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Abstract

Analysis of medical images is resource demanding and time-consuming, and
automatic procedures are needed to reduce the workload of medical staff in
a pre-operative planning phase. In this thesis, the main focus has been on
methods that automatically segment CT and MR volume data, in particular
new approaches for representation and segmentation of the liver, hepatic
vessels and the kidney.

The two main contributions in this thesis are a new 3D skeleton proce-
dure and a texture-based segmentation method. The skeleton procedure is
iterative, without user-defined parameters, and produces a minimalistic rep-
resentation of binary objects without known artifacts. Compared to previous
work, this skeleton method produces more reliable results and does not need
tuning for each individual representation task.

The new texture-based segmentation algorithm is used to segment the
selected organs, where only a few parameters influence the end result. More-
over, the parameters of this method are relatively easy to set, and a wide
parameter range yields acceptable results. This method is more robust than
popular previously published procedures that are typically based on edge
information.

Additionally, there are two minor contributions in this thesis. A new
general representation of binary objects with an interior is presented. This
representation is used to automatically derive the parameters of the texture-
based segmentation method based on a statistical template. Furthermore,
parallel processing on modern graphics cards and multiple CPU processors
have been studied and compared to serial algorithms. A significant decrease
in runtime was shown on many common image processing techniques in ad-
dition to the proposed texture-based segmentation algorithm.

Even though the results are promising, more research is needed before
reliable analysis of medical volume data can be performed. In particular,
a combination of the proposed techniques incorporated with shape-based
and statistical models is suggested for future research. The contributions in
this thesis, however, are noticeable and represent a step forward in deriving
complete automatic procedures for segmentation of medical volume data.
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Chapter 1

Introduction

Medical imaging has become common in the diagnosis and treatment of dis-
eases. While the image modalities are helpful, such equipment is expensive
and resource demanding. Therefore, to reduce the workload of medical staff,
automatic measurements and improved visualisations of the modality data is
needed.

One main challenge in order to perform automatic analysis on medical
volume data is to separate the various tissues from each other. Their bound-
aries may be diffuse and the medical volumes are typically distorted by noise.
Furthermore, while the general anatomy is similar from person to person, pre-
vious interventions and genetic variations lead to variations in the size, shape,
and location of organs.

To separate organ tissues well, advanced techniques based on pattern
recognition are typically required. While humans are experts in pattern
recognition, we have not been able to achieve results anywhere close to human
recognition artificially. This is one of the reasons why there are presently few
implemented applications for automatic measuring and 3D visualisations of
medical volumes.

If automatic procedures do not achieve the level of accuracy of the results
needed in medical science, it is likely that these methods can still prove
helpful. Even if the distinction of tissues is poor, it can be used in a partially
user guided system where the user defines the parameters needed to achieve
a sound boundary between tissues semi-automatically.

The various modalities are constantly improved and higher resolutions
increase the possibilities to help patients. Increased resolutions, however,
also challenge the hardware needed to make the necessary computations.
With respect to image processing, careful balancing must be made between
the quality of the result, practical gain, processing time and cost.

Possibilities to greatly increase the processing speed inexpensively have re-



2 1.1. RESEARCH QUESTIONS

cently become available through the increasing number of cores, e.g. process-
ing units, in personal computers or specialised parallel hardware. The cores
are parallel processor units that can be exploited through multi-threaded
programming. Such programming is typically harder to formulate and not
all algorithms can be implemented efficiently in parallel. Specialised hard-
ware such as GPUs on modern graphic cards are even more specialised and
constrained.

The motivation behind this PhD thesis is to improve existing methods and
to apply new techniques to solve a number of typical segmentation problems
in medical imaging. A common factor in the segmentation techniques to
be studied is that they use advanced techniques such as pattern recognition
and models to guide the segmentation process. These methods are typically
derived from various scientific fields such as mathematics, statistics, physics
and biology, making the thesis highly interdisciplinary.

1.1 Research questions

The focus of this thesis is on the following research questions:

• Is it possible to achieve an accurate and robust segmentation of the
liver, hepatic vessels, liver tumours and the kidney with previously
derived image processing techniques?

There have been many previous attempts to segment these organs. A
study must be done, however, on the robustness of these methods. Typ-
ically, the segmentation methods are simple and perform adequately
only in specific cases, and a large number of parameters must be set
appropriately. These parameters are often difficult to derive, and must
be fine-tuned for each segmentation task.

• How can we best segment the liver, hepatic vessels, possible tumours
and the kidney from CT and MR scans?

The main goal in this thesis is to derive robust methods that success-
fully segment these organs. It is unlikely that we can produce methods
that perform well in all possible cases, and we aim therefore to find
methods that perform better than the current state of the art. The
proposed methods should not be highly dependent on numerous pa-
rameters and a high percentage of suitable parameter choices should
yield good results.

• What statistical models can guide and verify the proposed segmentation
techniques?
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This question is closely related to question 2. Depending on the segmen-
tation methods we propose, we need a robust representation that can be
used to incorporate statistical data to guide the segmentation methods.
There exist many previously presented models that can suit our pur-
pose, but we must remain open-minded with respect to new solutions
as well. A typical challenge with previous representations is to retain
important properties that can be used to improve the segmentation,
while disregarding unnecessary features to simplify the representation
and make it more general.

1.2 Research goals

The primary research goal is related to the second and third research ques-
tion, and consists of deriving and combining segmentation techniques that
result in sound and robust solutions to the following segmentation tasks:

• Segmentation of the liver and liver tumours.

The main challenge in liver segmentation is to separate the liver tissue
from surrounding tissue. These regions generally have non-existing bor-
ders and edge-detecting methods are ineffective to separate the tissues.
Statistical methods are also difficult to apply, since tumours in the liver
and previous interventions may result in non-typical liver shapes. Seg-
mentation of the tumours shares the same challenges, but the tumour
and liver tissues are generally separable by their texture.

• Segmentation of blood vessel structures, in particular liver vessels.

Segmentation of hepatic vessels is a problem that is closely related to
segmentation of the liver. A liver segmentation may provide a good
starting point for segmentation of these vessels. However, it is conceiv-
able that a stand-alone vessel segmentation may be conducted. The
texture of liver and vessel tissue is generally different, but appropriate
CT or MR scan parameters are required.

• Segmentation of the kidney.

This task is easier to accomplish than the previous two due to the dif-
ference between the kidney tissue and surrounding tissue in CT scans.
If a suitable method is found for segmenting the liver, it is likely that
the same technique can be applied to kidney segmentation with an even
higher success rate.
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We have defined two secondary goals as well.

• Visualisation of the segmentation results.

Visualisation of the final result is needed for presentation, interpre-
tation and analysis. Especially blood vessels may prove difficult to
visualise efficiently, due to the need of a suitable way to compute a
triangle mesh of branching structures.

• Parallelisation of the proposed methods to decrease the processing time.

Image processing techniques are often time consuming and inefficient,
especially for real time processing. Therefore, to significantly increase
the processing speed, we developed parallel algorithms through the use
of Graphics Processing Units (GPUs) on inexpensive modern graphic
cards or through utilising the increasing number of cores in personal
computers.

1.3 Research approach

I intend to answer the given research questions through the following research
methods:

• Literature review (Hart, 1998; Kitchenham, 2004)

• Design science (Hevner and Ram, 2004; Vaishnavi and Kuechler, 2007)

• Controlled experiments (Wikipedia, 2007; Frigon and Mathews, 1997)

An overview of previous proposed solutions to our research goals will be
achieved through literature reviews. Next, the solutions will be evaluated,
and on this basis improved solutions will be derived to solve the given tasks
and implemented through design science. Controlled experiments will follow,
and the derived solutions will be modified and improved if needed.

As previously stated, we do not hope to find complete solutions for the
tasks at hand. The goal is to advance a step further with respect to previously
published material. Large scale verification of the methods will therefore not
be performed. However, we will discuss the quality of the proposed methods
with respect to previously published material.
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1.4 Published articles

The following published conference articles are related to this PhD work.

• Eidheim, Ole Christian and Aurdal, Lars and Omholt-Jensen, Tormod
and Mala, Tom and Edwin, B. (2004). Interconnecting segmented hep-
atic vessels in adjacent CT slices. NOBIM, pages 91-97.

Eidheim, Ole Christian and Aurdal, Lars and Omholt-Jensen, Tormod
and Mala, Tom and Edwin, B. (2004). Segmentation of liver vessels as
seen in MR and CT images. Computer Assisted Radiology and Surgery,
pages 201-206.

These two articles represent early work from the beginning of the PhD
period. The articles describe techniques that reconstruct hepatic ves-
sels from CT scans through the use of anatomical knowledge. The
methods work on individual slices, however, instead of applying 3D
processing methods on the CT volume as presented in our later work,
Eidheim (2005). The two articles can be found in Appendix A and B,
respectively.

• Skjermo, Jo and Eidheim, Ole Christian (2005). Polygon Mesh Genera-
tion of Branching Structures. 14th Scandinavian Conference on Image
Analysis.

This article presents a method for visualisation of the hepatic vessel
results from the two first articles and my master thesis. The article
describe a mesh producing method for visualisation of branching struc-
tures that was written in collaboration with Jo Skjermo. The article
can be found in Appendix C.

• Eidheim, Ole Christian and Skjermo, Jo and Aurdal, Lars (2005). Real-
time Analysis of Ultrasound Images Using GPU. Computer Assisted
Radiology and Surgery.

In this article, we studied the processing speed of parallelised algorithms
on modern graphics cards in comparison to serial processing on a CPU.
This work is presented in chapter 7.

1.5 Thesis organisation

This thesis is divided into three parts:
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Part 1. Introduction and background

The first part outlines the research motivation, goals and previous work per-
formed in the field of medical image processing. This part includes the fol-
lowing chapters:

• Chapter 1 contains this introduction.

• Chapter 2 outlines previous image processing methods that are related
to the given segmentation tasks.

Part 2. New approaches, results and discussion

This part consists of our proposed methods to solve our research goals and
to answer the given research questions. The following chapters are included
in this part:

• Chapter 3 presents a 3D skeleton algorithm for retrieving more compact
representations of 3-dimensional objects where the homotopy of the
volume is kept.

• Chapter 4 outlines a texture-based segmentation method for creating
a more robust segmentation of organs, in particular the liver, from CT
and MR scans.

• Chapter 5 demonstrates the texture-based technique presented in chap-
ter 4 on hepatic vessel, liver tumour and kidney segmentation.

• Chapter 6 presents a new general representation of objects that may not
have a simple interior. The method is demonstrated used to automate
the technique given in chapter 4.

Part 3. Assessment

• Chapter 7 contains the final discussion, conclusion and proposed future
work.



Chapter 2

Related work in medical image

segmentation

Due to the importance of medical applications, medical images have been
of particular interest to the image processing community. A vast number of
proposed methods have been published that process medical images to detect
important structures or to do automatic measurements and diagnostics. Still,
very few image processing tasks have been implemented and used in medical
practice. The main reason behind this is the uncertain results of the methods
and the high number of parameters that need to be appropriately set in order
for the methods to work soundly. The problem of segmenting an organ from a
medical modality is highly complex, especially because of diffuse boundaries
between the different tissue types and the great anatomical variation from
person to person.

In this chapter we will review the typical image processing tasks used in
medical imaging. The focus will be on tasks that are related to the given
research goals. Preprocessing tasks will be covered first, and they are typ-
ically performed prior to a segmentation algorithm to detect data to make
the segmentation easier. Segmentation is the task of labeling similar regions,
and the regions are typically represented by a feature vector, that is a point
in a hyper-dimensional space. The classifier groups these points into separate
classes and uses these groupings to classify new points.

The image processing methods in this chapter are divided into the previ-
ously mentioned approaches, however, the approaches may slightly overlap.
For instance, segmentation and classification are similar operations and the
latter techniques are commonly used to execute the former even though it is
common to distinguish segmentation and classification. The same is true for
preprocessing techniques, which sometimes can be extended to a segmenta-
tion algorithm, additionally to be used to improve a segmentation result in a
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postprocessing stage. Nevertheless, we attempt to place the methods where
they are most commonly associated in the literature.

After presenting the common image processing techniques, we will dis-
cuss the execution time of image processing methods with respect to being
implemented and used in medical applications. Finally, we will discuss the
presented techniques and their applicability to the task at hand.

2.1 Preprocessing

Preprocessing is usually applied before executing a segmentation algorithm.
Generally, the objective is to make important regions more readable by the
segmentation algorithms.

After the segmentation, corrections to the results are sometimes needed
in a stage called postprocessing. These corrections are often performed using
the same techniques that are used in the preprocessing stage.

2.1.1 Spatial filters

Spatial filtering through convolution is commonly used in image preprocess-
ing (Gonzalez and Woods, 2008; Sonka et al., 1999). A frequent application
is to remove noise by smoothing or blurring an image. Another common
use is called matching, which is basically finding regions in an image that
correspond to a given template.

Matched filtering was used to locate hepatic vessels from CT scans in
Chaudhuri et al. (1989). The idea was that vessels in CT images have a
Gaussian profile, and thus a Gaussian hill filter could be used to match the
blood vessels. Since blood vessels have distinct sizes and are oriented in
separate directions, the filter has to be scaled and rotated, and the filtering
results from all the scaled and rotated Gaussian hill templates were summed
up. Omholt-Jensen (2002) also used matched filtering in segmentation of
hepatic vessels, where the purpose was to use anatomical knowledge to derive
an improved vessel segmentation. Figure 2.1 shows an example result of
matched filtering applied to a CT slice.

2.1.2 Mathematical morphology

Mathematical morphology is a general framework that can be used to perform
various image processing tasks. Two basic operators, namely dilation and
erosion, form the basis of morphological methods (Gonzalez and Woods, 2008;
Sonka et al., 1999; Soille, 2003). A structure element is used to define which
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(a) (b)

Figure 2.1: Example matched filtering result where the blood vessels within
a liver are emphasised. a) Original CT slice masked with a liver mask. b)
Matched filtering result of a) using several templates matching different sized
blood vessels in separate headings.

neighbouring pixels should be included during filtering. Using a flat structure
element (Soille, 2003), dilation and erosion are local maxima and minima
filters, respectively.

Most image processing libraries contain these two operators, making the
mathematical morphology methods highly available. Some example uses are
region filling, matching through the hit-or-miss transform, boundary extrac-
tion, finding object skeletons, and pruning unimportant pixels. Mathematical
morphology can also be used to implement the distance transform, which is
used to compute the distances to the nearest background pixels in an image.

In medical imaging, Aykac et al. (2003) make use of morphological closing
and erosion in a preprocessing step to identify candidate airway locations.
Further, morphological opening, closing, and skeletonisation (thinning fol-
lowed by pruning) are used by Thomas et al. (1991) to measure the fetal
femur length in ultrasound images.
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2.1.3 Bayesian image processing

Bayesian image restoration was introduced by Geman and Geman (1984).
The idea was to make use of the Bayes formula (Duda et al., 2001) to recon-
struct images:

P (X|Y ) =
p(Y |X)P (X)

P (Y )
(2.1)

In this formula, p(Y |X) is called the likelihood distribution, which specifies
how X has been degraded from Y . The last part of (2.1), P (X), is the prior
probability that defines how neighbouring pixels are related in X. Figure
2.2 shows an example of vessel restoration that we computed while testing
various preprocessing algorithms.

This technique can be used to reconstruct images in a preprocessing stage
as well as for segmentation purposes. The unknown reconstructed image is
then corresponding to X, and the original image is set to be Y . The pixels in
the new image are updated iteratively after the likelihood distribution and
the prior probability have been defined.

In Bayesian image processing, the two models, namely the likelihood dis-
tribution and the prior probability, are derived so that they define the end
result. p(Y |X) corresponds to the probability of Y typically based on sur-
rounding pixels in X. The second model, P (Y ), defines the probability of Y
with respect to prior knowledge of the dataset to be processed.

Energy minimising methods such as simulated annealing is ordinarily used
to find the optimal estimation of image X. Refer to Winkler (1995); Geman
and Geman (1984); Hokland (2002) for further reading.

2.1.4 Level set methods

The level set method introduced in Sethian (1997, 1996), is primarily a model
based segmentation algorithm and will be more fully described in section
2.2.2. This approach, however, can also be used in noise removal as proposed
by Malladi and Sethian (1996). The idea of the method is to move the inten-
sity values of the image in the direction of the curvature as shown in Sethian
(2004b). An example is preprocessing of a digital subtraction angiogram
(DSA) as shown in figure 2.3.

2.1.5 Anisotropic diffusion

The use of anisotropic diffusion in image processing was introduced by Perona
and Malik (1990), and the technique has since been used frequently in image
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(a) (b)

Figure 2.2: Example restoration using Bayesian image analysis. a) A part of
the liver. b) Result of restoration.

(a) (b)

Figure 2.3: Example usage of motion by curvature. a) A digital subtrac-
tion angiogram of an artery. b) Preprocessing result of a) using motion by
curvature. Images courtesy of Sethian (2004b)

analysis. The anisotropic diffusion equation for an image I is as follows:

∂I

∂t
= ∇(c∇I) (2.2)
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where the diffusion coefficient c varies in space but not in time. If c is instead
constant, the equation is reduced to the isotropic heat diffusion equation:

∂I

∂t
= c∇2I (2.3)

Applying isotropic heat diffusion to an image is equivalent to running a Gaus-
sian filter on the image. By using anisotropic diffusion with varying c, how-
ever, it is possible to specify the magnitude of blurring with respect to the
contents of an image.

Typically during image preprocessing, we want to blur roughly homoge-
neous regions, while preserving the edges. This can for instance be achieved
in anisotropic diffusion by setting c = g(||∇I(x, y, t)||), and thus vary c with
respect to the edges in an image. Additionally, if the function g is chosen
appropriately, the edges in an image can be sharpened as well (Perona and
Malik, 1990).

There are several example uses of anisotropic diffusion in medical imaging.
For instance, Soler et al. (2001) uses anisotropic diffusion in a preprocessing
phase before segmentation of the liver, blood vessels, and possible liver tu-
mours from CT scans. Another example is Chung and Sapiro (2000), where
anisotropic diffusion is used before segmenting skin lesions.

Anisotropic diffusion is also used in the gradient vector flow procedure (Xu
and Prince, 1998, 2000), which is typically used before applying a deformable
model segmentation (See section 2.2.2).

2.2 Segmentation

Image segmentation refers to the process of finding regions in an image
that have one or more common properties. Example common properties
are colour, texture and shape. The segmentation result is typically a binary
image where the regions are represented by value one and the background by
value zero. The next step after the segmentation is to extract a meaningful
representation such that a classifier can distinguish the separate regions.

Generally, we group segmentation techniques into two main groups, local
and global methods. Local approaches are exclusively based on information
contained in the image itself. The image is assumed to be“self-contained”, i.e.
it has all the information necessary to retrieve the objects of interest. On the
other hand, global methods utilise additional related knowledge about the
image in the segmentation approach such as statistical templates or physical
models.
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2.2.1 Local approaches

Local approaches are often simpler than global approaches. However, there
are exceptions like mean shift segmentation where data in the image is used
in a classifier to segment regions in the image. There is much information
in an image that can be exploited by a segmentation algorithm, and better
results are not necessarily achieved by using global methods. One theoretical
example is when the statistical variance is too high to make a suitable model
of the data to be segmented. As common elsewhere in image processing, local
and global approaches can be combined to solve a segmentation problem.

Thresholding

Thresholding is the simplest and most frequently used segmentation algo-
rithm. The basic idea is to mark pixels having intensity values within a
predetermined range (Gonzalez and Woods, 2008; Sonka et al., 1999). A
slightly more advanced usage of this algorithm is described in Székely and
Gerig (2000). Here, a two dimensional intensity distribution from a spin-echo
MR image pair is computed, and the two distributions are used to segment
the tissues. A more accurate segmentation is usually accomplished using
more than one spectrum of the same scene, such as for instance colour im-
ages.

The main challenge concerning thresholding is to select the most desirable
intensity range. One way to solve this is through an approach called optimal
thresholding (Gonzalez and Woods, 2008; Sonka et al., 1999). The optimal
threshold is said to be the threshold that causes the smallest number of pixels
to be incorrectly segmented. In optimal thresholding, Gaussian curves are
fitted to the histogram of an image, and thresholds are set where the curves
cross. Soler et al. (2001) makes use of this method in segmenting specific
tissues in CT images.

Another significant thresholding algorithm is based on the entropy of an
image’s histogram (Kapur et al., 1985). An entropy diagram is obtained
by an average entropy measure (Gonzalez and Woods, 2008), and each local
maximum on the entropy diagram represents a potential best threshold. This
method is reported to be successful in segmenting liver vessels in Glombitza
et al. (1999) and Omholt-Jensen (2002). See figure 2.4 for an example use of
entropy based thresholding.

Mean shift segmentation

Mean shift segmentation is an interesting, recently proposed segmentation
technique. Here, pixels in an image are instead represented as points in
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(a) (b)

Figure 2.4: Example segmentation using thresholding based on entropy. a)
A CT image. b) Resulting segmentation of a) using thresholding based on
entropy.

a feature space. Density estimation in the feature space is processed using
the Parzen window technique described in Comaniciu and Meer (2002); Duda
et al. (2001), and a mean shift procedure is used to follow the density gradient
in the feature space to a local maximum (Comaniciu and Meer, 2002).

These maxima represents segmentation identities, and all pixels leading
to the same local maximum is grouped into the same segment. The number
of maxima is dependent on the Parzen window size, and thus the number of
segments does not need to be known beforehand.

Although not mentioned in section 2.1, the mean shift procedure can be
used in image preprocessing as well (Comaniciu and Meer, 2002; Fernández
et al., 2003).

Edge based segmentation

Edge based segmentation involves following edges in an image and mark
pixels within closed boundaries. The simplest approach is to analyse the
immediate neighbourhood of each pixel in an image and label pixels hav-
ing similar gradient magnitude and direction (Gonzalez and Woods, 2008).
Closed contours, containing equally labelled pixels, are eventually filled and
transformed into segmented regions.

More advanced examples of local edge detectors are the Canny edge de-
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tector and the Marr-Hildreth algorithm (Gonzalez and Woods, 2008). The
Canny edge detector searches for local directional maxima in the gradient
magnitude, while the Marr-Hildreth algorithm detect edges by locating zero-
crossings in the result from a second order differential operator such as the
Laplacian.

The procedures above, however, considers only adjacent pixels when track-
ing the edges in an image. Instead, graph theoretic techniques (Gonzalez and
Woods, 2008; Sonka et al., 1999) can be utilised to find the least expensive
path according to a given cost function. Dynamic programming (Bellman,
1957; Sonka et al., 1999) are typically used to find the global minimum, and
thereby the most appropriate edge graph from a given starting point.

Another example of an edge based segmentation algorithm is the Hough
transform (Hough, 1959; Gonzalez and Woods, 2008). Using various models,
it is possible to search an image for simple geometric shapes. For instance,
to search an image for circles with radius 1 we calculate the following Hough
transform:

H(a, b) =

∫ ∫

f(x, y)δ((x − a)2 + (y − b)2 − 1)dxdy (2.4)

where f(x, y) represents the gradient of an image, and (a, b) corresponds to
the positions of the sought circles. The commonly used delta function, δ(u),
returns 1 when u is 0, and 0 otherwise. High values in H(a, b) represents
positions (a, b) where circles are found in f(x, y).

An elliptical Hough transform was used to identify axon centres in Fok
et al. (1996). The purpose of this paper was to count the number of axons
in nerve cells as well as extract each axon’s size and shape. After the initial
identification of the axon centres, an active contour model (McInerney and
Terzopoulos, 2000) was used to refine the axon contours.

Region based segmentation

Region based procedures rely on common properties between adjacent pixels
(Gonzalez and Woods, 2008; Sonka et al., 1999). Starting with a few seed
points, regions are typically expanded until a property criteria is no longer
met or until a region boundary collides with another region boundary. A
similar method is watershed segmentation (Vincent and Soille, 1991) where
regions are grown from local intensity minima of an image. An example
watershed segmentation is shown in figure 2.5.

Example applications of region growing can be found in Martinez-Perez
et al. (1999) and Tuduki et al. (2000) where blood vessels were segmented.
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(a) (b) (c)

Figure 2.5: Segmentation of the brain white matter. a) Seed points. b)
Resulting over-segmentation using watershed. c) A level set method, which
will be described in section 2.2.2, is used to make the final segmentation
using the watershed results from b). Images courtesy of MIPG medical image
processing group.

In (Krivanek and Sonka, 1998), watershed segmentation was used to auto-
matically measure the size and shape of follicles from ultrasound images.
Furthermore, watershed segmentation was used to segment the coronary ar-
terial tree in Haris et al. (1999).

Additionally, several articles propose region based methods for delineating
the liver vessels automatically through region based segmentation algorithms
(Chaudhuri et al., 1989; Kapur et al., 1985; Inaoka et al., 1992; Zahlten et al.,
1995; Soler et al., 2001). Most promising, with respect to creating a 3D model
of the liver vessel structure, are the methods by Zalthen et al. and Soler et
al.

Zalthen et al. use a 3D region growing algorithm to extract the portal
vein, but a seed point must be given. In the article by Soler et al., the
portal trunk is located using its general anatomical position. The portal
vein skeleton is calculated using skeletonising methods from Bertrand and
Malandain (1994); Malandain et al. (1993) and is corrected by pruning vessel
segments that do not confirm with a set of predetermined properties.

2.2.2 Global approaches

Global methods utilise additional knowledge concerning the problem at hand.
Physical models, for instance, make use of the knowledge of the general
shape of the objects to segment. Another example is statistical models that
represent the statistical variations of the object to be segmented. These
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(a) (b) (c) (d)

Figure 2.6: a) Initialisation of the contour model, in blue, on a CT image.
b), c), d) The contour alters shape to fit the liver .

methods are typically applied when segmentation is problematic based on
data exclusively from the image.

Deformable models

The first article on this topic was Kass et al. (1988). Here, a model called
the snake model was introduced. In short, a snake is a spline influenced
by internal and external forces seeking an energy minimum. Internal forces
typically control the tension and rigidity of the snake, and external forces
draw the snake towards edges in an image (McInerney and Terzopoulos, 2000;
Heuch, 2003). External forces from the image I(x, y) are usually derived
from:

P (x, y) = −c|∇[Gσ ∗ I(x, y)]| (2.5)

where c is the magnitude of the force, ∇ is the gradient, and Gσ is a Gaus-
sian smoothing filter. Gσ ∗ I(x, y) means that I(x, y) is convolved with Gσ.
External forces can also include the so-called balloon force that expands the
snake to find far edges. Another way of pulling the snake to remote edges
is to implement gradient vector flow (Xu and Prince, 1998, 2000) that was
briefly mentioned in section 2.1.5.

An interesting alternative to the original snake model is the discrete dy-
namic contour model (Lobregt and Viergever, 1995). The structure of this
model is a set of interconnected vertices that is transformed directly through
simple vector operations. Figure 2.6 shows an example segmentation of a
liver slice using a deformable model.

In Montagnat and Delingette (1997), a hybrid model was described that is
similar to the snake model. This model, however, is restricted to a reference
model that to a high degree define the end result. The model was used to
segment the liver and brain ventricles from CT volumes.
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A similar method that is worth mentioning is described in Tsagaan et al.
(2002). Here, NURBS (Non-Uniform Rational B-Spline) surfaces are used
to segment the kidney guided by statistical information. The representation
is of particular interest since it may be easier to represent varying surfaces
using NURBS surfaces than attempting to locate corresponding points that
are evenly spread on two surfaces.

An extended use of the deformable model was also demonstrated in
Székely and Gerig (2000), where intensity profiles along the boundary were
used to guide the segmentation. Such incorporation of gray-level appear-
ance of the anatomy in combination with a shape model is known as active
appearance models (Cootes et al., 1998).

Snakes are becoming more and more common in medical imaging. For
instance, Heuch (2003) used snakes to segment the liver from CT images, and
Kelemen et al. (1998); Kelemen and Székely (1999); Székely and Gerig (2000)
utilised snakes to segment the basal ganglia of the human brain. Moreover,
snakes with a modified gradient vector flow were used to track white blood
cells in Ray et al. (2002).

Level set method

Deformable models are difficult to handle when the topology of the contour
changes (Sethian, 1997). The level set method (Sethian, 1997, 1996) solves
this issue by working with shapes one dimension higher than the dataset
to segment. For instance, if a 2D image is being segmented, a 3D shape is
deformed to match the objects of the image. Intersections of the shape and
the image, also known as the zero level set, are regarded as the contours. The
advantage of level set segmentation is that splitting and merging of contours
happen automatically with no additional processing.

Level set methods have been demonstrated to be useful in outlining the
stomach from CT images, and in segmenting the structures of arterial trees
from DSA images (Malladi et al., 1995; Malladi and Sethian, 1996). Examples
of beating heart segmentation, femurs and surrounding soft tissue segmenta-
tion, and brain reconstruction can also be found in Sethian (2004a).

Statistical models

Statistical models represent the statistical variation of a sought object. Sta-
tistical models are typically more resource demanding to implement since
they commonly require hand segmented samples. Many segmentation tasks,
however, require statistical models in order to be adequately solved.

In applications, statistical models have two common uses. First, they can
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Figure 2.7: Statistical models built by principal component analysis. The
figures show the models reconstructed from the three eigenvectors with the
highest corresponding eigenvalues. Images courtesy of Székely and Gerig
(2000).

be used as a segmentation initialisation by matching reconstructed models
onto structures in an image. After this, the segmentation can be refined using
another segmentation method, for instance active contours. The second use of
statistical models are in criteria functions to compute the statistical validity
of an already computed segmentation result.

Székely and Gerig (2000); Kelemen et al. (1998); Kelemen and Székely
(1999) use principal component analysis (Jolliffe, 2002) to create a smaller
set of statistical templates, eigenmodes, expressing the main variations of a
larger training set. A best match is found and refined using a deformable
model. In (Sclaroff and Liu, 2001), a multidimensional unimodal Gaussian
distribution of the training set is assumed. Deviation from the mean is pe-
nalised by an amount that is proportional to the Gaussian distribution func-
tion. More example uses of statistical models are Székely and Gerig (2000);
Kelemen et al. (1998); Kelemen and Székely (1999) where 2D and 3D models
of the corpus callosum are used (see figure 2.7). In Soler et al. (2001), a
statistical model of lesions were defined to locate tumours in the liver. Fur-
thermore, statistical models were used to automatically segment the three
main structures of the heart from MR scans in Frangi et al. (2002).

In section 2.1.3, we described methods that could be used to restore and
improve images using Bayesian decision theory. Similar methods are pro-
posed in medical image segmentation (Choi et al., 1991). First, a manual
segmentation and classification is conducted, and Gaussian curves are fitted
to the probability distributions for each class. In addition to the derived mean
and variance, a model of the regions known as the prior probability is used.
For each pixel, an a posteriori probability is calculated for each class, and an
appropriate class is selected typically through inversion (Ripley, 1987).
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Case-based reasoning

Case-based reasoning, related to using statistical models, solves new problems
based on previous similar problems. For purposes of computer reasoning, the
process has been formalised as a four-step process (Aamodt and Plaza, 1994):

1. Retrieve: Given a target problem, retrieve cases from memory that
are relevant to solving it. A case consists of a problem, its solution,
and, typically, annotations about how the solution was derived. For
example, suppose Fred wants to prepare blueberry pancakes. Being a
novice cook, the most relevant experience he can recall is one in which
he successfully made plain pancakes. The procedure he followed for
making the plain pancakes, together with justifications for decisions
made along the way, constitutes Fred’s retrieved case.

2. Reuse: Map the solution from the previous case to the target problem.
This may involve adapting the solution as needed to fit the new situ-
ation. In the pancake example, Fred must adapt his retrieved solution
to include the addition of blueberries.

3. Revise: Having mapped the previous solution to the target situation,
test the new solution in the real world (or a simulation) and, if nec-
essary, revise. Suppose Fred adapted his pancake solution by adding
blueberries to the batter. After mixing, he discovers that the batter has
turned blue - an undesired effect. This suggests the following revision:
delay the addition of blueberries until after the batter has been ladled
into the pan.

4. Retain: After the solution has been successfully adapted to the tar-
get problem, store the resulting experience as a new case in memory.
Fred, accordingly, records his newfound procedure for making blue-
berry pancakes, thereby enriching his set of stored experiences, and
better preparing him for future pancake-making demands.

Case-based reasoning has been proposed used in image processing as well.
For instance Perner (1999) uses case-based reasoning (CBR) to automatically
find the brain/liquid ratio from CT scans, and M. Frucci and di Baja (2008)
use CBR to automatically find the most suitable parameters for watershed
segmentation based on previous similar problems.



CHAPTER 2. RELATED WORK IN MEDICAL IMAGE
SEGMENTATION 21

2.3 Object representation and description

Prior to making a classification of an object, the object is typically repre-
sented as a numeric feature vector. A point in an n-dimensional space is
then representing the shape, and classification is achieved by partitioning
the space into separate classifications. Other ways to represent knowledge
exist, such as predicative logic, structural descriptions, production rules and
semantic nets. Most generic classifiers, however, have a numerical feature
vector as input.

The feature vector is a more compact representation of an object. Im-
portant elements that can help separate different objects are kept, while
unneeded properties are disregarded.

Representations has other uses in image processing as well. One example
is object skeletons that have been used to identify blood vessel centres and
branches.

2.3.1 Contour based representation and description

There are several simple features that can be used to describe the boundary
of an object. Some examples are chain codes, boundary length, curvature,
bending energy, signature, and chord distribution (Sonka et al., 1999; Gonza-
lez and Woods, 2008). Fourier descriptors represent a slightly more complex
method where frequencies along one direction of a contour are obtained in-
stead of using the contour positions directly. Consequently, it is straightfor-
ward to disregard high frequencies and thereby compress the representation
depending on the needed level of detail (Gonzalez and Woods, 2008).

There are, however, two main problems with contour based descriptors.
First, every similar shape must have a corresponding starting point of the
contour if they are to be classified equally. There exist no general way to
find such a starting point, and one has to choose a normalisation technique
depending on the problem at hand. The second problem is finding corre-
sponding points along the contours of dissimilar shapes.

2.3.2 Shape based representation and description

When describing an object it is important that the description is invariant to
especially affine transformations. Shape descriptors are in general invariant
to these transformations, making them typically more useful than boundary
descriptors for recognition purposes.

Some simple example shape based descriptors are area, Euler’s number,
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projections, eccentricity, elongatedness, rectangularity, shape direction, com-
pactness, and convex hull (Sonka et al., 1999).

Statistical characteristics

Statistical moments are an important shape based descriptor (Papoulis, 1991).
Here, the image function is interpreted as a probability density of a 2D ran-
dom variable. Properties of this probability density can be described using
statistical moments. Different degrees of invariance can be achieved depend-
ing on which moments are used. Scaled central moments, for instance, are
translation and scale invariant.

Other statistical characteristics also exists such as maximal probability,
element difference moment of order k, inverse element difference moment of
order k, uniformity and entropy (Gonzalez and Woods, 2008).

2.3.3 Texture based description

Texture may contain valuable information that can help the classifier to sep-
arate objects of different classes. This is especially true with regards to
volumes from medical modalities where texture is the main source of infor-
mation.

A simple way to represent texture is through the region’s histogram, but
this representation may not be adequate for classification purposes (Bevk
and Kononenko, 2002). A more useful representation is therefore the co-
occurrence matrix (Gonzalez and Woods, 2008), where pixel setup occur-
rences constitute a second order distribution. Commonly, statistical char-
acteristics are computed from the distribution to define a more compressed
feature vector.

Texture based descriptions will be discussed further in chapter 4.

2.3.4 Shape skeleton

A shape skeleton represents a compact representation of an object without
changing its topology. In 2D, the skeleton is typically defined as the medial
axis of a shape. Blum (1967) proposed a medial axis transform, where each
pixel in a shape is marked as a medial axis if the pixels have two or more
smallest distances to the background. An extension of this definition to 3D
is possible, however, surfaces instead of lines may then be characterised as
medial axes. It is therefore common to distinguish 3D skeletons into medial
surfaces and medial lines.
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(a) (b) (c)

Figure 2.8: The skeleton of a rectangle using two different algorithms. a)
The rectangle to be thinned. b) Skeleton of a) using morphological thinning.
c) Skeleton of a) using the algorithm given in Guo and Hall (1989).

2D skeletons

We briefly mentioned skeletonisation through morphological thinning in sub-
section 2.1.2. In morphological thinning, hit-and-miss templates are first
used to find shape boundaries (Soille, 2003). The boundaries are removed
successively until only the skeleton of the shape remains. Post-processing of
the skeleton may consist of a pruning phase where small end branches of the
skeleton are removed.

Another example of an iterative skeleton algorithm is described in Guo
and Hall (1989). This algorithm produces a more compact skeleton that in
most cases does not need pruning. Refer to Lam et al. (1992) for further
reading on additional iterative 2D skeleton algorithms.

Non-iterative skeleton algorithms have also been proposed. These are
typically based on medial axis and distance transforms (for instance Blum
(1967)), or line following and run length encoding (Lam et al., 1992).

Figure 2.8 shows a rectangle and its two resulting skeletons using thinning
by morphology and the skeleton algorithm given in Guo and Hall (1989).

3D skeletons

Existing templates or criteria functions used in most 2D skeleton algorithms
cannot be directly extended to 3D. However, much research effort has been
put into 3D skeletons recently due to the increased availability of 3D imag-
ing data. Lobreget et al. (1980) first presented a skeleton algorithm based
on preservation of Euler characteristics. Further, Ma and Sonka (1996) pro-
posed a boundary thinning algorithm utilising deleting templates, and Saha
et al. (1997) developed an algorithm that preserves the number of object
components, cavities, and tunnels. More recent example publications of 3D
thinning algorithms can be found in Borgefors et al. (1999); Palagyi et al.
(2001); Xie et al. (2003).
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Palagyi et al. (2001); Xie et al. (2003) both make use of a simple point
definition derived in Malandain and Bertrand (1992). A point is simple if its
removal does not affect the topology of the shape. The thinning result also
depends on the deletion order of the simple points. Palagyi et al. (2001), for
instance, propose a method that mark all voxels for deletion in a separate pass
before deleting them. This procedure is repeated for each heading; northern
boundary voxels are deleted first, then southern, and so forth. Neverthe-
less, testing has shown that current simple point definitions are erroneous
in certain voxel setups and the deletion order must be improved to compute
a more compact skeleton with fewer unnecessary or faulty branches. Fig-
ure 2.9 shows an example medial surface and medial line of a cuboid. The
medial line is produced using the simple point definition in Malandain and
Bertrand (1992) and by thinning boundary voxels a predetermined number
of iterations.

Skeletonisation through the distance transform has also been proposed
in numerous articles such as Niblack et al. (1992); Zhou and Toga (1999);
Sato et al. (2000); Jiang and Alperin (2004). Local maxima are here located
from the distance transform, and these maxima are interconnected to form an
object skeleton. The interconnection of the local maxima, however, is difficult
and highly parameter controlled. To compute a minimised skeleton such as
is done in the 2D algorithm given in Guo and Hall (1989), skeletonisation
through thinning may most likely produce the best result (Palágyi and Kuba,
1999).

2D and 3D skeletons in medical applications

2D and 3D skeletons have been used extensively in medical image analysis.
In Yim et al. (2000), vessel skeletons were used to analyse vessel paths and
branching patterns of vascular trees from magnetic resonance angiography
(MRA). Similar operations were performed in Palagyi et al. (2001), but from
Spiral Computed Tomography (S-CT) volumes. More recently, Volkau et al.
(2005) uses 3D shape skeletons to construct the human normal cerebral arte-
rial system from various 3D datasets. Other examples include Nyström and
Smedby (2001); Tom et al. (1994); Gomberg et al. (2000).

2.3.5 Principal component analysis

The use of principal component analysis to create a small model template
base from a larger model database was mentioned in section 2.2.2. Samples
are represented as points in an N-dimensional space, and eigenmodes are
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(a) (b)
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Figure 2.9: This figure shows an example medial surface and medial line of
a cuboid. a) The cuboid before 3D thinning. b) Medial surface of a). c)
Medial line of a) using the simple point definition described in Malandain
and Bertrand (1992).

created using the eigenvectors with the largest corresponding eigenvalues
(Székely and Gerig, 2000; Kelemen et al., 1998; Kelemen and Székely, 1999).

Principal component analysis is similarly used to reduce the number of
dimensions of a dataset and making a more general and compressed rep-
resentation of the data (Jolliffe, 2002). Instead of computing eigenmodes,
the points are projected onto an N-dimensional hyperplane defined by the
eigenvectors with largest eigenvalues.

2.4 Classification

After a meaningful description is made, a classifier typically groups the data
into clusters. The number of classes may or may not be predetermined, and
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the classifier may be guided by known classifications or operate unguided.
There are many types of classifiers and we will divide them into two groups,
namely feature vector and structural classifiers. Feature vector classifiers
separate data represented as points in a hyperspace into a number of groups
based on their positions. An example feature vector classifier is neural net-
works, and its input neurons define the number of dimensions of the hyper-
space. Structural classifiers work on more complex data structures that also
include descriptions of relationships within the input data. These descrip-
tions cannot be represented simply as points in an N-dimensional hyperspace,
and other comparison criteria of the data is therefore needed (Duda et al.,
2001).

There are three major paradigms for training the classifier (Russell and
Norvig, 2002). In supervised learning, a set of already classified samples is
used to modify the classifier such that it classifies equivalent data similarly.
Unsupervised learning consists of clustering similar feature sets automatically
into a known or unknown number of classes. Finally, in reinforced learning
the classes are usually unknown, but the action of the classifier is altered
over time to minimise a global cost function.

2.4.1 Feature vector classifiers

Subdividing the feature space into regions of classes can be challenging to
perform properly since the data typically needs to be divided nonlinearly.
One possible solution is to use a kernel function that transforms the data
through a nonlinear function, and then separates the feature points linearly
such as in support vector machines (Shawe-Taylor and Cristianini, 2000).

Neural networks represent a set of classifiers that directly divide the fea-
ture space nonlinearly depending on the activation functions. Artificial neu-
rons, that is simple functions, are interconnected with input and output con-
nections. By combining a number of such simple functions, a more complex
function is realized. There are several types of artificial neural networks and
the most well known are feed-forward neural networks, recurrent networks,
stochastic neural networks, and modular neural networks (Wikipedia, 2007).

Another possibility is to take advantage of parameter estimation tech-
niques if the distribution of the data is known (Duda et al., 2001). After
the distribution of the training samples are made, Bayesian decision theory
can be applied to classify new samples. Non-parametric techniques like the
Parzen window method can be used to approximate the distribution if the
distribution of the data is unknown (Duda et al., 2001). The Parzen window
technique approximates the unknown distribution typically by adding points
as Gaussian functions where the width is varied according to the number of
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training samples. Depending on the implementation of the Parzen window
method, it requires more computing power or memory usage than methods
that derive the grouping of samples through hyperplanes. This drawback
may pose a problem, but the classification result may be easier to predict
and analyse. Moreover, samples that do not correspond to any previous
training samples are classified as uncertain instead of being given an incor-
rect classification as a result of complex hyperplanes dividing the feature
space.

Examples of simpler feature vector classifiers are minimum distance, k-
nearest neighbourhood, Fisher’s linear discriminant, k-means algorithm, hi-
erarchical clustering, clustering by criterion functions, and classification and
regression trees (CART) (Duda et al., 2001).

2.4.2 Structural classifiers

Structural classifiers are more distinct than the feature vector classifiers due
to the various ways the objects are described. In graph matching (Sonka
et al., 1999) for instance, an object is initially divided into interconnected
nodes. The nodes and their interconnections may have individual properties,
and the graph is typically matched to known graph templates to classify the
new graph. The match is performed by finding the global optimum of a cost
function, but the execution of graph matching can be time-consuming. There
exist, however, examples of non-deterministic algorithms finding sub-optimal
solutions that run in polynomial time.

Another example of structural classifiers is recognition with strings. Here,
the properties of an object are represented as a string with variable length,
and two objects can be compared by finding the edit distance (Duda et al.,
2001) between their two respective strings.

2.5 Execution time

CT and MR scans are not necessarily analysed by radiologists and surgeons
immediately after they are taken. This leaves some time for computational
processing before the results have to be presented for human interpretation.
On the other hand, modalities such as ultrasound presents a real-time video
stream that makes the possibilities for data processing limited.

With respect to classification, processing of data volumes can be time-
consuming. Many algorithms, however, can be parallelised through the use of
certain hardware, computer clusters and multiple processor cores. An exam-
ple hardware well suited for parallelising is modern graphics cards, which are
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inexpensive and constantly improved due to the competitive gaming industry.
Although this technology was not made for signal processing, improvements
are planned that will make this hardware even more applicable to image
processing and similar applications.

Parallel processors called multiple core processors are getting increasingly
more common as well. CPUs are less restrictive than specialised hardware
and may thus represent a cost effective way to improve the processing speed
through multi-threaded programming. The number of cores on typical pro-
cessors are still few, but the trend is moving towards a large increase of
parallel cores on common and inexpensive hardware in the near future. For
instance, Intel has already made a 80-core processor prototype that they plan
to release by 2012 (Intel, 2007).

Computer clusters, on the other hand, are software implementations of
parallelisation where tasks are spread over a network of computers. Many
limitations of the hardware are overcome by adding more nodes to the cluster
network, making this solution highly flexible. Additionally with the increas-
ing performance of international communication networks, computer clus-
ters may be situated virtually anywhere and specialised parallel hardware is
therefore not needed on the end user side. In theory, this method is the most
inexpensive and practical solution for most computationally expensive tasks
that can be parallelised. There are still, however, limitations on the avail-
ability of such networks, performance issues with respect to the degree data
needs to be shared between the cluster nodes, and transfer speeds between
the end users and the computer cluster.

A significant disadvantage in parallelised computing is that it requires
a higher skill in software engineering to develop such software than typical
serial software. Currently, very few software programmers have the required
skills to write decent parallel software. Optimisation of the software is also
an issue since it is dependent on the hardware and the tasks must be set up
to compute and communicate optimally with respect to the runtime of the
application.

The choice of a parallel solution depends on the problem at hand, financial
budget and available systems. These solutions are becoming increasingly
available, however, and there are significant advantages in exploiting parallel
processing.

2.6 Discussion

In this chapter, we have presented techniques that are typically used in medi-
cal image processing. With respect to the tasks at hand, however, none of the
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techniques achieve acceptable and sufficiently robust results. The segmen-
tation algorithms represent unreliable shortcuts to finding desired structures
in an image. It is conceivable, however, that these techniques have been de-
veloped simply because the computational power needed for more advanced
solutions is only now becoming available through parallel computing.

There is a significant increase of available computation power due to the
growing number of cores of inexpensive processors. This opens up oppor-
tunities to perform more advanced calculations than before within a prede-
termined time limit. There are limitations, however, in memory and disk
bandwidth, but if one can divide the computation tasks appropriately, these
limitations can be overcome by utilising a computer cluster.

Another challenge lies in representing objects in a sufficient way such
that important features are kept while disregarding unnecessary information.
Especially 3D skeleton representations need to be improved since existing
methods either have artifacts or are dependent on user-defined parameters.
Moreover, most of the published representations disregard the interior of
objects, and represent only the outer shape. This may pose a problem when
many of the important features are located within an object.

There exists a sound foundation in all of the presented feature space
classification algorithms. They also scale well with the increasingly available
computational power. The challenge lies therefore in representing the data
in such a way that the classifier can be utilised in an acceptable period of
time and still produce reliable results. This is accomplished by extracting
meaningful features that are invariant to unnecessary dimensions and thereby
reducing the number for input arguments of the classifier.
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Chapter 3

New skeleton method for graph

based segmentation of hepatic

vessels

The liver is a vital organ with vascular, metabolic, secretory, and excretory
functions. It is extensively perfused and during liver surgery special care has
to be taken in order to avoid bleedings.

Prior to liver surgery, the patient will typically be examined using CT
scans, in particular the position of large hepatic vessels must be determined.
The relative position of, for instance, tumours to these vessels is of great
importance when planning the procedure and in evaluating the operability
of the patient.

Surgeons and radiologists will typically base their evaluation on a visual
inspection of the 2D slices produced by a CT scan. It is difficult, however,
to deduce a detailed liver vessel structures from such images. Surgeons at
the Intervention Centre at Rikshospitalet have found 3D renderings of the
liver and its internal vessel structure to be a valuable aid in this complex
evaluation phase. Currently, these renderings are based on a largely manual
segmentation of the liver vessels. This procedure is time consuming and
error prone, and we have sought a way to extract the liver vessel structure
automatically from CT scans.

Several articles propose methods to delineate the liver vessels automati-
cally (Chaudhuri et al., 1989; Kapur et al., 1985; Inaoka et al., 1992; Zahlten
et al., 1995; Soler et al., 2001). Most promising, with respect to creating
a 3D model of the liver vessel structure, are the methods by Zahlten et al.
(1995); Soler et al. (2001).

Zahlten et al. (1995) use a voxel based region-growing-algorithm to ex-
tract the portal vein starting at a given seed point. A similar method is given
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in Soler et al. (2001), but the portal trunk is located using its general anatom-
ical position. The portal vein skeleton is calculated utilising methods from
Bertrand and Malandain (1994); Malandain et al. (1993), and is corrected
by pruning vessel segments that do not conform with a set of predetermined
properties.

Graph based approaches to segment hepatic vessels guided by anatomi-
cal knowledge to search for the most likely vessel graphs were discussed in
Omholt-Jensen (2002); Eidheim et al. (2004a,b). These are mainly 2D ap-
proaches, and a more promising method was presented in Eidheim (2005)
where the procedures work on the whole CT volume in three dimensions.

The results need to be improved, however, mainly due to the lack of a
good 3D skeletonisation algorithm, which typically forms the basis of a graph
based method for vessel segmentation. Skeleton algorithms are then used to
find the centres of elongated objects to locate vessel branches and centres.
Although there exist several sound 2D skeleton algorithms, there has not
previously been derived a general skeleton algorithm that works satisfactory
in higher dimensions. The motivation for this work was therefore to derive
such a 3D skeleton algorithm.

Relevant to this work, a mesh generation method for visualisation of
a finished vessel graph, in particular branching structures, was derived in
collaboration with Jo Skjermo (Skjermo and Eidheim, 2005).

3.1 Previous work

The derivation of 3D skeletons have been the subject of many studies in the
field of image analysis, and a short overview was given in section 2.3.4. Many
articles propose methods to find and delete simple points, that is voxels in
a volume that can be removed without affecting the topology of the volume.
An additional challenge is to select an appropriate order in which simple
points are to be removed.

A classification of simple points, that is voxels that can be removed with-
out altering the homotopy of an object, was given in Malandain and Bertrand
(1992). This simple feature vector classifier has been used in many other ar-
ticles such as in Palagyi et al. (2001) to create object skeletons in medical
applications. During testing of the simple point definition, it was discovered
that it had fundamental flaws under certain conditions. Figure 3.1 shows a
voxel setup where the voxel in question is marked as not-simple. The rea-
son is that the number of connected background voxels becomes higher than
1 since only the 18-neighbourhood is tested on background voxels. It also
became clear that the deletion order given in Palagyi et al. (2001) is not
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Figure 3.1: Example voxel setup shown with coloured foreground voxels,
where the algorithm from Malandain and Bertrand (1992) fails to remove
the centre voxel (shown in green).

sufficient to create a compact skeleton. An example of this is shown in figure
3.2.

Our goal was then to produce a more minimal 3D skeleton with as few
branches as possible, much like the result from the 2D skeleton algorithm
given in Guo and Hall (1989). Additionally, the algorithm should not be pa-
rameter controlled such as is typical in the distance transform based skeleton
methods.
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(a) (b)

(c)

Figure 3.2: This figure shows that the deletion order given in Palagyi et al.
(2001) is not sufficient to produce a sufficiently compact skeleton. a) Original
object to be skeletonised. b) Non-compact skeleton produced by the algo-
rithm given in Palagyi et al. (2001). c) A more compact skeleton (produced
by the algorithm given in subsection 3.2).

3.2 Method

We begin by defining two terms that are essential in the algorithm, namely
simple points and end points. The following definitions hold for any connec-
tivity and dimensionality of the dataset.

Simple points are voxels that are crucial for retaining the topology of
objects in a volume. Part of the new algorithm is a new way of identifying
these simple points. The new definition is general and can be used with any
number of volume dimensions: Count the number of connected components
of the foreground and background before and after removing the voxel in
question, if the numbers of connected components do not change, the voxel
is a simple point. Additionally, we do not want to remove a voxel if it has
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only opposing neighbours (see (3.3)). Thus, in 3D, a foreground point x ∈ X
is a simple point if and only if:

NC6[X ∩ (N6(x) − {x})] = NC6[X ∩ N6(x)] (3.1)

NC26[X̄ ∩ (N26(x) − {x})] = NC26[X̄ ∩ N26(x)](3.2)

|[(X ∩ N(−1,0,0)(x))XOR(X ∩ N(1,0,0)(x))]
⋃

[(X ∩ N(0,−1,0)(x))XOR(X ∩ N(0,1,0)(x))]
⋃

[(X ∩ N(0,0,−1)(x))XOR(X ∩ N(0,0,1)(x))]| > 0 (3.3)

where NCN(Y ) returns the number of connected components in a collection
of points Y given a neighbourhood N , N6(x) is the 6-neighbourhood of x, and
N26 corresponds to the background neighbourhood given a 6-neighbourhood
for the foreground. A 6-neighbourhood was used for the foreground because
skeletons of higher neighbourhoods can easily be derived from lower neigh-
bourhood skeletons. N(∆a,∆b,∆c)(x) is the neighbouring voxel at the relative
position (a, b, c) to x, and |Y | corresponds to the cardinality (number of ele-
ments) of the set Y .

A simple one-pass algorithm for finding the connected components is as
follows (Matlab, 2005):

1. Scan all image voxels, assigning preliminary labels to nonzero voxels
and recording label equivalences in a union-find table.

2. Resolve the equivalence classes using the union-find algorithm (Sedgewick,
1998).

3. Relabel the voxels based on the resolved equivalence classes.

The first equation (3.1) is needed in order to keep the number of objects
in the volume constant. To avoid the creation of new holes in the objects
equation 3.2 must be fulfilled as well. Finally, equation 3.3 was added not
to create obvious holes or separations that both equation (3.1) and (3.2) fail
to identify. Figure 3.3 shows examples of such voxel setups where the centre
voxel should be kept.

The definition of an end point is more intuitive. A voxel is an end point if
it has only one neighbouring foreground voxel, and if this neighbouring voxel
has only one more neighbour in addition to the original voxel. We choose
this extended end point definition in order to keep the number of branches
to a minimum. The definition of an end point x ∈ X is thus as follows:

|X ∩ (N6(x) − {x})| = 1 (3.4)

|X ∩ NE≤2(x)| = 3 (3.5)
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(a) (b)

Figure 3.3: Some voxels should be kept even though equations (3.1) and (3.2)
are fulfilled. a) and b) are two example voxel setups that should be kept and
equation (3.3) helps to retain.

where NE≤2(x) is the neighbours of x within the Euclidean distance ≤ 2.
Additionally, we define a border voxel as a voxel that has one foreground

neighbour and one background neighbour in a given direction (i.e. back and
forth in the x-direction, y-direction or z-direction in 3D).

In certain setups such as is shown in figure 3.4, all voxels are marked for
deletion during one iteration. In order to keep the structure in such cases,
we define a keep voxel as follows: if the following voxel setup is found in the
current directional thinning orientation (e.g. east): 0110 where the leftmost 1
is marked for removal during the east thinning orientation and the rightmost
1 is marked for removal during the west thinning orientation, remove the
deletion mark for the leftmost 1.

Now that we have defined simple points, end points, border voxels and
keep voxels, we can outline the skeleton algorithm as follows:

1. All border voxels, simple or not, are ordered in a deletion list first by
the number of neighbours and then by a directional thinning order (for
instance: up, down, north, south, west, east). Voxels that have fewest
neighbours will be tested for removal first.

2. End points are identified.

3. Keep voxels are searched for successively in all the directional thinning
orientations, and removed from the deletion list as they are found.
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(a) (b)

Figure 3.4: This figure shows an example voxel setup where all voxels are
marked for deletion. a) The initial voxel setup. b) The result of our algo-
rithm, where voxels are kept if neighbouring voxels in the opposite directional
thinning order are also marked for deletion.

4. Each voxel in the list is iteratively removed if it is a simple point and
not an end point.

5. Repeat 4 until stability.

6. Repeat 1-5 until stability.

3.3 Results

An example result compared with the skeleton method in Palagyi et al. (2001)
is shown in figure 3.2. As the figure shows, the simple point definition given
in Malandain and Bertrand (1992) coupled with the deletion order presented
in Palagyi et al. (2001) do not produce a sufficiently compact skeleton. It
was also shown that this simple point definition fails in certain voxel setups
(see figure 3.1). Furthermore, figure 3.5 shows that our method produces an
even more compact skeleton than the widely used skeleton algorithm given in
Guo and Hall (1989). It is apparent that the proposed method is not as de-
pendent on the original boundary voxels as previous simple point algorithms
are. Additionally, the new skeleton algorithm is not heavily controlled by
parameters such as is typical in the distance based skeleton methods.

In 2D, however, the difference between our proposed algorithm and the
algorithm given in Guo and Hall (1989) is virtually non-existent. As shown
in figure 3.6, only a few pixels differ, which demonstrates that the proposed
algorithm performs similarly to the most popularly used compact 2D skeleton
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(a) (b)

(c)

Figure 3.5: This figure shows that the proposed method produces an even
more minimal skeleton than the widely used 2D skeleton method given in
Guo and Hall (1989). a) Object to be skeletonised. b) Skeleton produced
by Guo and Hall (1989). c) Skeleton produced by the proposed method in
section 3.2.

algorithm. The result from our proposed algorithm is made 8-connected, by
simply removing corner pixels from the 4-connected skeleton result.

Figure 3.7 and 3.8 show an example result from applying the proposed
skeleton algorithm to a hepatic vessel segmentation presented in Eidheim
(2005). As a comparison, figure 3.9 presents the result from applying the
skeleton algorithm proposed in Palagyi et al. (2001). The latter result has
multiple erroneous branches and even vessel loops that were not present in
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(a) (b)

(c) (d)

Figure 3.6: The proposed skeleton procedure compared to previous 2D skele-
ton algorithm. a) 2D image to be skeletonised. b) Skeleton produced through
morphological thinning (Soille, 2003; Gonzalez and Woods, 2008). c) Skele-
ton produced using the algorithm from Guo and Hall (1989). d) Skeleton
result from applying the proposed skeleton method. For comparison, the
result in d) is made 8-connected from the 4-connected result.

the original object structures.

Another comparison of the proposed algorithm and the algorithm given
in Palagyi et al. (2001) is given in figure 3.10 and 3.11. The algorithms are
here applied on a segmentation of hepatic vessels of a second CT scan.
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Figure 3.7: Segmented vessels that is to be skeletonised using the proposed
skeleton method. See figure 3.8.

3.4 Discussion

The motivation behind the graph based approach was to derive the most
likely hepatic vessel setup even though a CT or MR scan was of low reso-
lution or distorted by noise. Compared to previous work, our method has
the potential to produce more likely vessel graphs with appropriate param-
eters. Setting the parameters is although often difficult making the method
unreliable in critical applications. This also applies to previous methods to
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Figure 3.8: Skeleton result from the proposed skeleton algorithm applied on
the vessel segmentation shown in 3.7.

a great extent. As the image modalities become more advanced, however,
the resolution of the CT or MR scans improves and more direct methods for
vessel extraction can be applied.

The work on the graph based method did, however, result in a new iter-
ative and robust 3D skeleton algorithm that represents a noticeable contri-
bution to the image processing community. In contrast with distance based
skeleton algorithms, it is not controlled by any user defined parameters and
the algorithm can be parallelised and run multi-threaded. The initial results
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Figure 3.9: Skeleton result from the previously proposed skeleton algorithm
(Palagyi et al., 2001) applied on the vessel segmentation shown in 3.7. As
shown, this algorithm produces skeleton with multiple erroneous branches
and loops.
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Figure 3.10: Skeleton result from the proposed skeleton algorithm applied to
a second segmentation of hepatic vessels.

demonstrates that the 3D skeleton algorithm outperforms popular previous
iterative methods in creating a compact representation of 3D objects. It is
a general algorithm that can be used on 2D data as well, and even though
it has not been studied extensively it is possible that the method can be
extended to 4 or higher dimensions as well.

A 2D result from the proposed skeleton algorithm was compared to a
result from the most well known compact skeleton representation given in
Guo and Hall (1989). Both methods produced similar results, however, the
method given in Guo and Hall (1989) has not been defined in 3 dimensions
such as the presented skeleton algorithm is.
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Figure 3.11: Skeleton result from the previously proposed skeleton algorithm
(Palagyi et al., 2001) applied on a second hepatic vessel segmentation.



Chapter 4

Texture based segmentation of

the liver

Prior to finding hepatic vessels and possible liver tumours, a sound segmen-
tation of the liver is needed. Furthermore, visualisation of the liver and
its internal structures gives a more complete overview for radiologists and
surgeons. Segmentation of the liver is also important for doing an anatom-
ical segmentation of the liver and to plan the parts of the liver that can be
surgically removed.

Segmentation of the liver is a challenging task, and no general method has
been presented before that gives reliable results. The main problem is that
there are small texture changes and no significant boundaries exist between
the liver and much of the surrounding tissue. Additionally, the liver can vary
greatly in shape and location from person to person, and it is not a simple
task to utilise statistical models to segment new datasets. Abnormal liver
shapes are also difficult to include in a statistical model, but to generate a
reliable and general method such cases must be successfully segmented as
well.

Various methods implemented for liver segmentation were mentioned in
chapter 2. In Soler et al. (2001); Gao et al. (1996); Heuch (2003); Liu et al.
(2005) for instance, a snake model (Kass et al., 1988) was used to delineate
the liver boundary using edge information. The edges in these papers were
enhanced by two similar methods; anisotropic diffusion (Perona and Malik,
1990) and gradient vector flow (Xu and Prince, 1998, 2000). Another example
of liver segmentation based on region boundary was described in Nakayama
et al. (2006), where post processing techniques were added to refine the re-
sult using knowledge of the liver boundary. Similarly, in Seo et al. (2004),
the liver was initially segmented through thresholding based on image his-
tograms, and various techniques utilising anatomical knowledge were then
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used to find the liver and improve the segmentation results. An interesting
approach can also be found in Montagnat and Delingette (1997), where a
reference model guided the deformable model to a large extent. These meth-
ods, however, are highly vulnerable to noise and regions where there are no
significant edges between the liver and surrounding tissue. In Pham et al.
(2007), however, texture is used as the basis of the liver segmentation. The
texture is represented as statistical features from the regions’ co-occurrence
matrices, and regions of similar classification are merged. Even though the
results from this method are promising, the features and classification al-
gorithm do not separate the regions adequately and further development of
the procedure is needed. Texture based segmentation also has the advantage
over contour and shape based methods in that the interior of an object is
segmented as well.

In this chapter, a new method for automatic segmentation of the liver will
be presented. The method is based on an extended representation of texture
in medical volumes. Using this representation, a classifier is first trained
from a homogeneous starting region or seed point. This classifier is used
next on surrounding regions, and similar regions are used to further update
the classifier. An important advantage from using the chosen representation
and classification method is that the classifier also unlearns tissues that are
far away from the voxel in question, and thus the classifier avoids the risk of
becoming too general in its function to classify new tissue. The segmentation
method has the potential to be guided by physical and statistical constraints
avoiding the most unrealistic results.

4.1 Method

The method is initiated from a homogeneous texture region or seed points,
and new voxels are added to the segmentation result in a region growing
scheme. The classifier is trained initially from the first voxels, and as new
voxels are added to the segmentation result they may also be added as train-
ing samples to the classifier. The procedure will be explained in 3D, but the
majority of the examples and illustrations are shown in 2D.

4.1.1 Description

The description of texture should be invariant to translation and rotation.
The latter property is important to, for instance, generalise the texture in
vessels having different orientations. In addition, the final description should
take into consideration small possible texture change in an organ. The de-
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Figure 4.1: An example second-order representation of a image is shown in
this figure. The representation is invariant to rotation and translation. a) A
constructed image example. b) Resulting representation of a).

scription should not, however, be more compact due to the risk of loosing
information that could help the classifier to distinguish two tissue types. This
contradicts earlier attempts at using texture as the basis of CT segmentation.
These methods typically extracted statistical descriptions from the texture
representation, but in doing so important information that could assist the
segmentation were lost. On the other hand, it leads to the disadvantage of
working with large amounts of data. The runtime of the classification will
consequently increase and more memory or disk storage is needed.

Julesz et al. (1973) states that textures with identical first- and second-
order statistics cannot be pre-attentively discriminated by humans. Further-
more, Bevk and Kononenko (2002) summarise the work of Julesz and states
that first-order statistics proves insufficient in distinguishing two textures if
close-to-human perception is to be achieved. First-order statistics can be
derived from second-order statistics, and we can therefore presume that we
can base our description on second-order statistics alone. A common way
to represent second-order statistics of a texture is by a co-occurrence matrix
(Gonzalez and Woods, 2008; Sonka et al., 1999). First-order statistics are
represented by a histogram.

The texture description we used was a slightly modified co-occurrence
matrix where the textures were made invariant to rotation. Given a voxel
position, (xs, ys, zs), and the surrounding region (an 11 voxel wide cube), all
neighbouring 6-connected voxel pairs were added to the co-occurrence matrix
after sorting them by intensity value as illustrated in figure 4.1. This figure
shows a 2D example, but the representation is a 2-dimensional matrix also
when representing a 3D volume.

Since the number of samples in the co-occurrence matrix typically is low,
the Parzen window method (Duda et al., 2001) was used to approximate a
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(a) (b)

Figure 4.2: The Parzen window method was used to approximate the co-
occurrence distributions since the number of samples is typically low. a)
Resulting distribution prior to applying the Parzen window method. b) Re-
sulting distribution after applying the Parzen window method.

distribution from the N intensity samples:

C(xs, ys, zs, xi, yi) =
N

∑

n=1

exp−(
(xi−xn)2+(yi−yn)2

2σ2 ) (4.1)

where (xi, yi) corresponds to the intensity coordinates of the co-occurrence
matrix C. The standard deviation was set to σ = h/

√
N (Duda et al., 2001),

where h was typically set to 1/5 of the intensity range. The parameter h
may, however, be adjusted more optimally with respect to the segmentation
result according to the given task.

Memory usage presented a challenge and in order to keep the amount
of data to a minimum, we grouped the intensity values into 20 bins after
approximating the co-occurrence distribution. It is also possible to reduce the
size of the co-occurrence matrix even further by exploiting the fact that some
parts of the matrix is not used. Two example co-occurrence distributions,
with and without the Parzen window approximation, is shown in figure 4.2.

Reducing the number of intensity values may worsen the quality of the
results, and a good balance between memory usage, processing speed and
quality of the segmentation must be carefully evaluated. A possibility is to
have a nonlinear transform of the intensity values such that the intensities are
optimally divided between the bins. This requires knowledge of the images to
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(a) (b) (c)

Figure 4.3: Example that shows the importance of the spatial dimensions in
the feature space. a) Original CT slice where the liver is to be segmented. b)
Segmentation of a) based on second-order statistics alone. c) Segmentation
of the same CT slice and parameters as in b), but with the spatial dimensions
included in the feature space.

be processed, and we did not add this requirement to the processing presented
in this chapter.

The final feature space consists of five dimensions when segmenting a 3D
dataset: three spatial dimensions and the two dimensions of the co-occurrence
matrix. The three spatial dimensions were added so that the classifier can
take into account small texture change in the spatial domain. The classifier
will easily be too general or too specialised if these dimensions were disre-
garded. The spatial dimensions can have a lower resolution than that of the
dataset to save memory and to speed up the procedure. Figure 4.3 shows an
example segmentation of a 2D CT slice to illustrate the importance of adding
the spatial dimensions to the feature space. The segmentation result in 4.3
(b) does not include the whole liver because there is a slight change in the
liver texture towards the chest, but by including the spatial dimensions in
the feature domain, spatial texture changes can be considered and the whole
liver can be more accurately segmented as shown in the segmentation result
in 4.3 (c).

4.1.2 Classification

To classify a voxel, the voxel’s co-occurrence distribution was compared to
an accumulated co-occurrence classifier distribution p through a normalised
dot product (cosine angle) measure. If the product was above a predeter-
mined threshold, the new voxel would be classified as the same class as the
voxels that were compared against. The classifier distribution p was derived
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(a) (b)

Figure 4.4: a) An example region, shown in green, of radius 27 with its
corresponding p(xs, ys) presented in b). xs and ys are the centre of the region.
Red pixels are already segmented liver tissue and their intensity represents
Ṗ .

from downscaled co-occurrence matrices of already classified voxels in the
surrounding region:

p(xs, ys, zs, xc, yc) =
∑

√
(x−xs)2+(y−ys)2+(z−zs)2≤r

C(x, y, z, xc, yc) (4.2)

where r determines how many distributions should be summed. In our tests
r was initially equal to 25, but if insufficient training data was found within
that radius, the radius was expanded until sufficient data was found. The
accumulation in the spatial dimensions ensures that the classifier changes
with the voxel coordinates rather than having the same distribution for the
whole object to segment. In figure 4.4, an example region is shown with its
corresponding p, where xs and ys are the centre of the green region.

After the distribution was constructed, new voxels could be classified
by taking their corresponding co-occurrence matrices and calculating the
normalised dot product (cosine angle) Ṗ :

Ṗ (xs, ys, zs) =

∑M

i,j=1 p(xs, ys, zs, i, j)C(xs, ys, zs, i, j)
√

∑M

i,j=1 p(xs, ys, zs, i, j)2

√

∑M

i,j=1 C(xs, ys, zs, i, j)2

(4.3)

where M is the size of the co-occurrence matrix C. If Ṗ was above a threshold
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T , this new voxel (xs, ys, zs) was classified as the same tissue and its co-
occurrence samples were added to the distribution p.

The normalised dot product was used so that Ṗ always is 1 when the dis-
tributions are equal, and to ensure that Ṗ is between 0 and 1. The threshold
T is in this way simpler to set and not extensively dependent on the texture
in the dataset.

Qian et al. (2004) states that the normalised dot product measure and
the Euclidean distance measure yields similar results in cases such as ours
where the number of dimensions is high. The normalised dot product has an
advantage therefore since the result will always be between 0 and 1 when all
vector elements are either 0 or positive.

A step to make the liver segmentation even more robust is to add an
additional threshold Tp that Ṗ has to exceed in order to add a new co-
occurrence matrix to the classifier p. Especially borders along the object to
be segmented can eventually influence the classifier significantly, and thus by
adding a second threshold this influence is greatly reduced.

4.1.3 Region growing

There are two ways to start a segmentation of an object using the previously
described method. First, a user can select a seed point and voxels can be
tested and added to the classifier through a region growing scheme. In the
case you want the algorithm to operate fully automatically, homogeneous
regions can be found by calculating co-occurrence matrices of the whole im-
age. Then, for each homogeneous region, a separate classifier is made and
trained by the voxels in the region and their co-occurrence matrices. New
voxels are again added in a region growing scheme. An advantage with the
latter method is that surrounding tissue can be used to classify uncertain
border voxels between two tissue types. By having a distribution for both
tissues, you can take advantage of, for instance, Bayesian risk in addition to
the selected threshold value, and a less restrictive threshold can be used 1.

There are two common 2D region growing schemes, namely 4-neighbourhood
and 8-neighbourhood growing. Both schemes are suboptimal with respect to
circular growth and the boundary of the growing region has abrupt direc-
tional changes. Therefore, in order to classify new voxels always based on
the nearest neighbour voxels, a more circular region growing method was
needed. We decided to use the iterative method outlined in Coiras et al.
(1998), where corners are suppressed at certain iterations and a near circular

1We did not, however, study Bayesian risk in combination of the proposed segmentation
procedure.
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(a) (b)

Figure 4.5: This figure illustrates the definition of a corner voxel in the
iterative region growth. If n− 2 (where n is the number of dimensions in the
dataset) or fewer of the opposite voxels are true, the centre voxel is defined
as a corner voxel. a) The centre voxel is not a corner voxel. b) The centre
voxel is a corner voxel.

region growing is achieved through 4-neighbourhood and 8-neighbourhood
growth. This method was extended to 3D, using 6-neighbourhood and 26-
neighbourhood growth. The only difference with respect to the method in
Coiras et al. (1998), is the definition of corner voxels that needed to be gener-
alised for 3D processing. The new definition is as follows in n-dimensions: if
there exist n− 2 or fewer opposite true voxels (considering the neighbouring
voxels, that is the 26-neighbourhood in 3D) with respect to the centre voxel,
the centre voxel is defined as a corner voxel (see figure 4.5).

The stopping criteria of the region growing procedure is based on the
texture classifier, that is the region growth at a point (x, y, z) is stopped if
Ṗ (x, y, z) is below the threshold T .

A possibility to keep the segmentation result compact, the region growth
could be restricted if the curvature of the local boundary overstepped a pre-
determined threshold. Thin faulty regions could then be disregarded and
unnecessary computations avoided. We did not, however, study this in de-
tail.

4.1.4 Method summary

We add the following method summary to give a better overview of the
proposed procedure:

1. The segmentation is initiated from a homogeneous texture region or
seed points, and the classifier distribution p is computed initially from
these first voxels and their respective co-occurrence matrices C.
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(a) (b) (c)

Figure 4.6: This figure shows an example runtime of the proposed algorithm.
A seed point was given by the user in the centre of the first segmentation
result a). b) and c) show the growth of the segmentation.

2. Voxels surrounding newly segmented voxels are found through a region
growing scheme.

3. The voxels found in step 2 are included in the segmentation if their Ṗ
exceed a threshold T .

4. The voxels found in step 2 and their respective co-occurrence distribu-
tions C are included in the classifier distribution p if their Ṗ exceed a
threshold Tp.

5. Repeat steps 2-4 until stability.

4.2 Results

A sound segmentation of the liver was achieved without extensive parameter
tuning. Figure 4.6 shows an example result of the proposed method applied
on a single CT image. A seed point was given by the user in a homogeneous
liver texture region. As shown in the figure, the segmentation distinguished
the liver texture from the surrounding tissue even though the boundary be-
tween the tissue types is diffuse. The threshold T for this particular dataset
was set to 0.65, but this threshold is highly domain- and case-dependent.

An example liver segmentation of a whole CT scan is shown in figure 4.7.
The result was not smoothed or post-processed before presentation in order
to present the original result of the algorithm. Even though the brightness
and contrast of the CT slices change slightly, an accurate segmentation is
achieved. This was the first complete result that was produced through
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Figure 4.7: A complete 3D liver segmentation from a CT scan is presented
in this figure.

xs

Figure 4.8: A complete 3D liver segmentation from a second CT scan is
presented in this figure.

the algorithm. In this early result, the volume was segmented slice by slice
in 2D, however, all of the succeeding 3D examples are results from a 3D
implementation of the procedure.

Two more liver segmentations of different CT scans can be seen in figure
4.8 and 4.9. One threshold T = 0.75 was used and the result was post-
processed through morphological opening and closing (Soille, 2003) instead
of fine-tuning T for each scan. The purpose of these two figures is to show
that good results can be achieved even though the threshold is not optimal
by using simple post-processing of the results.
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Figure 4.9: A complete 3D liver segmentation from a third CT scan is pre-
sented in this figure.

Figure 4.10, 4.11 and 4.12 show three additional liver segmentations from
a fourth, fifth and sixth CT scan. The slices in these two CT scans were
varying significantly in intensity and contrast, and additional processing was
needed to overcome this problem. The slices were first histogram equalised
(Gonzalez and Woods, 2008) individually before starting the segmentation.
After the first segmentation was finished, additional segmentations were per-
formed where the prior result was used as a starting point for the following
segmentation. The prior result was first morphologically eroded with a struc-
ture element of equal size as the co-occurrence window, and all remaining
voxels were used as seed points for the next segmentation. This process was
repeated until stability.

Figure 4.13 shows an example result where seed points were selected au-
tomatically from homogeneous texture regions. A better boundary between
two tissue types can generally be achieved by selecting the most probable
tissue classification with respect to the tissue classifiers. At the end, two re-
gions were merged if the ratio between the cardinality (number of elements)
of the intersection and the union exceeded 0.2.

Figure 4.14 shows example segmentation results using Tp with different
thresholds T , where Tp was derived from the formula Tp = T + (1 − T )/2.
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Figure 4.10: A complete 3D liver segmentation from a fourth CT scan is
presented in this figure.

Figure 4.11: A complete 3D liver segmentation from a fifth CT scan is pre-
sented in this figure.

Segmentations 4.14 (d), (e) and (f) are sound with respect to this particular
CT slice, that is to say 3

20
of all parameter choices of T result in a high quality

segmentation, and even 9
20

cases result in a decent segmentation.
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Figure 4.12: A complete 3D liver segmentation from a sixth CT scan is
presented in this figure.

4.3 Discussion

Results show that the presented method is very robust and reliable. Regions
were separated even though the boundary between them was diffuse, and
the whole liver was segmented with the same parameters while the contrast
and texture varied between the CT slices. We have not been able to find
another segmentation procedure that can segment the liver as reliably as
our proposed method. Commonly, organ boundaries form the basis of these
previous techniques, whereas the proposed method takes advantage of the
whole volume of the liver.

The texture was represented by a co-occurrence matrix that was invariant
to texture rotation. A distribution was next built for already known tissue,
and new tissue was compared to the already classified tissue through the
normalised dot product measure. The advantage of using this measure over,
for instance, the Euclidean distance measure is that it is normalised between
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(a) (b)

Figure 4.13: This figure shows the result of a fully automatic segmentation
of a CT image using the proposed algorithm. Seed points were set at homo-
geneous texture regions automatically, and highly similar regions were finally
merged.

0 and 1 and the threshold T that defines if a region should be included in
the end result is easier to set, even if the segmentation tasks are different.

The strength of the algorithm is its ability to adapt to slight texture vari-
ations and at the same time not be too general to separate distinct tissue
types. The method is not dependent on numerous parameters that are dif-
ficult to set, but rather a single flexible parameter that decides whether a
voxel is member of the given region. Additionally, known physical proper-
ties such as surface curvature can easily be added to limit extreme cases of
inconsistent regions.

Since the proposed method searches for similar texture regions, the method
will most likely not work well on objects with a high degree of texture vari-
ance. Although, if an object cannot be segmented by our method due to
being comprised of partitions that are currently indistinguishable, a better
resolution from future improved medical modalities might present the oppor-
tunity to successfully segment such objects as well.

Even though the results are of high quality compared to what has been
done before, it is unlikely that we can base critical medical software on this
method alone. Segmentation based on texture gives us a sound starting point,
however, for further improvements based on, for instance, statistical data or
physical models. An example implementation of texture based segmentation
guided by statistical models is described in chapter 6.
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The proposed method is reliant on only one or two parameters, depending
on if the user wants the second parameter Tp to be automatically derived or
not. Nevertheless, it is hard to accomplish a sound segmentation of an entire
CT or MR scan with one set of parameters. The reason is that the texture can
vary in intensity and contrast between the slices to a high degree. Possible
solutions to this challenge are further normalisation of the slices, shape based
models restricting the end result, and post-processing of the end result.

The runtime of the algorithm is another possible disadvantage. Before op-
timisation it took approximately 70 minutes to segment a liver in a 512x512
image (see figure 4.14 f)) on a Intel Pentium 4 2.8GHz computer using Mat-
lab. Since several voxels are considered at each iteration, we could imple-
ment the algorithm multi-threaded and run the classification in parallel. On
a modern two dual-core 2.4GHz processor computer, using optimised multi-
threaded programming in C, we achieved a runtime of 18 seconds on the
same method that was run in Matlab. With the increasing number of cores
in a single processor combined with the possibility to run more processors
on a single motherboard, the runtime will be improved further in the near
future, even on inexpensive hardware.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.14: Segmentation results of a CT slice using varying threshold T .
a) T = 0.4. b) T = 0.45. c) T = 0.5. d) T = 0.55. e) T = 0.6. f) T = 0.65.
g) T = 0.7. h) T = 0.75. i) T = 0.8. j) T = 0.85. k) T = 0.9. l) T = 0.95.
Red regions are regions that result in a Ṗ above both T and Tp, while green
regions have Ṗ between T and Tp.



Chapter 5

Applications of texture based

segmentation

In this chapter, we will apply the texture based segmentation method outlined
in chapter 4 on hepatic vessels, liver tumours and kidney segmentation from
CT scans.

Segmentation of hepatic vessels has previously been examined in chapter
3. As discussed, the given graph based vessel segmentation method has
several weaknesses and numerous parameters that highly influence the result.

Once the liver is segmented, the vessels and tumours are excluded and
we wish to use this result as the starting point in locating the hepatic vessels
and possible tumours. In CT scans, hepatic vessels have a higher intensity
than the liver, and such regions could be used as training sets for the vessel
segmentation. An alternative is to let the user select a seed point on one of the
larger vessels manually. Tumour texture is darker than the liver tissue, and
the shape of tumours have previously been represented by a simple function
since the general shape is known (Soler et al., 2001). Tumours may, however,
have non-typical shapes and we wish to identify such tumours as well.

Finally, we will use texture based segmentation applied on kidney seg-
mentation from CT scans. The difference between the kidney texture and
surrounding tissue is more distinct than in the case of liver segmentation,
making the kidney segmentation likely to be more robust.

5.1 Method

In the following subsections we will describe the procedures we developed to
segment the hepatic vessels and locating possible tumours from the texture
based segmentation of the liver. Kidney segmentation will also be presented
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in the final subsection.

5.1.1 Hepatic vessel and tumour segmentation

The method for hepatic vessel segmentation is similar to what was described
in chapter 4. However, some changes were made due to the number of border
voxels, which is substantial in vessel segmentation compared to segmenting
a larger more homogeneous organ. It is important that these border regions
not influence the vessel classifier in a significant manner. We chose also to
base the segmentation largely on the previous segmentation results of the
liver.

A seed point was chosen, and the vessels were segmented using a low
threshold T = 0.3 although a high threshold Tp = 0.95 such that border
regions would not be added to the vessel classifier and thus influence the end
segmentation result. After segmenting the vessels, a comparison between
the liver segmentation and the hepatic vessel segmentation was performed.
Here, a voxel was classified as hepatic vessel tissue if its co-occurrence distri-
bution was more similar to the surrounding vessel distribution than the liver
distribution.

The vessel segmentation result was finally masked with a morphologically
closed (Soille, 2003) liver segmentation to present solely the vessels within the
liver. A sound segmentation of the liver is thus required where the parameters
are set appropriately. The vessel segmentation algorithm, however, does not
need optimal parameter choices as long as all the vessels are found within
the liver. This was the reason why the parameter T was set relatively low in
the vessel segmentation compared to what was used in the liver segmentation
procedure.

Once the liver and hepatic vessels were segmented, segmentation of pos-
sible tumours was performed using simple morphological operators on the
remaining empty regions in the liver. The holes were morphologically closed
with a small circular structure element (the radius was 4 voxels in our tests)
and the remaining holes were compared to the average intensity of the sur-
rounding liver. Segments that had noticeably lower average intensity than
the liver were classified as possible tumours.

Results

The final segmentation result of the liver, hepatic vessels and a possible tu-
mour can be seen in figure 5.1. Figures 5.2 and 5.3 show the hepatic vessel
and tumour segmentation results in 2D. An additional complete hepatic ves-
sel segmentation is presented from two angles in figure 5.4 and 5.5. Finally,
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Figure 5.1: Complete segmentation result including hepatic vessels and a
tumour. The tumour can be shown in green, and the liver is made opaque
so that the interior is visible.

figure 5.1.1 shows a third liver segmentation with two tumours.

5.1.2 Kidney segmentation

The kidney has a compact shape and its interior has a homogeneous texture
much like the liver. We used therefore the same approach as in the liver
segmentation described in chapter 4 to segment the kidney.

Results

Figure 5.7 shows an example segmentation of the left kidney. The same
threshold T = 0.65 was used as in the liver segmentation. However, segmen-
tation of the kidney is even more robust than segmentation of the liver and a
wider range of T will yield acceptable results. Segmentation of both kidneys
from a second CT scan is presented in figure 5.8.
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(a) (b)

Figure 5.2: This figure shows an example vessel segmentation through the
proposed method applied on a single CT slice. A seed point were used to
train the initial classifier, which next was used to locate the remaining hepatic
vessels.

(a) (b)

Figure 5.3: Liver and hepatic vessel segmentations were here used to detect
the tumour (in green) through morphological operators.

5.2 Discussion

Compared to the graph based approach for hepatic vessel delineation de-
scribed in chapter 3, the proposed texture based method has significantly



CHAPTER 5. APPLICATIONS OF TEXTURE BASED
SEGMENTATION 65

Figure 5.4: Hepatic vessel segmentation from a second CT scan.

fewer parameters and performs the segmentation directly on the CT or MR
scan in a region growing scheme. This results in a more sound segmenta-
tion that is not highly dependent on parameter choices, and the method is
general with respect to improved resolutions of the medical volumes. With
adequate resolutions the need for improving the vessel segmentation through
anatomical knowledge decreases and more direct approaches are sufficient.
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Figure 5.5: Hepatic vessel segmentation from a second CT scan shown from
a different angle.

In Soler et al. (2001), the largest hepatic vessels were located through
traditional region growing. The proposed method, however, is potentially
less vulnerable to noise and changing texture of the vessels. Additionally,
second-order statistics describe texture in more detail than using intensities
directly. The threshold T in the vessel segmentation is highly flexible since
the result is compared to the liver segmentation at the end.

This also applies to segmentation of possible tumours in the liver. We did
not implement a shape criteria for the tumours since they can have abnormal
shapes when, for instance, positioned close to the liver walls. Most liver
tumours can be identified by comparing the tissue average contrast to that
of the liver, however, it is difficult to create a general tumour classification
algorithm based on texture alone.

Segmentation of the kidneys was also accomplished through the texture
based segmentation method described in chapter 4. The difference between
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Figure 5.6:
Tumour segmentation of a third CT scan. The tumours are shown in green.

kidney segmentation and the previously described segmentation tasks was
that normalisation of intensities and contrast of the CT scan were not avail-
able directly through, for instance, a previously segmented liver. Still, the
spatial dimensions of the feature space ensures that the classifier adapts to
varying kidney texture. The borders between the kidney walls and surround-
ing tissue were also significant, making the segmentation more robust than
liver segmentation.
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Figure 5.7: An example segmentation of the left kidney.

Figure 5.8: Segmentation result of both kidneys from a second CT scan.



Chapter 6

A new general representation

of complex shapes to automate

texture based segmentation

To be able to classify already segmented objects is important in especially two
specific cases. First, if only one known object is segmented, verification of the
object may be needed where you compare the result to statistical variations
of the object in question. Second, if an unknown number of objects have been
segmented by an automated segmentation method, classification is needed to
label the various objects or groups of objects.

Focusing on segmentation of the liver, we need to verify that the result
is viable according to anatomical variations of the liver. If the result varies
significantly from the statistical model, parameters may be adjusted and
other improvements may be performed. The challenge, however, is to make
a meaningful representation of the liver shape that is as simple as possible
but at the same time can be used to distinguish the various liver shapes.

Many previous articles use simple shape characteristics to describe shapes.
An example can be found in Soler et al. (2001) where elongation and com-
pactness of objects were used to classify lesions. Such descriptions may work
well with simple shapes, but complex shapes need a more complete repre-
sentation to separate them adequately. A promising way to represent more
advanced organ shapes was used in Kelemen et al. (1998); Kelemen and
Székely (1999); Székely and Gerig (2000), where corresponding points were
evenly spread on the surface of the organs. This made it possible to represent
shapes as points in a hyper-dimensional space1 and thus in a simple manner

1Example: 3 3-dimensional points [p1, p2, p3] become a 9-dimensional point if you rep-
resent them in vector form [p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z].
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derive new models representing the statistical variance of the organs. Find-
ing these corresponding points may be straightforward on similar objects,
but as the objects differ more it becomes increasingly more challenging. This
problem is overcome in the representation presented in Tsagaan et al. (2002).
Instead of using points to define the surfaces, NURBS surfaces were used that
are defined by a set of control points. Even though this representation may
solve the major difficulty with the surface points representation, it is not
general enough to represent complex objects such as organs with an interior,
and the represented shape needs to be simple to limit the number of control
points. In addition, it may not always be a simple task to derive the NURBS
surface from a segmented object even when disregarding the interior.

We have sought a representation that is general and can be used to rep-
resent any complex shape or groups of shapes. The representation needs
to be simple to be derived from any given object and be able to produce
new shapes. Additionally, the representation must scale well with any object
resolution and be represented as a point in a hyper-dimensional space such
that well known classifiers can be used to cluster and classify the represented
objects.

The main motivation behind this representation is to incorporate statis-
tical knowledge to the texture based segmentation algorithm from chapter 4
such that it operates fully automatically and the most appropriate threshold
T is found. Segmentation results should be compared to a statistical template
base, and the best fit result returned as the final segmentation result.

6.1 Method

We will present a new representation of one or more segmented objects that
is simple and general for objects up to 8 dimensions. The representation can
be interpreted as a point in hyper-dimensional space, and previously derived
classification methods can be used to cluster and classify the represented
objects. It will also be shown how the representation can be used to generate
new objects to create a smaller template base representing the variation of a
larger dataset.

In 2D, the representation can be seen as lowering the resolution of the
area that contains the objects to be represented. The area is subdivided into
equally sized and shaped partitions that contain an intensity value repre-
senting the intensities of the voxels that are included in each of the separate
partitions. We can then represent the objects as a point where the number
of partitions is equal to the number of dimensions of the hyperspace. The
location of the point is decided by the intensity value of the partitions.
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(a) (b)

Figure 6.1: The 2D partition shape (b) is derived from the Voronoi diagram
of the densest packed circle setup shown in a).

The average intensity value of the partition is used directly as the intensity
value of the partitions, or in other words the location of the representative
point in hyperspace.

A normalisation step is typically needed before computing this represen-
tation as it performs no normalisations in itself. An example would be to
centre the objects with respect to the mass centre and rotate the principal
axes of the objects to a predefined angle. These normalisation steps may,
however, vary according to the problem at hand.

6.1.1 Partition shape

If one wants to compute the average of a region in an image and only the
region centre and size are given, a circular region is the optimal choice since
the result is then invariant to rotation. However, one cannot pack several
circles into a closed region without having overlapping circles. The tesselation
or the partition shape of a given dimensional space can be derived from a
Voronoi diagram of the densest packed circle, sphere or hyper-sphere setup
and its centre (Mathworld, 2007). In 2D, this tesselation is derived from a
regular triangular lattice, and yields a hexagon tesselation (Wikipedia, 2007)
as shown in figure 6.1. Similarily, in 3D, the tesselation is derived from a
face-centred cubic lattice and the result is a rhombic dodecahedron partition
shape (Wikipedia, 2007) as shown in figure 6.2.
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(a) (b)

Figure 6.2: The 3D partition shape (b) is derived from the Voronoi diagram
of the densest packed sphere setup shown in a). The black dots at the cube
corners and face centres correspond to the sphere centres in a).

Compared to a square partition shape, the proposed partitions are more
invariant to rotation, and the maximum radius of each partition is smaller.
Furthermore, these two advantages become increasingly apparent as the num-
ber of dimensions increases.

If the number of dimensions exceeds 8, the most compact way to pack
identical hyper-spheres is unknown. This would result in a suboptimal par-
tition grid where the partitions are irregular.

An important advantage of using these compact partition shapes is that
the distance to the centre of neighbouring partitions is always equal. This
makes the representation as accurate as possible given a partition size, and
it results in an optimal matching between two objects as well as an improved
reconstruction from representation domain to spatial domain.

A visualisation of the partition shapes in 2D and the corresponding centre
intensity values are shown in figure 6.3.

6.1.2 Validation

From the proposed representation, we can easily validate new segmentations
with respect to previously verified segmentations. This can for instance be
achieved by using the Parzen window method to estimate a segmentation
distribution. Probabilities can then be derived directly from the distribu-
tion giving a good estimate of the correctness of new segmentations. Other
classifiers can be used as well that, depending on the implementation, do
not require the memory usage or the processing power of the Parzen win-
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(a) (b)

Figure 6.3: This figure shows the partition shapes in 2D and the intensity
value of the partition centres in b) computed from a). The intensity value
equals the average intensity of a partition.

dow method. Examples are artificial neural networks and support vector
machines.

6.1.3 Object reconstruction

It may be of interest to derive a few templates representing the statistical vari-
ations of previously segmented objects. These templates could for instance
be used to initialise a segmentation of a new dataset such as described in
Székely and Gerig (2000).

To derive such a statistical shape from the previously outlined represen-
tation, we suggest a three step procedure. First, a point is derived from
the representation domain using given statistical descriptors, and the point
is transformed to the spatial domain. Second, use the spline interpolation
technique given in Sandwell (1987) to derive the voxel intensities throughout
the spatial domain. Finally, assuming intensity values between 0 and 1, the
result is thresholded and voxel values larger or equal to 0.5 are set to true2.
In this way, given an adequate partition size, any complex shape can be both
represented and reconstructed with an acceptable level of detail. See figure
6.4 for an example interpolation and result of the description shown in figure

2The original volume we want to reconstruct is binary and we thus set the voxels from
the interpolation result that are closer to 1 than 0 to true.
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(a) (b)

Figure 6.4: An example reconstruction from the shape in figure 6.3. The
spline interpolation algorithm from Sandwell (1987) was used and the result
was thresholded such that pixels with values ≥ 0.5 were kept.

6.3.

6.2 Results

We applied the proposed representation on the liver segmentation results
found in figure 4.14, and compared them to a template consisting of a pre-
vious segmentation of the same CT slice. The statistical template can be
viewed in figure 6.5, where a partition grid of size 10 × 9 was used, and the
segmentation results were resized to fit this grid. The representation was
thus invariant to the segmentation size and location in the CT scan. The
normalised dot product was used to compare the segmentation results in
4.14 to this template. Arguments in favour of the chosen measurement were
presented in section 4.1.2.

Figure 6.6 shows the resulting graph of the normalised dot products and
the highest values of T represents the best segmentation results given the
statistical template. The segmentations with best fit are the results where
the threshold T is set to 0.55, 0.6 and 0.65. These three segmentation results
gives a sound segmentation of the liver from this particular CT slice as shown
in figure 4.14.

As a second example, we used the representation in 3D (6 × 4 × 6 parti-
tions) to find differences in grey matter of brain MRI of 14 year old subjects.
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(a) (b)

Figure 6.5: The statistical template used to find the best threshold T in
the texture based liver segmentation. a) Original segmentation. b) Repre-
sentation of a) using the proposed representation. The representation was
invariant to segmentation size and location in the CT slice.

54 segmentations from normal subjects were first rerepresented in the given
model as a statistical model of grey brain matter. 51 prematurely born sub-
jects were next compared to the normal subjects through the normalised dot
product to identify variations from the statistical model (see figure 6.7). All
the normal subjects were used in the comparison and the highest resulting
dot product was used to characterise the statistical variation. We also com-
pared the normal subjects to each other in the same manner (see figure 6.8).
The grey matter segmentations were normalised with respect to rotation,
scale and translation prior to applying the proposed representation method.

As the figures show, the resulting comparisons are generally better for the
normal group than the premature group. This makes it plausible to believe
that the grey matter in prematurely born subjects is different from normal
subjects even at the age of fourteen.

6.3 Discussion

The proposed representation can describe any complex shape given an ade-
quately small partition size and can describe shapes of up to 8 dimensions.
Moreover, since the representation can be theoretically viewed as a point in
hyperspace, the representation can be utilised by most previously derived
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Figure 6.6: The resulting normalised dot product in the comparison between
liver segmentation results with different thresholds T and a previous segmen-
tation result of the same CT slice. The proposed representation was used to
compare the various results.

classification methods making this representation flexible and available to
many image processing tasks.

Compared to simple downscaling of an image using a rectangular grid,
this representation is more compact, especially when regarding higher di-
mensional data. The distance to the closest neighbours is always the same,
and since the partitions are more compact, fewer partitions can be used to
represent the given objects at an adequate detail level.

Figure 6.4 provides an example in which a good reconstruction is made
even when the number of dimensions is low. Generally speaking, the number
of dimensions can be higher using the proposed representation than repre-
sentations previously used to, for instance, represent human organs from CT
and MR scans. To get the robustness needed in medical imaging, however,
this significant number of features is required to distinguish organ shapes
adequately. Even though the number of dimensions can pose a problem, the
test data to describe an organ seldom exceed a few hundred datasets, and
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Figure 6.7: The result of comparing the grey matter in 3D from brain MRI
of prematurely born subjects to normal subjects.
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Figure 6.8: The result of comparing the grey matter in 3D from brain MRI
between the normal subjects.

the processing time will then not be exceedingly affected by the number of
dimensions. Additionally, there will most likely be a few empty partitions
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throughout the dataset that can be disregarded in the processing.
A possible strength of the proposed representation is the potential to sort

the training data by partitions. For instance, it is possible to sort out the
training sets that are likely to have no relevance to a new set by comparing
only a few central partitions. Another possibility is to incorporate the rele-
vant datasets during a segmentation of an organ. In the case of segmentation
through region growing, one could base the statistical influence by training
sets that share common properties with the subsequent segmentation result.

The representation can also be used to store higher dimensional represen-
tations that later can be projected onto a lower dimensionality for matching
that can be performed directly in the representation domain. An example
usage could be matching a liver slice from a single CT or MR image and
finding a good estimate of the location of the slice with respect to the liver
shape. Another example, although outside of our problem domain, is classi-
fication by matching objects from an image to 3D templates and search for
the best fit.

An example use of this representation was applied to the texture based
segmentation method outlined in chapter 4, where the threshold T was au-
tomatically selected by comparing the results to a statistical template base.
A 3D example was also given where segmentations of grey matter from brain
MRI of prematurely born subjects were compared to normal subjects in order
to find differences between the two groups.



Chapter 7

Parallel image processing using

GPU

Another challenge arises during for instance ultrasound analysis where the
user is presented with a video stream and analysis of the stream is performed
concurrently. Here, image analysis tasks must be run in real-time and the
delay between the input devices and the output devices must be minimal.

Since image analysis techniques generally are resource demanding, a clus-
ter of computers is typically needed to perform all the operations necessary
in a medical application in real-time. This solution is often impractical, how-
ever, recent advances in GPU (Graphics Processing Unit) performance on
inexpensive graphic cards has made it possible to solve very complex image
processing tasks efficiently.

We have looked at two ultrasound applications. The first application con-
sists of extracting the left ventricle walls for ischemia diagnosis. By locating
the ventricle walls during heart cycles, analysis of the heart movement can
be performed. In the second application, we automatically detect lesions in
the liver. The purpose here is to more accurately determine the positions of
previously detected lesions. These lesions are typically found prior to surgery
through CT or MR scans.

This work was published in Eidheim et al. (2005).

7.1 Previous work

Programmable GPUs became available in 2000 to let developers get more
control over the rendering pipeline on graphics hardware. The main motiva-
tion was increased performance, and the technology has been pushed forward
by the gaming industry.
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Modern GPUs are highly optimised for stream computations as described
in Venkatasubramanian (2003), and using the GPU as a stream co-processor
is gaining popularity as it often outperforms the CPU for such tasks. In
addition, todays GPUs also include spatial parallelism in that each pixel on
the screen can be seen as a stream processor. This results in a high degree
of parallelism when used appropriately.

According to Strzodka (2004), GPUs may increase the speed of the algo-
rithms previously run on the CPU by more than 10 times. Furthermore, the
development of GPUs does not follow Moore’s law, but advances even more
rapidly than the development of CPUs.

Several advanced image processing methods have been implemented using
GPGPU (General-Purpose computation on GPUs) for speed improvements.
Some examples can be seen in Strzodka (2004), including segmentation by
the level-set method, the Hough Transform, and motion estimation by eigen-
vector analysis of spatio-temporal tensors. Another example is segmenting
the brain surface from an MRI data set by the level-set method Lefohn et al.
(2003).

7.2 Methods

All operations described in this section were implemented on the GPU.
The image processing tasks were implemented on the fragment shader using
Nvidia’s Cg programming language in combination with C++ and OpenGL.
The graphics card used was a GeForce 6600 GT on a 2.8 GHz Intel Pentium
4 computer.

The two most computationally expensive stages in medical image analysis
are frequently preprocessing and segmentation. The procedures are typically
iterative, and calculations are commonly executed for each pixel in the image.
Fortunately, one procedure is often repeatedly executed on each pixel for
each iteration. This matches the stream computation model and spatial
parallelism in GPGPU.

As seen in figure 7.1, the borders of the desired regions may be challenging
to find. In the first image, showing a left ventricle, the motivation is to locate
the ventricle walls in order to calculate the ventricle volume for ischemia
diagnosis. Similarly, in the second example, the goal is to segment the tumour
in the liver.

During the preprocessing step in both applications, grey level mathemat-
ical morphology Soille (2003) was used in to reconstruct the fuzzy borders.
Since the regions to be segmented were darker than the surrounding tissue,
we first used grey level morphological dilation in order to make the borders
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(a) (b)

Figure 7.1: This figure shows two examples of ultrasound images to be pro-
cessed and segmented. The border of the target regions may be fuzzy and
undefined. a) Ultrasound image of a left heart ventricle. b) Ultrasound image
showing a liver tumour.

physically larger. After this, grey level morphological erosion was computed
to reduce the borders to original size, although, as a result some border el-
ements are now connected. The described processing steps also corresponds
to what is commonly called a morphological closing Soille (2003).

The implementation of grey level morphological operators on the GPU
is similar to the implementation of convolution on the GPU as described in
Rost (2004). Morphological operators are based on morphological erosion
and dilation, which is simply local minima and maxima filters over specific
domains respectively. However, in order to run these operators effectively on
the GPU, one has to take advantage of the built-in min and max functions of
the shading language. This is due to the fact that branching, e.g. if-branches,
are very expensive operations on the GPU.

After having implemented the two basic morphological operators, namely
erosion and dilation, a wide range of morphological methods can be run eas-
ily. A few examples are thinning, skeletonising, thickening, geodesic erosion,
geodesic dilation, reconstruction, and the distance transform Soille (2003).
Still, morphological reconstruction can be more efficiently implemented on
the CPU using the algorithm described in Vincent (1993).

After the borders of the desired regions have been emphasised, the next
step is to apply a segmentation algorithm. Our method of choice was the
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active contour model described in Kass et al. (1988). This model is popularly
called the snake model, and is basically a set of connected nodes that are
moved according to internal snake forces as well as forces external to the
snake arising from the image itself or from specific user constraints. The
internal forces are commonly proportional to the first and second spatial
derivative, representing tension and rigidity of the snake respectively. Image
and external forces are typically forces set to guide the snake towards desired
regions of an image. An example of image forces is the image gradient, while
balloon forces Cohen (1991) is an example of external forces.

To attract the snake towards the left ventricle walls or the walls of the
tumour, we need to compute forces from the image that will achieve this. Our
solution was to calculate the gradient vector flow Xu and Prince (1998, 2000)
of the ultrasound images. This method attracts the snake towards edges
with increased capture range, and attracts the snake into concavities. The
process of calculating the gradient vector flow, however, is time-consuming
and resource demanding. This is due to the need of an algorithm that has to
be run for each pixel iteratively. This led to an implementation on the GPU,
which greatly reduced the processing time of the procedure.

The general position of the target regions of both applications is assumed
known, either from centring the ultrasound device on the left ventricle, or
from previous segmentations of the liver tumours from CT or MR scans.
Thereby, we used this general position, assumed to be inside of the desired
region, to create a small initial snake. By the means of balloon forces Co-
hen (1991) we then expanded the snake until stability, and the snake’s final
position was used to segment the region.

7.3 Results

The most time-consuming procedures of our methods, are the preprocessing
steps. By implementing these procedures on the GPU, we received a running
time reduction of 34 times when processing 512x512 images compared to the
CPU. The runtime of the whole procedure is 54 ms (frame rate of 18.5 fps),
and thus the processing steps outlined in the previous section can be run in
real-time using the GPU. Final segmentation results can be seen in figure
7.2.

Figure 7.3 shows the runtime of GPU programs compared to CPU pro-
grams using our setup. If the number of elements are lower than approx-
imately 242, it is more efficient to run the procedure on the CPU. In our
applications, the number of nodes in our snake model did not exceed this
number, and we therefore chose to run the snake model on the CPU instead
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(a) (b)

Figure 7.2: The final segmentation results can be seen in this figure. a)
Outlined left ventricle wall. b) Segmented liver tumour.

of the GPU.

7.4 Discussion

The segmentation results demonstrated in this chapter are of poor quality
and dependent on parameters that are difficult to set appropriately. However,
the motivation was to implement the algorithms on inexpensive hardware
and demonstrate example results. A significant speed increase was shown
compared to serial processing of the same algorithms.

Calculations on the GPU are not as exact as calculations on the CPU due
to inherent difficulties with data types larger than 32-bit. In our applications,
this drawback resulted in only minor artifacts, through we argue that this
drawback will not significantly influence the end result.

A possible processing bottleneck is the AGP bus when moving data from
CPU to GPU memory. The AGP bus is asymmetric, meaning data is sent
faster to the graphics card than back. A solution to this problem is to some
extent offered by the new PCI express cards that are full duplex and send
data to the graphics card at twice the rate of 8x AGP cards. A data stream
of up to approximately 4 Gbps is attainable on this bus presently.
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Figure 7.3: This figure shows a comparison of procedures running on the
GPU and the CPU. The number of iterations run on each test were 2400
(100 iterations 24 times a second). If the number of elements exceeds 242,
the processing time of the GPU is less than that of the CPU. For instance,
the processing time of an image of size 512x512 is 34 times faster on the GPU
than the CPU on our test platform.



Chapter 8

Conclusion

After studying a large number of previous articles on segmentation of organs
from CT and MR scans, we conclude that presently there exists no robust
method to solve the segmentation tasks focused on in this thesis. A common
factor with all the previously proposed methods is that they are dependent
on several inflexible parameters that need to be fine-tuned for each particular
segmentation task.

Parallel hardware is becoming common and inexpensive. This makes it
possible to implement costly procedures to a higher scale than before. We
based our work therefore on methods working on less simplified feature sets
than previously published procedures.

The contributions of this thesis will be discussed in turn in the following
sections.

8.1 Texture based segmentation

We have derived a new texture based segmentation method and demonstrated
its use, in particular, on liver segmentation from CT scans. Results show that
it is a robust method that is not greatly influenced by parameter choices. The
new segmentation method was implemented in parallel using multiple CPU
cores, and the processing speed is acceptable even though the number of
computations is significant.

Based on the liver segmentation, segmentation of the hepatic vessels and
liver tumours were presented. The direct hepatic vessel approach is more
promising than previous work due to the low number of parameters needed
to be set appropriately.

The proposed texture based segmentation algorithm was also applied to
kidney segmentation with promising results. The kidney has more distinct
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texture compared to the surrounding tissue and can therefore be more easily
segmented than, for instance, the liver.

Compared to earlier popular attempts to separate tissues in CT and MR
scans, the results from the proposed method show a significant improve-
ment. We have not found any previously derived segmentation algorithm
that is able produce similar results. As opposed to most earlier methods,
the proposed procedure uses only a single parameter that is resilient and,
in comparison, easily derived. Furthermore, the procedure is not explicitly
based on the boundary of the organs, but the whole scan volume is exploited.
On one example CT slice, 3

20
of all possible parameter choices of T yielded

sound liver segmentations. Moreover, a demonstration was made where this
parameter was set automatically through comparison of the possible results
to a statistical template.

Further improvement to the procedure is needed in order to apply it to
medical applications. We do not therefore present a complete system to
segment organs from CT or MR scans, but the method is a step further
to separate different tissues automatically. Especially statistical templates
can improve the segmentation, and make it even more robust and eventually
ready for clinical use.

Furthermore, it is hard to accomplish a sound segmentation of an entire
CT or MR scan with one set of parameters. The reason is that the tex-
ture can vary in intensity and contrast between the slices to a high degree.
Possible solutions to this challenge are further normalisation of the slices,
shape-based models restricting the end result, and post-processing of the
end result. Another promising solution was presented, however, where sev-
eral texture-based segmentations were performed subsequently. After each
segmentation, the result was eroded with a structure element equal to the
co-occurrence window, and the remaining voxels were added as seed points
for the following segmentation process.

8.2 Iterative skeleton representation of 3D ob-

jects

A new iterative skeleton method was derived to create a more compact repre-
sentation of objects in 3 dimensions. Compared to previous iterative methods
we studied, a more compact representation was computed without known ar-
tifacts. Iterative procedures are not dependent on parameter choices such as
procedures based on the distance transform, and now that a sound iterative
skeleton method has been derived the proposed solution is a better choice for
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computing 3D object skeletons.

A sound skeleton of the hepatic vessels can be used to perform automatic
measurements and anatomical segmentation of the liver. Due to the lack
of a working 3D skeleton algorithm, this has not been previously possible
without extensive post-processing. The 3D skeleton algorithm has many more
uses, and this method is a substantial contribution to the image processing
community.

Previous 3D skeleton algorithms produced artifacts when processing cer-
tain voxel setups. Further testing must be executed on our skeleton algorithm
to ensure that similar artifacts are not produced.

The proposed 3D skeleton method is general and works for 2D objects as
well as 3D objects. It is likely that one can extend the method to objects
above 3 dimensions, however, further research is needed in order to prove
this.

8.3 Representation of complex shapes

A new general representation of objects up to 8 dimensions was derived to
describe segmentation results from the texture based segmentation algorithm.
In comparison with many previous representations, the proposed method can
represent shapes with interior features such as holes. The representation
is simple and general, and can form the basis of an even more compact
representation where the interior is preserved. Moreover, the method has a
sound mathematical foundation, ensuring compact representations of objects
of higher dimensions.

A way to reconstruct objects from the representation was also derived,
such as for instance reconstructions representing the statistical variance of a
larger dataset. Since the representation can be viewed as a point in hyper-
space, feature vector classifiers and clustering techniques can be applied di-
rectly.

An example use of this representation was demonstrated, where the thresh-
old T in the texture based segmentation method was automatically chosen
based on a previous segmentation result of the liver.

8.4 Minor contributions

A new and improved way to produce polygon meshes of branching struc-
tures was derived in collaboration with Jo Skjermo (Skjermo and Eidheim,
2005). We used this meshing method to visualise vessels in the graph-based
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approach for hepatic vessel segmentation (Eidheim, 2005). In this way, the
segmentation results can be visualised using common visualisation hardware
that is based on polygon models. Slightly improved branching structures
were produced using this procedure compared to previous algorithms.

The performance of the CPU and GPU was compared with respect to
real-time segmentation of ultrasound images (Eidheim et al., 2005). Several
image processing operators was implemented on the GPU with a substan-
tial improvement to the processing speed. The texture-based segmentation
method was also implemented multi-threaded on the CPU and a significant
improvement of the processing time was shown.

Multiple cores on modern computers are getting more and more com-
mon. Since they are more flexible than the GPUs on graphic cards, it seems
that CPUs represents the cheapest, most available and adaptable solution
in general for parallel processing in the future. Nevertheless, the choice of
parallel technology is highly dependent on the problem at hand and available
resources.

A graph based approach for hepatic vessel segmentation was implemented
and tested (Eidheim et al., 2004a,b; Eidheim, 2005). Results show, however,
that more direct methods, such as through the texture based method, is not
as dependent on parameter choices as the graph based approach is.

8.5 Discussion of research questions

We will here attempt to answer the given research questions on the basis of
the previous discussion and conclusions.

• Is it possible to achieve a sound and robust segmentation of the liver,
hepatic vessels, liver tumours and the kidney with previously derived
image processing techniques?

Based on the literature that has been reviewed, there is no current
method that is sufficiently sound and robust for medical use. This also
applies to the proposed solutions in this thesis. The anatomical varia-
tions make it difficult to derive automatic procedures with guaranteed
success. Focusing on liver segmentation as an example, the liver can
contain numerous and large tumours, and previous interventions may
greatly alter the texture and shape of the liver. Even though humans
can interpret the medical volumes well, it is challenging to create a
complete mathematical method that takes into consideration anatom-
ical knowledge to a sufficient degree.
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• How can we best segment the liver, hepatic vessels, possible tumours
and the kidney from CT and MR scans?

The proposed methods for liver, hepatic vessels and kidney segmenta-
tion represents a significant improvement compared to previously pub-
lished material. On the other hand, tumour segmentation was solely
presented as another example use of our texture based segmentation
algorithm, and previous shape-based methods may produce better re-
sults. Generally speaking, an incorporation of texture and shape based
segmentation together with statistical models would most likely pro-
duce the best results for the given segmentation tasks.

• What statistical models can guide and verify the accuracy of the pro-
posed segmentation techniques?

The choice of representation depends highly on the problem at hand.
Given a liver segmentation, the representation given in chapter 6 would
also include interior features that a surface representation would disre-
gard. Contrarily, a skeleton representation could be the logical choice
for representing hepatic vessels, and an exterior shape model might be
most suitable for tumour representation.

8.6 Future work

The following tasks correlated to this thesis are applicable for future research:

• Further improvement and testing of the texture based segmentation
algorithm is needed. The proposed method can be applied to a number
of related segmentation tasks.

• A large statistical base must be produced to improve the automatic
segmentation of the liver, liver tumours and the kidney. The proposed
representation of objects with an interior can be applied to create a
template base representing the statistical variations of the organs.

• The segmentation of hepatic vessels can be improved through further
development of the texture based segmentation algorithm and by ap-
plying anatomical knowledge using our 3D skeleton approach.

• Automatic measurements can be applied to the hepatic vessels results
through the proposed skeleton method.

• Texture based segmentation can be guided by both statistical templates
and physical constraints. We did not study this in detail.
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• It is difficult to prove that our skeleton representation is most compact
for all objects. A larger quantitative test should be made to try to find
cases where the proposed skeleton procedure may fail. Earlier methods
had special cases where the procedures yielded suboptimal results, but
it is unknown if our method also fails in certain voxel setups.

• It is likely that one can extend the 3D skeleton method to objects
having more than 3 dimensions. Further research is needed to prove
this.
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Abstract. Deriving liver vessel structure from CT and MR scans manually is
time consuming and error prone. An automatic procedure which could help
the radiologist in her analysis is therefore needed. We use matched filters
to emphasise blood vessels, and entropy based thresholding to segment the
vessels complemented by segmentation with respect to local variances. Vessel
interconnections are extracted and finally exported to a graph structure for
further refinements. Results show that the methods presented are promising
and can eventually be used clinically.

A.1 Introduction

The liver is extensively perfused and during liver surgery special care has to be
taken to avoid bleedings. Prior to surgery, CT scans are examined carefully,
and especially the position of large hepatic vessels must be determined. This
process is currently done manually and is time consuming and error prone.
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Figure A.1: An illustration of the datasets we are processing. The liver,
outlined in red, is positioned together with a few CT slices.

We have sought ways to delineate these vessels from CT images automat-
ically, and methods for deriving initial interconnections between segmented
vessels in adjacent CT slices. A separate ongoing project deals with improv-
ing the initial interconnections through global search methods, but this will
not be discussed here. For illustrative purposes, we have added figure A.1 to
show the liver positioned together with a few CT slices.

This work is a continuation of the master thesis [1].

A.1.1 Previous methods

Several articles propose methods for delineating the liver vessels automati-
cally [2, 3, 4, 5, 6]. Most promising, with respect to creating a 3D model of
the liver vessel structure, are the methods by Zalthen et al. and Soler et al.

Zalthen et al. use a voxel based region-growing-algorithm to extract the
portal vein, but the algorithm requires an initial seed point and is therefore
not fully automatic. In the article by Soler et al. however, the portal trunk is
located using its general anatomical position. The portal vein skeleton is cal-
culated utilising methods of Malandain and Bertrand [7, 8], and is corrected
by pruning vessel segments that do not confirm with a set of predetermined
properties.

Both papers deal with delineation of the portal vein, where as we seek
a complete vessel structure. Moreover, both concepts previously described
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are based on local knowledge and do not regard the vessel structure as a
whole. We seek methods which on the contrary do that, and that incorporate
knowledge based decisions.

A.2 Methods

The proposed method consists of five main processing steps. A histogram
equalisation [9] is first executed on each CT slice to normalise the contrast
of each image. Second, Matched filtering [2] is used to emphasise the hepatic
vessels. Entropy based thresholding [3] is used to segment the blood vessels
in combination with knowledge based threshold selection [10] and several
morphological operations [11, 9, 12]. Segmentation results are furthermore
improved by analysis of local image variances. The vessel centres are then ex-
tracted mainly through further use of morphological operators, and modified
with respect to vessels in adjacent CT slices. Finally, the vessel segments are
interconnected based on the Euclidean distance to other segments in neigh-
bouring CT images, as well as on the segments’ sizes.

A.2.1 Preprocessing

The preprocessing step starts by masking the liver. A prerequisite to our
algorithm is therefore an already segmented liver. Liver segmentation is the
subject of a separate study at Rikshospitalet, and we assume for the purpose
of this article that such a mask exists.

CT scans may contain images with varying contrast, but in order to pro-
cess the datasets automatically, the image intensities have to be normalised.
For this purpose, we used histogram equalisation [9] applied on all the images
in the CT sequence.

Matched filtering [2] using rotated and scaled Gaussian hill templates is
used to emphasise blood vessels. Blood vessels seen in MR and CT images
have an approximately Gaussian profile in 1D [2]. By convolving the images
with rotated and scaled Gaussian hill templates and summing the resulting
images, blood vessels having the same size as the templates are more clearly
distinguished. See figure A.2.

A.2.2 Segmentation

The images are first segmented using entropy based thresholding [3] com-
bined with a model based threshold selection [10]. The entropy of the images
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(a) (b) (c)

Figure A.2: Preprocessing: a) Masked liver from a CT image after histogram
equalisation. b) After applying matched filtering, the vessels are emphasised
and can be more clearly distinguished by a following segmentation algorithm.
c) A sample of the rotated and scaled Gaussian hill templates used to em-
phasise the blood vessels.

resulting from each possible threshold level is calculated. Typically, the rela-
tionship between thresholds and entropy will have several local maxima. To
choose among these we use a method proposed by Glombitza et al. where
each locally optimal threshold value is tested in a model based selection al-
gorithm. Figure A.3 a) shows an example segmentation.

During the preprocessing step however, matched filtering fails to empha-
sise large and irregular blood vessels, e.g. vessels cut by the liver mask.
In order to achieve a sound segmentation of these vessels as well, we have
developed an additional segmentation technique.

The intensity variance surrounding pixels within a hepatic vessel is lower
than in the surrounding tissue. Based on this, we have formulated an algo-
rithm that segments large vessels unconstrained by the profile of the vessels.
The algorithm is performed in five basic steps:

1. Local minima are filled using morphological filling 11.

2. The variance for each pixel and its surrounding neighbours is calculated
resulting in a variance image.

3. A Marker is thresholded from the variance image using a threshold set
close to zero variance.

4. A Mask is likewise segmented, but by using a slightly higher threshold.

5. A morphological reconstruction based on dilation [11] is finally executed
to reconstruct the identified liver vessels from the Marker image.
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(a) (b)

Figure A.3: a) A segmentation of the matched filtered image in figure A.2
using entropy based thresholding in combination with model based threshold
selection. b) Segmentation result by adding segmentation with respect to
local variance to a). The large vessel cut by the liver mask is now more
correctly segmented.

The basic idea is to first find the areas with low local variance. These areas
typically corresponds to pixels within large hepatic vessels. Then, to segment
the identified vessels, the areas are enlarged with a slightly lower variance set
as a constraint. The results are shown in figure A.3 b).

Both segmentation results, from entropy based thresholding and from the
procedure just described, are eventually unified.

Morphological opening and closing [11] is used to remove noise and to
reconnect segments separated during segmentation.

A.2.3 Vessel delineation

After the vessels are segmented, a method for interconnecting them between
CT slices is needed. We chose to distinguish the vessel segments into two
classes:

1. Vessels running perpendicular to a CT slice.

2. Vessels running at an oblique angle to the CT slice.

Each segment is classified by measuring the vessel’s convex hull relatively
to its actual area, and by comparing the segment’s minor and major axes.
Figure A.4 shows an example classification.

The next step is to identify the vessel coordinates. The centre of a ves-
sel running perpendicular to the CT slice, that is a circular vessel segment,
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Figure A.4: Each segment is classified according to its convex hull relative
to its actual area, and the relationship between the segment’s minor and
major axes. Grey and white vessel segments are classified as vessels running
perpendicular to the CT slice and vessels running at an oblique angle to the
CT slice respectively.

is simply its mass centre. On the other hand, the calculation of the cen-
tres in vessels running at an oblique angle to the CT slice is slightly more
complicated. First, the segment’s skeleton is measured using morphological
thinning [9, 11] iterated until stability. In order to receive the most basic
skeleton while retaining the same Euler number [9], the endpoint segments
are pruned [9, 11] from the skeleton. The skeleton is finally used to derive
the vessel centres. See figure A.5 for an example.

During the vessel graph initialisation, the endpoints of the skeletons and
the mass centres will be used as potential interconnection points. We will
discuss this in greater detail in chapter A.2.4.

Large vessels running in parallel with the CT slices may be projected
in more than one slice. Using the current vessel centres, visualisation erro-
neously show several parallel vessels. Another problem arises when a vessel
running at an oblique angle to the CT slice, branches into a vessel running
perpendicular to the slice as shown in figure A.6 a). In this case, there are no
interconnection point that could interconnect these two segments. Correc-
tions of the vessel centres and interconnection points are therefore required.
First, these corrections consists of removing vessel centres based on the thick-
ness of similar vessel segments lying in corresponding positions in adjacent
CT slices. After this, potential interconnection points are added making
likely interconnections possible. See figure A.7 for an example result.
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Figure A.5: Vessel centres, in light gray, are derived either from the seg-
ment’s skeleton or the mass centre depending on the classification of the
segment. The endpoints of the skeletons and the mass centres will be treated
as potential interconnection points in the graph initialisation phase.

The algorithm is as follows:

1. Follow the skeleton of each segment in each CT slice.

2. Remove the centres whose distance to the background is smaller than
that of nearby centres in adjacent CT slices. Review figure A.7.

3. Follow the remaining skeletons.

4. Add potential interconnection points nearby endpoints or mass centres
if there exist no such points already. See figure A.6 a).

5. If endpoints have been removed in step 2 such that potential graph
interconnections are made impossible, points are added to make the
interconnections possible. See figure A.6 b).

The distance, mentioned in step 2, is measured using a Euclidean distance
map of the segmented vessels. Since only the centre most distance is of
interest, that is the distance corresponding to the size of the vessel, the
distance map is morphologically dilated and masked as shown in figure A.8.

A.2.4 Initialisation of the vessel graph

In the last phase, vessel interconnection points resembling in size and with
similar positions, are interconnected constituting the initial vessel graph.
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(a) (b)

Figure A.6: Vessel centre corrections. White pixels correspond to intercon-
nection points, and opaque gray lines are possible interconnections. a) Add
potential interconnections points nearby endpoints or mass centres if no such
points exist. b) Interconnection points are added if interconnections between
two segments are made impossible.

(a) (b) (c)

Figure A.7: This figure shows the results after applying the centre corrections
on three adjacent CT images. A vessel branches from a), and continues into
b) and c).

The size of the interconnection points are measured using the previously
described distance map shown in figure A.8 b). There is one major concern
however, when building the initial vessel graph. The graph may contain loops
that are unlikely with respect to vessel anatomy. We resolve these loops by
first ordering the chosen interconnections by distance and size between the
interconnection points. Finally, each interconnection is added individually if
it does not contribute to a vessel loop.
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(a) (b)

Figure A.8: a) An Euclidean distance map of the image in figure A.3 b). b)
The distance map is morphologically dilated and masked with the original
segmented vessels. This is done to ensure that the right distance, the one
corresponding to the size of the vessel, is picked.

A.3 Results

The results show that the initial interconnections, using the previously de-
scribed methods, yield a vessel graph close to the anatomical truth. In figure
A.9, the portal vein originating from the vena cava, can be seen forking into
the liver in several directions. 3 CT scans were used in testing, and the liver
vessels were partially segmented and interconnected. Due to the complexity
of the task at hand, a perfectly correct vessel graph is not achievable by our
methods, but we present an improvement with respect to already published
material.

The processing time of applying the entire procedure on one CT scan is
approximately one hour.

A.4 Conclusion and discussion

In conclusion, we have developed a method that once the liver is segmented,
automatically generates an initial vessel graph describing the vessel intercon-
nections in the liver. Based on these interconnections, global search mecha-
nisms can be applied to further improve the results using cost functions that
favour likely vessel structures. The results can finally be visualised in 3D and
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Figure A.9: A visualisation of an initial interconnected graph. Outline of
the processed liver and a CT image is also visualised for evaluation. A fully
interconnected vessel graph can be seen in green, corresponding to a part of
the portal vein expanding into the liver.

provide valuable assistance for radiologists and surgeons during liver surgery
planning.
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Abstract. Deriving liver vessel structure from CT and MR scans manually is
time consuming and error prone. An automatic procedure that could help
the radiologist in her analysis is therefore needed. We use matched filters
to emphasise blood vessels, and entropy based thresholding to segment the
vessels. Vessel interconnections are next extracted and exported to a graph
structure. At the end, genetic algorithms are used to search globally for the
most likely graph based on a set of fitness functions. Results show that the
methods presented are promising and can eventually be used clinically.

Keywords: vessel; liver; segmentation; vizualisation

B.1 Introduction

The liver is a vital organ with vascular, metabolic, secretory, and excretory
functions. It is extensively perfused and during liver surgery special care has
to be taken in order to avoid bleedings. Prior to liver surgery, the patient
will typically be examined using MR and/or CT scans, in particular the po-
sition of large hepatic vessels must be determined. The relative position of,
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for instance, tumours to these vessels are of great importance when planning
the procedure and in evaluating the operability of the patient. Surgeons and
radiologists will typically base their evaluation on a visual inspection of the
2D slices produced by the different imaging modalities. It is difficult, how-
ever, to deduce a detailed liver vessel structure from such images. Surgeons
at the Interventional Centre at Rikshsopitalet have found 3D renderings of
the liver and its internal vessel structure to be a valuable aid in this complex
evaluation phase. Currently, these renderings are based on a largely man-
ual segmentation of the liver vessels. This procedure is time consuming and
error prone, and we have sought a way to extract the liver vessel structure
automatically from MR and CT scans.

B.1.1 Previous methods

Several articles propose methods to delineate the liver vessels automatically
[1,2,3,4,5]. Most promising, with respect to creating a 3D model of the liver
vessel structure, are the methods by Zalthen et al. and Soler et al. Zalthen
et al. use a voxel based region-growing-algorithm to extract the portal vein,
but the algorithm requires a manually set initial seed point and is there-
fore not fully automatic. In the article by Soler et al., the portal trunk is
located using its general anatomical position. The portal vein skeleton is cal-
culated utilising methods of Malandain and Bertrand [6,7], and is corrected
by pruning vessel segments that do not confirm with a set of predetermined
properties. Both papers deal with delineation of the portal vein, whereas
we seek a complete vessel structure. Moreover, both concepts previously de-
scribed are based on local knowledge and do not regard the vessel structure
as a whole. We seek methods which on the contrary do that, and that are
incorporated with knowledge-based decisions.

B.2 Methods

The proposed method consists of three main steps. First, a preprocessing step
where the liver itself is isolated using a mask and where vessel candidates are
detected in the different 2D slices of the MR or CT sequence. Second, an
initialisation step is made where these candidates are interconnected in a
graph structure based on simple proximity considerations. Finally, a main
processing step is performed where the graph structure is refined according
to global fitness criterion using genetic algorithms.
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(a) (b)

Figure B.1: a) A vessel before processing, shown in two adjacent CT slices.
b) The resulting segmentation (in grey) and derived vessel centres (in white)
of a). The centres are modified with respect to adjacent vessel segments.

B.2.1 Preprocessing

The preprocessing step starts by masking the liver, and this obviously re-
quires a segmentation of the liver. Liver segmentation is the subject of a
separate study at Rikshospitalet, for the purpose of this article we will as-
sume that such a mask exists. After masking the liver, a histogram equali-
sation [8] is performed in order to normalise the contrast of the images. MR
and CT sequences may contain images with varying contrast. In order to
obtain algorithms that perform autonomously this step is required. Finally,
matched filtering [1] using rotated and scaled Gaussian hill templates is used
to emphasise blood vessels. Blood vessels seen in MR and CT images have
an approximately Gaussian profile in 1D [1]. By convolving the images with
rotated and scaled Gaussian hill templates and summing the resulting im-
ages, blood vessels having the same size as the templates are more clearly
distinguished.

B.2.2 Initialisation

During the initialisation step, candidate liver vessels are located in the 2D
images of the MR or CT sequences. This is performed in two steps:

1. The images are initially thresholded using entropy based thresholding
[2] combined with a model based threshold selection [9]. The entropy
of the images resulting from each possible threshold level is calculated.
Typically, the relationship between thresholds and entropy will have
several local maxima. To choose among these we use a method proposed
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by Glombitza et al. where each locally optimal threshold value is tested
in a model based selection algorithm.

2. The thresholding results are refined using morphologic operators [8,10,11].
Performing a morphological opening and closing on the thresholded im-
ages removes spurious pixels and reconnects separated segments. Some
of the vessel segments may in addition contain interior holes. In par-
ticular, this occurs in branching points where the vessels do not match
any of the templates used during the matched filtering. These holes
are filled by geodesic reconstruction by erosion [10].

The result of these two steps is a number of candidate vessel segments.
These segments can correspond to either a vessel running vertically through
the MR or CT slice, a vessel running at an oblique angle to the slice, or
erroneous segments not corresponding to vessels. If the area of a segment’s
convex hull is close to its actual area, and the segment is circular, it is classi-
fied as a vessel running vertically through the slice. Otherwise, the segment
is classified as a vessel running at an oblique angle to the slice. At this point,
a graph representing the vessel interconnection is deduced from the classi-
fied vessel segments. Nodes in the graph represent vessel interconnection
points, and the edges represent vessel segment interconnections. Segments
corresponding to vessels running perpendicular to the slices and those run-
ning at oblique angles are treated separately. Vessels running perpendicular
to the slices are represented by their geometric centres. These centres be-
come nodes in the graph. Vessel segments corresponding to vessels running
at oblique angles are thinned and pruned in order to create a basic skeleton
from which interconnections and additional nodes are derived. The skeleton
is also modified with respect to vessels in adjacent slices (See Fig. 1). At the
end, interconnections are computed between neighbouring MR or CT slices
based on the Euclidean distance between the nodes on separate slices, and
the size of the nodes.

B.2.3 Main processing step

In this step the initial vessel graph is improved using genetic algorithms
[12,13]. This is a global search procedure that finds the best graph according
to a set of fitness functions. The aim is to find the graph with highest
possible fitness. Likely vessel structures are awarded with a high fitness, and
improbable structures are penalised with low fitness. Five fitness functions
were defined:

1. Distance fitness: The high resolution of modern MR and CT scanners
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makes it reasonable to assume that vessel segments belonging to the
same vessel will rarely be far apart. Interconnecting segments that
are close is therefore awarded with high fitness, while interconnections
involving physically distant segments are given low fitness.

2. Curvature fitness: Sharp turns in vessel paths are infrequent. This
fitness function will therefore reward straight vessels, while penalising
heavily curved vessels.

3. Dimension fitness: Since blood vessels normally increase or decrease in
thickness along a given direction, vessel interconnections in our graph
that do not conform with this are given low fitness.

4. Branching fitness: Vessels rarely branch in more than two subvessels.
Thus, we penalise branches which result in more than two vessels.

5. Loop fitness: Vessels should not form local loops and graphs containing
loops are given low fitness.

Currently, all algorithms with the exception of the generation of the liver
mask are fully automatic.

Fig. 2.

B.3 Results

We have applied our methods to 3 full CT sequences of the liver. The re-
sulting 3D vessel graph from each sequence clearly shows the structure of the
blood vessels within the liver (see Fig. 2). By using the global search mech-
anism, a likely vessel structure was found, and improbable vessel structures,
as for instance vessel loops, were resolved in a reliable manner. The quality of
our results has been verified by inspection by radiologists and surgeons. The
preprocessing and initialisation steps are computationally simple, whereas the
global search using genetic algorithms is computationally demanding. This
is due to the large search space resulting from a detailed vessel graph and
numerous fitness functions. The computation time for the entire procedure
is on the order of one hour on a modern personal computer.

B.4 Discussion and conclusion

In conclusion, we have developed an application that automatically finds the
most probable vessel interconnections in the liver. However, the masks we
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Figure B.2: A visualised vessel graph with one continuous branch marked
green. In our application the liver contour and CT slices are visualised for
verification.

currently use exclude the vena cava. Noise in the CT images as well as lack of
interconnections via the vena cava, may give raise to isolated vessel segments
that should otherwise have been connected (see Fig. 2). In the future we plan
to implement improved preprocessing methods, and use better liver masks
that for instance include the vena cava. Based on the interconnections it
is a simple task to render the vessel structure of the liver in 3D. Given the
improvements previously mentioned, our application can provide valuable
assistance for radiologists and surgeons during liver surgery planning.
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abstract. We present a new method for producing locally non-intersecting
polygon meshes of naturally branching structures. The generated polygon
mesh follows the objects underlying structure as close as possible, while still
producing polygon meshes that can be visualized efficiently on commonly
available graphic acceleration hardware. A priori knowledge of vascular
branching systems is used to derive the polygon mesh generation method.
Visualization of the internal liver vessel structures and naturally looking tree
stems generated by Lindenmayer-systems is used as examples. The method
produce visually convincing polygon meshes that might be used in clinical
applications in the future.

C.1 Introduction

Medical imaging through CT, MR, Ultrasound, PET, and other modalities
has revolutionized the diagnosis and treatment of numerous diseases. The
radiologists and surgeons are presented with images or 3D volumes giving
them detailed view of the internal organs of a patient. However, the task of
analyzing the data can be time-consuming and error-prone. One such case
is liver surgery, where a patient is typically examined using MR or CT scans
prior to surgery. In particular, the position of large hepatic vessels must be
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determined in addition to the relative positions of possible tumors to these
vessels.

Surgeons and radiologists will typically base their evaluation on a visual
inspection of the 2D slices produced by CT or MR scans. It is difficult, how-
ever, to deduce a detailed liver vessel structure from such images. Surgeons
at the Intervention Centre at Rikshsopitalet in Norway have found 3D ren-
derings of the liver and its internal vessel structure to be a valuable aid in
this complex evaluation phase. Currently, these renderings are based on a
largely manual segmentation of the liver vessels, so we have explored a way
to extract and visualize the liver vessel structure automatically from MR and
CT scans.

The developed procedure is graph based. Each node and connection cor-
responds to a vessel center and a vessel interconnection respectively. This
was done in order to apply knowledge based cost functions to improve the
vessel tree structure according to anatomical knowledge. The graph is used
to produce a polygonal mesh that can be visualized using commonly available
graphic acceleration hardware.

A problem when generating meshes of branching structures in general, is
to get a completely closed mesh that does not intersect itself at the branch-
ing points. We build on several previous methods for mesh generation of
branching structures, including methods from the field of visualization for
generation of meshes of tree trunks. The main function of a tree’s trunk can
be explained as a liquid transportation system. The selected methods for
the mesh generation can therefore be extended by using knowledge of the
branching angles in natural systems for fluid transportation. This enables us
to generate closed and locally non-intersecting polygon meshes of the vascular
branching structures in question.

C.2 Previous Work

In the field of medical computer imagery, visualization of internal branching
structures have been handled by volume visualization, as the data often was
provided by imaging systems that produced volume data. However, visualiza-
tion of polygon meshes is highly accelerated on modern commonly available
hardware, so we seek methods that can utilize this for our visualization of
branching vascular transportation structures.

Several previous works have proposed methods for surface mesh genera-
tion of trees that handles branching. We can mention the parametric surfaces
used in [1], the key-point interpolation in Oppenheimer [14], the ”branching
ramiforms” [2] (that was further developed by Hart and Baker in [9] to ac-
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count for ”reaction wood”), and the ”refinement by intervals” method [11].
In [12], [17], rule based mesh growing from L-systems was introduced. The

algorithm used mesh connection templates for adding new parts of a tree to
the mesh model, as L-system productions was selected during the generation
phase. The mesh connection templates were produced to give a final mesh of
a tree, that could serve as a basis mesh for subdivision. This method could
only grow the mesh by rules, and could not make a mesh from a finished data
set.

The work most similar to our was the SMART algorithm presented in
[6], [7]. This algorithm was developed for visualization of vascular branching
segments in the liver body, for use in a augmented reality aided surgery
system. The algorithm produced meshes that could be used with Catmull-
Clark subdivision [3] to increase surface smoothness and vertex resolution.

The SMART algorithm defined local coordinate axis in a branching point.
The average direction of the incoming and outgoing segments was one axis,
and an up vector generated at the root segment was projected along the
cross sections to define another axis (to avoid twist). The child closest to
the average direction was connected with quads, at a defined distance. The
up vector defined a square cross section, and four directions, at a branching
point. All remaining outgoing segments were classified into one of these
directions according to their angle compared with the average direction. The
child closest by angle in each direction was connected with the present tile,
and this was recursively repeated for any remaining children.

Furthermore, the SMART algorithm did not include any method for au-
tomatic adjustment of the mesh with respect to the areas near forking points,
and could produce meshes that intersected locally if not manually tuned. Our
method automatically generates meshes without local intersection as long as
the underlying structures loosely follows natural branching rules.

C.3 Main Algorithm

The proposed algorithm is loosely based on the SMART algorithm. It also
uses knowledge of the branching angles in natural systems for fluid trans-
portation as described in Sect.C.3.1.

C.3.1 Natural Branching Rules

Leonardo Da Vinci presented a rule for estimating the diameter of the seg-
ments after a furcation in blood vessels, as stated in [15]. The Da Vinci rule
states that the cross-section area of a segment is equal to the combined cross
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section area of the child segments, as seen in the following section.

πr2
0 = πr2

1 + πr2
2 + ... + πr2

n (C.1)

A generalization, as seen in C.2, was presented by Murray in [13]. Here,
the Da Vinci rule has been reduced so that the sum of the diameters of the
child segments just after a furcation is equal to the diameter of the parent
just before the furcating, where d0,d1, and d2 are the diameters of the parent
segment and the child segments, respectively. α was used to produce different
branching. α values between 2 and 3 are generally suggested for different
branching types.

dα
0 = dα

1 + dα
2 (C.2)

From this Murray could find several equations for the angle between 2
child branches after a furcation. One is shown in C.3, where x and y are the
angles between the direction of the parent and each of two child segments.
As seen from the equation, the angles depend on the diameter of each of
the child segments. Murray also showed that the segments with the smallest
diameter have the largest angle.

cos(x + y) =
d4

0 − d4
1 − d4

2

2d2
1d

2
2

(C.3)

Thus, we assume that the child segment with the largest diameter after
a furcation, will have the smallest angle difference from the direction of the
parent segment. This forms the basis for our algorithm, and it will there-
fore produce meshes that do not locally intersect as long as the underlying
branching structure mostly follows these rules that are based on observations
from nature. We now show how this is used to produce a polygon mesh of a
branching structure.

C.3.2 New Algorithm

The algorithm is based on the extended SMART algorithm, but uses the
Da Vinci rule to ensure mesh consistency. It uses data ordered in a DAG
(Directed Acyclic Graph) where the nodes contains the data for a segment
(direction vector, length and diameter). The segments at the same level in
the DAG are sorted by their diameters. An up vector is used to define the
vertices at each segments start and end position. The vertex pointed to by
the up vector, is set to be a corner of a square cross section of a segment. The
sides of this square defines the directions used in sorting any child segments.
The sorting results in four sets of child segments (one for each direction of
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the square), where the child segments in each set are sorted by the largest
diameter.

To connect segments, we basically sweep a moving coordinate frame (de-
fined by a projected up vector) along a path defined by the segments data.
However, at the branching points we must build another type of structure
with vertices, so we can add the child segments on to the polygon mesh. This
is done by considering the number of child segments, and their diameters and
angles compared to the parent segment.

Starting at the root node in the DAG we process more and more child
segments onto the polygon mesh recursively. There are four possible methods
for building the polygon mesh for any given segment. If there are one or more
child segments in the DAG, we must select one of the methods described
in Sect.C.3.3 (for one child segment), Sect.C.3.5 (for more then one child
segment), or in Sect.C.3.4 (for cases where the child segment with largest
diameter has an angle larger then 90 degrees with respect of the parent
segment). If there are no child segments, the branch is at its end. The
segment is closed with a quad polygon over four vertices generated on a
plane defined by the projected up vector and the segments diameter at the
segments end.

C.3.3 Normal Connection

If there is one child segment (with angle between the present and the child
segment less then 90 degrees), we connect the child segment to the present
segment, and calculates the vertices, edges and polygons as described in this
section. Each segment starts with four vertices on a plane at the segments
start position. As the algorithm computes a segment, it finds four vertices at
the segment’s end. It then closes the sides of the box defined by these eight
vertices (not the top and bottom).

The first step is to calculate the average direction between the present
segment, and the child segment. This direction is the half direction. Next,
the up vector is projected onto the plane defined by the half direction and the
segments end point. A square cross section is then defined on the plane at
the segment’s end position, oriented to the projected up vector to avoid twist.
The length of the up vector is also changed to compensate for the tilting of
this plane compared to the original vector. The corners of the cross section
are the four end corner vertices for the present segment. These vertices, along
with the four original vertices, defines the box that we close the sides of with
quad polygon faces. In Fig.C.1, the mesh of a stem made of four segments
connected in sequence can be seen. After processing the segment, the child
segment is set as the present segment.
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Figure C.1: Simple mesh production. a) the produced mesh, b) shaded mesh,
c) one subdivision, d) two subdivisions

Figure C.2: Mesh production for direction above 90 degrees. a) first child
added (direction of 91 degrees), b) next child

C.3.4 Connect Backward

When the first child segment direction is larger than 90 degrees compared to
the present segments direction. special care has to be taken when producing
the mesh (the main part of the structure bends backward). We build the
segment out of two parts, where the last part is used to connect the child
segments onto the polygon mesh.

The first step is to define two new planes. The end plane is defined along
the direction of the segment at the distance that equal to the segments’
length, plus the first child’s radius (from the segments start position). The
middle plane is defined at a distance equal to the diameter of the first child,
along the negative of the present segments direction (from the segments end
position). Two square cross sections are defined by projecting the up vector
into the two newly defined planes. The cross section at the segments top
can be closed with a quad surface, and the sides between the segments start
and the middle cross section can also be closed with polygons. The sides
between the middle and the top cross sections that has no child segments in
its direction, can also be closed with polygons.
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All child segment (even the first one) should be sorted into sets, defined
by their direction compared to four direction. The directions are defined by
the middle cross section, and each set should be handled as if they were sets
of normal child segments, as described in Sect. C.3.5. Vertices from the
newly defined middle and end cross sections are used to define the start cross
sections (the four start vertices) for each of the new directions. An example
can be seen in Fig. C.2.

C.3.5 Connect Branches

If there is more than one child segment, we start with the first child segment.
The first segment has the largest diameter, and should normally have the
smallest angle compared to its parent segment.

To connect the first branching child segment onto the mesh, we first use
the same method as in section C.3.3. We make a square cross section at
the end of the present segment, and its sides are closed by polygons. The
distance from the segments start to the new cross section can be decreased to
get a more accurate polygon mesh (for instance by decreasing the length by
half of the calculated l + x value found later in this section). In the example
where vessels in a liver was visualized (Sect. C.4.2), the length was decreased
as we just described.

A new square cross section is also defined along the half direction of the
first child, starting at the center of the newly defined cross section. These
two new cross sections defines a box, where the sides gives four cross sections
(not the top or bottom side). The first child segment (and its children) are
recursively added to the top of this box (on the cross section along the half
direction), while the rest are added to the four sides. Note that the end
position of a segment is calculated by vector algebra based on the parent
segment’s end position, and not on the cross section along the half direction.
This means that the segment’s length must be larger than the structure made
at the branching point, to add the child.

When the recursion returns from adding the main child segment (and its
child segments), the remaining child segments are sorted into four sets. The
sorting is again done by the segments angle compared to the sides of the
cross section around the present segment’s end point. One must remember
to maintain ordering by diameter while sorting.

The vertices at the corners of the two new cross sections defines a box
where the sides can be used as new cross sections for each of the four di-
rections (not the top and bottom sides). For each of the four directions, a
new up vector is defined as the vector between the center of the directions
cross section, and a corresponding vertex on the present segment’s end cross
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Figure C.3: a) Adding a second child segment. I) new up, direction and
half direction vectors for this direction, II) first part of child segment, III)
resulting mesh. b) Finding minimum distance m to move along the half vector
to ensure space for any remaining branches (as seen from a right angle)

section. Figure C.3 a) shows the up and half direction when adding a child
segment in one of the four directions.

The main problem one must solve is to find the distance along the half
vector to move before defining the start cross section for the main child
segment. This to ensure that there is enough space for any remaining child
segments. If the distance moved is too small, the diameter of any remaining
child segments will seem to increase significantly after the branching. A too
large distance will result in a very large branching structure compared to the
segments it connects.

Our main contribution is the automatic estimation of the distance to
move, to allow space for any remaining child segments. In Fig. C.3 b), we
can see the situation for calculating the displacement length m for a given
half angle.

The length of m must at least be as large as the root of the d2
1 +d2

2...+d2
n,

where d1, d2.. are the diameter of the child segments. This because we know
from the Da Vinci rule and murray’s findings that every child segment at this
point will have equal or smaller diameter then the parent segment (hence the
sorting by diameter of child segments). Note that the half angle (h) will be
less or equal to 45 degrees, as any larger angle will lead to the segment being
handled as in section C.3.4 (as the main angle then will be larger then 90
degrees).

We could find the exact length of m, but observe that as long as the
length of n is equal to d1, we will have enough space along m. Setting
n = d2

1 + d2
2...+ d2

n gives C.4 for calculating the length to move along the half
vector.

l + x =
√

d2
1 + d2

2 + ... + d2
n/cos(h) + tan(h) ∗ d1/2 (C.4)

The error added by using x + l instead of m, will introduce a small error in
the mesh production. However, we observe that setting n = d1 seems to give
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Figure C.4: The mesh production in a branching point. a) First child added,
b) next child added, c) third child added.

adequate results for most cases. An example result from using the algorithm
can be seen in Fig. C.4.

C.4 The Examples

A preliminary application has been produced in OpenGL to test the algo-
rithm. This section shows this application at work. We have used it to pro-
duce polygon meshes for both naturally looking tree stems from a L-system
generator, as well as meshes of the derived portal vein from a CT scan of a
liver. Normal Catmull-Clark subdivision was used for the subdivision step.

C.4.1 Lindenmayer Generated Tree Stems

An extension to the application accepted an L-system string, representing a
tree stem after a given number of Lindenmayer generation steps, as input.
The extension interpreted the L-system string into a DAG that the appli-
cation used to produce a base polygon mesh from. The application then
subdivided this mesh to the level set by the user. An example with a shaded
surface can be seen in Fig. C.5.

C.4.2 Delineation of Hepatic Vessels from CT Scans

Several processing steps has to be completed in order to visualize the hepatic
vessels from a CT scan. In the preprocessing phase, histogram equalization
[8] is first conducted to receive equal contrast on each image in the CT scan.
Next, the blood vessels are emphasized using matched filtering [4]. After the
preprocessing phase, the blood vessels are segmented using entropy based
thresholding [10] and thresholding based on local variance with modifications
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Figure C.5: A tree defined by a simple L-system. a) the produced mesh, b)
shaded mesh, c) after one subdivision, d) after two subdivisions

using mathematical morphology [16]. A prerequisite to our method is that
the liver is segmented manually beforehand.

After the vessel segments are found, the vessels’ centers and widths must
be calculated. These attributes are further used in a graph search to find the
most likely vessel structure based on anatomical knowledge. First, the vessel
centers are derived from the segmentation result using the segments’ skeletons
[16]. The vessels’ widths are next computed from a modified distance map
[8] of the segmented images.

The last step before the vessel graph can be presented is to make con-
nections between the located vessel centers. Centers within segments are
interconnected directly. On the other hand, interconnections between adja-
cent CT slices are not as trivial. Here, as previously mentioned, we use cost
functions representing anatomical knowledge in a graph search for the most
likely interconnections [5]. The resulting graph is finally visualized using the
outlined algorithm in this paper.

A few modification to the existing graph is made in order to make it more
visually correct. First, nodes with two or more interconnected neighbors have
their heights averaged since the resolution in the y-direction is normally lower
than that in the image plane. Second, if two interconnected nodes are closer
than a predefined limit, the two nodes are replaced by one node positioned
between them. Fig. C.6 shows the resulting visualization of the derived
portal vein from a CT scan of a liver.

C.5 Findings

Our method for automatically calculating the distance for sufficient space for
any remaining child segments after the first child segment has been added,
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Figure C.6: Left: Portal vein visualized from a CT scan of a liver (the CT
scan data can be shown at the same time for any part of the liver, for visual
comparison). Right: The same structure withouth the scan data.

seems to produce good results. The preliminary results from our method
applied to visualization of hepatic vessels in the liver gives good results
when compared with the CT data they are based on, but these results have
only been visually verified (however the first feedbacks from the Interven-
tion Centre at Rikshsopitalet in Norway has been promising). However, a
more throughout comparison with existing methods, and verification against
the data set values should be completed before using the method in clinical
applications.

The algorithm is fast and simple, and can be used by most modern PC’s
with a graphic accelerator. The meshing algorithm mostly does its work in
real-time, but the subdivision steps and any preprocessing slow things down
a bit. Graphic hardware support for subdivision will hopefully be available in
the relative near future. When this happens, the subdivision of the branching
structures may become a viable approach even for large amounts of trees or
blood vessels in real-time computer graphics.
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