2.0 Analysis 2.1 Introduction The flight crew was qualified for the flight, and the aircraft and on-board medical equipment met TC requirements. Both pilots were IFR rated. The analysis will consider the in-flight decision-making process and company flight crew training. 2.2 Crew Resource Management Both pilots had received some CRM or PDM training; the captain attended a TC PDM training session about the time he started to fly the King Air C90, and the first officer received some CRM training at Mount Royal College while preparing for a professional career as a pilot. When not assigned to the King Air C90, both pilots spent time in single-pilot cockpits during the week of duty time which immediately follows their King Air C90 air ambulance duty schedule. During the flight to and from Red Earth, the pilots discussed options for alternate airports should the weather at Slave Lake deteriorate prior to their return. On the return flight, the crew received a report from the Edmonton FSS based on the AWOS at Slave Lake. Although a low ceiling and low visibility were being reported, the crew did not alter their plans for a VFR approach. As well, they did not brief for the eventuality of a missed approach; they believed that the AWOS report was faulty because they could see the lights of Slave Lake through the undercast and they thought that missed approach briefings were required only for IFR flight. By not briefing for a missed approach, the crew did not have a plan should a missed approach be necessary. When the aircraft entered the undercast mist and haze at about 1000 feet agl, the crew continued the descent even though they had lost sight of all outside visual references and were now operating in IMC, counter to regulatory requirements. During this time, the first officer was flying and attempting to gain visual contact by looking cross-cockpit, and the captain was attempting to provide verbal guidance for the approach. Once the first officer realized that a landing could not be made, the captain took control and turned left over the lake and away from the lights of the town. Thus, he placed himself into an area which would have few ground lights or references, even in clear air. Additionally, the captain initiated a climb back into IMC and would, therefore, be flying with reference only to instruments. By entering cloud and not changing to instrument flight, the crew lost situational awareness. This became evident again near the termination of the flight when both pilots heard the radio altimeter warning and neither reacted in an appropriate manner. In the absence of a stated plan and intra-cockpit communications, flying the aircraft effectively became a one-pilot operation. This may be due, in part, to the mix of single- and two-crew cockpit operational environments that the pilots regularly work in, and their limited training in crew coordination; i.e. the crews are placed into a two-crew cockpit without the benefit of training specific to their duties as captain or co-pilot (first officer). Without the benefit of such training, the crew is less apt to work effectively as a team. 2.3 Training The pilots were not provided training specific to the duties of the pilot or co-pilot responsibilities in a two-crew environment by the company. Although the passive study training sessions were supplemented by occasional in-house discussions, these discussions were not reinforced with in-flight training or checks of the paired pilots operating as a crew. In the absence of flight simulator training, in-flight training or check rides would serve to reinforce previous CRM or PDM training and informal in-house discussions. Training and in-flight or route checks are essential elements in developing and monitoring flight crew skills. Although the ground and flight training met the intent of CAR 703, the training did not ensure that adequate defences were in place which would ensure that the flight crew worked as a team during flight operations. 3.0 Conclusions 3.1 Findings The flight crew was certified and qualified in accordance with existing regulations. The stretcher, as installed in the occurrence aircraft, met FAA STC requirements. The air ambulance flight was flown under VFR; however, the Slave Lake AWOS reported the weather as below VFR limits. The flight crew did not conduct a take-off or pre-landing safety briefing for the passengers and did not ensure that the passengers were secured prior to the approach to Slave Lake airport. One of the medical attendants was not seated and secured during the approach and subsequent collision with the lake. The available stretcher shoulder straps were not used to secure the patient during the flight. The flight crew did not conduct an approach briefing prior to the approach to the Slave Lake airport; they were unaware of a regulatory requirement for such a briefing. The Company Operations Manual did not incorporate a VFR approach briefing as required by regulations. During the approach to the Slave Lake airport, the first officer was unable to align the aircraft with the runway and passed control of the aircraft to the captain. The captain initiated an overshoot. During the overshoot at Slave Lake airport, the crew did not communicate their intentions with each other, and the aircraft entered IMC. The overshoot was conducted over the lake where there were no ground lights or other visual references. While manoeuvring for another approach, the aircraft descended and the radio altimeter activated. Although aware of the altitude warning, the pilots did not take action to arrest the descent or communicate their observation with each other. When the aircraft contacted the frozen surface of the lake, the patient was ejected from the stretcher and an unsecured passenger was thrown into the console as the aircraft decelerated. 3.2 Causes and Contributing Factors During the overshoot, the aircraft entered cloud and the flight crew lost situational awareness, resulting in the pilot unintentionally flying the aircraft into the ice surface of the lake. Contributing to the loss of situational awareness were the lack of planning and briefing for the approach, the breakdown in crew coordination during the overshoot, and inadequate attention paid to the flight instruments. 4.0 Safety Action Taken 4.1 Alberta Health On 26 February 1999, the Emergency Health Services Branch of Alberta Health issued a letter to all air ambulance medical crews with copies to all contracted air carriers in which the following was stated: Medical crews are reminded that the LifePort AeroSled system must be correctly used when transporting a stretcher-bound patient by air ambulance. This device serves the vital function of securing the patient during the flight. In order to be effective, all straps, including the shoulder straps, must be fastened during transport. Medical crews are also reminded to follow appropriate cabin safety procedures to ensure their own safety. Seat-belts must be buckled during take off and landing, and until such time that the pilot advises that it is safe to move around the cabin. 4.2 Slave Air (1988) Ltd. Slave Air (1988) Ltd. has replaced its King Air C90 with a King Air 100 aircraft. Conversion training was held at a west coast training facility. Within the company, emphasis is being placed on standard operating procedures (SOPs) for VFR and IFR operations with ad hoc in-flight checks by the chief pilot to provide a mechanism for the company to monitor the flight crew. The company has amended the SOPs, King Air 100, Normal Procedures, to include VFR Approach Briefing requirements. In addition, the company is instituting group ground recurrent training. Since the occurrence, one King Air crew has attended CRM training; others ill be scheduled on future courses.