain an ascent of 500feet per minute. The successful take-off from Gander and the anticipated weight reduction from fuel burned during the flight and from the passenger drop-off at Charlottetown might have reassured the pilot that it was safe to continue to Sango Bay. The first take-off attempt at Charlottetown was up slope, and the pilot likely had an early indication that the aircraft was not going to lift off in the runway length available. On the second take-off attempt, the pilot did not stop to run up the engines to take-off power before starting the take-off roll; as a result, the aircraft's acceleration distance increased. The downslope of the runway might have influenced the pilot's belief that the aircraft would be able to reach a safe flying speed in the runway length available. Factors that probably detracted from aircraft performance were as follows: the overweight condition of the aircraft, improper short field take-off technique, lift-off before reaching sufficient flying speed, turbulence on the lee side of the hilly terrain causing some sink, and improper execution of the best angle of climb speed. Although an analysis of aircraft performance has shown that the aircraft should have been capable of out climbing the rising terrain, the aircraft would have to be flown as close as possible to the best angle of climb speed. In this instance, the aircraft was forced into the air and was near tree top level immediately after lift-off, near the stall speed, and facing rising terrain. This left the pilot with little or no performance margin to increase speed and establish a positive rate of climb, a situation which was exacerbated by the overweight condition and the descending air. The intermittent sounding of the stall warning horn from immediately after take-off until impact indicates that the aircraft was operating at or near the stall speed throughout the flight.Analysis The aircraft became airborne near the departure end of the runway and remained at treetop level until disappearing from view. Although the exact flight profile is not known, the state of the wreckage and the length of the wreckage trail indicate that the aircraft struck the ground in controlled flight at a relatively low vertical speed. No discrepancies were found with the aircraft or engines that would have contributed to this occurrence. Runway22 at Gander is 10500 feet long, paved, and with no slope indicated. The departure path is over flat terrain. Even in an overloaded condition, the aircraft had ample runway to accelerate to flying speed. After lift-off, the pilot would have been able to keep the aircraft in ground effect over the runway and over the terrain off the end of the runway until the aircraft accelerated and was able to climb out. Radar data show that, once established in the climb with the gear and flaps up, the aircraft was able to maintain an ascent of 500feet per minute. The successful take-off from Gander and the anticipated weight reduction from fuel burned during the flight and from the passenger drop-off at Charlottetown might have reassured the pilot that it was safe to continue to Sango Bay. The first take-off attempt at Charlottetown was up slope, and the pilot likely had an early indication that the aircraft was not going to lift off in the runway length available. On the second take-off attempt, the pilot did not stop to run up the engines to take-off power before starting the take-off roll; as a result, the aircraft's acceleration distance increased. The downslope of the runway might have influenced the pilot's belief that the aircraft would be able to reach a safe flying speed in the runway length available. Factors that probably detracted from aircraft performance were as follows: the overweight condition of the aircraft, improper short field take-off technique, lift-off before reaching sufficient flying speed, turbulence on the lee side of the hilly terrain causing some sink, and improper execution of the best angle of climb speed. Although an analysis of aircraft performance has shown that the aircraft should have been capable of out climbing the rising terrain, the aircraft would have to be flown as close as possible to the best angle of climb speed. In this instance, the aircraft was forced into the air and was near tree top level immediately after lift-off, near the stall speed, and facing rising terrain. This left the pilot with little or no performance margin to increase speed and establish a positive rate of climb, a situation which was exacerbated by the overweight condition and the descending air. The intermittent sounding of the stall warning horn from immediately after take-off until impact indicates that the aircraft was operating at or near the stall speed throughout the flight. The aircraft was over the maximum allowable take-off weight throughout its journey, reducing aircraft performance: the pilot apparently did not complete weight and balance calculations for either of the flights. The pilot did not use the proper short field take-off technique, and the aircraft was forced into the air before reaching sufficient flying speed. The best angle of climb speed was not attained. The unsecured cargo, some of which was found on top of the back of the rear passenger seat, most probably contributed to the severity of the injuries to the passenger in this seat.Findings as to Causes and Contributing Factors The aircraft was over the maximum allowable take-off weight throughout its journey, reducing aircraft performance: the pilot apparently did not complete weight and balance calculations for either of the flights. The pilot did not use the proper short field take-off technique, and the aircraft was forced into the air before reaching sufficient flying speed. The best angle of climb speed was not attained. The unsecured cargo, some of which was found on top of the back of the rear passenger seat, most probably contributed to the severity of the injuries to the passenger in this seat. The forerunner to the TSB, the Canadian Aviation Safety Board (CASB), issued three recommendations in1985 pertaining to aircraft operating beyond weight and balance limitations (CASB 85-01, 85-02, and 85-25). Transport Canada has also long recognized this problem and has taken regulatory, enforcement, and promotional measures to reduce the frequency of aircraft operating beyond their weight and balance limitations. The disregard for safety whereby pilots continue to operate aircraft over the maximum allowable weight limitation remains a concern. The TSB sent an occurrence bulletin to Transport Canada about this occurrence and information about another fatal occurrence (A01A0022) involving an overweight Piper Comanche departing from St.John's, Newfoundland and Labrador, on 13March2001. This report concludes the TSB's investigation into this occurrence. Consequently, the Board authorized the release of this report on 01May2003. 1.All times are Newfoundland daylight time (Coordinated Universal Time minus two and one-half hours).Safety Action The forerunner to the TSB, the Canadian Aviation Safety Board (CASB), issued three recommendations in1985 pertaining to aircraft operating beyond weight and balance limitations (CASB 85-01, 85-02, and 85-25). Transport Canada has also long recognized this problem and has taken regulatory, enforcement, and promotional measures to reduce the frequency of aircraft operating beyond their weight and balance limitations. The disregard for safety whereby pilots continue to operate aircraft over the maximum allowable weight limitation remains a concern. The TSB sent an occurrence bulletin to Transport Canada about this occurrence and information about another fatal occurrence (A01A0022) involving an overweight Piper Comanche departing from St.John's, Newfoundland and Labrador, on 13March2001. This report concludes the TSB's investigation into this occurrence. Consequently, the Board authorized the release of this report on 01May2003. 1.All times are Newfoundland daylight time (Coordinated Universal Time minus two and one-half hours).