
June 2010
Torbjørn Hallgren, IDI
Jo Skjermo, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Computerised Methods and Device for
Intuitive Use of the Human Hand for
Touching and Re-shaping of Three-
Dimensional Virtual Objects

Vegar Neshaug

Problem Description
The task entails the development of a device which measures the position and
main movements of the human hand and process these signals, such that they
can be realistically visualized. Further, it includes modeling the interaction and
deformation of the human hand and mathematical surfaces.

Assignment given: 15. January 2010
Supervisor: Torbjørn Hallgren, IDI

Abstract

Today, the use of the mouse and keyboard input devices to interface

with the computer is common almost regardless for what end the computer

is used. This is no less true for users who daily work in three-dimensional

modeling. Because of this, there is a signi�cant threshold for individuals

beginning three-dimensional modeling before being able to form even the

most rudimentary of objects. A possible approach to lowering this thresh-

old is to bridge the gap between traditional sculpting and virtual sculpting

by utilizing the full range of human hand motion when interfacing with

the computer.

This work review the status of Human-Computer Interaction devices

and methods, and set out to design and implement a low-cost data glove

prototype.

A polygon mesh deformation method is developed which demonstrates

the functionality of the glove and system design.

The work constitutes a useful platform for further academic work in

this �eld.

i

Contents

1 Introduction 2

1.1 Problem De�nition . 2

1.2 Goals . 2

1.3 Problem Solving . 3

2 Previous Work 4

3 Literature Review 5

3.1 Human Machine Interaction 6

3.2 Deformation and Modeling 6

3.3 Hand Gestures . 6

3.4 Data Gloves . 7

4 Overview and Architecture 7

5 Data Glove 9

5.1 Sensor Layout . 10

5.2 Electronic Circuit . 11

5.3 Microcontroller Program . 13

5.4 VRPN Device Driver . 13

5.5 Printed Circuit Board . 14

6 Laboratory Work 14

7 Hand Representation 14

7.1 Skeletal animation . 15

7.2 Calibration . 17

7.3 Rotation and Translation 19

7.4 Gesture Recognition . 19

8 Blender Add on 20

8.1 Using VRPN Python Wrappers in Blender 20

8.2 Visual Representation . 21

9 Surface Deformation 22

9.1 Polygon Mesh Deformation 22

10 Results 26

10.1 Data Glove and Hand Representation 27

10.2 Polygon Mesh Deformation 28

ii

11 Discussion 28

11.1 Data Glove . 28

11.2 Hand Representation . 28

11.3 Polygon Mesh Deformation 29

11.4 Further Work . 29

12 Conclusion 29

References 30

A Guide for using Data Glove with VRPN 32

B Guide for Blender Python Scripting with VRPN 33

C Examples of Mesh Deformation using Blender Python API

33

D Data Glove and Computer Interface Circuit 35

D.1 Glove Design . 35

D.2 Circuit Design . 36

D.3 Glove and Bend Sensors . 36

D.4 Circuit Prototyping . 37

D.5 Printed Circuit Board . 38

D.6 Microcontroller program . 39

D.7 VRPN Device Driver . 46

E Microcontroller and VRPN Data Glove Code 48

E.1 VRPN Program Code . 48

E.1.1 VRPN Header File 48

E.1.2 VRPN C Code File 50

E.2 Microcontroller Program Code 53

F Data Glove History 59

G Parts List 60

iii

List of Figures

1 Human hand interaction with rigid bodies 4

2 Hand of collision primitives simulating haptic feedback from rough

surface . 5

3 Top Level Data Flow Diagram 9

4 Data glove and Printed Circuit Board w/USB 10

5 Circuit Schematic . 11

6 Trace Schematic . 14

7 Vertex group painting in Blender 16

8 Bone deformation in Blender . 16

9 Pinching gesture . 20

10 Bone positioning inside mesh . 22

11 Simple BND deformation . 24

12 Directional BND deformation . 26

13 Data Glove and Blender . 27

14 Two-Handed Operation . 28

15 Prototype Board . 37

1

1 Introduction

Today, the use of the mouse and keyboard input devices to interface with the

computer is common almost regardless for what end the computer is used. This

is no less true for users who daily work in three-dimensional modeling. Be-

cause of this, there is a signi�cant threshold for individuals beginning three-

dimensional modeling before being able to form even the most rudimentary of

objects. A possible approach to lowering this threshold is to bridge the gap

between traditional sculpting and virtual sculpting by utilizing the full range of

human hand motion when interfacing with the computer.

There exist specialized HCI devices today called data gloves which capture the

essential movements of the human hand. Support for these devices in three-

dimensional modeling packages is non-existent or low. Furthermore, they de-

pend on bundled proprietary closed-source software development kits and the

cost of obtaining a data glove is not insigni�cant. Proprietary closed-source

software is generally not the ideal starting point for academic research.

One approach to overcome these challenges consists of several tasks. First de-

velop an open design and open source data glove. Then demonstrate how the

data glove can interface with an open source three-dimensional modeling ap-

plication. Surface deformation methods are implemented to show how virtual

sculpting using a data glove can be achieved.

1.1 Problem De�nition

The task entails the development of a device which measures the position and

main movements of the human hand and process these signals, such that they

can be realistically visualized. Further, it includes modeling the interaction and

deformation of the human hand and mathematical surfaces.

1.2 Goals

The problem is broken down into the following goals.

1. A literature review of:

(a) State of the art data gloves

2

(b) Surface deformation methods

(c) Hand Gesture recognition methods

2. Design and develop a prototype data glove

3. Design and develop an electronic circuit to interface the data glove with

a personal computer

4. Choose a three-dimensional modeling application and implement support

for the data glove

5. Design and develop a model in the selected modeling application for hand

and �nger movements in 3D

6. Implement a hand gesture recognition method which is suitable in a mod-

eling context

7. Develop and implement surface deformation methods which are suitable

for use with a data glove

1.3 Problem Solving

To be able to reach the goals outlined within the time restrictions, some con-

straints and decisions were made.

Blender will be used as the modeling application and framework for the imple-

mentation. The main reasons for this choice are:

1. Blender is open source and therefore allows compiling in external libraries(like

VRPN)

2. Blender has a Python API and integrates the Python interpreter, allowing

for fast prototyping

The FlexPoint Bend Sensor will be used as the joint �exion sensor. FlexPoint

provided samples of their Bend Sensor free of charge.

The Atmega168 microcontroller with on-chip ADC and USART will be used

for conversion of analog values and serial transmission. This microcontroller

limits the number of sensors which can be sampled to six sensors. It is however

selected because the aim is to create proof-of-concept prototype. It represents

an easily available and convenient component with su�cient functionality to

demonstrate the main goal.

3

2 Previous Work

In �Virtual Reality and Human Hand Haptic Methods�[23] the use of a data glove

and a haptic skeleton was studied. Methods and models for computing forces

were implemented and discussed. The focus was on using touch in interacting

with virtual objects and how natural this felt. The work proposes permanent

deformations as a potential area for further study. Also, abstract use of the

data glove is mentioned as a method for rotating and moving an object while

being edited using a di�erent tool like the Phantom.

A hand model was developed based on the principles of armature and bone

rigging. This is a hierarchical method of orientating a bone in which a given

bone is dependent on its own rotation and the transformation of the bones

preceding it. Bone orientation was represented using quaternions.

Further, the hand was given a three-dimensional representation using capsule

and box collision primitives for the bones of the �ngers and palm respectively.

This allowed interacting with objects using all parts of the hand, although only

the �ngertips were given haptic feedback because of the nature of the haptic

exoskeleton used. Figure 2 shows a screen capture of a real-time simulation.

Figure 1: Human hand interaction with rigid bodies

4

Figure 2: Hand of collision primitives simulating haptic feedback from rough
surface

Future work was outlined, mentioning permanent deformations and abstract use

of the data glove. These ideas are built on and expanded upon here.

3 Literature Review

The literature review focused on collecting works within the �elds of 3D anima-

tion, deformation methods and motion capture methods and devices.

A large body of literature on deformation methods is based on the application

of FEM and NURBS surfaces. FEM methods are used largely for accurate and

physically based stress and strain computation, while NURBS are extensively

used for 3D Computer-Aided Design applications. The basic form of modeling

using NURBS is done by moving control points which are not part of the mesh,

and often not even very near a mesh vertex.

The emphasis in this thesis is to deform a mesh without regarding stress and

strain. What is important is the interaction between the hand movements and

the visual response. Hence, a simpler model will su�ce. The idea of using

a simpler method was inspired by the example application in the open source

haptics software development platform H3DAPI(http://www.h3dapi.org). This

simpler method is based on deforming the surface by a gaussian distribution

centered on a haptic stylus. A speci�c literature search on this method did not

produce relevant material.

5

3.1 Human Machine Interaction

The �eld of Human-Machine Interaction is very broad.

�Visual Interpretation of Hand Gestures for Human-Computer Interaction: A

Review�[21] includes a list of relevant literature in the �eld of hand gesture

recognition. The focus in this article is on visual interpretation of the human

hand. The use of data gloves is dismissed as cumbersome, and methods for

visual recognition are suggested.

In the bulk of literature found, the most relevant application of human hand

motion capture is based on the use of data gloves. Hence, the literature review

was narrowed down to the use of data gloves in hand gesture recognition and

telerobotics[21, 20, 13, 10, 8, 4].

3.2 Deformation and Modeling

From the literature review on deformation and modeling, the most relevant

works was related to haptic applications[9, 19, 2, 18, 27]. Many of the haptic

deformation methods focus on volumetric models, which is often referred to by

the term Virtual Clay[2, 19]. Other deformation methods are based on para-

metric surfaces[9], or by indirectly deforming a polygon mesh by a surrounding

lattice �cage�[14]. All of these methods are potentially suitable for this work.

However, as stated in the beginning of this chapter, a simpler method of directly

deforming mesh vertices is chosen as more suitable.

3.3 Hand Gestures

Hand gesture recognition is a big �eld of research. There are two dominant forms

of approaching the problem of gesture recognition. The di�culty involved in

gesture recognition depends on which approach is used. This is discussed in

[21].

One form of gesture recognition is based on computer vision and digital image

processing[25]. Many methods are used to achieve image based gesture recog-

nition. Some methods attempt to recognize the general shape of the hand by

pattern recognition when it is in a certain pose[6]. Other methods try to esti-

mate the internal angles of the hand and assign these to an intermediate hand

6

model[26]. This intermediate hand model, call it a skeleton, is then used to

recognize a gesture.

Another form of gesture recognition is based on the use of a dataglove[16].

Estimating the angles of the joints becomes much simpler, although not trivial.

These angles can be assigned to a skeleton hand model which is used as the

basis for gesture recognition.

3.4 Data Gloves

No relevant published works on the construction of data gloves were found. To

gain some insight on their inner workings, the commercial producers(notably

CyberGlove and 5DT) publish data sheets and manuals which give an overview

of sensor placement and output.

There are however some published works on the calibration of a data glove[13,

10, 8, 4]. To accurately calibrate a data glove it is necessary to compare the

sensor readings to the actual articulation of the hand. In other words, an accu-

rate form of measuring the articulation must already be available for accurate

calibration.

4 Overview and Architecture

The Top Level Data Flow Diagram(DFD) shown in Figure 3 gives a perspective

on the system design. This perspective called the data �ow perspective shows

where data is generated and which processes act on the data.

Starting from the top, the data glove and the ADC circuit shows that the ana-

log data is processed into a digital serialized form, which is then processed by

the VRPN[22] Glove Device Driver. The VRPN Server uses the data from the

VRPN Glove Device Driver and the VRPN Tracker Device Driver for transmis-

sion to the VRPN Client. The Flock-Of-Birds is used as the tracker. FoB has

limited range, but high accuracy within that range. The range is appropriate

for the purpose of operating data gloves in front of a monitor.

VRPN sets the premise for the system architecture in that it is a network

transparent client-server architecture[22]. VRPN acts as the device layer for

interfacing with the tracker, and was also chosen as the device layer for the data

glove. This is because of three major reasons:

7

1. VRPN provides the same client interface for all supported devices in a

device class(e.g a tracker).

2. VRPN is network-transparent allowing decoupling equipment-machine and

client machine.

3. VRPN can easily be extended to support new hardware.

The Blender Python API allows for rapid prototyping. VRPN is written in

C/C++ and compiled to native libraries. To bridge between native code and

Python, it is possible to use utilities which generates a python-accessible �wrap-

per� to interface with the native code. This is illustrated by the VRPN Python

Wrappers interface shown in Figure 3.

The Visual Hand Representation component uses the now python-accessible

VRPN data to create a visual hand representation in the Blender Python API.

Surface Deformation, Hand Gesture Recognition and Visual Hand Represen-

tation has a complex interconnection. Surface Deformation needs data from

the Visual Hand Representation to be able to deform surfaces using the hand.

Similarly, Hand Gesture Recognition needs data from the Visual Hand Repre-

sentation to detect gestures. They all use the Blender Python API to produce

desired e�ects in the Blender Scene. The Blender Scene is rendered onto the

computer monitor by Blender.

8

Figure 3: Top Level Data Flow Diagram

5 Data Glove

The design of the data glove is largely determined by the decision to use the

FlexPoint Bend Sensor. These sensors will be placed over the �nger joints and

will thus be similar to the CyberGlove and 5DT Ultra 16. The design diverges

from the CyberGlove and 5DT Ultra 16 in that a sensor is placed in the palm of

9

the hand. This is intended to provide a better sensor value for the movement of

the metacarpal phalanx of the thumb than the commercial products. In Figure

4 the data glove with wires attached can be seen. There are two wires connected

to each sensors which are led inside a double-layered glove and terminated in a

2-wire connector which is to be connected to a pin header on the circuit board.

Figure 4: Data glove and Printed Circuit Board w/USB

5.1 Sensor Layout

The range of motion of the human hand is complex[11]. The hand consists

of bones called phalanges connected by ligaments which form the joints. One

should realize that all the joint ligaments allow displacement and rotation in all

directions.

Fingers consist of a distal, an intermediate and a proximal phalanx. The thumb

does not have an intermediate phalanx.

A sensor layout using bend sensors laid over the hand is inherently limiting.

The bend sensors are placed such as to isolate one axis of rotation. This sim-

pli�es the translation of the sensor readings to a 3D skeletal model, discussed

in Chapter 7.

10

5.2 Electronic Circuit

The electronic circuit is designed around the Atmega168 microcontroller. Since

the ADC converts a voltage signal, the bend sensor potentiometer variation must

be converted to a voltage signal for sampling by the ADC. A voltage divider is

used for this purpose. This is one of several conversion circuits suggested by the

FlexPoint Bend Sensor Design Considerations[5] document.

Figure 5: Circuit Schematic

Consider Figure 5. The output of the voltage divider can be easily found by

applying Ohm's law.

Vin = I · (R1 +R2)

Vout = I ·R2

Vout = Vin

R1+R2
·R2 = Vin · R2

R1+R2

Hence, the voltage signal input to the ADC is a function of the bend sensor

resistivity:

Vout(Rbend) = Vin ·
Rbend

R1 +Rbend
(1)

11

The electronic schematic was made using the Eagle CAD software[3] and can

be seen in Figure 5.

The circuit is powered by the USB computer port through the FTDI 3v3 level

shifter device cable. This provides a 5v voltage source V cc to power the circuit

and provide the reference voltage Vref to the voltage divider Vin and ADC.

Hence V cc = Vref = Vin. The digital conversion value is related to the bend

sensor in the voltage divider by the following equation(cit datasheet):

ADC = 1024 · Vout(Rbend)
Vref

(2)

Thus, it follows that:

ADC = 1024 · Rbend

R1 +Rbend
(3)

Equation 3 has an in�uence on the calibration of the visual representation which

is considered later.

To utilize the full resolution of the ADC, the �xed resistor R1 should be selected

with care. Let Rmax and Rmin be respectively the maximum and minimum

resistivity of the bend sensor. The following equation should be maximized:

1024 · Rmax

R1 +Rmax
− 1024 · Rmin

R1 +Rmin
(4)

The resistivity of the bend sensors used in the data glove had an average Rmax

of 250kOhm at maximum joint �exion. When the joint was un�exex Rmin was

measured to an average of 9kOhm. Tabulating equation 4 to some standard

resistor values available at the lab reveals the following:

Rmin(Ohm) Rmax(Ohm) R1(Ohm) 1024 · Rmax

R1+Rmax
− 1024 · Rmin

R1+Rmin

9000 250000 24000 655

9000 250000 47000 697

9000 250000 96000 652

Thus, 47kOhm was selected for R1.

Most of the components are selected according to the Atmega168 datasheet[1]

recommendations. The crystal oscillator value of 18.432Mhz however is selected

for two reasons. The Atmega168 can run at a maximum clock frequency of

12

20Mhz. Also, it produces minimum transmission error (0.0%) with a BAUD

rate of 115200 symbols/sec. For an in-depth discussion on the relationship

between oscillator frequency, transmission error and baud rate, see Appendix

D.

It is common to use a MAX232 level shifter to produce a voltage level for

connecting to a standard computer serial port. Newer computers are rarely

shipped with such serial ports in favor of the USB peripheral ports. The FTDI

3v3 level shifter provides an interface between the USART(Uni�ed Synchronous-

Asynchronous Receiver/Transmitter) voltage levels USB.

5.3 Microcontroller Program

The microcontroller was programmed speci�cally for high resolution and min-

imum noise ADC conversion. Without going into too much detail, the micro-

controller was programmed to halt the clocks for circuitry not involved in ADC

conversion. This method of ADC conversion is described in the datasheet.

To transmit the converted sensor values, the microcontroller was programmed

to support a serial messaging protocol for communicating with a computer over

the USB cable. The serial messaging protocol supports querying the number

of sensors available. When the signal to transmit sensor readings is received it

will continuously sample the ADC channels in a sequential manner. After each

sequential sampling iteration, it transmits all sensor readings to the computer.

For in-depth details on the workings of the microcontroller program, see Ap-

pendix D.

5.4 VRPN Device Driver

To use the data glove with a computer, a device driver must be implemented to

communicate with the electronic circuit.

The device driver queries the number of sensors available on the glove. Then,

it signals the glove to start transmitting continuous sensor readings. It then

continuously reads the sensor data from the glove and transmits them to all

connected VRPN clients. The speci�cs of the VRPN device driver can be found

in Appendix D.

13

5.5 Printed Circuit Board

To create a printed circuit board, the schematic must be traced out. This was

done using the Eagle CAD software[3]. Figure 6 shows the trace schematic

which has been traced out in one plane.

Figure 6: Trace Schematic

6 Laboratory Work

The laboratory work of creating a working data glove is signi�cant. Choosing

components, building and testing is an iterative task. Much attention to detail is

necessary to arrive at a working prototype. The details of this work is presented

in Appendix D and should be helpful for future work in this �eld.

Much experimentation was conducted to arrive at a near noise-free bend sensor

sampling circuit. The microcontroller program and circuit is usable for many

designs which samples analog signals.

7 Hand Representation

To create a presence for the hand in a virtual scene a three-dimensional repre-

sentation of the hand must be created. Chapter 2 discussed previous work on

creating this representation based on collision primitives.

There are two important purposes a hand representation serves. One is to render

a visual representation on-screen. The other is to use the hand representation

for collision detection and object interaction.

14

7.1 Skeletal animation

Skeletal animation is an animation technique for deforming a polygon mesh,

called the skin, according to the movement of rigid objects, called bones. The

terms skeletal animation and bones are very �tting for deforming the mesh of

a character. Skeletal animation is usually available in modern 3D authoring

packages, including Blender.

Thus, the hand representation is achieved by creating a hierarchical bone struc-

ture for the human hand. A polygon mesh of the hand will create a visual

representation. The bones were carefully positioned using the mesh as a guide.

The displacement of the bones will cause deformation in the mesh. Weber[24]

gives a good description of skeletal animation and deformation. The bone de-

forms the mesh by moving the mesh vertices. A hierarchy consisting of a single

bone attached to all vertices will simply move the vertices analogous to a �xed

rod. Each vertex is translated and rotated by the bone transform directly.

The bone transformation can be a matrix transformation matrix or a rotation

quaternion and displacement vector representation.

When the hierarchy consists of several bones, the question becomes which ver-

tices a bone displacement should a�ect. This is solved partially by using vertex

groups. Each bone is assigned a vertex group which the bone transform is

applied to. Ambiguity arises if vertex groups overlap, meaning a vertex is as-

signed to more than one vertex group. Solving this ambiguity is sometimes

called blending. A simple blending method is to assign a weight to each relation

between a vertex and a bone vertex group, and use the weighted sum as the

vertex displacement.

pdeformed =
n∑

i=1

(wipiMi)

Where pi denotes the position of the vertex relative to bone i and Mi is the

bone transformation matrix.

This method is called Skeleton-Subspace Deformation and is discussed by Lewis

et al[17] and a solution to the infamous collapsing elbow problem is proposed.

The following �gures show how skeleton based deformation looks in Blender.

Both vertex painting and blending is shown. Note that Blender probably uses

a more sophisticated blending method than Skeleton-Subspace Deformation.

15

Figure 7 shows some of the vertex groups on the mesh skin. Note the smooth

overlap between adjacent �nger phalanges.

Figure 7: Vertex group painting in Blender

Figure 8 shows the blending between two �nger phalanges.

Figure 8: Bone deformation in Blender

Kry et al.[15] discusses a more sophisticated skin deformation technique and

illustrates its operation on a human hand mesh.

Such a representation does not only serve the purpose of presenting the hand on

a monitor. It also provides the basis for interacting with objects in the scene.

In contrast, here the representation is based on a mesh model of a human hand.

16

7.2 Calibration

The sensor readings from the data glove are 10-bit integer values. Generally,

each sensor value is a complex function of joint extension, roll,abduction and

displacement. Note that although constrained, every joint ligament can in fact

move and rotate in all directions. Further, the sensor does not measure the

bending of the joint itself, it measures the curve of the glove surface over the

joint. The glove surface over one joint in many cases will deform when other

joints extend or abduct. This is referred to as cross-coupling. The degree of

cross-coupling in the CyberGlove is evaluated in[13].

In the following, a simpli�cation of the above problem, by reducing the degrees

of freedom for a joint, is stated. De�ne si ∈ ~s as the converted value of sensor

i which measures a single angular quantity θi ∈ ~θ. Then, ~s is a function of the

angular quantities ~θ:

~s = ~f(~θ) (5)

Thus, to �nd the angular quantities, the inverse function ~g = ~f−1 must be

found, such that:

~θ = ~g(~s) (6)

In general, this problem is very di�cult[10]. An inverse function for the voltage

divider can easily be found to obtain the actual bend sensor resistance, however

the bend sensors respond di�erently depending on the type of bending and where

on the sensor strip the bending occurs. Also, the cross-coupling is di�erent for

every sensor. E�orts to solve this problem has largely consisted of approximation

and simpli�ed models.

To be able to assess the e�ectiveness of an approximation, and to aid in the

calibration, an accurate measurement rig must be present. Some use computer

vision systems, which the sensor readings are compared to[4]. In the absence

of an accurate measurement rig, the hand model can be placed in a known

con�guration which the user attempts to imitate. The hand model can be placed

in several known con�gurations, where linear regression and the method of least

squares can be used to estimate a line which does not necessarily intersect the

17

calibration points, but instead will minimize the distance to several calibration

points[8].

The term Visual-�delity[13] describes an approach based on plausibility. The

essence of this approach is that as long as certain poses are re�ected accurately,

like when two �ngertips meet, the inaccuracies between the speci�c poses are

not perceived by the user. Also discussed by Kahlesz et al.[13] is that linear

calibration and an assumption of no signi�cant cross-coupling is appropriate

on the sensors over the �nger joints which measure distal, intermediate and

proximal �exion and extension.

In this project, an accurate measurement rig was not available. Therefore linear

calibration is used with the assumption that no signi�cant cross-coupling is

present. The calibration mechanism will then consist of the following:

1. Set the hand model in the �rst known con�guration called the rest pose,
~θrest

2. Store the sensor values when the user attempts to imitate the rest pose,

~srest

3. Set the hand model in the second known con�guration called the calibra-

tion pose, ~θcal

4. Store the sensor values when the user attempts to imitate the calibration

pose, ~scal

For a single sensor, si the hand model angle θi will then be given from the

equation:

θi − θi,rest

si − si,rest
=
θi,cal − θi,rest

si,cal − si,rest

Solving for θi yields

θi = θi,rest + (si − srest)
θi,cal − θi,rest

si,cal − si,rest

θi = g(si) = si − si,cal
(θi,cal − θi,rest)
(si,cal − si,rest)

(7)

18

Even if the bend sensor is placed right over a hinge joint like the joint connecting

the proximal and metacarpal phalanges the sensor will be a�ected by other

parts of the hand articulation. This has an impact on the accuracy of the

sensor measurement. Likewise, any small displacement of the sensors during

the session has an e�ect on the accuracy.

There are methods which reduce the e�ect of other parts of the hand articula-

tion, like the use of a neural network[4]. They generally require more time to

calibrate than linear interpolation. Factors like ease of calibration can be more

important than high precision as long as the virtual hand behaves according to

some key user expectations. An example is the touching of �ngertips. As long as

the virtual hand seems to touch �ngertips when the actual hand touches �nger-

tips, the user will probably not notice the inaccuracies in between[13]. Hence,

as long as the calibration points of the linear interpolation are set at these key

points, the results should prove su�cient.

7.3 Rotation and Translation

To articulate the hand according to the data glove sensor readings, the bones

are assigned the calibrated angular value corresponding to the sensor over the

speci�c joint. The bone data structure uses quaternions to represent rotation.

Thus, the angle must be converted to a quaternion. The mathematical treatment

was established in previous work[23].

The translation and rotation of the human hand itself is assigned by a 6DoF

tracker.

7.4 Gesture Recognition

The di�culty in gesture recognition is strongly linked to the complexity of hand

gestures to be recognized and the hand motion capture method[21]. When a

data glove and a skeletal hand representation is used as the motion capture

method, the process is greatly simpli�ed. However, complex hand gestures still

require advanced methods of recognition.

A simple gesture like a pinching gesture is easy to recognize using the distance

between the tip of the distal thumb phalanx and distal index phalanx. When the

distance is less than a speci�c threshold, the hand is said to be in the pinching

19

gesture. Conversely, when the distance increases beyond the threshold, the hand

is no longer in the pinching gesture.

Figure 9: Pinching gesture

This is useful in two-handed operation, where the pinching gesture can be used

as a command. The command can be to copy the rotation of the pinching hand

to the mesh being edited.

8 Blender Add on

This section describes how the skeletal structure is created in Blender and how

the data from the tracker and the data glove is obtained.

8.1 Using VRPN Python Wrappers in Blender

Blender supports scripting through Python. The Blender API for Python script-

ing has been revised in the development version of Blender and is released in

Blender 2.5 Alpha 2. The implementation described here uses the development

version of the Blender API for Python scripting, which requires Python version

3.1.

20

To be able to use the VRPN client library in a Python script, the VRPN distribu-

tion contains �les for generating Python wrappers under the name �python_vrpn�.

There is little documentation for python_vrpn. Python_vrpn is based on gen-

erating Python wrappers using SWIG(Simpli�ed Wrapper and Interface Gener-

ator).

SWIG is a software development tool that connects programs written

in C and C++ with a variety of high-level programming languages.

(SWIG.org)

The python_vrpn wrappers were not readily usable. Some minor changes in

the source �les had to be made in order for it to compile, and a minor change

for correct operation of vrpn_Analog_Remote objects.

Placing the compiled python_vrpn wrappers in Blender's python library direc-

tory gives access to these wrappers and make them immediately usable through

Blender's scripting console.

8.2 Visual Representation

Creating a visual representation of the human hand in Blender is simple. This

is in fact one of the main functionalities of Blender. The human hand mesh

model is imported into Blender and bones are positioned inside the mesh. This

process is called rigging.

First, a palm bone is positioned inside the base of the hand. The �nger bones

are created by extruding the main bone to the tip of the �nger. Then the �nger

bone is subdivided to create distal, intermediate and proximal phalanges. When

translated or rotated, these �nger bones deform the mesh such that the mesh

vertices follow the bone. For a believable deformation, the mesh must be �weight

painted� in relation to each bone.

21

Figure 10: Bone positioning inside mesh

The bones are given names, such as �index.distal�. The Blender Python API

allows objects in a scene to be accessed using this name. All properties of

the object, most importantly its translation vector and rotation quaternion are

available through this object. Thus, the bones of the human hand can be

manipulated in the python script and updated according to the data from the

tracker and the data glove. This provides not only a visual representation, but

also a basis for calculating distance and collisions between a �ngertip and a

mesh in the scene. This basis is used in mesh surface deformations which are

explained in section 9.1.

9 Surface Deformation

9.1 Polygon Mesh Deformation

The hand representation can be used to deform a polygon mesh by translating

the vertices of the mesh.

It is common to specify the coordinates of objects in a scene relative to a local

reference frame. To obtain the world coordinates of the mesh vertices, the vertex

position vector is left-multiplied with the mesh transform matrix. Similarly, to

22

obtain the world position of the tail end of the distal bone, the local position

vector is left-multiplied with the skeleton transformation matrix.

~vworld = Mtransform~vlocal

Transforming a world coordinate to a local reference frame is done by using the

inverse of the matrix transform:

M−1
transform~vworld = M−1

transformMtransform~vlocal = I ~vlocal = ~vlocal

A mesh vertex is translated if it is within the radius of a sphere around the

�ngertip. In other words, the magnitude of the distance vector between the

�ngertip and the mesh vertex is compared to a scalar.

When the mesh vertices are within the sphere, they should be translated in a

visually pleasing manner. When the �ngertip touches the mesh, a smooth crater

should be formed under the �ngertip. Thus, the translation should create a

depression in the mesh which appears continuous. Also, to preserve the integrity

of the mesh, the translation should only occur in one direction such that vertex

positions do not begin to cross. The normal distribution satis�es this in the x,y

plane. A line, y=0, along the x-axis in a Cartesian coordinate system can be

�deformed� by the normal distribution to create a smooth peak.

In three-dimensional space, the bivariate normal distribution(BND) �deforms�

a plane to create a smooth crater. If the mesh is a structured grid in the x,y

plane, the BND can be used to translate the depth(z component) of the vertices.

Thus, if the vertices are within the �ngertip radius, they can be translated by the

BND centered on the x,y components of the �ngertip position vector. This will

create a smooth depression centered on the �ngertip. If the hand is moved away

from the depression, the amplitude will decrease as the BND will be centered

around the new position of the �ngertip. To avoid this, the mesh vertex is only

translated if the BND evaluates to a value greater than the current depth. The

following shows the BND equation when the variables are uncorrelated.

f(x, y) =
1

2πσxσy
exp

(
− (x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

)

23

The depth of the depression is determined by the standard deviation when

using a pure BND and not the depth of penetration into the mesh. Therefore,

a di�erent form of the BND is used, where the amplitude depends on the depth

of penetration.

f(x, y) = A exp
(
− (x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

)

Figure 11 shows the deformation from using this method.

Figure 11: Simple BND deformation

The discussion so far covers the basic idea of the deformation method. It is not

very useful if the mesh should be deformed in other directions. Thus, the method

should be expanded to translate vertices in an arbitrary direction. However, the

direction.

In Gouraud shading, vertex normals are computed by averaging the normals of

the surrounding faces[7]. It is conceivable to use the closest vertex normal as

the deformation direction. However, the angle of the �nger would not have any

e�ect on the deformation.

A di�erent approach is to use the direction of the distal bone as the direction of

deformation. This means the angle of the �nger relative to the mesh will a�ect

the deformation and therefore gives greater control when modeling.

First, the deformation direction is computed by subtracting the distal tip(or tail)

from the distal joint position(head). The direction vector is normalized. To be

able to evaluate the BND relative to the deformation direction, an orthonormal

basis is constructed with the deformation direction as one of the orthogonal

basis vectors. The basis vectors are given below.

24

ê3 =
~ptail − ~phead

‖~ptail − ~phead‖

ê2 = ê⊥3

ê1 = ê2 × ê3

These basis vectors are used to create an orthogonal matrix M

M =

 ê1

ê2

ê3

Then, each mesh vertex p̂mesh within the sphere is transformed to the ��nger-

tip space� by translating its origin and left-multiplying the orthogonal matrix,

yielding a vector ~ploc in the local �ngertip reference frame.

~ploc = M(~pmesh − ~ptail)

Then, ~ploc is translated by the BND. The third component of the local mesh

vertex is the translation in the deformation direction, and thus the �rst and

second components are used as the x and y arguments of the BND respectively.

The translated local mesh vertex is then transformed to world coordinates by

left-multiplying the inverse of the orthogonal matrix and translating the origin

. Note that the inverse of an orthogonal matrix is also its transpose.

MT~ploc + ~ptail = I(~pmesh − ~ptail) + ~ptail = ~pmesh

Figure 12 shows the resulting mesh deformation from applying this method.

25

Figure 12: Directional BND deformation

Compare Figure 12 and Figure 11, especially the side views, and notice the

di�erence in directionality of the deformation.

The selection of standard deviations have an impact on the deformation, and

should be selected according to the users wishes. For example, a slider panel

could be available to select the standard deviation.

10 Results

The main goals as presented in Chapter 1.2 were reached.

The literature review provided the foundation for the methods and models which

were built upon and developed. A data glove and the necessary circuitry was

designed, built and tested. Furthermore, a software driver for communicating

with the data glove was implemented. A modern 3D modeling application was

extended to be able to use the data glove for modeling and a mesh deformation

method was developed. The architecture developed and shown in Figure 3

demonstrates the system.

The nature of the data glove, hand representation and mesh deformation is

motion, and can only be demonstrated fully by observing the running of the

system. The following screenshots and photos show snapshots of operation.

The prototype data glove and circuit as well as program code are included in

the thesis submission.

26

10.1 Data Glove and Hand Representation

The prototype glove demonstrates the feasibility of a low cost data glove. The

design schematics can be built upon to create a re�ned data glove with higher

sensor density.

The design and implementation of the data glove provides a contribution to the

academic research of creating a data glove.

Figure 4 shows that the skeletal hand representation takes on the same articu-

lation as the physical hand and data glove.

Figure 13: Data Glove and Blender

Figure 14 is an illustration of a user wearing the prototype glove on the left

hand and the CyberGlove on the right hand.

27

Figure 14: Two-Handed Operation

10.2 Polygon Mesh Deformation

The discussion in 9.1 show screenshots of two forms of mesh deformation using

the data glove. Compare Figure 11 and 12.

11 Discussion

11.1 Data Glove

The Data Glove prototype proved functional. It is completely realistic to expand

upon the design to create a glove with full sensor coverage. The cost of such a

glove will be a fraction of current similar commercially available products.

The fabric used in the glove is cotton. Cotton feels nice to wear, but it has

a tendency to stretch over time. Since the accuracy of the sensors depend on

tight �t, a di�erent material should be used. For example, cotton with a certain

content of a stretchable component, such as Lycra.

To expand the sensor coverage, a simple external multiplexer circuit controlled

by the microcontroller easily increases the number of ADC channels.

11.2 Hand Representation

The skeletal hand representation worked very well and deformed the hand mesh

in a visually pleasing manner. Some artifacts can be seen however a more

28

thorough vertex paint would likely solve this. The hand mesh is not textured

and looks somewhat like a plastic toy. Since the hand mesh is only meant

to provide a guide for the user to see where the hand is, and not provide a

photo-realistic hand simulation, this is su�cient.

11.3 Polygon Mesh Deformation

The polygon mesh deformation methods can be said to stretch the surface to

cover a larger area. Because the vertex resolution is constant throughout, ex-

cessive stretching can cause blocky and displeasing results. This can be resolved

by further subdivisioning of the mesh. However, subdivisioning the entire mesh

is very ine�cient as it introduces much more vertices than necessary. There are

some e�orts made in adaptive sub divisioning which increase local resolution,

however little literature can be found on the subject.

11.4 Further Work

The Python interpreter causes quite a bit of overhead. Reading two datagloves

and a tracker continuously at a high sample rate consumes the CPU. Combined

with interactive mesh deformation scripted in Python, the Blender UI can be-

come unresponsive at times. It could be possible to run VRPN inside Blenders

mainloop, making the data available through Blenders data API without hav-

ing python explicitly calling the VRPN mainloop or populating lists of data.

Taking this idea further, Blender should support the use of data gloves, trackers

and haptic devices through a library like HAPI.

12 Conclusion

This work provides a platform for human hand interaction in three-dimensional

modeling. This platform consists of a theoretical foundation and methods, as

well as a hardware data glove design. Suitable open source software packages

are recommended and extended.

29

References

[1] Atmel. 8-bit Microcontroller with 8K Bytes

In-System Programmable Flash Atmega48-88-168.

http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf,

Accessed 04/04/2010.

[2] G. Dewaele and M.P. Cani. Virtual clay for direct hand manipulation.

Eurographics (short papers), 2004.

[3] Eagle CAD. http://www.cadsoft.de/.

[4] M. Fischer, P. Van der Smagt, and G. Hirzinger. Learning techniques in

a dataglove based telemanipulation system for the DLR hand. In IEEE

International Conference on Robotics and Automation, pages 1603�1608.

Citeseer, 1998.

[5] FlexPoint. Electronic Design Guide.

http://www.�expoint.com/technicalDataSheets/electronicDesignGuide.pdf.

[6] W.T. Freeman and M. Roth. Orientation histograms for hand gesture

recognition. In International Workshop on Automatic Face and Gesture

Recognition, volume 12. Citeseer, 1995.

[7] H. Gouraud. Continuous shading of curved surfaces. IEEE transactions on

computers, 20(6):623�628, 1971.

[8] W.B. Gri�n, R.P. Findley, M.L. Turner, and M.R. Cutkosky. Calibration

and mapping of a human hand for dexterous telemanipulation. In ASME

IMECE 2000 Symposium on Haptic Interfaces for Virtual Environments

and Teleoperator Systems, pages 1�8, 2000.

[9] Harald Vistnes. A physics based approach to modeling geological structures

using haptics. Master's thesis, Norwegian University of Technology and

Science, Department of Information and Computer Science, 7 June 2004.

[10] J. Hong and X. Tan. Calibrating a VPL DataGlove for teleoperating the

Utah/MIT hand. In 1989 IEEE International Conference on Robotics and

Automation, 1989. Proceedings., pages 1752�1757, 1989.

30

[11] MD Ian C Marrero. Hand, Anatomy. 9 December 2007.

http://emedicine.medscape.com/article/1285060-overview , accessed

12/09/2009.

[12] J. Eric Townsen. Mattel PowerGlove FAQ.

http://mellottsvrpage.com/glove.htm, Accessed 05/28/2010.

[13] F. Kahlesz, G. Zachmann, and R. Klein. Visual-�delity dataglove calibra-

tion. In CGI, volume 4, pages 403�410. Citeseer.

[14] Kazuya G. Kobayashi and Katsutoshi Ootsubo. t-�d: free-form deforma-

tion by using triangular mesh. In SM '03: Proceedings of the eighth ACM

symposium on Solid modeling and applications, pages 226�234, New York,

NY, USA, 2003. ACM.

[15] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: real time large

deformation character skinning in hardware. In SCA '02: Proceedings of the

2002 ACM SIGGRAPH/Eurographics symposium on Computer animation,

pages 153�159, New York, NY, USA, 2002. ACM.

[16] C. Lee and Y. Xu. Online, interactive learning of gestures for human/robot

interfaces. In IEEE International Conference on Robotics and Automation,

pages 2982�2987. Citeseer, 1996.

[17] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a

uni�ed approach to shape interpolation and skeleton-driven deformation. In

SIGGRAPH '00: Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 165�172, New York, NY, USA,

2000. ACM Press/Addison-Wesley Publishing Co.

[18] T. Massie. A tangible goal for 3D modeling. IEEE Computer Graphics and

Applications, 18(3):62�65, 1998.

[19] Kevin T. McDonnell, Hong Qin, and Robert A. Wlodarczyk. Virtual clay:

a real-time sculpting system with haptic toolkits. In I3D '01: Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 179�190, New

York, NY, USA, 2001. ACM.

[20] R. Ott, V. De Perrot, D. Thalmann, and F. Vexo. MHaptic: a Haptic

Manipulation Library for Generic Virtual Environments. In Proceedings of

the 2007 International Conference on Cyberworlds, pages 338�345. Citeseer,

2007.

31

[21] V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual interpretation of hand

gestures for human-computer interaction: A review. IEEE Transactions on

pattern analysis and machine intelligence, 19(7):677�695, 1997.

[22] Adam Seeger Russell M. Taylor II, Thomas C. Hudson. VRPN: A Device-

Independent, Network-Transparent VR Peripheral System. Proceedings of

the ACM Symposium on Virtual Reality Software & Technology, 15 Novem-

ber 2001.

[23] Vegar Neshaug. Virtual Reality and Human Hand Haptic Methods.

[24] J. Weber. Run-time skin deformation. In Proceedings of Game Developers

Conference, 2000.

[25] Y. Wu and T. Huang. Vision-based gesture recognition: A review. Gesture-

based communication in human-computer interaction, pages 103�115, 1999.

[26] Y. Wu, J.Y. Lin, and T.S. Huang. Capturing natural hand articulation.

In International Conference on Computer Vision, pages 426�432. Citeseer,

2001.

[27] Y. Zhuang and J. Canny. Haptic interaction with global deformations.

University of California, Berkeley, 94720, 1776.

A Guide for using Data Glove with VRPN

To be able to use the data glove in VRPN, the server must be compiled to sup-

port the data glove. Provided in the accompanied CD is the vrpn_CyberGlove

driver. The driver supports both the CyberGlove and the open data glove de-

sign described in this thesis. If VRPN has not released a newer version than

the one bundled on the CD, you can just use the source tree on the CD. If you

use the Linux operating system running on an x86 processor architecture, the

binaries are already compiled. For compiling VRPN, refer to the VRPN website

for the steps involved.

The patched source tree on the CD not only contains the vrpn_CyberGlove

driver, it also has a patched vrpn_Generic_Server_Object to be able to use

the vrpn_CyberGlove driver by con�guring vrpn.cfg. Appending the following

line to vrpn.cfg will make vrpn look for a CyberGlove on the ttyUSB0 serial

32

device, and an Open Data Glove on ttyUSB1. Also, it will look for a FoB

tracker on ttyUSB2. If you have two wrist-mounted trackers connected to your

FoB, both will be available through the same Tracker0 resource. Open Data

Glove supports the same protocol as CyberGlove, so interchanging the serial

devices for the two gloves should not be problematic:

vrpn_CyberGlove CyberGlove /dev/ttyUSB0 115200

vrpn_CyberGlove OpenGlove /dev/ttyUSB1 115200

vrpn_Tracker_Flock Tracker0 2 /dev/ttyUSB2 115200 1 n

B Guide for Blender Python Scripting with VRPN

VRPN is a C/C++ framework. To be able to use VRPN and a data glove

in Blender Python scripts, there must be generated python wrappers for the

C/C++ interfaces. Luckily, there is a python_vrpn project directory bundled

with VRPN. However, they do not compile cleanly with newer SWIG distri-

butions and newer Python versions. In addition, the vrpn_Analog is just a

conversion hack providing access to four analog channels. Since both the Cy-

berglove and Open Data Glove requires more several channels this conversion

routine must be changed to support several analog channels.

On the accompanied CD, python_vrpn is already patched to compile for SWIG

1.3.40 and Python 3.1. The analog channel conversion routines are also updated.

C Examples of Mesh Deformation using Blender

Python API

Using the blender Blender Python API to access mesh data is easy. The follow-

ing code show mesh deformation for the BND deformation method discussed in

the thesis.

import math

from mathut i l s import Vector

from mathut i l s import Matrix

import bpy

33

de f run_deform () :

gd = deform . GaussianDeform ()

gd . deform ()

de f gauss ian (x , mu, sigma) :

r e turn (1 . 0/math . s q r t (2 . 0*math . p i * sigma **2))*math . exp (−((x−mu)**2)/ (2 . 0* sigma **2))

de f gauss ian2d (x , y , mux, muy, sigmax , sigmay) :

r e turn (1 . 0/math . s q r t (2 . 0*math . p i * sigmax* sigmay))*math . exp (−((x−mux)**2)/ (2 . 0* sigmax **2) − ((y−muy)**2/(2 .0* sigmay **2)))

de f gaussian2dmod (x , y , mux, muy, sigmax , sigmay) :

r e turn math . exp (−((x−mux)**2)/ (2 . 0* sigmax **2) − ((y−muy)**2/(2 .0* sigmay **2)))

c l a s s GaussianDeform :

de f __init__(s e l f , key="GridMesh ") :

s e l f . key = key

s e l f . r ad iu s = 0 .4

de f deform (s e l f) :

mesh = bpy . data . ob j e c t s [s e l f . key]

bones = bpy . data . ob j e c t s [" Armature "] . pose . bones

bonematrix = bpy . data . ob j e c t s [" Armature "] . matrix

f i n g e r t i p s = ["Bone_R. thumb . d i s t a l " , "Bone_R. index . d i s t a l " , "Bone_R. middle . d i s t a l " , "Bone_R. r ing . d i s t a l " , "Bone_R. pinky . d i s t a l "]

f i n g e r t i p s = ["Bone_R. index . d i s t a l "]

f o r t i p in f i n g e r t i p s :

wo r l d t a i l = bonematrix*bones [t i p] . t a i l

worldhead = bonematrix*bones [t i p] . head

normal = wo r l d t a i l − worldhead

normal /= normal . magnitude

s e l f . simpleDeform (wor ld ta i l , normal , mesh)

de f meshVertexLocalToWorld (mesh , i) :

r e turn mesh . matrix * mesh . data . v e r t s [i] . co

de f simpleDeform (s e l f , f i n g e r t i p , normal , mesh) :

f o r ve r t in mesh . data . v e r t s :

34

vertwor ld = mesh . matrix * ver t . co

d i f f = vertwor ld − f i n g e r t i p

i f d i f f . magnitude < s e l f . r ad iu s :

r e p e l = 0 .1* gaussian2dmod (vertwor ld . x , vertwor ld . y , f i n g e r t i p . x , f i n g e r t i p . y , 0 . 05 , 0 . 05)

i f ve r t . co . z > −r e p e l :
ve r t . co . z = −r e p e l

de f d i r e c t i ona lDe fo rm (s e l f , f i n g e r t i p , normal , mesh) :

perp = Vector ((−normal . y , normal . x , 0))

perp2 = perp . c r o s s (normal)

t r = Matrix ((perp . x , perp . y , perp . z) ,

(perp2 . x , perp2 . y , perp2 . z) ,

(normal . x , normal . y , normal . z))

inv = t r . copy ()

inv . i nv e r t ()

meshinv = mesh . matrix . copy ()

meshinv . i nv e r t ()

f o r ve r t in mesh . data . v e r t s :

vertwor ld = mesh . matrix * ver t . co

d i f f = vertwor ld − f i n g e r t i p

i f d i f f . magnitude < s e l f . r ad iu s :

moved = t r * d i f f

moved . z += 0.1* gaussian2dmod (moved . x , moved . y , 0 . 0 , 0 . 0 , 0 . 025 , 0 . 025)

b = inv *moved + f i n g e r t i p

ve r t . co = meshinv*b

D Data Glove and Computer Interface Circuit

D.1 Glove Design

The FlexPoint bend sensor is the fundamental component of the data glove.

These bend sensors are variable resistors, or potentiometers.

The Bend Sensor® potentiometer is a product consisting of a coated

substrate such as plastic that changes in electrical conductivity as it

is bent.(Bend Sensor Technology Electronic Interface Guide)

35

D.2 Circuit Design

Electrical conductivity is an analog signal, meaning it is continuous and variable.

To be able to use the bend sensors in a digital computer, this signal must be

converted to discrete values. This digitization can be achieved through the use

of an electronic device called an Analog-to-Digital Converter(ADC). When the

analog signal is sampled it must be transmitted to the computer to be able to

use in an application.

The Atmega168 microcontroller has integrated voltage signal ADC and serial

transmission circuitry(USART). The Atmega168 is a member of a family of

microcontrollers produced by Atmel called AVR. The selection of the Atmega168

was based on the large amount of online documentation, as well as being one of

the few PDIP microcontroller available at the hardware lab at the time.

Since the Atmega168 ADC samples voltage signals, the resistivity of the bend

sensor must be converted to a voltage signal. This can be done using a circuit

known as a voltage divider.

By Ohm's law the following relationships can be found:

Vin = I · (R1 +R2)

Vout = I ·R2

Solving for I in equation 1 and substituting into equation 2 yields:

Vout = Vin

R1+R2
·R2 = Vin · R2

R1+R2

Assigning a constant to R1and letting R2be the bend sensor potentiometer

results in a variable voltage Vout. This will be the input voltage to the ADC:

Vout(Rbend) = Vin · Rbend

R1+Rbend

This equation assumes no current �ows through the Vout node. Some current

will �ow as the ADC capacitor charges up in the sample-and-hold circuitry.

D.3 Glove and Bend Sensors

The glove itself was made of two pairs of thinly woven gloves. One left handed

glove was inserted into another making a layered glove. Pockets were made

by stitching the gloves together over the index �nger, thumb, palm and wrist.

Openings were made for inserting the sensors. Several openings were made over

36

the joints of the index �nger and thumb. The bend sensors were glued into place

at the opening. Wires were led inside the layered gloves, coming out slightly

above the bend sensor and clamped into the wire clamps on the bend sensors.

The two wire endpoints of each sensor was inserted into a wire connector for

easily connecting them to the header pins of the circuit.

D.4 Circuit Prototyping

Creating an initial prototype for testing the basic functionality of the data glove

circuit was done through the use of a prototyping board. Such a board has holes

in which components and wires are pushed in and requires no soldering. The

holes on the left and right side rails are vertically connected, allowing convenient

access to power and ground. The rest of the board is horizontally connected,

broken by the space in the middle. This allows for easy prototyping of designs

based on DIP(Dual In-line-Package) devices.

Figure 15: Prototype Board

The components were laid out according to the schematic and power and ground

were hooked up to a lab-grade power supply, which gives a very stable voltage

and shows the amount of current used.

In the prototype board, the PIN headers and connections for ISP(In-System

Programming) were not included. The microcontroller program was therefore

written to the Atmega168 while mounted on the STK500, and subsequently

inserted it in the prototype board for testing.

37

D.5 Printed Circuit Board

A prototype board is useful for quickly testing a schematic, however it is not very

sturdy. Wires can easily come o� since they are not soldered. A printed circuit

board is a board where the components are soldered on copper lines or traces.

All the wires seen on the prototyping board, except external power and serial

transmission wires are replaced by copper traces. In order to create a printed

circuit board, the design schematic must be traced out into a trace schematic.

This functionality is usually included in the electronics CAD software package.

The printed circuit board was traced out using the Eagle electronics CAD soft-

ware. First, the design schematic is loaded into the board editor. Each compo-

nent is then carefully laid out such that the traces are as short as possible. For

example, the pin headers for the bend sensors are placed right next to the ADC

input pins. The capacitors are placed as close as possible to the pins of the

microcontroller as recommended by the datasheet. For a hobbyist it is desirable

to use one plane of traces as it simpli�es the process of producing the PCB.

When the components are �rst laid out, all the connections are air-wires, mean-

ing no traces are laid out. It is possible to let Eagle attempt to auto-route

the traces, however it did not produce a complete trace. Manually tracing the

connections is an intricate process of laying out traces, ripping up traces, repo-

sitioning components and repeating.

Note that the ISP header is included in the PCB, which allows for re-programming

the microcontroller. This is very useful as extracting and re-inserting the micro-

controller in the circuit and the STK500 development board is time-consuming

and may bend the pins of the PDIP.

With all components laid out and connections traced, the trace schematic is

printed on semi-transparent paper using a high quality laser-printer. A piece of

photo-resist PCB is cut out to �t the schematic. The schematic is then placed

on top of the PCB and exposed to Ultra-Violet light. It is important that

the printed schematic and the PCB are held together tightly. The UV exposure

unit had a cushion which pressed the PCB and printed schematic against a glass

pane. After exposure, the PCB is placed in a small tank with developer. The

developer dissolves the parts of the photo-resist layer exposed to UV, thereby

exposing the underlying copper. Then the PCB is quickly rinsed and put in a

tank with heated circulating etchant. Slowly, the exposed copper will etch away

leaving the traces behind. It is important to observe the process and remove

38

the PCB before the traces begin to deteriorate. When the etching is complete,

the mounting holes are drilled using a drill press. The drill bit is aligned with

the mounting hole using a sight on the PCB drill press.

D.6 Microcontroller program

The program for the Atmega168 was written in the C/C++ language(s), al-

though it is possible to do it in assembly. There are several guides, tutorials

and examples available online through websites like avrfreaks.net which were

very helpful for writing the microcontroller program. Atmel also include sev-

eral examples with their development boards. Although similar, the range of

AVR/Atmega microcontrollers are not identical. The datasheet for the actual

must be used to determine which modes of operation and registers apply to the

actual microcontroller, in this case the Atmega168.

There are two main tasks which the Atmega168 must perform. It should sample

it's ADC(Analog-Digital Converter) input ports as fast and accurate as possi-

ble in a sequential manner. When all ADC channels are sampled it should

serialize the results for transmission using the USART(Universal Synchronous-

Asynchronous Receiver/Transmitter).

ADC The ADC uses a sample-and-hold circuit to sample one of six analog

signal, Vin, channels selected by a multiplexer. The analog signal is converted

to a digital value, denoted ADC, relative to a reference voltage Vref according

to the equation

ADC = Vin

Vref
· 1024

Using the ADC involves assigning binary values to the ADMUX(ADC Multi-

plexer Select) and ADCSR(ADC Control and Status Register) registers. Given

here are tables showing which settings are chosen for the registers. Rationale

and explanation is given below the table. An exhaustive list of register uses can

be found in the datasheet.

39

Bit Name Setting Purpose

0 ADPS0 1

1 ADPS1 1

ADC Prescaler Select. Setting the

division factor relative to the system

clock, called prescaling. This particular

setting has a decimal value of 12810

2 ADPS2 1

3 ADIE 1

ADC Interrupt Enable.

Enabling/Disabling interrupt signal on

the completion of a conversion.

4 ADIF x

ADC Interrupt Flag. Set by the ADC

itself when an ADC conversion is

complete. Cleared by hardware when the

interrupt routine is executed.

5 ADATE 0

ADC Auto Trigger Enable. Setting this

bit to 1 causes the ADC to start a

conversion automatically by a trigger

source.

6 ADSC x

ADC Start Conversion. Setting this bit to

1 causes the ADC to start a conversion.

It is cleared by hardware when the

conversion is complete.

7 ADEN 1 ADC Enable. Enables/disables ADC.

The ADC prescaler is set to a divison factor of 128. The datasheet states that for

high resolution(10-bit) conversion, the ADC input should be in the range from

50Khz to 200Khz. Since the system clock crystal in the glove circuit oscillates

at a frequency of 18.432Mhz, a division factor of 128 is used which gives an

ADC clock of 144Khz.

The ADC can be set up in two primary modes of operation, given by the setting

of the ADATE(Auto Trigger Enable) register bit in ADCSRA. This determines

how an ADC conversion is started(Datasheet �gure 23-2).

Starting a single conversion is done by setting the ADSC(ADC Start Conversion)

bit. When the conversion is complete, ADSC will be cleared by hardware.

The ADC will not start another conversion until the ADSC bit is again set.

Depending on di�erent clock rates, this will likey cause it to waste some ADC

40

clock cycles before the CPU is able to set the ADSC bit.

The alternative to starting a single conversion is for the ADC to auto trigger

a conversion on a trigger source, for example on its own interrupt �ag. When

ADATE is set, a conversion is started by an ADTS(ADC Trigger Source). When

the ADC interrupt �ag is set as the trigger source, the ADC will trigger a

new conversion based on its own interrupt and hence continuously sample the

selected ADC channel. The ADC is then said to be in Free-Running mode.

Free-Running mode has the bene�t of the ADC starting another conversion

immediately, not wasting any ADC clock cycles. To read the ADC channels

in a sequential manner in Free-Running mode, some form of timing must be

employed by the CPU to update the channel in ADMUX after the current

conversion has started but before the ADC completes the conversion. Otherwise,

the ADC will start a new conversion using the same channel. This can be prone

to errors through race conditions if the CPU also has other tasks or interrupts

to execute.

Furthermore, for reduced noise(EMI) while converting, the Atmega168 can per-

form the ADC conversion during sleep mode. This means the ADC clock is kept

alive while the CPU, I/O and �ash clocks are stopped. An ADC conversion will

start once the CPU has halted. When the conversion is complete, the ADC

interrupt will wake up the CPU and begin execution of the ADC interrupt rou-

tine. The ADC will start a new conversion upon re-entering sleep mode. To be

able to use this feature, the ADC must be in single conversion mode. This noise

reduction feature is desirable even if some ADC clock cycles may be wasted.

Particularly if the full 10 bits of resolution are used.

In summary, this setting of the ADSCR is suitable for high-resolution conversion.

By using a high clock prescaling division factor, and using single conversion with

sleep mode, the accuracy of the ADC is maximized.

The ADMUX register is used to

41

Bit Name Setting Purpose

0 MUX0 x

1 MUX1 x Analog Channel Selection bits. Set which

analog input pin is is connected to the

ADC.

2 MUX2 x

3 MUX3 x

4 -

5 ADLAR 0 ADC Left Adjust Result. Whether the

result should be left adjusted in the case

that 8-bit resolution is su�cient.

6 REFS0 1 Reference Selection Bits. This assignment

sets the reference voltage Vref to

AVcc(5v)

7 REFS1 0

The MUX bits are iterated from 00002(decimal 0) to 01012(decimal 5) sequen-

tially, starting a conversion on each iteration and storing the values in an array.

The ADLAR bit is not set since full 10-bit resolution is desired.

The circuit schematic is designed for using AVcc(5v) as the reference voltage

and the reference voltage bits are set accordingly.

When a conversion is complete, the sampled value is available in the ADCH(ADC

High) and ADCL(ADC Low) registers. The result is split over two registers

because the Atmega168 is an 8-bit microcontroller. These registers are concate-

nated in the microcontroller program and stored in an indexed array for later

serialization over the USART.

USART The USART(Universal Synchronous and Asynchronous Receiver and

Transmitter) is a complex piece of circuitry. When set up correctly, it is quite

easy to use. Sending a byte(or word) consists of simply loading a register. How-

ever, to set the USART up correctly it is useful to know how the transmission

process works(Maxim Clock accuracy paper). Considered here is the USART

operating in asynchronous mode(UART).

For a serial link to be set up between two DTE(Data Terminal Equipment)

units, they must agree on how a word should be transmitted. The discussion

presented here is somewhat simpli�ed.

42

First, the clocks of both receiver and transmitter must be the same. Otherwise,

the receiver would not be able sample the signal at the pace it is being generated.

In the case of a too fast receiver it would be sampling the same signal multiple

times(e.g two 0's when there is only one), or in the case of a too slow receiver it

would skip a signal(bit) entirely. Thus, the receiver and transmitter must agree

on the number of bits per second, or baud rate. Note that the term baud rate

refers to the media bit rate including the overhead of the start and stop bits,

not the data rate delivered to the application.

Second, they must agree on the number of bits(N) in one message. This is

because of the binary nature(two voltage levels) of the communication. Since

there is no third value to indicate no communication, the receiver must know

when a signal starts and when it stops. One of the voltage levels are de�ned as

a stop bit and the other voltage level is de�ned as a start bit. When nothing is

transmitted, the signal is a continuous stop bit. As soon as the receiver detects

a transition to a start bit, it resynchronizes its clock so that not only the rate

but also the sample time coincides with the transmitter. Then, the receiver

samples the signals (at the baud rate) N+1 times, where the last time sample is

the stop bit. If it detects a start bit instead of a stop bit on the last sample, a

framing error has occurred. The N data bits are loaded into the receive register

for the microcontroller program to read. For the transmitter, the operation is

much easier. It simply signals the start bit, the N bits of the message, and a

stop bit. It is possible to use parity bits for simple error checking. The use of

parity bits is not considered here, as the crystal and baud rate is selected for

0.0% error.

Initializing the USART correctly involves setting up the registers with the ap-

propriate baud rate and frame format and enabling the receive and transmit

circuitry. The default frame format of the microcontroller is 8 data bits and 1

stop bit, which is a very common setting and is thus left unchanged. The baud

rate(and crystal) should be selected such that there is no remainder when the

clock is divided. In the circuit schematic, the clock generator(crystal) has the

following value

fosc = 18432000hz.

In normal asynchronous mode, the signal is actually sampled at 16 times the

baud rate to be able to detect the transition from the stop bit to the start bit

for receiving a frame. Samples 8, 9 and 10 are used by the synchronization logic

43

to verify that a valid start bit has been detected and not a noise spike. Thus,

the clock divider(dclock) should be selected according to the equation:

16 ·BAUD = fosc

dclock

In the Atmega168, the clock divider is set by assigning a value to the UBRR(USART

Baud Rate Register), which causes the the clock divider to be set according to

the equation

dclock = UBRR+ 1

Substituting and rearranging the baud rate equation gives an UBRR value of:

UBRR = fosc

16·BAUD − 1

The register is used for integer binary counting to generate the UART clock,

and this is why there can be no remainder. Consider selecting a baud rate of

BAUD = 100000. Solving for UBRR would yield a non-integer value:

UBRR = 18432000
16(100000) − 1 ≈ 10.52 ≈ 11

Substituting the rounded integer value into the baud rate equation would give

an actual baud rate of:

BAUD = 18432000
16(11+1) = 96000

This is an error of 4.2% and undesirable. Referring to the discussion earlier

in this paragraph, this would give the problem of di�erent baud rates between

transmitter and receiver. Now, it is possible to select the baud rate of 96000

instead of 100000, since this would give an error of 0.0%. However, a more stan-

dard baud rate of 115200 (incidentally the baud rate setting of the CyberGlove)

also gives an error of 0.0%. This is the reason why a crystal of such a seemingly

peculiar oscillation rate of 18.432Mhz was selected during the design.

Thus, when the desired baud rate is BAUD = 115200 the UBRR register should

be given the value of:

UBRR = 18432000
16(115200) − 1 = 9

Note that there is no remainder. In mathematical terms, the baud rate is se-

lected such that the numerator in the equation is a divisor of the clock generator.

Enabling the transmit and receive circuitry is done by setting the TXEN(Transmitter

Enable) and RXEN(Receiver Enable) bits of the UCSRB(USART Control and

Status Register B). Similar to the ADC, the USART can operate by using in-

terrupt signalling a received word or a transmitted word. However, as stated

44

in the paragraph on programming the ADC it is desirable to stop non-ADC

clocks while converting for noise reduction. Thus, it is undesirable to allow the

USART circuitry to wake the CPU before the ADC has �nished a conversion.

Therefore, the USART will not be running in interrupt mode. Instead, after the

ADC has �nished sequentially sampling all its ADC channels, the USART will

serialize and transmit the converted values in a tight loop, continuously polling

the TXC(Transmit Complete) bit for each word. After the digital values of all

six ADC channels have been transmitted, all non-ADC clocks are again shut

down for another sequential reading of all ADC channels.

USART reception will only occur in the beginning of the program, while it is

waiting for the reception of commands in an ASCII format. Thus, the USART

reception circuitry is not enabled when the microcontroller is sampling and

transmitting.

Summary Summary and conceptualization the operation of the microcon-

troller program.

The IDLE state does the following

1. Enables and sets up the the USART circuitry(i.e baud rate and and RX-

EN/TXEN)

2. Continously polls the USART reception registers for the ASCII commands

�?n� and �s�.

(a) Upon receiving the �?n� command, the microcontroller program trans-

mits "?n 6\r\n\0x00" which tells the other party how many analog

values will be reported.

(b) Upon receiving the �s� command, the microcontroller program tran-

sitions to the ADC INIT state.

The ADC INITIALIZE state does the following

1. Enables global interrupts(Must do this to allow any form of interrupts to

be processed)

2. Sets the sleep mode registers to allow shutting down non-ADC clocks while

converting.

45

3. Initializes the ADC(i.e enabling the adc, setting the prescaler, reference

voltage and enabling ADC interrupts)

4. Transitions to the SAMPLE state

The SAMPLE state does the following

1. Iteratively samples the ADC channels, shutting down non-ADC clocks

before each conversion. Each completed conversion triggers an interrupt

which stores the result in an indexed array.

2. When all ADC channels are sampled, the state transitions to the TRANS-

MIT state.

The Transmit state does the following

1. Transmits all ADC channels over the USART in the format: �s <ADC0>

<ADC1> <ADC2> <ADC3> <ADC4> <ADC5>\r\n\0x00�. Each <ADCx>

value is substituted by its respective digital ADC channel value and is

transmitted in a four-character width ASCII format. It could be argued

that this is an ine�cient encoding, however it is selected for interoperabil-

ity with the CyberGlove such that the same device driver can be used for

both gloves.

2. Transitions to the SAMPLE state

Note that there is no sink in the state diagram, thus the device is reset to the

IDLE state by either power cycling or pulling the RESET line low.

D.7 VRPN Device Driver

One of the major reasons VRPN was selected in the design was to use the same

device layer for all the devices in the application. This reduces the number of

libraries which must be used(and learned). The tracker used in the application

is a FOB(Flock-of-Birds) tracker and a VRPN device driver for it is already

available. The data glove implementation as well as the CyberGlove do not

have a VRPN device driver. Thus, a VRPN device driver to support these

gloves must be implemented. This is the reason why the messaging protocol of

46

the data glove was made interoperable with the CyberGlove. Only one VRPN

device driver needs to be implemented, regardless of which glove is used.

VRPN is an object-oriented library written in the C/C++ programming lan-

guage(s). Several base-classes are available for the purpose of being extended(in

OO terms) to support new hardware. For example, the Flock-of-Birds VRPN

device driver is an extension of the vrpn_Tracker base class. This allows the

vrpn client or the application to use a tracker as an abstract interface describing

a class(both in OO terms and general terms) of devices. Thus, replacing the

actual tracker with a di�erent VRPN-supported tracker would require few if any

changes to the application.

It is possible to implement new VRPN device drivers by de�ning an entirely

new class of devices. There is no �data glove� device class in the VRPN library.

However, there is a VRPN device class for analog devices, called vrpn_Analog.

This class of devices operate by sending an array of �oating point numbers,

called channels, to the client. Although the values transmitted by the data

gloves are integers, this device class is similar enough to base the VRPN data

glove implementation on.

There is little point in translating the implementation code into english. How-

ever, a short discussion showing the simplicity of extending VRPN is appropri-

ate.

The implementation of the data glove VRPN device is named vrpn_CyberGlove.

This name re�ects the serial messaging protocol supported by the device driver.

The vrpn_CyberGlove device class extends vrpn_Analog. This allows the

client to use the original VRPN client library without needing to compile in

the vrpn_CyberGlove source code. However, if the client will also be running

the server, the vrpn_CyberGlove source code must be included in the library.

The vrpn_CyberGlove device class overrides the vrpn_Analog constructor. The

overriding constructor establishes connection with the serial communication

port by using convenience functions provided by the VRPN library(vrpn_Serial.h).

The device driver then transmits the �?n� message to query the number of ana-

log channels reported. Subsequently, the reply message from the device is used

to set the number of vrpn analog channels which are available. Finally, the �s�

message is sent to the device in order to start the continuous transmission of

converted analog values.

After the vrpn_CyberGlove object is constructed, the generic VRPN server will

47

continuously execute the mainloop which is de�ned in the vrpn_CyberGlove

device class. This mainloop reads the bytes from the serial port, parsing the

ASCII representation of the ADC values. Then, control is transferred to the

VRPN library to report any changes to the channels.

The discussion above shows how simple it is to extend the VRPN library to

support new devices.

The client application creates a vrpn_Analog_Remote object with the appro-

priate arguments to create a connection with the VRPN server. The client

application must execute the VRPN client mainloop in its own mainloop, and

is noti�ed of any changes through callback functions.

E Microcontroller and VRPN Data Glove Code

vrpn_CyberGlove.C and vrpn_CyberGlove.h together with the microcontroller

code can be found in the attached compressed �le.

E.1 VRPN Program Code

E.1.1 VRPN Header File

#i f n d e f VRPN_CYBERGLOVE_H

#de f i n e VRPN_CYBERGLOVE_H

#inc lude "vrpn_Connection . h"

#inc lude "vrpn_Analog . h"

/*

0 . thumb ro t a t i on /TMJ (ang le o f thumb ro t a t i n g ac ro s s palm)

1 . thumb MPJ (j o i n t where the thumb meets the palm)

2 . thumb IJ (outer thumb j o i n t)

3 . thumb abduction (ang le between thumb and index f i n g e r)

4 . index MPJ (j o i n t where the index meets the palm)

5 . index PIJ (j o i n t second from f i n g e r t i p)

6 .* index DIJ (j o i n t c l o s e s t to f i n g e r t i p)

7 .** index abduction (s ideways motion o f index f i n g e r)

48

8 . middle MPJ

9 . middle PIJ

10 .* middle DIJ

11 . middle−index abd ' n (ang le between middle and index f i n g e r s)

12 . r i ng MPJ

13 . r i ng PIJ

14 .* r i ng DIJ

15 . r ing−middle abduction (ang le between r ing and middle f i n g e r s)

16 . p ink i e MPJ

17 . p ink i e PIJ

18 .* p ink i e DIJ

19 . p ink ie−r i ng abduction (ang le between p ink i e and r ing f i n g e r)

20 . palm arch (causes p ink i e to r o t a t e a c r o s s palm)

21 . wr i s t p i t ch (f l e x i o n / extens i on)

22 . wr i s t yaw (abduction / adduction)

*/

c l a s s VRPN_API vrpn_CyberGlove : pub l i c vrpn_Analog {

pub l i c :

vrpn_CyberGlove (const char * name , vrpn_Connection * c) ;

vrpn_CyberGlove (const char * name , vrpn_Connection * c , const char * device , const char * baud) ;

~vrpn_CyberGlove (void) ;

/// Sets the s i z e o f the array ; r e tu rn s the s i z e a c t ua l l y s e t .

/// (May be clamped to vrpn_CHANNEL_MAX)

/// This should be used be f o r e mainloop i s ever c a l l e d .

vrpn_int32 setNumChannels (vrpn_int32 s i zeReques ted) ;

v i r t u a l void mainloop () ;

p ro tec t ed :

const char * _device ;

const char * _baud ;

i n t dev_fd ;

i n t nSensors ;

49

s t a t i c const i n t buf_s ize = 256 ;

unsigned char bu f f e r [2 5 6] ;

unsigned char s t r [2 0] ;

i n t va lue [2 2] ;

s t r u c t t imeva l timestamp ;

/// send repor t i f f changed

v i r t u a l void report_changes

(vrpn_uint32 c l a s s_o f_se rv i c e = vrpn_CONNECTION_LOW_LATENCY) ;

/// send repor t whether or not changed

v i r t u a l void r epor t

(vrpn_uint32 c l a s s_o f_se rv i c e = vrpn_CONNECTION_LOW_LATENCY) ;

void UpdateData () ;

void Wait (double t) ;

} ;

#end i f

E.1.2 VRPN C Code File

#inc lude "vrpn_Analog . h"

#inc lude "vrpn_CyberGlove . h"

#inc lude "vrpn_Connection . h"

#inc lude " vrpn_Ser ia l . h"

#inc lude <s t d l i b . h>

#inc lude <time . h>

#inc lude <s td i o . h>

#inc lude <s t r i n g . h>

vrpn_CyberGlove : : vrpn_CyberGlove (const char * name ,

50

vrpn_Connection * c ,

const char * p_device , const char * p_baud) :

vrpn_Analog (name , c)

{

th i s−>dev_fd = vrpn_open_commport (p_device , a t o l (p_baud)) ;

i f (th i s−>dev_fd < 0) {

f p r i n t f (s tde r r , "vrpn_CyberGlove : Could not open %s\n" , p_device) ;

r e turn ;

}

vrpn_flush_input_buffer (th i s−>dev_fd) ;

vrpn_write_characters (th i s−>dev_fd , (const unsigned char *)"?n" , s t r l e n ("?n ")) ;

s t r u c t t imeva l wait ;

wait . tv_sec = 1 ;

vrpn_read_avai lable_characters (th i s−>dev_fd , th i s−>buf f e r , 8 , &wait) ;

nSensors = a t o i ((const char *)(& bu f f e r [3])) ;

p r i n t f (" CyberGlove : Channels : %d %s\n" , nSensors , bu f f e r) ;

th i s−>setNumChannels (nSensors) ;

// Star t ASCII stream mode

vrpn_write_characters (th i s−>dev_fd , (const unsigned char *)" s " , s t r l e n (" s ")) ;

}

vrpn_CyberGlove : : ~ vrpn_CyberGlove (void) {

vrpn_close_commport (th i s−>dev_fd) ;

}

void vrpn_CyberGlove : : report_changes (vrpn_uint32 c l a s s_o f_se rv i c e)

{

vrpn_Analog : : timestamp = timestamp ;

vrpn_Analog : : report_changes (c l a s s_o f_se rv i c e) ;

}

void vrpn_CyberGlove : : r epo r t (vrpn_uint32 c l a s s_o f_se rv i c e)

51

{

vrpn_Analog : : timestamp = timestamp ;

vrpn_Analog : : r epo r t (c l a s s_o f_se rv i c e) ;

}

vrpn_int32 vrpn_CyberGlove : : setNumChannels (vrpn_int32 s i zeReques ted) {

i f (s i z eRequested < 0) s i zeReques ted = 0 ;

i f (s i z eRequested > vrpn_CHANNEL_MAX) s i zeReques ted = vrpn_CHANNEL_MAX;

num_channel = s i zeRequested ;

r e turn num_channel ;

}

void vrpn_CyberGlove : : mainloop (void) {

// f p r i n t f (s tde r r , "vrpn_Cyberglove : : mainloop ") ;

server_mainloop () ;

vrpn_gettimeofday(×tamp , NULL) ;

vrpn_read_avai lable_characters (th i s−>dev_fd , th i s−>buf f e r , 255 , NULL) ;

th i s−>bu f f e r [2 5 5] = NULL; // Prevent read ing past end

unsigned char * ptr = th i s−>bu f f e r ;

unsigned char charac t e r = 0 ;

i n t p o s i t i o n = −1;
i n t n = 0 ;

whi l e (ptr < bu f f e r +255) {

n = 0 ;

i f (cha rac t e r == ' s ') {

p o s i t i o n = 0 ;

cha rac t e r = 0 ;

report_changes () ;

} e l s e i f (p o s i t i o n != −1 && po s i t i o n < num_channel) {

//n = s s c an f ((const char *) ptr , "%d" , &th i s−>value [p o s i t i o n]) ;

va lue [p o s i t i o n] = s t r t o l ((const char *) ptr , (char**)&ptr , 1 0) ;

i f (va lue [p o s i t i o n] != 0)

channel [p o s i t i o n] = value [p o s i t i o n] ;

// channel [p o s i t i o n] = value [p o s i t i o n] = a t o i ((const char *) th i s−>s t r) ;

52

po s i t i o n++;

} e l s e {

cha rac t e r = *ptr ;

p o s i t i o n = −1;
ptr++;

}

// s s c an f ((const char *) ptr , "%s " , th i s−>s t r) ;

}

/*

i f (bu f f e r [0] != ' s ') {

re turn ;

}

char * token = s t r t ok ((char *) bu f f e r , " ") ;

f o r (i n t i =0; i<nSensors ; i++) {

token = s t r t ok (NULL, " ") ;

i f (token != NULL)

channel [i] = value [i] = a t o i (token) ;

}

*/

}

E.2 Microcontroller Program Code

//#de f i n e F_CPU 8000000UL

#inc lude <avr / i o . h>

#inc lude <u t i l / de lay . h>

#inc lude <s t d l i b . h>

#inc lude <s td i o . h>

#inc lude <avr / i n t e r r up t . h>

#inc lude <avr / s l e e p . h>

#de f i n e F_OSC 18432000

#de f i n e BAUD 115200 //38400

//#de f i n e MYUBRR 9 //#de f i n e MYUBRR FOSC/16/BAUD−1

53

#de f i n e MYUBRR (F_OSC/16/BAUD − 1)

#de f i n e ADC_maxchannel 6

v o l a t i l e unsigned ADC_recent_value [ADC_maxchannel]={0};

v o l a t i l e unsigned char ADC_channel=0;

#de f i n e ADC_avg_max 10

v o l a t i l e unsigned ADC_avg_value [ADC_maxchannel] [ADC_avg_max] ;

v o l a t i l e unsigned char ADC_avg_pos=0;

#de f i n e GLOVE_STATE_IDLE 0

#de f i n e GLOVE_STATE_QUERY 1

#de f i n e GLOVE_STATE_QUERY_N 2

#de f i n e GLOVE_STATE_STREAM 3

unsigned char g love_state = GLOVE_STATE_IDLE;

void USART_Init ()

{

UBRR0H = (unsigned char) (MYUBRR>>8);

UBRR0L = (unsigned char)MYUBRR;

UCSR0B = (1<<RXEN0)|(1<<TXEN0) ; // Rx Tx enable

UCSR0C = (3<<UCSZ00) ; // Set frame format : 8data , 1 stop b i t

}

void USART_Transmit(unsigned char data)

{

whi l e (! (UCSR0A & (1<<UDRE0))) ;

54

UDR0 = data ;

}

unsigned char USART_Receive(void)

{

whi l e (! (UCSR0A & (1<<RXC0))) ;

r e turn UDR0;

}

void USART_Transmitbuf (char * data , i n t n) {

f o r (i n t i = 0 ; i < n ; i++) {

USART_Transmit(data [i]) ;

}

}

void ADC_Init () {

//ADMUX |= (1 << REFS0) | (1 << REFS1) ; // 11 = 1 ,1V

//ADMUX |= (1 << ADLAR) ; // l e f t adjustment

//ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0) ; // p r e s c a l e r = 128 −> 125kHz

//ADCSRA |= (1 << ADATE) ; // adc auto t r i g g e r enable

//ADCSRA |= (1 << ADIE) ; // enable i n t e r r up t

//ADCSRA |= (1 << ADEN) ; // Enables ADC

//ADCSRA |= (1 << ADSC) ; // Star t Conversion i s enabled

// ADCSRB = (1 << ADTS2) ; // d e f au l t i s ze ro −> f r e e running mode

ADCSRA=

55

(1<<ADEN) | / / conver t e r enable

(0<<ADSC) | / / dont s t a r t conver s i on yet

(0<<ADATE) | / / no ext t r i g g e r i n g

(0<<ADIF) | / / c l e a r f l ag , stop pending conv

(1<<ADIE) | / / i n t e r r up t enable

(1<<ADPS2) |

(1<<ADPS1) |

(1<<ADPS0) ; / / ADC Pre s c a l e r S e l e c t B i t s : D iv i s i on Factor 128

ADMUX=

(0<<REFS1) |

(1<<REFS0) | / /AVCC

(0<<ADLAR) | / / r ight−a l i gned
(0<<MUX3) |

(0<<MUX2) |

(0<<MUX1) |

(0<<MUX0) ; / / channel 0 , s i n g l e−ended

}

ISR(ADC_vect) {

const unsigned char adc l=ADCL;

const unsigned char adch=ADCH;

ADC_avg_value [ADC_channel] [ADC_avg_pos] =

ADC_recent_value [ADC_channel]=((unsigned) adch<<8) | adc l ;

}

void ADC_capture ()

{

unsigned char channel ;

// Capture :

//ADC_channel = 0 ;

//ADMUX = (0 << REFS1) | (1 << REFS0) | ADC_channel ;

//ADCSRA |= (1<<ADSC) ;

56

// sleep_cpu () ;

f o r (channel=0; channel<ADC_maxchannel ; channel++)

{

ADC_channel=channel ;

ADMUX =

(0<<REFS1) |

(1<<REFS0) | / /AVCC

channel ;

//ADCSRA|=(1<<ADSC)|(1<<ADIE) ; / / S l e ep ing w i l l s t a r t conver s i on automagica l ly !

SMCR |= (1<<SE) ;

sleep_mode () ;

SMCR &= ~(1<<SE) ;

}

}

i n t calc_chan_avg (unsigned char channel) {

unsigned i n t va l = 0 ;

f o r (unsigned char i = 0 ; i < ADC_avg_max; i++) {

va l += ADC_avg_value [channel] [i] ;

}

re turn va l /ADC_avg_max;

}

i n t main (void)

{

USART_Init () ;

unsigned char rcv ;

whi l e (g love_state != GLOVE_STATE_STREAM) {

rcv = USART_Receive () ;

switch (rcv) {

case 'n ' :

57

USART_Transmitbuf ("?n 6\ r \n" , 6) ;

USART_Transmit (0) ;

break ;

case ' s ' :

g love_state = GLOVE_STATE_STREAM;

break ;

d e f au l t :

break ;

}

}

ADC_Init () ;

s e i () ;

SMCR |= (0<<SM0) | (1<<SE) ;

unsigned char channel ;

char bu f f e r [1 0 0] ;

unsigned char index = 0 ;

f o r (; ;) {

f o r (unsigned char pos = 0 ; pos < ADC_avg_max; pos++) {

ADC_avg_pos = pos ;

ADC_capture () ;

index = 0 ;

bu f f e r [index++] = ' s ' ;

f o r (channel = 0 ; channel < ADC_maxchannel ; channel++) {

index += sp r i n t f (bu f f e r+index , " %4d" , calc_chan_avg (channel)) ;

}

bu f f e r [index++] = '\ r ' ;

b u f f e r [index++] = '\n ' ;

bu f f e r [index++] = 0 ;

USART_Transmitbuf (bu f f e r , index) ;

whi l e (! (UCSR0A & (1<<TXC0))) ;

58

}

}

}

F Data Glove History

Data gloves are not a new idea. The �rst data glove, the Sayre Glove was made

at the Electronic Visualization Laboratory (EVL) in 1977. It was based on

optical �exible tubes. The amount of light received at the other end indicated

the amount of bending.

The di�erent data gloves available di�er in their sophistication based on the

number of sensors, resolution and sampling rate. The number of sensors largely

determine if you can isolate joint movement or just provides a total bend for the

whole �nger. Resolution is important when �ne movement is involved. Both

the resolution and sampling rate is important when the data glove is used as a

basis for haptic feedback.

The Nintendo Power Glove is one early commercially available data glove made

for gaming. It was produced by Mattel toy company and released in 1989

for use with the Nintendo Entertainment System[12]. The glove could detect

four di�erent degrees of bending for the total curvature of a �nger. It had a

rudimentary tracker based on ultrasonic microphones for spatial position and

orientation. Later data gloves would be an improvement on this basic design.

The 5DT glove has similiar to the PowerGlove, a single sensor per �nger. The

resolution is claimed to be at around 10 bits, or 1024 discrete values, with a

minimum sampling rate of 75Hz. It comes with an USB or Bluetooth interface

and does not include a tracker. It costs around USD1000. A higher end version

of the 5DT, the 5DT 14 Ultra has two sensors per �nger and abduction sensors

between the �ngers with a total of 14 sensors.

In 2002, the P5 �glove� came out. It was a low cost alternative to the higher

end gloves and had only one sensor per �nger. An optical tracker comes with

the glove. The glove is discontinued.

Virtual Technologies inc. produced the CyberGlove which was commercially

available very early considering its sophistication. It was �rst available in the

year 1990. Today many consider the CyberGlove as being the de facto standard

59

in high end data gloves and they are used in a number of �elds like telerobotics

and visualization.

A new development in data gloves is the ShapeHand. It is based on the

ShapeTape technology which is based on �ber optics. The ShapeTape �knows�

the position of each segment along its length when it is bent and twisted. Thus,

by overlaying one of these on a �nger, the bending of each joint is captured.

Data gloves are not cheap. They cost thousands of dollars and come with propri-

etary software development kits. This thesis will attempt to design and create a

prototype data glove for an a�ordable alternative data glove with sophistication

comparable to the CyberGlove, in the sense that it should have high resolution,

one sensor per joint and high sampling rate.

G Parts List

Pa r t l i s t

Exported from hanske . sch at 6/11/10 5 :37 PM

EAGLE Vers ion 5 . 9 . 0 Copyright (c) 1988−2010 CadSoft

Part Value Device Package

Library Sheet

C1 C−EU025−050X050 C025−050X050 r c l

1

C2 C−EU025−050X050 C025−050X050 r c l

1

C3 C−EU025−050X050 C025−050X050 r c l

1

C4 C−EU025−050X050 C025−050X050 r c l

1

C5 C−EU025−050X050 C025−050X050 r c l

1

IC1 ATMEGA48/88/168−PU ATMEGA48/88/168−PU DIL28−3
atmega8 1

60

JP1 SENSOR PINHD−2X6 2X06

pinhead 1

JP2 AREF PINHD−1X2 1X02

pinhead 1

JP3 FTDI PINHD−1X4 1X04

pinhead 1

JP4 ISP PINHD−2X3 2X03

pinhead 1

LED1 LEDSQR2X5 LED2X5

led 1

Q1 CRYSTALHC18U−V HC18U−V
c r y s t a l 1

R1 R−EU_0204/5 0204/5

r e s i s t o r 1

R2 R−EU_0204/5 0204/5

r e s i s t o r 1

R3 R−EU_0204/5 0204/5

r e s i s t o r 1

R4 R−EU_0204/5 0204/5

r e s i s t o r 1

R5 R−EU_0204/5 0204/5

r e s i s t o r 1

R6 R−EU_0204/5 0204/5

r e s i s t o r 1

R13 10k R−EU_0204/5 0204/5

r e s i s t o r 1

R14 R−EU_0204/5 0204/5

r e s i s t o r 1

Externa l s :

FTDI 3v3 Level S h i f t e r

61

	Title Page
	Problem Description
	masteroppgave.pdf

