
June 2010
Gunnar Tufte, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Evaluating the Influence of Network
Structure on Boolean Networks and
Cellular Automata

Harald Hvaal

Problem Description
Many papers have been published respectively on the qualities of Boolean networks and Cellular
Automata, but little work has been done on comparing these networks to each other. Network
parameters such as input count and choice of Boolean functions are often fixed in preparation of
the experiments with less regard to what effect that choice has.

A broader overview of how the choice of network structure and network parameters will affect the
behavior of the network is sought. Differences and similarities between the behavior of the
networks are to be compared, especially how the networks differ when specific parameters are
changed.

Assignment given: 22. January 2010
Supervisor: Gunnar Tufte, IDI

Abstract
While there have been many papers respectively on the qualities of Boolean net-
works and Cellular Automata, little work has been done on comparing these net-
works to each other. Network parameters such as input count and choice of Boolean
functions are often fixed in preparation of the experiments with less regard to what
effect that choice has.
In this paper a broader overview of how the choice of network structure and net-
work parameters will affect the behavior of the network is given. Metrics such as
iterations until stabilization (intermediary state count) and complexity of network
behavior over time (functional complexity) are proposed, and evaluated for a set of
15 different network configurations. CA networks are observed to have much less
functional complexity than BN, and in general BN seems to have more potential
for complex behavior. It is also observed that for increasing values of dimension
count/input count the functional complexity decreases.

2

Contents

1 Introduction 5
1.1 Sparsely connected networks . 5
1.2 Problem description . 6
1.3 How the problem was approached . 6

2 Background 7
2.1 Parallel/Distributed computing . 7

2.1.1 A new paradigm for massive parallelization 7
2.1.2 Types of problems . 7

2.2 Emergence and self-organizing systems 8
2.2.1 System applications . 8
2.2.2 Nanoscale machinery . 8

2.3 Boolean networks . 9
2.3.1 RBN (Random Boolean Networks) 10
2.3.2 Cellular Automata . 10
2.3.3 Updating scheme . 11
2.3.4 Threshold nodes . 12
2.3.5 Complexity . 12

2.3.5.1 Kolmogorov complexity 12
2.3.6 Robustness . 14
2.3.7 Stability . 14

3 Theory 17
3.1 Methodology . 17
3.2 Network structure . 18
3.3 Metrics . 18

3.3.1 Basin evaluation . 18
3.3.2 Functional complexity . 18
3.3.3 Intermediary state count . 20
3.3.4 Robustness . 20

3.3.4.1 Average basin size difference 20
3.3.4.2 Basin size distribution 20

3.3.5 Basin entropy . 22

3

4 Simulation 23
4.1 The simulation library . 23

4.1.1 Choice of language . 23
4.1.2 Structure . 27
4.1.3 Experiment module . 27

4.2 Network parameters . 27
4.2.1 Network size . 28
4.2.2 Node type . 28
4.2.3 K (input count) . 28

4.3 Simulation parameters . 28
4.3.1 Updating scheme . 28
4.3.2 Iteration count . 28
4.3.3 Reset count . 28

5 Experiments 29
5.1 Complexity in Wolfram’s 1D CA . 29
5.2 Basin evaluation . 32
5.3 Intermediary state count . 32
5.4 Functional complexity . 32
5.5 Intermediary state count versus functional complexity 35

6 Discussion 37
6.1 General observations . 37

6.1.1 Network structure influence on network behavior 37
6.1.2 BN in general exhibits more complex behavior 37
6.1.3 Dimension count versus input count 37

6.2 Limitations . 38
6.2.1 Network structures . 38
6.2.2 Node types . 38
6.2.3 Feedback loops . 38

7 Conclusion 41
7.1 Future work . 41

4

Chapter 1

Introduction

1.1 Sparsely connected networks

In the recent years, much research has been devoted to the study of gene networks.
Although initially appearing as a way of modeling and simulating concepts found
in biology[18], recent years have seen studies directing the field towards networks
for general computation.

The networks are built up from quantities of simple Boolean functions. The func-
tions themselves are easily specified and understood by simple truth tables, how-
ever, as they are assembled together into networks of Boolean functions it becomes
apparent that the network as a whole has an emerging behavior not visible by the
simple sub-elements alone. This is known as the emergent property.

Both Kauffman and Wolfram’s research reflects this quality in their own ways.
Kauffman’s research asserts that complex mechanisms can be modeled through few
components put together. An example of this is the yeast cell-cycle network[19], a
regulatory network of the budding yeast, modeled using Boolean networks. Wol-
fram’s research displays how small, almost trivial networks are still able to perform
seemingly very complex work. He demonstrates this through his 1-dimensional
Cellular Automata that are able to generate complex patterns through elementary,
homogeneous rule sets.

Observing the mechanisms found in nature, it has become apparent that the bi-
ological gene networks are sparsely, rather than densely, connected, with average
number of connections per gene as less than two[22]. These sparsely connected
networks are robust in the face of natural selection, even though early studies have
pointed to denser networks being more evolutionary robust[23].7

5

1.2 Problem description

While there have been many papers respectively on the qualities of Boolean net-
works and Cellular Automata, little work has been done on comparing these net-
works to each other. Network parameters such as input count (K in [2]) and choice
of Boolean functions are often fixed in preparation of the experiments with less
regard to what effect that choice has.
In this paper a broader overview of how the choice of network structure and net-
work parameters will affect the behavior of the network is sought. Factors such as
iterations until stabilization (intermediary state count) and complexity of network
behavior over time (functional complexity) are considered in these regards.

1.3 How the problem was approached

From the beginning, a hands-on approach involving mainly simulation for verifica-
tion was chosen. Theories were made, and tested for consistency on a large set of
random networks through a simulation library.
The reason for using simulation was also based in the practical approach of the
topic; we are more interested in discoveries that are proven realistic through exper-
imentation rather than ones based purely on theory. Also, with little pre-existing
theoretical work on the subject, the first step towards this is experimentation.
In order to keep the problem size manageable, ultimately limitations had to be
applied. These are discussed in section 6.2.

6

Chapter 2

Background

2.1 Parallel/Distributed computing

After the CPU clock-rate craze of the early 2000s have faded, there has been several
rising trends in the general field of increased computing capacity. The two trends
of parallel computing and distributed computing, are going in the direction of
increasing the computing units and often simplifying the same units. Computation
performed on these systems are performed in a parallel rather than serial fashion,
targeting a quite different problem domain than before.

2.1.1 A new paradigm for massive parallelization

Although it is relatively easy to build these systems in hardware, the classical
development process of think, design, implement is difficult to employ in massively
parallel systems as it is significantly harder to predict the outcome from out-of-
order execution. Sometimes a system will even suffer performance-wise only in
order to make the design reasonable to humans. The need for a new development
paradigm is thus showing to be increasingly significant as parallel computing units
become more widespread.
Much of the problem with these new systems has been to utilize them efficiently.
Not all problems perform as well when split into a large number of sub-problems
due to parts that need to be sequentially executed, and as Amdhahl’s law[6] points
out, these problems will not get any less significant as we increase the number of
computational units.

2.1.2 Types of problems

Although Amdahl’s law gives a rather pessimistic perspective on parallelization of
existing problems, there are reasons for not giving up on parallelization of problems

7

just yet; Gustafson’s law[7] points this out by suggesting that we adjust the problem
size, thus instead altering the problem to fit our parallel computing systems. Image
processing applications, for example, is a category of problems that can be very
efficiently parallelized due to their favorable locality properties.

2.2 Emergence and self-organizing systems

Self-organization is defined in [3] as “the spontaneous emergence of global coherence
out of local interactions”. This global coherence is referred to as the emergent
property. The essence of this concept is that there is no external control or influence
that is leading all the participants in the same direction; the goal the system as
a whole will advance towards is implicitly defined from the collective choice of all
participants.

This kind of systems is very commonly found in nature, two basic examples (from
[3] p5-6) being the polarity of magnetic objects and Bénard rolls. With magneti-
zation, one can observe how the smaller elements in magnetic materials tend to be
influenced by and follow the same magnetization as the surrounding ones, even-
tually resulting in the object having global magnetic polarity. Bénard rolls is the
phenomenon of heated particles in a liquid moving in a set of parallel “rolls”.

2.2.1 System applications

Systems employing the mechanisms above generally share some traits: they work
with a large body of simple computational units, and deal with noise. This noise
could be units sometimes returning the wrong value, it could be units that stop
returning any values at all, or even invalid values as a result of invasion from a
malicious presence. In general, the noise poses a negative influence that has to be
dealt with.

2.2.2 Nanoscale machinery

This is a recently advancing field where machinery of sizes smaller than the human
eye can see is assembled at an molecular level[16]. It is relevant because a system of
this size is hard, if not impossible, to repair or build by hand. In addition, external
noise also becomes especially important when you’re considering a machine that
can be destroyed by the push of a finger.

For this field we can imagine an immune system that governs the construction
of new machines and rejects the ones that do not conform to specifications. The
machines will perform simple work at the individual level, but seen as a complete
system a sense of intelligence will emerge from the mass of machines.

8

Figure 2.1: Example of a Boolean network, with # of nodes N=4 and # of inputs
pr node K=2. The circles represent nodes in the network, with a corresponding
Boolean function (not shown in the figure). The arrows pointing to other nodes
represents the inputs from other nodes. The current state is shown in the center of
each node. Note how the node can also be “aware” of it’s own state by including
itself as an input.

2.3 Boolean networks

The Boolean network, first proposed by Stuart A. Kauffman[1] in 1969, consists of a
system of N binary-state nodes and K inputs to each of these nodes. The evaluation
of the inputs, producing a new state, is done according to a logic function, typically
stored as a look-up table of size 2K (with certain1 exceptions), for small sizes of K.
The network is initialized with an initial binary state over all nodes, and iterated
a number of times (typically until the state has converged). Iterating a network
refers to according to some scheme, choose one or more nodes and update their
internal state according to their Boolean function and inputs.

Although originally developed as a model of genetic regulatory networks, it can
be used to model arbitrarily complex mechanism by varying the initial state and
inputs[2]. Boolean networks are currently at a state where we know that the
network has large computing potential, but one is unsure of how to control the
computation, or in other words how to program the Boolean network.

1Depending on whether the logic function makes a difference out of which input is connected
where, this table might be smaller. For example, for the case of the AND logic function, the
output of (0,1) and (1,0) is the same. Both situations will be assumed equally relevant should
the case appear.

9

Figure 2.2: Visualization of various types of RBN updating schemes over time.
One horizontal line is the state over all nodes at a point in time, black/white
corresponding to on/off state. On the very left is a Deterministic RBN (DRBN),
clearly showing that the system has stabilized by its generating the same pattern
repeatedly. Here all nodes are updated synchronously once per iteration. The
other kinds to the right show lesser amounts of stability due to various degrees of
asynchronicity in the updating scheme. For more information on these other types
of RBN, see [2] p10, where this diagram is borrowed from.

2.3.1 RBN (Random Boolean Networks)

RBN is a further variation of the Boolean networks where the connectivity be-
tween the nodes is generated randomly. Used together with artificial evolution
methodology as an approach to the problem of programming Boolean networks,
randomization is repeated while testing against a specified fitness function until
the desired result has been reached.

2.3.2 Cellular Automata

Cellular Automata[5](CA) is a network where all nodes are arranged in a grid, and
their inputs are defined to be their immediate neighbors. The classical example
of this type of network is Conway’s Game of Life[4], a Cellular Automata defined
from a small set of simple rules. Conway’s Game of Life is known as being Turing
complete, thus having the capability of general computation.
CA is a special case of Boolean networks, with each node’s inputs defined to be a set
of its neighbors. Given how conveniently a CA is organized with regards to spatial
locality (all nodes by definition will only read from those close to themselves), CA
is an architecture that can prove to be efficient when implemented in hardware.

10

Figure 2.3: Example of a two-dimensional two-state Cellular Automata network.
The squares represents cells in the network, and the lines are connections to other
cells. The cells have a state, and are connected to the neighbors in their vicinity.
This means that when the network is operating, each node will use the state of its
neighbors as input for the next iteration. While this is a two-dimensional CA, one-
dimensional and three-dimensional are two other popular types of CA networks.

2.3.3 Updating scheme

Boolean networks may also be categorized according to the kind of updating scheme
they follow. The updating scheme decides what point in time and in what order
the nodes are iterated. Synchronous Boolean networks (SBN) iterate synchronously
over all nodes, giving a deterministic and stable behavior. Asynchronous Boolean
networks (ABN) follows a scheme in which any node may update at any time, giving
a more unpredictable behavior. ABN can be divided into further subcategories (see
[2] p7-8), placing restrictions (for example defining time slots where the nodes may
update) on the updating scheme.

SBN, while easy to resonate with due to their deterministic nature, are a less
realistic model than ABN when used for simulating real-world phenomenons. As
an example, the gene networks that Kauffman’s networks originally set out to
model do not at all update in a synchronous fashion.

Another perspective: imagine a large-scale Boolean network that should be im-
plemented in hardware. In order to update all nodes at the exact same interval
significant care must be taken when designing the hardware. The question of
whether SBN or ABN is more relevant is outside the scope of this research, but
nevertheless the distinction is an significant one, so both cases are be compared.

11

2.3.4 Threshold nodes

Threshold nodes is a kind of Boolean function defined via the following rule:

Si(t + 1) =
{

1,
∑

j aijSj(t) > T

0,
∑

j aijSj(t) < T

aij denotes the existence of a connection between node i and node j, and Sj is
the state of node j. T is a threshold value set for the node. Intuitively, this can
be explained as “the next state is 1 if more than T of a node’s inputs are in the
enabled state at the current time, otherwise 0”. A variant that retains the current
state if

∑
j aijSj(t) = T is used in [19].

There is also another type: negative threshold nodes. These are the inverted case,
and can be defined as follows:

Si(t + 1) =
{

0,
∑

j aijSj(t) > T

1,
∑

j aijSj(t) < T

Threshold nodes are especially relevant to the members of the author’s research
department, and for this reason it has received extra attention in this thesis.

2.3.5 Complexity

A central topic in this research is the notion of complexity. Although by itself a
quite abstract measure, it can be divided into functional structural and functional
complexity for a bit more concrete definition.
Structural complexity refers to the complexity of the network structure itself. Ex-
amples of low and high structural complexity are shown in Figure 2.4.
Functional complexity is the complexity seen only from the behavior of the network.
For example, a network that stabilizes after few number of iterations can be said
to have a low functional complexity, conversely one that stabilizes after a long time
can be said to have a high functional complexity.

2.3.5.1 Kolmogorov complexity

The above definitions of structural and functional complexity are both instances of
the more general notion of complexity known as Kolmogorov complexity. For this
reason the general definition is included here.
Given a piece of data, the minimum number of computational resources needed
to specify it in some universal description language is known as the Kolmogorov
complexity. An example is given in Figure 2.5. It is impossible ([20]) to calculate
this complexity, so in practice an approximation is used.

12

(a) An example network with low structural complexity. One can trivially see that there is a
pattern in this particular network, specified by the rule “node N is connected to node N+1 and node
N+2”. Given the relative simplicity of this description we say that the network has a low structural
complexity.

(b) A network with high structural complexity. It
is easy to see that the connections here are more
erratic, and therefore harder to describe.

Figure 2.4: Examples of structural complexity. The #-notation is used for identi-
fication of the individual nodes. Although the functions (eg. AND/OR/XOR/etc)
of the nodes is also part if the network’s structure, they have been omitted for
simplicity.

13

ab
4c1j5b2p0cv4w1x8rx2y39umgw5q85s7uraqbjfdppa0q7nieieqe9noc4cvafzf

Figure 2.5: Two examples of Kolmogorov complexity. Two strings are presented,
each 64 characters long and composed of only lowercase letters and numbers. Using
English as the universal description language, we can encode the first string as
simply “ab 32 times”, giving it a low Kolmogorov complexity. The second string,
however, does not seem to have any simple description other than the string itself
and subsequently can be said to have a high Kolmogorov complexity.

An example real life implementation (which is tested later) is using the zlib com-
pression library to encode the data. The compressability is reflected by the length
of the compressed data, and this is used as an approximation of the Kolmogorov
complexity. This is most interesting when lengths are compared with each other;
specifically how much the library is able to deflate the data is less interesting.

2.3.6 Robustness

Robustness is the property of to which degree a system is unaffected by perturba-
tions, usually caused by mutations or other random noise. Seen in the context of
Boolean networks, this could mean nodes sometimes flipping their state, ignoring
inputs or generally showing erratic behavior, but the network as a whole would still
move towards the same end state. An illustration of perturbations to a system is
found in Figure 2.6.

Robustness is observed in all biological systems in nature, and is a key aspect in
biologically inspired models ([17]). A related concept is redundancy, often used
as a means to attain robustness through duplication of calculation units. The ro-
bustness seen in nature, however, typically relies on a more complex integrated
fault-tolerance rather than simple duplication. An example is the yeast network,
presented in [19], conveniently titled “The yeast cell-cycle network is robustly de-
signed”.

2.3.7 Stability

The stability [18] of a network refers to the tendency to settle in a stable state.
While stable, the state of the network will not change unless otherwise perturbed
by an external force.

For a synchronous network, determining whether a network is in this state is a
trivial: once the network has stayed in the state continuously for more than one
iteration it is stable (given that there is no external force acting upon it). For
an asynchronous network, this is much more computationally expensive: from one
network state to the next there is often a very high number of valid following states,

14

Time

A network in some initial state

0110010110

Iterations

Final state

0000000000

Final state

1111111111

Final state

1100001111

(a) Without noise

Time

A network in some initial state

0110010110

Iterations

Final state

0000000000

Final state

1111111111

Final state

1100001111

NOISE

(b) With noise

Figure 2.6: A robust network with and without perturbations. The dotted lines
represent possible paths from the initial state, while the solid one is the actual
execution. When the network is perturbed, the execution path is noticeably dis-
turbed, but the final state is still the same. If the network was less robust, or the
noise was more significant, the network might end up in a different end state. A
robust system naturally aims to minimize this kind of error.

15

and an approximation by observing whether a certain number of successive states
are equal, is used instead.

16

Chapter 3

Theory

3.1 Methodology

While Boolean networks and artificial development recently has seen increasing
attention, the field is still relatively new and at an early stage. There is still a lack
of theoretical foundation and universally accepted methodology for the research.
We aim to advance the field by proposing a clear overview of the various network
structures and their effect on robustness. The main focus of this paper is to bet-
ter evaluate what kinds of networks that are suitable for practical use in future
applications of Boolean networks.

In order to the achieve this we will apply the scientific method through simulation
for verification. The need for simulation appears because there is not yet any actual
implementation of these networks in use.

Initially a hypothesis on the behavior of the networks is established, for example
“Random Boolean networks in general have more complex behavior than Cellular
Automata”. Next an experiment testing this idea is designed, such as “Test 100
random Boolean networks and 100 Cellular Automata and observe their behavior
over 1000 iterations each”. Using the simulation library developed for this research,
the experiment can then be implemented and executed, producing detailed data
on how the networks behave. Finally, this data is processed with statistical tool
such as R1 and GraphViz2.

Building upon these results, further experiments may be devised, leading the way
towards a better understanding of the Boolean networks. More specifically, it is
hoped that it may show which kinds of network are more likely to carry robust
characteristics. This is especially relevant in order to find out to what degree the
network type actually influences the potential for robustness.

1The R Project for Statistical Computing, http://www.r-project.org/
2Graphviz - Graph Visualization Software, http://www.graphviz.org/

17

http://www.r-project.org/
http://www.graphviz.org/

3.2 Network structure

It is quickly evident from experimenting with simulation packages that the be-
havior of a network varies significantly depending on it’s network structure. One
of the overall goals is to elaborate further on these differences and get a sense of
which types of networks that allow for complex, yet robust operation. For network
structure, the following will be examined:

• Cellular Automata in 1, 2, and 3 dimensions
• Random Boolean networks with varying number of inputs

For node types (basically the truth table of the node), the following groups will be
examined:

• Threshold nodes
• Negative threshold nodes
• AND/OR/XOR

3.3 Metrics

For the comparison of the network structures, a set of metrics is proposed.

3.3.1 Basin evaluation

A good way to understand the stability of a network is looking collectively at the
final states. The basin evaluation method does this by N times resetting the network
to a random initial state and iterate it until it stabilizes. The basin corresponding
to each end state is incremented, and the end result with N set sufficiently high is a
set of basins approximating the distribution of the states the network will usually
end in. This is illustrated in Figure 3.1.
This computed set of basins can be used for further analysis, for example as a
fitness for evolutionary algorithms.

3.3.2 Functional complexity

In [20], zlib compression is used to approximate Kolmogorov complexity in order
to measure the structural complexity of networks. Inspired by this method, zlib
is also used for our measure of functional complexity. Put more specifically, it is
done as follows: for every iteration of the network, the state over all the nodes is
combined into a single string of 0’s and 1’s, such as 00110101. Next, these strings
(which are generated once per iteration) are concatenated and the resulting long
string is run through zlib. The size of this deflated string compared to the size of
the original concatenated string, is the metric we are interested in.

18

Initial states

011010 101010 010001 110111

Time

011010 101010 110111

Basins

Figure 3.1: An example basins evaluation for 4 different initial states, shown at the
top. For each unique end state, a basin is created, and the number of init states
leading to this basin is counted. In this case, the end result is three basins of size
respectively 1, 2, and 1.

19

The functional complexity tells us more about how a network behaves in operation,
as opposed to properties like how big it is or how it is connected. This is especially
important, because as Kauffman and Wolfram showed in their research, even small-
scale trivial machines can exhibit surprisingly complex behavior.

3.3.3 Intermediary state count

With the right set of parameters, most network permutations will stabilize after
a number of iterations. Determining the average value of this number is the goal
of the intermediary state count metric. Given a certain network, it works by N
times resetting it to a random state, and each time let it iterate T times until the
network has stabilized. The average of needed T iterations (once for all N resets)
becomes the final metric.

3.3.4 Robustness

This is a metric derived from the basin evaluation of a certain network and the basin
evaluation of its perturbed variants. It relies on the premise that a robust network
will function much the same way even when perturbed. As such, the results of the
basins evaluation on the initial network, and the perturbed variant should ideally
be largely the same. The robustness is then measured by the difference between
the original and perturbed sets of basins.
While generating the basin sets is a relatively trivial task, comparing them is more
of a challenge. Average basin size, basin size distribution and hamming distance
between basins, are some properties that may be considered and weighted in order
to get a well balanced metric for the robustness. In the following sub-sections
these will be explained in detail. Note that these properties operate specifically on
multiple sets of basins in a comparative manner (in contrast with properties that
evaluate a single basin set of its own such as the basin entropy).

3.3.4.1 Average basin size difference

The average basin size is calculated by calculating the average basin size over a set
of basins, once for the initial set and once for the perturbed set(s) of basins. The
difference between the initial average basin size and the perturbed average basin
size becomes the final metric.

3.3.4.2 Basin size distribution

Basin size distribution refers to the comparison of the individual basins, from the
initial and the perturbed set. Two identical basin sets would give a top score, and
degrees of different basin sizes will give corresponding degrees of penalties to the
score.

20

Figure 3.2: Calculation of functional complexity. The string at the top is the
initial state over the network, and following the arrows downwards are the following
state-strings for each iteration, which are concatenated and sent through the zlib
compressor. At the bottom the compressed result is shown. The final metric
of interest is the length of this compressed string divided by the length of the
concatenated string.

21

3.3.5 Basin entropy

Yet another basin evaluation derived metric; the basin entropy measure takes a
set of basins as input, and calculates a single value that reflects how entropic this
set is. Small sets of large basins will yield large values, while larger set of smaller
basins will yield lower values and can be said to be more entropic.

22

Chapter 4

Simulation

4.1 The simulation library

A software package was written to carry out the simulations. It allowed for contin-
uous iteration of Boolean networks with an arbitrary K inputs. It also allowed for
specifying the logic function for all nodes or individual ones. Being written in Ruby,
an interpreted high-level language, for the purpose of assisting in prototyping and
generating test data, it has been helpful in several simulations already.
The state across the network over time will be initialized, and then after every
iteration read from the nodes and written to file. Next, the data was analyzed
using R, a much used programming language for statistical computing. Theories
and assumptions from earlier sections will be tested based on this work. Some
examples of the output from the simulation software, processed with R and graphed
is found in Figure 4.1.
In addition, a graphical user interface was also written in order to assist the frequent
experimentation with different kinds of networks. A screen-shot is shown in Figure
4.3. This lets the user quickly visualize the effect of certain network parameters,
as well as perform live modifications such as changing certain node types or apply
simulated noise. It is also able to output the network structure into a format that
can be read and rendered into a graph by GraphViz.

4.1.1 Choice of language

When the time to choose language came around, the choices were two-fold: com-
piled languages such as Java/C/C++, or interpreted language such as Python/Ruby.
Running simulations often becomes a very CPU-intensive task due to the large scale
of the networks, and a compiled language would make this execution significantly
more efficient. However, also taking the need for rapid development and prototyp-
ing into consideration also puts the interpreted languages into a good position.

23

Figure 4.1: Simulation of a Boolean network of width N=50 and number of inputs
K=2. Similar to in figure 2.2, each line represents one iteration and the state of
each node in the network. A space-character and an “X”-character respectively
signifies a 0- and 1-state.

24

Figure 4.2: Simulation of a Boolean network of width N=50 and K=4, Note that
this time there is no clear visible pattern in the network’s behavior (the network
does not stabilize for K > 3, consistent with [2]).

25

Figure 4.3: A Qt-based graphical user interface built to easier experiment with
generation and simulation of networks. On the left is the on/off state of the net-
work’s nodes over time, and on the right a command-line interface for controlling
the simulation.

26

As for the specific choice of interpreted language, the differences are less significant.
The author has more experience with Ruby, and this made it the final choice.

4.1.2 Structure

The library is centered around a set of base classes suitable for derivation. Boolean-
Function represents a single Boolean function holding an on/off state, accepting
an arbitrary number of inputs and a function that can generate the next state
based on the inputs. BooleanNetwork represents a Boolean network, holding a
set of connected Boolean functions. While the functions allow different number of
inputs, the network will for simplicity only allow a homogeneous number of inputs.
By sub-classing these base classes, the library allows for much customization.
As a part of the thesis, used for experimenting, the following specializations of
BooleanNetwork and BooleanFunction were created:
YeastNetwork In order to test the capabilities of the library, as well as verify the

robustness of the Yeast Network[?], this special case Boolean network was
created.

TypeNetwork/TypeFunction Because the networks used in the experiments
mainly were built up of common Boolean operators such as AND/OR/XOR/etc,
these classes were created to rapidly execute experiments with these types of
networks.

TableFunction Often the behavior of a Boolean function is specified by a truth
table. This class enables the BooleanFunction class to also have that
capability.

4.1.3 Experiment module

As a part of the paper many experiments were to be carried out, and for this
reason an experiment module was also created. This module handles the external
parameters passed on to any experiment carried out, allowing the experiments to
be reproduced, as well as the parameters themselves be logged.
All parameters have sensible default values, while additional ones may be specified
through the command line.

4.2 Network parameters

Most experiments rely on randomly generated networks. The generation of these
networks is in turn influenced by network parameters. These parameters are de-
scribed in this section.
Note, the parameters listed here apply to the generation of the network as a whole,
and the nodes it consists of.

27

4.2.1 Network size

The network size is the number of nodes in the network. While this is a parameter
that should not directly influence the behavior of the network, it is important to
make sure the conclusions drawn are consistent irregardless of network scale.

4.2.2 Node type

For many experiments, the type of nodes is randomly chosen from a small set of
candidate types. This set may be supplied as the node type set, typically a subset of
the available node types. The three candidate sets that were used in this paper are
[And, Or, Xor], [Threshold-1, Threshold-2, ...]1, and [NThreshold-1, NThreshold-2,
...].

4.2.3 K (input count)

K is the number of inputs to each node (see [2] for more on how this affects Boolean
networks). This can be be both uniformly or non-uniformly set, but for simplicity
we will only consider the uniform case.

4.3 Simulation parameters

4.3.1 Updating scheme

The updating scheme is what specifies which nodes are updated at each iteration
step under normal operation. Although many schemes exist, the most important
distinction is that of synchronous versus asynchronous iteration (more in section
2.3.3).

4.3.2 Iteration count

After each network state reset, how many iterations are performed on the network.
The definition of an iteration depends on the updating scheme.

4.3.3 Reset count

For a single network, how many times the state is reset to a random one.

1Specifically how many types are in these sets varies according to the input count in the
network. For example, it does not make sense to allow a Threshold-4 node in a network with K
= 3, because the number of active inputs would never pass the threshold, and the node would be
in a constant state.

28

Chapter 5

Experiments

Using the simulation library, a series of experiments were performed that hope-
fully will collectively establish a basis for theories and improved understanding of
Boolean networks. These experiments are centered around a set of 15 different
network configurations that are related on some points. These network configu-
rations were created by setting up many different permutations of the following
parameters:
BN/CA Boolean network or Cellular Automata
#x#D Width and dimension count, 1 to 3, for CA
K# Input count, from 2 to 4, for BN
Threshold/NThreshold/AndOrXor Node types, for BN
In the experiments the configurations are denoted by a single dash-adjoined string.
An example configuration is BN-K3-NThreshold for a Boolean network with input
count K = 3 and negative threshold nodes, or CA-8x2D-Threshold for a two-
dimensional Cellular Automata network of width 8, with threshold nodes.

5.1 Complexity in Wolfram’s 1D CA

The functional complexity measure was proposed, but has not been tested. To see
whether this metric reflects the qualities we are interested in, it was tested with
the networks from Wolfram’s 1D CA experiments[21]. These networks work by
homogeneously assigning a single rule-set to all nodes, taking two adjacent nodes
and the node itself as an input. Thus each node has 8 (23) different possible input
value combinations. Then, for each combination the next state of the node may be
0 or 1, resulting in 256 (28) possible rule-sets. Simulation of two networks generated
using this method is shown in Figure 5.1.
1118 networks evenly divided into the 256 different rules were generated, and for
each network a functional complexity measurement using zlib was carried out. The

29

(a) Rule #68, showing a quickly stabilizing network.

(b) Rule #120, showing a network with significantly complex interaction.

Figure 5.1: Two examples of running Wolfram’s 1D Cellular Automata, gener-
ated using the Java applet at http://www.cs.uic.edu/~wilkinson/Applets/
automata.html. Each CA is initiated to a random state (the first line at the
top), and moving downwards the state of the network at each step can be seen
changing. The most striking observation from this is the span in the complexity
between the two, even though they are both based in similar simplistic rules.

30

http://www.cs.uic.edu/~wilkinson/Applets/automata.html
http://www.cs.uic.edu/~wilkinson/Applets/automata.html

●

●
●

●
●

●
●

●

●
●

●●
●

●●
●

●
●

●●

●

●
●●

●

●●

●
●

●

●●
●

0.00 0.05 0.10 0.15

25
50

75
10

0
12

5
15

0
17

5
20

0
22

5
25

0

R
ul

e

Complexity

Simple ruleO

Complex ruleO

Figure 5.2: Wolfram complexity experiment

31

results are shown in Figure 5.2. Judging from the small height of the boxes in
the box plot, one can see that the measure gives a consistent evaluation of the
complexity. Also, the two networks in Figure 5.1 (68 and 120 on the vertical axis)
have been marked in the figure. The simple rule has a low complexity value, while
the complex rule has a high complexity value.

5.2 Basin evaluation

As an initial experiment, a simple count of the basins was performed. About 10
000 Boolean networks of 15 different sorts were randomly created. Next, the basin
evaluation was carried out for each network, and the resulting number of basins
counted. The results are shown in Figure 5.3a. While the Boolean networks mainly
have low basin counts, the CA networks (in particular 1D and 2D CA) frequently
touch the upper limit of basin counts (set to 200). This points to those networks
having entered chaotic state space (leading to arbitrary end states and as a result
large number of small basins).

In order to get rid of these uninteresting small basins, a second experiment (shown
in Figure 5.3b) filtering out all basins smaller than a certain threshold, was carried
out. This time it is clear that the CA networks in question do not produce any
large basins: only a few outlier cases have basins larger than the threshold.

5.3 Intermediary state count

Next up is a look at the intermediary state count. Using the method from section
3.3.3, the results shown in Figure 5.4 were produced. In the same way that the basin
evaluation shows networks that do not stabilize with very high numbers of basins,
the intermediary state count shows these networks with the count approaching the
upper limit of the metric.

5.4 Functional complexity

Similar to basin evaluation and intermediary state count, also the functional com-
plexity was measured for all the network types. The measurement was executed
using zlib as described in section 3.3.2, and the results are shown in Figure 5.5.

The most noticeable observation is the large difference between CA and BN network
types; the Boolean networks in general have higher functional complexity than CA
irrelevant of their node types.

32

● ●●● ●● ●●●●● ●●●● ● ●● ●●●●● ●●●●●● ● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●●●● ●●●● ● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●●●

● ●●●● ● ●●●● ●●●●●● ● ● ●●● ●●●● ● ●● ●● ●● ●●● ●●● ● ● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●●● ●●● ● ●● ●●●● ●● ●●● ● ●● ●● ●● ● ● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ●●● ● ● ● ●● ●● ●● ● ●● ●● ●●● ●● ● ● ●● ●●● ● ●●● ●●● ●● ●●●● ● ●●● ●●●● ●●●● ●●● ●● ● ●● ●● ●●●●

●●●

●● ●●● ● ●● ●●●● ●●●● ● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●● ● ● ●● ●● ●● ●● ● ● ●● ●● ● ●●● ●● ●● ●● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●● ● ●● ●●●● ●● ●●● ● ●● ●●● ● ● ● ●● ●●●

● ●●● ●●●● ●● ● ●●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ● ●●● ●● ● ●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ● ● ●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ● ●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ●●●●

●●●

● ●●● ●● ● ● ●●● ● ● ●●● ●●●● ● ●● ●● ●● ●●● ●●● ● ● ●● ●●●● ●● ● ●● ●●●●● ●●●● ● ●●●● ●●● ●●● ●● ●● ● ●●

●●●

● ●●●● ●●●● ●● ●●●● ●●● ●● ● ●● ● ●●●●●●●● ●● ●● ● ●●● ●●● ●● ● ●●● ●● ●

●● ●● ●●● ● ●● ● ●●

●●●●●●●●●●●●●●●●●

●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●● ●●

●●●● ●●● ●● ●● ●●●● ●●● ● ●●● ●●●● ●●●●● ●●● ●● ●●● ●● ● ●●● ●

● ●●●● ●● ●● ●● ●●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●● ●●● ●● ●●●● ●●● ● ●● ●● ●●● ● ●●● ● ●● ●●●●● ●

BN−K2−AndOrXor

BN−K2−NThreshold

BN−K2−Threshold

BN−K3−AndOrXor

BN−K3−NThreshold

BN−K3−Threshold

BN−K4−AndOrXor

BN−K4−NThreshold

BN−K4−Threshold

CA−4x3D−NThreshold

CA−4x3D−Threshold

CA−64x1D−NThreshold

CA−64x1D−Threshold

CA−8x2D−NThreshold

CA−8x2D−Threshold

0 50 100 150 200

Basin count

(a) Basin count

● ● ● ●● ●● ●●● ●●● ●●● ● ●● ●●● ●● ● ●●●●● ● ●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●●

●● ●●●● ●●● ● ● ●● ●● ● ● ●●● ●● ●●● ●●● ●● ●● ●● ● ● ●●● ●● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●● ● ●● ●● ●● ●●●● ●● ●● ●●● ●●● ●● ● ●● ●● ● ● ●●

●●●●

● ●●●● ●● ● ● ●● ● ●●● ●● ●●● ●● ●● ● ● ●●● ●●● ● ● ●●● ● ●● ●● ●● ●●●● ● ●●●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ● ●● ●● ● ● ●● ●●●

● ●●●● ●●● ● ●●●

●

●●● ●● ●● ●● ●● ● ●● ● ● ●●● ● ●●● ●●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●● ●● ● ●●●● ●●● ●●● ●●● ● ●●● ●● ●●●

●●● ●● ●●●● ● ●

● ●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●● ●●●●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●● ●●● ●●

● ●●● ● ●●● ●● ●● ●●

● ●●●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●● ●●●●●● ●● ●●●●●● ● ●●● ●● ●●● ●●● ●● ●●●●● ● ●●● ●●●● ●●● ●● ●●●●● ●●●●●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●●●●● ●● ● ● ●● ●●●●●● ●●●●● ●●●●●● ●●● ●● ●● ●●●●●●● ●● ●●● ●●●●●●● ●● ●● ● ●● ●●● ● ●●●● ●●●●●● ●●●● ●● ● ●● ●●● ●● ●● ●● ●●● ●●●● ● ●●● ●● ●●● ●●● ●●

●●●

●●● ● ●●● ●● ●●● ●● ●●● ●●● ●

● ●● ●●● ●●●● ●●●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●

BN−K2−AndOrXor

BN−K2−NThreshold

BN−K2−Threshold

BN−K3−AndOrXor

BN−K3−NThreshold

BN−K3−Threshold

BN−K4−AndOrXor

BN−K4−NThreshold

BN−K4−Threshold

CA−4x3D−NThreshold

CA−4x3D−Threshold

CA−64x1D−NThreshold

CA−64x1D−Threshold

CA−8x2D−NThreshold

CA−8x2D−Threshold

0 5 10 15 20 25 30

Basin count

(b) Filtered basin count. All basins of smaller size than 5 were excluded in
the count.

Figure 5.3: The basin count experiment. About 700 random networks of each type
was generated, and the number of basins generated by the basin evaluation (section
3.3.1) is counted.

33

●●● ●● ●● ● ●●●● ● ● ● ●●● ●● ●● ● ●● ● ●● ● ● ●●●● ● ●● ●● ● ●●●●● ●● ● ●● ●● ● ●●● ●●●●● ●●● ●● ● ●● ●●● ●●● ●●●● ●● ●●● ● ●● ● ●● ● ●

●● ● ●● ●●●● ● ●● ●●●●● ● ● ●●● ●● ●●● ● ●●● ●● ● ●●●● ● ●●● ●●● ●● ● ●●● ●● ● ●●● ● ●●●● ●● ●● ●●●●● ●●● ●●● ●● ●●●● ● ●●●●●● ● ●● ● ●● ●● ●● ●●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●●●

●●●●●● ●●●● ●●

●●● ●●● ●●● ● ●●●● ● ●● ●●●● ●●●● ●●● ●●● ●● ● ●●● ●● ●●●● ●●● ● ●●● ●●● ●● ● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●●

● ● ●●● ●●●●●●

● ●●● ●●●● ●●●● ● ●● ●● ●●● ●● ● ●●●● ●●● ●● ● ●● ● ●● ● ●● ●●●●● ● ●● ●●

●●●●●● ●●●●●● ●●●

●● ●● ●● ●●● ● ●●● ●●● ●● ●●●●●●●● ●● ● ●● ●●● ●●●●●

● ●●● ●● ●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●● ●●● ●● ●● ●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●●●● ●● ● ●●●●●● ●●●●●●●●

●● ●●● ●● ● ●● ●

BN−K2−AndOrXor

BN−K2−NThreshold

BN−K2−Threshold

BN−K3−AndOrXor

BN−K3−NThreshold

BN−K3−Threshold

BN−K4−AndOrXor

BN−K4−NThreshold

BN−K4−Threshold

CA−4x3D−NThreshold

CA−4x3D−Threshold

CA−64x1D−NThreshold

CA−64x1D−Threshold

CA−8x2D−NThreshold

CA−8x2D−Threshold

100 150 200 250 300 350 400

Intermediary state count

Figure 5.4: Intermediary state count. Each network was iterated for a maximum
of 400 iterations, and the stabilization threshold (how many iterations the network
must stay unchanged to be deemed stable) was at 60 iterations. This threshold
will also thus act as a lower bound; there is no network that achieves a lower
intermediate state count than 60.

●●● ●●● ●●●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●● ● ●●●●● ●●●● ●●● ●●●●● ●●●●● ●●● ●●

●● ●

●

● ●●●● ●●●

● ●●●●

●

●●

●●

●

BN−K2−AndOrXor

BN−K2−NThreshold

BN−K2−Threshold

BN−K3−AndOrXor

BN−K3−NThreshold

BN−K3−Threshold

BN−K4−AndOrXor

BN−K4−NThreshold

BN−K4−Threshold

CA−4x3D−NThreshold

CA−4x3D−Threshold

CA−64x1D−NThreshold

CA−64x1D−Threshold

CA−8x2D−NThreshold

CA−8x2D−Threshold

0.02 0.03 0.04 0.05

Complexity

Figure 5.5: Functional complexity. The horizontal axis denote the deflation factor
of the zlib compression, where higher values represent higher functional complexity.

34

5.5 Intermediary state count versus functional com-
plexity

While intermediate state count and functional complexity are interesting metrics
by themselves, it is natural to question the existence of a relation between them.
That was the purpose of this experiment.
The various usual types of networks this time have their intermediary state count
and functional complexity measured, and are plotted in Figure 5.6.

35

Complexity

In
te

rm
ed

ia
ry

 s
ta

te
 c

ou
nt

100

150

200

250

300

0.01 0.02 0.03 0.04 0.05

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●●

●

●●
●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●●

●

●
●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

● ●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●

●●

●

●
●

●
● ●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●
●●

●●

●

●

●
●

●

●

●

●

●●
●● ●●

●

●

● ●●

●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●● ●●

●

●
●

●●
●

●

●
● ●

●●
●

●
●

●

●

●●

●

●

●

●

●
●●

●●●
●

●

●●●

●●
●

●

●
●●

●

●
●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

● ●
●

●
●

●

●

●

●● ●●

●

●

●

● ●

●

● ●
●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●●●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●●
●

●

●

●

●
●

●
●

●
●●

●●

●
●

●

● ●

●

●
●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

● ●

● ●

●

●
●●

●

●

●●

●

●●
●

●
●

● ●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●●
● ●● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●

●●
●● ●

●
●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

●

● ●
●

●

●
●● ● ●

● ●

●
●

●
●
●●

●

●

● ●

●●
●

●●
●

●●
●

●●
●

●
●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●●
●

● ●

●

●

●
●

● ●

●● ●
●

●

●
●

●

●

●
●

●
●

●

●
●
●● ●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●●●

● ●

●

● ●
●

●

●●

●

● ●

●●

●

●

●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

●

● ●●
●●

●●
● ●

●

●●
●●

●

●

●

●
●

●

●
●

●

●

●●●

●

●●
●

●
●

●

●

●
● ●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●
● ●●●
●

●

●

●

●

● ●

●

●●
●

●

●

●
●

●●●
●●

●

●

● ●

●

●

●●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●●●

●

●

●
●

●●

●

●
●

●

●

●

● ●

●
●

●●
●

●
● ●

●

●
●

●

●●
● ●

●

●
●

●

●
●

●
●

●

●

●●
● ●

●

●●

●●
●

●
●●

●

●

●

●● ●

●

●●
●

●

●

●

●

●
●

● ●
●

●●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●
●

●●

●●

●●●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●
●

●

●

●
●●●

●

●
●

●●
●

●●

●

●

●

●
●●

●

●
●

●

●

●●

●●●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●
●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●

●
●●●●

●
●

●
●●
●●●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●

●
●

●

●
●

●
●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●●●

●●

●

●

●●
●

●
●●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●
●

●

●●

●●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●●●●

●

●
●
●

●

●●

●

●●●
●

●

●●
●●

●

●

●
●

●●

●

●

●

●●

●

●●

●
●

●●● ●

●

●
●

● ●●● ●● ●●
●

●●

●

●

●

●●●●●
●●

●●

●

●●●● ●●
●

●

●● ●● ●●●●●●●
●●●●●●

●

●●
●

●●●●●●
●
● ●●●●

●
●●

●
●●●

●
●●●●●●●●●

●
● ●●● ●

●
●

● ●

●

●●●●●●

●

●●●●●●●
●

●●●
●

●●●● ●
●

●●●

●
●

●● ●●●●● ●●● ●●●●●●
●● ● ●● ●

●

● ●●● ●●● ●●● ●●●● ●●●●●

●

●● ●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●●● ●●
●

●
●● ●●

●
●●●●

●

●● ●
●
●●

●

●●●●●●●
● ●●●●

●●●●
●●

●

●● ●●●●
●●●● ●●

●
●●●

●
●● ●●
●●

● ●●●●●

●

● ●●●
●

●●●
●● ●●●

●
●

●
●

●
●

●
●

●
●

●●●●●●● ●

●
●●●

●

●

● ●
●

●
●● ●

●
●

●● ●

●●
● ●

●
● ●

●
●
●●●●

●
●● ●●●● ●●●●●●

●● ●
●●
●
●

●
● ●●●●●●●●

●●
●

●

●

●

●●

●

●
●

●●

●
●

●

●
●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●●
●

●

●●

●

●

●
●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●

●
●
●

●

●

●
●
●
●

●

●
●●

●●●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●●●

●

●

●
●
●

●

●●

●
●●●

●

●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●●

●●

●

●
●
●

●

●●
●
●

●

●

●

●
●

●●
●

●

●

●

●
●
●
●●

●
●

●

●
●●

●

●

●

●●

●

●●

●

●
●
●

●

●●
●●●

●
●

●●
●

●

●

●

●
●

●
●

●

●●●

●

●
●

●●

●●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●●

●

●
● ●●

●

●
●

●
●●●●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●
●●

●

●
●

●

●●
●

●●
●●

●

●

●

●
●
●

●
●

●

●

●
●

●●
●●

●
●
●
●

●

●

●●

●

●

● ●

●●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●●
● ●●

●

●
●

●

●

● ●●

●

●

●●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

● ●●
●

●

●
●●

●
●

●●●

●

●

●

●

●

●
●
●●

●●

●

●

●
●
●
●

●
●

●

●
●
●

●
●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●●

●●

●●
●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●●
●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●
●●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●●
●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●
●●

●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●●

●

●
●
●

●
●

●●●
●

●
●

●

●

●●

●●

●

●
●

●
●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

BN−K2−AndOrXor
BN−K2−NThreshold
BN−K2−Threshold
BN−K3−AndOrXor
BN−K3−NThreshold
BN−K3−Threshold
BN−K4−AndOrXor
BN−K4−NThreshold
BN−K4−Threshold
CA−4x3D−NThreshold
CA−4x3D−Threshold
CA−64x1D−NThreshold
CA−64x1D−Threshold
CA−8x2D−NThreshold
CA−8x2D−Threshold

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5.6: Intermediate state count versus functional complexity. The network
types are divided into mainly three groups: on the right the BN types, on the
upper left the negative threshold CA and lower left threshold CA. While the inter-
mediary state count and the functional complexity measures alone correspond to
the previous experiments, the combination of these shows interesting trends. CA
networks mostly have the same functional complexity, and the intermediary state
count is only slightly more varied. BN networks, however, show a tendency for
highly complex networks to have low intermediary state count, but as the com-
plexity decreases, the intermediary state count increases.

36

Chapter 6

Discussion

Next, the results from the experiments are discussed. General trends and theories
that can be derived from the observations are discussed in 6.1, and the scope and
limitations that one needs to be aware about are discussed in 6.2.

6.1 General observations

6.1.1 Network structure influence on network behavior

Compared to properties such as BN input count, CA dimension count, or node
types, the type of network structure had considerably more influence on the be-
havior of the networks in the various experiments. This is seen from the large
difference in BN and CA in most of the experiments. Even when both the BN and
CA were using the same threshold nodes, the gap was significantly large.

6.1.2 BN in general exhibits more complex behavior

The biggest difference between BN and CA is how they are connected: BN can be
freely connected, while CA has a fixed, homogeneous connection scheme between
all nodes. This gives BN an extra “degree of freedom” in the building of networks,
and this is visible in the experiments: In both the intermediary state count exper-
iment and the functional complexity experiment, the spans of the sample points
are consistently larger in the BN case than the CA case.

6.1.3 Dimension count versus input count

Dimension count (1D, 2D, 3D) and input count (K=2, K=3, K=4) are related in
the way that they define the density of the connections in the network. For the

37

basin count experiment, increasing these values lead to more basins. This is also
true for the intermediary state count: the networks spend more time stabilizing.
However, for the functional complexity the reverse trend is actually observed: for
increasing values of dimension/input count the functional complexity decreases.

6.2 Limitations

Boolean networks in general encompasses a wide range of network structures, with
a likewise wide range of differing characteristics. Iconic of this is the method
development in this field is usually done at this time: by searching through an
exceedingly large fitness landscape and progressively narrowing down the number
of paths traversed. There are simply so many possible permutations of networks
that an exhaustive is impossible in any practical sense.
In a similar fashion, while a complete overview of this landscape is desired, certain
limitations had to be applied in order to keep the scope of the research manageable.
In this section these limitations are discussed.

6.2.1 Network structures

Only N-dimensional CA networks and RBN networks were considered, but there
are other connection schemes that could be tested as well. For example, a locality
threshold that only connects nodes that are (assuming they’re positioned in some
N-dimensional space) close to each other, could allow the creation of networks that
have the same locality and “change propagation” properties (in the sense that a
state changing on one node will not affect other parts of the network until it has
propagated that far) of the CA, while still permitting the freer connectivity of the
BN scheme.

6.2.2 Node types

InWolfram’s experiments with rule sets for 1-dimensional Cellular Automata shows,
small changes in the truth tables make large impacts to the functional complexity
of the resulting network. While it is reasonable to believe that this also holds for
other types of networks, and that followingly many different node types must be
evaluated for these as well, nevertheless for simplicity a few representative ones
were chosen.

6.2.3 Feedback loops

The definition of stability used so far in this paper defined stable state as one that
does not allow any changes in states. However, certain definitions also include
having entered a feedback loop as a stable state. This means that although nodes

38

are still changing states, they repeatedly at some point in time go through the same
state.
Efficiently detecting whether one has entered such a feedback loop is considerably
more challenging than the opposite case (which is simply checking if the previous
states are equal to the current one). In addition, detecting them in the case of asyn-
chronous networks is also magnitudes more complex. For these reasons, feedback
loops were not considered a stable state.

39

40

Chapter 7

Conclusion

In this paper, methods for evaluating behavior of Boolean networks were proposed.
The basin evaluation allows a view of the different end states that a certain network
ends in. The intermediary state count measures how long it takes the network to
stabilize. The functional complexity measures how complex the iteration in the
network is.
Using these measures, a set of 15 different network configurations were tested and
discussed. CA networks were observed to have much less functional complexity
than BN, and in general BN seems to have more potential for complex behavior.
It was also observed that for increasing values of dimension count/input count the
functional complexity decreases.

7.1 Future work

The Limitations section of the previous chapter describes the many constraints that
were applied throughout the research of this paper. A perhaps obvious continuation
to the work would then be to remove these constrains and broaden the set of
network parameter permutations in which the experiments were executed.
There are also, however, areas that were excluded due to time pressure. The most
significant of these is the experiments including noise simulation: The simulation
library allows nodes to have a failure probability assigned, and for every update
this dictates whether the node’s update should be work as expected, or simulated
failed. An experiment applying this setting to the nodes at different probabilities
was executed, but there was not enough time to include the results here. Because
the program for the experiment is included, this experiment is left as future work.

41

42

Bibliography

[1] S.A. Kauffman, Self-organization and adaptation in complex systems, in: The
Origins of Order: Self-Organization and Selection in Evolution, Oxford Uni-
versity Press, New York, 1993, pp. 173–235.

[2] C. Gershenson, Introduction to Random Boolean Networks, 2004
[3] Francis Heylighen, Center "Leo Apostel", Free University of Brussels, Belgium:

The Science of Self-organization and Adaptivity
[4] M. Gardner, “The fantastic combinations of John Conway’s new solitare game

“life””, Sci. Am. 223(4), 1970
[5] E.F. Codd, “Cellular Automata”, Academic Press, 1968
[6] Amdahl, G.M.. “Validity of single-processor approach to achieving large-scale

computing capability”, Proceedings of AFIPS Conference, Reston, VA., pp.
483-485, 1967

[7] Gustafson, J.L., “Reevaluating Amdahl’s Law”, CACM, 31(5), pp. 532-533.,
1988

[8] D. Floreano, C. Mattiussi, “Bio-inspired artificial intelligence”, Ch. 7 Collec-
tive systems, pp 515-584, 2008

[9] D. Floreano, C. Mattiussi, “Bio-inspired artificial intelligence”, Ch. 5 Immune
systems, pp 335-396, 2008

[10] C. C. Santini, G. Tufte, P. Haddow, “Bio-inspired Reverse Engineering of
Regulatory Networks”

[11] C. Erbas, A. D. Pimentel, M. Thompson, S. Polstra, “A Framework for
System-Level Modeling and Simulation of Embedded Systems Architectures”,
2007

[12] D. Thomas, W. Luk, “FPGA Accelerated Simulation of Biologically Plausible
Spiking Neural Networks”, 2009

[13] S. Gobron, F. Devillard, B. Heit, “Retina simulation using cellular automata
and GPU programming”, 2007

[14] S. Borkar, ”Designing Reliable Systems from Unreliable Components: the
Challenges of Transistor Variability and Degradation”, 2005

43

[15] S. Huang, “Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery”, Journal of Molec-
ular Medicine, vol. 77, no. 6, pp. 1432 - 1440, 1999

[16] ”Molecular devices and machines”, V. Balzani, A. Credi, M. Venturi, Nano
Today, 2007

[17] Kitano, 2004 H. Kitano, Biological robustness, Nature Reviews Genetics 5
(2004), pp. 826–837

[18] Kauffman, S.A., Metabolic stability and epigenesis in randomly constructed
genetic nets, J. Theo- retical Biology, Vol. 22, 437-467, 1969.

[19] Li F, et al. The yeast cell-cycle network is robustly designed. Proc. Natl Acad.
Sci. USA (2004)

[20] Lehre, P., Haddow, P.C.: Developmental mappings and phenotypic complex-
ity. Proceeding of CEC 2003, 62–68 (2003)

[21] Wolfram, S. (2002). A New Kind of Science, Champaign, IL: Wolfram Media,
Inc.

[22] Leclerc, R. D.: Survival of the sparsest: robust gene networks are parsimo-
nious, Mol Syst Biol. 2008

[23] Wagner A (1996.) Does evolutionary plasticity evolve? Evolution 50:
1008–1023.

44

	Title Page
	Problem Description
	Introduction
	Sparsely connected networks
	Problem description
	How the problem was approached

	Background
	Parallel/Distributed computing
	A new paradigm for massive parallelization
	Types of problems

	Emergence and self-organizing systems
	System applications
	Nanoscale machinery

	Boolean networks
	RBN (Random Boolean Networks)
	Cellular Automata
	Updating scheme
	Threshold nodes
	Complexity
	Kolmogorov complexity

	Robustness
	Stability

	Theory
	Methodology
	Network structure
	Metrics
	Basin evaluation
	Functional complexity
	Intermediary state count
	Robustness
	Average basin size difference
	Basin size distribution

	Basin entropy

	Simulation
	The simulation library
	Choice of language
	Structure
	Experiment module

	Network parameters
	Network size
	Node type
	K (input count)

	Simulation parameters
	Updating scheme
	Iteration count
	Reset count

	Experiments
	Complexity in Wolfram's 1D CA
	Basin evaluation
	Intermediary state count
	Functional complexity
	Intermediary state count versus functional complexity

	Discussion
	General observations
	Network structure influence on network behavior
	BN in general exhibits more complex behavior
	Dimension count versus input count

	Limitations
	Network structures
	Node types
	Feedback loops

	Conclusion
	Future work

