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Abstract

Distributed Multimedia Plays (DMP) is a virtual collaboration system
intended to provide real time audiovisual communication between multiple
users. The system will produce near-natural picture and sound quality.

This report explores the requirements of a camera interface unit for DMP.
This device interfaces with several image sensors and allows them to com-
municate on a common serial communications channel based on the PCI
Express standard. The noteworthy features of PCI Express are outlined, and
the standard is compared to the alternative Aurora communications protocol.

A functional prototype of a camera interface system has been imple-
mented in VHDL and synthesised for an FPGA. The theoretical performance
of this system is analysed and its suitability for use with DMP is evaluated.
The results show that real time performance is possible with this architecture
using a single PCI Express lane.

As PCI Express is originally an internal computer bus, a simple test has
been performed in order to determine whether it can be employed as an
external communications interface. The results show that reliable communi-
cation is possible across distances of 1.5 meters or more.
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1 Introduction

The Distributed Multimedia Plays (DMP) [Røn07] is a virtual collaboration sys-
tem intended to provide real time audiovisual communication between multiple
users. This system will provide near-natural picture and sound quality, meaning
that the quality should approach the limits of human perception. Parts of the DMP
system will require technologies that are not yet available, but which have been
projected to be developed within the coming years.

The DMP system is superficially similar to traditional videoconference and video
telephony systems. Each user has one or more cameras, one or more display de-
vices and a two way communication link for video and audio. A more recent
evolutionary step in videoconference technology is the telepresence concept, ba-
sically a buzzword describing videoconferencing systems with higher audiovi-
sual quality than the traditional solutions. One example is Tandberg’s T3 product
which supports three simultaneous video streams in 1080p HDTV resolution and
CD-quality stereo audio using a 12 Mb/s (megabits per second) network connec-
tion. [Tan09]

DMP is the logical extension of this trend. DMP aims to become a system that en-
ables virtual collaboration in new fields such as music production, song lessons,
theatre, (figure 1b) opera, games and medicine (e.g. surgery). DMP will also en-
hance the experience in existing usage areas such as videoconferences (figure 1a)
and video telephony.

(a) A work lunch (b) Collaborative theatre production

Figure 1: DMP usage scenarios.[Røn07]

To achieve all this, DMP will introduce new features such as wall-sized display
devices covering one or more walls in a room, stereoscopic vision, multi-view and
multichannel audio. Image resolution, colour depth and frame rate will have to
be improved substantially over existing solutions in order to achieve near-natural
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quality.

All these improvements will require significantly improved network resources
compared to traditional videoconferencing solutions, in terms of both bandwidth
and latency. Traditional videoconferencing systems often have time delays of sev-
eral hundred milliseconds, which may be acceptable for speech. Collaborative
music production on the other hand will require latencies in the order of 10–20
ms for the participants to be able to keep their tempo. The improved picture spec-
ifications may require network bandwidths of several tens of gigabits per second,
depending on the amount of movement in the scene. [Røn07]

New display and camera technologies will most likely be required, and video en-
coding and decoding systems will probably have to be purpose-built hardware in
order to support the bandwidths and latencies required. These parts can be im-
plemented using field-programmable gate array (FPGA) devices, which have the
advantage of being reprogrammable.

This report explores part of the design space for a DMP camera interface system.
More specifically, the PCI Express interface standard is outlined and examined
with focus on how it may be employed for video transport on a point-to-point se-
rial link. A prototype of a camera interface unit, which reads parallel data from
cameras and pushes that out on a PCI Express link, is implemented in synthe-
sisable VHDL (VHSIC hardware description language; VHSIC: very-high-speed
integrated circuit). Finally, options for a physical transport medium are discussed.

This report is organised as follows. Section 2 explains DMP in more detail. Sec-
tion 3 details what requirements a camera interface unit must fulfil in order to be
successfully used as part of a DMP system. Section 4 explains relevant parts of
the PCI Express interface standard and signalling protocol. Section 5 describes the
hardware devices most relevant to an implementation of a camera interface unit,
and section 6 explains the relevant third party logic cores.

Section 7 details a VHDL implementation of a prototype camera interface unit.
Section 8 explores the efficiency and protocol overhead of the PCI Express inter-
face described in the previous section, discusses some alternative design choices
that might have been used, and suggests some possible improvements.

Section 9 explores ways of extending the PCI Express electrical signals over a
useful distance using different types of cables. Finally, section 10 summarises the
report and makes some concluding remarks.
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2 DMP — background information

The DMP system [Røn07] introduces substantially stricter quality requirements
compared traditional audiovisual communication systems. A fully realised system
may use wall-covering displays, high pixel densities and high bit depths, and spe-
cial features such as adaptive multi-view and stereoscopic vision may be adopted.
Traffic generation experiments have shown data rates of compressed video peak-
ing at 60 Gb/s for part of a scene.

These new characteristics will require new systems for transport, encoding and
decoding of image data. The realisation of the complete DMP system calls for
work in several different fields of research. While the system as a whole is un-
likely to be fully realised for several years, work is ongoing on central parts of the
system, many of which can be designed and tested independently.

2.1 Video capture

Images will be captured using a camera array system, 3 × 3 being a likely con-
figuration. A complete scene in DMP may be captured by several such camera
arrays.

A DMP video capture system analyses the image and separates foreground ob-
jects from the background. Each object is handled separately, allowing important
objects such as human actors to be encoded using parameters different from e.g.
the ones used to encode the background object.

2.2 Quality shaping

A DMP system must be able to guarantee a maximum end-to-end latency. If the
network is congested, network nodes may employ selective package dropping in
order to avoid exceeding the latency requirements. Objects in a scene are therefore
split into sub-objects, allowing the network to drop part of the information used
to encode an object, without losing the entire object. As long as at least one sub-
object is preserved, the object will be visible, but rendered at lower quality.

2.3 Network

DMP introduces the new networking protocol AppTraNet. AppTraNet combines
functionality from IPv6 [DH98] and IPsec, [TDG98] and defines new DMP-spe-
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cific functionality. In order to increase efficiency, network packets use only one
packet header; the AppTraNet header, which combines the necessary parameters
from the IPv6 and IPsec headers together with new DMP parameters.

2.4 Display

A wall-covering display may be constructed by combining smaller display de-
vices, each with its own independent video decoder and network interface. The
DMP package header includes the pixel address of the image data contained
within the package. This allows packages to be routed directly to the correct dis-
play unit.
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3 Project goals

The purpose of this report is to examine how to transport image data from multiple
parallel camera interfaces through a serial interface, using the PCI Express pro-
tocol. This protocol was chosen because it is a well established industry standard
for high speed serial communication.

Figure 2: Complete video capture and encoding system

Video compression devices are likely do be located at least a few meters away
from capture devices. Using for example a 3×3 camera array with a 10 bit parallel
interface for each camera may require over 100 data lines in total, when auxiliary
and control signals are factored in. Transporting multiple parallel signals for long
distances quickly becomes impractical, so serialising this data would be of great
advantage.

Figure 2 shows an example video capture and encoding system. Cameras are con-
nected to devices that serialise the data and sends it to a host system through a
PCI Express link. Each camera interface unit may manage several cameras, even
a complete camera array if possible. The host system encodes the video data and
transmits packets across the AppTraNet network. It may connect to several camera
interface units, and is likely to require a relatively large system memory in order to
compress several video streams at once. For camera modules that are configurable
or controllable, the host system may issue commands through the PCI Express
link.

The host system may be a computer which does video encoding in software, a
computer that delegates encoding tasks to a dedicated FPGA in order to minimise
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Figure 3: Camera interface unit overview

latency, or even a standalone device based only on FPGAs acting as PCIe root and
video encoders.

The design will be targeted at the Cypress LUPA-300 image sensor [Cyp09] and
a Xilinx brand FPGA. It should be capable of receiving data from image sensors
operating at the highest possible picture resolution at 120 frames per second (fps).
Figure 3 shows an overview of the camera interface unit architecture.
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4 PCI Express

PCI Express [PCI05, PCI06, PCI10] or PCIe is a general purpose I/O interconnect
standard, intended to replace the earlier PCI (now renamed ‘Conventional PCI’ to
avoid confusion) and PCI-X standards. PCIe retains several attributes of the older
standards but replaces their parallel bus architectures with a new scalable serial
point-to-point interface and packet-based transmission.

4.1 Basic concepts

4.1.1 Differential signalling

Differential signalling is a technique which involves using two transmission lines
to send a signal. One line sends the signal with positive voltage, and the other
sends the same signal using negative voltage. At the receiver, these signals are
combined using a subtractor (see figure 4). The opposite of differential signalling
is single-ended signalling, which uses one transmission line per signal.

Figure 4: Differential signal pair and subtractor

Figure 5: Signal pulses and noise on a differential pair

Figure 5 shows an example digital signal on a differential pair. The signal pulses
are essentially amplified by a factor of two when they go through the subtractor,
making differential signalling especially suitable for low voltage transmission.
External interference tends to affect the two signal lines equally, and thus gets
subtracted away at the receiver. This gives a high degree of noise immunity.
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4.1.2 PCI Express Link

PCI Express uses two unidirectional communications channels, one for each di-
rection of transmission, to make up a lane. These transmit and receive channels
are each implemented as differential signal pairs, which means that a single lane
consists of four data wires.

Lanes can be grouped together to form a PCI Express Link. The most basic link
consists of one lane, but larger links can be formed by combining groups of 2, 4,
8, 12, 16 or 32 lanes. An extra differential signal pair is added to carry the clock
signal. The width of a link is usually denoted using an ‘x’ followed by the number
of lanes, e.g. ‘x16’. The total bandwidth of a link scales linearly with the number
of lanes.

4.1.3 Transmission Rate

A PCIe lane has a raw transmission rate of 2.5 gigatransfers per second (GT/s)
per direction. The aggregate raw bandwidth of a link is 2.5 GT/s multiplied by the
number of lanes. Second generation PCI Express devices (version 2.0 or higher)
may optionally transmit at 5.0 GT/s per lane but are backwards compatible with
the first generation transmission rate.

GT/s, GHz and Gb/s (gigabits per second) are, depending on the publication, used
interchangeably as units of measure for the raw transmission rate. Version 1.1 of
the PCI Express Base Specification uses Gb/s while version 2.0 uses GT/s.

PCI Express encodes data in a 8b/10b format, which means that every 8-bit byte
is encoded and transmitted as a 10-bit word on the physical link. This is done to
reduce the longest possible sequence of consecutive ones or zeroes, and to achieve
DC balance. [WF83] This introduces a 20% overhead, so the actual data rate of a
2.5 GT/s lane is 250 MB/s.

4.1.4 Compatibility

PCI Express devices are forwards and backwards compatible, with regards to both
link speed and lane width. Any endpoint can connect to any port, regardless of
which link speed each of the devices support, and an endpoint may connect to
a port with more or fewer lanes. The PCIe devices will negotiate for the highest
mutually supported link speed and lane width. Some devices support disabling
faulty lanes, reversing the order of the lanes if they are mapped incorrectly, or even
inverting the polarity of the differential pairs if they are incorrectly connected.
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Figure 6: PCI Express topology. Red lines denote PCI Express links.

4.1.5 Topology

Figure 6 shows the topology of an example PCI Express based system. The PCI
Express root complex is at the base of the PCIe I/O hierarchy. The root complex
connects to the CPU and memory of the host system (e.g. a personal computer).
The root complex has one or more root ports, (three in the case of figure 6) each
port provides one link. The ports connect to PCI Express endpoints which may be
any type of I/O device. If the root complex does not have a sufficient number of
ports for the requirements of the system, it may be connected to a switch. A switch
allows several endpoints to connect to one port in the root complex. The hierar-
chy may also incorporate a PCI-X or Conventional PCI bus, connected through a
PCI/PCI-X bridge.

4.2 Layered architecture

The PCI Express architecture is specified in terms of three logical layers; the
Transaction Layer, the Data Link Layer and the Physical Layer. Their basic re-
lationships are shown in figure 7.
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Figure 7: PCI Express layers. [PCI05]

4.2.1 Transaction Layer

The topmost layer is the Transaction Layer. This layer generates and consumes
Transaction Layer Packets (TLPs). These packets communicate read and write
transactions as well as certain other types.

4.2.2 Data Link Layer

The Data Link Layer is the intermediate layer. It it responsible for forwarding
TLPs and for handling data protection codes and sequence numbering for the
packets. The Data Link Layer can generate and consume Data Link Layer Packets
(DLLPs) for the purposes of link management, for example TLP retry messages
in case of transmission error, TLP acknowledgements, and power state requests.

4.2.3 Physical layer

The Physical Layer is responsible for converting information to an appropriate
serialised format suitable for the link width currently in use. It handles negotiation
for link width and frequency when the link is initialising, and takes care of 8b/10b
encoding, plus hot-plugging, lane reversal, and polarity inversion in supported
devices.

14



4.3 Transactions

PCI Express transactions are performed using requests and completions. There are
four types of requests; message, configuration, I/O, and memory. The I/O request
type is available for interoperability with Conventional PCI, and is deprecated in
PCI Express. Configuration requests are used to access PCI configuration regis-
ters, and memory space requests are used to access memory-mapped locations.
Message request is a new type which may be used to signal events between PCIe
devices, and may optionally contain data.

A PCIe device responds to memory read, I/O read/write, and configuration read
or write requests with a completion. In the case of successful read requests, the
completion contains the requested data. For I/O and configuration writes, or any
unsuccessful requests, a completion packet without data is used to signal the status
of the request. Memory write requests and message requests require no comple-
tion.

Bulk data transfer is typically done using memory-mapped read and write trans-
actions. As memory write transactions require no completion message, they are
usually more efficient than reads.

PCI Express devices can use Base Address Registers (BARs) to request blocks
of memory space in the host system’s memory map. When the operating sys-
tem assigns the appropriate address blocks, the BARs are programmed with the
addresses. BARs can be 32 or 64-bit, and are numbered from zero and up, e.g.
BAR0, BAR1, and so on.

By default, the root complex acts as bus master and initiates transactions. It is
possible for endpoint devices to temporarily take control and act as bus master, this
allows the endpoint to initiate data transfers on its own accord. This capability is
commonly used to let endpoints perform Direct Memory Access (DMA) transfers
to and from the host system memory, without involving the host CPU.

4.3.1 Protocol overhead

Figure 8 shows all the types of protocol overhead added to a TLP. DW here means
double word, using the same definition as in the PCIe Base Specification; 4 bytes.
The transaction layers adds a 3 or 4 DW packet header, depending on whether 32
or 64-bit addresses are used, and may add an optional 32-bit CRC field. The Data
Link Layer adds a sequence number 2 bytes in size and another 32-bit CRC. The
Physical Layer adds a one-byte framing symbol at the beginning and the end of
the packet.
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Figure 8: TLP overhead

PCIe devices define a maximum payload size. All devices must support 128 byte
payloads, but some may accept payloads of up to 4096 bytes in a single packet.
When a PCIe link is initialised, the devices negotiate for the highest mutually
supported payload size.

4.4 PCI Express standards

PCI-SIG [PCI10] is the group that publishes most PCI-related standards. The base
standard covering PCI Express is the PCI Express Base Specification. Version 1.0
was released in 2002. Version 1.1 with minor additions was published in 2005.
The next major revision was published in 2007; version 2.0 added an optional
5.0 GT/s per lane transmission rate.

PCI-SIG has announced the PCI Express 3.0 specification, which will double the
bandwidth again. While the raw transmission rate is increased only to 8.0 GT/s,
the effective bandwidth will be doubled due to the removal of the requirement for
the 8b/10b encoding scheme. [PCI07a]

The Base Specification covers architecture, protocol and interfaces, but does not
define implementation details such as the electrical auxiliary signals, power sup-
ply, thermal requirements, or physical connectors. Several companion standards
are available, providing these details for different types of implementations.

Popular implementations of PCI Express are the PCI Express Card Electrome-
chanical Specification (CEM), [PCI03a] which covers add-on cards for ATX-
compatible [Int04] desktop and server computers, PCI Express Mini Card Elec-
tromechanical Specification (Mini CEM), [PCI03b] covering miniature add-on
cards often used in laptop computers, and the ExpressCard Standard, [PCM09]
which describes a metal-encased hot-pluggable card for laptop computers.
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5 Hardware

5.1 LUPA-300

The Cypress LUPA-300 [Cyp09] is a high speed image sensor. It has a resolution
of 640×480 pixels with 10 bit precision. The sensor is capable of outputting pixels
at a rate of 80 million per second, this is equivalent to 250 frames per second at
the maximum resolution. If the image resolution is lowered, the frame rate can be
increased as long as the pixel rate is 80 MHz or lower.

5.1.1 Configuration

The LUPA-300 is configurable through a serial three-wire interface referred to
as Serial-to-Parallel Interface, or SPI. This interface should not be confused with
the de facto industry standard Serial Peripheral Interface Bus, also SPI. [KK02]
They are superficially similar, but Serial-to-Parallel Interface is unidirectional us-
ing three wires, while Serial Peripheral Interface Bus uses four and is bidirec-
tional. The two interfaces also use the enable signal differently, but data transmis-
sion works identically.

The Serial-to-Parallel Interface can be operated while the image sensor’s reset
line is asserted. The SPI input shifts one bit of data into a receive buffer for each
cycle of the SPI clock. When the enable signal is asserted after 16 cycles, the data
is loaded into the internal configuration registers. The most significant 4 bits are
address bits, while the remaining 12 bits are the configuration data. There are 16
configuration registers in total.

All registers are pre-loaded with configuration data that enable the sensor to oper-
ate at full resolution without further configuration. If modified, the configuration
registers can be used to enable windowing (reading only a rectangular subset of
the camera pixels), subsampling (skipping every other line in the Y direction), or
to modify gain, read direction, timing and various calibration settings.

5.1.2 Data output

The LUPA-300 is driven by an externally applied clock running at up to 80 MHz.
The image sensor outputs pixels through a 10 bit parallel interface, one pixel per
clock cycle. By default, the pixels are read in sequence left to right, top to bottom.
There is a short delay at the beginning of each line, the Row Overhead Time,
(ROT) and a longer delay, Frame Overhead Time, (FOT) before each frame. With
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default configuration settings these are 32 and 624 cycles respectively. If the pixel
clock is running at a frequency of 40 MHz or lower, the ROT and FOT may be
lowered by updating the appropriate configuration register.

The colour version of LUPA-300 uses a colour filter with a Bayer mosaic [Bay75]
to filter the light that reaches the camera pixels. The specific mosaic arrangement
used in Bayer filters can be seen in figure 9 and is intended to approximate the
light sensitivity characteristics of the human eye. 25% of the total number of pix-
els are red sensitive, 25% are blue sensitive and 50% are green sensitive. The green
pixels contributes most of the luminance (brightness) information, these are there-
fore represented in a higher number because the human eye is most responsive to
luminance. Image data captured using a Bayer filter should be processed using a
demosaicing algorithm to generate a full colour representation of the image.

Figure 9: Bayer filter. The text labels indicate X,Y pixel coordinates.

The digital signals required to operate the LUPA-300 are listed in table 1. A point
of confusion is that the SPI DATA signal is listed as bidirectional in the pinlist
within the LUPA-300 datasheet. [Cyp09] This seems to imply that configuration
data can be read out on the same pin, this capability is not referred to anywhere
else in the document however. In this report it has been assumed that ‘bidirec-
tional’ is a misprint, and the pin is treated as an output pin only.

5.2 Xilinx FPGAs

Three recent generations of Xilinx FPGAs have been evaluated for this project.
The Spartan-6, Virtex-5 and Virtex-6 [Xil10d, Xil09e, Xil10g] are the only Xilinx
FPGA families that feature PCI Express Endpoint blocks. A Xilinx PCI Express
Endpoint block will, when instantiated, implement much of the functionality of a
complete PCIe endpoint using dedicated hardware. This means that the endpoint
functionality will not consume as many of the FPGA’s logic resources as would
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Name Type Description
CLK Input Pixel clock, max. 80 MHz
RESET N Input active low reset signal
DATA Ouput Pixel data output, 10-bit bus
LINE VALID Output Indicates valid data at the pixel output
FRAME VALID Output Indicates that the current pixel is part of a valid

frame
SPI ENABLE Input Causes a buffered SPI word to be written to reg-

isters
SPI CLK Input SPI clock, max. 20 MHz
SPI DATA Input SPI data input

Table 1: LUPA-300 digital signals

otherwise have been required.

All three FPGA families come in many different sub-families, which emphasise
different features over others. The LXT variants are of particular interest; these
focus on high speed logic circuits plus advanced serial connectivity. They feature
dedicated circuits for high speed serial transceivers, which can be used as part of
a PCI Express Endpoint block, or for other types of serial connectivity.

5.3 Xilinx evaluation cards

Xilinx provides various evaluation cards many of their FPGAs. The LXT variants
of Spartan-6, Virtex-5 and Virtex-6 are all available on evaluation cards with PCI
Express capabilities. [Xil09d, Xil09c, Xil10c, Xil10e, Xil10f, Xil10h] Each eval-
uation card is in the form factor of a PCIe CEM card, and has a PCIe CEM edge
connector on the side. The cards can operate as computer add-in cards or as stan-
dalone devices. All the cards come with various other connectivity features such
as networking and display interfaces.

The cards include connectors for user I/O. The Virtex-5 card uses the ubiquitous
2.54 mm headers, while the other two use VITA 57 FMC connectors [VIT10a,
VIT10b] in the Low Pin Count (LPC) or High Pin Count (HPC) variants. All the
lines on the FMC connectors can be used in pairs for differential signalling, or
individually for single-ended communication.

Table 2 shows a comparison of the evaluation cards. Table 3 compares some key
features of the three FPGA models used in the evaluation cards.
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Card name SP605 ML505 ML605
FPGA Spartan-6 LXT Virtex-5 LXT Virtex-6 LXT

XC6SLX45T XC5VLX50T XC6VLX240T
PCIe edge x1 x1 x8
connector
RAM 128 MB DDR3 256 MB DDR2 512 MB DDR3

(fixed) (upgradable) (upgradable)
Easily accessible 68 lines, FMC 16 differential 156 lines on FMC
user I/O LPC connector pairs plus 32 single- HPC connector,

ended lines, all on 68 lines on FMC
2.54 mm headers LPC connector

Price 495 USD 1195 USD 1995 USD

Table 2: Xilinx evaluation card comparison

Spartan-6 LXT Virtex-5 LXT Virtex-6 LXT
XC6SLX45T XC5VLX50T XC6VLX240T

Slices 6822 7200 37680
Max distributed RAM 401 kb 480 kb 3650 kb
Max block RAM 2088 kb 2160 kb 14976 kb
Max user I/O 296 480 720

PCI Express capabilities
PCIe blocks 1 1 2
Lane configurations x1 x1, x4, x8 x1, x2, x4, x8
Spec. supported 1.1 1.1 1.1 (up to 8 lanes)

2.0 (up to 4 lanes)
Maximum TLP 512 B 512 B 1024 B
payload size
Roles supported Endpoint Endpoint Endpoint

or root port

Table 3: Spartan-6, Virtex-5, Virtex-6 LXT feature comparison.
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6 Logic cores

6.1 Xilinx PCIe Endpoint block

The PCIe endpoint block in certain Xilinx FPGAs allows a PCIe endpoint to be
implemented using dedicated logic rather than the general logic resources on the
chip. For ease of implementation, Xilinx provides the CORE Generator tool to
generate code that instantiates the core.

Using this tool, the PCIe block can be customised in numerous ways, such as
setting the maximum number of lanes, the maximum link speed, Base Address
Registers, device identification registers, and interrupt capabilities.

The frequency of the interface between the PCIe block and the user logic is con-
figurable. All combinations of link width and link frequency have a default recom-
mended frequency, but the designer can select a higher frequency if it is required
for the user logic.

The Xilinx PCIe endpoint blocks and the reference design from CORE Generator
feature no bus master capabilities, only a minimal programmed I/O (PIO) imple-
mentation of an endpoint. In order to support the requirements of this project, the
endpoint must be extended with bus master capabilities.

6.2 Xilinx XAPP1052

Xilinx has published an application note [WA09] demonstrating a bus master
DMA design combined with a Xilinx PCIe endpoint solution. It is more of a tech-
nology demonstration and benchmark application than something intended to be
used in a production system. The feature set is minimal but it might be used as a
starting point for developing a fully featured system.

6.3 PLDA EZDMA2

PLDA’s EZDMA2 core [PLD09a, PLD09b] provides a comprehensive DMA solu-
tion for Xilinx PCIe integrated blocks. It will receive incoming transactions when
acting as a slave, and can issue its own transactions when acting as a bus master.
It also features interrupt capabilities and an interface for reading the PCI configu-
ration registers.

Figure 10 shows how the EZDMA2 core interfaces with the Xilinx PCIe block
and the application logic.
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Figure 10: EZDMA2 overview [PLD09b]

6.3.1 Master module

The master module can implement up to eight DMA channels. When activated,
the master module can be used to send read and write requests to the host sys-
tem. DMA channels can execute seven types of commands: I/O reads and writes,
memory read and write with a single data word, memory read and write bursts,
and completion with data. I/O and data word transfers are four bytes in size, while
burst transfers can be of any size. Completion with data is a special burst transfer
type which is issued in response to a read request from the PCIe root.

The master module is connected to a memory defined by the application logic,
either a FIFO device or a RAM-like device. Figure 10 shows a FIFO-based imple-
mentation. The module will autonomously read or write to the memory to fulfil
read and write requests.

Each DMA channel is controlled by writing to two sets of registers, the DMA
Channel Registers and the DMA Parameters. Both sets of registers must be pro-
grammed by the application logic before a DMA channel begins operating.

The DMA Channel Registers stores local and host memory addresses for transfers,
plus the transfer size. During a transfer, the address registers are incremented by

22



the master module as each data word is read and written. The Transfer size register
is decremented at the same rate. When the transfer size register reaches zero, the
transfer stops.

The DMA Parameters store information about the memory device used for local
memory, and defines which PCI Express command should be used for a transfer.

6.3.2 Slave module

The slave module receives incoming messages from the host system. Read and
write requests are presented to the application logic, which should respond by
asserting one of three signals; ‘slave unsupported’ in the case of an unsupported
request type, ‘slave abort’ in the case of an error, or ‘slave accept’ to accept the
transaction. If the request is a write transaction, the data to be written is presented
at the slave module interface. The application logic must write the information to
the local memory. If the transaction is a read request, the application logic can
issue a DMA completion with the requested data.

6.3.3 Other interfaces

In addition to interfaces for the master and slave modules, the EZ Interface has
signals for clock and reset. The clock signal is provided by the Xilinx PCIe core.
There are also signals that allow the application logic to issue interrupts, and to
allow it to read the PCIe configuration registers. Finally, there are a set of test
mode signals which can be used during simulation and debugging.
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7 Implementation

As part of this project, a prototype implementation of a camera interface unit has
been created in synthesisable VHDL. The implementation is targeting the ML605
Virtex-6 evaluation board, as this model has the most versatile PCIe connectivity
features.

Figure 11: Camera interface unit implementation

The implementation is based on a Xilinx PCIe Endpoint and the PLDA EZDMA2
core. The basic outline can be seen in figure 11. In lieu of an actual LUPA-300 im-
age sensor, the design instantiates a camera model (shown in red) which simulates
its behaviour.

The implementation works as follows. The camera control unit reads data from
the camera and writes it to a RAM. The data is written to the PCIe bus using
bus master DMA transactions. The RAM is mapped to the host system address
space using BAR1. In the current implementation this serves no specific purpose
as the RAM is only used as an image buffer, however future implementations may
use it for other purposes as well—some of which may require the memory to be
accessible from the host system.

The LUPA-300 configuration registers are also memory-mapped, in BAR0. If the
host system writes data to this location, the data will be written to the camera
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using the SPI interface.

7.1 EZDMA2 core

The EZDMA2 core is instantiated using a VHDL wrapper file, which in turn is
generated by a wizard application provided with the core. EZDMA2 version 1.4.3,
build 185 has been used in this implementation.

The core was configured to use a TLP payload size of 256 bytes and a clock fre-
quency of 250 MHz, it was also configured to support four outstanding requests,
one DMA channel, a local address width of 16 bits and local memory read latency
of one cycle.

7.2 CORE Generator components

The following components were created using Xilinx CORE Generator. They all
instantiate specific hardware resources on the FPGA chip, and CORE Generator
is able to generate the appropriate wrapper code based on configuration data.

7.2.1 Xilinx PCIe core

This component instantiates the PCIe endpoint block. This implementation uses
version 1.3 of the Virtex-6 Integrated Block for PCI Express. [Xil10b] Newer ver-
sions are currently available, but 1.3 is required for compatibility with the ML605
card. [Xil10a]

The core is configured to x4, 5.0 GT/s mode, and has an interface frequency of 250
MHz and a maximum TLP payload of 256 bytes. The base address registers were
configured to use 32-bit addresses, and a memory size of 128 bytes on BAR0 and
512 kB on BAR1. To ensure compatibility with the EZDMA2 core, the ‘Trim TLP
Digest ECRC’ feature was enabled. This removes the CRC field from incoming
TLPs.

7.2.2 Block RAM

The block RAM component instantiates 512 kB of FPGA block memory. It is
used to store pixel data between read and transmit.

This component was generated using Block Memory Generator 3.3, [Xil09a] and
was configured to act as a simple dual port RAM; i.e. one input port and one
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output port. The write port has a width of 32 bits and the read port 64 bits.

With a width of 32 bits, the logic circuits can write three pixels at a time every
third cycle (relative to the camera pixel clock), or if nine cameras are used, one
pixel from each camera can be written using three memory accesses and a memory
clock rate three times that of the pixel clock. 2 bits out of each 32 bits of memory
are wasted however.

The read port must be 64 bits because it interfaces with the EZDMA2 core. The
write port should optimally have a width divisible by ten, because it is used to store
10-bit pixels. The width of the two ports can, however, only differ by a factor of
1, 2, 4, 8, 16, or 32.

7.2.3 Clock generator

The clock generator was generated using Clocking Wizard 1.4. [Xil09b] It takes
one input clock; the 250 MHz PCIe core interface clock, and is configured to
provide two output clocks of 80 and 20 MHz. The former is used as the pixel
clock for the LUPA-300 image sensor. The latter is the SPI clock. The component
was configured to provide the ‘Locked’ output signal, which indicates when the
output clocks are stable.

7.3 Application logic

This component constitutes the top module for the application logic. It instanti-
ates a clock generator, a block memory, and the camera control component, and
communicates directly with the EZDMA2 core. It uses three VHDL processes,
one to handle bus master transactions, one for slave transactions, and the third to
issue interrupts. Each process is based around a finite-state machine (FSM).

7.3.1 Master process

The master process FSM, shown in figure 12, starts in an initialize state, which
programs the DMA Parameters and one of the DMA Channel Registers. It then
transitions to the idle state, in which it does nothing except counting the number
of pixel lines stored by the camera control module. When the number of buffered
lines reaches a pre-set threshold, the FSM transitions to the sendline state, in
which the DMA Registers are programmed with a local address and transfer size.
The FSM now transitions back to the idle state, while the EZDMA2 core activates
and starts the transaction.
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Figure 12: Master process FSM

Pixel data is sent using memory write transactions.

The master process sends a whole number of image lines per transaction. It waits
until a certain number of lines are ready in the buffer before it sends the data. In
the current implementation the number of lines per transmission is hard-coded to
four, but it could be any factor of the picture height (480).

The destination address for the memory writes is hard-coded in this implemen-
tation, each successive frame sent to the host system will overwrite the previous
one.

In a production system, the destination address and number of lines per trans-
mission are likely to be configurable through registers. These registers might be
programmed by a device driver on a PC host system, or the user logic on an
FPGA-based host system.

7.3.2 Slave process

The FSM in the slave process (figure 13) starts in an idle state, and transitions
to a new state when the slave write request or read request signal is asserted by
the EZDMA2 core. If the incoming operation is a read request, or if it is a write
request for a BAR different than BAR0, the FSM transitions to the unsupported
state. Otherwise it transitions to the accept state.

The unsupported state aborts a request by asserting the slv ur signal to the EZ-
DMA2 core. Likewise, the accept state asserts slv accept to accept the request. If
the request is accepted, the writebar2 state follows. Here, data from the EZDMA2
core is passed to the camera control component.
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Data payloads in incoming write transactions are outputted from the EZDMA2
core in the form of one or more 64-bit words. In order to simplify the logic that
handles configuration writes, any memory accesses to BAR0 will ignore bits other
than the lower twelve. The rest of the input data is discarded. The lower twelve
bits are written to the twelve bit configuration register indicated by the address of
the transaction.

BAR0 is configured to address a 128 Byte memory, (the smallest possible memory
size for a BAR) so the address is seven bits wide. The upper four bits are used to
address the LUPA-300 configuration registers.

Figure 13: Slave process FSM

7.3.3 Interrupt process

The interrupt process sends an interrupt signal to the host system whenever a
complete frame has been read from the camera. It uses the FSM shown in figure
14, which has two states; idle and interrupt. It transitions to the interrupt state
when the frame complete signal from the camera control component goes high.
In this state an interrupt request is issued. The FSM switches back to the idle state
when the EZDMA2 core acknowledges the interrupt request.

7.4 Camera control

This component handles the direct communication with an image sensor. It uses
two VHDL processes, one to write SPI configuration data and the other for reading
pixels. Each process is based on a finite-state machine.
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Figure 14: Interrupt process FSM

The camera operates on two clocks; the pixel clock at up to 80 MHz and the SPI
clock at up to 20 MHz. Both of these clocks are generated by the clock generator
instantiated in the application logic top module. As the clocks can take a while to
stabilise, the camera control module will keep the camera’s reset signal asserted
until the clock generator reports a stable clock. The camera reset signal is also
asserted when the SPI interface is active.

7.4.1 Camera read process

Under normal operation, the camera read process (figure 15) alternates between
states readpx and writepx. In the former state, a pixel is read to an internal variable.
Every third clock cycle the latter state is active, here the three pixels are written
to the block memory as a 32-bit word. The FSM is in the idle state during the
inactive periods after each line.

Because three pixels are written to memory as a 32-bit word, two bits are wasted
per 32 bits. One line consists of d640/3e = 214 32-bit words; 856 bytes.

The process signals the parent component every time it has written one complete
line of the picture. At the same time it outputs the start address of the last line
written to memory.

In the current implementation, only the first 401.25 kilobytes of memory are in
use. The last 110.75 kilobytes are free to be used for other purposes.

7.4.2 SPI write process

This process uses the FSM shown in figure 16, and has three states; idle, spiwrite
and spicomplete. When activated by the enable signal from the application logic,
the FSM transitions to spiwrite. The 4-bit SPI address is concatenated with the
12 bits of data, and the complete 16-bit data word is shifted out on the SPI in-
terface in time with the 20 MHz clock. When complete, the FSM transitions to
spicomplete and asserts the SPI ENABLE signal to the camera. This signals the
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Figure 15: Camera read process FSM

Figure 16: SPI write process FSM

camera to write the buffered data word to memory.

7.5 Camera model

The camera model can be used to emulate the data output of a LUPA-300 image
sensor during simulation. It is synthesisable, so it may also be part of a design
implemented on an FPGA. This will allow for testing of the implemented design
without an actual image sensor attached. For testing of a design with multiple
cameras, the camera module may be instantiated several times.

The camera model operates at the rate of its input clock. The image dimensions
and overhead timings are specified using generics. If the module is instantiated
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using the default parameters, it will operate using the same default parameters as
the actual LUPA-300 sensor (640 × 480 pixels, timings suitable for a 80 MHz
clock).

7.6 Design synthesis

The design has been synthesised for the Virtex-6 XC6VLX240T FPGA. The max-
imum possible frequency is reported as 329.381 MHz; only 250 MHz is required
for this design. Table 4 shows a summary of FPGA resource utilisation. It is evi-
dent that a smaller FPGA might have be used instead.

Used Available Utilisation
Number of Slice Registers 1022 301440 0%
Number of Slice LUTs 2223 150720 1%
Number of fully used LUT-FF pairs 816 2429 33%
Number of bonded IOBs 27 600 4%
Number of Block RAM/FIFO 119 416 28%
Number of BUFG/BUFGCTRLs 5 32 15%

Table 4: Device utilisation summary
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8 Evaluation

8.1 Transmission overhead

Because of protocol overhead, [PCI05, PLD09b] the maximum effective band-
width of 250 MB/s per PCIe lane is impossible to reach. The protocol overhead
depends on the transaction size and type of transaction, but can be calculated if
the type of traffic is predictable.

Transmission latency might of course limit the usable bandwidth because the link
doesn’t get saturated. If it takes a long time to get a completion for a request,
the link will stay idle much of the time. This issue can be alleviated by allowing
the sender to have several outstanding requests at the same time. This will let
the sender keep transmitting, at the cost having to use larger buffer memories. The
number of outstanding requests for the EZDMA2 core is configurable, the optimal
setting will depend the latencies and the memory resources of the system.

The implementation described in this report uses memory write transactions to
transfer image data from the endpoint to the host system. This has the advantage
of eliminating much of the risk associated with high latency, as the memory write
transactions require no completion. As a result, these transactions will be able to
utilise the available bandwidth more easily than other types.

The amount of overhead is dependant on the maximum TLP payload size, as a
smaller payload means more packets for a given amount of data and thus a greater
amount of the bandwidth is used for packet headers and footers.

This implementation has a maximum payload size of 256 bytes. If using a 3-byte
TLP header and no transaction layer CRC, the protocol overhead is 5 DW per
packet. (See section 4.3.1) This adds up to 1−256/(256 + 20) ≈ 0.07 or about 7%
overhead when sending packets of the maximum size.

The current version of the design stores three 10-bit pixels in 32 bits of memory,
i.e. 1920 useful bits per 256-byte TLP payload. This adds further overhead. To-
gether this all gives an overhead of 13%, or about 217 MB/s of usable bandwidth
per lane.

Each line of the image is stored in memory as 856 bytes. This is obviously not di-
visible by the maximum TLP payload size, so the last TLP in an outgoing memory
write request will not be of the maximum size. This adds a bit of further overhead,
depending on the number of lines per transaction.

In order to issue a transaction containing four lines of the image, the core must
transmit 14 TLPs, 13 with the maximum payload and one with 96 bytes. The final
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estimation of the overhead (equation 1) means the usable bandwidth per lane is
about 216 MB/s.

1 −
4 × 640 × 10/8

13 × 256 + 96 + 14 × 20
≈ 14% (1)

The LUPA-300 outputs 76.8 million pixels per second when running at full reso-
lution and frame rate, this is equivalent to 91.55 MB/s. At 120 fps, the data rate is
about 43.95 MB/s.

This means that one first generation PCIe link can transfer the data from two
cameras at 250 fps, or four at 120 fps. To run the suggested configuration of nine
cameras at 120 fps, an x2 2.5 GT/s link or an x1 5.0 GT/s link is sufficient. To run
the cameras at 250 fps, an x4 2.5 GT/s link or an x2 5.0 GT/s link is required.

If the PCIe link has to fall back to a payload size of 128 bytes, the overhead is
significantly impacted (equation 2). The total overhead rises to 19%, and wider
PCIe links may have to be used to compensate.

1 −
4 × 640 × 10/8

26 × 128 + 96 + 27 × 20
≈ 19% (2)

These calculations show that adequate bandwidth is achievable with realistic link
configurations; x1 or x2. A host system supporting TLP payloads of at least 256
bytes should be used for maximum efficiency, however.

8.2 Clocking

The pixel clock signal for the image sensor can not be generated by simple clock
division, as the required frequency is not a factor of the application logic clock
frequency. It must be generated by an external oscillator, or a clocking circuit
implemented in the user application.

If the cameras operate at one specific frame rate at all times, it’s a simple matter
of using a single oscillator or clocking circuit to generate that one frequency. If
multiple frame rates are required, a clocking circuit with multiple outputs may be
used, or simple frequency divisors if the needed frequencies are all factors of the
same reference frequency.

The frequency required for exactly 120 fps operation is (336 + 480× (24 + 640))×
120 ≈ 38.3 MHz. Here, 640 and 480 are the frame dimensions, and 336 and 24
are, respectively, the frame overhead time and row overhead time for 20–40 MHz
operation. A 40 MHz clock may be used for simplicity, this produces a frame rate
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Figure 17: Multiple cameras connected to one FPGA

of 125 fps. To enable the correct timings for 20–40 MHz operation, the LUPA-300
‘clock granularity’ register must be updated.

8.3 Multiple cameras

The LUPA-300 image sensor operates according to an externally applied clock,
and has well-defined timings for readouts and frame/line delays. Multiple cameras
will operate in exact synchronisation if they are connected to the same clock and
reset signals, and that makes it easy to connect several cameras to the same device.

Figure 17 shows a way to connect multiple cameras to one FPGA using this prin-
ciple. There is only one set of outgoing control signals for clock, reset and SPI,
and these are connected to all cameras. This ensures that they all operate syn-
chronously and with the same configuration. Only one set of LINE VALID and
FRAME VALID signals is needed, because the cameras are all synchronous.

This setup will require 90 data lines for nine cameras, 97 FPGA I/O pins in total
when all auxiliary signals are factored in. The Spartan-6, Virtex-5 and Virtex-6
can all provide the sufficient number of I/O pins, but only the ML605 Virtex-6
evaluation card has enough pins accessible on the card.

With synchronous operation, it is easy to read out data from all cameras in a single
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process, much like the one described in section 7.4.1. The process would read the
same pixel coordinate from each camera at the same time—and could store these
in memory using a fixed, interleaved pattern, like the one in figure 18.

With a 32-bit wide memory write port, this would require three writes to store
the 90 bits of data for each pixel clock cycle. The memory write port would have
to operate at a clock rate of at least three times that of the pixel clock; e.g. 240
MHz for a 80 MHz pixel clock or 120 MHz for a 40 MHz pixel clock. Most likely
it would operate at the common user logic clock rate, which is 250 MHz in the
suggested implementation.

Figure 18: Pixel interleaving pattern which enables write combining. Each labelled square
represents one pixel. The rows contain 640×9 pixels, and each column is 480 pixels high.

The advantage of writing data from different cameras in such an interleaved fash-
ion is that writes from three cameras are consolidated into one memory access,
and that it makes data readout for PCIe transmission easier and more efficient
when the data is stored continuously in memory.

8.4 Alternative communications protocols

The PCI Express protocol has the advantage of being a standard bus interface. In
the particular application studied in this report however, the PCI Express link may
be used to connect two custom-designed pieces of equipment. In that case, inter-
operability with third party products isn’t an issue and using a widely accepted
standard becomes less important. It is worth considering other protocols which
may prove more useful.

If using a standard compliant PCI Express system, the endpoint must connect to
a root port, which in turn is part of a root complex. While Virtex-6 PCIe blocks
can act as root ports, Xilinx provides no easy way of implementing a full root
complex. Such a feature must be implemented from scratch or be purchased from
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a third party. Using an alternative communications protocol may eliminate the
need for a root complex.

8.4.1 Xilinx XAPP869

Xilinx have provided a reference design that allows two Virtex-5 FPGAs to com-
municate directly using their integrated PCIe endpoint blocks. [JP07] This de-
sign does not adhere to the PCI Express standard, but it allows FPGA-to-FPGA
communication using minimal logic resources. The design is compatible with the
ML505 evaluation card, but is currently only available for Virtex-5 devices.

8.4.2 Aurora protocol

Xilinx have created their own communications protocol, specifically for inter-
FPGA serial communication. The Aurora protocol borrows several features from
PCI Express at the physical layer, but has key differences as well. Like PCIe,
Aurora transmits data over scalable serial point-to-point channels. Each channel
consists of one or more lanes. The devices at each end of the channel are called
channel partners.

Unlike PCIe, Aurora channels can be unidirectional, which us useful in applica-
tions where high speed communication is only needed in one direction. A unidi-
rectional circuit is simpler and uses fewer logic resources than a full-duplex one.

Aurora comes in two variants; Aurora 8B/10B and Aurora 64B/66B, named for
the bit encoding schemes used. Aurora 8B/10B uses the same 8b/10b encoding
as PCI Express, Aurora 64B/66B encodes 64 bits as 66 bits which significantly
lowers the transmission overhead.

Aurora transmits user data as frames, which unlike PCI Express packets can have
any length. This has the potential for further reducing the protocol overhead. Data
can also be transmitted as a stream, which acts as a single, never-ending frame.

On an FPGA, the Aurora interface is implemented using the same serial tran-
sceivers as the PCIe endpoints. The number of lanes per channel which can be
implemented on any given chip depends on the number of transceivers available,
up to a maximum of 16. The transmission speed of the Aurora channel depends
on the speed of the transceivers. Table 5 shows a summary of Aurora features for
the same three FPGAs that were compared in section 5.3 on page 19. Spartan-6
and Virtex-5 are capable of faster than first generation PCIe signalling rates, while
Virtex-6 is capable of faster than second generation PCIe rates.
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Spartan-6 LXT Virtex-5 LXT Virtex-6 LXT
XC6SLX45T XC5VLX50T XC6VLX240T

Max. lanes per channel 4 8 16
Lane bandwidth 614 Mb/s to 500 Mb/s to 750 Mb/s to

3.125 Gb/s 3.75 Gb/s 6.5 Gb/s
Protocols 8B/10B 8B/10B 8B/10B

64B/66B

Table 5: Aurora feature sets of three FPGAs

Xilinx claims that Aurora is an open standard, free for anyone to implement with-
out restriction.
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9 PCI Express external cabling

9.1 PCI Express External Cabling spec

PCI-SIG released the PCI Express External Cabling Specification in 2007. This
specification allows for 2.5 GT/s signalling, and x1, x4, x8, and x16 lane configu-
rations. [PCI07b, Sol07] Several sideband signals are provided for auxiliary lines,
in order to be compatible with existing implementations such as the PCIe CEM.
The specification does not make assumptions about cable lengths, but PCI-SIG
workgroups have reportedly used cable lengths of 0.5–7 meters.

The cable assemblies are based on copper wiring and specifically designed con-
nectors. One cable carries at most four lanes, so x8 and x16 cable assemblies use
two and four cables respectively.

Cables and connectors are commercially available, and at least one manufacturer
claims to have 5.0 GT/s capable products, [Mol06] even though this is currently
outside the specification.

9.2 HDMI Cables

High-Definition Multimedia interface [Hit06] (HDMI) cables have several prop-
erties that make them suitable for use as makeshift PCI Express external cables.
Like PCI Express, HDMI uses differential signalling to transmit data. Standard
cables contain four such differential pairs; three for data and one for the clock
signal. Each pair is individually shielded to avoid crosstalk and other noise.

HDMI data is encoded using 10 bit characters, each character may represent 2,
4 or 8 bits of data. Each differential pair transmits one character per clock cycle.
Since version 1.3 of the standard, the highest clock frequency is 340 MHz, which
means that each differential pair has a maximum raw data rate of 3.40 Gb/s, or
10.2 Gb/s for all three pairs.

HDMI 1.3 defines three sets of connectors and receptacles; types A, B and C. Ca-
bles with type B connectors have dual-link capability (six differential data pairs)
to double the available bandwidth. Cables with A and C connectors use the default
single link with three data pairs. C is a miniaturised version of A.

Cables are certified based on the highest tested frequency; category 1 (marketed
as “Standard”) cables are tested at 74.25 MHz, and category 2 (marketed as “High
Speed”) cables at 340 MHz.

HDMI is designed to carry high definition video and multichannel audio, and
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is commonly used in consumer electronics, especially high-definition television
(HDTV) equipment. As such, HDMI cables are readily available at low cost due
to extensive mass production. Connectors and receptacles which may be used
in custom-designed electronics are available from several manufacturers, such as
Molex or FoxConn. [HDM10c]

PCIe HDMI
Gen. 1 x1 Cat. 2 cable

Number of differential pairs,
including clock pair

3 4

Reference clock Implementation
specific, 100 MHz
for CEM

Up to 340 MHz

Max raw data rate per pair 2.5 Gb/s 3.4 Gb/s
Differential impedance 100 Ω ± 20% 100 Ω ± 10%
Diff. pair signalling voltage 1.2 V 1.2 V
Power supply wires Implementation

specific
5 V, 50 mA

Number of wires Implementation
specific

19

Table 6: PCIe and HDMI interfaces, comparison of key specifications.

Table 6 shows some key specifications of HDMI and a one-lane first generation
PCIe link. Most of the entries indicate that a category 2 HDMI cable is well suited
to be repurposed as a PCIe external cable. There are two caveats, however.

Power supply: PCI Express devices are often bus powered, but the details vary
in different implementations. An x1 socket as defined in the PCIe CEM [PCI03a]
can provide up to 16 W of power, using multiple 3.3 V and 12 V power pins.
HDMI is evidently not designed to carry high currents—though it might work
if multiple wires are used in combination. If the PCI Express endpoint is self-
powered however, the HDMI cable won’t be required to carry power at all.

Total number of wires: The number of wires used in a PCIe connection also
varies depending on implementation. The PCIe CEM x1 socket has 36 pins, but
many of these are mapped to 3.3 V, 12 V, ground and auxiliary lines. If all power
lines and optional auxiliary wires are omitted, it is possible to implement the in-
terface using only 12 wires: Nine wires for the three differential pairs, assuming
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Figure 19: PE4H and E2C2 PCI Express/ExpressCard adaptors with HDMI cable

a separate ground wire for each pair’s individual shield, two presence detection
wires and one wire for the PERST# signal. The latter signal is used to indicate
stable power supply and clock after power-up. If hot-plugging support is not re-
quired, the presence detect signals may be hardwired at the host side, saving an
additional two wires.

This leaves several free wires in the HDMI cable, which can be used for spe-
cialised purposes. For example, a ‘power-on’ signal may be used to enable exter-
nally powered endpoints to power on at the same time as the host system.

9.3 PE4H: A commercially available adapter

A commercial product that uses HDMI cables for PCI Express is already avail-
able. [Bpl09] The PE4H is a passive PCI Express adapter designed by Taiwanese
manufacturer Bplus Technology. The adapter has a x16 PCIe socket for desktop
add-in cards, and provides two type C HDMI sockets which can connect the de-
vice to a host system. One HDMI cable may be used for a single lane link, or two
cables for an x2 link. The adapter also provides connectors for an external power
supply.

Three different secondary adaptors are available to connect the PCIe link to the
host system. EC2C, PM3N and HP1A provide interfaces to ExpressCard, Mini
PCIe and PCIe CEM, respectively. Figure 19 shows a PE4H connected to the
EC2C ExpressCard adapter using a single HDMI cable.
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Figure 20: Graphics card test setup

9.4 Test results

For the purposes of this project, a PE4H and an EC2C adapter was tested using
a laptop computer and a PCI Express graphics card; the ATI Radeon HD 5850.
[Adv10] The graphics card and PE4H were powered using a 12 V power supply.
The EC2C adapter was plugged into the laptop’s ExpressCard slot, and connected
to the PE4H using a HDMI cable. The graphics card was connected to an external
PC monitor. The complete test setup is shown in figure 20.

After verifying that the test system powered on and that the graphics card oper-
ated normally, the card was tested using the 3DMark06 benchmark software from
Futuremark Corporation. [Fut10] Using graphics benchmark is very likely to sat-
urate the bandwidth of the PCI Express interface, and successful operation is as
such an indicator of system stability.

The whole system was tested twice, first using a 30 cm HDMI cable supplied with
the PE4H, and second using a 150 cm cable from an electronics retailer. Both were
inexpensive unbranded cables, and it is not known whether they were category 1
or 2 certified. The system showed stable operation for the entire test period; over
ten hours with each of the cables.

An unstable PCI Express link might work correctly but would cause a high num-
ber of retransmits, and this would reduce performance. The benchmark software
showed identical results regardless of which cable was used, which would seem
to indicate that both setups were of equivalent quality.

These rather informal tests suggest that HDMI cables are well suited for transport-
ing PCIe signals, at least for shorter cable runs. More tests are needed however,
to determine whether practical cable lengths are possible. As HDMI connectors
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and cables are much more easily available than the purpose-built PCIe External
Cabling Spec. products, HDMI may be a useful option in the short or long term.

As HDMI cables are rated for a transmission rate lower than that of generation
2 PCI Express, a generation 1 interface may have to be used. Even so, using a
dual link HDMI cable or two single link cables, transmission of signals from nine
cameras should be possible in the suggested resolution and frame rate, using a
PCIe 1.1 x2 link.

HDMI Licensing, the organisation that publishes the HDMI standards, suggests
that category 2 cables can be made in lengths of no more than five to eight meters.
[HDM10b] Some manufacturers and retailers however offer cables of up to 15
meters which are claimed to be category 2 compliant. [Atl10, Kno10, Par10]

HDMI Licensing suggests using cables with active amplification, category 5 or
6 networking cable, coaxial cable, or fibre-optic cable for cable runs longer than
5–8 meters. [HDM10a] Similar solutions may work well for a PCI Express link,
if required. With such special measures, a 5.0 GT/s link may be possible, which
will enable a single link PCIe connection to be used.
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10 Conclusion and future work

10.1 Conclusion

Implementing a camera interface system for DMP poses several challenges, some
of which are addressed in this report.

The PCI Express interface standard’s flexibility and scalability make it a useful
candidate for a high speed serial communications link between cameras and the
video encoder. Alternative protocols such as Aurora should also be considered an
option however, as they may offer even grater flexibility and performance.

The prototype device implemented in this report demonstrates how a camera inter-
face unit might operate. Analysis shows that the design is capable of forwarding
data from nine cameras at full resolution and 120 fps if connected to a two lane
first generation PCIe link or a one lane second generation link.

While the design proposed in this report was targeting a relatively powerful Virtex-
6 FPGA, synthesis results indicate that a smaller device will suffice.

A simple practical test determined that HDMI cables may be used as a makeshift
transport medium for first generation PCI Express signals. As HDMI cables and
connectors are produced in high volume and low cost, they should be considered
as a serious alternative to PCIe External Cabling Specification compliant cables.

10.2 Future work

Some of the topics discussed in this report will benefit from further study.

10.2.1 Host system; device driver

The camera interface unit cannot work without being connected to a host system.
During testing it might be convenient to implement the design on an evaluation
card with PCI Express, and to connect the card to a computer. For this to work, a
software driver will have to be written. For the endpoint to operate without being
connected to a computer, a complete host system with a PCIe root complex will
have to be implemented e.g. on a different evaluation card.
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10.2.2 Performance measurements

The predictions about transmission overhead and interface bandwidth should be
backed up by real world experiments. While the predictions in this report are a
close match with benchmark test results from Xilinx [WA09], they represent ide-
alised best-case situations. Only physical tests can determine conclusively whether
the suggested PCI Express interface configuration is sufficient.

10.2.3 PCI Express external cables

The PCI Express cable tests presented in this report were limited in scope by the
availability of C-connector HDMI cables. Future tests may be performed with a
PCIe electrical interface based on A-connectors, for which a much greater range
of cable products are available.

As a host system with PCI Express 2.0 root ports was not easily available when
the tests were performed, the HDMI cables were only tested at first generation
PCI Express speeds. Future tests should be made to determine whether 5.0 GT/s
speeds are achievable as well.
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