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Problem Description
Simulating dense volumes of snow is a computationally intensive task. The emergent behavior of a
large amount of interacting snow particles is highly complex due to a variety of factors, such as
density, volume, temperature and environment. A previous wind field simulation developed at our
lab can simulate falling snow with visually pleasing results, but resorts to simple techniques for
modeling snow accumulation on a terrain, and has no real support for dense volumes of snow.

This project will employ parallel programming on the Graphics Processing Unit (GPU) to simulate
dense snow volumes using a large amount of particles. Interesting effects such as snow
avalanches and snow accumulation will be investigated and a model that is suitable for real-time
simulation will be developed. A previous implementation of a particle-based single-fluid model will
be further developed and used in this project.
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Abstract

Snow is a physical phenomenon that is hard to simulate due to the wide range of
behaviors that can be found. Snow avalanches are of interest due to their complex
physical properties and because they can have a very high cost, both in terms of
economic impact and lives lost. In this thesis, we investigate the possibility of using
fluid dynamics to model snow avalanches at real-time speeds. Real-time simulations
allow for interactivity which again may accelerate the speed of development processes.
It also allows for the simulations to be used as an interactive educational tool.

Although modern GPUs (Graphics Processing Units) are primarily designed to
accelerate graphics calculations in computer games, their computational power
can now also be harnessed by several other applications. This thesis builds on
our previous work on a simple Smoothing Particle Hydrodynamics (SPH) fluid
dynamics model accelerated by GPUs. We extend this work by developing a more
complex SPH model and integrate these two models in our novel framework for
GPU simulations. The simple SPH model is suitable for interactive simulations
of low-viscosity Newtonian fluids, whereas our more complex SPH model includes
support for Non-Newtonian fluids through the use of rheological models. By using
a rheological model that describes the Non-Newtonian flow characteristics of snow
avalanches, we can reproduce the flowing behavior of dense flowing snow avalanches
at interactive speeds.

Our work shows that using the GPU can lead to very large performance improve-
ments that make it possible to do real-time simulations which previously required
costly specialized hardware or took minutes or hours to run. Using our highly
optimized framework, we demonstrate a large improvement in performance for the
simple model, and achieve generally very high performance for both implementations
compared to other state-of-the-art implementations. Our recent results on the new
NVIDIA GeForce GTX 470 Fermi-based card, achieves 215.4 IPS (iterations per
seconds) for 64K particles using our simple model, and 122.2 IPS and 64.9IPS for
128K and 256K particles, respectively. For the complex model, 69.6 IPS at 64K
particles, 37.4 IPS at 128K particles and 19.1 IPS at 256K particles were achieved.
Real-time simulations enabling interactivity for the simple model is achieved for up
to 256K particles, and up to 32/64K particles for the complex model.

Many other features, such as additional snow and fluid effects, could extend this
work. A list of this and other possible avenues for future work is also included.
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Chapter 1

Introduction

Snow is a physical phenomenon that is hard to simulate due to the wide range of
behavior that can be found. “Snow” can be everything from heavy and wet almost
water-like to powder-like grains. There exist several models for modeling snow
avalanches, and most contain at least one layer that is described as a fluid.

Current simulations often fake the visual effects without basing it on an underlying
physical model. In this thesis, we investigate how snow avalanches can be modeled
by use of fluid dynamics models.

Real-time simulations are interesting for several reasons, chief among them be-
ing interactivity. It makes it possible to accelerate the development of both the
mathematical model as well as the implementation.

A shown and described in our previous work [4], GPUs (Graphics Processing Units)
are responsible for a major increase in the parallel computational power available
to consumers. Though the GPU is designed to accelerate very specific things such
as 3D graphics, it has recently become possible to use it as a general purpose
computational accelerator. Using CUDA, NVIDIAs technology for programming
GPUs, it has become easier to accelerate parallelizable problems. We use CUDA
and the GPU to massively accelerate simulations of fluid dynamics.

1.1 Motivation

The motivations for this thesis are numerous. Following is a description of the most
important areas.

1.1.1 Emergence

The primary motivation for this thesis is the inherent and emerging complexity
that can be observed in systems with fairly simple rules. This phenomenon is
generally referred to as emergence, and is a results of the great number of possible
interactions between different rules and states in a system. It is very interesting how
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defining a system with very few rules can result in behaviors which are completely
unpredictable for most observers.
Fluid simulations is one example of such a system, and physics in general are of
great interest due to this phenomenon. To explore the behavior of such systems,
mathematical models and computer simulations can be very helpful.

1.1.2 High Performance

Simulations of systems with high emerging complexity has, almost by definition, a
high computational cost. This restricts the scale and accuracy with which models
can be simulated.
To counteract this problem, it is interesting to explore and exploit the computational
power of specialized hardware. By using specialized hardware greater performance
can be achieved since it is possible to create and use computer hardware which is
better suited for a specific problem.
A good example of this is how the Central Processing Unit (CPU) in most computers
works on a few pieces of data at a time, while the Graphics Processing Unit (GPU)
may work on hundreds and thousands of pieces of data in parallel. This property is
of great interest when simulating systems where the interactions between different
parts can be separated and hence be computed in parallel, thus achieving much
greater performance.
It is also interesting to note that during the last decade the gaming and entertainment
industry has been the driving force for the development of high performance
hardware. This coincides with a move towards more physically based games and
more advanced computer graphics. It is inevitable that this trend will continue for
the near future, and as such the research community should try to take advantage
of it.

1.1.3 Interactivity

Interactivity and “real-time” performance is of great interest for many reasons. On
of the most important is the great advantage the human learning process has from
the feedback-loop. In learning theory, this concept is used to describe the process
with which humans learn. By establishing a loop where a human observer can
observe a system, introduce changes in the system and then observe the results,
learning and understanding is enhanced.
This means that the development of mathematical models to describe complex
systems can be accelerated. An average observer will understand and be able
to predict system behavior quicker, and a scientist can more quickly formulate
hypotheses, test theories and establish facts. In the context of avalanche, simulations
this is very important since many avalanche models rely on calibration against
real-world events.
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1.1.4 Avalanche Simulations

Avalanches are highly complex and are prime example of systems with high emergent
complexity. Due to the great forces that are at play, avalanches can have very high
cost, both in terms of economic impact and lives lost. It is thus of great interest to
be able to model and simulate avalanches.
In the context of avalanche simulations, interactivity is doubly important because
most avalanche models rely on calibration against real-world events. Interactivity
also makes it possible to educate people on the behavior of avalanches and make
make them fully comprehend how dangerous an avalanche event can be.
Avalanches have several key features. The formation, meaning the events which
contribute the state where an avalanche can occur. The release, which describes
the failure event where an avalanche is created. And the flow, which describes the
motion of the avalanche mass.
In this thesis, we will focus on the flow of the avalanche itself, not formation or
release.

1.2 Contributions

In this thesis, we investigate creating an interactive snow avalanche simulation.
We build on our earlier [4] implementation of Smoothing Particle Hydrodynamics
(SPH), which is very suitable for interactive simulations.
To ease the development of SPH-models on the GPU we create a new simulation
framework. The framework uses NVIDIA CUDA to make use of the power inherent
in modern GPUs and contains modularized components which ease the developement
of GPU-based SPH simulations.
We use our framework to implement two different Smoothed Particle Hydrodynamics
(SPH) models, a Simple model and a Complex model.
The Simple SPH model was implemented and evaluated in our previous work [4]
and is suitable for simulating low-viscosity incompressible Newtonian fluids. It
trades accuracy for high performance and stability.
The Complex SPH model is more accurate and has support for simulating Non-
Newtonian fluids with viscosity determined by several rheological (the study of flow
of matter) models.
We use the Complex model to simulate flowing avalanches on a terrain with
interactive performance and the Simple model to simulate water-like fluids.
Both SPH-implementations are highly performance-optimized and run entirely on
the GPU.
We perform a performance evaluation of both implementations and show that their
performance is much greater than previous SPH implementations.
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1.3 Outline

This thesis is structured in the following manner:

2 (Avalanche Simulation) provides an introduction to avalanche modelling, the
challenges in modelling snow avalanches and related work.

3 (Computational Fluid Dynamics) includes a brief description of Computa-
tional Fluid Dynamics (CFD) and Newtonian and Non-Newtonian fluids.

4 (Smoothed Particle Hydrodynamics) is a description of the SPH method
and how it can be used to model Newtonian and Non-Newtonian fluids.

5 (Parallel Computing and the Graphics Processing Unit) describes the
existing knowledge that exists in the field of parallel computing and the details of
the CUDA GPU-programming environment.

6 (Models and Implementation) describes the two SPH models and their
implementation.

7 (Simulation Framework) describes our new simulation framework, the compo-
nents within and and the optimization techniques we employed.

8 (Results and Discussion) presents the results, both in terms of performance
and visual results. We analyze the performance and compare it to our previous
implementation and other implementations.

9 (Conclusions) present the conclusion and future work that is relevant to this
project.

A (Smoothing Kernel Derivatives) include spatial derivatives of the smoothing
kernels used in the implementation.

B (Source Code) lists extracts from source code of our implementations.

C (Short Paper) is the extended abstract for a paper, submitted to PARA 2010.

D (Poster) gives a nice overview of our work in fluids simulations on the GPU. It
was presented in our groups booth at ISC 2010 and at CCP 2010.
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Avalanche Simulation

Figure 2.1: A powder snow avalanche in the Himalayas near Mount Everest.

An avalanche is a physical phenomenon that is difficult to model and to simulate.
Avalanches are inherently complex due to their great emergent complexity, but also
because there are many “external” factors at play.

An avalanche can be defined as a rapid gravity-driven slide or release of mass moving
down a sloped terrain (Figure 2.1 on page 5 1). Beyond this definition an avalanche
can vary greatly in both composition of materials and the state of the materials
themselves.

A snow avalanche can be everything from an almost water-like flow to a very dry,
almost powder-like, air-suspended particle flow. This great variety in behavior also

1Public domain image, reprinted from Wikipedia.
http://commons.wikimedia.org/wiki/File:Avalanche_on_Everest.JPG

http://commons.wikimedia.org/wiki/File:Avalanche_on_Everest.JPG
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means that it is exceedingly hard to create a single unified model that can cover all
possible types of avalanches.
Avalanches consists of 3 key features [5]:

1. The formation, meaning the events which contribute to the state where an
avalanche can occur.

2. The release, which describes the failure event where an avalanche is created.

3. The flow, which describes the motion of the avalanche mass.

The formation of an avalanche is complex since it involves a great number of
variables. An example of this is the complexities found in a snow. Snow has both
complex microstructure and macrostructure. The microstructure of a snow volume
consists of snowflakes. Each snowflake is a crystal which forms around a small
impurity. The structure of a snow crystal is dependent on factors such as humidity
and temperature at the moment of formation. The macrostructure of snow is also
complex. When snow accumulates during a longer period of time we get a snowpack,
where different layers consist of snow with different properties. Over time the
properties of each layer can change, which further complicates matters.
The release of an avalanche can be due to a variety of conditions, but the general event
can be described as the catastrophic failure that happens when the gravitational
force applied to the material in a slope exceeds the binding force of the material.
The material of the top of the slope can then push or flow over the underlying layer,
thus creating an avalanche. Taking the example of a snow avalanche several factors
can contribute to such a failure, including new snow, wind, temperature, rain and
the snowpack structure itself.
The flow or motion of an avalanche describes the manner in which the avalanche
matter moves down the sloped terrain. When considering the flow of an avalanche it
is fairly obvious that both the materials involved and their composition is important
for the resultant behavior. The flow characteristics is thus dependent on both the
formation and the release. Last but not least, the basal friction against the terrain
is also very important.
Trying to capture all the variables that contribute to the behavior of an avalanche is
exceedingly difficult. This may be why there does not yet exist a single constitutive
model for avalanches, instead a variety of modeling approach are used to capture
different effects of the avalanche.

2.1 Snow Avalanches

As mentioned earlier, snow avalanches are among the most complex avalanches due
to the great complexities which arise from the composition and state of the snow
matter. In this thesis we choose to focus on flowing snow avalanches, and in these
types of avalanches the properties of the flow are affected by many things.
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2.1.1 Classification

The classification of snow avalanches is difficult due to the wide variety of fac-
tors involved in the behavior of the avalanche. In the literature several forms of
classification can be found.

We include some of the classical descriptions since they cover the qualitative behavior
of different types of avalanches quite well, it is however important to keep that these
are classifications and that most avalanches include factors from several of these.

The first set of classifications consider the macrostructure of the snowpack and the
subsequent effect on the avalanche:

Loose snow avalanche This form of avalanche is used to describe a release of
“loose snow” down a mountainside. The loose snow is usually a (relatively) small
amount of dry and possibly fairly new snow from the top layer of the snowpack,
which start from a point and fan outward as they descend. These avalanches are
often found in fairly steep terrain, and have relatively low density. This form of
avalanche is usually not very dangerous, especially so since they tend to fracture
below skiers in a track instead of above.

Slab avalanche A slab avalanche is a type of avalanche where fairly large
cohesive pieces of snow are released. Such slabs form from “stiff” layers of snow
which can be formed as a result of strong winds or because the snow is old. Slab
avalanche are generally considered to be the most dangerous form of avalanches.
They occur when the snowpack has inherent instabilities, such that large coherent
layers can break free. Wind can play a significant factor in the creation of such
instabilities, since surface saltation of snow can create snowpacks with non-uniform
structures.

An alternative set of classifications which considers the wetness of snow is also
commonly found:

Dry snow avalanche A dry snow or airborne avalanche is usually triggered by
putting too much stress on the snowpack, and is the most common type of avalanche
triggered by people. Possible sources of stress include people(skiers etc.), additional
snow or wind.

These avalanches travel very rapidly (50-100m/s) , have a density of 5-50kg/m3and
a flow depth of 10-100m [5]. In this type of avalanche a large amount of the snow
involved can be suspended in the air, resulting in a highly turbulent suspension
layer or “snow cloud”. Due to this turbulent layer the avalanche is not as suspect
to the terrain relief and does not necessarily follow the terrain.
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Wet snow avalanche A wet snow or flowing avalanche is an avalanche that is
triggered by decreasing strength of the snowpack, as such they often occur naturally.
Due to factors such as rain, prolonged melting by sun exposure or temperature the
cohesion of the snowpack is lost, and a flow of snow occurs.

This type of avalanche is fairly slow, with velocities ranging from 5 to 25 m/s. Flow
depth rarely exceeds a few meters and density is fairly high ranging from 150 to 500
kg/m3 [5]. In this type of avalanche the overall movement of the avalanche does
follows the terrain.

2.2 Modeling Approaches

Ancey [5] presents a comprehensive summary of the current state of snow avalanche
modelling, where he specifies several categories of models, which will be summarized
here:

Statistical methods Statistical methods are fairly powerful tools, they are
commonly used in land-planning, where it is important to determine safe areas.
These methods require either accurate knowledge of past avalanches or accurate
methods for computing avalanche boundaries. They do not focus on the topology
of an avalanche, but generally try to predict the extension (stopping position) of an
avalanche.

Fluid-mechanics approach (avalanche-dynamics models) Snow avalanches
usually appear as viscous flows flowing down a slope, and this obvious property has
prompted use of fluid-mechanics as a tool for describing their motion. There are
however many problems with this approach. Since there is little data available on
the rheological processes in avalanche release and flow, all the avalanche-dynamics
models proposed so far rely on analogies with other phenomena. Such phenomena
include granular flows, and both Newtonian and Non-Newtonian fluids.

Simple models This category include some of the earliest attempts are avalanche
modelling, and generally produce very crude estimations of avalanche features. Some
of the earliest simple models simply consider the entire avalanche as a single element,
and really only model the friction against the terrain.

Intermediate models (depth-averaged models) For flowing avalanches most
models use depth-averaged mass and momentum equations to compute flow char-
acteristics. They commonly use the shallow water (Saint-Ventant) equations, and
are often used for simulation flowing avalanches. For these types of avalanches
several types of constitutive equations have been proposed; Newtonian fluids, Reiner-
Ericksen fluid, Bingham fluid, frictional Coulomb fluid and so on. A well-known but
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limited model is the Savage-Hutter model, which assumes that flowing avalanches
have many similarities with dry granular flows, and that the Coulomb law can be
used to describe the bulk behavior or flowing granular matter.

The SATSIE initiative have produced the MN2L, D2FRAM and other models which
are fairly advanced depth-averaged models.

For airborne avalanches intermediate models usually consider an airborne avalanche
as a one-phase flow. These models usually do so and also usually consider avalanches
as turbulent stratified flows, which means that the bulk behavior of an airborne
avalanche is well identified, in sharp contrast to flowing avalanches. The largest
differences among the models usually concern the boundary conditions, use of the
Boussinesq approximation and the closure equations for turbulence.

Three-dimensional computational models A rapid increase in computer
power has made it possible to do simulations in 3D. Compared to depth-averaged
models the largest problems concern numerical treatments. For airborne avalanches
there exist models using finite-volume codes for turbulent flows.

Small-scale models These types of real-world scale models are based on similar-
ities between avalanches and other gravity-driven flows. Models using both fluids
(in a water tank) and granular matter (e.g. pingpong balls) have been used. Since
gravity can not be scaled, these forms of models can never be entirely correct, but
they can nonetheless provide insights into the behavior of flowing materials.

2.3 Depth-integrated models

The current state of the art models for prediction rely on complex depth-integrated
models, which use many compensation factors. These models have been under
development for a long time. A classical model is the Savage-Hutter model, which
is a depth-averaged dynamical model of a fluid-like continuum. This model consists
of hyperbolic differential equations for the distribution of the depth and the depth-
averaged velocity components. The model consists of cohesionless granules which
form the continuum and was designed to prediction motion and deformation from
initiation to runout along an avalanche track on a terrain. This model has since
been extensively modified and improved. Hutter et al. [6] concludes that the Savage-
Hutter model is a valid model for sand avalanches, but that for snow avalanches it
may have to be complemented by a second viscous contribution.

There also exist some new models developed under the SATSIE (Avalanche Studies
and Model Validation in Europe) initiative such as MN2L and D2FRAM, which
are also depth-integrated models. The largest disadvantage of these models is that
they do not capture the full geometrical detail of an avalanche.
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2.4 Fluid-mechanics models

The use of fluid-mechanics for avalanche modeling has several key advantages. The
foremost is that unlike statistical models and other simplified models it carries the
promise of fully capturing all the effects of an avalanche. Of particular interest to
us is the fact that such a model can more fully capture the geometry of a moving
avalanche.
The use of fluid-dynamics for modeling of avalanche flow has not yet been considered
accurate enough for prediction of avalanche result. There are several key challenges
to using such an approach. Some of the larger challenges include problems due to
the wide range of particle sizes found in an avalanche, the fact that composition
of the avalanche changes over time and problems due to unknown boundaries and
initial conditions. In addition it is difficult to model snow as a fluid because it is
hard to fully quantify the rheometrical (the flowing properties) of snow.
It is not currently possible to properly determine the constitutive equations for
snow due to a lack of measuring equipment [5]. The basic constitutive relationships
of most types of avalanches, including moving soil, rock and snow are in fact largely
unknown due to complex and varying rheological behaviors [7].
In addition a fully 3-dimensional fluid-dynamics model is extremely computationally
heavy, so much so that it has only in fairly recent years become feasible to do such
simulations outside the context of large supercomputers.
Since the use of a 3D fluid-dynamics model is an area that is not as well explored
as some simplified avalanche models, it is of great interest to create an environment
where it is possible to explore the problem space and create models which fully
capture the desired effects.
The use of Non-Newtonian fluids as a modeling tool for snow avalanches has been
explored. Dent and Lang [8] and Maeno [9] have measured the velocity profile
within snow flows and generally deduced that snow generates a Non-Newtonian
viscoplastic flow, whose properties depend a great deal on density.
Nishimura and Maeno [10] experimentally tested various fluid models to describe
the motion of snow avalanches, including a Newtonian fluid model.
Kern et al. [11] have done extensive work on establishing a correct rheological
model for flowing snow. He argues that without a proper constitutive model, it is
impossible to establish a correct model. Though a common approach in avalanche
modelling is the use of depth-averaged models, he argues that these models can
never be truly correct due to a number of necessary assumptions (among them the
assumption that snow is a simple fluid). He presents two different rheological models
(a Herschel-Bulkley and a Cross-model) which can predict the velocity profile of
flowing snow in a large chute.
Ancey and Meunier [12] show how avalanche-velocity records can be used to deter-
mine the bulk frictional force, where a striking result is that the bulk behavior of
most snow avalanches can be approximated using a Coulomb frictional model.
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Platzer et al. [13] through a series of experiments in a snow chute determine the
coefficient of sliding friction for snow avalanches ranging from wet to dry. They did
experiments to establish the basal friction coefficient for dense flowing avalanches.
This parameter is crucial for determining the runout distance of snow avalanches.
They found that a Mohr-Coulomb relation of the form S = c+ bN (where S is the
ratio of shear and N is the normal stress) accurately describes the measurements
they made in a large chute and show that basal shearing is the primary frictional
mechanism retarding snow flows. In contrary to many postulated constitutive
relations for basal shearing there is no velocity dependence.
Bovet et al. [14] use Non-Newtonian model with a Bingham and Cross fluid to
simulate snow avalanches.
McClung and Schaerer [15] conclude that rheological parameters are affected by
shear rate and temperature. Increased amount of water cause reduced friction at the
snow/ground interface. The snow stiffness/viscosity decreases with water content.
Once excess water drains away the glide rate slows.
Ancey [5] says that the rheology of snow avalanches is extremely complex because
snow is thermodynamically very sensitive. Snow can hover around the triple-point
of water at 0◦C, leading to large variations in composition.

2.5 Geophysical Fluid Flows

Geophysics is the study of the whole Earth, and includes such areas as tectonic
plate movement, the internal structure of the earth, earthquakes, but also general
geomorphological flows such as avalanches. Flows of mud, soil, rock and snow a
Rheology is the study of the flow of matter. This includes fluids, but also solids
or granular matter which under certain conditions exhibit flowing behavior rather
than (elastic) deformation.
Rheology is the study of flow of matter and is concerned with not just liquids, but
also solids. Complex substances such as muds, sludges and suspensions are some
of the things that the science of rheology tries to understand. The flow of these
complex substances can not be captured using traditional Newtonian fluids, and
relies on the science of both Non-Newtonian fluids and the science of Plasticity (of
solid objects) to quantify, model and simulate how the flow behaves.
The key feature of rheology is that viscosity is not a constant, and can depend on a
variety of factors.
Avalanches of mud, soil, rock and snow are all types of geomorphological flows, even
though this term and geophysics in general is usually more concerned with flows on
large timescales, such as continental drift.
There exist several SPH-based models for simulation of geophysical flows.
McDougall and Hungr [16, 17] have developed a depth-integrated SPH-based model
for dynamic analysis of rapid flow slides, debris flows and avalanches. The model is
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capable of accurately predicting the margins of various curving flows using a single
set of input parameters.

Hungr [18] use the DAN and DAN3D models to model avalanches. The DAN3D
model is a SPH-based model based on the shallow-flow equations and model Non-
Newtonian fluids in a Lagrangian framework. They have open rheological kernels,
allowing for frictional, viscous or turbulent resistance acting on the base of an
internally frictional flow.

B. Ataie-Ashtiani [19] descrive a simulation of landslide impulse waves by incom-
pressible SPH, using a rheological model implemented as a combination of the
Bingham and general Cross models.

Laigle et al. [20] use a SPH method for a 2-dimensional numerical investigation of
mudflow and other fluid flow interactions with structures.

Ferrari et al. [21] use a SPH method to recreate a catastrophic dam break and the
resultant mudflow.

Bovet et al. [14] create a model for snow avalanches using Non-Newtonian fluids
with shear-thinning and Bingham-like constitutive behaviors.

Paiva et al. [22] implements a SPH-based simulation of viscoplastic materials where
fluids with high viscosity interact with solids. They demonstrate effects such as
creeping, melting, hardening and flowing and simulate materials such as jelly and
lava.

Hosseini et al. [23] implements a SPH-based model for generalized Non-Newtonian
flows using several rheological models, including Power-law, Bingham-plastic and
Herschel-Bulkley. They validate the model against explicit solutions and show
generally high accuracy.



Chapter 3

Computational Fluid
Dynamics

Figure 3.1: Computational Fluid Dynamics (CFD) Image of Hyper-X research
vehicle at Mach 7 with engine operating.

This chapter builds on our earlier work [4].

Fluid dynamics deal with the science of fluids (liquids and gases) in motion. This
is called fluid flow and can be used for modelling a variety for systems, with
some examples being aerodynamics, aeronautics(study of flight capable machines),
hydrology(the study of movement, distribution and quality of water on Earth i.e.
weather), and computational fluid dynamics (Figure 3.1 on page 131).

1Reprinted with permission from NASA.
http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/HTML/ED97-43968-1.html

http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/HTML/ED97-43968-1.html
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Computational fluid dynamics (CFD) is a sub-discipline of fluid dynamics, where
numerical methods and algorithms are employed to solve and analyze problems
involving fluid flows.
The history of CFD began with Bernoulli(1700-1782), who derived the famous
Bernoulli equations, followed by Euler(1707-1783) who proposed the Euler equations.
The Euler equations describe the conservation of momentum for an inviscid fluid, as
well as conservation of mass. Then came Navier(1785-1836) and Stokes(1819-1903)
who added support for viscous flows, thus giving us the Navier-Stokes Equations
(NSE). Since then there have been many additions to the field, but the Navier-Stokes
equations still remain as the basis of CFD, and are now well-established as a good
model for viscous flows.

3.1 The Navier-Stokes Equations

The Navier-Stokes equations describe the motion of a fluid substance and are
named after Claude-Louis Navier and George Gabriel Stokes. Navier and Stokes
formulated the equations in the 19th century and the equations can be found in
many formulations.
The most important assumption of these equations is that a fluid is a continuum,
not a sum of discrete elements but rather a continuous substance. When solved the
equations produce a velocity field, where each position in space is a vector of the
velocity in that position.

3.1.1 Eulerian and Lagrangian methods

The Navier-Stokes equations can be very time consuming to solve, especially for
3-dimensional volumes. This is because a numerical solution usually results in
non-linear partial differential equations. These can be solved by partitioning the
volume into a grid and solving using the finite difference or finite volume methods.
These methods are usually referred to as Eulerian methods.
An alternative to the Eulerian methods is Lagrangian(or particle-based) methods.
These methods work by dividing the fluid itself into discrete particles and then
applying the fluid equations to the particle mechanics.
Essentially the Eulerian method focuses on a spatially fixed volume, through which
fluid flows. The Lagrangian formulation follows an individual fluid parcel as it
moves through time and space (Figure 3.2 on page 15).

3.1.2 The Navier-Stokes Equations

The Navier-Stokes [24] equations in the Eulerian(grid based) formulation describe
a fluid flow in terms of velocities, not positions, in contrast to classical mechanics
where the goal is usually to find the position.
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t0

t1

Eulerian Lagrangian

Figure 3.2: The Eulerian and Lagrangian point of view.

There are two primary principles in play when considering a fluid, the conservation
of mass and the conservation of momentum.

3.1.2.1 Eularian formulation

The conservation of mass / continuity equation is given by:
∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

The conservation of momentum is given by:

ρ

(
∂v
∂t

+ v + v · ∇v
)

= −∇P +∇ · τ + f (3.2)

Wherev is the velocity field,ρ the density, P the pressure and τ is the viscous stress.

Advection The advection term (v · ∇v) in the Navier-Stokes can be described as
the time independent acceleration of a fluid with respect to space. Essentially the
fluid is transported along its own flow.

3.1.2.2 Lagrangian formulation

The conservation of mass / continuity equation is given by:

dρ

dt
= −ρ∇ · v (3.3)

Using the substantive derivative, which specifies: dv
dt = ∂v

∂t + v · ∇v, we get the
Lagrangian formulation of the conservation of momentum:
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dv
dt

= −1
ρ
∇P + 1

ρ
∇ · τ + f (3.4)

Essentially the advection term (3.1.2.1) is removed because fluid advection is implicit
through particle movement.
We can ignore the mass conservation (Equation 3.1) if we assume that all particles
have the same mass, and we have a constant number of particles.
We end up with the expression:

ai = − 1
ρi
∇Pi + 1

ρi
∇ · τi + fi = fpressurei + fstressi + fexternali (3.5)

where ai is the acceleration for a particle, fpressurei is the force contribution from
isotropic stress (pressure), fstressi is the force contribution from deviatoric stress
(viscosity) and fexternali is the force contribution from a external forces (e.g. gravity
and boundaries).

Isotropic stress (Pressure) The term −∇P in the Navier Stokes Equations
((3.2)) is the pressure gradient. The pressure gradient arises from the isotropic(invariant
with respect to direction) normal stresses which exist for almost all situations. The
pressure constrains the fluid in such a way that the volume of the fluid is constant.
This term moves the velocity field along the gradient of the pressure field, essentially
moving fluid from high pressure to low pressure areas.

Deviatoric stress (Viscosity/Shear forces) The term ∇ · τ in the Navier
Stokes Equations (Equation 3.2) is the viscous stress tensor and is the deviatoric/s-
hear stress of the fluid. For a Newtonian fluid the shear stress is proportional to
the shear strain rate, but for a Non-Newtonian fluid it can be dependent on a range
of factors (Section 3.2).

External forces The term f in the Navier Stokes Equations (Equation 3.6) is
an external force field working on the fluid, often the force of gravity.

3.1.2.3 Incompressible flow of Newtonian fluids

For incompressible flow of Newtonian fluids the formulation of the momentum
equation reduces to:

dv
dt

= −1
ρ
∇p+ µ

ρ
∇2v + f (3.6)

The shear stress term ∇·τ becomes µ∇2v, when the fluid is assumed incompressible
and Newtonian. The term µ is the dynamic viscosity and is the proportional
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constant between the shear stress and the shear strain rate. Due to the fact that
this proportion is constant for a Newtonian fluid it is simply denoted by the scalar
term µ.

This gives us the acceleration of a particle:

ai = − 1
ρi
∇Pi + µ

ρi
∇2vi + fi = fpressurei + fviscosityi + fexternali (3.7)

This formulation of the Navier-Stokes equations rules out the possibility of shock
waves, but holds true even when dealing with a “compressible” fluid under certain
situation.

Diffusion The term µ∇2v is essentially the deviatoric stress in an incompressible
fluid, and is often referred to as the diffusion of momentum. The term ∇2v is
the vector Laplacian of the velocity field and can be interpreted as the difference
between the velocity at a point and the mean velocity in a small volume surrounding
it. The term µ is the volume viscosity coefficient. This term can be explained as
the fluids tendency to resist flow changes depending on the viscosity of the fluid.

3.2 Newtonian Fluids and Viscosity

Viscosity is the measure of internal friction in a fluid. When an external force is
imposed on the fluid, the viscosity is the resistance to deformation.

Most people intuitively understand viscosity to be how “thick” a fluid is. Pure water
is then understood to be “thin”, and syrup is seen to be “thick”. Thus water has a
low viscosity, and syrup has a high viscosity. For everyday life this understanding
is usually sufficient. In fact most of the fluids that people see as fluids (water-like
substances) can usually be considered Newtonian fluids, because they are either
purely Newtonian, or their behavior can be approximated with a Newtonian model.

Sir Isaac Newton proposed the following Generalized Newtonian model [25]:

τ = µ(|γ̇|)γ̇ (3.8)

where τ is the shear stress rate, γ̇ is the shear strain rate and µ is the dynamic
viscosity.

The term |γ̇| is the second invariant of the strain rate, and is a measure of the
magnitude of the deformation rate. Similarly we use |τ | to denote the second
invariant of the shear stress rate.

The shear stress τ is usually called the viscous stress tensor and the shear rate γ̇ is
usually called the rate-of-strain tensor. In one dimension γ̇ = du

dy where du
dy is the

velocity gradient in the direction of shear.
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Figure 3.3: Stress-strain curve and for a Newtonian Fluid with a dynamic viscosity
of 1.5.

Effective or (apparent) viscosity is thus the ratio between shear stress and the shear
rate:

µeff = τ

γ̇
(3.9)

A fluid modelled by this equation is known as a Generalized Newtonian fluid, and
has a stress versus strain curve that is linear and passes through the origin (Figure
3.3 on page 18). Some examples of Newtonian fluids include oils, syrup, air and
other gases.

Viscosity can be decomposed into two components; the shear viscosity describes
the reaction in a fluid when shear stress is applied and bulk viscosity (also known
as volume viscosity) which describes the reaction to compression. Bulk viscosity is
important for modelling shocks in the fluid.

The SI unit of the dynamic viscosity µ (also known as η) is the pascal-second (Pa ·s),
which is identical to N ·m−2 · s.

Newton defined the measure of viscosity using a theoretical experiment where two
plates are arranged with a fluid layer held between them (Figure 3.4 on page 19).
Assume the fluid has a dynamic viscosity of one pascal-second and that the plates
are very large such that there is a no-slip condition (absolute friction) between the
plates and the fluid. Hold the bottom plate fixed and push the top plate sideways
with a shear stress equal to one pascal. During one second the plate will then move
a distance equal to the thickness of the layer between the plates.

It is also important to remember that temperature can be a large factor in the
dynamic viscosity of a fluid as a results of changes in pressure. As an example water
viscosity goes from 1.79 10−3Pa · s to 0.28 10−3Pa · s in the temperature range
from 0 °C to 100 °C.
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Figure 3.4: Viscosity in the two-plate example

3.3 Non-Newtonian Fluids

Non-Newtonian fluids are different from Newtonian fluids in that their effective
viscosity is not just linearly dependent on shear stress. The effective viscosity of a
Non-Newtonian fluid can in fact be non-linearly dependent on the shear stress, as
well as external factors such as time and temperature. Measuring (and quantifying)
the viscosity of these fluids can be difficult since fully isolating these factors is hard,
e.g. shearing in a fluid will itself generate heat, and thus change the viscosity.

Non-Newtonian fluids can be classified by what factors determine their behavior, as
well as what effect the external factors have on the fluid.

Fluids which change their behavior depending on time and prior stresses are said
to have memory.

Time-dependent viscosity Many fluids can be considered to have time-dependent
viscosity, where the viscosity changes depending on the time a given stress has been
applied.

Rheoptic fluids have an effective viscosity that increases as a function of the time a
given stress has been imposed. Rheoptic fluids are fairly rare, a good example is
whipped cream.

Thixotropic fluids have an effective viscosity that decreases as a function of the time
a given stress has been imposed. Examples of thixotropic fluids include certain
types of mud and clay

Shear-stress dependent viscosity Fluids which are shear-stress dependent
are categorized as either dilatant (viscosity increases with increased stress), or
shear-thinning (viscosity decreases with increased stress).

Dilatant (or shear-thickening) fluids are highly counter-intuitive in that their effective
viscosity increases when stress is applied. This phenomenon is a hot topic due to
potential applications for armor technology and protective clothing, since it would
allow the wearer to move with less restriction than a stiff armor, while still being
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Figure 3.5: Stress-strain curve and effective viscosity for a power-law fluid with
a flow consistency index of 1.5 and a flow behavior index of 0.5(shear-thinning),
1.0(Newtonian) and 1,5(shear-thickening).

protective against high-velocity impacts. The effect can be readily observed in a mix
of cornstarch and water, and has in fact been popularized to the degree where TV
shows have demonstrated the effect by filling entire swimming pools with dilatant
fluids, and then demonstrating the effect by walking across without sinking, and
then sinking when at rest. Other more everday dilatant fluids include,

Shear-thinning fluids are often referred to as pseudoplastic, and can be found in a
range of materials such as lava, paint, blood and ketchup.

3.3.1 Power-Law/Ostwald model

A power law fluid is a fairly simple Non-Newtonian model that can be used to
approximate the behavior of a real fluid. It is also known as the Ostwald-de Waele
law [25]:

µ(|γ̇|) = K |γ̇|n−1 (3.10)

Where K is the flow consistency index, and n is the flow behavior index.

This model can be used to simulate both shear-thinning (n < 1) and shear-thickening
(n > 1) fluids. When n = 1 the model will obviously reduce to a simple Newtonian
fluid.

3.3.2 Cross model

The cross model [26] is similar to the power model, but includes a lower and upper
bound on the viscosity, µ0 and µ∞. These bounds ensure that the fluid behaves like
a Newtonian fluid at low shear rates, and like a power-law fluid at high shear rates.
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Figure 3.6: Effective viscosity of a cross fluid, logarithmic scale on x-axis. Parameters
µ0 = 200, µ∞ = 1, n = 1 and K = 300

µ(|γ̇|) = µ∞ + µ0 − µ∞
1 +K(|γ̇|)n 0 ≤ µ0 ≤ µ∞ (3.11)

3.3.3 Bingham Plastic model

A Bingham plastic (fluid) is a viscoplastic material that flows like a fluid at high
stresses, but behaves like a solid material at low stresses (Figure 3.7 on page 22). It
has been used to model mud in offshore engineering and other slurries (a suspension
of particulate matter in a fluid).

τ = τp +Kγ̇ for |τ | ≥ τp (3.12)
γ̇ = 0 for |τ | ≤ τp (3.13)

Where K is the dynamic viscosity constant and τp is yield stress.

3.3.4 Herschel–Bulkley model

The Herschel-Bulkley is very popular model since it covers both shear-thinning and
thickening as well as a yield stress[25].

τ = (K |γ̇|n−1 + τp
|γ̇|

)γ̇ for |τ | ≥ τp (3.14)

γ̇ = 0 for |τ | ≤ τp (3.15)

Where the term τpis the yield stress.
Both the power-law and the bingham model are essentially edge cases of this model.
If n = 1 we get the Bingham model and if τp = 0 we get a power-law model. If
both n = 1 and τp =0 the model is reduced to a Newtonian fluid.
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Figure 3.7: Stress-strain curve for a bingham fluid with a dynamic viscosity constant
of 1.5. Note how it does not pass through the origin due to a nonzero yield stress.



Chapter 4

Smoothed Particle
Hydrodynamics

Figure 4.1: Our “Simple” SPH model implementation, 512K particles. Particles are
shaded in a hue gradient depending on their velocity.

Smoothed Particle Hydrodynamics is a method for approximating the solution of
numerical solutions to the equations of fluid dynamics. The basic idea is to represent
a continuous field A(x) by a Monte Carlo sampling of interacting smoothed volumet-
ric particles. It does this by representing the volume as a set of elements(particles)
and using these particles as interpolation points for which the properties of the
fluid can be calculated [27].

SPH does not use a grid to calculate spatial derivatives, instead these derivatives are
found by analytical differentiation of interpolation formulae [28]. How this can be
done is not intuitively obvious, but nevertheless a way of doing it was independently
proposed by Lucy [29] and Gingold and Monaghan [30].

Smoothed Particle Hydrodynamics was initially developed for use in astrophysics,
however it has since been used for modeling a variety of problems in fluid dynamics.
Because SPH is basically a method for approximation the continuum equations, it
can be used for a wide range of fluid dynamics problems. In particular it can be used
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h

Figure 4.2: The smoothing distance h and the surrounding particles within it.

for problems in incompressible flow by treating the flow as slightly compressible
with an appropriate equation of state [31].

By deriving the viscosity and pressure force fields directly from the Navier-Stokes
equations it is possible to very efficiently simulate the behavior of fluids [1]. It
is also possible to efficiently model the interaction between fluids with different
densities [32], which may be important for modelling snow avalanches.

The method has several attractive features, in the context of real-time simulation
the ease with which the method can be parallelized is perhaps chief among them.
Other advantages include the trivial conservation of mass, high efficiency and easily
trackable free surfaces [33]. The handling of complex boundaries of solids is also
much easier than with traditional Eulerian simulations, since there is no need for
computing complex grids.

Perhaps the biggest disadvantage is that it can be hard or computationally expensive
to extract a smooth surface from the particles, the method can also require a fairly
large number of particles for realistic results [33].

A good article on the use of SPH in the context of the environmental sciences is
the one by Cleary and Prakash [34].

4.1 The Equations of SPH

In SPH the different effects of Navier-Stokes are simulated by a set of forces that act
on each particle. These forces are given by scalar quantities that are interpolated
at a location r by a weighted sum of contributions from all surrounding particles
within a cutoff distance h in the space Ω [35] (Figure 4.2 on page 24).
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In integral form this can be expressed as follows [35]:

Ai =
∫

Ω
A(r′)W (r− r′, h)dr′ (4.1)

The numerical equivalent to 4.1 is obtained by approximating the integral interpolant
by a summation interpolant [35]:

Ai =
∑
j

AjVjW (rij , h) (4.2)

where j is iterated over all particles, Vj the volume attributed implicitly to the
particle j, rij= ri − rj where r is the position of a particle, and finally A is the
scalar quantity that is being interpolated. The summation is over particles which
lie within the radius of a circle/sphere centered at ri.

The following relation between volume, mass and mass-density applies [35]:

V = m

ρ

where m is the mass and ρ is the mass-density.

Combining this we get the basis formulation of the SPH interpolation function [27]:

Ai =
∑
j

Aj
mj

ρj
W (rij , h) (4.3)

where j iterates over all particles, mj is the mass of particle j, rj its position, ρj
the mass-density and Aj the scalar quantity at positionrj .

This function can be used to approximate any continuous quantity field, and can
be evaluated everywhere in the underlying space [35].

4.1.1 The Smoothing Kernel

The function W (rij , h) is the smoothing kernel, which is a scalar weighted function.
The smoothing kernel can be seen as an analogue to using different difference schemes
in finite difference methods. The function uses a position r and a smoothing length
h. This radius can be seen as a cutoff for how many particles will be considered
in the interpolation (Figure 4.2 on page 24). This cutoff radius sets W = 0 for
|rij | > h.

For a kernel several properties must hold [35], the first one is the normalization
condition:

∫
r

W (r, h)dr = 1 (4.4)
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the second condition is the Delta function property which can be observed when
the smoothing length approaches zero:

lim
h→0

W (rij , h) = δ(rij) (4.5)

where δ is Dirac’s delta function.

The third condition is the compact condition which ensures that only particles
inside the smoothing length are considered:

W = 0 when |rij | > h (4.6)

In addition a smoothing kernel should also be positive. If the kernel is both even
(W (r, h) = W (−r, h)) and normalized(4.4) it is of second order accuracy [1].

If W is the delta function, the interpolation function will reproduce A exactly.
However in practice this is not very useful since it requires a large smoothing length
and thus many particle neighbors. To improve computational performance W is
often a function that aims to provide as accurate an interpolation as possible while
maintaining a reasonable smoothing length.

In Müller et al. [1] and Desbrun and Gascuel [36] several kernels are introduced for
the different fields effects, such as viscosity and pressure. By using different kernels
for different effects, each kernel can be optimized for the specific demands of the
force that is being interpolated.

4.1.2 Derivatives

In SPH, the derivatives of a function can be obtained by using the derivatives of
the smoothing kernel, which results in the Basic Gradient Approximation Formula
(BGAF) Colin et al. [37]:

∇Ai =
∑
j

Aj
mj

ρj
∇W (rij , h) (4.7)

∇2Ai =
∑
j

Aj
mj

ρj
∇2W (rij , h) (4.8)

These formulations can unfortunately produce spurious results, and several cor-
rected formulations have been developed. One of these is the Difference Gradient
Approximation Formula (DGAF) Colin et al. [37]:

∇Ai = 1
ρi

∑
j

mj(Aj −Ai)∇W (rij , h) (4.9)

Which has the advantage that the force vanishes exactly when the pressure is
constant [28].
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Gradient Symmetrization The forces between two particles must observe New-
tons Third Law; for every action, there is an equal and opposite reaction. Pairwise
forces must be equal in size with opposite sign (fi = −fj ). This means that
the differentials in the Navier-Stokes equations that create these forces must be
symmetrized.

Monaghan [38] developed a symmetrization, referred to as the Symmetric Gradient
Approximation Formula (SGAF). This formulation conserves linear and angular
momentum exactly but is not as accurate as DGAF [37]. It is commonly used for
the pressure gradient.

∇Ai = ρi
∑
j

mj(
Ai
ρ2
i

+ Aj
ρ2
j

)∇W (rij , h) (4.10)

For a comparison of the BGAF, DGAF and SGAF formulations please see [37].

An alternative symmetrical formulation [39]:

∇Ai =
∑
j

mj

ρj
(Ai +Aj)∇W (rij , h) (4.11)

For a complete derivation as well as equivalent formulations for gradient of a vector,
dot product(divergence), tensor product and cross product please refer to [40].

Laplacian Correction The basic formulation of the Laplacian has been found
to be somewhat unstable under certain conditions, and there exist a wide range of
possible corrections.

Shao and Lo [41] developed a correction well suited for the correction of the Laplacian
in the viscous force:

∇ ·
(

1
ρ
∇A
)

=
∑

mj
8

(ρi + ρj)2
(Ai −Aj) · ∇W (rij , h)

|rij |2 + η2
(4.12)

Where η is a small number introduced to keep the denominator non-zero, usually
equal to 0.1h where h is the smoothing length.

For a more comprehensive review of SPH please refer to [40, 39].

4.2 Lagrangian Fluid Dynamics

The terms of the Lagrangian formulation (3.1.2.2) of Navier-Stokes can be modelled
using SPH by application of the SPH interpolation function (Equation 4.1).
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4.2.1 Density

The SPH formulations for the Navier-Stokes forces depends on the mass-density for
each particle, and as such the calculation of the density is the first step in the SPH
algorithm.

By setting the density (ρ) in the Navier-Stokes equations to be the interpolated
value (A) in the SPH interpolation function (Equation 4.3) we get the following
equation[1]:

ρi =
∑
j

mjW (rij , h) (4.13)

There exist alternative formulations of the mass density approximation, one alter-
native is to use the SPH version of the continuity equation:

dρi
dt

= ρi
∑
j

mj

ρj
(vi − vj) · ∇W (rij , h) (4.14)

where vi and vj is the velocity at particles i and j respectively.

4.2.2 Incompressibility

Using SPH we can find the mass-density ρ, but we also need to calculate the pressure
of the fluid. The SPH formulation is inherently compressible. When simulation an
incompressible fluid it is necessary to enforce the incompressibility by additional
calculations.

Poisson equation It is possible to directly solve the Poisson pressure equation
∇2P = ρ∇v

∆t directly [42, 43, 44, 45, 23], which means it is possible to achieve (near)
incompressibility . This is unfortunately computationally expensive and though
this method makes it possible to use large time steps, it also carries a higher cost
per time step.

Equation of State In this thesis, we use an equation of state to achieve weak
compressibility [27, 46, 47], which involves a stiff equation of state. This has the
disadvantage that we need to use small time steps, fortunately the cost of each time
step is also low.

An Equation Of State (EOS),is a relation between state variables, simply put it
defined a physical state of matter as a relation to another set of physical conditions.

By using an EOS we can define pressure P as a function of the mass-density ρ.
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There exist several possible EOS-formulations for incompressibility, Müller et al. [1]
uses the ideal gas state equation:

P = kρ (4.15)

Where k is a constant that depends on the temperature. Adding a rest density ρ0
that increases the numerical stability of the system:

P = k(ρ− ρ0) (4.16)

Harada et al. [48] add yet another compensating parameter, the rest pressure P0:

P = P0 + k(ρ− P0) (4.17)

An alternative equation is the Tait equation [47]:

P = B

((
ρ

ρ0

)γ
− 1
)

(4.18)

Where B is a pressure constant related to the bulk modulus of elasticity of the fluid,
ρ0 the reference/rest density, usually taken as the density of the fluid at the free
surface, γ is the polytrophic constant, usually between 1 and 7.

Enforcing compressibility through an EOS is not ideal since the EOS is essentially
a stiff equation, which can introduce instability in the system. In addition using an
EOS will cause compressibility, the amount dependent on the stiffness (values of
the constants).

When using an EOS it is important to be aware of the above, and to carefully
balance the timestep and the EOS constants such that the desired behavior is
achieved. For an interactive simulation compressibility may not be a problem, and
a large timestep highly desirable.

4.2.3 Pressure

The application of the SPH interpolation function 4.1 to the pressure term − 1
ρ∇p

of the Navier-Stokes equations (3.6) results in the following equation [1]:

fpressurei = −1
ρ
∇P = − 1

ρi

∑
j 6=i

mj
Pj
ρj
∇W (rij , h) (4.19)

However this force is not symmetric, so Müller et al. [1] presents the following
symmetrization which is well suited for the purposes for speed and stability:
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fpressurei = −1
ρ
∇P = − 1

ρi

∑
j 6=i

mj
Pi + Pj

2ρj
∇W (rij , h) (4.20)

Another well-known symmetrization that is well suited for accuracy, since it preserves
linear and angular momentum exactly [38, 49]:

fpressurei = −1
ρ
∇P = −

∑
j 6=i

mj(
Pi
ρ2
i

+ Pj
ρ2
j

)∇W (rij , h) (4.21)

4.2.4 Viscous Stresses

SPH was originally formulated for astrophysics simulations, and it was in that
context an artificial viscosity Π was first added to the momentum equation:

dvi
dt

= −
∑

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

+ Πij

)
∇W (rij , h)

For astrophysics it has been used for modelling strong shocks, but this artificial
viscosity has also been used to model real viscous terms. This approach to viscosity
modelling has however been shown to produce incorrect velocity profiles in some
situations [23] .
There now exist alternative ways of modelling viscosity.

4.2.4.1 Newtonian Stresses

Using the Newtonian incompressible formulation of the Navier-Stakes conservation-
of-momentum equation (3.6) it is fairly easy to formulate an exact SPH approxima-
tion to the viscosity force.
The application of the SPH interpolation function (Equation 4.1) to the viscosity
term µ

ρi
∇2v of the Navier-Stokes equations for incompressible flow (Equation 3.1.2.3)

results in the following (symmetrized) equation [1]:

fviscosityi = µ

ρi
∇2v = µ

ρi

∑
i 6=j

mj

ρj j
(vj − vi)∇2W (rij , h) (4.22)

This exact solution relies on a correct solution to the Laplacian of the smoothing
kernel, which is currently a weak point of SPH because this second derivative is
very sensitive to particle disorder.
Müller et al. [1] solves this problem by using a specialized smoothing kernel (4.3.2),
designed to prevent particle instability, which is sufficient for non-rigorous simula-
tions.
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Using a a corrected calculation for the Laplacian can more properly correct this
problem (Equation 4.12):

fviscosityi = µ

ρi
∇2v =

∑
mj

4(µi + µb)rij · ∇W (rij , h)
(ρi + ρj)2(|rij |2 + η2)

4.2.4.2 Non-Newtonian Stresses

For a Non-Newtonian fluid the calculation of viscosity is more complex. In order
to properly calculate both isotropic and deviatoric stresses a much more advanced
calculation of shear stresses in the fluid is necessary.

Hosseini et al. [23] demonstrates a SPH formulation which incorporates such a
deviatoric stress.

As we recall from Section 3.2 the classical constitutive law for Generalized Newtonian
fluids is given by Equation 3.8:

τ = µ(|γ̇|)γ̇

where τ is the viscous stress tensor and γ̇ the shear strain rate (deformation). The
term |γ̇| is the second invariant of the stress tensor, which is the magnitude of the
tensor and thus a measure of the intensity of deformation [23]:

|γ̇| =
√
trace(γ̇)2

Where trace is the matrix operation (trace(A) =
∑n
i=1 aii).

It is possible to express the shear stress γ̇ using the velocity tensor field:

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z


The velocity tensor field contains both a symmetric and an nonsymmetric part. The
nonsymmetric part is the rotation velocity tensor and should not affect the viscosity
since it does not contribute to fluid deformation. The symmetric part (deformation)
is defined as follows [25]:

γ̇ = 1
2
(
∇v + (∇v)T

)
(4.23)

Where ∇v is the velocity stress tensor and (∇v)T is simply the tensor transposed.
This rate-of-strain tensor is known as Cauchy’s strain tensor, the linear strain
tensor, or the small strain tensor.
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γ̇ = 1
2
(
∇v + (∇v)T

)
=


∂vx
∂x

1
2

(
∂vx
∂y + ∂vy

∂x

)
1
2
(
∂vx
∂z + ∂vz

∂x

)
1
2

(
∂vy
∂x + ∂vx

∂y

)
∂vy
∂y

1
2

(
∂vy
∂z + ∂vz

∂y

)
1
2
(
∂vz
∂x + ∂vx

∂z

) 1
2

(
∂vz
∂y + ∂vy

∂z

)
∂vz
∂z


The spatial derivatives in the velocity stress tensor ∇v can be either computed
directly using SPH [23] or more concisely by using [22] :

∇vi =
∑
j

mj

ρj
(vj − vi)⊗∇W (rij , h) (4.24)

Where ⊗ is the outer product and ∇v is the velocity stress tensor (a 3x3 matrix).
As we recall the constitutive equation for shear stress for a Generalized Newtonian
fluid is τ = µ(|γ̇|)γ̇. (Equation 3.8).
For Newtonian fluids the following form is recovered [23]:

τ = 2µγ̇

Where µ is simply the constant of dynamic viscosity, described in more detail in 3.2
on page 17.
Using these definitions it is also possible to model Non-Newtonian fluids. A fluid
with shear-stress dependent viscosity can be modelled by making µ dependent on
the shear strain rate γ̇ , through a rheological model such as those presented in
Section 3.3.
Now that we have a formulation of the shear stress τ a SPH approximation to the
viscous stress force follows naturally from Equation 4.11:

f stressi = 1
ρi
∇ · τi = 1

ρi

∑
j 6=i

mj

ρj
(τi + τj) · ∇W (rij , h) (4.25)

4.2.5 External Forces and Boundary Conditions

Various SPH methods can apply several types of external force. Beyond the common
forces from gravity and solid boundaries, effects such as buoyancy, surface tension
and artificial constructs such as waves can readily be applied.

4.2.5.1 Gravity

Gravity is applied directly to the SPH particles using:

f
gravity

i = g (4.26)

where g is the gravitational acceleration.
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4.2.5.2 Boundary conditions

There are several ways to handle boundaries.

Perfect reflection This is the simplest way to handle boundaries, where each
particle undergoes a (perfect) collision with a boundary and is reflected away. This
is a very naive solution and is not very accurate since it does not affect the SPH
solution itself, but the particles directly.

Repulsive forces This solution adds a “repulsive force” to each boundary, which
pushes particles away from the boundary, this is more accurate than a naive
reflection.

Müller et al. [1] implements collisions with the particle positions directly. If a
particle collides with a solid object, they are simply pushed out of the object and
the velocity that is perpendicular to the object is reflected.

Harada et al. [48] implement a collisions by affecting the pressure and density of the
particles. The pressure correction will essentially “push” particles back from the
surface. Because a surface will also be an “empty” volume, the density of nearby
particles is increased with a “wall weight function” that simulates the affect on
density that should result from contact.

Virtual particles This solution adds “virtual” or “ghost” particles Takeda et al.
[50], Morris et al. [51], which lie along the boundary and are fixed in space. This
solution is highly dependent on the placement of the virtual particles, but can be
more accurate since it affects the internal properties of the SPH continuum instead
of the positions of the particles themselves. The big disadvantage with this method
is that one has to ensure that all boundaries have correctly placed particles, but
the advantage is that one can use SPH forces to simulate boundary effects such as
friction and no-penetration.

Kernel Sum Deficiency Boundary conditions are problematic in SPH due the
kernel sum deficiency which occurs for particles at the boundary. The kernel
sum can become deficient when there are no (or few) neighboring particles in the
direction of the boundary. This problem is known as the “boundary deficiency
problem”. Various corrective solutions to this problem have been proposed [52],
such as compensating for the sum deficiency directly for boundary particles only.

For a more comprehensive review of SPH and how boundaries can be handled please
refer to Liu and Liu [39].



34 Smoothed Particle Hydrodynamics

4.3 Smoothing Kernels

The choice of smoothing kernel can be important for several aspects of a simulation.
Obviously the numerical accuracy is highly dependent on the smoothing kernel, and
research has shown that certain kernels offer better results than others [53]. The
computational efficiency of a kernel can also be significant, higher-order kernels can
carry a significantly higher computational cost, which may impose a limit on other
parameters of the simulation and thus negating the advantages. In the context of
GPU simulations piecewise kernels carry an additional performance impact due to
the high cost of branching (Chapter 5).

4.3.1 General Kernels

Several generalized smoothing kernel have been developed throughout the history
of SPH.

4.3.1.1 Gaussian

The Gaussian function is an obvious choice for a smoothing kernel, it is sufficiently
smooth even for high orders of derivatives. It does however carry a large computa-
tional cost. It also does not have compact support since it does not reach zero for
q > 2 , which means that one would theoretically have to evaluate all the particles
in the simulation.

Gaussian kernel
Gradient of Gaussian kernel
Laplacian of Gaussian kernel
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Figure 4.3: The Gaussian kernel and it’s derivatives along one axis in a 3-dimensional
space with a smoothing distance h=1.
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Wgaussian(rij,h) = αD exp−q
2

0 ≤ q ≤ 2 (4.27)

where q = |rij |
h and rij is the distance between particles i and j, and αD is a

dimensional factor which is 120
π0.5 in 1D , 1

πh2 in 2D and 1
π3/2h3 in 3D.

4.3.1.2 Piecewise Cubic Spline

The Cubic Spline kernel is the most widely used smoothing kernel. It was initially
introduced by Monaghan and Lattanzio [49] and offers a reasonable compromise
between computational cost and accuracy. In addition it has compact support.
This kernel is also the one that is most commonly used in SPH literature. The
biggest problem with this problem is that the second derivative is not smooth, thus
rendering it unsuitable for use in the calculation of the Laplacian.

Cubic Spline kernel
Gradient of Cubic Spline kernel
Laplacian of Cubic Spline kernel
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Figure 4.4: The Cubic Spline kernel and it’s derivatives along one axis in a 3-
dimensional space with a smoothing distance h=1.

Wcubic(rij,h) = αD


1− 3

2q
2 + 3

4q
3 0 ≤ q ≤ 1

1
4 (2− q)3 1 ≤ q ≤ 2
0 q ≥ 2

(4.28)

where q = |rij |
h and rij is the distance between particles i and j, and αD is a

dimensional factor which is 10
7πh2 in 2D and 1

πh3 in 3D.
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4.3.1.3 Piecewise Quintic Spline

The quintic spline was used by Morris et al. [51] to simulate low Reynolds number
incompressible flow. Unfortunately this kernel is very computationally costly.

Quintic Spline kernel
Gradient of Quintic Spline kernel
Laplacian of Quintic Spline kernel
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Figure 4.5: The Quintic spline kernel and it’s derivatives along one axis in a
3-dimensional space with a smoothing distance h=1.

Wquintic(rij,h) = αD


(3− q)5 − 6(2− q)5 + 15(1− q)5 0 ≤ q ≤ 1
(3− q)5 − 6(2− q)5 1 ≤ q ≤ 2
(3− q)5 2 ≤ q ≤ 3
0 q ≥ 3

(4.29)

where q = |rij |
h and rij is the distance between particles i and j, and αD is a

dimensional factor which is 120
h in 1D, 7

478πh2 in 2D and 3
359πh3 in 3D.

4.3.1.4 Quadratric

This kernel prevents particle clustering in compression problems (e.g no tensile
correction is needed). This is because the derivative always increases as particles
move closer, and always decreases as they move apart Crespo [53].

Wquadratic(rij,h) = αD

{
3
16q

2 − 3
4q + 3

4 0 ≤ q ≤ 2 (4.30)

where q = |rij |
h and rij is the distance between particles i and j, and αD is a

dimensional factor which is 2
πh2 in 2D and 51

4πh3 in 3D.
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Quadratic kernel
Gradient of Quadratic kernel
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Figure 4.6: The Quadratic kernel and it’s derivatives along one axis in a 3-
dimensional space with a smoothing distance h=1.

4.3.1.5 Wendland

This kernel Wendland [54, 55] has been found to give the best compromise between
accuracy and computational cost Crespo [53].

Wquadratic(rij,h) = αD

{
3
16q

2 − 3
4q + 3

4 0 ≤ q ≤ 2 (4.31)

4.3.1.6 Quartic

Liu et al. [56] has constructed a new smoothing kernel. This kernel satisfies the
normalization condition and both the function and the first derivative have compact
support. It is very close to the commonly used cubic spline, but has several
advantages over it. It is more stable [56] and it is not piecewise, which means there
is no need for branching in the evaluation of it.

Wquartic(rij,h) = αD

{
( 2

3 −
9
8q

2 + 19
24q

3 − 5
32q

4 0 ≤ q ≤ 2
0 q ≥ 2

(4.32)

where q = |rij |
h and rij is the distance between particles i and j, and αD is a

dimensional factor which is 1
h in 1D, 15

7πh2 in 2D and 315
208πh3 in 3D.

The relevant gradient and Laplacian versions of these kernels can be found in
Appendix Chapter A.
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Wendland kernel
Gradient of Wendland kernel
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Figure 4.7: The Wendland kernel and it’s derivatives along one axis in a 3-
dimensional space with a smoothing distance h=1.

4.3.2 Specialized Kernels

It is possible to create specialize smoothing kernels in order to increase performance
and stability. These kernels are generally not as accurate, and may introduce errors
in the simulation, but can significantly improve the overall stability of the system.
These kernel can also be less costly to compute.

4.3.2.1 Mass-Density

In Müller et al. [1] the Wpoly6 kernel is used for all interpolation except viscosity
and pressure. This kernel is highly performance efficient, since it is not piecewise(no
need for conditionals) and because |r| only appears squared.

Wpoly6(r, h) = 315
64πh9

{
(h2 − |r|2)3 0 ≤ |r| ≤ h

0 otherwise
(4.33)

Where r is the distance between two particles, |r| is the length of r and h is the
smoothing distance.

4.3.2.2 Pressure

The reason Wpoly6 is not used for pressure is that it has a vanishing gradient close
to zero. This means that particles in high pressure areas will not repulse each
other, which can lead to clustering. For this reason Müller et al. [1] uses a different
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Quartic kernel
Gradient of Quartic kernel
Laplacian of Quartic kernel
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Figure 4.8: The Quartic kernel and it’s derivatives along one axis in a 3-dimensional
space with a smoothing distance h=1.

smoothing kernel, from Desbrun and Gascuel [36]. The Wspiky (4.34) kernel solves
the problem by ensure that gradient does not vanish near zero.

Wspiky(r, h) = 15
πh6

{
(h− |r|)3 0 ≤ |r| ≤ h

0 otherwise
(4.34)

4.3.2.3 Viscosity

Viscosity can be thought of as smoothing(diffusing) the velocity field. In the context
of fluid simulation the smoothing of two velocities should lead to a reduction in
their relative velocity by conversion to heat. However for particles that are close
together the Laplacian of Wpoly6(4.33) is negative, leading to a relative increase
in their velocities[1]. This is a problem in a fluid simulation and is why a special
kernel is introduced for the interpolation of viscosity:

Wviscosity(r, h) = 15
2πh3

{
− |r|

3

2h3 + |r|2
h2 + h

2|r| − 1 0 ≤ |r| ≤ h
0 otherwise

(4.35)

The relevant gradient and Laplacian versions for some of these kernels can be found
in Appendix A.

4.3.3 Tensile Instability

In SPH tensile instability refers to an inherent instability in SPH which occurs
under certain conditions. This condition can be compensated for and corrected
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Figure 4.9: The three specialized smoothing kernels Wpoly6, Wspiky and Wviscosity.
The thick lines show the kernels, the thin lines their gradients in the direction
toward the center, and the dashed lines the Laplacian. The diagrams are differently
scaled. They are plotted along one axis in a 3-dimensional space with a smoothing
distance h = 1. Reprinted from Müller et al. [1] with permission from Matthias
Müller.

using a tensile correction term Crespo [53].



Chapter 5

Parallel Computing and the
Graphics Processing Unit

This chapter gives an overview of different parallel computing models, the emergence
of the GPU as a computing platform and the NVIDIA CUDA computing architecture
for GPUs. Most of the material in this chapter was covered in our earlier work [4].

5.1 Parallel Computing

Parallel computing is a form of computation where many calculations are performed
simultaneously. There exist several different forms of this principle, ranging from
parallelism on the bit-level (operating on multiple bits at the same time, e.g. all
modern computers), instruction-level parallelism (e.g. pipelining in modern CPUs),
data parallelism (same calculations on different data) and task parallelism (different
calculations on the same data). These different forms were first classified by Michael
J. Flynn, who created what is now known as Flynn’s taxonomy:

• SISD: Single Instruction, Single Data stream

• SIMD: Single Instruction, Multiple Data streams

• MISD: Multiple Instruction, Single Data stream

• MIMD: Multiple Instruction, Multiple Data streams

The Graphics Processing Unit (GPU) is a specialized accelerator, used for the
acceleration of graphics. Modern GPUs can be found in embedded systems, mobile
phones, personal computers, game consoles and recently in large clusters. Their
parallel nature is designed to efficiently handle large amounts of floating-point
operations.

A recent development is to use these accelerators as general purpose computing
devices. General-Purpose Computing on Graphics Processing Units (GPGPU)
has led to a small revolution in the parallel power available to consumers and
researchers alike. The Floating Point Operations Per Second (FLOPS) on the
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GPU has quickly outpaced the CPU (Figure 5.2 on page 43). Another advantage
of the GPU is the massive amount of memory bandwidth available (Figure 5.1
on page 42). These two factors combine to make the GPU extremely interesting
for the simulation of computationally intense models. A modern GPU allows for
real-time implementations of physical models that have previously been considered
the domain of large clusters.

This project will focus on parallelism in the form of SIMD (or SIMT). SIMT is
a variation on SIMD, introduced by NVIDIA. In an NVIDIA GPUs threads are
grouped together in SIMT warps. SIMT allows for all threads to diverge, but threads
within the same warp must converge after branching. The SIMT model allows for
control-flow on a thread-level, a significant addition in terms of programmability.

Figure 5.1: The change in memory bandwidth of modern GPUs compared to CPUs.
Reprinted from [2], with permission from NVIDIA.

5.2 General Purpose Computing on Graphics Pro-
cessing Units (GPGPU)

With GPUs now commonly found in most personal computers, a small revolution
is taking place due to the sudden increase in parallelism that is possible for most
personal computers. Modern GPUs can provide a massive boost in computing
power for problems that are parallelizable, for the general consumer problems such
as video encoding, image recognition and physics in games are currently seeing a
large jump in performance.



5.2 General Purpose Computing on Graphics Processing Units (GPGPU) 43

Figure 5.2: The development in peak Floating Point Operations Per Second (FLOPS)
for GPUs and CPUs. Reprinted from [2], with permission from NVIDIA.

For the scientific community the recent developments in GPGPU is also creating
new possibilities, specifically for the High Performance Computing (HPC) com-
munity. Problems such as molecular dynamics, fluid simulation, medical imaging,
cosmological simulations and many others are seeing large improvements in perfor-
mance. Such improvements often mean that scientists can quickly and more easily
visualize their problems. Having to wait for simulation results is often a tedious
and frustrating part of running simulations on large clusters.

Certain problems can see improvements on an order of a magnitude and above [57].
However it is important to keep in mind that the GPU is not a magical cure-all
for performance limitations. Modern GPUs can provide massive improvements in
parallelism and memory bandwidth, but there are also many limitations to what a
GPU can do efficiently.

The biggest bottleneck for the GPU is due to the limitations of the CPU-GPU PCI
Express bus. While the internal memory bandwidth of most modern GPUs is more
than 100 GB/s, the PCI-E 2.0 x16 bus is less than 10 GB/s. For problems where it
is not possible to fit everything into the GPU memory, this can be devastating for
performance. The NVIDIA GeForce GTX 470 (Figure 5.5 on page 46) has 133.9
GB/s internal memory bandwidth, while the NVIDIA Tesla S1070 can boast a
massive 410 GB/s of internal memory bandwidth.
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Figure 5.3: Bandwidth available to the device from various sources. Reprinted from
[3], with permission from Rob Farber.

5.3 Compute Unified Device Architecture (CUDA)

Using programming languages such as C for CUDA, OpenCL and DirectCompute, it
is possible to run general purpose code on the GPU. While it was previously possible
to use the old graphics-centered paradigm of shaders to perform computations, it
was very difficult and limited.

In this thesis, we will focus on the Compute Unified Device Architecture (CUDA)
by NVIDIA since it is the most mature of all the GPU-computing technologies.

CUDA is a parallel computing architecture developed by NVIDIA. Compared to
the earlier GPGPU programming models, where the graphics API was used, CUDA
offers a number of advantages. CUDA allows developers to use shared memory,
scattered reads and integer and bitwise operations. It is also much easier to program,
since the entire API has been designed for computation, not graphics.

Much of the information in this section is from the NVIDIA CUDA Programming
Guide [58].

5.3.1 CUDA Hardware Model

On March 26, 2010 NVIDIA launched the new GF100 architecture. This architecture
was codenamed Fermi and features a number of novel features for GPUs. In
particular it has a number of features which makes it more powerful for general
computations.

The old GT200-series was the 10th generation of GPUs from NVIDIA, it consists
of 1.4 billion transistors, in sharp contrast to the new Fermi chip. The Fermi chip
consists of 3.0 billion transistors, more than double that of the previous architecture.

To describe the general layout of a CUDA-enabled GPU we will describe the Tesla
C1060. The Tesla C1060 is built on the GT200 architecture and consists of 240
cores. These cores are organized into 30 streaming multiprocessors (SMs), where
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Figure 5.4: The difference between a CPU and GPU in the distribution of transistors.
Reprinted from [2], with permission from NVIDIA.

each of them contain 8 single precision (SP) and one double precision (DP) core.
The Tesla C1060 can at peak provide 933 SP FLOPS and 78 DP FLOPS.

Each of the SMs have 2 special function units (SFUs) that contain hardware
for accelerating often-used mathematical functions, as well as a multithreaded
function unit responsible for creating, managing and executing concurrent threads
in hardware with zero scheduling overhead [58].

The CUDA hardware model can be summarized as a set of SIMT multiprocessors
with on-chip shared memory. A thread is mapped directly to a scalar processor core,
and the multiprocessor unit work with 32 threads at a time in a grouping called a
warp. The SIMT model allows for threads inside a warp to diverge through data-
dependent conditional branches (control-flow). When a branch diverges performance
can suffer because the warp must wait for the threads to converge again. For this
reason control-flow should be kept at an absolute minimum. As long as all the
threads in a warp do not diverge performance is not impacted significantly.

The distribution of transistors on the GPU is significantly different from the CPU,
with the GPU allocating a significantly large percentage to arithmetic logic units
(ALUs) (Figure 5.4 on page 45).

5.6
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Figure 5.5: The NVIDIA GeForce GTX 470

Tesla C1060 Tesla C2050(Fermi)
Streaming Processor Cores 240 448

Frequency of processor cores (MHz) 1300 GHz 1150
Single Precision GFLOPS 933 1030
Double Precision GFLOPS 78 515

Total Dedicated Memory (MB) 4GB (GDDR3) 3GB (GDDR5)
Memory Clock (MHz) 800 1500
Memory Interface 512-bit 384-bit

Memory Bandwidth (GB/sec) 102 144
Max Power Consumption 187.8 W 247 W
Number of Transistors 1.4 billion 3 billion

Generation 2008 2010
GTX 260 GTX 470(Fermi)

Streaming Processor Cores 192 448
Frequency of processor cores (MHz) 1242 1215

Single Precision GFLOPS 715 933
Double Precision GFLOPS 78 78

Total Dedicated Memory (MB) 896MB (GDDR3) 1280MB (GDDR5)
Memory Clock (MHz) 999 1674
Memory Interface 448-bit 320-bit

Memory Bandwidth (GB/sec) 111.9 133.9
Max Power Consumption 182 W 187.8 W
Number of Transistors 1.4 billion 3 billion

Generation 2008 2010

Table 5.1: Important specifications of NVIDIA GPUs.
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Figure 5.6: CUDA Hardware Model. Reprinted from [2], with permission from
NVIDIA.

5.3.2 CUDA Programming Model

The CUDA programming model is summarized fairly quickly;

• Parallel portions of an application is executed on the device as kernels.

• One function at a time(1)

• Many threads run the same function/code in parallel acting on different pieces
of data.

However the devil is in the details, and there are certainly a lot of details to keep
in mind.

The core concept in CUDA is the kernel, a function that is executed by many
threads concurrently, where each thread is given an unique index. This index can
be used compute memory addresses and make control decisions.

To facilitate cooperation and dependencies between threads, CUDA introduces the
concept of thread blocks. When launching a CUDA kernel, one does not just specify
the number of threads (the block size), but also the number of thread blocks (the
grid size) (Figure 5.7 on page 48).

1Fermi has support for concurrent execution of kernels
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Threads within a block can cooperate via shared memory. Shared memory is much
faster than the device memory, and can be seen as a user-managed cache.

The hardware is free to schedule thread blocks on any multiprocessor, and it is this
relaxation between the hardware and software that makes it possible to efficiently
and seamlessly utilize the GPU as a general purpose stream processor.

Threads within a block can also synchronize access to global memory by fulfill-
ing certain coalescing rules. If memory accesses are not coalesced, a significant
performance hit is usually incurred.

Occupancy When launching kernels on the GPU one must specify the block
and grid size. These two parameters decide the occupancy of the GPU. The
multiprocessor occupancy is the ratio of active warps to the maximum number of
warps supported on a multiprocessor of the GPU, essentially a measure of how
much of the GPU is utilized.

Depending on the resource usage of a kernel (registers, shared and constant memory)
it may not be possible to fully utilize all the multiprocessors on the GPU.

As long as the kernel is bandwidth bound, improving occupancy will generally lead
to higher performance.

Figure 5.7: CUDA Grid, block and thread model. Reprinted from [2], with permis-
sion from NVIDIA.
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5.3.3 CUDA Memory Model

In the CUDA memory model there are several distinct types of memory. Memory
access is often a major bottleneck for CUDA applications and as such it is important
to fully understand the various limitations and advantages of the different memory
types.
There are 3 major separate hardware memories:

1. The host (CPU) memory

2. The global device (GPU) memory

3. The on-chip device (GPU) memory.

These different hardware memories are separated into several distinct memories in
the memory model, where memories using the same hardware can have different
characteristics due to effects from coalescing, caching and bank conflicts.
Coalescing is the effect that happens when the CUDA hardware can collect memory
request from threads in a wrap and handle them as a single group, enabling a
massive boost to the memory bandwidth.
Bank conflicts apply to shared memory, which is divided into banks.

5.3.3.1 Coalescing

In order to get coalescing memory reads from the global memory, a number of
restrictions apply.

• Data must be read in 4,8 or 16-byte words.

• Structures larger than 16 bytes are automatically broken up into several load
instruction, the user can specify alignment and padding by using alignment
specifiers.

• Threads in a half-warp should access memory simultaneously.

For compute capability 1.0/1.1 devices the following restrictions also apply:

• Threads must access the words in sequence.

• All words must lie in the same segment of size equal to the memory transaction
size.

For compute capability 1.2(and above) these restrictions are relaxed, threads can
access memory in any order (and can access the same address).
For more details on coalescing please refer to the NVIDIA CUDA Programming
Guide [58].
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Figure 5.8: A simplified view of the the CUDA memory hierarchy. Reprinted from
[2], with permission from NVIDIA.

5.3.3.2 Memory Types

In the following table the properties and relative performance of the different
memory types are enumerated. It is important to note that most of these memories
are merely abstractions, not real hardware.
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Type Access Visibility Lifetime HW placement
Registers RW Per thread Thread On-chip

Shared memory RW Per block Block On-chip
Local memory RW Per thread Thread Device memory

Global (device) memory RW Global Manual Device memory
Constant memory R Global Manual Device memory
Texture memory R Global Manual Device memory

Host (CPU) memory RW NAa Manual Host memory
aHost memory can only be accessed directly from the GPU by utilizing the new zero-copy

feature introduced in CUDA 2.2

Table 5.2: CUDA memory types. Data from [3].

Type Cached Performance Cycles
Registers no fast Zero to one

Shared memory no fast, coalescing, banks Singlea

Local memory nob slow Hundreds
Global (device) memory noc slow, coalescing Hundreds

Constant memory yes fast Singled

Texture memory yes slow, coalescing hundreds
Host (CPU) memory no slow hundreds

aIf no bank conflicts are incurred
bFermi includes an L1 cache that can cache local memory
cFermi includes an L1/L2 cache that can cache global memory
dThe first cache miss will incur a global memory read, subsequent hits will be a single cycle.

Table 5.3: CUDA memory performance characteristics. Data from [3].

Registers Accessing a register will generally add no extra cycles per instruction.
In the current generation of cards (GT200) each MP on the device will have 8192
registers divided among the thread blocks that execute on the MP. Thus the number
of registers available in each thread depends on the number of blocks as well as the
block size.

Local Memory Access to local memory is as expensive as access to the global
memory, but are always coalesced since they are by definition on a per-thread basis.
Local memory access willoccur if insufficient register space is available in a function.
Use of this memory should obviously be avoided if at all possible.
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Constant Memory Constant memory is a cached part of global memory. The
first access to this memory will create a cache miss and a read from global memory,
but subsequent access will hit the cache and be 1 cycle. The GT200 is equipped
with 8KB of constant memory per SM (64KB total), which the new Fermi cards do
not improve upon.

Global Memory Global memory is the largest memory available on the device
itself. The Tesla C1060 has 4GB of GDDR3, while consumers cards are generally
below or around 1GB. Access to the global memory is generally very costly, so
care should be taken to optimize such access according to the rules of coalescing
(5.3.3.1).

It is possible to apply a cache to global memory called the texture cache, so named
because it utilizes GPU hardware that is used for accessing textures in memory.
The texture cache can generally improve performance, but more so if the memory
request are not coalescing, but still have some locality.

Shared Memory The shared memory is an on-chip memory that can be seen as
a user-managed cache. The current generation (GT200) is equipped with 64KB,
which is not a lot and can be a restriction for several problems. Shared memory is
divided into banks, access to banks is governed by specific rules. Provided these
rules are followed no bank conflicts will occur and an access will be as fast as a
register

Cache In the new GF100 architecture (Fermi) from NVIDIA there are two new
caches. The L1 (16KB or 48KB) and the L2 (768KB) cache.

The L2 cache works for global memory reads and the L1 cache works for both local
memory (register spills) and global memory reads.

The L1 cache has configurable size for the global and the local memory, either 16/48
or 48/16 for L1 cache or shared memory.

One interesting fact is that the L1 cache has a higher bandwidth than the old
texture cache, which means that it is no longer safe to assume that using the texture
cache will be always be beneficial. In fact we show that using the texture cache is
still important when your memory accesses have spatial locality ( 8.2.6 on page 110).

5.3.4 Accuracy and Scaling

There has been much controversy surrounding the issue of double precision floating
point accuracy and the GPU. The old GT200-architecture has very low double
precision architecture, and many felt that the GPU is not suitable for real scientific
work due to this fact. Fortunately NVIDIA has realized that there is a real desire
for double precision, and with the new Fermi architecture there is support for much
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higher double precision performance. Unfortunately the increased double precision
performance is only available on the Tesla-series GPUs.

Another feature that is exclusive to the Teslas is Electronic Error Correction (ECC)
for the memory. The issue of errors has become increasingly important, especially
if the GPU is to be used in large clusters. By using some of the memory on the
GPU for ECC, the failure-rate for memory reads drops dramatically. The Tesla
cards also provide much more memory than the GeForce-line, and as such they are
generally much more suited for GPU computing.

The Fermi architecture provide a more accurate implementation of floating point,
more specifically the new IEEE 754-2008 floating-point standard. This change also
means that some old CUDA-code may not behave in the exact same manner, more
details on this is available in the NVIDIA CUDA Programming Guide [58].



54 Parallel Computing and the Graphics Processing Unit



Chapter 6

Models and Implementation

We have thus far investigated the possibilities for creating an interactive avalanche
simulation, and have found that an SPH-based fluid simulation with support for
Non-Newtonian viscosity is the best choice for simulating geomorphological flows
interactively. SPH is fairly well suited for a GPU-based implementation, and we
have shown in a previous work Krog [4] that SPH on the GPU can give good
performance.

In this thesis, we have developed a new framework for GPU-based SPH simulations
described in Chapter 7. We use this framework to implement two different SPH
models.

A large part of the goal for our thesis is to implement fluid models suitable for
interactivity or “real-time” performance. The focus of our work is thus on the
efficiency and computational performance of the simulation, not accuracy.

To achieve high performance we make use of an acceleration data structure (7.1.1.2)
which makes it possible to exploit the power the GPU, and also extensive optimiza-
tions of the code itself (7.1.3).

Our SPH models are:

1. Simple SPH model

This is a reimplementation of our previous implementation [4], in the context
of our new framework.

The model itself is based on the one by Müller et al. [1] and is designed for
interactivity.

2. Complex SPH model

This model is a new and more “complex” model. We combine some of the
techniques used in Müller et al. [1] with models from Hosseini et al. [23] and
Paiva et al. [22]. Compared to the Simple model we use a more accurate
smoothing kernel, we correctly calculate shear forces and we support a range
of rheological models which enable us to simulate Non-Newtonian fluids.
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6.1 The SPH Algorithm

Both our SPH models use the same basics steps in the algorithms. One iteration of
the algorithm is one timestep, so all the steps of the algorithm must be executed
every time.
The first step is to update the acceleration data structure (7.1.1.2).
Secondly the SPH force calculations must be done, these are essentially the SPH
sums. The order in which these sums are calculated is driven by data dependencies
between the calculations. In SPH, the force interpolation function 4.3 is dependent
on the density, so before any of the force density functions can be calculated the
density for each particle has to be calculated.
Finally the integration step does time integration of the acceleration from the SPH
force, applies external forces and does color calculation and other minor steps.

Update data structure

SPH forces

Integrate

External 
forces

Time 
integration

Color 
calculation

Hash
Radix 
Sort

Update 
lists

Calculate 
density

Calculate 
forces

…

Figure 6.1: The 3 main parts of the fluid simulation.

6.2 Simple SPH model

The “simple” SPH model is based on the model by Müller et al. [1]. This is a weakly
compressible Newtonian formulation for interactive use, meaning it trades accuracy
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for performance.

The implementation of this model is described in greater detail in Krog [4], but
we will include a brief description here since there are significant changes in both
implementation and performance.

6.2.1 Model

This model uses the specialized smoothing kernels described in 4.3.2, and there are
3 main equations.

The SPH density (4.2.1):

ρi =
∑
j 6=i

mjWpoly6 (6.1)

The SPH pressure force (4.2.3):

fpressurei = − 1
ρi

∑
j 6=i

mj
Pi + Pj

2ρj
∇Wspiky (6.2)

Where the pressure P is found using an equation of state based on the ideal gas
law (4.2.2):

P = k(ρ− ρ0)

And finally the SPH viscosity force (4.2.4.1):

fviscosityi = µ

ρi

∑
j 6=i

mj
vj − vi
ρj

∇2Wviscosity (6.3)

6.2.2 Precalculation

As in the previous implementation, we move all constants outside of the summation.
In addition we simulate a single phase fluid with constant mass for each particle,
which means that the mass term becomes a constant and can also be moved outside.

ρi = m ∗W coeffs
poly6

∑
j 6=i

W variable
poly6 (6.4)

fpressurei = −m ∗ ∇W coeffs
spiky ∗

1
2 ∗

1
ρi

∑
j 6=i

Pi + Pj
ρj

∇W variable
spiky (6.5)
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Figure 6.2: Calculation of forces for Complex SPH model

fviscosityi = µ ∗m ∗ 1
ρi
∗ ∇W coeffs

spiky

∑
j 6=i

vj − vi
ρj

∇2W variable
viscosity (6.6)

Where we use the syntax W variable to denote the variables in the smoothing kernel
and W coeffs the coefficients that can be precalculated. These coefficients can be
found in Chapter A, and will not be included in the following explanations for
reasons of brevity.

The data dependencies for this simple model means that we need 2 summation
steps. Both the pressure and the viscosity force depends on the density calculations,
so we need a separate summation step for the density, and then we can combine
the calculation of the pressure and the viscosity in a single summation step.

All the coefficients outside the summation are combined in the actual code to limit
memory access, but are kept separate here for clarity.

6.2.3 Pseudocode

Here we present pseudocode for the SPH calculations, the actual code can be found
in Section B.7.

The calculation of the density is one of the necessary summations in the SPH
algorithm (6.1), this is our Sum1 kernel.

Since the two forces, pressure and viscosity, are not data-dependent on each other
their calculation can be combined in the same iteration loop, this greatly improves
the performance since it is limits the amount of global memory reads (6.2). This is
our Sum2 kernel.
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Algorithm 6.1 Pseudocode for Simple SPH density calculation, the SimpleSPH
Sum1 kernel.

1 for all particles i:
2 density_i = 0
3 for all neighboring cells c:
4 for all particles j in cell c:
5 vector r = particle_pos_i - particle_pos_j
6 scalar rlen = length(r)
7 if(rlen <= smoothing_length)
8 density_i += Wpoly6variable::Kernel(smoothing_length, r, rlen)
9 density_i *= particle_mass * Wpoly6coeff

Algorithm 6.2 Pseudocode for Simple SPH forces calculation, the SimpleSPH
Sum2 kernel.

1 for all particles i:
2 force_i = 0
3 vector f_pressure = 0
4 vector f_viscosity = 0
5

6 for all neighboring cells c:
7 for all particles j in cell c:
8 vector r = particle_pos_i - particle_pos_j
9 scalar rlen = length(r)

10 if(rlen <= smoothing_length)
11 scalar h_rlen = smoothing_length - rlen
12

13 f_pressure += ( (pressure_i + pressure_j) / density_i * density_j
) * Wspikyvariable(smoothing_length, r, rlen)

14 f_viscosity += ( (veleval_j - veleval_i) / density_i * density_j )

* Wviscosityvariable(smoothing_length, r, rlen)
15

16 force_i += particle_mass * Wspikycoeff * f_pressure
17 force_i += particle_mass * Wviscositycoeff * f_viscosity
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6.2.4 Resource usage and Occupancy

Using the kernel resource usage we have collected from ptxas during the compilation
(7.1.3.1), we have optimized the kernel block size launch parameters for optimal
occupancy on the device.
We need to compile to separate versions, one for sm_13 (the old GT200 architecture)
and one of sm_20 (the new GF100/Fermi architecture).

Kernel Registers Shared Memory Constant Memory
Grid_Hash 14 48+16 60

Grid_Update 8 160+16 140+4
Sum1 22 128+16 140+4
Sum2 35 96+16 140+4

Integrate 24 224+16 248+24+8+28

Table 6.1: Resource usage for Simple SPH kernels for GT200 architectures.

GT200 architecture Giving us the following ideal block size and occupancy:

Kernel Block size Occupancy
Grid_Hash 128 100%

Grid_Update 256 100%
Sum1 128 63%
Sum2 448 44%

Integrate 128 63%

Table 6.2: Ideal block size and resulting occupancy for Simple SPH kernels for
GT200 architectures.

Fermi architecture We achieve better occupancy on the Fermi architecture due
to the architectural changes [58].

Kernel Registers Shared Memory Constant Memory
Grid_Hash 16 0 80+60

Grid_Update 13 0 216+36+8
Sum1 24 0 152+24+8
Sum2 32 0 128+24+8

Integrate 26 0 248+24+8+28

Table 6.3: Resource usage for Simple SPH kernels for Fermi architectures.

Giving us the following ideal block size and occupancy:
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Kernel Block size Occupancy
Grid_Hash 128 100%

Grid_Update 256 100%
Sum1 224 88%
Sum2 128 67%

Integrate 352 81%

Table 6.4: Ideal block size and resulting occupancy for Simple SPH kernels for
Fermi architectures.

It is interesting to note here that due to changes in the Fermi architecture, shared
memory us no longer used for storing the parameters to the kernel functions,
meaning that we can clearly see that none of the kernels actually use any shared
memory.

6.3 Complex SPH model

The “Complex” Non-Newtonian fluid model is based on the previously presented
Newtonian fluid model. It differs most significantly in the calculation of fluids
stresses and viscosity. We use the shear stress calculations from Hosseini et al. [23]
in combination with the pressure calculations from Paiva et al. [22] and Müller
et al. [1] creating a model that includes correct calculation of shear stresses while
remaining suitable for interactivity. This is a critical point since the original model
in Hosseini et al. [23] includes an explicit calculation of the Poisson equation for
the pressure, a computationally very costly calculation.

We have not validated the model and it should be noted that our model is has been
designed to allow for interactive or near-interactive simulation performance, not
physical accuracy.

We use the model to simulate snow avalanches, but it is equally well or perhaps more
suited to other geomorphological flows that are not as complex as a snow avalanche.
Hosseini et al. [23] uses their model to simulate mud slides, Paiva et al. [22] simulate
lava flows. Using our implementation for these kinds of geomorphological flows is a
possible future work.

6.3.1 Model

As with the Simple SPH model there are a few equations that are most important:

The SPH density:

ρi =
∑
j 6=i

mjWpoly6 (6.7)
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For the SPH pressure force (4.2.3), we employ the alternative, more accurate version
which conserves linear and angular momentum (Equation 4.21):

fpressurei = −
∑
j 6=i

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

)
∇Wspiky (6.8)

Where the pressure P is found using an equation of state based on the ideal gas
law (4.2.2):

P = k(ρ− ρ0)

We have found that using the artificial viscosity from the Simple model with a
low viscosity coefficient helps with stability, and makes it possible to simulate with
larger timesteps:

fviscosityi = µ

ρi

∑
j 6=i

mj
vj − vi
ρj

∇2Wviscosity (6.9)

We also use XSPH (6.5) to maintain a more ordered movement of particles:

fxsphi =
∑
j 6=i

2mj
(vj − vi)
(ρi + ρj)

Wpoly6 (6.10)

Using the velocity stress tensor calculation (Equation 4.24):

∇vi =
∑
j

mj

ρj
(vj − vi)⊗∇Wcubic

We can compute the SPH stress force (4.2.4.2):

f stressi = 1
ρi

∑
j 6=i

mj
τi + τj
ρj

· ∇Wcubic (6.11)

Where γ̇ = 1
2
(
∇v + (∇v)T

)
(Equation 4.23) and τ is defined with a rheological

function. We support several rheological models, which are described in more detail
in Section 3.3.

Smoothing Kernels We choose to use the cubic spline smoothing kernel for the
calculation of the fluids stresses. This is done for two reasons; the first being that
this leads to a more accurate simulation and secondly because we wish to have a
model which rely on a large amount of branching. From a performance evaluation
perspective this is interesting because it is more fair to include calculations that
other SPH models are likely to require. If further performance is desired the Quartic
smoothing kernel (4.3.1.6) is worth investigating since it is not piecewise, and is
thus better suited for the GPU.
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6.3.2 Precalculation

As with the simple SPH model we move all applicable constants outside the
summation loop as well as make the mass term a constant:

ρi = m ∗W coeffs
poly6

∑
j 6=i

W variable
poly6 (6.12)

fpressurei = −m ∗ ∇W coeffs
spiky

∑
j 6=i

(
Pi
ρ2
i

+ Pj
ρ2
j

)
∇W variable

spiky (6.13)

fxsphi = 2mW coeffs
poly6

∑
j 6=i

(vj − vi)
(ρi + ρj)

W variable
poly6 (6.14)

fviscosityi = µ ∗m ∗ 1
ρi
∗ ∇W coeffs

spiky

∑
j 6=i

vj − vi
ρj

∇2W variable
viscosity (6.15)

∇vi = m
∑
j

1
ρj

(vj − vi)⊗∇Wcubic (6.16)

τ = rheological function()

f stressi = m

ρi

∑
j 6=i

τi + τj
ρj

· ∇Wcubic (6.17)

This complex model is very different as far as computational cost, since it requires
3 summation loops, instead of just 2. This is because the calculation of the stress
force depends on the velocity tensor (6.16) which again depends on the density
calculation (6.12).
These dependencies can naturally not be combined, and must be calculated sepa-
rately. In addition these summation steps involves calculations on tensor matrices
(3x3) which greatly increase the amount of memory usage, which is critical for
the performance. Finally we also employ a more accurate smoothing kernel (cubic
spline) which introduces additional branching.

6.3.3 Pseudocode

Here we present pseudocode for the SPH calculations, the actual code can be found
in Section B.7.
The calculation of the density is one of the necessary summations in the SPH
algorithm, this step is identical to that in the Simple SPH model (Algorithm 6.1),
the Sum1 kernel.
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Figure 6.3: Calculation of forces for Complex SPH model

Algorithm 6.3 Pseudocode for Complex SPH velocity tensor calculation, the
Complex SPH Sum2 kernel.

1 for all particles i:
2 matrix3 sum_velocity_tensor = 0
3

4 for all neighboring cells c:
5 for all particles j in cell c:
6 vector r = particle_pos_i - particle_pos_j
7 scalar rlen = length(r)
8 if(rlen <= smoothing_length)
9 scalar h_rlen = smoothing_length - rlen

10 sum_velocity_tensor = outerproduct((veleval_j - veleval_i)/(
density_j), Wcubic::Gradient(...));

11

12 matrix3 velocity_tensor_i = cFluidParams.particle_mass *
sum_velocity_tensor;

13 // calculation of rheological model
14 ...



6.3 Complex SPH model 65

Algorithm 6.4 Pseudocode for Complex SPH forces calculation, the Complex SPH
Sum3 kernel.

1 for all particles i:
2 vector force_i = 0;
3 vector f_xsph = 0;
4 vector f_pressure = 0;
5 vector f_viscosity = 0;
6 vector f_stress = 0;
7

8 for all neighboring cells c:
9 for all particles j in cell c:

10 vector r = particle_pos_i - particle_pos_j
11 scalar rlen = length(r)
12 if(rlen <= smoothing_length)
13 scalar h_rlen = smoothing_length - rlen
14 f_xsph = ( (veleval_j - veleval_i) / (density_i+density_j) ) *

Wpoly6variable::Kernel(smoothing_length, r, rlen)
15 f_pressure += ( (pressure_i + pressure_j) / (density_i*density_j)

) * Wspikyvariable(smoothing_length, r, rlen)
16 f_viscosity += ( (veleval_j - veleval_i) / (density_i*density_j) )

* Wviscosityvariable(smoothing_length, r, rlen)
17 f_stress += dotproduct((stress_tensor_i+stress_tensor_j)/(

density_j), Wcubic::Gradient(...))
18

19 f_xsph *= 2 * particle_mass;
20 force_i += particle_mass * Wspikycoeff * f_pressure
21 force_i += particle_mass * Wviscositycoeff * f_viscosity
22 force_i += particle_mass * f_viscosity / density_i

In the Complex model we need to calculate the velocity tensor, and a rheological
model, this we call the Sum2 kernel (Algorithm 6.3).

Finally we need to do calculation of the various forces in the Complex model. This
we do in a kernel we call Sum3 (6.4).

6.3.4 Rheological Models

In our implementation we support several rheological models. In 3.3 we describe
these models, here we will show how we implement them.

All these implementations depend on the calculation of the deformation tensor γ̇
and the “deformation amount” |γ̇|:

1 matrix3 deformation_tensor_i = 0.5*(velocity_tensor_i + transpose(
velocity_tensor_i));

2 float t = trace(deformation_tensor_i);
3 float deformation_amount = sqrtf(t*t);
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Newtonian Rheology The implementation of a Newtonian rheology is very
simple, since the viscosity is linear.

1 stress_tensor = viscosity*deformation_amount*deformation_tensor_i;

Power-Law Rheology The implementation of the Power-Law rheology follows
Equation (3.10) very closely, with one large exception. In the Power-Law model
there is no maximum or minimum for the fluid viscosity. This does not work very
well in a simulation, since the simulation is only stable for viscosities in a certain
range (determined in part by the size of the time-step). To prevent instability we
add a naive clamping to the viscosity value so as to ensure it does not exceed or
fall below some safe values.

1 float viscosity = K*pow(deformation_amount,n-1.0f);
2 viscosity = clamp(viscosity, 1.0f,300.0f);
3 stress_tensor = viscosity*deformation_tensor_i;

Cross Rheology The implementation of the Cross rheology also follows it’s
equation very closely (Equation3.11). As for the Power-Law model we add clamping
to ensure stability.

1 float viscosity = K*pow(deformation_amount,n-1.0f);
2 viscosity = clamp(viscosity, 1.0f,300.0f);
3 stress_tensor = viscosity*deformation_tensor_i;

Bingham Rheology The Bingham rheology differentiates itself from the previ-
ously described rheological models in that it has a “solid” zone below a given yield
stress value. As in [23] we choose to emulate this solid zone by giving the fluid a
high viscosity value.

1 stress_tensor = yield_stress + K*deformation_tensor_i;
2 float s = trace(stress_tensor);
3 float stress_amount = sqrtf(s*s);
4 if(stress_amount <= yield_stress) {
5 stress_tensor = 500*deformation_amount*deformation_tensor_i;
6 }

Herschel-Bulkley Rheology The implementation of the Herschel-Bulkley rhe-
ology (Equation (3.14)) follows that of the Bingham-rheology closely.

1 stress_tensor = (K*pow(deformation_amount,n-1.0f) +yield_stress/
deformation_amount)*deformation_tensor_i;

2 float s = trace(stress_tensor);
3 float stress_amount = sqrtf(s*s);
4 if(stress_amount < yield_stress) {
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5 stress_tensor = 500*deformation_amount*deformation_tensor_i ;
6 }

6.3.5 Resource usage and Occupancy

Using the kernel resource usage we have collected from ptxas during the compilation
(7.1.3.1), we have optimized the kernel block size launch parameters for optimal
occupancy on the device.

We need to compile to separate versions, one for sm_13 (the old GT200 architecture)
and one of sm_20 (the new GF100/Fermi architecture).

GT200 architecture The occupancy of the Complex model is much worse than
that of the Simple model due to the higher register usage.

Kernel Registers Shared Memory Constant Memory
Grid_Hash 14 48+16 60

Grid_Update 7 192+16 156+4
Sum1 22 144+16 156+16
Sum2 36 144+16 156+16
Sum3 58 144+16 156+16

Integrate 27 256+16 156+12

Table 6.5: Resource usage for Complex SPH kernels for GT200 architectures.

Kernel Block size Occupancy
Grid_Hash 256 100%

Grid_Update 256 100%
Sum1 128 63%
Sum2 256 50%
Sum3 256 25%

Integrate 256 50%

Table 6.6: Ideal block size and resulting occupancy for Complex SPH kernels for
GT200 architectures.

Fermi architecture As with the Simple model we we achieve better occupancy
on the Fermi architecture due to the architectural changes [58].
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Kernel Registers Shared Memory Constant Memory
Grid_Hash 16 0 80+60

Grid_Update 13 0 216+36+8
Sum1 24 0 168+36+8
Sum2 38 0 168+36+8+4
Sum3 60 0 168+36+8+4

Integrate 29 0 288+36+8+4

Table 6.7: Resource usage for Complex SPH kernels for Fermi architectures.

Giving us the following ideal block size and occupancy:

Kernel Block size Occupancy
Grid_Hash 256 100%

Grid_Update 256 100%
Sum1 192 88%
Sum2 416 54%
Sum3 64 33%

Integrate 256 67%

Table 6.8: Ideal block size and resulting occupancy for Complex SPH kernels for
Fermi architectures.

As seen for the Simple model, shared memory us no longer used for Fermi-cards for
kernel parameters.

6.4 Boundary Conditions

We choose to employ a fairly standardized “repulsion” force for the boundaries
(4.2.5.2). This method was chosen for the ease with which multiple types of
boundaries can be implemented. The repulsion force is fairly easily implemented
for both “wall boundaries” as well as “terrain”.

As in our previous implementation we choose to use a repulsion force to prevent a
particle from penetrating a boundary (7.1.1.4).

For wall/grid boundaries this is simply implemented by using a check for each of
the walls in the grid (6.5).
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Algorithm 6.5 Pseudocode for collision handling repulsion force against a wall
boundary in the x direction.

1 for particle i in all particles:
2 d = boundary_distance - (particle_position_x - grid_min_x)
3 if(d > EPSILON)
4 f_repulsion += calculateRepulsionForce(...)

In addition we add a friction force (7.1.1.4). For an avalanche the terrain friction
is very important. The basal stresses and friction determines a large part of the
overall behavior of the avalanche.

Algorithm 6.6 Pseudocode for collision handling friction force against a wall
boundary in the x direction.

1 for particle i in all particles:
2 d = boundary_distance - (particle_position_x - grid_min_x)
3 if(d > EPSILON)
4 f_friction += calculateNoSlipForce(...)

Terrain collision detection and handling To add support for terrain collision
we add calculations for determining the height of the terrain at a given position.

The terrain data is supplied in a heightmap (Figure 6.4a on page 69), essentially an
image where each pixel is a color value which determines the height at that position.

(a) Terrain heightmap image. (b) Terrain normal map image.

Figure 6.4: Terrain heightmap and normal images.
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Each particle is checked for a collision against the terrain by finding the terrain
height at the position of the particle and then checking if the particle is beneath
the terrain.

This makes it possible to check if a particle is colliding with the terrain, but it does
not take into account the slope of the terrain at that position. Using a normal map
(Figure 6.4b on page 69) we find the normal of each face in the terrain. Using this
normal we simply apply the repulsion and friction forces as for the wall boundaries.

Figure 6.5: The terrain with face normals.

6.5 Integration of Forces

The final step in the SPH algorithm is the integration of the various forces. In this
step we also do various other calculations, such as the calculation of the colors for
the particles.

Time Integration The integration scheme chosen is the “Leap-Frog” integrator
[59], an integrator that is accurate to second-order:

xi+1 = xi + vi+1/2dt (6.18)

vi+1/2 = vi−1/2 + aidt (6.19)

where i is time steps.

The name of this integrator is a result of the above formulation of it; the velocities
“leap over” the positions.

This scheme can also be formulate in a form where all quantities are defined at
integer times only:

xi+1 = xi + vidt+ ai
2 i
dt2 (6.20)
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Figure 6.6: The leap-frog integrator.

vi+1 = vi + (ai + ai+1)
2 dt (6.21)

Leap-Frog is a fairly good compromise between the somewhat naive Euler method
and more advanced methods that require more than a single evaluation for each
force. Such advanced methods include the third-order Runge-Kutta methods, which
has been used for SPH models [21].

XSPH An additional smoothing of the velocity integration is used for the Complex
SPH model. This technique is called XSPH [60]:

vi = vi + ε
∑
j 6=i

2mj
(vj − vi)
(ρi + ρj)

W (rij , h)

Where ε is a parameter in the range [0, 1], typically 0.5.

XSPH essentially computes an average velocity from the velocities of neighboring
particles

With SPH it is also possible to use adaptive time integration. Desbrun and Gascuel
[36] employ adaptive time integration based on the Courant-Friedrichs-Lewy [36]
criterion. This criterion intuitively means that if a phenomenon propagates with a
maximum velocity v, it must not be integrated with a too large time step, or some
grid points will be leaped [36].
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Chapter 7

Simulation Framework
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SPH Simulation Library

Figure 7.1: Overview of the SPH simulation framework.

As development of our SPH implementations progressed it became clear that it
would be a good idea to create a general framework for doing SPH computations
on GPUs. By creating separate modules that encapsulate certain functionality,
the code base is overall much cleaner and it is possible to more easily create new
simulations.

In our framework we include functions for calculating many common SPH opera-
tions and also include support for both loose and tight integration with external
applications.
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7.1 Simulation Library

To ensure that the simulation code is not dependent on any external applications
or application-specific code it was decided to move all the simulation code into a
separate library. Doing so makes it possible to use the simulation library from any
number of external applications. In our framework we have made both a console
test application and a 3D rendering application which uses the simulation library
and the API it provides.
The simulation library includes several components, including specialized code for
accelerating nearest-neighbor particle simulations on the GPU, SPH calculation
functions and helper components such as settings and memory buffer management.

7.1.1 Components

As far as possible most of these components have been implemented in the reduced
subset of C++ which is supported in the NVIDIA CUDA compiler. Use of templates
and subclassing substantially reduces the amount of code and makes it possible to
modularize at a highly granular level.

7.1.1.1 Parallelization of SPH on GPUs

Our simulation library has been created with the express purpose of doing SPH
calculations on the GPU. To this end it is important the SPH calculations can
utilize the GPU, and that it can do so as efficiently as possible.
The GPU is very powerful, it has high memory bandwidth and can also do a lot
of calculations due to the massive parallelism. There are however a large number
of constraints that apply to GPU code and it is important to create an efficient
mapping between the algorithm and the GPU code in order to achieve high efficiency.
When doing calculations on the GPU the issue of parallelization is first and foremost.
We choose to use one thread on the GPU for every particle in the simulation, which
is the natural choice, since we want to parallelize as much as possible in order to
increase GPU utilization.
Unfortunately SPH is not perfectly parallelizable since there are data-dependencies
between particles in the domain of the smoothing length. Fortunately this smoothing
length is fairly small, which means that each particle/thread need only read values
from a small number of nearby particles, not all the particles in the simulation.
When doing these neighbor reads there are two large issues. How to find and read
the properties of nearby values, and how to order the pattern with which these reads
occur. Doing a naive brute-force O(N2) search for neighbors, is very inefficient, so
a better solution is needed.
On the GPU it is very important to achieve coalescing memory accesses and ordering
the neighbor reads according to the coalescing rules is a very hard problem.
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7.1.1.2 Nearest-Neighbor Search using a Uniform Grid

To efficiently find and read neighbor values in the SPH calculations we use the
algorithm which we presented in [4]. This algorithm is originally from Green and
NVIDIA [61] and previously implemented in NVIDIA [62]; a hashed, radix sorted,
uniform grid.

By dividing the simulation domain into equally sized cells, where the cell size is
equal to the SPH smoothing length it is only necessary to check the particles in the
nearby cells. For 2D this is 9 cells to check, and in 3D 29 cells.

h

Figure 7.2: 2D uniform grid with a cell size equal to the smoothing distance h.

The algorithm steps are as follows:

1. Divide the simulation domain into a uniform grid.

2. Use to the spatial position of each particle to find the cell it belongs to.

3. Use a spatial hash function on the particle cell position.

4. Sort the particles according to their spatial hash.

5. Reorder all the particle parameters in sorted buffers.

6. Create cell indice buffers which track the start and end indices for all cells in
the sorted buffers.

Particles in the same cell will then lie consecutively in the linear buffer. Finding
the indices for each cell is simply a look-up in the cell indice buffers, and finding
particles in neighboring cells is simply a matter of iterating over the correct indices
in the buffer.

For the sorting we used the fastest radix sort available for the GPU at the time of
implementation [63]. A new sorting method is available [64] which improves the
sorting performance by 2x to 3.7x, but as of the time of this thesis, an implementation
had not yet been publicized.
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The details of the implementation can be found in [4] and can be summarized by
these steps:

1. Hash the particles by their wrapped cell position in the uniform grid

2. Radix sort the particles by their spatial hash

3. Updating all particle parameter arrays so as to be sorted

We have reimplemented this algorithm in our own framework, and we provide
modularized functions for doing the calculations and lookups. The source code for
our implementation can be found in Section B.2.

7.1.1.3 Code Helpers

Settings and Parameters We have included support classes for handling settings
and parameters to the simulation. These classes include event-based feedback for
when settings are changed. A simulation implementation adds settings (with sane
defaults) and can add itself to the event callback. Whenever a setting is changed,
the callback will then be used to notify the event listeners. This is very useful since
the settings classes can be exposed to an external user of the simulation.

–AddSetting(…)
–RemoveSetting(…)
–AddCallback(…)
–RemoveCallback(…)
–SetValue(…)
–GetValue(…)
–PrintAll()

SimSettings

(a) Simplified class diagram of
SimSettings class.

–Get(…)
–GetPtr(…)
–SetBuffer(…)
–RemoveBuffer(…)
–AllocBuffers(…)
–FreeBuffers(…)
–MemsetBuffers(…)

SimBufferManager

(b) Simplified class diagram of
SimBufferManager class.

Figure 7.3: Class diagrams of code helper classes.

This design makes it possible to add support for instantaneous changes. One could
for example imagine a Graphical User Interface (GUI) that allowed a user to change
parameters in real-time.

Memory Allocation and Buffer management When implementing a simula-
tion memory management can be a significant overhead. To ease the use of memory
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Simulation

Simulation

SimSettings

SimSettings

GUI

GUI

AddCallback()

AddSetting()

GetSettings()

SetValue()

ValueChanged()

SetValue()

ValueChanged()

ValueChanged()

Figure 7.4: Sequence diagram of Simulation-Settings-GUI interaction.

Figure 7.5: Class diagram of SimBufferManager class.

buffers we have created a number of classes that wrap the memory buffers. Using
the SimBufferManager class utilization of memory buffers is essentially abstracted
away from the implementation itself.

Using the SimBufferManager an implementation can specify what buffers it needs
and easily allocate and free them:

Algorithm 7.1 Example of using the SimBufferManager class
1 mSPHBuffers->SetBuffer(BufferSphForceSorted, new SimBufferCuda(

mCudaAllocator, Device, sizeof(float_vec)));
2 mSPHBuffers->SetBuffer(BufferSphPressureSorted, new SimBufferCuda(

mCudaAllocator, Device, sizeof(float)));
3 mSPHBuffers->SetBuffer(BufferSphDensitySorted, new SimBufferCuda(

mCudaAllocator, Device, sizeof(float)));
4

5 mSPHBuffers->AllocBuffers(numParticles);
6 mSPHBuffers->FreeBuffers();

A typical use case here is that the implementation specifies what buffers it needs in
the constructor, and allows external entities to overrule these buffers later. This
scenario is used to implement the rendering API used for seamless enabling of
interactive rendering.

In addition to the two SimBufferManager class we have also added a SimBuffer
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class, which is simply an abstract class that represents a memory allocation.

The advantage of using a class for this is that the entire system can allow use of
specialized buffers, this is especially important since it makes it possible to hide the
complexity that arises from our real-time rendering integration.

We implement two different subclasses for this class, a SimBufferCuda class which
is essentially just a linear GPU buffer and a specialized buffer type called OgreS-
imBuffer, which is an OpenGL or Direct3D9 vertex buffer that is rendered in the
rendering application. Since the entire system is designed to use the abstract
baseclass SimBuffer this specialized buffer class requires no additional code in the
general framework and is used seamlessly by the simulation library.

–MapBuffer()
–UnmapBuffer()
–IsMapped()
–Alloc(size)
–AllocElements(…)
–GetElementSize()
–Free()
–GetSize()
–GetPtr()
–Memset(…)

SimBuffer

SimBufferCuda SimBufferOgre

Figure 7.6: Class diagram of SimBufferManager class.

Finally we have added a SimCudaAllocator which is simply a wrapper around the
CUDA allocation functions. This wrapper is very useful since it allows use to keep
track of the amount of memory that is allocated.

7.1.1.4 SPH calculations

We have added functions for calculating many common SPH operations.
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On of the biggest advantages of using SPH is how easily it can handle interaction
with complex boundary conditions. Unlike Eulerian methods, there is no need to
generate a mesh, which means that there is also no need for a computationally
costly operation. This is particularly important when dealing with simulations
where the boundaries within the domain is animated.

Boundary Repulsion Force In our framework we include implementations of
two different boundary forces, a repulsion force and a friction force.

We use the repulsion force described by Amada [65] to repel particles from boundaries
(Figure 7.7 on page 79):

frepulsei =
{
Ksd− (vi · n)Kd)n d > ε

0 otherwise
(7.1)

where d is the particle distance to the boundary, ε is the collision accuracy (a small
number), vi is the velocity of particle i, n is the surface normal of the wall, Kstiff

is a stiffness parameter and Kdamp is a dampening parameter. This force acts as a
spring, the more a particle penetrates a boundary, the more it is pushed away from
the boundary.

d

frepulsion

Figure 7.7: The particles inside the boundary are pushed back by a force that is
proportional to the depth into the boundary.

Algorithm 7.2 Pseudocode for collision handling repulsion force.
1 vector calculateRepulsionForce(...)
2 return (boundary_stiffness * boundary_distance - boundary_dampening *

dot(normal, vel)) * normal;

The full source code can be found in Section B.4.
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Boundary Friction Force For the friction force we use a fairly simple kinetic
friction coefficient. The friction coefficient simply reduces the velocity along the
boundary (Figure 7.8 on page 80).

ffrictioni = −Kkinetic(vi − vi(vi · n)) (7.2)

where vi is the velocity of the particle, n is the normal of the boundary and Kkinetic

is the kinetic friction coefficient.

d

ffriction

Figure 7.8: The particles inside the boundary are affected by a friction force which
acts in the opposite direction of velocity along the boundary.

Algorithm 7.3 Pseudocode for collision handling friction force.
1 vector calculateNoSlipForce(...)
2 // the normal part of the velocity vector (ie, the part that is going "

towards" the boundary
3 float3 v_n = vel * dot(normal, vel);
4 // tangent on the terrain along the velocity direction (unit vector of

tangential velocity)
5 float3 v_t = vel - v_n;
6 return friction_kinetic * -v_t;

The full source code can be found in Section B.4.

Smoothing Kernels One of the central calculations in SPH is the smoothing
kernel, in our previous implementation these were hardcoded. In our new framework
we include implementations of several smoothing kernels, most of which are described
in Section 4.3.
We have implemented the following smoothing kernels in our framework:

• Cubic

• Gaussian
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• Poly6

• Quadratic

• Quintic

• Spiky

• Viscosity

The full source code can be found in Section B.6.

Here we show the source code for the implementation of the first derivative of the
cubic spline smoothing kernel (4.3.1.2)

Algorithm 7.4 An example of the implementation of the gradient of a smoothing
kernel (the cubic kernel).

1 //third order B-spline
2 class Wcubic {
3 public:
4 static __device__ __host__ float3 Gradient(float smoothing_length, float

smoothing_length_pow2, float smoothing_length_pow3, float
smoothing_length_pow4, float3 r, float rlen, float rlen_sq)

5 {
6 float Q = rlen / smoothing_length;
7 if(Q <= 1)
8 {
9 float c = 1 / (M_PI *(smoothing_length_pow3));

10 return - r * c * ( 3/(smoothing_length_pow2) - (9*rlen)/(4*
smoothing_length_pow3) );

11 }
12 else if(Q <= 2)
13 {
14 float c = 3 / ( 4* M_PI * (smoothing_length_pow4));
15 float dif = Q-2;
16 return - r * (c * dif * dif) / rlen;
17 }
18 return make_float3(0.0f);
19 }
20 };

7.1.2 Code techniques

In our framework we make use of several code techniques. One of the principal
challenges with developing for CUDA is that there is no linking for device code. In
practice this means that you need to keep all your functions inside a single file, or
include files manually into a one big file.

We choose the second solution, each of the components in the framework is split
into it’s own file which can be included when needed.



82 Simulation Framework

Another challenge is the lack of function pointers on the GPU (though the new
Fermi architectures has support for this). Without function pointers it is difficult to
create generalized functions that can be used for several data types. One example of
this is the uniform grid. Ideally one would want the implementation of the uniform
grid to be completely modular, such that it could be used with any number of data
structures.

We achieve this by using c++ templating.

7.1.2.1 Templating

Templates in c++ is simply put a very powerful macro-language. We exploit
the limited subset of templating that is available in CUDA to achieve greater
modularization of the framework components.

Below is an example of how the iteration over neighbors in the SPH calculation is
removed from the specific implementation of the SPH model:

Algorithm 7.5 Pseudocode explaining the use of the templated uniform grid
neighbor iteration .

1 class Sum1 {
2 public:
3 struct Data
4 {...}
5 class Calc
6 {
7 public:
8 void PreCalc(...)
9 {...}

10 void ForNeighbor(...)
11 {...}
12 void PostCalc(...)
13 {...}
14 }
15 }
16 void Kernel_Sum1(...)
17 {
18 // call the uniform grid iteration function on our SPH sum1 class/function
19 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step1::

Calc, Step1::Data>, Step1::Data>(....);
20 }

In this example we define a SPH calculation class that has a “Data” struct, which
contains all the variables that are necessary. There is also an internal class called
“Calc” which contains the three functions that are necessary for the neighbor
iteration. A “Precalc” function which is run before the iteration over neighbor, a
“ForNeighbor” function which is run for each neighbor and a “PostCalc” function
which is run after the neighbor iteration.
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Though this solution is not the most elegant it provides a very large benefit; there
is no need to reimplement the neighbor iteration algorithm for each and every SPH
summation. We have implemented two different SPH models, with a total of 5
summations. By splitting the uniform grid neighbor iteration functionality into a
separate component we have been able to optimize that single function much more
easily, since there is no need to change source code i 5 different locations.

We also use templating to avoid expensive branching due to if-testing. An example
of how we use this is the implementation of the hue-gradient calculations in our
framework. By using templating to specify the desired gradient, the CUDA compiler
creates several separate versions of the function that calculates the hue gradient. By
passing the gradient type parameter as a template argument instead of a function
argument, the CUDA framework compiles several versions of the function and
chooses the correct function at runtime. This removes the need for expensive
branching inside the function.

7.1.2.2 Code quality

In doing research for this thesis we studied the code of several simulation libraries
and found that it is very common that the readability of the core algorithms are
often very low. It is a common practice to maintain very shortand variable names
and there are often very few comments. This can make the code easier to work for
the principal author, but for new developers it is very hard to read and understand.

To avoid this problem we resolved to focus on the quality of the code, to include
adequate comments and to ensure that the code itself is clear enough that it is
understandable for new developers.

As part of this strategy we have tried to make the code both as concise and
performant as possible, and a large part of this is made possible by the use of fairly
high-level data structures and functions.

C for CUDA support a number of default datatypes such as float3 (a 3-dimensional
vector of float values), but has no support for higher-level constructs such as matrices.
The tensors in the complex SPH model are 3x3 matrices, and one of the new data
structures we have added is the matrix3. This new datatype is implemented using 3
float4 vectors and we have also included operations such as the outer product (used
in 7.6). We also added support for high-performance operations such as texture
fetches, which is seamlessly handled in the same manner as with other texture
fetches using a new function called “tex1DfetchMatrix3”.

The end result is that code that operates on the SPH tensors is much simplified.
Instead of manually keeping track of all the float values in each matrix and manually
doing matrix operations, clear and concise functions can be used and both high
maintainability and readability is ensured.

In the following example the velocity tensor in the shear stress calculations of
the complex SPH model is updated.. Note how we employ the “outer” function
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to calculate the tensor (a matrix3) and use operator overloading to ensure that
multiplication is performed correctly for all elements in the matrix:

Algorithm 7.6 Example of using the new matrix3 CUDA data structures
1 float3 gradWcubic = SPH_Kernels::Wcubic::Gradient(cFluidParams.

smoothing_length, r, rlen, rlen_sq);
2 // calculate the velocity tensor sum
3 data.sum_velocity_tensor += outer(
4 (veleval_j - data.veleval_i)/(density_j),
5 gradWcubic
6 );
7 ...
8 matrix3 velocity_tensor_i = cFluidParams.particle_mass * data.

sum_velocity_tensor;

7.1.3 Performance Optimization

Performance optimization in CUDA is no easy task due to several factors. The
foremost is difficulties due to the specialized hardware architecture of the GPU.
Ensuring that the code is well-written and correct insofar as making use of the full
power of the GPU is no easy task. Going beyond the basic facts such as ensuring
good memory access patterns (coalescing), using the texture cache and correct block
sizes for kernel launches, optimizing becomes harder because the NVIDIA CUDA C
Compiler is not very well documented. For some kernels the number of registers
that are used can be critical, since it affects the occupancy (5.3.2). By reducing the
number of registers used it is possible to increase occupancy and this can in some
cases give very significant performance improvements.
When compiling it is possible to output an intermediary “assembly” form, where the
C code has been translated to PTX, the CUDA assembly language. Unfortunately
this assembly language is not the final form, in fact most of the optimizations are
done after the PTX stage, where developers can no longer do any optimizations.
In the PTX assembly language the registers are in Static Single Assignment (SSA)
form, meaning that each “register” is never reused. This makes register optimizations
easier for the compiler, but hard for humans, since the register usage in the assembly
file does not match that which is used in the final GPU execution or the variables in
the C code. Nonetheless the PTX assembly can be useful, since it is possible to see
where new registers are used, meaning it is possible to analyze and find hotspots in
the C code which are register intensive. Sometimes it is possible to find code which
can be restructured so as to use less registers.
What makes performance optimizations even more complicated is that new GPU
architectures, such as the new GF100-series GPUs from NVIDIA (Fermi), have a
different hardware architecture from the GT200 line of GPUs.
A good example of how this affects performance is how the performance of our SPH
implementations varies on these two architectures depending on register limiting.
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Register limiting is an option in the NVIDA CUDA Compiler (NVCC) which makes
it possible to “force” the compiler to use no more than a given number of registers.
If a function requires more registers than that which is available, it will “spill”
registers to local memory. Spilling registers is usually very costly, since it means
that instead of reading from a register (1 cycle) the GPU has to read from global
memory (hundreds of cycles) instead.

For the GT200-line of architectures this means that register limiting reduces per-
formance, however for GT400-architectures (Fermi) it can actually improve perfor-
mance. This is most likely due to the fact that the GT400-architecture includes a
L1 cache which can cache these register spills. The combination of the cache and
increased occupancy then means that for Fermi it may be desirable to limit register
usages, making register optimizations less critical.

7.1.3.1 CUDA Toolchain

The NVIDIA toolchain for CUDA has several steps for the transformation from C
for CUDA code to the final GPU execution. These steps can be roughly summarized
as follows:

1. Compile C for CUDA code to PTX files by the NVIDIA (R) CUDA compiler
driver (NVCC)

2. Assemble PTX files to Cubin files by the NVIDIA (R) PTX optimizing
assembler (PTXAS)

3. Execute Cubin file on the GPU

Compilation During compilation it is possible to enable detailed feedback from
the NVIDIA CUDA Compiler (NVCC), as well as enable various options which
deal with the compiler. These options are fully described in NVIDIA [58].

The command line option “–ptax-options=-v” enables verbose output for the PTX
Assembler, which is critical for evaluating the performance characteristics of a kernel.
The following is an example of the output for one of the summation steps in the
Simple SPH model.

1 ptxas info: Compiling entry function SimLib::Sim::SimpleSPH::SumStep1
2 ptxas info: Used 24 registers, 152 bytes cmem[0], 24 bytes cmem[2], 8

bytes cmem[14]

PTX Files PTX files (“.ptx”) is an abstract assembly language and is an attempt
by NVIDIA at a standardized assembly language for several GPU architectures.
Though this format is upgraded as new features become available with new GPU
architectures, the old versions are in principle compatible with new GPUs as well.
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The assembly language in the PTX files uses operators which are fairly intuitive,
however the big difference is that the registers are used in Static Single Assignment
form, essentially creating new “virtual” registers for all new values.

By analyzing PTX files it is possible to see where register allocation and thus pressure
is greatest, making it much easier to pinpoint places where code restructuring and
other techniques can improve register usage.

Cubin Files Cubin files (“.cubin”) is the final GPU code that is actually executed
on the GPU. The format of these files are closed and changes for different GPU
architectures and platforms. As such these files are not easily optimized, however
there does exist open-source projects which aim to open these files to developers.
The DECUDA project has created a dissassembler and reassembler for these files,
making it possible to hand-optimize these very low-level assembly files. In this
thesis, we did not look at optimization of these files, but it may be possible to
further optimize the code by manually tuning these files.

A few authors have attempted to do this kind of hand-optimizations [66, 67].

7.1.3.2 Register Optimization

The register usage of kernels is usually a large factor in the occupancy of the kernel.
Here we will present some of the techniques we have use to lower register usage.

Register Limiting In our previous implementation we were not aware of the
fact that the CUDA compiler default settings enables a register limit of 32. As such
we mistakenly believed that our kernels did not use more than 32 register. After
disabling this register limiting we have found that the real register usage was 29 for
the Sum1(computeDensity) kernel and 50 for the Sum2(computeForce) kernel.

Obviously this also meant there was greater room for improvement.

Correct Data Types We use float4 for all the float3 values in our implemen-
tations. This is necessary since the texture cache does not support float3. In our
previous work(Krog [4] ) we show that the added overhead is in fact beneficial due
to the great performance boost the texture cache provides.

One mistake we made in our previous implementation [4], was that we also used float4
for all the computations in our kernels, thus doing many redundant computations.
By converting from float4 to float3 immediately upon memory read, using float3 for
all computations and converting to float4 when writing back to memory, we were
able to reduce the register usage to 26 and 47 for Sum1 and Sum2 kernel.
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Algorithm 7.7 Register improvement for SimpleSPH sum kernels using correct
data types.

SimpleSPH Sum1 SimpleSPH Sum2
Without the restructuring 29 50
With the restructuring 27 47

Code Restructuring By analyzing PTX files and simply doing critical analysis
of C code it is possible to find code that can benefit from restructuring. This
process is unfortunately often very hit-and-miss, and sometimes seemingly random.
This makes it both time and effort-intensive to do this kind of optimization. It is
however often possible to save many registers this way.

Here we present an example in the context of the implementation of the uniform
grid algorithm (7.1.1.2).

Algorithm 7.9 Improved register usage due to code restructuring using the uniform
grid iteration loop.

1 // get cell in grid for the given position
2 int3 cell = UniformGridUtils::calcGridCell(position_i, cGridParams.

grid_min, cGridParams.grid_delta);
3 // iterate through the 3^3 cells in and around the given position
4 for(int z=-1; z<1; ++z) {
5 for(int y=-1; y<=1; ++y) {
6 for(int x=1; x<=1; ++x) {
7 IterateParticlesInCell<O,D>(data, cell+make_int3(x,y,z), index_i,

position_i, dGridData);
8 }
9 }

10 }

1 // get cell in grid for the given position
2 int3 cell = UniformGridUtils::calcGridCell(position_i, cGridParams.

grid_min, cGridParams.grid_delta);
3 // iterate through the 3^3 cells in and around the given position
4 for(uint z=cell.z-1; z<=cell.z+1; ++z) {
5 for(uint y=cell.y-1; y<=cell.y+1; ++y) {
6 for(uint x=cell.x-1; x<=cell.x+1; ++x) {
7 IterateParticlesInCell<O,D>(data, make_int3(x,y,z), index_i,

position_i, dGridData);
8 }
9 }

10 }
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SimpleSPH Sum1 SimpleSPH Sum2
Without the restructuring 27 41
With the restructuring 25 39

Table 7.1: Register improvement for SimpleSPH sum kernels using code restructuring
to optimize register usage

Volatile keyword In the C programming language the volatile keyword when
used on a variable alerts the compiler that the variable may be modified externally.
Essentially it forces to compiler to avoid optimizing the variable.

In CUDA the “volatile trick” works in almost the exactly opposite way, it prevents
the compiler from using too many registers. By applying the volatile keyword
to variables it is possible to force the compiler to put the value into a register
immediately, thus reducing register pressure and allocation. The volatile trick
makes NVCC allocate less “virtual” registers in the PTX file, which again helps for
the real register usage in the Cubin files.

The volatile trick has been applied as a final optimization phase throughout the
entire framework. Here we present a specific example of an improvement in register
usage

Algorithm 7.10 Example of using the volatile trick for register usage, here in the
uniform grid iteration loop.

1 // get cell in grid for the given position
2 volatile int3 cell = UniformGridUtils::calcGridCell(position_i,

cGridParams.grid_min, cGridParams.grid_delta);
3

4 // iterate through the 3^3 cells in and around the given position
5 for(uint z=cell.z-1; z<=cell.z+1; ++z) {
6 for(uint y=cell.y-1; y<=cell.y+1; ++y) {
7 for(uint x=cell.x-1; x<=cell.x+1; ++x) {
8 IterateParticlesInCell<O,D>(data, make_int3(x,y,z), index_i,

position_i, dGridData);
9 }

10 }
11 }

SimpleSPH Sum1 SimpleSPH Sum2
Without the volatile trick 25 39
With the volatile trick 22 35

Table 7.2: Register improvement for SimpleSPH sum kernels using the volatile trick
to optimize register usage
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Miscellaneous It is also possible to save registers by a few more tricks:

• Use the const keyword for function parameters, letting the compiler do
additional optimizations.

• Passing variables by reference in functions (e.g. &variable)

• Unrolling loops and creating loops

• Avoiding conditionals, it is often better to do redundant computations instead.

7.1.3.3 Neighbor List

Since the summation terms in the SPH calculations dominate the performance of the
system REF(results), it was hypothesized that it might be desirable to precompute
the lists of particle neighbors. The uniform grid structure makes it possible to
only check neighboring particles in neighboring cells, but there are still particles in
these cells which are outside the smoothing cutoff length. By combining the first
SPH summation step with a neighbor list calculation the second (and third) SPH
summations will not have to do redundant checks of neighboring particles.

Unfortunately we found that this optimization had very little performance gain,
since the additional computations that are necessary more or less outweigh the gain
that is achieved.

7.1.4 Visualization and Rendering

In order to visualize the fluid properties we do visualization through color gradients.
Each particle has a number of properties such as pressure, velocity and deviatoric
stress. These values are then converted into a color value for each particle using a
gradient calculation. We support combinations of several fluid properties and color
gradients.

For color we support several gradients, such as Blackish, BlacktoCyan, BlueToWhite
and HSVBlueToRed. These gradients are largely self-explaining. The HSVBlue-
ToRed gradient is a Hue Saturation Value-model [68].

In addition we also support direct mapping of fluid forces (in 3 spatial dimensions)
directly onto the colors in the Red Green Blue (RGB) model. This makes it possible
to visualize the internal fluid stresses (Figure 7.9 on page 90), since stress in a
spatial direction will produce the color corresponding to that spatial direction.

The source code for calculating these gradients can be found in Section B.3.
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(a) Using the HSV (hue) based color gradient
scheme for fluid pressure.

(b) Using the HSV (hue) based color gradient
scheme for fluid velocity.

(c) Using the BlackToCyan color gradient
scheme for fluid velocity.

(d) Using a direct RGB mapping color gradi-
ent scheme for fluid stress forces. Each of the
spatial dimensions is mapped to one of the
colors in the Red Green Blue (RGB) model.

Figure 7.9: Various color gradients and their application to various fluid properties.

Rendering API Since the simulation framework is now completely separated
from the application frontend, an Application Programming Interface (API) is
required so as to facilitate interactive rendering.

We choose to implement this API in such a manner that all the internal memory
buffers in the simulation can be “overridden” by an external user. This makes it
possible to override the particle positions and particle colors buffers. By overriding
these buffers with specialized buffers that are in reality Vertex Buffer Objects
(VBOs), seamless rendering is possible since CUDA can operate on these buffers as
if they were normal memory buffers.

This approach is good for several reasons. By making the simulation framework
itself completely rendering agnostic, better organization of the code and architecture
is possible. In addition it makes it easier to reuse the simulation framework , since
the simulation library has no dependencies on specialized rendering code.

7.2 Rendering Application

When developing the simulation framework it quickly became apparent that it would
be desirable to separate the rendering application “frontend” from the simulation
library “backend”. Our previous implementation of SPH was done using a custom
OpenGL application, and while it worked fairly well it was not well suited for
further growth of the application.
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To promote further growth of the application we have developed a new rendering
application based on the open-source 3D graphics engine OGRE.

OGRE has a number of highly desirable features:

• Easy to understand object-oriented interface

• Extensible framework

• Clean and uncluttered design

• Both Direct3D and OpenGL support

• Cross-platform (Windows, Linux, OS X and several others)

In addition the OGRE engine is so stable and well-supported that several large
commercial products are now based on it as well.

The advantages of using a well-established engine such as OGRE are many, foremost
is the fact that it allows you to build upon the work of others instead of reinventing
the wheel. By using an engine that is fairly well-known and standardized the code
is also much more understandable for other developers, and also more accessible for
others to use.

OGRE provides support for all the features we need, among other things we make use
of the terrain component, which allows use to render very large terrains seamlessly
in real-time.

7.2.1 Functionality

The rendering application has been used as a test application, and as such there
are a large number of features. Interactively exploring the parameter space of the
models is very useful both for development and debugging purposes.

Configuration file The rendering application is highly configurable through a
configuration file (7.11). Using this configuration file it is possible to specify most
relevant parameters of the simulation.

Keyboard shortcuts The rendering application supports a large number of
keyboard shortcuts to manipulate the simulation.
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Algorithm 7.11 The rendering application configuration file
1 [General]
2 showOgreConfigDialog = false
3 showOgreGui = true
4 cudadevice = 1
5 logLevel = 1
6 fluidshader = shader/ParticleBall
7

8 [Scene]
9 cameraRelativeToFluid = true

10 cameraPosition = 510 500 2000
11 cameraOrientation = 1 -0.06 0 0
12 skyBoxMaterial = SkyBoxes/VueSky_Threatening
13

14 backgroundColor = 1 1 1
15 fluidGridColor = 1 0 0
16

17 [Fluid]
18 simpleSPH = false
19 enabled = true
20 enableKernelTiming = false
21 showFluidGrid = true
22 terrainCollisions = true
23 gridWallCollisions = false
24

25 [FluidParams]
26 Particles Number = 131072
27 Timestep = 0.0005
28 Grid World Size = 1024
29 Simulation Scale = 0.0005
30 Rest Density = 1000
31 Rest Pressure = 0
32 Ideal Gas Constant = 1.5
33 Viscosity = 1
34 Boundary Stiffness = 20000
35 Boundary Dampening = 256
36 Static Friction Limit = 0
37 Kinetic Friction = 0.2
38

39 [Terrain]
40 enabled = true
41 flat = false
42 showDebugNormals = false
43 size = 2049
44 worldSize = 2250.0
45 worldScale = 500;
46 heightDataFile = terrain_2048_alpine3_height_raw32.raw
47 //normalsDataFile = terrain_2048_alpine3_normal.bmp
48 textureLayerDiffSpecFile0 =

terrain_2048_alpine3_shader_base_diffusespecular.png
49 ...
50 textureLayerNormalHeightFile0 =

terrain_2048_alpine3_shader_base_normalheight.png
51 ....
52 textureBlendFile1 = terrain_2048_alpine3_select_thinflowsdeep0.bmp
53 ....
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Key Function
Sysrq Take a screenshot
F Show advanced frame statistics
R Use various polygon rendering modes (wireframe etc)
F9 Start screencapture mode (save all rendered frames to disk)
G Toggle rendering of fluid grid
N Toggle rendering of terrain normals
1-9 Change the fluid scene (placement of particles)
O Disable integration step in simulation
Left Move fluid grid in +x-axis
Right Move fluid grid in -x-axis
Up Move fluid grid in +z-axis

Down Move fluid grid in -z-axis
Shift-Up Move fluid grid in +y-axis

Shift-Down Move fluid grid in -y-axis
PageUp Increase number of particles by 1000

PageDown Decrease number of particles by 1000
Shift-PageUp Double the number of particles.
Shift-PageUp Halve the number of particles
(Shift-)Pluss Increase the time step by 0.00001 (0.0001)
(Shift-)Minus Decreasethe time step by 0.00001 (0.0001)

7.2.2 Terrain Support in Ogre

Figure 7.10: Ogre terrain rendering with a pregenerated skybox.

Using the new terrain rendering component that is available in Ogre 1.7 it is possible
to render very large terrains seamlessly (Figure 7.10 on page 93). The new terrain
rendering uses a seamless level of detail (LOD) process where the rendering detail
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is decreased as you move further away from the terrain (Figure 7.11 on page 94).
This process makes it possible to render very large and detailed terrains.

Figure 7.11: Ogre terrain rendering with seamless level of detail (LOD) for various
distances.

7.2.3 Visualization of Particles

Due to a lack of time we could not implement a proper surface rendering technique
for the fluid particles. Instead we chose to reuse the existing “ball” shader from the
previous implementation (Figure 7.12 on page 95).
In order to support both OpenGL and Direct3D, the shader had to be rewritten in
C for Graphics (CG). The rewritten shader provides the same visual output as that
used in the previous implementation, for more details regarding this, please refer to
Krog [4].
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The source code for the new CG shader and Ogre material can be found in Section
B.1.

Figure 7.12: Closeup of fluid particle ball shading.

7.3 Console Test Application

In our previous implementation [4] we found that doing performance measurements
in an application that also does real-time rendering is not very accurate. The
overhead of rendering can be significant and in addition it can fluctuate. As part
of the development of the framework it was decided that we would create a small
console application that uses the simulation library and does nothing except perform
simulations and do performance measurements.

The test application (Figure 7.13 on page 96) has made it much easier to do perfor-
mance measurements, and has also made it possible to make these measurements
more systematic and accurate.
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Figure 7.13: The console test application running a performance scaling measurement
test.

The console application in itself is very simple, the real power lies in the fact that
the SPH framework and SPH implementations have been completely separated
into their own library, such that it is very simple to use them from the console
application.



Chapter 8

Results and Discussion

In this chapter we will present and discuss our results. The performance of the
system will be evaluated and compared to both our earlier implementation and
other state-of-the-art implementations. Interesting effects such as the performance
impact of real-time rendering and the performance increase from using the new
Fermi GPUs will be shown.
The visual results of the implementations will be evaluated in light of the interactivity
criteria.

8.1 Test Setup

For all our performance results we a fairly high-end computer equipped a Intel
Core2 Quad Q9550 processor (Table 8.1 on page 97). We use three different graphics
cards, an NVIDIA GeForce GTX 260, a GeForce GTX 470 and a Tesla C2050. The
specifications for these can be found in Table 5.1 on page 46.

8.1.1 Software

For comparing and evaluating the simulation performance of the system, a “realistic”
test was designed.

Test System
CPU Intel Core2 Q9550

Processor 2.83 GHz
Bus Speed 1333 Mhz

L2 Cache Size 12MB
Memory 4GB
Type DDR3
Speed 533.3 MHz

MainBoard EVGA 132-CK-NF79

Table 8.1: Test system.
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Parameter Value for Simple SPH
timestep 0.0005

rest_density 1000.0
rest_pressure 0

external_stiffness 20000.0
external_dampening 256.0

viscosity 1.0
sim_scale 0.0005

Table 8.2: The default simulation parameters used in performance testing.

To ensure consistent results, the simulation is set to a static simulation setup where
a cubical volume of fluid is dropped into a shallow pool of fluid (Figure 8.15 on page
118). This setup is good because it contains a wide range of states for the fluid,
from low to high pressure. To collect absolute performance numbers, the average of
a large number of iterations (1000) is used.

Simulation parameters The simulation parameters (Table 8.2 on page 98) were
chosen for their stability and their realistic behavior as a fluid. A set of good
starting parameters were collected from several other SPH models and then tweaked
until they gave good results.

For the Simple SPH model, the task of finding parameters was an exhaustive
process, due to the many combinations. For the Complex SPH model this is an
even harder problem, since the viscosity of the fluid changes due to a rheological
model. Performance measurements of the Complex SPH model is difficult due to
the additional complexity introduced by this rheological model. To improve the
consistency and validity of the results we chose to use a simple Newtonian fluid
rheology for performance measurements of the Complex SPH model as well. This
effectively reduces the fluid behavior to almost the same as the Simple SPH model,
but all the computational cost of the Complex model is kept.

Fluid Volume We test across a wide range of particles, it is important to
remember that this will also change the amount of fluid that is simulated.

The number of particles in a volume can be found by [35]:

n = ρ
V

m
(8.1)

Using this for the above parameters give us a fluid volume of:

V = 1
ρ
m ∗ n = 1

1000
kg

m3 0.00002kg ∗ 131027 = 0, 00262144m3 (8.2)
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It follows that if we double the number of particles the amount of fluid simulated
will double as well:

V = 1
ρ
m ∗ n = 1

1000
kg

m3 0.00002kg ∗ 2622144 = 0, 00524288m3 (8.3)

This is not desirable from performance measurement standpoint, since we want to
ensure that the fluid behaves in the same manner for each performance run. We
avoid this problem by simply compensating the particle mass (halving mass when
doubling number of particles), this also affects other parameters of the fluid. In
Table 8.3 on page 99 the various parameters can be seen in the range from 32K to
512K particles.

Parameter/Particles 32K 64K 128K 256K 512K
Particle Mass 0.0008 0.0004 0.0002 0.0001 0.00005

Particle Rest Distance 0.00807636 0.00641021 0.00508779 0.00403818 0.00320511
Boundary Distance 0.00403818 0.00320511 0.0025439 0.00201909 0.00160255
Smoothing Length 0.0161527 0.0128204 0.0101756 0.00807636 0.00641021
Grid Cell Size 32.3055 25.6409 20.3512 16.1527 12.8204

Table 8.3: The simulation parameters scaled across different resolutions, from 32K
to 512K particles.

All our performance measurements are in powers of 2, e.g. 32K particles is 32∗1024 =
32768 particles.

8.1.2 Methodology

Throughout development considerations were taken to ensure consistent results
when testing. To ensure consistent results, any and all parameters are initialized to
the same values.

We initialize the random function with static values in order to ensure the same
random values are used every time the program runs. We disable nonessential func-
tionality when gathering performance data, and when measuring the performance
of the simulation real-time rendering is not enabled. When rendering is enabled
we ensure that artificial limiters, such as vertical refresh synchronization (vsync) is
turned off.

In addition to these precautions we test variations in one parameter at a time, if at
all possible.

8.1.2.1 Performance Testing Application

In our previous implementation of SPH ([4]) we found that the overhead associated
with rendering could be significant. To avoid the overhead rendering imposes on the
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Algorithm 8.1 Using CUDA Timing API for timing kernels.
1 #ifdef LOG_TIMINGS
2 CUT_SAFE_CALL(cutResetTimer(timer));
3 float timer;
4 CUT_SAFE_CALL(cutCreateTimer(timer));
5 CUT_SAFE_CALL(cutStartTimer(timer));
6 #endif
7 K_Integrate<<<hFluidParams.numBlocks, hFluidParams.numThreads>>>(......)

;
8 CUT_CHECK_ERROR("Kernel execution failed");
9 CUDA_SAFE_CALL(cudaThreadSynchronize());

10 #ifdef LOG_TIMINGS
11 CUT_SAFE_CALL(cutStopTimer(timer));
12 time_integrate = cutGetTimerValue(timer);
13 #endif

performance results, we have now developed a separate test application which does
no rendering whatsoever. This was only possible due to the fact that all simulation
code is now separated into a separate library, with an API for providing rendering
buffers. The default operation mode of the simulation framework is in fact to
operate without any rendering whatsoever, which means that the test application
does nothing special in order to operate without the overhead of rendering.

The performance testing application simply initializes the simulation framework with
consistent parameters and does performance timing on the simulation iterations.

8.1.2.2 CUDA Kernel Timing

In a previous implementation we used the CUDA timing API (8.1) to measure the
performance of individual kernels. On Windows this API uses the QueryPerfor-
manceFrequency, the most accurate CPU clock that is available. We have since
discovered that this API is in fact not very accurate since it does use a CPU clock
for measuring things on the GPU. Fortunately this inaccuracy did not impact
the results of our previous work ([4]) too much, since we used averages of many
measurements. In addition this API requires a synchronization after the kernel to
ensure that the GPU is finished. This also impacts the measurements.

A better API for timing is the CUDA event API (8.2), which does not rely on a
user-mode CPU clock for the measurements and instead uses GPU streams to do
timing. Using this new API the accuracy of kernel measurements is improved and
there is no need to synchronize the CPU and the GPU, providing a much more
accurate image of the total algorithm performance. For algorithms with several
GPU kernels, the synchronization overhead can be significant.
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Algorithm 8.2 Using CUDA event API for timing kernels.
1 #ifdef LOG_TIMINGS
2 e_start = new cudaEvent_t;
3 e_stop = new cudaEvent_t;
4 cudaEventCreate((cudaEvent_t *)e_start);
5 cudaEventCreate((cudaEvent_t *)e_stop);
6 cudaEventRecord(*((cudaEvent_t *)e_start), 0);
7 #endif
8 K_Integrate<<<hFluidParams.numBlocks, hFluidParams.numThreads>>>(......)

;
9 CUT_CHECK_ERROR("Kernel execution failed");

10 #ifdef LOG_TIMINGS
11 cudaEventRecord(*((cudaEvent_t *)e_stop), 0);
12 cudaEventSynchronize(*((cudaEvent_t *)e_stop));
13 float time_integrate;
14 cudaEventElapsedTime(&time_integrate , *((cudaEvent_t *)e_start), *((

cudaEvent_t *)e_stop));
15 #endif

8.2 Performance Evaluation

To evaluate our optimizations and the performance of our new SPH model we do a
thorough performance evaluation of the two SPH implementations. We would like
to note that most of the graphs in this section use log2 for both axes.

8.2.1 Performance Scaling

The performance scaling of the implementations are nearly linear (Figure 8.1 on
page 102). It is interesting to note that the two Fermi-cards, the GeForce GTX 470
and the Tesla C2050 seems to scale more linearly than the old GeForce GTX 260.
This slight nonlinearity may be contributed to the effects of both texture cache as
well as L1 and L2 cache on the GTX470 (Fermi)

We can also see that the Tesla C2050 has performance that is almost identical to
the GeForce GTX 470, though a little bit lower. This difference in performance can
most likely be attributed to the difference in memory speed (1500 MHz V.S 1674
MHz) and clock speed (1150 MHz V.S 1215 MHz) (Table 5.1 on page 46).

It is interesting to note that though the Tesla has greater memory bandwidth due to
the larger memory bus (384 bit V.S 320 bit), this does not seem to help counteract
the slightly lower clocks. Our implementation is single precision only, so we can
utilize the greatest feature of the Tesla; much better double precision performance.
We can however use the much larger memory, which is described in 8.2.2.2.
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16k 32k 64k 128k 256K 512k

Simple SPH GTX260 478,3 290,0 153,5 81,6 40,7 17,1

Simple SPH GTX470 740,8 391,6 215,4 122,2 64,9 33,3

Simple SPH C2050 690,0 367,4 202,0 114,9 60,8 30,9

Complex SPH GTX470 253,0 135,9 69,6 37,4 19,1 9,5

Complex SPH GTX260 109,8 62,9 32,3 16,4 8,1 3,8

Complex SPH C2050 241,8 130,7 67,9 36,6 18,6 9,3
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Figure 8.1: Performance scaling of the two SPH implementations, here in a graph
with both axes in log2.

8.2.2 Memory Scaling

Since our implementations do not use constant or shared memory to any significant
degree, the only memory usage that is of importance is the usage of the global
memory on the device.

8.2.2.1 Memory Usage

Data Structure In a previous work [4] we found that the memory usage of the
acceleration data structure (7.1.1.2) we employ is very sparse. Had the uniform
grid been allocated directly the usage would be much larger, the hashing means
that the only significant overhead is the memory used for tracking start/end indices
for the cells and for cell hashes. The overhead of the cell indices and the cell hashes
can be represented by the following formula:

2 ∗ sizeof(uint) ∗ (nparticles + ncells) bytes = 8 ∗ nparticles + 8 ∗ ncells bytes

We have also found that the radix sort (Satish et al. [63]) allocates temporary
memory. The amount is determined by the following formula:
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nparticles ∗ (2 + 3 ∗ 8/256) ∗ sizeof(uint) bytes = 8.375 ∗ nparticles bytes

Giving us a total formula for the data structure memory usage:

8 ∗ nparticles + 8 ∗ ncells + 8.375 ∗ nparticles bytes (8.4)

The number of cells for a given simulation depends on the smoothing length, the
simulation domain size and also the scale of the simulation. For the parameters we
use in our testing, the following number of cells is used:

Particles 16K 32K 64K 128K 256K 512K
Cells 17576 32768 64000 132651 262144 512000

The number of cells is roughly the same as the number of particles, meaning we
can approximate the total memory usage as:

24.375 ∗ nparticles bytes (8.5)

Simple SPH model In our previous implementation of the Simple SPH model
we achieved a memory usage of:

2 ∗ sizeof(ParticleParams) ∗ nparticles = 176 ∗ nparticles
for just the SPH parameters (excluding the overhead of the data structure).
In our new implementation we have been able to remove some redundant buffers,
thus improving the memory usage of the system.
The size of the particle parameter buffers is found by taking the sum of the following
buffers:

Name Data Type Bytes
Position float4 16
Velocity float4 16
Veleval float4 16
Color float4 16

PositionSorted float4 16
VelocitySorted float4 16
VelevalSorted float4 16
ColorSorted float4 16
ForceSorted float4 16

PressureSorted float 4
DensitySorted float 4

SUM 152

Table 8.4: Parameter buffers in Simple SPH implementation
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Giving us a new formula for the memory usage:

152 ∗ nparticles bytes

For a total memory usage of

176.376 ∗ nparticles bytes (8.6)

Complex SPH model The memory usage for the new Complex SPH model is
significantly higher due to the use of tensor matrices (3x3) and additional techniques
such as XSPH.

Name Data Type Bytes
Position float4 16
Velocity float4 16
Veleval float4 16
Color float4 16

PositionSorted float4 16
VelocitySorted float4 16
VelevalSorted float4 16
ColorSorted float4 16
XSPHSorted float4 16
ForceSorted float 16

PressureSorted float 4
DensitySorted float 4

StressTensorSorted matrix3(3xfloat4) 48
SUM 216

Table 8.5: Parameter buffers in Simple SPH implementation

Giving us a formula for the memory usage of just the SPH parameter buffers:

216 ∗ nparticles bytes (8.7)

For a total memory usage of

240.376 ∗ nparticles bytes (8.8)

8.2.2.2 Analysis

Our analysis of the memory consumption of the implementation show that the
memory scaling of the implementations are linear (8.2), and scale very well.
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16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

Simple SPH 2,76MB 5,51MB 11,02MB 22,05MB 44,09MB 88,19MB 176,38MB 352,75MB 705,50MB 1411,01MB 2822,02MB

Complex SPH 3,76MB 7,51MB 15,02MB 30,05MB 60,09MB 120,19MB 240,38MB 480,75MB 961,50MB 1923,01MB 3846,02MB
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Figure 8.2: Memory usage of the two SPH models.

Using the NVIDIA Tesla C2050 ( 5.1 on page 46), we have simulated up to 12
millions particles with the Simple SPH model, thus using roughly 2GB of memory.

With this many particles there are in fact a few problems, among them the fact
that the kernel grid size becomes larger than 64K, the maximum for current GPU
architectures. We mitigate this problem by increasing the block size (the number of
threads per block), this does however lead to lower occupancy and thus non-optimal
performance.

Though our analysis shows that it should be possible to simulate more than this
amount we have found that in practice is is difficult to allocate all the memory on
the GPU.

This problem can be explained for the consumer cards such as the GeForce GTX 470
(Table 5.1 on page 46), since they use a large part of the memory for the Operation
System (Figure ?? on page ??).

To mitigate this problem NVIDIA has created special compute-only drivers that
makes it possible to allocate more of the GPU memory.

Another problem related to large simulation sizes is the the fact that the Windows
WDDM display driver system has a watchdog timer that automaticall restarts the
display driver if it is unresponsive for more than a few seconds. When doing large
simulations each kernel can take long enough to execute that the watchdog timer is
tripped. Again, the solution is to use the specialized compute-only driver. It is also
possible to disable the watchdog timer, but this is not recommended since it serves
a real purpose.



106 Results and Discussion

8.2.3 Optimizations

16k 32k 64k 128k 256K 512k

New, GTX260 245,3 175,6 109,3 63,7 33,7 15,1

Old, GTX260 92,0 70,0 55,0 39,0 25,0 12,5
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Figure 8.3: Performance comparison of new and old implementations of the Simple
SPH model.

We have reimplemented a previous implementation of the Simple SPH model using
our new framework.

For this comparison we use performance numbers from the performance measure-
ments with rendering, since all the measurements in the old implementation were
done with rendering.

Due to significant optimizations of the framework we observe a significant perfor-
mance increase (Figure 8.3 on page 106). For a more detailed description of the
techniques which provided this improvement please refer to 7.1.3.
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16k 32k 64k 128k 256K 512k

Improvement, GTX260 166,6 % 150,9 % 98,7 % 63,3 % 34,8 % 20,8 %
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Figure 8.4: Performance increase for new and old implementations of the Simple
SPH model.

We achieve as much as a 167% increase in performance for 16K Particles, and
decreasing improvements with larger amount of particles (Figure 8.4 on page 107).

8.2.4 Fermi performance

16k 32k 64k 128k 256K 512k

Simple SPH 54,9 % 35,0 % 40,3 % 49,7 % 59,4 % 94,9 %

Complex SPH 130,4 % 116,1 % 115,6 % 128,2 % 137,0 % 151,1 %
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Figure 8.5: Performance comparison between the GeForce GTX 470 and the GeForce
GTX 260.
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The new GF100/Fermi-architecture provides a large boost in performance compared
to the GT200-architecture.

In Figure 8.5 on page 107 we show the performance increase from using a GeForce
GTX 470 over a GeForce GTX 260. The Complex SPH model benefits the most,
with improvements up to 150%, while the Simple SPH model sees improvements up
to 95%. This large increase in performance can be attributed to a combination of
the new architectural features in the Fermi architecture and high memory clocks
due to the use of GDDR5 instead of GDDR3 (Table 5.1 on page 46).

8.2.5 Review of other implementations

We have compared our implementation performance for the Simple SPH model
with that of other implementations. This algorithm has been widely implemented
since it is very well suited for interactive or “real-time” simulation and as such it is
possible to find comparable implementations.

Unfortunately we have found that it is near impossible to do a review of earlier
implementations that is both comprehensive and accurate since most authors do
not specify all the parameters they use. In addition there are slight differences in
the SPH models and finally also because of different hardware used. Nonetheless
we have attempted a comparison, if only to give a rough picture of the performance
landscape.

It is worth noting that our comparison includes both earlier GPU as well as CPU
implementations (Figure 8.6 on page 109).

GPU Implementations We find that our GPU implementation is significantly
faster then earlier GPU implementations, even for implementations using faster
graphics cards, such as the one by Yan et al. [69] where they use a NVIDIA GTX 280
and get 66 iterations per second at 16K particles. Comparing their implementation
against our implementation running on a GTX260 (without rendering) we see a
6x speedup. It is also interesting to note that our implementation seems to scale
better, though the available data is not enough to draw any conclusions.

Harada et al. [48] implemented SPH on the GPU using OpenGL and Cg. Their
methods achieves real-time performance (17 frames per second) with 60000 particles
on an NVIDIA GeForce 8800GTX. This is an earlier GPU architecture, so we will
not do a direct comparison against this implementation.

Zhang et al. [70] also implemented SPH on the GPU (a NVIDIA GeForce 8800GTX)
with a performance of 56 frames per second at 60000 particles on the GPU. This is
also an earlier GPU architecture, so we will not do a direct comparison against this
implementation either.
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Figure 8.6: Performance comparison to several earlier SPH implementations. Here
in a graph with linear x-axis and log10 y-axis to make it possible to show the large
differences in performance.

CPU Implementations A very interesting comparison is with the FLUIDS
V.2 software, which is a highly optimized SPH implementation for the CPU. We
tested the FLUIDS software on test system 2 (Table 8.1 on page 97), a 2.83 GHz
Quad-CPU Intel.

Unfortunately FLUIDS can only use on of the cores in this CPU so it should be
assumed that the performance could be almost quadrupled using all 4 cores. Event
assuming so the performance results would still be very low compared to our GPU
implementation. Comparing the FLUIDS software with our GPU implementation
(with rendering), we see speedups of 91x for the GeForce GTX 470 and 49x for the
GeForce GTX 260 at 16K particles.

Another CPU implementation is the one by Müller et al. [1] , who created the
original “Simple” SPH model. This comparison is perhaps only interesting as a
measure of how much the computation power of commodity hardware has increase
during the last decade, since their measurements is on a 1.8Ghz Pentium 4, not
a very fair comparison. Nonetheless they achieve 20FPS with 2200 particles. We
measure 950 iterations per second using the NVIDIA GTX 470 at 2200 particles, a
very large increase in performance.
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8.2.6 Effects of Texture Cache

As with our previous implementation we find that the texture cache has a very
significant impact on performance(Figure 8.7 on page 110). We have also tested
our new implementation on the GeForce GTX 470 (Fermi) card.

16k 32k 64k 128k 256K 512k

GTX260 Texturecache 478,3 290,0 153,5 81,6 40,7 17,1

GTX470 Texturecache 740,8 391,6 215,4 122,2 64,9 33,3

GTX260 193,9 100,3 51,4 28,0 14,8 7,3

GTX470 372,7 210,0 112,7 60,2 30,7 15,1
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Figure 8.7: Performance effects in absolute values due to texture cache for the
Simple SPH model

16k 32k 64k 128k 256K 512k

GTX260 Texturecache 109,8 62,9 32,3 16,4 8,1 3,8

GTX470 Texturecache 253,0 135,9 69,6 37,4 19,1 9,5

GTX260 57,3 30,0 16,6 9,2 4,9 2,4

GTX470 132,6 69,1 34,5 18,0 9,0 4,4
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Figure 8.8: Performance effects in absolute values due to texture cache for the
Complex SPH model

The new Fermi architecture has a new L1 and L2 cache. As described in 5.3.3.2
the L2 cache works for global memory reads and the L1 cache works for both
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local memory (register spills) and global memory. In addition the L1 cache has
much higher bandwidth than the texture cache, meaning that for the Fermi-line of
architectures the use of the texture cache can hurt performance.

These factors may be why the texture cache is not as significant for performance on
the Fermi card as it is on the earlier cards (Figure 8.9 on page 111), however we still
find that the use of the texture cache is advantageous. This is probably because
the texture cache is optimized for spatial locality in memory accesses, something
which helps us a lot since the data structure we employ exhibit exactly this spatial
locality.

16k 32k 64k 128k 256K 512k

260GTX 146,73 % 189,25 % 198,60 % 191,16 % 174,59 % 132,43 %

470GTX 98,75 % 86,44 % 91,24 % 102,91 % 111,14 % 120,39 %
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Figure 8.9: Performance increase in percent due to texture cache for the Simple
SPH model
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16k 32k 64k 128k 256K 512k

260GTX 91,68 % 109,45 % 94,86 % 77,52 % 65,75 % 55,32 %

470GTX 90,77 % 96,73 % 101,76 % 107,35 % 111,95 % 113,84 %
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Figure 8.10: Performance increase in percent due to texture cache for the Complex
SPH model
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8.2.7 Rendering Overhead

16k 32k 64k 128k 256K 512k

Simple SPH GTX260  478,3 290,0 153,5 81,6 40,7 17,1

Simple SPH GTX470  740,8 391,6 215,4 122,2 64,9 33,3

Simple SPH GTX260 Rendering 245,3 175,6 109,3 63,7 33,7 15,1

Simple SPH GTX470 Rendering 457,5 313,7 193,4 112,4 61,5 31,7
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(a) Performance of real-time rendering for the Simple SPH model.

16k 32k 64k 128k 256K 512k

Complex SPH GTX260  109,8 62,9 32,3 16,4 8,1 3,8

Complex SPH GTX470  253,0 135,9 69,6 37,4 19,1 9,5

Complex SPH GTX260 Rendering 83,2 53,2 28,9 15,1 7,7 3,7

Complex SPH GTX470 Rendering 181,8 114,4 66,8 36,3 19,0 9,5
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(b) Performance of real-time rendering for the Complex SPH model.

Figure 8.11: Performance of real-time rendering.

Part of the reason for the development of our new framework was that we wanted
to measure the performance overhead of the real-time rendering. Our rendering
technique is fairly simple, so it was thought that this overhead was negligible, but
our findings are in fact the opposite. We find that the overhead of rendering is in
fact fairly high (8.11a and 8.12a).
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16k 32k 64k 128k 256K 512k

Simple SPH GTX260 94,99 % 65,17 % 40,46 % 28,17 % 20,83 % 12,98 %

Simple SPH GTX470 61,92 % 24,84 % 11,40 % 8,71 % 5,51 % 4,89 %
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(a) Performance overhead from real-time rendering for the Simple SPH model, in percent of
performance decrease.

16k 32k 64k 128k 256K 512k

Complex SPH 260GTX 31,98 % 18,22 % 11,70 % 8,43 % 4,67 % 2,37 %

Complex SPH 470GTX 39,16 % 18,78 % 4,17 % 2,91 % 0,53 % 0,12 %
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(b) Performance overhead from real-time rendering for the Complex SPH model, in percent of
performance decrease.

Figure 8.12: Performance overhead from real-time rendering.
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8.2.8 Kernels

We have measured the relative performance of the different kernels in our two SPH
implementations. Our findings show that the most performance intensive parts are
in the calculation of the SPH summation over neighboring particles.

In the Simple SPH algorithm the Sum2 step is the most demanding step, but close
behind is the Sum1 step (Figure 8.13 on page 115).

For the Complex SPH algorithm the Sum3 step completely dominates the overall
performance 8.14. This is due to the large amount of memory reads that are
necessary in this step.

If further optimizations of the implementation are to be carried it, they should
focus on improving the coalescing in these steps, and to do so it may be necessary
to investigate alternative data structures.

Hash Sort Update Sum1 Sum2 Integrate

Simple GTX260 0,57 % 6,98 % 1,90 % 32,34 % 55,80 % 2,41 %

Simple GTX470 0,51 % 6,80 % 1,85 % 37,59 % 50,48 % 2,77 %
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Figure 8.13: Distribution of execution time among the different kernels (steps in
the SPH algorithm) for the Simple SPH model, here for 128K particles.
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Hash Sort Update Sum1 Sum2 Sum3 Integrate

128K Complex GTX260 0,11 % 1,45 % 0,38 % 6,59 % 10,37 % 80,51 % 0,59 %

128K Complex GTX470 0,15 % 2,04 % 0,54 % 11,81 % 19,99 % 64,63 % 0,84 %
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Figure 8.14: Distribution of execution time among the different kernels (steps in
the SPH algorithm) for the Complex SPH model, here for 128K particles.

8.3 Visual

The visual results of the simulation is important since it allows us to gauge the
accuracy with which we reproduce the desired behavior. One of the principal goals
in this thesis, is to achieve interactive performance, and we define this not just
based on a performance measure such as the frames per second, but also as how the
fluid animation “feels”. When doing simulation it is often not practical to simulate
large amounts of fluid, so most simulations scale both the simulation domain and
the time.
Both our SPH implementations use an Equation of State to enforce the incompress-
ibility, which means that we have to balance the timestep carefully. If the timestep
is too large the simulation becomes unstable and inaccurate, but if the timestep is
too low the perceived speed of the simulation is too slow.

8.3.1 Simple SPH

In our previous implementation we achieved real-time performace (interactivity)
with 23 FPS at 256K particles using an NVIDIA GeForce GTX 260. Thanks to the
performance optimizations we have performed, it is now possible to achieve 34 FPS.
Due to the increase in performance, interactivity is improved, and it is possible use
more particles (greater accuracy) with the same performance.
We find that for a viscosity of 1 we can use a time-step of 0.002. This is near the
maximum possible while still maintaining stability. With the GeForce GTX 470
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we get 60 frames per second (with rendering) at 256K and this produces a very
believable fluid behavior.

The visual results from the Simple SPH model is much the same as in our previous
implementation, but we include some screenshots (8.15) for reference purposes.

In addition we also include some screenshots of the Simple SPH model with a
terrain boundary (8.16). Though we have not had time to work on this aspect of
the simulation, it is fairly easy to imagine how the model could be used to simulate
water and other low-viscosity fluids flowing on a terrain, for example in a river.
This kind of simulation has also seen much use in simulating dam breaks.
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Figure 8.15: The simulation performance test scene. Shown here are several
snapshots in time. Using the Simple SPH model, 512K particles and velocity hue
shading.
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Figure 8.16: The Simple model with water-like parameters placed on a terrain.
Shown here are several snapshots in time. Using 128K particles and velocity hue
shading.
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8.3.2 Complex SPH and Snow Avalanches

To test the fluid model suitability for snow avalanche simulation we have created a
test scene. In this scene we use a generated terrain of a mountain with fairly steep
slopes. Since our model does not capture the avalanche release we place the fluid
along the terrain in a slope of the terrain and allow the fluid to flow downwards.

By using the correct friction parameters as well as the correct rheological model
and rheological parameters we have been able to reproduce flowing behavior that is
similar to that of a flowing avalanche.

To visualize the snow, we choose a uniform white shading for all the particles, this
works surprisingly well to capture the appearance of real snow.

One important finding is that for the Complex SPH model the timestep is critical,
higher viscosities require a lowering of the timestep and thus a simulation that is
perceived as slower.

We find that for a maximum viscosity of 300 we can use a time-step of 0.0005. This
is near the maximum possible while still maintaining stability. With the GeForce
GTX 470 we get 60 frames per second (with rendering) at 256K and this produces
a very believable fluid behavior.

Balancing the viscosity and the rheological model against the time step and the
number of particles is a difficult task. Through trial and error we have found that
we can achieve good interactivity around 64K particles. We use a time step of 0.001
and a rheological model that is limited to a maximum viscosity of 100, to ensure
stability of the simulation.

Avalanche Parameters Following Ancey [5], Bovet et al. [14] we use a density
of 400 kgm−3. Kern et al. [11] demonstrates that the flowing behavior of snow is
consistent with that of the Cross and Herschkel-Bulkley mode.

We use the best fit parameters from Kern et al. [11] , but modify the maximum
viscosity from 800 to 300 to ensure real-time performance.

Parameter Value
n 1
K 2.1
µ∞ 1.07
µ0 300
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Figure 8.17: The Complex model with a Cross rheological model with the parameters
µ∞ = 1.07, µ0 = 300 n = 1 and K = 2.1. We use a kinetic friction coefficient of 0.2.
Shown here is the startin condition and the final runout of the avalanche. Using
64K particles, a fluid density of 400 kgm−3 and uniform white particle shading.
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Figure 8.18: The Complex model with a Cross rheological model with the parameters
µ∞ = 1, µ0 = 100 n = 2 and K = 30000. We use a kinetic friction coefficient of 0.2.
Shown here are several snapshots in time. Using 64K particles and uniform white
particle shading.
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Figure 8.19: The Complex model with a Cross rheological model with the parameters
µ∞ = 1, µ0 = 100 n = 2 and K = 30000. We use a kinetic friction coefficient of 0.2.
Using 64K particles and uniform white particle shading.
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Chapter 9

Conclusions and Future
Work

In this thesis, we investigated the possibility of using fluid dynamics for snow
avalanche modelling. We have found that there exists much prior research in this
area. Using Computational Fluid Dynamics (CFD) and a rheological model for
Non-Newtonian fluids it is possible to model the flowing behavior of snow avalanches.
A comprehensive description of Smoothed Particle Hydrodynamics (SPH) has been
presented. SPH is ideal for interactive GPU simulations because of the high efficiency
and because it is highly parallelizable. We have used several complex techniques to
ensure an efficient implementation on the Graphics Processing Unit (GPU).
A novel framework for doing Nearest-Neighbor particle simulations on the GPU has
been developed and implemented. Using this framework we implement two different
SPH models. A Simple model that is a reimplementation of an SPH model that
is suitable for low-viscosity fluids in interactive simulations and a Complex model
that includes support for Non-Newtonian fluids. Our two SPH implementations
have support for complex terrain boundaries and simple wall boundaries.
By applying extensive optimizations to the framework and implementations very
good performance was demonstrated and compared to state-of-the-art implementa-
tions our implementations are many times faster.

9.1 Performance

To ensure the greatest possible performance considerable effort was spent on opti-
mizing the SPH implementations. Compared to our previous implementation of the
Simple SPH model a further performance increase in the range of 35% to 100% was
achieved.
We have also evaluated the overhead of real-time rendering and find that it can
carry an overhead of between 15% and 50%.
Benchmarking the two implementations on the new Fermi GPU-architecture from
NVIDIA we have found that the GeForce GTX 470 improves performance further
by 35% to 95% for the Simple SPH model and 115% to 150% for the Complex
model.
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9.2 Snow Avalanche

Our Complex SPH model has support for Non-Newtonian fluids through the use
of rheological functions. By using a rheological function that has been found to
correlate well to the movement of real snow avalanches, we have been able to
reproduce a flowing behavior that resembles that of a snow avalanches on a terrain.
We have not validated the model and it should be noted that the model may not
be physically accurate. However it does capture the flowing characteristics of dense
snow avalanches. Our implementation is very dependent on correct parameters and
would benefit from more work into the initial conditions. In addition, improvements
to the snow placement on the terrain, the avalanche release and the terrain boundary
friction would improve the physical accuracy.
Due to the very high performance of the implementations we have successfully
been able to simulate snow avalanches at interactive speeds. To achieve this, the
models sacrifice some numerical accuracy, but applying the techniques we use in the
framework to models more focused on physical accuracy should yield large gains in
performance for these models as well.
We have created interactive simulations that are believable, by adding better
visualization the quality in this respect would be further improved.
Though we have only used the implementations for simulations of water-like fluids
and snow avalanches, both models could be used for simulations of other fluids.
The complex model in particular is well suited for other types of geomorphological
flows such as mud slides.

9.3 Future work

Due to the great flexibility of SPH and the complexity of snow avalanches, there
are a great many possibilities for future work.

9.3.1 Snow Avalanche

Our model is designed to capture the flowing properties of avalanches, but does
not consider other parts of an avalanche. The accumulation on snow on the terrain
and the subsequent avalanche release, is completely unexplored on our part. An
integration between our model with a model that captures this phenomenon would
produce a more completely simulation of the entire avalanche lifecycle.
The entrainment of snow in the avalanche is also unexplored on our part, and
including this effect would increase the accuracy of the model greatly.
Finally our model and implementation has not been validated against real avalanches.
Using real terrain topology, experimental data and data from known avalanches it
would be interesting to quantify the accuracy of the model.
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9.3.2 SPH models

In the context of SPH models, the two SPH models we implemented are relatively
simple. There exist many new formulations of SPH which aim to correct some of
their deficiencies. It would be interesting to extend our implementations or use our
framework to implement some of these models on the GPU.

For interactivity, it would be especially interesting to implement an SPH model
that does not use an Equation of State to enforce incompressibility, but solves the
Poisson equation directly. Doing so would enable larger timestep. Although each
iteration would then be more computationally costly, it may be worth it in the
context of achieving better interactivity.

It would also be interesting to extend the models with support for interactions
between multiple fluids.

Adding support for temperature and energy calculations in the SPH models would
allow for a range of effects such as freezing and melting. In the context of snow
avalanches this is very interesting since it would be possible to explore a more
complex snow avalanche rheology model that depends on temperature. In this way
the shear forces/friction in the avalanche would affect the temperature and thus
also the viscosity.

It would also be interesting to investigate if it would be possible to use the temper-
ature formulation to model the avalanche release. Since the release of an avalanche
can be caused by melting snow and heat from the sun, one could model the temper-
ature in the snowpack and use the temperature to calculate the water content in the
snowpack. Using this water content it should be possible to model the structural
integrity of the snowpack, and thus also the release conditions for an avalanche.

The runout of an avalanche is highly dependent on the basal friction against the
terrain. In our thesis, we use a fairly simple friction model. By implementing a
more complex friction model increased accuracy would be possible. In addition, one
could model interesting effects such as erosion [71].

Adding more complex terrains would be interesting since one could describe different
frictions for different parts of the terrain, in effect creating a friction-map. Using
this one could model different materials for the ground, such as rock, dirt, snow
and vegetation.

9.3.3 Implementation

In our implementation we rendered the SPH particles directly. By doing some form
of surface reconstruction one could render a more correct fluid “surface”.

Adding support for arbitrary meshes is also a possibility. There would be a need for
some kind of spatial index, and it might be possible to reuse the existing uniform
grid that we have implemented.
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Our implementations use NVIDIA CUDA, but the emerging standard for GPU-
computing is OpenCL. Porting our framework to use OpenCL would make it possible
to use other GPUs than those by NVIDIA.

Adding support for multi-GPU simulations would make it possible to scale the
simulations both in accuracy and performance. Doing so would require some way
to split the simulation domain such that load is balanced fairly among the GPUs.
Fleissner and Eberhard [72] propose such method for parallel load balancing.

Extending this it would also be interesting to extend our framework to support
clusters of GPUs, which would make it possible to do very large simulations.
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Appendix A

Smoothing Kernel
Derivatives

These are the Gradients and Laplacians of the smoothing kernels used in the
implementations.

From Müller et al. [1].

∇Wpoly6(r, h) = − 945
32πh9 r

{
(h2 − |r|2)2 0 ≤ |r| ≤ h

0 otherwise
(A.1)

∇2Wpoly6(r, h) = − 945
32πh9

{
(h2 − |r|2)(3h2 − 7 |r|2) 0 ≤ |r| ≤ h

0 otherwise
(A.2)

∇W (r, h)viscosity = 15
2πh3 r

{
−3|r|
2h3 + 2

h2 − h
2|r|3 0 ≤ |r| ≤ h

0 otherwise
(A.3)

∇2Wviscosity(r, h) = 45
πh6

{
h− |r| 0 ≤ |r| ≤ h

0 otherwise
(A.4)

And from Desbrun and Gascuel [36]:

∇Wspiky(r, h) = − 45
πh6

r
|r|

{
(h− |r|)2 0 ≤ |r| ≤ h

0 otherwise
(A.5)

∇2Wspiky(r, h) = − 90
πh6

1
|r|

{
(h− |r|)(h− 2 |r|) 0 ≤ |r| ≤ h

0 otherwise
(A.6)

And finally the gradient of the cubic spline smoothing kernel:
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∇Wcubic(r, h) =




0 if 2 < |r|

h

−
3 x
h2 −

9 x |r|
4h3

π h3 if |r|
h ∈ (0, 1)

−
3 x
(

|r|
h −2

)2

4π h4 |r| if |r|
h ∈ (1, 2)

0 if 2 < |r|
h

−
3 y
h2 −

9 y |r|
4h3

π h3 if |r|
h ∈ (0, 1)

−
3 y
(

|r|
h −2

)2

4π h4 |r| if |r|
h ∈ (1, 2)

0 if 2 < |r|
h

−
3 z
h2−

9 z |r|
4h3

π h3 if |r|
h ∈ (0, 1)

−
3 z
(

|r|
h −2

)2

4π h4 |r| if |r|
h ∈ (1, 2)





Appendix B

Source Code

We include some of the most important source from our implementations. Only
GPU code is included, all host code is excluded for reasons of brevity.

B.1 Visualization Shader Code

1 vertex_program shader/ParticleBall_VS cg
2 {
3 source ParticleBall.cg
4 profiles vs_1_1 arbvp1
5 entry_point ParticleBall_VS
6

7 default_params
8 {
9 param_named_auto lightPosition light_position_object_space 0

10 param_named_auto eyePosition camera_position_object_space
11

12 param_named_auto worldViewProjMatrix worldviewproj_matrix
13 param_named_auto texWorldViewProjMatrix0

texture_worldviewproj_matrix 0
14 param_named_auto texWorldViewProjMatrix1

texture_worldviewproj_matrix 1
15 param_named_auto texWorldViewProjMatrix2

texture_worldviewproj_matrix 2
16

17 param_named pointRadius float 100
18 param_named pointScale float 400
19 }
20 }
21

22 fragment_program shader/ParticleBall_PS cg
23 {
24 source ParticleBall.cg
25 profiles ps_2_0 arbfp1
26 entry_point ParticleBall_PS
27 }
28

29 fragment_program shader/ParticleBallSnow_PS cg
30 {
31 source ParticleBall.cg
32 profiles ps_2_0 arbfp1
33 entry_point ParticleBallSnow_PS
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34 }
35

36 material shader/ParticleBall
37 {
38 technique
39 {
40 pass
41 {
42 point_sprites on
43 point_size 10
44 point_size_attenuation on
45 vertex_program_ref shader/ParticleBall_VS {}
46 fragment_program_ref shader/ParticleBall_PS {}
47 }
48 }
49 }
50 material shader/ParticleBallSnow
51 {
52 technique
53 {
54 pass
55 {
56 point_sprites on
57 point_size 10
58 point_size_attenuation on
59 vertex_program_ref shader/ParticleBall_VS {}
60 fragment_program_ref shader/ParticleBallSnow_PS {}
61 }
62 }
63 }

1 void ParticleBall_VS(
2 float4 position : POSITION,
3 //float3 normal : NORMAL,
4 float4 color : COLOR,
5 float2 uv : TEXCOORD0,
6

7 out float4 oPosition : POSITION,
8 out float4 oColor : COLOR,
9 out float3 oUv : TEXCOORD0,

10 out float3 oLightDir : TEXCOORD1,
11 out float3 oHalfAngle : TEXCOORD2,
12 out float4 oLightPosition0 : TEXCOORD3,
13 out float4 oLightPosition1 : TEXCOORD4,
14 out float4 oLightPosition2 : TEXCOORD5,
15 out float3 oNormal : TEXCOORD6,
16 out float oPointSize : PSIZE,
17

18 uniform float pointRadius,
19 uniform float pointScale,
20

21 uniform float4 lightPosition, // object space
22 uniform float3 eyePosition, // object
23

24 uniform float4x4 worldViewProjMatrix,
25

26 uniform float4x4 texWorldViewProjMatrix0,
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27 uniform float4x4 texWorldViewProjMatrix1,
28 uniform float4x4 texWorldViewProjMatrix2
29 )
30 {
31 // calculate output position
32 oPosition = mul(worldViewProjMatrix, vec4(position.xyz, 1.0));
33

34 // pass the main uvs straight through unchanged
35 oUv.xy = uv;
36 oUv.z = oPosition.z;
37

38 // pass color through as well
39 oColor = color;
40

41 // pass through normals
42 //oNormal = normal;
43

44 float dist = length(oPosition);
45 oPointSize = pointRadius * (pointScale / dist);
46

47 // calculate tangent space light vector
48 // Get object space light direction
49 oLightDir = normalize(lightPosition.xyz - (position * lightPosition.w).

xyz);
50

51 // Calculate half-angle in tangent space
52 float3 eyeDir = normalize(eyePosition - position.xyz);
53 oHalfAngle = normalize(eyeDir + oLightDir);
54

55 // Calculate the position of vertex in light space
56 oLightPosition0 = mul(texWorldViewProjMatrix0, position);
57 oLightPosition1 = mul(texWorldViewProjMatrix1, position);
58 oLightPosition2 = mul(texWorldViewProjMatrix2, position);
59

60 return;
61 }
62

63 /********* pixel shaders ********/
64

65 void ParticleBall_PS(
66 float4 position : POSITION,
67 float4 color : COLOR,
68

69 float3 uv : TEXCOORD0,
70 float3 OSlightDir : TEXCOORD1,
71 float3 OShalfAngle : TEXCOORD2,
72 float4 LightPosition0 : TEXCOORD3,
73 float4 LightPosition1 : TEXCOORD4,
74 float4 LightPosition2 : TEXCOORD5,
75 float3 normal : TEXCOORD6,
76

77 out float4 oColour : COLOR
78 )
79 {
80 const vec3 lightDir = vec3(0.577, 0.577, 0.577);
81

82 // calculate normal from texture coordinates
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83 vec3 N;
84 N.xy = uv.xy*vec2(2.0, -2.0) + vec2(-1.0, 1.0);
85 float mag = dot(N.xy, N.xy);
86 if (mag > 1.0) discard; // kill pixels outside circle
87 N.z = sqrt(1.0-mag);
88

89 // calculate lighting
90 float diffuse = 0.5 + 0.5* max(0.0, dot(lightDir, N));
91

92 float alpha = 0.5;
93 oColour = float4(color.rgb * diffuse,alpha);
94 }
95

96 void ParticleBallSnow_PS(
97 float4 position : POSITION,
98 float4 color : COLOR,
99

100 float3 uv : TEXCOORD0,
101 float3 OSlightDir : TEXCOORD1,
102 float3 OShalfAngle : TEXCOORD2,
103 float4 LightPosition0 : TEXCOORD3,
104 float4 LightPosition1 : TEXCOORD4,
105 float4 LightPosition2 : TEXCOORD5,
106 float3 normal : TEXCOORD6,
107

108 out float4 oColour : COLOR
109 )
110 {
111 const vec3 lightDir = vec3(0.577, 0.577, 0.577);
112

113 // calculate normal from texture coordinates
114 vec3 N;
115 N.xy = uv.xy*vec2(2.0, -2.0) + vec2(-1.0, 1.0);
116 float mag = dot(N.xy, N.xy);
117 if (mag > 1.0) discard; // kill pixels outside circle
118 N.z = sqrt(1.0-mag);
119

120 // calculate lighting
121 float diffuse = 0.8 + 0.8* max(0.0, dot(lightDir, N));
122

123 float alpha = 0.5;
124 oColour = float4(color.rgb * diffuse,alpha);
125 }

B.2 Uniform Grid Framework Code

1 // This software contains source code provided by NVIDIA Corporation.
2 // Specifically code from the CUDA 2.3 SDK "Particles" sample
3

4 #ifndef __UniformGrid_cu__
5 #define __UniformGrid_cu__
6

7 #include "K_UniformGrid_Utils.cu"
8
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9 // Calculate a grid hash value for each particle
10

11 __global__ void K_Grid_Hash (
12 uint numParticles,
13 float_vec* dParticlePositions,
14 GridData dGridData
15 )
16 {
17 // particle index
18 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
19 if (index >= numParticles) return;
20

21 // particle position
22 float4 p = dParticlePositions[index];
23

24 // get address in grid
25 int3 gridPos = UniformGridUtils::calcGridCell(make_float3(p),

cGridParams.grid_min, cGridParams.grid_delta);
26 uint hash = UniformGridUtils::calcGridHash<true>(gridPos, cGridParams.

grid_res);
27

28 // store grid hash and particle index
29 dGridData.sort_hashes[index] = hash;
30 dGridData.sort_indexes[index] = index;
31

32 }
33

34

35 #endif

1 // This software contains source code provided by NVIDIA Corporation.
2 // Specifically code from the CUDA 2.3 SDK "Particles" sample
3

4 #ifndef __K_UniformGrid_Update_cu__
5 #define __K_UniformGrid_Update_cu__
6

7 // read/write from the unsorted data structure to the sorted one
8 template <class T, class D>
9 __global__ void K_Grid_UpdateSorted (

10 int numParticles,
11 D dParticles,
12 D dParticlesSorted,
13 GridData dGridData
14 )
15 {
16 // particle index
17 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
18 if (index >= numParticles) return;
19

20 // blockSize + 1 elements
21 extern __shared__ uint sharedHash[];
22

23 uint hash = dGridData.sort_hashes[index];
24

25 // Load hash data into shared memory so that we can look
26 // at neighboring particle’s hash value without loading
27 // two hash values per thread
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28 sharedHash[threadIdx.x+1] = hash;
29 if (index > 0 && threadIdx.x == 0 ) {
30

31 // first thread in block must load neighbor particle hash
32 sharedHash[0] = dGridData.sort_hashes[index-1];
33 }
34

35 #ifndef __DEVICE_EMULATION__
36 __syncthreads ();
37 #endif
38

39 // If this particle has a different cell index to the previous
40 // particle then it must be the first particle in the cell,
41 // so store the index of this particle in the cell.
42 // As it isn’t the first particle, it must also be the cell end of
43 // the previous particle’s cell
44

45 if ((index == 0 || hash != sharedHash[threadIdx.x]) )
46 {
47 dGridData.cell_indexes_start[hash] = index;
48 if (index > 0)
49 dGridData.cell_indexes_end[sharedHash[threadIdx.x]] = index;
50 }
51

52 if (index == numParticles - 1)
53 {
54 dGridData.cell_indexes_end[hash] = index + 1;
55 }
56

57 uint sortedIndex = dGridData.sort_indexes[index];
58

59 // Copy data from old unsorted buffer to sorted buffer
60 T::UpdateSortedValues(dParticlesSorted, dParticles, index, sortedIndex);
61 }
62

63 #endif

1 #ifndef __K_UniformGrid_Utils_cu__
2 #define __K_UniformGrid_Utils_cu__
3

4 namespace UniformGridUtils
5 {
6 // find the grid cell from a position in world space
7 static __device__ int3 calcGridCell(float3 const &p, float3 grid_min,

float3 grid_delta)
8 {
9 // subtract grid_min (cell position) and multiply by delta

10 return make_int3((p-grid_min) * grid_delta);
11 }
12

13

14 // calculate hash from grid cell
15 template <bool wrapEdges>
16 static __device__ uint calcGridHash(int3 const &gridPos, float3 grid_res

)
17 {
18 int gx,gy,gz;
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19 if(wrapEdges)
20 {
21 int gsx = (int)floor(grid_res.x);
22 int gsy = (int)floor(grid_res.y);
23 int gsz = (int)floor(grid_res.z);
24

25 // //power of 2 wrapping..
26 // gx = gridPos.x & gsx-1;
27 // gy = gridPos.y & gsy-1;
28 // gz = gridPos.z & gsz-1;
29

30 // wrap grid... but since we can not assume size is power of 2 we
can’t use binary AND/& :/

31 gx = gridPos.x % gsx;
32 gy = gridPos.y % gsy;
33 gz = gridPos.z % gsz;
34 if(gx < 0) gx+=gsx;
35 if(gy < 0) gy+=gsy;
36 if(gz < 0) gz+=gsz;
37 }
38 else
39 {
40 gx = gridPos.x;
41 gy = gridPos.y;
42 gz = gridPos.z;
43 }
44

45 //return __mul24(__mul24(gz, (int) cGridParams.grid_res.y)+gy, (int)
cGridParams.grid_res.x) + gx;

46

47 //We choose to simply traverse the grid cells along the x, y, and z
axes, in that order. The inverse of

48 //this space filling curve is then simply:
49 // index = x + y*width + z*width*height
50 //This means that we process the grid structure in "depth slice" order

, and
51 //each such slice is processed in row-column order.
52 return __mul24(__umul24(gz, grid_res.y), grid_res.x) + __mul24(gy,

grid_res.x) + gx;
53 }
54

55

56 // Iterate over particles found in the nearby cells (including cell of
position_i)

57 template<class O, class D>
58 static __device__ void IterateParticlesInCell(
59 D &data,
60 int3 const &cellPos,
61 uint const &index_i,
62 float3 const &position_i,
63 GridData const &dGridData
64 )
65 {
66 // get hash (of position) of current cell
67 volatile uint cellHash = UniformGridUtils::calcGridHash<true>(cellPos,

cGridParams.grid_res);
68
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69 // get start/end positions for this cell/bucket
70 //uint startIndex = FETCH_NOTEX(dGridData,cell_indexes_start,cellHash)

;
71 volatile uint startIndex = FETCH(dGridData,cell_indexes_start,cellHash

);
72

73 // check cell is not empty
74 if (startIndex != 0xffffffff)
75 {
76 //uint endIndex = FETCH_NOTEX(dGridData,cell_indexes_end,cellHash);
77 volatile uint endIndex = FETCH(dGridData, cell_indexes_end, cellHash

);
78

79 // iterate over particles in this cell
80 for(uint index_j=startIndex; index_j < endIndex; index_j++)
81 {
82 O::ForPossibleNeighbor(data, index_i, index_j, position_i);
83 }
84 }
85 }
86

87 // Iterate over particles found in the nearby cells (including cell of
position_i)

88 template<class O, class D>
89 static __device__ void IterateParticlesInNearbyCells(
90 D &data,
91 uint const &index_i,
92 float3 const &position_i,
93 GridData const &dGridData)
94 {
95 O::PreCalc(data, index_i);
96

97 // get cell in grid for the given position
98 volatile int3 cell = UniformGridUtils::calcGridCell(position_i,

cGridParams.grid_min, cGridParams.grid_delta);
99

100 // iterate through the 3^3 cells in and around the given position
101 // can’t unroll these loops, they are not innermost
102 for(int z=cell.z-1; z<=cell.z+1; ++z)
103 {
104 for(int y=cell.y-1; y<=cell.y+1; ++y)
105 {
106 for(int x=cell.x-1; x<=cell.x+1; ++x)
107 {
108 IterateParticlesInCell<O,D>(data, make_int3(x,y,z), index_i,

position_i, dGridData);
109 }
110 }
111 }
112

113 O::PostCalc(data, index_i);
114 }
115 // Iterate over particles found in the neighbor list
116 template<class O, class D>
117 static __device__ void IterateParticlesInNearbyCells(
118 D &data,
119 uint const &index_i,
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120 float3 const &position_i,
121 NeighborList const &dNeighborList
122 )
123 {
124 O::PreCalc(data, index_i);
125

126 // iterate over particles in neighbor list
127 for(uint counter=0; counter < dNeighborList.MAX_NEIGHBORS; counter++)
128 {
129 //const uint index_j = FETCH(dNeighborList,neighbors, index_i*

dNeighborList.neighbors_pitch+counter);
130 const uint index_j = FETCH_NOTEX(dNeighborList,neighbors, index_i*

dNeighborList.MAX_NEIGHBORS+counter);
131

132 // no more neighbors for this particle
133 if(index_j == 0xffffffff)
134 break;
135

136 O::ForPossibleNeighbor(data, index_i, index_j, position_i);
137

138 }
139

140 O::PostCalc(data, index_i);
141 }
142

143 };
144

145 #endif

B.3 Color Calculation Framework Code

1 #ifndef __K_Coloring_cu__
2 #define __K_Coloring_cu__
3

4 #include <cutil_math.h>
5

6 #include "K_Coloring.cuh"
7

8 //from http://www.cs.rit.edu/~ncs/color/t_convert.html
9 //The hue value H runs from 0 to 360ž.

10 //The saturation S is the degree of strength or purity and is from 0 to 1.
11 //Purity is how much white is added to the color, so S=1 makes the purest

color (no white).
12 //Brightness V also ranges from 0 to 1, where 0 is the black.
13 __device__ float3 HSVtoRGB(float h, float s, float v )
14 {
15 float r=0,g=0,b=0;
16 int i;
17 float f, p, q, t;
18 if( s == 0 ) {
19 // achromatic (grey)
20 r = g = b = v;
21 return make_float3(r,g,b);
22 }



148 Source Code

23 h /= 60; // sector 0 to 5
24 i = floor( h );
25 f = h - i; // factorial part of h
26 p = v * ( 1.0f - s );
27 q = v * ( 1.0f - s * f );
28 t = v * ( 1.0f - s * ( 1.0f - f ) );
29 switch( i ) {
30 case 0:
31 r = v; g = t; b = p;
32 break;
33 case 1:
34 r = q; g = v; b = p;
35 break;
36 case 2:
37 r = p; g = v; b = t;
38 break;
39 case 3:
40 r = p; g = q; b = v;
41 break;
42 case 4:
43 r = t; g = p; b = v;
44 break;
45 default: // case 5:
46 r = v; g = p; b = q;
47 break;
48 }
49

50 return make_float3(r,g,b);
51 }
52

53

54 __device__ float3 calculateColor(ColoringGradient coloringGradient, float
colorScalar)

55 {
56 float3 color = make_float3(0,0,0);
57 switch(coloringGradient)
58 {
59 case White:
60 // completely white
61 {
62 color = make_float3(1,1,1);
63 }
64 break;
65 case Blackish:
66 // acromatic gradient with V from 0 to 0.5
67 {
68 float h = colorScalar*0.5;
69 color = make_float3(h,h,h);
70 }
71 break;
72 case BlackToCyan:
73 {
74 color = make_float3(0,colorScalar,colorScalar);
75 }
76 break;
77 case BlueToWhite:
78 // blue to white gradient
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79 {
80 color = make_float3(1-colorScalar, 1-0.5f*colorScalar, 1);
81 }
82 break;
83 case HSVBlueToRed:
84 // hsv gradient from blue to red (0 to 245 degrees in hue)
85 {
86 float h = clamp((1-colorScalar)*245.0f,0.0f,245.0f);
87 color = HSVtoRGB(h,0.5f,1);
88 }
89 break;
90 }
91 return color;
92 }
93

94

95 static __device__ float3 CalculateColor(ColoringGradient coloringGradient,
SPHColoringSource coloringSource, float3 vnext, float pressure,

float3 force)
96 {
97 float3 color = make_float3(0);
98 switch(coloringSource)
99 {

100 case Velocity:
101 // color given by velocity
102 {
103 float colorScalar = fabs(vnext.x)+fabs(vnext.y)+fabs(vnext.z) /

11000.0;
104 colorScalar = clamp(colorScalar, 0.0f, 1.0f);
105 color = calculateColor(coloringGradient, colorScalar);
106 }
107 break;
108 case Pressure:
109 // color given by pressure
110 {
111 float colorScalar = clamp(( (pressure - cFluidParams.rest_pressure)/

400.0), 0.1f, 1.0f);
112 color = calculateColor(coloringGradient, colorScalar);
113 }
114 break;
115 case Force:
116 // color given by force
117 {
118 if(coloringGradient == Direct)
119 {
120 //color = clamp(make_float3(0.5)+(force/80.0f),make_float3(0),

make_float3(1));
121 color = clamp((fabs(force)/80.0f),make_float3(0),make_float3(1));
122 }
123 else
124 {
125 force /= 80.0f;
126 float colorScalar = clamp((force.x+force.y+force.z)/3.0f,0.1f,1.0f

);
127 color = calculateColor(coloringGradient, colorScalar);
128 }
129 }
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130 break;
131 }
132 return color;
133 }
134

135

136 #endif

B.4 SPH Boundary Handling Code

1 #ifndef __K_Boundaries_Common_cu__
2 #define __K_Boundaries_Common_cu__
3

4

5 #define EPSILON 0.00001f //for collision detection
6

7

8 __device__ float3 calculateRepulsionForce(
9 float3 const& vel,

10 float3 const& normal,
11 float const& boundary_distance,
12 float const& boundary_dampening,
13 float const& boundary_stiffness
14 )
15 {
16

17 // from ama06
18 return (boundary_stiffness * boundary_distance - boundary_dampening *

dot(normal, vel)) * normal;
19 }
20

21

22 /*
23 COLLISION RESPONSE
24 SIMPLE REFLECTION
25 ................
26 ....^...........
27 Vn..|.../.V.....
28 ....|../........
29 ....|./.........
30 ....|/________>.
31 ........Vt......
32 ................
33

34 Vn = (Vbc * n)Vbc
35 Vt = Vbc Űvn
36 Vbc = velocity before collision
37 Vn = normal component of velocity
38 Vt == tangential component of velocity
39 V = (1-u)Vt Ű eVn
40 u = dynamic friction (affects tangent velocity)
41 e = resilience (affects normal velocity)
42 */
43
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44 __device__ float3 calculateFrictionForce(
45 float3 const& vel,
46 float3 const& force,
47 float3 const& normal,
48 float const& friction_kinetic,
49 float const& friction_static_limit
50 )
51 {
52 float3 friction_force = make_float3(0,0,0);
53

54 // the normal part of the force vector (ie, the part that is going "
towards" the boundary

55 float3 f_n = force * dot(normal, force);
56 // tangent on the terrain along the force direction (unit vector of

tangential force)
57 float3 f_t = force - f_n;
58

59 // the normal part of the velocity vector (ie, the part that is going "
towards" the boundary

60 float3 v_n = vel * dot(normal, vel);
61 // tangent on the terrain along the velocity direction (unit vector of

tangential velocity)
62 float3 v_t = vel - v_n;
63

64 if((v_t.x + v_t.y + v_t.z)/3.0f > friction_static_limit)
65 friction_force = -v_t;
66 else
67 friction_force = friction_kinetic * -v_t;
68

69 // above static friction limit?
70 // friction_force.x = f_t.x > friction_static_limit ? friction_kinetic

* -v_t.x : -v_t.x;
71 // friction_force.y = f_t.y > friction_static_limit ? friction_kinetic

* -v_t.y : -v_t.y;
72 // friction_force.z = f_t.z > friction_static_limit ? friction_kinetic

* -v_t.z : -v_t.z;
73

74 //TODO; friction should cause energy/heat in contact particles!
75 friction_force = friction_kinetic * -v_t;
76

77 return friction_force;
78 }
79

80 #endif

1 #ifndef __K_Boundaries_Terrain_cu__
2 #define __K_Boundaries_Terrain_cu__
3

4 #include "K_Boundaries_Common.cu"
5

6 #define EPSILON 0.00001f //for collision detection
7

8

9 __device__ int2 getTerrainPos(float3 const &pos, int const &dTerrainSize,
float const &dTerrainWorldSize)

10 {
11 int2 terrainPos;
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12 terrainPos.y = floor(pos.z*(dTerrainSize/dTerrainWorldSize));
13 terrainPos.x = floor(pos.x*(dTerrainSize/dTerrainWorldSize));
14 return terrainPos;
15 }
16

17 __device__ float getTerrainHeight(int const &terrainPosX, int const &
terrainPosZ, float const *dTerrainHeights, int const &dTerrainSize)

18 {
19 return dTerrainHeights[((dTerrainSize) * (dTerrainSize) - 1) - (((

dTerrainSize) * terrainPosZ)) + terrainPosX];
20 }
21

22 __device__ float getTerrainHeight(int2 const &terrainPos, float const *
dTerrainHeights, int const &dTerrainSize)

23 {
24 return getTerrainHeight(terrainPos.x, terrainPos.y, dTerrainHeights,

dTerrainSize);
25 }
26

27 __device__ float getTerrainHeightInterpolate(
28 float3 const &pos,
29 int const &dTerrainSize,
30 float const &dTerrainWorldSize,
31 float const *dTerrainHeights)
32 {
33 int2 tpos = getTerrainPos(pos, dTerrainSize, dTerrainWorldSize);
34

35 int Xa = tpos.x; // x on one side
36 int Xb = tpos.x + 1; // x on the other side
37 int Za = tpos.y; // z on one side
38 int Zb = tpos.y+1; // z on the other side
39

40 float Xd = pos.x-floor(pos.x);
41 if (Xd < 0.0f)
42 Xd *= -1.0f;
43 float Zd = pos.z-floor(pos.y);
44 if (Zd < 0.0f)
45 Zd *= -1.0f;
46

47 float b = lerp(getTerrainHeight(Xa,Zb, dTerrainHeights, dTerrainSize),
getTerrainHeight(Xb,Zb, dTerrainHeights, dTerrainSize),Xd);

48 float a = lerp(getTerrainHeight(Xa,Za, dTerrainHeights, dTerrainSize),
getTerrainHeight(Xb,Za, dTerrainHeights, dTerrainSize),Xd);

49 return lerp(a,b,Zd);
50

51 }
52

53 __device__ float3 getTerrainNormal(
54 int2 const &terrainPos,
55 float4 const *dTerrainNormals,
56 int const &dTerrainSize)
57 {
58 // TODO: perhaps interpolate normals (with curve estimation?)
59 float4 normal = (dTerrainNormals[((dTerrainSize) * (dTerrainSize)) - (((

dTerrainSize) * terrainPos.y)) + terrainPos.x]);
60 return make_float3(normal);
61 }
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62

63 __device__ float3 calculateTerrainNoPenetrationForce(
64 float3 & pos,
65 float3 const& vel,
66 float3 const& fluidWorldPosition,
67 TerrainData const &dTerrainData,
68 float const& boundary_distance,
69 float const& boundary_stiffness,
70 float const& boundary_dampening,
71 float const& scale_to_simulation
72 )
73 {
74 float3 repulsion_force = make_float3(0,0,0);
75 float diff;
76

77 int2 terrainPos = getTerrainPos(pos+fluidWorldPosition+dTerrainData.
position, dTerrainData.size, dTerrainData.world_size);

78

79 if(terrainPos.x >= 0 && terrainPos.x < dTerrainData.size && terrainPos.y
>= 0 && terrainPos.y < dTerrainData.size)

80 {
81 //float terrainHeight = getTerrainHeightInterpolate(pos, dTerrainData.

size,dTerrainData.world_size, dTerrainData.heights);
82 float terrainHeight = -dTerrainData.position.y - fluidWorldPosition.y

+ getTerrainHeight(terrainPos, dTerrainData.heights, dTerrainData.
size);

83 float3 terrainNormal = getTerrainNormal(terrainPos, dTerrainData.
normals, dTerrainData.size);

84

85 if(pos.y < terrainHeight)
86 pos.y = terrainHeight;
87

88 diff = 2 * boundary_distance - (pos.y - terrainHeight) *
scale_to_simulation;

89 if (diff > EPSILON)
90 {
91 repulsion_force += calculateRepulsionForce(vel, terrainNormal, diff,

boundary_dampening, boundary_stiffness);
92 }
93 }
94 return repulsion_force;
95 }
96

97

98 __device__ float3 calculateTerrainFrictionForce(
99 float3 const& pos,

100 float3 const& vel,
101 float3 const& force,
102 float3 const& fluidWorldPosition,
103 TerrainData const &dTerrainData,
104 float const& boundary_distance,
105 float const& friction_kinetic,
106 float const& friction_static_limit,
107 float const& scale_to_simulation
108 )
109 {
110 float3 friction_force = make_float3(0,0,0);



154 Source Code

111 float diff;
112

113 int2 terrainPos = getTerrainPos(pos+fluidWorldPosition+dTerrainData.
position, dTerrainData.size, dTerrainData.world_size);

114

115 if(terrainPos.x >= 0 && terrainPos.x < dTerrainData.size && terrainPos.y
>= 0 && terrainPos.y < dTerrainData.size )

116 {
117 //float terrainHeight = getTerrainHeightInterpolate(pos, dTerrainData.

size,dTerrainData.world_size, dTerrainData.heights);
118 float terrainHeight = -dTerrainData.position.y - fluidWorldPosition.y

+getTerrainHeight(terrainPos, dTerrainData.heights, dTerrainData.
size);

119 float3 terrainNormal = getTerrainNormal(terrainPos, dTerrainData.
normals, dTerrainData.size);

120

121 // simple limit for terrain collision
122 diff = 3 * boundary_distance - (pos.y - terrainHeight) *

scale_to_simulation;
123 if (diff > EPSILON)
124 {
125 friction_force += calculateFrictionForce(vel, force, terrainNormal,

friction_kinetic, friction_static_limit);
126 }
127 }
128 return friction_force;
129 }
130

131 #endif

1 #ifndef __K_Boundaries_Walls_cu__
2 #define __K_Boundaries_Walls_cu__
3

4 #include "K_Boundaries_Common.cu"
5

6 #define EPSILON 0.00001f //for collision detection
7

8 __device__ float3 calculateWallsNoPenetrationForce(
9 float3 const& pos,

10 float3 const& vel,
11 float3 const& grid_min,
12 float3 const& grid_max,
13 float const& boundary_distance,
14 float const& boundary_stiffness,
15 float const& boundary_dampening,
16 float const& scale_to_simulation)
17 {
18 float3 repulsion_force = make_float3(0,0,0);
19 float diff;
20

21 // simple limit for "wall" in Y direction (min of simulated volume)
22 diff = boundary_distance - ((pos.y - grid_min.y ) * scale_to_simulation)

;
23 if (diff > EPSILON) {
24 float3 normal = make_float3(0,1,0);
25 repulsion_force += calculateRepulsionForce(vel, normal, diff,

boundary_dampening, boundary_stiffness);
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26 }
27

28 // simple limit for "wall" in Y direction (max of simulated volume)
29 diff = boundary_distance - ((grid_max.y - pos.y ) * scale_to_simulation)

;
30 if (diff > EPSILON) {
31 float3 normal = make_float3(0,-1,0);
32 repulsion_force += calculateRepulsionForce(vel, normal, diff,

boundary_dampening, boundary_stiffness);
33 }
34

35 // simple limit for "wall" in Z direction (min of simulated volume)
36 diff = boundary_distance - ((pos.z - grid_min.z ) * scale_to_simulation)

;
37 if (diff > EPSILON ) {
38 float3 normal = make_float3(0,0,1);
39 repulsion_force += calculateRepulsionForce(vel, normal, diff,

boundary_dampening, boundary_stiffness);
40 }
41

42 // simple limit for "wall" in Z direction (max of simulated volume)
43 diff = boundary_distance - ((grid_max.z - pos.z ) * scale_to_simulation)

;
44 if (diff > EPSILON) {
45 float3 normal = make_float3(0,0,-1);
46 float adj = boundary_stiffness * diff - boundary_dampening * dot(

normal, vel);
47 repulsion_force += adj * normal;
48 }
49

50 // simple limit for "wall" in X direction (min of simulated volume)
51 diff = boundary_distance - ((pos.x - grid_min.x ) * scale_to_simulation)

;
52 if (diff > EPSILON ) {
53 float3 normal = make_float3(1,0,0);
54 repulsion_force += calculateRepulsionForce(vel, normal, diff,

boundary_dampening, boundary_stiffness);
55 }
56

57 // simple limit for "wall" in X direction (max of simulated volume)
58 diff = boundary_distance - ((grid_max.x - pos.x ) * scale_to_simulation)

;
59 if (diff > EPSILON) {
60 float3 normal = make_float3(-1,0,0);
61 repulsion_force += calculateRepulsionForce(vel, normal, diff,

boundary_dampening, boundary_stiffness);
62 }
63

64 return repulsion_force;
65 }
66

67

68 __device__ float3 calculateWallsNoSlipForce(
69 float3 const& pos,
70 float3 const& vel,
71 float3 const& force,
72 float3 const& grid_min,
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73 float3 const& grid_max,
74 float const& boundary_distance,
75 float const& friction_kinetic,
76 float const& friction_static_limit,
77 float const& scale_to_simulation)
78 {
79 float3 friction_force = make_float3(0,0,0);
80 float diff;
81

82 // simple limit for "wall" in Y direction (min of simulated volume)
83 diff = boundary_distance - ((pos.y - grid_min.y ) * scale_to_simulation)

;
84 if (diff > EPSILON) {
85 float3 normal = make_float3(0,1,0);
86 friction_force += calculateFrictionForce(vel, force, normal,

friction_kinetic, friction_static_limit);
87 }
88

89 // simple limit for "wall" in Y direction (max of simulated volume)
90 diff = boundary_distance - ((grid_max.y - pos.y ) * scale_to_simulation)

;
91 if (diff > EPSILON) {
92 float3 normal = make_float3(0,-1,0);
93 friction_force += calculateFrictionForce(vel, force, normal,

friction_kinetic, friction_static_limit);
94 }
95

96 // simple limit for "wall" in Z direction (min of simulated volume)
97 diff = boundary_distance - ((pos.z - grid_min.z ) * scale_to_simulation)

;
98 if (diff > EPSILON ) {
99 float3 normal = make_float3(0,0,1);

100 friction_force += calculateFrictionForce(vel, force, normal,
friction_kinetic, friction_static_limit);

101 }
102

103 // simple limit for "wall" in Z direction (max of simulated volume)
104 diff = boundary_distance - ((grid_max.z - pos.z ) * scale_to_simulation)

;
105 if (diff > EPSILON) {
106 float3 normal = make_float3(0,0,-1);
107 friction_force += calculateFrictionForce(vel, force, normal,

friction_kinetic, friction_static_limit);
108 }
109

110 // simple limit for "wall" in X direction (min of simulated volume)
111 diff = boundary_distance - ((pos.x - grid_min.x ) * scale_to_simulation)

;
112 if (diff > EPSILON ) {
113 float3 normal = make_float3(1,0,0);
114 friction_force += calculateFrictionForce(vel, force, normal,

friction_kinetic, friction_static_limit);
115 }
116

117 // simple limit for "wall" in X direction (max of simulated volume)
118 diff = boundary_distance - ((grid_max.x - pos.x ) * scale_to_simulation)

;



B.5 SPH Neighbor Iteration Framework Code 157

119 if (diff > EPSILON) {
120 float3 normal = make_float3(-1,0,0);
121 friction_force += calculateFrictionForce(vel, force, normal,

friction_kinetic, friction_static_limit);
122 }
123

124 return friction_force;
125 }
126

127 #endif

B.5 SPH Neighbor Iteration Framework Code

1 #ifndef __K_SPH_Common_cu__
2 #define __K_SPH_Common_cu__
3

4 template<class O, class D>
5 class SPHNeighborCalc
6 {
7 public:
8 // this is called before the loop over each neighbor particle
9 static __device__ void PreCalc(D &data, uint index_i)

10 {
11 O::PreCalc(data, index_i);
12 }
13

14 static __device__ void ForNeighbor(D &data, uint const &index_i, uint
const &index_j, float3 const &r, float const &rlen)

15 {
16 O::ForNeighbor(data, index_i, index_j, r, rlen);
17 }
18

19 // this is called after the loop over each particle in a cell
20 static __device__ void PostCalc(D &data, uint index_i)
21 {
22 O::PostCalc(data, index_i);
23 }
24

25 // this is called inside the loop over each particle in a cell
26 static __device__ void ForPossibleNeighbor(D &data, uint const &index_i,

uint const &index_j, float3 const &position_i)
27 {
28 // check not colliding with self
29 if (index_j != index_i)
30 {
31 // get the particle info (in the current grid) to test against
32 float3 position_j = make_float3(FETCH(data.dParticleDataSorted,

position, index_j));
33

34 // get the relative distance between the two particles, translate to
simulation space

35 float3 r = (position_i - position_j) * cFluidParams.
scale_to_simulation;

36
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37 float rlen_sq = dot(r,r);
38 // |r|
39 float rlen = sqrtf(rlen_sq);
40

41 // is this particle within cutoff?
42 if (rlen <= cFluidParams.smoothing_length)
43 {
44 O::ForNeighbor(data, index_i, index_j, r, rlen, rlen_sq);
45 }
46 }
47 }
48

49 };
50

51 #endif

B.6 SPH Smoothing Kernels Code

1 #ifndef __K_SPH_Kernels_cubic_cu__
2 #define __K_SPH_Kernels_cubic_cu__
3

4 // TODO
5 // see crespo_thesis.pdf for summary of kernels and tensile correction

terms etc!
6 // add tensile correction terms!
7

8 // used by "A fully explicit three-step SPH algorithm for simulation of
non-Newtonian fluid flow"

9

10 //third order B-spline
11 class Wcubic
12 {
13 public:
14

15 static __device__ __host__ float Kernel(float smoothing_length, float3 r
, float rlen)

16 {
17 float Q = rlen / smoothing_length;
18

19 if(Q <= 1)
20 {
21 // for 2D
22 //float c = 10 * M_1_PI / 7 * smoothInvSq;
23 // for 3D
24 float c = 1/(M_PI*(smoothing_length*smoothing_length*

smoothing_length));
25 return c * (1 - 1.5f*Q*Q + 0.75f*Q*Q*Q);
26 }
27 else if(Q <= 2)
28 {
29 // for 2D
30 //float c = 10 * M_1_PI / 28 * smoothInvSq;
31 // for 3D
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32 float c = 0.25f/(M_PI/(smoothing_length*smoothing_length*
smoothing_length));

33

34 float dif = Q-2;
35 return - c * dif * dif * dif;
36 }
37 return 0;
38 }
39

40 static __device__ __host__ float3 Gradient(float smoothing_length, float
smoothing_length_pow2, float smoothing_length_pow3, float
smoothing_length_pow4, float3 r, float rlen, float rlen_sq)

41 {
42 float Q = rlen / smoothing_length;
43

44 if(Q <= 1)
45 {
46 // for 3D
47 float c = 1 / (M_PI *(smoothing_length_pow3));
48 return - r * c * ( 3/(smoothing_length_pow2) - (9*rlen)/(4*

smoothing_length_pow3) );
49 }
50 else if(Q <= 2)
51 {
52 // for 3D
53 float c = 3 / ( 4* M_PI * (smoothing_length_pow4));
54 float dif = Q-2;
55 return - r * (c * dif * dif) / rlen;
56 }
57 return make_float3(0.0f);
58 }
59

60 };
61 #endif

1 #ifndef __K_SPH_Kernels_gaussian_cu__
2 #define __K_SPH_Kernels_gaussian_cu__
3

4 // from "PhD Thesis: Application of the Smoothed Particle Hydrodynamics
model SPHysics to free-surface hydrodynamics

5 class Wgaussian
6 {
7 public:
8

9 static __device__ __host__ float Kernel_Constant(float smoothing_length,
float smoothing_length_pow2)

10 {
11 // for 2d
12 //float c = 1/(M_PI * smoothing_length_pow2);
13 // for 3d
14 float c = 1/(powf(M_PI, 1.5f)*smoothing_length_pow2*smoothing_length);
15 return c;
16 }
17

18 static __device__ __host__ float Kernel_Variable(float smoothing_length,
float smoothing_length_pow2, float3 r, float rlen, float rlen_sq)

19 {
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20 float Q = rlen/smoothing_length;
21

22 if(0<=Q && Q<=2)
23 {
24 return 1/expf((smoothing_length_pow2*rlen_sq));
25 }
26 return 0.f;
27 }
28

29 static __device__ __host__ float Kernel(float smoothing_length, float
smoothing_length_pow2, float3 r, float rlen, float rlen_sq)

30 {
31 return Kernel_Constant(smoothing_length,smoothing_length_pow2) *

Kernel_Variable(smoothing_length, smoothing_length_pow2, r, rlen,
rlen_sq);

32 }
33

34 static __device__ __host__ float Gradient_Constant(float
smoothing_length, float smoothing_length_pow2)

35 {
36 // for 3d
37 float c = -2/(powf(M_PI, 0.5f)*smoothing_length_pow2*

smoothing_length_pow2*smoothing_length);
38 return c;
39 }
40

41 static __device__ __host__ float3 Gradient_Variable(float
smoothing_length, float smoothing_length_pow2, float3 r, float rlen,
float rlen_sq)

42 {
43 float Q = rlen/smoothing_length;
44

45 if(0<Q && Q<2)
46 {
47 return r/expf((smoothing_length_pow2*rlen_sq));
48 }
49 return make_float3(0.f);
50 }
51

52 static __device__ __host__ float3 Gradient(float smoothing_length, float
smoothing_length_pow2, float3 r, float rlen, float rlen_sq)

53 {
54 return Gradient_Constant(smoothing_length, smoothing_length_pow2) *

Gradient_Variable(smoothing_length, smoothing_length_pow2, r, rlen
, rlen_sq);

55 }
56

57 };
58

59

60 #endif

1 #ifndef __K_SPH_Kernels_Wpoly6_cu__
2 #define __K_SPH_Kernels_Wpoly6_cu__
3

4 class Wpoly6
5 {
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6 public:
7

8 static __device__ __host__ float Kernel_Constant(float smoothing_length)
9 {

10 return 315.0f / (64.0f * M_PI * pow(smoothing_length, 9.0f) );
11 }
12

13 static __device__ __host__ float Kernel_Variable(float
smoothing_length_pow2, float3 r, float rlen_sq)

14 {
15 float hsq_rlensq = smoothing_length_pow2 - rlen_sq;
16 return hsq_rlensq * hsq_rlensq * hsq_rlensq;
17 }
18

19

20 static __device__ __host__ float Gradient_Constant(float
smoothing_length)

21 {
22 return -945.0f / (32.0f * M_PI * pow(smoothing_length, 9.0f) );
23 }
24

25 static __device__ __host__ float Gradient_Variable(float
smoothing_length, float smoothing_length_pow2, float3 r, float rlen)

26 {
27 // h - |r|^2
28 float hsq_rlensq = smoothing_length_pow2 - (rlen*rlen);
29 return hsq_rlensq * hsq_rlensq;
30 }
31

32 static __device__ __host__ float Gradient(float smoothing_length, float
smoothing_length_pow2, float3 r, float rlen)

33 {
34 return Gradient_Constant(smoothing_length) * Gradient_Variable(

smoothing_length, smoothing_length_pow2, r, rlen);
35 }
36

37 static __device__ __host__ float Laplace_Constant(float smoothing_length
, float smoothing_length_pow2, float3 r, float rlen)

38 {
39 return -945.0f / (32.0f * M_PI * pow(smoothing_length, 9.0f) );
40 }
41

42 static __device__ __host__ float Laplace_Variable(float smoothing_length
, float smoothing_length_pow2, float3 r, float rlen)

43 {
44 // |r|^2
45 float rlen_sq = rlen*rlen;
46 // h - |r|^2
47 float part1 = smoothing_length_pow2 - rlen_sq;
48 // 3h - 7|r|^2
49 float part2 = 3.0f*smoothing_length_pow2 - 7.0f*rlen_sq;
50 return part1 * part2;
51 }
52 };
53

54 #endif
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1 #ifndef __K_SPH_Kernels_quadratic_cu__
2 #define __K_SPH_Kernels_quadratic_cu__
3

4 // from "PhD Thesis: Application of the Smoothed Particle Hydrodynamics
model SPHysics to free-surface hydrodynamics

5 class Wquadratic
6 {
7 public:
8

9 static __device__ __host__ float Kernel_Constant(float smoothing_length)
10 {
11 // for 2d
12 //float c = 2/(M_PI * smoothing_length * smoothing_length);
13 // for 3d
14 float c = 5/(4*M_PI*smoothing_length*smoothing_length*smoothing_length

);
15

16 return c;
17 }
18

19 static __device__ __host__ float Kernel_Variable(float smoothing_length,
float smoothing_length_pow2, float3 r, float rlen)

20 {
21 float q = rlen/smoothing_length;
22

23 if(0<=q && q<=2)
24 {
25 return 0.1875f*q*q - 0.75*q + 0.75;
26 }
27 return 0.f;
28 }
29

30 static __device__ __host__ float Gradient_Constant(float
smoothing_length)

31 {
32 //TODO
33 }
34

35 static __device__ __host__ float Gradient_Variable(float
smoothing_length, float smoothing_length_pow2, float3 r, float rlen)

36 {
37 }
38

39 };
40

41 #endif

1 #ifndef __K_SPH_Kernels_quintic_cu__
2 #define __K_SPH_Kernels_quintic_cu__
3

4 // TODO
5 // see crespo_thesis.pdf for summary of kernels and tensile correction

terms etc!
6

7 // the quintic wendland kernel [Wendland, 1995]
8 class Wquintic
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9 {
10 public:
11

12 static __device__ __host__ float Kernel(float smoothing_length, float3 r
, float rlen, float rlen_sq)

13 {
14 float Q = rlen / smoothing_length;
15 if(Q < 2)
16 {
17 // for 2D
18 //float c = 7.0f/(4.0f*M_PI*rlen_sq);
19 // for 3D
20 float c = 7.0f/(8.0f*M_PI*rlen*rlen_sq);
21 return c * pow(1-0.5f*Q, 4) * (2*Q+1);
22 }
23 return 0;
24 }
25

26 static __device__ __host__ float3 Gradient(float smoothing_length,
float3 r, float rlen, float rlen_sq)

27 {
28 float Q = rlen / smoothing_length;
29 if(Q < 2)
30 {
31 // for 2D
32 //scalar c = (-35 * M_1_PI / 4 * rlen_sq*rlen_sq);
33 // for 3D
34 float c = (-35 * M_1_PI) / (8 * rlen_sq*rlen_sq);
35 float dif = 2 - Q;
36 return r * (c * dif * dif / r);
37 }
38 return make_float3(0,0,0);
39 }
40

41

42 };
43 #endif

1 #ifndef __K_SPH_Kernels_Wspiky_cu__
2 #define __K_SPH_Kernels_Wspiky_cu__
3

4 // Spiky kernel by Desbrun and Gascuel, also used by Müller et al.
5 class Wspiky
6 {
7 public:
8

9 static __device__ __host__ float Kernel_Constant(float smoothing_length)
10 {
11 return 15.0f / (M_PI * pow(smoothing_length, 6.0f) );
12 }
13

14 static __device__ __host__ float Kernel_Variable(float smoothing_length,
float3 r, float rlen)

15 {
16 // h - |r|
17 float h_rlen = (smoothing_length - rlen);
18 return h_rlen*h_rlen*h_rlen;
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19 }
20

21 static __device__ __host__ float3 Gradient(float smoothing_length,
float3 r, float rlen)

22 {
23 return Gradient_Constant(smoothing_length) * Gradient_Variable(

smoothing_length, r, rlen);
24 }
25

26 static __device__ __host__ float Gradient_Constant(float
smoothing_length)

27 {
28 return -45.0f / (M_PI * pow(smoothing_length, 6.0f) );
29 }
30

31 static __device__ __host__ float3 Gradient_Variable(float
smoothing_length, float3 r, float rlen)

32 {
33 // h - |r|
34 float h_rlen = (smoothing_length-rlen);
35 return r*(1.0f/rlen)*(h_rlen*h_rlen);
36 }
37

38 static __device__ __host__ float Laplace_Constant(float smoothing_length
)

39 {
40 return -90.0f / (M_PI * pow(smoothing_length, 6.0f) );
41 }
42

43 static __device__ __host__ float3 Laplace_Variable(float
smoothing_length, float3 r, float rlen)

44 {
45 // h - |r|
46 float h_rlen = (smoothing_length-rlen);
47 float h_2rlen = (smoothing_length-2*rlen);
48 return (1.0f/r) * (h_rlen*h_2rlen);
49 }
50 };
51

52 #endif

1 #ifndef __K_SPH_Kernels_Wviscosity_cu__
2 #define __K_SPH_Kernels_Wviscosity_cu__
3

4 // Viscosity kernel from Müller et al.
5 class Wviscosity
6 {
7 public:
8

9 static __device__ __host__ float Kernel_Constant(float smoothing_length)
10 {
11 return 15.0f / (M_PI * pow(smoothing_length, 6.0f) );
12 }
13

14 static __device__ __host__ float Kernel_Variable(float smoothing_length,
float3 r, float rlen)

15 {
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16 float h_rlen = (smoothing_length - rlen);
17 return h_rlen*h_rlen*h_rlen;
18 }
19

20 static __device__ __host__ float Gradient_Constant(float
smoothing_length)

21 {
22 return 15.0f / (2 * M_PI * pow(smoothing_length, 3.0f) );
23 }
24

25 static __device__ __host__ float Gradient_Variable(float
smoothing_length, float3 r, float rlen)

26 {
27 float part1 = (-3*rlen)/(2*pow(smoothing_length, 3.0f));
28 float part2 = (2/smoothing_length*smoothing_length);
29 float part3 = -smoothing_length/(2*pow(rlen,3.0f));
30 return part1 + part2 + part3;
31 }
32

33 static __device__ __host__ float Laplace_Constant(float smoothing_length
)

34 {
35 return 45.0f / (M_PI * pow(smoothing_length, 6.0f) );
36 }
37

38 static __device__ __host__ float Laplace_Variable(float smoothing_length
, float3 r, float rlen)

39 {
40 float h_rlen = (smoothing_length-rlen);
41 return h_rlen;
42 }
43 };
44 #endif

B.7 Simple SPH Implementation Code

1 #ifndef __K_SimpleSPH_Step1_cu__
2 #define __K_SimpleSPH_Step1_cu__
3

4 #include "K_UniformGrid_Utils.cu"
5 #include "K_SPH_Kernels.cu"
6 #include "K_SPH_Common.cu"
7

8 class Step1
9 {

10 public:
11

12 struct Data
13 {
14 float sum_density;
15

16 SimpleSPHData dParticleDataSorted;
17 };
18
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19 class Calc
20 {
21 public:
22

23 static __device__ void PreCalc(Data &data, uint const &index_i)
24 {
25 // read particle data from sorted arrays
26 data.sum_density = 0;
27 }
28

29 static __device__ void ForNeighbor(Data &data, uint const &index_i,
uint const &index_j, float3 const &r, float const& rlen, float
const &rlen_sq)

30 {
31 // the density sum using Wpoly6 kernel
32 data.sum_density += SPH_Kernels::Wpoly6::Kernel_Variable(

cPrecalcParams.smoothing_length_pow2, r, rlen_sq);
33 }
34

35 static __device__ void PostCalc(Data &data, uint index_i)
36 {
37 // Compute the density field at the current particle,
38 // Calculate the W smoothing function for this particle, mass and

the poly6_grad_coeff has been moved outside the sum because they
are constant.

39 float density = max(1.0, cFluidParams.particle_mass * cPrecalcParams
.kernel_poly6_coeff * data.sum_density);

40 data.dParticleDataSorted.density[index_i]= density;
41

42 // ideal gas equation of state (by Desbrun and Cani in "Smoothed
particles: A new paradigm for animating highly deformable bodies
")

43 data.dParticleDataSorted.pressure[index_i] = cFluidParams.
rest_pressure + cFluidParams.gas_stiffness * (density -
cFluidParams.rest_density);

44 }
45 };
46 };
47

48

49 __global__ void K_SumStep1(uint numParticles,
50 NeighborList dNeighborList,
51 SimpleSPHData dParticleDataSorted,
52 GridData const dGridData
53 )
54 {
55 // particle index
56 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
57 if (index >= numParticles) return;
58

59 Step1::Data data;
60 data.dParticleDataSorted = dParticleDataSorted;
61

62 float3 position_i = make_float3(FETCH(dParticleDataSorted, position,
index));

63

64 // Do calculations on particles in neighboring cells
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65 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
66 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step1::

Calc, Step1::Data>, Step1::Data>(data, index, position_i,
dNeighborList);

67 #else
68 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step1::

Calc, Step1::Data>, Step1::Data>(data, index, position_i, dGridData)
;

69 #endif
70

71 }
72

73 #endif

1 #ifndef __K_SimpleSPH_Step2_cu__
2 #define __K_SimpleSPH_Step2_cu__
3

4 #include "K_UniformGrid_Utils.cu"
5 #include "K_SPH_Kernels.cu"
6 #include "K_SPH_Common.cu"
7

8

9 class Step2
10 {
11 public:
12

13 struct Data
14 {
15 float3 veleval_i;
16 float density_i;
17 float pressure_i;
18

19 float3 veleval_j;
20 float density_j;
21 float pressure_j;
22

23 float3 f_viscosity;
24 float3 f_pressure;
25

26 SimpleSPHData dParticleDataSorted;
27 };
28

29 template <SPHSymmetrization symmetrizationType>
30 class Calc
31 {
32 public:
33

34 // this is called before the loop over each neighbor particle
35 static __device__ void PreCalc(Data &data, uint index_i)
36 {
37 // read particle data from sorted arrays
38 data.veleval_i = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_i);
39 data.density_i = FETCH(data.dParticleDataSorted, density, index_i);
40 data.pressure_i = FETCH(data.dParticleDataSorted, pressure, index_i)

;
41
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42 data.f_pressure = make_float3(0,0,0);
43 data.f_viscosity = make_float3(0,0,0);
44 }
45

46 static __device__ void ForNeighbor(Data &data, uint const &index_i,
uint const &index_j, float3 const &r, float const& rlen, float
const &rlen_sq)

47 {
48 data.veleval_j = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_j);
49 data.density_j = FETCH(data.dParticleDataSorted, density, index_j)

;
50 data.pressure_j = FETCH(data.dParticleDataSorted, pressure, index_j)

;
51

52

53 // pressure force calc
54 switch (symmetrizationType)
55 {
56 //mueller symmetrization of density
57 case SPH_PRESSURE_MUELLER:
58 {
59 // in the mueller paper, density_i is placed outside the force

defs..., but we calc it here.. easier(atm)
60 // from paper: f_pressure = -(1/rho_i)* SUM(m_j * ((p_i + p_j)

/ (2rho_j)) DELWpress
61 // we move the mass the 1/2 and the Wpress constants to precalc.
62 data.f_pressure += ( (data.pressure_i + data.pressure_j) / (

data.density_j * data.density_i) ) * SPH_Kernels::Wspiky::
Gradient_Variable(cFluidParams.smoothing_length, r, rlen);

63 }
64 break;
65 //from "Particle-based viscoplastic fluid/solid simulation", also

see "SPH survival kit"
66 case SPH_PRESSURE_VISCOPLASTIC:
67 {
68 data.f_pressure += ( (data.pressure_i/(data.density_i*data.

density_i)) + (data.pressure_j/(data.density_j*data.
density_j)) ) * SPH_Kernels::Wspiky::Gradient_Variable(
cFluidParams.smoothing_length, r, rlen);

69 break;
70 }
71 }
72

73 // viscosity from mueller paper : f_viscosity = (ţ/rho_i)SUM(m_j * (
v_j-v_i)/(rho_j)DEL^2Wvis

74 // we move the mass and the Wvis constants to precalc
75 data.f_viscosity += ( (data.veleval_j - data. veleval_i ) / (data.

density_j * data.density_i) ) * SPH_Kernels::Wviscosity::
Laplace_Variable(cFluidParams.smoothing_length, r, rlen);

76 }
77

78 // this is called after the loop over each particle in a cell
79 static __device__ void PostCalc(Data &data, uint index_i)
80 {
81 float3 sum_sph_force = (cPrecalcParams.kernel_pressure_precalc *

data.f_pressure + cPrecalcParams.kernel_viscosity_precalc * data
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.f_viscosity );
82

83 // Calculate the force, the particle_mass is added here because it
is constant and thus there is no need for it to be inside the
sum loop.

84 data.dParticleDataSorted.sph_force[index_i] = make_vec(sum_sph_force

* cFluidParams.particle_mass);
85 }
86 };
87

88 };
89

90 template <SPHSymmetrization symmetrization>
91 __global__ void K_SumStep2(uint numParticles,
92 SimpleSPHData dParticleDataSorted,
93 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
94 NeighborList dNeighborList,
95 #else
96 GridData dGridData
97 #endif
98 )
99 {

100 // particle index
101 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
102 if (index >= numParticles) return;
103

104 Step2::Data data;
105

106 data.dParticleDataSorted = dParticleDataSorted;
107

108 float3 position_i = FETCH_FLOAT3(data.dParticleDataSorted, position,
index);

109

110 // Do calculations on particles in neighboring cells
111 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
112 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step2::

Calc<symmetrization>, Step2::Data>, Step2::Data>(data, index,
position_i, dNeighborList);

113 #else
114 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step2::

Calc<symmetrization>, Step2::Data>, Step2::Data>(data, index,
position_i, dGridData);

115 #endif
116 }
117

118 #endif

1 #ifndef __K_SimpleSPH_Integrate_cu__
2 #define __K_SimpleSPH_Integrate_cu__
3

4 #include "K_Coloring.cu"
5 #include "K_Boundaries_Terrain.cu"
6 #include "K_Boundaries_Walls.cu"
7

8 template<SPHColoringSource coloringSource, ColoringGradient
coloringGradient>

9 __global__ void K_Integrate(int numParticles,
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10 bool gridWallCollisions,
11 bool terrainCollisions,
12 float delta_time,
13 bool progress,
14 GridData dGridData,
15 SimpleSPHData dParticleData,
16 SimpleSPHData dParticleDataSorted,
17 float3 fluidWorldPosition,
18 TerrainData dTerrainData
19 )
20 {
21 int index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
22 if (index >= numParticles) return;
23

24 float3 pos = make_float3(FETCH_NOTEX(dParticleDataSorted, position,
index));

25 float3 vel = make_float3(FETCH_NOTEX(dParticleDataSorted, velocity,
index));

26 float3 vel_eval = make_float3(FETCH_NOTEX(dParticleDataSorted, veleval
, index));

27

28 float3 sph_force = make_float3(FETCH_NOTEX(dParticleDataSorted,
sph_force, index));

29 float sph_pressure = FETCH_NOTEX(dParticleDataSorted, pressure, index);
30 //float sph_density = FETCH_NOTEX(dParticleDataSorted, density, index)

;
31

32 // if(pos.x < cGridParams.grid_max.x/3 && pos.z < cGridParams.grid_max.z
/3)

33 // {
34 // // negate gravity
35 // //external_force.y += 9.8f;
36 //
37 // external_force.x += 3.f;
38 // external_force.y += 12.f;
39 // external_force.z += 2.f;
40 // }
41

42 float3 external_force = make_float3(0,0,0);
43 // add gravity
44 external_force.y -= 9.8f;
45

46

47 // add no-penetration force due to terrain
48 if(terrainCollisions)
49 external_force += calculateTerrainNoPenetrationForce(
50 pos, vel_eval,
51 fluidWorldPosition, dTerrainData,
52 cFluidParams.boundary_distance,
53 cFluidParams.boundary_stiffness,
54 cFluidParams.boundary_dampening,
55 cFluidParams.scale_to_simulation);
56

57 // // add no-slip force due to terrain..
58 if(terrainCollisions)
59 external_force += calculateTerrainFrictionForce(
60 pos, vel_eval, sph_force+external_force,
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61 fluidWorldPosition, dTerrainData,
62 cFluidParams.boundary_distance,
63 cFluidParams.friction_kinetic/delta_time,
64 cFluidParams.friction_static_limit,
65 cFluidParams.scale_to_simulation);
66

67

68 // add no-penetration force due to "walls"
69 if(gridWallCollisions)
70 external_force += calculateWallsNoPenetrationForce(
71 pos, vel_eval,
72 cGridParams.grid_min,
73 cGridParams.grid_max,
74 cFluidParams.boundary_distance,
75 cFluidParams.boundary_stiffness,
76 cFluidParams.boundary_dampening,
77 cFluidParams.scale_to_simulation);
78

79 // add no-slip force due to "walls"
80 if(gridWallCollisions)
81 external_force += calculateWallsNoSlipForce(
82 pos, vel_eval, sph_force + external_force,
83 cGridParams.grid_min,
84 cGridParams.grid_max,
85 cFluidParams.boundary_distance,
86 cFluidParams.friction_kinetic/delta_time,
87 cFluidParams.friction_static_limit,
88 cFluidParams.scale_to_simulation);
89

90 float3 force = sph_force + external_force;
91

92 // limit velocity
93 float speed = length(force);
94 if (speed > cFluidParams.velocity_limit ) {
95 force *= cFluidParams.velocity_limit / speed;
96 }
97

98 // Leapfrog integration
99 // v(t+1/2) = v(t-1/2) + a(t) dt

100 float3 vnext = vel + force * delta_time;
101 // v(t+1) = [v(t-1/2) + v(t+1/2)] * 0.5
102 vel_eval = (vel + vnext) * 0.5;
103 vel = vnext;
104

105 // update position of particle
106 pos += vnext * (delta_time / cFluidParams.scale_to_simulation);
107

108 if(progress)
109 {
110 uint originalIndex = dGridData.sort_indexes[index];
111

112 // writeback to unsorted buffer
113 dParticleData.position[originalIndex] = make_vec(pos);
114 dParticleData.velocity[originalIndex] = make_vec(vel);
115 dParticleData.veleval[originalIndex] = make_vec(vel_eval);
116
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117 float3 color = CalculateColor(coloringGradient, coloringSource, vnext,
sph_pressure, sph_force);

118 dParticleData.color[originalIndex] = make_float4(color, 1);
119 }
120 }
121

122 #endif

B.8 Complex SPH Implementation Code

1 #ifndef __K_SnowSPH_Density_cu__
2 #define __K_SnowSPH_Density_cu__
3

4 #include "K_UniformGrid_Utils.cu"
5 #include "K_SPH_Kernels.cu"
6 #include "K_SPH_Common.cu"
7

8 class Step1
9 {

10 public:
11

12 struct Data
13 {
14 float sum_density;
15

16 SnowSPHData dParticleDataSorted;
17 };
18

19 class Calc
20 {
21 public:
22

23 static __device__ void PreCalc(Data &data, uint const &index_i)
24 {
25 // read particle data from sorted arrays
26 data.sum_density = 0;
27 }
28

29 static __device__ void ForNeighbor(Data &data, uint const &index_i,
uint const &index_j, float3 const &r, float const& rlen, float
const &rlen_sq)

30 {
31 // the density sum using Wpoly6 kernel
32 data.sum_density += SPH_Kernels::Wpoly6::Kernel_Variable(

cPrecalcParams.smoothing_length_pow2, r, rlen_sq);
33

34 //data.sum_density += SPH_Kernels::Wcubic::Kernel(cPrecalcParams.
smoothing_length_pow2, r, rlen_sq);

35 }
36

37 static __device__ void PostCalc(Data &data, uint index_i)
38 {
39 data.sum_density *= cFluidParams.particle_mass * cPrecalcParams.

kernel_poly6_coeff;
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40 //data.sum_density *= cFluidParams.particle_mass;
41

42 // Compute the density field at the current particle,
43 // Calculate the W smoothing function for this particle, mass and

the poly6_grad_coeff has been moved outside the sum because they
are constant.

44 //float density = max(1.0, data.sum_density);
45 data.dParticleDataSorted.density[index_i]= data.sum_density;
46

47 // ideal gas equation of state (by Desbrun and Cani in "Smoothed
particles: A new paradigm for animating highly deformable bodies
")

48 data.dParticleDataSorted.pressure[index_i] = cFluidParams.
rest_pressure + cFluidParams.gas_stiffness * (data.sum_density -
cFluidParams.rest_density);

49 }
50

51 };
52 };
53

54

55 __global__ void K_SumStep1(uint numParticles,
56 NeighborList dNeighborList,
57 SnowSPHData dParticleDataSorted,
58 GridData const dGridData
59 )
60 {
61 // particle index
62 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
63 if (index >= numParticles) return;
64

65 Step1::Data data;
66 data.dParticleDataSorted = dParticleDataSorted;
67

68 float3 position_i = make_float3(FETCH(dParticleDataSorted, position,
index));

69

70 // Do calculations on particles in neighboring cells
71 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
72 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step1::

Calc, Step1::Data>, Step1::Data>(data, index, position_i,
dNeighborList);

73 #else
74 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step1::

Calc, Step1::Data>, Step1::Data>(data, index, position_i, dGridData)
;

75 #endif
76

77 }
78

79 #endif

1 #ifndef __K_SnowSPH_Force_cu__
2 #define __K_SnowSPH_Force_cu__
3

4 #include "K_UniformGrid_Utils.cu"
5 #include "K_SPH_Kernels.cu"
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6 #include "K_SPH_Common.cu"
7 #include "K_Common.cuh"
8

9 class Step2
10 {
11 public:
12 struct Data
13 {
14 float density_i;
15 float3 veleval_i;
16 matrix3 sum_velocity_tensor;
17

18 SnowSPHData dParticleDataSorted;
19 };
20

21 class Calc
22 {
23 public:
24 // this is called before the loop over each neighbor particle
25 static __device__ void PreCalc(Data &data, uint index_i)
26 {
27 // read particle data from sorted arrays
28 data.density_i = FETCH(data.dParticleDataSorted, density, index_i);
29 data.veleval_i = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_i);
30 data.sum_velocity_tensor = make_matrix3(0,0,0,0,0,0,0,0,0);
31 }
32

33 static __device__ void ForNeighbor(Data &data, uint const &index_i,
uint const &index_j, float3 const &r, float const& rlen, float
const &rlen_sq)

34 {
35 float density_j = FETCH(data.dParticleDataSorted, density, index_j);
36 float3 veleval_j = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_j);
37

38 float3 gradW = SPH_Kernels::Wcubic::Gradient(cFluidParams.
smoothing_length, cPrecalcParams.smoothing_length_pow2,
cPrecalcParams.smoothing_length_pow3, cPrecalcParams.
smoothing_length_pow4, r, rlen, rlen_sq);

39

40 // calculate the velocity tensor sum
41 data.sum_velocity_tensor += outer(
42 (veleval_j - data.veleval_i)/(density_j)
43 , gradW
44 );
45 }
46

47

48 // this is called after the loop over each particle in a cell
49 static __device__ void PostCalc(Data &data, uint index_i)
50 {
51 //data.sum_velocity_tensor *= SPH_Kernels::Wviscosity::

Gradient_Constant(cFluidParams.smoothing_length);
52

53 // velocity tensor derivative (DELv)
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54 matrix3 velocity_tensor_i = cFluidParams.particle_mass * data.
sum_velocity_tensor;

55

56 // rate-of-deformation/rate-of-strain tensor (E on wiki(NSE), D in
viscoplastic paper)

57 matrix3 deformation_tensor_i = 0.5*(velocity_tensor_i + transpose(
velocity_tensor_i));

58 //matrix3 deformation_tensor_i = (velocity_tensor_i + transpose(
velocity_tensor_i));

59

60 // from "Particle-based viscoplastic fluid/solid simulation"
61 float t = trace(deformation_tensor_i);
62 float deformation_amount = sqrtf(t*t);
63

64 // stress tensor
65 matrix3 stress_tensor;// = make_matrix3(0,0,0,0,0,0,0,0,0);
66

67 //viscoplastic fluid (exp-power model w/jump number for melting
stuff.. e.g. lava)

68 //float n = 0.5f;
69 //float J = 10;
70 //stress_tensor = (1-__expf(-(J+1)*deformation_amount))*(pow(

deformation_amount, n-1.0f)+1/deformation_amount)*
deformation_amount;

71

72 // newtonian fluid
73 // 3-step says: ( t = 2*ţ*D )
74 //stress_tensor = 1*deformation_amount*deformation_tensor_i;
75

76 // non-newtonian POWER-LAW fluid
77 // float n = 3.2;
78 // float K = 1.74;
79 // float viscosity = K*pow(deformation_amount,n-1.0f);
80 // viscosity = clamp(viscosity, 1.0f,300.0f);
81 // stress_tensor = viscosity*deformation_tensor_i;
82

83 // non-newtonian BINGHAM fluid
84 // float K = 10;
85 // float yield_stress = 1.5;
86 // stress_tensor = yield_stress + K * deformation_tensor_i;
87 // float s = trace(stress_tensor);
88 // float stress_amount = sqrtf(s*s);
89 // if(stress_amount <= yield_stress)
90 // {
91 // stress_tensor = 500*deformation_amount*deformation_tensor_i;
92 // }
93

94

95 // non-newtonian HERSCHEL-BULKLEY fluid
96 // float K = 1;
97 // float yield_stress = 1.5;
98 // float n = 1.74;
99 // stress_tensor = (K*pow(deformation_amount,n-1.0f) +yield_stress/

deformation_amount)*deformation_tensor_i;
100 // float stress_amount = trace(stress_tensor)/3.0f;
101 // if(stress_amount < yield_stress) {
102 // stress_tensor = 500*deformation_amount*deformation_tensor_i;
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103 // }
104

105 // non-newtonian cross fluid
106 float K = 2.1f;
107 float visco_inf= 1.07;
108 float visco_zero = 300;
109 float n = 1.0f;
110 float viscosity = visco_inf+(visco_zero-visco_inf)/(1+K*pow(

deformation_amount, n));
111 viscosity = clamp(viscosity, 1.0f,300.0f);
112 stress_tensor = viscosity*deformation_tensor_i;
113

114 // store stress tensor
115 data.dParticleDataSorted.stress_tensor[index_i] = stress_tensor;
116

117 //data.dParticleDataSorted.color[index_i] = make_vec(
deformation_amount,0.3,0.3);

118 }
119 };
120 };
121

122 __global__ void K_SumStep2(uint numParticles,
123 NeighborList dNeighborList,
124 SnowSPHData dParticleDataSorted,
125 GridData dGridData
126 )
127 {
128 // particle index
129 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
130 if (index >= numParticles) return;
131

132 Step2::Data data;
133

134 data.dParticleDataSorted = dParticleDataSorted;
135

136 float3 position_i = FETCH_FLOAT3(data.dParticleDataSorted, position,
index);

137

138 // Do calculations on particles in neighboring cells
139 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
140 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step2::

Calc, Step2::Data>, Step2::Data>(data, index, position_i,
dNeighborList);

141 #else
142 UniformGridUtils::IterateParticlesInNearbyCells
143 <
144 SPHNeighborCalc
145 <Step2::Calc, Step2::Data>
146 ,
147 Step2::Data
148 >
149 (data, index, position_i, dGridData);
150 #endif
151 }
152

153

154 #endif
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1 #ifndef __K_SnowSPH_Step3_cu__
2 #define __K_SnowSPH_Step3_cu__
3

4 #include "K_UniformGrid_Utils.cu"
5 #include "K_SPH_Kernels.cu"
6 #include "K_SPH_Common.cu"
7

8 class Step3
9 {

10 public:
11

12 struct Data
13 {
14 float3 veleval_i;
15 float density_i;
16 float pressure_i;
17 matrix3 stress_tensor_i;
18

19 float3 veleval_j;
20 float density_j;
21 float pressure_j;
22 matrix3 stress_tensor_j;
23

24

25 float3 f_viscosity;
26 float3 f_pressure;
27 float3 f_stress;
28 float3 f_xsph;
29

30

31 SnowSPHData dParticleDataSorted;
32 };
33

34 class Calc
35 {
36 public:
37

38 // this is called before the loop over each neighbor particle
39 static __device__ void PreCalc(Data &data, uint index_i)
40 {
41 // read particle data from sorted arrays
42 data.veleval_i = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_i);
43 data.density_i = FETCH(data.dParticleDataSorted, density, index_i);
44 data.pressure_i = FETCH(data.dParticleDataSorted, pressure, index_i)

;
45 data.stress_tensor_i = FETCH_MATRIX3(data.dParticleDataSorted,

stress_tensor, index_i);
46

47 data.f_pressure = make_float3(0,0,0);
48 data.f_viscosity = make_float3(0,0,0);
49 data.f_stress = make_float3(0,0,0);
50 data.f_xsph = make_float3(0,0,0);
51 }
52

53 static __device__ void ForNeighbor(Data &data, uint const &index_i,
uint const &index_j, float3 const &r, float const& rlen, float
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const &rlen_sq)
54 {
55 data.veleval_j = FETCH_FLOAT3(data.dParticleDataSorted, veleval,

index_j);
56 data.density_j = FETCH(data.dParticleDataSorted, density, index_j)

;
57 data.pressure_j = FETCH(data.dParticleDataSorted, pressure, index_j

);
58 data.stress_tensor_j = FETCH_MATRIX3(data.dParticleDataSorted,

stress_tensor, index_j);
59

60 // XSPH velocity correction, Monaghan JCP 2000
61 data.f_xsph += ( (data.veleval_j - data.veleval_i) / (data.density_i

+data.density_j) ) * SPH_Kernels::Wpoly6::Kernel_Variable(
cPrecalcParams.smoothing_length_pow2, r, rlen_sq);

62

63 //from "Particle-based viscoplastic fluid/solid simulation", also
see "SPH survival kit"

64 data.f_pressure += ( (data.pressure_i/(data.density_i*data.
density_i)) + (data.pressure_j/(data.density_j*data.density_j))
) * SPH_Kernels::Wspiky::Gradient_Variable(cFluidParams.
smoothing_length, r, rlen);

65

66 // viscosity from mueller paper : f_viscosity = (ţ/rho_i)SUM(m_j * (
v_j-v_i)/(rho_j)DEL^2Wvis

67 // we move the mass and the Wvis constants to precalc
68 data.f_viscosity += ( (data.veleval_j - data. veleval_i ) / (data.

density_j * data.density_i) ) * SPH_Kernels::Wviscosity::
Laplace_Variable(cFluidParams.smoothing_length, r, rlen);

69

70 // stress force calculation
71 data.f_stress += dot(
72 (data.stress_tensor_i+data.stress_tensor_j)/(data.density_j)
73 , SPH_Kernels::Wcubic::Gradient(cFluidParams.smoothing_length,

cPrecalcParams.smoothing_length_pow2, cPrecalcParams.
smoothing_length_pow3, cPrecalcParams.smoothing_length_pow4,

r, rlen, rlen_sq)
74 );
75 }
76

77 // this is called after the loop over each particle in a cell
78 static __device__ void PostCalc(Data &data, uint index_i)
79 {
80 //data.f_stress *= SPH_Kernels::Wviscosity::Gradient_Constant(

cFluidParams.smoothing_length);
81 data.f_stress *= (cFluidParams.particle_mass/data.density_i);
82

83 // Calculate the forces, the particle_mass/constants are added here
because there is no need for it to be inside the sum loop.

84 data.f_pressure *= cFluidParams.particle_mass * cPrecalcParams.
kernel_pressure_precalc;

85 data.f_viscosity *= cFluidParams.particle_mass * cPrecalcParams.
kernel_viscosity_precalc;

86 data.f_xsph *= 2 * cFluidParams.particle_mass;
87

88 //data.dParticleDataSorted.color[index_i] = make_vec(data.
stress_tensor_i.r1.x, data.stress_tensor_i.r2.x, data.
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stress_tensor_i.r3.x);
89 //data.dParticleDataSorted.color[index_i] = make_vec(data.f_stress.x

, data.f_stress.y, data.f_stress.z);
90 //data.dParticleDataSorted.color[index_i] = make_vec(1,1,1);
91

92 // store xsph val
93 data.dParticleDataSorted.xsph[index_i] = make_vec(data.f_xsph);
94

95 float3 sph_force = (
96 data.f_pressure
97 + data.f_stress
98 + data.f_viscosity
99 );

100

101 data.dParticleDataSorted.sph_force[index_i] = make_vec(sph_force);
102 }
103 };
104 };
105

106

107

108 __global__ void K_SumStep3(uint numParticles,
109 NeighborList dNeighborList,
110 SnowSPHData dParticleDataSorted,
111 GridData dGridData
112 )
113 {
114 // particle index
115 uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
116 if (index >= numParticles) return;
117

118 Step3::Data data;
119

120 data.dParticleDataSorted = dParticleDataSorted;
121

122 float3 position_i = FETCH_FLOAT3(data.dParticleDataSorted, position,
index);

123

124 // Do calculations on particles in neighboring cells
125 #ifdef SPHSIMLIB_USE_NEIGHBORLIST
126 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step3::

Calc, Step3::Data>, Step3::Data>(data, index, position_i,
dNeighborList);

127 #else
128 UniformGridUtils::IterateParticlesInNearbyCells<SPHNeighborCalc<Step3::

Calc, Step3::Data>, Step3::Data>(data, index, position_i, dGridData)
;

129 #endif
130 }
131

132 #endif

1 #ifndef __K_SnowSPH_Integrate_cu__
2 #define __K_SnowSPH_Integrate_cu__
3

4 #include "K_Coloring.cu"
5 #include "K_Boundaries_Terrain.cu"
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6 #include "K_Boundaries_Walls.cu"
7

8 template<SPHColoringSource coloringSource, ColoringGradient
coloringGradient>

9 __global__ void K_Integrate(int numParticles,
10 bool gridWallCollisions,
11 bool terrainCollisions,
12 float delta_time,
13 bool progress,
14 GridData dGridData,
15 SnowSPHData dParticleData,
16 SnowSPHData dParticleDataSorted,
17 float3 fluidWorldPosition,
18 TerrainData dTerrainData
19 //,float* dCFL
20 )
21 {
22 int index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
23 if (index >= numParticles) return;
24

25 float3 pos = make_float3(FETCH_NOTEX(dParticleDataSorted, position,
index));

26 float3 vel = make_float3(FETCH_NOTEX(dParticleDataSorted, velocity,
index));

27 float3 vel_eval = make_float3(FETCH_NOTEX(dParticleDataSorted, veleval
, index));

28 float3 xsph = make_float3(FETCH_NOTEX(dParticleDataSorted, xsph,
index));

29

30 float3 sph_force = make_float3(FETCH_NOTEX(dParticleDataSorted,
sph_force, index));

31 float sph_pressure = FETCH_NOTEX(dParticleDataSorted, pressure, index);
32 //float sph_density = FETCH_NOTEX(dParticleDataSorted, density, index)

;
33

34 float3 external_force = make_float3(0,0,0);
35

36 // add gravity
37 external_force.y -= 9.8f;
38

39 // add no-penetration force due to terrain
40 if(terrainCollisions)
41 external_force += calculateTerrainNoPenetrationForce(
42 pos, vel_eval,
43 fluidWorldPosition, dTerrainData,
44 cFluidParams.boundary_distance,
45 cFluidParams.boundary_stiffness,
46 cFluidParams.boundary_dampening,
47 cFluidParams.scale_to_simulation);
48

49 // // add no-slip force due to terrain..
50 if(terrainCollisions)
51 external_force += calculateTerrainFrictionForce(
52 pos, vel_eval, sph_force+external_force,
53 fluidWorldPosition, dTerrainData,
54 cFluidParams.boundary_distance,
55 cFluidParams.friction_kinetic/delta_time,
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56 cFluidParams.friction_static_limit,
57 cFluidParams.scale_to_simulation);
58

59 // add no-penetration force due to "walls"
60 if(gridWallCollisions)
61 external_force += calculateWallsNoPenetrationForce(
62 pos, vel_eval,
63 cGridParams.grid_min,
64 cGridParams.grid_max,
65 cFluidParams.boundary_distance,
66 cFluidParams.boundary_stiffness,
67 cFluidParams.boundary_dampening,
68 cFluidParams.scale_to_simulation);
69

70

71 // add no-slip force due to "walls"
72 if(gridWallCollisions)
73 external_force += calculateWallsNoSlipForce(
74 pos, vel_eval, sph_force + external_force,
75 cGridParams.grid_min,
76 cGridParams.grid_max,
77 cFluidParams.boundary_distance,
78 cFluidParams.friction_kinetic/delta_time,
79 cFluidParams.friction_static_limit,
80 cFluidParams.scale_to_simulation);
81

82

83 float3 force = sph_force + external_force;
84

85 // limit velocity
86 float speed = length(force);
87 if (speed > cFluidParams.velocity_limit ) {
88 force *= cFluidParams.velocity_limit / speed;
89 }
90

91 // Leapfrog integration
92 // v(t+1/2) = v(t-1/2) + a(t)*dt
93 float3 vnext = (vel) + force * delta_time;
94

95 // xsph
96 vnext += cFluidParams.xsph_factor * xsph;
97

98 // Leapfrog integration
99 // v(t+1) = [v(t-1/2) + v(t+1/2)] * 0.5

100 vel_eval = (vel + vnext) * 0.5;
101 vel = vnext;
102

103 // update position of particle
104 pos += (vnext) * (delta_time / cFluidParams.scale_to_simulation);
105

106

107 // Calculate CFL val
108 //dCFL[index] = length(vel_eval) + sqrt(cFluidParams.gas_stiffness);
109

110 if(progress)
111 {
112 uint originalIndex = dGridData.sort_indexes[index];
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113

114 // writeback to unsorted buffer
115 dParticleData.position[originalIndex] = make_vec(pos);
116 dParticleData.velocity[originalIndex] = make_vec(vel);
117 dParticleData.veleval[originalIndex] = make_vec(vel_eval);
118

119 float3 color = CalculateColor(coloringGradient, coloringSource, vnext,
sph_pressure, sph_force);

120 dParticleData.color[originalIndex] = make_float4(color, 1);
121 }
122

123 }
124

125 #endif
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Fast GPU-based Fluid Simulations Using SPH
Smoothed Particle Hydrodynamics (SPH) on Graphics Processing Units (GPUs)

Øystein E. Krog∗1 and Anne C. Elster†1
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Abstract Graphical Processing Units (GPUs) are massive
floating-point stream processors, and through the recent develop-
ment of tools such as CUDA and OpenCL it has become possible
to fully utilize the bandwidth and computational power they con-
tain. A computationally challenging problem is how to model
movements of liquids. We have developed a GPU-based frame-
work for 3-dimensional Computational Fluid Dynamics (CFD)
using Smoothed Particle Hydrodynamics (SPH). This paper de-
scribes the methods used for implementing fast simulations of
fluids dynamics using GPUs, and compares the performance of
the implementation to previous SPH implementations. Our im-
plementation uses the acceleration data structures found in the
NVIDIA ”Particles” demo, but implements SPH instead of its
simpler mass-spring system. The implementation uses CUDA
and has been highly optimized to the point where a scaled sim-
ulation can run in ”real-time”. We implement two different SPH
models, a simplified model for newtonian fluids, and a complex
model for non-newtonian fluids. The complex SPH model is
used to simulate flowing snow avalanches. Using our simple SPH
model and a NVIDIA GeForce 260 GTX we achieve 38 FPS with
256K particles, 63 FPS with 128K particles and 99 FPS with 64K
particles. Open source code will be provided. This should make
our work very useful not only for our current work on simulating
snow avalanches, but also for other CFD applications that need
faster simulations of many particles.

Keywords GPU, CFD, SPH, GPGPU, CUDA, Fluid

1 Introduction
The simulation of fluids is an interesting problem due to
the importance of fluids in the physical world. Simulating
fluids also present a large challenge due to the large com-
putational demands that arise from the complex behaviors
of fluids, especially in 3 dimensions. Due to these de-
mands most fluid simulations are not done in ”real-time”,
in fact many previous SPH implementations have been
constrained to 2D. Our framework makes it possible to do
SPH simulations in 3D for large problem sizes in ”real-
time”. So far it has not been possible to achieve beliveable
”real-time” fluid simulations for all but the smallest and
coarsest models. By using an accelerator such as the GPU,
the number of particles modeled in the simulation can be
increased considerably, and the overall simulation speed is
greatly increased compared to CPU-based simulations.
∗Email: oystein.krog@gmail.com
†Email: elster@idi.ntnu.no

2 Computational Fluid Dynamics
Computational Fluid Dynamics (CFD) is a large field, in
which the Navier-Stokes equations play an important role.
These equations can be solved numerically, and several
such methods have been developed in order to simulate
fluids on computers.

2.1 Navier-Stokes Equations
The Navier-Stokes equations in simplified Lagrangian
form consist of mass and momentum conservation:

dρ
dt

=−ρ∇ ·v (1)

dv
dt

=− 1
ρ

∇p+
1
ρ

∇ ·S+ f (2)

Where v is the velocity field, ρ the density field, ∇p the
pressure gradient field resulting from isotropic stress, ∇ ·S
the stress tensor resulting from deviatoric stress and f an
external force field such as gravity.

For incompressible newtonian fluids the momentum
conservation reduces to:

dv
dt

=− 1
ρ

∇p+
µ
ρ

∇2v+ f (3)

Where the term µ is the dynamic viscosity of the fluid.

2.2 Smoothed Particle Hydrodynamics
In SPH the different effects of Navier-Stokes are simulated
by a set of forces that act on each particle. These forces are
given by scalar quantities that are interpolated at a position
r by a weighted sum of contributions from all surround-
ing particles within a cutoff distance h in the space Ω. In
integral form this can be expressed as follows [5]:

Ai(r) =
∫

Ω
A(r′)W (r− r′,h)dr′ (4)

The numerical equivalent is obtained by approximating
the integral interpolant by a summation interpolant [5]:

Ai(ri) = ∑
j

A j
m j

ρ j
W (ri j,h) (5)

where j iterates over all particles, m j is the mass of particle
j, ri j= ri−r j where r is the position, ρ j the density and A j
the scalar quantity at position r j.

For a more comprehensive introduction to SPH, please
refer to [5].



2.3 Avalanche SPH
Snow avalanches wary greatly in behaviour, from powder-
snow avalanches to so called dense-flow, or flowing snow
avalanches. Snow avalanches usually appear as a vis-
cous flow down a slope, and it is this obvious property
which has prompted the use of fluid dynamics in avalanche
simulation [1]. Several viscosity models exist for mod-
elling non-newtonian fluids, and rheological parameters
have been collected for flowing snow [6]. Many SPH mod-
els exist for viscoplastic fluids, from melting objects [8] to
lava flows [9] and generalized rheological models [4].

3 Methods and Implementation
CUDA is a parallel computing architecture developed by
NVIDIA. We use CUDA for C, which is basically the C
language with some added syntax. GPUs are massively
parallel, with several thousand threads available. We paral-
lelize the calculation of SPH by assigning a thread to each
particle in the simulation. Each thread is then responsi-
ble for calculating the SPH sums over the surrounding par-
ticles. When accessing memory on the GPU, coalesced
(correctly structured) access is very important. Due to the
nature of the algorithm, fully coalesced access is unfor-
tunately not possible. By utilizing the texture cache this
problem is greatly alleviated.

3.1 Nearest-Neighbor Search
The summation term in the SPH-formulation is computa-
tionally heavy, it requires looking at many nearby parti-
cles and computing interactions between them. To avoid
a naive brute-force O(N2) search for neighbors, a nearest-
neighbor search algorithm is commonly used, such as a
linked list or a uniform grid. We use the algorithm pre-
sented in [2], which can be summarized as follows:

1. Divide the simulation domain into a uniform grid.

2. Use to the spatial position of each particle to find the
cell it belongs to.

3. Use the particle cell position as input to a hash func-
tion (a spatial hash)

4. Sort the particle according to their spatial hash.

5. Reorder the particles in a linear buffer according to
their hash value.

Particles in the same cell will then lie consecutively in the
linear buffer, and finding ”neighbors” is simply a matter
of iterating over the correct indices in the buffer. For the
sorting we used the fastest radix sort available for the GPU
at the time of implementation (by Satish et al [10]).

3.2 Non-Newtonian Fluids
non-newtonian fluids differ from newtonian fluids in that
their viscosity is not constant. In a newtonian fluid the
relation between shear stress and the strain rate is linear,
with the constant of proportionality being the viscosity.

For a non-newtonian fluid the relation is nonlinear and can
even be time-dependent. There exist many classes of non-
newtonian fluids, and many types of models, of which we
implement several. The complex SPH model differs pri-
marily in that it includes the much more complex stress
calculation presented in [4].

3.3 SPH Models
We use our framework to implement two different SPH
models, a simplified model for interactive use, based on
a model by Müller et al.[7] and a complex model for
non-newtonian fluids based on a model by Hosseini et
al.[4]. The simplified model is focused on interactive per-
formance and creates a visually pleasing water-like fluid,
and the complex model is used to simulate flowing-snow
avalanches through the use of different rheological(the
study of the flow of matter) models.

By using the SPH formulation we end up with the fol-
lowing simulation equations:

ρi = ∑
j

m jW (ri j,h) (6)

fpressure
i =− 1

ρ
∇p(ri) = ∑

j 6=i
m j(

pi

ρ2
i
+

p j

ρ2
j
)∇W (ri j,h) (7)

The incompressible fluid is simulated as a weakly com-
pressible fluid where the incompressibility constraint is
applied to the pressure p by using an equation of state
given by the ideal gas law with an added rest density:
p = k(ρ−ρ0)

For calculating non-newtonian fluids we use the formu-
lation presented by [4].

∇vi = ∑
j

m j

ρ j
(vi−vj)⊗∇W (ri j,h) (8)

Where⊗ is the outer product and ∇v is a tensor field (a 3x3
matrix). Giving us Di =

1
2 (∇v + (∇v)T ), and the stress

tensor Si = η(D)D, with D =
√

1
2 trace(D)2. The term

η(D) is essentially the viscosity for the fluid, which for a
newtonian is constant. By using a rheological model for
calculating this term, various non-newtonian fluids can be
simulated. Finally the stress tensor is calculated:

fstress
i =

1
ρ

∇ ·Si = ∑
j 6=i

m j

ρiρ j
(Si +S j) ·∇W (ri j,h) (9)

Thus we have that the acceleration for a particle is given
by:

ai = f pressure
i + f stress

i + f external
i (10)

3.4 SPH Algorithm
Due to the data dependencies between the various force,
some of them must be calculated separately. Each calcula-
tion step is essentially a summation over neighboring par-
ticles, and we combine the force calculations using loop



Figure 1: A screenshot of the simple SPH model with 256K
particles. Hue-based gradient shading for the velocity of the
particles.

fusion as far as it is possible. For the complex SPH models
we end up with the following steps:

1. Update the hashed, radix sorted, uniform grid.

2. Calculate the SPH density

3. Calculate the SPH velocity tensor

4. Calculate the SPH pressure and SPH stress tensor

5. Integrate in time.

For the simplified SPH model, the stress tensor is replaced
with a simplified viscosity approximation which ignores
deviatoric stress, since it is not strictly nescessary for in-
compressible newtonian fluids. As a result the viscosity
calculation does not need the velocity tensor, step 3 can be
dropped, and the viscosity force can be computed together
with the pressure in step 4. For integrating the velocity
change we use the Leap-Frog method, since it is more ac-
curate than simple Euler integration while still mainting
low memory and computational costs.

3.5 Simulation Framework
The implementation of the simulation framework is coded
in C++ and the GPU code using C for Cuda. The simu-
lation itself is separated logically into a separate library.
Since the entire simulation is done on the GPU, an API
for integration of rendering is nescessary to avoid the high
cost of copying rendering buffers to the CPU. Using the
API it is possible to implement direct rendering of simula-
tion buffers for both Direct3D and OpenGL. For the case
of OpenGL this is possible using Vertex Buffer Objects
(VBOs), which can be rendered directly using shaders with
fairly low overhead. The CUDA simulation kernels have
been highly optimized. By manually optimizing register
usage, reording memory accesses and optimizing the block
sizes for the CUDA code, performance gains as large as
40% were realized.

4 Results
For performance testing two different GPUs were used, a
Geforce 260GTX and a Tesla C1060. The computer had
a Intel Core2 Quad Q9550, 4GB DDR3 ram and was run-
ning Windows Vista 64-bit .
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Figure 2: Performance scaling for the simple SPH model.

4.1 Choice of Metrics
Comparing and evaluating the performance of the simu-
lations is difficult due to the large amount of parameters
and their effect on performance. In addition it is hard to
compare to other SPH implementations due to different
SPH models and paramaters. For the simple SPH model
we compare against Müller and Harada which use a very
similar SPH model, using rest density selected to simu-
late water, with the dynamic viscosity set to 1. For the
complex SPH model we have not completed our perfor-
mance evaluation, but compare against the implementation
of the simple SPH model. An additional difficulty with the
non-newtonian model is that the viscosity is not constant,
but varies according to stress, which means that it is hard
to give exact performance numbers. For the purposes of
measuring performance, we choose the same parameters
as the simple model, and a simplified rheology model with
a (very high) constant viscosity of 300. To obtain absolute
performance numbers we use a fairly simple simulation
setup; a square simulation domain with simple repulsive
forces as walls where a cubic volume of fluid is dropped
into a shallow pool of water. The performance numbers
were measured when the fluid had reached a stable equi-
librium. We use FPS as our performance unit, because our
simulation is frame-locked with the rendering.

Memory Usage Due to the hashed uniform grid struc-
ture the memory usage is fairly sparse. Had the uni-
form grid been allocated directly the usage would be much
larger. The memory usage in bytes is 176N where N is the
number of particles. The memory usage of the complex
SPH models is 212N bytes. This means that it is possible
to simulate very large systems even on commodity hard-
ware. We have tested systems up to 2048K particles on a
NVIDIA Geforce 260GTX.

4.2 Performance
Müller et al.[7] achieves 20 FPS at 2200 particles on a
1.8 GHz Pentium 4. Harada et al.[3] achieves 17 FPS at
60000 particles on an NVIDIA GeForce 8800GTX using
OpenGL and CG.

Using our simple SPH model and a NVIDIA GeForce



260 GTX we achieve 38 FPS with 256K particles, 63 FPS
with 128K particles and 99 FPS with 64K particles. On the
NVIDIA Geforce 260GTX the complex SPH model runs
at 17 FPS with 256K particles, 31 FPS at 128K particles
and 55 FPS at 64K particles.

It is worth noting that direct comparison of FPS is not al-
ways a good measure of performance. An SPH implemen-
tation can have large variations in performance depending
on the parameters of the system.

By changing only the number of particles and the par-
ticle mass (to keep the fluid volume constant), the scaling
in Figure 2 is observed. Comparing the 260GTX and the
Tesla C1060, the performance on the Tesla is somewhat
lower, which is likely due to the lower memory clock on
the Tesla. This finding is congruent with the theory that
the SPH algorithm is highly bandwidth constrained on the
GPU. This is due to imperfect coalescing of memory reads.

4.3 Real-Time Appearance
By scaling the simulation domain, and relaxing the accu-
racy requirements by selecting large timesteps, the fluid
simulations produce belivable ”real-time” behavior. We
have tested up to 2048K particles at which point the simu-
lation can no longer be considered ”real-time”, but it is still
very fast compared to previous implementations. In fact
the CPU implementation by Müller et al.[7] achieves 20
FPS with 2200 particles, in contrast to our implementation
on the GPU which achieves 17 FPS with 512K particles.
It should be noted that this is not truly ”real-time” simula-
tion of a volume of liquid, since both the fluid volume and
the time is not to scale. Our complex SPH model is not as
well suited to ”real-time” simulation due to the nescessity
of a somewhat lower timestep in order to support higher
viscosities.

5 Conclusions
In this paper, we presented an implementation of Smooth-
ing Particle Hydrodynamics (SPH) on the GPU. Our im-
plementation achieves very good performance since we
take advantage of the massive amounts of parallelism
available on modern GPUs, as well as use specialized
acceleration data structures. Our SPH implementations
achieve very good performance compared to previous im-
plementations, and can be used to produce believable
”real-time” behavior.

Using our simple SPH model and a NVIDIA GeForce
260 GTX we achieve 38 FPS with 256K particles, 63 FPS
with 128K particles and 99 FPS with 64K particles.

5.1 Current and Future Work
Simulations of snow can be used for everything from gam-
ing to avalanche prediction. For games snow simulation
can help create complex environments, which can lead to

numerous possibilities for game-play mechanics. Predict-
ing the behavior of snow avalanches can help prevent loss
of both life and property.

The resource usage of our model has been investigated
and it was found that it does not consume much memory
but is very memory bandwidth intensive. To further in-
crease performance it might be interesting to investigate
the possibility of using multiple GPUs.

Finally, the visualization of the fluid model can be im-
proved, at the moment a very simple method of direct par-
ticle rendering is used. By using a surface reconstruction
model such as Marching-Cubes a real surface can be ren-
dered. It is also possible to use screen-space surface ren-
dering techniques to approximate the fluid surface without
the large computation cost associated with true surface re-
construction.
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Fast GPU-based Fluid Simulations using

Smoothed Particle Hydrodynamics (SPH)
Øystein E. Krog (Master Student) and Dr. Anne C. Elster (Advisor)

Our Work
We use Smoothed Particle Hydrodynamics (SPH) in

combination with a hashed, radix sorted, uniform grid [1] to

achieve high performance fluid simulations on the GPU. We

have developed a framework for creating GPU-based

particle systems which require Nearest Neighbor Searches

(NNS) and SPH calculations. We use this framework to

implement two different SPH models; a ”simple” model and

a ”complex” model.

Optimizations
A large effort has been expended to ensure optimal

performance of the simulations.

By optimizing register usage, occupancy, memory access

patterns and the algorithms themselves, large gains in

performance have been achieved.
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Smoothed Particle Hydrodynamics
SPH is a Lagrangian interpolation method for approximating

a solution to the Navier-Stokes Equations. Particles are

affected by neighboring particles through a weighting

function. For performance considerations the summation

over neighboring particles is the most important.

Here the equation for the pressure force is shown:
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Here we show a

screenshot of the

simple SPH model

with 256K particles

running in a real-time

rendering mode.

Real-time rendering

imposes a small

overhead, but the

simulation is still

interactive when

running on the 470

GTX.

Results
We show the performance scaling of the system on two

different GPUs; a NVIDIA Geforce 260GTX and a Geforce

470GTX (FERMI). The 470GTX shows much improved

performance for the simple SPH model.

Compared to previous implementations of comparable SPH

models on both CPUs and GPUs our implementation is

significantly faster. A CPU implementation by Müller et al.

[2] achieves 20 FPS with 2200 particles using a 1.8Ghz

Pentium 4, which is not directly comparable but does

provide some perspective.
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Future Work
We are currently developing a real-time snow avalanche

simulation which uses the complex SPH model to simulate

avalanches as Non-Newtonian fluids.

A rendering technique for reconstructing the fluid surface is

also something which should be investigated.
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