
June 2006
Monica Divitini, IDI
Babak A. Farshchian, Telenor FoU

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

UbiCollab: A Service Architecture for
Supporting Ubiquitous Collaboration

Andreas Larsen Brustad
Christian Hågensen Mosveen

Problem Description
UbiCollab (short for Ubiquitous Collaboration) is a platform for supporting collaboration using
ubiquitous and mobile technologies.

UbiCollab has been developed through iterative design and testing in various projects. Based on
the evaluation of the existing platform done during an autumn project, this task will:

1) propose a new architecture based on newly emerged basic technologies with special focus on
OSGi (Open Service Gateway initiative), and

2) design and develop selected parts of the new architecture as a proof of concept.

Assignment given: 20. January 2006
Supervisor: Monica Divitini, IDI

Abstract

Ubiquitous computing integrates computation into the environment, and en-
ables users to move around and interact with computers more naturally than
they currently do. This helps to address some of the traditional challenges of
computer supported collaborative work (CSCW), as users are not bound to a
desk and a personal computer, and are not forced to stay in a static environ-
ment where ad-hoc collaboration is impossible. UbiCollab is a platform for
the support of ubiquitous collaboration, and it provides such functionality as
context-awareness and automatic device discovery. The vision of UbiCollab is to
be both flexible and extendible, so that it can provide ubiquitous collaboration
support for many different existing and future domains and settings. A previous
study has compiled a set of requirements that needs to be fulfilled in order for
a platform to reach this vision. This work re-designs the architecture and the
platform components of UbiCollab so that they conform to these requirements.
OSGi is chosen as the underlying architecture, supporting the requirements of
flexibility and extendibility, and a suitable OSGi framework for the platform is
chosen. The platform components and their application programming interfaces
(APIs) are designed, and a selected number of these are implemented with full
or partial functionality. A testbed of applications and external services is used
throughout development to test the flexibility and functionality of the platform
and the completeness of the APIs.

iii

iv

Preface

This report documents the work done as a Master’s thesis in computer science
at the Department of Computer and Information Science (IDI) at the Norwe-
gian University of Science and Technology (NTNU) in Trondheim. The thesis
is a contribution to the UbiCollab platform, and is performed in the spring of
2006. The project assignment was given by IDI and Telenor Research and De-
velopment, and is a continuation of previous work on the same topic.

The report contains work on the architectural analysis and re-design of UbiCol-
lab, forming the basis for the new UbiCollab platform. Following is the task
description:

UbiCollab (short for Ubiquitous Collaboration) is a platform for support-
ing collaboration using ubiquitous and mobile technologies.

UbiCollab has been developed through iterative design and testing in vari-
ous projects. Based on the evaluation of the existing platform done during
an autumn project, this task will:

1) propose a new architecture based on newly emerged basic technologies
with special focus on OSGi (Open Service Gateway initiative), and

2) design and develop selected parts of the new architecture as a proof of

concept.

We wish to thank our project supervisors, Professor Dr. Monica Divitini and
Babak A. Farshchian for insightful input and ideas, along with valuable feed-
back on the research and development, and the writing of the report.

Trondheim, June 16, 2006.

Christian H. Mosveen Andreas Brustad

v

vi

Contents

1 Introduction 1
1.1 Motivation, goals and contributions 2

1.1.1 General motivation . 2
1.1.2 Project goals . 3
1.1.3 Contributions . 4

1.2 Research method . 5
1.3 Report outline . 6

2 Problem elaboration 9
2.1 Ubiquitous collaboration . 9

2.1.1 Collaboration technology and ubiquitous computing . . . 9
2.1.2 Challenges of combining the two domains 10

2.2 The UbiCollab platform . 11
2.2.1 Challenges in design and evaluation of UbiCollab 12

2.3 Platform requirements . 12
2.3.1 Presence management . 13
2.3.2 Resource collection . 13
2.3.3 Positioning . 14
2.3.4 Location management . 14
2.3.5 Privacy . 14
2.3.6 Security . 14
2.3.7 Persistent data storage . 14
2.3.8 User profile management 15
2.3.9 Asynchronous communication support 15
2.3.10 Scalability . 15
2.3.11 Platform extendibility . 15
2.3.12 End-user programming . 15
2.3.13 Device operating system independency 16
2.3.14 Communication channel independency 16

2.4 Research questions . 16

vii

viii CONTENTS

3 Underlying architecture 19
3.1 Architecture introduction . 19

3.1.1 Platform flexibility and dynamicity 19
3.1.2 Platform essentials . 20

3.2 OSGi introduction . 20
3.2.1 OSGi’s layered architecture 22
3.2.2 Specification version differences 23

3.3 OSGi on limited devices . 23
3.4 OSGi frameworks . 24

3.4.1 Knopflerfish . 24
3.4.2 Oscar . 24
3.4.3 mBedded Server . 25
3.4.4 Equinox . 25
3.4.5 SMF . 25
3.4.6 Ubiserv . 25
3.4.7 Jadabs . 25
3.4.8 Osxa . 26

3.5 OSGi in UbiCollab . 26
3.5.1 Benefits of OSGi for UbiCollab 27
3.5.2 Possible issues with OSGi for UbiCollab 27
3.5.3 Deployment discussion . 27
3.5.4 Platform-internal communication 28
3.5.5 OSGi framework selection 29

4 The UbiCollab platform 31
4.1 Introduction to the new platform 31

4.1.1 Platform responsibilities 31
4.1.2 Service model . 33

4.2 Platform services . 33
4.2.1 Collaboration service . 33
4.2.2 Discovery service . 35
4.2.3 Identity manager service 36
4.2.4 Context service . 37
4.2.5 Positioning service . 38
4.2.6 Location service . 39
4.2.7 Presence service . 40
4.2.8 Data storage service . 40

5 UbiCollab implementation 43
5.1 Collaboration service . 43

5.1.1 API . 43
5.2 Discovery service . 44

5.2.1 UPnP Discovery plug-in 45
5.2.2 API . 46

5.3 Pocket discovery service . 47
5.3.1 API . 49

CONTENTS ix

5.4 Location service . 49
5.4.1 API . 50

5.5 Positioning service . 51
5.5.1 API . 54
5.5.2 GPS Positioning plug-in 54
5.5.3 GSM Positioning plug-in 55

5.6 Data storage service . 56
5.6.1 Plug-in design . 57
5.6.2 API . 58

5.7 Context service . 58
5.7.1 API . 59

5.8 Identity manager service . 60
5.8.1 API . 60

5.9 Presence service . 61

6 Platform demonstration 63
6.1 Testbed overview . 63
6.2 Demo applications . 65

6.2.1 UbiCollaborator . 65
6.2.2 Service registry . 66
6.2.3 UPnP Light control . 67
6.2.4 Locator . 68
6.2.5 Positioning Service Map 69
6.2.6 Slideshow Control . 70
6.2.7 Data storage Service Tester 72
6.2.8 Login Service . 72
6.2.9 RFID Tag Writer . 73

6.3 Platform tests . 73
6.3.1 UbiCollaborator . 73
6.3.2 Service registry . 74
6.3.3 UPnP Light control . 75
6.3.4 Locator . 75
6.3.5 Slideshow control . 76
6.3.6 Data Storage Service Tester 77
6.3.7 Login Service . 78

6.4 Practical experiences . 78
6.4.1 Memory handling . 79
6.4.2 Java . 79
6.4.3 OSGi . 79
6.4.4 Services on small and constrained devices 80

7 Platform evaluation 81
7.1 Analysis with regards to requirements 81

7.1.1 Presence management . 81
7.1.2 Resource collection . 81
7.1.3 Positioning . 82

x CONTENTS

7.1.4 Location management . 82
7.1.5 Privacy . 83
7.1.6 Security . 83
7.1.7 Persistent data storage . 83
7.1.8 User profile management 84
7.1.9 Asynchronous communication support 84
7.1.10 Scalability . 84
7.1.11 Platform extendibility . 84
7.1.12 End-user programming . 85
7.1.13 Device operating system independency 85
7.1.14 Communication channel independency 85

7.2 Comparison to evaluation of old UbiCollab 86
7.3 Evaluation with regards to testbed 88

7.3.1 Programming language independence 88
7.3.2 Device and operating system independence 89
7.3.3 Collaboration instances 89
7.3.4 Collaboration support . 89
7.3.5 Usage of OSGi . 89
7.3.6 Three-tier architecture . 89
7.3.7 Combining the effort of several services 90
7.3.8 Resource collection . 90

8 Conclusions 91
8.1 Contributions . 91
8.2 Evaluation . 92
8.3 Further work . 94

A Software fixes 101
A.1 Java Communications API for Pocket PC 101
A.2 axis-osgi bundle for J9 . 101
A.3 axis-osgi bundle for Java 5.0 . 102
A.4 WSDL parsing . 102
A.5 Dynamic proxy generation . 103
A.6 Missing functionality added to J9 103

B Installation guide 105
B.1 PDA . 105

B.1.1 Install instructions . 105
B.1.2 How to start UbiCollab and the test applications 107
B.1.3 How to install new services for UbiCollab 107

B.2 PC . 107
B.2.1 Install instructions . 107
B.2.2 How to start UbiCollab 109
B.2.3 How to install new services for UbiCollab 109

List of Figures

1.1 Research method . 6

3.1 Internal platform communication 29

4.1 Collaboration instance [25] . 33
4.2 Collaboration service . 34
4.3 Discovery service . 35
4.4 Identity manager service . 36
4.5 Context service . 38
4.6 Positioning service . 39
4.7 Location service . 40
4.8 Data storage service . 41

5.1 Collaboration service API . 44
5.2 Discovery service API . 46
5.3 Pocket discovery service and Discovery service 48
5.4 Pocket discovery service API . 49
5.5 Location service API . 50
5.6 Positioning interaction . 53
5.7 Positioning service API . 54
5.8 Positioning plugin service API 55
5.9 Positioning plugin service API 56
5.10 Data storage service overview . 57
5.11 Data storage service API . 58
5.12 Context service API . 59
5.13 Identity manager service API . 60

6.1 Testbed overview . 64
6.2 UbiCollaborator . 65
6.3 Service registry . 66
6.4 UPnP Light Control . 67
6.5 Locator . 68
6.6 Positioning Service Map . 69
6.7 Slideshow Control: File . 70

xi

xii LIST OF FIGURES

6.8 Slideshow Control: Service . 71
6.9 Slideshow Control: Control . 71
6.10 Data storage Service Tester . 72
6.11 Login Service . 73

7.1 Platform communication comparison 87

List of Tables

2.1 Platform requirements . 13

3.1 OSGi frameworks . 26

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Humans have traditionally collaborated in many ways to perform tasks and
achieve goals easier. In the last few decades, this trend has also carried over
to computers, and much research has been carried out in the field of computer
supported cooperative work (CSCW) [8, 9]. Traditionally, the applied side of
this field, known as groupware (mainly a collection of tools suited for one par-
ticular type of collaboration), has been focusing on supporting tasks for office
work [3, 15]. Usually, the groupware applications have combined such work-
related features as video, audio and textual communication, document sharing,
and concurrent editing. The main problem with these applications has been
that they are very tool-centric - not transparent to the user so he or she can
focus on the real task - and that they are not useful outside the domain of office
work. Focus has recently shifted away from the traditional office environment,
and collaborative systems have now been deployed in new settings such as con-
struction sites [16] and hospitals [1].

Lately, mobile computing has become more and more popular, and is an impor-
tant step towards more flexible and ubiquitous computing. This mobility has
brought computing away from large, stationary desktop computers typically
found in offices or similar facilities, and by doing so has extended the support
to new categories of users in radically different situations [26]. The world has
also changed, so that work that was traditionally done only in the office or at
the desk now can or has to be performed while taking the train or at the café.
Additionally, it has become more common to use computation for other aspects
of life than work, for instance in devices for communication and entertainment,
and in almost any other type of electronic appliance. This should also mean
that computer supported collaboration can be moved outside of both the office
setting [16], e.g. taking part in meetings while on the train, and from the work
domain altogether, for instance entering the domain of entertainment or social
computing.

Computer supported collaboration is useful in traditional work settings with

1

2 CHAPTER 1. INTRODUCTION

fixed groups and clear, common goals, but it can also be influential in other set-
tings where the groups are not so fixed, and the users do not share a common
and pre-determined goal. Examples of such settings are for instance some cases
of open source development, support systems for nursing homes or households,
and social computing involving communication and experience sharing.

To support such a variety of different uses and usage domains, one single ap-
plication would not possibly cover every needed aspect, and a suite of different
applications would be hard to maintain and would mean much duplicated work
as most applications would share some common functionality. Instead, having a
platform that provide general functionality common to all domains, upon which
specific applications can later be built, is much more flexible.

Platforms that are intended to support such a variety of collaborative settings
and applications have to be explicitly focused on being general enough to pro-
vide the common functionality of all domains and thereby not exclude any of
them, while still being able to provide enough functionality to be of practical
use to every single one of the given domains. While platforms for collaboration
exist, there is none that satisfies this broad goal. UbiCollab was developed to
provide such a platform [6], and this work will provide an extended and re-
designed version of the platform, bringing UbiCollab nearer its vision.

This chapter introduces the project and its motivation, its goals, and the con-
tributions made by the work. It also discusses the research method used.

1.1 Motivation, goals and contributions

1.1.1 General motivation

The general motivation for this work is to assist in making support for col-
laboration more ubiquitous and available in a wider array of settings than the
traditional office domain. In this work, creating a platform for ubiquitous col-
laboration is the chosen approach for meeting these challenges. By letting the
platform deal with issues such as automatic discovery of available services, man-
agement of persistent data storage, and retrieval of context information such as
current position coordinates, application developers can focus on implement-
ing the actual functionality of the applications. A prototype of a platform for
ubiquitous collaboration, called UbiCollab, has previously been developed by
Schwarz [25] and extended by Jensen [14] and Rasmussen and Braathen [22].

In the autumn of 2005, work was done to analyze what requirements were com-
mon to a set of different collaborative scenarios, and how well existing platforms
for collaboration, including UbiCollab, fulfilled these. That work will through-
out this report be referred to as the autumn report [19].

1.1. MOTIVATION, GOALS AND CONTRIBUTIONS 3

The evaluation conducted in the autumn report allowed to point out some limi-
tations of the old version of UbiCollab with regards to these requirements. This
is particularly evident with the overall requirement of being flexible enough
to support different collaborative domains and settings, and with the non-
functional requirement of being easily extendible whenever new service interfaces
or modified functionality is needed. Additionally, the old version of UbiCollab
is lacking with regards to some of the functional requirements, such as provid-
ing possibilities for persistent data storage, discovering resources on different
types of technology, and retrieval and management of different types of context
information.

In this work, the requirements found in the autumn report, along with the
experiences with the old version of UbiCollab, are used as a starting point to
design a new and improved architecture for UbiCollab.

1.1.2 Project goals

The vision of UbiCollab is to provide a flexible and extendible platform for sup-
porting ubiquitous collaboration. Because of the flexibility, it should be possible
to use and benefit from the platform in a multitude of different settings and do-
mains. The extendibility should ensure that the platform easily adapts to new
settings and scenarios (i.e., by providing clear and purposeful service APIs),
that extra functionality is easily added to existing settings (i.e., having services
that are easy to extend with new functionality), and that the platform supports
the introduction of new and heterogeneous technologies (e.g., new resource dis-
covery or positioning mechanisms).

To accomplish this, it is of essence that the platform supports the arrangement
of several different resources, supports mobility, is applicable to several different
domains, supports collaboration in various forms, such as both synchronous and
asynchronous, co-located and distributed, provides management and awareness
of available resources, and supports people management such as privacy and
presence [25]. Some of these aspects are covered in other existing collaboration
platforms, such as the ad-hoc resource management of Gaia [13], the mobility
support of the ABC Framework [4], and the support for various collaboration
forms in Collaborator [2], but there are no platforms handling all of them.

The prototype of UbiCollab, made by Schwarz [25], is a step towards fulfilling
this vision, but it is not complete. The most critical drawback of the old version
of UbiCollab is that it is very focused on office work, and is only tested with
applications for remote and co-located meeting support. Another important
drawback is that while it was originally designed as several independent com-
ponents, these components became dependent on each other after development,
and the platform became very hard to extend with new functionality.

4 CHAPTER 1. INTRODUCTION

The goal of this work is to re-design the platform architecture of UbiCollab,
so that it conforms to the platform requirements extracted in the autumn re-
port [19]. Of highest importance is designing the platform so that it is flexible
enough to be usable and beneficial in different settings and domains, not just
office work, and that it is easily extendible whenever new service needs emerges,
or modifications to existing services has to be made.

Part of this involves investigating the adoption of OSGi, a specification for
frameworks supporting plug-in based components and their interdependencies,
as the underlying architecture of UbiCollab. A suitable OSGi framework has to
be chosen, and components forming the UbiCollab platform have to be designed.
It is of importance that these components are independent of each other, and
that they can be deployed in different subsets, or as a full set, depending on
the needed functionality in a certain setting or on the capabilities on a specific
device.

1.1.3 Contributions

This report will present the following set of contributions made by the work:

• Primary contributions

◦ Design of platform architecture

◦ Evaluation of designed platform

· With regards to platform requirements
· By testbed and demonstration experiences

◦ Specification of platform service API

◦ Working versions of selected platform components

• Secondary contributions

◦ Testbed technology experiences

◦ Testbed software instructions and fixes

Primary contributions

A discussion on how the overall requirement of platform flexibility and the non-
functional requirement of extendibility from the autumn report [19] are fulfilled
by designing UbiCollab to run on top of OSGi, and utilizing OSGi’s built-in
plug-in mechanisms and dependency handling as the bottom tier in the UbiCol-
lab architecture, is performed. Additionally, the functional requirements from
the autumn report [19] are distilled into functional blocks and designed as sep-
arate service components, forming the core services of the platform.

The designed UbiCollab platform is evaluated with regards to the platform re-
quirements extracted in the autumn report, and compared to the evaluation of

1.2. RESEARCH METHOD 5

the old version of UbiCollab. The designed UbiCollab platform is also evalu-
ated with regards to the experiences discovered when testing the platform with
several small test applications and services, and from the two platform demon-
strations.

The full platform application programming interface (API) is specified by sep-
arating the platform functionality into service components and specifying each
of these platform services’ API.

A set of selected platform services are fully developed and implemented, and
these working components form the current prototype of the re-designed Ubi-
Collab. Additionally, these components are used to assess the success of using
OSGi as the underlying architecture of UbiCollab, and as the test platform
for the different test applications and services making sure that the services’
exposed functionality is adequate. The fully implemented platform services in-
clude the Collaboration service, the Discovery service, the Positioning service,
the Location service and the Data storage service.

Secondary contributions

Practical experiences with developing for smaller devices, such as PDAs, are
discussed. This includes documentation of problems that might arise when de-
veloping for these kind of devices and suggestions on how to fix these problems.

Instructions on how to deploy and run the platform and the accompanying test
applications are given. This also includes detailed software fixes and modifica-
tions for certain parts of the testbed.

1.2 Research method

The research method for this work is driven by the design and development
of service components that are conforming to the requirements found in the
autumn report [19], and continually using the testbed to evaluate the service
these components provide. This evaluation may then uncover new functionality
the service should provide, or needed modifications on how it provides it, and
the process starts over again until the service is in accordance with the require-
ments, and the functionality tests yield positive results.

The research method can be illustrated as in Figure 1.1.

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Research method

1.3 Report outline

The rest of this report is organized in the following chapters:

2. Problem elaboration This chapter briefly discusses the challenges of
ubiquitous computing and collaboration technology, and how UbiCollab fits in
the intersection between these. It also discusses the old version of UbiCollab,
and the platform requirements extracted from the autumn report [19]. Finally,
it presents a set of research questions that this work will address.

1.3. REPORT OUTLINE 7

3. Underlying architecture This chapter defines the need for platform
flexibility and dynamicity, and introduces OSGi as an underlying architecture
for the platform to contribute in providing those aspects. It also discusses the
benefits of OSGi compared to current alternatives, and presents a list of available
OSGi frameworks. Finally, it presents the framework chosen for UbiCollab and
how an architecture with OSGi as the lower tier improves UbiCollab.

4. The UbiCollab platform This chapter discusses the new architecture
of UbiCollab, and presents the design and overall functionality of the service
components chosen to form the platform’s core services.

5. UbiCollab implementation This chapter discusses general implemen-
tation issues of UbiCollab, and then presents the implementation details of all
service components that have been developed. These details include the full ser-
vice API, and certain key points about the inner functionality. For the service
components that are not fully developed, suggestions as to how this should be
done are given.

6. Platform demonstration This chapter introduces the testbed used for
testing and evaluating the platform during and after development. It also
presents each application and service made with the intent of testing different
combinations of platform services.

7. Platform evaluation This chapter presents an evaluation of the new
UbiCollab platform with regards to the requirements found in the autumn report
[19]. It also compares the evaluation of the new platform against the evaluation
of the old one. Finally, it analyzes the experiences received when testing the
platform with the created test applications and services.

8. Conclusions This chapter concludes the report, and presents an evalu-
ation of whether, and to what degree, the work’s goals were reached. It also
discusses how the goals were reached, and analyzes any possible limitations in
the approach, execution or result. Finally, this chapter presents some thoughts
around further work that should be done on UbiCollab.

Appendices Appendix A presents a set of fixes that had to be made to differ-
ent pieces of software in order to be able to run UbiCollab on a PC and a PDA.
Appendix B presents an installation guide for UbiCollab; both for a standard
PC and for a PDA (specifically an HP iPAQ).

8 CHAPTER 1. INTRODUCTION

Chapter 2

Problem elaboration

This chapter briefly discusses the challenges of ubiquitous computing and col-
laboration technology, and how UbiCollab fits in the intersection between these.
It also discusses the old version of UbiCollab, and the platform requirements
extracted from the autumn report [19]. Finally, it presents a set of research
questions that this work will address.

2.1 Ubiquitous collaboration

2.1.1 Collaboration technology and ubiquitous computing

A unique feature of UbiCollab is the combination of the two domains; collabo-
ration technology and ubiquitous computing.

Collaboration technology

Computer supported collaborative work (CSCW) and the applied side of the
field, known as groupware, aims at using technology to enhance the collaborative
work of groups [8]. In contrast to single user applications, which are generally
used to solve a particular problem, groupware is designed to use the computer
to facilitate human interaction. Focus areas for collaboration technology does
therefore include communication, collaboration and coordination (see [19, 8] for
a more detailed description of the domain).

Ubiquitous computing

Ubiquitous computing aims at integrating technology and computational de-
vices into daily life to an extent where the devices “disappear” and users can
utilize them without having to think about how, or even notice that they are
there at all. It is claimed that ubiquitous computing is the opposite of vir-
tual reality. Whereas virtual reality invites humans into an artificial computer

9

10 CHAPTER 2. PROBLEM ELABORATION

generated world, ubiquitous computing tries to bring computers into the “real
world” [26]. This means moving away from traditional computational platforms
such as laptops, desktops and even PDAs and mobile phones, and onto devices
tailored for the particular task (see [19, 26, 17] for a more detailed description
of the field).

There are several reasons why it is beneficial to combine these two domains:

Disappearing computing Traditional groupware has introduced a number
of constraints on how collaboration is performed. Users will, for example, have
to know how to use a computer, connect to the network and start a program
in order to see whether a colleague is available for communication. This is far
from a real world scenario, where the user would simply knock on the colleague’s
office door. By combining collaboration technology with ubiquitous computing
and its vision of the “disappearing computer”, users can focus on the actual
collaboration without having to worry about the underlying technology and
how to use it [26, 24].

Mobility As collaboration can take place anywhere, computer support for it
should also be location independent. By introducing ubiquitous computing to
CSCW, such computer support can be possible not just in different locations,
but also while on the move [19].

Constantly changing environment In order to better match the real world,
one of the focus areas of ubiquitous computing is to move from a static com-
puting environment to a dynamic one. Collaboration is no exception, and takes
place in a highly dynamic environment with users logging in and out, changing
activity status, etc. Groupware can therefore be greatly enhanced by introduc-
ing concepts from ubiquitous computing.

2.1.2 Challenges of combining the two domains

As seen, there are many advantages of combining collaboration technology and
ubiquitous computing. On the other hand, combining the two domains does
also mean that the platform is faced with challenges from both domains.

Erlich [9] points out an important distinction between single user applications
and groupware. Whereas single user applications tend to be designed to support
a particular task, groupware aims at supporting the work-process of a group.
Such work processes tend to be tacit and amorphous, and are thus more difficult
to support. Erlich stresses the importance of studying local work practices and
adapting the applications to them rather than the other way around [9]. For
a platform such as UbiCollab this has serious consequences. Instead of, for in-
stance, defining a standard way of supporting online meetings, the platform will
have to support meetings the way people in the local organization are used to

2.2. THE UBICOLLAB PLATFORM 11

arrange them. This means that the platform will have to be extremely flexible,
and will have to work in a multitude of different settings and scenarios.

Deployment of groupware applications also involve serious challenges [5]. Group-
ware applications often require sophisticated infrastructure, and will normally
have to be installed in several locations at about the same time. As mentioned
in the previous section, users should be unaffected by this and should be able
to continue their daily work without having to worry about where the system
is deployed, what version of the system is currently running and how to run it
etc.

The high degree of mobility typically found in a ubiquitous environment presents
challenges as well. The need for mobility makes users dependent on wireless
communication. Designers will therefore have to address issues like seamless
handover between networks, loss of network signal, varying bandwidth, etc [10].
In addition, security and privacy issues become more critical when dealing with
wireless communication [23].

Finally, a dynamic and constantly changing environment will force designers
to deal with issues like seamless joining and leaving of uses and services, how
to make sure the system can keep running if a component fails and how to
customize content and communication techniques to the capabilities and con-
straints of the user’s device.

2.2 The UbiCollab platform

The environment in which UbiCollab is supposed to operate will be populated
with several different kinds of users working on numerous distinct devices in a
multitude of different settings and scenarios. Creating a single application ca-
pable of supporting such a variety of domains and users will be extremely hard,
if not impossible. Previous work on UbiCollab [19, 25] has therefore concluded
that the responsibilities should be shared between two different layers; the plat-
form layer and the application layer. UbiCollab makes out the platform layer,
and should focus on providing applications with commonly needed services and
resources. In this way, application designers can build their applications on top
of the UbiCollab platform and focus on the domain and device specific func-
tionality. Unfortunately, creating UbiCollab as a platform does also introduce
some new challenges, and requires some new design and evaluation techniques
compared to traditional application design and evaluation.

12 CHAPTER 2. PROBLEM ELABORATION

2.2.1 Challenges in design and evaluation of UbiCollab

As pointed out by Edwards et al. [7], there are good techniques for designing
and evaluating applications, whereas the techniques for designing and evaluat-
ing platforms intended to support these applications are much less well formed.
The problem is that it is hard to design and evaluate the features of a plat-
form without knowing about its applications and users. Trying to anticipate
the needs of all possible applications will lead to a platform that is too complex
and hard to use. With too few functions, on the other hand, the platform will
offer little value to the application designer. In both cases, the effort required
to install and understand how to use the platform could potentially exceed the
added value of using the platform, which will lead to the platform not being
used at all. For UbiCollab to become a success it is therefore crucial to carefully
select and evaluate what services and functionality to provide to the applica-
tions, to make sure the feature set of the platform is balanced.

The evaluation process is also more complex for platforms than for user-visible
applications. The overall goal for any software system is to improve the end-
user experience. However, measuring this for an infrastructure system such as
UbiCollab is complicated because end-users do not use the software directly. In
order to evaluate the framework, applications that use features of the framework
have to be developed. As stated by [7], this leads to a number of questions that
have to be answered:

• How to choose which applications to build in order to evaluate the frame-
work?

• What does the evaluation of the test-application say about the underlying
framework?

• Can we use the same evaluation-techniques to do this “indirect” evaluation
as we use for evaluating end-user applications?

2.3 Platform requirements

During the autumn of 2005, an evaluation of the first version of UbiCollab was
conducted [19]. The purpose of that project was to investigate how UbiCollab
could be improved to support collaboration in several different environments,
increase end-user experience and reduce the time and effort required to develop
and maintain collaborative ubiquitous applications. The report lists several re-
quirements that UbiCollab have to fulfill in order to accomplish its vision. These
requirements are summarized in Table 2.1. For the purpose of this thesis, the
non-functional requirements are especially important. This is due to the fact
that these requirements to a larger extent influence and define the underlying
architecture of the platform. Support for these requirements will therefore have
to be taken into consideration from day one, whereas support for the functional

2.3. PLATFORM REQUIREMENTS 13

requirements more easily can be added at later stages in the development. This
is, however, dependant on having an architecture that is easy to extend with new
functionality. Consequently, the extendibility requirement is especially impor-
tant. Platform flexibility is also highlighted as an important requirement even
though it is not explicitly mentioned. Despite the focus on the non-functional
requirements, functional requirements cannot be completely forgotten in the
initial phases of the development. Without supporting any of them it is very
hard to test whether the other requirements are met by the chosen architec-
ture. How can, for instance, the scalability of the platform be tested if the
platform does not provide any services? In fact, without support for any of the
functional requirements, there might not be any implementation at all, as the
non-functional requirements generally relate to how things are done and does
therefore not have any meaning on their own. The approach adopted in this
thesis has therefore been to focus on the non-functional requirements as well as
some of the functional ones. For the sake of completeness, all the requirements,
including those that have not been addressed in this thesis, have been summa-
rized below.

Functional Non-functional
Presence management Scalability
Resource collection Platform extendibility

Positioning End-user programming
Location management Device OS independency

Privacy Comm. channel independency
Security

Persistent data storage
User profile management

Asynchronous comm. support

Table 2.1: Platform requirements

2.3.1 Presence management

The platform should be able to store and manage presence information (whether
a user is capable of communicating) and availability information (whether a
user is willing to communicate) about the users of the system. This information
should be specific to the different communication types, so that a user for ex-
ample could be available for one type of communication while at the same time
unavailable for another type.

2.3.2 Resource collection

The platform should be capable of detecting resources that are connected to the
network. It is advantageous if the search could span several different middleware,

14 CHAPTER 2. PROBLEM ELABORATION

e.g., UPnP1, JXTA2, etc. Upon detection, these resources should be made
available in a searchable resource repository so that other users can query the
repository for resources that mach certain criteria.

2.3.3 Positioning

The platform ought to be able to determine the position of connected resources
and users. There are many available technologies for positioning for instance
GPS, GSM, WLAN and the new Galileo system. The platform should support
several such positioning mechanisms, so that it can return positioning data from
the most accurate one at all times.

2.3.4 Location management

As coordinates are not particularly user-friendly, it should be possible to return
the name or description of a location corresponding to a set of coordinates, for
example returning “Manhattan” instead of the specific latitude and longitude.
The platform will therefore have to be able to store the coordinates compro-
mising the boundary of the location zone and its name, and provide means of
testing whether a set of coordinates is contained by any of the stored zones.

2.3.5 Privacy

The users of the system should not feel like they are being monitored when using
the platform. In most cases, users should therefore be able to use the system
anonymously without having to send personal details to the platform, nor other
users.

2.3.6 Security

As UbiCollab is a multi-user system, security is a major concern. The platform
will therefore have to enforce authorization for all data and resources in the
system. However, this should not come at the expense of user experience, and
users should therefore not need to sign in more often than once per session.

2.3.7 Persistent data storage

Many applications will require persistent data storage. As some of the devices
in the system might have limited or no storage capacity, this service should
be provided by the platform. Having a common data storage space could also
benefit certain collaborative applications such as shared workspaces. To make
the system as flexible as possible, the persistent data storage service should be
platform independent and easy to extend with other features such as version
control.

1http://www.upnp.org/
2http://www.jxta.org/

2.3. PLATFORM REQUIREMENTS 15

2.3.8 User profile management

If allowed by the user’s privacy settings, the platform should store common de-
tails about its users and make this data available to other platform components
and users. This will allow applications such as address books to be created, and
will enable users to search for other users and retrieve their contact details.

2.3.9 Asynchronous communication support

Communication is essential for any collaborative system. Users should therefore
be able to send messages to each other even when the recipient is not online. This
is especially important if users are collaborating across different time zones. The
platform will therefore have to store messages on behalf of the communicating
users until the messages can be delivered. This does also improve robustness
of the system, as sending does not have to be cancelled if the recipient loses
network connection during transmission.

2.3.10 Scalability

UbiCollab will be found in a highly dynamic environment, with users and re-
sources constantly joining and leaving. It will therefore be hard to determine,
at design time, the number of users that will utilize the platform at all times.
Consequently the platform will have to scale well, so that performance is kept
at an acceptable level even when the number of active users is high. To do so,
the traffic through the platform server should be kept at a minimum, unnec-
essary network transmissions should be eliminated and the server load should
be distributed among several servers. In the cases where the user’s device has
decent processing power, some typical server-tasks could instead be handled by
the client’s device.

2.3.11 Platform extendibility

Over time, new requirements will appear, user needs will change and new stan-
dards will emerge. This will require new platform services, modifications to old
ones and cause some services to be rendered redundant. Making such changes
to the platform should be as easy as possible. If not, people will not bother to
make the necessary modifications to the platform, which will eventually result
in an outdated platform that no one will use. The fact that UbiCollab is devel-
oped incrementally does also necessitate an easily extendible platform, so that
the code clarity, etc., are not lost along the way.

2.3.12 End-user programming

Even though end-users do not interact directly with the platform, the platform
design will affect the applications built on top of it, and thereby influence the
end-user experience. Many tasks can not be fully automated, and will require
input from the user. Configuring the environment to user needs, combining

16 CHAPTER 2. PROBLEM ELABORATION

resources to get the desired effect etc. are examples of such tasks. With a large
number of services and resources in the system, and an environment where
resources join and leave constantly, this could become a technically advanced
and complex job. It is therefore essential that the platform makes these tasks
as easy and straight forward as possible.

2.3.13 Device operating system independency

Ubiquitous computing aims at customizing devices for their intended task. This
will result in a large number of distinct devices with different capabilities, con-
straints and operating systems. It is important that all of these devices can
collaborate within the system. Consequently, the platform will have to be op-
erating system independent.

2.3.14 Communication channel independency

The platform should allow users on different network types to communicate
with the platform and each other. These networks might have different char-
acteristics, such as bandwidth and addressing schemes, and the platform will
therefore have to either customize the transmitted content to the characteristics
of the actual network, or provide information so that the clients can adapt it
themselves.

The study stresses that these requirements will change over time, as new tech-
nologies, user needs and standards emerge. It is therefore essential that it is
easy to extend the platform with new services, remove outdated ones and mod-
ify existing services and components. As the platform will have to work in such
a variety of scenarios with different kinds of users and devices, the platform will
also need to be extraordinarily flexible. Finally, there are issues and challenges
relating to the extreme dynamicity of the environment that are not directly ad-
dressed by the above mentioned requirements. These include finding “backup
services” if the service in use suddenly fails, spreading services among different
peers to reduce the risk of single point failures, and adapting the platform fea-
tures to the resources and services currently found in the environment.

2.4 Research questions

The overall goal of this work is to take advantage of OSGi to improve the archi-
tecture of UbiCollab so that it conforms to the platform requirements found in
the autumn report [19], with a special focus on the requirements of extendibil-
ity and flexibility. In order to achieve this goal, it is necessary to perform
several distinct tasks. First, a new platform architecture based on OSGi has to
be designed. Second, the application programming interface (API) of the new

2.4. RESEARCH QUESTIONS 17

platform has to be given. Third, a working prototype built with the new design
has to be implemented. And finally, the new design and prototype have to be
evaluated.

Therefore, the research questions this work will address are:

• How can the platform architecture of UbiCollab be improved in order to
make the platform more flexible and easier to extend?

• How can OSGi be used to achieve this goal?

• What services and functionality will UbiCollab have to provide to appli-
cation developers through its application programming interface (API) in
order to fulfill the requirements in the autumn report [19]?

• How can a prototype of the new platform be implemented in order to most
effectively demonstrate the new platform architecture and its features?

• How should the new platform be evaluated in order to clearly establish
whether it has succeeded in reaching its goal of being a flexible and ex-
tendible platform for ubiquitous collaboration?

18 CHAPTER 2. PROBLEM ELABORATION

Chapter 3

Underlying architecture

This chapter defines the need for platform flexibility and dynamicity, and in-
troduces OSGi as an underlying architecture for the platform to contribute in
providing those aspects. It also discusses the benefits of OSGi compared to
current alternatives, and presents a list of available OSGi frameworks. Finally,
it presents the framework chosen for UbiCollab and how an architecture with
OSGi as the lower tier improves UbiCollab.

3.1 Architecture introduction

3.1.1 Platform flexibility and dynamicity

In addition to the platform requirements from the autumn report [19] presented
in Chapter 2, here follows a re-stated description of the overall platform require-
ment of flexibility and dynamicity.

Since the platform will be deployed in many different scenarios and on many
different devices, it should be able to handle a flexible and dynamic environment
where a specific feature would not be needed in a certain scenario, or where a
particular capability is not present on the platform’s device. This could for
example be a scenario where persistent data storage would not be needed, or
where a device would not be equipped with a GPS satellite receiver for posi-
tioning itself. In such settings, the platform should both be installable with a
subset of features, and installed features depending on non-present capabilities
should continue working, although with limited functionality.

To achieve this, the platform should be component-based, meaning that every
functional part of the platform should be created as a component. Then dif-
ferent deployments of the platform could include a different set of components
depending on the functionality needed. The important aspect here is to make
the components independent of each other, but able to add their functionality

19

20 CHAPTER 3. UNDERLYING ARCHITECTURE

instantly when added to a deployment.

Additionally, instead of having functionality depending on that other compo-
nents or capabilities exist on the local device, such functionality should search
for and retrieve the needed component or capability, for instance through a
remote discovery service. Both local and remote components and capabilities
should be added to this discovery service, and the most suitable one should
be returned when searched for. This would normally be a local one, if such a
component or capability exists, otherwise a remote one would be returned. An
example of this could be when an application would like to know the name of
the location of a certain coordinate. After querying the discovery service for
location services, the discovery service would return a local one if such a service
existed, otherwise it would return any of the remote location services. The ap-
plication would treat these the same way, without paying attention to whether
it was a local or remote one. The only difference would be a possibility of dif-
ferent sets of locations or different names for them depending on what location
service was returned.

3.1.2 Platform essentials

In addition to the overall requirement of platform flexibility and dynamicity,
the most important aspects when choosing what to build UbiCollab on were
the non-functional platform requirements extracted from the previous work on
UbiCollab [19]. Of these, two relate directly to the underlying architecture of
the platform; namely “Platform extendibility” and “Device operating system
independency.” For the first requirement, some sort of plug-in system would
be advantageous; so as to relieve the extension developer from touching core
platform code and only focus on using the relevant platform interfaces. The
second requirement would be met by having the platform run on its own, with
all of its components being device operating system independent, or by hav-
ing the platform run inside a container which itself is device operating system
independent. In accordance with the requirement of platform flexibility and dy-
namicity, as mentioned earlier, the platform should also be able to increase and
decrease its number of present components according to what kind of device it is
deployed on, and what capabilities that device has available. This would make
the platform more ubiquitous and dynamic, adapting to its local environment.

3.2 OSGi introduction

The OSGi Alliance was founded in 1999 to create open specifications for net-
worked delivery of managed services to local networks and devices. The speci-
fication, named the OSGi Service Platform Core Specification [20], delivers “an
open, common architecture for service providers, developers, software vendors,
gateway operators and equipment vendors to develop, deploy and manage ser-
vices in a coordinated fashion.” Frameworks created according to this specifica-

3.2. OSGI INTRODUCTION 21

tion manage the installation and updating of OSGi components, called bundles,
in a dynamic and scalable fashion. This enables OSGi-compliant devices to in-
stall, update and remove OSGi bundles whenever suitable.

Bundles are created just like normal Java applications, with the exception of
replacing the usual starting point of a main-method with an activator-class im-
plementing the OSGi interface BundleActivator. Upon completed development,
bundles are packaged in a JAR-file, and accompanied by a manifest-file specify-
ing bundle details such as name, version and what packages the bundle imports
and exports. This importation and exportation is the key to OSGi’s plug-in
system and how it handles dependencies. If a bundle is a service provider, it
specifies the interface to that service as an export in its manifest. Another bun-
dle can then specify the package-name of that service interface as an import
in its manifest, and consume the service as if it were a part of the same Java
program. To handle such dependencies in a dynamic environment where the
consuming bundle might be present when the bundle providing the service is
not, OSGi offers a mechanism of tracking services so that the developer of the
consumer bundle can specify suitable actions depending on whether the service
is present in the OSGi framework or not.

An example of a normal OSGi bundle maintenance schedule would involve iden-
tifying the bundle in question and stopping it, whereby every other bundle being
dependent on the stopped one would receive events triggering them to halt their
functionality accordingly. This would constitute the plugging out of a bundle,
and the needed re-development could commence. After being done with what-
ever maintenance was needed, the bundle should be rebuilt and plugged into
the OSGi framework again. In OSGi terms, this plugging in would only require
reloading and starting the bundle from within the framework.

When stopping a bundle, it performs an internal clean-up routine by stopping
running threads, etc. It also gets de-registered from the framework’s bundle
context, meaning that other bundles will no longer be able to find it, and those
who had service trackers registered for the particular bundle will be notified of
its exit. When starting a bundle, it performs internal start-up routines such as
instantiating certain functional blocks, before registering itself with the frame-
work’s bundle context. Along with this registry, the bundle normally also spec-
ifies a set of properties, such as the bundle language or whether the bundle
interface should be exposed as a web service.

22 CHAPTER 3. UNDERLYING ARCHITECTURE

3.2.1 OSGi’s layered architecture

The functionality of the OSGi specification is divided into five layers [20]:

• Security Layer

• Module Layer

• Life Cycle Layer

• Service Layer

• Actual Services

The Security Layer is an optional layer based on the Java 2 security archi-
tecture. It provides infrastructure for deploying and managing applications that
need to run in controlled environments. The Security Layer does not define an
API for application control itself, but leaves that to the Life Cycle Layer.

The Module Layer defines a modularization model for Java. It has strict
rules for sharing and hiding Java packages between bundles, in the shape of
import and export statements in the bundles’ manifest files. While the Life
Cycle Layer provides an API for management of the bundles in the Module
Layer, and the Service Layer provides a communication model for the bundles,
the Module Layer can be used without these two layers.

The Life Cycle Layer provides a life cycle API to bundles. This API defines
the runtime model of the bundles; how they are started and stopped, as well as
how they are installed, updated and uninstalled. It also provides an event API
for bundles to get information from and control the operations of the service
platform. The Life Cycle Layer is dependant on the Module Layer.

The Service Layer provides a dynamic and solid programming model for
Java bundle developers, by de-coupling a bundle’s service interface from its
implementation. This “publish, find and bind” model lets bundle developers
defer the selection of a specific implementation to run-time, by allowing them
to bind to services only using the interface specification. This implementation
selection happens through the framework’s service registry, where bundles can
register new services, receive notifications on the state of services, or look up
existing services. The Service Layer is highly integrated with the Life Cycle
Layer.

The Actual Services is the top layer, and consists of all services running
on top of the other layers. An OSGi service is defined semantically by its
service interface, and implemented as a service object owned by and run within
a bundle.

3.3. OSGI ON LIMITED DEVICES 23

3.2.2 Specification version differences

Due to the desire to separate the specification into layers, and other generally
large changes, the specification was completely rewritten between Revision 3
and Revision 4. In addition to the introduction of the layers, some of the most
important changes were:

Improved modularization support – The framework now supports loading mul-
tiple different versions of the same package.

Added security features – Bundle permissions based on digital signature, finer
grained framework administration permissions, and a new BundlePermission
class to handle the permission to access other bundles’ classes and resources.

Manifest localization – The framework now supports localized entries in a bun-
dle’s manifest file, making it possible to change entries such as name or vendor
depending on who is running the bundle.

Additional event types – Among the event types added was event types for sig-
naling the resolving and unresolving of bundles.

3.3 OSGi on limited devices

Since OSGi is based on Java, it should be possible to run an OSGi framework
on practically any kind of device. In relation to this, the biggest problem is to
find a suitable Java version, being mature enough to run on the specific device
as well as being new enough to support the needed functionality of the OSGi
framework. Today, even commonly available PDAs tend to only run older ver-
sions of Java, specifically version 1.3. In this situation, an OSGi framework that
is also compatible with Java 1.3 has to be chosen, and it is thus possible that
newer frameworks with added functionality have to be discarded. On the other
hand, it is certainly possible to develop OSGi bundles conforming to version 1.3
of Java, and in any case, as newer devices get manufactured it is safe to assume
that their Java compatibility will also increase.

It is also the case that since the OSGi frameworks are Java programs, they need
a relatively large amount of memory available to run. This will exclude devices
with very little available memory, typically less than 64 MB, unless OSGi frame-
works for exactly such devices are developed.

If a specific device has limited or no storage capacity, it is possible to set up
the chosen OSGi framework to retrieve every bundle except the core system
bundle from another location on start-up. This loads all bundles into volatile
or non-volatile memory, and cleans the memory up when the framework is shut

24 CHAPTER 3. UNDERLYING ARCHITECTURE

down, but it requires that the framework has network access to a specified bun-
dle repository.

Because of OSGi’s “publish, find and bind” model, it is possible to develop
consumer bundles that are very flexible, only associating themselves with the
interface of the service bundle. Through the functionality of the Service Layer,
services are bound at run-time, resulting in a system that can have several dif-
ferent implementations sharing the same interface. It is therefore possible to
provide the same kind of service from any particular device, where only the
actual implementation is tailored to the device, and let the consumer bundle
decide on this choice of implementations on start-up.

3.4 OSGi frameworks

Following is a short analysis of existing OSGi frameworks, highlighting which
OSGi specification they are compliant with, whether they are free, open source
or commercial, and their current degree of development activity.

3.4.1 Knopflerfish

http://www.knopflerfish.org/

Knopflerfish is an open source OSGi framework sponsored by Gatespace Telem-
atics. All development is currently focused on Knopflerfish 2.0, with the latest
release being Beta 4. Knopflerfish 2.0 Beta 4 is feature complete in all manda-
tory parts of the OSGi R4 specification and service compendium, and there are
only minor items missing from the optional parts. The current finalized version
of Knopflerfish is 1.3.4, which is compliant with the OSGi R3 specification.

3.4.2 Oscar

http://oscar.objectweb.org/

Oscar is an open source OSGi framework originally created by Richard S. Hall.
The latest release is Oscar 2.0 Alpha 7, which is an OSGi non-compliant exper-
imental release prototyping the extensions to the OSGi R3 specification. The
latest compliant release is Oscar 1.0.5, which is compliant to a large portion of
the OSGi R3 specification. Oscar has also spawned the Oscar Bundle Reposi-
tory; a repository for OSGi bundles created for Oscar, but that should be OSGi
framework independent. Development for Oscar is discontinued as it has been
turned into an Apache incubator project called Felix.

3.4. OSGI FRAMEWORKS 25

3.4.3 mBedded Server

http://www.prosyst.com/osgi.html

mBedded Server is a commercial OSGi framework developed by ProSyst. The
current release is mBedded Server 6.0, which has a full implementation of the
OSGi R4 specification.

3.4.4 Equinox

http://www.eclipse.org/equinox/

Equinox is an open source OSGi framework managed by the Eclipse Project
Management Committee. The latest release is Equinox 3.2 Release Candidate
3, which fully implements the OSGi R4 specification. Equinox can be used as
a standalone OSGi framework, but its main purpose is acting as Eclipse’s run-
time environment, handling the life-cycle of all Eclipse components and plug-ins.

3.4.5 SMF

http://www-306.ibm.com/software/wireless/smf/index.html

SMF (Service Management Framework) is a commercial OSGi framework devel-
oped by IBM. It is currently only available as a component in IBM’s Workplace
Client Technology Micro Edition, which at this point in time is at version 5.7.
SMF implements the OSGi R3 specification.

3.4.6 Ubiserv

http://www.gatespacetelematics.com/products/ubiserv osgi.shtml

Ubiserv is a commercial OSGi framework developed by Gatespace Telematics.
The current version of Ubiserv is a complete certified OSGi R3 compliant service
platform. Gatespace Telematics are the sponsors of the open source Knopflerfish
framework, and Ubiserv can be viewed as the commercial version of Knopfler-
fish, as large parts of it are built on top of the open source alternative.

3.4.7 Jadabs

http://jadabs.berlios.de/index.html

26 CHAPTER 3. UNDERLYING ARCHITECTURE

Jadabs is a free OSGi framework developed at the Swiss Federal Institute of
Technology, Zurich. It is built on top of the open source Knopflerfish frame-
work, and is compliant to the OSGi R3 specification. Jadabs is specifically
targeting small devices in a distributed environment.

3.4.8 Osxa

http://www.osxa.org/wiki/

Osxa is an open source OSGi framework developed by Rainer Alfoeldi and Har-
ald Niesche. It implements most of the OSGi R4 specification, except for a few
omissions to make the framework more lightweight. Specifically, these omissions
make it possible to run the framework within an EJB container or in unsigned
Java WebStart applications.

Name OSGi spec. Availability Latest release
Knopflerfish 2.0 R4 Free (Open source) 05.04.06

Knopflerfish 1.3.4 R3 Free (Open source) 14.10.05
Oscar R3 Free (Open source) 23.05.05

mBedded Server R4 Commercial 2006
Equinox R4 Free (Open source) 05.05.06

SMF R3 Commercial 2004
Ubiserv R3 Commercial 2005
Jadabs R3 Free 22.06.05
Osxa R4 (Incomplete) Free (Open source) 22.03.06

Table 3.1: OSGi frameworks

All the frameworks are listed in Table 3.1, along with key information such as
their OSGi specification version, whether they are available for free with open
source, free with closed source or as commercial products, and the dates for
their latest release. For UbiCollab, the most important features of an OSGi
framework is whether it is under active development, so that any bugs and
flaws gets removed quickly and because of the possibility of obtaining support,
and whether it follows an open source model, so that the code can be used, or
maybe modified, to assist with any problems.

3.5 OSGi in UbiCollab

OSGi satisfies the two non-functional platform requirements of being extendible
and device operating system independent inherently, by providing a “general-
purpose, secure, and managed Java framework that supports the development

3.5. OSGI IN UBICOLLAB 27

of extensible and downloadable applications known as bundles.” [20] This ex-
tendibility stems from OSGi’s plug-in system and its bundle interdependency
handling, and because it is based on Java, it is device operating system inde-
pendent.

Additionally, OSGi has built-in mechanisms to check for present components,
and is able to let the component developer decide what to do when a specific
component is available or not. This way it also satisfies the flexibility and dy-
namicity requirement of letting different subsets of the platform be deployed on
a system or device depending on the needs of the system’s users or the capabil-
ities of the device.

3.5.1 Benefits of OSGi for UbiCollab

Extendible – It has a built-in plug-in mechanism based on imports and exports.

Device operating system independent – It is Java and should therefore be able
to run anywhere.

Dynamic – It is component-based and has service tracking mechanisms allowing
for different configurations of the platform depending on the situation.

3.5.2 Possible issues with OSGi for UbiCollab

Memory heavy – It is Java and will therefore leave a relatively large memory
footprint which can be problematic for smaller devices.

Technology specific – Since OSGi provides many benefits inherently to UbiCol-
lab, it could be hard to port UbiCollab to another technology if OSGi becomes
obsolete.

3.5.3 Deployment discussion

One of the most significant changes made to the platform in this version is the
decision to spread the platform components among most of the participating
devices in the environment. The fist version of UbiCollab did to some extent
allow certain services to be located on different servers, but it was mostly a
centralized solution, which did not allow platform components on client de-
vices. Such a design has a few disadvantages which conflicts with the vision of
a flexible platform for a dynamic environment. Fist, all applications have to
relate to the same set of services. This makes it difficult to tailor the platform
behavior to different settings and environments. Secondly, some services can-
not be provided by the platform if no platform components exist on the client

28 CHAPTER 3. UNDERLYING ARCHITECTURE

devices. Positioning using GPS is one example of such a service. This service
will have to be located where the GPS-receiver is. This is typically something
that is carried around by the user, and the platform will therefore not be able
to contact the receiver unless a platform component exists on the client device.
Finally, a centralized solution has high traffic through the server and is prone
to single-point-failures.

The current version of UbiCollab addresses these problems by spreading the
platform components among the devices in the system. The usage of OSGi
plays an important role in this new design, as it makes it easy to deploy plat-
form components on the different devices. Because of this, it is possible to
tailor the platform functionality to the capabilities and constraints of the dif-
ferent devices. A small device with limited storage and processing power could
for example have just the most important platform components installed and
rely on remote invocation for other tasks, whereas a more powerful device could
run more services locally and thus boost performance. OSGi does also allow
components to be easily updated without requiring a restart of the framework.
This allows the new UbiCollab platform to automatically adapt to new envi-
ronments by downloading and updating bundles at runtime. Finally, OSGi can
allow bundles to be automatically pushed to - and installed on a large number
of remote devices. This will make it easy for an administrator, such as Telenor,
to automatically configure the platform for a large number of users. It should
be noted that this last issue has not been properly tested with the current ver-
sion and should be investigated further in later versions. Even though the new
version of UbiCollab has a more distributed architecture than the previous one,
it is not a completely distributed solution. The UbiCollab server has not been
removed and does still host the collaboration service. This has been done be-
cause a completely distributed solution makes it a lot harder to handle things
like synchronization of data. The risk of turning the server into a bottleneck
should still be significantly reduced, though, as the work load on the server has
been drastically cut.

3.5.4 Platform-internal communication

Two different means of communication are used to communicate between plat-
form components. The preferred way is to use local OSGi calls. These are
regular java invocations where the reference to the other object is provided by
the OSGi framework. The reason why this is the preferred method is that OSGi
is well suited to handle the dynamicity in the environment. By registering a Ser-
viceTracker - object, one component can monitor another and get notifications
if the other component is started, stopped or modified. Appropriate actions
can then be taken based on this information. The problem with this technique
is that it does not work across different OSGi - frameworks. UbiCollab does
therefore use web service calls when communicating across OSGi frameworks.
Further work on UbiCollab should investigate means of using OSGi calls across

3.5. OSGI IN UBICOLLAB 29

different frameworks.

Figure 3.1 illustrates the platform-internal communication as well as communi-
cation between applications and the UbiCollab platform. It can be seen that
services within the same OSGi framework communicates using local OSGi calls,
whereas communication across OSGi frameworks is performed using web ser-
vice calls. The latter does also apply for application-to-platformcommunication.

Figure 3.1: Internal platform communication

3.5.5 OSGi framework selection

When deciding the particular OSGi framework for the development and testing
of UbiCollab, the most important aspects are that it is relatively free of bugs
and missing specification implementations, and that it has a high degree of ac-
tive development, signaling willingness and ability to assist with and fix any
possible issues occurring throughout development.

The OSGi framework chosen to act as the underlying framework for UbiCollab
during development is Knopflerfish 2.0. The main reason for this is Knopfler-
fish’s frequent releases, and its thriving user community as a source of infor-
mation in case of problems. Equinox would probably also have been a good
choice as little actually separates them in terms of feature completeness and
development activity.

30 CHAPTER 3. UNDERLYING ARCHITECTURE

Chapter 4

The UbiCollab platform

This chapter discusses the new architecture of UbiCollab, and presents the de-
sign and overall functionality of the service components chosen to form the plat-
form’s core services. Not all of these services are implemented fully according
to the presented design in the first prototype of the new version of UbiCollab.

4.1 Introduction to the new platform

The most important aspects in designing a new platform for UbiCollab are plat-
form extendibility, a non-functional requirement from the autumn report, and
the high level flexibility of being usable and beneficial in a large set of different
settings and scenarios [19]. As the requirements in the autumn report were
extracted by finding commonalities between several different scenarios, adher-
ence to these requirements would result in a platform with the desired flexibility.

4.1.1 Platform responsibilities

The APIs provided by the platform is based on functional blocks mainly derived
from the platform requirements extracted in the autumn report [19]. These
functional blocks are encompassed in logical components, forming the services
of the platform. These services are:

Collaboration service

It provides applications with a way to manage Collaboration Instances. The
service is not derived directly from any particular requirement, but it is needed
on a higher level to support collaboration.

31

32 CHAPTER 4. THE UBICOLLAB PLATFORM

Discovery service

It gives applications the means to register and discover services and devices.
The service is directly derived from the requirement Resource collection.

Identity manager service

It offers users privacy, and a way to maintain different user profiles depending
on the setting. The service is directly derived from two requirements; Privacy
and User profile management.

Context service

It presents applications with the possibility of managing and reading information
about the context of different entities. The service is not a direct mapping from
any of the requirements, but it is needed on a higher level as a flexible way of
sharing implicit information.

Positioning service

It grants applications the means to position other users or devices. The service
is a direct derivation of the requirement Positioning.

Location service

It provides applications with a way to map position coordinates to textual de-
scriptions of physical locations. The service is directly derived from the require-
ment Location management.

Presence service

It gives applications the possibility of reading or updating the presence informa-
tion about users. The service is a direct mapping of the requirement Presence
management.

Data storage service

It offers applications the means to store and retrieve data persistently. The
service is directly derived from the requirement Persistent data storage.

Two of the functional requirements from the autumn report are not covered
directly by components in the UbiCollab platform. These are Security and
Asynchronous communication support. Adequate security should be provided
through any service that handles resources that may be valuable or private, such
as the Data storage service and the Discovery service. Asynchronous commu-
nication support is provided by the platform in the form of the Data storage
service, upon which applications can be created to simulate mailboxes, etc.

4.2. PLATFORM SERVICES 33

4.1.2 Service model

The old version of UbiCollab was focused on the benefits of the peer-to-peer
model, where service providers and consumers communicate directly, after dis-
covering each other through a central discovery mechanism. This model is kept
in the new version of UbiCollab, with the platform service components being
even more independent and having the ability to be deployed on both different
and multiple hosts. This is made possible by having each platform component
provide its service interface as a self-sufficient web service.

Additionally, certain services employ a three-tier mechanism where the service
component itself only acts as a proxy between the consumer and the service
plug-ins of the component. These plug-ins typically provide information from
different technologies, which the service component then aggregates and re-
turns to the consumer in a uniform fashion. These plug-ins are discovered and
maintained by the service component through the Discovery service, and can
therefore theoretically be deployed anywhere, for instance on a user’s PDA or
on a dedicated server for that plug-in.

4.2 Platform services

4.2.1 Collaboration service

The Collaboration service provides an API for applications to interact with
Collaboration instances. This functionality includes the creation and removal
of Collaboration instances, the adding and removal of services, persons and files
to and from Collaboration instances, and functionality to retrieve information
about a specific Collaboration instance and its services, persons and files.

Figure 4.1: Collaboration instance [25]

A Collaboration instance is an abstract collection of persons and resources, for
instance services and files, representing a real-world scenario such as a meeting

34 CHAPTER 4. THE UBICOLLAB PLATFORM

or a trip to the cinema. Schwarz [25] provides the formal definition of a Collab-
oration instance as “an entity which captures a real world activity, or context,
of collaboration between people and the resources they use.” Figure 4.1 shows a
representation of a Collaboration instance, and its many-to-many relationship
with Persons and Resources.

Collaboration instance data can be stored in many ways, for instance in a
database or in a Subversion repository. Collaboration instances are stored on the
central UbiCollab server, so the Collaboration service interacts directly with it.
The Collaboration service is therefore dependent on the UbiCollab server run-
ning and that it can communicate with it.

Figure 4.2: Collaboration service

In Figure 4.2, an application uses one of the methods of the Collaboration ser-
vice API to perform an action on a Collaboration instance, for example listing
all the persons associated with it or adding another service to it. The Collabo-
ration service, in turn, issues the same action on its Collaboration instance data
representation, and returns the response to the application. If the action was
a request for information, that information is returned, and if the action was a
manipulation of Collaboration instance data, a proper response code is returned.

Providing an API for getting information from and manipulating Collaboration
instance data is important because it enables application developers to design

4.2. PLATFORM SERVICES 35

applications that take advantage of the collaborative benefits of the Collabora-
tion instance model.

4.2.2 Discovery service

The Discovery service provides an API for the registration and discovery of ser-
vices and devices. Some services and devices, such as those created according
to the UPnP specification, are discovered automatically, while others have to
be registered manually by the service provider.

In Figure 4.3, an application is using the Discovery service to obtain a handle
to a particular service. The service could have been discovered by the Dis-
covery service on any of its available discovery technologies, exemplified in the
figure by UPnP, web services, Bluetooth or JXTA. In this figure, the internal
model represents the searchable fields made available to other applications, ei-
ther through the Discovery service’s parsing of service description documents or
through manual registry.

Figure 4.3: Discovery service

If it is desirable to support services on a new type of technology, a discovery
module for that technology has to be plugged in, and the internal model has to
be updated to handle the management of such services. The most important
update would be to the parsing engine, to make it able to parse and register the
service descriptions of the new technology type.

36 CHAPTER 4. THE UBICOLLAB PLATFORM

Services can be discovered automatically by the Discovery service or be explicitly
added, depending on the technology the service is on. UPnP and JXTA services
can for instance be discovered automatically, while web service-based services
must be registered. This registry process can happen on start-up of the service,
by scanning the service’s RFID1 tag with an RFID reader when the service is
introduced to a collaborative setting, or manually by a user when none of the
formerly mentioned methods are available.

4.2.3 Identity manager service

The Identity manager handles both a user’s user profile, and the management
of that user’s virtual identities. Virtual identities are identities chosen for spe-
cific purposes, such as participating in collaboration without revealing personal
data, or separating between work and home profiles.

Figure 4.4: Identity manager service

The Virtual Identity Manager associates Virtual Identities with Collaboration
instances, and with entries from the user profile. In Figure 4.4, Virtual Identity
1 is associated with Collaboration instance 1 and with entry 1 and 2 from the
user profile, while Virtual Identity 2 is associated with Collaboration instance
2 and entry 1 and 4 from the user profile.

The possible keys and values in the user profile are not pre-defined, but are
instead open for users to specify themselves. This way, different users can
have different entries in their user profiles depending on their environment and
setting, and applications can be created to look for certain keys and provide
some specific functionality in case they exist.

1http://en.wikipedia.org/wiki/Rfid

4.2. PLATFORM SERVICES 37

4.2.4 Context service

Context information is in UbiCollab defined as any information that can be
sensed or detected. The Context service will provide an API for the manage-
ment of such context information. Because of the enormous variety in the infor-
mation that can be stored in such a service, it will not be feasible to standardize
specific context keywords and their data ranges. Instead, when an application
is requesting context information, the Context service will return an XML file
with all context key-value pairs, such as in Listing 4.1.

<context>
<location>NTNU </location>
<temperature>15C </temperature>
...

</context>

Listing 4.1

It will be the applications’ responsibility to parse this XML file and extract the
information it is capable of interpreting. For UbiCollab, contextual information
will probably be of most value when related to a particular collaboration in-
stance. For example retrieving the number of collaboration instance members
currently in the meeting room, or whether your friends are awake yet and ready
for some social activities.

In Figure 4.5, an application is requesting the current context of an entity, for
instance another user. The Context service, in turn, queries all its information
providers for information about that entity, and builds a Context XML that
is returned to the application. The Context service keeps itself updated with
the status of all possible information providers, so that these can be queried for
information when necessary.

This way, the Context service acts as a layer on top of all information providers;
both services, such as the Location service, and applications, such as different
types of sensors. Instead of going to these directly, applications can use the
Context service as a proxy to any kind of information that can be detected or
deduced.

38 CHAPTER 4. THE UBICOLLAB PLATFORM

Figure 4.5: Context service

4.2.5 Positioning service

The Positioning service provides an API for retrieving the position of other
entities. Because of a plug-in based system, the Positioning service is capa-
ble of retrieving position data, in the form of coordinates, from any type of
coordinate-compatible positioning mechanism, as long as it has an interface
conforming to the plug-in system. This could for example be GPS receivers,
WLAN-positioning services, RFID tags on immovable objects, GSM-positioning
services, and dedicated positioning services combining data from several sources.
The Positioning service discovers such devices or services by querying the Dis-
covery service for positioning plug-ins. When several positioning mechanisms
are available, the service will have to decide on which one to use, or aggregate
the result from several of the sources (e.g. calculate the average).

In Figure 4.6, an application is requesting the current position of an entity, for
instance another person or a device such as a printer. The Positioning service
issues the same request to its positioning plug-ins, and returns the result to the
application.

The plug-in system works by having discoverable plug-in services for specific
positioning technologies, and making sure that these plug-ins are standardized
in the way they return position data. This way, the Positioning service uses
the Discovery service to keep track of usable positioning plug-ins, and is able

4.2. PLATFORM SERVICES 39

Figure 4.6: Positioning service

to issue the same type of query, and receive the result in the same format,
to and from the different positioning plug-ins. Some of these plug-ins may be
personal, such as a GPS positioning plug-in associated with the GPS receiver
on a specific device, or public, such as a GSM positioning plug-in having access
to the positions of several users.

4.2.6 Location service

The Location service provides an API for adding and removing locations, and
for handling the mapping between a textual identifier of a location and a set of
coordinates forming that location’s physical boundary. The users are required
to use another service or mechanism to first get the position of the entity they
want to know the location of, but this design ensures that the Location service
is not dependent on the presence of a Position service.

In Figure 4.7, an application is querying the Location service for the location
associated with a particular position coordinate. The Location service matches
that coordinate against its set of stored locations, and if any location contains
that particular coordinate, its textual description gets returned to the applica-
tion.

The coordinate sets consist of at least three coordinates, making out the vertices
on the boundary of a polygon. The most important aspect of the Location
service is then to determine whether a given coordinate point is contained by

40 CHAPTER 4. THE UBICOLLAB PLATFORM

Figure 4.7: Location service

such a polygon, for instance whether a co-worker is in his office.

4.2.7 Presence service

The Presence service provides an API for managing the presence information
of other persons. Presence information is in UbiCollab defined as a measure of
how “close” two users are to each other. The presence value could for example
be influenced by the physical distance between the users, whether the door be-
tween their offices is open or not, or by the existence of a video or voice link
between them.

Presence information should be gathered by the system, with minimal need for
user input or interaction. This means that the system should be sensor-based,
to avoid having to force the users to specify their own presence state. Finding
and developing such a system is something that needs much more research, and
is an area which is not included in this work.

4.2.8 Data storage service

The Data storage service provides an API for storing, retrieving and deleting
data on a persistent storage device. As the Data storage service employs a
plug-in system, the data can be stored in many forms; for instance on a regular
file system such as NTFS2, in a database, or in versioning repositories such as

2http://en.wikipedia.org/wiki/NTFS

4.2. PLATFORM SERVICES 41

Subversion3 or CVS4. If new types of storage systems are added, new technology
modules have to be added, and the internal model of the Data storage service
needs to be updated to be able to use the new storage system.

The core of the plug-in system in the Data storage service is illustrated in Figure
4.8, where an application asks the Data storage service to retrieve a certain file.
The Data storage service then goes through its available data storage plug-ins,
using storage device-specific communication between the technology modules
and their respective storage devices. This can for example be Subversion or
CVS repository access over HTTP, or regular FTP access to a file system.

Figure 4.8: Data storage service

When the Data storage service receives a request for a file, it looks for that file
in all its storage plug-ins, and returns it to the requestor if it finds a match. If
more than one match is found, the Data storage service could return the latest
version, or return all versions and let the requestor decide what file to choose.

3http://subversion.tigris.org/
4http://en.wikipedia.org/wiki/Concurrent Versions System

42 CHAPTER 4. THE UBICOLLAB PLATFORM

Chapter 5

UbiCollab implementation

This chapter discusses general implementation issues of UbiCollab, and then
presents the implementation details of all service components that have been
developed. These details include the full service API, and certain key points
about the inner functionality. For the service components that are not fully
developed, suggestions as to how this should be done are given.

5.1 Collaboration service

The Collaboration service provides access to UbiCollab’s Collaboration instance
data; both for reading and manipulating it. Currently, this data is stored in a
database, but any other storage method would also be possible.

Because the data is stored in a database, the implementation of the Collabora-
tion service is relatively trivial. All the functionality is related to the general
database accesses; selects, inserts, updates, and deletes.

5.1.1 API

To create a Collaboration instance, the createCollaborationInstance() method,
with the parameter username specifying the creator, and collabInstName spec-
ifying the Collaboration instance’s name, is used. After such a creation, the Col-
laboration instance can either be removed by using the
removeCollaborationInstance() method, or items can be added to it or re-
moved from it by using the add* or remove* methods. These methods associate
or disassociate the unique ID of a person, service or file with the specified Collab-
oration instance ID. Finally, the get* methods are available for retrieving sets
of information from the system or from specified Collaboration instances. Cur-
rently, there are no security features implemented in the Collaboration service,
so malicious applications are free to get access to other users’ Collaboration in-

43

44 CHAPTER 5. UBICOLLAB IMPLEMENTATION

Figure 5.1: Collaboration service API

stances and their content by passing those users’ usernames to the Collaboration
service.

5.2 Discovery service

The Discovery service is responsible for keeping a repository of available ser-
vices, and handing out handles to these when applications or other services
need them. When registering services, the consumers of the Discovery service
can either describe the full details of the service manually, or pass it a URL to
the description XML of the service. If a URL is passed to the Discovery service,
the Discovery service first checks if the URL is already registered as a service. If
it is not, the Discovery service parses the XML into a DOM1 tree, and traverses
it to pick out certain details. The first objective is to establish what kind of
service the document describes. Currently, the Discovery service supports the
traversing of WSDL documents describing web services, and UPnP description
documents. If the first tag of the document is <wsdl> the document describes
a web service, and if the first tag is <root> with an attribute xmlns specifying
the UPnP namespace urn:schemas-upnp-org, the document describes a UPnP

1http://en.wikipedia.org/wiki/Document Object Model

5.2. DISCOVERY SERVICE 45

device. When the protocol type is established, the Discovery service traverses
the DOM tree looking for specific nodes, such as the name and service URL for
web services, and type and friendly name for UPnP devices. The service is then
registered with these details in the Discovery service. Currently, the details are
stored in a database residing on the same host as the Discovery service.

A possible issue with this parsing of description XMLs is that only a few key
details are stored in the XML, and additional information that could be inter-
esting to store, such as the service’s owner or its fixed position in coordinates, is
not possible to extract. Solutions to this would be to add the service manually
using the method with the possibility of specifying all details, add a new method
to the API of the Discovery service that takes in both an XML document to
parse and additional details, or add a method that adds information to services
that are already registered in the Discovery service.

Something that is lacking in this version of UbiCollab is a good classification of
service types so that it is easy to find services of a specific type and automatically
know what service it presents. Currently, the type field in the Discovery service
is used to specify a namespace hierarchy such as
no.ubicollab.osgi.service.positioning for Positioning services, and
no.ubicollab.osgi.service.positioning.gps for the GPS positioning plug-
ins. Having an ontology describing the services and their hierarchies would
probably be a good way to classify the service types.

The Discovery service uses a plug-in system to cover discovery on different ser-
vice technologies. Plug-ins are considered consumers of the service, as they
automatically discover services on a specific technology, and then passes the
description XML of that service to the Discovery service. Currently, the only
plug-in that is added is a UPnP Discovery plug-in that is able to automatically
discover and register UPnP devices.

5.2.1 UPnP Discovery plug-in

The UPnP Discovery plug-in works by utilizing the Siemens UPnP Control Point
library for Java, which listens for UPnP SSDP packets on the network. Events
are then triggered when such packets are sent on the network, and the data
in the payload of the packets, most importantly the URL to the description
XML of the service, is sent to event listeners in the UPnP Discovery plug-
in. The UPnP Discovery plug-in then uses this URL to register the service in
the Discovery service. Currently, the UPnP Discovery plug-in is implemented
using the OSGi service tracker mechanism, making sure that it does not try
to register services when the Discovery service is not running. The problem
with this is that the UPnP Discovery plug-in then has to run in the same OSGi
framework as the Discovery service. It is not hard to envision the benefits
of running UPnP Discovery plug-ins in frameworks on different networks, all

46 CHAPTER 5. UBICOLLAB IMPLEMENTATION

reporting to the same Discovery service. Although the benefits of using the
OSGi service tracker mechanism will disappear when plug-ins are run as web
services, changes to the UPnP Discovery plug-in should be made so that it is
able to exist in a different framework than the Discovery service. The only thing
that has to be done for this to work is to include a proxy to the web service
interface of the Discovery service in the UPnP Discovery plug-in, and update
this according to what Discovery service is used. Additionally, the plug-ins
should have a mechanism for temporarily storing URLs to services discovered
while the Discovery service is unavailable, and register these when the Discovery
service is available again. This could for instance be done by having the plug-ins
check if the Discovery service replies to registry attempts, and if it is not, the
plug-ins could store the URLs in a list and try to register them again regularly.

5.2.2 API

Figure 5.2: Discovery service API

There are currently three registerService() methods. One is for the situa-
tions where the only detail known is the URL to the description of the service.
An example of this is the automatic discovery of UPnP devices through the
UPnP Discovery plug-in. Then there is a similar method that also adds the
parameter tagId. This is for services that are registered by reading the in-
formation on an RFID tag. This adds the possibility of searching for services
based on the unique ID of the RFID tags. Finally, there is a method including
parameters for all fields in the Discovery service. This is used to manually add
specific information that can not be extracted from the description XML of a
service.

Both the getService() method and the removeService() method uses a
search string to specify which services to get or remove. The available flags for
this search string are: tagId:, uuId:, name:, type:, protocol:,
descriptionUrl: and serviceUrl:. Any number of these flags may be present,
but they must come in the right order. An example of such a search string is
"name:My Service type:no.ubicollab.service", which would solely match
against services with the name "My Service" and the type
"no.ubicollab.service".

5.3. POCKET DISCOVERY SERVICE 47

The getInfoAboutService() method returns the full list of information regis-
tered about a particular service.

5.3 Pocket discovery service

This service is UbiCollab’s solution to the chicken-and-egg problem of how to
discover the Discovery Service, and is the only service that is mandatory in all
platform instances. This means that applications and other platform compo-
nents always can rely on having a Pocket Discovery Service running on the local
host.

Even though this service is a mandatory service, it is not listed as one of the core
services of the platform. This is because the Pocket Discovery Service does not
introduce new functionality to the platform and simply acts as a proxy service,
forwarding requests to the correct Discovery Service.

As the service is mandatory in all platform instances, it is of the essence that all
devices running platform components can actually run the service. Therefore
the service has been implemented with the focus of creating it as lightweight
as possible. The current implementation of the Pocket Discovery Service does
therefore not do any processing of its own, and instead forwards all requests to
a Discovery Service. This does have one serious downside; it reintroduces the
chicken-and-egg problem. How can the Pocket Discovery Service know where
to find the Discovery Service? Currently, the Pocket Discovery Service retrieves
the IP-address of the Discovery Service from a local configuration-file. This file
can be set manually or updated automatically by either applications or other
platform components via the service’s interface. This does of course not solve
the problem, but it makes it a lot more manageable. Instead of requiring all ap-
plications to keep track of where the Discovery Service is located, they can send
their requests to the local Pocket Discovery Service and let it keep track of where
to forward the requests. Consequently, the Pocket Discovery Service is the only
service that will need to be notified if the address of a Discovery Service changes.

The interface to the Pocket Discovery Service contains the same methods as the
Discovery Service plus one additional method. By providing the same methods
as the Discovery Service, applications can invoke the methods on the Pocket
Discovery Service as if they were invoking them on a Discovery Service.

The extra method found in the Pocket Discovery Service has the following sig-
nature: boolean registerDiscoveryService(String url). By calling this
method with a given URL, this URL will be set as the new address to the Dis-
covery Service. The new URL is also written to the configuration file so that it
is not lost in the case of a crash where the service has to restart. This method is
accessible to both platform components and applications through the service’s
web service interface. An example of an application that could use this method

48 CHAPTER 5. UBICOLLAB IMPLEMENTATION

is an RFID reader application. If a user enters a room with a Discovery Service
and the service is tagged with an RFID tag, such an application could be used
to read the URL from the tag. The registerDiscoveryService()method can
then be used to tell the platform to forward all requests to this new Discovery
Service. Requests from other applications are automatically routed to this new
service without the need for any modifications to the code or settings of the
applications. The method can also be called by other platform components, for
example if one Discovery Service is about to be replaced by another.

It should be noted that the Pocket Discovery Service is implemented with focus
on making it as lightweight as possible so that it can run on all types of devices.
More powerful devices could change the implementation so that more of the
processing is done locally. Some could even run a fully functional Discovery
Service as their local Pocket Discovery Service.

Currently, the Pocket Discovery Service can only keep track of the location of
one Discovery Service at a time. Further work on the service should extend it
to handle several Discovery Services. This would also make it possible to, at
all times, forward the requests to the Discovery Service with the least load. It
would also make the system more robust as the service could continue to operate
even if one of the Discovery Services went offline.

Figure 5.3 shows the dataflow from the applications, via the Pocket Discovery
Service, to the Discovery Service and back. As can be seen from the figure, the
Pocket Discovery Service does not have a service repository on its own. Its job
is simply to forward requests to a Discovery Service.

Figure 5.3: Pocket discovery service and Discovery service

5.4. LOCATION SERVICE 49

Figure 5.4: Pocket discovery service API

5.3.1 API

The Pocket Discovery Service contains the same the methods as the Discovery
Service. As the Pocket Discovery Service just forwards the requests to a Discov-
ery Service, the return values and parameters are also the same as was those in
the Discovery Service. The registerDiscoveryService() method is the only
method that is not found in the Discovery Service. This method instructs the
Pocket Discovery Service on where to forward its requests.

5.4 Location service

The Location Service is responsible for the mapping between positions in coordi-
nates and a location name. This is important as a name is a lot more meaningful
to human readers than coordinates.

Internally, the location is represented by a java.awt.Polygon object. The poly-
gon is wrapped by a Location class that, in addition to the polygon, contains
the name of the location, the altitude, and methods for testing whether the
location contains a given position. Two such methods exist. One that checks
if altitude of the position is within a specified error margin of the location’s
altitude, and one that ignores altitude altogether. The Polygon.contains()
method is used to test whether the given position is contained by the location.
The Location class implements the Serializable interface and can therefore
be serialized and written to persistent storage.

The location zone is two-dimensional, meaning that the location is registered
with a single value for altitude, and consequently does not allow for any topolog-
ical differences in altitude within the zone. For such zones, the average altitude
of the area should therefore be used as the zone’s altitude.

The service stores locations in an ArrayList, and provides methods for adding
and removing locations from this list. Whenever the contents of the list is
changed, the list is also serialized and saved to a file, so that the list is not lost

50 CHAPTER 5. UBICOLLAB IMPLEMENTATION

if the service have to perform a restart.

Two methods are provided for retrieving a location corresponding to a given po-
sition: One that takes altitude into consideration and one that ignores it. When
these methods are called, the service will iterate through the list of locations,
calling the contains() method on each location. When a location containing
the position is found, the name of that location is returned to the caller. This
means that only the name of the first location is returned even if the position is
contained in several locations. Possible alternatives that should be considered
in future versions include: returning all matching locations and returning the
smallest, or most detailed, location in the case where one of the matching loca-
tions is fully contained in another.

On startup, the service loads the serialized list of locations from the persistent
data storage, and deserializes it.

As the service is web service based, it cannot be automatically discovered by
the Discovery Service. Consequently, the service has to register itself with the
Discovery Service in order to become discoverable to applications and other plat-
form components. Therefore, the service searches its local OSGi environment
for a Pocket Discovery Service upon startup. If found, the Location Service in-
vokes a local OSGi call to the Pocket Discovery Service which uses its associated
Discovery service to register the Location Service in the service repository. As
the Pocket Discovery Service is mandatory in all platform instances, it should
run in the same OSGi environment. However, there might be situations where
the Pocket Discovery Service is temporarily unavailable. To make the system
more robust, the Location Service uses a backup plan in these cases, and instead
registers itself with a remote Discovery Service. The address to this service is
retrieved from the Location Service’s configuration file. These two services are
not found in the same OSGi environment, and the registration is therefore per-
formed using a web-service call.

5.4.1 API

Figure 5.5: Location service API

5.5. POSITIONING SERVICE 51

The Location Service contains methods for adding and removing locations from
the internal list. The two getLocation() methods returns the name of the first
location that contains the given position. The difference between them is that
one ignores altitude whereas the other requires the altitude of the given position
to be within altitudeErrorMargin of the registered altitude of the location.

5.5 Positioning service

The Positioning Service is responsible for finding the current position of users
and resources.

Positioning can be performed using several different technologies [12]. GPS,
GSM and WLAN are examples of such technologies that exist today. In the
future even more options will become available. The European Galileo satellite
navigation system2 is for example scheduled to be fully operational by 2010. No
single system can be used effectively in all scenarios, and none are guaranteed to
be around forever. Therefore, this service has been developed as a plug-in-based
service. This has the advantage that the service can be easily extended with
new plug-ins as new positioning techniques appear, and support for outdated
technologies can be terminated by simply deleting the plug-in. No change to
the source code of the Positioning Service is required.

Currently, two plug-ins are implemented; a GPS plug-in and a GSM plug-in.
The GPS plug-in is fully implemented, and retrieves positions by connecting
to a GPS receiver. The GSM plug-in, on the other hand, is currently a stub
implementation and does only return hard coded coordinates. The plug-ins are
described in detail below.

The service provides only one method for retrieving the position of a user or
resource: double[] getPosition(String username). When this method is
called, the service asks all its registered plug-ins for the position of the user.
This makes it possible for the Positioning Service to compare the data from
several sources and pick the most accurate one. The current version has a hard
coded order of prioritization, saying that GPS data should be used instead of
GSM data when both are available, and that GSM data should be returned be-
fore data from other types of plug-ins. However, later version should have more
intelligent behavior, and could for example combine the data with contextual
information so that WLAN positioning is used instead of GPS when the user is
indoors.

There is a many-to-many relationship between Positioning Services and its plug-
ins, meaning that in addition to a Position Service having more than one plug-in,

2http://en.wikipedia.org/wiki/Galileo positioning system

52 CHAPTER 5. UBICOLLAB IMPLEMENTATION

the same plug-in can be “plugged into” several Positioning Services. This is ad-
vantageous, as it prevents a monopolistic situation where a plug-in is exclusive
to one particular Positioning Service. If that was the case, the service provided
by the plug-in would become unavailable if the Positioning Service owning it
went offline.

As OSGi is a well suited environment for a plug-in based system, a natural
choice would be to let the Positioning Services and plug-ins interact using local
OSGi calls. This is, however, not possible in this scenario since the plug-ins are
not necessarily found in the same OSGi environment as the Positioning Service.
A GPS plug-in would for example typically be found in the OSGi environment
of the mobile device where the GPS-receiver is found, whereas the Positioning
Service could be located on a completely different node in the network. The
Positioning Service does instead interact with plug-ins using web service calls.

One of the overall design goals of UbiCollab is to make it capable of operating
in a highly dynamic environment. Consequently, it is not known at design time
what kind of plug-ins might be introduced to the system. This poses a serious
challenge: The service will need proxy classes to be able to connect to and in-
voke methods on the plug-ins, but these cannot be created at design time as
it is not known what kind of plug-ins will be found in the environment. Ubi-
Collab solves this problem by creating proxy classes to the plug-ins at runtime.
Upon startup, the service searches the Discovery Service for positioning plug-ins
using the search string: "type:no.ubicollab.osgi.service.positioning.*
protocol:ws" The trailing ’*’ in the type definition is a wildcard and does
therefore match all types of positioning plug-ins. The service then parses the
WSDL description of each plug-in and checks for a method with the signature
double[] getPosition(String). If such a method is found, a proxy is created
and the plug-in is added to the plug-in list. In this way, any service exposing
this method could be used as a plug-in. It should be noted, however, that
the current implementation does not allow Positioning Services to be used as
plug-ins, as it could cause the two Positioning Services to invoke methods on
each other in a never ending loop. This is prevented by putting the Positioning
Service in a different namespace. This service will therefore not be returned by
the Discovery Service when using the search string above.

In addition to doing the plug-in search on startup, the references are automati-
cally updated every 35 minutes. Applications can also force an update by calling
the method updatePluginReferences().

Figure 5.6 illustrates, slightly simplified, the interaction between an application
and the involved platform components in a typical scenario where the applica-
tion is requesting the position of a user. The upper half of the diagram shows
how the Positioning Service queries the Discovery Service for compatible plug-
ins and dynamically creates proxy classes from the returned URLs. The bottom
half demonstrates how the Positioning Service, when receiving a “get position”

5.5. POSITIONING SERVICE 53

request, sequentially queries all its registered plug-ins until the position has been
found, or it has been determined that the position is not found in any of the
plug-ins.

Figure 5.6: Positioning interaction

This process of iterating through the list of plug-ins until the position has been
found, works fine in most cases, however, it is an inefficient solution in the cases
where the number of plug-ins is high and each plug-in only can retrieve the po-
sition of a few users. A high number of GPS plug-ins would for example create
such a situation, as the GPS plug-in can only return the position of its owner. In
these cases, the current solution would unnecessarily invoke the getPosition()
method on several plug-ins that do not have the position of that particular user.
A better solution that should be considered in future versions is to include the
username of the owner as part of the plug-in WSDL description. The Posi-
tioning Service would then know immediately which GPS plug-in to ask for the
position of the user. Another alternative is for the Positioning Service to quire
the Discovery Service for a plug-in that has the position of that particular user.

54 CHAPTER 5. UBICOLLAB IMPLEMENTATION

5.5.1 API

Figure 5.7: Positioning service API

The Positioning Service’s interface contains only two methods. The double[]
getPosition(String username) method returns the position of the user with
the specified username. In future versions it should also be possible to retrieve
the position of resources by passing the resources’ URL as the “username”,
but there is currently no way of registering a resource’s position. The position
is returned as a double array of length four, containing the longitude, lati-
tude, altitude and timestamp of the fix3, in that order. The second method:
updatePluginReference() is used to force the service to update the list of
plug-in references and re-create proxy-classes to these.

5.5.2 GPS Positioning plug-in

The GPS Positioning plug-in is a fully implemented plug-in to the Position-
ing Service, and works as a platform interface to a GPS receiver. The service
exposes only one method: double[] getPosition(String username). The
signature of this method is essential as this is what makes the service a compat-
ible plug-in to the Positioning Service. When the method is called, the service
opens a connection to the GPS-receiver through a COM port. The name of the
COM port is retrieved from the service’s configuration file. The service then
reads and parses the data from the GPS-receiver. Finally, the longitude, lati-
tude, altitude and timestamp is extracted and returned as a double array.

In order to manage COM ports from Java, the service is dependent on having
the Java Communications API installed on the device. This is not much of a
problem, though, as implementations of this API is available (either from Sun
or third-party vendors) for all common platforms.

The plug-in has been tested with the ITerNet PS-3100 Bluetooth GPS4, on Win-
dows XP and Windows Mobile 2003, but it should also work with other receivers
and on other platforms as long as it can be accessed through a COM port. The

3http://en.wikipedia.org/wiki/Position fixing
4http://www.iternet.com.tw/b-gps/ps3100-f.htm

5.5. POSITIONING SERVICE 55

plug-in also includes its own implementation of a parser for the $(GP)RMC
command of the NMEA-0183 GPS standard5. This protocol is used by many
GPS receivers; however, the parser can easily be swapped with another one in
order to support receivers using other protocols.

The plug-in exposes its interface as a web service and can therefore be easily
accessed by other applications. This is, however, strongly discouraged. Appli-
cations should instead use the Positioning Service as this will be able to retrieve
position data from several sources and can therefore return the result from the
most accurate source, at all times. In addition, the GPS plug-in will normally
only be able to return the position of its owner. The Positioning Service, on
the other hand, has references to several plug-ins and consequently has a better
chance of finding the position in one of them.

In the same way as the Location Service, this plug-in will register itself in the
local Pocket Discovery Service on startup. It is also capable of registering itself
in a remote Discovery Service in the rare cases where the Pocket Discovery Ser-
vice is unavailable.

API

Figure 5.8: Positioning plugin service API

The only method exposed by the GPS Positioning plug-in is the
double[]getPosition(String username) method. When called, the plug-in
will check if the username passed as a parameter is the username of the user who
owns the connected GPS-receiver. If so, the service will retrieve the position
from the GPS-receiver and return it as a double array with the data: longitude,
latitude, altitude and time of fix. Otherwise, the service does not know the
position of the user and will therefore return null.

5.5.3 GSM Positioning plug-in

The GSM Positioning plug-in is supposed to retrieve positioning data from the
GSM-network. Many telecom providers, including Telenor, provide such ser-

5http://www.nmea.org/pub/0183/

56 CHAPTER 5. UBICOLLAB IMPLEMENTATION

vices in their networks. The GSM Positioning plug-in will access these services
and thus act as a platform interface to this positioning technique. The current
implementation is, however, just a stub implementation and does only return
hardcoded positions for a set of manually added users.

API

Figure 5.9: Positioning plugin service API

It is important that all plug-ins return the same type of data. This plug-in does
therefore return the same information as the GPS plug-in. The only difference
is that the data is retrieved from the GSM network instead of a GPS receiver.

5.6 Data storage service

The Data storage service provides applications and other services with the pos-
sibility of persistently store data. While the service has a plug-in based design,
which is discussed later, the current implementation only stores data on the
local disk storage. To do this, it uses regular Java file I/O, which is platform
independent.

On start-up, the Data storage service registers itself in the Discovery service
through the use of a Pocket Discovery service. Since the Data storage service
exposes a web service interface, data is passed to and from the Data storage
service, through SOAP, as arrays of bytes. Because of the default size of the
Java Virtual Machine’s memory heap, this approach currently limits the size of
the transferred data to about 2 MB. Larger files can be transferred if the mem-
ory heap is extended by adding the flags “-Xmssize in bytes” and “-Xmxsize
in bytes” when starting Knopflerfish (e.g., "java -jar -Xms128m -Xmx512m
framework.jar"). Files are currently stored in the directory
user.home/UbiDataStorage where user.home is a Java property for the plat-
form specific home directory of the user. Inside this directory, files are stored
in the format username/appname/filename, meaning that every user gets his
or hers own directory, with application directories underneath, and files within
these again.

5.6. DATA STORAGE SERVICE 57

5.6.1 Plug-in design

The plug-in system design of the Data storage service is a result of a combina-
tion of two other designs that both had important drawbacks. The first one was
a design where each data storage system, such as a database, would have to be
equipped with its own Data storage service, and where these data storage sys-
tems all would be registered in the Discovery service. Then applications would
query the Discovery service for a suitable Data storage service and use that di-
rectly. The drawback of this design was that it would require the existence of a
Data storage service on each storage system, severely slowing down the deploy-
ment of usable storage systems. The second one was a design where the Data
storage service would be a required component in every UbiCollab platform,
and where that service would keep track of data storage systems as plug-ins.
In such a design, the Data storage service would not need to be installed on
all storage systems, as long as the storage systems themselves had an API for
accessing their content. But on the negative side, it would mean one additional
required component in the platform, which is something that should be avoided.

Figure 5.10: Data storage service overview

The final design keeps the idea of standard data storage plug-ins from the second
design, without the need of installing prepared UbiCollab-specific interfaces on
them, and keeps the idea of not being dependent on a required platform Data
storage service from the first design. It achieves this by having both the Data
storage services and the storage plug-ins discoverable in the Discovery service.
As shown in Figure 5.10, an application would then choose a suitable Data stor-

58 CHAPTER 5. UBICOLLAB IMPLEMENTATION

age service, which in turn is associated with a set of data storage plug-ins. If the
application user does not at first find the file he or she is looking for, he or she
could try another Data storage service that perhaps would have access to other
data storage plug-ins, as in Figure 5.10 represented by the Data storage service
on Platform B and its DB2 plug-in. The current implementation of using the
local storage should in this setting be extracted and redesigned as a file system
plug-in.

5.6.2 API

Figure 5.11: Data storage service API

The exposed methods for the Data storage service are very straightforward and
easy to understand. They all use the naming scheme of
username/appname/filename to identify the needed objects. The list* meth-
ods shorten this naming scheme to list all entries within one directory, while
storeData(), retrieveData() and deleteData() uses the full naming scheme
to specify a particular file. The file is stored and retrieved as an array of bytes,
passed through SOAP, so it does not matter what platform the consumer appli-
cation is running on or which programming language it is written in. Currently,
there are no security features implemented in the Data storage service, so ma-
licious applications are free to get access to other users’ files by passing those
users’ usernames to the Data storage service.

5.7 Context service

The Context service is currently not implemented, but here follows suggestions
and details on how this could be done.

To function as intended and be able to provide a wide set of context informa-
tion, the Context service must be able to find and maintain a list of services and
devices it can get information from. This means having a way to classify such
items, for instance by having them in particular namespaces, specified by the

5.7. CONTEXT SERVICE 59

item’s type. In the current namespace system, it would be natural to just use a
regular namespace depending on the item, such as
no.ubicollab.osgi.service.positioning for Positioning services, and reg-
ister this namespace in the Context service. This system would be very fragile
over time, and it stresses the importance of designing an ontology for the ser-
vices and devices in UbiCollab. In this ontology, it would be possible to specify
that a certain service or device also was a context information provider, which
the Context service could use to build its Context XML.

There are two main alternatives to consider when developing the Context ser-
vice. The first is a Context service that queries all its information providers
when it receives a request for context information, and then builds the Context
XML on the fly. The second is a Context service that queries its information
providers and builds the Context XML in regular intervals, and serves the Con-
text XML directly when it receives a request for context information.

The advantages of the first approach is that it always provides current con-
text information, and that it does not need to store any data for longer than
it takes to build and send the specific Context XML. The disadvantage of this
approach is that, depending on how many information providers the Context
service knows of, the process of contacting and receiving information from all of
them could take a long time. The advantage of the second approach is that ap-
plications requesting context information will receive the specific Context XML
straight away, without the Context service having to query all its information
providers. The disadvantages of this approach is that the context information
contained in the Context XML may be off by as much time as the Context
service uses for its information provider query intervals, and that the Context
service needs the ability to store several Context XML documents. The number
of Context XML documents the Context service needs to store is dependent
on how many items in the system have a specific context (e.g., persons and
collaboration instances).

5.7.1 API

Figure 5.12: Context service API

Since the service is not developed, the service API is very basic at this point

60 CHAPTER 5. UBICOLLAB IMPLEMENTATION

in time. There are methods for getting and setting a context entry, and for
retrieving the full Context XML.

5.8 Identity manager service

The Identity manager service is currently not implemented, but here follows
suggestions and details on how this could be done.

The Identity manager service provides two areas of functionality; user profile
management and Virtual identity management. Since these intertwine, and
user profile entries are part of the Virtual identity management, the two areas
of functionality are combined into the same service.

Functionality for the user profile management is relatively trivial, as the ser-
vice only needs to keep a table containing the user profile entries, and manage
an interface letting applications add new entries, or read or modify existing ones.

The Virtual identity management is somewhat similar, as it only needs func-
tionality for creating new Virtual identities, and ways of associating unique IDs
to user profile entries and Collaboration instances to these Virtual identities.

5.8.1 API

Figure 5.13: Identity manager service API

Since the service is not developed, the service API is very basic at this point in
time. There are methods for setting and getting entries in the user profile, as
well as for creating Virtual identities and mapping Collaboration instances and
user profile entries to these.

5.9. PRESENCE SERVICE 61

5.9 Presence service

In this work, no research has gone into how to best represent presence infor-
mation in UbiCollab, as this is out of the scope of the current task. Presence
management is in itself a large research area, and more research will have to
be dedicated on how to handle presence in UbiCollab. There will therefore be
no discussion on the implementation of the Presence service, nor will this work
present the service’s API, as this would be too abstract at this point in time.

62 CHAPTER 5. UBICOLLAB IMPLEMENTATION

Chapter 6

Platform demonstration

This chapter introduces the testbed used for testing and evaluating the platform
during and after development. It also presents each application and service made
with the intent of testing different combinations of platform services.

6.1 Testbed overview

The first version of UbiCollab came with an application called UbiClient [11].
The purpose of this application was to demonstrate the use of UbiCollab to
support collaboration in a meeting room scenario. This was a relatively large
application which tested most of the functionality of the UbiCollab platform.
The test-bed used to demonstrate the new version of UbiCollab, on the other
hand, follows a different approach. Instead of using one large application to
demonstrate and evaluate the platform, several small applications have been
created. Each application is responsible for testing a small part of the core
functionality of the platform. This approach has been chosen based on research
by Edwards et al. which suggest that several small, lightweight applications
that test core functionality are more effective in the early phases of platform
evaluation [7].

There is also another factor that prevents the use of only one application to
demonstrate the platform functionality. One of the design goals of the new ver-
sion has been to make the platform more flexible so that it can be used in more
environments and scenarios. It would be difficult and not realistic to include
support for several such scenarios in the same application.

The platform bundles have been deployed in the testbed as illustrated in Figure
6.1. In this test bed, one of the laptops acts as the UbiCollab server, and thus
runs the Collaboration Service. It should also be noted that the Pocket Discov-
ery Service is found on all devices as this is a mandatory service in all platform
instances. Some other services are also found on more than one device, e.g., the

63

64 CHAPTER 6. PLATFORM DEMONSTRATION

Location Service. This is done to illustrate and test that several instances of
the platform services can be found in the system at the same time.

A couple of other resources are also part of the testbed. The two light devices
connected to one of the laptops are UPnP resources and are included to test
resource collection and usage of resources.

In addition, a GPS receiver and an RFID reader are connected to the PDA.
The GPS receiver is used by the GPS plug-in bundle to receive coordinates
from positioning satellites, whereas the RFID reader is used to facilitate RFID
discovery of services and resources.

Figure 6.1: Testbed overview

6.2. DEMO APPLICATIONS 65

6.2 Demo applications

6.2.1 UbiCollaborator

UbiCollaborator is a Collaboration instance management tool, of which the GUI
is shown in Figure 6.2. The program is created as a standard Windows .NET
application and works by communicating with UbiCollab’s Collaboration Ser-
vice. On startup, the program will show the current collaboration instances of
the user. It will also provide means for creating new collaboration instances
and deleting existing ones. In addition, the program can be used to add users,
services and files to the Collaboration instances.

Figure 6.2: UbiCollaborator

66 CHAPTER 6. PLATFORM DEMONSTRATION

6.2.2 Service registry

The purpose of this application, shown in Figure 6.3, is to register services and
resources in the Discovery Service by reading the service’s description URL from
any attached RFID tags and sending it to the Discovery Service. The appli-
cation can also read URLs pointing to Discovery services from RFID tags and
instruct the platform to use the Discovery service at that URL as the primary
Discovery service. The application reads RFID tags by opening a Bluetooth
connection to an IDBlue Bluetooth RFID pen. The data is then read by the
pen and returned to the application.

Figure 6.3: Service registry

6.2. DEMO APPLICATIONS 67

6.2.3 UPnP Light control

The UPnP Light control is a remote control for UPnP enabled light devices
conforming to the UPnP BinaryLight:1 standard. The application uses the
platform’s Pocket Discovery Service to search for compatible lights. Once de-
tected, the application can invoke operations on them via the UPnP protocol.
These operations include turning the light on and off, and requesting the status
of the light device. The application is shown in Figure 6.4.

Figure 6.4: UPnP Light Control

68 CHAPTER 6. PLATFORM DEMONSTRATION

6.2.4 Locator

The purpose of the Locator program, which is shown in Figure 6.5, is to test
the positioning functionality of the UbiCollab platform. To do so, this Pocket
PC application, communicates with both a Collaboration Service, a Positioning
Service and a Location Service. The Collaboration Service is used to find all the
other users in the current user’s collaboration instances. The position of these
users are then retrieved from the Positioning Service and displayed. Finally, the
application sends these coordinates to the Location Service and retrieves the
corresponding locations.

Figure 6.5: Locator

6.2. DEMO APPLICATIONS 69

6.2.5 Positioning Service Map

As shown in Figure 6.6, the Positioning Service Map is a web-based application
that displays position information retrieved from UbiCollab’s Positioning Ser-
vice on top of Google’s Google Maps service1. This application is created to
demonstrate how UbiCollab’s services can be combined with 3rd party services
to produce even more powerful results. As this is a web-based application, it
does also demonstrate UbiCollab’s platform and programming language inde-
pendence.

Figure 6.6: Positioning Service Map

1http://maps.google.com/

70 CHAPTER 6. PLATFORM DEMONSTRATION

6.2.6 Slideshow Control

The Slideshow Control is created with the purpose of displaying and control-
ling Power Point slideshows on local or remote devices. The Slideshow Con-
trol consists of two components: A Pocket PC application and a UbiCollab
Slideshow Service. The service component is capable of retrieving a specified
PowerPoint file from the Data storage Service and open it in Microsoft Pow-
erPoint. Once opened, the service can move forwards and backwards in the
slideshow in addition to stopping the slideshow. As shown in Figure 6.7, the
application component will connect to UbiCollab’s Collaboration Service and
retrieve all the files available in the current user’s Collaboration instances. In
addition, the application will use the platform’s Discovery Service to search for
available Slideshow Services, shown in Figure 6.8. The retrieved files can then
be sent to, and displayed by the Slideshow Service, and controlled through the
GUI presented in Figure 6.9. The application is also capable of synchronizing
two or more Slideshow Services so that they display the same slides.

Figure 6.7: Slideshow Control: File

6.2. DEMO APPLICATIONS 71

Figure 6.8: Slideshow Control: Service

Figure 6.9: Slideshow Control: Control

72 CHAPTER 6. PLATFORM DEMONSTRATION

6.2.7 Data storage Service Tester

The Data Storage Service Tester is, as the name suggests, designed to test the
functionality of the Data Storage Service. The application is a standard .NET
Windows application that allows the user to upload files to the Data Storage
Service, download files that are owned by the user and list all of his or her files.
The application is shown in Figure 6.10.

Figure 6.10: Data storage Service Tester

6.2.8 Login Service

The Login Service is designed to allow a user to log in to other devices in his or
her vicinity, such as public displays. Similar to the Slideshow Control, The Login
Service consists of two parts: A Pocket PC .Net Compact Framework application

6.3. PLATFORM TESTS 73

and a UbiCollab service named Login Service. The .NET application is intended
to run on a badge-like device, i.e., a device without display that only stores user
credentials, whereas the Login Service should be installed in the UbiCollab
platform on the public display. In order to log in to the public display, the
user can simply scan the attached RFID tag. The application will then send
the badge’s user credentials to the Login Service at the URL read from the
tag. If the Login Service receives a valid username and password combination,
the display will show user data such as the username and the user’s current
collaboration instances, as shown in Figure 6.11.

Figure 6.11: Login Service

6.2.9 RFID Tag Writer

The RFID Tag Writer is a Pocket Pc application for reading, writing and clear-
ing the data stored on an RFID-tag. This is accomplished by utilizing the
IDBlue Bluetooth RFID pen. As this application does not in any way use the
UbiCollab platform, it is only indirectly part of the testbed. The RFID tags and
the data this application stores on them, on the other hand, plays an important
role in the testbed.

6.3 Platform tests

6.3.1 UbiCollaborator

Collaboration instances form the basis for all collaboration support in the Ubi-
Collab platform. Imagine for example a software engineer preparing for a meet-
ing where his or her team will discuss the latest architectural changes to a
program. Before the meeting can take place, he or she would have to invite the

74 CHAPTER 6. PLATFORM DEMONSTRATION

other persons to the meeting. He or she might also want to let them know what
they will be discussing, and thus include the meeting slides or a document to
the invitation. Finally, he or she could check the meeting room to make sure all
the necessary equipment such as a projector and a coffee machine is there.

Together these form a Collaboration instance in the UbiCollab platform. Cre-
ating such an instance is therefore usually the first step when using UbiCollab
as an aid for collaboration. All Collaboration instance management tasks are
handled by UbiCollab’s Collaboration Service. Making sure this service work
as intended is therefore extremely important.

The UbiCollaborator application is a Collaboration instance management tool
designed to test this functionality of the Collaboration Service. With this tool,
Collaboration instances can be created, deleted and modified, users can be added
and removed, and services and resources can be included and deleted from the
Collaboration instance.

In order to pass the test, the Collaboration should successfully process all of
these requests from the UbiCollaborator application.

6.3.2 Service registry

Easy access to available services and resources are an essential part of a ubiq-
uitous environment and important part of the UbiCollab platform. The above
scenario can be used to illustrate this. Upon entering the meeting room, the
meeting participants will want to know what resources are available in the room
and how they can be used. Projectors and video conferencing systems are exam-
ples of such resources. In addition, the meeting participants may want to access
other resources outside of the room, for example the code repository where the
code to their program is stored. Finally, it might be useful to access devices,
services and resources that other meeting participants bring into the room, such
as interactive whiteboards, computers and PDAs.

In order to provide such easy access to services and resources, UbiCollab will
have to be able to detect them. This is the job of UbiCollab’s Discovery Service.
This service supports three different techniques for service discovery (manual,
RFID and automatic), and the purpose of this test is to check that this func-
tionality works as planned and that it is sufficient to support such scenarios as
above. In addition, the test checks that it is possible to instruct the platform
to use a particular Discovery Service.

Manual service discovery is tested by simply starting one of UbiCollab’s ser-
vices. This service will then contact the Discovery Service and is thereby added
to the service registry.

6.3. PLATFORM TESTS 75

Automatic service discovery is tested by adding a UPnP compatible service or
resource to the network. This service will then be discovered by the UPnP Dis-
covery plug-in of the Discovery Service and added to the service repository.

For discovering RFID tagged services, on the other hand, an application is
needed. This is the purpose of the Service Registry application. Instructing the
platform to use a particular tagged Discovery Service is also tested using this
application. When doing RFID-discovery, the application reads the service’s
description URL from the tag and sends it to the Discovery Service. To fulfill
the test requirements, the description URL should be successfully transmitted,
parsed by the Discovery Service and added to the service repository. To suc-
cessfully instruct the platform to use a new Discovery Service, the URL should
be sent to the Pocket Discovery Service where it should be persistently stored.
All subsequent calls to the Pocket Discovery Service should then be forwarded
to the new Discovery Service.

6.3.3 UPnP Light control

There is no point in storing handles to resources and services in a repository
unless users can retrieve these handles from the repository. Users might also
want to search the repository for services and resources matching certain crite-
ria. In the scenario above, the meeting participants might for example want to
retrieve all nearby display devices, or search for the meeting room’s light control
in order to dim the lights for the presentation.

The UPnP Light control application is designed to test this functionality. The
application works as a remote control for a certain type of light devices, and does
therefore want to know of all such light devices in the system. Consequently
the platform should return handles to all such devices when the application re-
quests it. Other services and resources should not be returned as the application
cannot use these. This test does therefore check that the platform is capable
of performing such a search in its resource repository and return handles to the
correct devices. In order to test that the handle returned by the platform ac-
tually works, one such light device has been implemented. This application has
been named “UbiCollab Light Device” and is capable of turning lights on and
off using the X-10 home automation protocol. A Siemens virtual light device
is also included in the testbed. For the test requirements to be fulfilled the
platform should return handles to these two devices. The application should
also be able to use these handles to control the two light devices.

6.3.4 Locator

There are many situations where a user might want to know the position of an-
other user. In the meeting room scenario, for example, some of the participants

76 CHAPTER 6. PLATFORM DEMONSTRATION

may want to know the location of the users that have not showed up for the
meeting, where as the users that have not showed up might want to know where
the others are so that they can find the way to the meeting room.

Four UbiCollab services come into play in such a scenario: The Discovery Ser-
vice, The Positioning Service, the Location Service and the Collaboration Ser-
vice. The Discovery Service is used to find the other services, The Positioning
Service is required in order to retrieve the positions, the Location Service is
needed to convert these coordinates to more humanly readable locations, whilst
the Collaboration Service is necessary in order to retrieve the usernames of the
users that are about to be positioned. The latter is important as users do not
want to position all the users in the system, but rather those that are somehow
related to themselves, i.e., are in the same collaboration instance. In the above
scenario, this would mean the other meeting participants.

The purpose of the Locator program is twofold: It tests the functionality of
these four services, and it demonstrates how the result from several services can
be combined to give the desired result. When the application is started, it uses
the Discovery Service to search for Positioning and Location services. Once
found, the Collaboration Service is used to retrieve all the users in the same
collaboration instances as the current user. The Positioning Service does then
return the positions of these users, before the Location Service is invoked with
the positions in order to retrieve the corresponding location zones. If successful,
the application should display the position and location of the users that are
fund in the same collaboration instances as the current user.

One of the most radical architectural changes to the UbiCollab platform in this
version has been the decision to create the platform as several small, easily re-
placeable bundles. This test is therefore especially important as it shows how
the result from many such services can be combined to get the same result as
from one large service.

The coordinates returned from the Positioning Service should also be correctly
displayed on top of the map provided by Google’s Google Map service in the
Positioning Service Map application. This is vital as it tests the combination of
UbiCollab with third-party services.

6.3.5 Slideshow control

Imagine that the meeting participants in the above scenario decide to start the
meeting even though not everyone has arrived yet. In order to let the ones that
are not in the meeting room follow the presentation, they might want to show
the presentation on a display near the other users as well. Both displays should
then display the same slides and users in both locations should be allowed to
control the slideshow.

6.3. PLATFORM TESTS 77

This scenario piece is very similar to the scenario that formed the basis for the
first version of UbiCollab [25]. The reason for including this as a part of the
testbed is to make sure that the new architecture has not come at the expense
of supporting such an important scenario. There are also a few other important
attributes of this scenario that makes it valuable as part of the testbed. The sce-
nario involves more than one user and thus demonstrates how UbiCollab can be
used to facilitate collaboration among several users, even in different locations.
In addition, it demonstrates the concept of Collaboration instances and how
they can be used to group related items such as users (meeting participants),
resources (PowerPoint files) and services (display services).

To test UbiCollab’s support for this scenario, a test suite consisting of a
Slideshow control application and a UbiCollab Slideshow Service is used. When
the user presses the “Get Files”-button in the application, the Collaboration
Service returns a description of all the files that are found in the same collab-
oration instances as the user. This prevents the user from seeing files that are
not relevant in the current setting. The user can also use the Discovery Service
to search for Slideshow services. The handle to the file can then be sent to these
services. The Slideshow Services will retrieve the file from the Data Storage
Service and display the slides.

If the test is successful, the display services should display the selected file. If
more than one service was selected, both should display the same slides and the
user should be able to control both of them with a single click. It should also
be possible for users in both locations to control the slideshow.

6.3.6 Data Storage Service Tester

What if one of the users that took part in the meeting wants to review the slides
later that day? Or what if one of them has written a meeting résumé that he
or she wants to make available to the others?

The questions above were not addressed in the first version of UbiCollab. Users
did therefore have to use external tools such as email to distribute information,
or they would have to have access to, and know how to publish information on
a web server or similar. To solve this problem, the current version includes a
Data Storage Service. The service works as a shared storage space where users
can store data. The service exposes a web-service interface just like all the other
platform components. It is therefore easy for application developers to include
functionality for uploading and downloading data to their applications. The
Data Storage Service Tester is such an application and is designed specifically
to test the functionality of the Data Storage Service. It should be noted that
the Data Storage Service is also used by the Slideshow control. However, that
application does only test downloading of data. With the Data Storage Service

78 CHAPTER 6. PLATFORM DEMONSTRATION

Tester, on the other hand, both downloading, uploading, deleting and listing of
currently stored data can be tested.

To successfully pass the test, data should be uploaded, listed on the service,
downloaded and removed without exceptions. The downloaded data should be
an exact copy of the data that was previously uploaded.

6.3.7 Login Service

In 1991, Mark Weiser introduced the vision of ubiquitous computing in his arti-
cle “The Computer of the 21st Century” [26]. In it, Weiser describes a scenario
where public computing devices of different sizes are scattered around, much
like post-it notes and sheets of paper are today. These devices are, according
to Weiser, not intended to have any individualized identity or importance, and
could be used by anyone and then just left behind for someone else to pick up.
Once picked up, or for the larger ones, approached, these devices temporarily
adapt to the current user and display certain personalized information.

The purpose of the Login Service is to simulate such a scenario. To do so, the
test suite consists of two components. The Login Service, which is a platform
service intended to run on the public display, and the Remote Login application
which is supposed to run on an active badge carried around by the user. For
the test, however, a laptop is used as a public display whereas a PDA is used
as the active badge.

Weiser states that the public device is personalized by either approaching it or
by picking it up. In this test we simulate that by scanning an RFID tag attached
to the public display. The application will then send its user credentials to the
Login Service at the URL read from the tag.

For the test to be successful, the public display should evaluate the username
and password combination sent by the Remote Login application. If the com-
bination is valid, the display should show user data such as the username and
the user’s current collaboration instances. Otherwise, an error message should
appear on the public display.

6.4 Practical experiences

The construction of the testbed has also revealed some issues related to devel-
opment for smaller devices. In the testbed, this type of device was represented
by a HP iPAQ h6300 PDA, but it is likely that the experiences gained from the
development of applications and platform services for this device will also apply

6.4. PRACTICAL EXPERIENCES 79

to other types of constrained devices. This section will therefore briefly present
some of these experiences. More on this topic can be found in the Appendix.

6.4.1 Memory handling

The iPAQ used in the testbed has a total memory of 64MB, which is shared
between application and storage memory. However, most of this memory is
taken up by preinstalled applications that cannot be removed, and necessary
drivers. When Java and the Knopflerfish OSGi framework are installed on top
of this, the remaining free memory falls dangerously low. As a consequence of
this, the PDA is not capable of running two instances of Java at once. This
is unfortunate, as it means that Java applications cannot be run on top of the
UbiCollab platform (which is also run by Java). If this is attempted, the op-
erating system will automatically shut down the least used Java application in
order to save memory. This is usually UbiCollab, as it is run in a background
thread. This behavior cannot be overridden, and the solution adapted in this
testbed has therefore been to create test applications in C# for the .NET Com-
pact Framework, as these use less memory than Java applications. This works
fine in most cases, but for later tests and development a more powerful PDA
should be used.

6.4.2 Java

There are currently no implementations of Java for Pocket PC that supports the
full Java SE specification. In this testbed, the IBM J9 implementation has been
used. This is one of the most popular implementations for Pocket PC. In spite
of this, J9 is an incomplete implementation of the Java 1.3.0 specification which
was launched on May 8th, 2000, and thus is more than six years old at the time
of writing. This causes problems in some situations, as the implementation lacks
important functionality. This is especially critical in the cases where a third-
party Java library is needed, as these are almost always based on newer versions
of Java. In this work, such problems have been solved by either recompiling the
particular library for Java 1.3.0, or by adding the missing functionality to the
J9 implementation. These fixes have been included on the CD accompanying
this report, so that they can be re-used on other devices.

6.4.3 OSGi

Most OSGi frameworks are shipped with, or are capable of downloading, im-
portant bundles that enhance and extend the functionality of the framework.
Knopflerfish’s axis-osgi bundle, a bundle containing the Apache Axis web service
server, is an example of such, which enables bundles to expose their interfaces
as web service interfaces. Unfortunately, it is not certain that such bundles will
run smoothly, even when they are distributed by Knopflerfish. The axis-osgi
bundle, for example, includes a version of Apache Axis that is too new to be
run by J9. For some reason it is also not compatible with the newest version of

80 CHAPTER 6. PLATFORM DEMONSTRATION

Java (version 5.0). Two new versions of this bundle have therefore been created
as part of this work: One version where the internal Axis representation is re-
placed with a J9 compatible version, and one version that includes the newest
Java 1.5 compatible version.

6.4.4 Services on small and constrained devices

Because of the constraints of the smaller devices, the decision of which services
to deploy on these devices should be well considered. There is no correct answer
to this question, and the answer will vary from device to device, depending on
the capabilities of the device and the requirements of the bundle. But the
experiences gained from the work on this testbed indicate that low-end current
PDA’s quickly run out of memory if too many services are deployed on the
device. The processing power of these devices is also considerably lower than
for larger devices. Processor intensive operations should therefore be executed
on larger devices. On the other hand, less processor intensive operations can be
executed faster on the local device because data does not have to be sent across
the network. Consequently, these services will also be available in the case of
a network failure or loss of network signal. Finally, some services have to be
run locally. The GPS Positioning plug-in is an example of such, as it has to be
located where the GPS receiver is.

Chapter 7

Platform evaluation

The chapter presents an evaluation of the new UbiCollab platform with regards
to the requirements found in the autumn report [20]. It also compares the eval-
uation of the new platform against the evaluation of the old one. Finally, it
analyzes the experiences received when testing the platform with the created
test applications and services.

In the autumn report, several platforms for collaboration were analyzed; Gaia
[13], The ABC Framework [4], Collaborator [21], and the old version of UbiCol-
lab [25, 14, 22]. Summarized descriptions of the requirements can be found in
Chapter 2, while full descriptions are found in the autumn report [19].

7.1 Analysis with regards to requirements

7.1.1 Presence management

This requirement is not implemented. Presence management is a very impor-
tant area of collaboration technology that, especially in the context of this work,
is not fully understood. More research is needed here to build a system that
would be able to obtain presence information from users while operating in
the background and not be obtrusive to the users. Research is also needed on
finding a representation of the presence information so that it reflects a user’s
true presence, for instance including the possibility of having different presence
values depending on who is requesting it.

7.1.2 Resource collection

Resource collection is provided through the fully implemented Discovery service.
Currently it supports web service services and UPnP devices. While discovery of
web service services happens through a service or user initiated registry process,
the Discovery service employs a plug-in architecture where automatic discovery

81

82 CHAPTER 7. PLATFORM EVALUATION

for UPnP devices is provided through a UPnP Discovery plug-in. Automatic
removal is also provided for UPnP devices, as long as they disconnect grace-
fully and send their UPnP Byebye messages. If they do not, and for all other
services that do not remove themselves from the Discovery service, the Discov-
ery service tries to contact all discovered services every 30 minutes and purges
those it cannot reach. The Discovery service currently supports global discovery
by default for web service services, and local discovery for any networks where
UPnP Discovery plug-ins are deployed. It does not currently support discovery
by location, as there is currently no way of retrieving such information when
discovering services automatically, and because of this, specifying such informa-
tion when registering services has not been implemented. As mentioned, the
Discovery service supports services on different technologies, currently web ser-
vices and UPnP, and other technologies, such as JXTA, can be easily added as
discovery modules.

7.1.3 Positioning

A Positioning service fulfilling this requirement is implemented, and is based
on the geographic coordinate system with the three values latitude, longitude
and altitude. The service employs a plug-in system, where the different plug-in
types provide position data from different positioning technologies. Currently
only the GPS plug-in, for devices with access to GPS receivers, is fully devel-
oped. Plug-ins for GSM and WLAN positioning should be trivial to implement,
as long as the developer gets access to such systems for positioning. Since only
one type of positioning currently exists, no functionality for switching between
positioning technologies, depending on certain criteria such as the user being
indoors, has been implemented. It is possible for users to stop the system from
being able to position them by merely stopping their GPS plug-ins, and a simi-
lar feature where the users are removed from the positioned subjects in a GSM
or WLAN positioning mechanism have to be implemented for these. Finally,
the service is not developed with the intention of being able to perform any
calculations on position data, but leaves this to smaller add-on services or the
applications themselves.

7.1.4 Location management

This requirement is fulfilled in the form of the Location service, which is able
to perform mappings from positions, in the form of coordinates, to locations,
represented by textual names or descriptions. Mapping from locations to po-
sitions has been discarded, as this seems to add no value to the system. The
original idea was that the platform should be able to answer questions such as
“Which users are in the meeting room?”, but this feature is better implemented
by other mechanisms. Currently, the list of locations with their associated co-
ordinate polygons is very small.

7.1. ANALYSIS WITH REGARDS TO REQUIREMENTS 83

7.1.5 Privacy

The requirement of Privacy has not been implemented, but as its function is
added as an aspect in the Identity manager service, some parts of the design are
specified. The design is based on letting the user have different virtual identi-
ties, and let these be used in different Collaboration instances according to the
user’s needs for presenting certain information or for complete privacy.

7.1.6 Security

This requirement is not implemented, but its specified mechanisms should be
added to any relevant part of the platform; currently the Discovery service, the
Data storage service and the Collaboration service. For the Discovery service,
the security requirement is twofold: Firstly, usage of services needs to be con-
trolled by an authorization scheme, and secondly, private services should not
be visible to unauthorized users in the Discovery service. The first part can be
achieved by implementing OASIS’ WS-Security1 specification for web services,
the UPnP Security2 specification for UPnP devices, or similar specifications for
other technologies. For the second part, some sort of detailed authorization
scheme for the Discovery service entries have to be designed. For the Data
storage service and the Collaboration service, accessing files and Collaboration
instances should be controlled by an authorization system using credentials such
as usernames and passwords.

7.1.7 Persistent data storage

The implemented Data storage service covers the requirement of persistent data
storage. Files are currently stored with the format username/appname/filename.
Building services, such as versioning control or concurrent document sharing,
on top of this service is as easy as having those services implement their needed
logic and use the interface of the Data storage service to store and retrieve data.
Applications would use the top-level services directly, and would be oblivious to
the fact that those services use the Data storage service underneath. Users can
also share files directly, by adding them to Collaboration instances which both
parties are members of. As mentioned earlier, no security mechanisms for the
data storage or retrieval is implemented. The Data storage service is operating
system and file system independent, as it only stores and manages the files as a
series of bytes. There is currently no functionality such as automatic backup or
recovery of destroyed or deleted data, but redundancy can be realized by storing

1http://www.oasis-open.org/committees/wss/
2http://www.upnp.org/standardizeddcps/security.asp

84 CHAPTER 7. PLATFORM EVALUATION

the same files on more than one Data storage service.

7.1.8 User profile management

User profile management is not implemented, but is designed as a part of the
Identity manager service. According to this design, the Identity manager service
handles both standard specified user profile entries, such as username and email
address, but also domain specific entries, such as a user’s favorite movie genre
or his or her office hours, that can be useful for certain applications.

7.1.9 Asynchronous communication support

This requirement is not directly implemented, but it is fulfilled by the implemen-
tation of the Data storage service, upon which services such as an asynchronous
mailbox can be developed.

7.1.10 Scalability

To minimize the possibilities of bottleneck behavior, the platform’s core services
are capable of running on different hosts. This is made possible by having them
exposing their own web service interface, and because they register themselves
and are found by other parties through the Discovery service. When it comes
to service discovery, it is still not clear how much congestion a great number of
UPnP devices will cause, but seeing as the platform components are no longer
UPnP devices, as in the old version of UbiCollab, this problem is related to
upper level services and applications, and not the platform. The platform still
uses a hybrid communication architecture, with the central UbiCollab server
holding Collaboration instance data, but with the rest of the platform being
based on peer-to-peer communication, resulting in minimal traffic through the
central server, unless it also is set up to provide some of the services. Another
possible method for decreasing the chances for bottleneck behavior is distribut-
ing the network load by running the same services on several hosts. In this case,
applications can choose which of the services they want to use after querying
the Discovery service, or, by adding some mechanics to it, the Discovery service
can return only the services with acceptable load levels.

7.1.11 Platform extendibility

This requirement is mainly fulfilled by OSGi’s built-in mechanisms for plug-ins
and their interdependency handling, but also because all services expose their
own web service interfaces, and developers do therefore not have to add code
to any other parts of the system. Application developers have very clear web

7.1. ANALYSIS WITH REGARDS TO REQUIREMENTS 85

service interfaces associated with the platform core services to develop against,
although these require further application testing before the APIs can be final-
ized. Since many of the platform services are designed in a three-tier fashion,
where plug-ins define the bottom tier, it is only necessary to develop new plug-
ins when aspects from new technology needs to be added. This can for instance
be other positioning mechanisms for the Positioning service, new technologies
upon which to discover services for the Discovery service, or different ways of
storing data for the Data storage service.

7.1.12 End-user programming

This requirement is currently not fulfilled. To fully provide uncomplicated and
efficient end-user programming for UbiCollab, an ontology specifying the hier-
archy of available services and their inputs and outputs should be created and
maintained. Then automatic set-up of services, such as those in an enabled
home, could be initiated, based on what other services or functional end-points
were available. Applications could then also be created to support all services
along complete paths in the hierarchy, only limiting or expanding the functional-
ity depending on the currently available service’s depth in the hierarchy. A less
automatic method of end-user programming could also be possible. For instance
by the means of a graphical user interface representing the currently available
services and their functionality as building blocks that can be connected to each
other, such as the method used with eGadgets [18].

7.1.13 Device operating system independency

As long as the device is capable of running Java applications, more specifically
an OSGi framework, all platform components can be run on it. The most im-
portant issue here is that not all versions of Java is capable of running the
newest OSGi frameworks, and many untraditional devices can currently only
run old versions of Java. When it comes to communicating with the platform,
any device that is able to transmit and receive SOAP3 over HTTP is able to
fully use UbiCollab and its services.

7.1.14 Communication channel independency

As mentioned for the previous requirement, any peers wanting to communicate
with UbiCollab needs to be able to transmit and receive SOAP over HTTP,
something that should be possible even for devices such as mobile phones that
may be on very limited networks. Content and service adaptation to devices on
limited networks, such as only audio for a video conference, is something that

3http://en.wikipedia.org/wiki/SOAP

86 CHAPTER 7. PLATFORM EVALUATION

is left to higher level services (e.g., the video conference service).

7.2 Comparison to evaluation of old UbiCollab

An evaluation of the old version of UbiCollab with regards to the same set of
requirements was performed in the autumn report [19]. Following is a set of
experiences found after comparing the evaluations.

The old version of UbiCollab had a form of presence management based on how
active a user was within their Collaboration instances [25]. This mechanism
could work well in settings such as meetings, which the old version of UbiCol-
lab focused on, but not with more general scenarios that the new version is
designed to cover. In a Collaboration instance representing an enabled home
and its inhabitants, for instance, the inhabitants’ degree of activity would not
be a clear measure of their presence. Therefore, more research will have to be
dedicated on how to retrieve, analyze and represent presence information for
the new UbiCollab.

While the old version of UbiCollab was heavily based on UPnP and could only
discover UPnP devices, the new version is more general and not based on any
technology restricting its discovery possibilities. The new Discovery service sup-
ports services exposed as web services inherently, and has plug-in capabilities
for supporting other technologies. The capability of automatically discovering
UPnP devices is developed and added as a plug-in to the Discovery service, and
plug-ins for discovering services on other technologies are easily added in a sim-
ilar fashion. While the mechanism for manually registering services is mainly
intended for web service services, or similar services that cannot be automati-
cally discovered, this feature can be used to manually register services on any
type of technology.

As for positioning, the old version had a system that was designed but not
fully operational, and position coordinates had to be reported manually by the
user to the system. The Positioning service of the new UbiCollab has a similar
system, but with a working positioning plug-in for devices with GPS receivers.
This plug-in works by communicating with the GPS receiver and passing the po-
sition coordinates to the Positioning service whenever the position of that user
is requested. Plug-ins for other positioning technologies can easily be added in
a similar fashion. The old Positioning service was able to calculate distances
between two positions, but this is left to higher level services in the new version
of UbiCollab.

The old version of UbiCollab provided user privacy through a Privacy service
that made it possible to use the platform anonymously. This is an aspect that
is not added to the new version as of yet, but it is designed as a part of the

7.2. COMPARISON TO EVALUATION OF OLD UBICOLLAB 87

Identity manager service.

While the old UbiCollab did not have any means for users to persistently store
data, the new UbiCollab has a fully functional Persistent data storage service
as one of its core platform services.

Both versions of the platform use peer-to-peer communication, along with a ded-
icated UbiCollab server. As illustrated in Figure 7.1, the difference with regards
to scalability is that the old version funneled all traffic to and from the platform
through the UbiCollab server, while the UbiCollab server is just another plat-
form service peer in the new version. Since the old platform was based on UPnP,
it was also more susceptible to the network congestion UPnP devices can create.

Figure 7.1: Platform communication comparison

One of the main problems of the old version of UbiCollab was that it was hard to
extend with new platform services and functionality. This was mainly because,
in addition to creating the service and its interface, the developer would need
to write the service functionality into the UbiCollab server to make it able to
pass traffic to and from the new platform service. While this is a tough problem
to start with, it gets harder by the fact that several different developers added
such services after the original platform’s conception, modifying the same code.
In the new version of the platform, the platform service developer only needs to
develop the actual service and its interface, and then use OSGi’s built-in mech-
anisms to plug the service into the framework running that part of the platform.

The new platform is built to run within an OSGi framework, which again is
based on Java, making the new platform more device operating system inde-
pendent than the old version, which had to run on devices supporting UPnP.
This also goes for external services’ and applications’ ability to communicate
with the platform, as the communication method for the new platform is tradi-
tional web service SOAP over HTTP, instead of requiring the devices to support
UPnP calls. This fact also makes the new platform more communication channel

88 CHAPTER 7. PLATFORM EVALUATION

independent than the previous version, as SOAP over HTTP is a more general
and available form of communication than UPnP calls.

When it comes to the Location service, security, user profile management, and
end-user programming, the two versions of the platform are very similar. The
only difference with regards to asynchronous communication is that the new
version is able to support it easily because of the added Data storage service.

7.3 Evaluation with regards to testbed

Whether or not UbiCollab can be considered a success, is to a large extent deter-
mined by the end-users of the system. However, evaluating this aspect cannot
be achieved without building applications on top of the platform. This is be-
cause UbiCollab is an infrastructure system, and thus is intended to support the
construction or operation of other software, and not users directly. This implies
that evaluation of the usability of UbiCollab can only be achieved indirectly via
applications that are built on top of UbiCollab [7]. This does, however, involve
some challenges: How to choose what applications to create to evaluate the
platform? And how to make sure the evaluation results can be traced back at
the platform and not the application used in the evaluation process?

In order to meet these challenges, the evaluation of UbiCollab has been based
on the advices given by Edwards et al. in the article “Stuck in the Middle: The
Challenges of User-Centered Design and Evaluation for Infrastructure” [7]. In it,
Edwards et al. recommends building several small applications that each test a
small part of the core functionality of the platform. The applications described
in Chapter 6 are built with this in mind, but in itself this is not enough to
guarantee a “correct” and complete evaluation of the platform. Later phases of
evaluation will require testing with more heavyweight “real world” applications.
Testing will also have to be conducted with actual end-users, both technically
experienced and users with limited technical experience, as well as application
developers.

Despite of this there are some conclusions that can be drawn from the evalua-
tion of the tests described in Chapter 6.

7.3.1 Programming language independence

Test applications have been built using several different programming languages
and runtime environments (e.g., Java, C# /.Net, C#/.Net Compact Framework
and PHP). These test shows that UbiCollab is capable of communicating and
collaborating with applications regardless of the programming language they are
written in. This indicates that the goal of creating UbiCollab as a programming
language independent system is close to being fulfilled.

7.3. EVALUATION WITH REGARDS TO TESTBED 89

7.3.2 Device and operating system independence

Platform components have been deployed on both a PDA running Windows
Mobile 2003 and on two different laptop computers running Windows XP. Even
though more testing is needed, this indicates that the platform can operate
independently of operating system and devices. On the other hand, the tests do
also show that some platform services are too resource-draining to be effectively
run on smaller devices. Care should therefore be taken when deploying platform
components so that the components are deployed on suitable devices.

7.3.3 Collaboration instances

One of the fundamental concepts in the UbiCollab platform is the use of collab-
oration instances to group related items such as users, resources and services.
Some of the tests (i.e., the Locator and Slideshow control) have proved that this
concept works as intended, at least in a small scale.

7.3.4 Collaboration support

The use of UbiCollab and the concept of Collaboration instances to support
collaboration between users have also been successfully tested. In the Slideshow
control test, users could share Power Point files with each other and also control
the same slideshow from two different locations. This is an encouraging result,
but again more testing is needed in order to make sure this does also work as
intended in a real world setting.

7.3.5 Usage of OSGi

The tests have also showed that OSGi fulfills its promises. Bundles can indeed be
started, stopped, modified and redeployed on another device without having to
restart the framework. On the other hand, these tests have only been conducted
with the Knopflerfish OSGi framework. It is therefore not certain whether all
services work properly in other OSGi frameworks.

7.3.6 Three-tier architecture

Quite a few of the new UbiCollab services have been based on a three-tier
architecture with plug-ins as the lower tier. Testing this has had a high priority
as this architecture is new to this version of UbiCollab. The results from the
initial tests were very promising. They showed that new plug-ins could be built
and deployed in the platform without having to make any changes to the code
of the parent component. The tests also showed that one plug-in can take over
for another one if that one goes down. This is completely transparent to the
applications, which are not affected by this. On the other hand, the tests did
also confirm that OSGi cannot detect changes in a plug-in’s status (i.e., started,
stopped, modified) if that plug-in is found in another OSGi environment. This

90 CHAPTER 7. PLATFORM EVALUATION

means that some services will have to base its plug-in functionality on other
technologies, such as web services.

7.3.7 Combining the effort of several services

Some tasks only require the services of one single platform component, but in
many cases the tasks are too complex to be handled by a single service. It is
therefore crucial to make sure the result from more than one service can be
combined into a more powerful result. Three such tests were conducted, and all
succeeded. The locator application tested the situation where the application
uses the result from one service as input to another, the Positioning Service
and its plug-ins tested the situation where a request is forwarded from one
platform component to another, whereas the Positioning Service Map tested
the combination of a UbiCollab service with a third-party service. The success
of these tests indicates that this important feature of the platform works as
intended

7.3.8 Resource collection

Resource collection is another important aspect of UbiCollab. The tests have
proved that UbiCollab is capable of handling resource collection both by man-
ually adding them to the repository, by collecting them via RFID and by auto-
matic detection. The latter does, however, only work with UPnP devices. Fu-
ture research should investigate means of automatically collecting web-service
based services. In addition, more plug-ins should be built for the Discovery Ser-
vice so that for example JXTA [Footnote] is supported. The search functions
used when querying the service repository for certain types of services have also
proved sufficient in the test cases. However, this is probably not sufficient in a
“real-world” deployment and the use of some sort of ontology for resources and
services should be considered.

Chapter 8

Conclusions

8.1 Contributions

Due to the contributions from several projects and theses over the last few
years, UbiCollab has achieved many of its goals, such as automatic discovery
of services and the collaborative benefits of the abstract Collaboration instance
model. However, the study conducted in the autumn of 2005 [19] showed that
UbiCollab would not be able to reach its vision of being a flexible and extendible
platform for ubiquitous collaboration with its existing architecture. This thesis
has therefore focused on completely re-designing the architecture of the UbiCol-
lab platform so that it will come closer to fulfilling its vision. The design pro-
cess has been based on the conclusions from the autumn report [19], experiences
from the old version of UbiCollab and the use of new technologies such as OSGi.
The process has also involved a thorough evaluation of the services UbiCollab
should provide, and a restructuring of the platform’s application programming
interface (API). Many of the identified services have been fully implemented,
whereas other services have been partially implemented with instructions on
how the service implementation can be completed. Finally, a testbed consisting
of various resources and numerous small test applications has been constructed.
This testbed has been used to evaluate the core functionalities of the platform
in addition to being a valuable tool for demonstrating the use of UbiCollab.

More specifically, the contributions are as follows:

A new platform architecture has been designed. This new design has made ex-
tensive use of OSGi for dependency handling and plug-in management, which
has resulted in a platform that is more flexible and easier to extend with new
services. The new platform services have also been carefully selected in order to
correct the shortcomings identified in the autumn report. A detailed description
of the new architecture and a list of the new platform services can be found in
Chapter 3 and Chapter 4, respectively.

91

92 CHAPTER 8. CONCLUSIONS

A set of platform service APIs have been given in Chapter 5. These have been
constructed based on the platform requirements found in the autumn report
[19], which were compiled through a process of analyzing collaboration in many
different scenarios, and comparing a set of collaboration platforms. The new
platform API should therefore be better suited to support ubiquitous collabo-
ration in a variety of environments and settings.

A working prototype consisting of the most essential platform services has been
built. The prototype constitutes a solid basis for further research and devel-
opment, and is also valuable for evaluating the feasibility of the new platform
architecture, testing new platform services and demonstrating the use of Ubi-
Collab. Details of the prototype implementation are given in Chapter 5.

The platform has been evaluated using two different techniques. The first eval-
uated the platform with regards to the requirements from the autumn report
[19], whereas the second one involved the creation of a testbed with several
small applications and external services that each tested a piece of the core
functionality of the platform. As the old version of UbiCollab was evaluated
with regards to the same requirements in the autumn report, a comparison of
the evaluations has also been performed. The testbed used in the evaluation
is described in Chapter 6, whereas the results of the evaluation as well as the
comparison with the old evaluation results are found in Chapter 7.

Finally, this work has reported on experiences with the testbed hardware and
software, and the fixes that had to be made to it in order to deploy and run the
platform and the test applications on different devices in the testbed. These ex-
periences and fixes are presented at the end of Chapter 6, and further explained
in the Appendix.

8.2 Evaluation

The goal of this thesis has been to re-design the platform architecture of Ubi-
Collab, so that it will be more flexible and easier to extend with new services
and technologies. Initial testing, and comparison of the new design with the old
one, strongly indicates that this has been accomplished. However, the platform
has not yet been tested with actual end-users or application developers, nor has
it been tested over a long period of time in a “real world” setting. According to
Edwards et al. [7], this is not much of a problem, though, as this kind of testing
should only be conducted in the later stages of development.

The usage of OSGi plays an important role in the new platform and is crucial
in achieving the goal of flexibility and extendibility. On the other hand, this
does also make the platform dependant on OSGi and forces all devices running

8.2. EVALUATION 93

platform components to install it. This could potentially become a problem for
the smallest and most constrained devices, as they might not have sufficient re-
sources to run the framework. As the platform is dependant on OSGi, it would
also be difficult to port it to another technology in case the usage of OSGi is no
longer wanted. However, this problem would occur no matter what technology
the platform was based on, and can therefore not be considered a serious dis-
advantage.

The platform API has been built from the requirements identified in the au-
tumn report [19], and refined by stepping through the scenario descriptions in
the same report, looking for events that should be translated into service func-
tionality. Finally, the implemented part of the API has been evaluated with test
applications in the testbed. This approach has been chosen in order to make
sure the API is as correct and complete as possible. Nevertheless, there might
still be situations and scenarios that are not fully covered by functionality in
the current API. This is due to potential errors in the requirements forming
the basis for the API, and uncertainty as to whether the scenarios from which
these requirements were extracted constitute a sufficient approximation to the
domains UbiCollab is supposed to cover. The API for the non-implemented ser-
vices are particularly vulnerable as these have not been evaluated in the testbed.
This is, however, not such a serious problem, as the new architecture makes it
a lot easier to extend the platform with new functionality at later stages. Plat-
form components can also easily be removed from the platform, modified and
re-inserted with minimal disturbance to the system.

The current prototype has been designed to run on several different devices.
Unfortunately, developing for some devices has proved to be far more cumber-
some than expected. This is mainly due to having to run old versions of Java
and the Knopflerfish OSGi framework, but also due to limited resources such as
memory and processing power. In the current implementation these challenges
have been solved, but the process of doing so required complex fixes to many
of the native Java, OSGi and third-party libraries. This leads to concerns as to
whether some developers will find it too hard to develop new services for the
platform. If this is the case, it will conflict with the requirement of extendibility.
More research is therefore needed to investigate limitations of the most common
families of devices and to find the best suited implementation of these software
libraries for each group of device. In the long-term, however, it is likely that
this problem will diminish significantly as new Java libraries tailored for small
devices will become more common.

Edwards et al. [7] raises the question of how a designer can evaluate features of
an infrastructure system, such as UbiCollab, without knowing about its appli-
cations and users. This is a difficult problem to solve and there are few reported
experiences in the human computer interaction literature on this topic [stuck
in the middle]. This thesis has tried to overcome this problem by evaluating
the platform using two different techniques. In this way, problems missed using

94 CHAPTER 8. CONCLUSIONS

one technique might be identified using the other one and thus keep errors at a
minimum.

In order to make the platform services run on the smaller devices, some mod-
ifications had to be made to supporting code libraries such as for instance the
IBM J9 Java implementation and Knopflerfish. Special care has been taken to
make sure these modifications do not affect the rest of the libraries’ code.

8.3 Further work

The dependency handling and plug-in management features of OSGi have proved
to be extremely valuable for UbiCollab. Unfortunately, these features, such as
the service tracker mechanism, do not work across different OSGi frameworks.
This is a serious disadvantage which is further aggravated by the highly dis-
tributed architecture of the platform. The current solution to the problem is
to use web service calls to communicate with services deployed in other OSGi
frameworks. However, web services lack these important plug-in and depen-
dency management features. Further research should therefore try to find ways
of communicating with OSGi calls across different OSGi frameworks, or possibly
find alternative protocols that provide the same features or is able to simulate
the same mechanisms.

The current prototype does not include all the intended services and planned
functionality. Some services are only partly implemented whereas others are not
implemented at all. Consequently, the current prototype does not meet all the
requirements from the autumn report. These services will therefore have to be
implemented and evaluated before the platform is finalized. Additionally, some
of the unfulfilled requirements can not be met by simply adding another service.
The security requirement is an example of this, where security mechanisms will
need to be added to components such as the Discovery service, the Data storage
service and the Collaboration service.

Further evaluation of the framework should also be conducted. This thesis has
evaluated the platform against the requirements from the autumn report, com-
pared the result with the evaluation result of the old version and tested the
platform with several service consuming applications. In spite of this, more
test-and-refine cycles are required to improve the functionality and APIs of the
components, particularly involving application developers creating application
that consume services the platform provides.

This thesis has expressed concerns regarding the difficulty in developing platform
services for small, constrained devices. Further research should therefore look
into ways of making this job easier. This could for instance include detailed
guidelines, best practices, Java libraries tailored for particular device families

8.3. FURTHER WORK 95

and development toolkits.

96 CHAPTER 8. CONCLUSIONS

Bibliography

[1] J. E. Bardram, ”Supporting Mobility and Collaboration in Ubiquitous Com-
puting,” Center for Pervasive Computing, Aarhus, Denmark, CfPC 2003-
PB-38, 2003.

[2] Federico Bergenti, Socrates Costicoglou & Agostino Poggi, ”A Portal for
Ubiquitous Collaboration,” in Conference on Advanced Information Systems
Engineering, 2003.

[3] B. Cameron et al., ”Where does groupware fit?” The Forrester Report: Soft-
ware Strategies, Vol. 6, No. 3, June 1995.

[4] H. B. Christensen & J. E. Bardram, ”Supporting Human Activities - Explor-
ing Activity-Centered Computing,” in Proceedings of Ubiquitous Computing,
2002, pp. 107-116.

[5] N. Davis & H. Gellersen, ”Beyond Prototypes: Challenges in Deploying
Ubiquitous Systems”, IEEE Pervasive Computing, Vol. 1, pp.26-35, 2002.

[6] Monica Divitini, Babak A. Farshchian & Haldor Samset, ”UbiCollab: Col-
laboration support for mobile users,” in Proceedings of the 2004 ACM Sym-
posium on Applied Computing, 2004, pp. 1191-1195.

[7] W. Keith Edwards et al., ”Stuck in the Middle: The Challenges of User-
Centered Design and Evaluation for Infrastructure,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI’03), 2003,
pp. 297-304.

[8] C. A. Ellis, S. J. Gibbs & C. L. Rein, ”Groupware: Some Issues and Expe-
riences,” Communications of the ACM, Vol. 34, pp. 38-58, January 1991.

[9] Kate Erlich, ”Designing Groupware Applications: A Work-Centered Design
Approach,” in Computer Supported Collaborative Work, Vol. 7, Trends in
Software, M. Beaudouin-Lafon, Ed., John Wiley & Sons, 1999, pp. 1-28.

[10] G. H. Forman & J. Zahorjan, ”The Challenges of Mobile Computing,”
IEEE Computer, Vol. 27, pp.38-47, April 1994.

97

98 BIBLIOGRAPHY

[11] Pedro Goncalves, ”UbiClient: A mobile client for an ubiquitous collab-
orative environment,” M.S. Thesis, Norwegian University of Science and
Technology, Trondheim, Norway, 2004.

[12] Mike Hazas, James Scott & John Krumm, ”Location-Aware Computing
Comes of Age,” IEEE Computer, vol. 37, pp. 95-97, February 2004.

[13] Department of Computer Science, University of Illinois at Urbana-
Champaign, ”Gaia: Active Spaces for Ubiquitous Computing,”
http://gaia.cs.uiuc.edu/index.html.

[14] Børge Sets̊a Jensen, ”Location-aware service for the UbiCollab platform,”
M.S. Thesis, Norwegian University of Science and Technology, Trondheim,
Norway, 2005.

[15] R. Johansen, Groupware: Computer Support for Business Teams, New
York: The Free Press, 1988.

[16] Paul Luff & Christian Heath, ”Mobility in Collaboration,” in Proceedings of
the 1998 ACM conference on Computer Supported Cooperative Work, 1998,
pp. 305-314.

[17] Kalle Lyytinen & Youngjin Yoo, ”Issues and Challenges in Ubiquitous
Computing,” Communications of the ACM, Vol. 45, pp. 63-65, December
2002.

[18] Panos Markopoulos, Irene Mavrommati & Achilles Kameas, ”End-User
Configuration of Ambient Intelligence Environments: Feasibility from a User
Perspective,” in Second European Symposium on Ambient Intelligence, 2004,
pp. 243-254.

[19] Christian H. Mosveen & Andreas Brustad, ”UbiCollab: Evaluation and
requirements re-engineering,” Depth study, Norwegian University of Science
and Technology, Trondheim, Norway, 2005.

[20] The OSGi Alliance, OSGi Service Platform Core Specification, Release 4,
2005.

[21] Agostino Poggi et al., ”Collaborator - A collaborative system for heteroge-
nous networks and devices,” presented at International Conference on En-
terprise Information Systems, Angers, France, 2003.

[22] Hans Steien Rasmussen & Anders Magnus Braathen, ”Preserving privacy
in UbiCollab: Extending privacy support in a ubiquitous collaborative en-
vironment,” M.S. Thesis, Norwegian University of Science and Technology,
Trondheim, Norway, 2005.

[23] Jörg Roth, ”Seven Challenges for Developers of Mobile Groupware,” in
Workshop Mobile Ad Hoc Collaboration, CHI 2002, Minneapolis, 2002.

BIBLIOGRAPHY 99

[24] D. M. Russel, N. A. Streitz & T. Winograd, ”Building Disappearing Com-
puters”, Communications of the ACM, Vol. 48, pp.42-48, March 2005.

[25] Christian Schwarz, ”UbiCollab - Platform for supporting collaboration in
a ubiquitous computing environment,” M.S. Thesis, Norwegian University
of Science and Technology, Trondheim, Norway, 2004.

[26] Mark Weiser, ”The Computer for the 21st Century,” Scientific American,
pp. 94-100, 1991.

100 BIBLIOGRAPHY

Appendix A

Software fixes

A.1 Java Communications API for Pocket PC

Sun does not provide a Pocket PC compatible version of its Java Communica-
tions API1, however several third-party implementations exist. Many of these
implementations were tested with the HP iPAQ h6300 PDA, but none appeared
to work. The reason for this was eventually traced to the CommPortIdentifier
class. It appears that all these implementations are based on Sun’s original
implementation. This implementation is quite old though, and the CommPor-
tIdentifier class does therefore use a String constructor that has since become
deprecated. This is normally not a problem, as it is perfectly legal to use dep-
recated methods. However, IBM has decided to not implement any deprecated
methods in their J9 Java implementation. Consequently, the Communications
API does not work in conjunction with J9. This problem was corrected by de-
compiling the Communications API and replacing the deprecated constructor
with a non-deprecated one. The API was then recompiled for Java 1.3.0. The
fixed version of the Communications API can be found on the CD accompanying
this report.

A.2 axis-osgi bundle for J9

The axis-osgi bundle is necessary in order for services to be able to expose their
interfaces as web service interfaces, and is essentially the Apache Axis web ser-
vice server, wrapped as an OSGi bundle. The problem with this bundle was
that its version of Apache Axis used Java 1.4-specific functionality, and con-
sequently did not work with the J9 implementation which is based on Java
1.3.0. This problem was solved by replacing the internal Apache Axis imple-
mentation with an older, 1.3 compatible version. In addition, the namespace
org.apache.axis.encoding.ser had to be included in the bundle’s export list

1http://java.sun.com/products/javacomm/

101

102 APPENDIX A. SOFTWARE FIXES

in order for it to work properly, whereas the java.xml.soap namespace had
to be removed from the import list, as this was erroneously added to both the
import and export list.

A.3 axis-osgi bundle for Java 5.0

For some reason the axis-osgi bundle did not work with Java 5.0 either. It seems
this was due to backwards compatibility issues with Java 5.0 and Java 1.4, where
axis-osgi’s version of Axis did not work with Java 5.0. In the same way as for the
J9 version, this was solved by replacing the internal Axis implementation with
another version. This time it was replaced with the newest Axis implementation
available. The same changes in the bundle’s manifest file as for the J9 version
had to be made for this version as well.

A.4 WSDL parsing

The dynamic proxy generation process in the Positioning Service requires the
WSDL file of the plug-in to be parsed. The wsdl4j library2 is used for this pur-
pose. This works fine with Sun’s Java implementation (version 1.4 or higher),
but not for the J9 implementation. This is because J9 does not include a content
handler for the content type: text/xml, and is therefore not able to determine
the type of content found at the URL of the WSDL file. Adding a content
handler for text/xml to the J9 implementation turned out to be extremely dif-
ficult. However, a thorough examination of the working Java implementation
revealed that the code simply opens an input stream to the URL as soon as
it has determined that the content is XML. As it is known that WSDL files
are always described in XML, this problem can be solved by simply bypassing
the content handling process and instead opening the input stream to the URL
directly. This was accomplished by modifying the StringUtils class of wsdl4j
as shown in Listing A4.1.

com.ibm.wsdl.util.StringUtils

Public static InputStream getContentAsInputStream(Url url) {
...
//Object content = url.getContent(); // Old version
Object content = url.openStream(); // UbiCollab fix
...
return (InputStream)content;

}

Listing A4.1

2http://sourceforge.net/projects/wsdl4j

A.5. DYNAMIC PROXY GENERATION 103

To make sure this fix does not introduce errors to other parts of the system,
(i.e., components trying to parse other types of content) the modified wsdl4j
library has been included as part of the Positioning Service. This prevents
other services from unintentionally using the modified wsdl4j library.

A.5 Dynamic proxy generation

Because of the dynamicity in the environment in which UbiCollab is found, the
Positioning Service is forced to create web service proxy classes to its plug-ins at
runtime. This process involves parsing of the WSDL files to see if they contain
the correct method, the actual proxy generation, and finally the casting of the
proxy to a PositioningPluginService interface. Once the proxy is casted to
an object implementing this interface, methods can be called on the plug-in as
if it was a local Java object.

The problem arises when the proxy is to be casted to a
PositioningPluginService object. This casting is the last part of the proxy
generation process which is done by the org.apache.axis.client.Service
class. As this class is part of the axis-osgi bundle, it is loaded into the Java
Virtual Machine by the same ClassLoader that was used when this bundle was
loaded and started. This is a different ClassLoader from the one used to load
the classes in the Positioning Service. Consequently, the ClassLoader used in
the Service class does not know of the PositioningPluginService interface
and thus cannot cast the proxy to such an object.

This problem was solved by overloading the method that generates the proxy
so that it takes a ClassLoader object as an extra input parameter. When the
method is called, the Positioning Service’s ClassLoader is passed as a parameter
and used to load the PositioningPluginService interface. Before the method
returns, the original ClassLoader is restored. This modification to the axis-osgi
bundle should not affect other components in the system as no changes have
been made to any of the original methods. The only difference is the addition
of another method that takes a ClassLoader as an extra input parameter.

A.6 Missing functionality added to J9

As J9 is an implementation of the Java 1.3.0 specification, a large amount
of important functionality is missing, especially related to XML parsing. In
order to compensate for this, a special library with important functionality has
been created and tailored for the PDA. This library contains the namespaces:
org.xml.sax, org.w3c.dom, javax.xml.parsers and javax.naming. It has
been created by recompiling the source files from newer Java versions to Java
1.3 compatible classes. This new library has been named PocketParser.jar and
can be found on the CD accompanying this report.

104 APPENDIX A. SOFTWARE FIXES

Appendix B

Installation guide

B.1 PDA

B.1.1 Install instructions

This section gives instructions on how to install UbiCollab and its test applica-
tions on a Pocket PC compatible device.

The following components have to be installed before UbiCollab and the test
applications can run:

Microsoft .Net CF 2.0

The Microsoft .NET CF 2.0 can be found in the following locations:

URL http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-
356b-4a2c-857c-e62f50ae9a55&DisplayLang=en

Install the file on a standard computer. The installation process will automati-
cally copy the framework to the PDA if the PDA is connected to the computer
and Microsoft Active Sync (version 4.1 or later)1 is running.

IBM J9

IBM J9 can be found in the following location:

URL http://www-306.ibm.com/software/wireless/weme/

IBM J9 is integrated in the WebSphere Everyplace Micro Environment. This is
a commercial software suite, but a free trial version is available. Download this

1http://www.microsoft.com/windowsmobile/downloads/activesync41.mspx

105

106 APPENDIX B. INSTALLATION GUIDE

version and follow the instructions. Make sure to select the Connected Device
Configuration (CDC) with the Personal Profile (PPRO) when instructed.

Knopflerfish Tiny OSGi framework

The Knopflerfish Tiny OSGi framework can be found in the following locations:

URL http://knopflerfish.org/download.html

CD folder Knopflerfish Tiny

It is recommended to use the CD version, as this is complete with the UbiCollab
services and correct property files.

The Knopflerfish framework can be copied directly to the PDA. Put the three
folders in the “Knopflerfish Tiny” folder in the root directory of the PDA.

Java Communications API

An implementation of the Java Communications API for Pocket PC can be
found in the locations below. Make sure to download the Communications API
and not the JVM if the web URL is used.

URL http://www2s.biglobe.ne.jp/˜dat/java/project/jvm/index en.html

CD folder Java Comm API for Pocket PC

To install put:
javax.comm.jar in J9-Root/PPRO10/lib/jclPPro10/ext
javax.comm.properties in J9-Root/J9/PPRO10/lib
javaxcomm.dll in /Windows

IDBlue Bluetooth RFID Pen drivers

The drivers for the IDBlue RFID Pen can be found in the following locations:

URL http://www.cathexis.com/secure/idblue.aspx (registration needed)

CD folder IDBlue Software

Install the IDBlue Software Suite on a standard computer. Baracoda Manager
for ARM PocketPC (Widcomm 1.4) and Franson Bluetools for ARM,X86 Pock-
etPC (Widcomm and Microsoft) have to be installed on the PDA. They can be
found under “Cathexis Innovations” . “Bluetooth Support Installers” . “PPC”
on the Windows Start menu, after the installation is complete. These two li-
braries are also referenced in the code of the applications that utilize the RFID
pen. If the references in these projects no longer point to the correct location,
update them to point to these two DLLs.

B.2. PC 107

UbiCollab configuration files

The UbiCollab configuration files can be found here:

CD folder UbiCollab Services configuration files

Copy the configuration files to the root directory of the PDA.

B.1.2 How to start UbiCollab and the test applications

After the installation is complete, UbiCollab can be started by clicking the
run.lnk file in the /knopflerfish directory, or by running the command in the
run.txt file.

The test applications can be started by copying them from the CD to the PDA
and launching the corresponding EXE-file. Another approach is to open the
source code in Visual Studio and select “deploy to device”.

B.1.3 How to install new services for UbiCollab

Put the JAR-file of the new service in the /iPAQ File Store/bundlefiles folder.
Add ”-install” and ”-start” commands to the remote-init.xargs file in the /iPAQ
File Store folder.

B.2 PC

B.2.1 Install instructions

When installing UbiCollab on a PC, the prerequisites depend on which bundles
are to be installed. This installation guide assumes that all bundles will be
installed, and thus covers all prerequisites.

Java 5.0 with MySQL driver

Java (version 5.0 or newer) is required in order to run UbiCollab, and can be
downloaded from the following location:

URL http://java.sun.com/j2se/corejava/index.jsp

In addition, a MySQL driver for Java is needed. This can be downloaded from
the following location:

URL http://www.mysql.com/products/connector/j/

108 APPENDIX B. INSTALLATION GUIDE

MySQL

If an external database server is not available, MySQL will have to be installed.
The latest version can be found here:

URL http://dev.mysql.com/downloads/

The database server needs to have a database called ubicollab, with username
ubi and no password.

The database needs to keep these tables:

discovery
id INT Sequential table-specific ID number
tagId VARCHAR(40) ID string on RFID tag
uuId VARCHAR(100) ID string for UPnP devices
name VARCHAR(100) Name of the service
type VARCHAR(100) Type of the service (typically a namespace)
protocol VARCHAR(10) The service protocol (ws, upnp, etc.)
descriptionUrl VARCHAR(200) URL to the description XML
serviceUrl VARCHAR(200) URL to the service XML
owner VARCHAR(100) Owner of the service
discovered TIMESTAMP Time of discovery

persons
id INT Sequential table-specific ID number
username VARCHAR(20) Person’s username
fullName VARCHAR(100) Person’s full name
added TIMESTAMP Time of addition

collabinsts
id INT Sequential table-specific ID number
collabInstId VARCHAR(40) ID string of collaboration instance
name VARCHAR(100) Name of the collaboration instance
creator VARCHAR(20) Creator of the collaboration instance
created TIMESTAMP Time of creation

personcollabinst
id INT Sequential table-specific ID number
username VARCHAR(20) Person’s username
collabInstId VARCHAR(40) ID string of the collaboration instance
coupled TIMESTAMP Time of coupling

B.2. PC 109

filecollabinst
id INT Sequential table-specific ID number
fileId VARCHAR(200) ID string of the file
collabInstId VARCHAR(40) ID string of the collaboration instance
coupled TIMESTAMP Time of coupling

servicecollabinst
id INT Sequential table-specific ID number
descriptionUrl VARCHAR(200) URL to the description XML
collabInstId VARCHAR(40) ID string of the collaboration instance
coupled TIMESTAMP Time of coupling

Knopflerfish OSGi framework

UbiCollab is based on the Knopflerfish OSGi framework and thus requires this
framework to run. In addition, the Knopflerfish optional bundles package is
required. Both can be downloaded from the following location.

URL http://knopflerfish.org/download.html

From the optional bundles package, the Commons-Logging, and the axis-osgi
bundles are required. However, there is a bug in the axis-osgi bundle that makes
it incompatible with Java 5.0. Until a new version is available, a fixed version
of the bundle can be used. This bundle can be found here:

CD folder Modified axis-osgi bundle/For Java 5.0

UbiCollab configuration files

The UbiCollab configuration files can be found here:

CD folder UbiCollab Services configuration files

Copy the configuration files to this folder: knopflerfish-root/knopflerfish.org/osgi

B.2.2 How to start UbiCollab

UbiCollab can be started on a PC by starting the Knopflerfish OSGi framework.
This is done by launching the framework.jar file.

B.2.3 How to install new services for UbiCollab

New services can be added to UbiCollab by starting them in the Knopflerfish
OSGi framework. The UbiCollab services can be found in the following location:

CD folder UbiCollab Services bundles

