TDT4570

Game Technology,

Norwegian University of Science and Technology (NTNU)

Faculty of Information Technology, Mathematics and Electrical Engineering

Specialization Project

Department of Computer and Information Science

Andreas Larsen

Methods of

Real-Time Flight Simulation

December 16th, 2009

A study of real-time flight simulation by state-of-the-art methods in

physics simulation and game technology.

Supervisor: Torbjegrn Hallgren

Co-Supervisors: Jo Skjermo, Helge Langseth

@ NTNU

Norwegian University of
Science and Technology

Abstract

This paper identifies novel and best-practice methods for real-time simulation of air-
craft behavior in a virtual environment. The work is preliminary to a master’s thesis
on autonomous aircrafts and forms the theoretical background for implementing a flight
simulator game to develop and test autopilot software on. Basic principles of aerody-
namics are briefly introduced to help understand how aircrafts fly and we investigate
methods to simulate the flight behavior. The outdoor environment is particularly diffi-
cult to visualize in real-time so this study covers recent methods to render natural scenes
by tricks commonly used in games. Finally the study covers two flight simulator games
that are freely available and discusses whether some of the work may be reused for this
project.

The conclusion of this report is a set of methods and approaches to best realize the
simulator software in light of performance, realism, visual appeal and the scope of the
project.

Contents

Abstract i
Table of Contents i
List of Figures v
Nomenclature vi
1 Introduction 1
1.1 Purpose e e 1
1.2 Motivation e e e 1
1.3 Context 1
1.4 Intended Audience 2
1.5 Overview e e 2

2 Theoretical Background 3
2.1 Basic Principles of Aerodynamics 3
2.1 Lift ... 3

2.1.2 Drag e)

2.1.3 Turbulence 8

2.1.4 Rotary-Wing Aerodynamics 9

2.2 Methods of Flight Simulation 12
2.2.1 Parametric Equations o L. 12

2.2.2 Computational Fluid Dynamics 14

2.2.3 Numerical Modeling 18

2.3 Methods of Visualization. 20
2.3.1 Terrain e 20

2.3.2 Vegetation 22

2.3.3 Weather L 24

2.3.4 Perception of Depth 0oL 25

3 Related Work 27
3.1 Freeware: Flying-Model-Simulator (FMS) 27
3.2 Open Source: FlightGear 28

iii

4 Discussion of Methods

4.1 Flight Dynamics Model
4.1.1 Published Wind Tunnel Data
4.1.2 Empirically Chosen Data
4.1.3 Virtual Wind Tunnel o o oo
4.1.4 Real-Time Aerodynamics Simulation
4.1.5 Best Fit for a Real-Time Flight Simulator

4.2 Visualization L e
4.2.1 Terrain L
4.2.2 Vegetation
4.2.3 Weather L
4.2.4 Perceptionof Depth

5 Conclusion

Bibliography

iv

29
29
30
30
30
31
31
32
33
33
34
35

37

39

List

2.1

2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18
2.19

3.1
3.2

of Figures

Relative airflow passing over an airfoil and generating lift. Source: [1, p.

620, . 4
Form drag and skin friction for different types of forms. Source: [2] 6
Wakes of sound waves during flight. Source: [3] 7
Required power increases dramatically as the airplane approaches Mach

1. Source: [4, p. 161] 7
Turbulent flow can result in eddies. Sources: [5], [6] 8
Basic helicopter dynamics Lo oo L 10
The mean aerodynamic chord (MAC) of a wing. Source: [7] 13

Drag coefficient parameters using the fuselage method. Source: [7, p. 251] 14
Vorticity in the rotor wake of a helicopter modeled by VIM. Note how
the grid resolution is detailed near the rotors and gradually less detailed

further away. Source: [8, p. 779] 17
Structured grid. Source: [9] Lo 18
3D cell shapes in unstructured grids. Source: [9] 19
The horizon edge is used to cull patches of terrain. Source: [10] 20
Geometric level of detail for patches of terrain. Source: [11] 21
A football field rendered with dynamically lit grass at various distances,

using a combination of geometric, volumetric and surface rendering. Source:

[12] . . oo 23
Comparison of billboarding techniques. Source: [13] 23
Final results using 2.5 dimensional impostors. Source: [13] 24
An illusion of falling snow or rain by moving textures. Source: [14] 25
Head mounted display with tracking. Source: [15]. 26
Stereo projected cave system. Source: [15] 26
Screenshots from FMS 2.0 Beta 7. Source: [16] 27
Screenshots from FlightGear v1.9. Source: [17] 28

Nomenclature

airfoil A structure placed in an airflow for the purpose of generating lift

BTF Bidirectional Texture Function

CFD Computational Fluid Dynamics

chord Imaginary straight line from the leading to the trailing edge of an airfoil
collective pitch The base angle of attack for all blades of a helicopter

culling Omit geometry to speed up the rendering process

cyclic control Tilting the helicopter by adjusting the angle of attack for each blade in
the rotation cycle

equal transit time A condition that states that an airflow diverted around an airfoil must
rejoin at the trailing edge in the same amount of time

FDM Flight Dynamics Model
fineness ratio The length divided by the maximum diameter of a body

ideal gas A theoretical gas of randomly-moving point particles that interact only through
elastic collisions

inertial force A pseudo-force equal but opposite in direction of the accelerating force

laminar flow When a fluid flows in parallel layers with little or no disruption between
the layers

LOD Level of Detail
MAC Mean Aerodynamic Chord

N-S Navier-Stokes, rerfers here to the equations governing mass, momentum and en-
ergy in a fluid

pitch angle For a rotor blade it is the angle of attack and for an aircraft it is the nose
angle around the wing axis

RAF Relative Airflow

roll angle The tilt angle around the nose axis

vii

structured grid A grid of rows and columns
supersonic flight Travelling faster than the speed of sound

thermal Parcels of warm air that rise upwards due to heating by sun radiation on the
ground

thermal equilibrium Systems at constant temperature and volume
turbulent flow A flow of fluid characterized by chaotic, stochastic movement
unstructured grid A mesh without a direct mapping to rows and columns
viscosity A fluid’s resistance to flow due to internal friction

VTM Vorticity Transport Model

yaw The horizontal angle of the aircraft’s nose axis

viii

1 Introduction

1.1 Purpose

This report presents a survey of state-of-the-art methods suitable for real-time flight
simulation. The findings here is the preliminary work of a master’s thesis on autonomous
flight and form the theoretical foundation required to implement the simulator part of
the software. This paper focuses solely on the methods related to flight simulation and
will only briefly mention the topic of autopilots here.

1.2 Motivation

The field of robotics has gained significant interest over the last two decades and its
applications are ever increasing. Factories use robots to automate and speed up processes
and commercial airliners have fully autonomous autopilots that almost render pilots
obsolete.

This project was inspired from the idea that swarms of cheap off-the-shelf model
aircrafts could solve tasks safely and efficiently. The costs of issuing a search and rescue
helicopter are tremendous and it takes a lot of time to cover a large area. With swarms
one could ideally launch hundreds or even thousands of drones capable of navigating by
themselves and sending live pictures to a ground station. This way a large area could
be covered more quickly and potentially a lot cheaper. For hazardous tasks, such as in
irradiated areas or in extreme weather conditions, the drones could be sent instead to
avoid putting humans at risk.

In order to develop autopilots safely and with minimal risk of failure it is necessary
to have a realistic and flexible flight simulator software to test the autopilots on. The
development of such a simulator is the motivation for this study.

1.3 Context

Flight simulators often use game technology to achieve realistic and appealing graphics
at interactive frame rates. Ever since the emergence of computer games there has been
a synergy between game development and academic work, which have led to the rise
of serious flight simulators that are both recreational and educational. Serious games
aim to help understand a problem or develop real-world skills and flight simulators have
become particularly important in areas such as training pilots and evaluating new aircraft
designs.

A lot of prior work exist in the field of flight simulation and this study discusses some
of the methods that look promising. The goal is to apply such methods in the future
implementation of a physically oriented game that simulates flight behavior in a realistic
manner. In particular the study focuses on how the simulator can be realized as a serious
game that is intuitive to test the autopilot’s performance in and that is fun to experiment
with.

It is the intention that this report will provide the reader with a primary source
of reference when reading the master’s thesis and give the necessary background to
understand the methods and choices made in the future implementation.

1.4 Intended Audience

This study is relevant for any reader interested in an entry level introduction to aerody-
namics and real-time simulation of flight. The intention is not to give intricate details on
methods and implementations but rather give an overview of a few promising methods
and how they may be applied in this setting. It is assumed that the reader has a good
understanding of graduate level calculus and physics to follow some of the equations
listed, but beyond that the text should be easy to follow for the uninitiated.

1.5 Overview

The structure of the report is as follows.

Chapter 2 Introduction to theory on aircraft simulation. It introduces aerodynamics
and describes methods for simulating and visualizing flight behavior.

Chapter 3 Overview of related work for comparison and inspiration.
Chapter 4 Discussion of methods and how well they fit the implementation.

Chapter 5 A summary that proposes a starting point for the real-time flight simulator
implementation.

2 Theoretical Background

2.1 Basic Principles of Aerodynamics

In order to simulate aircraft physics we must first have a basic understanding of the
dynamics of air. This section touches briefly on the most important topics such as lift
and drag and explains how heavier-than-air flight is possible. Most of the theory is
explained for fixed-wing airplanes so a separate section discusses how the same concepts
apply for helicopters.

Aerodynamics is a specialization of fluid dynamics as air and gases have the properties
of fluids. When designing an aircraft it is important to consider how it interacts with air
and there are two main types of forces in flight; namely lift and drag. Lift is the upwards
force created by diverting an airflow over the wing that counteract gravity and enables
the aircraft to maneuver. Drag is the air equivalent to ground friction when pulling
a sled. They both resist motion but drag also increases its resistance as the airspeed
increases whereas friction is nearly independent of velocity.

Beyond lift and drag there are also more advanced properties of aecrodynamics such
as turbulence, supersonic flight and different aircraft designs that are briefly discussed
in this chapter.

2.1.1 Lift

The principle of generating lift is a complex physical phenomenon and historically there
have been several explanations and theories. A currently popular explanation to lift
is that a difference in pressure causes the wing to pull up. This idea originates from
Bernoulli’s Principle, which states that for an inviscid flow the pressure decreases with
increasing speed[18]. The equal transit time condition proposes that diverted air must
rejoin at the trailing edge of the wing in the same amount of time. The difference in
pressure is then a result of air traveling faster on the top side of the wing because the top
side is more curved and the air must travel farther. The condition has later been proven
wrong in wind tunnels, but the popular understanding of lift still prevails because it
“makes sense”. Although the air actually do move faster along the top side and there is
a pressure difference, this alone does not explain how lift is created and there are several
sources that debunk the common understanding of lift [19, 4, 20, 21, 22].

A simplified but more accurate explanation to lift [1, pp. 62-65] is that masses of air
are accelerated down in order to lift the body up by Newton’s second and third laws.
This explanation is also crude because it neglects the effects of viscosity and the fact that
air particles behave more like a continuum than tiny bullets deflecting off the wing. A

thorough explanation to the lift of wings is found in [23, ch. 3] and is too comprehensive
to cover here, so we will stick with the Newtonian explanation in this section.

Lift reaction
RAF Air accelerated
down
Lift Diraction of

= || reaction
Original velocity '

Induced drag

Direction of
acceleration

Figure 2.1: Relative airflow passing over an airfoil and generating lift. Source: [1, p. 62].

A structure placed in an airflow for the purpose of generating lift is called an airfoil
and for airplanes and helicopters the airfoil is the wings and rotor blades respectively.
The magnitude of the lift depends on the relative airflow (RAF). RAF has a direction
and a velocity represented in figure 2.1 by vector V. When air passes around an airfoil
the air is pushed down due to the angle of attack of the airfoil structure. We assume
only the direction of the RAF is changed and not the velocity, so a new velocity vector
V' is derived from V.

In order to accelerate the air in this manner the air is not accelerated straight down but
at an angle V,, as illustrated. This produces a reaction force that comprises the wanted
upwards lift force and an unwanted induced drag force explained later. Intuitively the
lift increases as the relative airspeed or the angle of attack increases and when the lifting
force exceeds the weight of the body it makes heavier-than-air flight possible. For an
airfoil where the lift coefficient for a specific angle of attack is known the lifting force
can be determined! by equation 2.1 [7, p. 128].

'The lift equation only holds for specific flow conditions

1

Fr = §pu2AC'L (2.1)
Ly

Fp = Pl ACp (2.2)
p mass density of the fluid
u relative airflow velocity
A reference area (typically the square of the mean chord length for a wing)
Cp drag coeflicient
Cr lift coefficient
2.1.2 Drag

When an object moves in a fluid it is subjected to resistive drag forces. In aircraft
designs this is something we want to minimize, and to better understand how we need
to distinguish between different types of drag. According to [7, pp. 236-256] there are
three major categories:

parasite drag from the pressure when an airflow is split around a structure
induced drag because the wing requires an angle of attack to generate lift

wave drag due to the formation of shock waves around the aircraft

2.1.2.1 Parasite Drag

Parasite drag covers all types of drag that are not related to the generation of lift. It
occurs when a solid body is placed in an airflow forcing the flow to separate.

There are three main types of parasite drag and they all follow the drag equation 2.2
and rise by the square of the RAF velocity. Dependent on the form the body induces
drag by the bluntness of the body and by air passing along its surface named form drag
and skin friction drag respectively. Figure 2.2 and table 2.1 shows how the distribution
generally varies for different forms. Intuitively it can be seen that form drag is the
major contributor and that streamlined bodies with gradually changing cross-sections
are preferred for flying structures.

Figure 2.2: Form drag and skin friction for different types of forms. Source: [2]

| Form drag | 0% [10% [90% | 100% |
| Skin friction [100% | 90% | 10% | 0% |

Table 2.1: Distribution of form and skin friction drag. Source: [2]

Finally there is interference drag induced by airflow vortices. Vortices arise when two
surfaces meet at a sharp angle and draw energy from the aircraft in the form of drag. To
minimize interference drag the designers try to smooth out all sharp angles by adding
fairings; structures that gradually join each surface. Vortices also appear where separate
bodies are close to each other such as between the wing and the engines.

2.1.2.2 Induced Drag

The effect of accelerating air downwards has the undesirable consequence of inducing
drag due to the wing’s angle of attack. Figure 2.1 shows how changing the RAF vector
gives a reaction vector that is at an angle to the desired vertical lift direction. This
angle comprises a component that is backwards and will try to slow the wing down
proportional to the lift created. Generally the lift-induced drag increases when the RAF
velocity or the angle of attack is increased.

2.1.2.3 Wave Drag

Aircrafts that are able to travel faster than the speed of sound perform what is widely
known as supersonic flight and breaking the sound barrier. The Mach number [4, pp.
149-167] is an aircraft’s relative airspeed in units of the speed of sound and at Mach
1 the aircraft is moving through air at the speed of sound. As the aircraft diverts air
around its body it emits waves of sound (fig 2.3(a)) that travels for several miles in the
air just as a big boat creates waves in the water. These waves draw kinetic energy from
the aircraft in the form of drag and the faster the aircraft moves the more powerful the
waves become.

(a) Subsonic flight emits ripples of (b) The wake of Mach 1 accumu-
sound waves lates into shock waves

Figure 2.3: Wakes of sound waves during flight. Source: [3]

When nearing Mach 1, known as transonic flight, there is a rapid increase in wave
drag as shown by figure 2.4. Even if the aircraft is traveling below Mach 1 the air has to
move around thick structures and can accelerate into supersonic speeds to keep up with
the outer airflow. This results in small shock waves near excrescences in subsonic flight
and is shown by the sudden increase in drag for Mach numbers between 0.85 and 1.

Power required

0.6 0.8 1 1.2 1.4
Mach number

Figure 2.4: Required power increases dramatically as the airplane approaches Mach 1.
Source: [4, p. 161]

The waves in front of the aircraft travel by the speed of sound and if the aircraft is
moving at Mach 1 they cannot get out of the way. The sound waves then merge into
extremely powerful shock waves that sound very much like an explosion on the ground.

These sonic booms are so powerful that supersonic flight is often banned over populated
areas.

2.1.3 Turbulence

One of the truly complex behaviors of fluid dynamics is turbulence, and this stochastic
chaos is an area where theory lags behind experiment. Although turbulence is widely
studied in many fields, such as in the natural mixture of fluids and in the flow of water
pipes, we will only discuss here what is relevant for aircrafts.

In flight this phenomenon is commonly known as air pockets and rough rides through
windy conditions, but there is more to turbulence than most people think. For instance
it plays a crucial role in creating lift that is not too intuitive. According to [24, pp.
138-141] there are two types of fluid flows; laminar and turbulent, where the first is
relatively smooth and parallel and the other becomes sinuous and eddying.

(a) Eddies in the water (b) Eddies in the air

Figure 2.5: Turbulent flow can result in eddies. Sources: [5], [6]

Consider moving the oar of a row boat slowly through the water. The water is not
disturbed and flows smoothly around it in what is called a laminar flow. Then force the
oar quickly through the water. The water separates so fast that nearby water particles
are not able to immediately fill the void resulting in a sinuous motion of water and eddies
in the trail known as turbulent flow.

When flying a commercial airliner the disturbance we may experience is due to atmo-
spheric turbulence. This generally arises from two conditions:

1. Shear wind forces when the wind velocity varies at different positions
2. Thermal convection when warm air rises and cooler air descends

Both sources are generated in the lower 1-2 km of the atmosphere known as the boundary
layer. Shear forces occur when air closer to the ground is retarded by friction from

structures such as trees, buildings and mountains. The latter is a natural consequence of
the ground being heated by sun radiation forming vertical structures of rising air known
as thermals.

2.1.3.1 Reynolds Number

An important parameter of fluid dynamics is the Reynolds Number. It is simply the
ratio of inertial forces (resistance to change in motion) to the viscous forces (stickiness)
of a fluid. The number is dimensionless and indicates how much the viscosity affects the
flow of the fluid at a given mean flow velocity V and a reference dimension L.

There is no theorem relating the Reynolds Number magnitude to turbulent flow, but
[25] describes how high numbers in the order of tens of millions for the wing of an
airplane indicate a nearly inviscid behavior and can result in a turbulent flow of air
around the wing. For Reynolds numbers below a few thousands the viscous forces are
more significant and exhibit laminar flows, such as for the flow of blood particles in the
veins. However, the significance of the viscid forces must be considered per application
as the flow will have varying degrees of turbulence depending on the properties of the
fluid and any obstructions in the flow. The water flow in a straight pipe is very different
than for the flow of an angled pipe or for the currents of the Gulf Stream.

In aircraft design analysis the Reynolds Number is used to calculate the drag and
lift coefficients, and when testing the design in a wind tunnel it is common to use a
model-scale prototype. Air performs differently on smaller objects and so it is necessary
to scale the flow as well. Accurate wind tunnel testing can be achieved by matching
the Reynolds Number for the flow at the full and model scale objects. The Reynolds
Number is given by equation 2.3 and is a function of fluid density, viscosity, relative flow
velocity and a reference dimension. For airplanes the wing chord is often chosen as the
reference length L so in order to match the two flow regimes the wind tunnel airspeed
or the air density is increased for tests on the model-scale aircraft.

Re = PVE (2.3)
I
p fluid density
\Y mean relative flow velocity
L reference length (typically the chord length for wings)
7 dynamic viscosity

2.1.4 Rotary-Wing Aerodynamics

Most of the aerodynamics so far have been focused on airplane analogies where fixed-
wing structures are subjected to lift and drag. Airplanes are relatively simple in nature
and make complex aerodynamic behavior easier to understand. Another important type
of flight is by rotary-wing designs such as helicopters and this section will briefly discuss
the key properties. A complete description of their workings is found in [8].

Collective

(a) The controls of a helicopter (b) Tail rotor compensates for main rotor torque

Figure 2.6: Basic helicopter dynamics

While airplanes move at high speeds to generate sufficient airflow and lift the rotor
blades are instead spun at high speeds around an axis of the helicopter. The rotor blades
are formed like small wings and typically one or two pairs of blades are used to generate
lift. The dynamics of helicopters are far more complex than for airplanes so we will
break it down into basic maneuvers.

2.1.4.1 Hovering

The main advantage of helicopters is the ability to move in all three axes. This allows
for vertical take-off and landing and hovering at a fixed position in the air that allows
the helicopter to perform many tasks that airplanes are not able to. The challenge in
hovering is that wind, turbulent air and mechanical imperfections will eventually tilt
the helicopter and accelerate it away from the position. If the drift is not immediately
countered by the pilot the helicopter will continue to tilt, accelerate even more and speed
up dramatically. Hovering may be compared to balancing on a ball and a stable hover
takes a lot of flight experience and is difficult even in calm conditions.

2.1.4.2 Collective Pitch

There are two ways to control the induced lift shown in figure 2.6(a). First the thrust
can be increased to spin the rotor blades faster and second the angle of attack of the
blades can be increased.

10

Thrust-controlled lift is considered simpler and cheaper, but suffers from slow and
disproportionate lift response because of varying resistive forces such as drag and me-
chanical friction and because the inertia of the engine resists change in motion.

Collective pitch instead changes the angle of attack of the blades to control lift. The
rotor blade inertia helps improve the proportionality and the response time of the control
output and is one of the reasons why most modern helicopters use collective pitch. In
addition it enables the pilot to perform emergency landings if the engine should stop
working. Awutorotation is a technique that exploits the inertia of the rotor blades and
the potential energy at an altitude to generate enough lift to land safely.

2.1.4.3 Cyclic Control

One part of flying a helicopter is using lift to control the altitude and the other is using
lift to move around. Since the main rotor is the only source of lift, moving from A to B
is simply a manner of tilting the helicopter in a direction so that part of the lift is used
to counter gravity and the other part is used to accelerate towards B. Tilting is achieved
by cyclic control and enables the helicopter to move horizontally as in figure 2.6(a).
A complex mechanical structure allows the angle of attack to be controlled separately
for each rotor blade. By producing a greater angle of attack on the left side looking
in the nose direction each blade will produce more lift on the left side and cause the
helicopter to tilt to the right. Tilting to the left or right and tilting the nose up or
down is called changing the roll and pitch angles respectively. The helicopter may tilt in
any combination of pitch and roll and enables the helicopter to perform very advanced
maneuvers.

2.1.4.4 Tail Rotor

In flight the engine must constantly apply torque to the main rotor shaft to overcome
the resistive forces. The consequence is that without a fixed point to hold on to the
helicopter will spin in the opposite direction [1, pp. 166-177].

To counter this effect the conventional helicopter uses a smaller tail rotor that produce
thrust in the opposite rotational direction of the main rotor, illustrated by figure 2.6(b).
The tail rotor is positioned at a distance d from the main rotor axis so that its thrust F
can be relatively small to compensate for the main rotor torque, as given by the torque
equation 7 = F x d.

In addition to counter torque the tail rotor enables the pilot to control the yaw angle
and point the nose in an arbitrary direction.

11

2.2 Methods of Flight Simulation

Predicting and simulating aircraft behavior are two strongly related fields of theory so
this chapter covers methods for predicting the dynamics of flight. As already noted, the
theory in this field is still young and often combined with empirical approaches. This
chapter will not go into all the details but rather give an overview over methods that
are widely used when predicting the aerodynamic properties of an aircraft structure.

2.2.1 Parametric Equations

We can approximate drag and lift for most parts of the aircraft by transforming their
geometrical structures to similar structures that have empirically derived tables. In this
section we discuss two methods to estimate the parasite drag for wing-like and body-like
parts of the aircraft. Equivalent methods also exist for lift and a number of other drag
components, but since they are similar in concept we omit them here and refer to [7]
for further details. It should be noted that the estimations are crude and are typically
corrected by empirical data from previous wind tunnel test data of similar designs.

One approach [7, pp. 229-256] is to calculate the parasite drag coefficient separately
for the parts of an aircraft and sum the total drag coefficient. The following equation 2.4
divides the aircraft in N parts and each part has a form factor K, skin-friction coefficient
6f and a wetted surface Sy, susceptible to airflow. The reference area S,y can be any
surface but is typically chosen as the top surface of the wing.

N

ZKszl Sweti

Cp=2 (2.4)
Sref

The parasite drag forces in subsonic speeds are mainly due to form and skin friction,
but since parts of the aircraft are very different we distinguish between wing-like struc-
tures and body-like structures. This section will cover two methods for determining K,
C'y, and Sy, for the two types of structures so that a total parasite drag coefficient can

k3

be estimated.

2.2.1.1 Wing method

For thin wing-like structures skin friction is the major contributor to drag. Equation 2.5
was derived from theory and experiment by Prandtl-Schlichting [7, pp. 196-200] for the
skin friction of turbulent flow over flat plates.

0.455

Cir=—"""" 2.
Cf (logloReL)2.58 (5)

To apply this equation we must first fit the surface of a wing to a flat plate equivalent.
A wing is not flat and is typically trapezoidal with varying chord lengths as shown
in figure 2.7. One solution is to find the mean aerodynamic chord (MAC) length by
geometry and define the wing as a rectangle of area M AC x wing span.

12

Figure 2.7: The mean aerodynamic chord (MAC) of a wing. Source: [7]

The wing surface Si,, has a curvature due to its thickness and is flattened by a
thickness factor (14 0.25). Since the total wing surface comprises a top and bottom side
the top surface is doubled. Sye; is then the total wetted surface of the wing transformed
into a flat plate equivalent.

t
Suwet ~ 2S1op(1+0.27) (2.6)
Swet flate plate equivalent of surface exposed to airflow
Stop orthogonal top surface area of wing

L ratio of thickness to the chord length of the wing

C
At last the form factor of the wing must be determined. As previously mentioned the
form factor affects the distribution of pressure and skin friction. The form factor K can
be determined from tables of empirical data and is a function of thickness to length ratio

and the angle at which the wings are swept back. With all the parameters known the
parasite drag of a wing-like component can now be calculated by equation 2.7.

Swet

C
b Sref

= KCy (2.7)

wing

CDoing parasite drag coefficient for a wing-like body

6f skin friction for a flat plate equivalent

K form factor of wing

Rey, mean Reynolds Number for a wing of MAC length L (by equation 2.3)
Sref reference surface area (typically Stop)

13

2.2.1.2 Fuselage method

The fuselage of an aircraft has a constant chord length and is much simpler to calculate
than wings. The drag coefficient is found by the same equation 2.7 but the parameters
are slightly different. The wetted surface Sy can now be approximated by cones,
cylinders and other well known geometries as shown in figure 2.8(a). The form factor
K is determined by the fineness ratio of the body, defined as the length divided by the
maximum diameter (L/D). Figure 2.8(b) is derived from experiment and shows how the
form factor decreases as the fuselage becomes longer and more slender.

Finally, the flat plate skin friction éf is found by equation 2.5. Here the Reynolds
Number at the end of the fuselage is used, given by equation 2.3 and the fuselage length
L from figure 2.8(a) as the reference length.

=
Body form fector, K

Fineness ratio, LD

(a) Approximating the surface by geometry (b) Form factor as a function of fuselage fineness

Figure 2.8: Drag coefficient parameters using the fuselage method. Source: [7, p. 251]

2.2.2 Computational Fluid Dynamics

The problem with parametric equations is that some behavior is hard to express by
parameters and the methods generally suffer from crude approximations mapped to
empirical data. A different approach is to simulate the behavior of air and calculate the
forces that air exert on the aircraft. The computation of fluid dynamics is a twofold
process [26, ch. 1]. First a physical model must be chosen to approximate real air,
defined by governing flow equations. The models have trade-offs in performance and
correctness and the choice should reflect the requirements of the application. Second
a numerical modeling method transforms the physical model to a discrete domain that
can be solved on a computer. Numerical methods also have trade-offs and varies in ease
of implementation, performance and accuracy, but all methods suffer from numerical
dissipation.

As computational fluid dynamics (CFD) gained interest in the 80s it has been touted
as the Holy Grail for aerodynamics analysts. A dramatic increase in computational
power and memory capacity made this approach economically feasible and the accuracy
is ever increasing. However, [26, ch. 1] notes that the simulation is no substitute for
experiment as the results are yet impossible to validate without careful testing in equal

14

conditions.

The current purpose of CFD is to give insight into complex behavior and is often used
to speed up design processes by simulating the effects of changes before a prototype is
built and tested. In the perspective of a modern flight simulator this technology can be
used to simulate very complex behavior such as winds, turbulence, interfering airwakes
and the effects of modifying an aircraft design.

2.2.2.1 Governing Flow Equations

The governing equations of fluid flow are mathematical expressions of physical conserva-
tion laws. A conservation law states that a particular measurable property in an isolated
physical system does not change over time. When modeling fluid motion there are three
laws discussed in [26, ch. 2]:

1. The mass of a fluid is conserved

2. The rate of change of momentum for a fluid particle equals the sum of its forces
by Newton’s second law

3. The rate of change of energy equals the sum of the rate of heat addition to and
the rate of work done on a fluid particle by Newton’s law of thermodynamics

For practical reasons the fluid may be treated as a continuum with macroscopic proper-
ties such as velocity, pressure, density and temperature. The molecular structures and
motions only complicate matters. The Navier-Stokes equations are currently considered
one of the most physical correct descriptions of fluid dynamics but they have proven
very hard to solve for. A hierarchy of governing equations has later been proposed that
simplify the model but still preserve important fluid behavior while being easier to com-
pute. This section briefly covers three promising flow equations described in detail in [8,
ch. 14].

2.2.2.2 Navier-Stokes Equations

The most fundamental equations governing the fluid dynamics were found independently
by Navier and Stokes and originate from the conservation of mass and the interchange of
momentum and energy within a fluid. In [8, ch. 14] this is written in conservation form
as equation 2.8, where Q is the conserved variable vector and E, F and G are fluz vectors
that gives the rate at which mass, momentum and energy are being transported at any
point in the fluid. The right hand terms E,, F, and G, express the fluxes resulting from
the viscosity of the flow.
9Q | OB OF | 0G _ OBy | OFy , 0Gy (2.8)
ot Odx 0Oy 0z ox oy 0z
The Navier-Stokes (N-S) equations are strongly coupled, non-linear partial differential
equations and are extremely difficult and expensive to solve without major simplifica-
tions, such as assuming thermal equilibrium, ideal gasses and incompressible fluids.

15

A key issue with any CFD calculation is the generation of grids on which to solve the
governing equations. Turbulence and viscous shearing effects require an extremely fine
grid resolution and large amounts of memory and processing power to compute.

Another problem is that theory lacks closure on the governing equations, meaning
there are too few equations and too many unknowns. In particular the turbulence closure
problem has proven difficult. Empirical closure models were introduced to overcome this
and had success for simple cases like turbulent flow in a straight pipe, but history has
proven it difficult to find a general model that fits different and more complicated cases.

2.2.2.3 Euler Equations

If it can be assumed that viscous forces do not need to be resolved and the fluid is treated
as inviscid, then according to [8, ch. 14] the N-S equations reduce to the Euler equations
shown by dropping the viscous terms of equation 2.8 to yield equation 2.9.

8£+8£+8£+8£:0 (2.9)
ot or 0Oy 0z

In theory the Euler equations should not be able to model turbulence since fluids would
never circulate were it not for viscous forces. Although it should be noted that too much
viscosity would also prevent the formation of vortices since they would be damped by
internal resistance in the same way as syrup does not form eddies. However, in practice
the Euler equations yield a very good approximation to the airflows around an aircraft
since the flows are nearly inviscid. Numerical methods suffer from numerical dissipation
and this artificial dissipation will to some extent make up for the missing viscid terms
and allow vortices to form. Since the Euler equations are far simpler to solve for than
N-S this is a very desirable property.

2.2.2.4 Vorticity Transport Equations

No matter what governing equations are used there is a separate issue when modeling
turbulence. For practical use it is often necessary to consider how turbulent flows in-
directly affect the aircraft. For instance a helicopter that hovers near the ground will
disrupt the air around it by the wake of turbulent flows from the rotor itself.

In order to model how this turbulence is recycled back into the in-flow it is necessary
to preserve the detailed vortices over time and over a large amount of space around the
helicopter. It would be infeasible to have sufficiently detailed grids for the entire space
and so there is need for a separate set of governing equations that model the vortices
directly. One well known technique is the Vorticity Transport Model (VTM).

16

Figure 2.9: Vorticity in the rotor wake of a helicopter modeled by VI'M. Note how the
grid resolution is detailed near the rotors and gradually less detailed further
away. Source: [8, p. 779

If the flow can be assumed to be incompressible, which is reasonable for the case of a
hovering helicopter where RAF velocities are relatively small, then [8, ch. 14] describes
how VTM can be used to minimize the unwanted numerical diffusion of vorticity over
space and time. This is done by solving the governing equations for the flow directly in
terms of vorticity w and velocity V as shown in equation 2.10.

The advection term refers to the transport of vorticity due to the fluid flow, strain
is the deformation of the fluid’s particle structure and diffusion is how the vorticity is
dampened by viscosity v.

0
V- Vw=(w V)V + vd-w (2.10)
ot —_——— e N —
’ advection strain dif fusion
temporal

If the vorticity field is known or initially assumed then the velocity field can be cal-
culated by the Biot-Savart relationship 2.11 and applied to a traditional CFD grid ap-
proach. For practical use the field may be easier to calculate in integral form as shown
in 2.12.

VAV = -V xuw (2.11)
1 [(z—y)

V(z) = i P X w(y)dy (2.12)

VTM is an intermediate between traditional CFD techniques and pure vortex methods
and provides a very complete model for the evolution of the airflow structure in the wake,
illustrated by figure 2.9. However, as with other CFD approaches it suffers from being
computationally expensive and is still impractical for routine use, but provides excellent
insight into the complex turbulent flows and how they affect aircraft flight.

17

Physical Space
Computational Space

— 9

* | :

4 | L] — 4T

‘e 1 1

Y - - _*1] L] #1

" e * L

| |I

|I|_1l [] 1. ij-1 l
" = e il e
.__‘\
e

Figure 2.10: Structured grid. Source: [9]

2.2.3 Numerical Modeling

In practical use there is a need for numerical methods to calculate the flow state using
any of the governing equations above. The equations only describe relations of physical
properties in the flow, but to compute a result we must discretize time, space and their
derivatives.

According to [26, ch. 4] there are three widely used methods that solve an approx-
imation of the problem; finite element, finite difference and finite volume. The three
methods take different mathematical approaches to approximating and discretizing flow
variables, but rely on the same basic steps. First a grid must be generated for the area
of interest, then time, space and their derivatives must be discretized and solved for the
governing equations by the values in the grid.

Grid generation has already been mentioned and is an essential part of CFD tech-
niques. Except for simple cases it is extremely difficult to analyze fluid flows due to
complex and interchanging partial differential equations. To overcome this the flow do-
mains are subdivided into smaller domains and solved independently. The grid should
encompass all areas where we are interested in calculating the flow and a straight-forward
solution is to use structured grids. Structured does not refer to the geometrical form but
rather how grid information is accessed by the computer, as shown in figure 2.10 by a
mesh with rows and columns. The neighbors are then easily found and simplify the CFD
code.

The problem with structured grids is that we can’t refine the resolution at certain areas
in the grid without increasing the entire grid resolution, and that is likely to become a
bottleneck in applications with complex geometries in the flow. An alternative is to use
unstructured grids that may consist of tetrahedrons, hexahedrons or prism cell shapes as
shown in figure 2.11. These geometries allow local grid refinement but are also harder
to implement solvers for. In theory any type of complex geometry can be properly
wrapped inside a flow grid but the process of creating the grid is so complicated that
it often requires human interaction to achieve a good balance between efficiency and
accuracy.

Two techniques that are used to automatically improve the CFD grid are described

18

'f'll \\‘ r | &\\ /.\

Tetrahedron, Hexahedron, and Prism Cell Shapes

Figure 2.11: 3D cell shapes in unstructured grids. Source: [9]

in [26, ch. 1] as convergence and grid independence. Convergence denotes how quickly
a solution converges to within an accepted error margin in a solution algorithm that is
iterative in its nature. The convergence can be adjusted using relaxation and acceleration
methods in much the same way the stiffness of a spring can be adjusted. Soft springs
produce inaccurate results while stiff springs may take excessive computational time to
avoid numerical instability.

Unstructured grids are particularly difficult to balance between good results and cost
in areas with complex flow patterns. Grid independence refers to when a grid has a reso-
lution that produces sufficiently accurate results and that enhancing the grid resolution
further will not improve the results significantly.

Evolutionary algorithms can be useful to refine the grids more quickly. Convergence
and grid independence can be used as heuristics to help grid generators produce both
efficient and accurate grids given user-defined constraints.

19

2.3 Methods of Visualization

An important part of the flight simulator is to give a realistic and appealing represen-
tation of the virtual world. Outdoor environments have proven particularly difficult to
render quickly and game development has been a key driver here. Games are renowned
for their endless struggle to squeeze a few extra frames per second out of the hardware,
and this has led to many creative solutions using approximations and a sleeve full of
dirty tricks. This section discusses some essential issues of rendering natural scenes and
describes fast methods that cleverly approximates their appearance.

2.3.1 Terrain

The virtual world of a flight simulator consists in large part of ground that often stretches
over long distances. It would be desirable to give the user an impression of being able
to fly as far as the eye can see and still retain a high level of detail.

2.3.1.1 Horizon Culling

One big concern with rendering terrain in real-time is how to maintain highly detailed
variations over large areas, since the graphics card memory is limited. Even if the terrain
data is small enough to be rendered directly the large amount of polygons often become
a rendering bottleneck and limits the frame rate. To overcome this problem it makes
sense to only render the parts of the terrain that is actually visible and to reduce the
level of detail without degrading the image quality.

Least-squares line

Occluders

Occlusion profiles

(a) Occluders and occludees (b) Approximation of gridlet by a quad

Figure 2.12: The horizon edge is used to cull patches of terrain. Source: [10]

Horizon culling [10] is a method that quickly determines if geometry is visible from a
point of view by keeping track of the highest terrain points in the screen space projection.
The method relies on a rendering algorithm that renders the patches of terrain, or

20

gridlets, in a front-to-back manner. This way the horizon can be updated for each
rendered gridlet and all subsequent renders need only test against the current horizon.

Obviously the tests against the horizon are performed frequently and so the paper
proposes an optimization by occluders and occludees as figure 2.12(a) shows. When a
gridlet is tested against the current horizon, it is conservatively approximated by a quad
polygon that guarantees to be lower or equal to the terrain points along the edges of the
gridlet, shown by figure 2.12(b). Then this quad is tested for visibility against the screen
space horizon edge and if any part of it exceeds the horizon then the gridlet is rendered
and the horizon edge updated.

The paper also proposes that this method be used in combination with frustum culling,
where gridlets that are fully outside the view space can be omitted. The horizon culling
is then simply applied to further refine the culling of terrain patches that are guaranteed
to be fully occluded.

In a particular scenario where the camera flew across a terrain with a variety of views
the paper claimed to increase the frame rate by 2-4 times compared to only using frustum
culling. This makes it an interesting method for rendering large terrains in a real-time
flight simulator.

2.3.1.2 Big Textures and Geometric Level of Detail

Another concern is that the level of detail (LOD) in terrains can be extremely high and
the textures just as large. Fortunately, the final image quality only require a certain LOD
at a distance and a method is proposed in [11] that handles both geometric mipmapping
and very large textures.

Modern graphics cards are designed for games and are currently limited to textures
of about 4096 x 4096. For a terrain of 100km? a texture of that size would only hold a
texel per 2-3 meters and would be insufficient by far for details up close.

/1IN
 — O —8—0—® 8]
(a) Level of detail is (b) The edges between patches of different LOD are matched

achieved by omitting the
white points

Figure 2.13: Geometric level of detail for patches of terrain. Source: [11]

21

The method divides the terrain into a 2D array of patches called GeoMipMaps (GMM),
which holds information about terrain height points and level of detail for that patch.
The large texture is then simply split up in tiles small enough to render and the tiles
mapped onto their respective GMMs.

The advantage of this structure is that each GMM can easily change its LOD by
omitting n height points in both directions and conforming the shared edges of GMMs
with different LOD, as shown by figures 2.13(a) and 2.13(b). A maximum geometrical
error can then be pre-calculated for each LOD level, so that at run-time the minimum
LOD for a GMM is trivially queried from the current view parameters and a user-defined
threshold.

The concerns of geometric LOD and mapping tiles of large textures have much in
common and this approach handles both. Its implementation is manageable and the
author claims good performance, but the paper does not specify how well the method
of geometric LOD performs for differently sized terrains compared to rendering with full
LOD.

2.3.2 Vegetation

Grass and trees exist in abundance on Earth and is an important element in natural
3D scenes, but the complex geometries pose a huge challenge. It has proven difficult to
get realistic looking vegetation at interactive frame rates so many tricks and approxima-
tions are often used. This section discusses a few recent methods that aim to produce
believable pictures of vegetation at very high speeds on modern graphics cards.

2.3.2.1 Dynamically Lit Grass

One paper [12] proposes a method that allows dynamic lighting and a prominent parallax
effect of grass in real-time. It uses a combination of geometric, volumetric and surface
rendering to obtain highly detailed grass near the camera and a smooth transition to
distances where grass blades can no longer be distinguished, shown by figure 2.14.

The method makes use of Bidirectional Texture Functions (BTFs) to pre-calculate
per-pixel lighting of grass at a distance for different view and lighting angles and enables
fast, dynamic lighting of non-geometric grass. It also supports density texture maps
that enables artistic possibilities in 3D scenes as well as improves the transition between
geometric and non-geometric grass. Lastly, the method supports shadowing and the
grass blades can cast shadows onto the ground and each other. For non-geometric grass
the shadows are baked into the BTFs and allow for truly realistic lighting and natural
looking grass at all distances.

22

Figure 2.14: A football field rendered with dynamically lit grass at various distances,
using a combination of geometric, volumetric and surface rendering. Source:

[12]

2.3.2.2 Hardware Rendered Foliage

The method presented in [13] takes a novel approach to rendering trees and foliage
quickly, using an extension of the well-known billboarding technique.

The conventional billboard tree is a transparent 2D texture that always faces the
camera or a combination of multiple textures for different angles of the tree, as in figures
2.15(a) and 2.15(b) respectively. The main limitation with static billboards is a loss of
motion parallax effect within the tree itself, so that the trees look very much like sheets
of paper instead of geometric trees with depth.

Projectian Prejection Prajection
Plain Plain Flain }
[: - .ll h

View View View
paint podnt peint

(a) Always facing the camera (b) Two-faced cutout (c) 2.5 dimensional impostors

Figure 2.15: Comparison of billboarding techniques. Source: [13]

23

(a) Tree canopy (b) Forest of tree canopies

Figure 2.16: Final results using 2.5 dimensional impostors. Source: [13]

This algorithm introduces the concept of dynamic 2.5 dimensional impostors to visu-
alize trees in a convincing quality while being fast and cheap on resources. Each frame
a set of impostors are rendered at various sides of the tree. An impostor is simply a
billboard texture rendered from a set of randomly placed geometric leaves, and because
they are rendered each frame the impostors become view-dependent giving both depth
and a natural parallax effect. The impostors are then duplicated as sprites for each their
respective sides and make it look like the tree is rendered with thousands of geometric
leaves instead of billboards of leaves.

The final touch of the method is to use the alpha channel of the impostor textures
for depth information of each leaf within the rendered impostor volume, giving a semi-
3D rendering of the leaves by standard depth-testing. This means branches and other
geometries are successfully surrounded by leaves and the leaves themselves occlude each
other properly.

2.3.3 Weather

Virtual worlds that require a realistic outdoor environment need to visualize the weather
in one way or another. For sunny or cloudy days it is common in real-time applications to
simply use a textured skydome with appropriate lighting, but if harsh weather conditions
are simulated or visibility is reduced by fog it may be necessary to use additional methods.

One method presented in [14] describes how to efficiently render falling rain or snow
when the camera is moving. The cost of animating and rendering such a vast number
of particles is not practical in real-time, so an approximation to the same visual effect
is proposed. By mapping textures of rain or snow streaks onto an invisible double cone,
as shown in figures 2.17(a) and 2.17(b), simple texture transformations can animate the
streaks along the cone and around the camera. The end result is that particles of rain
or snow seem to fall continuously and by tilting the cone it will look like the camera is
moving through the falling particles as they fall towards the camera.

24

="
5 * e e
(a) Cone placed around (b) Rain texture (c) Snow seems to be falling

camera

Figure 2.17: An illusion of falling snow or rain by moving textures. Source: [14]

2.3.4 Perception of Depth

One of the challenges in computer graphics is to overcome the lack of depth on computer
monitors and it can be hard to precisely determine the position of objects in a virtual
world.

A perception of depth is particularly important when flying near the ground. The
pilot needs visual references such as trees, stones, buildings and other types of objects
whose relative position and general size can be ascertained. Good references help the
pilot estimate his position and velocity and without a good perception of depth this task
is complicated.

2.3.4.1 Stereoscopy

Stereoscopy is an effective technique that exploits our natural stereo vision. There are
many variations in stereoscopy, ranging from simple stereo cards of two photographs to
high-tech head mounted displays and immersive stereo-projected caves shown in figures
2.18 and 2.19. However, the principle remains the same. Stereoscopic pictures let each
eye see only one of two pictures, and when the pictures are taken at angles that corre-
spond to each eye’s position the brain interprets a perception of depth as we do in the
real world.

The advantage of stereoscopy is that it provides a true perception of depth so the
position and scale of objects can be more accurately perceived. For aircraft simulation
this would greatly increase the pilot’s feel of the aircraft and is particularly helpful when
navigating near the ground or near obstacles to determine distances and the scale of
things.

25

26

Figure 2.19: Stereo projected cave system. Source

. [15]

3 Related Work

Flight simulators have been around in many flavors since the emergence of games on
the computer. The advantage of using a finished product as a starting point is evident
and would save a lot of time, but could also restrict the solution in terms of flexibility,
modifiability and performance. This section briefly covers two popular software projects
that have much in common with the aircraft simulator of this project and investigates
whether the products or parts of them could be reused in this setting.

3.1 Freeware: Flying-Model-Simulator (FMS)

FMS [16] is a freeware model flight simulator originally intended for practicing on the
control of small remote controlled airplanes and helicopters. The software is not open
sourced and has been voluntarily maintained by two persons since year 2000, and nat-
urally lags behind commercial or open source simulators. However, because it is free it
has gained tremendous popularity in the RC (remote-control) community and is often
bundled with RC products as an introduction to flying.

As a flight simulator FMS could fit the bill, but since its source is closed one cannot
run autopilot software on it or extend the simulator to challenge the autopilot with
windy conditions. However, if the source code could be granted by the authors, it does
run a semi-realistic flight simulation that probably could be extended for autopiloting.
The disadvantage is that the source code has gotten outdated by now and users report
trouble getting the system to run on modern computers. Also the project is no longer
actively maintained and the latest release dates back to 2005. This poses a risk if bugs
should arise that is hard to trace without in-depth knowledge to the simulator engine.

Figure 3.1: Screenshots from FMS 2.0 Beta 7. Source: [16]

27

Copyvhiahi

Figure 3.2: Screenshots from FlightGear v1.9. Source: [17]

3.2 Open Source: FlightGear

A quick search on the Internet (pages [27, 28] among others) indicates that FlightGear[17]
is the biggest, most popular and most active open source project on flight simulation
today. It is daily updated by a large number of contributors and it features both modern
graphics and a very sophisticated flight simulation. The code is free to download and
modify by the terms of the GPL license, and it also supports high-level extensions that
does not require one to modify the FlightGear engine code. The software runs on several
platforms including Windows, Linux and Mac OSX.

One can choose between three different flight dynamics models (FDM) that each use
different methods to determine the behavior of a specific aircraft.

JSBSim a general open source FDM component

YASim simulates the effects of airflow on different parts of the aircraft based on its
mass and geometry

UIuC an extension of an FDM originally written by NASA

The simulator features an extremely detailed world with real lakes, rivers, roads, cities
and over 20,000 airports. The time of day modeling accurately represents the sun, moon
and stars for any specific date and time and all four seasons are modeled as they naturally
occur for different parts of the world.

The extreme level of simulation in FlightGear is nothing but impressive and it com-
petes with the best of commercial simulators. Its extensibility in being open source and
the plug-in support makes this software a great starting point for autopilot simulation.
The only drawback is that it is designed for full-scale aircraft simulation, but it should
be possible to model the dynamics of small-scale aircrafts as well. Also the level of
simulation goes far beyond the needs of a small-scale drone simulator where the focus
is on precise short-range flights near the ground. However, a lot of inspiration can be
taken from the pluggable FDM solution it has implemented, since flight dynamics is the
interesting part for testing autopilots on different aircrafts.

28

4 Discussion of Methods

The intention of this study is to identify novel or best-practice methods for implementing
a real-time flight simulator to test autopilot software on. So far this report has covered
basic principles of aerodynamics to better understand the forces at work during flight
and how to control these for maneuvering. Secondly it has covered methods to calculate
the effects of these forces in terms of drag and lift to simulate the flight behavior of
the aircraft. Thirdly a few methods have been selected to help create a convincing
visualization of outdoor flight, because the natural environment poses extra challenges
in real-time applications.

This section will now discuss how these methods may be applied and their fit will be
assessed by weighing their levels of realism and appeal to their costs in implementation
and performance.

4.1 Flight Dynamics Model

The choice of physics simulation is a delicate compromise between performance and
level of realism. In section 2.2.1 we covered parametric equations, and in particular the
wing and fuselage methods were described in how to determine the parasite drag coef-
ficient of an aircraft. Other methods also exist that derive the lift and drag coefficients
from the geometrical and material structure, but generally all these methods suffer from
inaccuracies and need to be corrected by empirical test results.

Computational fluid dynamics is an alternative approach covered in sections 2.2.2
and 2.2.3. In this context CFD aims to simulate the air particles and determine the
interacting forces between the air and the aircraft. It is believed by many analysts
that this method could simulate the entire complex behavior of air by the Navier-Stokes
equations, but in practice there are no numerical methods or computing power available
today that can solve this in real-time without dire approximations.

From these two categories of methods we can define four types of flight dynamics
models (FDM) to use in a real-time flight simulator, as shown in table 4.2. Model 1 needs
no prior knowledge about the aircraft structure and aims to simulate the effects of air
around the body during flight. Models 2-4 rely on knowing the lift and drag coefficients
for different angles of airflow at all significant parts of the aircraft and simply feed those
to the lift and drag equations 2.1 and 2.2 respectively.

29

| # | Method(s) \ Model Description |

1 CFD Simulate the interacting forces of air and the aircraft
structure by some governing equation for air
2 CFD + Determine the lift and drag coefficients by simulating
Parametric the air in a virtual wind tunnel
3 Parametric Use published wind tunnel test data for specific
aircraft models
4 Parametric Pick lift and drag coefficients that give reasonable
max velocities and control responses

Table 4.2: Different combinations of computational fluid dynamics and parametric equa-
tions to model the flight dynamics

4.1.1 Published Wind Tunnel Data

Models 2-4 differ only in how they obtain these coefficients, and if possible the best
is to use published numbers from wind tunnels as proposed in model 3. Microsoft
Flight Simulator X [29] is one commercial flight simulator that relies on numbers from
aircraft manufacturers and achieves a high level of realism simulating real-world aircrafts.
However, it seems difficult to find publications for small model airplanes and helicopters
so that may rule out model 3.

4.1.2 Empirically Chosen Data

If we have no test data available a straight-forward approach is to manually pick coef-
ficients as proposed in model 4. If one is trying to match a specific real-world model
airplane or helicopter then experiments could be performed to measure the linear and
angular motion as a function of control outputs over time. This could be realized by
two cameras monitoring a remote controlled aircraft and the control sticks during flight.
From this it would be possible to derive coefficients by trial and error that approxi-
mately match the original dynamics in a flight simulator. If live experiments cannot be
performed it is still possible to construct a semi-realistic and believable flight dynamics
model by picking coefficients that comply to reasonable constraints in max velocity and
acceleration in linear and angular motion.

4.1.3 Virtual Wind Tunnel

Model 2 uses CFD to simulate air particles in a virtual wind tunnel and determines the
lift and drag dynamics as one would in a real tunnel. Ideally this method is able to
analyze an arbitrarily designed aircraft, and even a piano could be tested for its ability
to fly (but it would be rather poor!). However, in practice this method is as good as
its implementation and suffers from high computational costs and numerical dissipation,
just as any CFD implementation. The advantage is that this analysis could be done just

30

once and so a lot of time could be spent to analyze the dynamics accurately and then
apply the results to parametric methods for simulating the dynamics in real-time.

X-Plane [30] is a commercial flight simulator that allows you to design your own
aircraft. The flight behavior is determined by breaking the aircraft down into many
small elements and calculating the forces on each of them. The coefficients are obtained
in run-time from the dynamic airflow and the pre-calculated structural analysis and used
to calculate the forces of lift and drag.

4.1.4 Real-Time Aerodynamics Simulation

Model 1 is the most complex and computationally expensive solution of the four. It is
so demanding that it is generally considered infeasible for flight simulation and most of
the prior work is academic. However, the main limitations are computational power and
fast, accurate numerical implementations. Many aerodynamics analysts believe [8, ch.
14] that once this limitation is overcome then CFD may just be the answer to aircraft
design analysis and simulation. It is currently considered to have the best potential of
truly modeling the complex behavior of air of the methods known today.

One study [31] from 2006 did try to use a CFD implementation in a real-time helicopter
flight simulation to account for the complex interference of airwakes when landing on
a boat. The report concluded that it should be possible to run such simulations at
interactive frame rates using 500 to 1000 processor cores in parallel, so real-time flight
simulation by CFD is probably some way into the future yet.

4.1.5 Best Fit for a Real-Time Flight Simulator

There is no obvious single best fit from the four flight dynamics models listed. Each
has its pros and cons in terms of accuracy, performance, flexibility and implementation
cost. Generally the models in table 4.2 are listed by decreasing complexity in a top-
down manner, but it should be noted that the level of realism is not necessarily in the
same order. The behavior of real-world aircrafts has been successfully approximated
by parametric equations in simulators such as the Microsoft Flight Simulator series and
used as a professional training aid for many years already.

However, the lift and drag coefficients by themselves are not sufficient. Moving parts
such as flaps and gears complicate matters and atmospheric dynamics, local airflows
and airwakes all affect the velocity field around the aircraft. To resolve local flows one
could turn to fluid dynamics or similar variants such as the vorticity transport equations
covered in section 2.2.2.4, but the backside is that without sufficiently accurate simulation
even the simplest types of lift and drag would be poorly modeled. It is likely that the
flight behavior would behave unnaturally if it would even fly at all.

For a master’s thesis on the autopilot of model aircrafts the main concern is not so
much the realism of flight dynamics as it is the autopilot’s ability to adapt to different
aircraft dynamics and winds. The physics need to be seemingly realistic, but a perfect
model of air dynamics and local airflows is not a priority. By this assumption we can

31

safely conclude that a complete CFD simulation is neither necessary nor feasible for the
scope of such a project.

A hybrid as described in model 2 is more interesting. To develop a virtual wind tunnel
from scratch and determine the coefficients is a huge task and essentially a thesis on its
own, but if open source components are available such as YASim in FlightGear then that
could be one way to achieve a high level of realism for different types of model aircrafts.

If wind tunnel test data is available for such small-scale aircrafts then model 3 could
be the best solution, but the flexibility in testing different aircrafts would be limited to
the data available and manually tweaking existing data. If data is lacking then model 4
is a reasonable alternative. It should be possible to manually define flight dynamics that
are sufficiently realistic for flying and testing the autopilot on. The approach is entirely
empirical and a matter of subjective choices, but it is very quick to implement and for a
project focused on developing the autopilot software that could be a good starting point
in any case. The flight dynamics component should be designed to be pluggable and
that should make it easier to improve or replace later.

4.2 Visualization

The goal of the visualization is not to accurately present the results of the physics
simulation per se, but rather give the user a graphical presentation that is intuitive,
appealing and fun to use. The simulator will function both as a flight simulator game
and as a tool for testing autopilot control logic. The rendered environment is therefore
only an approximation to the real world and the key focus is to give the user a good
sense of scale, position and motion in the virtual world.

In section 2.3 we cover some methods to visualize a natural scene with terrain, trees,
grass and weather. Natural scenes are particularly difficult to render in real-time and
game development has been one of the main drivers behind such methods. Solutions exist
in abundance in game development communities and in published works, so for this study
we had to select a few promising methods that aim to solve some key issues of rendering
outdoor scenes in real-time. The fit for this project was subjectively assessed for each
method by how much time it would require to implement it, expected performance hit
and its potential to create convincing and appealing graphics.

Evaluation of visualization methods differs slightly than for the methods of flight
dynamics. We are still restricted to real-time performance, but in graphics the choice
of methods do not necessarily decide the level of realism and appeal in the graphics.
The final result often depends just as much on the artistic work as on the method used.
A simple billboard tree with high quality textures can look convincingly real in certain
applications in the same way as truly geometric grass can look artificial without proper
lighting, geometry and textures.

This section discusses the fit of each method and whether the method or a variation
of it could be used in the implementation.

32

4.2.1 Terrain

Rendering realistic terrain requires detailed meshes that often become a bottleneck. In
section 2.3.1 we propose methods to cull parts of the terrain that do not need to be
rendered and to reduce the level of detail for distant geometry with little impact on
image quality.

Horizon culling is a clever culling technique that claims [10] to increase the frame
rate by 2-4 times to ordinary frustum culling in detailed terrain with height variations
that hide large parts of the terrain from the camera. The method seems fairly easy
to implement and should provide a much needed performance boost for large detailed
terrains. In particular it should prove effective for low altitude flights such as in simulated
search missions.

To further improve the performance one method [11] suggests how the geometrical
level of detail may be adjusted. The details of the paper indicate that the method
is slightly intricate and could take some time to implement. In particular there are
issues in the approach such as joining gridlets of different LOD and preserving normals
across the edges of curved gridlets that complicate the implementation. It may not
be desirable to implement this method unless there is an absolute need to improve the
performance beyond frustum and horizontal culling. Also the simplicity of the technique
is expected to produce “popping” behavior when a gridlet changes its LOD. However,
the method does describe an implementation structure for dividing a large texture into
tiles and mapping them to gridlets that will prove valuable in creating large, detailed
non-repeating textures. For instance, it could be interesting to use large high-resolution
aerial photographs of real-world terrain as a texture to create more realistic graphics.

4.2.2 Vegetation

Trees, bushes and grass are obvious elements in a natural 3D scene, but they are also
important in providing a sense of scale. A small model helicopter flying in a terrain
without vegetation may very well look full-scale if the terrain size cannot easily be
determined. Humans excel at comparing the relative sizes of objects, but without good
reference objects it can be hard to figure out the distance to or the size of an object in
a 3D scene. This is particularly true if the visualization medium lacks depth, such as in
computer screens.

In section 2.3.2 we suggest two methods for rendering different types of vegetation in
real-time. The first method describes how to render realistic looking grass. Grass is an
interesting element because its parallax effect is expected to greatly improve the sense
of movement and visual appeal near the ground, and should prove particularly useful
for precision navigation. The paper claims to achieve highly detailed grass up close that
still looks natural and retains the parallax effect at a distance. Unfortunately the im-
plementation seems too time consuming in that three different techniques are combined
and each one would probably take some time to get right. It could be interesting to
implement only the geometric technique as described in the paper, but the performance
hit would likely limit the area and density of the grass. The transition to textured sur-

33

faces would also look very unnatural, and even though the density map technique helps
transition between the two that is yet another implementation cost.

The method is generally complex and there are no obvious fallbacks if the implemen-
tation only gets halfway. Also the method only supports flat terrain and is not very well
suited for the terrain of a flight simulator, although the paper notes that the technique
could be extended to handle curved terrain as well. The gain of rendering grass is ev-
ident, but it seems the costs in performance and implementation may not be justified
for the scope of this project. There are many other alternatives to grass that are far
simpler and more efficient such as grass textures and billboards, that are commonly used
in games today. It seems reasonable to start out simple and later add more advanced
grass if time allows it.

The other method describes how to render the foliage of trees and bushes quickly and
is particularly effective in rendering forests or large groups of bushes. The approach uses
a novel improvement over billboards and introduces dynamically rendered impostors
with per-leaf depth testing. This enables us to render very rich trees with thousands of
seemingly geometric leaves, but there are a couple of drawbacks.

First it performs significantly slower than static billboarding techniques. Each visible
tree must render a set of impostors with geometric leaves every frame and duplicate the
impostors many times by sprite rendering. However, the paper claimed to render a forest
canopy of approximately 200 trees with no culling at 50 frames per second on a modern
PC per 2003, and should perform well in the real-time implementation slated for early
2010.

Second it is likely that the canopy looks natural only at a distance, and for flight
near the ground with small-scale aircrafts it is expected that the impostors lose some
of their illusion when flying near trees and bushes. This is not a major issue for a
game-oriented visualization, but it should be clear that this method is far from a truly
geometric representation of trees. It could be possible to use a level of detail technique
to blend between impostor trees and fully geometric trees as a function of distance, but
it might be difficult to achieve this without very noticable “popping” between the two
representations.

If performance becomes a limiting factor the method easily allows one to adjust the
number of leaves and impostors and if the implementation takes longer than expected it
is relatively easy to degrade to a static billboarding technique. These factors make this
method a good starting point for populating the terrain with vegetation.

An alternative would be to use off-the-shelf solutions for rendering trees at different
levels of detail. SpeedTree [32] is one commercial software library that generates realistic,
geometric foliage in many different flavors and is extensively licensed in recent games
like Fallout 3, Batman: Arkham Asylum and Age of Conan - Hyborian.

4.2.3 Weather

In section 2.3.3 we described how the sky can easily be presented by a textured skydome.
This technique is used in most 3D games today because it is very fast and yet looks
convincing with proper artistic work. Clouds are typically superimposed as textures on

34

the skydome and animated by transformations, and the weather and time of day can
easily be changed by blending between different textures of clouds and skies. Skydomes
fit this simulator well because the typical scenario is flight near the ground and flying
through volumetric clouds is not an issue. However, to present flying in poor weather
we may need additional methods.

One method describes how to efficiently render falling rain and snow in a flight simu-
lator as if the camera is moving through the falling particles. This is a typical example
where game technology applies simple methods in a clever way to give the impression
that more advanced visualization is going on. This illusion of rain and snow is computa-
tionally cheap and would be a good fit for visualizing flight in such weather conditions.
For its application the main drawback is realism, since flat 2D textures are used to give
an illusion of moving among millions of particles. However, the paper notes how a par-
allax effect can be achieved by layering several textures and scrolling them at different
speeds, and with some tuning the end result can become quite believable.

An extension of this method could also to some extent visualize windy conditions.
Gusts of wind could be shown by adjusting the direction that rain or snow is falling as
a function of the wind vector. However, this is a crude approximation since all particles
would be affected simultaneously and uniformly, ignoring the fact that it takes time for
wind to propagate and that wind swirls as it goes. But even if it is not realistic it does
help visualize gusts of wind and how the autopilot reacts when they occur.

The method is generally versatile and should run a lot faster and be simpler to im-
plement than a particle system. Although the illusion is not very realistic the method
complements the skydome in visualizing different kinds of weather and is a good starting
point that fits the scope of this project well.

4.2.4 Perception of Depth

3D goggles for PCs have gained popularity in the recent years, much due to light-weight
goggles that fit the home user budget. Polarized glasses have been replaced by LCD
shutter glasses that enable vivid colors and smooth frame rates.

In 3D scenes this helps the user to accurately determine the position and the scale of
things and can give the user a heightened sense of presence in the virtual world. The
advantage of stereoscopy on computers is that the implementation is relatively simple
and only requires the scene to be rendered from two slightly different camera positions.
This does not necessarily mean we get half the frame rate, but there is a significant drop
in performance for stereoscopic rendering that must be taken into account.

Generally one must explicitly render the stereoscopic effect, but NVIDIA 3D Vision
[33] is a recent solution that turns any 3D application into a stereoscopic experience. The
advantage is that older applications that originally did not support sterescopy can now
be viewed with 3D googles. Unfortunately there is a problem that elements rendered
without depth information, such as the heads up display, overlaid texts and crosshairs,
suffer from ghosting artifacts and floating uncomfortably in front of where one is focus-
ing. Generally one must explicitly render such elements at a proper depth, however 3D
Vision has managed to substitute the crosshair with a 3D version in their graphics card

35

driver and fixes the crosshair in older first-person shooter games. It is possible that the
remaining elements can be fixed in the future too, and if so it might no longer even be
necessary to write stereoscopy code.

Tracking systems have also become increasingly popular because they are getting
cheaper and more accurate. High-end HMDs often incorporate tracking of the head
movement so that the pictures reflect the movement of the person wearing it. This
opens up many interesting possibilities, such as sitting in a virtual cockpit of the aircraft
and being able to move and look around as a pilot would in a real aircraft. With systems
that can track the head movement over several meters it is to some extent possible to
let the user walk and look around as if he is present in the virtual world. For movement
over larger areas this type of tracking can complement regular game controllers in an
interesting combination.

The ability to walk around makes the simulator more interactive and fun to use,
but it also has practical uses. In particular it would be very helpful in evaluating the
autopilot performance in precision navigation. The degree of freedom in walking around
and observing the flight pattern in real-time is unmatched and would closely resemble a
real flight experiment, and with no risk to life and limb!

36

5 Conclusion

A complete flight simulator is a huge undertaking and the intention of this study is merely
to identify key theory and methods to better understand how a flight simulator can be
realized. This report has given some insight into aerodynamics and discussed methods
that simulate flight dynamics and visualize the outdoor environment in a realistic man-
ner. We have covered existing flight simulators that each solve the task differently, from
the relatively simple hobbyist project FMS to the huge open source project FlightGear
that accurately simulates the inner workings of an aircraft down to the malfunction of
gauges and mechanics.

We have learned that flight simulators generally model the flight dynamics by lift and
drag coefficients for major parts of the aircraft or for the aircraft as a whole. These
coefficients simply describe the tendency of an object to produce lift and drag when
placed in an airflow at a specific angle. Wind tunnels measure these coefficients for dif-
ferent types of aircrafts and enable flight simulators to accurately model the dynamics of
real-world aircrafts. We have also explored the possibility of simulating complex airflows
and arbitrary aircraft designs by turning to computational fluid dynamics. Although
real-time flight simulation by fluid dynamics is some way into the future yet, a lot of
interesting work has been done in this field. We discovered that hybrid solutions exist
such as YASim for FlightGear that do not necessarily model the airflow, but rather
determine the flight dynamics by structural analysis.

The study of visualization techniques revealed some novel methods inspired by game
technology for fast and convincing results. Outdoor 3D scenes are generally considered
difficult because of the tremendous amount of detail in nature. This forces the methods
to balance between performance and realism, and try to land on a compromise that
is “good enough”. We have learned how terrain rendering can be sped up by horizon
and frustum culling and by adjusting the geometric level of detail, and how super-sized
textures can be split up in tiles and properly mapped for highly detailed terrain. We
have investigated recent methods for rendering huge amounts of living elements such as
trees, bushes and grass in real-time to populate the terrain and increase the sense of scale
and motion. We have discussed how to visualize clouds, rain, snow and winds to present
different kinds of weather, and finally we have explored the possibilities of stereoscopy
and tracking systems and how the immersive experience can be both useful and fun in
a flight simulator game.

The theory and methods in this study give a brief glimpse of the challenges in creating
a realistic flight simulator. We have discussed each of the methods in terms of realism
and appeal compared to the costs in implementation and performance, and some of the
methods stick out as more promising. The methods of horizon culling, large texture
mapping and 2.5 dimensional foliage are particularly interesting since they seem rela-

37

tively easy to implement and should perform well by the claims in the papers. Together
they enable large, detailed and textured terrains filled with hundreds of trees and bushes
in real-time, and that would be a good starting point for the virtual world of a flight
simulator.

In flight dynamics there is one method that looks promising. CFD simulation was
discarded due to its complexity and computational cost, so that leaves simulation by
parametric equations. There are generally two problems related to simulation by this
method. First we need to determine the lift and drag coefficients for a particular aircraft
design. We have already discussed methods to get these numbers, and options include
open source components that perform structural analysis, published wind tunnel test
data and choosing coefficients empirically. Second we must maintain a velocity vector
field to model winds, atmospheric turbulence, local airflows and similar variations. To
calculate the motion of an aircraft is then a matter of resolving force vectors of drag and
lift by the vector field and adding in the thrust force vector. We also noted that an open
source FDM such as JSBSim, YASim or UTUC could be used to handle this part of the
simulator and reduce the scope of the implementation.

Realistic flight simulators have been around for some time now and best-practices
are well established. Ever since the beginning parameters have been used to define the
behavior of different types of aircrafts, and the level of realism was mainly constrained
by the match of parameters and the level at which winds, weather processes and local
airflows were modelled. However, in recent work [30, 31] we also see the emergence of
structural analysis and simulation of fluid dynamics to further up the flexibility and
realism.

This study set out to identify novel and best-practice methods for implementing a
realistic real-time flight simulator game. The result is a thorough survey of methods
discussed in light of solid theoretical background and related to prior work, which should
provide a solid foundation to understand and realize such an implementation.

38

Bibliography

1]
[2]

[3]

[11]

[12]

J. Watkinson, Art of the Helicopter, Butterworth-Heinemann, 2004.

Wiki, Drag (physics), http://en.wikipedia.org/wiki/Drag_(physics), visited
29.10.20009.

Wiki, Supersonic, http://en.wikipedia.org/wiki/Supersonic, visited
20.11.20009.

D. Anderson, S. Eberhardt, Understanding Flight (2nd Edition), McGraw-Hill
Professional, 2009.

The Renaissance Charter School’s Public Wiki, Eddies,
http://www.andybaird.com/travels/1ife05/photos/three-eddies. jpg,
visited 16.09.2009.

C. G. Forum, What’s the most aerodynamic shape?,
http://cré4.globalspec.com/PostImages/200806/737px_Airplane_vortex_
edit_8F32D8CA-9576-EF75-3EAA339AEEABIOFFB. jpg, visited 09.09.2009.

J. J. Bertin, R. M. Cummings, Aerodynamics for Engineers (5th Edition),
Prentice Hall, 2008.

J. G. Leishman, Principles of Helicopter Aerodynamics (Cambridge Aerospace
Series), Cambridge University Press, 2006.

Innovative-CFD.com, Quick overview of cfd grid terminology,
http://www.innovative-cfd.com/cfd-grid.html, visited 03.10.20009.

B. Lloyd, P. Egbert, Horizon occlusion culling for real-time rendering of
hierarchical terrains, in: VIS ’02: Proceedings of the conference on Visualization
02, IEEE Computer Society, Washington, DC, USA, 2002, pp. 403-410.

A. Brodersen, Real-time visualization of large textured terrains (2005)
439-442d0i:10.1145/1101389.1101477.

K. Bouatouch, K. Boulanger, S. Pattanaik, Rendering Grass in Real Time with
Dynamic Light Sources, Research Report RR-5960, INRIA (2006).
URL http://hal.inria.fr/inria-00087776/en/

G. Szijarto, J. Koloszar, Hardware accelerated rendering of foliage for real-time
applications (2003) 141-148doi:10.1145/984952.984976.

39

http://en.wikipedia.org/wiki/Drag_(physics)
http://en.wikipedia.org/wiki/Supersonic
http://www.andybaird.com/travels/life05/photos/three-eddies.jpg
http://cr4.globalspec.com/PostImages/200806/737px_Airplane_vortex_edit_8F32D8CA-9576-EF75-3EAA339AEEAB9FFB.jpg
http://cr4.globalspec.com/PostImages/200806/737px_Airplane_vortex_edit_8F32D8CA-9576-EF75-3EAA339AEEAB9FFB.jpg
http://www.innovative-cfd.com/cfd-grid.html
http://dx.doi.org/10.1145/1101389.1101477
http://hal.inria.fr/inria-00087776/en/
http://hal.inria.fr/inria-00087776/en/
http://hal.inria.fr/inria-00087776/en/
http://dx.doi.org/10.1145/984952.984976

[14]

[15]

[16]

40

N. Wang, B. Wade, Rendering falling rain and snow (2004)
14doi:10.1145/1186223.1186241.

S. Kuntz, A vr geek blog, http://cb.nowan.net/blog/tag/reference/, visited
11.11.20009.

Roman, M. Méller, Flight-model-simulator,
http://n.ethz.ch/student/mmoeller/fms/index_e.html, visited 13.11.20009.

Flightgear, http://www.flightgear.org, visited 13.11.2009.

Wiki, Bernoulli’s principle,
http://en.wikipedia.org/wiki/Bernoulli’s_principle, visited 07.12.2009.

S. E. D. Anderson, How airplanes fly: A physical description of lift,
http://www.aviation-history.com/theory/lift.htm, visited 20.11.2009 (02
1999).

Fixed wing aircraft facts and how aircraft fly,
http://www.aviationexplorer.com/fixed_wing_aircraft.htm, visited
07.12.2009.

G. M. Craig, Physical principles of winged flight,
http://www.regenpress.com/aerodynamics.pdf, visited 07.12.2009 (2003).

P. Eastwell, Bernoulli? perhaps, but what about viscosity?, http:
//www.scienceeducationreview.com/open_access/eastwell-bernoulli.pdf,

visited 07.12.2009 (2007).

J. S. Denker, See how it flies: Perceptions, procedures and principles of flight
(1996).

B. Atkinson, Dynamical Meteorology: An Introductory Selection (1st Edition),
Routledge, 1981.

URL http://books.google.no/books?id=gikOAAAAQAAJ&1pg=PP1&pg=PP1#v=
onepage&q=&f=false

T. Benson, Reynolds number,
http://www.grc.nasa.gov/WWW/BGH/reynolds.html, visited 28.10.2009.

H. Versteeg, W. Malalasekra, An Introduction to Computational Fluid Dynamics:
The Finite Volume Method (2nd Edition), Prentice Hall, 2007.

J. Montgomery, Top 10 best open source games,
http://tech.blorge.com/Structure:
%20/2009/02/15/top-10-best-open-source-games/, visited 07.12.2009 (02
2009).

http://dx.doi.org/10.1145/1186223.1186241
http://cb.nowan.net/blog/tag/reference/
http://n.ethz.ch/student/mmoeller/fms/index_e.html
http://www.flightgear.org
http://en.wikipedia.org/wiki/Bernoulli's_principle
http://www.aviation-history.com/theory/lift.htm
http://www.aviationexplorer.com/fixed_wing_aircraft.htm
http://www.regenpress.com/aerodynamics.pdf
http://www.scienceeducationreview.com/open_access/eastwell-bernoulli.pdf
http://www.scienceeducationreview.com/open_access/eastwell-bernoulli.pdf
http://books.google.no/books?id=gikOAAAAQAAJ&lpg=PP1&pg=PP1#v=onepage&q=&f=false
http://books.google.no/books?id=gikOAAAAQAAJ&lpg=PP1&pg=PP1#v=onepage&q=&f=false
http://books.google.no/books?id=gikOAAAAQAAJ&lpg=PP1&pg=PP1#v=onepage&q=&f=false
http://www.grc.nasa.gov/WWW/BGH/reynolds.html
http://tech.blorge.com/Structure:%20/2009/02/15/top-10-best-open-source-games/
http://tech.blorge.com/Structure:%20/2009/02/15/top-10-best-open-source-games/

[28]

Top 5 free linux games,
http://www.ixibo.com/2008/09/top-5-free-linux-games-download-now,
visited 07.12.2009 (09 2008).

Microsoft flight simulator x,
http://www.microsoft.com/games/flightsimulatorX, visited 17.11.2009.

X-plane, http://www.x-plane.com, visited 17.11.2009.

Real-time cfd for helicopter flight simulation,
http://cmg.devel .mauveinternet.co.uk/research/projects/
real-time-cfd-for-helicopter-flight-simulation/, visited 17.11.2009.

Speedtree, http://www.speedtree.com, visited 13.12.2009.

J. M. H. Butler, Nvidia geforce 3dvision & how 3d works, http://www.bit-tech.
net/hardware/graphics/2009/01/09/nvidia-geforce-3dvision-review/4,
visited 18.11.2009 (01 2009).

41

http://www.ixibo.com/2008/09/top-5-free-linux-games-download-now
http://www.microsoft.com/games/flightsimulatorX
http://www.x-plane.com
http://cmg.devel.mauveinternet.co.uk/research/projects/real-time-cfd-for-helicopter-flight-simulation/
http://cmg.devel.mauveinternet.co.uk/research/projects/real-time-cfd-for-helicopter-flight-simulation/
http://www.speedtree.com
http://www.bit-tech.net/hardware/graphics/2009/01/09/nvidia-geforce-3dvision-review/4
http://www.bit-tech.net/hardware/graphics/2009/01/09/nvidia-geforce-3dvision-review/4

v

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Purpose
	Motivation
	Context
	Intended Audience
	Overview

	Theoretical Background
	Basic Principles of Aerodynamics
	Lift
	Drag
	Turbulence
	Rotary-Wing Aerodynamics

	Methods of Flight Simulation
	Parametric Equations
	Computational Fluid Dynamics
	Numerical Modeling

	Methods of Visualization
	Terrain
	Vegetation
	Weather
	Perception of Depth

	Related Work
	Freeware: Flying-Model-Simulator (FMS)
	Open Source: FlightGear

	Discussion of Methods
	Flight Dynamics Model
	Published Wind Tunnel Data
	Empirically Chosen Data
	Virtual Wind Tunnel
	Real-Time Aerodynamics Simulation
	Best Fit for a Real-Time Flight Simulator

	Visualization
	Terrain
	Vegetation
	Weather
	Perception of Depth

	Conclusion
	Bibliography

