
Master in Information Systems
November 2010
Kjetil Nørvåg, IDI
Robert Neumayer, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Opinion Mining for Song Lyrics

Hanjie Shu

Problem Description
The Master Thesis is supposed to build a basic opinion mining system, including the following
work:
1.Use existing natural language processing tools to annotate text with parts-of-
 speech tags (e.g. verb, noun, . . .)
2.Extract and rank possible objects of interest (e.g. products, general discussions),
 using named entity recognition
3.Integration of synonym information, e.g. wordnet
4.Identify relevant opinions (e.g. amazing camera, opinions against war, certain
 groups of people, etc.)
5.Exploit time information for object or `hot topic' extraction
6.Apply the techniques to a collection of song lyrics
7.Adequately display the results with respect to both time and musical genre
8.Explore and analyse the results

Assignment given: 28. June 2010
Supervisor: Kjetil Nørvåg, IDI

Opinion Mining for Song Lyrics

Abstract

The thesis presents an opinion mining system for song lyrics, which can fetch objects
of interest and opinion words about them. Finally, opinion mining result is analyzed in
terms of time information and musical genre.

In the process of constructing the system, many previous works are reviewed and
some of them are applied to the thesis and different methods are compared for
reaching a best solution (e.g. explore how to fetch objects f interest).

As well, the evaluation of the system has been done by running experiments with a
collection of song lyrics containing hundreds of documents. The result from the
system is compared with manual identification. The evaluation result shows that the
system basically can present topics of one song lyrics and opinion words about them.

Finally, opinion mining result from a collection of song lyrics can be analyzed and
some interesting things are presented, e.g. fetching most common topics, presenting
the number of polarity words for each musical type or different year, opinion change
on some common topics as time changes.

Besides, we have developed a program in Java for collecting song lyrics on Internet
from one website. The program can help us collect thousands of song lyrics and
search information of song publishing year or musical genre on Wikipedia.org.

The work in opinion mining for song lyrics is few at present. The thesis finishes an
exploration in the subject and the exploration is valuable and useful for future wok.

Opinion Mining for Song Lyrics

Preface

This thesis is performed as Master Thesis of Master Program of Information System
by Hanjie Shu in The Norwegian University of Technology and Science, NTNU.

The thesis subject is proposed by PhD Candidate Robert Neumayer in NTNU. The
thesis intends to explore opinion mining for song lyrics. And the thesis Starts at 28th
June, 2010 and finishes at 14th Nov. 2010.

I would like to thank my main advisor, Robert Neumayer and my supervisor at NTNU,
Kjetil Nørvåg, for their support and feedback.

Contents

Chapter 1 Introduction..1

1.1 Motivation..1

1.2 Problem Definition ..1

1.3 Thesis Outline ..1

Chapter 2 Background ..3

2.1 What is Opinion Mining and Sentiment Analysis? ..3

2.2 Model of Opinion Mining ...4

2.3 The Development of Opinion Mining and Sentiment Analysis8

2.4 The Applications of Opinion Mining and Sentiment Analysis9

Chapter 3 Research Method ...12

3.1 Design Science ...12

Chapter 4 Problem Analysis..14

4.1 Part-of-Speech Tagging...14

4.2 Fetch Objects of Interest ..15

4.2.1 TF-IDF SCHEME ..15

4.2.2 Existing Libraries for Keyphrase Extraction ..16

4.2.3 Exploration of Methods ...19

4.3 Fetch Opinion Words ..25

4.3.1 WordNet ..25

4.3.2 Word Sense Disambiguation (WSD)...27

4.3.3 Lexical Resources for Opinion Words ..30

4.4 Song Lyrics, Songs Time Information and Song Genres ...31

Chapter 5 Solution ...32

5.1 System Architecture ..32

5.2 System components ...33

5.2.1 Annotation Classes ...33

5.2.2 UIMA...34

5.2.3 OpenNLP ..35

5.2.4 Lucene ...36

5.2.5 SentiWordNet ...38

5.2.6 Subjective Clues ...39

5.3 Processing Steps of System ...41

Chapter 6 Experiments and Evaluation ..44

6.1 Data Preparation ...44

6.2 Experiment and Evaluation ...46

Chapter 7 Conclusion and Further Work..56

7.1 Conclusion ...56

7.2 Further Work ..57

References...58

Appendix A: Integration of OpenNLP and UIMA in Eclipse61

 i

 ii

Appendix B: Song Lyrics ..63

Appendix C: Code Examples ..73

Appendix D: the List of Stop Words for Song’s Title ..85

Opinion Mining for Song Lyrics

Figures

Figure 2- 1: An example of a feature-based summary of opinions [38]....................................6

Figure 2- 2: Visualization of feature-based opinion summary and comparison [38]7

Figure 2- 3 : Summary of Reviews [1]..10

Figure 2- 4: Opinion summarization system...10

Figure 4- 1: Operation of Maui [9] ...17

Figure 4- 2: Workflow of Linguistic Preprocessing [40] ..18

Figure 4- 3: Comparison of Keywords by Different Methods in UIMA.................................20

Figure 4- 4: Keywords by the Method of Local High Frequency Nouns................................21

Figure 4- 5: WordNet Online ..26

Figure 4- 6: Homographs of “Bank” [16] ...27

Figure 5- 1: System Architecture ..32

Figure 5- 2: Java Classes of Fetching Keywords ..33

Figure 5- 3: Annotation in Text with UIMA ...34

Figure 5- 4: Visualization Representation of Term Polarity of SentiWordNet [15]38

Figure 5- 5: SentiWordNet Online ..39

Figure 5- 6: Processing Steps of System...41

Figure 6- 1: Collection of Song Lyrics..44

Figure 6- 2: Information Box of Song on Wikipedia ..45

Figure Appendix- 1: XML Descriptors of UIMA Wrappers for OpenNLP.............................61

Figure Appendix- 2: Parameter Settings in XML Descriptors ..62

Opinion Mining for Song Lyrics

Tables

T

able 3- 1: Guideline for Design Science Research [8] ..12

Table 4- 1: Comparison of Keywords by Different Methods-A..22

Table 4- 2: Comparison of Keywords by Different Methods-B..23

Table 4- 3: Comparison of Keywords by Different Methods-C..24

Table 4- 4: Accuracy Comparison of Adjective Sense Determination [6]29

Table 6- 1: Evaluation of Fetching Song Topics-A...46

Table 6- 2: Evaluation of Fetching Song Topics-B ...47

Table 6- 3: Evaluation of Fetching Opinion Words-A ..48

Table 6- 4: Evaluation of Fetching Opinion Words-B...49

Table 6- 5: Opinion Change over Common Topic “American”-A..52

Table 6- 6: Opinion Change over Common Topic “American”-B ..53

Table 6- 7: Hot Topics-A...54

Table 6- 8: Hot Topics-B...55

Chapter 1 Introduction

1.1 Motivation

Today, people are trying to fetch opinion information and analyze it automatically
with computers. As we can see, there are large amounts of information generated from
users on the Internet, including product or movie reviews, forum entries, blog and so
on. How to analyze the opinions expressed in these documents is attracting more and
more attention from research domain and business domain. The new research domain
is usually named Opinion Mining and Sentiment Analysis. So far, researchers or
developers in the research domain have developed some techniques to the solution of
the problem, e.g. the solution of extracting opinions from reviews in the papers [1]
and [3].

Now, we hope that we can apply some techniques in the domain Opinion Mining or
invent new methods to fetch opinions expressed in song lyrics. Song lyrics are an
important part in one song. Through analyzing song lyrics, we can know that what
meaning the songs deliver, and what topics presented in the songs, what opinions
expressed about the topics. Especially, in political songs, there are strong sentiment
and opinion expressions. Further, we can analyze opinion mining result with respect
to songs’ published time and musical types such as Rock, R&B, Jazz, for example, the
change of topics in songs over time, the change of opinions expressed about the same
topics over time, different topics presented in different musical types.

1.2 Problem Definition

The goal of the thesis is to build an opinion mining system for mining opinions
expressed in song lyrics. Usually, the system firstly should fetch objects of interest
presented in song lyrics, and then fetch opinions expressed about these objects.
Finally, opinion mining result is analyzed in term of songs’ published time and
musical types.

1.3 Thesis Outline

Chapter 2 Background introduces some basic concepts in the domain of opinion
mining, and the domain’s development and application.
Chapter 3 Research Method presents the method Design Science adopted in the
thesis, and how to apply the method to the thesis.
Chapter 4 Problem Analysis presents the concrete analysis of the problem,
introduces some fields of interest related with the thesis like part-of-speech tagging,
WordNet, Word Sense Disambiguation and so on, and presents exploration process for
reaching a best solution.
Chapter 5 Solution presents how to build the opinion mining system, the architecture
and main components of the system, and the introduction of system processing steps.

 1

Chapter 6 Experiments and Evaluation presents experiments that are done on the
system built and analyzes experiment results and gives some evaluation with the
system built if it is good.
Chapter 7 Conclusion and Further Work presents what have been done in the
thesis, and suggests the further work.

 2

Chapter 2 Background
This chapter will present some background knowledge relevant with the thesis. We
will introduce what are opinion mining and sentiment analysis, and model of opinion
mining, and their development process, and their applications.

2.1 What is Opinion Mining and Sentiment Analysis?

Textual information includes two kinds: facts information and opinion information.
Facts information is objective statement about objects, and opinion information is
subjective statement that expresses persons’ opinion about objects. Most of researches
on text information processing focus on mining and retrieval of facts information. But
more and more researchers and business man begin to become interested on mining of
opinion information.

The rise of World Wide Web brings us many user generated information (e.g. forum
post, blog, review), which contains a large number of opinion information. When one
wants to see how good one product he or she wants to buy is, it is not necessary to ask
other friends if we can fetch opinion information about the product on Web. Before
political election, the computational survey about what voters think also can be done
like this. Similarly, manufacturers can do market investigation through mining
opinion information on Internet in order to know what products current customers
really like. All these reasons push the development of research on opinion mining and
sentiment analysis.

Opinion Mining

The term opinion mining appears in the paper [25] “Mining the peanut gallery:
Opinion extraction and semantic classification of product reviews” by Dave et al.
They define the ideal opinion mining tool:

“Process a set of search results for a given item, generating a list of product
attributes (quality, features, etc.) and aggregating opinions about each of them (poor,
mixed, good).”

However, the term has recently been interpreted more broadly, containing many
different aspects of analysis in evaluative text.

Sentiment Analysis

The history of the term sentiment analysis parallels that of the term opinion mining in
certain respects. The paper in 2001 by Das and Chen [34] and Tong [35] appears the
term “sentiment”, which is used in reference to the automatic analysis of evaluative
text and tracking of the predictive judgments. In many papers, the term “sentiment

 3

analysis” focuses on the specific application of classifying reviews (positive or
negative). So some people suggest the term should refer specifically to this narrow
task. However, many still explain the term more broadly to mean computational
treatment of opinion, sentiment, and subjectivity in text.

Therefore, when broad interpretation is applied, opinion mining and sentiment
analysis denote the same study field. Then, we will present more concrete definitions
of some elements contained in the study like opinion holder, feature, and semantic
orientation of opinion and so on. These contents will be included in the model of
opinion mining given below. The model is referred to the article of Bing Liu [38].

2.2 Model of Opinion Mining

Opinion can be expressed on anything like product, movie, topic, individual,
organization, or event. The term object is used to denote the entity on which opinion
is given. An object can be decomposed with the part-of relationship. It has a set of
components (parts) and a set of attributes.

Definition of object: An object is an entity which can be topic, product, event,
individual or organization. It is associated with the pair O: (T, A), where T is a
hierarchy of components and sub-components of object O. A is a set of attributes of
object O. Each component has its own sub-components and a set of attributes.

However, simply, we often use the term feature to represent components and their
attributes. One object itself is also a feature.

We define one document d, which can be a movie review, a blog, a forum post that
evaluates on some objects. One document d consists of some sentences, so d= {s1, s2,
s3, s4…}.

Definition of opinion passage on one feature: the opinion passage about a feature of
one object is a group of consecutive sentences in one document d. It expresses a
positive or negative opinion on the feature. Several sentences can together express
opinions on the same feature of one object, and it is also possible that a single
sentence express opinions on more than one feature.

Definition of opinion holder: one opinion holder means a person or an organization
who publishes the opinion on an object. For example, author of forum post, blog,
news article.

Definition of semantic orientation of an opinion: the semantic orientation of an
opinion on one feature means positive, negative, or neutral.

 4

Model of Feature-based Opinion Mining

So, we put things above together. One object O consists of a set of features F, F= {f1,
f2, f3, f4….fn}, which include object itself. In an evaluative document d, opinion
holder expresses opinions (positive, negative or neutral) on one feature or several
features of one object. Opinion mining task is to fetch all these information.

In a given evaluative document d, the output of opinion mining result consists of a set
of quadruples. Each quadruple can be denoted by (H, O, f, SO), where H is opinion
holder, O is the object, f is a feature of the object O, and SO is the semantic
orientation of opinions expressed on the feature f in one sentence of d. Neutral
opinions are usually ignored in the result.

Three Main Technical Problems

Finally, Liu [38] summarizes three main technical problems in opinion mining task:
Problem 1: Extracting objects features, for example, in the sentence “quality of the
clothes is good”; quality of clothes is considered the object of interest.
Problem 2: Opinions on the feature should be fetched and determine semantic
orientation of the opinions (positive, negative, or neutral). The word good in the
example above is the opinion word, and it should be positive.
Problem 3: Grouping synonyms of features as maybe different opinion holders have
different names for the same feature.

Opinion Summary

We can summarize opinion mining result in many ways. There is an example showed
in the Figure 2-1 below, which summarizes opinions on Digital camera 1. CAMERA
represents camera itself. Two features picture quality and size are also showed. In
each feature, the number of positive and negative reviews is given. As in the feature
of picture quality, it has 123 positive reviews and 6 negative reviews. If users want
to see the whole sentence where positive or negative reviews are expressed, they can
read from the list of the right <individual review sentences>.

 5

Figure 2- 1: An example of a feature-based summary of opinions [38]

The example also can be visualized using bar chart. The Figure 2-2 below shows the
kind of bar chart. In the Figure 2-2 (A), the part above X-axis of each bar gives the
number of positive reviews on one feature, the name of which is written on the top.
The part below X-axis on the bar means the number of negative reviews. It is more
interesting that the Figure 2-2 (B) [39] represents a comparison between two digital
cameras. Different colors stand for different cameras. People can see easily the
comparison in the same feature in different two cameras.

 6

Figure 2- 2: Visualization of feature-based opinion summary and comparison [38]

 7

2.3 The Development of Opinion Mining and Sentiment Analysis

The area of opinion mining and sentiment analysis has recently enjoys a huge burst of
research activities. The early projects on beliefs [32, 33] maybe are seen as
forerunners of the area. The year 2001 marks the beginning of popularity of the
research on the subject, and then there are hundreds of papers published. Some factors
push the development of the subject:
1. The increasing of machine learning methods in natural language processing and

information retrieval.
2. The blossoming of World Wide Web provides training datasets for machine

learning algorithms.
3. The realization of commercial and intelligent applications that the area provides.

Researches on opinion mining start with identifying opinion words, e.g. beautiful,
nice, and ugly. Researchers work on determining semantic orientation of opinion
words as well. Some methods are explored: some use linguistic rules to identify
opinion words and their orientations from a large corpus; some use a small set of
given seed opinion words to find their synonyms and antonyms. Sentiment
classification of product reviews at the document level is the next major development,
classifying each review document based on sentiment that they express about one
object (positive or negative). Some researchers also studied sentence-level sentiment
classification. More, some summarize a model of opinion mining, and some work on
the problem of mining opinions from comparative sentences, and so on.

 8

2.4 The Applications of Opinion Mining and Sentiment Analysis

There are some applications listed below:

Opinion Mining and Sentiment Analysis can be used in review-related websites,
which aggregate reviews and solicit reviews. These websites can put review-oriented
search engine as the tool to help them gather review information, then solicit these
information and fetch usable information with the methods of opinion mining and
sentiment analysis, finally summarize them, providing them to users.

As well, Sentiment analysis and opinion mining systems are applied to
recommendation systems [27, 28]. For example, items that receive a lot of negative
feedback will not be recommended.

Sentiment analysis has been suggested as a technology used in eRulemaking [29, 30,
31], which does automatic analysis of opinions about government regulations and
national policy.

Opinion mining and sentiment analysis is also used in business. For example, one
company wants to investigate “why they have such a low sale of their products?”
Perhaps, they can investigate it on Internet using some information sources like blog,
newsgroup, and review-related websites and so on. Later, these information fetched is
processed, finally one analysis result is given and answers the question asked above.

Next, we want to present some concrete examples and see how these systems work.

Opinion Summarization System
Hu and Liu in [1] present an opinion summarization system for mining product
opinions and opinions sentimental analysis. The input to the system is a product name
and reviews of the product; the output is summary of the reviews as showed in the
Figure 2-3. The system contains two main steps: opinion identification and opinion
sentimental determination. The general architecture of the system is showed in the
Figure 2-4. Firstly, the system has the part-of-speech tagging for review words. Then
the system finds features of the product that occur most frequently in the reviews. We
can say that the most frequent features are the features that reviewers are most
interested in. Not all the extracted features in the last step are useful, so the system
will prune the features by Compactness pruning that checks the features containing at
least two words, and Redundancy pruning that focus on removing redundant features
that contain single words. Next, we see the step of opinion word extraction. The
system considers a word is opinion word if the word is an adjective and appears in the
same sentence as an extracted feature and its position is close to the feature. At the
same time, the system considers that it is possible that people are also interested in
some infrequent features. So the system extracts the infrequent features with opinion
words that have been extracted in the last step. Finally, the system works on opinion

 9

sentence orientation determination (i.e. positive or negative). The semantic orientation
of each opinion word extracted is identified with a bootstrapping technique and the
WordNet [2]. Then the whole sentence’s semantic orientation is determined based on
the dominant orientation of the opinion words in the sentence.

Figure 2- 3 : Summary of Reviews [1]

Figure 2- 4: Opinion summarization system

OPINE
OPINE [3] is an unsupervised information extraction system which extracts product
features and their opinions from reviews. It is built on top of KnowItAll, a web-based,
domain-independent information extraction system [4]. KnowItAll instantiates
relation-specific generic extraction patterns into extraction rules which find candidate
facts. KnowItAll’s Assessor then assigns a probability to each candidate. The Assessor
uses a form of Point-wise Mutual Information (PMI) between phrases that is
estimated from web search engine hit counts [5]. The PMI scores computed are
converted to binary features for a Naïve Bayes Classifer, which produces a probability
associated with each fact.

 10

The system finds explicit features of products by extracting the noun phrases from
reviews and retaining those with high frequency and evaluating the remaining noun
phrases. The system evaluates the remaining noun phrases by computing the PMI
scores between the phrases and discriminators associated with the product class (e.g.
“of scanner”, “scanner has”, “scanner comes with”, etc. for the Scanner class).

In finding opinion words, OPINE contains two steps: (1) identify potential opinion
words, (2) identify actual opinion words from potential opinion words. The intuition
of the way to find potential opinion words is the same as Opinion Summarization
System [1] described above. It is just that opinion words appeared nearby product
features. But, compared with [1], OPINE adopts a more advanced method, which is
the use of extraction rules. Then, by identifying semantic orientation of potential
opinion words (i.e. positive or negative semantic orientation), OPINE distinguishes
the actual opinion words from the rest.

 11

Chapter 3 Research Method
The chapter presents the research method “Design Science” for the thesis, and
presents how the thesis matches guidelines of the method.

3.1 Design Science

The research method used in the thesisis Design Science. The fundamental principle
of design science research is that knowledge and understanding of a design problem
and its solution is acquired in the building and application of an artifact. The Table
3-1 below from the paper [8] presents design science research guidelines assisting
researchers, reviewers, editors, and readers to understand the requirements for
effective design science research.

Guideline Description

Guideline 1: Design as an Artifact Design science research must produce a viable

artifact in the form of a construct, a model, a

method, or an instantiation.

Guideline 2: Problem Relevance The objective of design science research is to

develop technology-based solutions to important

and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design

artifact must be rigorously demonstrated via

well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must provide

clear and verifiable contributions in the areas of

the design artifact, design foundations and/or

design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the

application of rigorous methods in both the

construction and evaluation of the design

artifact.

Guideline 6: Design as a Search Process The search for an effective artifact requires

utilizing available means to reach desired ends

while satisfying laws in the problem

environment.

Guideline 7: Communication of Research Design-science research must be presented

effectively both to technology-oriented as well

as management-oriented audiences.

Table 3- 1: Guideline for Design Science Research [8]

 12

Next, how the thesis matches the seven guidelines will be presented.

• Guideline 1 requires producing a viable artifact.
In the thesis, the artifact produced is an opinion mining system for song lyrics used to
fetch objects of interest in songs lyrics and opinions about them. Finally, the mining
result will be analyzed in some ways.

• Guideline 2 says that objective of design science research is to develop
technology-based solutions to important and relevant business
problems.

The thesis is an exploration of opinion mining in song lyrics. This is a new kind of
document explored in the subject opinion mining. Song lyrics often express some
sentiment. It will be interesting and can help people do automatic analysis of song
lyrics.

• Guideline 3 requires rigorous and well-executed evaluation methods
The thesis evaluates results with comparing with manual identification.

• Guideline 4 requires that design science research can provide clear and
verifiable contributions

The thesis explores opinion mining for song lyrics. Few research focus on opinion
mining of song lyrics. This is a new contribution to the subject opinion mining. We
also present some interesting analysis from opinion mining result.

• Guideline 5 requires rigorous research methods in both construction and
evaluation of design artifacts.
In this thesis, some methods or resources for construction of the system are chosen
from many literatures published before.

• Guideline 6 says that the search for an effective artifact requires using available

methods to reach desired ends.

The thesis is evaluated in the end and there are the improvement suggestions given.
They serve the iterative process.

• Guideline 7 says that design science research should be presented not only to

technological personnel but also to management audiences.

Common technical terms will be used and keep intended audiences in mind while
writing the thesis.

 13

Chapter 4 Problem Analysis
The chapter presents a concrete analysis for the problem to be solved in the thesis. It
is divided into four parts: Part-of-speech tagging and Fetch Objects of Interest and
Fetch Opinion Words and Song Information (Song published time and song musical
genre).

4.1 Part-of-Speech Tagging

Technique of part-of-speech tagging is often used in previous similar work since
objects of interest are often nouns, and opinion words are often adjectives or adverbs.

Part-of-speech tagging

Part-of-speech tagging can be seen as the process of assigning a part of speech or
other lexical class marker to each word in a corpus [36]. The parts of speech tags
divide the words into different categories based on different roles they play in one
sentence. The sets of tags can be various, and the most common set of tags contain
article, noun, verb, adjective, and preposition, number and proper noun.

Part-of-speech tagging can be used in word sense disambiguation [16] that will be
discussed further in the section 4.3.2. Firstly, we judge part of speech tag of one word
in its context. Then, other senses of the word not with the part of speech tag are
removed. We only consider the senses of the word in the category of the part of
speech. Although the word maybe still contains more than one sense, at least the
scope is smaller.

Part of Speech

Adjectives have been considered as important features by many researchers. The
paper [37] revealed a high correlation between the presence of adjectives and sentence
subjectivity. The presence or polarity of adjectives is seen in many approaches when
deciding the subjectivity or polarity status of textual units.

Adjectives are good indicators of a sentence being subjectivity, but other parts of
speech also contribute to the judgment of subjectivity, e.g. verb (“like”, “hope”,
“hate”).

 14

4.2 Fetch Objects of Interest

When we consider how to fetch objects of interest, we try to learn previous work and
we also do exploration for getting a best solution by comparing between different
potential methods.

4.2.1 TF-IDF SCHEME

TF-IDF Scheme is often used in information retrieval and text mining. It describes
how important a word is for a document in a collection. The technique maybe can
help us to rank objects of interest and fetch the most interesting objects.

TF-IDF Scheme consists of two parts: TF and IDF. TF represents the occurrence
frequency of a term in a document. It provides one measure of how well a term
describes document content. IDF represents the inverse occurrence frequency of a
term in a collection of documents. The motivation of IDF usage is that terms
appearing in many documents in a collection are not very useful to distinguish
relevant documents for a query from non-relevant documents.

We can use an example to further illustrate why we adopt TF-IDF Scheme. Suppose
we want to find relevant documents for the query “a red hat”. The simplest way is to
fetch the documents that contain all the three terms “a”, “red”, “hat”. But it still leaves
many documents. Then, we consider TF factor, count the frequency of each term in a
document and sum them. We fetch the documents with high term occurrence
frequency as relevant documents. However, the term “a” is so common in a collection
of documents. This will intend to emphasize documents that contain more “a”,
without giving enough weight to more meaningful terms “red” and “hat”. So, the IDF
factor is imported to balance the effect, diminish the weight of terms appearing very
frequently in a collection, and increase the weight of terms occurring rarely.

Baeza-Yates & Ribeiro-Neto [14] introduces the mathematic formula of TF-IDF
scheme in their book.
Definition:
N is the total number of documents in a collection;

in is the number of documents in which the index term appears; ik

jifreq , is the raw frequency of term in the document ; ik jd

Then, the normalized frequency of term in document is given by jif , ik jd

 =jif ,
jll

ji

freq

freq

,

,

max
 (4.1)

where the maximum is computed over all terms appearing in the document . jd

 15

Further, let inverse document frequency for be given by iidf ik

 =logiidf
in

N
 (4.2)

Finally, the term weight is given by

jiw , = logjif , 
in

N
 (4.3)

or by a variation of this formula.

4.2.2 Existing Libraries for Keyphrase Extraction

Moreover, we also find that there are some existing libraries for keyphrase extraction,
which means extracting keywords that can describe the main topic in text analyzed.
There are two projects introduced that have explored in the subject.

Maui Topic Indexing Algorithm

Maui has been developed as a part of Olena Medelyan’s PhD project [9]. It combines
four software components Kea [10], Weka [11], Jena [12], and Wikipedia Miner [13]
with classes created specifically for Maui to form a single topic indexing algorithm.
Figure 4-1 shows a general architecture of Maui, we can see that it contains 4 main
steps:

1. Generating candidate topics
2. Computing their features
3. Building the topic indexing model
4. Applying the model

The left in the Figure 4-1 depicts how to build the indexing model from manually
assigned topics and the right presents the process of applying the model to new
documents. Maui implements a supervised machine learning approach, where a small
training set provides a model that can be used for fresh documents that had not been
seen at training time.

 16

http://www.medelyan.com/

Figure 4- 1: Operation of Maui [9]

Generating Candidate Topics
For the first step candidate topics generation in the Figure 4-1 above, it contains 4
phases:
Phase A: Document text is analyzed to identify initial syntactic boundaries. Maui
uses Kea’s PhraseFilter algorithm for this.
Phase B: Maui extracts all subsequences of tokens of length n (n-grams) in each line.
Phase C: The n-grams are conflated to a set of candidate topics.
Phase D: Finally, Maui normalizes the occurrence positions by document length and
the occurrence frequencies by the number of candidates. These values are stored and
the candidates list is passed to the next step: computing the features.

Actually, Maui includes three kinds of different tasks:
Automatic Tagging candidate topics of which are sequences that do not begin or end
with a stopword in documents analyzed;
Term Assignment’s candidate topics are from a controlled vocabulary.
Indexing with Wikipedia, its candidate topics are from Wikipedia articles.

Maui will be tested with the task of automatic tagging in the exploration of the
methods of fetching objects of interest for song lyrics later.

 17

SmILE Keyphrase Extraction

The sub-component Keyphrase Extraction in the project SmILE [41] is the work
described in Master's thesis of Alexander Schutz [40]. There is a simple description
below of how the component of keyphrase extraction works.

Linguistic Preprocessing
The Figure 4-2 below shows the workflow of linguistic preprocessing. It starts the
process with language identifier, which identifies what kind of language (e.g. English,
French, or German) is used in the input document, in order to select right subsequent
processing resources. Next, the input text needs to be tokenized and split into
sentences. The stopword analyser denotes each token whether it represents a stop
word or not, rather than eliminating the token even if the token is stop word. Now it
goes to part-of-speech tagger, which use different sets of taggers based on different
language. Then it arrives the step of Morphological Analyser. Now, tokens are
enriched with part-of-speech and lemma information. Finally, larger syntactic units
are identified by the noun chunker, and frequency analyzer produces frequency lists of
overall word form and lemma occurrence.

Figure 4- 2: Workflow of Linguistic Preprocessing [40]

Keyphrase Extraction Procedure
The Figure 4-2 above goes to the final component Keyphrase Analyser, which
includes several steps. Firstly, it does the (statistical) lexical analysis to determine the
most significant single word terms, which is then extracted including their immediate
contexts to form complex terms. Next, it groups similar complex terms, and selects a

 18

http://smile.deri.ie/sites/default/files/schutz-mappsc-2008-keyphrase-extraction_revised.pdf
http://smile.deri.ie/node/8

representative for each group as a keyphrase candidate, and eventually analyzed the
extracted keyphrase candidates in order to determine a confidence score in its context.

It is said that “Due to the nature of the underlying processing steps it is very likely
that short documents (<500 words) and not very coherent documents (no real
sentence structure, many bullet points) will produce suboptimal results.” in the
introduction of the method of Keyphrase Extraction in the project SmILE [41]. One
Song lyrics is often a short document and less than 500 words, and often contains
some not real sentence like chorus as well. So we consider that the method is not
suitable for fetching keyphrases of song lyrics.

4.2.3 Exploration of Methods

In the part, we present the process of our exploration for the method of extracting
objects of interest (Keywords). We suggest five methods and try to compare them.
Five methods are introduced as following:

Fetching Keywords by Songs’ Title
We can see that many songs’ titles can reflect what the songs talk about. Therefore we
want to test the way to see if it is suitable.
Fetching High Local Frequency Nouns
Usually, the keywords are nouns, so we try to fetch high occurrence frequency nouns
in song lyrics.
High Document Frequency Nouns
We consider that we have to fetch the same objects as many as possible if we want to
see the change of opinions about the same objects in different songs. So we want to
see which nouns are popular in the collection of song lyrics.
Nouns’ Local Frequency & Nouns’ Document Frequency
If we only consider local high frequency nouns, then we can not fetch the same
objects of interest as many as possible. And, if we only consider nouns’ document
frequency, then the nouns to fetch can not reflect well the topics of song lyrics.
Therefore, we consider their combination. We compute the weights of nouns in each
song lyrics by multiplying nouns’ local frequency by nouns’ document frequency. We
fetch nouns with bigger weight value.
Maui [9]
Maui is an existing method of extracting keywords as mentioned before. Maui firstly
builds topics index model through training, then apply the model to analyze new
documents.

We implement these methods in the framework of UIMA, where it is interesting to see
the comparison of results showed like the Figure 4-3 below. But there is the
possibility of overlap, and then we can choose only one type to show as the Figure 4-4,
which shows the keywords fetched by the method of high local frequency nouns. Here,
for the type KeywordsByTitleIn, it only annotates tokens that are song’s title words in

 19

song lyrics. Of course, song’s title words maybe do not appear in song lyrics. When
comparing these methods, we still use concrete song title words rather than title words
only annotated in song lyrics.

Figure 4- 3: Comparison of Keywords by Different Methods in UIMA

 20

Figure 4- 4: Keywords by the Method of Local High Frequency Nouns

 21

We run the experiment in the collection of 506 song lyrics. Then we randomly extract 10 songs lyrics attached in Appendix B to analyze them,
and the analysis result is showed in the Table 4-1, Table 4-2, and Table 4-3 below. In the second column, it is about Song Information including
song published time on the first line, song musical type on the second line, artist on the third line, and the name of song album at last. Other
columns, from left to right, it is Manual Identification which is from our identification for songs’ topics, Title that is the title of songs, Local
High Frequency Nouns that is nouns with local high frequency, High Document Frequency Nouns that is nouns with high document
frequency in the whole collection, Big Mixed Weight Nouns (TF*DF) is nouns with bigger mixed weight value, and Maui at the last column
that is keywords from the Algorithm Maui.

 Song Information Manual

Identification

Title Local High

Frequency Nouns

High Document Frequency

Nouns

Big Mixed Weight

Nouns (TF*DF)

Maui

1 1978,

Reggae,

Bob Marley,

Babylon By Bus

love Is This Love Love shelter

Bed

Feeling

NONE Heads

Share

Bed

Single bed

2 1984,

Folk,

The Pogues,

The Ultimate

Collection

Life

philosophies

Streams of

Whiskey

Where

Streams

whiskey

Time

Life

way

Simple

Whiskey

Nothing

Whiskey are

flowing

3 1989,

Grunge,

Nirvana,

Bleach

Daddy’s girl Negative

Creep

Creep

Daddy

Girl

NONE Range

Daddy

No

girl

 Table 4- 1: Comparison of Keywords by Different Methods-A

 22

Song Information Manual

Identification

Title High Local

Frequency Nouns

High Document Frequency

Nouns

Big Mixed Weight

Nouns (TF*DF)

Maui

4 1992,

Grunge,

Mudhoney,

Superfuzz Bigmuff

Plus Early

Chain that door,

girl

Chain that

door

Girl

Door

loser

way Outta

know

mean

5 1992,

Grunge,

Alice in Chains,

Dirt

I don’t mind. Angry Chair Chair

Boy

Pink Cloud

Knees

Time

Mind

Lost

Can’t

I-I-I

Way

Time

Walls

Boy

Cloud

boy

knees

pray

6 1998

Metal,

System of A Down,

System of A Down

Jesus

Philosophy

Suite-pee Philosophy

Die

Christ

way Floor

Motherfucker

Needs

Jesus

thy

Christ

Table 4- 2: Comparison of Keywords by Different Methods-B

 23

 Song Information Manual

Identification

Title High Local

Frequency Nouns

High Document

Frequency Nouns

Big Mixed Weight

Nouns (TF*DF)

Maui

7 1999,

Country,

Wilco,

Summerteeth

In a future age In a future

age

Page

Future

age

NONE Shakes

Dares

Mark

shakes

bend

barking

8 2002,

Country,

Dixie Chicks,

Home

Wedding

Ring

White Trash

Wedding

Ring

Hand

way

way Nip

Gin

afford

ring

wearing

9 2002,

Slow Rock,

Coldplay,

A Rush of Blood to

the head

whisper A Whisper

Whisper

Sound

Ticking

Clocks

none Clocks

Remember

Questions

whisper

ah

10 2003,

Pop,

Britney Spears,

In the zone

shadow Shadow Shadow

Nobody

Arriving

None NONE Love

Shadow

Bright

6/10 8/10 0/10 1/10 5/10

Table 4- 3: Comparison of Keywords by Different Methods-C

 24

Analysis of Experiment Results
At the last row of the Table 4-3, we summarize the number of songs, topics of which
are fetched correctly (including the situation of correctly partially). There are 6 songs’
topics judged correctly with the title information, 8 songs judged correctly with the
method of high local frequency nouns, 0 songs for high document frequency nouns, 1
song for mixed weight method, 5 songs for Maui. Therefore, we can see that the most
correct methods to fetch song topics are title and high local frequency nouns.
Document frequency and Mixed Method do not reflect the real topics of songs very
well, since both of them have to consider the document frequency of terms. Maui’s
result is also not as good as the title method and the way of nouns’ local frequency. As
showed in the first song in the Table 4-1 above (1978, Reggae, Bob Marley, Babylon
By Bus, Is This Love), the real song keywords is “love”, the method of Title presents
us the keywords “Is This Love” and The method of high local frequency nouns
presents us the keywords “love, shelter, bed, feeling”, but keywords from Document
Frequency is none, keywords from Mixed Method is “heads, share, bed”, and
keywords from Maui is “Single bed”.

4.3 Fetch Opinion Words

In the part, we analyze how to fetch opinion words. Previous work has developed
some lexicon for opinion words or lexicon containing polarity description of words.
Some lexicon is based on WordNet that is introduced next. Word Sense
Disambiguation is also very important in the area since one word maybe contains
several different senses, which means having different sentiment polarity.

4.3.1 WordNet

What is WordNet?
WordNet is a large lexical database of English and was created and is being
maintained at the Cognitive Science Laboratory of Princeton University under the
direction of psychology professor George A. Miller. Its design is inspired by
psycholinguistic theories of human lexical memory and its development began in
1985 [20]. The initial idea was to provide an aid to use in searching dictionaries
conceptually rather than alphabetically. Over the years, the project received funding
from government agencies interested in machine translation.

In WordNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms called synsets, each of which expresses a distinct concept. Synsets are
interlinked by means of conceptual-semantic and lexical relations. WordNet can be
used online [18] as showed in the Figure 4-5 below and is also freely and publicly
available for download. WordNet's structure makes it a useful tool for computational
linguistics and natural language processing.

 25

http://en.wikipedia.org/wiki/Cognitive_Science
http://en.wikipedia.org/wiki/Princeton_University
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Professor
http://en.wikipedia.org/wiki/George_Armitage_Miller
http://en.wikipedia.org/wiki/Machine_translation
http://wordnet.princeton.edu/wordnet/download/

Figure 4- 5: WordNet Online

Nouns in WordNet
The paper [21] said that a superordinate term and distinguishing features that
definitions of common nouns typically give provides the basis for organizing nouns
files in WordNet. The superordinate relation (hyponymy) generates a hierarchical
semantic organization. For example, there is a lexical tree like this:
oak->tree->plant->organism. We can see that there is the relationship “is a kind of”
between them. Distinguish features are entered in order to create a lexical inheritance
system, in which each word inherits the distinguishing features of all its
superordinates. There are three types of distinguishing features discussed: attributes
(modification), parts (meronymy), and functions (predication), but only meronymy is
implemented in nouns files that is said from the report of 1993. We can see an
example: canary with distinguishing features:
 (1) Attributes: small, yellow
 (2) Parts: beak, wings
 (3) Functions: sing, fly

Adjectives in WordNet
The paper [22] talks that WordNet divides adjectives into two major classes:
descriptive and relational. Descriptive adjectives are what one usually thinks of when
adjectives are mentioned. A descriptive adjective ascribes a value of an attribute to a
noun. For example, heavy is a value of the attribute weight, which is the weight of
package. Relational Adjectives are associated with some nouns and play a role similar
to that of a modifying noun. For example, the adjective word atomic, we can see that
both atomic bomb and atom bomb are admissible.

 26

4.3.2 Word Sense Disambiguation (WSD)

Word Sense Disambiguation is the process of disambiguating senses of one word
since one word maybe contains several senses. In the thesis, WSD will be used for
getting one word’s right sentiment polarity since different word senses have different
sentiment polarity. We will present some methods that have been explored in the area
so far. We can study from these methods and apply some of them to our thesis.

Usage of Part-of-speech tagging in WSD
The paper [16] presents relationship between part-of-speech tagging and word sense
disambiguation through some experiments. Firstly, there is the experiment on the
lexicon LDOCE, a dictionary of English designed for students which contains about
36,000 word types. The senses for each word type are grouped into homographs. If
there is only one homograph for that word type, we call the situation
monohomographic, otherwise, we call polyhomographic. For example, the word
“bank” has more than one homograph as showed in the Figure 4-6 below.

Figure 4- 6: Homographs of “Bank” [16]

Then, the paper summarizes three categories, to one of which each LDOCE word type
can be assigned on the level of homograph by part of speech. The three categories are
as following:
1. Guaranteed Disambiguation:

Each homograph that one word type contains is associated with different
grammatical category. The word type will be disambiguated if its part-of-speech
in a text is known.
e.g. a word with 3 homographs with grammatical categories adj, noun and verb.

2. Possible Disambiguation:

 27

There is at least one homograph associated only with one grammatical category.
Other homographs can be associated with more than one grammatical category.
e.g. a word with 3 homographs with grammatical category noun, noun, and verb.
The word’s sense will be disambiguated when the word’s grammatical category in
a text is verb.

3. No Disambiguation:
Each grammatical category that one word type contains has more than two or two
homographs. This kind of word type is never fully disambiguated only by
part-of-speech.
e.g. a word with 4 homographs with grammatical categories noun, noun, verb and
verb.

Further, they examine each word type in LDOCE and find that 98.6% word types are
guaranteed disambiguation and 99.4% are possible disambiguation over all word
types.

Finally, they give a practical experiment to disambiguate the real text, which are five
articles from Wall Street Journal, containing around 1700 words in total. The process
of the disambiguation only uses part-of-speech tag. Brill tagger [17] is chosen as
part-of-speech tags. Tags from Brill tagger are manually mapped to part-of-speech
tags used in LDOCE. When tags suggest several homographs to one token in text,
they decide to choose the first sense in the list. Because they think the first sense
occurs most frequently and possibly is the best guess. The result shows that 92% of
the content word tokens were tagged with the correct homograph compared with
manual tagging of the same five articles.

Bayesian Hierarchical Disambiguator (BHD)
The paper [6] presents a system called Bayesian Hierarchical Disambiguator (BHD)
to disambiguate adjectives using probabilistic network. Firstly, the Equation (4.4)
showed below is introduced.

imax   










NFsnounadj

iadjiadjNFsnounadj

,,Pr

)#Pr()#|,,Pr(
 (4.4)

The term “adj#i” represents an adjective word with its ith sense. We consider that the
word’s current sense is just the sense that makes value of the equation maximum. The
term “Pr (adj#i)” is called prior term, which represents how frequently a sense of an
adjective word is used without any contextual information. But the likelihood term Pr
(adj,noun,<NFs> | adj#j) represents how frequently the sense of the adjective word is
used with some contextual information, a part of which is here described with
semantic features of the noun word in the pair (the adjective word, noun after it) with
ISA hierarchy relationship of WordNet. For example, the noun-adjective pair “great
hurricane”, we can see that there is the ISA hierarchy of hurricane in WordNet that

 28

hurricane ISA cyclone ISA windstorm ISA violent storm…..These nouns (cyclone,
windstorm, violent storm…..) are used as semantic features of “hurricane”. And these
nouns and the noun “hurricane” compose of context information of the adjective
“great”.

How to compute the prior term Pr (adj#i) and the likelihood term Pr
(adj,noun,<NFs> | adj#j) ? For the prior term, the paper presents the method
containing both automatic parts and manual parts. Firstly, 5000 nouns is collocated for
each adjective, then a search engine is used to search these noun-adjective pairs for
getting their occurring frequency. Then they are sorted and the top 100 nouns are
fetched. Different senses are assigned to the adjective word in the top 100
noun-adjective pairs. For example, the top 10 nouns for “great” are “deal”, “site”,
“job”, “place”, “time”, “way”, “American”, “page”, “book”, and “work”. They are all
classified to the great #2 except the last one, as defined in WordNet. Therefore, the
prior term is computed by dividing the mount of all the noun-adjective pairs with the
occurring number of a sense. The likelihood term is computed with probabilistic
network that is constructed with semantic features of nouns associated with an
adjective.

The system BHD is also evaluated between with and without the prior terms and
baselines that means putting the first sense in WordNet as the sense. The evaluation
result can be seen in the Table 4-4 [6] below. “+SP” means the selectional preference
model namely probabilistic network model considering the semantic features of nouns
associated with an adjective as context. We can see in the column “1st noun sense” the
accurate rate when considering the prior term is the highest and slightly higher than
Baseline. Baseline’s result is better than the method without prior.

 Context 1st noun sense all noun senses

Noun only 56.3% 53.3% Without prior
+SP 60.0% 60.0%
Noun only 77.8% 77.8% With Prior
+SP 80.0% 81.4%

Baseline 75.6% 75.6%

Table 4- 4: Accuracy Comparison of Adjective Sense Determination [6]

To sum up, the system provides a probabilistic and statistic approach to solve the
problem of word sense disambiguation and proves a good improved result with proper
evaluation. These methods such as using search engines on Internet to collect data and
analyzing probability are helpful for designing our system. However, the system BHD
has to involve manual process.

 29

A Knowledge-Driven Framework for WSD

The paper [7] introduces a knowledge-driven framework for sense disambiguation of
nouns. The idea behind the framework is that noun senses in a given context must be
related through a certain relationship. The Framework contains the following five
elements:
i. a representation for senses, which is provided by the knowledge source,
ii. a clustering algorithm for grouping related sense representations,
iii. a match function for comparing a sense cluster with the textual context,
iv. a filtering function for selecting sense clusters relying on the previous

function,
v. a stopping criterion for ensuring the termination of the disambiguation

process.

4.3.3 Lexical Resources for Opinion Words

In the paper [43] “Opinion Mining and Sentiment Analysis”, there is a list of lexicon
about opinion words. We explore them and compare them for considering if it is
possible to combine them into the thesis.

OpinionFinder’s Subjectivity Lexicon
The list of subjectivity clues is part of OpinionFinder and from several resources, can
be downloaded on http://www.cs.pitt.edu/mpqa/ in the part of Subjectivity clues, and
is used in the paper [23]. The subjectivity clues contains sentiment words like “like”,
“hate”, “beautiful”, including some subjectivity words “think”, “feel” as well. We can
use them to judge subjective sentences or fetch some sentiment words.

SentiWordNet
SentiWordNet is lexical resource for opinion mining and can be acquired by the
website http://sentiwordnet.isti.cnr.it/. Each synset of WordNet is assigned three
scores: positive score, negative score and objective score. We can use the resource to
judge if one word is sentiment word since we have the positive score or negative
score or objective score from the resource. The sum of three scores for each synset is
1.0. If objective score of one word is 1.0, then it can be determined non-opinion word.
But before that, we have to obtain the part of speech that the word plays in one
sentence.

General Inquirer
http://www.wjh.harvard.edu/~inquirer/, the website provides some lists of positive or
negative sentiment words or more detailed category like “pleasure”, “pain”. The data
is dispersed and not completed compared with Opinion Finder’s subjectivity clues and
SentiWordNet.

 30

http://www.cs.pitt.edu/mpqa/
http://sentiwordnet.isti.cnr.it/
http://www.wjh.harvard.edu/%7Einquirer/

NTU Sentiment Dictionary
The dictionary lists the polarities of many Chinese words. A user register form is used
on http://nlg18.csie.ntu.edu.tw:8080/opinion/userform.jsp. Since the thesis only
consider English song lyrics, then the dictionary is not useful here for us.

4.4 Song Lyrics, Songs Time Information and Song Genres
In the part, we try to learn songs lyrics features and songs published time information
and songs’ musical types. Because the goal of the thesis requires us to analyze opinion
mining result finally in terms of songs published time and songs musical type.

Song Lyrics and Title
Lyrics aren’t poetry. Lyrics have everything to do with music, but poetry has nothing
to do with music and is a simple language game that has many word rules. It is more
important for good lyrics to fit the music nicely and neatly than to have amazing
metaphors or glamorous word combinations. It is extremely important that lyrics have
an interesting topic, which means finishing almost half the job. Each song has title,
which often contain topics of the song.

Good lyrics should be as simple as possible, no big words, no difficult-to-understand
metaphors. This makes listeners to understand the music easily. As well, good lyrics
should not go off topic.

Most of the songs include the title in the chorus, which is a general explanation of
song topic. And usually the same word is not repeated more than two times (or Max.
three) in chorus although the chorus itself is repeated.

Songs Time Information
Here, songs time information can be the published time of songs, which will be used
in results of opinion mining in the thesis. We see some change over sentiment or
topics of songs in different years.

Songs Genre
Often, we have song genres like rock, pop, country, folk, R&B, hip-hop and so on.
Later, opinion mining result will be analyzed with song genres. Perhaps, it can present
us some song genres contain more negative words than positive words, something like
this.

 31

http://nlg18.csie.ntu.edu.tw:8080/opinion/userform.jsp
http://coldfusion.affiliateshop.com/AIDLink.cfm?AID=063041&BID=688
http://www.songwritingfever.com/songwritingtips/getstarted4.html

Chapter 5 Solution
The chapter presents how the opinion mining system for song lyrics is realized. It will
describe architecture of the system and its components and the processing steps of the
system like the process of part-of-speech tagging, extraction of opinion words, and so
on.

5.1 System Architecture

Figure 5- 1: System Architecture

As presented in the Figure 5-1 of system architecture, we write our annotation classes
like the class of fetching keywords from song lyrics, or the class of fetching opinion
words about these keywords in the framework of UIMA. These annotation classes use
the library of OpenNLP for part-of-speech tagging of song lyrics, and use the library
of Lucene for counting term document frequency in a collection of song lyrics. We
use two lexicons SentiWordNet and Subjective Clues to fetch opinion words. There
is the introduction of these components used in the system in the next section.

 32

5.2 System components

The part will introduce system components appearing in the system architecture
above.

5.2.1 Annotation Classes

The part is the key part in the system, and we write our own annotation classes here.
The annotation classes include the classes of fetching objects of interest and fetching
opinion words. In the exploration of methods of fetching objects of interest mentioned
in the last chapter, we have written these annotation classes of methods of fetching
objects of interest (keywords) in the component as showed in the Figure 5-2 below.

Figure 5- 2: Java Classes of Fetching Keywords

KeywordsByDF.java fetches keywords by document frequency;
KeywordsByMaui.java fetches keywords by Maui Topic Indexing Algorithm; (in the
final source code, the file name is changed).
KeywordsByNouns.java fetches keywords by ranking nouns;
KeywordsByTFandDF.java fetches keywords by multiplying term frequency and
document frequency;
KeywordsByTitle.java fetches keywords by song title information.

The component of annotation classes actually belong to the framework UIMA as
introduced next. The code example of annotation classes is showed in Appendix C:
KeywordsByNouns.java. Annotation classes can help us mark special annotation in
text as showed in the Figure 5-3 below. It marks some token types like Keywords and
Sentiment Words.

 33

Figure 5- 3: Annotation in Text with UIMA

5.2.2 UIMA

Now, we introduce UIMA, the framework adopted in the thesis.

What is UIMA?

UIMA (Unstructured Information Management Architecture) [42] is the framework
that is used to analyze massive unstructured information for marking some special
kinds of information like adjectives, nouns, adverbs, and verbs in a text.

In UIMA, Developers can write their own annotator, which is the component doing
actual analyzing work of unstructured information, e.g. the annotator of language
identification, the annotator of fetching topics from one document, the annotator of
fetching opinion words. As well, we can run a pipeline of several annotators together.
The framework is available for both Java and C++ now.

 34

5.2.3 OpenNLP

OpenNLP is used for part of speeh tagging. OpenNLP
（http://opennlp.sourceforge.net/index.html）is an organizational center for open
source projects related to natural language processing (NLP). In the thesis, we
integrate OpenNLP into the UIMA, and how to integrate the both can be seen in
Appendix A. OpenNLP contains various java-based NLP tools such as sentence
detection, tokenization, part-of-speech tagging (POST), chunking and parsing.

Sentence Detection
Sentence Detection is used for separating sentences. For example, if song lyrics are
input like below:

Don't you understand, what I'm trying to say?
Can't you see the fear that I'm feeling today?
If the button is pushed, there's no running away,
There'll be noone to save with the world in a grave,
take a look around you, boy, it's bound to scare you, boy,
but you tell me over and over and over again my friend,
ah, you don't believe we're on the eve of destruction.

Then, the output after the process of Sentence Detection is: (each color stands for one
sentence.)

Don't you understand, what I'm trying to say?
Can't you see the fear that I'm feeling today?
If the button is pushed, there's no running away,
There'll be noone to save with the world in a grave,
take a look around you, boy, it's bound to scare you, boy,
but you tell me over and over and over again my friend,
ah, you don't believe we're on the eve of destruction.

Tokenization
The process of tokenization is used for breaking down a sentence into tokens, which
are separated by spaces. For example, if the input is:
Don't you understand, what I'm trying to say?
Then, we can see that the output is:
Do n’t you understand , what I ’m trying to say ?
We can see that “don’t” is split into “do” and “n’t”, and punctuations like “,” and “?”
are also split into separate tokens. Usually, tokens should be words.

 35

Part-of-Speech Tagging (POST)
The part-of-speech tagging is used for tagging each token as verb, or adverb, or
adjective, or……The tags conform to “Pen Treebank Style”, the list of which at the
word level is showed below:

CC - Coordinating conjunction CD - Cardinal number
DT – Determiner EX - Existential there
FW - Foreign word
IN - Preposition or subordinating conjunction
JJ – Adjective JJR - Adjective, comparative
JJS - Adjective, superlative LS - List item marker
MD – Modal NN - Noun, singular or mass
NNS - Noun, plural NNP - Proper noun, singular
NNPS - Proper noun, plural PDT - Predeterminer
POS - Possessive ending PRP - Personal pronoun
PRP$ - Possessive pronoun (prolog version PRP-S) RB - Adverb
RBR - Adverb, comparative RBS - Adverb, superlative
RP – Particle SYM - Symbol
TO – to UH - Interjection
VB - Verb, base form VBD - Verb, past tense
VBG - Verb, gerund or present participle VBN - Verb, past participle
VBP - Verb, non-3rd person singular present
VBZ - Verb, 3rd person singular present
WDT - Wh-determiner WP - Wh-pronoun
WP$ - Possessive wh-pronoun (prolog version WP-S)
WRB - Wh-adverb

For example, if the input is:
We love our mother nations.
Then the output is: (symbols after slash stand for part-of-speech tags assigned)
We/PRP love/VBP our/PRP$ mother/NN nations/NNS ./.

5.2.4 Lucene

Apache Lucene is an open source information retrieval software library containing
text indexing and searching, originally created in Java by Doug Cutting. It is
supported by the Apache Software Foundation and is released under the Apache
Software License. Lucene has been ported to other programming languages including
Delphi, Perl, C#, C++, Python, Ruby and PHP.

Lucene was initially available for downloading from Doug Cutting’s home at the
SourceForge web site. It joined the Apache Software Foundation’s Jakarta family of
high-quality open source Java products in September 2001 and became its own
top-level Apache project in February 2005.

 36

http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Doug_Cutting
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Apache_Software_License
http://en.wikipedia.org/wiki/Apache_Software_License
http://en.wikipedia.org/wiki/Object_Pascal
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Doug_Cutting
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Jakarta_Project

Lucene has been widely recognized for its utility in the implementation of Internet
search engines and local, single-site searching. And it can index various file formats’
documents like PDF, TXT, MS WORD, HTML as long as text can be extracted from
documents.

Indexing with Lucene
There are some fundamental Lucene classes for indexing text like IndexWriter,
Analyzer, Document, and Field.

IndexWriter is used to create a new index and to add Documents to an existing
index.

Analyzer is responsible for extracting indexable tokens out of text to be indexed, and
eliminating the rest. Lucene contains a few different Analyzer implementations. Some
of them are used for removing stopwords (frequently-used words that don't help
distinguish one document from the other, such as "a," "an," "the," "in," "on," etc.),
some help convert all tokens to lowercase letters so that searching is not
case-sensitive, and so on.

An index consists of a set of Documents, and each Document consists of one or more
Fields. Each Field has a name and a value. Think of a Document as a row, and Fields
as columns in that row.

There is a code example of index showed below:

// text is the text to index with Lucene

String text = "This is the text to index with Lucene";

// indexDir is the directory that hosts Lucene’s index files

 File indexDir = new File("F:/Master Thesis/luceneIndex");

 // analyzer is used for pre-processing the text;

 Analyzer analyzer = new StandardAnalyzer();

 IndexWriter writer= new IndexWriter(indexDir, analyzer, true);

 Document document = new Document();

 document.add(Field.Text("fieldname", text));

 writer.addDocument(document);

writer.close();

Reading Index
We can use the class IndexReader to read out index data from existing index, such as
getting document frequency of a term in a collection of documents.

 37

http://en.wikipedia.org/wiki/Internet_search_engine
http://en.wikipedia.org/wiki/Internet_search_engine

5.2.5 SentiWordNet

SentiWordNet [15] is built on WordNet [18] and assigns three numerical scores Obj
(s), Pos(s) and Neg(s) to each WordNet synset. These three scores describe
respectively how objective, positive and negative words contained in the synset are.
There is a visualization representation given in SentiWordNet as showed in the Figure
5-4 below. We can see the figure shows three polarities of Positive, Negative and
Objective. It describes the change between Positive and Negative on horizontal
direction and the change from Subjective to Objective. The ball stands for a sense of
one word. The position where it is represents the sentiment orientation the word sense
has.

Figure 5- 4: Visualization Representation of Term Polarity of SentiWordNet [15]

We can search one word’s different senses’ scores of Pos, Neg, Obj on
http://sentiwordnet.isti.cnr.it/. For example, if we input the word “ugly”, it shows the
result like the Figure 5-5 below. We can see positive score is 0, objective score is
0.625, and the negative score is 0.375 when “ugly” is with the first sense (#1).

 38

http://sentiwordnet.isti.cnr.it/

Figure 5- 5: SentiWordNet Online

One java class is given in Appendix C: SWN3.java, which shows an example of how
to reads data from the lexicon resource.

5.2.6 Subjective Clues

We also integrate a list of subjective clues, which is used in [23]. These clues are
collected from some sources. A majority of the clues are collected in the work
reported in [24], some are from manually developed resources, and others are
identified automatically using both annotated and not-annotated data. The list of
subjective clues is organized in a file with some formats, for example, each line
presents one subjective clue like below:

type=weaksubj len=1 word1=accept pos1=verb stemmed1=y priorpolarity=positive

There is the explanation of each attribute as the following:

type - either strongsubj or weaksubj
A clue that is subjective in most contexts is considered strongly subjective
(strongsubj), and those that may only have certain subjective usages are considered
weakly subjective (weaksubj).

len - length of the clue in words
All clues in this file are single words.

word1 - token or stem of the clue

 39

pos1 - part of speech of the clue, may be anypos (any part of speech)

stemmed1 - y (yes) or n (no)
Is the clue word1 stemmed? If stemmed1=y, this means that the clue should match
all unstemmed variants of the word with the corresponding part of speech. For
example, "abuse" with part-of-speech tag “verb”, will match "abuses" (verb),
"abused" (verb), "abusing" (verb), but not "abuse" (noun) or "abuses" (noun).

priorpolarity - positive, negative, both, neutral
The prior polarity of the clue means the polarity of the clue when without context.

Code example of Reading the lexicon is attached Appendix C: SubLexicon.java.

 40

5.3 Processing Steps of System

Figure 5- 6: Processing Steps of System

The Figure 5-6 above describes processing steps of the system we build. The oval in
grey means the input of the system that is song lyrics. The oval in red is the output of
the system that should be opinion phrases of song lyrics with songs’ published time
and their musical types such as rock, classical, pop. The opinion phrases mean the
pairs containing opinion words and objects of interest, for example, “crazy world”,
“Great man”.

The processing steps of the system are described as following:

Input: Song Lyrics.

Step 1: Do Part-of-Speech Tagging. It is used for tagging each token or word in song
lyrics as noun, or verb, or adjective, under help of the component of OpenNLP.

Step 2: Fetch Objects of interest.
We fetch nouns with high frequency (three most high frequency nouns, but sometimes
it maybe is more or less than three because maybe there is the situation of equal
frequency or no enough nouns in song lyrics), and combine with title words that does
not appear in the nouns fetched with high frequency before. Title words should be
filtered with some articles (a, an, etc.), conjunctions (and, or, but), prepositions (in, on,
etc.), be verbs (was, is, etc.) and others. We list these stop words in Appendix D.

 41

Step 3: Fetch opinion words about these objects.
Two components SentiWordNet and Subjectivity Clue are used in the process of
fetching opinion words. Final opinion words are the result after filtered by the two
components.

The process of Fetching Opinion Words with SentiWordNet
We firstly choose potential opinion words in the process of Fetching Opinion Words
with SentiWordNet. The adjectives or adverbs close to the high frequent nouns (the
distance can be 2 tokens before or after the nouns) are considered as potential opinion
words. Further, if the potential opinion words are not sentiment words, i.e. neither
negative nor positive, they should be removed. The remaining words are kept as
opinion words.

We consider that one word is opinion word if the word has sentiment polarity rather
than objective. In order to judge if the word has sentiment polarity, we firstly do the
word’s sense disambiguation as the following:

One word in WordNet can have several different senses; different senses correspond
to different numerical score of Neg, Pos, Obj. So we have to consider how to
disambiguate word senses. We decide to process with two steps:
Step 1：Through part-of-speech tagging, the system find the grammatical category of
one word in text, this can filter other senses of the word with other grammatical
categories.
Step 2: we choose the first sense under the right grammatical category since senses in
WordNet are generally ordered from most to least frequently used, with the most
common sense numbered 1. Frequency of use is determined by the number of times a
sense is tagged in the various semantic concordance texts. Senses that are not
semantically tagged follow the ordered senses. This is introduced in WordNet Online
[18]. We also can see the first sense is applied in several papers [6, 19] as baseline
system.

After the process of Word Sense Disambiguation, we have the positive and negative
and Objective scores of one potential opinion word under one sense from
SentiWordNet. If its objective score is 1, then we consider the word does not have
sentimental polarity, and should be removed from the list of opinion words. The
remaining opinion words are chosen as opinion words. And if positive score is more
than negative score, we judge the word in the context to be with positive sentiment;
otherwise, it is negative sentiment.

The process of fetching opinion words with Subjectivity Clues
Next, we will test each token with Subjective Clues in the same sentence as keywords.
If one token with the corresponding part-of-speech tag appears in the list of subjective
clues and the token’s polarity is not neutral (Subjective Clues provide polarity of each
word, which we can use directly), we fetch the token as opinion words of the

 42

keywords.

Step 4: Fetch published time of songs. How to fetch songs published time depends
on how the published time is given when input. In the thesis, the published time is
given in the file name of each song lyrics.

Step 5: Fetch types of songs. How to fetch songs genres also depends on how songs
genre is given when input. In the thesis, song genre is given in the file name of each
song lyrics.

Output: The system outputs the result in the form of (objects of interest and their
opinion words, time, musical type). For example, (crazy word, 1976, rock).

 43

Chapter 6 Experiments and Evaluation
The chapter presents some experiments on the opinion mining systems for song lyrics
and their results and the results analysis.

6.1 Data Preparation

We have two parts of song lyrics for experiment; one part is the collection of Song
Lyrics in hand containing 506 lyrics; the other part is the collection that we collect on
Internet on our own.

Collection of Song Lyrics in Hand
We have one collection of song lyrics in hand in .txt file format as showed below in
the Figure 6-1, each file’s name of which contains one song’s published time, musical
types, artist, album name, and song title in the order from left to right, e.g. in the first
file, the published time is “1978”, the song genre is “Reggae”, the artist is “Bob
Marley”, the album is “Babylon By Bus”, the song tile is “Is This Love”. As well, we
show some examples of song lyrics in Appendix B.

Figure 6- 1: Collection of Song Lyrics

Besides, we need to do some processing with these data. We add period at the end of
each line of song lyrics if there is no period, since we analyze song lyrics sentence by
sentence as mentioned in the section 5.2. Actually, it is also necessary if we want to
fetch exactly the sentiment words close to nouns. It can make sense only if sentiment
words fetched are the words that appear in the same sentence with the relative nouns.

At the same time, we search songs’ information (e.g. published time) on Internet if
missing the information in files of songs’ lyrics.

 44

Collecting Song Lyrics on Internet
As well, we collect song lyrics on the website http://www.absolutelyrics.com/ and
save each of them in a .txt file with file name containing artist and song title. In the
process, we collect 20,067 song lyrics. Then we use the artist and song title
information to search on Wikipedia.org for the information of year and genre and so
on. Because, luckily, we find that there is information box in the introduction of song
on Wikipedia.org as showed in the Figure 6-2. In the process, we run some of 20,067
song lyrics obtained in the last process and obtain 1,102 song lyrics with their
published years at least. Both processes mentioned are programmed and done
automatically by computers. We import the library form Cobra Tool Kit on
http://lobobrowser.org/cobra.jsp to parse HTML file. There are two java classes
attached in Appendix C: SearchWikipedia.java that is used for searching information
about year or genre or others on Wikipedia.org with the keywords input of song artist
and song title, and FetchSongLyrics.java that is used to fetch song lyrics from the
website http://www.absolutelyrics.com/, and save each song lyrics into separate .txt
file. Through the method, we can collect thousands of song lyrics very easily, but not
for all the song lyrics, the information of their year or genre or others can be found on
Wikipedia. Moreover, genre information found maybe contains several genres name
that actually is the genre of the whole album that one song belongs to. Finally, we still
need to process the collection like above for separating sentences.

Figure 6- 2: Information Box of Song on Wikipedia

 45

http://www.absolutelyrics.com/
http://lobobrowser.org/cobra.jsp
http://www.absolutelyrics.com/

6.2 Experiment and Evaluation

Experiment 1: Fetch Topics

We fetch topics with the method of ranking nouns frequency in song lyrics,
combining with the title information. We run the experiment in the collection of song
lyrics containing 506 song lyrics prepared in the last section Data Preparation.

We randomly choose 10 song lyrics (the same as the experiment of exploring the
methods of fetch keywords done in Chapter 4). We compare the machine result with
manual Identification to see how accurate the system fetches topics. The Table 6-1
and the Table 6-2 below presents the result.

We can see that topics of 7 songs lyrics are fetched correctly totally, topics of 2 songs
lyrics are fetched correctly to some extent, topics of only one song lyrics is not
fetched correctly. We analyze the song that is not fetched topics correctly and find that
creator of the song lyrics does not express the meaning of the song very straightly. It
leads to the situation that the topics words do not appear very frequently.

 Song Information Manual

Identification

Machine result Correct?

1 1978,

Reggae,

Bob Marley,

Babylon By Bus,

Is This Love

love love,

Shelter,

Bed

Yes

2 1984,

Folk,

The Pogues,

The Ultimate

Collection,

Stream of Whiskey

Life

philosophies

Where,

Streams,

Whiskey

No

3 1989,

Grunge,

Nirvana,

Bleach,

Negative Creep

Daddy’s girl Negative,

creep,

Daddy,

girl

Yes

4 1992,

Grunge,

Mudhoney

Superfuzz Bigmuff

Plus

Early,

Chain that door

Chain that door,

girl

Chain,

door,

loser

Yes

Table 6- 1: Evaluation of Fetching Song Topics-A

 46

 Song Information Manual

Identification

Machine Result Correct?

5 1992,

Grunge,

Alice in Chains,

Dirt,

Angry Chair

I don’t mind Angry, chair,

Boy,

Pink, clound, knees,

Time, Mind

Correct to some

extent

6 1998

Metal System of A

Down

System of A Down

Suite-pee

Jesus

Philosophy

Philosophy,

Motherfucker,

Christ

Suite-pee

Correct to some

extent

7 1999

Country

Wilco

Summerteeth

In a future age

In a future age Future, age,

page

Yes

8 2002

Country

Dixie Chicks

Home

White Trash Wedding

Wedding

Ring

Ring, hand, white,

mamma,

baby,way,

Trash

Wedding

Yes

9 2002

Slow Rock

Coldplay

A Rush of Blood to

the head

A Whisper

whisper Whisper,

sound,

ticking,

clocks

Yes

10 2003

Pop

Britney Spears

In the zone

Shadow

shadow Shadow,

nobody,

room

Yes

Table 6- 2: Evaluation of Fetching Song Topics-B

 47

Experiment 2: Fetch Opinion Words

We run the experiment based on the last experiment, and try to find opinion words
that describe topics fetched in the last experiment. Later, we will give evaluation of
the experiment results and see if the opinion words are fetched properly. We also use
the same 10 songs lyrics as before and list the Table 6-3 and the Table 6-4 about the
result. In the last column, we present the format like (topic, opinion words…). One
topic is with some opinion words describing the topic.

Table 6- 3: Evaluation of Fetching Opinion Words-A

 Song Information Manual

Identification

of topics

Machine result

of topics

(topic, opinion words)

1 1978,

Reggae,

Bob Marley,

Babylon By Bus,

Is This Love

love love,

Shelter,

bed

(bed, shelter)

2 1984,

Folk,

The Pogues,

The Ultimate

Collection,

Stream of Whiskey

Life

philosophies

Where,

Streams,

Whiskey

No opinion words for topics

3 1989,

Grunge,

Nirvana,

Bleach,

Negative Creep

Daddy’s girl Negative,

creep,

Daddy,

Girl

(girl, little)

(creep, negative)

4 1992,

Grunge,

Mudhoney

Superfuzz Bigmuff

Plus

Early,

Chain that door

Chain that

door, girl

Chain，

door,

loser

No opinion words for topics

5 1992,

Grunge,

Alice in Chains,

Dirt,

Angry Chair

I don’t mind. Angry,chair, Boy,

Pink, clound,

knees,

Time, Mind

(chair, angry)

(boy, mistake, dull)

(time, pray)

 48

 Song Information Manual

Identification

of Topics

Machine Result

of Topics

(topics, opinion words)

6 1998

Metal

System of A Down

System of A Down

Suite-pee

Jesus

Philosophy

Philosophy,

Motherfucker,

Christ,

Suite-pee

(philosophy, try)

7 1999

Country

Wilco

Summerteeth

In a future age

In a future age Future, age,

page

No opinion words for topics

8 2002

Country

Dixie Chicks

Home

White Trash Wedding

Wedding

Ring

Ring, hand,

white, mamma,

baby,

way,

wedding, trash

(ring, afford)

(mamma, approve)

9 2002

Slow Rock

Coldplay

A Rush of Blood to

the head

A Whisper

whisper Whisper, sound,

ticking,

clocks

No opinion words for topics

10 2003

Pop

Britney Spears

In the zone

Shadow

shadow Shadow, nobody,

room

(shadow, never)

 Table 6- 4: Evaluation of Fetching Opinion Words-B

We cans see that 6 of 10 songs lyrics present opinion words about topics or some of
topics. At least, we can know some about what songs lyrics express through these
phrases (topics, opinion words). Obviously, it is better like this than only topic words.
We also can say that opinion words are fetched adequately. Only in four songs lyrics,
no opinion words are fetched. Some of them maybe just do not have opinion words.
Of course, we also find some problem. In number 8 song “2002, Country, Dixie
Chicks, Home, White Trash Wedding”, opinion words of the topic “mamma” is only
given “approve”, in fact, it is “do not approve”. Therefore, the problem that how to
fetch the negative elements like the words “does not” arises.

 49

Experiment 3: Fetch Common Topics

We run the experiment on the same collection of song lyrics as before, we use the
same method as Experiment 1 to fetch topics, and then ranking document frequency
of all the topics appeared and fetch about top 10 topics. We consider the top topics are
the most common.

Experiment results presents us the most common, in which we can see that there are
topics like “love”, “life”, “world” and so on. We can imagine that these topics will
never change. People always talk about their love, their lives and the world no matter
when and no matter where and no matter how the world changes.

At the same time, we also find that some interesting things, in the topic “world”, the
concept “green world” appears in the song O Green World (published time: 2005,
musical type: pop, singer: Gorillaz, album:Demon Days). It matches the fact that the
concept attracts the attention of more and more people in recent years. We all should
save our earth.

As well, we find that the sentiment words like “suicide” “pressure” starts to appear in
the topic “life” in the song of Imn (published time: 2005, musical type: Metal, singer:
Mudvayne, album: Lost And Found). In the songs before 2005, we don’t find these
sentiment words. It matched the fact that the world we meet is more and more
competitive, which leads to more pressure people have to meet.

Baby, Time, Way, Mind
Unfortunately, in these common topics fetched, there are some words like “baby”,
“time”, “way”, and “mind”. We consider that these words often do not make sense to
the meaning that songs express although they appear very frequently. Perhaps, some
of them often appear in chorus of songs.

 50

 51

Experiment 4: Comparison between Different Musical Types

We run the experiment on the same collection of song lyrics as the last experiments.
Songs’ topics and opinion words about them are fetched. We divide opinion words
into two polarities: Positive and Negative. And we use both two lexicons of
Subjective Clue and SentiWordNet to judge one word’s polarity. Subjective Clue
provides us subjective vocabularies with polarity. In SentiWordNet, we consider if
positive score of one word is more than negative score of one word, the word is
judged positive, otherwise, it is negative.

Finally, the experiment presents us the result as the following:

Metal:

negative:328 positive:326

Pop:

negative:278 positive:126

Folk:

negative:590 positive:337

R&B:

negative:1103 positive:433

Reggae:

negative:380 positive:353

Grunge:

negative:782 positive:152

Slow Rock:

negative:331 positive:99

Country:

negative:177 positive:249

Hip-hop:

negative:236 positive:328

Punk:

negative:953 positive:417

It is interesting to see that negative words are more than positive words in some
musical types like Grunge, Punk, Slow-Rock, and R&B. We can understand that rock
music (e.g. mentioned above like Grunge, Punk, and Slow-Rock) should contain more
negative words than positive words. As well, we see in the result that Hip-hop appears
more positive words than negative words, which tells us that Hip-hop is often up.
Country music also shows more positive words. Reggae has almost the same positive
words and negative words, and Metal is also.

Experiment 5: Comparison between Different Years

We run Experiment 5 on 20 song lyrics with the title containing America or American.
And we can imagine that these songs maybe is about American or America. Indeed,
the experiment result presents us one common topic “American” with opinion words
by different year as showed in the Table 6-5 and the Table 6-6 below. In the first
column, it is song published year; it shows song’s title and its artist and perhaps
includes song genre in the second column, and the last column is opinion words with
part-of-speech tags. It is ordered by year increasing from up to down. Interestingly,
we can find that there is one opinion word “war” in the song published on 1970, when
it is the period of cold war. After 1990s, the songs do not appear it, but some opinion
words like ‘love’, ‘frustration’, ‘dream’ and so on.

Songs’
Pulished
Year

Song Title (perhaps
including song genre), Artist

Opinion words with
part-of-speech tag

1 1970, American Woman (Hard
rock), The Guess Who

important#adj,war#noun,
ghetto#noun

2 1973 American Tune, Simon and
Garfunkel

uncertain#adj

3 1977 American Girl (Rock), Goo
Goo Dolls

help#verb, great#adj

4 1993 American Honky(Country),
Garth Brooks

try#verb, rectify#verb,
mind#verb, welfare#noun,
great#adj, love#verb,
frustration#noun

5 2000 American_Psycho,
Treble_Charger

[freak#noun]

6 2002 American Girls (Rock),
Counting Crows

fall#verb, wish#verb, right#adj,
well#adverb, cry#verb,
please#verb, try#verb

7 2003 American Tune, Eva Cassidy uncertain#adj, right#adj
8 2003 Ameican Life (pop),

Madonna
mess#noun, wrong#adj,
sympathy#noun, little#adj,
friend#noun, dream#noun

9 2003 American Child (Country),
Phil Vassar

dirt#noun, love#verb,
thank#verb, dreams#noun,
wild#adj

Table 6- 5: Opinion Change over Common Topic “American”-A

 52

10 2003 American Soldier (Country),
Toby Keith

liberty#noun, jeopardy#noun,
right#adj

11 2007 American X (Rock), Black
Rebel Motorcycle Club

bliss#noun, cut#verb

12 2010 American Honey (Country),
Lady Antebellum

strong#adj, love#noun,
slow#adj, weed#noun,
ready#adj, innocent#adj,
pure#adj, sweet#adj, wild#adj,
friend#noun, miss#verb,
lose#verb

13 2010 American Saturday Night
(Country), Brad Paisley

kiss#noun

Table 6- 6: Opinion Change over Common Topic “American”-B

 53

Experiment 6: Hot Topics in Different Year

We run the experiment in the collection of about 1,600 song lyrics with the published
year at least. Hot topics means these topics are often as the topics of song lyrics
published in one year. We list the result in the Table 6-7 and Table 6-8 below in the
order from now to past.

We can find that the most popular topics are still “love”, “life”, “world”, and “girl”
and so on. It is interesting to see the topic “Chance” and “Peace” in 1969; “One Love”
in 1976; “One World” in 1982; “Fighting” in 1974; “Merry Christmas” in 1944. The
word “Time” occur very frequently but it is considered non-hot topics, because the
word is really too common. The result depends on very much chosen song lyrics
running the experiment. Larger amount of song lyrics can show us more significant
result.

Year Hot Topics
2010 Time
2009 Time, Head
2008 Time
2007 Time
2006 Time
2005 Time, Love, Life
2004 Time
2003 Time, Love
2002 Heart, Love
2001 Time, Love
2000 Time
1999 Everything
1998 Time, Nothing, Heart
1997 Soul, Heart
1996 Life, Love
1995 Heaven, World, Love, Light, Girl
1994 Something, Life, Love
1993 Day, Love
1992 Baby, Door, Love
1991 Time, Man
1990 Eyes, Honey, Bridge
1989 Love, Girl
1988 Time, Heart
1987 People, Race, Love, Night
1986 Love, Heartbeat, Nation, Daddy, Adventure, Girl, Kingdom,

Angels, Dreamers
Table 6- 7: Hot Topics-A

 54

Year Hot Topics
1985 Love, Words

1984 Year, Chrismas
1983 Fun, Girls
1982 One, World
1981 Night
1980 Road, Night
1979 Love, Time, Heart
1978 Rock, Strangers, Eyes, Love, Horror, Kisses
1977 Sun, Girl
1976 One, Love
1975 Home. Life, Darkness, Music, Heart, Miles
1974 Timing, Fighting, Fact
1973 Road, Money
1972 Nothing, Cruise, Love, Summertime, Wine, Heart, Skies, Friend,

Face, Gold, Blues, Afternoon
1971 Case, Rain
1970 Stars, Girl, Rain, Fire
1969 Chance, Peace
1968 Baby, Heart
1967 Sun, Rivers, Roads
1965 Time, Sea
1964 Change, Sun, Time
1963 One, Nothing
1962 Mistake, Notion, Cheer, Today, Places, Girl, Name, Friend, Care
1961 Dream, World
1960 Arms, Fool
1959 Music
1958 Guess
1956 Arms
1955 Prison, Train, Folsom
1944 Merry, Christmas
1942 Mamma, God, News, Door, Papa, Chile, Crowding, Friends, Money,

Bible
1937 Late

Table 6- 8: Hot Topics-B

 55

Chapter 7 Conclusion and Further Work
The chapter presents a conclusion of the thesis and some improvement suggestions for
the current work.

7.1 Conclusion
Until now, we have built an opinion mining system for song lyrics, which fetch
objects of interest and opinion words about them. We randomly collect some song
lyrics to do test for evaluation of how good the system works. The result from the
system is compared with manual identification. From the result from Experiment 1
and Experiment 2, we find that the system basically can present topics of one song
lyrics and opinion words about the topics. Moreover, the system can run a collection
of song lyrics and present some interesting results, e.g. fetching most common topics,
presenting the number of polarity words for each musical type or different year. As
well, we can analyze opinion change on some common topics as time changes. All
these mentioned above meets the requirement from problem definition for the thesis.

In the process of constructing the system, we explore carefully, refer to many previous
works, compare between different methods (e.g. explore how to fetch objects of
interest). As well, we have done a lot of programming work to realize our idea,
applying theory into practice, doing experiment to evaluate our result, finally
analyzing experiment result and present some interesting things.

Besides, we have developed a program in Java for collecting song lyrics on Internet
from one website. The program can help us collect thousands of song lyrics (we have
collected about 20,000 song lyrics) and search information of song publishing year or
musical genre on Wikipedia.org (we have obtained about 1,000 song lyrics with their
published years at least).

The work in opinion mining for song lyrics is few at present. The thesis finishes an
exploration in the subject. We believe the exploration is valuable and useful for
further wok since it is not perfect.

 56

7.2 Further Work
Next, we present some points on which we think the current work can be improved
further.

1. Now the system is only for English Lyrics, so we consider if it is possible for

other languages’ lyrics.
2. The system only fetches objects of interest on one-word level, although we can

construct a phrase with opinion words describing the objects of interest. Like the
phrase “American Idol”, the word “idol” can be fetched, but “American” maybe
not considered as opinion words in the system, then we miss the important phrase.
So it is better if we can fetch objects of interest on phrase-level.

3. The word “not” is not considered as a situation when fetching opinion words. We
can imagine that sometimes the word “not” determines two kinds of opposite
sentiment polarities.

4. In collecting song lyrics on Internet, we did not fetch the information of song
genre very well, so that we do not have enough songs with the information for
analyzing hot topics for different song genres. Moreover, it also should be better if
analyzing sentiment polarity (the number of positive words and the number of
negative words) for different song genres in bigger collection of song lyrics.

5. We should collect more song lyrics with their published year at least. If the
number can reaches more than 10,000, It should be better to fetch hot topics in
different year. Now, only 1,608 song lyrics with the published year, we run the
experiment and find it is not enough to see some interesting change of hot topics
in different year. Its result is also similar with the experiment running on about
500 song lyrics. A larger amount of song lyrics can ensure fetching hot topics in
different year more exactly.

 57

References
[1] M. Hu and B. Liu, “Mining opinion features in customer reviews,” in Proceedings
of AAAI, pp. 755–760, 2004.
[2] Miller, G., Beckwith, R, Fellbaum, C., Gross, D., and Miller, K.1990.
“Introduction to WordNet: An on-line lexical database,” International Journal of
Lexicography, 3(4):235-312.
[3] A.-M. Popescu and O. Etzioni, “Extracting product features and opinions from
reviews,” in Proceedings of the Human Language Technology Conference and the
Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP),
2005.
[4] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S.
Soderland, D. Weld, and A. Yates, “Unsupervised named-entity extraction from the
web: An experimental study.” Artificial Intelligence, 165(1):91–134, 2005.
[5] P. D. Turney, “Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL.”
In Procs. of the Twelfth European Conference on Machine Learning (ECML-2001),
pages 491–502, Freiburg, Germany, 2001.
[6] Gerald Chao and Michael G.Dyer, “Word Sense Disambiguation of Adjectives
Using Probabilistic Networks”, in Proceedings of the 17th International Conference
on Computational Linguistics, Saarbrucken, pages 152-158, 2000.
[7] Anaya-S_anchez, H., Pons-Porrata, A., Berlanga-Llavori, R., “Word sense
disambiguation based on word sense clustering,” In J.S. Sichman et al. (Eds.), Lecture
Notes in Artificial Intelligence, vol. 4140, 472-481, Springer, 2006
[8] Hevner, March and Jinsoo, “Design Science in Information Systems Research,”
MIS Quarterly Vol. 28 2004, pp. 75-105.
[9] Olena Medelyan, “Human-competitive automatic topic indexing,” partial
fulfillment for the degree of Doctor of Philosophy in Computer Science at The
University of Waikato, Hamilton, New Zealand, July 2009
[10] Witten, I. H., G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-Manning,
“Kea: Practical automatic keyphrase extraction,” In Proc. ACM Conf. on Digital
Libraries, Berkeley, CA, US. New York, NY: ACM Press, pp.254–255, 1999.
[11] Witten, I. H., and E. Frank, “Data mining: Practical machine learning tools and
techniques with Java implementations,” 2nd edition. San Francisco, CA:Morgan
Kaufmann, 2005.
[12] McBride, B., “Jena: Implementing the RDF Model and Syntax Specification,” In
S. Staab et al. (eds.): Proc. 2nd Int. Workshop on the Semantic Web, SemWeb’01,
Hong Kong, China, 2001.
[13] Milne, D., “An open-source toolkit for mining Wikipedia,” In Proc. New
Zealand Computer Science Research Student Conf., NZCSRSC’09, Auckland, New
Zealand, 2009.
[14] Baeza-Yates and Ribeiro-Neto, Modern Information Retrieval. Pages: 29-30,
Addison-Wesley. 1999.
[15] A. Esuli and F. Sebastiani, “SentiWordNet: A publicly available lexical resource
for opinion mining,” in Proceedings of Language Resources and Evaluation (LREC),

 58

2006.
[16] Y. Wilks and M. Stevenson, “The grammar of sense: Using part-of-speech tags
as a first step in semantic disambiguation,” Journal of Natural Language Engineering,
vol. 4, pp. 135–144, 1998.
[17] E.Brill, “Transformation-based error-driven learning and natural language
processing: A case study in part of speech tagging,” Computational Linguistics,
December 1995.
[18] Princeton University Cognitive Science Laboratory, WordNet [online], Available
from:http://wordnet.princeton.edu/.
[19] Antonio Toral, ´Oscar Ferr´andez, Eneko Agirre, Rafael Mu˜noz, “A study on
Linking Wikipedia categories to Wordnet synsets using text similarity,” International
Conference RANLP 2009 - Borovets, Bulgaria, pages 449–454.
[20] G. A. Miller et al, “Introduction to WordNet: An On-line Lexical Database,”
Technical Report, Cognitive Science Laboratory, Princeton University, 1993.
[21] G. A. Miller, “Nouns in WordNet: A Lexical Inheritance System,” Report,
Cognitive Science Laboratory, Princeton University, 1993.
[22] Christiane Fellbaum, Derek Gross, Katherine Miller, “Adjectives in WordNet,”
Report, Cognitive Science Laboratory, Princeton University, 1993.
[23] Theresa Wilson, Janyce Wiebe and Paul Hoffmann, “Recognizing Contextual
Polarity in Phrase-Level Sentiment Analysis,” in Proceedings of HLT/EMNLP,
Vancouver, Canada, 2005.
[24] Ellen Riloff and Janyce Wiebe. “Learning extraction patterns for subjective
expressions.” In Proceedings of the Conference on Empirical Methods in Natural
Language Procession (EMNLP-2003).
[25] K. Dave, S. Lawrence, and D. M. Pennock, “Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews,” in Proceedings of WWW,
pp. 519–528, 2003.
[26] B. Liu, “Web data mining; Exploring hyperlinks, contents, and usage data,”
Opinion Mining. Springer, 2006.
[27] J. Tatemura, “Virtual reviewers for collaborative exploration of movie reviews,”
in Proceedings of Intelligent User Interfaces (IUI), pp. 272–275, 2000.
[28] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter, “PHOAKS: A
system for sharing recommendations,” Communications of the Association for
Computing Machinery (CACM), vol. 40, pp. 59–62, 1997.
[29] C. Cardie, C. Farina, T. Bruce, and E. Wagner, “Using natural language
processing to improve eRulemaking,” in Proceedings of Digital Government
Research (dg.o), 2006.
[30] N. Kwon, S. Shulman, and E. Hovy, “Multidimensional text analysis for
eRulemaking,” in Proceedings of Digital Government Research (dg.o), 2006.
[31] S. Shulman, J. Callan, E. Hovy, and S. Zavestoski, “Language processing
technologies for electronic rulemaking: A project highlight,” in Proceedings of
Digital Government Research (dg.o), pp. 87–88, 2005.
[32] J. Carbonell, “Subjective Understanding: Computer Models of Belief Systems,”
PhD thesis, Yale, 1979.

 59

[33] Y. Wilks and J. Bien, “Beliefs, points of view and multiple environments,” in
Proceedings of the international NATO symposium on artificial and human
intelligence, pp. 147–171, USA, New York, NY: Elsevier North-Holland, Inc., 1984.
[34] S. Das and M. Chen, “Yahoo! for Amazon: Extracting market sentiment from
stock message boards,” in Proceedings of the Asia Pacific Finance Association
Annual Conference (APFA), 2001.
[35] R. M. Tong, “An operational system for detecting and tracking opinions in
on-line discussion,” in Proceedings of the Workshop on Operational Text
Classification (OTC), 2001.
[36] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall, 2000.
[37] V. Hatzivassiloglou and J. Wiebe, “Effects of adjective orientation and
gradability on sentence subjectivity,” in Proceedings of the International Conference
on Computational Linguistics (COLING), 2000.
[38] Bing Liu, “Opinion Mining”, Encyclopedia of Database Systems, 2008.
[39] Liu, B., Hu, M. and Cheng, J, “Opinion Observer: Analyzing and Comparing
Opinions on the Web,” in Proceedings of International World Wide Web Conference
(WWW’05), 2005.
[40] Alexander Thorsten Schutz, “Keyphrase Extraction from Single Documents in
the Open Domain Exploiting Linguistic and Statistical Methods,” Master Thesis in
National University of Ireland, 2008.
[41] SmILE, http://smile.deri.ie/, accessed on 21th Oct, 2010.
[42] UIMA, http://uima.apache.org/, accessed on 22th Oct. 2010
[43] Bo Pang and Lillian Lee, “Opinion Mining and Sentiment Analysis,”
Foundations and Trends® in Information Retrieval: Vol. 2: No 1–2, pp 1-135, 2008.

 60

http://smile.deri.ie/
http://uima.apache.org/

Appendix A: Integration of OpenNLP and UIMA in

Eclipse
Actually, we integrate OpenNLP into the project uimaj-examples, which is contained
in the source file of UIMA Java Framework & SDK that can be downloaded on
http://uima.apache.org/downloads.cgi. To finish integration, we have to do the
following steps:
1. Download OpenNLP Tools Package, go to http://opennlp.sourceforge.net/ and

download the OpenNLP Tools Package 1.3, which should contain the source files,
the class files, java documentations and so on.

2. Compile OpenNLP Tools Package into jar file as the library that is imported into
the project uimaj-exmaple later.

3. Download the Model files, go to http://opennlp.sourceforge.net/ and choose
“Models” at the bottom, you can choose model as you want, for example, the tags
library file for part-of-speech tagging.

4. Set the UIMA Wrappers for OpenNLP as the source file of the project
uimaj-example, UIMA Wrappers for OpenNLP is actually named
“opennlp-wrappers” in a sub-directory of the project “uimaj-example”.

5. Input locations of model files in the matched opennlp-wrappers XML descriptor.
For example, now we open the descriptor:
opennlp-wrappers/descriptors/OpenNLPPostagger.xml as showed in the Figure
Appendix-1 below

Figure Appendix- 1: XML Descriptors of UIMA Wrappers for OpenNLP

Then, we click the tab “Parameter Settings” and see the Figure Appendix-2 showed
below, now input the location of the model file for part-of-speech tag in the right of
the figure.

 61

http://uima.apache.org/downloads.cgi
http://opennlp.sourceforge.net/
http://opennlp.sourceforge.net/

Figure Appendix- 2: Parameter Settings in XML Descriptors

 62

Appendix B: Song Lyrics

NUMBER 1: 1978_Reggae_-_Bob_Marley_-_Babylon_By_Bus_-_Is_This_Love_-_111.txt

I wanna love you and treat you right

I wanna love you every day and every night

We'll be together with a roof right over our heads

We'll share the shelter of my single bed

We'll share the same room, yeah, but JAH provide the bread

Is this love, is this love, is this love

Is this love that I'm feelin'?

Is this love, is this love, is this love

Is this love that I'm feelin'?

I wanna know, wanna know, wanna know now

I got to know, got to know, got to know now

I, I, I, I, I, I, I, I, I, I'm willing and able

So I throw my cards on your table

I wanna love you, I wanna love and treat, love and treat you right

I wanna love you every day and every night

We'll be together yeah, with a roof right over our heads

We'll share the shelter yeah, oh yeah, of my single bed

We'll share the same room yeah, but JAH provide the bread

Is this love, is this love, is this love

Is this love that I'm feelin'?

Is this love, is this love, is this love

Is this love that I'm feelin'?

Wo-o-o-oah!

Oh yes I know, yes I know, yes I know now

Oh yes I know, yes I know, yes I know now

I, I, I, I, I, I, I, I, I, I'm willing and able

So I throw my cards on your table

See I wanna love ya, I wanna love and treat ya, love and treat ya right

I wanna love you every day and every night

We'll be together with a roof right over our heads

We'll share the shelter of my single bed

We'll share the same room yeah, but JAH provide the bread

We'll share the shelter of my single bed.

 63

NUMBER2:

1984_Folk_-_The_Pogues_-_The_Ultimate_Collection_(Disc_2)_-_Streams_Of_Whiskey_-_45.txt

Last night as I slept

I dreamt I met with Behan

I shook him by the hand and we passed the time of day

When questioned on his views

On the crux of life's philosophies

He had but these few clear and simple words to say

I am going, I am going

Any which way the wind may be blowing

I am going, I am going

Where streams of whiskey are flowing

I have cursed, bled and sworn

Jumped bail and landed up in jail

Life has often tried to stretch me

But the rope always was slack

And now that I've a pile

I'll go down to the Chelsea

I'll walk in on my feet

But I'll leave there on my back

Because I am going, I am going

Any which way the wind may be blowing

I am going, I am going

Where streams of whiskey are flowing

Oh the words that he spoke

Seemed the wisest of philosophies

There's nothing ever gained

By a wet thing called a tear

When the world is too dark

And I need the light inside of me

I'll walk into a bar

And drink fifteen pints of beer

Iam going, I am going

Any which way the wind may be blowing

I am going, I am going

Where streams of whiskey are flowing

I am going, I am going

Any which way the wind may be blowing

 64

I am going, I am going

Where streams of whiskey are flowing

Where streams of whiskey are flowing

Where streams of whiskey are flowing.

NUMBER 3: 1989_Grunge_-_Nirvana_-_Bleach_(Remastered)_-_Negative_Creep_-_499.txt

This is out of our range

This is out of our range

This is out of our range

no

This is getting to be

This is getting to be

This is getting to be

gross

I'm a negative creep

I'm a negative creep

I'm a negative creep

and I'm stoned

I'm a negative creep

I'm a negative creep

I'm a negative creep

and I'm

I'm

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

This is out of our range

This is out of our range

This is out of our range

no

This is getting to be

This is getting to be

This is getting to be

gross

I'm a negative creep

I'm a negative creep

I'm a negative creep

and I'm stoned

I'm a negative creep

I'm a negative creep

 65

I'm a negative creep

and I'm

I'm

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more

Daddy's little girl ain't a girl no more.

NUMBER 4: 1992_Grunge_-_Mudhoney_-_Superfuzz_Bigmuff_plus_Early_-_Chain_That_Door_-_228.txt

Where do you think we've seen that girl?

Chain that door, I'm outta your world

We know

We know

We know what I mean

You made me feel like a big-time loser

Chain that door, it's all over

I said

You made me feel like a big-time loser

Chain that door, girl, it's all over

We know

We know

We know what I mean

See that I'm walking the way I am

Why you always hang around?

We know

We know

We know what I mean.

 66

NUMBER 5: 1992_Grunge_-_Alice_in_Chains_-_Dirt_-_Angry_Chair_-_463.txt

Sitting on an angry chair

Angry walls that steal the air

Stomach hurts and I don't care

What do I see across the way, hey

See myself molded in clay, oh

Stares at me, yeah I'm afraid, hey

Changing the shape of his face, aw yeah

Candles red I have a pair

Shadows dancing everywhere

Burning on the angry chair

Little boy made a mistake, hey

Pink cloud has now turned to gray, oh

All that I want is to play, hey

Get on your knees, time to pray, boy

I don't mind, yeah

I don't mind, I-I-I

I don't mind, yeah

I don't mind, I-I-I

Lost my mind, yeah

But I don't mind, I-I-I

Can't find it anywhere

I don't mind

Corporate prison, we stay, hey

I'm a dull boy, work all day, oh

So I'm strung out anyway, hey

Loneliness is not a phase

Field of pain is where I graze

Serenity is far away

Saw my reflection and cried, hey

So little hope that I died, oh

Feed me your lies, open wide, hey

Weight of my heart, not the size, oh

I don't mind, yeah

I don't mind, I-I-I

I don't mind, yeah

 67

I don't mind, I-I-I

Lost my mind, yeah

But I don't mind, I-I-I

Can't find it anywhere

I don't mind, I-I-I

Pink cloud has now turned to gray

All that I want is to play

Get on your knees time to pray, boy.

NUMBER 6: 1998_Metal_-_System_Of_A_Down_-_System_Of_A_Down_-_Suite-pee_-_231.txt

I had an out of body experience

The other day

Her name was Jesus

And for her everyone cried

Everyone cried, everyone cried

Try her philosophy, try her philosophy

Try her philosophy, try

You die for her philosophy

Die for her philosophy

Die her philosophy die

Crossed and terrored ravages of architecture

Lend me thy blades

We're crossed and terrored ravages of architecture

Hoist around the spade

Try her philosophy, try her philosophy

Try her philosophy, try

You die for her philosophy

Die for her philosophy

Die her philosophy, die

Die, die, die, why

Lie naked on the floor

And let the Messiah go through our souls

Lie naked on the floor

And let the Messiah go all through our souls

Die, like a motherfucker

Die, like a motherfucker

 68

Die, like a motherfucker

Why, like a motherfucker

I want to fuck my way to the garden

'Cause everyone needs a mother fucker

The following of a Christ, the following of a Christ

The following of a Christ, the following of a Christ

The falling of Christ, the falling of Christ

The falling of Christ, the falling of Christ.

NUMBER 7: 1999_Country_-_Wilco_-_Summerteeth_-_In_A_Future_Age_-_139.txt

Genuine

Day will come

When the wind

Decides to run

And shakes the stairs

That stab the wall

And turns the page

In a future age

Some trees will bend

And some will fall

But then again

So will us all

Lets turn our prayers

Into outrageous dares

And mark our page

In a future age

High above

The sea of cars

And barking dogs

In fenced-in yards.

NUMBER 8: 2002_Country_-_Dixie_Chicks_-_Home_-_White_Trash_Wedding_-_253.txt

You can't afford no ring

You can't afford no ring

I shouldn't be wearing white

and you can't afford no ring

You finally took my hand

You finally took my hand

It took a nip of gin

 69

but you finally took my hand

You can't afford no ring

You can't afford no ring

I shouldn't be wearing white

and you can't afford no ring

Mamma don't approve

Mamma don't approve

Daddy says he's the very best

And mamma don't approve

You can't afford no ring

You can't afford no ring

I shouldn't be wearing white

and you can't afford no ring

Baby's on its way

Baby's on its way

Say I do and kiss me quick

'Cause baby's on its way

I shouldn't be wearing white and you can't afford no ring!

NUMBER 9: 2002_Slow_Rock_-_Coldplay_-_A_Rush_Of_Blood_To_The_Head_-_A_Whisper_-_480.txt

A whisper, whisper, whisper, whisper

A whisper, whisper, whisper, whisper

I hear the sound of the ticking of clocks

Who remembers your face

Who remembers you when you are gone

I hear the sound of the ticking of clocks

Come back and look for me

Look for me when I am lost

And just a whisper, whisper, whisper, whisper

Just a whisper, whisper, whisper, whisper

Night turns to day

And I still have these questions

Bridges will break

Should I go forwards or backwards

Night turns to day

And I still get no answers

 70

Just a whisper, whisper, whisper, whisper

A whisper, whisper, whisper

(just a whisper, whisper, whisper, whisper)

I hear the sound of the ticking of clocks

Who remembers your face

Who remembers you when you are gone

I hear the sound of the ticking of clocks

Come back and look for me

Look for me when I am lost

And I am just a whisper, a whisper, a whisper, a whisper

Just a whisper, whisper, whisper, whisper

Oh ha ah ah ah ah ah ah.

NUMBER 10: 2003_Pop_-_Britney_Spears_-_In_The_Zone_-_Shadow_-_550.txt

Your body's warm but you are not

You give a little not a lot

You coup your love until we kiss

You're all I want but not like this

I'm watching you disappear

But you, you were never here

It's only your shadow, never yourself

It's only your shadow, nobody else

It's only your shadow, filling the room

Arriving too late, and leaving too soon

And leaving too soon...

Your body gives but then holds back

The sun is bright, the sky is black

Can only be another sign

I cannot keep what isn't mine

You left and it lingers on

But you, you were almost gone

It's only your shadow, never yourself

It's only your shadow, nobody else

It's only your shadow, filling the room

 71

Arriving too late, and leaving too soon

And leaving too soon...

I cannot tell if you mean what you say

You say it so loud, but you sound far away

Maybe I had just a glimpse of your soul

Or was that your shadow I saw on the wall

I'm watching you disappear

But you, you were never here

It's only your shadow, never yourself

It's only your shadow, nobody else

It's only your shadow, filling the room

Arriving too late

No, no, no

It's only your shadow

It's only your shadow, nobody else

It's only your shadow

Arriving too late and leaving too soon

It's only your shadow.

 72

Appendix C: Code Examples

KeywordsByNouns.java

This is a typical annotation class in our source code for annotating keywords or
sentiment words in text. It runs sentence by sentence in text.

public class KeywordsByNouns extends JCasAnnotator_ImplBase {

public TextFileIndexer index=new TextFileIndexer();

 /**

 * Initialize the Annotator.

 *

 * @see JCasAnnotator_ImplBase#initialize(UimaContext)

 */

 public void initialize(UimaContext aContext) throws

ResourceInitializationException {

 super.initialize(aContext);

 try {

 index.buildIndex();

 System.out.println("INDEX DONE");

 } catch (Exception e) {

 throw new ResourceInitializationException(e);

 }

 }

 /**

 * Process a CAS.

 *

 * @see JCasAnnotator_ImplBase#process(JCas)

 */

 public void process(JCas aJCas) throws AnalysisEngineProcessException

{

 ArrayList<Token> tokenList = new ArrayList<Token>();

 ArrayList wordList = new ArrayList();

 HashMap<Object,Integer> tokenList1 = new HashMap<Object,Integer>();

 AnnotationIndex sentenceIndex =

aJCas.getAnnotationIndex(Sentence.type);

 AnnotationIndex tokenIndex = aJCas.getAnnotationIndex(Token.type);

 // iterate over Sentences

 FSIterator sentenceIterator = sentenceIndex.iterator();

 73

// iterator each sentence;

 while (sentenceIterator.hasNext()) {

 Sentence sentence = (Sentence) sentenceIterator.next();

 // iterate over Tokens

 FSIterator tokenIterator = tokenIndex.subiterator(sentence);

 while (tokenIterator.hasNext()) {

 Token token = (Token) tokenIterator.next();

 tokenList.add(token);

 String posTag = token.getPosTag();

if(posTag!=null&&posTag.equals("NN")||posTag.equals("NNS")||posTag.eq

uals("NNP")){

 if(tokenList1.get(token.getCoveredText()) != null){

tokenList1.put(token.getCoveredText(),tokenList1.ge

t(token.getCoveredText())+1); }

 else{

 tokenList1.put(token.getCoveredText(),1);

 }

 }

 }

 }

 // ranking noun term frequency

 Object[] value = tokenList1.values().toArray() ;

 Arrays.sort(value);

for(Object o:tokenList1.keySet()){

if(tokenList1.get(o).equals(value[value.length-1])||tokenList1.ge

t(o).equals(value[value.length-2])||tokenList1.get(o).equals(value[va

lue.length-3])){

 for(int i=0; i<tokenList.size();i++){

 if(tokenList.get(i).getCoveredText().equals(o)){

 // annotate KeywordsByTF in text

 KeywordsByTF keywords=new KeywordsByTF(aJCas);

 keywords.setBegin(tokenList.get(i).getBegin());

 keywords.setEnd(tokenList.get(i).getEnd());

 keywords.addToIndexes(); } }} }}}

 74

SearchWikipedia.java: Search on Wikipedia

The class is used for searching information about year or genre or others on
Wikipedia.org with the keywords input of song artist and song title. Among, we
import the library form Cobra Tool Kit on http://lobobrowser.org/cobra.jsp to parse
HTML file.

import java.io.File;

import java.io.IOException;

import org.lobobrowser.html.domimpl.HTMLDocumentImpl;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class SearchWikipedia {

 String genre;

 String year;

 String TEST_URI2 ;

 public SearchWikipedia(String artist, String title) throws

IOException, SAXException{

 TEST_URI2 =URLUtils.addParameter("http://en.wikipedia.org/",

"search", artist+" "+title);

 HTMLDocumentImpl document2 =ParsingURL.getHTML(TEST_URI2);

 NodeList uls=document2.getElementsByTagName("ul");

 String TEST_URI3=null;

 HTMLDocumentImpl document3=null;

 for(int k=1;k<uls.item(2).getChildNodes().getLength();k=k+2){

 boolean flag=true;

 String[] titles=title.split(" ");

 for(int t=1;t<titles.length;t++){

if(!uls.item(2).getChildNodes().item(k).getChildNodes().item(0).toStr

ing().contains(titles[t])&&!uls.item(2).getChildNodes().item(k).getCh

ildNodes().item(0).toString().contains(titles[t].toLowerCase()))

 {

 flag=false;

 break;

 75

http://lobobrowser.org/cobra.jsp

 }

 }

 if(flag==true)

{

TEST_URI3="http://en.wikipedia.org"+uls.item(2).getChildNodes().item(

k).getChildNodes().item(0);

 if(TEST_URI3!=null){

 document3 =ParsingURL.getHTML(TEST_URI3);

 break;

 }

 }

 }

 NodeList tables=null;

 if(document3!=null)

 tables=document3.getElementsByTagName("table");

 if(tables!=null){

 for(int i = 0; i < tables.item(0).getChildNodes().getLength(); i++)

{

if(tables.item(0).getChildNodes().item(i).getTextContent().contains("

Released"))

year=tables.item(0).getChildNodes().item(i).getTextContent().replace(

"Released", "");

if(tables.item(0).getChildNodes().item(i).getTextContent().contains("

Genre")){

genre=tables.item(0).getChildNodes().item(i).getTextContent().replace

("Genre", "");

 }

 }

 }

 }

 public String getYear(){

 return year;

 }

 76

 public String getGenre(){

 return genre;

 }

 public String getURL(){

 return TEST_URI2;

 }

 public static void main(String[] args) throws Exception {

 File fileDir = new File("F:/Master Thesis/newLyrics/A");

 File[] textFiles = fileDir.listFiles();

 for(int k=0; k<textFiles.length;k++){

String[] name=textFiles[k].getName().replace(".txt","").split("-");

 String artist=name[0];

 String title=name[1];

 SearchWikipedia search=new SearchWikipedia(artist,title);

 if(search.getYear()!=null){

 char[] year=search.getYear().toCharArray();

 String realyear=null;

 for(int i=0;i<year.length;i++){

if((i+1)<year.length&&(i+2)<year.length&&(i+3)<year.length){

if(Character.isDigit(year[i])&&Character.isDigit(year[i+1])&&Characte

r.isDigit(year[i+2])&&Character.isDigit(year[i+3]))

realyear=Character.toString(year[i])+Character.toString(year[i+1])+Ch

aracter.toString(year[i+2])+Character.toString(year[i+3]);

 }

 }

 File file;

 if(search.getGenre()!=null)

 file=new File("F:/Master

Thesis/new/"+realyear+"_"+search.getGenre().substring(2,search.getGen

re().length()-1)+"_"+"-"+artist+"-"+"albumn"+"-"+title+"-"+".txt");

 else

 77

 file=new File("F:/Master

Thesis/new/"+realyear+"_"+"Genre"+"_"+"-"+artist+"-"+"albumn"+"-"+tit

le+"-"+".txt");

 textFiles[k].renameTo(file);

 }

 }

 System.out.println("DONE");

 }

}

FetchSongLyrics.java

The class is used to fetch song lyrics from the website http://www.absolutelyrics.com/,
and save each song lyrics into separate .txt file.

import org.lobobrowser.html.domimpl.*;

import org.w3c.dom.*;

import java.util.HashMap;

import java.io.*;

public class FetchSongLyrics {

 public static void main(String[] args) throws Exception {

String[] letters=

{"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q",

"r","s","t","u","v","w","x","y","z"};

 HashMap<String,Integer> links=new HashMap<String,Integer>();

 links.put("a",106);

 links.put("b",115);

 links.put("c",102);

 links.put("d",97);

 links.put("e",43);

 links.put("f",74);

 links.put("g",67);

 links.put("h",93);

 links.put("i",153);

 links.put("j",29);

 links.put("k",21);

 links.put("l",111);

 78

http://www.absolutelyrics.com/

 links.put("m",98);

 links.put("n",58);

 links.put("o",56);

 links.put("p",68);

 links.put("q",5);

 links.put("r",64);

 links.put("s",212);

 links.put("t",205);

 links.put("u",22);

 links.put("v",12);

 links.put("w",123);

 links.put("x",2);

 links.put("y",43);

 links.put("z",3);

 String uri=null;

 for(String letter:letters){

 for(int p=1;p<=links.get(letter);p++){

uri="http://www.absolutelyrics.com/lyrics/songlist/"+letter+"/"+p+"/"

;

 HTMLDocumentImpl document = ParsingURL.getHTML(uri);

 NodeList lis=document.getElementsByTagName("li");

 for(int k=0;k<lis.getLength();k++) {

 String lyrics = null;

 String TEST_URI1=

"http://www.absolutelyrics.com"+lis.item(k).getChildNodes().item(0);

 HTMLDocumentImpl document1 = ParsingURL.getHTML(TEST_URI1);

 Element div= document1.getElementById("realText");

 NodeList titles=document1.getElementsByTagName("title");

 Node title=titles.item(0);

 String[] strings=title.getTextContent().split("::");

for(int i=0;i< div.getChildNodes().getLength();i++){

 for(int t=0;

t<div.getChildNodes().item(i).getChildNodes().getLength();t++)

lyrics+=div.getChildNodes().item(i).getChildNodes().item(t).getTextCo

ntent()+"\r\n";

 }

 79

 File filename = null;

 filename = new File("F:/Master

Thesis/newLyrics/F/"+strings[0]+"-"+strings[1].replace("Lyrics",

"")+".txt");

 if (!filename.exists())

 filename.createNewFile();

BufferedWriter bufferedWriter = new BufferedWriter(new

FileWriter(filename));

 if(lyrics!=null)

 bufferedWriter.write(lyrics.replace("null",

""));

 bufferedWriter.flush();

 bufferedWriter.close();

 } }}}}

SubLexicon.java

The class read data from the list of Subjective Clues.

import java.io.BufferedReader;

import java.io.FileReader;

import java.util.HashMap;

import java.util.Vector;

public class SubLexicon {

 private String path =

"resources/SubLexicon/subjclueslen1-HLTEMNLP05.txt";

 public double negative;

 public double positive;

 private HashMap<String, Vector<String>> _dict;

 public SubLexicon(){

 _dict = new HashMap<String, Vector<String>>();

 try{

 80

 BufferedReader csv = new BufferedReader(new

FileReader(path));

 String line = "";

 while((line = csv.readLine()) != null)

 {

 String[] words = line.split(" ");

 String[] types=words[0].split("=");

 String type=types[1];

 String[] lens=words[1].split("=");

 String len=lens[1];

 String[] word1s=words[2].split("=");

 String word1=word1s[1];

 String[] pos1s=words[3].split("=");

 String pos1=pos1s[1];

 String[] stemmed1s=words[4].split("=");

 String stemmed1=stemmed1s[1];

 String[] priorpolaritys=words[5].split("=");

 String priorpolarity= priorpolaritys[1];

 Vector<String> vector=new Vector<String>();

 vector.add(type);

 vector.add(len);

 vector.add(stemmed1);

 vector.add(priorpolarity);

 _dict.put(word1+"#"+pos1, vector);

 }

 }

 catch(Exception e){e.printStackTrace();}

 }

 public Vector<String> extract(String word, String pos)

 81

 {

 return _dict.get(word+"#"+pos);

 }

 public String getType(String word, String pos){

 if(_dict.get(word+"#"+pos)!=null)

 return _dict.get(word+"#"+pos).elementAt(0);

 else

 return null;

 }

 public String getLen(String word, String pos){

 if(_dict.get(word+"#"+pos)!=null)

 return _dict.get(word+"#"+pos).elementAt(1);

 else

 return null;

 }

 public String getStem(String word, String pos){

 if(_dict.get(word+"#"+pos)!=null)

 return _dict.get(word+"#"+pos).elementAt(2);

 else

 return null;

 }

 public String getPolarity(String word, String pos){

 if(_dict.get(word+"#"+pos)!=null)

 return _dict.get(word+"#"+pos).elementAt(3);

 else

 return null;

 }

 82

 public static void main(String args[]) throws Exception {

 System.out.println("!!!start!!!");

 SubLexicon sub=new SubLexicon();

 System.out.println("!!!"+sub.extract("like", "verb"));

 System.out.println("!!!"+sub.getType("like", "verb"));

 System.out.println("!!!"+sub.getLen("like", "verb"));

 System.out.println("!!!"+sub.getStem("like", "verb"));

 System.out.println("!!!"+sub.getPolarity("like", "verb"));

 }

}

SWN3.java

The class reads data from the lexicon resource of SentiWordNet. The code refers to
sample code on home page of SentiWordNet http://sentiwordnet.isti.cnr.it/.

import java.io.BufferedReader;

import java.io.FileReader;

import java.util.HashMap;

import java.util.Vector;

public class SWN3 {

 private String pathToSWN = "resources/SentiWordNet_3.0.0.txt";

 private HashMap<String, Vector<Double>> _dict;

 public SWN3(){

 _dict = new HashMap<String, Vector<Double>>();

 try{

 BufferedReader csv = new BufferedReader(new

FileReader(pathToSWN));

 String line = "";

 while((line = csv.readLine()) != null)

 {

 if(!line.startsWith("#")){

 String[] data = line.split("\t");

 String[] words = data[4].split(" ");

 83

 for(String w:words)

 {

 String[] w_n = w.split("#");

 if(w_n[1].equals("1")){

 Vector<Double> vector=new Vector<Double>();

 vector.add(Double.parseDouble(data[2]));

 vector.add(Double.parseDouble(data[3]));

 w_n[0] += "#"+data[0];

 _dict.put(w_n[0], vector);

 }

 }

 }

 }

 }

 catch(Exception e){e.printStackTrace();}

 }

 public Vector<Double> extract(String word, String pos)

 {

 return _dict.get(word+"#"+pos);

 }

 public static void main(String args[]) throws Exception {

 System.out.println("!!!start!!!");

 SWN3 swn=new SWN3();

 System.out.println("!!!"+swn.extract("little", "a"));

 }

}

 84

 85

Appendix D: the List of Stop Words for Song’s Title
If these words in the list of stop words showed below appear in song’s title, they will
be filtered and will not be considered as keywords of song.
The list of stop words is:

a
an
and
are
at
be
but
by
do
for
in
if
into
is
it
no
not
such
of
on
or
that
the
their
then
there
these
they
this
to
was
were
will
with
you

	Title Page
	Problem Description
	

