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Abstract

When using voice communications, one of the problematic phenomena that can
occur, is participants hearing an echo of their own voice. Acoustic echo cancellation
(AEC) is used to remove this echo, but can be computationally demanding.

The recent OpenCL standard allows high-level programs to be run on both multi-
core CPUs, as well as Graphics Processing Units (GPUs) and custom accelerators.
This opens up new possibilities for offloading computations, which is especially
important for real-time applications. Although many algorithms for image- and
video-processing have been studied on the GPU, audio processing algorithms have
not similarly been well researched. This can be due to these algorithms not being
viewed as computationally heavy and thus as suitable for GPU-offloading as, for
instance, dense linear algebra.

This thesis studies the AEC filter from the open-source library Speex for speech
compression and audio preprocessing. We translate the original code into an opti-
mized OpenCL program that can run on both CPUs and GPUs. Since the overhead
of the OpenCL vendor implementations dominate running times, our results show
that the existing reference implementation is faster for single channel input/out-
put, due to its simplicity and low computational intensity. However, by increasing
the number of channels processed by the filter and the length of the echo tail, a
speed-up of up to 5 on CPU+GPU over CPU only, was achieved.

Although these cases may not be the most common, the techniques developed in
this thesis are expected to be of increasing importance as GPUs and CPUs become
more integrated, especially on embedded devices. This makes latencies less of an
issue and hence the value of our results stronger. An outline for future work in this
area is thus also included.
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Chapter 1

Introduction

Signal processing is a wide field with many applications, each with a variety of pos-
sible implementations. Currently, it is often applied to multimedia data: Images,
video or audio. Each of these types of data have their own specific computa-
tional demands, but some of the methods are common among them. Some discrete
transforms for instance, can be run with satisfactory performance on the simple
processors found in embedded devices such as mobile phones for audio compression
or filtering. To run the same transform on high-resolution video signals in real-
time, the increased data throughput may require a multi-core CPU in modern PCs
in order to achieve the same effect in software.

In recent years, Graphics Processing Units (GPUs) have become a quite common
processing platform for solving numerous computing tasks. Although traditionally
used for decoding/encoding video, visualizations and games, one signal processing
area not very widely researched is audio processing on GPUs, even though many of
the algorithms used lend themselves to highly parallel execution in the same way
as image and video processing. Discrete transforms used in audio processing, like
the Discrete Fourier Transform (DFT), have already been thoroughly researched
on GPUs for other applications[1].

In previous years, developing programs for GPUs often involved very low-level
and vendor specific code. But as the use of General-Purpose computing on GPUs
(GPGPU) became more mainstream, a number of high-level and vendor-independent
frameworks have appeared. One such framework is OpenCL[2], which allows the
same program to be run on GPUs from different vendors, dedicated accelerators
and even multi-core CPUs with vector instructions. This opens up new possibilities
for offloading computations between devices on demand, which in turn can lead to
increased performance and energy efficiency.
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1.1 Motivations

The specific focus within audio processing in this thesis is on acoustic echo cancel-
lation, which is often used in systems for real-time voice communication. It is the
process of removing the audio from a remote user that is being picked up by the
recording device in the room of the local user, resulting in the remote user hearing
the echo of their own transmission. This typically occurs when a loudspeaker is
used to play the sound received from the remote end, such that the sound is played
into the room and is not isolated from the microphone.

1.1 Motivations

In the case study in this thesis, we develop an acoustic echo cancellation filter
implementation for GPUs for OpenCL and load-balancing functionality to offload
computations from the CPU. Our implementation is based on functionality in the
open-source library Speex[3], which is used for speech compression and general
audio preprocessing on standard CPUs. Following are some of the motivations for
implementing this in OpenCL.

1.1.1 Offloading Computations on PCs

Performing pre-precessing on a high quality audio signal can put a strain on the
CPU during real-time audio communications. Even on modern PCs with very
powerful CPUs with several processor cores, performing extensive filtering of audio
when other CPU-intensive applications are also running, can lead to a substantial
decrease in computing power available on the system. A few examples of this
is during execution of video conferencing, games and other virtual worlds where
voice communication is very common, the audio equipment used to record the
sound could be of variable quality and a large amount of the processing power
of the CPU is often required for other tasks. Audio preprocessing is then needed
to extract a clear signal a as possible of the voice of the person speaking, this can
involve methods like noise removal, acoustic echo cancellation and only transmitting
sound when someone is actually speaking.

To be able to do all this filtering with high accuracy without affecting overall system
performance, the computations can be offloaded to a co-processor. One such co-
processor, that has become fairly common in PCs in recent years, is the GPU. It is
a massively parallel device that often has spare capacity, and with normal desktop
usage is often running completely idle. The parallel nature of the GPU should also
make it possible to perform the audio processing in even faster than on the CPU,
but this is not an absolute requirement if it can free processing time for other tasks.

2



Chapter 1: Introduction

1.1.2 Offloading Computations on Embedded Devices

Embedded devices, especially mobile phones, are rapidly becoming equipped with
more processing power than what was common in PCs a few years ago. GPUs
powerful enough for 3D gaming are now being equipped into mobile phones, which
is a development seen earlier for PCs and in the long term enabled them to be
used as co-processors in addition to be used for visualization purposes. While
becoming increasingly powerful, embedded devices are also very power constrained
because they usually run on a form of battery power and have limited cooling, this
constrains the speed that their processors can run at.

To achieve the performance needed by some applications they have to utilize all
the processing power inside the device, including the GPU. Other applications
might run more power efficient on a parallel architecture such as the GPU. In
general, offloading computations to the GPU can be essential for future embedded
applications. When performing audio filtering on an embedded device for voice over
IP applications, offloading the main processor or achieving better audio quality by
utilizing both, is an appealing prospect. OpenCL is a technology that will be used
for this purpose in the near future, and is the focus of our implementation in this
thesis. An advantage with GPU computing on embedded devices is that the CPU
and GPU share main memory, in contrast to (most1) PCs where the graphics card
has a separate memory that is connected over a relatively slow bus. This means
that there is little to no overhead of performing operations on the GPU instead of
the CPU.

1.1.3 Massively Parallel Audio

Other applications might involve massively parallel processing of separate audio
streams, such as in a larger telephony systems. Such a system can be configured
to perform audio processing for handsets with limited built-in computing power.
The audio quality might have to be restrained here if filtering the audio from all
the endpoints on a traditional CPU, or might require multiple CPUs to handle
the load. Co-processing with even more parallel architectures than modern CPUs,
might significantly decrease the cost of such a system, or make it easier to expand
the capabilities of an existing system.

1NVIDIA ION shares memory between CPU and GPU with an integrated GPU for PCs
(retrieved 20.July 2010): http://www.nvidia.com/object/sff_ion.html
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1.3 Goals and Contributions

1.2 Goals and Contributions

The main goal of this thesis is to explore the possibilities for audio processing on
GPUs so that GPUs can be used to offload processing in co-operation with the
CPU. A case study will be conducted based on the existing echo cancelling filter of
the open-source Speex library for compression of voice data. An OpenCL version
is developed, implemented and tested on both AMD Cypress and NVIDIA Fermi
GPUs. Our results were also validated against the Speex CPU version. Using
OpenCL, it is possible to switch between running the same filter code on either the
CPU or GPU.

The performance of the OpenCL CPU and GPU versions will be evaluated, and
strategies for load-balancing between the CPU and GPU will be discussed and
evaluated in the implementation where they are relevant in practice.

1.3 Outline

The rest of this thesis is structured as follows:

Chapter 2 (Parallel computing) contains background information on parallel com-
puting and GPGPU. The chapter begins with introduction to why GPUs are im-
portant to parallel computing, describes the new OpenCL standard and gives an
overview of the issues associated with load balancing of applications.

Chapter 3 (Sound preprocessing with Speex) contains background information on
sound preprocessing in general, and more specifically on the methods investigated
in our case study. It starts by investigating previous work with audio processing
on GPUs, gives an introduction to the Speex library and continues on to describe
details of the MDF algorithm for echo cancellation and finally gives an introduction
to the FFT.

Chapter 4 (Optimizing Speex Echo Cancellation for OpenCL) describes the steps
performed to adapt the sound processing library to support GPGPU. First, the
testing application implementation with timing and verification functionality is
described. The adaptions made to the third party FFT library to work with the
filter is then documented. The methods used to parallelize the filter are listed, and
the resulting kernel functions described. After the implementation was finished,
some initial performance testing was done and the findings from this and how to it
affected further development is reported. The chapter finishes with documentation
of how co-processing can utilized with the implementation.

Chapter 5 (Benchmarking and Results) contains the results of performance testing

4



Chapter 1: Introduction

and information about the hardware platforms and methods used for benchmark-
ing. The benchmarks that were run on the OpenCL version of the filter when it
was finished, both on GPU and CPU, primarily tested the scalability of the filter
with respect to echo tail length and the number of input and output channels. To
create context for the application performance, latency on the OpenCL implemen-
tations used is tested, as well as the performance of the FFT library used against
a well-known reference implementation. The run times of the individual kernel
functions are analyzed, and the chapter finished with a discussion of the results
and the impact this had on co-processing.

Chapter 6 (Conclusions and further work) summarizes the findings in earlier chap-
ters and draws some conclusions about the case study. A section describing future
possibilities with both the heterogeneous computing technology and the sound pro-
cessing library specifically.

5
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Chapter 2

Parallel Computing

This chapter contains contains technical background information on GPU and het-
erogeneous computing relevant to this thesis. Section 2.1 describes the issues facing
high-performance computing today and why GPUs are a possible solution to some
of them. This is further explored in Section 2.2 which goes into detail on how
programs are written for GPUs and some technical considerations. Finally, Section
2.3 contains an overview of the concept of load balancing, how it has been applied
in the past and how it applies to a heterogeneous system composed of CPUs and
GPUs.

2.1 Parallel Computing with GPUs

In recent years, one of the main ways computing performance has increased has
been due to higher clockspeed in processors, leading to faster execution of a single
process or thread. For a considerable period of time, this development did not hit
any apparent limits in performance. Large multi-processor systems were obsolete
after few years because single processors with a hugely increased clockspeed could
outperform them. But the clockspeed and single process performance of processors
has reached a plateau in recent years. This can be traced back to the laws of
physics, with increased heat production and demands on electric power. This sets
practical limits on the maximum clockspeed that is possible to achieve and resulted
in a major paradigm shift in the way processors are built.

7



2.1 Parallel Computing with GPUs

2.1.1 Introduction to Parallel Computing

As the limit of single processor performance was approached, the industry increas-
ingly looked to parallel systems to be able to achieve better performance than what
is possible on a frequency constrained single processor. Multi-core CPUs are now
common in most new PCs (2-6 cores at the time of writing). By putting more
processor cores on a single chip, performance is theoretically be multiplied by the
number of cores. Several lower frequency, and hence cooler low-power cores are
more easily housed inside a computer, than a single extremely hot, power consum-
ing one. The trend in HPC computing are so called computing clusters made up
of several commodity servers or PCs, connected by a network. The most powerful
computing systems in the world today with thousands of processors, are clusters.
These have taken over much of the use for large proprietary mainframe computers.
Both these trends call for parallel programs that use all of the available processors
effectively. However, doing so with two or more processors, is difficult in many
cases, because of how access to the data must be managed. The data needs to
be shared between the processors either through a system bus, or, even worse, a
low bandwidth, high latency network. Slowly, we are seeing more effective use of
the available computing power in such systems, and more recently even for non-
scientific applications[4].

2.1.2 General Purpose GPU (GPGPU) Computing

A component that is becoming more commonplace in modern PCs, are powerful
graphics processors. Originally, the graphics card in a PC was only tasked with
outputting a 2D image onto a screen, but in the 90s, specialized graphics accelera-
tors came to market that accelerated 3D graphics for games. This made it possible
to include realistic graphics in games that was never before possible, and has also
become an important part of modern gaming consoles (such as the Playstation
and Xbox). A professional market also existed for these devices, where 3D graph-
ics were used for design and construction (CAD/CAM), but it was the consumer
cards that sparked the rapid developments in this area.

Shader programs

A graphics card traditionally includes a lot of fixed-function specialized hardware
for rendering a 3D-image with real-time framerates (25-30+ fps). Such an image
is generated from vertices and polygons that the programmer outputs from an
application. The rendering of simple dots, lines and single-colored polygons are
not enough to produce realistic looking graphics on their own. Over the years,
more effects have been added into the hardware. Eventually, graphics programmers

8



Chapter 2: Parallel Computing

needed to be able to create their own effects that were relevant to their application,
and so a level of programmability was introduced into the graphics cards with the
addition of so called shader programs. The word GPU became commonplace,
describing the new co-processor supplementary to the CPU. Later, three types of
programmable shaders were standardized:

• Vertex shader - Performs operations on single vertices, like changing their
color for special effects.

• Pixel/fragment shader - Carries out operations on single screen pixels, instead
of points in 3D space.

• Geometry shader - Can change the geometry of the scene itself.

Although these shaders allow much programmability of the GPU, they are still
very much tied to a graphics pipeline, in that all operations are performed on
graphics primitives. Nevertheless, efficient programs have been written only using
shaders (GLSL/HLSL) and extensions (like NVIDIA Cg). For instance, a Lattice
Boltzmann method fluid simulation[5] was created using such a method on cluster
of PCs with Geforce 4 GPUs.

Expanding the programmability beyond shaders

Newer generations of GPUs (for example NVIDIA’s Geforce 8-series and AMD/ATI:
Radeon 2000-series and newer) incorporate a feature called ”unified shaders”, which
was part of the DirectX 101 standard, and is supported by GPUs which implement
this widely used API. Unified shaders leads to that all the three types of shader
programs mentioned above, share the same type of operations. Previously, some
functionality was only available to certain shader types. This lead to the develop-
ment of more general computing elements by the graphics cards manufacturers to
support these unified operations, and so there was no longer any point in having
specialized hardware for each type of shader.

With support for unified shaders added, a framework for more general computation
on the GPU was achievable. This was made possible by allowing a fourth type of
program to run on the processing elements in addition to the three types of shaders:
compute kernels. These are programs, often compiled from high-level languages,
that run on the same processing elements as the shader programs, with up to several
thousands of processing elements on a single GPU, and offer the developer massive
parallelism. At the time of writing, the highest-end single consumer GPU from
NVIDIA was the Geforce GTX480 with 480 shader cores, and the Radeon 5870

1Information about unified shaders in DirectX 10: http://msdn.microsoft.com/en-us/
library/ee418282%28VS.85%29.aspx
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2.1 Parallel Computing with GPUs

from AMD with 1600 shader cores (the performance, functionality and grouping
of these are slightly different, and cannot in terms of numbers of processors be
compared directly).

Figure 2.1: Development of theoretical computational power on CPUs vs (NVIDIA)
GPUs in the last decade, from [6] with permission from NVIDIA.

This large number of processing elements combines into a huge amount of pro-
cessing power on a single chip when one considers the compute capability offered
by all the cores (see Figure 2.1). and compare this to a modern CPU, that has
2-4 cores as mentioned earlier. For programs that map well to the architecture,
they can experience a massive speedup. But although this looks brilliant in theory,
some limitations arise when writing programs for the GPU, that will be discussed
in detail later in this chapter. Because the GPU functionality was originally made
for drawing graphics, each processing element does not offer the general function-
ality of a CPU core, and attention has to be paid to the way in which many cores
access memory. Some applications are inherently better suited than others for ex-
ecution on GPUs, [7] lists the following as characteristics of applications that are
well suited:

• Computational requirements are large. GPUs perform a massive amount of
computations in real-time, and are most efficient if given a substantial amount
of work to do at once. Preferably, the application should have a high ratio of
numerical operations compared to memory accesses, but this can be helped
by favorable access patterns. Heavy branching from complicated logic that
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makes threads diverge, can also significantly reduce performance.

• Parallelism is substantial. Due to the massive parallel design of GPUs, the
application must be very parallelizable and so the computational domain of
the application should map well onto the architecture of the GPU, i.e. a
large number of threads is often needed to mask memory access time.

• Throughput is more important than latency. Since real-time graphics operate
on a millisecond timescale, GPUs are optimized for throughput on a scale
that is perceivable by the human eye. On the time scale of microprocessors,
this is fairly long, which have lead to long pipelines that are optimized for
throughput over latency.

2.2 OpenCL

The obvious step after developing multi-purpose hardware and making it possible
to run more general programs on GPUs, is to ease the burden of creating the soft-
ware. Using graphics-based languages or programming in an assembly language is
tedious and makes development of more complex programs prohibitively difficult.
To alleviate this problem, GPU manufacturers created APIs and translators for
more general programming languages, to ease development for programmers not
familiar with the inner workings of the GPU and allowing for more rapid devel-
opment and reuse of code. The first widely used framework for writing high-level
programs for GPGPU was Compute Unified Device Architecture (CUDA) from
NVIDIA. Originally, it was only possible to write programs in C or FORTRAN,
but the platform has also been extended to other languages. All the high-level
languages are compiled down to a common bytecode, PTX-files, that is then com-
piled into binary code that is executed on the GPU (see Figure 2.2). This removes
most of the dependencies on the graphics pipeline, and allows more scientific ap-
plications to be run. The main framework in focus in this thesis for GPGPU is

OpenCL

GPGPU application

Intermediate representation/GPGPU platform

GPU

C for 
CUDA

Direct-
Compute

GLSL/
HLSL

Brook-
GPU

Figure 2.2: GPGPU computing platform and languages, based on figure in [6].
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OpenCL. Not only is it supported as one of the languages and APIs that can be
used to construct applications on the NVIDIA CUDA platform, but it is also a
new vendor/platform-independent standard that can increase the propagation of
GPGPU and stream processing into traditional areas of computing.

2.2.1 The OpenCL Standard

OpenCL is an “open standard for parallel programming of heterogeneous systems”2,
the OpenCL framework is said to be comprised of the following components (from
[2]):

• OpenCL Platform Layer : The platform layer allows the host program to
discover OpenCL devices and their capabilities and create contexts (execution
environments).

• OpenCL Runtime: The runtime allows the host program to manipulate con-
texts once they have been created.

• OpenCL Compiler : The OpenCL compiler creates program executables that
contain OpenCL kernels. The OpenCL C programming language imple-
mented by the compiler supports a subset of the ISO C99 language with
extensions for parallelism.

At the time of writing, the first stable version of the OpenCL standard, 1.0[8],
had been out for over a year, and the second stable version (1.1[2]) had just been
released. The standard is managed by the Khronos group, which is a consortium
funded by industry members. Besides the OpenCL standard, it also manages the
widely used OpenGL standard for writing graphics applications. Contributors to
the standard included leading hardware vendors such as: AMD/ATI, Apple, ARM,
IBM, Intel and NVIDIA. The broad participation of the industry when developing
the standard, ensured broad cooperation on implementing the standard on a wide
variety of platforms. The known publicly available implementations at the time of
writing were the following (with stable releases):

• CPU/GPU implementation from Apple included in their operating system
MAC OSX. GPU acceleration available both on NVIDIA and AMD GPUs.

• CPU/GPU implementation from AMD supports both their own GPUs and
the newer multicore X86 CPUs (including those from Intel) with SSE3 vector
operation support. Provides a multi-platform SDK and drivers for Windows
and Linux.

2OpenCL home page: http://www.khronos.org/opencl/
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• GPU implementation from NVIDIA accelerated on their own GPUs. Provides
a multi-platform SDK and drivers for Windows, Linux and MAC OSX.

• CPU/accelerator implementation from IBM providing support for accelera-
tion on their Cell processor. Provides an SDK for Linux.

2.2.2 The OpenCL Language

The OpenCL specification contains an API and a set of extensions to the C pro-
gramming language, that allow special C functions (declared as kernels) to be
executed on the computing device.

When writing OpenCL programs, it typically consists of two parts: One part ex-
ecutes on the host (CPU) and accesses the OpenCL runtime and platform layers,
and the other part (kernel) executes on the computing device (GPU/multi-core
CPU/accelerator). The host code specify how to configure kernel execution (how
many threads should be executed, and how they relate to each other) and memory
management (the GPU and CPU do not typically share memory, so data often
needs to be explicitly copied between their address spaces). The kernel itself, is
regular C99-code with some restrictions[2]:

• Many of of the standard library functions are not available, i.e. standard C
IO functions.

• There is no stack available, meaning that there is no real function calls (func-
tions will be automatically inlined), and no recursion. But it is possible for
extensions to the standard to provide this.

• All kernel invocations must return void.

• Pointer use is somewhat restricted, e.g. pointers to pointers are not legal,
no function pointers are permitted and no dynamic allocation of memory is
possible.

• Static variables are not available, data must be persisted explicitly between
kernel invocations.

• Built-in functions must be used to retrieve information about the platform,
synchronization primitives and functions for performing some mathematical
operation effectively on the GPU.

• Support for debugging the kernel code it is running on a GPU is often very
limited.

The exact details are dependent upon the implementation in question. The plat-
form is modular, with each implementation free to implement extensions to utilize
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available features (ie. double-precistion floating point support). In addition, for
the kernel to run effectivly some considerations need to be made, in short:

• Great attention needs to be paid to the way memory is accessed (see Subsec-
tion 2.2.6).

• The program will be inherently multithreaded, and must behave accordingly
(see Subsection 2.2.5).

• Branching where some work-items/threads diverge can waste a lot of re-
sources, as work-items execute the same code on multiple processing elements
at the time. Branches have to be serialized on the processing elements.

• The GPU has support for a lot of specific types of operations (primarily
simple single-precision floating-point arithmetic), other operations should be
avoided as much as possible.

Extra considerations to make kernels execute with high performance, can be alle-
viated by hardware designed to address specific issues. This is an ongoing process,
and for NVIDIA each new generation of capabilities are called the “compute ca-
pability” of a certain GPU. From 1.0 which was implemented with the Geforce
8-series of graphics cards, to present version 2.0 in the Geforce 400-series and the
newest Tesla cards. Until now, many of the improvements have come in the form
of increased flexibility when accessing memory while preserving high performance.

HPC applications are becoming an increasingly important factor when new GPUs
are designed as evident by the Fermi architecture from NVIDIA [9], and to a certain
degree the Cypress architecture from AMD [10].

2.2.3 Alternatives to OpenCL

Due to the special requirements in this thesis, OpenCL was chosen as the target
platform. Before going into detail on how OpenCL programs are executed, some
alternatives will be mentioned. The C for CUDA language seems to be the most
widespread at the time of writing, but it is mostly specific to NVIDIA GPUs, and
has less vendor support for executing on other types of devices (CPUs3 and accel-
erators). The equivalent to CUDA from ATI, is called Stream and did not gain
the same foothold as CUDA before OpenCL support emerged, but offered many of
the same features and support a C-like language called Brook4 that was developed
at Stanford University with an open source implementation available. Although
BrookGPU in itself is not GPU vendor specific, Stream is specific to AMD graphics

3MCUDA is a community/research project to effectively compile CUDA code to CPUs: http:
//impact.crhc.illinois.edu/mcuda.php

4BrookGPU project: http://graphics.stanford.edu/projects/brookgpu/
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processors, in the same way as CUDA is for NVIDIA.

Additional languages and APIs exist, but are mostly have minority developer com-
munities behind them (FORTRAN, Java and C# on CUDA), have limited platform
support (DirectCompute) or are made to solve a limited set of problems. Other,
perhaps more high-level, standards, such as HMPP5, may prevail in the future, pro-
gramming massively parallel processors like GPUs is an ever-changing field, where
one of the most important goals is to make them accessible to new applications
and new developers.

2.2.4 OpenCL on Embedded Devices

GPGPU has to date been a concept tied to traditional servers and workstations. As
embedded systems get more advanced over time, they become a new domain where
utilizing GPUs for diverse tasks has potential. Many mobile phones at the time of
writing contain a simple GPU integrated with the CPU (sharing the same mem-
ory), which is mainly used for rendering the graphical user interface and games.
As they get more powerful and versatile, it is anticipated they will be used in ways
similar to how it has been done on PCs. Popular mobile GPUs include the ARM
Mali, POWERVR SGX from Imagination Technologies and NVIDIA Tegra, but
hardware support from these manufacturers alone do not make it possible to use
features on these devices. At the time of writing, these devices were mostly pro-
grammable through the use of shader languages such as the OpenGL ES graphics
standard. There had been much discussion of the possibility of using OpenCL on
such devices, and some beta-level software is available to a restricted set of devel-
opers, but wide support for writing OpenCL programs on embedded devices is not
present at the time of writing.

The OpenCL 1.1 specification [2] defines a specialized “embedded profile” for de-
veloping OpenCL applications on embedded devices. The embedded profile is a
subset of the complete specification adapted specifically to embedded devices. In
summary, these are a set of additional restrictions that apply to the “full profile”[2]:

• 64-bit integers are not supported.

• Only optional support for 3D images (textures), and restrictions to interpo-
lation of 2D and 3D images.

• Differences in default rounding modes for single-precision floating point op-
erations.

• The division and square root operations on floating point numbers can have
more relaxed rounding demands.

5CAPS enterprise, makers of HMPP for hybrid computing: http://www.caps-entreprise.
com/
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• Differences in conversions between single- and half-precision floating point
numbers.

• Less rigid rounding from integers to floating point numbers.

• Custom device info parameters. These are metrics about the computing
device that can be retrieved at run-time.

These are fairly acceptable restrictions to the specification, and makes it possible
to easily port OpenCL “full-profile” (desktop) programs to the embedded profile.

In the context of this thesis, it would be very interesting to the case study in-
volving audio processing port to an embedded device. The Speex library (see 3.4)
is already made to run on embedded devices. It supports the DSP (Digital Signal
Processors) on Analog Devices’ Blackfin microprocessors, has optimized procedures
for the ARM4 microprocessor, support for the Symbian operating system, and sup-
port for CPUs without floating point capability. Running Speex on an embedded
device has some obvious applications, as it could be used for many kinds of voice
communication, primarily for mobile phones. It might be beneficial to offload much
of the computational load on such a device to the GPU or other supported OpenCL
devices. If such tasks were offloaded from the CPU, they might be performed faster
and more energy efficient, enabling better audio quality as well as freeing the CPU
for other tasks. In this thesis, embedded OpenCL implementations as treated as a
purely theoretical subject, because, as mentioned, no comprehensive development
platforms was available to the public at the time of writing.

2.2.5 Concepts of Kernel Execution

As mentioned, GPUs contain a lot of computation cores. The physical difference
in surface area distribution of the different components for the CPU compared to a
GPU chip, is depicted in Figure 2.3. The GPU dedicates significantly more space
to the smaller and simpler computational units (the ALUs), instead of the fewer
but more functional units of the CPU. CPUs also have to support the consider-
able legacy of the X86 architecture and its flexible general computing nature, this
increases the amount of control logic needed. In addition, the GPU eliminates/re-
duces the global cache, and instead distributes some fast memory among groups
of computational cores. The larger amount of computational cores, increases the
demands on parallelization of the application that will execute on them, which is
a burden the developer, and preferably to a certain degree the compiler, is respon-
sible for.

The most basic unit that executes on a GPU, is termed a work-item in OpenCL
(CUDA: thread), which is the same concept often used for parallel applications on
CPUs. Each work-item/thread can have its own variables and in theory its own
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Figure 2.3: Overview of the area distribution on CPU and GPU chips, from [6]
with permission from NVIDIA.

separate control flow, and is an instance of a kernel function. But, as will become
apparent later in the section, it is not as simple as a 1:1 mapping between running
threads and independent cores (as there is on most CPUs). In OpenCL, a group of
work-items is called exactly that, a work-group (CUDA: block), which again can be
divided in 1, 2 or 3 dimensions, depending on what is appropriate for the problem
at hand.

Typically, these work-groups can contain several hundreds of work-items in each
dimension defined. These work-groups are assigned to a unit on the GPU, that
is called a compute unit in OpenCL (NVIDIA/CUDA: streaming multiprocessor).
Each of these compute units are independent of each other, and schedule work-
items (in groups of 32, called warps in CUDA) to run on the ALU units that
it contains. They are built after the so-called SIMT principle, which stands for
Single Instruction, Multiple Threads. This is similar to the concept of SIMD (Single
Instruction, Multiple Data), in that multiple computational units execute the same
operation (instruction) at the same time, each working on a different piece of data.
In contrast to SIMD, SIMT work-items/threads can branch and so can include some
control logic, but even though this is possible, branching is serialized and so each
work-item is not completely independent. If even one of the work-items running on
a compute unit diverges from the others, only the work-items following the branch
can continue executing in parallel, the rest have to wait and then execute their own
branch later. All this means that the programmer must pay close attention to the
way that work is divided between the work-groups/compute units, and to avoid
branching behavior in work-items as much as possible.

A group of work-groups, is again collected in what is called a NDRange (CUDA:
grid), this consists of a 1, 2 or 3-dimensional index space of work-groups. The
dimensions of the NDRange, in the same way as for work-groups, can be determined
by the problem at hand. In practice, the maximum size of the NDRange is much
larger than the work-groups, since it is not bound to the physical resources of the
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multiprocessors in the way a work-group is. GPUs from the same generation, often
have the same basic compute units, but with different numbers of them. On the
GPUs in the NVIDIA Geforce 200-series with 240 shader cores (30 SMs of 8 SPs
each), more than 30 000 threads can be scheduled at once[11].

An overview of the grid/block/thread hierarchy can be found in Figure 2.4.
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Figure 2.4: OpenCL NDRange of work-groups. (CUDA: Grid of blocks), based on
figure in [2].

2.2.6 Memory Hierarchy

Just like a CPU, GPUs have access to various types of memory that vary in speed
and capacity. To utilize the memory effectively across hundreds of cores, and deal
with the long memory latencies involved with accessing the large DRAM memory
(termed “global memory” from now on), other types of faster, but smaller capacity
memory are also available to the GPU (see Figure 2.5). One also needs to remember
that before data can be operated on by the GPU from global memory, it must be
first copied from the main CPU memory. To date this copy operation, must be
carried out over the PCI-Express bus, which has a maximum bandwidth of only
8 GB/s6 in each direction. As mentioned earlier, this limits the use of GPUs for

6Press release of PCIe 2.0 (retrieved 20.July 2010): http://www.pcisig.com/news_room/
PCIe2_0_Spec_Release_FINAL2.pdf
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some problems, they are best applied to problems where a significant amount of
calculations are involved.
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Figure 2.5: OpenCL memory hierarchy, based on figure in [2].

Primarily, there are three types of memory available to the GPU. The following
listing is based on information in [11], with specifications mainly for NVIDIA GPUs,
but the princicples apply to ATI GPUs as well:

• Global memory that is accessible by all work items, a large majority of the
total memory resources is of this type. It is large (6 GB on the current high-
end NVIDIA graphics cards), has reasonably high bandwidth, but can have
several hundred clock cycles of access latency. The bandwidth for sequential
accesses, is in fact much higher7 than the DRAM memory in most PCs and

7The specifications for the Tesla C2050 lists the memory bandwidth as 144 GB/s. Source
(retrieved 20.July 2010): http://www.nvidia.com/object/product_tesla_C2050_C2070_us.html
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servers8, but despite the higher bandwidth, a lot more cores need to access
the same memory. The access latency can become a large problem if accesses
are not organized effectively. Reads and writes from/to global memory from a
number of work-items should be coalesced (combined into a larger operations)
by reading/writing as much as possible, in specific patterns, depending on the
GPU generation (see the NVIDIA OpenCL Programming Guide [6] for more
details). Additionally, some other categories of memory is ultimately stored
in global memory, but used for special purposes:

– Private memory (called local memory in CUDA), is a small piece of
memory available to each thread. Currently this is 512 KB per work-
item on the Fermi architecture GPUs[6]. In practice, private memory
usually acts as slow spillover storage for faster registers, so it should
be avoided as much as possible. Newer NVIDIA GPUs[9] have imple-
mented caching of private memory, which can help performance if this
is a problem in the application.

– Constant memory, which is 64 KB (all current NVIDIA GPUs[6]) shared
among all work-items and is typically used for storing constants (hence
the name). This is cached on the compute units, and can be much faster
than accessing regular global memory when a value is read multiple
times (same as registers on cache hits). The values can not be altered
by kernels, they must be predefined or copied to from the host before
the kernel is launched.

– Image objects (texture memory in CUDA), is based on a method to
bind a section of global memory as a cached texture. This is cached by
each compute unit, similar to constant memory, and can lead to faster
lookups, especially for 2-dimensional data. A heritage from visualiza-
tion, is that values in texture memory are automatically interpolated
without additional computational cost, which can be very useful for
some applications. Textures can only be written to by compute kernels
under certain conditions, and have generally been used as read-only data
by the GPU.

• Local memory (called shared memory in CUDA terminology) available for
each work-group and is local to each compute unit (32 KB per compute unit
on NVIDIA Fermi[6] and ATI Cypress[10] GPUs). If a work-group has high
re-use of data, temporarily storing the values here can significantly reduce
access latency as it is roughly 100 times faster[11] than global memory. An-
other automatic use of local memory, is for “function” arguments passed to
the kernel. Some considerations must be taken with read-patterns from local
memory, to avoid bank conflicts. Bank conflicts arise because local memory
is organized into memory banks that can be access simultaneously if all the
threads are requesting separate addresses in a linear fashion, but problems

8The specifications for the Intel Core i7-980 Extreme Edition list it as having a 25.6 GB/s
maximum memory bandwidth. Source (retrieved 20.July 2010): http://ark.intel.com/Product.
aspx?id=47932&processor=i7-980X&spec-codes=SLBUZ
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arise when the access patterns prohibits all the banks to be accessed at once
(further details can be found in the [6] and depend on the specific GPU
architecture).

• Registers local to each compute unit represents the fastest data storage, but
the amount available to each work-group is limited, so if many registers are
used, it can limit the amount of concurrent work-items that is possible to run
on each compute unit. If the kernel uses too many registers, they spill over
into private memory (physically located in global memory), which consider-
ably slows the program down. The maximum amount of registers available
to each compute unit, is 32 768 32-bit registers on NVIDIA Fermi-based
GPUs[6].

2.3 Load Balancing

In this section load balancing and how it might be applied to GPUs and sound
processing applications (such as our implementation) is discussed.

2.3.1 History of Load Balancing

Load balancing in general, is an ago-old problem in compute science. Traditionally
it has been used to distribute the work-load for large tasks among a number of
systems, e.g. it is commonly employed to serve large web sites or various web
services. This was a most common use-case in a world where all computers only
had a single processor with a single core that needs to do all processing. With
many similar CPUs installed side by side in newer systems, as well as including
other computing devices, like GPUs, load balancing also becomes an issue internally
on a single machine. Load balancing is also closely related to scheduling, which
is a much explored problem of assigning batches of work to a finite number of
resources, i.e. scheduling processes for execution on a single CPU. For applications
running on the CPU, the operating system can schedule processes for execution on
different cores at the same time, but it can not automatically assign a process to
several CPUs/cores at the same time to speed up execution, the program has to
do so explicitly itself. If one wishes to make use of all the available resources, the
application has to implement some form of load-balancing itself to distribute work
to where the resources are available at the time.
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2.3.2 Traditional Load Balancing Techniques

Static load balancing is the concept of assigning work to processors before any
tasks start executing. This is a challenging theoretical problem that is categorized
as np-complete. The following are listed as some of the major practical static
load-balancing techniques in [12]:

• Round robin algorithms - distribute work in sequential order of processes,
coming back to the first when all the processes have been given a task.

• Randomized algorithms - selects processes at random to take tasks.

• Recursive bisection - recurisvely divides the problem into subproblems of
equal computational effort while minimizing message-passing.

• Simulated annealing - an optimization technique that avoids the locally best
solution (end time) in favor of the best one globally.

• Genetic algorithm - an optimization technique based on evolution in nature.

These algorithms are useful if all the parameters of the system are predetermined
before execution starts, but problems can occur if for instance other tasks share
the processors or the interconnect is not completely isolated (which is often not
the case for ethernet networks). The idea of “off-loading” tasks from processors is
also not congruent with static load balancing, because we do not usually know the
work-load at the processors forward in time.

Dynamic load balancing, as the name suggests, takes the current overall state of
the processors into account. This adds some additional overhead during execution,
but allows for much greater flexibility for real-world environments. In [12], dynamic
load balancing is divided into two categories:

• Centralized - Tasks are distributed from a central location with a master
process that controls several slave processes. The tasks can be arranged in a
prioritized queue that can grow dynamically during execution. Termination
on the end of execution can be simple with one central work-pool, the master
process simply signals all the slave processes.

• Desentralized - Tasks are passed between arbitrary processes and finally re-
porting to a single process when they are completed. This alleviates the
dependency on the single process within the work-pool, it may be better to
have completely independent worker/slave processes or smaller groups of pro-
cesses that share a work pool. A problem with desentralized load-balancing
is that determining when to terminate can become a problem, but several
algorithms exists to solve this.

22



Chapter 2: Parallel Computing

An example of a centralized load-balancing approach for modern processors is
Grand Central Dispatch[13] (GCD), which is a technology created to effectively
utilize multi-core CPUs between several applications. The library implementation
has been released as the open source project libdispatch9 and is primarily available
in Apple Mac OS X at the time of writing. It acts as an abstraction layer to the
application developer and groups tasks into blocks, that are organized in queues.
The queues from the application are managed centrally by GCD, which is a system
level component that can manage work depending on the existing queues and the
overall status of the system. The blocks are removed from the queues by GCD and
assigned to threads for execution.

2.3.3 Load Balancing on GPUs

There does not exist very much research in load balancing between the CPU and
GPU on a single heterogenous system. More common is the task of load-balancing
between several fully utilized GPUs[14], and between a cluster of heterogenous
computers with both CPUs and GPUs. In the case study in this thesis, work
should be either executed as fast as possible or offload to either the CPU/GPU, if
computing resources are used for other purposes. In this regard, a dynamic load
balancing scheme is required. It is also implied that it must be centralized with due
to the technology in GPUs currently available, the CPU still needs to be strongly
involved when offloading work to the GPU.

A large challenge when considering dynamically load balancing involving a GPU,
is that there is currently no practical way of gathering information about what the
work-load of the GPU is at a point in time. In fact, to date it has not been possible
for several programs with separate processes to share the same GPU in controlled
way. NVIDIA aimed to improve on this area with their Fermi architecture [9] which
makes it possible for multiple kernels to run on the same GPU to utilize it fully.
But, this hardware had not been available long enough at the time of writing for
this to be incorporated into the case study. Problems with sharing a GPU still
exist even with these improvements, for instance when another application needs
to use the GPU for rendering graphics at the same time and how this combines
with GPGPU applications.

These limitations lead to more simplified algorithms for load balancing on the
GPU, where some strong assumptions need to be made about the overall state of
the system. GPGPU platforms must still evolve further before resources on the
GPU can be shared and utilized by multiple applications throughout the system,
in the same way as the CPU.

A system similar to Grand Central Dispatch (see Section 2.3.2) could be a possible

9libdispatch web page: http://libdispatch.macosforge.org/
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solution on GPUs, and some of same principals of execution queues are found in
OpenCL. Although the principles are appealing, some problems arise when trans-
ferring the same principles to GPUs, first among which are memory accesses/locks
and fine-grained thread control that are more easily achieved with the general CPU
architectures. Tight control of thread execution, atomic operations and synchro-
nization across all threads are not well supported operations on GPUs today, or
incur a large performance penalty. GPU hardware designers have shown to cater
more to the needs of GPGPU in newer generations of their architectures, and this
could lead to such general load balancing being realistically achievable in the future.

2.3.4 Auto Tunable GPU Algorithms

Because of differences in computing devices that can be utilized by OpenCL appli-
cations, auto tunable algorithms become even more important than they were with
more traditional CPU-based hardware. Auto tuning involves a program to be self-
optimizing for the available hardware resources with a given set of capabilities. For
a OpenCL application in production this becomes very important, because there
are significant differences between the capabilities of GPUs, other accelerators and
multi-core CPUs. Modern GPUs come in a number of different configurations
when it comes to the number of available compute units and their grouping. Some
differences exists inside the same generation of chips from the same manufacturer
because of price/power differentiations of their products. Between generations ma-
jor changes can occur in how the computational units are organized, for instance
between the NVIDIA GT200 (“Tesla”) and GF100 (“Fermi”) architectures[9].

Even larger differences are found between GPU manufacturers. At the time of
writing, the competing products from AMD and NVIDIA had fairly different archi-
tectures and specifications, even though the performance is comparable (depending
on the application). Where the ATI Radeon 587010 has 1600 so-called processing
elements in groups of 5 as stream cores, again grouped in 16 as SIMD engines, the
NVIDIA Geforce GTX 48011 has 480 “CUDA cores”, in groups of 32 as streaming
multiprocessors. A program written for one architecture, does not nescessarily ex-
ceed the level of performance on the other without custom tuning. Currently, the
compiler optimizations available in the GPU platforms is limited, so algorithms
and libraries can get sizeable performance increases[15][1] by having the ability to
auto tune and adapt to the environment in which it is run.

A few attempts have been made at creating auto tunable algorithms on GPUs.
Nukada and Matsuoka[1] have created an auto tunable FFT library for GPUs

10ATI Radeon 5870 specs (retrieved 25.June 2010): http://www.
amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/
ati-radeon-hd-5870-specifications.aspx

11NVIDIA GTX 480 specs (retrieved 25.June 2010): http://www.nvidia.com/docs/IO/90025/
GTX_480-470_Web_Datasheet.Final3.pdf
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with NVIDIA CUDA. It auto-generates an optimized kernel function and tries
different combinations of threads and block sizes for a given FFT size and batch
size at compile time (for the kernel function). With a small time penalty during
compilation, they achieve up to 5.2x-8.0x faster performance than the NVIDIA
CUFFT library (CUDA ver.2.1). This functionality would be a valuable addition
to a production version of the program in our case study. For more information
about the FFT library used in the case study, see Section 3.7. This does have some
elements of the library from [1] as the code is dynamically generated, but does not
implement the dynamic thread/block optimization.

Ideally, one would want the compiler to optimize the code for any given architecture
to almost the same degree as an expert programmer would be able to do. Still,
such a compiler has not been created, but to create it one would need a model
for the performance with the different parameters possible. This was explored
by Baghsorkhi et al.[16] by translating CUDA programs into so-called work flow
graphs. They measured a fairly accurate execution time compared to their model
on a matrix multiplication kernel, FFT and prefix sum kernels. An accurate model
could potentially remove the need for “compile and try” auto tuning as in [1], and
could lead to better automatic compiler optimizations.

But in the current state of auto tuning GPU algorithms, they are fairly complex
to implement for non-trivial applications. Although attractive, it is not very feasi-
ble to apply auto tuning properties to prototype implementations without adding
significant additional development time. However, as auto tuning library func-
tions and algorithms become available, they will be used to speed up segments of
compute intensive programs.
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Chapter 3

Sound Preprocessing with
Speex

The area of sound processing will be investigated in particular in this thesis, with
regards to parallelization on GPU is preprocessing of human speech which is done in
the Speex speech codec. This chapter contains background information on the case
study and on sound processing in general. It begins with Section 3.1 that introduces
a few fundamental digital audio concepts. Section 3.2 gives an overview of earlier
work done with audio processing of GPUs. Section 3.3 introduces the problem
area of the case study: Acoustic Echo Cancellation. Section 3.4 and Section 3.5
introduces the Speex library and its preprocessing components. Section 3.6 gives
an introduction to adaptive filters and a specific implementation (MDF). Section
3.7 introduces the FFT and its implementation on GPUs.

3.1 Fundamentals of Digital Audio

To introduce a few digital audio concepts that will be used later in this chapter,
first a few fundamental principals will be described.

The sound that is used in the context of this thesis, is always recorded by a micro-
phone connected to the computing system in some way. The sound waves hitting
the microphone membrane represent a continuous signal, but this has to be dis-
cretized into a finite series of numbers before they can be represented and processed
by a computer. This conversion is termed sampling, and the end product is a series
of samples, which is simply a series of numbers. An example of how a series of
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samples look when plotted over time1, see Figure 3.1. The top plot shows the sam-
ples over a very short period of time with the small dots representing individual
samples, the bottom plot is zoomed out to a larger time interval where the overall
characteristics of the signal become visible.

The format of the numbers used to store samples can vary, but usually they are
signed or unsigned integers stored with 8 to 24 bits precision. Since the samples
represent a discrete version of the continuous sound waves, the more often the sam-
ples are stored per time-unit, the more closely they resemble the sampled signal.
The frequency with which these samples are stored, is termed the sampling rate,
and is usually in the range of 8kHz (telephones) to 192kHz (professional record-
ings and high-end music/movie formats). A common reference, the Compact Disc
format. has a 44.1kHz sampling frequency and store the samples at 16-bit signed
integers and audio stored with these parameters is often called “CD-quality”. Since
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Figure 3.1: Waveform visualization, showing normalized floating point sample val-
ues over time.

computer hardware and software is generally most effective when given more than
single values at the time to work, samples are often grouped into frames. As will be
discussed later in this thesis, the most appropriate frame size is usually defined by
the hardware architecture at hand, the operations to be performed with the frame
and required filter latency. After processing of the samples is done, there are often
even tighter constraints on the frame size due to network standards and the audio
hardware used to playback the stream of samples.

1Plot is based on the “Visulizing Sound” demo in the MathWorks MATLAB software.
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3.2 Audio Processing on GPU

Performing general computations on GPUs in itself is a fairly new venue of research,
even more so for audio processing on GPUs. Very little has been done on using
the GPU for such processing, but some examples do exist. Investigations into the
feasibility of using GPUs for processing sound, have often lead to mixed degrees of
success[17]. Often, GPU sound processing involves utilizing the GPU for 3D sound
processing in games/visualization (which already uses the GPU)[17][18][19][20], or
for heavier processing like speech recognition [21].

Cowan and Kapralos[4] investigated using the GPU for creating spatial sound for
games and virtual environments by means of convolution. This is aimed at giving
the user an impression of the space that he/she is moving in through an immersive
sound experience. A large hall would for instance sound very different from a
small office, first and foremost in terms of reverberation time, but also from other
factors. Their implementation was developed using a shader language and achieved
large speedups for larger data sets (larger number of audio samples). Jedrzejewski
and Marasek[20] used ray tracing to calculate the detailed paths sound travels
in a virtual environment, the methods resembles those used in ray tracing for
visualization, which can be parallelized on GPUs[22]. The increased performance
by using shader programs on GPUs allowed for more intricate scenarios in real
time. Tsingos et al.[23] used an algorithm similar to level of detail to group sound
sources in a virtual environment to avoid excessive computational load. They
achieved comparatively higher performance when many sound sources are involved
by offloading pre-mixing to the GPU using shader programs.

Trebien and Oliveira[18] investigated implementation of recursive 1D filters with
their application to re-synthesizing sound effects when objects hit different mate-
rials such as wood, glass, plastic etc. They achieved an effective offloading of the
CPU and a 2-4 times speedup over their CPU version.

In general, previous research has utilized shader programs, partly because they were
the most viable option at the time, and partly because they easily integrate into
real-time rendering of virtual environments. Few have investigated audio processing
on modern GPGPU frameworks, using CUDA or OpenCL for development. These
frameworks brings many advantages in ease of implementation and control, but
some tradeoffs are necessary (see Section 5.2).

3.3 Acoustic Echo Cancellation

The focus area of this thesis within audio processing, is acoustic echo cancella-
tion. But before describing the details of how it is canceled is described in detail
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in the next chapters, the problem of acoustic echo needs to be defined and un-
derstood. Acoutic echo describes a problem that occurs when using an at least
two-way audio communication system where the recording device (microphone)
can pick up the incoming sound sent from the other party through the playback
device (loudspeaker). The sound from the speaker travels through a room that has
some unknown acoustic properties into the microphone and gets sent back to the
original sender. Delays with network transmission further the increases the delay
of the sound, in addition to the time it takes the sound to travel from speaker to
microphone, and reverberation in the room where the sound is played. A person
in the other end will then hear an echo of their own transmission affected by the
room in the other end, maybe even together with a new transmission.

This problem is not prevalent in a telephone that has a handset with a speaker
in one end and a speaker in the other, or a headset with isolated earpieces that
does not leak sound to the room or the microphone. But if a speaker-phone is used
where the sound is played into the room or some types of hands-free equipment is
used, the acoustic echo is more audible. A common use case in recent years is also
to use a full computer for VoIP communication, often in a more casual manner
than a traditional telephone, where a microphone is mounted by the computer and
sound is played through speakers, maybe even an external sound system.

Acoustic echo cancellation is the act of “subtracting” the echo of the sound played
through the speakers from the sound picked up by the microphone. The challenge
lies in correctly predicting the effect the speaker, microphone and room acoustics
have had on the sound before it was picked up by the microphone.

3.4 Speex

The acoustic echo canceller we have chosen to build our work on in this thesis, is
part of a library called Speex2. It is an open source patent-free audio compression
format designed for speech. The project aims to lower the barrier of entry for voice
applications by providing a free alternative to existing, often expensive, proprietary
speech codecs. Having a free software speech codec opens possibilities for many
new applications without having to pay licensing fees for the underlying technology
used to transfer speech as files or as a stream over a network. The Speex project
is part of the non-profit Xiph.Org Foundation, that also maintains the relatively
popular audio codecs FLAC (Free Lossless Audio Codec) and Vorbis, as well as the
video codec Theora and the Ogg media container format.

Some of the features of the Speex codec itself are [3]:

2Speex website, and source of definition: http://www.speex.org/
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• Narrowband (8 kHz), wideband (16 kHz), and ultra-wideband (32 kHz) com-
pression in the same bitstream.

• Intensity stereo encoding for encoding a stereo signal without the need to
transfer a full dual-mono signal.

• Packet loss concealment for transferring audio over an unreliable network
(such as the Internet) with as few interruptions as possible.

• Variable bitrate operation (VBR) for better utilizing the available bandwidth
by varying the bitrate depending on the content of the audio stream.

• Discontinuous Transmission (DTX) for stopping transmission when there is
nothing to trasmit (in conjunction with VAD (see list below) and VBR).

• Fixed-point port, for running on embedded devices without floating point
support.

In addition, the codec includes a preprocessing module, with, among others, the
following features[3]:

• Acoustic Echo Canceller (AEC) used to avoid echo occuring on the remote
end when audio playback is captured by the microphone. More details can
be found about this module in later sections.

• Noise suppression for reducing the amount of background noise in the signal.

• Automatic Gain Control (AGC) for adjusting recording volume to a reference
level, regardless of specific setups with differing input volume.

• Voice Activity Detection (VAD) for distinguishing between background noise
and speech.

• Adaptive Jitter Buffer for make sure that the audio stream arrives in time and
the correct order when transmitting it over a network, mainly by buffering.

• Resampler for converting audio between different sample rates.

Some of the software that currently make use of Speex3:

• Adobe Flash: A general framework for animations, multimedia content and
video streaming often used on the Web that has Speex as one of its supported
audio codecs4.

3Speex application list (retrieved 15.July 2010): http://www.speex.org/software/
4Flash Player 10 Datasheet (retrieved 15.July 2010): http://www.adobe.com/products/

flashplayer/pdfs/Flash_Player_10_Datasheet.pdf
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• Asterisk: An open-source PBX (Private Branch Extension), or telephony sys-
tem. It is typically used to route calls and provide services within a larger
organization, for which commercial systems have typically been used. In-
teroperability between different telephone techonolgies (ie. PSTN/ISDN vs.
VoIP) is one of its strengths, and Speex adds to the possible audio protocols
that can be used.

• Ekiga: A videoconferencing application.

• Google Talk: A combined instant messaging and VoIP application where
Speex is one of the available codecs5.

• LinPhone: A graphical VoIP client.

• Mumble: A voice chat application for gamers, which uses much of the avail-
able Speex functionality to improve audio quality. This software project was
started by the co-advisor for this thesis, Thorvald Natvig.

• Wengo: A VoIP service with an open source client that uses Speex.

• A large number of games: Speex is an attractive alternative for game creators
to use for in-game voice-over and voice communication, that often are integral
components of modern games.

Since Speex is open source software, most of the applications/libraries that uses it,
are also free/open-source software.

3.5 Preprocessing in Speex

Preprocessing of sound when using Speex, is primarily done for two reasons:

• Compressability: With a voice codec, it is very important to remove unec-
essary noise (and unwanted sounds) from the signal before it is compressed,
to dedicate as much as possible of the available bitrate to transmit the voice
itself, and not noise. This ultimately leads to better voice clarity.

• Quality: The other obvious reason for doing preprocessing is improved audio
quality for the end-users. Most of the time, one is only interested in hearing
as clearly as possible the voice of the person one is communicating with,
even through low-bandwidth network transmissions and in difficult acostic
environments.

5Google Talk Speex support (retrieved 15.July 2010): http://googletalk.blogspot.com/
2006/10/speex-support.html
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The amount of preprocessing that should be done to the signal will always depend
on the most common use case for the application, and how much processing power
is available to it. The preprocessing filters are designed to be flexible, so that they
execute in real-time on everything from small embedded processors to modern X86
processors with SSE instructions.

3.6 Adaptive Filters

A method used for acoustic echo cancellation, is to use adaptive filters. An adap-
tive filter is a self-adjusting algorithm that tries to approximate a real system,
for instance room acoustics, based on a input signal over time. These filters are
attractive to use for echo cancellation because exactly modeling all possible room
acoutics, speakers and microphones physically correct in a single algorithm would
be an insurmountable task. Instead some metrics of the quality of the result from
the filter can be used to adapt it as best possible to physical system.

The challenge with adaptive filters is to make it accurate, and at the same time
flexible enough to allow for changes in the system. When doing acoustic echo
cancellation the system might change when for instance the microphone is moved
around the room, or people or objects are moved around inside the room, altering
the acoustics slightly.

The problem to be solved, is depicted in Figure 3.2. An adaptive echo cancellation
filter takes the remote signal (x(n)), and earlier error values from the output. The
signal produced by the filter is then subtracted from the signal that is coming
from the microphone. The echo is produced by the sound output at the local side
being picked up by the microphone (y(n)), together with the new speech that is
to be transmitted (v(n)). The echo is affected by the room acoustics, which is
an unknown system that the filter tries to adapt to. Notice that the echo is only
removed from the output signal, and only improved for the remote end.

The algorithm used by Speex for echo cancellation, is based on a Multidelay Block
Frequency domain adaptive Filter (MDF) design[25], and more specifically the
Alternatively Updated MDF (AUMDF) variant (see Section 3.6.2). The imple-
mentation in Speex is pragmatically contructed with MDF as a base, with some
modifications that improve the performance in practice. It is one of the better
acoustic echo cancellers available as open-source without patent conflicts. Many
echo cancellation algorithms are hidden within embedded products and proprietary
systems/software. Earlier work by Herikstad[26] investigated performing solely the
Fast Fourier Transforms (FFTs) in this filter on GPUs using CUDA and CUFFT.
Since then, the available implementation has improved somewhat, with support for
multiple microphones and speakers, but most of the general algorithm remains the
same.
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Figure 3.2: Block diagram of echo cancellation system. Referenced from [24].

It is important to note that the acoustic echo canceller component of Speex is
independent of the voice codec, and can be used for any sort of audio signal. The
filter itself takes raw sample data as input and output, which means it can be easily
combined with other software packages.

3.6.1 MDF

MDF[25] is a variation of the Least Mean Squares (LMS) filter, where an adaptive
filter is used to approximate an unknown desired filter. It approximates the filter
by finding filter coefficients that minimize the least mean squares of the error signal
(the difference between the desired and actual signal, see Figure 3.2). Least mean
squared error is a common statistical error quantity used in signal processing.

MDF is a frequency domain implementation of an LMS filter where blocks of fixed
size that can be smaller than the filter length, is processed in the frequency domain.
There exists other methods, such as FLMS for computing a LMS filter in the
frequency domain, but it is inflexible with respect to the size of the blocks of
data that needs to be transformed into the frequency domain using FFTs (see
Section 3.7). If the block size used is of the same size as the FLMS size, then
it becomes identical to MDF. With smaller blocks, it is possible to make better
use of embedded hardware for FFTs, and thus avoid performance problems and
inaccuracies that can occur with larger FFTs, and with smaller blocks the latency
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of the filter can be reduced so it can adapt faster to changes.

For the rest of this thesis, the total length of all the blocks in the MDF, will be
termed the echo tail. This tail consists of a number of blocks (frames) back in time,
often of the size that fits well with high-performance FFT implementations. The
length of the echo tail determines how long backward in time the filter can cancel
echo, this depends on the acoustics of the room in question. In addition to room
reverberation, audio equipment and computers also add delay. The sample rate
also play into the length of the echo tail, as a higher sample rate will need a longer
tail to cover the same period of time, and will naturally be more computationally
demanding.

The following, is an overview of the flow of input frames through the filter (see
Figure 3.3, enumerated according to the following list):

1. The current and last frames are taken as input and combined using a overlap-
save or overlap-add technique[27]. This allows the block filter to better ap-
proximate a continuous filter.

2. The overlapped frame is transformed into the frequency domain using a 1-
dimensional real-to-complex FFT. The size of the FFT is twice the size of
the input frames.

3. The transformed frame is added to the stored blocks (the “echo tail”). The
blocks are stored in a FIFO buffer, the oldest one is removed.

4. All the blocks are multiplied with corresponding stored weights.

5. All the multiplied values of the blocks and weights, are added together into
one block.

6. The block is transformed back to the time domain using a 1-dimensional
complex-to-real FFT (inverse order of above).

7. Half the points in the transformed block is output as the filtered frame.

8. After the final frame is calculated, the value is subtracted from the initial
frame to find the error value.

9. The error frame is padded with N/2 zeroes and transformed into the frequency
domain using a real-to-complex FFT.

10. Each weight is updated by adding them to the calculated least-mean-square
of the transformed error frame.

The major addition to the plain LMS algorithm in the Speex implementation, is
additional double-talk detection[24]. A special way to update the learning rate of
the filter is used based on the current amount of noise and double-talk in the signal.
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Double-talk occurs when the person in front of the microphone is talking at the
same time as speech is played through the speakers from the far-end. Double-talk
can confuse an adaptive filter if not handled specifically, ideally the cancellation of
the speech picked up from the speaker should not be affected by the person talking.
In the Speex implementation, a contiuous learning rate variable is used that can
be adjusted to compensate for disturbances that should not effect the filter. The
learning rate is given as:

µ̂opt(k, `) = min

η̂(`)

∣∣∣Ŷ (k, `)
∣∣∣2∣∣∣Ê(k, `)
∣∣∣2 , µmax

 (3.1)

Here, k is the frequency index, ` is is the frame index. Ŷ (k, `) is the echo signal
transformed into the frequency domain, Ê(k, `) is the frequency domain version of
the error signal. η(`) is a frequency independent leakage coefficient and µmax is
a design parameter for the maximum adaption rate, and prevents the filter from
becoming unstable. When double-talk is present in the microphone signal, the filter
should adapt at a much slower rate than normal. Double talk is differentiated from
a change in echo path (which also leads to large errors) by a leakage estimate. If
the echo path changes there is a large correlation between the power spectra of the
error and the estimated echo, but not during double-talk.

3.6.2 AUMDF

The particular MDF implementation in Speex, is a variant called Alternatively
Updated MDF (AUMDF). The result of this algorithm is that only a single weight
is updated for each frame that is processed by the filter, in contrast to a separate
weight for each frame of the echo tail as with regular MDF. Without AUMDF,
both an FFT and an IFFT would need to be run for each weight that make up the
echo tail and for each input and output channel. This can be very computationally
demanding, especially for longer echo tails. If for instance a frame size of 512
samples is used with an echo tail of 20 (combined) frames and two output channels,
this corresponds to 40 FFTs and 40 IFFTs of length 1024. However this case,
AUMDF reduces this to 2 FFTs and 2 IFFTs, but with a trade off in accuracy.

3.7 Fast Fourier Transform

In many audio processing applications it is more efficient to operate on sound in the
frequency domain. This can often leave to favorable performance over alternative
methods, but depends on a fast transformation of the input data, which naturally
is recorded in the time domain. The transformation used in general is called the
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Disrete Fourier Transform (DFT), but what we are interested in is a fast algorithm
for signal processing, and these are termed Fast Fourier Transforms (FFTs). The
two terms are often interchanged, but FFT will be mostly used in the rest of
this text (although DFT is the correct term when discussing the mathematical
transformation itself). Cooley and Tukey[28] popularized the first FFT algorithm in
the era of electronic computers, which could perform a DFT in Nlog(N) operations.

The FFT is a very important part of Speex in general, including the echo filtering
procedure. It has an abstraction layer that makes it possible to use several differ-
ent implementation, and at the time of writing the following were supported: The
FFTW (Fastest Fourier Transform in the West) library, the KISS (Keep It Sim-
ple, Stupid) library, the FFT implementation from the MKL (Intel Math Kernel
Library), as well as a custom implementation from the OGG project (smallft) and
a implementation with support for for fixed-point architectures.

FFTW is a highly optimized FFT library for CPU, and its integration with Speex
was used as a starting point when developing the OpenCL implementation, because
it is well documented and easily available, due to the fact that it is free software.
It utilizes so-called “plans” that dynamically optimize the operation based on the
parameters of the transform. The two operations that are used by Speex are
one-dimensional DFTs, for purely real to complex, and purely complex to real
transforms. The fact that the input is purely real or complex, opens up for further
performance benefits (the manual states a factor of two improvement in speed and
memory usage).

The DFT transform is defined by the FFTW library as [29]:

Yk =
n−1∑
j=0

Xje
−2πjk

√
−1/n (3.2)

Here n is the number of real numbers in X. The real to complex transform only
outputs n/2 + 1 complex number, the rest is redundant because of symmetry.

The inverse (complex to real) transform is defined as:

Yk =
n−1∑
j=0

Xje
2πjk

√
−1/n (3.3)

This results in n real numbers. FFTW calculates so-called unnormalized trans-
forms, so to get the original real numbers back after both a forward and inverse
transform, one needs to multiply the input to the forward transform by 1/n. This
is performed by the Speex wrapper functions for FFTW.

While FFTW is a well-written library, in this project it must be possible to cal-
culate the FFT purely on the GPU. CUFFT is a closed-source (but included in
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the CUDA SDK) FFT library from NVIDIA, that computes transforms on the
GPU, and has an API that has a high resemblance to that of FFTW. It would be
an excellent candidate for replacing FFTW in Speex, and exactly this pomt was
explored by Herikstad[26]. It has also been used in as a building block in numer-
ical simulations, for instance by Stantchev et al.[30] which used it computational
kernels for simulating plasma turbulence and compared it to a highly optimized
CPU implementation. CUFFT is also commonly used as a benchmark for GPU
FFT implementations [1]. It is highly beneficial to store both input and output of
the FFT in GPU memory, if most of the sound preprocessing algorithm is to be
implemented on GPU. This is necessary to avoid as many data transfers over the
PCI-E bus as much as possible as it is a slow bus (compared to global memory on
the GPU), to avoid the extra latency such an operation would introduce.

CUFFT has this functionality, but in this project it is not a feasible option because
it is only available on the CUDA platform from NVIDIA and requires an NVIDIA
GPU. This project investigates using OpenCL to create a more general implemen-
tation, and using CUFFT would significantly restrict the number of platforms that
could utilize the library. This is important both to support traditional GPUs from
other vendors, but also for possible use on embedded devices with accelerator chips
or smaller GPUs, or even just multi-core CPUs with the same codebase.

Several FFT alternatives were considered for the OpenCL implementation:

• Create a custom FFT from scratch: Creating a custom FFT implementation
in OpenCL from scratch, could result in a small, simple implementation that
only includes the transformations necessary for Speex. But implementing
efficient FFTs on GPUs, as explored earlier, is not a trivial problem. It
would also limit benefits from library developments in the future, that can
occur in for instance CUFFT.

• Use a FFT implementation from available OpenCL SDKs: Both the released
OpenCL SDKs from AMD and NVIDIA include examples for FFTs, but none
of them are particularily well suited for the specific transform required by this
work. It might also pose trouble (among others, with license/copyright) to
decouple the examples from the SDK which they are a part of, and include
them in Speex. They may also include platform-specific optimizations by the
GPU vendors.

• Use another third-party implementation: Apple has released an open-source
simple FFT library for OpenCL6, that should work across platforms, and
is actively maintained. This makes it possible to utilize a versatile library
with the possibility of adapting it to our spesific needs. A few shortcomings
of the library include the lack of (official) OpenCL CPU-support, lack of
a specialized real-to-complex and complex-to-real transforms with improved

6Apple OpenCL FFT library (retrieved 20.July 2010): http://developer.apple.com/mac/
library/samplecode/OpenCL_FFT/
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3.7 Fast Fourier Transform

performance (which CUFFT also lacks) and the use of some Mac-specific
libraries (but only in the example-application).

The library that was chosen was the Apple FFT library, but with a few modifica-
tions as described in Section 4.4. It is based on work in [31] and [32], so it can be
assumed to be fairly well optimized.
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Chapter 4

Optimizing Speex Echo
Cancellation for OpenCL

This case study reimplements the MDF echo filtering component of the Speex
library using OpenCL. The goal was to create a completely compatible function to
the existing one for our testing parameters. The existing implementation is written
in pure C for use both on PCs and embedded devices without floating point support.
Its datastructures are stored in a large C struct which is replicated to be compatible
with our implementation. This makes it possible to exchange the existing filter
with the OpenCL implementation without much difficulty. Several development
platforms were used to make sure that the OpenCL code was widely compatible
(small differences exist between implementations). These were the AMD Stream
platform (CPU/GPU) and the NVIDIA CUDA 3.0 SDK, both on Linux-based
systems.

This chapter starts with Section 4.1 that describes how the new implementation is
integrated with Speex. Further, Section 4.2 introduces the application created to
test the OpenCL implementation and Section 4.3 describes in more detail how tim-
ing and verification was done. Section 4.4 details how the FFT was implemented
on GPU and how it was adapted to the dataformat expected by the Speex library.
Section 4.5 lists some of the steps taken to parallelize the echo cancellation filter.
Documentation of the kernel functions (in the OpenCL implementation) themselves
can be found in Section 4.6. After the initial implementation was created, a few
experiences affected further development. Section 4.7 describes some of the chal-
lenges faced developing the OpenCL for different hardware platforms, while Section
4.8 examines some of the performance limitations found during development and
a few of the efforts to best utilize the computing power in the GPU are listed in
Section 4.9. Lastly, Section 4.10 investigates how co-processing can be applied to
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the filter and a simplistic solution is presented for current systems.

4.1 Integration with Speex

The OpenCL implementation was made to fit into the Speex framework as far as
possible. The echo filter code mainly consists of three components:

• A filter state: This is a very large C structure with all the buffers (26 in total)
used by the filter. It contains both temporary values and values that persist
between input frames.

• Initialization/cleanup: Mainly allocates and frees the buffers in the state
struct, as well as setting the default values and constants.

• The main filtering function: This is called for each input frame and contains
all the logic of the filter.

• Subroutines: Common subroutines that are called by the main filtering func-
tion.

The filter state is reused exactly as it is, to be able to run the filters with the exact
same input data and to compare intermediate results. Initialization and cleanup
functions are completely replaced by calls to the OpenCL runtime and buffers are
created similar to those that already exist in the filter state. The main filtering
function is replaced with the OpenCL implementation that uses the same prototype
definition and is compatible with the existing implementation. Some of the filter
logic is copied from the library version, but most is rewritten from scratch. Some
of the subroutines are replicated, but many were combined with other operations
(see Section 4.8).

4.2 The Testing Application

Included in the Speex library is a testing application for the echo cancellation
functionality, simply called “testecho”. This application was used as the basis
for testing both the original library function and the OpenCL version. It reads
two files from disk: A file with the reference (without echo) audio, and a file
with echoed audio. Both input files are raw samples (no container format) with
a configurable sample rate. Frames from both the files are passed to the echo
cancellation filter, which in turn returns a single output frame that is written to
an output file. Parameters that can be adjusted, include frame size (how large
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frames are read and processed at the time, by default 128 samples), and the echo
tail length (how far back data is stored in the filter, by default 1024 samples). The
original application does not support multi-channel input/output (i.e. the use of
several microphones and/or speakers).

The modifications made to accommodate the OpenCL version are fairly simple:

• An additional initialization function was added to initialize the OpenCL en-
vironment, and allocate the needed buffers.

• Calls to the initialization and cleanup functions of the timing and verification
data (see Section 4.3).

• A new function to copy the complete echo cancellation state in order to be
able to call both the library and the OpenCL version with the same input
data. The filter changes several of the buffers and values in the state by
design, not only the output buffer.

• A call to the OpenCL version of the speex echo cancellation() function, that
processes each frame.

• The application was adapted for different input parameters to create a more
realistic test scenario with a higher sample rate, larger frame sizes and mul-
tiple channels (see Chapter 5 for more details).

The testing application consists of these main steps:

1. Initialization phase

(a) Open files for the speaker signal, microphone signal and the output.
Optionally these files can store interleaved data for several channels.

(b) Allocate input/output buffers, used as temporary storage when read-
ing/writing files. The size of these buffers must be of a multiple of the
frame size chosen and the number of channels. Separate buffers are
used for the OpenCL version, in order to always provide it with the
same data.

(c) Initialize the echo state, which is a large struct that is used for storing all
data used by the echo canceller. This contains among other things the
echo tail, temporary buffer and configuration parameters. A separate
version is created for the OpenCL version using the same format as the
original program.

(d) Initialize the Speex preprocessor state. Similar to the echo state, this
holds information for the preprocessor, which among other things re-
moves noise before the output is written to file. This functionality was
not altered in any way in this case study.
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(e) Initialize OpenCL and allocate device buffers required (corresponding
to those in the echo state). This step sets up the OpenCL environment,
retrieves a reference to the compatible hardware device(s) on the system
and compiles the OpenCL kernel code at runtime.

(f) Initialize the timing system by allocating any memory required.

2. Main loop

(a) Read data from the input files (microphone and speaker signals) into
the I/O buffers.

(b) Initialize verification and timing checkpoints by allocating the memory
needed and setting initial values.

(c) If both the original CPU filter and the OpenCL versions are run side-by-
side for debugging, some additionals steps are taken to assure that they
have the same input data. First, a complete copy is made in main/CPU
memory of the echo state of both the original and OpenCL filters (as the
echo state is also part of the input data). In addition, the I/O buffers
are copied, so that both filters are passed the same data. This can be
skipped if only one is run (production conditions).

(d) The main echo cancellation function is called.
(e) Cleanup functions for the verification and timing checkpoints to reset

the data before the next iteration.
(f) Run the output through the rest of the Speex preprocessor.
(g) Write the output frame(s) to file.

3. Cleanup

(a) Print timing statistics (average iteration time etc.) and clean up system
memory used for timing.

(b) Clean up the echo state for the original filter state and the copy. This
is done using original functionality in Speex.

(c) Clean up the Speex preprocessor state.
(d) Close all opened files.
(e) Free I/O buffers, and their copies.
(f) Free allocated OpenCL device memory and associated variables.

This process is illustrated in Figure 4.1. Grey boxes are timing/verification func-
tions that are disabled for benchmarking. Orange boxes are functionality imple-
mented using OpenCL. The white boxes represent the original functionality of the
test program. Functions that are horizontally grouped do similar tasks. At sev-
eral occasions, the OpenCL functionality is performed in tandem with the original
functionality. The program as shown, is only run for debugging purposes, since
most computations are replicated. A production version would either perform load
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Open speaker signal file(s) Open microphone signal file(s) Open output file

Initialize echo state for the orig. filter Initialize echo state for the OpenCL filter

Initialize Speex preprocessor state

Initialize OpenCL & allocate device buffers

Initialize timing system

Read data from speaker signal file(s)

Allocate I/O buffers for the orig. filter Allocate I/O buffers for the OpenCL filter

EOF?

Print timing statistics/cleanup

Clean up echo state for the orig. filter

Done

Initialization

Start

Read data from microphone signal file(s)

Initialize verification checkpoints Initialize timing checkpoints

Copy I/O buffers to OpenCL copies

Run orig. echo cancellation & save checkpoints Run OpenCL echo cancellation & check checkpoints

Clean up verification checkpoints Clean up timing checkpoints

Run output through Speex preprocessing

Write output frame(s) to file

Main loop

Cleanup

Clean up timing system

Clean up echo state for the OpenCL filter

Clean up Speex preprocessor state

Close speaker signal file(s) Close microphone signal file(s) Close output file

Free I/O buffers for the orig. filter Free I/O buffers for the OpenCL filter

Figure 4.1: Flow diagram of test application.
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balancing between the original and OpenCL versions (see Section 4.10 for a simple
load-balancer), or run one of the versions exclusively. The logic for load balancing
is not shown.

4.3 Timing and Verification

Simple frameworks were created for the purpose of easing debugging and to time
the different implementations.

Verification

To avoid writing custom testing code for all stages of the echo filter, a simple frame-
work was created for vertification of the results. This involve storing snapshots of
select buffers from the echo state at certain points in time called “checkpoints”.
These are numbered single values or buffers, stored with one of the datatypes float,
integer or short. Reference values are generated during the run of the original
library implementation. When the OpenCL version is run with the same input
data, it calls functions that checks the data against the reference values. If the
difference between the values is larger than the specified margin of error, both the
reference and the erranous data is printed to console for investigation. The data
can be stored either in device global memory or main memory. In the case where
it is stored on the GPU, it is transferred to a temporary buffer on the CPU. The
verification can be easily disabled for benchmarking as it adds a significant amount
of overhead to the total computations.

Timing

Timing the program is performed in much the same manner as verification. Each
implementation calls a function that stores the elapsed time in an array as it
progresses together with a string describing that particular point. At the end of
the filter, the values are printed in a list to console, relative to the first value.
Since the only operating system used for benchmarking was Linux, the sys/time.h
header was used with its gettimeofday() function that has theoretically down to a
microsecond precision, but depends on the available hardware clocks on the system.
This timing framework was used only to measure the overall progress of the filter,
including overhead. GPU timers were not used to measure kernel execution time as
the NVIDIA Compute Profiler was used when optimizing the kernels individually.
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4.4 Integrating the FFT on GPU

As described in Section 3.7, the Apple OpenCL FFT library was chosen as the
best available candidate meeting the requirements of the case study. Some adap-
tions were required because of the data format used by Speex and the FFT library.
The differences between FFT libraries is usually handled in Speex, through the use
of FFT wrapper functions with generic prototypes which are then used through-
out the framework. Adding a GPU FFT-library to this wrapper was explored by
Herikstad[26], but transfer of data to and from device (GPU) memory then needs
to be included unless the whole framework is implemented on GPU. For this case
study, separate FFT functions are created instead, so as to execute FFTs using
device memory only in the OpenCL implementation of the echo cancelling. The
process of implementing the FFTs went through several iterations before the final
solution was explored:

1. Firstly, the library test program was adapted to run on Linux, it was depen-
dent upon Mac OS X specific libraries for timing and validating the results.
FFTW was used to validate the results, and standard Unix timing API was
used for timing. Several unnecessary test-cases was removed, and the test-
case with 1-dimensional DFT with real data (similar to the one used by
Speex) was implemented. Functions to convert to/from Speex FFT format
was implemented and tested against FFTW by looking at the existing FFT
wrappers.

2. The kernel functions for converting the input/output data was added to the
echo cancellation source files. This made each transformation a three-stage
process (different sets for inverse and forward transforms):

(a) Prepare - The input data is copied (with offset if needed) into a buffer
with the correct format for the OpenCL FFT.

(b) Execute - The FFT is executed using the external library functions.
(c) Finalize - The output data is copied (again, with offset) into the output

buffer with the correct format for Speex.

As discussed in Section 4.8, this leads to very high overhead and overall poor
performance because of the complex program structure, so a new solution
was needed. The OpenCL FFT library also has some initialization overhead
for each program run, as it dynamically generates kernel functions depending
on the device it is executing on.

3. The final solution involved taking the source code for the kernel generated
by the OpenCL FFT library, and including it among the rest of the kernel
functions for the echo filter and integrating it with the prepare and finalize
kernels to reduce the whole process into a single kernel call. It still copies the
data to separate input/output buffers used by the FFT to be able to change
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the data format without ruining the original content. But the combined
kernel proved to have much higher performance and properly support batch
runs with several transforms in parallel.

A problem with this approach, is that the FFT size is hard coded in the
implementation for specific hardware. But it would not necessarily create
performance problems on such small sizes (256/1024 samples) as one move
to other devices. A larger problem would be to if different frame sizes were
to be used for filtering, but it should not be a large challenge to adapt to the
sizes needed, based on the source code output of the OpenCL FFT library
for those sizes.

As mentioned, the format for the data in Speex and FFTW and the OpenCL FFT
library have some differences. The buffers in Speex are mostly made to be as small
as possible to allow for embedded devices with little memory available, where the
FFT libraries often are made to be as flexible as possible with regards to possible
input. Another issue is that the OpenCL FFT library only has complex to complex
transforms available, which are slightly different than transforms involving purely
real numbers. The complex to complex transforms can be used with real input data
with some minor changes to the data[33], but one does not get the performance
benefits of the specialized implementations, as is available with FFTW.

4.4.1 FFT Data Preparation

The data preparation step for the forward FFT, taking into account both the
different data formats and utilizing a complex-complex DFT, is described in the
Algorithm 1. The input parameter is an input array of n real numbers in the time
domain (this is also the FFT size) and x is the array of complex numbers passed
to the FFT. Note that all arrays are zero indexed.

It is a very simple algorithm where each real number is mapped to the corresponding
real part of a complex number in the time domain. So for an FFT of length 256,
one would have 256 real numbers as input and 256 complex numbers as output of
the preparation stage.

Algorithm 1 Preparation step for OpenCL forward FFT.
m← 1/n
for i = 0 to n do
x[i].real ← input[i]×m
x[i].imag ← 0
i← i+ 1

end for
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Preparing data for an inverse FFT is slightly trickier, since we have n/2+1 complex
numbers in the frequency domain as input, packed as an interleaved float array.
This interleaving means that the real component of the first number is stored in
X[0], the imaginary component is stored as X[1], the real component of the second
number is stored as X[2] and so on.

The inverse FFT is still executed with the same length as the forward FFT, even
though the input is n/2 + 1 complex numbers. As described in [33], to execute (an
inverse) complex to real FFT, one needs to mirror the numbers around a middle
element. So for instance, for an FFT size of 256, the 129th element should be the
same as the 127th (with the imaginary part negated), the 130th should be the same
as the 126th and so on. This mirroring will cause the output data after the inverse
FFT to be 256 complex numbers in the time domain, with only real components.
This is all summarized in Algorithm 2. input is the input array of n/2 + 1 complex
numbers stored interleaved (offset by -1 after the first element, so the last element
is the imaginary part of the last complex number) and X is the array of complex
numbers passed to the inverse FFT.

Algorithm 2 Preparation step for OpenCL inverse FFT.
X[0].real ← input[0]
X[0].imag ← 0
X[128].real ← input[255]
X[128].imag ← 0
for i = 1 to n/2− 1 do
X[i].real ← input[2× i− 1]
X[i].imag ← input[2× i]
i← i+ 1

end for
for i = n− 1 to n/2 + 1 do
X[i].real ← X[n− i].real
X[i].imag ← −X[n− i].imag
i← i+ 1

end for

4.4.2 FFT Data Finalization

The finalization functions convert the output data from the OpenCL FFT library
back to the format that Speex expects. The forward FFT function is listed in
Algorithm 3. X is the result of the FFT (n/2 + 1 complex numbers) and output is
the array of interleaved complex numbers passed back to Speex.

The algorithm itself is simple, but note that the imaginary part of the first and
last numbers are truncated.
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Algorithm 3 Finalization step for OpenCL forward FFT.
output[0]← X[0]
for i = 1 to n/2 do
output[2× i− 1] ← X[i].x
output[2× i] ← X[i].y
i← i+ 1

end for

As mentioned earlier, the result of the inverse FFT when the input is mirrored
correctly, are purely real numbers. So the finalization algorithm listed in Algorithm
4 simply extracts all the n real parts of the complex numbers and stores them in
the output array. x is the result of the inverse FFT.

Algorithm 4 Finalization step for OpenCL inverse FFT.
for i = 0 to n do
output[i] ← x[i].x
i← i+ 1

end for

4.5 Parallelization of MDF

OpenCL programs must be written to be inherently parallel in order to fully utilize
the available hardware. But the original MDF implementation in Speex is written
to be completely sequential, except for any possible optimizations done by the
compiler, although this is not available used in current software.

4.5.1 Calculate Frames in Parallel

The filter loops through all the samples in the input frame or combined window
(current and previous frame). In most cases, these are trivially parallelizable and
can be calculated independently. Typical frame sizes allow for a elegant mapping
to the computational units on the GPU with parallelism in the order of hundreds,
and can be executed in a few operations. Although this exploits the computational
units in an efficient way, it does not add enough computational load by itself to
mask memory accesses and allow for good throughput. Optimally, these operations
are good candidates to combine with other operations to keep the number of ker-
nel launches to a minimum(see Section 4.8), but certain of these operations have
dependencies that limit them to being executed on a single thread, so execution on
a CPU is preferred.
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4.5.2 Calculate I/O Channels and Echo Tail in Parallel

In addition to the frames themselves, the outer loops often consist of a number
of input or output channels. These can parallelized in larger blocks, adding an
additional level of computation. The FFTs are also mostly executed one time for
each channel, which translates into larger batches. But as is the case with frames,
some operations have dependencies that are not possible to run in parallel. The
echo tail is in the same class as the channels, and this is most dominant when
updating the weights themselves (see Section 4.9 for more information about how
this can even further affect performance).

4.5.3 Identify Independent Sections

The overall architecture of the echo filter is, for the most part, a pipeline. This
requires that the operations are executed in order and with some form of global
synchronization. The operations that can be executed out of order can benefit
overall performance if they are performed when it is most fitting and preferably in
parallel with other operations.

4.6 OpenCL Kernel Functions

Using the techniques listed in Section 4.5, the the final implementation was created
as an alternative version of the speex_echo_cancellation() function with sub-
routines, which is called speex_echo_cancellation_opencl(). It can coexist in
the library together with the original function, to facilitate testing and validation.

The following is a list of all the kernel functions that make up the OpenCL im-
plementation (see also Figure 4.2 for an overview), sorted by first appearance in
the code, but grouped into two groups: MDF and FFT kernels. The FFT kernels
are not purely FFT related, but contain some integrated functionality to reduce
the number of kernel calls required. If not listed otherwise, combined kernels are
always made task parallel on the combined tasks unless some data dependency is
present. Some descriptions are based on documentation from the Speex source
code.

4.6.1 MDF Kernel Functions

clMDF prepare shift preemph freq data The first kernel in the filter that
is run on the device, this kernel applies pre-emphasis to the input data (after it
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Figure 4.2: Flow diagram of the OpenCL MDF implementation
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has been converted to floating point numbers from integers on the host), shifts the
main time domain buffer (the echo tail) to make room for new data (far end signal)
and inserts the far end signal after applying pre-emphasis. Applying pre-emphasis
to the input is only parallelized using a single work-group of the device (because
synchronization is needed), and has to loop through a number samples depending
on the frame size and the number of input channels. Shifting the main time domain
buffer is parallelized for both samples1 and output channels using several work-
groups. The shifting of the frequency domain buffer is parallelized on samples and
echo tail frames, but have to loop through speakers for synchronization.

clMDF inner prod power spec spectral mul Combines an inner product cal-
culation and the first part of a “spectral multiply accumulate” operation. More
details can be found in the description for each dedicated kernels. The spectral
multiply accumulate operation requires an additional reduction before the finished
result can be used. The inner product is paralellized by samples and needs to loop
through output channels. The spectral multiply accumulate operation is paralel-
lized by samples, echo tail frames, input channels and output channels.

clMDF compute foreground filter A simple function calculates the differ-
ence between the error buffer and the input buffer for a frame, and stores it in
a separate slot in the error buffer. It is parallelized by samples and input channels.

clMDF inner product reduce This is the general-purpose inner product ker-
nel, although often combined with other operations. It is used when a combination
is not practical or possible, and is employed as a template for the combined opera-
tions and multiplies the real and imaginary parts of the interleaved array composed
of complex numbers. All the products are then added together into a single scalar
value, this operation is done in local memory using a common reduction pattern
from the NVIDIA and ATI SDKs (basically a binary tree pattern). The kernel is
parallelized on samples and can also run in several work-groups if batch processing
is needed. The results are the added together on the host. usually a very small
number of values, so the overhead of the memory read operation will dominate.

clMDF adjust prop phase1 reduce Performs one of the calculations when re-
solving the new adaption rate of the filter. Calculates the square value of an array
of elements and adds them all together into a single value. Again, the reduction
pattern occurs in local memory. This kernel parallelized on samples, input chan-
nels, output channels and echo tail frames. The input to this kernel is the output
of clMDF_weighted_spectral_mul_conj from the previous frame.

1To clarify, when it says that a kernel function is parallelized by samples, this means that each
thread/work-item is given a single sample each to process, from a frame or window (2 frames).
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clMDF weighted spectral mul conj “Computes weighted cross-power spec-
trum of a half-complex (packed) vector with conjugate“. At its core, this function
performs an operation on the echo tail in the frequency domain and the error trans-
formed into the frequency domain. There are two complex numbers: Xi = a + bi
(from the echo tail and Ei = c + di (from the error) and the function calculates
S = (a × c + b × d) + (−b × c + a × d)i. The function is only run if the input
signal is not saturated (consists of extremal values), at which point the whole filter
is uneffective. It is parallelized on samples, input channels, output channels and
echo tail frames.

clMDF spectral mul accum This is special case kernel that calculates cross-
power spectras for a batch of frames to be added together. In addition to setting
three unrelated buffers to zero to avoid overhead. The spectral mul. accum. op-
eration is essentially a multiplication and addition of complex numbers on signals
transformed to the frequency domain. For two complex numbers Xi = a+ bi and
Yi = c + di, the function calculates Si = (a × c − b × d) + (b × c + a × d)i and
the results are added together for all frames in the echo tail into a single frame.
The main calculations are parallelized on samples and input channels, but a loop
through echo tail frames is required because they are accumulated in global mem-
ory. Clearing the three buffers is only parallelized for samples (since they are the
size of a single frame).

clMDF combined response diff inner prod Is a combined kernel consisting
of two inner products (see clMDF_inner_product_reduce) and a calculation of a
difference in response. The response difference is stored in the buffer for the error
in the time domain and is calculated as the difference between the input and the
results of clMDF_spectral_mul_accum_long between the echo tail and the weights,
and is transformed into the time domain. All operations are parallelized on samples
and the response difference must be executed in the same work-group as one of the
inner products because of a data dependency.

clMDF update foreground filter This kernel applies a smooth transition to
the error in the time domain when updating the foreground filter so not to introduce
blocking artifacts by multiplying with a pre-calculated smoothing function based
on cosine. It is parallelized on samples and input channels. The update itself is
performed by an earlier call to clMDF_copy_float_array.

clMDF update background filter The corresponding function for the back-
ground filter consists of a a number of copy operations between temporary buffers
with time domain data and a subtraction from the input. It is parallelized on
samples and input channels.
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clMDF error signal combined This is a combined kernel of three inner prod-
ucts in addition to calculating the error signal, and it also checks for saturation in
the microphone signal. Since the calculation of the error signal has a high degree
of data dependency, it is performed on CPU, with only some initial preparation
of the data being performed on the device to minimize memory transfer. All the
operations are parallelized on samples and input channels.

clMDF power spectrum inner product This kernel combines an inner prod-
uct with two computations of the power spectrum for the echo and filter response.
If we have a complex number Xi = a + bi from a signal transformed into the fre-
quency domain, the power spectrum is calculated as (Pi = a2 + b2). These results
are then accumulated across input channels into a single frame. The function is
parallelized on samples only, for the power spectrum each work item will then loop
through the input channels to avoid race conditions with the additions.

clMDF set array to float value A simple utility function that sets the spec-
ified number of of values (with an optional offset) in a float array to a specified
value. It is only used when the filter detects a large problem and haves to reset
itself, which does not happen regularly. It was a useful tool for development, but
was eventually combined with other operations in most cases to avoid additional
overhead for small data sizes. The function is parallelized on array elements.

clMDF smooth far end compute filtered spectra This kernel combines three
tasks: Smoothing the far-end energy estimate over time, computing the filtered
spectra and some cross-correlations. Smoothing the far-end energy estimate in-
volves multiplication with constants and the addition of the power spectrum of the
echo tail. Computing the filtered spectra and the two cross-correlation is done in
the same operation as there are data-dependencies between the two. The cross-
correlation must be reduced down to single values and this is done using shared
memory in a similar manner as with the inner products. All the operations are
parallelized by samples and they are only run on a single frame.

clMDF learning rate calc This kernel includes some calculations done when
computing the new learning rate for the filter. The operations that depend on
device buffers are done on the device itself to avoid overhead. The result depends
on whether the filter has been adapted or not. The function is parallelized on
samples, and is only run for a single frame.

clMDF adapted copy A simple kernel that stores the difference between the
raw input and output in a buffer for use in the next iteration, but only if the filter
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has adapted. It is separated into its own kernel because it depends on the results
from on the host, since some control logic is not transferred to the device. It is
parallelized by samples.

4.6.2 FFT Kernel Functions

clFFT inner prod combined Combines an inner product calculation with a
forward FFT transform. See more detailed description in the descriptions of
clMDF_inner_product_reduce and clFFT_custom. This is a special case com-
bined kernel that calculates the inner product of the main frequency domain buffer
with itself after performing the transformation from the main time domain buffer.
This FFT and inner product is only run in a batch size of 1, since it is just run
once for each filtered frame.

clFFT custom This is the general purpose FFT/IFFT kernel based on the code
output by the Apple OpenCL FFT library. It combines the computational kernels
themselves with preparation and finalization steps (see Section 4.4) to convert into,
or out of, the Speex/FFTW data format. A separate set of temporary input/output
buffers are maintained while the application is run using temporary storage for the
FFT. This also allows some flexibility in that it is possible to set an offset into
the data to be transformed. In our case study, we used hard-coded FFT kernels
for the sizes of 256 and 1024 elements (allows for frame sizes of 128 and 512) and
these use 64 and 128 work items per work-group respectively. Some local memory
is used for each work-group, as well as registers to store temporary results. At
these small sizes (below 2048), the FFT itself can be computed without using any
global memory for temporary storage using the latest GPU hardware, by doing the
whole transform using a single work-group. The transformation can also be done
in batches where data is stored in consecutive blocks that are the same size as the
FFT. This will greatly benefit performance over running a single FFT several times
as it better the utilizes massively parallel hardware by adding more work-groups,
for instance, where data from several input channels can be processed in a single
batch.

clFFT update weights This function combines and parallelizes the process of
updating weights for the complete echo tail, in contrast to a single frame with
AUMDF (see Section 4.9.1). As the FFTs are run in a single work-group for each
frame they handle, each isolated frame is handled by a work-group. First, an inverse
FFT is performed to transform the weights into the time domain, next the first
half of the weights are then set to 0 and finally the weights are transformed back
into the frequency domain. The FFT core functionality is the same as with the
clFFT_custom kernel repeated twice, only with some additional offsets for batch
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processing. The kernel is parllelized by samples (thread to sample ratio varies
by frame/FFT size), echo tail frames, output channels and input channels. This
makes the kernel a highly parallel, and potentially the function with the most
scope for speedup compared with a single threaded CPU implementation. Because
of problems experienced when running this kernel on ATI GPU hardware (see
Section 5.1 for hardware specifications), this kernel had to be split in two due to a
lack of registers/memory available for each thread. The IFFT is then performed in
the first kernel, along with setting of values, and the FFT is then performed in a
second kernel. This had a negative impact on performance, but the original unified
kernel is easily enabled on platforms with sufficient hardware support to run it.

clFFT convert error to frequency domain This kernel combines converting
both the error and the filter response to the frequency domain, as well as setting
the first half of the values in the filter response to zero. This is done by using the
same FFT core as in clFFT_custom, but letting some of the work-groups handle
each transform. In the majority of cases, adding additional work-groups resulted
in little impact on performance for GPUs since several computational units were
typically idling. The kernel is parallelized on samples in the same manner as with
the other FFT kernels, but is also parallelized on input channels, running them in
batch.

4.7 Executing on Different Platforms

As briefly mentioned earlier, the platforms we focused on for OpenCL were the
combined CPU and GPU implementation from AMD (ATI Stream) and the GPU
implementation from NVIDIA. In principle, the same kernel functions should be
able to execute on all the platforms with correct results. However, as the devices
can still impose limitations on work-group sizes, memory size and so on, the CPU
implementation is least restricted in such regard, but at the same time it has the
least scope for parallelism. Large parts of the program need to be serialized for
execution, even though it is run on multiple CPU cores, because it has a lot less
inherent parallelism than GPUs, even with the availability of vector instructions.
This can both expose errors that occur when the code is executed in serial instead of
parallel, but also hide errors that only occur in parallel. Testing the code frequently
on both CPU and GPU was important.

What was found to be the largest problem between the implementations, were
error reporting and the recovery from errors. The kernel functions were developed
mainly on NVIDIA GPUs, new faults in the code was found when it was moved
to the ATI platform. Some of these were obvious errors such as array indices out
of bounds, which did not show up as fatal faults on the NVIDIA implementation.
This indicate a less rigid memory protection on the NVIDIA implementation on the
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particular platform used. Errors related to barriers and synchronization were also
found, and in some instances could completely lock down a host system with ATI
GPU for branches that included barriers, which can lead to complete deadlocks of
the GPU, including screen output. In some cases additional synchronization was
also required to get the correct results. Ultimately, most of these flaws were rooted
in human error, but additional work was nonetheless created in order to make it
work on all platforms. Support for error reporting was also fairly poor in some
cases, this can partly be attributed to the fact that OpenCL is a recent technology
and most of the developer kits available were the first or second generation of
production release, and not a deficiency of the standard.

Initially, when we started the case study, the ATI Stream SDK was only out in
version 2.0, which supported OpenCL 1.0 but lacked a number of features. For-
tunately, a new version (2.1) was released before benchmarking was started. The
new release includes many new features to make the platform relatively comparable
with the NVIDIA CUDA SDK. These included byte addressable memory (to be
able to use datatypes smaller than 4 bytes without bit-shifting), support for 2D and
3D textures, double precision support, support for AMD-specific vector operations
and OpenCL interoperability. Recently vendors has also started cooperating on a
common standard, installable client driver (ICD2), for switching between OpenCL
implementations on a single system. For instance, this allows the AMD CPU im-
plementation to be installed side-by-side with the NVIDIA GPU implementation.
However having GPUs from different vendors installed on the same system can still
be problematic depending on the operating system, additionally the display drivers
are often not made to co-exist with those of other vendors.

4.8 Preliminary Performance Findings and Tun-
ing

In this section, some preliminary performance findings will be discussed, that were
used to optimize the code during development. Detailed benchmarking and discus-
sion can be found in Chapter 5, while optimization of the FFT has already been
discussed in Section 4.4. Most of the optimizations have already been mentioned.
Especially when using small echo tails, the overhead incurred simply by executing
on a GPU was significant. Initially most loops and sub-routines had their own ker-
nels, but quickly this strategy incurred too much overhead for repeated kernel calls.
So, in addition to basic optimizations of memory access patterns for the GPU, the
most important optimization was to subsume kernel calls into larger kernels and
to avoid calling kernels inside loops. As not all kernels were run with the same size
ND range/grid, certain work-groups (blocks) tended to branch off from execution

2OpenCL extension registry entry for cl khr icd (version 7, dated March 2, 2010): http:
//www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt
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and ending earlier than others. While not optimal for very large data sets, it can
save significant time if overhead is the dominant consumer of time. In some ker-
nels, it was also possible to simply have parallel work-groups with their own task
(of approximately the same length) which resulted in effective task parallelization
of the tasks through the masking of execution time.

Some kernels were also found to be very poor candidates for parallelization, but
these were often operating on a fairly small amount of data, which gave an ac-
ceptable running time because of the overhead that is always incurred on kernel
launches. These were mostly loops with data dependencies, for instance when the
array value in the current iteration was dependent upon the previous iteration. One
example from the original Speex echo cancellation source can be found in Listing
4.1 (fixed point code in this code snippet is removed, and some types are resolved
to their primitive types for clarity). Writing values to the out array itself can be
parallelized, but out[i] is dependent upon vout, which is dependent upon mem[0],
which is dependent on mem[0] from previous iteration. In this particular instance,
the function is always executed on the CPU since it is the very first function in the
filter, which means the calculation can be done on CPU before the data is copied
to GPU memory. Similar cases exist, where doing so would incur a lot of extra
overhead, so it must still be performed inefficiently on the GPU since all the data
is located there anyway.

1 s t a t i c i n l i n e void f i l t e r d c n o t c h 1 6 ( const i n t ∗ in , f l o a t radius ,
f l o a t ∗out , i n t len , f l o a t ∗mem, i n t s t r i d e )

2 {
3 i n t i ;
4 f l o a t den2 ;
5 den2 = rad iu s ∗ rad iu s + .7∗(1− rad iu s ) ∗(1− rad iu s ) ;
6 f o r ( i =0; i<l en ; i++)
7 {
8 f l o a t vin = in [ i ∗ s t r i d e ] ;
9 f l o a t vout = mem[ 0 ] + vin ;

10 mem[ 0 ] = mem[ 1 ] + 2∗(−vin + rad iu s ∗ vout ) ;
11 mem[ 1 ] = vin − ( den2∗ vout ) ;
12 out [ i ] = rad iu s ∗ vout ;
13 }
14 }

Listing 4.1: Notch filter function from the echo cancellation filter in Speex 1.2 RC1.
This loop is poorly parallelizable on GPU because of depedencies.

4.9 Increasing the Computational Load

Since overhead is such a large consideration with GPU implementations, some
options were evaluated for increasing computation load and thereby decreasing the
effect of implementation overhead.
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4.9.1 Using MDF Instead of AUMDF

As described in Section 3.6.2, the AUMDF[24] algorithm is used in Speex originally,
only updates a single weight in the echo tail for each input frame. This updating
operation includes some copy and subtraction operations, but more importantly,
both an inverse and forward FFT. On a CPU, the optimization of only performing
this for a single weight saves significant iterative operations for a small decrease
in accuracy of filter operation, but on the GPU these operations can be easily
parallelized for the complete tail, so they do not incur as large a performance
penalty. The filter was made to easily operate as a traditional MDF filter, and this
was done for both CPU and GPU versions.

4.9.2 Longer Echo Tails

As described in Section 3.6.1, the echo cancelling filter stores an echo tail of earlier
frames for comparison against the new frame in order to detect echoes. The length
of this tail determines the maximum length of the echo that is possible to cancel.
A long echo tail makes it possible to cancel echo in larger rooms with longer rever-
beration times, a long distance between microphones and speakers and compensate
for delays in the audio and computer equipment. However, a long echo tail where
it is not needed, does have an impact of the adaption rate to new conditions.

The echo tail length can have a significant impact on performance where the filter
needs to loop through the whole tail. This happens when new data is added to the
echo tail, computing the filter itself, adjusting adaption rate, computing the weigth
gradient, computing response difference and when copying between background and
foreground filters. All these operations take longer time as the length of the echo
tail increases. In addition, updating the weights in the echo tail themselves take
longer when using a plain MDF algorithm instead of AUMDF.

The default echo tail length in the Speex echo canceller test program is 8 frames
of 128 samples, or 1024 samples. At an 8000hz sampling rate, this corresponds
to 128ms. We experimented with setting this tail with up to 256 frames (approx.
4 secs.) to increase the computation time. Another case for testing longer echo
tails is that when using higher sampling rates, longer tails, in terms of number of
samples, need to be used to compensate for each sample representing a smaller time
period. Speex has an ultra-wideband codec with a default 32kHz sampling rate,
which would require four times longer echo tails to cover the same time period (be
usable in the same room). Higher sample rates are often used for video conferencing
and higher end phone conferences. The Mumble VoIP application uses an echo tail
of 4800 samples (10 frames) with a sample rate of 48kHz by default.
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4.9.3 Longer Input Frames

The frame size determines how many samples from the input data are loaded for
each run of the filter. This is closely tied to the length of the FFT used. For file
encoding on PCs, longer frames (within reasonable limits) lead to shorter processing
time for the whole file. This could potentially increase performance on GPU, since
smaller 1D FFTs can not fully utilize the resources on modern GPUs. There are
three main problems with increasing this size:

• Using a longer FFT is plausible on desktop CPUs and GPUs, but might not
scale well on embedded hardware. An embedded GPU typically has fewer
computational cores than desktop GPUs. Embedded platforms might also
have fixed size specialized hardware for doing FFTs, or a CPU that can only
calculate a limited size FFT in reasonable time in software.

• The most common use case for the Speex codec is for VoIP, operating over a
slow network such as limited Internet connections. In such conditions, smaller
frame sizes are desired to reduce the effect of network latency and to increase
fault-tolerance if frames are lost.

• Having longer frames lead to a more coarse-grained echo filter that adapts
slower, since frames are fewer and farther between.

The test program uses a frame size of 128 samples by default, which leads to a
FFT size of 256 samples (two frames are always combined). Because of the design
of the FFT implementation used, power of 2 (divided by two) frame sizes are
preferred. The default frame size for the Mumble VoIP application is 480 samples
in combination with a 48kHz sampling rate.

A simple benchmark was conducted with different frame sizes (above 64 samples)
using the reference implementation from Speex, the results can be found in Figure
4.3. The test was conducted on an Intel quad-core workstation (see Section 5.1 for
detailed specifications of Machine A). AUMDF was enabled to make the effects of
the echo tail length as small as possible. An initial tail length of 20 480 samples
was used, and rounded up when the tail was not a multiple of the frame size. Only
single input and output channels were used, and the measurements are the average
for 1024 frames.

As is evident from the graph, the default frame size of 128 samples is not opti-
mal for this CPU, but few performance gains are found for frame sizes above 768.
GPUs may scale up to even larger frame sizes before the performance per sample
stagnates. Another consideration must also be taken, if the filter is to be used in
a real-time system with large frame sizes. The frame size widely used on Ethernet
networks in general, is 1518 bytes[34]. Larger frames (9 kB) are supported[35], but
are not seeing widespread use other than for very high-bandwidth local networks
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Figure 4.3: Scalability of MDF filter with increasing frame size.

(gigabit ethernet and above) where their use can increase the maximum through-
put. Due to the fact that a speech codec is not intended to be a high bandwidth
application, and continuity problems that can occur when using such large frames
for audio transfer, we choose not to focus on frame sizes larger than the 1518 byte
standard.

Each frame in Speex consists of a group of samples stored as the short integer
datatype in C. This means that each sample is stored using 16 bits or 2 bytes. The
largest multiple of 64 that could ideally fit into a 1518 byte packet is 704 samples.
At this point, the CPU performance has plateaued. To keep the implementation
simple, the frame size of 512 samples was further experimented with on GPU in
addition the default 128, since it leads to an FFT size of 1024.

4.9.4 Multiple Input/Output Channels

Professional deployments of voice communication systems often include several
microphones to better remove negative artifacts in the sound from the room, and
to cover all the participants. Even some newer mobile devices are constructed with
multiple microphones to better reduce the effect of noise. Several speakers are
also common, first and foremost for stereo sound, but one can also see surround
sound becoming commonplace in the future. For the input data, the number of
microphones multiplies the amount of data (size of the buffer). For output data,
the number of speakers multiplies the amount of data. Depending on the mix of
functions used, this can also multiply the amount work that needs to be done.
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To investigate the extent to which the number of channels impact performance, a
simple benchmark was conducted. The execution time for one frame to be processed
by the echo filter (average over 1024 frames) was timed. The default frame size
(128 samples) and tail length (1024 samples) were used, and AUMDF was disabled.
The same PC as in 4.9.3 was used.
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Figure 4.4: Scalability of MDF filter with increasing input or output channels.
Shows the effect an increasing either the number of input or output channels.

First, the number of input and output channels were increased separately, as seen
in Figure 4.4. This resulted in fairly linear scaling properties both for the number
of input and output channels, but input channels always have the highest impact.
In Figure 4.5, both the number of input and output channels were set to the same
value, and this shows an exponentially shaped growth in computation time.

At first, the echo cancelling was implemented with only mono (single-channel)
capabilities on GPU for simplicity, but to increase the computational load support
for multiple input and output was implemented.
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Figure 4.5: Scalability of MDF filter with increasing input and output channels.
The numer of input and output channels are set to the same value.

4.9.5 Processing Several Filesections in Parallel

In the application used for testing the case study, a file with raw sample data is
taken as input frame by frame, and processed into raw sample data as output into
another file. In theory, it would be possible to look a different sections of the file
in parallel to better utilize the GPU. This would mean that the filter would need
to re-adapt for each starting point, or some presumptions would need to be made
after the first section(s). The total time for processing the file would be much
lower, but some loss in audio quality would result.

In this thesis, this possiblity is procluded because it should be possible to use the
filter in a real-time system, which is the most common use for Speex. The file
encoding is only used to simulate an incoming stream of data from a network, and
not to encode files as such. If a fast file encoder was desired, this could be an option
to examine.
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4.10 Implementing Co-processing

The reason for investigating the use of OpenCL in this case study, except for
portability between GPUs, was that it facilitates co-processing in a much more
seamless manner than earlier GPGPU frameworks. A simple co-processing scheme
was implemented, but other possibilities are left as further work.

4.10.1 OpenCL on CPU

Earlier GPGPU languages and platforms have often focused purely on execution
on the GPU, or in best case had a simplified emulator layer that could execute
the GPU code on a CPU. With OpenCL, CPU implementations have been created
to fully utilize modern multi-core processors and use vector instructions (such as
SSE) where appropriate. The CPU can be used as another computing device by the
OpenCL implementation, often with relaxed limitations (with regards to maximum
number of threads and local memory) compared to GPUs. However, because of
fewer hardware restrictions in their architecture they also tend to be more useful as
a debugging tool. AMD released such an implementation as part of their Stream
SDK. NVIDIA has no CPU implementation yet, but the two implementations
can be used side-by-side. Writing programs for use in stream processing, such
as on GPUs, is rather different than the traditional CPU implementations, so
having the possibility of running them on a CPU can therefore be of major benefit
when debugging. The OpenCL kernel programs are inherently multi-threaded,
so they have the potential to be significantly faster than a single-threaded CPU
implementation for certain applications.

For co-processing, this sort of portability is ideal, as very little specific code has to
be written for the CPU version after the GPU version is created, and computing can
be interleaved between devices on a kernel-function basis. But as we find in Chapter
5, in our case the performance of the OpenCL version on CPU is significantly worse
than the existing library. CPU-usage when running the GPU-implementation is
also currently fairly high. These performance problems hampered further work on
the subject in the case study. A simple load-balancer that can be used for co-
processing was implemented and is described in the next section, but it does in
most cases not gain much available CPU-time in practice.

4.10.2 A Simple Load-balancer

As mentioned in Section 2.3, dynamic load balancing between CPUs and GPUs
during run-time is not a well-explored subject. One of the reasons for this, is that
the tools for doing so have until recently been lacking. With OpenCL, it is possible
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to actually execute the program using both types of processors for the first time.
However, the toolchains for utilizing all the available computing power in a system
has not to matured enough for it to be easily implemented.

One of the most significant problems with using the GPU to offload common tasks
from different applications in the system, is the lack of support for running multiple
applications (besides graphical rendering) using the same GPU at the same time.
Traditionally, the GPU has been completely occupied by a game or other real time
visualization for 3D rendering, and perhaps a few general computations running
shader programs or using GPGPU programs. These applications typically are
modal, in that they occupy all the users attention at a point in time. But this is
not a common use case for sound processing and many other general computational
tasks.

At the time of writing, it was possible for several processes to send work to the
GPU, but there is no real mechanism for these to effectively co-exist with regards
to the performance each would require. If there are other applications using the
GPU for GPGPU tasks or perhaps rendering, there is no way to asess how much
capacity (both processing power and memory) is available on the GPU at a point
in time, as is possible with CPUs in most modern systems. The ability to run
several kernel functions at once was made possible by NVIDIA with the release of
their Fermi architecture[9] (also see Section 4.10.3). This should be the first step
towards more advanced multi-tasking capabilities on GPUs, but this technology
was not available when we started developing our implementation, and there was
still no practical way to determine overall load levels on a GPU.

A true load-balancing system would consider both the total load level on the CPU
and GPU to be able to realistically select the appropriate device to use for execu-
tion. Seeing as it is only feasible to have control over the load level on the CPU,
a simple implementation was created within this limitation. In some applications,
one can assume that the GPU is available all time, but that would not be the case
in future systems where more and more applications offload calculations to the
GPU, or for instance with graphics intensive 3D games.

The load balancing system implemented is outlined in Figure 4.6. In our implemen-
tation, it switches between the reference implementation from Speex on CPU, and
the OpenCL version on GPU. This was done because of the limited performance of
the OpenCL implementation on CPU (see benchmarks in Section 5.5), but could
just as well have been used between the CPU and GPU OpenCL versions. In such
case, it could benefit greatly from using mapped device memory between the host
and device when executing on CPU.

The natural granularity at which to perform load-balancing in the test application
using the echo cancellation filter was the processing of a single frame, which is the
unit of the main loop. The loop was outfitted with some extra logic that checks
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the system CPU load every second and evaluates whether the load is high enough
(a threshold would be determined by the requirements of the system/application)
to switch to GPU execution. If the CPU implementation manages to utilize all the
CPU cores (the current reference does not fully occupy a multi-core CPU), another
method of determining whether to switch to GPU execution might be needed, for
instance the number of other applications currently running or an explicit interface
that can be called by other CPU-demanding applications. This might also be
influenced by power-demands to execute in the least power consuming fashion
as possible depending on the performance demand to the application, especially
suited to embedded systems. When the value falls under a certain threshold, CPU-
execution could be resumed. A small function was made to read the system CPU

Check system CPU load

Has CPU load been checked 
last second?

Last load balance result?

Need to 
switch?

Synchronize state/buffers

No

Yes

No

Yes

Read file input

Process frame on CPU Process frame on GPU

Write file output

GPUCPU

Main echo canceller loop

Figure 4.6: Simple CPU/GPU load balancer program flow for echo cancellation,
as implemented.

load from the operating system3. This was done on a GNU/Linux system and
the functionality is operating system specific, so a new version would have to be
created for use on other operating systems (should be easily adaptable on UNIX-

3CPU load function based on the following script (retrieved 10.July 2010): http://colby.id.
au/node/39
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based OSes). It opens the system file /proc/stat, which contains several statistics
about resource utilization. The lines of concern here are the lines beginning with
“cpu”. On a multi-core system there can be several lines, starting with “cpu0”,
“cpu1”, “cpu2” and so on. But the line of most interest is the one only starts with
“cpu”, which is a summary of all the following. It is the only line of interest, unless
a more detailed analysis based on individual cores is required. Following ”cpu”,
are integers that represent the number of milliseconds that the system has been
in (since boot)4: User mode, user mode with low priority (nice), system mode,
I/O wait, IRQ (hardirq) and softirq (lower priority than hardirq). By summing
together these numbers to get total utilization and by comparing to the previous
value obtained, a single CPU load percentage can be derived. There is no point in
querying this file several times a second, so it is only polled by the main loop when
it has been at least a second since the last check.

When it has been decided to switch device, synchronization of memory needs to
take place in order to be able to continue where the other device left off. This is
a time-consuming operation, so there should be a obvious threshold to switching
between devices, requiring a high/low CPU load to be observed over time, and
switching at all during execution could be problematic in a real-time application.
Some slowness is already built into the system when polling the /proc/stat only
once a second, but this should be used with an additional heuristic to improve
this in a production environment. It must be noted that the synchronization time
is largely a hardware/GPGPU platform implementation limitation (see latency
measurements in Section 5.2) and will improve over time.

4.10.3 Task Parallelism

A natural extension to running sound processing on GPU, would be massively
parallel sound processing that can better utilize the GPU. Since the amounts of data
processed in this case study are not enough to saturate all the cores in the GPU all
the time, much of its capacity is left unused. A major use case for such functionality,
would be in conjunction with the Asterisk PBX software (which can already use
the Speex codec). Asterisk can be used as the hub of all telephony services in an
organization, everything from regular calls and conference calls, to automated voice
services and voicemail. If it processes a number of calls from “dumb” handsets,
for instance simpler mobile phones with limited processing power, it could run the
filtering for all the calls at once.

Another (while not so common) use case would be for encoding several audio files
in parallel. Two main approaches could be used to achieve this with OpenCL.

4Source for information about /proc/stats is the RHEL 4 reference guide (retrieved 10.July
2010): http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/en-US/Reference_
Guide/s2-proc-stat.html
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1. Rewriting all the kernel functions to accept several audio streams as in-
put/output. This would mean that all the streams would have to be synchro-
nized when being run through the echo filter, as well as large modifications
to the existing code base. It could also be problematic for real-time systems
such as those used for VoIP, since all the audio streams would have to be
synchronized, and switching the number of simultaneous streams while the
program is running would be a challenge.

2. Run the audio streams independent of each other, in their own thread/process
on the CPU. This would require a solution for “multi-tasking” on the GPU,
which is not supported, or is still in its infancy at the time of writing. Al-
though each kernel function is instantiated as many threads, running several
kernels at once has not traditionally been possible. As already mentioned,
NVIDIA is bringing concurrent kernel executions in their Fermi architecture
devices [9] (see Figure 4.7). It requires new types of barriers that do not
affect all threads on the GPU, and so have explicit control of their execution.
OpenCL organizes all kernel calls in a queue, and it would be possible for the
implementation to execute several kernels in parallel between barriers, but
no such behavior is supported in current implementations. The main method
for task-parallelism using OpenCL is to use multiple command queues, but
the hardware and software support for this is limited at the time of writing.
Compute kernels can then be queued on command queues completely inde-
pendent of each other, which can reside on different threads on the host. This
approach to task parallelism is not a part of our implementation, but can be
added at a later point in time on platforms with proper hardware support
without major restructuring.

Streaming processors utilization
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Streaming processors utilization
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Concurrent kernel execution

Kernel 1

Kernel 2

Kernel 2

Kernel 3

Kernel 4

Kernel 5

Kernel 1 Kernel 2

Kernel 2 Kernel 3

Kernel 4 Kernel 5

Figure 4.7: Concurrent vs. serial kernel execution. Designed after illustration in
[9].

As the OpenCL implementations were not mature enough to implement the second
approach as we started our implementation, and the first alternative requires a large
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amount of additional work, task parallelism is considered future work.
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Chapter 5

Benchmarking and Results

In this chapter, the performance of the resulting application from the case study is
investigated, along with some related metrics. Section 5.1 describes the hardware
and software of the systems used for benchmarking in later sections. Section 5.2
looks at the latency of certain operations on several GPGPU implementations
and its impact on the performance of the case study. Section 5.3 contains some
performance testing of the FFT used, compared against a well-established GPU
FFT library (CUFFT). Section 5.4 describes the testing input used and contains
some notes on accuracy.

Benchmarking of the case study itself starts in 5.5 with testing the impact of echo
tail length on performance, and continues in Section 5.6 where scalability with
multiple channels is tested. Section 5.7 contains analysis of which kernel functions
dominate running times. Section 5.8 looks at the CPU load and considers how this
affects load balancing the application. Lastly, Section 5.9 summarizes the findings
and discusses the performance issues faced.

5.1 System Specifications

Two systems were used for benchmarking in order to guage the cross-platform
performance and portability of OpenCL, since the ability to execute on GPUs
from different vendors and on multi-core CPUs is its big advantage over earlier
frameworks. The two machines were each configured with GPUs from the two
major vendors at the time of writing. If not specified specifically, machine A was
used for all CPU tests involving the reference implementation from Speex, while
machine B was used for all OpenCL CPU testing. FFTW 3.2.1 was used as the

71



5.2 System Specifications

Hardware
CPU Intel Core 2 Quad Q9550
CPU clockspeed 2.83 GHz
Memory size 4 GB
Graphics card #1 NVIDIA Geforce 280 GTX
Graphics card #1 memory 1GB RAM
Graphics card #2 NVIDIA Tesla C2050
Graphics card #2 memory 3GB RAM

Software
OS Ubuntu 9.10
Kernel version 2.6.31-14
Kernel CPU architecture x86 64
NVIDIA graphics driver ver. 256.35
NVIDIA CUDA toolkit/SDK ver. 3.1
GCC version 4.4

Table 5.1: Specification for benchmarking machine A.

FFT library when testing the reference implementation, as it was found to generally
have better overall performance than “smallft”, which is the built-in default FFT
used by Speex.

5.1.1 Machine A

This machine had an Intel quad-core CPU and was used for benchmarking the
GPU-only OpenCL implementation from NVIDIA. It contained two different NVIDIA
GPUs: One of the previous generation with CUDA compute capability 1.3 (GTX280),
and one of the current generation with CUDA compute capability 2.0[9] (C2050).
Detailed specification can be found in Table 5.1.

5.1.2 Machine B

This machine had an AMD quad-core CPU and was used for benchmarking the
OpenCL implementation from AMD/ATI. The hardware is from the same gener-
ation as machine A, and has fairly similar end-user performance even though it is
based on hardware from different vendors. It contained a single ATI Radeon 5870
GPU, which was the fastest single GPU based graphics card from ATI at the time
of writing. Detailed specification can be found in Table 5.2.
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Hardware
CPU AMD Phenom II X4 965
CPU clockspeed 3.40 GHz
Memory size 4 GB
Graphics card #1 ATI Radeon 5870
Graphics card #1 memory 1GB RAM

Software
OS Ubuntu 10.04
Kernel version 2.6.32-22
Kernel CPU architecture x86 64
ATI Catalyst graphics driver ver. 10.6
ATI Stream SDK ver. 2.1
GCC version 4.4

Table 5.2: Specification for benchmarking machine B.

5.2 Latency of GPGPU Implementations

As mentioned in Section 4.8, latency/overhead when calling OpenCL kernels be-
came an issue while implementing the case study. To quantify this problem, a
benchmark was created to test both OpenCL and the until now de-facto GPGPU
platform, NVIDIA C for CUDA. The test was run on three different GPUs (two
NVIDIA, one ATI), and one CPU, where both CUDA and OpenCL implementa-
tions were tested on the same NVIDIA GPUs. The tests were:

1. Launch of a trivial kernel. This is an empty kernel with no arguments,
launched in only a single thread.

2. Launch using a more realistic kernel. This was based on an actual kernel
function used in the case study, but the body of code removed. It has 14
arguments in the OpenCL version (12 in the CUDA version because of the
way shared memory is allocated). These were six pointers to floating point
buffers, one pointer to a buffer of short integers, one floating point number,
four unsigned integers and two pointers to a local/shared memory buffer. The
kernel was launched in 1024 threads.

3. Memory write of a single floating point value to a buffer in global memory.

4. Memory write of 1024 floating point values to a buffer in global memory.

5. Memory write of 8096 floating point values to a buffer in global memory.

6. Memory read of a single floating point value from a buffer in global memory.

7. Memory read of 1024 floating point values from a buffer in global memory.
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8. Memory read of 8096 floating point values from a buffer in global memory.

The three different sizes of memory operations were included to show that the
smaller operations are dominated by overhead and to get an idea of at what size
the bandwidth has any effect. All tests were run for 10 000 iterations with a
cudaThreadSynchronize() or clFinish() synchronization call at the end of each
iteration. The average latency was calculated at the end of the program run, and
an average over three programs runs was used. The tests were run on the machines
with the respective GPUs, the CPU test was run on machine B (the AMD-based
CPU). The results are listed in Table 5.3 and shown in Figure 5.1.
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Simple kernel 7µs 10µs 16µs 65µs 31µs 17µs
Realistic kernel 19µs 23µs 24µs 75µs 127µs 63µs
Mem write 4B 5µs 8µs 38µs 44µs 298µs 15µs

Mem write 4KB 6µs 10µs 38µs 51µs 287µs 18µs
Mem write 32KB 19µs 27µs 72µs 71µs 310µs 21µs

Mem read 4B 7µs 9µs 43µs 46µs 53µs 19µs
Mem read 4KB 8µs 11µs 39µs 55µs 73µs 19µs
Mem read 32KB 23µs 25µs 75µs 70µs 208µs 21µs

Table 5.3: Latency of GPGPU platforms. Averages are rounded to closest mi-
crosecond.

The data shows a large difference in latency even on current platforms, and this will
certainly impact any application where latency is an issue such as sound processing.

The older more mature C for CUDA language has in general, lower latency on
NVIDIA hardware. This could be caused both by a difference in the internal
implementation, but also because C for CUDA is created specifically for the CUDA
platform with more direct access, where OpenCL is another abstraction layer on
top of this platform. Most operations display up to several times longer latency
on OpenCL versus CUDA, but kernel launches on the GF100 (Fermi) architecture
card show promise for better performance. Even more than on the CUDA platform,
there is a marked difference between the GT200 architecture card (GTX280) and
the GF100 (C2050) card on kernel launch latency. The GF100 architecture includes
the possibility to launch several kernels in parallel (using C for CUDA), and it seems
that the changes made to the architecture benefit latency in general.
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Figure 5.1: Latency of GPGPU platforms. Two workstations was used for the
benchmarking (see 5.1).

When looking at the ATI 5870 GPU with OpenCL, we see some interesting num-
bers. The simple kernel launch is positioned between the GT200 and GF100 cards
from NVIDIA with an acceptable latency, but still substantially higher than with
C for CUDA on the NVIDIA cards. The realistic kernel is almost twice as slow as
the slowest NVIDIA card, which shows that scaling seems to be worse for a large
number of threads and kernel arguments. Memory reads on the ATI GPU is in
general slower than the NVIDIA cards, with the largest transfer being more than
twice as slow. But latency for memory reads seem to be reasonable as shown by
the smallest (4B) read, which is only slightly slower. The most pertinent prob-
lem here is memory writes that seem to have around 300µs latency, compared to
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around 40µs on the NVIDIA cards for OpenCL. The performance might even out
on larger sizes, but this can still be a large challenge depending on the application.
These results show that a even single small memory write operation to transfer
the input data into GPU memory, might take longer than it would take the orig-
inal CPU implementation in the case study to completely process the frame with
computationally light parameters.

The ATI CPU implementation displays much lower latency in general than their
GPU implementation. Kernel launches with few arguments are on par with the
C2050 using OpenCL, but larger kernel launches with a large number of threads
are slower and more similar to the GTX280, this can be possibly attributed to the
overhead of starting many work-items/threads on the CPU. Memory operations
are faster than all the other cards/implementations, except for the NVIDIA cards
using CUDA for certain operations. Even though this makes it fairly reasonable
when it comes to latency compared to the GPUs, it is still a substantial amount of
overhead for simply executing programs on the CPU. This means that executing
every single operation on the CPU using kernel functions is not feasible to gain
good performance, and kernels should only be launched for larger operations that
can benefit from more threads and vectorization, and where the overhead can be
amortized.

As discussed earlier in Section 4.8, latency as measured here, became a large prob-
lem in trying to get any performance gains on GPU with the OpenCL implemen-
tation. Smaller operations should in general be grouped together into larger kernel
functions, but the kernel functions must be split when global synchronization is
needed, and developing large monolithic kernels can also become unmanageable.
A platform with lower latency would benefit both performance and ease of devel-
opment significantly. All the implementations used here lack maturity, and there
are a number of variables that could impact the results: The version of the respec-
tive SDKs used, the display driver version, the operating system etc. But it does
show that there is a large variation in latency on GPGPU platforms, and not all
are yet mature enough to effectively do real-time sound processing. The benefit
obtained from the cross-platform nature of OpenCL does seem to come at the cost
in latency, and as these toolkits are proprietary, it is up to the vendors to improve
the performance.

5.3 FFT Performance

The FFT is perhaps the single most computationally demanding component of the
program. To verify that the performance of the FFT we were using in our imple-
mentation on GPUs was reaching an acceptable performance level, we performed
a simplistic benchmark against the CUFFT library from NVIDIA. This library is
implemented in CUDA as part of the CUDA SDK, so the best available NVIDIA
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GPU was used for benchmarking, namely the Tesla C2050 in machine A as listed
in Section 5.1. We compared this against the kernel function that was used in the
echo canceller implementation from the Apple OpenCL FFT library. Preparation
and finalization code was commented out for the benchmark, as no corresponding
functionality exists in the CUFFT library kernels. Although higher performing
FFT implementations exist for GPUs, CUFFT works well as a standard bench-
mark with good performance. It is also a production library that is flexible, well
tested and with a standardized API based on the popular FFTW library.

The FFT sizes tested were the two used in benchmarking the echo filter, N=256
and N=1024, which corresponds to input frame sizes of 128 and 512 for the filter.
It is important to note that the OpenCL FFT kernel used in the N=1024 case was
based on a modified series of radices compared the original library version so as
to retain compatibility with ATI GPUs, so some minor performance loss may have
occurred. The results were obtained by executing the FFT and synchronizing the
GPU threads with cudaThreadSynchronize() or clFinish() after 1024 iterations
with varying batch sizes and calculating the average time for each. The maximum
batch size in the echo cancellation filter is calculated using the following expression:

Nmax = M × C ×K (5.1)

Here, M is the number of frames in the echo tail (usually 10-20), C is the number
of input channels and K is the number of output channels. So the larger batch
sizes here are mostly important for long echo tails combined with a large system
with many input and output channels. As we can see in Figure 5.2 and Table 5.4,

Batch size 1 32 64 96 128 160 192 224 256
CUFFT N=256 15 15 16 17 17 19 19 21 22
CUFFT N=1024 16 20 25 31 37 44 51 58 62
OpenCL N=256 22 22 23 25 27 29 30 33 35
OpenCL N=1024 25 29 36 41 49 54 59 64 70

Table 5.4: Average execution time of FFT libraries on GPUs (all values are in
microseconds per complete batch).

the OpenCL FFTs generally performs slower than the CUFFT counterparts. We
also see a constant performance gap both for N=256 and N=1024 as the batch size
is increased, but their performance is comparable and scales in a similar manner,
which is what we wanted to investigate. As we can see, for N=256, the batch size
has little effect on the execution time, which shows that excess processing capacity
is still available at this size. But for N=1024 the batch size shows a significant
increase in execution time in a linear fashion (implying that batches are very easily
parallelizable).

Some of the performance difference between the CUFFT and OpenCL implemen-
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Figure 5.2: Performance of FFT libraries on GPUs.

tations might be due to library optimizations, but might also to some degree be
attributed to the difference between the CUDA and OpenCL frameworks, especially
on such small data sets. The latency of launching the kernel and the proceeding
synchronization adds significant overhead on this time-scale. We can indeed see
that the execution times for N=256 using both CUFFT and OpenCL is in line
with the latency numbers found for launching an empty kernel in Section 5.2. The
fact that the execution time does not increase greatly for this size, means that it is
basically bound by latency for realistic batch sizes (it is of course usually combined
with other calculations as well).

5.4 Test Data and Accuracy

To test the effectiveness of the filter in a realistic manner, a recording done with
real equipment and carried out in a real environment is required. In order to ef-
fectively cancel out the echo using the filter, the input data must be recorded with
high-quality audio hardware, mainly ck synchronization between input and output.
Signals with synthetic echoes (for instance created with audio editor applications),
will confuse the adaptive filter and severly reduce performance because it is con-
structed to mimic a real environment with natural variations. For testing, a signal
was recorded with a music signal in the background and a person speaking at the
same time. The music clip was then used as the signal sent to the speakers (far-
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end). The filter will then ideally remove all the music and only leave the persons
voice in the output audio. In a real scenario, the music would be exchanged with
another person talking.

To test that the filter gave fairly accurate results, a function was created that
generates a list of an scalar values that represent how close the OpenCL imple-
mentation output is to the reference. The scalars are the output of a utility func-
tion (get_residual_error()) calculates the root square difference between the
array output of the the existing speex_echo_get_residual() function in the ref-
erence imlementation called with the two echo states (OpenCL and reference). The
speex_echo_get_residual() function outputs the spectrum for estimated echo of
the given echo state.

5.5 Performance Impact of Echo Tail Length

The first benchmark run, was used to test the impact of different echo tail lengths on
execution time. The echo tail length impacts several of the more computationally
demanding sections of the filter, first among which is the filter update itself. We are
testing with AUMDF turned off here (see Section 4.9 for more background), which
means that one FFT and a IFFT is added to the batch in the weight update kernel
function for each frame the echo tail increases with (for a single channel filter).
Longer echo tails should benefit parallel architectures, a length of 10-20 frames
is often a realistic maximum length in practice (depending on the combination of
sample rate and frame size), but we double that limit to emphasize the scalability.
As mentioned earlier, the OpenCL version of the filter was made to support two
frame sizes: 128 and 512 samples, both are tested here for all the available OpenCL
platforms, as well as the reference implementation on CPU. All results in this
section are presented in plots, tables with the results can be found in Appendix A.

5.5.1 Frames of 128 Samples

The results of the benchmark with frames of 128 samples and echo tail lengths be-
tween 2 (256 samples) and 40 (5120) can be found in Figure 5.3. It is immediately
obvious that the reference implementation has significantly faster run times than
the OpenCL filter on any of the available implementations and hardware. In some
ways, the GPU results found here reflect the results in Section 5.2, as the overhead
seems to completely dominate the execution time. On the shortest tails, the ATI
Radeon 5870 GPU is the slowest with execution times varying between 5000-6000
microseconds regardless of tail length. and it does not appear to increase signifi-
cantly for larger sizes, so it would seem to have no problem with the throughput.
It should be noted that we found the running times of the kernel functions of this
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Figure 5.3: Average execution time of a single frame with increasing echo tail
lengths (128 sample frames).

implementation to vary a lot compared to the other implementations, with a stan-
dard deviation of up to around 2000 microseconds, but this is also a consequence
of larger average values.

The CPU-implementation of OpenCL in the ATI SDK starts out with about the
same latency as the NVIDIA GPU implementations, but its run times increase
linearly at a steep rate as the tail lengths are increased, and uses longer than
the ATI Radeon from around tail lengths of 26 frames and larger. This indicates
that our OpenCL implementation does not scale well with such few computational
cores available and it has not been specifically optimized for this purpose. More
information on OpenCL CPU performance hurdles in the current implementation
can be found in Section 5.9.

The two NVIDIA GPUs have the shortest execution times of the OpenCL imple-
mentations, with the newer Tesla C2050 card showing the best GPU performance.
The latency differences between these two cards found in Section 5.2 did not make
much differences here, but this may among other things be caused by the mix of
kernel calls and memory transfers which combined reduces the difference in prac-
tice. As the tail lengths are scaled up, the architectural difference become visible,
the Geforce GTX280 experiences a fairly linear increase in performance almost
parallel to the reference implementation, but the run times when using the C2050
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barely increase at all at longer tail lengths, which show that it has a lot of spare
capasity.

In general we see that the OpenCL implementation is not likely to be practical
for such small frame sizes with realistic echo tail lengths. This might not pose
a problem with modern systems, as this frame size is most likely to be used for
lower quality signal with fairly low sample rates, for instance telephones sampling
at 8kHz. The best case performance here is the C2050 with a 40 frame tail, which
is still over 9 times slower than the reference. The data sizes involved are too small
to warrant execution on a device where we have found the latencies of a single
or a few memory transfers or empty kernel launches are longer than the reference
implementation takes to complete processing of a frame.

5.5.2 Frames of 512 Samples

An avenue for increasing the size of the data sets with only single input and output
channels, is to increase the frame size, i.e. the number of samples to be processed at
once. With larger frame sizes, the size of the useful echo tails also increase in terms
of the number of samples, now the minimum 2 frame tail is 1024 samples and the
maximum 40 frame tail measured 20480 samples. As the latency dominated with
128 sample long frames, this levels the playing field to a certain degree. Longer
frames are often used in practice in modern systems with enough bandwidth avail-
able, where higher sample-rates such as 48kHz are often used. Each sample now
represent a shorter time interval, a hence more samples are needed in the echo tail
to cover the same time interval as with the lower sample rate.

Execution times with increasing tail lengths with frames of 512 samples are plotted
in Figure 5.4. Still, we see that the OpenCL implementations are in general slower
than the reference implementation, but the gap is now smaller. The complete plot
of the ATI CPU-implementation is not included as it scaled in a way similar as with
the shorter frames, and is significantly slower than any of the other implementations
on larger sizes (see the table in Appendix A for a complete listing).

Because of the poor scalability of our OpenCL implementation on CPU, this metric
was excluded from most of the other benchmarks in this chapter. The ATI GPU-
implementation is still troubled by the high latency already from the shortest echo
tails, but scales fairly well on to longer tails, and it scales better than the reference
implementation, although it never closes the gap at reasonable echo tail lengths.
Note that the weight update kernel function had to be split in two on the Radeon
5870 with this frame size because of lack of memory available to each thread, so
performance was slightly affected by this change (but was still parallelized into the
same number of threads).

The GTX280 again shows fairly good performance, and the running times increases
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Figure 5.4: Average execution time of a single frame with increasing echo tail
lengths (512 sample frames).

at a slower rate than the reference implementation as the echo tail grows. Even for
the longest tails tested here, it is still 2.4x as slow as the reference. The C2050 again
has the lowest latency and performance is barely affected by the tail length. At
10-20 frame long tails, it still performs significantly slower than the reference, but
reduces the difference as the tail length is increased further. A 40 frame echo tail
is already longer than what is commonly in used practice (represents 0.43 seconds
with a 48kHz sample rate), so we focused on other factors that can be scaled to
utilize the available parallelism for other purposes.

At these frame sizes, the best GPU implementation performance is becoming more
comparable with the reference, which might make offloading computations reason-
able prospect. However, the GPUs should display better performance to make up
for the extra power consumption compared to the CPU implementation (for the
hardware tested here).

This frame size was used for the rest of the benchmarking tests (unless otherwise
specified) to increase the numerical intensity to a reasonable level on the GPUs.
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5.6 Performance Impact of Multiple Channels

In addition to increasing the echo tail length, the other parameters that can signif-
icantly increase execution time of the echo cancellation program, are the number
of input and output channels used. As it was ascertained in Section 5.5 that the
GPUs in some cases had little problem with throughput, increasing the number of
audio channels is a way to benefit from this idle capacity. As in the last section,
tables containing the results can be found in Appendix A, in addition to the plots
presented here.

5.6.1 Scalability of Input Channels
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Figure 5.5: Average execution time of a single frame with increasing number of
input channels (512 sample frames).

The result of the benchmark for processing 512 sample frames with a 10 frame echo
tail and 1-16 input channels can be found in Figure 5.5. As noted earlier, the ATI
Radeon 5870 displays long latency already using a single channel, but the execution
time remains at a fairly constant level (slowly increasing). Even though it scales
well, it does not overtake the CPU implementation in terms of performance within
the 16 channel limit set here. Both the NVIDIA GPUs perform better than the
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reference from 9 (for the Tesla C2050) and 14 (for the Geforce GTX280) channels
respectively. All the implementations, except for the ATI GPU, display fairly linear
scaling properties within these parameters, with the reference having the greatest
degradation of performance.

Even though the GPUs show good scaling properties as the number of input chan-
nels is increased, a large number of input channels for the filter function are rarely
used in practice. Either the input channels are mixed together before being sent
to the filter, or separate filter instances are used. Another reason for benchmark-
ing with multiple input channels, is that it is somewhat analogous to having task
parallelism with multiple filters at the same time, as mentioned in Section 4.10.3
(but difficult in practice with OpenCL at the time of writing on some platforms),
this shows potential for use in larger systems such as a PBX.

5.6.2 Scalability of Output Channels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Output channels

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
fo

r 
a 

fr
am

e 
(m

ic
ro

se
co

nd
s)

 

 

ATI Radeon 5870
NVIDIA Tesla C2050
NVIDIA Geforce GTX 280
Speex CPU

Figure 5.6: Average execution time of a single frame with increasing number of
output channels (512 sample frames).

As an alternative to increasing the number of input channels, the number of output
channels can also be adjusted. Results using a similar benchmark as for input
channels can be found in Figure 5.6, the same parameters are used, but only a
single input channel is present.

84



Chapter 5: Benchmarking and Results

Some of the same characteristics can be found as with the test for variable number of
input channels, but the reference implementation running times does not increase
as sharply compared to the GPUs. This is the first benchmark which we see
a significant change in the ATI GPU running time as the parameter is scaled,
although it still is hindered by overhead.

The Tesla C2050 generally has similar performance to the reference above 14 output
channels, with the reference only being about 5% faster at 16 channels. But the
Geforce GTX280 never converges to the level of the reference implementation,
although the difference is smaller at higher number of channels, and it is 1.24x
slower using 16 channels.

5.6.3 Scalability of Both Input and Output Channels
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Figure 5.7: Average execution time of a single frame with increasing number of
both input and output channels (512 sample frames).

To really test the scalability of the GPU implementations, a benchmark was also
performed where both the number of input and output channels were increased at
the same time. As is shown in Section 4.9 this increases execution time on CPU in
a exponential fashion. The results can be found in Figure 5.7.
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Although not the most practical benchmark, it does show that if the number of
channels is increased enough, all the GPU implementation performs better than the
reference. The NVIDIA GPUs overtake the performance of the reference already
at three to four input and output channels, but the ATI GPU overtakes it at
six channels. At 12 channels, the performance of the Tesla is 5.3x faster than
the reference. Perhaps of particular interest here, is that the performance of the
Geforce GTX280 increases to close to the level of the ATI Radeon 5870 at the
higher number of channels. This shows that the ATI GPU has good performance
when the overhead is not the dominant factor in the total execution time.

It is worth noting here that the time represented by a 512 sample frame with a
sample rate of 48kHz is about 10668 microseconds, the reference implementation
passes this threshold after seven channels. Above this limit, the filter could not
possibly be used in a real-time system, the C2050 never exceeds the limit in this
benchmark with the longest running time at 6122 microseconds at 12 channels.
It should also be noted that this is an absolute upper bound, and the real time
window will in practice be shorter.

5.6.4 A Reasonable Multi-channel Use Case
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Figure 5.8: Average execution time of a single frame with two input channels and
an increasing number of output channels (512 sample frames).
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A more practical, but still fairly computationally intensive scenario was setup to
test a more reasonable mix of input and output channels. The number of input
channels was simply set to two, and the number output channels was increased
similar to what was done in Section 5.6.2. The results can be found in Figure 5.8.

The Tesla C2050 GPU overtakes the performance of the reference for five output
channels and more, which makes for a very practical application. Five speakers
is not unreasonable in modern sound systems, as surround sound systems with
four to five speakers or more are becoming widespread. At 16 output channels, it
performs about 50% quicker than the reference (4831µs vs. 6997µs), but this is
of limited practical use. The GTX280 needs 11 channels before it produces better
performance than the reference. The Radeon 5870 never overtakes the reference,
but displays an improved performance ratio compared to the reference on a large
number of output channels, it is 33% slower at 16 output channels. The perfor-
mance of the two latter GPUs in not very useful in practice, but could be used to
offload from the CPU under certain circumstances.

5.7 Profiling Kernel Functions

To examine the execution time of functions on the GPU, one can either time them
explicitly inside the application, or use a profiler. The NVIDIA Compute Profiler
can be used to retrieve data about the running time of CUDA/OpenCL kernel
functions on NVIDIA GPUs, together with a host of other performance metrics
to help developers optimize the device code. A similar solution was also available
form ATI, but not for the operating system and development environment used
here.

Two use cases were run with the profiler, first with a set of very computationally
light parameters (128 sample frames, 1280 sample echo tail, single channel), and
then a more computationally demanding set (512 sample frames, 10240 sample
echo tail, 4 input and 4 output channels) to gain insight in what kernels dominates
in both cases. These are just a small sampling of the possible parameter configu-
rations, but are interesting to get an overview and to show the difference between
the two devices used here, the Geforce GTX280 and the Tesla C2050.

For the result of the profiler run with the less computationally example, see Figure
5.9. In general, we see that the C2050 has more equally distributed running time,
with the longest running kernel (clFFT_custom) taking up 11% of the total time,
where the GTX280 uses 19% of its GPU time on the clMDF_adjust_prop_phase1_reduce
kernel, which is significantly faster on the C2050. This shows that the new Fermi ar-
chitecture helps hide memory access time such as for clMDF_adjust_prop_phase1_reduce,
which is not particularly computationally intensive, and instead kernels including
FFTs, which involve more computations, dominates. With this configuration the
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Figure 5.9: Kernel function exeuction time with NVIDIA Geforce GTX280 (top)
and Tesla C2050 (bottom), 128 sample frames, single input/output channel. Notice
the different scales on the X-axis.

running time inside the kernel will to a certain degree be amortized by overhead,
so it might not be worth optimizing kernels to improve a few percent on smaller
sizes.

The more computationally demanding profiler run, can be seen in Figure 5.10, and
shows more similarity between the two devices as the frame size and number of
channels are scaled up. The weight update kernel, which predictably is the most
computationally demanding function in the filter, dominates the running time of
both. The speed of the FFT implementation now becomes very important (see
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Figure 5.10: Kernel function exeuction time with NVIDIA Geforce GTX280 (top)
and Tesla C2050 (bottom), 512 sample frames, four input/output channel.

Section 4.6 for more information on this kernel). It is also interesting to see the
memory copy operations listed as the two bottom bars, which now takes up a much
smaller fraction of the overall running time.
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5.8 Performance With Load Balancing and CPU
Load

A requirement for actually offloading computations to a GPU, or another co-
processor, is that it actually decreases the work that needs to be carried out by the
CPU. To get an idea of the actual CPU usage by the different OpenCL implemen-
tations tested, a simple scenario was set up to test the filter while running a script
that measures system CPU load (same as the one that the load balancer is based
on, see Section 4.10.2). The original Speex reference implementation was tested,
together with the ATI CPU implementation, ATI GPU implementation and the
NVIDIA GPU implementation. These were tested using the corresponding systems
listed in Section 5.1, both systems were quad-core systems, and 100% CPU usage
means that all the cores are occupied. The test scenario used 128 sample frames,
with a 40 frame long echo tail, 2 input channels and 2 output channels, which
should be enough to generate a representative load on the system.

As expected, the reference implementation uses 25% of the total CPU time, being
that it is not written to utilize multiple threads, but fully utilize a single core. Both
the NVIDIA and ATI GPU implementations averaged slightly below this, but still
mostly above 20%. For NVIDIA, the Tesla C2050 generated a higher CPU load
than the Geforce GTX280 (10-15%), but performed the task faster. This can be
attributed to the test application simply having some CPU-demanding components,
among other things most noticably file I/O. With longer execution times on the
GPU, the CPU can be idle for longer periods of time while waiting for the GPU to
finish. The Tesla C2050 had a CPU load similar to the ATI Radeon 5870, despite
offering nearly three times the performance in this scenario.

The relatively high CPU load on the ATI GPU could be caused by the higher
overhead of the implementation found in Section 5.2, but also by the fact that it
depends on the X Window System on Linux systems to run, which NVIDIA does
not. Extra CPU load is added by the rendering of the graphical console itself and
certain background tasks that are common with such a system. The ATI CPU
implementation is multithreaded and results in a much larger load on the CPU,
with utilization between 80-85% for this application. While this shows that most of
the CPU is used, it still leaves 10-15% idle capacity on the CPU, which is not ideal.
Other OpenCL application can push the CPU usage with this implementation to
close to 100%, but this shows that more complex application without long running
kernel functions can struggle to reach such a high usage. As there is often some
overhead in spawning a large number of threads on the CPU, more long-running
kernels will probably benefit more from being run with OpenCL, over a traditional
single-threaded implementation. As noted earlier, our OpenCL kernel functions
have not been optimized with CPU execution in mind, so there might be scope for
improvement here.
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5.9 Summary of Results

After benchmarking the OpenCL implementation, some conclusions can be drawn.

5.9.1 Performance Is Often Bound by Latency

As we have seen, the OpenCL version of the filter is only usable in certain com-
putationally intensive configurations in its current form. All the different kernel
functions and several transfer operations that are called during a normal program
run, collectively have too large overhead in the operations themselves to be usable
on small frame sizes like 128 samples and with single input/output. Several meth-
ods could be used to reduce this, first among which is to even further combine
kernel functions and reduce the number of kernel arguments to only the absolutely
essential data. But this can be tedious work, unintended consequences to the
performance can be hard to keep track of with different possible combinations of
kernels. It does not get easier by the goal that it should be optimized against dif-
ferent hardware platforms and still retain compatibility. Auto tunable methods as
discussed in Section 2.3.4 would be ideal, but as mentioned it can be challenging to
apply them to a larger application compounded of a variety of different operations.

More operations could also be executed faster on the host (CPU), but there is
a delicate balance between execution time and the time it takes to transfer the
necessary memory back and forth to the device. Part of the problem here, is
that the filter uses a lot of different buffers in memory, that can be hard to keep
track of. The current implementation is fairly naive in its handling of the data
structure, since it has all the data available on the device. By analyzing the life-
cycle of the buffers and only transfer what is absolutely necessary and maybe
reuse or combine them where possible, some overhead could be removed. The
reference implementation is written to function even on embedded devices with
limited amount of memory available, in contrast to most devices used by OpenCL
today that have a fairly large amount of DRAM available to them. This could help
increase performance if allocating more memory can be used to reduce the number
of transfers and kernel arguments, and thus overhead.

5.9.2 Performance Scales Well With Demanding Parameters

When scaling the filter to large frames, long tails and several channels, the GPUs
show better scaling properties than the reference implementation when they over-
come the initial threshold of latency of about 2ms of the NVIDIA devices. When
scaling above this threshold, the GPU performs the tasks faster than the CPU, and
a few compute intensive kernel functions dominates the running time. The prob-
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lem is that this threshold is already at the limit of running times with practical
parameters of the filter. A good traditional multi-core CPU implementation might
also close this gap up to the GPU performance at realistic parameters, since we
only found single-digit speedups. But this does still not eliminate the fact that the
performance is good enough for offloading processing to the device, which might
free the CPU for other tasks.

At demanding parameters to the filter, a few of the compute kernels that dominate
running times, are completely dependent upon the FFT implementation. In these
cases, significant performance gains might be possible by using an even more opti-
mized FFT implementation. We discovered some performance difference between
the library used and the CUFFT library in Section 5.3, so there should be some
possible performance gains available by tweaking the existing library version used
or switching to another library altogether. Memory accesses patterns to global
memory also becomes more important at these sizes, so a more detailed analysis
might reveal further possibilities for optimizations. But again, there is often a fine
balance between kernel code that executes well on “simpler” parameters with as
little latency as possible and code that scales well when they need to process more
data.

There is a point to be made that switching GPGPU framework to CUDA at the
time of writing could have gained some performance due to lower latency found in
Section 5.3, but this would limit hardware compatibility and co-processing poten-
tial. It remains to be seen in the future if better implementations can close this gap,
or other vendors can catch up with other solutions. A performance difference was
also found by Zhang et.al.[36] between CUDA and OpenCL for CT reconstruction
and image recognition. They found a 9 times speedup with their CUDA implemen-
tation over OpenCL (but still much faster than their CPU implementation), but
they were using early versions of the vendor implementations.

5.9.3 OpenCL CPU Performance Is Lacking

The load-balancing possibilities of OpenCL is one of the more appealing features
of the technology, but we found CPU-performance with OpenCL to be very much
lacking in our benchmarks. This for the most part due to the FFT library not being
optimized for CPU execution and that no specific optimizations were added to echo
cancellation code, but we also found significant overhead by execution through
OpenCL, compared to (comparatively) almost no overhead with a traditional CPU
program. This made the CPU implementation of OpenCL mainly into a debugging
tool during development, but some steps can be taken to improve on this:

• Memory should be shared in a more rational way between host and device
when the device is a CPU, mapping the memory can lead to large performance
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benefits in such cases.

• Another FFT implementation for OpenCL should be used that is optimized
for CPUs (if available), or it could simply be performed by existing multi-
threaded FFT libraries for CPUs, although this increases code complexity.
The kernels that includes FFTs dominated running times when more demand-
ing parameters were used, even more so than on GPU. If an OpenCL FFT
with similar or better performance than traditional single-threaded CPU li-
braries is not available, it contradicts the reason for running the filter with
OpenCL on CPU, as it is the most attractive operation to parallelize.

• CPU optimization should be written into the computational kernels and
the host code to utilize the CPU better. A very large number of work-
items/threads might not always be the answer on CPUs, and restrictions to
memory performance is different. Optimally, all this should be combined
with auto tunable methods.
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Chapter 6

Conclusions and Future
Work

In this thesis, we investigated co-processing between CPUs and GPUs for audio pro-
cessing, more specifically acoustic echo cancellation which is used to avoid sending
the received audio back to the initial sender as an echo. Since GPUs are massively
parallel devices that often have spare capacity, off-loading computations to them
can have great benefits for applications that need available CPU time for other
purposes, for instance for decoding video in video conferencing or calculating the
next move by an artificial opponent in a computer game. On embedded devices,
off-loading computations to the GPU may be crucial to achieve the performance
needed or conserve power. Execution on GPUs also opens up the possibility of
massive parallel sound processing, such as in large telephony systems.

The echo filter implemented in this thesis is based on the original C-code from the
Speex library. Our optimized programs developed to the new OpenCL standard
can be executed both on ATI/NVIDIA GPUs and on multi-core CPUs. Tests
were created to validate each step of the program against the original reference
version, so they can be run side-by-side using the same input-data for verification.
The Apple OpenCL FFT library was used as a basis for the optimized transform
written for both CPUs and GPUs on OpenCL.

6.1 Conclusions

Benchmarks of our two implementations (one CPU-based and one with GPU co-
processing, both implemented in OpenCL) showed that the more computation-
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ally demanding configurations of the echo cancellation filter favored execution on
GPUs. When more input and output channels are added, the execution time of the
reference (Speex) implementation increased steeply and this allowed the massive
parallelism of GPUs to be utilized to increase performance. We found speedups of
up to 5.3x when using 12 input and 12 output channels, and comparable perfor-
mance for a more realistic configuration of 2 input channels and 5 or more output
channels. What made this increase in performance possible was that FFTs of large
data sizes dominated the execution time when scaling the parameters, and this was
a well parallelizable algorithm on GPUs.

However, on less demanding input configurations, our GPU implementation suf-
fered from the overhead of the OpenCL vendor implementations used. For pro-
cessing single channel audio data with smaller frame sizes, the overhead completely
dominated the running time on the GPU. This meant that the performance was
not comparable to the reference CPU version, which was for instance 77x faster
than the fastest OpenCL implementation on frames of 128 samples run in single
channel with an echo tail of 10 frames.

Large differences were found in the overhead both for kernel execution and memory
transfers between different GPGPU frameworks and vendor implementations of
OpenCL, as well as between different generations of GPU hardware. For instance,
we found the fastest GPU tested with CUDA to be almost 60x times faster at a
single byte memory write to the device than the slowest OpenCL implementation
from another vendor. The large variations found indicate that OpenCL vendor
implementations still have a way to go before they reach maturity. Differences
were also found between the available FFT libraries for CUDA and OpenCL, with
the GPU-vendor supported CUFFT library coming out on top.

Overhead from the OpenCL implementation severely impacts performance of the
echo cancellation filter, as it depends on a long series of kernel because of the large
number of varying operations performed. Memory transfers can also be limiting,
as some tasks are best executed on the CPU. This was shown in single-channel
performance where the fastest OpenCL implementation had a minimum running
time of about 2ms, and it did not increase significantly from this level until multiple
channels were added. The overhead incurred by the implementation can be reduced
by further combining kernel functions, but this could affect performance scalability.
In general, GPUs are not very well suited to sub-milliseconds tasks such as this,
as stated by Owens et.al.[7]. This problem can be alleviated by new architectures
where the CPU and GPU have access to the same main memory to eliminate
memory transfers and reducing overall overhead. Such architectures are already
common in embedded devices, an certain PC platforms.

However, with multiple channels, the GPU performance is already sufficient for
offloading tasks from the CPU. A prototype load-balancer was created to offload the
CPU by executing the filter on the GPU, if the overall system CPU load becomes
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too high. Because of lacking performance from the OpenCL CPU implementation
(mainly due to a GPU only optimized FFT library), the load-balancer switches
between the reference implementation on the CPU and the OpenCL version on
GPU. In computationally demanding configurations, this can free available CPU
time for other applications, but executing on the GPU itself occupies the majority
of a single CPU core, so this is most useful in multi-core systems. Offloading
the CPU can be very important in embedded devices, which increasingly contain
advanced GPUs and will have GPGPU frameworks available to them in the future.

Overall, we found it plausible to implement audio processing on GPUs, but de-
tailed analysis of the application at hand should be performed, so as to determine
whether it can generate enough computational load to utilize the massive paral-
lelism inherent in GPUs and overcome the entry barrier represented by implemen-
tation overhead. This can improve as the frameworks and hardware for GPGPU
matures, so it becomes even more attractive for co-processing.

6.2 Future Work

Many possibilities exist for further work on the subject of this thesis, a few are
listed in this section.

6.2.1 Further Optimize the OpenCL Implementation

Although some tuning was done on the OpenCL implementation, most of the time
was still used simply creating the first implementation and making sure it executes
correctly on different platforms. Several avenues exist for further optimizing the
existing codebase. One possibility is to experiment with the ordering and division
of tasks between kernels, simply reducing the number of kernel functions could
improve performance by reducing overhead. A pragmatic approach could also
be taken to further mix execution on CPU and GPU, but the challenge is then
to minimize memory transfer while taking advantage of some operations that is
quicker on the CPU.

6.2.2 Investigate Massively Parallel Audio Processing

A way to further increase the workload on the GPU beyond using multiple channels,
is to run several independent audio streams in parallel as would be the case for
instance with the Asterisk PBX. A scheme for how this could be implemented
was proposed in 4.10.3. Such an approach would be possible with both OpenCL
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and CUDA at the time of writing, but this only become available with the newest
generation of hardware.

6.2.3 Explore Other Algorithms for Echo Cancellation

Other methods exists for echo cancellation than the particular one used in Speex
(AUMDF). One alternative, described in [37], is using the Discrete Cosine Trans-
form, Extended Lapped Transform and Lapped Orthogonal Transform in an LMS
filter. It would be interesting to perform a comparison of the accuracy and perfor-
mance of such a filter on parallel architectures. The basic transforms have already
been shown to perform well on GPUs[38]. In general, signal processing algorithms
often follow a pipeline structure, but this does not necessarily translate well to
GPU execution. Custom algorithms that utilize massively parallel architectures
would be ideal for this task, but requires more research into signal processing.

6.2.4 Integrate the Code Better Into the Library

While the current code is built to integrate into the existing Speex library, it is
by no means production ready in a sense that it could be directly incorporated
without any changes. It needs to be better integrated with the build system,
stabilized and tested on more platforms to be a portable part of the library. It
might be interesting to adapt it to a larger pattern used for implementing pieces
of the library in OpenCL.

6.2.5 Investigate Converting Other Parts of Speex to OpenCL

The echo cancellation filter is only a small part of Speex, other functionality could
possibly be converted to OpenCL for running on GPU/accelerators. Maybe the
most obvious component would be the decoding of the audio stream itself, but it will
be a fairly challenging task. Other preprocessing filters such as noise cancellation
and voice activity detection might also be possible candidates. It might also be
possible to add new filters that are considered too arithmetically intensive for the
CPU.

6.2.6 Utilize the GPU Version in an Application

Currently, the OpenCL version of the echo filter is only tested using the “testecho”
program that comes with Speex. It would be beneficial to have a complete appli-
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cation that could demonstrate processing on different hardware. On could imagine
a pure demo application to demonstrate the concepts, or for instance a custom
version of the Mumble application. Such an application should exploit the echo
filter with parameters that are beneficial for offloading the CPU.

6.2.7 Running on an Embedded Device

As embedded devices are becoming more powerful, they are also equipped with
more powerful GPUs and accelerator chips. The platform-agnostic approach of
OpenCL would benefit these platform greatly, especially since they often have less
powerful CPUs and need to take advantage of all their hardware to achieve high
performance. By executing a program where it is most appropriate with regards to
power consumption is also very important on these devices. The Speex codec itself
should be a prime candidate for software packages that could be of great use on
embedded devices, especially mobile phones, which are increasingly merging with
VoIP and other online services such as video conferencing.

6.3 Concluding Remarks

As can shown from this work, off-loading computations to accelerators such as
GPU can offer attractive, energy-efficient ways of increasing system performance,
especially for real-time applications where CPU-load is a critical issue. The opti-
mization techniques developed in this thesis are therefore expected to be of increas-
ing importance as GPUs and CPUs become more and more integrated, especially
on embedded devices. This makes latencies become less of an issue and hence the
value of our results stronger. This is especially true for applications such as audio
processing on just a few channels which has less computational load per memory
access compared to traditional GPGPU applications, such as for instance dense
linear algebra
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Appendix A

Benchmark Time
Measurements

Since a few of the tables with time measurements from Chapter 5 were rather large,
with all the measurements done, the data has been collected in this appendix as a
reference.

Performance Impact of Echo Tail Length

Shorthand table-headings:

• 5870 - ATI Radeon 5870 GPU with OpenCL.

• OCLCPU - AMD Phenom II X4 965 CPU with the ATI OpenCL implemen-
tation for CPU.

• C2050 - NVIDIA Tesla C2050 GPU with OpenCL.

• GTX280 - NVIDIA Geforce GTX280 GPU with OpenCL.

• Speex - Intel Core 2 Quad Q9550 with the reference CPU implementation in
the Speex library.

Frames of 128 Samples Average execution time of a single frame with increas-
ing echo tail lengths (128 sample frames). All values are in microseconds.
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Echo tail length 5870 OCLCPU C2050 GTX280 Speex
2 frames 5400 2391 2062 2114 35
4 frames 5714 2440 2068 2141 39
6 frames 5269 2794 2062 2166 54
8 frames 5227 3015 2064 2190 63
10 frames 5694 3381 2070 2216 74
12 frames 5428 3658 2074 2239 81
14 frames 5868 4045 2075 2263 92
16 frames 5648 4246 2084 2291 102
18 frames 5621 4583 2093 2316 110
20 frames 5348 4729 2096 2339 122
22 frames 5665 5038 2101 2361 130
24 frames 5631 5122 2097 2388 144
26 frames 5622 5604 2104 2414 148
28 frames 5528 5759 2103 2441 159
30 frames 5803 5733 2103 2461 167
32 frames 5645 5909 2105 2487 177
34 frames 5607 6302 2105 2512 188
36 frames 5768 6466 2114 2541 201
38 frames 5695 6753 2116 2562 209
40 frames 5654 6944 2116 2588 223

Frames of 512 Samples Average execution time of a single frame with increas-
ing echo tail lengths (512 sample frames). All values are in microseconds.

Echo tail length 5870 OCLCPU C2050 GTX280 Speex
2 frames 6317 5422 2151 2274 118
4 frames 6302 5966 2167 2310 168
6 frames 6300 7432 2157 2335 208
8 frames 6299 8588 2159 2369 251
10 frames 6291 9842 2163 2401 304
12 frames 6311 10467 2175 2444 339
14 frames 6485 11768 2185 2497 388
16 frames 6482 12435 2191 2511 429
18 frames 6432 14060 2197 2545 456
20 frames 6552 14763 2201 2583 511
22 frames 6617 15994 2210 2630 557
24 frames 6661 16661 2216 2670 613
26 frames 6645 17912 2218 2700 646
28 frames 6701 18650 2238 2731 668
30 frames 6712 23575 2248 2778 731
32 frames 6786 24603 2253 2866 778
34 frames 6788 25838 2257 2856 851
36 frames 6891 26889 2266 2929 873
38 frames 6786 28320 2269 2960 912
40 frames 6899 29119 2270 2965 947
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Performance Impact of Multiple Channels

Scalability of Input Channels Average execution time of a single frame with
increasing number of input channels (512 sample frames). All values are in mi-
croseconds.

Input channels 5870 C2050 GTX280 Speex
1 channel 6600 2168 2410 295
2 channels 6449 2221 2519 564
3 channels 6987 2287 2642 832
4 channels 7059 2331 2782 1117
5 channels 7434 2383 2876 1384
6 channels 7223 2465 2993 1673
7 channels 7226 2548 3078 1943
8 channels 7373 2601 3189 2248
9 channels 7541 2643 3296 2474
10 channels 7408 2685 3460 2810
11 channels 7488 2737 3567 3037
12 channels 7449 2779 3652 3280
13 channels 7268 2839 3790 3578
14 channels 7341 2911 3894 3918
15 channels 7335 2938 4020 4109
16 channels 7514 3002 4186 4386

Scalability of Output Channels Average execution time of a single frame
with increasing number of output channels (512 sample frames). All values are in
microseconds.

Output channels 5870 C2050 GTX280 Speex
1 channel 6368 2156 2395 293
2 channels 6587 2205 2588 529
3 channels 6786 2250 2801 799
4 channels 6980 2295 3011 1040
5 channels 7337 2346 3219 1219
6 channels 7545 2461 3445 1399
7 channels 7482 2536 3544 1693
8 channels 7400 2672 3752 1843
9 channels 7557 2749 3943 2122
10 channels 7637 2868 4154 2373
11 channels 7884 3034 4361 2594
12 channels 8188 3675 4561 2820
13 channels 8219 3872 4770 3077
14 channels 8576 4084 4976 3789
15 channels 8688 4299 5197 4044
16 channels 9248 4529 5451 4305
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Scalability of Both Input and Output Channels Average execution time
of a single frame with increasing number of both input and output channels (512
sample frames). All values are in microseconds.

Input/output channels 5870 C2050 GTX280 Speex
1 channel 6248 2176 2397 294
2 channels 6812 2283 2741 1011
3 channels 7304 2457 3243 2222
4 channels 7542 2629 3886 3708
5 channels 7790 2868 4660 5742
6 channels 9082 3145 5663 7901
7 channels 9565 3571 6881 11216
8 channels 11875 3952 8196 14873
9 channels 11100 4389 9433 17692
10 channels 14590 4921 10973 22230
11 channels 13821 5545 12701 27161
12 channels 19657 6122 14530 32472

A Reasonable Multi-channel Use Case Average execution time of a single
frame with two input channels and an increasing number of output channels (512
sample frames). All values are in microseconds.

Output channels 5870 C2050 GTX280 Speex
1 channel 6360 2211 2505 560
2 channels 6898 2264 2766 1038
3 channels 7153 2364 3035 1494
4 channels 7270 2425 3301 1893
5 channels 6946 2487 3559 2253
6 channels 7007 2606 3750 2884
7 channels 7230 2725 4017 3335
8 channels 7434 2804 4309 3682
9 channels 7676 2923 4542 4276
10 channels 8022 3087 4818 4556
11 channels 8376 3650 5094 5199
12 channels 8765 3909 5357 5589
13 channels 8588 4094 5609 5909
14 channels 9108 4325 5895 6314
15 channels 9335 4560 6170 6812
16 channels 10499 4831 6670 6997
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Source Code

In this appendix, you will find relevant source code. Host side OpenCL code has
not been included, only device code.

B.1 Test Program

This is the source code for the test application, containing the main function used
for testing and benchmarking. Some benchmarking code has been removed from
this listing, but it only runs the main program several time with increasing echo
tail lengths, input channels or output channels to avoid recompilation of kernel
functions.

1 # ifdef HAVE_CONFIG_H
2 # include " config .h"
3 # endif
4
5 # include <stdio .h>
6 # include <stdlib .h>
7 # include <sys/ types .h>
8 # include <sys/stat.h>
9 # include <string .h>

10 # include <fcntl .h>
11 # include " speex / speex_echo .h"
12 # include " speex / speex_preprocess .h"
13
14 # define NN 512
15 # define TAIL 512*20
16
17 # define MAX_ITERATIONS 10000
18 // If benchmarking on number of channels , set these values to the maximum value

that
19 // is going to be tested
20 # define NUM_CHANNELS 1 // OpenCL version is limited to max 64 channels
21 # define NUM_SPEAKERS 1
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22 # define ENABLE_LOAD_BAL 1 // Enable load balancer
23
24 // Used to determine between the Speex CPU reference implementation and the

OpenCL version
25 enum MDF_DEVICE
26 {
27 OPENCL = 0,
28 CPU_REFERENCE = 1,
29 };
30
31 // Load monitor global variables
32 FILE *fp;
33 char * cpustring ;
34 struct timeval last_cpu_check , curr_time ;
35 int exec_dev = CPU_REFERENCE ;
36 int req_dev = CPU_REFERENCE ;
37 int prev_total = 0;
38 int prev_idle = 0;
39
40 int get_system_CPU_load ();
41 void interleave_input ( short *echo_in , short *ref_in , short *echo_out , short *

ref_out );
42
43 int main(int argc , char ** argv)
44 {
45 FILE * echo_fd [ NUM_SPEAKERS ];
46 FILE * ref_fd [ NUM_CHANNELS ];
47 FILE *e_fd [2]; // Write one output from CPU and one from OpenCL
48 FILE * errors_file_fd ;
49 // Frame read from file
50 short * echo_buf = ( short *) malloc ( sizeof ( short )*NN* NUM_SPEAKERS );
51 // Frame passed to filter , interleaved channels
52 short * echo_buf_interleaved = ( short *) malloc ( sizeof ( short )*NN* NUM_SPEAKERS );
53 short * ref_buf = ( short *) malloc ( sizeof ( short )*NN* NUM_CHANNELS );
54 short * ref_buf_interleaved = ( short *) malloc ( sizeof ( short )*NN* NUM_CHANNELS );
55 short * e_buf = ( short *) malloc ( sizeof ( short )*NN* NUM_CHANNELS );
56 short * ref_buf_copy = ( short *) malloc ( sizeof ( short )*NN* NUM_CHANNELS );
57 short * echo_buf_copy = ( short *) malloc ( sizeof ( short )*NN* NUM_SPEAKERS );
58 short * e_buf_copy = ( short *) malloc ( sizeof ( short )*NN* NUM_CHANNELS );
59 float * residual_error = ( float *) malloc ( sizeof ( double )* MAX_ITERATIONS );
60 SpeexEchoState *st;
61 SpeexEchoState * st_copy ;
62 SpeexPreprocessState *den;
63 SpeexPreprocessState * den_copy ;
64 int sampleRate = 48000;
65 int last_cpu_usage = 0;
66 int i = 0;
67 int j = 0;
68 int run = 1;
69 char clear_key ;
70
71 cpustring = (char *) malloc ( sizeof (char) * 80);
72 # ifdef ENABLE_LOAD_BAL
73 gettimeofday (& last_cpu_check , NULL);
74 # endif
75
76 speex_echo_opencl_init_dev (NN);
77
78 for(i=0;i< MAX_ITERATIONS ;i++)
79 residual_error [i] = 0.0;
80
81 if (argc != 4)
82 {
83 fprintf (stderr , " testecho mic_signal .sw speaker_signal .sw output .sw\n");
84 exit (1);
85 }
86 // Output input files , just open several version of the single - channel files
87 for(i=0;i< NUM_CHANNELS ;i++)
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88 {
89 printf ("Open loop input channels .\n");
90 ref_fd [i] = fopen (argv [1] , "rb");
91 }
92 for(i=0;i< NUM_SPEAKERS ;i++)
93 {
94 printf ("Open loop output channels .\n");
95 echo_fd [i] = fopen (argv [2] , "rb");
96 }
97 // Write to two output files
98 printf (" Opening regular output file .\n");
99 e_fd [0] = fopen (argv [3] , "wb");

100 printf (" Opening OpenCL output file .\n");
101 char * ocl_out_string = (char *) malloc ( sizeof (char) *500) ;
102 sprintf ( ocl_out_string , "% s_ocl ", argv [3]);
103 e_fd [1] = fopen ( ocl_out_string , "wb");
104
105 printf (" Tried to open files .\n");
106
107 // Check that the output file could be opened
108 if(e_fd [0] == NULL)
109 {
110 fprintf (stderr , "The output file could not be opened for writing !\n");
111 exit (1);
112 }
113 else if(e_fd [1] == NULL)
114 {
115 fprintf (stderr , "The output file for OpenCL could not be opened for

writing !\n");
116 exit (1);
117 }
118 // Check that the input files for all channels could be opened
119 else
120 {
121 for(i=0;i< NUM_SPEAKERS ;i++)
122 {
123 if( echo_fd [i] == NULL)
124 {
125 fprintf (stderr , "One of the given filenames does not exist !\n");
126 exit (1);
127 }
128 }
129 for(i=0;i< NUM_CHANNELS ;i++)
130 {
131 if( ref_fd [i] == NULL)
132 {
133 fprintf (stderr , "One of the given filenames does not exist !\n");
134 exit (1);
135 }
136 }
137 }
138 printf (" Files are open .\n");
139
140 printf (" Running regular echo cancellation .\n");
141
142 st = speex_echo_state_init_mc (NN , TAIL , NUM_CHANNELS , NUM_SPEAKERS );
143 st_copy = speex_echo_state_init_mc (NN , TAIL , NUM_CHANNELS , NUM_SPEAKERS );
144 den = speex_preprocess_state_init (NN , sampleRate );
145 den_copy = speex_preprocess_state_init (NN , sampleRate );
146 speex_echo_ctl (st , SPEEX_ECHO_SET_SAMPLING_RATE , & sampleRate );
147 speex_echo_ctl (st_copy , SPEEX_ECHO_SET_SAMPLING_RATE , & sampleRate );
148 speex_preprocess_ctl (den , SPEEX_PREPROCESS_SET_ECHO_STATE , st);
149 speex_preprocess_ctl (den_copy , SPEEX_PREPROCESS_SET_ECHO_STATE , st_copy );
150
151 speex_echo_opencl_init_mem (st);
152 speex_echo_opencl_execution_time_init ();
153
154 while (run && i < MAX_ITERATIONS )
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155 {
156 printf (" Starting loop iteration echo .\n");
157 // Check if end of file has been reached , for all channels
158 for(j=0;j< NUM_SPEAKERS ;j++)
159 {
160 if(feof( echo_fd [j]))
161 run = 0;
162 }
163 for(j=0;j< NUM_CHANNELS ;j++)
164 {
165 if(feof( ref_fd [j]))
166 run = 0;
167 }
168 if(run)
169 {
170 for(j=0;j< NUM_SPEAKERS ;j++)
171 {
172 fread ( echo_buf + j*NN , sizeof ( short ), NN , echo_fd [j]);
173 }
174 for(j=0;j< NUM_CHANNELS ;j++)
175 {
176 fread ( ref_buf + j*NN , sizeof ( short ), NN , ref_fd [j]);
177 }
178 interleave_input (echo_buf , ref_buf , echo_buf_interleaved ,

ref_buf_interleaved );
179 init_checkpoints ();
180 init_timingpoints ();
181 // Uncomment to sync the OpenCL and CPU state for each frame
182 // copy_echo_state (st , st_copy );
183 memcpy ( ref_buf_copy , ref_buf_interleaved , sizeof ( short )*NN* NUM_CHANNELS

);
184 memcpy ( echo_buf_copy , echo_buf_interleaved , sizeof ( short )*NN*

NUM_SPEAKERS );
185
186 # ifdef ENABLE_LOAD_BAL
187 if( exec_dev == CPU_REFERENCE )
188 # endif
189 // Run reference implementation
190 speex_echo_cancellation (st , ref_buf_interleaved ,

echo_buf_interleaved , e_buf );
191 # ifdef ENABLE_LOAD_BAL
192 else if( exec_dev == OPENCL )
193 // Run OpenCL implementation when load balancing (to the same

output )
194 speex_echo_cancellation_opencl (st_copy , ref_buf_copy ,

echo_buf_copy , e_buf );
195 #else
196 // Run OpenCL implementation when not load balancing (to

separate output )
197 speex_echo_cancellation_opencl (st_copy , ref_buf_copy ,

echo_buf_copy , e_buf_copy );
198 # endif
199
200 cleanup_checkpoints ();
201 cleanup_timingpoints ();
202 // Store residual error divided by number of frames
203 # ifndef ENABLE_LOAD_BAL
204 if(i< MAX_ITERATIONS )
205 residual_error [i] = get_residual_error (st , st_copy ) / NN;
206 # endif
207
208 // Output reference output / loadbalanced output
209 speex_preprocess_run (den , e_buf );
210 fwrite (e_buf , sizeof ( short ), NN* NUM_CHANNELS , e_fd [0]);
211 // Output OpenCL output to separate file
212 # ifndef ENABLE_LOAD_BAL
213 speex_preprocess_run (den_copy , e_buf_copy );
214 fwrite ( e_buf_copy , sizeof ( short ), NN* NUM_CHANNELS , e_fd [1]);
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215 # endif
216
217 i++;
218 # ifdef ENABLE_LOAD_BAL
219 gettimeofday (& curr_time , NULL);
220 // Every second , check CPU usage
221 if ((( long long) ( curr_time . tv_sec - last_cpu_check . tv_sec ) * 1000000 +

( curr_time . tv_usec - last_cpu_check . tv_usec )) > 1000000.0)
222 {
223 last_cpu_usage = get_system_CPU_load ();
224 last_cpu_check = curr_time ;
225
226 if( last_cpu_usage > 50)
227 {
228 if( exec_dev == CPU_REFERENCE )
229 {
230 printf (" Switching to OpenCL exeuction (i=%d, cpu =%d).\n"

, i, last_cpu_usage );
231 exec_dev = OPENCL ;
232 copy_echo_state (st , st_copy );
233 speex_echo_opencl_sync_to_GPU (st);
234 }
235 }
236 else
237 {
238 if( exec_dev == OPENCL )
239 {
240 printf (" Switching to reference CPU exeuction (i=%d, cpu

=%d).\n", i, last_cpu_usage );
241 exec_dev = CPU_REFERENCE ;
242 printf (" Copying echo state \n");
243 copy_echo_state (st_copy , st);
244 printf (" Syncing buffers \n");
245 speex_echo_opencl_sync_to_CPU (st);
246 }
247 }
248
249 printf ("CPU use: %d\n", last_cpu_usage );
250 }
251 # endif
252 }
253 printf (" Ended loop iteration echo .\n");
254 }
255
256 // Write out residual errors to file
257 errors_file_fd = fopen (" errors .txt", "wb");
258 if( errors_file_fd != NULL)
259 {
260 for(i=0;i< MAX_ITERATIONS ;i++)
261 fprintf ( errors_file_fd , "%f ", residual_error [i]);
262 }
263 fclose ( errors_file_fd );
264
265 speex_echo_opencl_print_execution_time_stats ();
266 speex_echo_opencl_execution_time_cleanup ();
267
268 printf (" Cleaning up original state .\n");
269 speex_echo_state_destroy (st);
270 printf (" Cleaning up copy state .\n");
271 speex_echo_state_destroy ( st_copy );
272 printf (" Cleaning up OpenCL .\n");
273 speex_echo_opencl_cleanup_mem ();
274
275 speex_preprocess_state_destroy (den);
276 speex_preprocess_state_destroy ( den_copy );
277 for(i=0;i< NUM_SPEAKERS ;i++)
278 {
279 fclose ( echo_fd [i]);
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280 }
281 for(i=0;i< NUM_CHANNELS ;i++)
282 {
283 fclose ( ref_fd [i]);
284 }
285 for(i=0;i <2;i++)
286 {
287 fclose (e_fd[i]);
288 }
289
290 speex_echo_opencl_cleanup_dev ();
291
292 printf (" Cleaning up copy arrays .\n");
293 free( residual_error );
294 free( ref_buf_copy );
295 free( echo_buf_copy );
296 free( e_buf_copy );
297 free( echo_buf );
298 free( echo_buf_interleaved );
299 free( ref_buf );
300 free( ref_buf_interleaved );
301 free( e_buf );
302 printf ("Return , exiting .\n");
303 return 0;
304 }
305
306 /**
307 * Linux - specific function for retrieving system CPU load
308 */
309 int get_system_CPU_load ()
310 {
311 int diff_idle ;
312 int diff_total ;
313 int diff_usage ;
314 int total ;
315 int idle;
316
317 int stat_user = 0;
318 int stat_nice = 0;
319 int stat_system = 0;
320 int stat_idle = 0;
321 int stat_iowait = 0;
322 int stat_irq = 0;
323 int stat_softirq = 0;
324
325 // Very simple / naive cpu load monitor for Linux systems
326 // Source : http :// colby .id.au/node /39
327 if (( fp = fopen ("/proc/stat", "r")) != NULL) {
328
329 fgets (cpustring , 80, fp);
330 // printf ("/ proc/stat :\n%s", cpustring );
331 sscanf (cpustring , "cpu %d %d %d %d %d %d %d", &stat_user , &

stat_nice , & stat_system , &stat_idle , & stat_iowait , &
stat_irq , & stat_softirq );

332
333 total = stat_user + stat_nice + stat_system + stat_idle +

stat_iowait + stat_irq + stat_softirq ;
334
335 idle = stat_idle ;
336
337 diff_idle = idle - prev_idle ;
338 diff_total = total - prev_total ;
339 if( diff_total > 0)
340 {
341 // printf (" Calc: (1000*(%d -%d)/%d + 5) / 10\n",

diff_total , diff_idle , diff_total );
342 diff_usage = (1000*( diff_total - diff_idle )/ diff_total +

5) / 10;
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343 }
344
345 prev_total = total ;
346 prev_idle = idle;
347
348 fclose (fp);
349
350 return diff_usage ;
351 }
352 else
353 return -1;
354
355 }
356
357 /**
358 * Utility - function to interleave multichannel input from files
359 * _in buffers contain concecutive frames from each of the channels :
360 * 1. frame chan 1, 1. frame chan 2, 2. frame chan 1, 2. frame chan 2 etc

...
361 * _out buffers contains the _in buffers interleaved :
362 * 1. sample chan 1, 1. sample chan 2, 2. sample chan 1, 2. sample chan 2 etc

...
363 */
364 void interleave_input ( short *echo_in , short *ref_in , short *echo_out , short *

ref_out )
365 {
366 int i, speak , chan;
367 for( speak =0; speak < NUM_SPEAKERS ; speak ++)
368 {
369 for(i=0;i<NN;i++)
370 {
371 echo_out [i* NUM_SPEAKERS + speak ] = echo_in [ speak *NN + i

];
372 }
373 }
374 for(chan =0; chan < NUM_CHANNELS ;chan ++)
375 {
376 for(i=0;i<NN;i++)
377 {
378 ref_out [i* NUM_CHANNELS + chan] = ref_in [chan*NN + i];
379 }
380 }
381 }

Listing B.1: Main function.

B.2 OpenCL Implementation (Device Code/Ker-
nel Functions)

The kernel functions that are actually run on the device is listed below. All func-
tions are annotated with the local and global work size that are used to execute
them.

1 # define WORD2INT (x) ((x) < -32767.5f ? (int) -32768 : ((x) > 32766.5 f ? (int)
32767 : floor (0.5f+(x))))

2 # pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
3
4 /**
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5 * Applies pre - emphasis to the input data ( after it has been converted to float
on the host), shifts the main time domain buffer (the echo tail) to make
room for new data (far end signal ) and inserts the far end signal after
applying pre - emphasis .

6 * Globalsize : N,M,K
7 * Localsize : 64 ,1 ,1
8 * If device runs out of local memory , global memory temporary buffers are used

in place of tmpMemX and tmpMemD here ( remember to adapt to global indices )
9 */

10 __kernel void clMDF_prepare_shift_preemph_freq_data ( __global float *input ,
__global float *x, __global float *X, __global float *tempX , __global short

*far_end , __global float *memD , __global float *memX , float preemph ,
unsigned int frame_size , unsigned int window_size , unsigned int
num_channels , unsigned int num_speakers , __local int* tmpMemX , __local
float * tmpMemD )

11 {
12
13 unsigned int i = get_global_id (0); // Goes to window_size (N)
14 unsigned int j = get_global_id (1); // Goes to M
15 unsigned int k = get_global_id (2); // Goes to K
16 unsigned int speak = get_global_id (2); // Goes to K
17 unsigned int lsize = get_local_size (0);
18 unsigned int frame_ratio = frame_size / lsize ;
19 unsigned int tid = get_local_id (0);
20
21 unsigned int chan; // Usually just one channel , but loop if it not

the case
22
23 // If I is witin frame size , do prepare and shift_preemph
24 if(i < lsize && j == 0 && k == 0)
25 {
26
27 // clMDF_prepare
28 if(i == 0)
29 {
30 for(chan = 0; chan < num_channels ; chan ++)
31 {
32 tmpMemD [chan* frame_size + frame_ratio *tid + 0] =

memD[chan ];
33 for(int s = 1;s< frame_ratio ;s++)
34 tmpMemD [ lsize *chan* frame_ratio +

frame_ratio *tid + s] = input [chan*
frame_size + frame_ratio *i + s -
1];

35 }
36 }
37 else
38 {
39 for(chan = 0; chan < num_channels ; chan ++)
40 {
41 for(int s = 0;s< frame_ratio ;s++)
42 tmpMemD [ lsize *chan* frame_ratio +

frame_ratio *tid + s] = input [chan*
frame_size + frame_ratio *i + s -
1];

43 }
44 }
45 }
46
47 barrier ( CLK_LOCAL_MEM_FENCE );
48
49 if(i < lsize && j == 0 && k == 0)
50 {
51 for(chan = 0; chan < num_channels ; chan ++)
52 {
53 for(int s = 0;s< frame_ratio ;s++)
54 {
55 input [chan * frame_size + frame_ratio *i + s] =
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input [chan* frame_size + frame_ratio *i + s]
- ( preemph * tmpMemD [ lsize *chan* frame_ratio

+ frame_ratio *tid + s]);
56 }
57
58 }
59
60 }
61
62 barrier ( CLK_GLOBAL_MEM_FENCE );
63
64 if(i < frame_size /2 && j == 0)
65 {
66 // clMDF_shift_preemph
67 // Temporary value in place of memX ( updated on each iteration

in sequential code)
68 // Notice that we only store the values needed for update , not

the shift
69 // This is done to save local mem. (only frame_size *K, instead

of window_size )
70 if(i == 0)
71 {
72 tmpMemX [ speak * frame_size ] = memX[ speak ];
73 tmpMemX [ speak * frame_size + 1] = far_end [ speak ];
74 memX[ speak ] = far_end [( frame_size - 1)* num_speakers +

speak ];
75 }
76 else
77 {
78 tmpMemX [ speak * frame_size + 2*i] = far_end [((i*2 -1) *

num_speakers ) + speak ];
79 tmpMemX [ speak * frame_size + 2*i + 1] = far_end [((i*2) *

num_speakers ) + speak ];
80 }
81 }
82 barrier ( CLK_LOCAL_MEM_FENCE );
83 if(i < frame_size /2 && j == 0)
84 {
85 // Shift data from the last frame in the time domain data
86 x[ speak * window_size + i*2] = x[ speak * window_size + 2*i +

frame_size ];
87 x[ speak * window_size + i *2+1] = x[ speak * window_size + 2*i + 1 +

frame_size ];
88
89 // Insert new data in the new frame and apply preemphasis
90 x[ speak * window_size + i*2 + frame_size ] = far_end [(2*i)*

num_speakers + speak ] - ( preemph * tmpMemX [ speak * frame_size
+ i*2]);

91 x[ speak * window_size + i*2 + 1 + frame_size ] = far_end [(2*i + 1)*
num_speakers + speak ] - ( preemph * tmpMemX [ speak * frame_size

+ i*2 + 1]);
92 }
93
94 // clMDF_shift_freq_data
95 for( speak = 0; speak < num_speakers ; speak ++) {
96 X[(j+1)* window_size * num_speakers + speak * window_size +i] = tempX [j*

window_size * num_speakers + speak * window_size +i];
97 }
98 }
99

100 /**
101 * Generic inner product function , len is the size of the buffers
102 * Globalsize : len /2
103 * Localsize : len /2
104 * Based on reduction kernel from the NVIDIA CUDA SDK ( reduce2 kernel )
105 * Optional ( naive ) support for batch runs , batch_size is the number of elements

in the batch , batch_pitch is the distance between elements in the batch (
must be the same for x and y).
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106 */
107 __kernel void clMDF_inner_product_reduce ( __global float *x, unsigned int

x_offset , __global float *y, unsigned int y_offset , __global float *g_odata
, unsigned int n, unsigned int batch_size , unsigned int batch_pitch ,
__local float * sdata )

108 {
109 // load shared mem
110 unsigned int tid = get_local_id (0);
111 unsigned int i = get_global_id (0);
112 unsigned int xi = i*2 + x_offset ;
113 unsigned int yi = i*2 + y_offset ;
114
115 if(i < n) {
116 sdata [tid] = 0.0f;
117
118 for(int k=0;k< batch_size ;k++)
119 {
120 sdata [tid] += x[k* batch_pitch + xi] * y[k* batch_pitch +

yi ];
121 sdata [tid] += x[k* batch_pitch + xi + 1] * y[k*

batch_pitch + yi + 1];
122 }
123 }
124 else
125 sdata [tid] = 0.0f;
126
127 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
128
129 // do reduction in shared mem
130 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
131 {
132 if (tid < s)
133 {
134 sdata [tid] += sdata [tid + s];
135 }
136 barrier ( CLK_LOCAL_MEM_FENCE );
137 }
138
139 // write result for this block to global mem
140 if (tid == 0)
141 g_odata [ get_group_id (0)] = sdata [0];
142 }
143
144 /**
145 * This kernel combines an inner product with two computations of the power

spectrum for the echo and filter response .
146 * Globalsize : len /2
147 * Localsize : 64
148 * Combined kernel with 3* power_spectrum_accum and 1* inner_product_reduce
149 */
150 __kernel void clMDF_power_spectrum_inner_product (
151 __global float *x, __global float *E, __global float *Y, __global float

*X,
152 __global float *Rf , __global float *Yf , __global float *Xf ,
153 // Offsets to power pectrum accum
154 unsigned int E_offset , unsigned int Y_offset , unsigned int X_offset ,
155 // Offsets to inner product
156 unsigned int x1_offset , unsigned int x2_offset ,
157 unsigned int C, unsigned int K, unsigned int window_size ,
158 unsigned int N_power_spectrum ,
159 unsigned int n_inner_product ,
160 __global float * temp_odata ,
161 __local float * ldata )
162 {
163
164 unsigned int j = get_global_id (0);
165 unsigned int i = j * 2 - 1;
166
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167 unsigned int tid = get_local_id (0);
168 unsigned int xi = j*2 + x1_offset ;
169 unsigned int yi = j*2 + x2_offset ;
170
171 // Optimize for regular case (mono mic and speaker )
172 if(C == 0 && K == 0)
173 {
174 if(j == 0)
175 {
176 Rf[j] += E[0] * E[0];
177 Yf[j] += Y[0] * Y[0];
178 Xf[j] += X[0] * X[0];
179 }
180 else if(i < ( N_power_spectrum -1))
181 {
182 Rf[j] += E[i] * E[i] + E[i+1] * E[i+1];
183 Yf[j] += Y[i] * Y[i] + Y[i+1] * Y[i+1];
184 Xf[j] += X[i] * X[i] + X[i+1] * X[i+1];
185 }
186 if(j == ( get_global_size (0) - 1))
187 {
188 i += 2;
189 Rf[j+1] += E[i] * E[i];
190 Yf[j+1] += Y[i] * Y[i];
191 Xf[j+1] += X[i] * X[i];
192 }
193 }
194 // In case of multi - channel
195 else
196 {
197 if(j == 0)
198 {
199 unsigned int chan_offset , speak_offset ;
200 for( unsigned int chan = 0; chan <C;chan ++)
201 {
202 chan_offset = chan* window_size ;
203 Rf[j] += E[0 + chan_offset ] * E[0 + chan_offset

];
204 Yf[j] += Y[0 + chan_offset ] * Y[0 + chan_offset

];
205 }
206 for( unsigned int speak = 0; speak <K; speak ++)
207 {
208 speak_offset = speak * window_size ;
209 Xf[j] += X[0 + speak_offset ] * X[0 +

speak_offset ];
210 }
211 }
212 else if(i < ( N_power_spectrum -1))
213 {
214 unsigned int chan_offset , speak_offset ;
215 for( unsigned int chan = 0; chan <C;chan ++)
216 {
217 chan_offset = chan* window_size ;
218 Rf[j] += E[i + chan_offset ] * E[i + chan_offset ]

+ E[i+1 + chan_offset ] * E[i+1 +
chan_offset ];

219 Yf[j] += Y[i + chan_offset ] * Y[i + chan_offset ]
+ Y[i+1 + chan_offset ] * Y[i+1 +

chan_offset ];
220 }
221 for( unsigned int speak = 0; speak <K; speak ++)
222 {
223 speak_offset = speak * window_size ;
224 Xf[j] += X[i + speak_offset ] * X[i +

speak_offset ] + X[i+1 + speak_offset ] * X[i
+1 + speak_offset ];

225 }
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226 }
227 if(j == ( get_global_size (0) - 1))
228 {
229 i += 2;
230 unsigned int chan_offset , speak_offset ;
231 for( unsigned int chan = 0; chan <C;chan ++)
232 {
233 chan_offset = chan* window_size ;
234 Rf[j+1] += E[i + chan_offset ] * E[i +

chan_offset ];
235 Yf[j+1] += Y[i + chan_offset ] * Y[i +

chan_offset ];
236 }
237 for( unsigned int speak = 0; speak <K; speak ++)
238 {
239 speak_offset = speak * window_size ;
240 Xf[j+1] += X[i + speak_offset ] * X[i +

speak_offset ];
241 }
242 }
243 }
244
245 // Again , optimize for 1 speaker
246 if(K == 0)
247 {
248 if(j < ( n_inner_product /2)) {
249 ldata [tid] = 0.0f;
250 ldata [tid] = fma(x[xi], x[yi], ldata [tid ]);
251 ldata [tid] = fma(x[xi +1] , x[yi +1] , ldata [tid ]);
252 }
253 else
254 ldata [tid] = 0.0f;
255
256 barrier ( CLK_LOCAL_MEM_FENCE );
257
258 // do reduction in shared mem
259 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
260 {
261 if (tid < s)
262 {
263 ldata [tid] += ldata [tid + s];
264 // ldata [tid] = 1.0;
265 }
266 barrier ( CLK_LOCAL_MEM_FENCE );
267 }
268
269 // write result for this block to global mem
270 if (tid == 0)
271 temp_odata [ get_group_id (0)] = ldata [0];
272 }
273 // Several speakers
274 else
275 {
276 unsigned int x_speak_offset ;
277 for( unsigned int speak = 0; speak <K; speak ++)
278 {
279 x_speak_offset = speak * window_size ;
280 if(j < ( n_inner_product /2)) {
281 ldata [tid] = 0.0f;
282 ldata [tid] = fma(x[xi + x_speak_offset ], x[yi +

x_speak_offset ], ldata [tid ]);
283 ldata [tid] = fma(x[xi +1 + x_speak_offset ], x[yi

+1 + x_speak_offset ], ldata [tid ]);
284 }
285 else
286 ldata [tid] = 0.0f;
287
288 barrier ( CLK_LOCAL_MEM_FENCE );
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289
290 // do reduction in shared mem
291 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
292 {
293 if (tid < s)
294 {
295 ldata [tid] += ldata [tid + s];
296 // ldata [tid] = 1.0;
297 }
298 barrier ( CLK_LOCAL_MEM_FENCE );
299 }
300
301 barrier ( CLK_LOCAL_MEM_FENCE );
302
303 // write result for this block to global mem
304 if (tid == 0)
305 temp_odata [ get_group_id (0) + get_num_groups (0)*

speak ] = ldata [0];
306
307 barrier ( CLK_LOCAL_MEM_FENCE );
308 }
309 }
310
311 }
312
313 /**
314 * This is special case kernel that calculates cross - power spectras for a batch

of frames added together ,
315 * in addition to setting three unrelated buffers to zero to avoid overhead .
316 * Globalsize : N/2,C
317 * Localsize : 32 ,1
318 * lMem is assumed to be of size N
319 */
320 __kernel void clMDF_spectral_mul_accum ( __global float *X, __global float *Y,

__global float *acc , __global float *Rf , __global float *Yf , __global float
*Xf , unsigned int N, unsigned int num_speakers , unsigned int M)

321 {
322 int i = get_global_id (0);
323 unsigned int tid = get_local_id (0);
324 unsigned int chan = get_global_id (1);
325 unsigned int c;
326 unsigned int M_org = M / num_speakers ;
327
328 // Temporary accum registers
329 float tmp1 = 0.0f;
330 float tmp2 = 0.0f;
331 float tmp3 = 0.0f;
332
333 if(i == 0)
334 {
335 for(c=0;c<M;c++)
336 {
337 tmp1 += X[c*N + 0]*Y[chan*N* num_speakers * M_org + c*N +

0];
338 tmp2 += (X[c*N + 1]*Y[chan*N* num_speakers * M_org + c*N +

1] - X[c*N + 2]*Y[chan*N* num_speakers * M_org + c*N +
2]);

339 }
340 }
341 else if(i < ( get_global_size (0) - 1))
342 {
343 for(c=0;c<M;c++)
344 {
345 tmp1 += (X[c*N + 2*i - 1]*Y[chan*N* num_speakers * M_org +

c*N + 2*i - 1] - X[c*N + 2*i]*Y[chan*N* num_speakers
* M_org + c*N + 2*i]);

346 tmp2 += (X[c*N + 2*i]*Y[chan*N* num_speakers * M_org + c*N
+ 2*i - 1] + X[c*N + 2*i - 1]*Y[chan*N* num_speakers
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* M_org + c*N + 2*i]);
347 }
348 }
349 else if(i == ( get_global_size (0) - 1))
350 {
351 for(c=0;c<M;c++)
352 {
353 tmp1 += (X[c*N + 2*i - 1]*Y[chan*N* num_speakers * M_org +

c*N + 2*i - 1] - X[c*N + 2*i]*Y[chan*N* num_speakers
* M_org + c*N + 2*i]);

354 tmp2 += (X[c*N + 2*i]*Y[chan*N* num_speakers * M_org + c*N
+ 2*i - 1] + X[c*N + 2*i - 1]*Y[chan*N* num_speakers
* M_org + c*N + 2*i]);

355 tmp3 += X[c*N + (N -1) ]*Y[chan*N* num_speakers * M_org + c*N
+ (N -1) ];

356 }
357 }
358
359 // Write out to global memory
360 if(i > 0 && i < ( get_global_size (0) - 1))
361 {
362 acc[chan*N + 2*i - 1] = tmp1;
363 acc[chan*N + 2*i] = tmp2;
364 }
365 else if(i == 0)
366 {
367 acc[chan*N] = tmp1;
368 }
369 else if(i == ( get_global_size (0) - 1))
370 {
371 acc[chan*N + 2*i - 1] = tmp1;
372 acc[chan*N + 2*i] = tmp2;
373 acc[chan*N + 2*i + 1] = tmp3;
374 }
375
376 if(chan == 0)
377 {
378 Rf[i] = 0.0f;
379 Yf[i] = 0.0f;
380 Xf[i] = 0.0f;
381 if(i == get_global_size (0) - 1)
382 {
383 Rf[N/2] = 0.0f;
384 Yf[N/2] = 0.0f;
385 Xf[N/2] = 0.0f;
386 }
387 }
388 }
389
390 /**
391 * Compute foreground filter
392 * Globalsize : frame_size ,C
393 * Localsize : 32 ,1
394 */
395 __kernel void clMDF_compute_foreground_filter ( __global float *e, __global float

*input , unsigned int window_size , unsigned int frame_size , unsigned int
num_channels )

396 {
397 if( get_global_id (1) < num_channels )
398 {
399 unsigned int i = get_global_id (0);
400 unsigned int chan = get_global_id (1);
401
402 e[chan* window_size + i] = input [chan* frame_size + i] - e[chan*

window_size + i + frame_size ];
403 }
404 }
405

124



Source Code

406 /**
407 * Performs one of the calculations when resolving the new adaption rate of the

filter .
408 * Calculates the square value of an array of elements and adds them all

together the a single value .
409 * Globalsize : N,1,M
410 * Localsize : 128 ,1 ,1
411 */
412 __kernel void clMDF_adjust_prop_phase1_reduce ( __global float *W, __global float

*g_odata , unsigned int M, unsigned int window_size , unsigned int n,
unsigned int P, __local float * sdata )

413 {
414 unsigned int j = get_global_id (0);
415 unsigned int i = get_global_id (2);
416 unsigned int tid = get_local_id (0);
417
418 sdata [tid] = 0.0f;
419 // Loop through channels and add to local memory
420 for(int p=0;p<P;p++)
421 {
422 sdata [tid] += W[p* window_size *M + i* window_size +j] * W[p*

window_size *M + i* window_size +j];
423 barrier ( CLK_LOCAL_MEM_FENCE );
424 }
425
426 // Do local memory reduction
427 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
428 {
429 if (tid < s)
430 {
431 sdata [tid] += sdata [tid + s];
432 }
433 barrier ( CLK_LOCAL_MEM_FENCE );
434 }
435
436 // Write result for this work - group to global mem
437 if (tid == 0)
438 g_odata [ get_global_id (2)* get_num_groups (0) + get_group_id (0)] =

sdata [0];
439
440 }
441
442 /**
443 * Compute weighted cross - power spectrum of a half - complex ( packed ) vector with

conjugate
444 * Globalsize : N/2,M,C*K
445 * Localsize : 128 ,1 ,1
446 */
447 __kernel void clMDF_weighted_spectral_mul_conj ( __global float *w, __global float

*p, __global float *X, __global float *Y, unsigned int Y_offset , __global
float *prod , __global float *W, unsigned int window_size , unsigned int
num_channels , unsigned int num_speakers )

448 {
449
450 unsigned int i = get_global_id (0) * 2 - 1;
451 unsigned int j = get_global_id (0);
452 unsigned int u = get_global_id (1);
453 unsigned int tid = get_global_id (0);
454
455 int speak = get_global_id (2) / num_channels ;
456 int chan = get_global_id (2) - speak * num_channels ;
457
458 unsigned int X_offset = (u+1)* window_size * num_speakers + speak * window_size

;
459 Y_offset = chan* window_size ;
460 unsigned int W_offset = chan * window_size * num_speakers *

get_global_size (1) + u * window_size * num_speakers + speak *
window_size ;
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461 unsigned int p_offset = u;
462
463 float temp , temp2 ;
464
465 if(tid == 0)
466 {
467 temp = p[ p_offset ] * w[0];
468 temp *= X[ X_offset + 0] * Y[ Y_offset + 0];
469 W[ W_offset ] += temp;
470 if( get_global_id (1) == 0)
471 prod [0] = temp;
472 }
473 else if(tid <= get_global_size (0) - 1)
474 {
475 temp = temp2 = p[ p_offset ] * w[j];
476 temp *= ((X[ X_offset + i] * Y[ Y_offset + i]) + X[ X_offset + i +

1] * Y[ Y_offset + i+1]);
477 temp2 *= ((-X[ X_offset + i + 1] * Y[ Y_offset + i]) + X[ X_offset

+ i] * Y[ Y_offset + i + 1]);
478 W[ W_offset + i] += temp;
479 W[ W_offset + i + 1] += temp2 ;
480
481 if( get_global_id (1) == 0)
482 {
483 prod[i] = temp;
484 prod[i+1] = temp2 ;
485 }
486 }
487 if(tid == get_global_size (0) - 1)
488 {
489 i += 2;
490 j += 1;
491 temp = p[ p_offset ] * w[j];
492 temp *= (X[ X_offset + i] * Y[ Y_offset + i]);
493 W[ W_offset + i] += temp;
494 if( get_global_id (1) == 0)
495 prod[i] = temp;
496 }
497
498 }
499
500 /**
501 * Simply sets a value in an array for each work item , offset by the given value

.
502 * Globalsize : Array size
503 * Localsize : Determined by impl.
504 */
505 __kernel void clMDF_set_array_to_float_value ( __global float * input_array ,

unsigned int input_offset , float value )
506 {
507
508 unsigned int i = get_global_id (0);
509
510 input_array [ input_offset + i] = value ;
511
512 }
513
514 /**
515 * Difference in response calculations , combined with inner product
516 * Globalsize : frame_size ,2
517 * Localsize : 128 ,1
518 * Offsets are special cases
519 * temp_e is a temporary buffer assumed to be at least of the same size as e
520 */
521 __kernel void clMDF_combined_response_diff_inner_product ( __global float *e,

__global float *temp_e , __global float *y, __global float *input ,
522 unsigned int C,
523 unsigned int window_size ,
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524 unsigned int frame_size ,
525 __global float * temp_odata ,
526 __global float *temp_e2 ,
527 __local float * ldata )
528 {
529
530 unsigned int i = get_global_id (0);
531 unsigned int task = get_global_id (1);
532
533 unsigned int tid = get_local_id (0);
534 unsigned int xi;
535 unsigned int yi;
536 unsigned int n_inner_product = frame_size ;
537
538 barrier ( CLK_GLOBAL_MEM_FENCE );
539 if(task == 0)
540 {
541 for( unsigned int chan =0; chan <C;chan ++)
542 {
543 temp_e [chan* window_size + i] = e[chan* window_size +

frame_size + i] - y[chan* window_size + frame_size + i
];

544 e[chan* window_size + i] = input [chan* frame_size + i] - y
[chan* window_size + frame_size + i];

545 }
546
547 // Dbf
548 // mdf_opencl_inner_prod (ocl_e , chan*st -> window_size , ocl_e ,

chan*st -> window_size , st -> frame_size );
549 // Runs on all threads , to make sure that they read/ write to the

same position
550 // in global memory as for the response diff.
551 xi = i;
552 yi = i;
553
554 if(i < n_inner_product ) {
555 ldata [tid] = 0.0f;
556 for( unsigned int chan = 0; chan <C;chan ++)
557 ldata [tid] += temp_e [xi + chan* window_size ] *

temp_e [yi + chan* window_size ];
558 }
559 else
560 ldata [tid] = 0.0f;
561
562 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
563
564 // do reduction in shared mem ( accuracy problems on GPU ?)
565 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
566 {
567 if (tid < s)
568 {
569 ldata [tid] += ldata [tid + s];
570 }
571 barrier ( CLK_LOCAL_MEM_FENCE );
572 }
573
574 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
575
576 // write result for this block to global mem
577 if (tid == 0)
578 {
579 temp_odata [ get_group_id (0)] = ldata [0];
580 }
581 }
582 else
583 {
584 for( unsigned int chan =0; chan <C;chan ++)
585 {
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586 temp_e2 [chan* window_size + i] = input [chan* frame_size +
i] - y[chan* window_size + frame_size + i];

587 }
588 // See
589 // mdf_opencl_inner_prod (ocl_e , chan*st -> window_size , ocl_e ,

chan*st -> window_size , st -> frame_size );
590 // Runs on all threads , to make sure that they read/ write to the

same position
591 // in global memory as for the response diff.
592 xi = i;
593 yi = i;
594
595 if(i < n_inner_product ) {
596 ldata [tid] = 0.0f;
597 for( unsigned int chan = 0; chan <C;chan ++)
598 ldata [tid] += temp_e2 [xi + chan* window_size ] *

temp_e2 [yi + chan* window_size ];
599 }
600 else
601 ldata [tid] = 0.0f;
602
603 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
604
605 // do reduction in shared mem ( accuracy problems on GPU ?)
606 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
607 {
608 if (tid < s)
609 {
610 ldata [tid] += ldata [tid + s];
611 }
612 barrier ( CLK_LOCAL_MEM_FENCE );
613 }
614
615 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
616
617 // write result for this block to global mem
618 if (tid == 0)
619 {
620 temp_odata [ get_group_id (0) + get_num_groups (0)] = ldata

[0];
621 }
622 }
623
624 }
625
626 /**
627 * Update foreground filter
628 * Globalsize : frame_size , C
629 * Localsize : Determined by impl.
630 */
631 __kernel void clMDF_update_foreground_filter ( __global float *e, __global float *

window , __global float *y, unsigned int window_size , unsigned int
frame_size )

632 {
633
634 unsigned int i = get_global_id (0);
635 unsigned int j = get_global_id (1);
636
637 e[j* window_size +i+ frame_size ] = ( window [i+ frame_size ] * e[j* window_size +

i+ frame_size ]) + ( window [i] * y[j* window_size +i+ frame_size ]);
638
639 }
640
641 /**
642 * Update background filter
643 * Globalsize : frame_size , C
644 * Localsize : Determined by impl.
645 */
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646 __kernel void clMDF_update_background_filter ( __global float *y, __global float *
e, __global float *input , unsigned int window_size , unsigned int frame_size
)

647 {
648
649 unsigned int i = get_global_id (0);
650 unsigned int j = get_global_id (1);
651
652 y[j* window_size +i+ frame_size ] = e[j* window_size +i+ frame_size ];
653 e[j* window_size +i] = input [j* frame_size +i] - y[j* window_size +i+

frame_size ];
654
655 }
656
657 /**
658 * This is a combined kernel of three inner products in addition to calculating

the error signal , it also checks for saturation in the microphone signal .
659 * Globalsize : frame_size ,C ,4
660 * Localsize : 128 ,1 ,1
661 */
662 __kernel void clMDF_error_signal_combined ( __global float *input , __global float

*e, __global short *in , __global float * temp_results , __global float *
temp_reductions , unsigned int window_size , unsigned int frame_size ,
unsigned int num_channels , __global int *saturated , __global float *y,
__local float * sdata )

663 {
664 unsigned int i = get_global_id (0);
665 unsigned int j = get_global_id (1);
666 unsigned int chan = get_global_id (1);
667 unsigned int tid = get_local_id (0);
668 unsigned int i_counter , chan_counter ; // Loop variables
669 unsigned int input_set = get_global_id (2);
670
671 barrier ( CLK_LOCAL_MEM_FENCE );
672
673 // This is an arbitrary test for saturation in the microphone signal
674 if (in[i* num_channels +chan] <= -32000 || in[i* num_channels +chan] >=

32000)
675 {
676 if ( saturated [0] == 0)
677 saturated [0] = 1;
678 }
679
680 // Sey
681 // clMDF_inner_product_reduce (ocl_e , chan*st -> window_size +st -> frame_size

, ocl_y , chan*st -> window_size +st -> frame_size , g_odata , st ->
frame_size , sdata )

682 if( input_set == 1)
683 {
684 temp_results [i* num_channels + chan] = input [chan* frame_size + i]

- e[chan* window_size + frame_size + i];
685
686 e[chan* window_size + frame_size + i] = e[chan* window_size + i];
687 e[chan* window_size + i] = 0;
688
689 barrier ( CLK_GLOBAL_MEM_FENCE );
690
691 if(i < frame_size ) {
692 sdata [tid] = 0.0f;
693 sdata [tid] += e[chan* window_size + frame_size + i] * y[

chan* window_size + frame_size + i];
694 }
695 else
696 sdata [tid] = 0.0f;
697
698 barrier ( CLK_LOCAL_MEM_FENCE );
699
700 // do reduction in shared mem
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701 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
702 {
703 if (tid < s)
704 {
705 sdata [tid] += sdata [tid + s];
706 }
707 barrier ( CLK_LOCAL_MEM_FENCE );
708 }
709
710 // write result for this block to global mem
711 if (tid == 0)
712 {
713 temp_reductions [ get_group_id (0)* num_channels + chan] =

sdata [0];
714 }
715
716 barrier ( CLK_GLOBAL_MEM_FENCE );
717 }
718
719 // Syy
720 // clMDF_inner_product_reduce (ocl_y , chan*st -> window_size +st -> frame_size

, ocl_y , chan*st -> window_size +st -> frame_size , g_odata , st ->
frame_size , sdata )

721 else if( input_set == 2)
722 {
723 if(i < frame_size ) {
724 sdata [tid] = 0.0f;
725 sdata [tid] += y[i + chan* window_size + frame_size ] * y[i

+ chan* window_size + frame_size ];
726 }
727 else
728 sdata [tid] = 0;
729
730 barrier ( CLK_LOCAL_MEM_FENCE );
731
732 // do reduction in shared mem
733 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
734 {
735 if (tid < s)
736 {
737 sdata [tid] += sdata [tid + s];
738 }
739 barrier ( CLK_LOCAL_MEM_FENCE );
740 }
741
742 // write result for this block to global mem
743 if (tid == 0)
744 {
745 temp_reductions [ get_num_groups (0)* num_channels +

get_group_id (0)* num_channels + chan] = sdata [0];
746 }
747 }
748
749 // Sdd
750 // clMDF_inner_product_reduce (ocl_input , chan*st -> frame_size , ocl_input ,

chan*st -> frame_size , g_odata , st -> frame_size , sdata )
751 else if( input_set == 3)
752 {
753 if(i < frame_size ) {
754 sdata [tid] = 0.0f;
755 sdata [tid] += input [i + chan* frame_size ] * input [i +

chan* frame_size ];
756 }
757 else
758 sdata [tid] = 0;
759
760 barrier ( CLK_LOCAL_MEM_FENCE );
761
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762 // do reduction in shared mem
763 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
764 {
765 if (tid < s)
766 {
767 sdata [tid] += sdata [tid + s];
768 }
769 barrier ( CLK_LOCAL_MEM_FENCE );
770 }
771
772 // write result for this block to global mem
773 if (tid == 0)
774 temp_reductions [ get_num_groups (0)* num_channels *2 +

get_group_id (0)* num_channels + chan] = sdata [0];
775 }
776 }
777
778 /**
779 * This kernel combines three tasks : Smoothing the far -end energy estimate over

time , computing the filtered spectra and some cross - correlations .
780 * Computing the filtered spectra and the two cross - correlation is done in the

same operation as there are data - dependencies between the two.
781 * Globalsize : frame_size
782 * Localsize : 128
783 */
784 __kernel void clMDF_smooth_far_end_compute_filtered_spectra ( __global float *

power , __global float *Xf , __global float *Rf , __global float *Eh , __global
float *Yf , __global float *Yh , float ss_1 , float ss , float spec_average ,

unsigned int frame_size , __global float * temp_space , __global float *
temp_eh_yh , __local float * sdata )

785 {
786 unsigned int tid = get_global_id (0);
787 unsigned int ltid = get_local_id (0);
788 int j;
789 float Eh_local , Yh_local ;
790
791 if(tid <= frame_size )
792 {
793 power [tid] = (ss_1 * power [tid ]) + 1 + (ss * Xf[tid ]);
794
795 j = tid;
796 }
797
798 // Calculate values to shared memory and update global memory values
799 if(tid <= frame_size )
800 {
801 sdata [ltid] = (Rf[tid] - Eh[tid ]) * (Yf[tid] - Yh[tid ]);
802 sdata [ get_local_size (0) + ltid] = (Yf[tid] - Yh[tid ]) * (Yf[tid]

- Yh[tid ]);
803 Eh[tid] = (1- spec_average )*Eh[tid] + spec_average *Rf[tid ];
804 Yh[tid] = (1- spec_average )*Yh[tid] + spec_average *Yf[tid ];
805 }
806 else
807 {
808 sdata [ltid] = 0.0f;
809 sdata [ get_local_size (0) + ltid] = 0.0f;
810 }
811
812 barrier ( CLK_LOCAL_MEM_FENCE );
813
814 // Do reduction in shared memory
815 for( unsigned int s= get_local_size (0) /2; s >0; s > >=1)
816 {
817 if (ltid < s)
818 {
819 sdata [ltid] += sdata [ltid + s];
820 sdata [ get_local_size (0) + ltid] += sdata [ get_local_size

(0) + ltid + s];
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821 }
822 barrier ( CLK_LOCAL_MEM_FENCE );
823 }
824
825 // write result for this block to global mem
826 if (ltid == 0)
827 {
828 temp_space [2* get_group_id (0)] = sdata [0]; // Pey
829 temp_space [2* get_group_id (0) + 1] = sdata [ get_local_size (0) ];

// Pyy
830 }
831 }
832
833 /**
834 * Some calculations done when computing the new learning rate for the filter .
835 * Primarily calculations that depend on device data , the rest is done on the

host
836 * Globalsize : frame_size + 32
837 * Localsize : Determined by impl.
838 */
839 __kernel void clMDF_learning_rate_calc ( __global float *Yf , __global float *Rf ,

__global float *power_1 , __global float *power , float RER , unsigned int
frame_size , float leak_estimate , float adapt_rate , int adapted )

840 {
841 unsigned int i = get_global_id (0);
842
843 if(i < frame_size + 1)
844 {
845 if( adapted == 1)
846 {
847 float r, e;
848 // Compute frequency - domain adaptation mask
849 r = leak_estimate * Yf[i];
850 e = Rf[i] + 1;
851 if (r > 0.5f * e)
852 r = 0.5f * e;
853 r = (0.7f * r) + (0.3f * ( float )(RER * e));
854 power_1 [i] = r / (e * power [i] + 10.0f);
855 }
856 else
857 {
858 power_1 [i] = adapt_rate / ( power [i] + 10.0f);
859 }
860 }
861 }
862
863 /**
864 * A simple kernel storing the difference between the raw input and output in a

buffer for use in the next iteration , but only if the filter has adapted .
865 * Globalsize : frame_size
866 * Localsize : Determined by impl.
867 */
868 __kernel void clMDF_adapted_copy ( __global float *last_y , __global short *in ,

__global int *out , unsigned int frame_size )
869 {
870 unsigned int i = get_global_id (0);
871 last_y [ frame_size + i] = in[i] - out[i];
872 }
873
874 /**
875 * Combines an inner product calculation and the first part of a " spectral

multiply accumulate " operation . More details can be found for dedicated
kernels on both.

876 * Globalsize : N/2,C ,2
877 * Localsize : 128 ,1 ,1
878 * Based on reduction kernel from the NVIDIA CUDA SDK ( reduce2 kernel )
879 */
880 __kernel void clMDF_inner_prod_power_spec_spectral_mul ( __global float *Xf ,
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__global float * data_time_domain , __global float * data_freq_domain ,
__global float * foreground , __global float * temp_reduction , __global float
*acc , unsigned int N, unsigned int K, unsigned M, int frame_size , __local
float * ldata )

881 {
882 // mdf_opencl_power_spectrum_accum ( data_freq_domain , 0, ocl_Xf , 0, st ->

window_size )
883 if( get_global_id (2) == 0 && get_global_id (1) == 0)
884 {
885 unsigned int j = get_global_id (0);
886 unsigned int i = j * 2 - 1;
887
888 if(j == 0)
889 {
890 for(int speak =0; speak <K; speak ++)
891 {
892 Xf[j] += data_freq_domain [ speak *N + 0] *

data_freq_domain [ speak *N + 0];
893 }
894 }
895 else if(i < (N -1))
896 {
897 for(int speak =0; speak <K; speak ++)
898 {
899 Xf[j] += data_freq_domain [ speak *N + i] *

data_freq_domain [ speak *N + i] +
data_freq_domain [ speak *N + i+1] *
data_freq_domain [ speak *N + i+1];

900 }
901 }
902 if(j == ( get_global_size (0) - 1))
903 {
904 i += 2;
905 for(int speak =0; speak <K; speak ++)
906 {
907 Xf[j+1] += data_freq_domain [ speak *N + i] *

data_freq_domain [ speak *N + i];
908 }
909 }
910 }
911 // mdf_opencl_spectral_mul_accum ( data_freq_domain , ocl_foreground , 0,

ocl_Y , 0, st -> window_size , st ->M*st ->K)
912 // Only first part , needs reduce kernel as well
913 // X= data_freq_domain
914 // Y= foreground
915 else if( get_global_id (2) == 1)
916 {
917 int i = get_global_id (0);
918 unsigned int tid = get_local_id (0);
919 unsigned int chan = get_global_id (1);
920 unsigned int c;
921 unsigned int M_org = M / K;
922
923 // Temporary accum registers
924 float tmp1 = 0.0f;
925 float tmp2 = 0.0f;
926 float tmp3 = 0.0f;
927
928 if(i == 0)
929 {
930 for(c=0;c<M;c++)
931 {
932 tmp1 += data_freq_domain [c*N + 0]* foreground [

chan*N*K* M_org + c*N + 0];
933 tmp2 += ( data_freq_domain [c*N + 1]* foreground [

chan*N*K* M_org + c*N + 1] -
data_freq_domain [c*N + 2]* foreground [chan*N
*K* M_org + c*N + 2]);
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934 }
935 }
936 else if(i < ( get_global_size (0) - 1))
937 {
938 for(c=0;c<M;c++)
939 {
940 tmp1 += ( data_freq_domain [c*N + 2*i - 1]*

foreground [chan*N*K* M_org + c*N + 2*i - 1]
- data_freq_domain [c*N + 2*i]* foreground [
chan*N*K* M_org + c*N + 2*i]);

941 tmp2 += ( data_freq_domain [c*N + 2*i]* foreground [
chan*N*K* M_org + c*N + 2*i - 1] +
data_freq_domain [c*N + 2*i - 1]* foreground [
chan*N*K* M_org + c*N + 2*i]);

942 }
943 }
944 else if(i == ( get_global_size (0) - 1))
945 {
946 for(c=0;c<M;c++)
947 {
948 tmp1 += ( data_freq_domain [c*N + 2*i - 1]*

foreground [chan*N*K* M_org + c*N + 2*i - 1]
- data_freq_domain [c*N + 2*i]* foreground [
chan*N*K* M_org + c*N + 2*i]);

949 tmp2 += ( data_freq_domain [c*N + 2*i]* foreground [
chan*N*K* M_org + c*N + 2*i - 1] +
data_freq_domain [c*N + 2*i - 1]* foreground [
chan*N*K* M_org + c*N + 2*i]);

950 tmp3 += data_freq_domain [c*N + (N -1) ]* foreground
[chan*N*K* M_org + c*N + (N -1) ];

951 }
952 }
953
954 // Write out to global memory
955 if(i > 0 && i < ( get_global_size (0) - 1))
956 {
957 acc[chan*N + 2*i - 1] = tmp1;
958 acc[chan*N + 2*i] = tmp2;
959 }
960 else if(i == 0)
961 {
962 acc[chan*N] = tmp1;
963 }
964 else if(i == ( get_global_size (0) - 1))
965 {
966 acc[chan*N + 2*i - 1] = tmp1;
967 acc[chan*N + 2*i] = tmp2;
968 acc[chan*N + 2*i + 1] = tmp3;
969 }
970 }
971 }

Listing B.2: MDF OpenCL kernel functions

B.3 OpenCL Implementation (FFT Device Code/K-
ernel Functions)

The kernel functions containing FFT functions that are actually run on the device is
listed here below. The core FFT kernel is only listed in complete in the first kernel
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(clFFT custom), but is marked by a comment in the preceeding kernels (“// FFT
KERNEL FUNCTION NOT LISTED, see clFFT custom”). Only the hardcoded
kernels for frames with 512 samples is included, but the kernels for 128 samples
are very similar. A major difference between the two, is that with frames of 512
samples, the local work size is 128, with frames of 128 samples it is 64 (because of
the radices used). The global size is the local size multiplied by the batch size.

1 // This file contains FFT - related kernels :
2 // * Conversion between Speex format and Apple OpenCL FFT format
3 // * Hardcoded FFT kernels based on Apple OpenCL FFT (to avoid library overhead )
4 // * Various kernels where the FFT is combined with other operations
5 # pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
6 # ifndef M_PI
7 # define M_PI 0x1 .921 fb54442d18p +1
8 # endif
9 float2 complexMul ( float2 a, float2 B) { return ( float2 )(mad (-(a).y, (B).y, (a).x

* (B).x), mad ((a).y, (B).x, (a).x * (B).y));}
10 # define conj(a) (( float2 )((a).x, -(a).y))
11 # define conjTransp (a) (( float2 )(-(a).y, (a).x))
12
13 # define fftKernel2 (a,dir) \
14 { \
15 float2 c = (a)[0]; \
16 (a)[0] = c + (a)[1]; \
17 (a)[1] = c - (a)[1]; \
18 }
19
20 # define fftKernel2S (d1 ,d2 ,dir) \
21 { \
22 float2 c = (d1); \
23 (d1) = c + (d2); \
24 (d2) = c - (d2); \
25 }
26
27 # define fftKernel4 (a,dir) \
28 { \
29 fftKernel2S ((a)[0] , (a)[2] , dir); \
30 fftKernel2S ((a)[1] , (a)[3] , dir); \
31 fftKernel2S ((a)[0] , (a)[1] , dir); \
32 (a)[3] = ( float2 )(dir)*( conjTransp ((a)[3])); \
33 fftKernel2S ((a)[2] , (a)[3] , dir); \
34 float2 c = (a)[1]; \
35 (a)[1] = (a)[2]; \
36 (a)[2] = c; \
37 }
38
39 # define fftKernel4s (a0 ,a1 ,a2 ,a3 ,dir) \
40 { \
41 fftKernel2S (( a0), (a2), dir); \
42 fftKernel2S (( a1), (a3), dir); \
43 fftKernel2S (( a0), (a1), dir); \
44 (a3) = ( float2 )(dir)*( conjTransp (( a3))); \
45 fftKernel2S (( a2), (a3), dir); \
46 float2 c = (a1); \
47 (a1) = (a2); \
48 (a2) = c; \
49 }
50
51 # define bitreverse8 (a) \
52 { \
53 float2 c; \
54 c = (a)[1]; \
55 (a)[1] = (a)[4]; \
56 (a)[4] = c; \
57 c = (a)[3]; \
58 (a)[3] = (a)[6]; \
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59 (a)[6] = c; \
60 }
61
62 # define fftKernel8 (a,dir) \
63 { \
64 const float2 w1 = ( float2 )(0 x1 .6 a09e6p -1f, dir *0 x1 .6 a09e6p -1f); \
65 const float2 w3 = ( float2 )(-0x1 .6 a09e6p -1f, dir *0 x1 .6 a09e6p -1f); \
66 float2 c; \
67 fftKernel2S ((a)[0] , (a)[4] , dir); \
68 fftKernel2S ((a)[1] , (a)[5] , dir); \
69 fftKernel2S ((a)[2] , (a)[6] , dir); \
70 fftKernel2S ((a)[3] , (a)[7] , dir); \
71 (a)[5] = complexMul (w1 , (a)[5]); \
72 (a)[6] = ( float2 )(dir)*( conjTransp ((a)[6])); \
73 (a)[7] = complexMul (w3 , (a)[7]); \
74 fftKernel2S ((a)[0] , (a)[2] , dir); \
75 fftKernel2S ((a)[1] , (a)[3] , dir); \
76 fftKernel2S ((a)[4] , (a)[6] , dir); \
77 fftKernel2S ((a)[5] , (a)[7] , dir); \
78 (a)[3] = ( float2 )(dir)*( conjTransp ((a)[3])); \
79 (a)[7] = ( float2 )(dir)*( conjTransp ((a)[7])); \
80 fftKernel2S ((a)[0] , (a)[1] , dir); \
81 fftKernel2S ((a)[2] , (a)[3] , dir); \
82 fftKernel2S ((a)[4] , (a)[5] , dir); \
83 fftKernel2S ((a)[6] , (a)[7] , dir); \
84 bitreverse8 ((a)); \
85 }
86
87 # define bitreverse4x4 (a) \
88 { \
89 float2 c; \
90 c = (a)[1]; (a)[1] = (a)[4]; (a)[4] = c; \
91 c = (a)[2]; (a)[2] = (a)[8]; (a)[8] = c; \
92 c = (a)[3]; (a)[3] = (a) [12]; (a)[12] = c; \
93 c = (a)[6]; (a)[6] = (a)[9]; (a)[9] = c; \
94 c = (a)[7]; (a)[7] = (a) [13]; (a)[13] = c; \
95 c = (a) [11]; (a)[11] = (a) [14]; (a)[14] = c; \
96 }
97
98 # define fftKernel16 (a,dir) \
99 { \

100 const float w0 = 0x1.d906bcp -1f; \
101 const float w1 = 0x1 .87 de2ap -2f; \
102 const float w2 = 0x1 .6 a09e6p -1f; \
103 fftKernel4s ((a)[0] , (a)[4] , (a)[8] , (a)[12] , dir); \
104 fftKernel4s ((a)[1] , (a)[5] , (a)[9] , (a)[13] , dir); \
105 fftKernel4s ((a)[2] , (a)[6] , (a)[10] , (a)[14] , dir); \
106 fftKernel4s ((a)[3] , (a)[7] , (a)[11] , (a)[15] , dir); \
107 (a)[5] = complexMul ((a)[5] , ( float2 )(w0 , dir*w1)); \
108 (a)[6] = complexMul ((a)[6] , ( float2 )(w2 , dir*w2)); \
109 (a)[7] = complexMul ((a)[7] , ( float2 )(w1 , dir*w0)); \
110 (a)[9] = complexMul ((a)[9] , ( float2 )(w2 , dir*w2)); \
111 (a)[10] = ( float2 )(dir)*( conjTransp ((a) [10]) ); \
112 (a)[11] = complexMul ((a)[11] , ( float2 )(-w2 , dir*w2)); \
113 (a)[13] = complexMul ((a)[13] , ( float2 )(w1 , dir*w0)); \
114 (a)[14] = complexMul ((a)[14] , ( float2 )(-w2 , dir*w2)); \
115 (a)[15] = complexMul ((a)[15] , ( float2 )(-w0 , dir*-w1)); \
116 fftKernel4 ((a), dir); \
117 fftKernel4 ((a) + 4, dir); \
118 fftKernel4 ((a) + 8, dir); \
119 fftKernel4 ((a) + 12, dir); \
120 bitreverse4x4 ((a)); \
121 }
122
123 # define bitreverse32 (a) \
124 { \
125 float2 c1 , c2; \
126 c1 = (a)[2]; (a)[2] = (a)[1]; c2 = (a)[4]; (a)[4] = c1; c1 = (a)[8];
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(a)[8] = c2; c2 = (a) [16]; (a)[16] = c1; (a)[1] = c2; \
127 c1 = (a)[6]; (a)[6] = (a)[3]; c2 = (a) [12]; (a)[12] = c1; c1 = (a)

[24]; (a)[24] = c2; c2 = (a) [17]; (a)[17] = c1; (a)[3] = c2; \
128 c1 = (a) [10]; (a)[10] = (a)[5]; c2 = (a) [20]; (a)[20] = c1; c1 = (a)[9];

(a)[9] = c2; c2 = (a) [18]; (a)[18] = c1; (a)[5] = c2; \
129 c1 = (a) [14]; (a)[14] = (a)[7]; c2 = (a) [28]; (a)[28] = c1; c1 = (a)

[25]; (a)[25] = c2; c2 = (a) [19]; (a)[19] = c1; (a)[7] = c2; \
130 c1 = (a) [22]; (a)[22] = (a) [11]; c2 = (a) [13]; (a)[13] = c1; c1 = (a)

[26]; (a)[26] = c2; c2 = (a) [21]; (a)[21] = c1; (a)[11] = c2; \
131 c1 = (a) [30]; (a)[30] = (a) [15]; c2 = (a) [29]; (a)[29] = c1; c1 = (a)

[27]; (a)[27] = c2; c2 = (a) [23]; (a)[23] = c1; (a)[15] = c2; \
132 }
133
134 # define fftKernel32 (a,dir) \
135 { \
136 fftKernel2S ((a)[0] , (a)[16] , dir); \
137 fftKernel2S ((a)[1] , (a)[17] , dir); \
138 fftKernel2S ((a)[2] , (a)[18] , dir); \
139 fftKernel2S ((a)[3] , (a)[19] , dir); \
140 fftKernel2S ((a)[4] , (a)[20] , dir); \
141 fftKernel2S ((a)[5] , (a)[21] , dir); \
142 fftKernel2S ((a)[6] , (a)[22] , dir); \
143 fftKernel2S ((a)[7] , (a)[23] , dir); \
144 fftKernel2S ((a)[8] , (a)[24] , dir); \
145 fftKernel2S ((a)[9] , (a)[25] , dir); \
146 fftKernel2S ((a)[10] , (a)[26] , dir); \
147 fftKernel2S ((a)[11] , (a)[27] , dir); \
148 fftKernel2S ((a)[12] , (a)[28] , dir); \
149 fftKernel2S ((a)[13] , (a)[29] , dir); \
150 fftKernel2S ((a)[14] , (a)[30] , dir); \
151 fftKernel2S ((a)[15] , (a)[31] , dir); \
152 (a)[17] = complexMul ((a)[17] , ( float2 )(0 x1.f6297cp -1f, dir *0 x1 .8 f8b84p -3f));

\
153 (a)[18] = complexMul ((a)[18] , ( float2 )(0 x1.d906bcp -1f, dir *0 x1 .87 de2ap -2f));

\
154 (a)[19] = complexMul ((a)[19] , ( float2 )(0 x1.a9b662p -1f, dir *0 x1 .1 c73b4p -1f));

\
155 (a)[20] = complexMul ((a)[20] , ( float2 )(0 x1 .6 a09e6p -1f, dir *0 x1 .6 a09e6p -1f));

\
156 (a)[21] = complexMul ((a)[21] , ( float2 )(0 x1 .1 c73b4p -1f, dir *0 x1.a9b662p -1f));

\
157 (a)[22] = complexMul ((a)[22] , ( float2 )(0 x1 .87 de2ap -2f, dir *0 x1.d906bcp -1f));

\
158 (a)[23] = complexMul ((a)[23] , ( float2 )(0 x1 .8 f8b84p -3f, dir *0 x1.f6297cp -1f));

\
159 (a)[24] = complexMul ((a)[24] , ( float2 )(0 x0p +0f, dir *0 x1p +0f)); \
160 (a)[25] = complexMul ((a)[25] , ( float2 )(-0x1 .8 f8b84p -3f, dir *0 x1.f6297cp -1f))

; \
161 (a)[26] = complexMul ((a)[26] , ( float2 )(-0x1 .87 de2ap -2f, dir *0 x1.d906bcp -1f))

; \
162 (a)[27] = complexMul ((a)[27] , ( float2 )(-0x1 .1 c73b4p -1f, dir *0 x1.a9b662p -1f))

; \
163 (a)[28] = complexMul ((a)[28] , ( float2 )(-0x1 .6 a09e6p -1f, dir *0 x1 .6 a09e6p -1f))

; \
164 (a)[29] = complexMul ((a)[29] , ( float2 )(-0x1.a9b662p -1f, dir *0 x1 .1 c73b4p -1f))

; \
165 (a)[30] = complexMul ((a)[30] , ( float2 )(-0x1.d906bcp -1f, dir *0 x1 .87 de2ap -2f))

; \
166 (a)[31] = complexMul ((a)[31] , ( float2 )(-0x1.f6297cp -1f, dir *0 x1 .8 f8b84p -3f))

; \
167 fftKernel16 ((a), dir); \
168 fftKernel16 ((a) + 16, dir); \
169 bitreverse32 ((a)); \
170 }
171
172 __kernel void \
173 clFFT_1DTwistInterleaved ( __global float2 *in , unsigned int startRow , unsigned

int numCols , unsigned int N, unsigned int numRowsToProcess , int dir) \
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174 { \
175 float2 a, w; \
176 float ang; \
177 unsigned int j; \
178 unsigned int i = get_global_id (0); \
179 unsigned int startIndex = i; \
180 \
181 if(i < numCols ) \
182 { \
183 for(j = 0; j < numRowsToProcess ; j++) \
184 { \
185 a = in[ startIndex ]; \
186 ang = 2.0f * M_PI * dir * i * ( startRow + j) / N; \
187 w = ( float2 )( native_cos (ang), native_sin (ang)); \
188 a = complexMul (a, w); \
189 in[ startIndex ] = a; \
190 startIndex += numCols ; \
191 } \
192 } \
193 } \
194
195 /**
196 * Generic FFT/IFFT kernel
197 * Kernel output from the Apple OpenCL FFT lib for 1D input of length 1024 , with

modified radices (8 - 8 - 4 - 4) for ATI compatability
198 * Globalsize : 128*S (S is a general batch size parameter )
199 * Localsize : 128
200 */
201 __kernel void clFFT_custom ( __global float *speex_in , unsigned int

speex_in_offset , __global float2 *in , __global float2 *out , __global float
*speex_out , unsigned int speex_out_offset , int dir , int S)

202 {
203 __local float sMem [1088];
204 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
205 int s, ii , jj , offset ;
206 float2 w;
207 float ang , angf , ang1;
208 __local float *lMemStore , * lMemLoad ;
209 float2 a[8];
210 int lId = get_local_id (0);
211 int groupId = get_group_id (0);
212 ii = lId;
213 jj = 0;
214
215 offset = mad24 (groupId , 1024 , ii);
216 __global float2 * out_orig = out; // Keep this pointer for

finalize code
217 int workItemOffset = lId * 8 + groupId * 1024;
218
219 // Do preparation step to convert from Speex FFT format
220 // There is one thread for each four positions in the FFT length
221
222 // clFFT_Forward
223 if(dir == -1)
224 {
225 for(int t=0;t <8;t++)
226 {
227 in[ workItemOffset + t].x = speex_in [ workItemOffset + t +

speex_in_offset ] * (1.0f / 1024.0 f);
228 in[ workItemOffset + t].y = 0.0f;
229 }
230
231 barrier ( CLK_GLOBAL_MEM_FENCE );
232 barrier ( CLK_LOCAL_MEM_FENCE );
233 }
234 // clFFT_Inverse
235 else if(dir == 1)
236 {
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237 int groupOffset = groupId * 1024;
238 if(lId == 0)
239 {
240 in[ groupOffset + 0].x = speex_in [ groupOffset +

speex_in_offset + 0];
241 in[ groupOffset + 0].y = 0.0f;
242 for(int t=1;t <4;t++)
243 {
244 in[ groupOffset + t].x = speex_in [ groupOffset +

speex_in_offset + (2*t - 1) ];
245 in[ groupOffset + t].y = speex_in [ groupOffset +

speex_in_offset + (2*t - 1) + 1];
246 }
247 in[ groupOffset + 512]. x = speex_in [ groupOffset +

speex_in_offset + 1024 - 1];
248 in[ groupOffset + 512]. y = 0.0f;
249 }
250 else
251 {
252 for(int t=0;t <4;t++)
253 {
254 in[ groupOffset + 4* lId + t].x = speex_in [

groupOffset + speex_in_offset + lId *8 - 1 +
2*t];

255 in[ groupOffset + 4* lId + t].y = speex_in [
groupOffset + speex_in_offset + lId *8 + 2*t
];

256 // in[ groupOffset + 8* lId + t].x = 9000.0 f;
257 // in[ groupOffset + 8* lId + t].y = 9000.0 f;
258 }
259 }
260
261 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
262
263 // Generate negative frequencies for symmetric input
264 // Source : http :// www. dspguide .com/ch12 /1. htm
265 // For the remaining n/2 threads that needs to mirror
266 for(int t=0;t <4;t++)
267 {
268 in[ groupOffset + 512 + lId *4 + t].x = in[ groupOffset +

1024 - (512 + lId *4 + t)].x;
269 in[ groupOffset + 512 + lId *4 + t].y = -in[ groupOffset +

1024 - (512 + lId *4 + t)].y;
270 }
271 }
272
273 barrier ( CLK_LOCAL_MEM_FENCE );
274
275 in += offset ;
276 out += offset ;
277 a[0] = in [0];
278 a[1] = in [128];
279 a[2] = in [256];
280 a[3] = in [384];
281 a[4] = in [512];
282 a[5] = in [640];
283 a[6] = in [768];
284 a[7] = in [896];
285 fftKernel8 (a+0, dir);
286 angf = ( float ) ii;
287 ang = dir * ( 2.0f * M_PI * 1.0f / 1024.0 f ) * angf;
288 w = ( float2 )( native_cos (ang), native_sin (ang));
289 a[1] = complexMul (a[1] , w);
290 ang = dir * ( 2.0f * M_PI * 2.0f / 1024.0 f ) * angf;
291 w = ( float2 )( native_cos (ang), native_sin (ang));
292 a[2] = complexMul (a[2] , w);
293 ang = dir * ( 2.0f * M_PI * 3.0f / 1024.0 f ) * angf;
294 w = ( float2 )( native_cos (ang), native_sin (ang));
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295 a[3] = complexMul (a[3] , w);
296 ang = dir * ( 2.0f * M_PI * 4.0f / 1024.0 f ) * angf;
297 w = ( float2 )( native_cos (ang), native_sin (ang));
298 a[4] = complexMul (a[4] , w);
299 ang = dir * ( 2.0f * M_PI * 5.0f / 1024.0 f ) * angf;
300 w = ( float2 )( native_cos (ang), native_sin (ang));
301 a[5] = complexMul (a[5] , w);
302 ang = dir * ( 2.0f * M_PI * 6.0f / 1024.0 f ) * angf;
303 w = ( float2 )( native_cos (ang), native_sin (ang));
304 a[6] = complexMul (a[6] , w);
305 ang = dir * ( 2.0f * M_PI * 7.0f / 1024.0 f ) * angf;
306 w = ( float2 )( native_cos (ang), native_sin (ang));
307 a[7] = complexMul (a[7] , w);
308 lMemStore = sMem + ii;
309 j = ii & 7;
310 i = ii >> 3;
311 lMemLoad = sMem + mad24 (j, 130 , i);
312 lMemStore [0] = a[0].x;
313 lMemStore [130] = a[1].x;
314 lMemStore [260] = a[2].x;
315 lMemStore [390] = a[3].x;
316 lMemStore [520] = a[4].x;
317 lMemStore [650] = a[5].x;
318 lMemStore [780] = a[6].x;
319 lMemStore [910] = a[7].x;
320 barrier ( CLK_LOCAL_MEM_FENCE );
321 a[0].x = lMemLoad [0];
322 a[1].x = lMemLoad [16];
323 a[2].x = lMemLoad [32];
324 a[3].x = lMemLoad [48];
325 a[4].x = lMemLoad [64];
326 a[5].x = lMemLoad [80];
327 a[6].x = lMemLoad [96];
328 a[7].x = lMemLoad [112];
329 barrier ( CLK_LOCAL_MEM_FENCE );
330 lMemStore [0] = a[0].y;
331 lMemStore [130] = a[1].y;
332 lMemStore [260] = a[2].y;
333 lMemStore [390] = a[3].y;
334 lMemStore [520] = a[4].y;
335 lMemStore [650] = a[5].y;
336 lMemStore [780] = a[6].y;
337 lMemStore [910] = a[7].y;
338 barrier ( CLK_LOCAL_MEM_FENCE );
339 a[0].y = lMemLoad [0];
340 a[1].y = lMemLoad [16];
341 a[2].y = lMemLoad [32];
342 a[3].y = lMemLoad [48];
343 a[4].y = lMemLoad [64];
344 a[5].y = lMemLoad [80];
345 a[6].y = lMemLoad [96];
346 a[7].y = lMemLoad [112];
347 barrier ( CLK_LOCAL_MEM_FENCE );
348 fftKernel8 (a+0, dir);
349 angf = ( float ) (ii >> 3);
350 ang = dir * ( 2.0f * M_PI * 1.0f / 128.0 f ) * angf;
351 w = ( float2 )( native_cos (ang), native_sin (ang));
352 a[1] = complexMul (a[1] , w);
353 ang = dir * ( 2.0f * M_PI * 2.0f / 128.0 f ) * angf;
354 w = ( float2 )( native_cos (ang), native_sin (ang));
355 a[2] = complexMul (a[2] , w);
356 ang = dir * ( 2.0f * M_PI * 3.0f / 128.0 f ) * angf;
357 w = ( float2 )( native_cos (ang), native_sin (ang));
358 a[3] = complexMul (a[3] , w);
359 ang = dir * ( 2.0f * M_PI * 4.0f / 128.0 f ) * angf;
360 w = ( float2 )( native_cos (ang), native_sin (ang));
361 a[4] = complexMul (a[4] , w);
362 ang = dir * ( 2.0f * M_PI * 5.0f / 128.0 f ) * angf;
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363 w = ( float2 )( native_cos (ang), native_sin (ang));
364 a[5] = complexMul (a[5] , w);
365 ang = dir * ( 2.0f * M_PI * 6.0f / 128.0 f ) * angf;
366 w = ( float2 )( native_cos (ang), native_sin (ang));
367 a[6] = complexMul (a[6] , w);
368 ang = dir * ( 2.0f * M_PI * 7.0f / 128.0 f ) * angf;
369 w = ( float2 )( native_cos (ang), native_sin (ang));
370 a[7] = complexMul (a[7] , w);
371 lMemStore = sMem + ii;
372 j = (ii & 63) >> 3;
373 i = mad24 (ii >> 6, 8, ii & 7);
374 lMemLoad = sMem + mad24 (j, 136 , i);
375 lMemStore [0] = a[0].x;
376 lMemStore [136] = a[1].x;
377 lMemStore [272] = a[2].x;
378 lMemStore [408] = a[3].x;
379 lMemStore [544] = a[4].x;
380 lMemStore [680] = a[5].x;
381 lMemStore [816] = a[6].x;
382 lMemStore [952] = a[7].x;
383 barrier ( CLK_LOCAL_MEM_FENCE );
384 a[0].x = lMemLoad [0];
385 a[1].x = lMemLoad [32];
386 a[2].x = lMemLoad [64];
387 a[3].x = lMemLoad [96];
388 a[4].x = lMemLoad [16];
389 a[5].x = lMemLoad [48];
390 a[6].x = lMemLoad [80];
391 a[7].x = lMemLoad [112];
392 barrier ( CLK_LOCAL_MEM_FENCE );
393 lMemStore [0] = a[0].y;
394 lMemStore [136] = a[1].y;
395 lMemStore [272] = a[2].y;
396 lMemStore [408] = a[3].y;
397 lMemStore [544] = a[4].y;
398 lMemStore [680] = a[5].y;
399 lMemStore [816] = a[6].y;
400 lMemStore [952] = a[7].y;
401 barrier ( CLK_LOCAL_MEM_FENCE );
402 a[0].y = lMemLoad [0];
403 a[1].y = lMemLoad [32];
404 a[2].y = lMemLoad [64];
405 a[3].y = lMemLoad [96];
406 a[4].y = lMemLoad [16];
407 a[5].y = lMemLoad [48];
408 a[6].y = lMemLoad [80];
409 a[7].y = lMemLoad [112];
410 barrier ( CLK_LOCAL_MEM_FENCE );
411 fftKernel4 (a+0, dir);
412 fftKernel4 (a+4, dir);
413 angf = ( float ) (ii >> 6);
414 ang = dir * ( 2.0f * M_PI * 1.0f / 16.0f ) * angf;
415 w = ( float2 )( native_cos (ang), native_sin (ang));
416 a[1] = complexMul (a[1] , w);
417 ang = dir * ( 2.0f * M_PI * 2.0f / 16.0f ) * angf;
418 w = ( float2 )( native_cos (ang), native_sin (ang));
419 a[2] = complexMul (a[2] , w);
420 ang = dir * ( 2.0f * M_PI * 3.0f / 16.0f ) * angf;
421 w = ( float2 )( native_cos (ang), native_sin (ang));
422 a[3] = complexMul (a[3] , w);
423 angf = ( float ) ((128 + ii) >>6);
424 ang = dir * ( 2.0f * M_PI * 1.0f / 16.0f ) * angf;
425 w = ( float2 )( native_cos (ang), native_sin (ang));
426 a[5] = complexMul (a[5] , w);
427 ang = dir * ( 2.0f * M_PI * 2.0f / 16.0f ) * angf;
428 w = ( float2 )( native_cos (ang), native_sin (ang));
429 a[6] = complexMul (a[6] , w);
430 ang = dir * ( 2.0f * M_PI * 3.0f / 16.0f ) * angf;
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431 w = ( float2 )( native_cos (ang), native_sin (ang));
432 a[7] = complexMul (a[7] , w);
433 lMemStore = sMem + ii;
434 j = ii >> 6;
435 i = ii & 63;
436 lMemLoad = sMem + mad24 (j, 256 , i);
437 lMemStore [0] = a[0].x;
438 lMemStore [256] = a[1].x;
439 lMemStore [512] = a[2].x;
440 lMemStore [768] = a[3].x;
441 lMemStore [128] = a[4].x;
442 lMemStore [384] = a[5].x;
443 lMemStore [640] = a[6].x;
444 lMemStore [896] = a[7].x;
445 barrier ( CLK_LOCAL_MEM_FENCE );
446 a[0].x = lMemLoad [0];
447 a[1].x = lMemLoad [64];
448 a[2].x = lMemLoad [128];
449 a[3].x = lMemLoad [192];
450 a[4].x = lMemLoad [512];
451 a[5].x = lMemLoad [576];
452 a[6].x = lMemLoad [640];
453 a[7].x = lMemLoad [704];
454 barrier ( CLK_LOCAL_MEM_FENCE );
455 lMemStore [0] = a[0].y;
456 lMemStore [256] = a[1].y;
457 lMemStore [512] = a[2].y;
458 lMemStore [768] = a[3].y;
459 lMemStore [128] = a[4].y;
460 lMemStore [384] = a[5].y;
461 lMemStore [640] = a[6].y;
462 lMemStore [896] = a[7].y;
463 barrier ( CLK_LOCAL_MEM_FENCE );
464 a[0].y = lMemLoad [0];
465 a[1].y = lMemLoad [64];
466 a[2].y = lMemLoad [128];
467 a[3].y = lMemLoad [192];
468 a[4].y = lMemLoad [512];
469 a[5].y = lMemLoad [576];
470 a[6].y = lMemLoad [640];
471 a[7].y = lMemLoad [704];
472 barrier ( CLK_LOCAL_MEM_FENCE );
473 fftKernel4 (a+0, dir);
474 fftKernel4 (a+4, dir);
475 out [0] = a[0];
476 out [128] = a[4];
477 out [256] = a[1];
478 out [384] = a[5];
479 out [512] = a[2];
480 out [640] = a[6];
481 out [768] = a[3];
482 out [896] = a[7];
483
484 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
485
486 // Do finalization step to convert to Speex FFT format
487 // There are one thread for each four positions in the FFT length
488
489 // clFFT_Forward
490 if(dir == -1)
491 {
492 int workItemOffset2 = lId * 4 + groupId *1024;
493
494 // The first thread for each FFT length
495 if(lId == 0)
496 {
497 speex_out [ speex_out_offset + groupId *1024 + 0] =

out_orig [ workItemOffset2 + 0].x;
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498 speex_out [ speex_out_offset + groupId *1024 + 1] =
out_orig [ workItemOffset2 + 1].x;

499 for(int t=1;t <4;t++)
500 {
501 speex_out [ speex_out_offset + groupId *1024 + 2*t]

= out_orig [ workItemOffset2 + t].y;
502 speex_out [ speex_out_offset + groupId *1024 + 2*t

+ 1] = out_orig [ workItemOffset2 + t + 1].x;
503 }
504 }
505 else
506 {
507 for(int t=0;t <4;t++)
508 {
509 speex_out [ speex_out_offset + workItemOffset + 2*

t] = out_orig [ workItemOffset2 + t].y;
510 speex_out [ speex_out_offset + workItemOffset + 2*

t + 1] = out_orig [ workItemOffset2 + t + 1].
x;

511 }
512 }
513 }
514 // clFFT_Inverse
515 else if(dir == 1)
516 {
517 for(int t=0;t <8;t++)
518 {
519 speex_out [ speex_out_offset + workItemOffset + t] =

out_orig [ workItemOffset + t].x;
520 }
521 }
522 // End of finalization step
523 }
524
525 /**
526 * Specialized kernel for updating the filter weights in batches
527 * Globalsize : 128*M,C,K
528 * Localsize : 128 ,1 ,1
529 */
530 __kernel void clFFT_update_weights ( __global float *W, __global float2 *in ,

__global float2 *out , __global float *wtmp , int S)
531 {
532 __local float sMem [1088];
533 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
534 int s, ii , jj , offset ;
535 int chan = get_global_id (1);
536 int speak = get_global_id (2);
537 int num_speakers = get_global_size (2);
538 int num_channels = get_global_size (1);
539 float2 w;
540 float ang , angf , ang1;
541 __local float *lMemStore , * lMemLoad ;
542 float2 a[8];
543 int lId = get_local_id ( 0 );
544 int groupId = get_group_id ( 0 );
545 const float m = 1.0f / 1024.0 f;
546 int groupOffset = groupId * 1024 * num_speakers ; // Group offset

for float
547 int groupOffset2 = groupId * 512 * num_speakers ; // Group offset

for float2
548 unsigned int cs_offset = chan *1024* num_speakers *S + speak *1024; //

Channel / speaker offset
549 unsigned int W_offset = cs_offset ;
550 ii = lId;
551 jj = 0;
552
553 // Do IFFT first
554 int dir = 1;
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555
556 offset = cs_offset + groupId * 1024 * num_speakers + ii;
557 __global float2 * out_orig = out; // Keep this pointer for

finalize code
558 __global float2 * in_orig = in;
559
560 int workItemOffset = lId * 8 + groupOffset + cs_offset ;
561
562 barrier ( CLK_LOCAL_MEM_FENCE );
563
564 // Do preparation step to convert from Speex FFT format
565 // There is one thread for each four positions in the FFT length
566
567 if(lId == 0)
568 {
569 in[ groupOffset + cs_offset + 0].x = W[ groupOffset + cs_offset +

0];
570 in[ groupOffset + cs_offset + 0].y = 0.0f;
571 for(int t=1;t <4;t++)
572 {
573 in[ groupOffset + cs_offset + t].x = W[ groupOffset +

cs_offset + (2*t - 1) ];
574 in[ groupOffset + cs_offset + t].y = W[ groupOffset +

cs_offset + (2*t - 1) + 1];
575 }
576 in[ groupOffset + cs_offset + 512]. x = W[ groupOffset + cs_offset

+ 1024 - 1];
577 in[ groupOffset + cs_offset + 512]. y = 0.0f;
578 }
579 else
580 {
581 for(int t=0;t <4;t++)
582 {
583 in[ groupOffset + cs_offset + 4* lId + t].x = W[

groupOffset + cs_offset + lId *8 - 1 + 2*t];
584 in[ groupOffset + cs_offset + 4* lId + t].y = W[

groupOffset + cs_offset + lId *8 + 2*t];
585 }
586 }
587
588 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
589
590 // Generate negative frequencies for symmetric input
591 // Source : http :// www. dspguide .com/ch12 /1. htm
592 // For the remaining n/2 threads that needs to mirror
593 for(int t=0;t <4;t++)
594 {
595 in[ groupOffset + cs_offset + 512 + lId *4 + t].x = in[ groupOffset

+ cs_offset + 1024 - (512 + lId *4 + t)].x;
596 in[ groupOffset + cs_offset + 512 + lId *4 + t].y = -in[

groupOffset + cs_offset + 1024 - (512 + lId *4 + t)].y;
597 }
598
599 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
600
601 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
602
603 // Do finalization step to convert to Speex FFT format
604 // There are one thread for each four positions in the FFT length
605 for(int t=0;t <8;t++)
606 {
607 wtmp[ workItemOffset + t] = out_orig [ workItemOffset + t].x;
608 // wtmp[ workItemOffset + t] = 1.0f;
609 }
610
611 // End of finalization step
612 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
613
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614 // Set to zero
615 wtmp[ groupOffset + cs_offset + 512 + 4* lId] = 0.0f;
616 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 1] = 0.0f;
617 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 2] = 0.0f;
618 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 3] = 0.0f;
619
620 in = in_orig ;
621 out = out_orig ;
622
623 // Do forward FFT
624 dir = -1;
625
626 // Do preparation step to convert from Speex FFT format
627 // There is one thread for each four positions in the FFT length
628
629 // clFFT_Forward
630 for(int t=0;t <8;t++)
631 {
632 in_orig [ workItemOffset + t].x = wtmp[ workItemOffset + t] * m;
633 // in_orig [ workItemOffset + t].x = 1.0f;
634 in_orig [ workItemOffset + t].y = 0.0f;
635 }
636
637 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
638 // End of preparation step
639
640 offset = cs_offset + groupId * 1024 * num_speakers + ii;
641 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
642
643 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
644
645 // Do finalization step to convert to Speex FFT format
646 // There are one thread for each four positions in the FFT length
647 // Not adapted to multi - channel filter , only mono
648 int workItemOffset2 = lId * 4 + groupOffset + cs_offset ;
649
650 // The first thread for each FFT length
651 if(lId == 0)
652 {
653 W[ cs_offset + groupOffset + 0] = out_orig [ workItemOffset2 + 0].x

;
654 W[ cs_offset + groupOffset + 1] = out_orig [ workItemOffset2 + 1].x

;
655 for(int t=1;t <4;t++)
656 {
657 W[ cs_offset + groupOffset + 2*t] = out_orig [

workItemOffset2 + t].y;
658 W[ cs_offset + groupOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;
659 }
660 }
661 // note: cs_offset is included in workItemOffset
662 else if( groupId < S)
663 {
664 for(int t=0;t <4;t++)
665 {
666 W[ workItemOffset + 2*t] = out_orig [ workItemOffset2 + t].

y;
667 W[ workItemOffset + 2*t + 1] = out_orig [ workItemOffset2 +

t + 1].x;
668 //W[ workItemOffset + 2*t] = 9000.0 f;
669 //W[ workItemOffset + 2*t + 1] = 8000.0 f;
670 //W[ workItemOffset + 2*t] = wtmp[ groupOffset + cs_offset

+ 8* lId + t];
671 //W[ workItemOffset + 2*t + 1] = wtmp[ groupOffset +

cs_offset + 8* lId + t];
672 }
673 }
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674 // End of finalization step
675 }
676
677 /**
678 * Specialized kernel for updating the filter weights in batches
679 * Split in two for ATI , as it crashes on a single long kernel
680 * Globalsize : 128*M,C,K
681 * Localsize : 128 ,1 ,1
682 */
683 __kernel void clFFT_update_weights_ati_pt1 ( __global float *W, __global float2 *

in , __global float2 *out , __global float *wtmp , int S)
684 {
685 __local float sMem [1088];
686 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
687 int s, ii , jj , offset ;
688 int chan = get_global_id (1);
689 int speak = get_global_id (2);
690 int num_speakers = get_global_size (2);
691 int num_channels = get_global_size (1);
692 float2 w;
693 float ang , angf , ang1;
694 __local float *lMemStore , * lMemLoad ;
695 float2 a[8];
696 int lId = get_local_id ( 0 );
697 int groupId = get_group_id ( 0 );
698 const float m = 1.0f / 1024.0 f;
699 int groupOffset = groupId * 1024 * num_speakers ; // Group offset

for float
700 int groupOffset2 = groupId * 512 * num_speakers ; // Group offset

for float2
701 unsigned int cs_offset = chan *1024* num_speakers *S + speak *1024; //

Channel / speaker offset
702 unsigned int W_offset = cs_offset ;
703 ii = lId;
704 jj = 0;
705
706 // Do IFFT first
707 int dir = 1;
708
709 offset = cs_offset + groupId * 1024 * num_speakers + ii;
710 __global float2 * out_orig = out; // Keep this pointer for

finalize code
711 __global float2 * in_orig = in;
712
713 int workItemOffset = lId * 8 + groupOffset + cs_offset ;
714
715 barrier ( CLK_LOCAL_MEM_FENCE );
716
717 // Do preparation step to convert from Speex FFT format
718 // There is one thread for each four positions in the FFT length
719
720 if(lId == 0)
721 {
722 in[ groupOffset + cs_offset + 0].x = W[ groupOffset + cs_offset +

0];
723 in[ groupOffset + cs_offset + 0].y = 0.0f;
724 for(int t=1;t <4;t++)
725 {
726 in[ groupOffset + cs_offset + t].x = W[ groupOffset +

cs_offset + (2*t - 1) ];
727 in[ groupOffset + cs_offset + t].y = W[ groupOffset +

cs_offset + (2*t - 1) + 1];
728 }
729 in[ groupOffset + cs_offset + 512]. x = W[ groupOffset + cs_offset

+ 1024 - 1];
730 in[ groupOffset + cs_offset + 512]. y = 0.0f;
731 }
732 else
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733 {
734 for(int t=0;t <4;t++)
735 {
736 in[ groupOffset + cs_offset + 4* lId + t].x = W[

groupOffset + cs_offset + lId *8 - 1 + 2*t];
737 in[ groupOffset + cs_offset + 4* lId + t].y = W[

groupOffset + cs_offset + lId *8 + 2*t];
738 }
739 }
740
741 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
742
743 // Generate negative frequencies for symmetric input
744 // Source : http :// www. dspguide .com/ch12 /1. htm
745 // For the remaining n/2 threads that needs to mirror
746 for(int t=0;t <4;t++)
747 {
748 in[ groupOffset + cs_offset + 512 + lId *4 + t].x = in[ groupOffset

+ cs_offset + 1024 - (512 + lId *4 + t)].x;
749 in[ groupOffset + cs_offset + 512 + lId *4 + t].y = -in[

groupOffset + cs_offset + 1024 - (512 + lId *4 + t)].y;
750 }
751
752 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
753
754 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
755
756 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
757
758 // Do finalization step to convert to Speex FFT format
759 // There are one thread for each four positions in the FFT length
760 for(int t=0;t <8;t++)
761 {
762 wtmp[ workItemOffset + t] = out_orig [ workItemOffset + t].x;
763 // wtmp[ workItemOffset + t] = 1.0f;
764 }
765
766 // End of finalization step
767 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
768
769 // Set to zero
770 wtmp[ groupOffset + cs_offset + 512 + 4* lId] = 0.0f;
771 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 1] = 0.0f;
772 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 2] = 0.0f;
773 wtmp[ groupOffset + cs_offset + 512 + 4* lId + 3] = 0.0f;
774 }
775
776 /**
777 * Specialized kernel for updating the filter weights in batches
778 * Split in two for ATI , as it crashes on a single long kernel
779 * Globalsize : 128*M,C,K
780 * Localsize : 128 ,1 ,1
781 */
782 __kernel void clFFT_update_weights_ati_pt2 ( __global float *W, __global float2 *

in , __global float2 *out , __global float *wtmp , int S)
783 {
784 __local float sMem [1088];
785 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
786 int s, ii , jj , offset ;
787 int chan = get_global_id (1);
788 int speak = get_global_id (2);
789 int num_speakers = get_global_size (2);
790 int num_channels = get_global_size (1);
791 float2 w;
792 float ang , angf , ang1;
793 __local float *lMemStore , * lMemLoad ;
794 float2 a[8];
795 int lId = get_local_id ( 0 );
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796 int groupId = get_group_id ( 0 );
797 const float m = 1.0f / 1024.0 f;
798 int groupOffset = groupId * 1024 * num_speakers ; // Group offset

for float
799 int groupOffset2 = groupId * 512 * num_speakers ; // Group offset

for float2
800 unsigned int cs_offset = chan *1024* num_speakers *S + speak *1024; //

Channel / speaker offset
801 unsigned int W_offset = cs_offset ;
802 ii = lId;
803 jj = 0;
804
805 // Do IFFT first
806 int dir = 1;
807
808 // offset = mad24 (groupId , 1024 , ii);
809 offset = cs_offset + groupId * 1024 * num_speakers + ii;
810 __global float2 * out_orig = out; // Keep this pointer for

finalize code
811 __global float2 * in_orig = in;
812
813 int workItemOffset = lId * 8 + groupOffset + cs_offset ;
814
815 barrier ( CLK_LOCAL_MEM_FENCE );
816
817 // Do forward FFT
818 dir = -1;
819
820 // Do preparation step to convert from Speex FFT format
821 // There is one thread for each four positions in the FFT length
822
823 // clFFT_Forward
824 for(int t=0;t <8;t++)
825 {
826 in_orig [ workItemOffset + t].x = wtmp[ workItemOffset + t] * m;
827 in_orig [ workItemOffset + t].y = 0.0f;
828 }
829
830 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
831
832 // End of preparation step
833
834 offset = cs_offset + groupId * 1024 * num_speakers + ii;
835 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
836
837 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
838
839 // Do finalization step to convert to Speex FFT format
840 // There are one thread for each four positions in the FFT length
841 // Not adapted to multi - channel filter , only mono
842 // groupOffset = groupId * 256 * num_speakers ;
843 int workItemOffset2 = lId * 4 + groupOffset + cs_offset ;
844 // workItemOffset = lId * 2 + groupOffset ;
845 // unsigned int W_offset = speak *1024 + chan *1024* num_speakers *S;
846
847 // The first thread for each FFT length
848 if(lId == 0)
849 {
850 W[ cs_offset + groupOffset + 0] = out_orig [ workItemOffset2 + 0].x

;
851 W[ cs_offset + groupOffset + 1] = out_orig [ workItemOffset2 + 1].x

;
852 for(int t=1;t <4;t++)
853 {
854 W[ cs_offset + groupOffset + 2*t] = out_orig [

workItemOffset2 + t].y;
855 W[ cs_offset + groupOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;

148



Source Code

856 }
857 }
858 // note: cs_offset is included in workItemOffset
859 else if( groupId < S)
860 {
861 for(int t=0;t <4;t++)
862 {
863 W[ workItemOffset + 2*t] = out_orig [ workItemOffset2 + t].

y;
864 W[ workItemOffset + 2*t + 1] = out_orig [ workItemOffset2 +

t + 1].x;
865 }
866 }
867 // End of finalization step
868 }
869
870 /**
871 * Specialized kernel for converting the error to the frequency domain in one

operation
872 * Globalsize : 128*C ,2
873 * Localsize : 128 ,1
874 */
875 __kernel void clFFT_convert_error_to_freq_domain ( __global float *e, __global

float *E, __global float *y, __global float *Y, __global float2 *in ,
__global float2 *in2 , __global float2 *out , __global float2 *out2 , int S)

876 {
877 __local float sMem [1088];
878 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
879 int s, ii , jj , offset ;
880 float2 w;
881 float ang , angf , ang1;
882 __local float *lMemStore , * lMemLoad ;
883 float2 a[8];
884 int lId = get_local_id (0);
885 int taskId = get_global_id (1);
886 int groupId = get_group_id (0);
887 const float m = 1.0f / 1024.0 f;
888 int groupOffset = groupId * 1024; // Group offset for float
889 int groupOffset2 = groupId * 512; // Group offset for float2
890 ii = lId;
891 jj = 0;
892
893 offset = mad24 (groupId , 1024 , ii);
894 __global float2 * out_orig = out; // Keep this pointer for

finalize code
895 __global float2 * in_orig = in;
896 __global float2 * out2_orig = out2; // Keep this pointer for

finalize code
897 __global float2 * in2_orig = in2;
898
899 int workItemOffset = lId * 8 + groupOffset ;
900
901 barrier ( CLK_LOCAL_MEM_FENCE );
902
903 // Do FFT
904 // Equiv : speex_echo_opencl_fft_execute2 (ocl_e , chan*st -> window_size ,

ocl_E , chan*st -> window_size , 1, commandQueue );
905 if( taskId == 0)
906 {
907 // Do FFT first
908 int dir = -1;
909
910 // Do preparation step to convert from Speex FFT format
911 // There is one thread for each four positions in the FFT length
912
913 // clFFT_Forward
914 for(int t=0;t <8;t++)
915 {
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916 in_orig [ workItemOffset + t].x = e[ workItemOffset + t] *
m;

917 in_orig [ workItemOffset + t].y = 0.0f;
918 }
919
920 // End of preparation step
921
922 barrier ( CLK_LOCAL_MEM_FENCE );
923
924 offset = mad24 (groupId , 1024 , ii);
925 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
926
927 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
928
929 // Do finalization step to convert to Speex FFT format
930 // There are one thread for each four positions in the FFT

length
931 // Not adapted to multi - channel filter , only mono
932
933 int workItemOffset2 = lId * 4 + groupOffset ;
934
935 // The first thread for each FFT length
936 if(lId == 0)
937 {
938 E[ groupOffset + 0] = out_orig [ workItemOffset2 + 0].x;
939 E[ groupOffset + 1] = out_orig [ workItemOffset2 + 1].x;
940 for(int t=1;t <4;t++)
941 {
942 E[ groupOffset + 2*t] = out_orig [ workItemOffset2

+ t].y;
943 E[ groupOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;
944 }
945 }
946 else
947 {
948 for(int t=0;t <4;t++)
949 {
950 E[ workItemOffset + 2*t] = out_orig [

workItemOffset2 + t].y;
951 E[ workItemOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;
952 }
953 }
954
955 // End of finalization step
956
957 }
958 // Set to value and do FFT
959 // Equiv : mdf_opencl_set_array_to_float_value (ocl_y , chan*st ->

window_size , 0, st -> frame_size );
960 // speex_echo_opencl_fft_execute2 (ocl_y , chan*st -> window_size ,

ocl_Y , chan*st -> window_size , 1, commandQueue );
961 else
962 {
963 // Set to zero
964 y[ groupOffset + 4* lId] = 0.0f;
965 y[ groupOffset + 4* lId + 1] = 0.0f;
966 y[ groupOffset + 4* lId + 2] = 0.0f;
967 y[ groupOffset + 4* lId + 3] = 0.0f;
968
969 // Do FFT
970 int dir = -1;
971
972 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
973
974 // Do preparation step to convert from Speex FFT format
975 // There is one thread for each four positions in the FFT length

150



Source Code

976 for(int t=0;t <8;t++)
977 {
978 in2[ workItemOffset + t].x = y[ workItemOffset + t] * m;
979 in2[ workItemOffset + t].y = 0.0f;
980 }
981
982 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
983
984 offset = mad24 (groupId , 1024 , ii);
985 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
986 // a small modification is made to use the in2 and out2 buffers
987
988 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
989
990 // Do finalization step to convert to Speex FFT format
991 // There are one thread for each four positions in the FFT

length
992
993 int workItemOffset2 = lId * 4 + groupOffset ;
994
995 // The first thread for each FFT length
996 if(lId == 0)
997 {
998 Y[ groupOffset + 0] = out2_orig [ workItemOffset2 + 0].x;
999 Y[ groupOffset + 1] = out2_orig [ workItemOffset2 + 1].x;

1000 for(int t=1;t <4;t++)
1001 {
1002 Y[ groupOffset + 2*t] = out2_orig [ workItemOffset2

+ t].y;
1003 Y[ groupOffset + 2*t + 1] = out2_orig [

workItemOffset2 + t + 1].x;
1004 }
1005 }
1006 else
1007 {
1008 for(int t=0;t <4;t++)
1009 {
1010 Y[ workItemOffset + 2*t] = out2_orig [

workItemOffset2 + t].y;
1011 Y[ workItemOffset + 2*t + 1] = out2_orig [

workItemOffset2 + t + 1].x;
1012 }
1013 }
1014
1015 // End of finalization step
1016 }
1017 }
1018
1019 /**
1020 * Specialized kernel for doing a forward FFT and then an inner product
1021 * Globalsize : 128*K
1022 * Localsize : 128
1023 */
1024 __kernel void clFFT_inner_prod_combined ( __global float * data_time_domain ,

__global float2 *in , __global float2 *out , __global float * data_freq_domain
, __global float *Xf , __global float * temp_reduction , int frame_size , int S
)

1025 {
1026 __local float sMem [1088];
1027 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
1028 int s, ii , jj , offset ;
1029 int lId = get_local_id (0);
1030 int groupId = get_group_id (0);
1031 int groupOffset = groupId * 1024; // Group offset for float
1032 int groupOffset2 = groupId * 512; // Group offset for float2
1033 unsigned int xi = get_local_id (0) *4 + frame_size + groupOffset ; // Used

for inner product
1034 unsigned int yi = get_local_id (0) *4 + frame_size + groupOffset ; // Used
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for inner product
1035 float2 w;
1036 float ang , angf , ang1;
1037 __local float *lMemStore , * lMemLoad ;
1038 float2 a[8];
1039 const float m = 1.0f / 1024.0 f;
1040 ii = lId;
1041 jj = 0;
1042
1043 // Do FFT
1044 int dir = -1;
1045
1046 offset = mad24 (groupId , 1024 , ii);
1047 __global float2 * out_orig = out; // Keep this pointer for

finalize code
1048 __global float2 * in_orig = in;
1049
1050 int workItemOffset = lId * 8 + groupOffset ;
1051
1052 barrier ( CLK_LOCAL_MEM_FENCE );
1053
1054 // Do preparation step to convert from Speex FFT format
1055 // There is one thread for each four positions in the FFT length
1056 for(int t=0;t <8;t++)
1057 {
1058 in[ workItemOffset + t].x = data_time_domain [ workItemOffset + t]

* m;
1059 in[ workItemOffset + t].y = 0.0f;
1060 }
1061
1062 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
1063
1064 // End of preparation step
1065 offset = mad24 (groupId , 1024 , ii);
1066 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
1067
1068 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
1069
1070 // Do finalization step to convert to Speex FFT format
1071 // There are one thread for each four positions in the FFT length
1072
1073 int workItemOffset2 = lId * 4 + groupOffset ;
1074
1075 // The first thread for each FFT length
1076 if(lId == 0)
1077 {
1078 data_freq_domain [ groupOffset + 0] = out_orig [ workItemOffset2 +

0].x;
1079 data_freq_domain [ groupOffset + 1] = out_orig [ workItemOffset2 +

1].x;
1080 for(int t=1;t <4;t++)
1081 {
1082 data_freq_domain [ groupOffset + 2*t] = out_orig [

workItemOffset2 + t].y;
1083 data_freq_domain [ groupOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;
1084 }
1085 }
1086 else
1087 {
1088 for(int t=0;t <4;t++)
1089 {
1090 data_freq_domain [ workItemOffset + 2*t] = out_orig [

workItemOffset2 + t].y;
1091 data_freq_domain [ workItemOffset + 2*t + 1] = out_orig [

workItemOffset2 + t + 1].x;
1092 }
1093 }
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1094
1095 // End of finalization step
1096
1097 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
1098
1099 // Calculate inner product (last reduction is done on host)
1100 if( get_local_id (0) < 128) {
1101 sMem[lId] = 0.0f;
1102 sMem[lId] += data_time_domain [xi] * data_time_domain [yi ];
1103 sMem[lId] += data_time_domain [xi +1] * data_time_domain [yi +1];
1104 sMem[lId] += data_time_domain [xi +2] * data_time_domain [yi +2];
1105 sMem[lId] += data_time_domain [xi +3] * data_time_domain [yi +3];
1106 }
1107 else
1108 sMem[lId] = 0.0f;
1109
1110 barrier ( CLK_LOCAL_MEM_FENCE );
1111
1112 // do reduction in shared mem
1113 for( unsigned int s = get_local_size (0) / 2; s > 0; s >>= 1)
1114 {
1115 if(lId < s)
1116 {
1117 sMem[lId] += sMem[lId + s];
1118 }
1119 barrier ( CLK_LOCAL_MEM_FENCE );
1120 }
1121
1122 // write result for this block to global mem
1123 if (lId == 0)
1124 {
1125 temp_reduction [ get_group_id (0)] = sMem [0];
1126 }
1127 }
1128
1129 /**
1130 * Regular inverse FFT , combined with the spectral mul accum (long) reduce

kernel
1131 * Globalsize : 128*K
1132 * Localsize : 128
1133 */
1134 __kernel void clFFT_inverse_spectral_mul_accum_reduce ( __global float *Y,

__global float2 *in , __global float2 *out , __global float *e, __global
float *temp_acc , int M, int N, int S)

1135 {
1136 __local float sMem [1088];
1137 int i, j, r, indexIn , indexOut , index , tid , bNum , xNum , k, l;
1138 int s, ii , jj , offset ;
1139 float2 w;
1140 float ang , angf , ang1;
1141 int dir = 1; // Inverse
1142 __local float *lMemStore , * lMemLoad ;
1143 float2 a[8];
1144 int lId = get_local_id (0);
1145 int groupId = get_group_id (0);
1146 const float m = 1.0f / 1024.0 f;
1147 int groupOffset = groupId * 1024;
1148 ii = lId;
1149 jj = 0;
1150
1151 offset = mad24 (groupId , 1024 , ii);
1152 __global float2 * out_orig = out; // Keep this pointer for

finalize code
1153 int workItemOffset = lId * 8 + groupOffset ;
1154
1155
1156 // Do the spectral mul accum reduce , 8 elementents for each thread
1157 for(int t=0;t <8;t++)
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1158 {
1159 Y[ groupOffset + lId *8 + t] = 0.0f;
1160 }
1161
1162 for(int c=0;c<M;c++)
1163 {
1164 for(int t=0;t <8;t++)
1165 {
1166 Y[ groupOffset + lId *2 + t] += temp_acc [ groupId *M*N + c*N

+ lId *8 + t];
1167 }
1168 }
1169
1170 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
1171
1172 // Do preparation step to convert from Speex FFT format
1173 // There is one thread for each four positions in the FFT length
1174
1175 if(lId == 0)
1176 {
1177 in[ groupOffset + 0].x = Y[ groupOffset + 0];
1178 in[ groupOffset + 0].y = 0.0f;
1179 for(int t=1;t <4;t++)
1180 {
1181 in[ groupOffset + t].x = Y[ groupOffset + (2*t - 1) ];
1182 in[ groupOffset + t].y = Y[ groupOffset + (2*t - 1) + 1];
1183 }
1184 in[ groupOffset + 512]. x = Y[ groupOffset + 1024 - 1];
1185 in[ groupOffset + 512]. y = 0.0f;
1186 }
1187 else
1188 {
1189 in[ groupOffset + 4* lId ].x = Y[ groupOffset + lId *8 - 1];
1190 in[ groupOffset + 4* lId ].y = Y[ groupOffset + lId *8];
1191 in[ groupOffset + 4* lId + 1].x = Y[ groupOffset + lId *8 + 1];
1192 in[ groupOffset + 4* lId + 1].y = Y[ groupOffset + lId *8 + 2];
1193
1194 for(int t=0;t <4;t++)
1195 {
1196 in[ groupOffset + 4* lId + t].x = Y[ groupOffset + lId *8 -

1 + 2*t];
1197 in[ groupOffset + 4* lId + t].y = Y[ groupOffset + lId *8 +

2*t];
1198 }
1199 }
1200
1201 barrier ( CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE );
1202
1203 for(int t=1;t <=4;t++)
1204 {
1205 in[ groupOffset + 1024 - lId *4 - t].x = in[ groupOffset + lId *4 +

t].x;
1206 in[ groupOffset + 1024 - lId *4 - t].y = -in[ groupOffset + lId *4 +

t].y;
1207 }
1208
1209 barrier ( CLK_LOCAL_MEM_FENCE );
1210
1211 // FFT KERNEL FUNCTION NOT LISTED , see clFFT_custom
1212
1213 barrier ( CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE );
1214
1215 // Do finalization step to convert to Speex FFT format
1216 // There are one thread for each four positions in the FFT length
1217
1218 // clFFT_Inverse
1219 for(int t=0;t <8;t++)
1220 {
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1221 e[ workItemOffset + t] = out_orig [ workItemOffset + t].x;
1222 }
1223
1224 // End of finalization step
1225 }

Listing B.3: MDF OpenCL kernel functions for 512 sample frames
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