2.0 Analysis 2.1 General This analysis focuses on the three major components that affect safe vessel operation in Canadian pilotage waters: BRM and BRM-related issues and fatigue-related issues. 2.2 Bridge Resource Management (BRM) Compulsory pilotage areas have been established by pilotage authorities to ensure safe and efficient vessel navigation in Canadian waters where local knowledge is essential. Ships' officers who possess such local knowledge and meet the criteria set out in the Pilotage Act and corresponding regulations are certified to conduct pilotage on their vessels. Navigation in confined pilotage waters is mentally demanding. Hence, effective team work__which includes good communication, timely input, and cooperation of all bridge team members__is essential for the success of a mission. Each officer was qualified to pilot the ENERCHEM REFINER for this sector of the Seaway. As such, each was capable of meaningfully contributing to the safe navigation of the vessel. However, as the division of responsibility was not clearly defined, each officer assumed that the other had total control of the situation. Prior to the occurrence, each officer was engrossed in his respective task, the 2/O in identifying the leading markers ahead and the 3/O in verifying the positions of floating aids. Despite reduced visibility and difficulty in identifying range lights, the vessel's speed was not reduced. Both lost track of time and, by the time both realized that the vessel had overshot the alter-course position, it was too late. Despite hard-to-port helm and an engine movement, the vessel grounded in the vicinity of buoy D-57, some 0.75 miles beyond the intended alter-course position. Positions were plotted infrequently on the chart and the vessel's progress was not closely monitored. Communication between the 2/O and the 3/O was minimal and imprecise, and each was concentrating on a secondary priority as the vessel approached the alter-course position. Consequently, both lost situational awareness. It was not until some three minutes later that the error was realized and action taken. The use of sound navigational practices to monitor the vessel's progress (e.g. communication, sharing of information, distribution of workload, determining navigational priorities, close monitoring of the vessel's progress by deploying techniques such as parallel indexing) would have helped both the 2/O and the 3/O to realize the error in ample time to take remedial measures. In this instance, although the wheelsman was aware that the vessel had reached and passed the alter-course position, he did not bring this to the attention of the bridge team because he believed that navigation, including course alteration, was the officers' responsibility. In doing so, he did not recognize that he was part of the bridge team and did not take all reasonable and necessary precautions to ensure that vessel safety was not compromised. 2.3 BRM Training and ISM Certification According to ISM certification criteria, the onus is upon owners to ensure that the crew hired is appropriately certificated and trained and capable of executing normal operations or emergency-related tasks safely. In this case, certification had been issued at the end of the 1997 season, and the vessel was laid up for the winter months. According to the company's training plan, the master and the chief officer were to proceed with BRM and ECS training a week prior to the start of the 1998 season. However, the unforeseen charter of the vessel resulted in the company hiring a replacement master and chief officer, neither of whom was familiar with BRM concepts or ECS use. 2.4 Lack of BRM Training Close monitoring of a vessel's movement is critical for navigating safely in confined waters. Time is of the essence when initiating and executing manoeuvres. Therefore, it is essential that each bridge team member fully understands his/her role and ensures that any information that can favourably or adversely affect vessel navigation be communicated to the person in charge of pilotage/navigation. The non-implementation of BRM precepts and the lack of effective communication or exchange of information have been identified as contributing factors in a number of occurrences.[7] Concerned with the fact that a lack of BRM training among ships' officers increases the probability of accidents in confined Canadian pilotage waters, the Board recommended to Transport Canada (TC) that BRM training be made a pre-requisite to the issuance of new competency certificates as well as to that of continued proficiency certificates.[8] In response to this recommendation, Transport Canada Marine Safety (TCMS), in consultation with industry representatives, has finalized the BRM training syllabus. Some Canadian marine training institutions now offer this training program. Currently, there is no plan to make this course mandatory. However, TCMS encourages shipping companies to take the initiative in implementing BRM concepts on their vessels. In this instance, the lack of communication between the two officers resulted in each assuming that the other was aware of the vessel approaching an alter-course position, and neither communicated this information to the other. Although the wheelsman, who is considered to be part of the BRM team, was aware that no action had been initiated to alter the vessel's course, he did not communicate this concern to the 2/O, the bridge team member in charge of navigation. In doing so, BRM principles were not implemented effectively. By not receiving BRM training, the crew lacked appreciation for BRM, and information vital to the vessel's safety was not communicated. 2.5 Company Hiring Practices and Training Although the company's Management Representative/Designated Person was responsible for monitoring ISM compliance, he was not consulted by the Operations Manager prior to the hiring of the relief crew (which was appropriately trained and certificated). In addition, company policy was in conflict with ISM provisions in that the 2/O and 3/O assigned to the vessel were not familiar with all of the equipment or its use. Furthermore, they were unaware of the equipment's advantages and limitations. Thus, safe vessel operation was adversely affected. The safety of vessels operating in narrow and confined waters is enhanced by the use of modern, up-to-date technology. However, training is critical to ensure that the user is fully aware of the effectiveness of the system in order to reap the optimal benefits it offers while appreciating the limitations it imposes. Such is the case with the ECS. The more one is familiar with the system, the less time one needs to process essential information. This would allow for assimilating information orderly and quickly and for leaving time to deal with other navigational cues and issues (e.g. visual navigation techniques, course alterations, and collision avoidance measures) and other bridge duties (e.g. communications and record keeping). 2.6 ECS and Ergonomics An ECS can improve marine safety by providing mariners with real-time information for navigating vessels. When used effectively, the system can improve overall safety. Using an ECS in conjunction with conventional navigation methods can reduce the navigation workload. The major factor in this reduction in workload is the automation of position-fixing, which allows for continuous monitoring of the vessel's progress. However, in this instance, the benefits of the system were not reaped because the crew had not received the appropriate training and was unfamiliar with it. On this vessel, the ECS was mounted on a swivelling base, and its console was positioned behind the radar instead of beside it. Had the ECS been positioned ahead of the navigator in the direction of the vessel travel, visual references could have been maintained and the radar could have been accessible for traffic and target monitoring. At the time of the occurrence, the radar overlay feature on the ECS was not available for use. Since the ECS was positioned behind the radar, the mariner was required to move back and forth between the two stations. Ergonomic guidelines highlight the importance of display positioning. Frequently-used primary displays, such as the ECS and radar, should be located within the operator's easily readable field of view. When necessary, infrequently-used displays may be located outside the operator's easily readable field of view.[9] Since a vessel may be navigated using visual and radar information, the ECS could not be used to its full advantage because its display was not grouped together with other primary displays, so that the display is facing the front of the wheelhouse. If the ECS is rotated 180 degrees so that it is facing the rear of the bridge, the orientation of the chart is reversed from that of the vessel's travel. The problems associated with transforming map information from one orientation to another has been shown to be troublesome and time consuming and provides a source for error.[10] When fitting vessels with an ECS, ergonomic principles should be employed whenever possible in order to reap all of the system's benefits. 2.7 Fatigue-Related Issues Fatigue is a physiological state characterized by impaired performance and diminished alertness. Causes of fatigue include insufficient and/or poor quality of sleep, as well as disruption of circadian rhythm. These causes can be attributed to irregular work schedules, extended duty, or altered work/rest schedules, and have been identified as contributory factors in many industrial accidents.[11] Figure 2 represents the 2/O's sleep history and accumulated sleep debt prior to the occurrence, based on the information provided by him. A rough calculation of sleep debt can be determined by allowing two hours of credit for every hour of sleep per day, up to a maximum credit of 16 hours, and one hour of debit for every hour awake. The sleep credit diagram depicts an overall downward trend in the 2/O's sleep credits over the three days prior to the occurrence. Figure 2 - Sleep History and Accumulared Sleep Debt Though fatigue is not necessary to explain the actions of the 2/O, his actions are consistent with errors involving decreased concentration and memory typical of the fatigued state. While preparing for the turn in reduced visibility, the 2/O's attention had shifted to identifying the next set of ranges, the Butternut Ranges. Having fulfilled his immediate goal of locating the ranges, the 2/O did not revert to the immediate task at hand, which was to execute a course alteration at buoy D-63. He continued with other duties instead, and it was not until the vessel had passed D-59 to port that he realized that the vessel had overshot the turning point. 3.0 Conclusions 3.1 Findings as to Causes and Contributing Factors Neither the navigating officer performing pilotage duties nor the officer assisting him maintained situational awareness which caused a delay in making a course alteration and, thus, the vessel left the channel and ran aground. The second navigation officer was concentrating on confirming the position of newly laid buoys by radar, consequently the vessel's position was not plotted with sufficient frequency to adequately warn of the approach of the alter-course point. The officers had worked together often and had developed an informal approach to the division of bridge responsibilities between pilotage and positioning. 3.2 Findings as to Risk The need for a proper division of responsibilities, effective team work, and communications by all the personnel working on the bridge had not been adequately reinforced through the provision of Bridge Resource Management (BRM) training. The vessel was pressed into service a week earlier than expected from the winter lay-up for an unscheduled charter when the regular master and chief officer were on scheduled training. The replacement master and chief officer, neither of whom was familiar with BRM concepts, ECS use, or the company's SMS, were hired by the Operations Manager without consulting the company's ISM management level Designated Person, whose responsibility it was to ensure that the crew was ISM compliant. 3.3 Other Findings The work/rest schedule of the second officer would indicate the possible development of sleep debt which could have resulted in decreased concentration on the tasks at hand. 4.0 Safety Action 4.1 Action Taken The ECS manufacturer reviewed some of the software features to ensure proper recording of a vessel's tracks and courses. The manufacturer also ensured synchronization of the GPS and the computer software. The manufacturer of the ECS in use on board the ENERCHEM REFINER at the time of the occurrence increased the recording time from 12 to 72 hours, over the 12-hour requirement called for in the IMO standards for ECDIS. 4.2 Safety Concern In this occurrence two safety defences which could have trapped this error failed: 1) communication between the helmsman and the 2/O (i.e. BRM); and 2) the use of ECDIS, with its range of predictive features and alarms. Firstly, while aware that the vessel had reached and passed the alter-course position, the wheelsman did not bring this to the attention of the other bridge team members because he believed navigation, including course alteration, was the officers' responsibility. Further, the officers had an informal working relationship with regard to pilotage and plotting. The crew members had not benefitted from a BRM course, which has at its core the improvement of communication between team members of all ranks. Secondly, this occurrence highlights the importance of ergonomic and training considerations associated with the introduction of new technology such as ECDIS. These considerations will allow crews to take full advantage of the technology while taking into account the limitations present in the system. The carriage of ECDIS is not currently mandatory for all vessels. Meanwhile this technology and its use is on the increase within the industry to further navigation safety and reduce navigation workload. The importance of training mariners in the use of ECDIS has been recognized internationally. The IMO has prepared a model course for ECDIS/ECS with the purpose of assisting maritime training institutes and their teaching staff in organizing and introducing new training courses for ECDIS. To date in Canada, there is no requirement for formal training in the use of ECDIS/ECS. The Board has commented on BRM training in the past and will continue to monitor the effectiveness of crew coordination and communication between bridge team members. Further, the Board is concerned about the efficiency of application of procedures involving the introduction, integration, and use of new technology on board vessels and will monitor this concern in future investigations.