
Master of Science in Computer Science
June 2010
Lasse Natvig, IDI
Hiroshi Okuda, Okuda Laboratory, The University of
Tokyo, Japan.

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Multi-core programming with OpenCL:
performance and portability
OpenCL in a memory bound scenario

Olav Aanes Fagerlund

Problem Description
With the advent of multi-core processors desktop computers have become multiprocessors
requiring parallel programming to be utilized efficiently. Efficient and portable parallel
programming of future multi-core processors and GPUs is one of today s most important
challenges within computer science. Okuda Laboratory at The University of Tokyo in Japan focuses
on solving engineering challenges with parallel machines. A multi-core FEM solver package is
under development within this laboratory that utilizes both standard CPUs and GPUs.

This student project, given by Department of Computer and Information Science (IDI) at NTNU in
cooperation with Okuda Laboratory at The University of Tokyo, seeks to explore the promising path
towards more platform independent parallel programming given by the OpenCL library, runtime
system and language.

The main goals of the project are;

OpenCL as a multi-core programming tool and its inherent performance and portability properties
is of interest. On background of code developed within this project, we wish to explore this area.

Some relevant and agreed upon sub-parts of the FEM solver package will be written/ported to
OpenCL. This code will be used as basis for the performance and portability experiments needed
for the project.

Experiments with one or several tools used for performance measuring and profiling of OpenCL
code. Nvidias performance measuring and profiling tools should be included here.

If time permits;

For the study of performance tools as mentioned above; include one or more from another vendor;
Intel, AMD/ATI or Nvidia.

Based on the experiments, suggest ways to tune portions of the OpenCL code for efficient multi-
core/GPU execution.

Study how performance is affected when porting programs between different platforms.

Provide estimates for some OpenCL programs as a function of the number of cores/compute units
used.

Compare the performance of benchmark programs implemented in OpenCL with comparable
implementations in other languages. Such benchmark programs can be suggested both from the
Okuda laboratory and Natvigs research group at NTNU.

Study the interplay of current OpenCL implementations and the operating systems they run on
with respect to performance.

A focus on debugging tools for OpenCL is of interest.

Okuda Laboratory is expected to facilitate the project with a relevant focus area that will be agreed
upon (via a research plan), as well as infrastructure such as a multi-core/GPU system for the
experiments to the extent it is needed. IDI at NTNU provides an 8-way Intel Xeon processor system
with Nvidia and ATI OpenCL compatible GPUs.

"A developer interested in writing portable code may find that it is
necessary to test his design on a diversity of hardware designs to make
sure that key algorithms are structured in a way that works well on
a diversity of hardware. We suggest favoring more work-items over
fewer. It is anticipated that over the coming months and years ex-
perience will produce a set of best practices that will help foster a
uniformly favorable experience on a diversity of computing devices."

— OpenCL 1.0 specification [12], Appendix B – Portability

Abstract

During this master’s thesis work, the CUKr library has been given ad-
ditional support for running the Cg Krylov solver on all hardware sup-
ported by OpenCL implementations. This includes selected BLAS 1 and
BLAS 2 kernels. Changes were made to the CUKr source-code infrastruc-
ture to accommodate the use of OpenCL. This implementation has been
measured up against the C for CUDA based implementation already a
part of the library. The results of the work strongly indicate that there
are OpenCL performance issues in Nvidias Computing SDK 3.0, relative
to the same SDKs C for CUDA performance. This is to an expected degree,
as OpenCL implementations are still not as mature as some older technolo-
gies, for instance C for CUDA.

A BLAS 1 kernel considerably more suitable for the CPU memory ac-
cess pattern was written, and compared against the Intel MKL Library.
Simple changes to the memory access pattern demonstrated far superior
performance. It was observed that a GPU friendly kernel had problems uti-
lizing the cache when running on the CPU due to the unsuitable memory
access pattern. The issues of producing portable code that performs ad-
equately in a High Performance Computing scenario, for memory bound
problems, has been explored. The author believes, as a result, that the place
for OpenCL within High Performance Computing is as a powerful system
for heterogeneous computing. Maintainability and ensuring performance
in the kernels, in the mentioned scenario, does not call for a least common
denominator, so to speak, with mediocre performance on all hardware. A
kernel written to run "unbiased" on both GPU and CPU devices will most
certainly have a hard time competing with other libraries targeting a cer-
tain device. OpenCL gives good flexibility and portability. However, when
considering the performance aspects, and especially for memory bound
problems, special care is crucial — as it always has been. Each device has
its own ideal memory access pattern that cannot be ignored. Writing ef-
ficient BLAS kernels for a certain device in of itself can be a challenge.
Making this perform well on a completely different architecture without
degrading the performance on the first architecture considerably compli-
cates the task. And it can be argued if this should be done, due to the
unnecessary complexity of the code it introduces, from the standpoint of
maintainability.

The GPU kernels are expected to run with reasonable efficiency on
other recent OpenCL-ready GPUs too, such as those from AMD/ATI. The
work has resulted in a more future-ready library, and can enable other in-
teresting topics and focus areas that build upon this added foundation.

Contents

1 Introduction 1
1.1 Thesis problem description 1
1.2 Research plan . 3
1.3 Interpretation of the thesis problem description 3
1.4 Thesis structure and overview 4

2 Background for software technologies and tools 5
2.1 Multi-core programming state-of-the-art 5

2.1.1 OpenMP . 7
2.1.2 Intel Threading Building Blocks (TBB) 8
2.1.3 Apple Grand Central Dispatch (GCD) 9

2.2 OpenCL . 9
2.2.1 Inspiration from the computer graphics scene 10
2.2.2 Execution . 11
2.2.3 The Low Level Virtual Machine (LLVM) Compiler

Infrastructure . 11
2.2.4 GPU execution . 12
2.2.5 CPU execution . 13
2.2.6 The memory hierarchy 14
2.2.7 OpenCL CPU support status 14

2.3 Cmake build system for platform independent builds 15

3 Background for the implementation 17
3.1 Solvers . 17
3.2 Krylov solvers . 18
3.3 Important compute kernels for the Cg Krylov solver 20

3.3.1 AXPY . 20
3.3.2 AYPX . 20
3.3.3 DOT . 20
3.3.4 SCAL . 20
3.3.5 SpMV . 21

3.4 Sparse Matrix Vector Multiplication (SpMV) on GPUs 21
3.5 Data formats of relevance for use with SpMV 22

I

3.5.1 Compressed sparse vector format (CSV) 22
3.5.2 Compressed sparse row storage format (CSR) 22
3.5.3 Block compressed sparse row storage format (BCSR) 23
3.5.4 ELLPACK . 24
3.5.5 Block ELLPACK storage format (BELL) 24
3.5.6 Hybrid (HYB) . 25

3.6 The CUDA Krylov (CUKr) software version 1.0 26
3.6.1 The structure of CUKr 28
3.6.2 The BLAS level . 28
3.6.3 The data structure level 28

4 Background for relevant hardware 33
4.1 Nvidia OpenCL capable graphics hardware 33

4.1.1 Nvidia Tesla architecture 33
4.1.2 Nvidia Fermi architecture 34
4.1.3 Ideal global memory access pattern 36

4.2 AMD/ATI OpenCL capable graphics hardware 37
4.2.1 Architectural overview 37
4.2.2 Ideal global memory access pattern 39

4.3 A more CPU-ideal global memory access pattern 39
4.3.1 Memory access on the CPU 40

5 Implementing OpenCL support in CUKr 45
5.1 At the build level . 45
5.2 Additions to the CUKr infrastructure and data-structure level 46
5.3 Additions to the BLAS level — the set-up of the OpenCL

kernels . 47

6 Kernel implementations 51
6.1 CUKr OpenCL kernels ideal for the GPU 51

6.1.1 Common structure . 52
6.2 Differences between the OpenCL and CUDA kernels 58

6.2.1 BLAS 1 functions . 58
6.2.2 SpMV functions . 58

6.3 CUKr OpenCL kernels ideal for the CPU 59

7 Results 61
7.1 Performance evaluation . 61
7.2 Performance measuring . 63
7.3 Results BLAS 1 GPU-friendly kernels — individual bench-

marks . 64
7.3.1 Nvidia GTX 280 under Linux, Nvidia OpenCL 65

7.4 Results AXPY CPU-friendly kernel on CPU 70

II

7.5 Results Cg Krylov solver and its GPU-friendly kernels —
real-world problems . 73
7.5.1 Nvidia GTX 280 under Linux, Nvidia OpenCL 3.0 SDK 73

8 Conclusions 79

9 Further work 83

A Hardware specifications 87

B OpenCL devices under different implementations 93
B.1 Apple Mac Pro, OS X 10.6.4 93
B.2 Apple Mac Pro, OS X 10.6.3 94
B.3 Apple Macbook Pro, OS X 10.6.4 96
B.4 Apple Macbook Pro, OS X 10.6.3 97
B.5 Nvidia CUDA SDK 3.0 Linux 98
B.6 ATI Stream SDK 2.1 Linux . 100
B.7 ATI Stream SDK 2.01 Linux 100

C Matrix properties 103

D Benchmark graphs 105

E Code listings 117
E.1 AXPY CPU Single . 118
E.2 AXPY GPU Single . 119
E.3 AXPY GPU Double . 120
E.4 AYPX GPU Single . 121
E.5 AYPX GPU Double . 122
E.6 DOT GPU Single . 123
E.7 DOT GPU Double . 124
E.8 SCAL GPU Single . 125
E.9 SCAL GPU Double . 126
E.10 SPMV CSR GPU Single . 126
E.11 SPMV CSR_B0 GPU Single . 128
E.12 SPMV CSR_A1 GPU Single 129
E.13 SPMV CSR_A1_B0 GPU Single 130
E.14 SPMV CSR GPU Double . 132
E.15 SPMV CSR_B0 GPU Double 133
E.16 SPMV CSR4 GPU Single . 135
E.17 SPMV CSR4_B0 GPU Single 136
E.18 SPMV CSR4_A1 GPU Single 137
E.19 SPMV CSR4_A1_B0 GPU Single 138
E.20 SPMV CSR4 GPU Double . 140
E.21 SPMV CSR4_B0 GPU Double 141

III

E.22 SPMV ELL GPU Single . 142
E.23 SPMV ELL GPU Double . 143
E.24 Kernels GPU single-double (quasi-double) 144
E.25 Kernels GPU single set-up . 164
E.26 Kernels GPU single set-up, header 182
E.27 Kernels GPU single-double (quasi-double) set-up 183
E.28 Kernels GPU single-double (quasi-double) set-up, header . . 204
E.29 Kernels GPU double set-up 205
E.30 Kernels GPU double set-up, header 218
E.31 OpenCL Initialize . 220
E.32 OpenCL Initialize, header . 233
E.33 OpenCL devices probing . 235

IV

List of Figures

2.1 An application under execution builds and initiates an OpenCL
kernel, which is thereby executed on a selection of devices. . 12

2.2 The OpenCL Memory Hierarchy adopted from [12]. A com-
pute device has N compute units, and each compute unit
handles M work-items (or threads). 15

3.1 Compressed sparse vector layout. 22
3.2 Compressed sparse row layout. 23
3.3 BCSR layout. 23
3.4 ELLPACK/ITPACK layout. 24
3.5 Blocked ELLPACK steps. Figure adopted from [4]. 25
3.6 The HYB format. Figure adopted from [7]. 26
3.7 The layers of CUKr, adopted from [6]. 29
3.8 The block-layout of CUKr. Red boxes shows existing and

new areas where work will take place during the implemen-
tation phase. The block-layout is adopted from a CUKr lab-
meeting note by Serban Georgescu, with additions from the
author to illustrate the new state. 30

4.1 The Nvidia Geforce GTX 280 architecture overview. Illustra-
tion style is inspired by the Geforce GT 8800 figure in [15]. . 35

4.2 The Nvidia Geforce GTX 280 TPC. Illustration style is in-
spired by the Geforce GT 8800 TPC illustration in [15]. 36

4.3 The R700 architecture figure adopted from [16]. OpenCL
Compute Units marked, in addition. 42

4.4 Illustration showing the SIMD element (Compute Unit) and
the Stream Core. Partly adopted from [17]. 43

4.5 GPU coalesced read. The red circle indicates the memory
requests that gets coalesced into one transfere. 43

4.6 CPU read with GPU kernel. The chaotic memory access pat-
tern arising when using a GPU kernel on the CPU is shown.
CPU memory-bandwidth badly utilized. 43

4.7 CPU ideal read with CPU kernel. Each core reads a large
sequence of data in memory. 44

V

7.1 AYPX, OpenCL kernels uses no local memory as opposed
to the CUDA kernel which does. Partitioning sizes are also
adjusted to suit. 66

7.2 AYPX, OpenCL kernels uses local memory, as the CUDA
kernel also does. Similar partitioning sizes as to the CUDA
kernels are used. 67

7.3 AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. Partitioning sizes are also ad-
justed to suit. 68

7.4 AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel
also does. Similar partitioning sizes as to the CUDA kernels
are used. 69

7.5 DOT; OpenCL vs. CUDA implementation. 70
7.6 DOT with large vector sizes — up to 21 million elements;

OpenCL vs. CUDA implementation. 71
7.7 SCAL with large vector sizes — up to 21 million elements,

OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. 72

7.8 AXPY CPU-friendly kernel on Intel Core 2 Quad processor. . 73
7.9 Cg HYB single precision benchmark result. 74
7.10 Cg HYB qdouble precision benchmark result. 75
7.11 Cg HYB double precision benchmark result. 75
7.12 Cg CSR4 single precision benchmark result. 76
7.13 Cg CSR4 qdouble precision benchmark result. 76
7.14 Cg CSR4 double precision benchmark result. 77
7.15 Cg CSR single precision benchmark result. 77
7.16 Cg CSR qdouble precision benchmark result. 78
7.17 Cg CSR double precision benchmark result. 78

D.1 AXPY, OpenCL kernels uses no local memory as opposed to
the CUDA kernel which does. 106

D.2 AXPY, OpenCL kernels uses local memory, as the CUDA
kernel also does. 107

D.3 AXPY with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. 108

D.4 AXPY with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel
also does. 109

D.5 AYPX, OpenCL kernels uses no local memory as opposed
to the CUDA kernel which does. Partitioning sizes are also
adjusted to suit. Bandwidth utilization is illustrated. 110

VI

D.6 AYPX, OpenCL kernels uses local memory, as the CUDA
kernel also does. Similar partitioning sizes as to the CUDA
kernels are used. Bandwidth utilization is illustrated. 111

D.7 AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. Partitioning sizes are also ad-
justed to suit. Bandwidth utilization is illustrated. 112

D.8 AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel
also does. Similar partitioning sizes as to the CUDA kernels
are used. Bandwidth utilization is illustrated. 113

D.9 DOT; OpenCL vs. CUDA implementation. Bandwidth uti-
lization is illustrated. 114

D.10 DOT with large vector sizes — up to 21 million elements;
OpenCL vs. CUDA implementation. Bandwidth utilization
is illustrated. 115

D.11 SCAL with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. Bandwidth utilization is illustrated.116

VII

List of Tables

3.1 Solver classification, adopted from [7], page 4. 19
3.2 CUKr BLAS object. 31
3.3 CUKR_VECTOR_SP data structure. The data members are

pointers to arrays of scalars (float, double or int). This is
also compatible with CUDA, as the kernels directly accepts
pointers to the arrays where the data is stored on the device. 31

3.4 CUKR_MATRIX_SP data structure 32

5.1 CUKR_VECTOR_SP data structure with new additions for
OpenCL support; cl_mem object pointers for referencing vec-
tors for use with OpenCL added. Note that OpenCL cannot
use ordinary pointers that references arrays on the device,
therefore cl_mem objects are used to store the data. 48

7.1 Maximum achievable theoretical peak performance for the
memory bound BLAS 1 kernels (single and double precision
given here, respectively), in GigaFlop/s. 64

A.1 Intel CPU characteristics . 88
A.2 ATI Radeon HD 4870 characteristics 89
A.3 ATI Radeon HD 5870 characteristics 90
A.4 Nvidia GTX 280 characteristics 91
A.5 Nvidia GTX 480 characteristics 92

C.1 Matrix properties table. The divisions shows the 3 groups
used. From top to bottom; small – medium – large, respec-
tively. The last four matrices are from subsequent structural
problems. CFD is short for Computational Fluid Dynamics.
All matrices are 2D/3D. 104

IX

Acknowledgements

There are quite a few people I have gratitude towards directly related
to this thesis and the fact that I could work on it in Japan. For making it
easier for me coming to Japan and answering a lot of questions for me, I
would like to thank Rune Sætre. His help has been remarkable. He put me
in touch with Serban Georgescu, at that time still at the Okuda Laboratory,
who was very helpful and discussed with me possible areas I could come
and work on. I would also like to thank Serban Georgescu for all the ques-
tions he has answered during my work. That was truly helpful. I would
deeply like to thank Professor Hiroshi Okuda for making this stay possi-
ble by accepting me as a Research Student at his Laboratory, and making
it considerably easier for me to come. I would also like to thank him for
his feedback during our meetings. I owe many thanks to Professor Lasse
Natvig for open-mindedly encouraging me when I suggested such a stay,
and being a good support in form of video meetings and feedback while
at the Okuda Laboratory here in Japan. I would like to thank the members
of the Okuda Laboratory for making my stay pleasant, and for receiving
me in the way they did. Especially I would like to thank Yohei Sato, Tat-
suru Watanabe, Masae Hayashi, Masaaki Suzuki, Yasunori Yusa and Tairo
Kikuchi. Tatsuru Watanabe was of big help for a lot of technical issues,
thanks for that.

Last but not least, I would like to thank my parents Brita Aanes and
Tore Hind Fagerlund, and my sister Silje Aanes Fagerlund. For always
being there.

Chapter 1

Introduction

This thesis originated out of two desired objectives; (1): the wish to take a
look at OpenCL as a high performance parallel programming tool from a
portability aspect, and (2): in the process contribute to a piece of software
called the CUKr (CUDA Krylov), developed by Serban Georgescu [7], at
the Okuda Laboratory at The University of Tokyo, Japan — making the
software able to utilize a broad range of parallel hardware through the use
of the OpenCL runtime and library, and still be portable.

1.1 Thesis problem description

The decided thesis problem description, as of November the 5th 2009, fol-
lows:

With the advent of multi-core processors desktop computers have
become multiprocessors requiring parallel programming to be utilized
efficiently. Efficient and portable parallel programming of future multi-
core processors and GPUs is one of today’s most important challenges
within computer science. Okuda Laboratory at The University of
Tokyo in Japan focuses on solving engineering challenges with paral-
lel machines. A multi-core FEM solver package is under development
within this laboratory that utilizes both standard CPUs and GPUs. This
student project, given by Department of Computer and Information
Science (IDI) at NTNU in cooperation with Okuda Laboratory at The
University of Tokyo, seeks to explore the promising path towards more
platform independent parallel programming given by the OpenCL li-
brary, runtime system and language. The main goals of the project are;

• OpenCL as a multi-core programming tool and its inherent per-
formance and portability properties is of interest. On background

1

of code developed within this project, we wish to explore this
area.

• Some relevant and agreed upon sub-parts of the FEM solver
package will be written/ported to OpenCL. This code will be
used as basis for the performance and portability experiments
needed for the project.

• Experiments with one or several tools used for performance mea-
suring and profiling of OpenCL code. Nvidias performance mea-
suring and profiling tools should be included here.

• If time permits;

– For the study of performance tools as mentioned above; in-
clude one or more from another vendor; Intel, AMD/ATI or
Nvidia.

– Based on the experiments, suggest ways to tune portions of
the OpenCL code for efficient multi-core/GPU execution.

– Study how performance is affected when porting programs
between different platforms.

– Provide estimates for some OpenCL programs as a function
of the number of cores/compute units used.

– Compare the performance of benchmark programs imple-
mented in OpenCL with comparable implementations in
other languages. Such benchmark programs can be sug-
gested both from the Okuda laboratory and Natvigs re-
search group at NTNU.

– Study the interplay of current OpenCL implementations
and the operating systems they run on with respect to per-
formance.

– A focus on debugging tools for OpenCL is of interest.

Okuda Laboratory is expected to facilitate the project with a rele-
vant focus area that will be agreed upon (via a research plan), as well
as infrastructure such as a multi-core/GPU system for the experiments
to the extent it is needed. IDI at NTNU provides an 8-way Intel Xeon
processor system with Nvidia and ATI OpenCL compatible GPUs.

2

1.2 Research plan

The research plan was formed in collaboration with Okuda Laboratory,
and describes in more detail the actual implementation work to be per-
formed at the laboratory, as part of the thesis.

CUDA Krylov (CUKr) is a package created at the Okuda Labora-
tory as part of Serban Georgescu’s PhD thesis [7]. This is defined as
an Accelerated Krylov Solver Interface implementation (AKSI) in the
same thesis. CUKr is, by construction, able to use multiple BLAS li-
braries to accommodate both GPUs and CPUs. When utilizing GPUs,
the CUDA programming language, runtime and library is used in com-
bination with Nvidia hardware.

This research aims to utilize the new OpenCL (language, runtime
and library) technology and its inherit strength with respect to device
independence to target a number of different parallel architectures.
This will result in software with CUKr’s capabilities that in addition
is capable of utilizing all hardware supported by OpenCL implemen-
tations with small or no changes to the source code. Rather than us-
ing multiple BLAS libraries, the software should now have a common
abstraction (codebase/source code) for all architectures. A goal is to
investigate if the common abstraction can reach competitive perfor-
mance on both CPU and GPU devices, compared to other specific im-
plementations targeting a certain device (is this possible with this kind
of memory bound problems?). This project includes porting/rewriting
BLAS1 functions and SPMV, which should allow for different data for-
mats, at least CSR, CSR4, ELL and HYB. 3x3BCSR and 3x3BELL if time
allows.

The OpenCL based software will be constructed for platform porta-
bility (support different OS’). An aim, if time allows, is to make it utilize
several compute devices, and harvest the resources of a heterogeneous
system; specifically, benefit from different types of compute devices. It
should be benchmarked against the CUDA based version. What per-
formance can OpenCL give, and still provide portable parallel code?

1.3 Interpretation of the thesis problem description

When mentioning "OpenCL as a multi-core programming tool and its inherent
performance" it implies that OpenCL means its implementations available
today implementing the 1.0 version of the specification. As OpenCL is
a new technology it is expected that the implementations available today
will improve over time, as with all new technologies of a certain complex-

3

ity. Such improvements will have an effect on the performance seen when
executing the kernels written in the language previously.

GPUs available in the Apple Mac Pro at NTNU is one ATI 4870, as
the model can not house two cards due to power needs (actually lack of
enough power connectors needed by the cards at the PSU). It has later been
found that the ATI 4870 is not a good OpenCL performer, as the card was
designed before the specification work took place and not with OpenCL
directly in mind. However, it is said that careful programming can get the
card perform, something that may make the code less suitable for other
architectures from a performance viewpoint.

1.4 Thesis structure and overview

This first chapter contains the introduction. Following, chapter two con-
tains the background of software technologies and tools. The third chapter
also contains background material; everything that is of relevance for the
implementation work. Chapter four is the last background-chapter, cover-
ing the relevant hardware.

About the implementation itself is covered in chapter five, continuing
with the kernel implementations in chapter six. Chapter seven covers the
results, and chapter eight the conclusions of the work. Finally, chapter
nine looks at further work that would be of interest after the completion
of this thesis work. Appendixes contains hardware specifications, OpenCL
device-information under different implementations, matrix properties, bench-
mark graphs and finally code listings.

4

Chapter 2

Background for software
technologies and tools

This chapter will visit the current state of parallel programming on com-
modity hardware to give an overview. The highlight is on new and im-
portant trends contributing to easier and scalable parallel programming
suitable for high performance computing applications both in science and
mainstream consumer applications - for instance games. OpenCL will, of
course, be covered in more depth as it is of focus in this thesis.

2.1 Multi-core programming state-of-the-art

Shared memory multi-core programming has in the last decade moved to-
wards a trend where the programmer is relived from the details of having
to administrate individual threads. Letting the programmer create and ad-
ministrate threads in-code is an error prone process, and at the same time
makes it more difficult to scale the application as processors with increas-
ingly more cores are introduced to the market. Libraries and runtimes that
do this heavy lifting are the way of the future, and a high-level coverage of
some of the most important in this category is given here. These technolo-
gies handle the low-level threading, so the programmer does not have to.
The trend is that the programmer can rather think in tasks that can be par-
allelized and state this by proper syntax, and leave the low-level job of ad-
ministrating the actual threads needed for the parallelization to the library
and/or runtime. In this approach, of course, the programmer still has to
know what should be parallelized. Administrating threads "by hand" is
not getting easier with increasing number of cores. It is clear that these
newer approaches do not attempt to solve the still standing problem of
having the compiler automatically see all the parallelism itself, without re-
quiring the programmer to express parallelism. But these technologies do
make life considerably easier for the programmer, and will make parallel

5

programming more accessible for the vast majority of programmers as they
have to adjust to the new reality of increasingly more parallel machines. It
is of benefit not only for the lifecycle of the application, by making it more
scalable and future proof, but also for the programmer in regard of ease
of programming. One of the latest attempts in this regard is Apple’s GCD
(Grand Central Dispatch) introduced in OS X 10.6 Snow Leopard in Au-
gust 2009. Intel’s Threading Building Blocks and the latest OpenMP efforts
are other good examples in this category.

The above-mentioned trend is valid for parallel programming of the
CPU. These technologies are used in ordinary programs of the kind that
previously required threads by either utilizing system specific threading
mechanisms or pthreads and alike. However, programming a parallel chip
that is not a CPU (rather any kind of accelerator or a special co-processor),
like a modern GPU (Graphics Processing Unit), DSP (Digital Signal Proces-
sor) or FPGA (Field Programmable Gate Array), requires other approaches
and is usually at a lower level and thus more details to take care of is re-
quired of the programmer. Examples here includes Nvidia’s CUDA (Com-
pute Unified Device Architecture) and OpenCL (Open Compute Library).
These technologies are developed for making programming of such men-
tioned massively parallel modern chip designs easier and much more ac-
cessible than previous. Traditional threading on the CPU is thus very dif-
ferent, it does not deliver the same massively parallel performance that a
modern GPU can. OpenCL is unique in the sense that it also can target
the CPU cores in a system for its computations as well. The CPU is ideal
for task-parallel kernels, while the GPU is ideal for the execution of data-
parallel ones.

A third and older (but still necessary and useful) way of parallel pro-
gramming is with some sort of message passing library. This is useful
when different compute nodes or workstations needs to cooperate to solve
a problem. Modern supercomputers consists of computer nodes connected
together in a high-speed network, to minimize communication costs. It
is traditionally on such computers message passing has been a common
choice. A good example here is the industry embraced MPI (Message Pass-
ing Interface) standard. A quite popular implementation in widespread
use is OpenMPI. Such technologies are useful for spreading out work to
the nodes, who themselves of course can be highly parallel heterogeneous
systems. Each machine solves their subpart, and may be utilizing one of
the other two above-mentioned paradigms - some sort of a threading li-
brary or OpenCL / CUDA. When the assigned task is done the node re-
turns the result to a root node. Modern MPI implementations also work
solely on shared memory machines, in which case each CPU core in this
one machine is a "node" (and the communication done, in this case, does
not enter a network at all). A good example of a project utilizing OpenMPI,
OpenGL and OpenCL is the "Hybrid Parallel Gas Dynamics Code" ("HYP-

6

GAD") project 1. This is the implementation of a solver for compressible
gas dynamics.

To sum it up, the three popular parallel programming categories of im-
portance today:

• Technologies to program and utilize massively parallel chips. Ex-
amples include Nvidias CUDA and the widely industry-embraced
OpenCL standard.

• A library/technology relieving the programmer of tedious and er-
ror prone thread management, making parallel programming easier.
Examples include Apple’s GCD, Intel’s TBB and OpenMP 3.0.

• Message passing libraries for distributing work to networked nodes,
such as the MPI standard and its many implementations that exist.
As pure shared memory parallel programming is of focus in this the-
sis, this category will not be covered.

A short overview of OpenMP, Intel Threading Building Blocks and Ap-
ple Grand Central Dispatch follows. This should explain at a high level
what they offer and their differences.

2.1.1 OpenMP

OpenMP is a standard for multi-platform shared-memory parallel pro-
gramming, supported by a wide range of platforms. It is used on shared
memory systems of different scales, also single socket multicore systems.
The specification of version 3.0 can be found at the URL given in [3]. As ex-
plained in the specification, OpenMP consists of compiler directives (prag-
mas), library routines, and environment variables. These are used in com-
bination to specify shared-memory parallelism. The compiler directives
adds single program multiple data (SPMD), work-sharing, tasking and
synchronization constructs. In relation to the memory model used by OpenMP
they give support for sharing (among threads) and privatizing (private for
a thread) data. Library routines and environment variables gives the pro-
grammer the functionality to manage the runtime environment. The com-
mon scenario when programming in OpenMP is that a compute intensive
loop is parallelized by the use of pragmas. When this code runs the main
thread is forked into a number of threads (number of threads can be de-
cided at runtime), and different portions of the loop is mapped to differ-
ent cores running each of their own thread. When the compute intensive

1Please see the project page at http://hypgad.sourceforge.net. At Supercomputing 2009
this project was demonstrated with computation tasks being distributed to nodes consist-
ing of different hardware (Intel Nehalem, IBM CELL, AMD Opteron and Nvidia GPU
node). At each node the processing was done with the exact same OpenCL kernel, illus-
trating the portable advantage and flexibility OpenCL can give.

7

parallel region is complete, the threads join and the program continues as
a ordinary sequential one. With OpenMP the forked threads can them-
selves again be forked, thus support more than one level of parallelism —
also called nested parallelism. Nested parallelism was introduced with the
NESL parallel programming language [2] in 1993.

With OpenMP 3.0 a higher level of abstraction was introduced, a task.
Tasks allows a wider range of applications to be parallelized. The task is
a piece of code that can be executed independently of other tasks. It is
the programmers responsibility to make sure of this. The OpenMP run-
time will schedule the defined tasks in parallel. OpenMP 3.0 support will
be found in all major compilers in the near future, and is today fully sup-
ported by Sun Microsystems in their Sun Studio programming environ-
ment.

OpenMP gives the programmer the tools to write scalable and portable
parallel programs. The programmer explicitly specifies the parallelism,
through the compiler directives and library routines (thus telling actions to
be taken by the compiler and runtime system so the program is executed
correctly in parallel). OpenMP does not provide any automatic paralleliza-
tion — it is all up to the programmer. Neither does OpenMP check for
deadlocks, data conflicts, race conditions or data dependencies. As a con-
clusion; OpenMP can give portability and flexibility. It is widespread and
popular, and will continue to evolve. The latest specification introduces
modern features for easier parallel programming.

2.1.2 Intel Threading Building Blocks (TBB)

Intel TBB is a portable C++ library for multi-core programming. It can be
used with Windows, Linux, OS X and other Unix systems. As it is only a li-
brary that is used with standard C++ code, no special compiler or language
is required. It is a platform independent abstraction above the thread level
that lets tasks to be defined and scheduled by a runtime that ensures good
load balancing of these tasks. This makes TBB and OpenMP 3.0 somewhat
similar in capability. Though, TBB’s focus is purely on tasks, blocks of code
that are run in parallel. TBB is, arguably, simpler to use for a program-
mer coming from the "sequential world" than OpenMP. Templates are used
for common parallel iteration patterns, so programmers do not have to be
highly skilled in synchronization, cache optimization or load balancing to
get good performance. The programs written with TBB are scalable, and
runs on systems with a single processor core or more. The tasks specified
with TBB are mapped onto threads running on the cores. This is done ef-
ficiently by a runtime, either if you run on, say, two or twelve cores. This
is much more efficient if you want a scalable parallel program, than us-
ing native threads or a threading library. The runtime has "work-stealing"
capability, resulting in a more balanced execution of the task where less

8

busy cores can "steal" tasks originally give another core, that might be over-
worked at the moment. This can be the result of uneven scheduling seen
from a system wide perspective. TBB thus compensates for this resulting
in faster completion of the TBB based program. The MIT Cilk [1] system
first introduced "work-stealing" capabilities. Another important property
of TBB is the support of nested parallelism, also found in OpenMP. As a
comparison with OpenMP; TBB is a infrastructure simpler for the average
C++ programmer to utilize. It is used with success both within consumer
applications and game engines relying on good and portable performance.
As it is a C++ library, it is designed to be easily adopted by C++ program-
mers.

2.1.3 Apple Grand Central Dispatch (GCD)

GCD is similar to the two above-mentioned technologies in that the use
of threads is abstracted away from the programmer. It introduces new
language features and runtime libraries to provide support for parallel ex-
ecution on multicore processors under OS X 10.6. The library providing
the runtime services (libdispatch) is open source, and a port exists for
FreeBSD. The GCD runtime works at the BSD-level of the OS X operating
system, running above pthreads. GCD eases the programming of task-
parallel applications. Under the hood there is a dynamic pool of threads
executing the blocks of code handed over to GCD by the programmer. The
blocks, or tasks, are queued by the programmer and routed. Here one can
imagine parallel train-tracks, where train cars are routed to the appropriate
tracks with the least amount of traffic (load). In a sense, this is analogous
to packet routing on the internet — not one hardwired route is set up and
always used. Where the packet goes is chosen dynamically (in GCD by
the GCD runtime). Once a programmer has to deal with 4 threads or more
things will easily get too complex. GCD tackles this problem. GCD signifi-
cantly eases programming of multi-core processors, in a scalable fashion. It
is easy to show that much less code is needed do multi-core programming
with GCD than traditional threads. GCD is a software layer preparing for
the future of multi-core processors, and among the new tools made avail-
able to tackle the multi-core era much more elegantly than what has been
possible with traditional threads.

2.2 OpenCL

OpenCL is an open standard originally emerging from Apple Inc., who
handed it over to the Khronos group as a suggestion to the industry sum-
mer of 2008. The OpenCL 1.0 specification was ratified in December 2008.
The Khronos group is a non-profit organization with the goal to maintain a

9

variety of different open standards related to graphics, performance com-
puting, and data exchange — with members from the industry contribut-
ing and agreeing upon the standards. All to benefit the industry, acknowl-
edging the importance of such open standards. These standards then ben-
efit the software developers, making the software they create a better and
more future-proof investment. This is important, to secure freedom of the
developer one should not have to be dependent on a certain company.
OpenCL is a runtime-system, API and programming language enabling
programmers to write data- and task-parallel programs that can target dif-
ferent kinds of processors; CPUs, GPUs and DSPs. The peculiarities of the
underlying hardware is abstracted away from the programmer, who only
needs relate to the API to get the work done. This is regardless of proces-
sor kind being targeted for execution. At the same time the programming
is at a low enough level to give the programmer power and control, such
as the possibility to optimize for speed depending on the processor kind
being targeted (i.e. optimize memory transfers and problem partitioning).
It is important to note that the OpenCL 1.0 specification [12] specifies the
OpenCL API a programmer can use, and what OpenCL implementations
must comply to in order to be OpenCL 1.0 compatible (a good example is
IEEE754 based compliance). It does not specify how a working OpenCL
implementation in itself is to be implemented, and how it should map ker-
nels to different architectures. The bibliography in the OpenCL 1.0 draft
specification [9], however, shows the sources the creators of the draft spec-
ification used as inspiration.

2.2.1 Inspiration from the computer graphics scene

With OpenCL the parallel programming environment has been inspired
by the computer graphics scene2. OpenCL brings novel techniques that has
been well developed in the computer graphics scene related to compilation
and targeting for a specific device. Computer graphics hardware and the
diversity in unique hardware implementations available has forced the use
of fast Just-In-Time (JIT) compilers integrated into the graphics card drivers
and runtime. The exact same philosophy is brought over to OpenCL im-
plementations, to enable the massive support on different hardware. As
expressed by Timothy G. Mattson, author of the book "Patterns for Paral-
lel Programming" and employee at Intel working with parallel technology;
the computer graphics-stack engineers had "a thing or two" to learn the

2In fact, the initial persons behind the draft specification had roots from computer
graphics work (i.e. previously employed by ATI, or working with graphics driver or gen-
eral graphics programming at Apple). Rumors has it IBM thought the OpenCL specifi-
cation included to many ties to graphics (as in, amongst others, image objects as possible
memory objects), and uttered opinions related to this during the standardization work pro-
cess.

10

parallel software tool-chain developers. An OpenCL compute kernel is just
pure source code before the program setting it up is executed. As analogy,
this is exactly the same for a shader used with OpenGL. Both the OpenGL
shader and the OpenCL kernel are compiled for the targeted architecture
on the fly during program execution. This is done in this way because of
the variety of hardware it should be able to run on. It is not known before
program execution what kind of chip the kernel or shader will run on. Set-
ting up a OpenGL shader the programmer has to go through certain steps,
very similar to the approach taken when setting up a OpenCL kernel for
execution; The shader must be loaded, compiled and linked, from the main
program. Also, the vertex buffer objects that holds the shapes must be set
up, and the variables to be passed into the shader. One can here switch
the word "shader" with "kernel" to get something that almost completely
describes the process of setting up a OpenCL kernel for execution. The
only difference is that the memory object you operate on might not only be
constrained to a vertex buffer object, as OpenCL can do much more than
just processing graphics. OpenCL brings along advanced and smart use
of a runtime and compiler, inspired by the way it has been done in the
computer graphics stack for almost a decade or so, to the world of parallel
computing.

2.2.2 Execution

A program utilizing OpenCL starts life as an ordinary program executing
on the CPU, and includes OpenCL header files to gain access to the Plat-
form and Runtime API. The Platform API is used to set up and prepare
devices for execution by creating compute contexts, as explained in [12].
Kernel source programmed in the OpenCL programming language is built
as executables for the target devices during main program execution (host
program running on the CPU), and thereby executed on the selected de-
vices. For this part the Runtime API calls are used, and the compilation of
the kernel by an OpenCL runtime compiler. An overview of this sequence
is shown in figure 2.1. In most implementations the OpenCL source code
is first compiled into an intermediate representation which is device inde-
pendent. This intermediate code is optimized as much as possible, before
the final code for the selected device is generated by the device’s code gen-
erator (as part of the device’s OpenCL driver/runtime infrastructure).

2.2.3 The Low Level Virtual Machine (LLVM) Compiler Infras-
tructure

The way OpenCL is specified to work requires the use of a just-in-time
(JIT) compiler that can target a given architecture. Most, if not all, OpenCL
implementations released to this date makes us of a JIT compiler devel-

11

main.c

C code

OpenCL Platform + Runtime API

kernel.cl

OpenCL code

CPU CPU CPU CPU GPU GPU

C compiler

OpenCL runtime
compiler

Execution

4. Input and output data locations (pointers), and

corresponding types, are set up right before kernel

execution - making sure the kernel running on the

device(s) gets its data and knows where to store

results. Then, the memory object containing correct

executable(s), according to OpenCL context, is handed

over to the OpenCL runtime and thereby executed on

device(s).

1. Execution of main.c program.

OpenCL header files are included

so OpenCL platform- and

runtime-calls can be made.

2. Pure OpenCL source-code is loaded

from file into memory by the main.c

program under execution.

3. The OpenCL source code is

built into an executable for target

device(s) attached to the OpenCL

context, and stored in a memory object.

Figure 2.1: An application under execution builds and initiates an OpenCL
kernel, which is thereby executed on a selection of devices.

oped with the LLVM open source project. LLVM is a compilation strategy,
a virtual instruction set and a compiler infrastructure. It enables the con-
struction of highly efficient JIT compilers, and also traditional static com-
pilers. It is a modern and new compiler infrastructure. JIT compilers have
become more and more demanded the last decade or two (both for general
code targeting the CPU, and in the graphics pipeline for compilation of
shaders that will run on a GPU). For an account of the ideas behind LLVM
please see [14] and [13].

2.2.4 GPU execution

The JIT compiler targets the GPU when it is selected as a compute device
with OpenCL. At kernel launch, the memory object containing the exe-
cutable, the compiled kernel, is uploaded to the GPU itself. Data it works
upon is by this time already in place in the device’ global memory. Execu-
tion starts.

Due to the massively parallelism found in modern GPUs, data-parallel
execution of kernels is ideal. GPUs are massive data-parallel handling-
devices, well suited for performing the same tasks on large amounts of
data in parallel. GPUs are not suitable of task-parallelism, as compute units
must follow the same uniform operation.

Each compute unit of the GPU are assigned work-groups for execu-
tion. All the compute units process work-groups simultaneously until all
the work-groups are processed. The exact same kernel is executed for each
work-item, the data operated upon differ. The data-parallel execution per-

12

formance by far exceeds that of the current day CPU.

2.2.5 CPU execution

When the CPU is targeted the kernel is compiled for the CPU, where it is
executed. The CPU is ideal as a main target for task-parallel execution un-
der OpenCL. Single work-item performance is much higher on the CPU
than the GPU due to higher clock-speeds and more powerful individual
cores found in the CPU. The share number of concurrent threads or inde-
pendent compute cores (compute-units consists of many of these) in the
GPU makes it better for data-parallel execution, although each compute
core is weaker. For CPU execution command queues can be used to build
a dependency graph, containing information about the kernel dependen-
cies. This enables advanced control, and the possibility of using one ker-
nels output as input to another kernel. Under the task-parallel model dif-
ferent compute units of the CPU (CPU cores) can run different compute
kernels simultaneously.

Also data-parallel execution can be done on the CPU. Each core will
get work-groups assigned for processing, and executes each work-item in
succession until the work-group is done. For every work-item being pro-
cessed the instructions will then be the same (unless there is some branch-
ing taking place), but the data worked upon differs. At completion the
next work-group in line is assigned to the core. All cores work in this
manner until all work-groups of the problem domain are completed. If
optimal; the compute kernel is running in loop on the cores while being
feed with the right data for each work-item. This continues until all the
data of the domain is processed (i.e. all work-groups are processed). Obvi-
ously, this takes longer (in most practical cases) than if the execution was
done on a GPU which can execute hundreds of kernel-instances simulta-
neously(threads following the kernel instructions), and thus complete the
work-groups much faster because of the share parallel throughput offered
by the GPU.

For data-parallel execution it shows most optimal to let the number of
work-grups equal the number of physical cores (or logical cores when this
is available) available, and each have the size of one work-item. This is intu-
itive, as it is then known that the runtime will not make many instances of
the data-parallel kernel run in succession on each core, giving some over-
head. Rather each core runs its instance of the kernel until the complete
task is done. As implementations improve over time this might be opti-
mized by the runtime/compiler so it works in this manner even though
each work-group contains many work-items. Task-parallel executions runs
independent kernels, each set up by a domain of one work-grup containing
one work-item. These are assigned to the CPU cores available.

13

2.2.6 The memory hierarchy

The memory hierarchy of OpenCL is seen in figure 2.2. The main entity
seen here is the compute device, which represents a GPU, a CPU, a DSP
(Digital Signal Processor), or any other kind of OpenCL capable chip. The
compute device memory is typically this device’s off-chip dedicated mem-
ory. In OpenCL this is mapped to the Global memory pool — a memory
accessible to all compute units of the chip. The Global memory is the larges
memory available, and also the slowest. Before a computation commence
the necessary data is stored here, where it is reachable from the compute
kernel. The compute units are cores or collections of computational ele-
ments inside the compute device chip itself. A modern graphics card has
several of these compute units (the ATI 4870 has 10), each capable of run-
ning several hundreds of threads simultaneously. When mapped to the
CPU the compute unit is a CPU core that may be able to execute two
threads at once (via Intels HyperThreading or similar techniques). Such
a core can thus only execute at most two threads concurrently. We say it
has a max work-group size of 2 work-items. In comparison the ATI 4870
has a max work-group size of 1024 work-items. Each compute unit has
access to a local memory, which is shared among all of its work-items (its
work-group). This memory is an order of magnitude faster than the global
memory, as it resides on-chip. Furthest down in the memory hierarchy is
the private memory; private to each work-item. No other work-item can
access this. It has the speed comparable to registers. Thus, the fastest mem-
ory work-items in the same work-group share is the local memory. There is
no similar and equally fast way for work-groups to share data with each-
other. While programming an OpenCL data-parallel kernel one keeps in
mind that the kernel is ran as an instance by each work-item. The kernel
defines how each work-item behaves as a piece of the whole, and how it
interacts in relation to the memory hierarchy. So, the contribution of all the
executed kernel instances gives the final result.

2.2.7 OpenCL CPU support status

ATIs (AMD) Stream SDK 2.0, as of November 5th 2009, supports target-
ing all x86 SSE (SIMD Streaming Extensions) 3.x CPUs. Wether from Intel
or AMD. SIMD (Single Instruction Multiple Data) instructions are imple-
mented in most modern CPUs, and allows for the same mathematical op-
erations to be performed on a series of data in parallel. For example, mul-
tiplying four float values with another value in one instruction. The ATI
Stream SDK also supports all ATI graphics cards from the Radeon HD 4350
and upwards. This OpenCL implementation is certified by The Khronos
group at the time, November 5th 2009. It was the first OpenCL SDK avail-
able for multiple platforms that both supported targeting CPUs and GPUs,

14

Figure 2.2: The OpenCL Memory Hierarchy adopted from [12]. A compute
device has N compute units, and each compute unit handles M work-items
(or threads).

enabling easy utilization of that interesting aspect of OpenCL. As Nvidia
is not a producer of CPUs, their SDK does not, as of February 1st 2010,
support targeting CPUs. The Apple OpenCL implementation runs on both
Intel Nehalem CPUs and older Intel Core based CPUs (Core and Core 2),
both CPUs found in all of their recent machines.

2.3 Cmake build system for platform independent builds

CUKr uses cmake to help build the CUKr library. Cmake is a system for
generating build files for a specific platform, from cmake configuration
files and cmake modules. As it works on many platforms, this signifi-
cantly aids platform-independent software projects. With CUKr and the

15

new OpenCL support part of the library in mind, cmake will find both
OpenCL libraries and header files, either building on a Linux machine or a
Mac.

16

Chapter 3

Background for the
implementation

This chapter will provide the background material for everything relevant
for the implementation itself, explaining key concepts and ideas the imple-
mentation depends upon. The implementation is at the data-structure and
BLAS level, the latter is where vital functions used by the CUKr Krylov
solvers are implemented. Thus, none of the Krylov solvers themselves are
extended or coded, but critical parts they depends upon. Therefore, we will
start by a high level explanation of what the Krylov solvers are and why
they are important in this domain of applications; FEM (Finite Element
Method) and CFD (Computational Fluid Dynamics) kinds of problems.
Krylov solvers are not the main focus of this thesis, but an area that can
benefit of the implementations to be done at the BLAS level of the CUKr
library. For a more detailed explanation about solvers and Krylov solvers,
please see Chapter 1 and 2 of [7], which is one of the sources for this back-
ground material. As the matrix-vector and vector-vector operations further
covered here (BLAS functions) are important for a wide range of engineer-
ing problems, providing efficient implementations utilizing OpenCL has a
wide area of appliance, extending beyond Krylov solvers. And, as OpenCL
is platform independent, open and supports parallel hardware, the imple-
mentations are highly future-proof.

3.1 Solvers

A solver is a machine implementation of a method used to arrive at a solu-
tion for a system of equations. There exists different kinds of solvers, each
with their benefits and limitations. Depending on the domain, or kind of
problem, the matrices can dense, or sparse. In sparse matrices most of the val-
ues are zeros (often more than 99% - 99.9%), and the rest are non-zeroes.
The order of the matrices can be in the order of millions. This amounts to a

17

large amount of data. Data formats to store these in an efficient manner will
be looked upon in a following section of this chapter (Data formats of rele-
vance for use with SpMV). The use of these formats are vital to achieve per-
formance when working with sparse matrices. The sparse matrices arise in
areas such as computational fluid dynamics and structural analysis. Here,
only the local interactions are of interest, which is the direct cause of the
sparsity seen in the matrices. Dense matrices contains a small number of
zero elements, and as no compression is a practical requirement they are
easier to work with.

Solvers exists in two different kinds; direct and iterative solvers. The di-
rect solvers produces exact solutions, but can be too time consuming when
the order of the matrix is large enough — even impossible to use by the
fastest computers available. They solve the system in an algebraic manner,
by the use of substitution. Because of the restraints, iterative solvers are of
interest in many cases, especially when an approximate solution is good
enough (the approximation can be quite good so this is quite often true).
For large and sparse matrices are iterative solvers much used. As they find
an approximation through iterations, the answer keeps improving. It is an
optimization approach. At one point the solution is judged good enough,
the measure of error is acceptable (the residual).

An overview of the most popular solvers and their classifications can
be seen in table 3.1.

3.2 Krylov solvers

Krylov subspace solvers are iterative solvers that are used with sparse ma-
trices, as reflected in table 3.1. They are much used with large systems
of linear equations. They work with matrices solely utilizing the matrix-
vector product. So, the matrix is not affected, which other solvers can do
by incurring something called fill-in; previous zero elements are turned
into non-zeros, thus affecting the result. They are preferred because of the
small memory foot-print, required computations, and the ability to han-
dle unstructured problems. There exists several Krylov solvers, amongst
others Generalized Minimal Residual Method (GEMRES)[19] and Conjugate
Gradients (CG)[8]. These two are the most used ones. Both of these are
part of the CUKr library. The time it takes to find an acceptable solution,
convergence, is improved by the use of a preconditioner. This is often in the
form of a direct solver. The performance of Krylov solvers is often limited
by the memory bottleneck, as will be touched upon later. All kernels used
by Krylov solvers are memory-bound. The most important ones includes
SpMV, AXPY, AYPX and DOT, which we will visit shortly. When the CG
Krylov solver is running, most of the time is spent in the SpMV kernel.
This underlines the importance of a fast SpMV routine, as it greatly affects

18

D
en

se
m

at
ri

ce
s

Sp
ar

se
m

at
ri

ce
s

D
ir

ec
ts

ol
ve

rs
G
a
u
s
s
i
a
n
e
l
i
m
i
n
a
t
i
o
n

F
r
o
n
t
a
l

G
a
u
s
s
-
J
o
r
d
a
n
e
l
i
m
i
n
a
t
i
o
n

M
u
l
t
i
f
r
o
n
t
a
l

L
U

d
e
c
o
m
p
o
s
i
t
i
o
n

S
u
p
e
r
n
o
d
a
l

It
er

at
iv

e
so

lv
er

s
P
r
e
c
o
n
d
i
t
i
o
n
e
d

J
a
c
o
b
i

i
t
e
r
a
t
i
v
e
s
o
l
v
e
r
s

G
a
u
s
s
-
S
e
i
d
e
l

S
O
R
,

S
S
O
R

K
r
y
l
o
v

s
o
l
v
e
r
s

(
p
r
e
c
o
n
d
i
t
i
o
n
e
d
)

M
G
,

A
M
G

Ta
bl

e
3.

1:
So

lv
er

cl
as

si
fic

at
io

n,
ad

op
te

d
fr

om
[7

],
pa

ge
4.

19

the overall efficiency of the solver.

3.3 Important compute kernels for the Cg Krylov solver

Both AXPY and DOT are part of the BLAS level 1 functions, which consists
of vector-vector operations, and no matrix-vector operations. The SpMV is
part of BLAS level 2, which is containing matrix-vector operations.

3.3.1 AXPY

AXPY is defined by the function y ← α ∗ x + y. The values of vector
x are multiplied with the scalar α, and then the values of corresponding
elements in vector y are added. The result is written to vector y, replacing
the old element values. The two vectors are of size n. The ratio between
computation and io (double precision) for this operation is 2 flop / (3 x 8
Bytes).

3.3.2 AYPX

AYPX is similar to AXPY. Here vector x and y have taken the others place
in the calculation. It is defined by the function y ← α ∗ y + x. The values
of vector y are multiplied with the scalar α, and then the values of corre-
sponding elements in vector x are added. The result is written to vector y,
replacing the old element values. The two vectors are of size n. The ratio
between computation and io (double precision) for this operation is 2 flop /
(3 x 8 Bytes).

3.3.3 DOT

DOT is defined by res = ∑ x ∗ y. The corresponding elements in the two
vectors of size n are multiplied with each other. Then all the resulting val-
ues are added together and stored in res. The result of the operation is thus
one scalar value. The ratio between computation and io (double precision)
for this operation is 2 flop / (2 x 8 Byte).

3.3.4 SCAL

SCAL is defined by y ← α ∗ y. Every element of the vector y of size n are
multiplied with a scalar value α. Then all the resulting values are added
together and stored in res. The result is written back to vector y. The ratio
between computation and io (double precision) for this operation is 1 flop /
(2 x 8 Byte).

20

3.3.5 SpMV

SpMV is defined by y← α ∗ A ∗ x + β ∗ y. Here y and x are vectors of size
n. A is a n × n symmetric matrix, supplied in packed form as explained
in the next two sub-chapters. α and β are scalars. As we will see later,
performance on a given architecture is highly dependent on the format of
A — the data-structure. The ratio between computation and io depends on
the data-structure used and the parameters of the matrix, such as number
of non-zeroes and dimensions of the matrix.

3.4 Sparse Matrix Vector Multiplication (SpMV) on
GPUs

Untuned Sparse Matrix-Vector Multiplication (SpMV) implementations has
historically not performed much more than 10% of system peak perfor-
mance on cache-based superscalar microprocessors, as accounted for in
Chapter 1 and 2 of [21]. It is a highly important computational kernel
for use in many fields within engineering, and is defined as part of the
BLAS level 2 specification. The limited performance is in great part due
to the memory bottle-neck found in computers. It depends on streaming
data to the kernel — data that is hardly reused afterwards. This becomes
a limiting factor because the algorithm is highly data intensive. So, as
means of improving the situation the matrices are stored in formats having
less of a memory footprint. Formats that optimize performance and min-
imize memory usage [7]. The fact that sparse matrices contains mostly 0-
elements is exploited; these formats only stores the non-zero elements and
the indexing information needed for each of those. With potentially mil-
lions of elements in a matrix this has a big impact on the memory usage. A
good example of such a storage format is the Compressed sparse row storage
format (CSR). However, the problem of data intensity still prevails. Storing
the indexing information does not help in that regard, but is of course vi-
tal for the kernel and much better than the alternative in terms of memory
footprint. The format should also suit the architecture that is to execute the
kernel. When optimizing for speed this is also of utmost importance, not
just taking care of the memory footprint alone. Therefore, even if OpenCL
is used for the implementation, the format should suit whatever processor
that is being targeted. It is obvious and anticipated that the same format
will not be the best performer on both architecture-types found in CPUs
and GPUs - architectures with big fundamental differences.

As a conclusion; for running SpMV on GPUs the obvious strategy would
be to look at ways that can enable a decrease in data intensity, and at the
same time arrange the data in a manner suiting the architecture of the chip
(is it a vector processor, or a scalar processor — and so on). This is also

21

applicable to CPUs. If it is possible to exchange communication with com-
putation on the GPU, to keep it busy and hiding the latency, this should
be investigated. Secondly, by looking at blocking formats it should be pos-
sible to achieve another speed increase. This is shown in previous works;
amongst others in [4].

3.5 Data formats of relevance for use with SpMV

In this chapter the layout of the matrix data formats to be used with the
SpMV kernel is explained. All figures are adopted from [21], which also
describes all formats, except the block version of the ELLPACK/ITPACK
format (BELL).

3.5.1 Compressed sparse vector format (CSV)

x

k

k

val

ind

Figure 3.1: Compressed sparse vector layout.

A sparse vector consists of non-zero elements. In the compressed sparse
vector format they are stored contiguously in an array. We call this array
val. Further, the integer index for each non-zero is also needed, so that the
whole original vector can be described. This is stored in the array ind. The
layout of the Compressed sparse vector format is illustrated in figure 3.1.

3.5.2 Compressed sparse row storage format (CSR)

Here each row is stored as a compressed sparse vector. Three arrays are
used. val stores the sparse row vector values, and ind stores the integer
index, as in the compressed sparse vector format. In addition the third
array ptr contains pointers to the first non-zero element of each row, in-
dicating where each sparse vector begins in the ind and val arrays. The
last element of ptr is equal to the number of non-zeroes. The layout of the
Compressed sparse row format is illustrated in figure 3.2.

22

A k

k

m+1

val

ind

ptr

Figure 3.2: Compressed sparse row layout.

3.5.3 Block compressed sparse row storage format (BCSR)

A

val

ind

ptr

r*K*c

K

M = ceil(m/r)

A

val

ind

ptr

r*K*c

K

M = ceil(m/r)

Figure 3.3: BCSR layout.

The layout of the Block compressed sparse row format is illustrated in
figure 3.3. Block compressed sparse row storage (BCSR) is a further im-
provement of the CSR format. Here dense r × c sub-blocks contains the
non-zeroes. In the CSR format they were stored individually. In BCSR a
CSR matrix is, as described in [4], statically divided into

(m
r

)
×

(n
c

)
sub-

blocks. These blocs are explicitly padded with zeroes as needed. In figure
3.3 the non-zeroes are indicated with black dots. Now, each block is stored
in sequence, beginning with the upper left block, in the array val. The
figure shows 6 blocks, which corresponds to the value of K. The array ind

contains the column index of every (0, 0) element of each block. The ar-
ray ptr contains the offset for the first block in a given block row, where
first element contains offset for first block row and so on. Figure 3.3 shows

23

two different blockings, both with origin from the same matrix A. As [21]
explains, blockings are not unique.

3X3 BCSR

Figure 3.3 illustrates a 3× 2 BCSR. A 3× 3 BCSR would simply be to use
3× 3 blocks instead.

3.5.4 ELLPACK

The ELLPACK format is described in [21], as the other formats above. Fig-
ure 3.4 illustrates the format. The structure of it is quite straight forward.
Two arrays are used, val and ind. The arrays have the same dimensions, m
x s. Here m is the number of elements in the original matrix in the vertical
direction, and s is the maximum number of elements in any row. Now each
non-zero at the matrix in a row i is stored consecutively in val, also at row
i. Are there less than s non-zeros in any row, the rest of the row is filled
with zero values. This is also done in the ind array, which holds the index
position of each value val[i, j] in the corresponding ind[i, j] location. The
optimal case from a flops and data movement perspective is when each
row has a number of elements close to s.

3.5.5 Block ELLPACK storage format (BELL)

A

m

val ind

s s

Figure 3.4: ELLPACK/ITPACK layout.

This is an further improvement of the ELLPACK format, which orig-
inally was developed to suit vector processors. As explained in [4], a
blocked version adds the advantages of the dense subblock storage found
in BCSR contributing to reduced index-data size. All while still being in a
format suitable for a vector processor, something [20] argues the modern
GPU can be looked upon as. The BELL format is not described in [21]. The
format is introduced in [4], which is the source for the description in this
text.

24

The steps taken to transform a matrix into the BELL format is illus-
trated in figure 3.5. Say we have an input matrix A. Organizing this into
dense subblocks of size r× c gives us matrix A’. Then A’ is reordered in a
descending order in respect to the number of blocks per row, which gives
us A”. At the final step shown in the figure, the rows of A” is partitioned
into m

R non-overlapping submatrices. Each such matrix is of size R × n
c .

Now the sub-matrix is stored in a r× c blocked ELLPACK format, or in the
ELLPACK format described above.

X X

X

X

X

XX

X X

XX

X X

X

X

X

X

X

X X

X

c

r

m

n

Blocking

X X

X

X

X

X X

XX

XX

X X

X

X X

X

X

X

X

X

Reordering

R

R

X X

X

X

X

X X

XX

X X

X

X X

X

XX

X

X

X

X

Partitioning

Figure 3.5: Blocked ELLPACK steps. Figure adopted from [4].

3X3 BELL

Figure 3.5 illustrates a 2× 2 blocked ELLPACK. A 3× 3 blocked ELLPACK
would simply be to use 3× 3 blocks instead.

3.5.6 Hybrid (HYB)

The hybrid format is a combination of the ELL and CSR formats. It is illus-
trated in figure 3.6. It is a custom format developed for the original CUKr
implementation. Here ELL is used to store the regular parts, and CSR is
added to take care of the few overshooting rows. This results in a format
suitable for the GPU, as it is arguably a vector processor with SIMD(Single
Instruction Multiple Data) processing, that still can take care of the irregu-
larities by also utilizing CSR.

25

ELLPACK CSR

Figure 3.6: The HYB format. Figure adopted from [7].

3.6 The CUDA Krylov (CUKr) software version 1.0

In [7] the CUKr library is described as a prototype AKSI (Accellerated Krylov
Solver interface) implementation. An overview of the software components
and their relations can be seen in figure 3.8. CUKr is a library for writing
Krylov solvers. It contains the building blocks required by these solvers,
and supports execution on both CPUs and Nvidia GPUs through CUDA.
The Krylov iterative solver is, as stated in the CUKr User’s Guide ([6]),
popular for the use in the field of finite element computation. It is also
used in other areas where the matrix of the system to be solved is of such
size that direct methods (which gives a precise solution) do not work. Iter-
ative solvers can give good enough solutions with less computational work
than in direct solvers. Krylov solvers on the computer are based on sparse-
matrix vector multiplications (SpMV), dot products and vector updates [6].
All of these are to a high degree memory bounded. The actual computa-
tions needed to be done takes much shorter time than bringing the needed
data from memory to the processor. One can say the nature of the sub-
problems do not fit ideally with the actual ratio of computation to commu-
nication that is the ideal for these systems in order to utilize the processing
power of the processor best. This is the reason why Krylov solvers on the
CPU have a difficulty, reaching 10% system peak can be a challenge. GPUs
are known for much higher bandwidth than current generation CPUs, an
order of magnitude. This is why running the Krylov solver on a GPU is of
high interest — and thus the goal for the CUKr library. The library makes
it easy to construct a Krylov solver for use on the GPU, without any knowl-
edge of GPU programming, or the construction of the parts needed for the
Krylov solver, such as SpMV.

26

A good point stated in [6] is that researchers today within a given field
that requires high performance computing are usually stopped by the lack
of easy to use software or libraries. This is especially true for GPU comput-
ing, which is still in its infancy when it comes to application support and
ease of use. Although they can easily have the budget to build a system
that a few years ago were considered a supercomputer, for which to run
their computations on, the needed software is missing or overly hard for
them to develop.

CUKr is a scalable framework, and solvers written using the library
can remain unchanged either if its used on one or multiple nodes. On each
node it can utilize one or more GPUs or cores on CPUs, or a combina-
tion of the two. Any desired combination of data formats, BLAS libraries
(BLAS routines that target certain hardware / uses a certain BLAS imple-
mentation) and precisions can be used. The precisions supported are sin-
gle, quasi double and double. In quasi double mode two single precision
values (floats) are used to store a double, here the mantissa is represented
with 48 bits while a double does this with 53 bits, hence the term quasi, as
described in [6]. This can be used to get higher precision on hardware that
only supports single precision, such as older architectures.

Still, most commodity hardware available today runs much faster in
single than double precision. Single precision ALUs are cheaper from a
transistor perspective than double ones, and are thus outnumbering ALUs
capable of doing double precision operations. This makes single preci-
sion operations faster (higher throughput). And, as especially true in these
kinds of problems that are memory bound, faster because 50% less data
needs to be used, also implying more data fits in cache. In computer graph-
ics single precision is enough, but for scientific computing double precision
is preferred. One can use mixed-precision and quasi-double arithmetic, or only
one of them, to get a decent level of accuracy. The mixed-precision technique
has to be applied with care at the right places, in order to give a good result
(i.e. the effect of the usage is as wanted).

Mixed-precision uses the fact that in some cases most parts of the iter-
ative loops can be done in a lower precision, without affecting the result.
The parts sensitive for the final result and its accuracy are run in double
precision. The result will be as if the higher precision was used all along
in the computation. The use of mixed-precision in a Krylov solver can be
implemented as iterative-refinement. Here, a high-precision correction loop
runs outside a lower-precision solver.

Both quasi-double arithmetic, used to provide quasi double accuracy on
single precision hardware, and mixed-precision, used to speed up the com-
putation without considerable loss in precision, are supported in the CUKr
library.

27

3.6.1 The structure of CUKr

In [7] the requirements of an AKSI implementation is stated as at least pro-
vide the following functionalities:

1. The possibility of using various types of many-core hardware, both
CPUs and accelerators, as easy and transparent as possible.

2. Transparent data movement and coherency.

3. The emulation of higher precision and iterative refinement.

4. The possibility of scaling up to multiple accelerators and accelerated
clusters.

In order to implement the CUKr library in a comprehensive manner
that is expandable, the implementation is divided into different layers with
each their responsibilities. A figure of the layout of these layers is shown
in figure 3.7. The first requirement above is achieved with the use of mul-
tiple BLAS implementations, each for utilizing a kind of hardware or cer-
tain vendor delivered library optimized for their hardware (CPU or GPU).
This is the bottom level layer seen in figure 3.7, the level communicating
directly with the hardware through a library for it or custom code. It is
called the BLAS level, and is the BLAS implementation for the particular
kind of hardware, be it a CPU, GPU, or a kind of accelerator card.

3.6.2 The BLAS level

The BLAS level implements the BLAS functions for the certain targeted de-
vice and should exploit its potential performance as well as possible. Be-
cause of this, it is device dependent, and it hides this complexity from the
other layers above, seen in figure 3.7. It gets its inputs and provides an out-
put, or result — after a given period of time. This level provides wrappers
for the various BLAS libraries or BLAS function implementations. This is
the BLAS object, which enables the use of abstract BLAS calls, where what to
be done is specified but not how. The latter is encapsulated inside a BLAS
object, which knows which device to use, BLAS library, and precision for
the operation. The information encapsulated in the BLAS object is shown
in table 3.2.

3.6.3 The data structure level

The level above the BLAS level, as seen in figure 3.7, is the data structure
level. Here the data structures needed by the Krylov solver are imple-
mented. The structures include vector an matrix types. When matrices
are stored in a compressed format they are represented as collections of

28

Implementation Level
Solver and preconditioners written (ideally) using only globally
distrubuted datastructures.

Solver and Preconditioner Level
All that is not implementation specific. Iterative refinement
implemented here, working regardless of solver type.

Globally distr. Data Structure Level
Abstract objects for matrices and vectors which are distributed
across multiple nodes (by external partitioner).

Locally Distr. Data Structure Level
Abstract objects for matrices and vectors which are automatically
distributed across mulitple PEs (GPUs / cores). BLAS_MP
operations working directly on these structures. All operations run
multithreaded (using pthreads).

Data Structure Level
Abstract objects of matrices and vectors. Precision, location and
data formats are no longer considered.

BLAS Level

Wrappers for various BLAS libraries, for both GPU and CPU.
Implementations for various precissions and dataformats.
Performance counters for all operations.

Implementation is completely independent on hardware, BLAS etc.

Automatic synchronization

Automatic partitioning, scheduling and synchronization

Automatic data transfer and conversion

Figure 3.7: The layers of CUKr, adopted from [6].

vectors, as explained in [7]. In addition a mathematical Krylov solver also
requires scalars. Information about data precision and data location (device
location) has been abstracted out, so the data structure level is the highest
level to deal with such. Description of these follows.

CUKR_VECTOR_SP

Table 3.3 shows the structure of CUKR_VECTOR_SP. The structure con-
tains pointers to a vector, that can exist in different precisions and at dif-
ferent locations. For instance a double precision vector that resides in GPU
memory, or a single precision vector that resides in system memory (i.e. on
the CPU side).

Status contains information about where the vector exists and in which
precisions. If the vector is needed in a computation but required precision

29

src/pc src/solvers src/monitors

src/blas

src/mat_vec

src/blas/impl

Preconditioner

Jacobi

Solver

CG GMRES

Monitor

Rel. res Abs. res

BLAS

Counters
Implementation

Matrix

Vector

BLAS1 BLAS2

CSR to CSR4

CSR to HYB

Copy

Convert

SPMV
CSR

CSR4

HYB

CPU

Generic

GPU

GPUBLASMKL

DOT

AXPY

AYPX

COPY

SCAL

PWPR

Flops Loads Stores

Comm. Memory

Iterative

refinement
loop

BCSRBELL

CLBLAS

CSR to BCSR

CSR to BELL

Figure 3.8: The block-layout of CUKr. Red boxes shows existing and
new areas where work will take place during the implementation phase.
The block-layout is adopted from a CUKr lab-meeting note by Serban
Georgescu, with additions from the author to illustrate the new state.

does not exist at the required location, the data structure level makes sure
a new vector in the required location an precision is created. For instance
the GPU might need the double precision version, which already resides
on the CPU. Then this value is copied over to GPU memory, and pointed
to by pd_dval. If the needed vector is already in place nothing needs to be
done. If there is no value at a location in a given precision, the pointer is a
NULL pointer to indicate the non-existence. The status field is constantly
updated to reflect the state (existence of the vector at certain location in a
given precision).

30

Properties Contains
Name Blas name

Counters Performance counters

Location CPU or GPU

Precision double, qdouble or single

Operations DOT, AXPY, COPY, SpMV etc.

Table 3.2: CUKr BLAS object.

Properties Contains
n Vector size

name Vector name

status CUKR_STATUS_CPU_DOUBLE

CUKR_STATUS_GPU_DOUBLE

CUKR_STATUS_CPU_QDOUBLE

CUKR_STATUS_GPU_QDOUBLE

CUKR_STATUS_CPU_SINGLE

CUKR_STATUS_GPU_SINGLE

CUKR_STATUS_CPU_INT

CUKR_STATUS_GPU_INT

Data members CPU GPU/CUDA
Double ph_dval pd_dval

Quasi-Double ph_qval(tail) pd_qval(tail)

Single ph_sval(head) pd_sval(head)

Integer ph_ival pd_ival

Table 3.3: CUKR_VECTOR_SP data structure. The data members are
pointers to arrays of scalars (float, double or int). This is also compatible
with CUDA, as the kernels directly accepts pointers to the arrays where
the data is stored on the device.

31

Properties Contains
rows No. of rows

cols No. of columns

nz No. of nonzeros

format Matrix format

variation Matrix format variation

Formats Member
CSR csr_mat

HYB hyb_mat

Table 3.4: CUKR_MATRIX_SP data structure

CUKR_MATRIX_SP

Table 3.4 shows the structure of CUKR_MATRIX_SP. This structure holds
the matrix in a given format. The matrix can automatically be converted to
other formats if requested, when needed in a computation. Because of the
share size of the matrices, once a matrix is converted to another format, the
old format is deleted. If not the data would take up too much space. Thus,
the matrix only exists in one format at the time, unlike the vector structure
which can hold all precisions and locations. Since the matrices are built
up of the vector structures, they exist in the precisions and at the locations
their vectors exist in.

32

Chapter 4

Background for relevant
hardware

In this chapter some of the current generation of programmable graphics
hardware will be covered. We will look at the main-lines between the dif-
ferences in hardware, and how the devices best utilize global memory —
which is of importance for the tasks at hand given the memory bound na-
ture they possess. The evolution of the graphics hardware leading up to
todays generation will not be explained. For the interested reader please
see [5] 1.

The first sections presents some current OpenCL capable graphics hard-
ware. Tables listing each GPUs characteristics is found in Appendix A.
Note that the performance listings is peak theoretical performance, real
world applications will not fully achieve these speeds(given that they are
not memory bound). There are two related reasons:

• Speed is based on multiply-add instructions or operations, which
vendors count as two operations (all though in graphics hardware
this is done in one instruction).

• All operations in a kernel are rarely only multiply-add operations.

A modern CPU of relevance will also be looked upon, the Intel Ne-
halem — and how to best utilize memory with this processor.

4.1 Nvidia OpenCL capable graphics hardware

4.1.1 Nvidia Tesla architecture

The Nvidia Tesla architecture was designed to be capable of not only graph-
ics computations. An overview of the architecture is shown in figure 4.1.

1The project work leading up to this masters thesis.

33

The TPC (Texture/Processor Cluster) units consists of processing cores called
SMs (Streaming Multiprocessors). They share a Texture unit and a texture
L1 cache. The design is highly modular, and different chips based on this
architecture has different number of TPCs — the number of these is directly
related to the chips’ performance level (both in frame-rates for graphics
and general computing power), and the power usage of the chip. A lap-
top chip could sport two TPCs, while a high-end desktop chip like the GTX
280 had 10 such. The ROP (Raster Operation Processor) units showed in
figure 4.1 are dedicated hardware units for doing rasterization operations,
later in the graphics pipeline when the pixels for the screen are determined
(rasterization for the screen is performed here), and are thus not utilized in
GPU computing. They are implemented in hardware and are fixed func-
tion, for the speed it provides. The TPC illustrates the reason for the name
Compute Unified Device Architecture (CUDA); it is a unified, or merged,
unit that can do both graphics operations and general computations.

Geforce GTX 280

The structure inside the TPC unit in the GTX 280 chip is shown in figure 4.2.
Each SM maps to a compute unit in OpenCL. The SM consists of 8 scalar
processors, and has access to a shared memory as seen in figure 4.2 — the lo-
cal memory in OpenCL terms. Notice also the DP; a double precision floating
point unit (FPU). The ratio between the DP and SPs, 1:8, explains the 1/8th
double precision performance compared to single precision performance. The
SFUs (Special Function Unit) is for(amongst others) transcendental opera-
tions; sine, cosine, logarithm and so on. The SM utilizes Single Instruction
Multiple Data(SIMD) processing to instruct the cores, the MT issue unit is
responsible for this. The characteristics of this card is seen in table A.4,
Appendix A.

4.1.2 Nvidia Fermi architecture

Nvidias new Fermi architecture contains ECC cache and memory, and also
full IEEE 754 double precision floating point support. The Fermi-based
chip made for scientific computing, found in the Tesla2 M2070 computing
module, has a double precision peak performance at about 515 GFlop/s
(billions of floating point operations per second) – about half of its sin-
gle precision performance. This is over a threefold the peak double pre-
cision performance of the AMD/ATI Radeon HD 4870 chip released sum-

2There must be for branding reasons that the Tesla name is still used on Nvidia cards
meant for HPC. It can seem confusing that older cards in the Tesla series HPC cards were
based on the Tesla architecture, and the newer cards introduced in the same series are
based on the Fermi architecture. Nvidia has used the name Tesla for two different things —
making it easy to mix architecture names with the card series name.

34

Interconnection network

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

TPC TPC TPC TPC TPC TPC TPC TPC

Host CPU Bridge System memory

Host interface

Input assembler

Vertex work

distribution

Viewport/clip/setup/

raster/zcull

Pixel work

distribution

Compute work

distribution

GPU

Computer system

TPC TPC

DRAM

ROP L2

DRAM

ROP L2

Figure 4.1: The Nvidia Geforce GTX 280 architecture overview. Illustration
style is inspired by the Geforce GT 8800 figure in [15].

mer 2008. These additions are definitely showing Nvidias focus on making
their GPUs even more suitable for High Performance Computing (HPC),
also apparent by their collaboration with CRAY Supercomputers announced
by CRAY in October 2009 at a CRAY workshop event in Tokyo.

Geforce GTX 480

The GTX 480, based on the Fermi architecture, has a double precision per-
formance that is 1/8th of the single precision one. The characteristics of
this card is seen in Table A.5 in Appendix A. The chip is a natural evo-
lution from the one found in the GTX 280 card(as the Fermi architecture
is a natural evolution of the Tesla architecture). Here, each TPC contains
4 SMs, in contrast to 3 found in the GTX 280. The total number of TPCs
has also increased up to 15 (chip contains 16 TPCs, one is disabled during
production to increase the number of usable chips).

35

Interconnection network

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

TPC TPC TPC TPC TPC TPC TPC TPC

Host CPU Bridge System memory

Host interface

Input assembler

Vertex work

distribution

Viewport/clip/setup/

raster/zcull

Pixel work

distribution

Compute work

distribution

GPU

Computer system

TPC TPC

DRAM

ROP L2

DRAM

ROP L2

TPC

Geometry controller

SMC

Texture unit

Tex L1

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

SM

I cache

MT issue

C cache

DP

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

SM

I cache

MT issue

C cache

DP

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

SM

I cache

MT issue

C cache

DP

FPU ALU ALU

SP

Multi-banked register file

Figure 4.2: The Nvidia Geforce GTX 280 TPC. Illustration style is inspired
by the Geforce GT 8800 TPC illustration in [15].

4.1.3 Ideal global memory access pattern

To utilize the memory bandwidth available in the Nvidia cards the mem-
ory access must be coalesced. For the memory access to be coalesced some
rules must be followed. Coalesced memory access happens when work-
items in a work-group accesses the memory in a manner where the ad-
dresses increase sequentially for each work-item. They each fetch their
needed part of the global-memory. Rather than amounting to as many
memory fetch operations as work-items, they all happen in one big mem-
ory read operation — the multiple requests are coalesced into one opera-
tion by the memory controller. On Nvidia hardware a warp is referred to a
collection of 32 work-items or threads executing the same instructions on a
compute unit (part of a work-group). A half-warp consist of 16 work-items,
and it is these 16 work-items that can get coalesced memory operations at
a time. The total size of the memory transaction is of 32, 64 or 128 bytes.
This is further explained in [18]. Nvidia has historically3 classified their de-
vices according to compute capability. Higher version of compute capability
is better, generally meaning the device gives more memory access flexibil-
ity and less restrains or requirements regarding how to access the data —
while still providing the utilization of the bandwidth. For compute capa-

3After the first introduction of CUDA and CUDA-capable devices.

36

bility 1.2 or higher (both GTX 280 and 480 are in this category) coalesced
memory access can happen for any pattern of addresses (sequential access,
as described above, is no longer required). Here work-items can even ac-
cess the same address and still get a coalesced operation. Also substantial
improvements in how many memory transactions are needed if a half-warp
tries to access words in n different memory segments are in place. Cards
of a lower compute capability would issue 16 transactions — severely im-
pacting the utilization of the memory bandwidth. In contrast the newer
cards only issue one transaction for each segtment (n transactions). More
details are found in [18]. Alignment is also required to get coalesced reads.
For the built-in types this requirement is already followed. This means that
the addresses must be a multiple of 4, 8 or 16.

4.2 AMD/ATI OpenCL capable graphics hardware

4.2.1 Architectural overview

ATI Radeon HD 4870

The recent ATI chips consists of something called SIMD engines by ATI.
The 4870 contains 10 such entities. Each SIMD engine consists of 16 Stream
Cores (SC), and these each consist of 5 Precessing Elements (PE). This gives
10 x 16 x 5 = 800 PEs, also called Shaders (when used with graphics) or
ALUs (Arithmetic Logical Unit). The ATI Radeon HD 4870 GPU chip be-
longs to ATIs R700-family architecture, as do the AMD FireStream 9270
mentioned in [5]. The 800 PEs gives a vendor supplied theoretical single
precision peak compute rate of 1.2 TFlop/s. The theoretical double preci-
sion peak compute rate is 240 GFlop/s (billions of floating point operations
per second) — one fifth of the single precision rate. This is explained if we
look at the SC, where only one of the five PEs is capable of double preci-
sion computation (also called a fat ALU). The 4870 was the first graphics
card to make use of GDDR5 memory technology, thus increasing the band-
width dramatically. The 4870s memory bandwidth is at 115.2 GB/s. The
characteristics of the 4870 card can be seen in table A.2 in the Appendix.
In an OpenCL centric view the SIMD engines are the compute units. Thus,
each compute unit on the 4870 consists of 80 PEs. The 4870 is capable of
handling 15872 concurrent threads, in hardware, sharing time on the avail-
able resources. Figure 4.4 illustrates a Compute Unit (SIMD engine), and
the contents of a Stream Core. As explained in [17], the Stream Core is a
five-way Very Long Instruction Word (VLIW) processor. In one VLIW in-
struction as many as five scalar operations are co-issued, keeping the PEs
occupied simultaneously.

The 4870 is part of the R700 architecture, which is illustrated in fig-
ure 4.3. Notice the blocks marked as Compute Units(SIMD engines). The

37

16 SCs are seen contained inside each Compute Unit, each consisting of
4 PEs(indicated with thin lines) and 1 T-PE(indicated with a thicker line).
The PEs can perform integer or single-precision floating point operations,
and the T-PE can in addition perform transcendental operations such as
logarithm, sine, cosine, and so on. If one double precision operation is to be
performed, two or four of the PEs are connected together to allow this. This
explains the 1:5 performance-ration between double- and single-precision
operations of the chip, and tells us that only one double-precision opera-
tion can be performed by the SC at the time. In contrast 5 single-precision
operations can be performed at the time by a SC.

The SIMD engines utilizes Single Instruction Multiple Data processing,
something that does not imply SIMD instructions (like what is found in
modern AMD and Intel processors — the SSE instruction sets). By us-
ing the SIMD processing the cost of fetch and decode of instructions are
shared across many ALUs, who follow these same instructions for every
cycle. This model suits modern graphics well, where many items share the
same shader processing (performed in a SIMD processing fashion). The 16
Stream Cores processes 64 elements over 4 cycles, this is called a Wavefront
by ATI. Work-groups have to be a multiple of this amount in size (number
of work-items), if not the SIMD engine will be under-utilized and full po-
tential of the hardware is not reachable.

For the 4870 the minimum global size should be4:
10SIMDs ∗ 2waves ∗ 64elements = 1280elements

For latency-hiding (which is of essence for efficiently utilize GPUs):
10SIMDs ∗ 4waves ∗ 64elements = 2560elements

ATI Radeon HD 5870

The Radeon 5870 chip was introduced early autumn 2009. The character-
istics of the 5870 card can be seen in table A.3 in the appendix. Its design
is a continuation of the 4870. Instead of 10 SIMD engines the chip has 20
such. This, of course, gives OpenCL 20 compute unites to utilize — and
effectively doubles the amount of ALUs usable with OpenCL compared to
the 4870, to a total of 1600. The SIMD engines and Stream Cores are in
principle (at a high level) similar to that found in the R700 architecture).
The memory bandwidth is a 33% improvement over the 4870, making it
even more suitable for memory bound tasks. The higher clock-rate makes
this chips peak performance more than twice than that of the 4870. Also,
ATI has implemented more reliable memory utilization by using EDC (Er-
ror Detection Code) in the form of CRC (Cyclic redundancy check) checks

4Based on notes from Siggraph Asia 2009 in Yokohama, Japan.

38

on data transfers. This makes the card more reliable than previous ones
for high performance computing where there is no tolerance for errors
caused by corrupted memory values. The 5870 can handle 31744 concur-
rent threads. It is important to keep in mind that such threads running on
GPUs are lightweight, and hardware makes sure of extremely fast switch-
ing between threads waiting to get processed. The hardware based thread
management incurs an almost neglect-able performance overhead.

For the 5870 the minimum global size should be5:
20SIMDs ∗ 2waves ∗ 64elements = 2560elements

For latency-hiding (which is of essence for efficiently utilize GPUs):
20SIMDs ∗ 4waves ∗ 64elements = 5120elements

4.2.2 Ideal global memory access pattern

Like we have seen in the Nvidia based graphics chips, the ATI chips are
able to coalesce the read from multiple addresses when requested from
work-items — during the same cycle. In this way the cost of the mem-
ory read is amortized among all the Stream Cores reading. The data for
all the Stream Cores thus gets fetched in one memory access, as explained
in [17]. Looking at the graphics processing nature of the GPU this makes
perfect sense, as the shaders each need data from different parts to work
upon, and there need to be some efficient way of feeding all the Stream
Cores(coalesced reads) — analogous to the need of an efficient way of in-
structing them as previously mentioned (SIMD processing).

To get coalesced reads from the concurrent accesses to memory ad-
dresses in global memory, the addresses must increase sequentially from
one work-item to the next work-item participating in the read. These work-
items are in the same wavefront, as it is within the same wavefronts these
coalesced reads can occur. Also, the addresses must start on a 128-byte
alignment boundary — as further explained in [17].

4.3 A more CPU-ideal global memory access pattern

While programming in OpenCL the kernels will be able to run on a diver-
sity of hardware. This does not imply one will get equal level of perfor-
mance relative to each device’ performance capabilities; the kernels have
to be constructed in a way so they exploit a certain architecture – both in
regard of algorithm and data-structures (the latter is especially true when
dealing with memory bound problems as in this thesis). This custom man-
ner of programming that works well on one device might not be beneficial

5Based on notes from Siggraph Asia 2009 in Yokohama, Japan.

39

for another device (say a common CPU). For kernels not used in HPC this
is less of an issue, and there is more headroom for the programming of the
kernel. However, when programming for performance it is expected that
attaining competitive performance on both a CPU and a GPU comparable
to other implementations each targeting only a certain device (and by only
using the same kernel) can be overly hard if not practically impossible. The
author notes that GPU devices are the ones with the largest constraints and
least flexibility regarding programming for performance. CPUs are some-
what more flexible, but also here it is expected that the access pattern of
the GPU will severely impact CPU performance.

The access on the GPU is in a coalesced manner to gain the bandwidth
utilization on these architectures. This results in CPU cores attempting to
read with the same access pattern (when running these kernels on CPUs),
while using a dramatically smaller number of cores (4 or 8 typically on to-
days CPUs) — in contrast to hundreds on a modern day GPU. Of course,
these memory accesses will not be coalesced, even though the access pat-
tern is the same. The CPU architecture greatly differs when it comes to
ideal memory access. And, as further described in [11], also here the access
pattern is of high importance to utilize the bandwidth. Attaining high-
est possible bandwidth utilization can be a challenge. As shown in [10];
the changing of the burst size, the channel layout and the internal bank —
while leaving the theoretical bandwidth intact — can have dramatic im-
pact on performance. The more memory bound the problem is, the more
dramatic this impact can become. This illustrates the problems with differ-
ent CPU architectures, each having their own ideal memory access pattern
— and thus the implementation challenges for memory bound problems.
For the CPU(versus the GPU) — here at a more general level of detail, the
much more ideal access pattern had been to let each core read a large num-
ber of sequential addresses, rather than single words at (seemingly to the
CPU) random places, where different CPU cores try to read words next to
each other in memory. We predict this access pattern ideal for the GPU to
severely underutilize the potential memory bandwidth of the CPU.

The following sub-section explains, at a high-level, why it is necessary
to handle memory different on the CPU if one is after performance here.

4.3.1 Memory access on the CPU

As the GPU kernels will not perform well on the CPU relative to other
CPU implementations, we will look at the main reasons. We illustrate the
memory access on the GPU and CPU if arrays positioned in global mem-
ory gets their elements accessed in a manner that should enable coalesced
reads on a GPU. Following, simple figures illustrates the difference. How
the GPU kernels will read memory while being executed on the CPU, in
an un-optimal manner, is illustrated in Figure 4.6. On the GPU the mem-

40

ory access gets coalesced, as seen in Figure 4.5. The work-groups on the
GPU fetches values from memory efficiently in this way. When the oper-
ations are done upon the current values fetched, a new set of values are
read coalesced by the work-group — and processed in the same way. This
continues until the hole vector is processed. Finally, Figure 4.7 shows what
is a much more ideal reading pattern for the CPU. This pattern is imple-
mented in a CPU AXPY kernel described in the kernel implementation
chapter later.

Another reason for performance decrease is due to partitioning of the
problem. On the CPU the ideal global and local partitioning sizes are
much smaller. The ideal is to have one work-item per core. And total work-
items equal to total number of cores in the system.

41

U
lt
ra

-T
h
re

a
d
e
d
 D

is
p

a
tc

h
 P

ro
c
e
s
s
o

r

O
u

tp
u
t
C

a
c
h

e

Instruction and Constant Cache

Memory Controller

DMA

C
o
m

m
a
n
d
 P

ro
c
e
s
s
o

r

D
P

P
 A

rr
a
y
 (
O

p
e
n

C
L

:
C

o
m

p
u

te
 U

n
it

s
 (

S
IM

D
))

P
ro

g
ra

m

C
o
u

n
te

r

P
ro

g
ra

m

C
o
u

n
te

r

P
ro

g
ra

m

C
o
u

n
te

r

P
ro

g
ra

m

C
o
u

n
te

r

L! Input Caches

L2 Input Cache

H
o

s
t
A

p
p

lic
a
ti
o
n

C
o
m

p
u

te
 D

ri
v
e

r

S
y
s
te

m
 M

e
m

o
ry

C
o
m

m
a
n
d
s

In
s
tr

u
c
ti
o
n

s

a
n
d
 c

o
n
s
ta

n
ts

In
p

u
ts

 a
n

d
 O

u
tp

u
ts

R
7
0

0
 L

o
c
a
l
M

e
m

o
ry

C
o
m

m
a
n
d
s

In
s
tr

u
c
ti
o
n

s

a
n
d
 C

o
n

s
ta

n
ts

In
p

u
ts

 a
n

d
 O

u
tp

u
ts

L
o

ca
l

D
a
ta

S
h

a
re

L
o

ca
l

D
a
ta

S
h

a
re

L
o

ca
l

D
a
ta

S
h

a
re

L
o

ca
l

D
a
ta

S
h

a
re

Figure 4.3: The R700 architecture figure adopted from [16]. OpenCL Com-
pute Units marked, in addition.

42

Local

Data

Share

General-Purpose Registers

Transcendental
Processing
Element

Processing
Element

Branch execution unit

Instruction and control flow

Stream Core

SIMD engine (OpenCL: Compute Unit)

Figure 4.4: Illustration showing the SIMD element (Compute Unit) and the
Stream Core. Partly adopted from [17].

GPU

GPU memory (global memory)

GPU cores(work-items) in work-groups

Figure 4.5: GPU coalesced read. The red circle indicates the memory re-
quests that gets coalesced into one transfere.

CPU CPU cores, 1 core is 1 work-item

System memory (global memory)

Figure 4.6: CPU read with GPU kernel. The chaotic memory access pattern
arising when using a GPU kernel on the CPU is shown. CPU memory-
bandwidth badly utilized.

43

CPU CPU cores, 1 core is 1 work-item

System memory (global memory)

Figure 4.7: CPU ideal read with CPU kernel. Each core reads a large se-
quence of data in memory.

44

Chapter 5

Implementing OpenCL
support in CUKr

When adding OpenCL support to CUKr there are several important as-
pects to take into consideration. First of all the addition should gracefully
integrate with the philosophy behind the existing software system. It was
chosen to add it to the software without replacing the existing CUDA im-
plementation CUKr also can use. They live side by side, and one of the
technologies to use must be chosen upon cmake configuration. This is cov-
ered in the first section.

The next section moves focus to the actual implementation itself. It was
important to implement the OpenCL support in a way not interfering with
CUKr’s philosophy behind data movement and location — vital for the
CUKr runtime. Differences in how CUDA and OpenCL deal with arrays
as input to the kernels made changes to the CUKR_VECTOR_SP data-structure
necessary (when OpenCL is used).

The last section looks at the additions to the BLAS level; the set-up
the actual OpenCL kernels for each precision. The implementation of the
kernels themselves are looked upon in the next chapter.

5.1 At the build level

Cmake is a platform independent system to generate build-files for software
projects. This has been used to generate build files for CUKr since the first
version, and is a good choice to continue using due to its strengths. Mod-
ules can be added to cmake so it can be used with a variety of software
technologies and build options. For instance modules exist to integrate
CUDA with cmake and configure its options — like the use of double pre-
cision or not, emulation or device mode, and so on. For OpenCL cmake
should be able to find the include files and libraries when either running
the build-file generation on Linux or OS X. On OS X these are always found

45

Listing 5.1: OpenCL include.
#ifdef __APPLE__

#include <OpenCL/cl.h>

#else

#include <CL/cl.h>

#endif

at the same place as Apple provides the OpenCL implementation on this
platform. Under Linux this can differ as both ATI and Nvidia have their
respective implementations. The build-file generation system will find the
proper locations for all three of these mentioned configurations. It is not
tested, but this should also work under Microsoft Windows. This is of
value as we also want the build process to be as platform independent
and flexible as possible. When including the header file for OpenCL the
include-code shown in Listing 5.1 will suffice in all of the three configura-
tions (Linux - ATI, Linux - Nvidia, OS X).

In the revised CUKr source code both CUDA and OpenCL lives side by
side, this is made possible the use of #ifdef’s, like "#ifdef CUKR_USE_OPENCL"
and "#ifdef CUKR_USE_CUDA". The pre-compiler can then make sure only
the relevant code for the chosen technology (OpenCL or CUDA) is seen/-
compiled by the compiler and thereby becomes a part of the CUKr library.
The use of OpenCL and CUDA are mutually exclusive, the usage of both
for the same build should not be configured.

5.2 Additions to the CUKr infrastructure and data-structure
level

At first when CUKr is launched the OpenCL sub-system is initialized — if
compiled with OpenCL support. A OpenCL platform is chosen(as a system
might contain several OpenCL implementations), and a device supported
by this implementation(OpenCL platform) is set up as target device(be it a
CPU or a GPU, for instance). All the source-codes of the kernels are loaded
into memory and their pointers handed over to OpenCL API-calls in order
for the source-code to be compiled and built for the target device, the de-
vice that is associated with the OpenCL context just set up. Now memory
objects for the kernels exist with their executables, and can be uploaded to
the device and executed later, when set-up and called(with proper input
data and a domain partitioning; GLOBAL and LOCAL sizes). Next we will
look at the reoccurring input data to the kernels; the vector — how the
infrastructure handles the vectors at the OpenCL level.

The vector data-structure is a foundation in CUKr, as explained previ-
ously. It stores pointers to the vectors on different devices (CPU or GPU)

46

and knows where these vectors are and in which precisions. The CUDA
kernels accept ordinary pointers to arrays directly, pointers returned by
CUDA allocation functions. So, the CUKR_VECTOR_SP data structure can
keep these pointers that are pointing to locations on the GPU as they are or-
dinary float, int and double pointers. OpenCL does not deal with point-
ers in this manner for the kernels’ input arrays; all arrays must be set up
with a cl_mem memory object, and these objects are passed on to the ker-
nels as arguments. To accommodate for this difference, that breaks with the
way CUKr works, the CUKR_VECTOR_SP data structure has been modi-
fied to store pointers to cl_mem objects that contain the arrays in the differ-
ent precisions. The revised CUKR_VECTOR_SP data structure is shown in
Table 5.1.

Further, CUKr must know how to deal with these cl_mem objects, so
that the CUKr runtime works properly with these too. A source file part of
the software deals with all the vector operations at single GPU/CPU level;
either if the vector being handled is in system memory, or device memory
(and being used by OpenCL or CUDA), the appropriate handling code is
contained here.

The function CukrVecspMallocGPU is used to allocate a vector of a cer-
tain precision on a device. When OpenCL is used it creates the appropriate
cl_mem buffer. CukrVecspFree frees the buffer when done. Then there are
the functions:

• CukrVecspCopyDataCPU2GPU

• CukrVecspCopyDataGPU2CPU

• CukrVecspCopyDataGPU2GPU

They copy the vector from device to device (where devices as read from
the function names just mentioned), and possibly to a new precision in the
process. The code can be found in the code-listings in the Appendix.

5.3 Additions to the BLAS level — the set-up of the
OpenCL kernels

Before any kernel can execute it must be properly set-up(as previously
mentioned), with its input data and partitioning(NDRange domain). The
input-data is set up with pointers to the data object and the size. This is
passed on to clSetKernelArg. The next step is to set up the LOCAL and
GLOBAL sizes of the kernel domain. This defines the size of each work-
group, and how many work-groups in total is to be used.

Now clEnqueueNDRangeKernel can be issued, enqueuing the kernel
for execution. An event is attached to the kernel launch, and used by

47

Properties Contains
n Vector size

name Vector name

status CUKR_STATUS_CPU_DOUBLE

CUKR_STATUS_GPU_DOUBLE

CUKR_STATUS_CPU_QDOUBLE

CUKR_STATUS_GPU_QDOUBLE

CUKR_STATUS_CPU_SINGLE

CUKR_STATUS_GPU_SINGLE

CUKR_STATUS_CPU_INT

CUKR_STATUS_GPU_INT

Data members CPU GPU/CUDA OpenCL (cl_mem)
Double ph_dval pd_dval pcl_dval

Quasi-Double ph_qval(tail) pd_qval(tail) pcl_qval(tail)

Single ph_sval(head) pd_sval(head) pcl_sval(head)

Integer ph_ival pd_ival pcl_ival

Table 5.1: CUKR_VECTOR_SP data structure with new additions for
OpenCL support; cl_mem object pointers for referencing vectors for use
with OpenCL added. Note that OpenCL cannot use ordinary pointers that
references arrays on the device, therefore cl_mem objects are used to store
the data.

48

clWaitForEvents to wait until the kernel event is over (it has been exe-
cuted). This set-up process is performed for every OpenCL kernel needed
by CUKr, for all precisions.

49

Chapter 6

Kernel implementations

This chapter will look at implementations of the OpenCL kernels, at the
BLAS-level in CUKr. In the first section we will look kernels ideal for the
GPU, and how this OpenCL port implements them. Then we discuss dif-
ferences between the OpenCL and CUDA kernels that will directly influ-
ence their performance. The next section looks at changes that must be
made to the memory access pattern to better accommodate the CPU, based
on the differences between GPUs and CPUs and how they attain best mem-
ory bandwidth utilization. In the next chapter the results of the implemen-
tations are covered.

6.1 CUKr OpenCL kernels ideal for the GPU

In this section we will explain the implementation of the actual compute
kernels, and how they both differ and are similar compared to the CUDA
ones. In order to be able to do a evaluation and performance comparison
against the CUDA versions, it is desirable to keep the codes as similar as
possible. At certain areas the technologies’ differences can prevent this. We
will see the different performance characteristics. Similar to all the kernels
(except COPY1) is the setup of the following variables, and the use of a
similar for-loop for reading in data, as seen in Listing 6.1. The implication
of this is explained in the following sub-section. A later section will explain
how this way of reading in data (code in the kernels that is in the for-loop)
badly affects the performance when running the kernels on the CPU.

For the sake of simplicity we look at the single kernels. The quasi-double
ones differ in that they also handles the tail part, and uses special double-
single add, multiply and subtract operations that do not neglect the higher
precision given by the tail part. double kernels are similar to the single

1The BLAS COPY-function is actually implemented with a OpenCL API-call to copy a
memory object on the compute device, and not with a actual OpenCL kernel, which would
have been slower.

51

Listing 6.1: Common kernel properties.
/* Starting point for this work -group */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of work -items in the kernel */

int totalThreads = get_global_size (0);

/* Get current local work -item id */

int tx = get_local_id (0);

/* Read the data (full lines) */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

.

.

.

}

ones, but uses double variables instead of float variables. All kernels can
be found in the code-listings in the Appendix.

6.1.1 Common structure

Before the code shown in Listing 6.1 is executed as part of the kernel, the
kernel itself is set up for execution. This implies setting up the size of the
work-groups (how many work-items/threads in each) and the total num-
ber of work-items. Since CUDA defines the block-size (OpenCL: work-
group size) and and the number of blocks, we use the same for the OpenCL
kernels. This is overall easier to deal with as the code inside each kernel
works from this knowledge (how many work-groups and their size, rather
than number of total and local work-items) — it ensures the comparison
with the CUDA version is easier.

When each work-item runs the code in the kernel the value ctaStart

is set to the global id of the first work-item (the one with local id of 0) of
the current work-group (that the executing work-item is in). Note that this
is stored in private memory for each work-item. Next the totalThreads-
value is set to the total number of work-items (global size). Thereafter tx
stores the local work-item id. We now see that the for-loop starts with i set
to the global id of the current work-item and increments with the number
of global work-items, as long as the vector-size n is not surpassed for the
following iteration.

52

AXPY (and AYPX)

As AXPY and AYPX are virtually identical, we only cover AXPY. Inside the
for-loop of Listing 6.1 we have the line

y[i] = y[i] + a * x[i];

The CUDA version uses local memory (shared memory in CUDA terms)
to first read in the data. This was not done in the OpenCL implementation
as it degraded the performance, so the arrays worked upon are read right
from global memory. The loop will make sure each work-item in the work-
group reads in consecutive values of y and x coalesced, does the addition
and multiplication needed, and then writes back to y.

DOT

The DOT function is the most complex of the BLAS level 1 functions cov-
ered in this work, due to the need of reductions to produce the result. This
is also a bottleneck. Inside the for-loop of Listing 6.1 we have the line

sum += x[i] * y[i];

sum is a private variable for the work-item, to which the product of each el-
ement of x and y are added. All work-items in each work-group will read
the consecutive x and y values coalesced, put them in work-item level reg-
isters, and perform the operations. This will go on until the end of the vec-
tors are reached, and each work-item has the sum containing the result of
all work assigned to it (DOT operation done on its "responsibility area"). A
local memory array for each work-group called partial_sum is then used
to store each sum value from the work-items. All these needs to be added
— reduced, at the device. For this a new for-loop, used for work-group
level reduction, is utilized.

for (int i = get_local_size (0) >> 1; i > 0; i >>= 1)

{

barrier(CLK_LOCAL_MEM_FENCE);

if (tx < i) {

partial_sum[tx] += partial_sum[tx + i];

}

}

Each iteration starts with a barrier to make sure all work-items have a co-
herent view of the local memory array being worked upon. Value i starts
at local size divided by two (by right bit-shifting of the local size value).
For each iteration value i is right bit-shifted, until it becomes 0. The loop
runs as long as i is larger than 0. The body of the loop adds two consec-
utive elements of partial_sum, as long as the local work-item id is less
than i. At the end of the loop all values are added, and the result is in

53

partial_sum[0] — the first element of the local memory array. At the end
of the kernel a simple

if (tx == 0) {

res_m[bx] = partial_sum[tx];

}

will make the work-item number 0 at each work-group write the work-
groups reduced value to global memory array res_m[bx], bx being the
group id. This array has as many elements as work-groups, analogous
to the local memory array that had as many elements as work-items in the
group. The global memory array now contains each work-groups result,
and a last summation (reduction) is needed. This happens at the host-side
(CPU), after the contents of the global memory array are transferred to sys-
tem memory where it is reachable by the CPU.

SCAL

SCAL scales every element of the vector x. Inside the for-loop of Listing
6.1 we have the line

x[i] = x[i] * a;

The elements are put into registers in a coalesced read, multiplied with a,
and thereafter written back to x. Similar to the AXPY and AYPX operations,
the use of local memory is found to degrade the performance.

COPY

As shortly mentioned, the COPY implementation does not use a kernel,
rather a OpenCL API-call to copy the memory object. This is more efficient
than invoking a kernel to copy data from one buffer (both already set up
in global memory) to another. The code for this is as follows

err = clEnqueueCopyBuffer(ComputeCommands , *cl_d_x , *

cl_d_y , 0, 0, n * sizeof(cl_float), 0, NULL , &

scopy_event);

if (err != CL_SUCCESS)

{

printf("clEnqueueCopyBuffer failed %d\n", n);

}

// Synchronize for timing

err = clWaitForEvents (1, &scopy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

54

where cl_d_x and cl_d_y are source and destination buffers, respectively.
It can be seen with the Nvidia OpenCL profiler that this saves time for the
particular operation by a order of magnitude.

CSR

In the CSR kernels (4 variants exists for each precision) all the code is in
the body inside the for-loop of Listing 6.1, thus accesses to global mem-
ory can be GPU-friendly. As explained previously in the section about the
data-formats for use with SpMV, the CSR uses a pointer, index and value
array for storing the 2D matrix in a compressed manner. In addition the
kernel needs the vector x (being read) and y (being read and written to)
as input. The for-loop starts by assigning iRowBeg and iRowEnd variables.
These are set to the start and end address of the matrix row to be handled
by the work-item (for the current iteration of the loop), respectively. The
values of the pointer array will be read in a coalesced manner. Next, the
column vectors are read and summed. A variable sum is set to 0 (for each
iteration). A new for-loop iterates from iRowBeg to iRowEnd with an incre-
ment of 1. For each iteration sum is added the product of the j-th element
of the value array (d_val[j]) and the corresponding value of vector x (the
index is found in the index arrays j-th element). Note that these reads
are irregular and will hardly result in any coalesced access. Especially the
reads from vector x is highly scattered. Kahan-summation (also called com-
pensated summation) can also be used in place of the ordinary one, and is
activated by the use of a #define USE_KAHAN_IN_SPMV 1 (or 0 for ordinary
summation as described). It has the property of reducing the numerical
error when floating-point values are added. The summation is done and
finally the value is written to vector y at its i-th element (now in the outer
for-loop seen in Listing 6.1). Depending on the beta-value, 0 or 1, the y-
element gets set to solely the sum or the sum plus the previous value of the
y-element itself, respectively. If the alpha-value is not 1 it gets multiplied
with the final sum and the result stored at the current y-element. The dif-
ferent alpha and beta values can make simplifications possible, and explains
the 4 variants of the CSR kernel. The following code shows the Listing 6.1
for-loop contents in the case where alpha is 1 and beta is 0.

55

/* Read the beginning and end of the row

* which will be processed by this work -item */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

float sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

float c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

float y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

float t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

float sum = 0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] = sum;

CSR4

The following private variables are declared in the CSR4 kernel:

float sum;

float4 val , x;

int4 idx;

These are used inside the for-loop of Listing 6.1 where we have the follow-
ing code:

56

// Read the beginning and end of the row which

// will be processed by this work -item

iRowBeg = d_ptr[i] - 1;

iRowEnd = d_ptr[i+1] - 1;

// Read and sum for the column vectors

sum = 0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

idx = d_idx[j];

idx -= 1;

x = (float4)(d_x[idx.s0], d_x[idx.s1], d_x[idx.s2],

d_x[idx.s3]);

val = d_val[j];

sum += dot(x, val);

}

// Write the result to global memory

d_y[i] = sum;

We can see that the CSR4 variation differs from CSR in that the values from
the index and value arrays are read 4 elements at the time by each work-
item. This has a good effect on the performance of the kernel relative to
the plain CSR. To enable this read of 4 and 4 elements, the index and value
pointer arguments are defined the following way; as int4 and float4 type,
respectively.

__kernel void kernel_sspmv_csr4_a1_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_val ,

__global const float* d_x ,

__global float* d_y

)

Although when these arrays are handed over to the kernel with the clSetKernelArg
right before the kernel launch, the arrays are of type int and float. From
the construction of CUKr viewpoint it is practically hard to let these arrays
be in this format from the start when they are created by the CUKr run-
time, so this is a good way of dealing with the issue. The CUDA version
uses CUDA texture calls, which also groups the values so they are fetched
4 and 4 inside the kernel. Using texture fetching hardware in the GPU to
read the values has a performance advantage. In OpenCL the equivalent
would be done, if implemented to do so by the OpenCL implementors,

57

when reading data stored as Image2d memory objects 2 with OpenCL’s im-
age samplers. As OpenCL implementations keep improving over time, this
is a good example of optimizations the compilers could incorporate; the
use of texture-fetch hardware if available in the device, in cases where this
is appropriate.

ELL

The ELL format is needed for the HYB format. It follows(as also the ELL
kernel part of CUKr’s C for CUDA code does) NVIDIAs ELL implementa-
tion written in C for CUDA.

HYB

The HYB format is a combination of the ELL and CSR4 format. So, the
format(or rather its processing) is materialized at the level(or source file)
where the functions setting up the kernels for execution resides, as there
does not(naturally) exist a HYB version in the form of a single kernel. The
ranges to be processed by each kernel, ELL and CSR4 respectively, are al-
ready decided by CUKr by the time needed data is handed over to the HYB
set-up function. From here the ELL kernel is first set-up and completed,
and right after completion the CSR4 is run to cover the remaining parts.
Its completion completes the HYB function. The CSR4 kernel is described
above.

6.2 Differences between the OpenCL and CUDA ker-
nels

6.2.1 BLAS 1 functions

For SCAL, AYPX and AXPY local memory is not used. As will be seen
in the next chapter; it did not increase the performance using it, rather
decreasing the performance to some extent.

6.2.2 SpMV functions

For the SpMV functions no Image2D memory objects and samplers are used
(texture memory and texture fetch, in CUDA terms). This is used for some
of the arrays in the CUDA versions. This is partly due to CUKr’s design
more suiting CUDA memory handling (with ordinary pointers, rather than

2Images support was just recently added to the ATI Stream SDK with the new version
2.1 release of early May 2010, the previous version, 2.01, did not support this. This illus-
trates how new OpenCL actually is, with features important for performance in memory
bound applications on th GPU just recently being added.

58

cl_mem objects) making the implementation of this not as straight forward.
A work-around however is to implement the use of Image2D in the same
functions where timing is started and ended. Here the ordinary (and se-
lected) arrays must be converted from their memory buffer cl_mem-object
to image buffer cl_mem-object, before the timing start so the comparison
is fair compared to the CUDA version. This is not optimal for the overall
CUKr performance, but will give correct and fair measuring, and accept-
able as a research study. Though, for a software to be used in the real-
world, some deeper modifications to CUKr would be more appropriate.
Modification in such a way that the image buffer cl_mem-object would be
created from the start for the vector array and not have to be converted
at a later point (in the function just mentioned, where it is known what
array to convert). Another reason is time restraints. The next desired
step would be to use texture memory, on the same arrays as the CUDA
version. This would give the most accurate comparison. And make it
easier to tell true performance differences in OpenCL/CUDA implemen-
tations. Now, part of the differences must be assumed to be caused by
the lack of use of texture memory and texture fetch. Though, by the dif-
ferences to be seen in the BLAS1 functions, we can also to a certain de-
gree assume there are OpenCL/CUDA implementation-differences related
performance-differences reasons.

6.3 CUKr OpenCL kernels ideal for the CPU

In the hardware-chapter we visited ideal global memory access on both
Nvidia and ATI graphics cards, and also what kind of memory access is
better for the CPU. The kernels are ideal for exploiting the GPU memory
bandwidth, by implementing a memory access pattern that suits the GPUs.
It is sought to exploit the fact that the GPUs can deliver dramatically higher
bandwidth — something of great need in memory bound problems like
these. We mainly want to use the GPU for this sake. However, seeing how
this memory access pattern affects performance when running the kernels
on the CPU is of high interest. To get better CPU performance we look at a
new AXPY kernel developed as part of this thesis where the access pattern
better suits the CPU. The code is found in the Appendix, E.1.

Here, the two input arrays are accessed four and four elements at the
time. This utilizes the memory bandwidth of the CPU better. As a con-
sequence the kernel code gets more complex as there will be special cases
depending on the total length of the input vectors. It must be able to han-
dle all vector lengths, not only those divisible by 4. Each work-item (maps to
one CPU-core) reads a sequential range from these arrays, which it works
upon. Best performance on the CPU should be attained when there are as
many total work-items as there are cores (a 1-to-1 relationship).

59

The next chapter shows the performance differences when running a
CPU and GPU suitable kernel on the CPU, see section 7.4.

60

Chapter 7

Results

This chapter will cover results of the OpenCL kernels running on GPUs
and CPUs, at the BLAS-level in CUKr. In the first section we will look
at performance evaluation, describing what experimentation will be done.
The next section explains performance measuring in CUKr. Thereby the
actual performance results follows in the next sections.

7.1 Performance evaluation

A overall focus of the evaluation follows:

1. We will look at how the OpenCL kernels (port from the CUDA ker-
nels) in CUKr performs on the same hardware, the Nvidia GTX 280
card(unfortunately we do not have access to the new Nvidia GTX 480
card based on the Fermi architecture1), relative to their CUDA origi-
nal counterparts. If performance differs we will discuss the reasons
for this. Use of a profiler to do analyzation of a running kernel is also
included here.

2. A specific OpenCL kernel(running on all available CPU-cores) is writ-
ten to try exploit a CPU better(basically by only changing the mem-
ory access pattern and partitioning of the problem domain, the GLOBAL
and LOCAL sizes, of the kernel). This kernel will be measured up

1The new Nvidia GTX 480 card has not especially improved double precision perfor-
mance as it is limited by Nvidia to segment the market, and the memory bandwidth is
not increased much more than 25% over the GTX 280. For significant better double pre-
cision performance one must buy the version targeted for the scientific market(the Tesla
20-series), at a considerable increase in cost. But then again, the bottle-neck would be the
memory bandwidth due to the nature of these problems and not the theoretical peak dou-
ble precision performance. However, the author believe these cards will make it easier
to utilize a higher percentage of the memory bandwidth available, as this architecture is
kinder to irregular memory access due to improvements of the architecture — irregular
memory access is something which the SpMV kernels possesses.

61

against the Intel MKL library(also running on all available CPU-cores).

There will be done two different kinds of benchmarking for the first
(number 1) evaluation above. For the evaluation the following benchmark-
ing methodic is used:

• The first is BLAS 1 benchmarking routines part of CUKr. This is to
test individual AXPY, AYPX, DOT and SCAL performance. Here sev-
eral consecutive runs are done with the same vector data for each
kernel and the results are averaged. For small vector sizes this will
give some degree of higher performance as parts of the data needed
for the kernel can be found in cache (both on CPU and on modern
GPUs). Running these tests with large vector sizes must be done to
se the performance without the influence of the caches on the CPU.
Differences seen here on small vector sizes can tell something about
the ability to use the cache of the device.

• The second testing consists of running the complete Cg Krylov solver.
In addition to the BLAS 1 kernels the CSR, CSR4 and HYB(CSR4 +
ELL) SpMV kernels are also tested here(one SpMV format is chosen
for each Cg run). When this is done real-world matrices from struc-
tural analysis problems are used, and two are from the area of com-
putational fluid dynamics. Several different matrices from The Univer-
sity of Florida Sparse Matrix Collection2 are used. They are categorized
into medium or large sizes (and for the HYB-format measurement a
small size is also used) — depending on their respective amount of
non-zeroe elements. For every size category the results of solving the
matrices in the given category are averaged. This is done in order
to a higher degree give a more correct view of the real-world per-
formance3. For every matrix the Cg solver is ran both with OpenCL
kernels and CUDA kernels, and with different precisions and with
different SpMV formats. The performance of the individual kernels
involved are measured while running the solver4 for each matrix, as
well as the total Cg performance. From this data graphs are then gen-
erated. For the properties of the matrices used, please see Appendix
C. Three matrices not in the table(not part of The University of Florida
Sparse Matrix Collection) are also part of the benchmark groups; for
the medium group: poisson3D_64, and for the large group: pois-
son3D_128 and poisson3D_192. As explained in [7] the Poisson equa-

2Please see their site at URL http://www.cise.ufl.edu/research/sparse/matrices/ for
more information about the kinds of matrices available there and the repository in general.

3Note that this is not of utmost importance, as the goal is to look at OpenCL performance
relative to other implementations. However, it is done to add a higher value to the results.

4A shell-script runs the solver executable and adds the results to file.

62

tion is found in many fields, amongst others computational fluid dy-
namics (CFD), particle based flows in computer graphics and steady-
state heat dissipation. The matrix poisson3D_256 is not included,
its file size is of 1.87 GB — not fitting in the memory of the GPU
where the matrices are stored as 1D-vectors. Comparatively the pois-
son3D_192 has a file size of 761 MB, fitting well into the memory of
current graphics cards. Note that when running all the Cg Krylov
solver tests in this thesis, no pre-conditioner is used.

7.2 Performance measuring

The benchmarking mechanism in CUKr is straight forward. Before each
BLAS invocation a timer is started. The function for launching the correct
OpenCL kernel is called (this function is done when the kernel has com-
pleted its work). Note that the kernel is already built and ready to be up-
loaded to the device before the timing is started (this happens when CUKr
is initialized), and the data to be used by the kernel is also already in de-
vice global memory at this point (taken care of by the CUKr runtime and
its vector handling functions with the new OpenCL additions to allocate
and deallocate appropriate cl_mem objects with needed data). The kernel
setup function tells the kernel what data to be used and sets up the parti-
tioning of the kernel (global and local sizes — partitioning of the problem).
The kernel is complete, timing stops, and the elapsed time is accumulated.
In benchmarking several runs are done to get more accurate results, and
the the sum of time passed of all these runs are therefore stored. It is also
known how many operations the particular BLAS operation requires, the
size of the vectors being used, and the amount of total loads and stores to
global memory — within the same function timing the kernel. By this in-
formation the actual performance of the BLAS operation is computed, and
also the bandwidth used. At the node level total performance is accounted
for(which can include use of several devices), and also at the MPI level if
running on a cluster(including several nodes).

Table 7.1 shows the maximum theoretical peak performance that can
be reached (in GigaFlop/s) for the relevant BLAS 1 kernels. Note that this
is a theoretic scenario, where needed data is not reused and not in cache
(as opposed to benchmark routines that run several consecutive times and
finds an average, this leaves some data in caches). All data thus has to go
through the memory bottle-neck — real world problems being solved will
have similar properties. It is also assumed that the amount of data is suffi-
cient(sustained delivery of data over time), and it is being read/written in
optimal ways suiting the GPU, to utilize the bandwidth. Under these con-
ditions the numbers represent the peak performances possible. The limit
is computed by Flop / Flio x Bandwidth (GigaBytes/second), where

63

Nvidia GTX 280 Nvidia GTX 480 ATI 4870 ATI 5870
SAXPY 2 / 12 x 141.7 2 / 12 x 177.4 2 / 12 x 115.2 2 / 12 x 153.6

SAYPX = 23.6 = 29.57 = 19.2 = 25.6

SDOT 2 / 8 x 141.7 2 / 8 x 177.4 2 / 8 x 115.2 2 / 8 x 153.6

= 35.4 = 44.35 = 28.8 = 38.4

SSCAL 1 / 8 x 141.7 1 / 8 x 177.4 1 / 8 x 115.2 1 / 8 x 153.6

= 17.7 = 22.18 = 14.4 = 19.2

DAXPY 2 / 24 x 141.7 2 / 24 x 177.4 2 / 24 x 115.2 2 / 24 x 153.6

DAYPX = 11.8 = 14.78 = 9.6 = 12.8

DDOT 2 / 16 x 141.7 2 / 16 x 177.4 2 / 16 x 115.2 2 / 16 x 153.6

= 17.7 = 22.18 =14.4 = 19.2

DSCAL 1 / 16 x 141.7 1 / 16 x 177.4 1 / 16 x 115.2 1 / 16 x 153.6

= 8.86 = 11.09 = 7.2 = 9.6

Table 7.1: Maximum achievable theoretical peak performance for the mem-
ory bound BLAS 1 kernels (single and double precision given here, respec-
tively), in GigaFlop/s.

Flop is floating point operations needed per vector element position to pro-
cess, Flio is float loads and stores to global memory needed for each BLAS
1 operation when processing one such element position, and Bandwidth is
the total bandwidth of the device between global memory to the device
chip / processor itself given in billions of Bytes per second. The charac-
teristics of the devices, including their theoretical bandwidth, is found in
Appendix A.

7.3 Results BLAS 1 GPU-friendly kernels — individ-
ual benchmarks

In this section we show the BLAS level 1 kernel results when running the
kernels through benchmarking routines. Of interest is how they perform
relatively to other implementations, but also how they(the same kernels)
perform on different hardware. These are kernels that are written to take
advantage of the GPU memory bandwidth to a higher degree. Note the
name GPUBLAS in the graphs, which is the CUDA based versions part of
CUKr. The CUDA based versions are actually part of the CUBLAS library
for all BLAS level 1 kernels, except for quasi-double (single-double) preci-
sion — here the kernels are custom and part of the CUKr CUDA source-
code. The CUDA based AYPX is also custom for all precisions.

64

7.3.1 Nvidia GTX 280 under Linux, Nvidia OpenCL

For benchmarking the AXPY, AYPX and SCAL functions the testing was
done accordingly:

• The benchmark routine was run with two versions of the OpenCL
functions; one were local memory was used by the kernel to prefetch
the vector values(similarly as done in CUDA versions), and one with-
out the use of local memory at all. Here the vectors are read straight
from global memory.

• Custom partitioning sizes were used when no local memory was
used, and original sizes similar to those with the CUDA kernels in
CUKr when local memory was used. This is to better suit the kernel
and get higher performance in these cases. 5

We want to observe effects of using and not using local memory. Further
we will try to se the main-lines in the differences in performance seen in
the OpenCL and CUDA kernels.

The AYPX kernels are good examples as the CUDA based kernels are
not part of CUBLAS, rather part of the CUKr source-code. The OpenCL
based implementation is therefor known to be similar to the CUDA based
one when used with local memory, and in all of the three precisions. Look-
ing at figure 7.3 we can see how the OpenCL performance trails the CUDA
performance for each precision. Each pair of "precision trails" outlines
an area, seen between the lines. The most of this area lies between 10
000(smallest sizes around here) and 1 000 000 in vector sizes. After passing
a million in vector size the graphs eventually crosses.

Figure 7.1 gives a more detailed view of up to a million in vector size.
We can see that this is the sensitive area for the OpenCL kernels, and that
they star at about half the performance for the smallest vector sizes. Look-
ing at figures 7.1 and 7.3 in comparison to figures 7.2 and 7.4 we can see
the performance differences between not using and using local memory in
the kernels. These observations are also similar for the AXPY and SCAL
kernels.

We also take a look at the performance graphs of the DOT and SCAL
kernels. AXPY is omitted as this function is virtually the same as the AYPX.
Looking at figure 7.5 showing the DOT kernels, for vector sizes less than
a million, we see that performance builds up slowly for both OpenCL and
CUDA kernels. For single precision the start performance(about 10 000
vector elements) of the OpenCL kernel is about 375 MFlop/s, and about

5These sizes are called global and local sizes (in OpenCL terms, block size and num-
ber of blocks in CUDA terms). The sizes used in OpenCL can be seen in the source-code in
the Appendix under Code Listings. kernel_config_custom.h and kernel_config_orig.h

contains the new more optimal sizes and the original sizes, respectively. Note; this is for
optimal use with Nvidia OpenCL and the GTX 280 card.

65

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.1: AYPX, OpenCL kernels uses no local memory as opposed to the
CUDA kernel which does. Partitioning sizes are also adjusted to suit.

620 MFlop/s for the CUDA version. Also here the OpenCL version con-
stantly trails behind. Figure 7.6 shows what this looks like for up to 21
000 000 in vector elements size. Notice here how the GPUBLAS graph for
single precision reaches a peak and then the performance decreases by the
biggest vector size. This can be attributed to GPU caches not being able to
keep parts of the needed elements as the vector size is increasing, to the
same degree as before when at smaller vector sizes.

Finally, figure 7.7 shows SCAL kernels performing with up to 21 000
000 elements. Notice how the OpenCL trails almost fall together until past
size 100 000. The CUDA and OpenCL trails are clearly distinguished here.

From what is seen we can make two main conclusions:

• We have seen a difference in performance characteristics between
the OpenCL and CUDA kernels. The OpenCL kernels start off with
lower performance for the small vector sizes compared to the CUDA
counter parts. This difference has the appearance of a constant cost
factor. This can be due to some extra overhead in the OpenCL in-
frastructure (or implementation; in this case the Nvidia SDK 3.0 and

66

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.2: AYPX, OpenCL kernels uses local memory, as the CUDA kernel
also does. Similar partitioning sizes as to the CUDA kernels are used.

its OpenCL implementation) compared to the mature CUDA C tech-
nology. Following the hypothesis that there is some higher initial
cost related to OpenCL with this implementation, we can from the
graphs see that this gets, to a degree, amortized with increasing vec-
tor sizes. Also, an explanation for this observed performance dif-
ference can be the use of cache in the GPU. There could be that the
CUDA version somehow better utilize the caches in the GPU than the
younger OpenCL implementation. As the benchmark routine runs 10
times for every BLAS 1 operation and finds the average(after a sin-
gle warm-up run), some data would be left in GPU caches. Later
when looking at real world problems, where data is hardly reused,
we can get some indication. The Nvidia profiler is used in the fol-
lowing sub-section to see if we can analyze more of this difference
seen, and maybe the cause.

• It was found through the benchmarking and studying the graphs that
with the AXPY, AYPX and SCAL OpenCL kernels the use of no lo-
cal memory gave the best performance. This was true for all preci-

67

 0

 5000

 10000

 15000

 20000

 25000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.3: AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the CUDA kernel
which does. Partitioning sizes are also adjusted to suit.

sions, and for both small(up to about a million vector elements) and
large(up to about 21 million vector elements) vector sizes. It can be
asked if this is due to less use of GPU cache when OpenCL is used
with local memory, and thus rather than being a benefit the use of
local memory then becomes a overhead factor.

Profiling BLAS 1 AYPX with Nvidia CL Profiler and CUDA Profiler

The profiling is done for both the OpenCL and CUDA single precision
AYPX kernel. They are good for comparison, as the OpenCL based kernel
is a direct port of the CUDA based version. The profiling is run on vector
sizes all up to about one million elements. For each size 10 kernel launches
are done. When profiling we will look at two important parameters; GPU
Time and CPU Time. These are given in microseconds. From the Nvidia
Visual Profiler help-menu these parameters are defined accordingly:

• GPU Time: It is the execution time for method on GPU.

68

 0

 5000

 10000

 15000

 20000

 25000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.4: AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel also does. Similar
partitioning sizes as to the CUDA kernels are used.

• CPU Time: It is sum of GPU time and CPU overhead to launch that
Method. At driver generated data level, CPU Time is only CPU over-
head to launch the Method for non-blocking Methods; for block-
ing methods it is sum of GPU time and CPU overhead. All kernel
launches by default are non-blocking. But if any profiler counters are
enabled kernel launches are blocking. Asynchronous memory copy
requests in different streams are non-blocking.

The profiling showed that the OpenCL kernel had on average close to
27 microseconds of CPU overhead to launch, per kernel call. In contrast
this was 10 microseconds for the CUDA kernel. Overall the CPU overhead
with OpenCL was constantly close to 20 microseconds more then for the
CUDA kernel. In addition; each kernel call took close to 3 microseconds
longer to execute on the GPU than with the CUDA kernel (GPU time).
For larger vector sizes this increase in overhead becomes less noticeable as
the GPU execution time becomes large. But at smaller sizes this constant
factor is very noticeable, and explains the graphs previously seen in this

69

 0

 5000

 10000

 15000

 20000

 25000

 10000 100000 1e+06

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.5: DOT; OpenCL vs. CUDA implementation.

section. Each vector size has 10 consecutive kernel launches(for being able
to average results). Here it is also noticed a difference in CPU time for
the first launch and the remaining 9 launches, in the CUDA version, of 15-
20 microseconds. This is only observed for the smallest vector sizes(10 -
20 000 in vector size). For the OpenCL kernel the difference here is only
1-2 microseconds. This indicates that the CUDA version is able to cache
the data for the smaller vector sizes and use this data already in cache for
the consecutive runs, something the OpenCL version is not doing to the
same degree. Similar behavior as seen here is also seen for the other BLAS
1 kernels. This is, in addition, confirmed from the previous performance
graphs.

7.4 Results AXPY CPU-friendly kernel on CPU

Figure 7.8 shows the running of the AXPY CPU kernel on the CPU. For
comparison, the AXPY GPU kernel is also run on the CPU, a Intel Core 2
Quad processor. CLBLAS_CPU shows the result. Here only one work-item
per core us used, which should be the most ideal for the CPU(other parti-

70

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.6: DOT with large vector sizes — up to 21 million elements;
OpenCL vs. CUDA implementation.

tioning should incur more overhead). CLBLAS_CPU2 is the same kernel,
running with "GPU-partitioning" (large global and local sizes). CLBLAS
and CLBLAS_2 are the GPU-friendly version running on the CPU, with
partitioning sizes optimal for CPU and GPU, respectively. Here the par-
titioning ideal for the CPU gives in many cases twice the performance. It
is apparent how important proper problem domain partitioning is. Even
though the kernel in itself is written to utilize the memory bandwidth
well(though; the memory access can be influenced by the partitioning); a
wrong partitioning can severely limit the performance of the kernel. Con-
versely it is seen how a sub-optimal memory access pattern affects perfor-
mance, and how the use of right partitioning only to a limited degree helps
the overall performance. As seen, the performance difference is dramatic
as the memory access gets suited to the CPU. Using GPU access pattern
severely impacts the performance. The intel MKL library is the top per-
former, and has a substantial stronger performance at small vector sizes.
Once the CPU cache cannot hold the entire vectors, both MKL and OpenCL
performance drops dramatically, and they have a sustained almost identi-

71

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure 7.7: SCAL with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the CUDA kernel
which does.

cal performance level. At this point the performance the GPU kernel with
partitioning ideal for the CPU performs about 50% of the CPU ideal ker-
nel and Intel MKL. It is clearly seen how the GPU ideal kernel could not
utilize the cache because of its memory access pattern, something the CPU
friendly kernel does to a much higher degree. Given the overall perfor-
mance differences it is apparent how the Intel MKL library is highly tuned
to exploit the cache. The CPU OpenCL kernel is more agnostic of (other
than reading sequential addresses) the cache. Throughout the testing the
ATI Stream SDK 2.1 is used. Running this on Intel CPUs is not officially
supported by ATI, and what impact this has on performance has not been
investigated due to the timeframe of this project. The characteristics of the
Intel Core 2 Quad CPU used is seen in Table A.1.

72

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06 1e+07

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

MKL (SINGLE)
CLBLAS_CPU (SINGLE)

CLBLAS (SINGLE)

CLBLAS_2 (SINGLE)
CLBLAS_CPU2 (SINGLE)

Figure 7.8: AXPY CPU-friendly kernel on Intel Core 2 Quad processor.

7.5 Results Cg Krylov solver and its GPU-friendly ker-
nels — real-world problems

In this section we cover the results of running the actual Cg Krylov solver
benchmark routine with real-world matrices as input (see Appendix C).
Performances are given in MFlop/s.

7.5.1 Nvidia GTX 280 under Linux, Nvidia OpenCL 3.0 SDK

The benchmark is run on the Nvidia GTX 280 card, both when the CUKr
library is compiled to use OpenCL, and CUDA. This is to have the com-
parison basis. We test for all three SpMV formats and kernels, CSR, CSR4
and HYB, in all three precisions — single, quasi double(single-double) and
double. Figure 7.9, 7.10 and 7.11 shows the results for the CG with Hybrid
kernels. Also here, as with the BLAS 1 kernels, the reduced OpenCL per-
formance is visible. For the SpMV kernels the gap is even larger, except
for when in quasi precision. In quasi precision one double is represented
as two floats. This shows a less performance impact in the OpenCL Hy-

73

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

11000	

12000	

13000	

14000	

15000	

16000	

17000	

18000	

19000	

20000	

21000	

22000	

23000	

24000	

25000	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (HYB)	
 Cg	
 (HYB)	

CLBLAS	

GPUBLAS	

Figure 7.9: Cg HYB single precision benchmark result.

brid kernel than the CUDA based one, and the results here are closer to
each-other. The overall lesser performance is mainly due to the non-use of
CL-Image memory objects (storing the vectors) to enable efficient texture
reads on the vectors, and partly due to the overhead as found for the BLAS
1 kernels.

Figure 7.12, 7.13 and 7.14 shows the results for the CG with CSR4 ker-
nels. Here the CSR4 SpMV gap is quite dramatic, again part of this is
caused by no use of CL Image in the OpenCL kernels, for texture reads.
The OpenCL kernel will read the arrays in a 4-by-4 elements manner, but
not use the texture memory hardware(image samplers) available for this.
Also, the worsened effect of not using the ELL format for the non-regular
rows is clearly visible.

Finally, Figure 7.15, 7.16 and 7.17 shows the results for the CG with
CSR kernels. Interesting to see is how the OpenCL SpMV kernels as fast or
even faster than the CUDA version. This tells us that using texture fetch
has no benefit when the elements are read in a one-by-on manner, and that
it actually might degrade performance a bit in comparison to a ordinary
read(not using texture fetch hardware). The CUDA version shows a greatly
improved performance when reading 4-by-4 elements with texture fetch(in
the CSR4 kernels).

74

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5500	

6000	

6500	

7000	

7500	

8000	

8500	

9000	

9500	

10000	

10500	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (HYB)	
 Cg	
 (HYB)	

CLBLAS	

GPUBLAS	

Figure 7.10: Cg HYB qdouble precision benchmark result.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

11000	

12000	

13000	

14000	

15000	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

Sm
al
l	

M
ed

iu
m
	

La
rg
e	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (HYB)	
 Cg	
 (HYB)	

CLBLAS	

GPUBLAS	

Figure 7.11: Cg HYB double precision benchmark result.

75

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

11000	

12000	

13000	

14000	

15000	

16000	

17000	

18000	

19000	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR4)	
 Cg	
 (CSR4)	

CLBLAS	

GPUBLAS	

Figure 7.12: Cg CSR4 single precision benchmark result.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5500	

6000	

6500	

7000	

7500	

8000	

8500	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR4)	
 Cg	
 (CSR4)	

CLBLAS	

GPUBLAS	

Figure 7.13: Cg CSR4 qdouble precision benchmark result.

76

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5500	

6000	

6500	

7000	

7500	

8000	

8500	

9000	

9500	

10000	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR4)	
 Cg	
 (CSR4)	

CLBLAS	

GPUBLAS	

Figure 7.14: Cg CSR4 double precision benchmark result.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

11000	

12000	

13000	

14000	

15000	

16000	

17000	

18000	

19000	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR)	
 Cg	
 (CSR)	

CLBLAS	

GPUBLAS	

Figure 7.15: Cg CSR single precision benchmark result.

77

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5500	

6000	

6500	

7000	

7500	

8000	

8500	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR)	
 Cg	
 (CSR)	

CLBLAS	

GPUBLAS	

Figure 7.16: Cg CSR qdouble precision benchmark result.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5500	

6000	

6500	

7000	

7500	

8000	

8500	

9000	

9500	

10000	

Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	
 Medium	
 Large	

DOT	
 AXPY	
 AYPX	
 SpMV	
 (CSR)	
 Cg	
 (CSR)	

CLBLAS	

GPUBLAS	

Figure 7.17: Cg CSR double precision benchmark result.

78

Chapter 8

Conclusions

During this masters thesis work the CUKr library has received additional
support for running the Cg Krylov solver on all hardware supported by
OpenCL implementations. This includes selected BLAS 1 and BLAS 2 ker-
nels. Existing CUDA kernels in the CUKr library were ported to OpenCL,
and changes were made to the CUKr source-code infrastructure to accom-
modate the use of OpenCL. Here some structural properties of CUKr that
did not suit the use of OpenCL well had to be overcome (in essence the
way CUKr dealt with references to vectors in device memory). All kernels
in CUKr are solving problems that are highly memory bound. The GPU is
ideal here as these architectures can deliver an order of magnitude higher
memory bandwidth than the common CPU of the present. CUKr with the
new additions compiles under both Linux and OS X. It should compile just
fine under Windows too, though this is not tested.

OpenCL is a big leap forward. Challenges regarding memory access,
especially visible in memory bound problems, are observed in the Nvidia
Computing SDK 3.0. There are strong indications that the more mature
CUDA technology has an overall better performance. It is believed this
gap in the performance observed will close as the OpenCL implementation
matures, and the SDK gets revised. It is also highly expected that other
implementations of OpenCL (from AMD/ATI and Apple) will improve
performance and efficiency over time.

The kernels produced in this work are expected to perform well on
latest AMD/ATI GPUs (58xx - series), adjusting the partitioning (global
and local sizes) is the only modification that will be needed. Unfortunately,
as there is no 58xx-hardware available for the time of the benchmarking,
this is not yet tested. Test runs have been done on 48xx-hardware, but
performance was not what it should be considering the device’s theoretical
possibilities for the problems to be solved. 1

1AMD/ATI has reported that this hardware was not designed with OpenCL in mind
(the fact that it runs OpenCL at all is a testament to the AMD/ATI engineers forward think-

79

The difficulty of implementing high performance memory bound com-
pute kernels, to run efficiently on different devices, is clear. This is directly
linked to the different devices’ ideal memory access pattern for utilizing
its memory bandwidth — which is significantly different on a CPU and
a GPU. Even within different kinds of CPUs and different types of GPUs,
there are different best practices for attaining ideal memory bandwidth uti-
lization. This problem domain underlines the importance of proper mem-
ory access patterns, ideal for each device. An ideal AYPX kernel for the
GPU was run on a CPU, with performance far away from the Intel MKL
library. Then, a AYPX kernel ideal for the CPU reading sequential memory
addresses from each core was implemented, resulting in many fold speed
improvements as long as the vectors could fit in the CPU cache. Once the
vectors could not fit in the cache the performance was very similar to the
Intel MKL library (on same vector lengths). At this point the performance
of the GPU ideal kernel was about half. This illustrated how the GPU ideal
kernel could not utilize the cache because of its memory access pattern.

Maintainable and easily readable code is difficult if not impossible to
produce if one tries to make one kernel suitable for both GPU and CPU
in this domain — that is to compete with other high performance imple-
mentations for a particular device (like the Intel MKL library or CUDA
CUBLAS library). If one is after competitive performance, one should still
make custom kernels for the architecture type. This is not only for the sake
of pure performance, but also for the sake of readable and maintainable
OpenCL code.

It is a fact that in High Performance Computing, one does not want
to compromise on performance, in general. However, if kernels are easily
portable from one architecture to another as OpenCL kernels are, this is of
value in itself. Maybe even to such a degree that considerable reduction in
performance is acceptable. The question is to what degree.

The author believes that OpenCL 1.0 in the domain of High Perfor-
mance Computing should be used as a powerful tool for heterogeneous
systems, with its orchestrating and scheduling abilities. Thereby; utilizing
each device for what it is best suited for with suitable kernels for it, thus not
forcing a uniform kernel on vastly different architectures — counterfeiting
the high performance computing ideology.

By the end of this thesis work, the OpenCL 1.1 specification was re-
leased by The Khronos group — 18 months after the initial OpenCL 1.0
specification was released at ACM Siggraph Asia in December 2008. OpenCL
1.1 is reported to add functionality for increased programming flexibility
and performance. Quoting the press release2 from the Khronos group the

ing when the chip was in design process around 2006). It is said this card can perform with
careful and highly device dependent tuning, something that would be undermining the
wish to have a kernel performing well on a range of GPUs.

2http://www.khronos.org/news/press/releases/khronos-group-releases-opencl-1-1-

80

major new additions are:

• New data types including 3-component vectors and additional image
formats

• Handling commands from multiple host threads and processing buffers
across multiple devices

• Operations on regions of a buffer including read, write and copy of
1D, 2D or 3D rectangular regions

• Enhanced use of events to drive and control command execution

• Additional OpenCL C built-in functions such as integer clamp, shuf-
fle and asynchronous strided copies

• Improved OpenGL interoperability through efficient sharing of im-
ages and buffers by linking OpenCL and OpenGL events

We underline that OpenCL 1.0 capable devices can still benefit from im-
proved implementations, as the OpenCL 1.0 compatible implementations
are maturing — as seen in parts of this work.

parallel-computing-standard

81

Chapter 9

Further work

At the end of this project it is clear that there are many areas part of this
project or closely related that are worth exploring in more depth:

• Implementing the use of CL Image memory objects in the OpenCL
based SpMV kernels, in order to achieve higher performance.

• Investigate how automatic set-up of Local and Global sub-divisions
(partitioning) impacts performance. Also, experimentation with ex-
plicit and implicit sub-divisions.

• As this project has required competing with the CUDA kernels al-
ready part of CUKr (both from a practical and interest point of view),
substantial focus has not been given to writing one given BLAS 1 ker-
nel that is suitable(in terms of acceptable speed) for both GPU and
CPU. This was not a priority due to the High Performance Comput-
ing requirement — as speed on the GPU would certainly be sacrificed
with such a focus. Further experiments with a kernel more suiting of
both architecture types had been of interest. Here, adoptable memory
access must be investigated further (un-cluttered and maintainable
code that has acceptable memory access pattern on both architecture
types).

• Auto-tuning for hardware.

• The running on multiple compute devices(1), and running on en-
tire cluster with multiple compute devices in each node with help
of MPI(2), as CUKr can.

• Implementing BCSR and BELL SpMV formats; new performance test-
ings.

• More experimentation with running on CPUs, and optimizing ker-
nels for good utilization of the CPU cache-hierarchy. Especially on a

83

Non-Uniform Memory Access (NUMA) Nehalem cluster as the Okuda
Laboratory has access to, where every node is connected with Infini-
band network. In general, testing the combination of OpenCL with
NUMA machines (CPU), build up experience and best practices in
this area.

• Running on latest generation AMD/ATI hardware, such as the 58xx-
series of cards. Running on Nvidia Fermi architecture based cards.

• Re-implement a CUKr-like library from scratch using only OpenCL,
optionally taking other points mentioned here into account. The use
of C++ to reduce complexity in the code to make it more readable. If
done, the already existing (open-source) OpenCL C++ bindings will
have to be used.

84

Bibliography

[1] The Cilk Project. http: // supertech. csail. mit. edu/ cilk/ , Ac-
cessed online March, 2010.

[2] NESL - a nested data parallel language. http: // www. cs. cmu. edu/

~scandal/ nesl. html , Accessed online March, 2010.

[3] OpenMP Application Program Interface Version 3.0. http: //

www. openmp. org/ mp-documents/ spec30. pdf , Accessed online March,
2010.

[4] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven auto-
tuning of sparse matrix-vector multiply on GPUs. In PPoPP ’10: Pro-
ceedings of the 15th ACM SIGPLAN symposium on Principles and practice
of parallel computing, pages 115–126, New York, NY, USA, 2010. ACM.

[5] Olav Aanes Fagerlund. An investigation of the emerging Open Com-
puting Language (OpenCL) – and a comparison of OpenCL and CUDA
implementations. NTNU, Computer Science Project Report, December
2008.

[6] Serban Georgescu. CUKr User’s Guide v. 1.0.0. 2009.

[7] Serban Georgescu. Krylov Solvers Accelerated by Manycore Processors.
PhD thesis, The University of Tokyo, Japan, 2009.

[8] Magnus R. Hestenes and Eduard Steifel. Methods of conjugate gra-
dients for solving linear systems. In Journal of Research of the National
Bureau of Standards, pages 49: 409–436, Dec 1952.

[9] Apple Inc. WWDC’08 Open Compute Library Specification Draft Re-
vision 1.0.06. Obtained at WWDC’08, 2008.

[10] B. Jacob. A case for studying dram issues at the system level. In IEEE
M MICRO, page 23(4):44Ð56, 2003.

[11] Rune Erlend Jensen. Techniques and Tools for Optimizing Codes on
Modern Architectures: A Low-Level Approach. NTNU, Computer Sci-
ence Master Thesis, May 2009.

85

http://supertech.csail.mit.edu/cilk/
http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.cmu.edu/~scandal/nesl.html
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

[12] The Khronos Group. Open Compute Library Specification Version
1.0, Document Revision 48. http: // www. khronos. org/ registry/

cl/ , 2009.

[13] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[14] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the 2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[15] Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym.
NVIDIA Tesla: A Unified Graphics and Computing Architecture.
IEEE Micro, pages 39-55, Vol. 28, Issue 2, 2008.

[16] Advanced Micro Devices. R700-Family Instruction Set Archi-
tecture. http: // developer. amd. com/ gpu_ assets/ R700-Family_

Instruction_ Set_ Architecture. pdf , 2009.

[17] Advanced Micro Devices. Ati Stream Computing OpenCL Pro-
gramming Guide. http: // developer. amd. com/ gpu_ assets/ ATI_

Stream_ SDK_ OpenCL_ Programming_ Guide. pdf , 2010.

[18] Nvidia. OpenCL Programming Guide for the CUDA Architec-
ture. http: // developer. download. nvidia. com/ compute/ cuda/

3_ 0/ toolkit/ docs/ NVIDIA_ OpenCL_ ProgrammingGuide. pdf , 2010.

[19] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. In SIAM Journal
on Scientific and Statistical Computing, pages 7: 856–869, 1986.

[20] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008.
IEEE Press.

[21] Richard Wilson Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, Berkeley, 2003.

86

http://www.khronos.org/registry/cl/
http://www.khronos.org/registry/cl/
http://developer.amd.com/gpu_assets/R700-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu_assets/R700-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf

Appendix A

Hardware specifications

In Table A.1 the bandwidth is computed by the product of memory chan-
nels, the memory clock speed towards the CPU, and the number of Bytes
transferred at each clock. The i7 has three memory channels, and the Core
2 Quad has two. The peak performance is the product of amount of cores
in the CPU, how many single precision floats fits in the SSE registers, and
the clock speed of the CPU. For double precision the performance is half,
as half as many values fit in the SSE registers (4 values, each 64 bit). Note
the bandwidth advantage seen in the i7 based chips. The Core 2 Quad
has a bandwidth of 1/3rd relative to the i7. All though they both utilize
DDR3 memory, the Core 2 Quad is limited by the Front Side Bus (FSB),
as all memory transfers goes through the North-bridge chip — severely
limiting the memory bandwidth, by diminishing the effect of two memory
channels (resulting in one transfer per clock instead of two, the latter being
allowed by dual channel memory). The i7 has lower memory latency, due
the advantage of directly communicating with the memory as the memory
controller is part of the CPU chip itself. Table A.1 shows this difference
in practice as a memory stream test was run on each of the architectures.
A memory-bandwidth open-source benchmark program called Stream was
used for this, and can be found at the http://www.cs.virginia.edu/stream/ site.

87

N
ehalem

i7
975

C
ore

2
Q

uad
Q

9450
Peak

perf.
4

x
8

x
3
.
3
3
G
H
z
=

1
0
6
.
5
6
G
F
l
o
p
/
s

4
x
8

x
2
.
6
6
G
H
z
=

8
5
.
1
2
G
F
l
o
p
/
s

B
andw

idth
3

x
1
3
3
3
M
H
z

x
8
B

=
3
2
G
B
/
s

1
3
3
3
M
H
z

x
8

B
=
1
0
.
6
6
G
B
/
s

Stream
res.

2
8
.
5
G
B
/
s

9
.
4
G
B
/
s

Table
A

.1:IntelC
PU

characteristics

88

Pr
op

er
ty

V
al

ue
Fa

br
ic

at
io

n
pr

oc
es

s
5
5
n
m

Tr
an

si
st

or
s

9
5
6

M
i
l
l
i
o
n

C
or

e
C

lo
ck

7
5
0
M
H
z

St
re

am
Pr

oc
es

so
rs

8
0
0

M
em

or
y

C
lo

ck
9
0
0
M
H
z

G
D
D
R
5
→

3
6
0
0
M
H
z

d
a
t
a

r
a
t
e

M
em

or
y

B
us

W
id

th
2
5
6

b
i
t

M
em

or
y

B
an

dw
it

h
1
1
5
.
2

G
B
/
s

Si
ng

le
pr

ec
is

io
n

pe
ak

pe
rf

or
m

an
ce

1
.
2

T
e
r
a
F
l
o
p
/
s

D
ou

bl
e

pr
ec

is
io

n
pe

ak
pe

rf
or

m
an

ce
2
4
0

G
i
g
a
F
l
o
p
/
s

M
ax

im
um

bo
ar

d
po

w
er

1
6
0

W
a
t
t
s

Ta
bl

e
A

.2
:A

TI
R

ad
eo

n
H

D
48

70
ch

ar
ac

te
ri

st
ic

s

89

Property
V

alue
Fabrication

process
4
0
n
m

Transistors
2
.
1
5

b
i
l
l
i
o
n

C
ore

C
lock

8
5
0
M
H
z

Stream
Processors

1
6
0
0

M
em

ory
C

lock
1
2
0
0
M
H
z

G
D
D
R
5
→

4
8
0
0
M
H
z

d
a
t
a

r
a
t
e

M
em

ory
B

us
W

idth
2
5
6

b
i
t

M
em

ory
B

andw
ith

1
5
3
.
6

G
B
/
s

Single
precision

peak
perform

ance
2
.
7
2

T
e
r
a
F
l
o
p
/
s

D
ouble

precision
peak

perform
ance

5
4
4

G
i
g
a
F
l
o
p
/
s

M
axim

um
board

pow
er

1
8
8

W
a
t
t
s

Table
A

.3:A
TIR

adeon
H

D
5870

characteristics

90

Pr
op

er
ty

V
al

ue
Fa

br
ic

at
io

n
pr

oc
es

s
6
5
n
m

Tr
an

si
st

or
s

1
.
4

b
i
l
l
i
o
n

Sh
ad

er
C

lo
ck

1
2
9
6
M
H
z

C
U

D
A

co
re

s
2
4
0

M
em

or
y

C
lo

ck
1
1
0
7
M
H
z

G
D
D
R
3
→

2
2
1
4
M
H
z

d
a
t
a

r
a
t
e

M
em

or
y

B
us

W
id

th
5
1
2

b
i
t

M
em

or
y

B
an

dw
it

h
1
4
1
.
7

G
B
/
s

Si
ng

le
pr

ec
is

io
n

pe
ak

pe
rf

or
m

an
ce

9
3
3

G
i
g
a
F
l
o
p
/
s

D
ou

bl
e

pr
ec

is
io

n
pe

ak
pe

rf
or

m
an

ce
7
8

G
i
g
a
F
l
o
p
/
s

M
ax

im
um

bo
ar

d
po

w
er

2
3
6

W
a
t
t
s

Ta
bl

e
A

.4
:N

vi
di

a
G

TX
28

0
ch

ar
ac

te
ri

st
ic

s

91

Property
V

alue
Fabrication

process
4
0
n
m

Transistors
3

b
i
l
l
i
o
n

Shader
C

lock
1
4
0
1
M
H
z

C
U

D
A

cores
4
8
0

M
em

ory
C

lock
1
8
4
8
M
H
z

G
D
D
R
5
→

3
6
9
6
M
H
z

d
a
t
a

r
a
t
e

M
em

ory
B

us
W

idth
3
8
4

b
i
t

M
em

ory
B

andw
ith

1
7
7
.
4

G
B
/
s

Single
precision

peak
perform

ance
1
3
4
4
.
9
6

G
i
g
a
F
l
o
p
/
s

D
ouble

precision
peak

perform
ance

1
6
8
.
1
2

G
i
g
a
F
l
o
p
/
s

M
axim

um
board

pow
er

2
5
0

W
a
t
t
s

Table
A

.5:N
vidia

G
TX

480
characteristics

92

Appendix B

OpenCL devices under
different implementations

This Appendix part shows printouts of OpenCL characteristics, on differ-
ent hardware and with different implementations. Notice especially how
the ATI SDK v.2.1 shows 0 KB cache (global memory cache in OpenCL
terms) of the Intel Nehalem based Xeon processor. The ATI SDK v.2.0.1 in-
stalled on a Intel Core 2 Quad system shows only 64KB of the cache(probably
only the L1 cache). The reason for this is currently not known. Also notice
that the Apple implementation only allows 1 work-item per work-group
on the CPU. In contrast the ATI one allows 1024.

B.1 Apple Mac Pro, OS X 10.6.4

* * * 2 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Apr 7 2010 19:04:28)

CL device name: Radeon HD 4870

Max compute units: 10

Clock frequency: 750 MHz

Device global memory size: 512 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1024 threads

Device profiling timer resolution: 40 nanoseconds

Device preferred vector width int: 4

93

Device preferred vector width float: 4

Device preferred vector width double: 0

Device image support (1: true , 0 false): 0

Extensions supported :

cl_APPLE_gl_sharing

Device number 1 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Apr 7 2010 19:04:28)

CL device name: Intel(R) Xeon(R) CPU E5462 @

2.80 GHz

Max compute units: 8

Clock frequency: 2800 MHz

Device global memory size: 3840 MB

Device global memory cache size: 6144 KB

Device global memory cache line size: 64 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1 threads

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 2

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_fp64

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

B.2 Apple Mac Pro, OS X 10.6.3

* * * 2 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Feb 10 2010 23:46:58)

CL device name: Radeon HD 4870

Max compute units: 10

Clock frequency: 750 MHz

94

Device global memory size: 512 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1024 threads

Device profiling timer resolution: 40 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 0

Device image support (1: true , 0 false): 0

Extensions supported :

cl_APPLE_gl_sharing

Device number 1 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Feb 10 2010 23:46:58)

CL device name: Intel(R) Xeon(R) CPU E5462 @

2.80 GHz

Max compute units: 8

Clock frequency: 2800 MHz

Device global memory size: 3840 MB

Device global memory cache size: 6144 KB

Device global memory cache line size: 64 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1 threads

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 2

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_fp64

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

95

B.3 Apple Macbook Pro, OS X 10.6.4

* * * 2 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Apr 7 2010 19:04:28)

CL device name: GeForce 8600M GT

Max compute units: 4

Clock frequency: 940 MHz

Device global memory size: 512 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 512 threads

Device profiling timer resolution: 1000 nanoseconds

Device preferred vector width int: 1

Device preferred vector width float: 1

Device preferred vector width double: 0

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_byte_addressable_store

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

Device number 1 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Apr 7 2010 19:04:28)

CL device name: Intel(R) Core(TM)2 Duo CPU T9300 @

2.50 GHz

Max compute units: 2

Clock frequency: 2500 MHz

Device global memory size: 3072 MB

Device global memory cache size: 6144 KB

Device global memory cache line size: 64 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1 threads

96

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 2

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_fp64

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

B.4 Apple Macbook Pro, OS X 10.6.3

* * * 2 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Feb 10 2010 23:46:58)

CL device name: GeForce 8600M GT

Max compute units: 4

Clock frequency: 940 MHz

Device global memory size: 512 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 512 threads

Device profiling timer resolution: 1000 nanoseconds

Device preferred vector width int: 1

Device preferred vector width float: 1

Device preferred vector width double: 0

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_byte_addressable_store

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

97

Device number 1 :

CL platform vendor: Apple

CL platform version: OpenCL 1.0 (Feb 10 2010 23:46:58)

CL device name: Intel(R) Core(TM)2 Duo CPU T9300 @

2.50 GHz

Max compute units: 2

Clock frequency: 2500 MHz

Device global memory size: 3072 MB

Device global memory cache size: 6144 KB

Device global memory cache line size: 64 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1 threads

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 2

Device image support (1: true , 0 false): 1

Extensions supported :

cl_khr_fp64

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_byte_addressable_store

cl_APPLE_gl_sharing

cl_APPLE_SetMemObjectDestructor

cl_APPLE_ContextLoggingFunctions

B.5 Nvidia CUDA SDK 3.0 Linux

* * * 3 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor:

CL platform version:

CL device name:

Max compute units: 30

Clock frequency: 1300 MHz

Device global memory size: 1023 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

98

Device max work -item dimensions: 3

Device max work -group size: 512 threads

Device profiling timer resolution: 1000 nanoseconds

Device preferred vector width int: 1

Device preferred vector width float: 1

Device preferred vector width double: 1

Device image support (1: true , 0 false): 1

Extensions supported :

Device number 1 :

CL platform vendor:

CL platform version:

CL device name:

Max compute units: 30

Clock frequency: 1300 MHz

Device global memory size: 1023 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 512 threads

Device profiling timer resolution: 1000 nanoseconds

Device preferred vector width int: 1

Device preferred vector width float: 1

Device preferred vector width double: 1

Device image support (1: true , 0 false): 1

Extensions supported :

Device number 2 :

CL platform vendor:

CL platform version:

CL device name:

Max compute units: 30

Clock frequency: 1300 MHz

Device global memory size: 1023 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 16 KB

Device local memory is physical memory type: CL_LOCAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 512 threads

Device profiling timer resolution: 1000 nanoseconds

99

Device preferred vector width int: 1

Device preferred vector width float: 1

Device preferred vector width double: 1

Device image support (1: true , 0 false): 1

Extensions supported :

B.6 ATI Stream SDK 2.1 Linux

* * * 1 OpenCL devices found in the system * * *

Device number 0 :

CL platform vendor: Advanced Micro Devices , Inc.

CL platform version: OpenCL 1.0 ATI -Stream -v2.1 (145)

CL device name: Intel(R) Xeon(R) CPU X5550 @

2.67 GHz

Max compute units: 8

Clock frequency: 2666 MHz

Device global memory size: 3072 MB

Device global memory cache size: 0 KB

Device global memory cache line size: 0 Bytes

Device local memory size: 32 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1024 threads

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 0

Device image support (1: true , 0 false): 0

Extensions supported :

cl_khr_icd

cl_amd_fp64

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics

cl_khr_byte_addressable_store

cl_khr_gl_sharing

cl_ext_device_fission

cl_amd_device_attribute_query

cl_amd_printf

B.7 ATI Stream SDK 2.01 Linux

* * * 1 OpenCL devices found in the system * * *

100

Device number 0 :

CL platform vendor: Advanced Micro Devices , Inc.

CL platform version: OpenCL 1.0 ATI -Stream -v2.0.1

CL device name: Intel(R) Core(TM)2 Quad CPU Q9450 @

2.66 GHz

Max compute units: 4

Clock frequency: 2667 MHz

Device global memory size: 3072 MB

Device global memory cache size: 64 KB

Device global memory cache line size: 64 Bytes

Device local memory size: 32 KB

Device local memory is physical memory type: CL_GLOBAL

Device max constant buffer size: 64 KB

Device max work -item dimensions: 3

Device max work -group size: 1024 threads

Device profiling timer resolution: 1 nanoseconds

Device preferred vector width int: 4

Device preferred vector width float: 4

Device preferred vector width double: 0

Device image support (1: true , 0 false): 0

Extensions supported :

cl_khr_icd

cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics

cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics

cl_khr_byte_addressable_store

101

Appendix C

Matrix properties

103

M
atrix

R
ow

s
C

ols
N

z
R

ank
FullR

ank
Structure

SPD
Type

K
ind

apache1
80800

80800
542184

80800
yes

sym
m

etric
yes

real
structuralproblem

cfd1
70656

70656
1825580

70656
yes

sym
m

etric
yes

real
C

FD
problem

nasasrb
54870

54870
2677324

54870
yes

sym
m

etric
yes

real
structuralproblem

cfd2
123440

123440
3085406

123440
yes

sym
m

etric
yes

real
C

FD
problem

apache2
715176

715176
4817870

715176
yes

sym
m

etric
yes

real
structuralproblem

crankseg_2
63838

63838
14148858

63838
yes

sym
m

etric
yes

real
structuralproblem

af_0_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_1_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_2_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_3_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_4_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_5_k101
503625

503625
17550675

503625
yes

sym
m

etric
yes

real
structuralproblem

af_shell3
504855

504855
17562051

504855
yes

sym
m

etric
yes

real
structuralproblem

af_shell4
504855

504855
17562051

504855
yes

sym
m

etric
yes

real
structuralproblem

af_shell7
504855

504855
17579155

504855
yes

sym
m

etric
yes

real
structuralproblem

af_shell8
504855

504855
17579155

504855
yes

sym
m

etric
yes

real
structuralproblem

Table
C

.1:M
atrix

properties
table.T

he
divisions

show
s

the
3

groups
used.From

top
to

bottom
;sm

all–
m

edium
–

large,re-
spectively.T

he
lastfour

m
atrices

are
from

subsequentstructuralproblem
s.C

FD
is

shortfor
C

om
putationalFluid

D
ynam

ics.
A

llm
atrices

are
2D

/3D
.

104

Appendix D

Benchmark graphs

For the interested reader these graphs are supplied in addition to those
commented on under the results chapter.

105

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.1: AXPY, OpenCL kernels uses no local memory as opposed to
the CUDA kernel which does.

106

 0

 5000

 10000

 15000

 20000

 10000 100000 1e+06

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.2: AXPY, OpenCL kernels uses local memory, as the CUDA kernel
also does.

107

 0

 5000

 10000

 15000

 20000

 25000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.3: AXPY with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the CUDA kernel
which does.

108

 0

 5000

 10000

 15000

 20000

 25000

 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
M

F
lo

p/
s)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.4: AXPY with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel also does.

109

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.5: AYPX, OpenCL kernels uses no local memory as opposed to
the CUDA kernel which does. Partitioning sizes are also adjusted to suit.
Bandwidth utilization is illustrated.

110

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.6: AYPX, OpenCL kernels uses local memory, as the CUDA ker-
nel also does. Similar partitioning sizes as to the CUDA kernels are used.
Bandwidth utilization is illustrated.

111

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.7: AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the CUDA kernel
which does. Partitioning sizes are also adjusted to suit. Bandwidth utiliza-
tion is illustrated.

112

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.8: AYPX with large vector sizes — up to 21 million elements,
OpenCL kernels uses local memory, as the CUDA kernel also does. Similar
partitioning sizes as to the CUDA kernels are used. Bandwidth utilization
is illustrated.

113

 0

 20000

 40000

 60000

 80000

 100000

 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.9: DOT; OpenCL vs. CUDA implementation. Bandwidth utiliza-
tion is illustrated.

114

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.10: DOT with large vector sizes — up to 21 million elements;
OpenCL vs. CUDA implementation. Bandwidth utilization is illustrated.

115

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

/s
)

Vector size

CLBLAS (SINGLE)
CLBLAS (QDOUBLE)

CLBLAS (DOUBLE)

GPUBLAS (SINGLE)
GPUBLAS (QDOUBLE)

GPUBLAS (DOUBLE)

Figure D.11: SCAL with large vector sizes — up to 21 million elements,
OpenCL kernels uses no local memory as opposed to the CUDA kernel
which does. Bandwidth utilization is illustrated.

116

Appendix E

Code listings

Note that not all code written for this project is part of the code listings.
Because of the large number of B5 format pages required, code-files are
left out. The listings here contains the kernels, their set-up functions, the
OpenCL CUKr initialization, and at the end the code for probing a system
for OpenCL devices and printing out these characteristics. Other impor-
tant additions such as the BLAS level infrastructure changes, and (espe-
cially important) the vector operations source-file is left out. These source-
files both contain OpenCL and CUDA relevant code for compilation (where
one of these technologies is chosen at cmake configuration time before com-
pilation). This makes the files large; it was therefore decided to leave them
out of the listings here. However, all the relevant source-code is found in
the included attachment. Note that the BLAS 1 kernel code here uses local
memory, as this was the last testing. The author expects this to be a benefit
with future OpenCL implementations to be released.

• src/init/:

Contains the OpenCL initialization code, executed at CUKr program
start.

• src/blas/blas.c:

Contains BLAS bindings for CUKr. Higher level abstract BLAS func-
tions. Part of the BLAS level infrastructure.

• src/blas/sp/blas1_sp.c and src/blas/sp/blas2_sp.c:

Interfaces for the BLAS routines, including the new OpenCL ones.

• src/blas/impl/gpu/:

Contains a directory with all the OpenCL kernels and their set-up
code. And gpu_blas.c; wrapper for the BLAS functions, wether
OpenCL based or CUDA based.

117

• src/mat_vec/sp/vector_sp.c:

Contains the necessary vector-operations for OpenCL, such as allo-
cating the OpenCL vectors, freeing them, copying them between host
and device and so on.

E.1 AXPY CPU Single

/*

* kernel_saxpy.cl

*

*

*

*/

__kernel void kernel_saxpy(

const int n,

const float a,

__global const float4* x,

__global float4* y

)

{

int work_item_domain;

int totalWorkItems = get_global_size (0);

// get amount of overshooting float values (0, 1, 2,

or 3)

int restSingle = n % 4;

// amount of full float4 values

int amountQuad = (n - restSingle) / 4;

// how many full float4 values among the global work -

items , assumes amountQuad >> totalWorkItems

int restQuad = amountQuad % totalWorkItems;

if (restQuad == 0)

work_item_domain = amountQuad / totalWorkItems;

else{

work_item_domain = (amountQuad - restQuad) /

totalWorkItems;

}

// find where to start at each work -item

int ctaStart = get_global_id (0) * work_item_domain;

// define the end

int ctaEnd = ctaStart + work_item_domain;

// Read the data , insert a #PRAGMA unroll if available

118

for (int i = ctaStart; i < ctaEnd; i++)

{

y[i] = y[i] + a * x[i];

}

int lastQuad = ctaEnd + restQuad;

// handle last overshooting float4 values (max

totalWorkItems - 1)

// this part should be improved to a more even

distribution among all work -items (?)

if (restQuad != 0 && (get_global_id (0) + 1 ==

totalWorkItems)){

for (int i = ctaEnd; i < lastQuad; i++)

{

y[i] = y[i] + a * x[i];

}

}

// handle the last overshooting float values (max 3)

if (restSingle != 0 && (get_global_id (0) + 1 ==

totalWorkItems)){

if (restSingle == 1)

y[lastQuad].x = y[lastQuad].x + a * x[lastQuad].x;

else if (restSingle == 2){

y[lastQuad].x = y[lastQuad].x + a * x[lastQuad].x;

y[lastQuad].y = y[lastQuad].y + a * x[lastQuad].y;

}

else if (restSingle == 3){

y[lastQuad].x = y[lastQuad].x + a * x[lastQuad].x;

y[lastQuad].y = y[lastQuad].y + a * x[lastQuad].y;

y[lastQuad].z = y[lastQuad].z + a * x[lastQuad].z;

}

}

}

E.2 AXPY GPU Single

/*

* kernel_saxpy.cl

*

*

*

*/

__kernel void kernel_saxpy(

const int n,

const float a,

119

__global const float* x,

__global float* y,

__local float* buffer_x ,

__local float* buffer_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data (full lines) */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

/* Prefetch x and y */

buffer_x[tx] = x[i];

buffer_y[tx] = y[i];

/* Multiply and write */

y[i] = buffer_y[tx] + a * buffer_x[tx];

//y[i] = y[i] + a * x[i];

}

}

E.3 AXPY GPU Double

/*

* kernel_saxpy.cl

*

*

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_daxpy(

const int n,

const double a,

__global const double* x,

__global double* y,

__local double* buffer_x ,

__local double* buffer_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

120

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data (full lines) */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

/* Prefetch x and y */

buffer_x[tx] = x[i];

buffer_y[tx] = y[i];

/* Multiply and write */

y[i] = buffer_y[tx] + a * buffer_x[tx];

//y[i] = y[i] + a * x[i];

}

}

E.4 AYPX GPU Single

/*

* kernel_saypx.cl

*

*

*

*/

__kernel void kernel_saypx(

const int n,

const float a,

__global const float* x,

__global float* y,

__local float* buffer_x ,

__local float* buffer_y

)

{

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

// Read the data (full lines)

for (int i = ctaStart + tx; i < n; i += totalThreads)

121

{

// Prefetch x and y

buffer_x[tx] = x[i];

buffer_y[tx] = y[i];

// Multiply and write

y[i] = buffer_x[tx] + a * buffer_y[tx];

//y[i] = x[i] + a * y[i];

}

}

E.5 AYPX GPU Double

/*

* kernel_saypx.cl

*

*

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_daypx(

const int n,

const double a,

__global const double* x,

__global double* y,

__local double* buffer_x ,

__local double* buffer_y

)

{

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

// Read the data (full lines)

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

// Prefetch x and y

buffer_x[tx] = x[i];

buffer_y[tx] = y[i];

122

// Multiply and write

y[i] = buffer_x[tx] + a * buffer_y[tx];

//y[i] = x[i] + a * y[i];

}

}

E.6 DOT GPU Single

/*

* kernel_sdot.cl

*

*

*

*/

__kernel void kernel_sdot(

const int n,

__global const float* x,

__global const float* y,

__global float* res_m ,

__local float* partial_sum

)

{

float sum = 0;

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

int bx = get_group_id (0);

/* Read the sum data */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

sum += x[i] * y[i];

}

partial_sum[tx] = sum;

/* Reduce data for the work -group */

for (int i = get_local_size (0) >> 1; i > 0; i >>= 1)

{

barrier(CLK_LOCAL_MEM_FENCE);

if (tx < i) {

partial_sum[tx] += partial_sum[tx + i];

123

}

}

if (tx == 0) {

res_m[bx] = partial_sum[tx];

}

}

E.7 DOT GPU Double

/*

* kernel_sdot.cl

*

*

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_ddot(

const int n,

__global const double* x,

__global const double* y,

__global double* res_m ,

__local double* partial_sum

)

{

double sum = 0.0;

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

int bx = get_group_id (0);

/* Read the sum data */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

sum += x[i]*y[i];

}

partial_sum[tx] = sum;

/* Reduce data for the block */

for (int i = get_local_size (0) >> 1; i > 0; i >>= 1)

{

124

barrier(CLK_LOCAL_MEM_FENCE);

if (tx < i) {

partial_sum[tx] += partial_sum[tx + i];

}

}

if (tx == 0) {

res_m[bx] = partial_sum[tx];

}

}

E.8 SCAL GPU Single

/*

* kernel_sscal.cl

*

*

*

*/

__kernel void kernel_sscal(

const int n,

const float a,

__global float* x,

__local float* buffer_x

)

{

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

// Read the data (full lines)

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

// Prefetch x

buffer_x[tx] = x[i];

// Scale and write

x[i] = buffer_x[tx] * a;

//x[i] = x[i] * a;

}

}

125

E.9 SCAL GPU Double

/*

* kernel_sscal.cl

*

*

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_dscal(

const int n,

const double a,

__global double* x,

__local double* buffer_x

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data (full lines) */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

/* Prefetch x */

buffer_x[tx] = x[i];

/* Scale and write */

x[i] = buffer_x[tx] * a;

//x[i] = x[i] * a;

}

}

E.10 SPMV CSR GPU Single

/*

* kernel_sspmv_csr.cl

*

*

* csr port

*

* \brief Sparse matrix vector multiply in

* CSR format , in single precision

126

* \param rows Matrix size

* \param d_ptr Row index vector (first non -zero

element in row)

* \param d_idx Integer index for non -zero element

* \param d_val Value vector. All non -zero values of

the matrix

* \param d_x Vector being multiplied

* \param d_y Result vector

*/

#define USE_KAHAN_IN_SPMV 0

__kernel void kernel_sspmv_csr(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_val ,

__global const float* d_x ,

__global float* d_y ,

const float alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

// printf (" Inside csr\n");

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

float sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

float c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

float y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

float t = sum + y;

127

c = (t - sum) - y;

sum = t;

}

#else

float sum = 0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] += alpha * sum;

}

}

E.11 SPMV CSR_B0 GPU Single

/*

* kernel_sspmv_csr.cl

*

*

* csr port

*

*/

#define USE_KAHAN_IN_SPMV 0

__kernel void kernel_sspmv_csr_b0(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_val ,

__global const float* d_x ,

__global float* d_y ,

const float alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

// printf (" inside CSR4 b0\n");

/* Read the data*/

128

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

float sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

float c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

float y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

float t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

float sum = 0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] = alpha * sum;

}

}

E.12 SPMV CSR_A1 GPU Single

/*

* kernel_sspmv_csr.cl

*

*

* csr port

*

*/

#define USE_KAHAN_IN_SPMV 0

__kernel void kernel_sspmv_csr_a1(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_val ,

__global const float* d_x ,

129

__global float* d_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

float sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

float c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

float y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

float t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

float sum = 0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] += sum;

}

}

E.13 SPMV CSR_A1_B0 GPU Single

/*

* kernel_sspmv_csr.cl

*

130

* csr port

*

*

*/

#define USE_KAHAN_IN_SPMV 0

__kernel void kernel_sspmv_csr_a1_b0(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_val ,

__global const float* d_x ,

__global float* d_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

// printf (" inside CSR a1 b0\n");

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this work -item */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

float sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

float c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

float y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

float t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

float sum = 0;

for (int j = iRowBeg; j < iRowEnd; j++) {

131

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] = sum;

}

}

E.14 SPMV CSR GPU Double

/*

* kernel_sspmv_csr.cl

*

*

* csr port

*

* \brief Sparse matrix vector multiply in

* CSR format , in single precision

* \param rows Matrix size

* \param d_ptr Row index vector (first non -zero

element in row)

* \param d_idx Integer index for non -zero element

* \param d_val Value vector. All non -zero values of

the matrix

* \param d_x Vector being multiplied

* \param d_y Result vector

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#define USE_KAHAN_IN_SPMV 0

__kernel void kernel_dspmv_csr(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const double* d_val ,

__global const double* d_x ,

__global double* d_y ,

const double alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

132

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

double sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

double c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

double y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

double t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

double sum = 0.0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] += alpha * sum;

}

}

E.15 SPMV CSR_B0 GPU Double

/*

* kernel_sspmv_csr.cl

*

*

* csr port

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#define USE_KAHAN_IN_SPMV 0

133

__kernel void kernel_dspmv_csr_b0(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const double* d_val ,

__global const double* d_x ,

__global double* d_y ,

const double alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

double sum = d_val[iRowBeg] * d_x[(d_idx[iRowBeg])

- 1];

double c = 0.0;

for (int j = iRowBeg + 1; j < iRowEnd; j++) {

double y = d_val[j] * d_x[(d_idx[j]) - 1] - c;

double t = sum + y;

c = (t - sum) - y;

sum = t;

}

#else

double sum = 0.0;

for (int j = iRowBeg; j < iRowEnd; j++) {

sum += d_val[j] * d_x[(d_idx[j]) - 1];

}

#endif

/* Write the result to global memory */

d_y[i] = alpha * sum;

}

134

}

E.16 SPMV CSR4 GPU Single

/*

* kernel_sspmv_csr4.cl

*

*

* csr port

*

*/

__kernel void kernel_sspmv_csr4(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_val ,

__global const float* d_x ,

__global float* d_y ,

const float alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

float sum = 0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 val , x;

int4 idx;

idx = d_idx[j];

val = d_val[j];

135

idx -= 1;

x.x = d_x[idx.x];

x.y = d_x[idx.y];

x.z = d_x[idx.z];

x.w = d_x[idx.w];

sum += dot(x, val);

}

/* Write the result to global memory */

d_y[i] += alpha * sum;

}

}

E.17 SPMV CSR4_B0 GPU Single

/*

* kernel_sspmv_csr4_b0.cl

*

*

* csr port

*

*/

__kernel void kernel_sspmv_csr4_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_val ,

__global const float* d_x ,

__global float* d_y ,

const float alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

136

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

float sum = 0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 val , x;

int4 idx;

idx = d_idx[j];

val = d_val[j];

idx -= 1;

x.x = d_x[idx.x];

x.y = d_x[idx.y];

x.z = d_x[idx.z];

x.w = d_x[idx.w];

sum += dot(x, val);

}

/* Write the result to global memory */

d_y[i] = alpha * sum;

}

}

E.18 SPMV CSR4_A1 GPU Single

/*

* kernel_sspmv_csr4_a1.cl

*

*

* csr port

*

*/

__kernel void kernel_sspmv_csr4_a1(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_val ,

__global const float* d_x ,

__global float* d_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

137

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

// printf (" inside CSR4 a1\n");

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

float sum = 0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 val , x;

int4 idx;

idx = d_idx[j];

val = d_val[j];

idx -= 1;

x.x = d_x[idx.x];

x.y = d_x[idx.y];

x.z = d_x[idx.z];

x.w = d_x[idx.w];

sum += dot(x, val);

}

/* Write the result to global memory */

d_y[i] += sum;

}

}

E.19 SPMV CSR4_A1_B0 GPU Single

/*

* kernel_sspmv_csr4_a1_b0.cl

*

*

* csr port

*

138

*/

#pragma OPENCL EXTENSION all : enable

__kernel void kernel_sspmv_csr4_a1_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_val ,

__global const float* d_x ,

__global float* d_y

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

float sum;

float4 val , x;

int4 idx;

int iRowBeg , iRowEnd;

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

// Read the beginning and end of the row

// which will be processed by this thread

iRowBeg = d_ptr[i] - 1;

iRowEnd = d_ptr[i+1] - 1;

/// Read and sum for the column vectors

sum = 0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

idx = d_idx[j];

idx -= 1;

x = (float4)(d_x[idx.s0], d_x[idx.s1], d_x[idx.s2

], d_x[idx.s3]);

val = d_val[j];

sum += dot(x, val);

139

}

// Write the result to global memory

d_y[i] = sum;

}

}

E.20 SPMV CSR4 GPU Double

/*

* kernel_sspmv_csr4.cl

*

*

* csr port

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_dspmv_csr4(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const double4* d_val ,

__global const double* d_x ,

__global double* d_y ,

const double alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

double sum = 0.0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

140

double4 val , x;

int4 idx;

idx = d_idx[j];

val = d_val[j];

idx -= 1;

x.x = d_x[idx.x];

x.y = d_x[idx.y];

x.z = d_x[idx.z];

x.w = d_x[idx.w];

sum += dot(x, val);

}

/* Write the result to global memory */

d_y[i] += alpha * sum;

}

}

E.21 SPMV CSR4_B0 GPU Double

/*

* kernel_sspmv_csr4_b0.cl

*

*

* csr port

*

*/

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void kernel_dspmv_csr4_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const double4* d_val ,

__global const double* d_x ,

__global double* d_y ,

const double alpha

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

141

int tx = get_local_id (0);

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

/* Read and sum for the column vectors */

double sum = 0.0;

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

double4 val , x;

int4 idx;

idx = d_idx[j];

val = d_val[j];

idx -= 1;

x.x = d_x[idx.x];

x.y = d_x[idx.y];

x.z = d_x[idx.z];

x.w = d_x[idx.w];

sum += dot(x, val);

}

/* Write the result to global memory */

d_y[i] = alpha * sum;

}

}

E.22 SPMV ELL GPU Single

/*

* kernel_sspmv_ell.cl

*

*

* ell port

*

*/

#define large_grid_thread_id(void) (((uint)mul24((uint)

get_local_size (0) ,(uint)get_group_id (0) + (uint)mul24

((uint)get_group_id (1) ,(uint)get_num_groups (0))) + (

uint)get_local_id (0)))

142

__kernel void kernel_sspmv_ell(

const int rows ,

const float alpha ,

const int ell_nz_row ,

const int ell_stride ,

__global const int *ell_idx ,

__global const float *ell_val ,

const float beta ,

__global float *d_y ,

__global float *d_x

)

{

const int row = large_grid_thread_id ();

if(row >= rows){

return;

}

float sum = 0;

if (beta)

sum = beta * d_y[row];

ell_idx += row;

ell_val += row;

for(int n = 0; n < ell_nz_row; n++){

const float A_ij = *ell_val;

if(A_ij != 0){

const int col = *ell_idx - 1;

sum += A_ij * d_x[col]; // this last d_x.. -> can

be replaced by image access ..

}

ell_idx += ell_stride;

ell_val += ell_stride;

}

d_y[row] = sum;

}

E.23 SPMV ELL GPU Double

/*

* kernel_sspmv_ell.cl

*

*

* ell port

*

*/

143

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#define large_grid_thread_id(void) (((uint)mul24((uint)

get_local_size (0) ,(uint)get_group_id (0) + (uint)mul24

((uint)get_group_id (1) ,(uint)get_num_groups (0))) + (

uint)get_local_id (0)))

__kernel void kernel_dspmv_ell(

const int rows ,

const double alpha ,

const int ell_nz_row ,

const int ell_stride ,

__global const int *ell_idx ,

__global const double *ell_val ,

const double beta ,

__global double *d_y ,

__global double *d_x

)

{

const int row = large_grid_thread_id ();

if(row >= rows){

return;

}

double sum = 0;

if (beta)

sum = beta * d_y[row];

ell_idx += row;

ell_val += row;

for(int n = 0; n < ell_nz_row; n++){

const double A_ij = *ell_val;

if(A_ij != 0){

const int col = *ell_idx - 1;

sum += A_ij * d_x[col]; // this last d_x -> can be

replaced by image access ..

}

ell_idx += ell_stride;

ell_val += ell_stride;

}

d_y[row] = sum;

}

E.24 Kernels GPU single-double (quasi-double)

#define USE_KAHAN_IN_SPMV 0

144

/**

* @ds_ops

* @author NVIDIA

* @since 2008

*

* Defines a double -single (qdouble)

* operations:

* - double -single add (addition)

* - double -single sub (subtraction)

* - double -single mul (multiplication)

*

* OpenCL port Olav Aanes Fagerlund 2010

*/

/**

* \brief Double -single (qdouble) addition

* \param c0,c1 Head and tail for the result

* \param a0,a1 Head and tail for the first

* operand

* \param b0,b1 Head and tail for the second

* operand

*/

float2 dsadd(const float a0, const float a1, const float

b0 , const float b1)

{

// printf ("gets here\n");

float c0 , c1;

float t1 , t2, e;

// Compute dsa + dsb using Knuth's trick.

t1 = a0 + b0;

e = t1 - a0;

t2 = ((b0 - e) + (a0 - (t1 - e))) + a1 + b1;

// The result is t1 + t2 , after normalization.

c0 = e = t1 + t2;

c1 = t2 - (e - t1);

return (float2)(c0 , c1);

}

/**

* \brief Double -single (qdouble) subtraction

* \param c0,c1 Head and tail for the result

* \param a0,a1 Head and tail for the first

* operand

* \param b0,b1 Head and tail for the second

* operand

*/

145

float2 dssub(const float a0, const float a1 , const

float b0 , const float b1){

float t1 , t2, e, c0 , c1;;

// Compute dsa - dsb using Knuth's trick.

t1 = a0 - b0;

e = t1 - a0;

t2 = ((-b0 - e) + (a0 - (t1 - e))) + a1 - b1;

// The result is t1 + t2 , after normalization.

c0 = e = t1 + t2;

c1 = t2 - (e - t1);

return (float2)(c0 , c1);

}

/**

* \brief Double -single (qdouble) multiplication

* \param c0,c1 Head and tail for the result

* \param a0,a1 Head and tail for the first

* operand

* \param b0,b1 Head and tail for the second

* operand

*/

float2 dsmul(const float a0, const float a1, const float

b0 , const float b1)

{

float c0 , c1;

float cona , conb , sa1 , sa2 , sb1 , sb2 , c11 , c21 , c2 , t1

, e, t2;

cona = a0 * 8193.0f;

conb = b0 * 8193.0f;

sa1 = cona - (cona - a0);

sb1 = conb - (conb - b0);

sa2 = a0 - sa1;

sb2 = b0 - sb1;

// Multilply a0 * b0 using Dekker 's method.

c11 = a0 * b0;

c21 = (((sa1 * sb1 - c11) + sa1 * sb2) + sa2 * sb1) +

sa2 * sb2;

// Compute a0 * b1 + a1 * b0 (only high -order word is

needed).

c2 = a0 * b1 + a1 * b0;

146

// Compute (c11 , c21) + c2 using Knuth 's trick , also

adding low -order product.

t1 = c11 + c2;

e = t1 - c11;

t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + a1 * b1;

// The result is t1 + t2 , after normalization.

c0 = e = t1 + t2;

c1 = t2 - (e - t1);

return (float2)(c0 , c1);

}

__kernel void kernel_qaxpy(

const int n,

const float a0,

const float a1,

__global const float* xh ,

__global const float* xt ,

__global float* yh,

__global float* yt,

__local float* buffer_xh ,

__local float* buffer_xt ,

__local float* buffer_yh ,

__local float* buffer_yt

)

{

float2 ret , ret2;

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

/* Read the data (full lines) */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

/* Prefetch x and y */

buffer_xh[tx] = xh[i];

buffer_xt[tx] = xt[i];

buffer_yh[tx] = yh[i];

buffer_yt[tx] = yt[i];

/* Multiply and write */

147

ret = dsmul(a0 , a1 , buffer_xh[tx], buffer_xt[tx]);

ret2 = dsadd(buffer_yh[tx], buffer_yt[tx], ret.x,

ret.y);

yh[i] = ret2.x;

yt[i] = ret2.y;

}

}

__kernel void kernel_qaypx(

const int n,

const float a0,

const float a1,

__global const float* xh ,

__global const float* xt ,

__global float* yh,

__global float* yt,

__local float* buffer_xh ,

__local float* buffer_xt ,

__local float* buffer_yh ,

__local float* buffer_yt

)

{

float2 ret , ret2;

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

// Read the data (full lines)

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

// Prefetch x and y

buffer_xh[tx] = xh[i];

buffer_xt[tx] = xt[i];

buffer_yh[tx] = yh[i];

buffer_yt[tx] = yt[i];

// Multiply and write

ret = dsmul(a0 , a1 , buffer_yh[tx], buffer_yt[tx]);

ret2 = dsadd(buffer_xh[tx], buffer_xt[tx], ret.x,

ret.y);

yh[i] = ret2.x;

yt[i] = ret2.y;

148

}

}

__kernel void kernel_qdot(

const int n,

__global const float* xh ,

__global const float* xt ,

__global const float* yh ,

__global const float* yt ,

__global float* d_sh ,

__global float* d_st ,

__local float* partial_sum_h ,

__local float* partial_sum_t

)

{

float2 c, sum = (float2)(0, 0), p_sum;

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

int bx = get_group_id (0);

// Read the sum data */

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

// Multiply

c = dsmul(xh[i], xt[i], yh[i], yt[i]);

// Accumulate

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

partial_sum_h[tx] = sum.x;

partial_sum_t[tx] = sum.y;

// Reduce data for the block

for (int i = get_local_size (0) >> 1; i > 0; i >>= 1)

{

barrier(CLK_LOCAL_MEM_FENCE);

if (tx < i) {

p_sum = dsadd(partial_sum_h[tx], partial_sum_t[tx

], partial_sum_h[tx + i], partial_sum_t[tx + i

]);

partial_sum_h[tx] = p_sum.x;

partial_sum_t[tx] = p_sum.y;

149

}

}

if (tx == 0) {

d_sh[bx] = partial_sum_h[tx];

d_st[bx] = partial_sum_t[tx];

}

}

__kernel void kernel_qscal(

const int n,

const float a0,

const float a1,

__global float* xh,

__global float* xt,

__local float* buffer_xh ,

__local float* buffer_xt

)

{

float2 res;

// Starting point for this block

int ctaStart = get_group_id (0) * get_local_size (0);

// Total no. of threads in the kernel

int totalThreads = get_global_size (0);

// Get current thread

int tx = get_local_id (0);

// Read the data (full lines)

for (int i = ctaStart + tx; i < n; i += totalThreads)

{

// Prefetch x

buffer_xh[tx] = xh[i];

buffer_xt[tx] = xt[i];

// Scale and write

res = dsmul (buffer_xh[tx], buffer_xt[tx], a0, a1);

xh[i] = res.x; //xh[i] * a0;

xt[i] = res.y; //xt[i] * a1;

}

}

__kernel void kernel_qspmv_csr_a1_b0(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_valh ,

__global const float* d_valt ,

150

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

int i;

float2 c;

/* Read the data*/

for (i = ctaStart + tx; i < rows; i += totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

int col = d_idx[iRowBeg] - 1;

sum = dsmul(d_valh[iRowBeg], d_valt[iRowBeg], d_xh

[col], d_xt[col]);

float2 cc = (float2)(0.0f, 0.0f);

for (int j= iRowBeg + 1; j < iRowEnd; j++) {

float2 y, t;

col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

y = dssub(c.x, c.y, cc.x, cc.y);

t = dsadd(sum.x, sum.y, y.x, y.y);

c = dssub(t.x, t.y, sum.x, sum.y);

cc = dssub(c.x, c.y, y.x, y.y);

sum.x = t.x;

sum.y = t.y;

}

#else

for (int j = iRowBeg; j < iRowEnd; j++) {

int col = d_idx[j] - 1;

151

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

#endif

/* Write the result to global memory */

d_yh[i] = sum.x;

d_yt[i] = sum.y;

}

}

__kernel void kernel_qspmv_csr_a1(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_valh ,

__global const float* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

int i;

float2 c;

/* Read the data*/

for (i = ctaStart + tx; i < rows; i += totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

int col = d_idx[iRowBeg] - 1;

152

sum = dsmul(d_valh[iRowBeg], d_valt[iRowBeg], d_xh

[col], d_xt[col]);

float2 cc = (float2)(0.0f, 0.0f);

for (int j= iRowBeg + 1; j < iRowEnd; j++) {

float2 y, t;

col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

y = dssub(c.x, c.y, cc.x, cc.y);

t = dsadd(sum.x, sum.y, y.x, y.y);

c = dssub(t.x, t.y, sum.x, sum.y);

cc = dssub(c.x, c.y, y.x, y.y);

sum.x = t.x;

sum.y = t.y;

}

#else

for (int j = iRowBeg; j < iRowEnd; j++) {

int col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

#endif

/* Write the result to global memory */

d_yh[i] += sum.x;

d_yt[i] += sum.y;

}

}

__kernel void kernel_qspmv_csr_b0(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_valh ,

__global const float* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt ,

const float alpha0 ,

const float alpha1

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

153

/* Get current thread */

int tx = get_local_id (0);

int i;

float2 c, res;

/* Read the data*/

for (i = ctaStart + tx; i < rows; i += totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

int col = d_idx[iRowBeg] - 1;

sum = dsmul(d_valh[iRowBeg], d_valt[iRowBeg], d_xh

[col], d_xt[col]);

float2 cc = (float2)(0.0f, 0.0f);

for (int j= iRowBeg + 1; j < iRowEnd; j++) {

float2 y, t;

col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

y = dssub(c.x, c.y, cc.x, cc.y);

t = dsadd(sum.x, sum.y, y.x, y.y);

c = dssub(t.x, t.y, sum.x, sum.y);

cc = dssub(c.x, c.y, y.x, y.y);

sum.x = t.x;

sum.y = t.y;

}

#else

for (int j = iRowBeg; j < iRowEnd; j++) {

int col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

#endif

/* Write the result to global memory */

res = dsmul(alpha0 , alpha1 , sum.x, sum.y);

d_yh[i] = res.x;

d_yt[i] = res.y;

}

154

}

__kernel void kernel_qspmv_csr(

const int rows ,

__global const int* d_ptr ,

__global const int* d_idx ,

__global const float* d_valh ,

__global const float* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt ,

const float alpha0 ,

const float alpha1

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

int i;

float2 c;

/* Read the data*/

for (i = ctaStart + tx; i < rows; i += totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

/* Read and sum for the column vectors */

#if USE_KAHAN_IN_SPMV

int col = d_idx[iRowBeg] - 1;

sum = dsmul(d_valh[iRowBeg], d_valt[iRowBeg], d_xh

[col], d_xt[col]);

float2 cc = (float2)(0.0f, 0.0f);

for (int j= iRowBeg + 1; j < iRowEnd; j++) {

float2 y, t;

col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

155

y = dssub(c.x, c.y, cc.x, cc.y);

t = dsadd(sum.x, sum.y, y.x, y.y);

c = dssub(t.x, t.y, sum.x, sum.y);

cc = dssub(c.x, c.y, y.x, y.y);

sum.x = t.x;

sum.y = t.y;

}

#else

for (int j = iRowBeg; j < iRowEnd; j++) {

int col = d_idx[j] - 1;

c = dsmul(d_valh[j], d_valt[j], d_xh[col], d_xt[

col]);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

#endif

// Multiply with alpha

sum = dsmul(alpha0 , alpha1 , sum.x, sum.y);

/* Write the result to global memory */

d_yh[i] += sum.x;

d_yt[i] += sum.y;

}

}

__kernel void kernel_qspmv_csr4_a1_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_valh ,

__global const float4* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

float2 c;

/* Read the data*/

156

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

//#pragma unroll

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 valh , valt , xh, xt;

int4 idx;

// Read idx and val

idx = d_idx[j];

valh = d_valh[j];

valt = d_valt[j];

// Idx is base 1, change to 0

idx.x -= 1;

idx.y -= 1;

idx.z -= 1;

idx.w -= 1;

// Read head part of x

xh.x = d_xh[idx.x];

xh.y = d_xh[idx.y];

xh.z = d_xh[idx.z];

xh.w = d_xh[idx.w];

// Read tail part of x

xt.x = d_xt[idx.x];

xt.y = d_xt[idx.y];

xt.z = d_xt[idx.z];

xt.w = d_xt[idx.w];

// Multiply and add

c = dsmul(xh.x, xt.x, valh.x, valt.x);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.y, xt.y, valh.y, valt.y);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.z, xt.z, valh.z, valt.z);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.w, xt.w, valh.w, valt.w);

157

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

// Write the result to global memory

d_yh[i] = sum.x;

d_yt[i] = sum.y;

}

}

__kernel void kernel_qspmv_csr4_a1(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_valh ,

__global const float4* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

float2 c, res;

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 valh , valt , xh, xt;

int4 idx;

// Read idx and val

idx = d_idx[j];

158

valh = d_valh[j];

valt = d_valt[j];

// Idx is base 1, change to 0

idx.x -= 1;

idx.y -= 1;

idx.z -= 1;

idx.w -= 1;

// Read head part of x

xh.x = d_xh[idx.x];

xh.y = d_xh[idx.y];

xh.z = d_xh[idx.z];

xh.w = d_xh[idx.w];

// Read tail part of x

xt.x = d_xt[idx.x];

xt.y = d_xt[idx.y];

xt.z = d_xt[idx.z];

xt.w = d_xt[idx.w];

// Multiply and add

c = dsmul(xh.x, xt.x, valh.x, valt.x);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.y, xt.y, valh.y, valt.y);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.z, xt.z, valh.z, valt.z);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.w, xt.w, valh.w, valt.w);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

// Add/write the result to global memory

res = dsadd(d_yh[i], d_yt[i], sum.x, sum.y);

d_yh[i] = res.x;

d_yt[i] = res.y;

}

}

__kernel void kernel_qspmv_csr4_b0(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_valh ,

__global const float4* d_valt ,

__global const float* d_xh ,

159

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt ,

const float alpha0 ,

const float alpha1

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

/* Get current thread */

int tx = get_local_id (0);

float2 c, res;

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 valh , valt , xh, xt;

int4 idx;

// Read idx and val

idx = d_idx[j];

valh = d_valh[j];

valt = d_valt[j];

// Idx is base 1, change to 0

idx.x -= 1;

idx.y -= 1;

idx.z -= 1;

idx.w -= 1;

// Read head part of x

xh.x = d_xh[idx.x];

xh.y = d_xh[idx.y];

xh.z = d_xh[idx.z];

xh.w = d_xh[idx.w];

160

// Read tail part of x

xt.x = d_xt[idx.x];

xt.y = d_xt[idx.y];

xt.z = d_xt[idx.z];

xt.w = d_xt[idx.w];

// Multiply and add

c = dsmul(xh.x, xt.x, valh.x, valt.x);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.y, xt.y, valh.y, valt.y);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.z, xt.z, valh.z, valt.z);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.w, xt.w, valh.w, valt.w);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

// Multiply with alpha and write to global memory

res = dsmul(alpha0 , alpha1 , sum.x, sum.y);

d_yh[i] = res.x;

d_yt[i] = res.y;

}

}

__kernel void kernel_qspmv_csr4(

const int rows ,

__global const int* d_ptr ,

__global const int4* d_idx ,

__global const float4* d_valh ,

__global const float4* d_valt ,

__global const float* d_xh ,

__global const float* d_xt ,

__global float* d_yh ,

__global float* d_yt ,

const float alpha0 ,

const float alpha1

)

{

/* Starting point for this block */

int ctaStart = get_group_id (0) * get_local_size (0);

/* Total no. of threads in the kernel */

int totalThreads = get_global_size (0);

161

/* Get current thread */

int tx = get_local_id (0);

float2 c, res;

/* Read the data*/

for (int i = ctaStart + tx; i < rows; i +=

totalThreads)

{

/* Read the beginning and end of the row

* which will be processed by this thread */

int iRowBeg = d_ptr[i] - 1;

int iRowEnd = d_ptr[i+1] - 1;

float2 sum = (float2)(0, 0);

//#pragma unroll

for (int j = iRowBeg / 4; j < iRowEnd / 4; j++) {

float4 valh , valt , xh, xt;

int4 idx;

// Read idx and val

idx = d_idx[j];

valh = d_valh[j];

valt = d_valt[j];

// Idx is base 1, change to 0

idx.x -= 1;

idx.y -= 1;

idx.z -= 1;

idx.w -= 1;

// Read head part of x

xh.x = d_xh[idx.x];

xh.y = d_xh[idx.y];

xh.z = d_xh[idx.z];

xh.w = d_xh[idx.w];

// Read tail part of x

xt.x = d_xt[idx.x];

xt.y = d_xt[idx.y];

xt.z = d_xt[idx.z];

xt.w = d_xt[idx.w];

// Multiply and add

c = dsmul(xh.x, xt.x, valh.x, valt.x);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.y, xt.y, valh.y, valt.y);

162

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.z, xt.z, valh.z, valt.z);

sum = dsadd(c.x, c.y, sum.x, sum.y);

c = dsmul(xh.w, xt.w, valh.w, valt.w);

sum = dsadd(c.x, c.y, sum.x, sum.y);

}

// Multiply with alpha

sum = dsmul(alpha0 , alpha1 , sum.x, sum.y);

// Write the result to global memory

res = dsadd(d_yh[i], d_yt[i], sum.x, sum.y);

d_yh[i] = res.x;

d_yt[i] = res.y;

}

}

#define large_grid_thread_id(void) (((uint)mul24((uint)

get_local_size (0) ,(uint)get_group_id (0) + (uint)mul24

((uint)get_group_id (1) ,(uint)get_num_groups (0))) + (

uint)get_local_id (0)))

__kernel void kernel_qspmv_ell(

const int rows ,

const float alpha0 ,

const float alpha1 ,

const int ell_nz_row ,

const int ell_stride ,

__global const int *ell_idx ,

__global const float *ell_valh ,

__global const float *ell_valt ,

const float beta0 ,

const float beta1 ,

__global float *d_yh ,

__global float *d_yt ,

__global float *d_xh ,

__global float *d_xt

)

{

const int row = large_grid_thread_id ();

if(row >= rows){

return;

}

float2 sum = (float2)(0, 0);

163

if (beta0 || beta1)

sum = dsmul(beta0 , beta1 , d_yh[row], d_yt[row]);

ell_idx += row;

ell_valh += row;

ell_valt += row;

for(int n = 0; n < ell_nz_row; n++){

const float A_ij_h = *ell_valh;

const float A_ij_t = *ell_valt;

if(A_ij_h != 0){

float2 c;

const int col = *ell_idx - 1;

c = dsmul(A_ij_h , A_ij_t , d_xh[col], d_xt[col]);

// this last d_x.. -> can be replaced by image

access ..

sum = dsadd(sum.x, sum.y, c.x, c.y);

}

ell_idx += ell_stride;

ell_valh += ell_stride;

ell_valt += ell_stride;

}

d_yh[row] = sum.x;

d_yt[row] = sum.y;

}

E.25 Kernels GPU single set-up

/*

* kernels_single.c

*

*

* Created by Olav Aanes Fagerlund.

*

*/

#define LOGGER_NAME "CUKr.blas.impl.gpu.opencl.

kernels_single"

#include "kernels_single.h"

#define AUTO_LOCAL 0

#define ORIGINAL_VALUES 0

#if ORIGINAL_VALUES

// Work -group sizes and the number of those equal to the

CUDA version

#include "kernels_config_orig.h"

164

#else

// Work -group sizes and the number of those giving

better OpenCL performance

#include "kernels_config.h"

#endif

float opencl_kernel_sdot(int n, cl_mem* x, cl_mem* y)

{

int LOCAL_SIZE = CUKR_SDOT_THREADS;

#if AUTO_LOCAL

LOCAL_SIZE = AUTO_LOCAL_SIZE_SDOT;

#endif

size_t sizes [5];

void *values [5];

float res = 0;

float* res_arr = malloc(CUKR_SDOT_CTAS * sizeof(float)

);

cl_mem res_buf = clCreateBuffer(ComputeContext ,

CL_MEM_WRITE_ONLY , CUKR_SDOT_CTAS * sizeof(cl_float

), /*(void*)res*/ NULL , &err);

if (err != CL_SUCCESS) {

printf("Setting up res_buf for sdot failed !\n");

}

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)x;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)y;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)&res_buf;

sizes [4] = LOCAL_SIZE * sizeof(cl_float);

values [4] = NULL;

int x_inc;

for (x_inc = 0; x_inc <5; x_inc ++) {

err = clSetKernelArg(ComputeKernel_sdot , x_inc ,

sizes[x_inc], values[x_inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d arg sdot\n", x_inc);

// return -1;

}

if (err != CL_SUCCESS)

165

{

printf("clSetKernelArg %d failed\n", x_inc);

// return -1;

}

}

size_t global [1];

size_t local [1];

local [0] = LOCAL_SIZE;

global [0] = CUKR_SDOT_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sdot , 1, NULL , global , local , 0, NULL

, &sdot_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n", n);

}

// Synchronize for timing

err = clWaitForEvents (1, &sdot_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

// Get result

err = clEnqueueReadBuffer(ComputeCommands , res_buf ,

CL_TRUE , 0, CUKR_SDOT_CTAS * sizeof(cl_float), (

void*)res_arr , 0, NULL , NULL);

if (err == CL_INVALID_COMMAND_QUEUE) {

printf("YES !!!\n");

}

else if (err != CL_SUCCESS) {

printf("readback of res_buf in sdot failed! err -code

: %d\n", err);

}

err = clReleaseMemObject(res_buf);

if (err != CL_SUCCESS) {

printf("release of cl memobject res_buf in sdot

failed !\n");

}

int inc;

for (inc = 0; inc < CUKR_SDOT_CTAS; inc ++) {

res += res_arr[inc];

166

}

// free the array

free(res_arr);

res_arr = NULL;

return res;

}

void opencl_kernel_saxpy(int n, float a, cl_mem* cl_d_x ,

cl_mem* cl_d_y)

{

// Set workgroup sizes

/*

err = clGetKernelWorkGroupInfo(ComputeKernel_saxpy ,

ComputeDeviceId , CL_KERNEL_WORK_GROUP_SIZE , sizeof(

size_t), &auto_local , NULL);

if (err != CL_SUCCESS) {

printf (" clGetKernelWorkGroupInfo failed! : %d\n",

err);

}

*/

size_t sizes [6];

void *values [6];

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) cl_d_x;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) cl_d_y;

sizes [4] = CUKR_SAXPY_THREADS * sizeof(cl_float);

values [4] = NULL;

sizes [5] = CUKR_SAXPY_THREADS * sizeof(cl_float);

values [5] = NULL;

/* Kernel invocation */

int x;

for (x = 0; x<6; x++) {

err = clSetKernelArg(ComputeKernel_saxpy , x, sizes[x

], values[x]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", x);

}

167

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x);

}

}

size_t global [1];

size_t local [1];

local [0] = CUKR_SAXPY_THREADS;

global [0] = CUKR_SAXPY_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_saxpy , 1, NULL , global , local , 0,

NULL , &saxpy_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &saxpy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_saypx(int n, float a, cl_mem* cl_d_x ,

cl_mem* cl_d_y)

{

// Set workgroup sizes

/*

err = clGetKernelWorkGroupInfo(ComputeKernel_saypx ,

ComputeDeviceId , CL_KERNEL_WORK_GROUP_SIZE , sizeof(

size_t), &auto_local , NULL);

if (err != CL_SUCCESS) {

printf (" clGetKernelWorkGroupInfo failed! : %d\n",

err);

}

*/

size_t sizes [6];

void *values [6];

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a;

168

sizes [2] = sizeof(cl_mem);

values [2] = (void *) cl_d_x;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) cl_d_y;

sizes [4] = CUKR_SAYPX_THREADS * sizeof(cl_float);

values [4] = NULL;

sizes [5] = CUKR_SAYPX_THREADS * sizeof(cl_float);

values [5] = NULL;

// Set kernel args

int x;

for (x = 0; x<6; x++) {

err = clSetKernelArg(ComputeKernel_saypx , x, sizes[x

], values[x]);

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x);

// return -1;

}

}

//}

size_t global [1];

size_t local [1];

local [0] = CUKR_SAYPX_THREADS;

global [0] = CUKR_SAYPX_CTAS * local [0];

// Enqueue kernel for execution

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_saypx , 1, NULL , global , local , 0,

NULL , &saypx_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

err = clWaitForEvents (1, &saypx_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_sscal(int n, float a, cl_mem* x)

{

size_t sizes [4];

void *values [4];

169

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)x;

sizes [3] = CUKR_SSCAL_THREADS * sizeof(cl_float);

values [3] = NULL;

/* Kernel invocation */

int i;

for (i = 0; i<4; i++) {

err = clSetKernelArg(ComputeKernel_sscal , i, sizes[i

], values[i]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", i);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", i);

// return -1;

}

}

size_t global [1];

size_t local [1];

local [0] = CUKR_SSCAL_THREADS;

global [0] = CUKR_SSCAL_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sscal , 1, NULL , global , local , 0,

NULL , &sscal_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sscal failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &sscal_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

170

void opencl_scopy(int n, cl_mem* cl_d_x , int incx ,

cl_mem* cl_d_y , int incy)

{

err = clEnqueueCopyBuffer(ComputeCommands , *cl_d_x , *

cl_d_y , 0, 0, n * sizeof(cl_float), 0, NULL , &

scopy_event);

if (err != CL_SUCCESS)

{

printf("clEnqueueCopyBuffer failed %d\n", n);

}

// Synchronize for timing

err = clWaitForEvents (1, &scopy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_sspmv_csr(int rows , int cols , int nz , float

alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

float beta , cl_mem* d_y)

{

size_t sizes [7];

void *values [7];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)d_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)d_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)d_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(float);

values [6] = (void *)α

size_t global [1];

size_t local [1];

int inc;

/* If beta != 0 */

if (beta != 0)

171

{

/* If beta != 1, do a scaling first */

if (beta != 1)

opencl_kernel_sscal(rows , beta , d_y);

/* If alpha = 1, no need to consider */

if (alpha == 1) {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR_THREADS; //512;

global [0] = CUKR_SSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 6; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr_a1 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr_a1 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr_a1_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr_a1 failed %d\n

", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr_a1_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* Else , take the most general case */

else {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR_THREADS; //512;

global [0] = CUKR_SSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

172

err = clSetKernelArg(ComputeKernel_sspmv_csr ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr , 1, NULL , global , local

, 0, NULL , &sspmv_csr_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

/* If beta = 0 */

else {

/* If alpha = 1 as well , no need to

* consider them both */

if (alpha == 1) {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR_THREADS; //512;

global [0] = CUKR_SSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 6; inc++) {

err = clSetKernelArg(

ComputeKernel_sspmv_csr_a1_b0 , inc , sizes[inc

], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

173

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr_a1_b0 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr_a1_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr_a1_b0 failed %

d\n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr_a1_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* If alpha != 1, have to consider it */

else {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR_THREADS; //512;

global [0] = CUKR_SSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr_b0 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr_b0 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr_b0 failed %d\n

", nz);

}

// Synchronize for timing

174

err = clWaitForEvents (1, &sspmv_csr_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

}

void opencl_sspmv_csr4(int rows , int cols , int nz , float

alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

float beta , cl_mem* d_y)

{

size_t sizes [7];

void *values [7];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)d_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)d_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)d_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(float);

values [6] = (void *)α

size_t global [1];

size_t local [1];

int inc;

/* If beta != 0 */

if (beta != 0)

{

/* If beta != 1, do a scaling first */

if (beta != 1)

opencl_kernel_sscal(rows , beta , d_y);

/* If alpha = 1, no need to consider */

if (alpha == 1) {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR4_THREADS; //512;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

175

// Set kernel args

for (inc = 0; inc < 6; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr4_a1

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4_a1 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr4_a1_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4_a1 failed %d\

n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr4_a1_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* Else , take the most general case */

else {

// Set workgroup sizes

size_t auto_local;

local [0] = CUKR_SSPMV_CSR4_THREADS; //512;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr4 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

176

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr4_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4 failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr4_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

/* If beta = 0 */

else {

/* If alpha = 1 as well , no need to

* consider them both */

if (alpha == 1) {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR4_THREADS; //512;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 6; inc++) {

err = clSetKernelArg(

ComputeKernel_sspmv_csr4_a1_b0 , inc , sizes[

inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4_a1_b0 , 1, NULL , global

, local , 0, NULL , &sspmv_csr4_a1_b0_event);

if (err != CL_SUCCESS)

{

177

printf("clExecuteKernel sspmv_csr4_a1_b0 failed

%d\n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr4_a1_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* If alpha != 1, have to consider it */

else {

// Set workgroup sizes

local [0] = CUKR_SSPMV_CSR4_THREADS; //512;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr4_b0

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4_b0 , 1, NULL , global ,

local , 0, NULL , &sspmv_csr4_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4_b0 failed %d\

n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_csr4_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

}

178

/**

* \brief Wrapper for SSPMV_HYB

* \param rows ,cols Matrix size

* \param nz Number of nonzeros

* \param alpha Scale factor for Ax

* \param ell_nz_row ,ell_stride ELL dimensions

* \param csr_nz CSR dimension

* \param ell_idx ELL column index vector

* \param ell_val ELL value vector

* \param csr_ptr CSR ptr vector

* \param csr_idx CSR idx vector

* \param csr_val CSR value vector

* \param x Vector being multiplied

* \param beta Scale factor for y

* \param y Result vector

*/

void opencl_sspmv_hyb(int rows , int cols , int nz , float

alpha , int ell_nz_row , int ell_stride , int csr_nz ,

cl_mem* d_ell_idx , cl_mem* d_ell_val

, cl_mem* d_csr_ptr , cl_mem*

d_csr_idx , cl_mem* d_csr_val ,

cl_mem* d_x , float beta , cl_mem* d_y

)

{

#define DIVIDE_INTO(x, y) (((x) + (y) - 1)/(y))

const unsigned int BLOCK_SIZE_ELL = 256;

unsigned int num_blocks = DIVIDE_INTO(rows ,

BLOCK_SIZE_ELL);

// Prepare data for the ell kernel

size_t sizes [9];

void *values [9];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(float);

values [1] = (void *)α

sizes [2] = sizeof(int);

values [2] = (void *)&ell_nz_row;

sizes [3] = sizeof(int);

values [3] = (void *)&ell_stride;

sizes [4] = sizeof(cl_mem);

values [4] = (void *) d_ell_idx;

sizes [5] = sizeof(cl_mem);

values [5] = (void *) d_ell_val;

sizes [6] = sizeof(float);

values [6] = (void *)β

sizes [7] = sizeof(cl_mem);

179

values [7] = (void *)d_y;

sizes [8] = sizeof(cl_mem);

values [8] = (void *)d_x;

size_t global [1];

size_t local [1];

local [0] = BLOCK_SIZE_ELL;

global [0] = num_blocks * local [0];

int inc;

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_ell , inc ,

sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

// Launch the kernel

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_ell , 1, NULL , global , local , 0,

NULL , &sspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_ell failed %d\n", nz);

}

local [0] = CUKR_SSPMV_CSR4_THREADS;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

if(csr_nz){

// The rest in CSR4

if (alpha == 1){

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *) d_csr_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) d_csr_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) d_csr_val;

sizes [4] = sizeof(cl_mem);

180

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

// Set kernel args

for (inc = 0; inc < 6; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr4_a1

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4_a1 , 1, NULL , global ,

local , 0, NULL , &sspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4_a1 failed %d\

n", nz);

}

}

else {

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *) d_csr_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) d_csr_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) d_csr_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(float);

values [6] = (void *)α

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_sspmv_csr4 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

181

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_sspmv_csr4 , 1, NULL , global ,

local , 0, NULL , &sspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4 failed %d\n",

nz);

}

}

}

// Synchronize for timing

err = clWaitForEvents (1, &sspmv_hyb_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_sspmv_bcsr(int rows , int cols , int nz , int r

, int c, float alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, float

beta ,

cl_mem* y)

{

printf("test opencl sspmv bcsr\n");

}

void opencl_sspmv_bcsr4(int rows , int cols , int nz , int

r, int c, float alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, float

beta ,

cl_mem* y)

{

printf("test opencl sspmv bcsr4\n");

}

E.26 Kernels GPU single set-up, header

/*

* kernels_single.h

*

*

* Created by Olav Aanes Fagerlund.

182

*

*/

#include "../../../../ init/init_opencl.h"

float opencl_kernel_sdot(int n, cl_mem* x, cl_mem* y);

void opencl_kernel_saxpy(int n, float a, cl_mem *cl_d_x ,

cl_mem *cl_d_y);

void opencl_kernel_saypx(int n, float a, cl_mem *cl_d_x ,

cl_mem *cl_d_y);

void opencl_scopy(int n, cl_mem* x, int incx , cl_mem* y,

int incy);

void opencl_kernel_sscal(int n, float a, cl_mem* x);

void opencl_sspmv_bcsr(int rows , int cols , int nz , int r

, int c, float alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, float

beta , cl_mem* y);

void opencl_sspmv_bcsr4(int rows , int cols , int nz , int

r, int c, float alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, float

beta , cl_mem* y);

void opencl_sspmv_csr(int rows , int cols , int nz , float

alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

float beta , cl_mem* d_y);

void opencl_sspmv_csr4(int rows , int cols , int nz , float

alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

float beta , cl_mem* d_y);

void opencl_sspmv_hyb(int rows , int cols , int nz , float

alpha , int ell_nz_row , int ell_stride , int csr_nz ,

cl_mem* d_ell_idx , cl_mem* d_ell_val , cl_mem

* d_csr_ptr , cl_mem* d_csr_idx , cl_mem*

d_csr_val ,

cl_mem* d_x , float beta , cl_mem* d_y);

E.27 Kernels GPU single-double (quasi-double) set-
up

/*

183

* kernels_single.c

*

*

* Created by Olav Aanes Fagerlund.

*

*/

#define LOGGER_NAME "CUKr.blas.impl.gpu.opencl.

kernels_qdouble"

#include "kernels_qdouble.h"

#define AUTO_LOCAL 0

#define ORIGINAL_VALUES 0

#if ORIGINAL_VALUES

// Work -group sizes and the number of those equal to the

CUDA version

#include "kernels_config_orig.h"

#else

// Work -group sizes and the number of those giving

better OpenCL performance

#include "kernels_config.h"

#endif

double opencl_kernel_qdot(int n, cl_mem* xh, cl_mem* xt,

cl_mem* yh, cl_mem* yt)

{

size_t global [1];

size_t local [1];

local [0] = CUKR_QDOT_THREADS;

global [0] = CUKR_QDOT_CTAS * local [0];

size_t sizes [9];

void *values [9];

double res = 0;

// Setup work -group level result

cl_mem res_bufh = clCreateBuffer(ComputeContext ,

CL_MEM_WRITE_ONLY , CUKR_QDOT_CTAS * sizeof(cl_float

), NULL , &err);

if (err != CL_SUCCESS) {

printf("Setting up res_bufh for qdot failed !\n");

}

cl_mem res_buft = clCreateBuffer(ComputeContext ,

CL_MEM_WRITE_ONLY , CUKR_QDOT_CTAS * sizeof(cl_float

), NULL , &err);

if (err != CL_SUCCESS) {

184

printf("Setting up res_buft for qdot failed !\n");

}

// Host memory to collect results from work -groups

float *h_sh , *h_st;

if ((h_sh = (float *) malloc(CUKR_QDOT_CTAS*sizeof(h_sh

[0]))) == NULL) {

printf("FATAL: Error allocating memory for QDOT

result vectors");

exit (1);

}

if ((h_st = (float *) malloc(CUKR_QDOT_CTAS*sizeof(h_st

[0]))) == NULL) {

printf("FATAL: Error allocating memory for QDOT

result vectors");

exit (1);

}

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)xh;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)xt;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)yh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)yt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)&res_bufh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)&res_buft;

sizes [7] = local [0] * sizeof(cl_float);

values [7] = NULL;

sizes [8] = local [0] * sizeof(cl_float);

values [8] = NULL;

int x_inc;

for (x_inc = 0; x_inc <9; x_inc ++) {

err = clSetKernelArg(ComputeKernel_qdot , x_inc ,

sizes[x_inc], values[x_inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d arg qdot\n", x_inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x_inc);

185

// return -1;

}

}

// Enqueue kernel for execution

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qdot , 1, NULL , global , local , 0, NULL

, &qdot_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &qdot_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

// Get result from work -group level

err = clEnqueueReadBuffer(ComputeCommands , res_bufh ,

CL_TRUE , 0, CUKR_QDOT_CTAS * sizeof(cl_float), (

void*)h_sh , 0, NULL , NULL);

if (err != CL_SUCCESS) {

printf("readback of res_buf in qdot failed !\n");

}

err = clEnqueueReadBuffer(ComputeCommands , res_buft ,

CL_TRUE , 0, CUKR_QDOT_CTAS * sizeof(cl_float), (

void*)h_st , 0, NULL , NULL);

if (err != CL_SUCCESS) {

printf("readback of res_buf in qdot failed !\n");

}

// Releas memory objects

err = clReleaseMemObject(res_bufh);

if (err != CL_SUCCESS) {

printf("release of cl memobject res_bufh in qdot

failed !\n");

}

err = clReleaseMemObject(res_buft);

if (err != CL_SUCCESS) {

printf("release of cl memobject res_buft in qdot

failed !\n");

}

// Do the final sum

double sum0 = 0, sum1 = 0;

int i;

for (i = 0; i < CUKR_QDOT_CTAS; i++) {

186

sum0 += h_sh[i];

sum1 += h_st[i];

}

// Free allocated memory

free(h_sh);

free(h_st);

return sum0 + sum1;

}

void opencl_kernel_qaxpy(int n, float a0, float a1 ,

cl_mem* cl_xh , cl_mem* cl_xt , cl_mem* cl_yh , cl_mem*

cl_yt)

{

size_t sizes [11];

void *values [11];

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a0;

sizes [2] = sizeof(float);

values [2] = (void *)&a1;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)cl_xh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)cl_xt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)cl_yh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)cl_yt;

sizes [7] = CUKR_QAXPY_THREADS * sizeof(cl_float);

values [7] = NULL;

sizes [8] = CUKR_QAXPY_THREADS * sizeof(cl_float);

values [8] = NULL;

sizes [9] = CUKR_QAXPY_THREADS * sizeof(cl_float);

values [9] = NULL;

sizes [10] = CUKR_QAXPY_THREADS * sizeof(cl_float);

values [10] = NULL;

/* Kernel invocation */

int x;

for (x = 0; x<11; x++) {

err = clSetKernelArg(ComputeKernel_qaxpy , x, sizes[x

], values[x]);

if (err == CL_INVALID_KERNEL)

{

187

printf("Failed %d failed\n", x);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x);

// return -1;

}

}

size_t global [1];

size_t local [1];

local [0] = CUKR_QAXPY_THREADS;

global [0] = CUKR_QAXPY_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qaxpy , 1, NULL , global , local , 0,

NULL , &qaxpy_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &qaxpy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_qaypx(int n, float a0, float a1 ,

cl_mem* cl_xh , cl_mem* cl_xt , cl_mem* cl_yh , cl_mem*

cl_yt)

{

size_t sizes [11];

void *values [11];

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a0;

sizes [2] = sizeof(float);

values [2] = (void *)&a1;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)cl_xh;

sizes [4] = sizeof(cl_mem);

188

values [4] = (void *)cl_xt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)cl_yh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)cl_yt;

sizes [7] = CUKR_QAYPX_THREADS * sizeof(cl_float);

values [7] = NULL;

sizes [8] = CUKR_QAYPX_THREADS * sizeof(cl_float);

values [8] = NULL;

sizes [9] = CUKR_QAYPX_THREADS * sizeof(cl_float);

values [9] = NULL;

sizes [10] = CUKR_QAYPX_THREADS * sizeof(cl_float);

values [10] = NULL;

/* Kernel invocation */

int x;

for (x = 0; x<11; x++) {

err = clSetKernelArg(ComputeKernel_qaypx , x, sizes[x

], values[x]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", x);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x);

// return -1;

}

}

size_t global [1];

size_t local [1];

local [0] = CUKR_QAYPX_THREADS;

global [0] = CUKR_QAYPX_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qaypx , 1, NULL , global , local , 0,

NULL , &qaypx_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &qaypx_event);

189

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_qscal(int n, float a0, float a1 ,

cl_mem* xh, cl_mem* xt){

size_t sizes [7];

void *values [7];

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(float);

values [1] = (void *)&a0;

sizes [2] = sizeof(float);

values [2] = (void *)&a1;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)xh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)xt;

sizes [5] = CUKR_QSCAL_THREADS * sizeof(cl_float);

values [5] = NULL;

sizes [6] = CUKR_QSCAL_THREADS * sizeof(cl_float);

values [6] = NULL;

/* Kernel invocation */

int i;

for (i = 0; i<7; i++) {

err = clSetKernelArg(ComputeKernel_qscal , i, sizes[i

], values[i]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", i);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", i);

// return -1;

}

}

size_t global [1];

size_t local [1];

local [0] = CUKR_QSCAL_THREADS;

global [0] = CUKR_QSCAL_CTAS * local [0];

190

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qscal , 1, NULL , global , local , 0,

NULL , &qscal_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qscal failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &qscal_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_qspmv_csr(int rows , int cols , int nz , double

a0 , double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double b1 ,

cl_mem* yh, cl_mem* yt)

{

size_t sizes [11];

void *values [11];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)valh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)valt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)xh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)xt;

191

sizes [7] = sizeof(cl_mem);

values [7] = (void *)yh;

sizes [8] = sizeof(cl_mem);

values [8] = (void *)yt;

sizes [9] = sizeof(float);

values [9] = (void *)&a0;

sizes [10] = sizeof(float);

values [10] = (void *)&a1;

size_t global [1];

size_t local [1];

int inc;

/*

* Chose which kernel to run

*/

double a = a0 + a1;

double b = b0 + b1;

/* If beta != 0 */

if (b != 0)

{

/* If beta != 1, do a scaling first */

if (b != 1)

opencl_kernel_qscal(rows , b0, b1, yh , yt);

/* If alpha = 1, no need to consider */

if (a == 1) {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR_A1_THREADS; //512;

global [0] = CUKR_QSPMV_CSR_A1_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr_a1 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

192

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr_a1 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr_a1_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_a1 failed %d\n

", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr_a1_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* Else , take the most general case */

else {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR_THREADS; //512;

global [0] = CUKR_QSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 11; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr , 1, NULL , global , local

, 0, NULL , &qspmv_csr_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr_event);

if (err != CL_SUCCESS) {

193

printf("clWaitForEvents failed !\n");

}

}

}

/* If beta = 0 */

else {

/* If alpha = 1 as well , no need to

* consider them both */

if (a == 1) {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR_THREADS; //512;

global [0] = CUKR_QSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(

ComputeKernel_qspmv_csr_a1_b0 , inc , sizes[inc

], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr_a1_b0 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr_a1_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_a1_b0 failed %

d\n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr_a1_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* If alpha != 1, have to consider it */

else {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR_THREADS; //512;

global [0] = CUKR_QSPMV_CSR_CTAS * local [0];

194

// Set kernel args

for (inc = 0; inc < 11; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr_b0 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr_b0 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_b0 failed %d\n

", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

}

void opencl_qspmv_csr4(int rows , int cols , int nz ,

double a0, double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double

b1 ,

cl_mem* yh, cl_mem* yt)

{

size_t sizes [11];

void *values [11];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)ptr;

195

sizes [2] = sizeof(cl_mem);

values [2] = (void *)idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)valh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)valt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)xh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)xt;

sizes [7] = sizeof(cl_mem);

values [7] = (void *)yh;

sizes [8] = sizeof(cl_mem);

values [8] = (void *)yt;

sizes [9] = sizeof(float);

values [9] = (void *)&a0;

sizes [10] = sizeof(float);

values [10] = (void *)&a1;

size_t global [1];

size_t local [1];

int inc;

/*

* Chose which kernel to run

*/

double a = a0 + a1;

double b = b0 + b1;

/* If beta != 0 */

if (b != 0)

{

/* If beta != 1, do a scaling first */

if (b != 1)

opencl_kernel_qscal(rows , b0, b1, yh , yt);

/* If alpha = 1, no need to consider */

if (a == 1) {

196

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR4_THREADS; //512;

global [0] = CUKR_QSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr4_a1

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4_a1 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr4_a1_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_a1 failed %d\n

", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr4_a1_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* Else , take the most general case */

else {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR4_THREADS; //512;

global [0] = CUKR_QSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 11; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr4 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

197

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr4_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr4_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

/* If beta = 0 */

else {

/* If alpha = 1 as well , no need to

* consider them both */

if (a == 1) {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR4_THREADS; //512;

global [0] = CUKR_QSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(

ComputeKernel_qspmv_csr4_a1_b0 , inc , sizes[

inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4_a1_b0 , 1, NULL , global

, local , 0, NULL , &qspmv_csr4_a1_b0_event);

198

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_a1_b0 failed %

d\n", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr4_a1_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

/* If alpha != 1, have to consider it */

else {

// Set workgroup sizes

local [0] = CUKR_QSPMV_CSR4_THREADS; //512;

global [0] = CUKR_QSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 11; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr4_b0

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4_b0 , 1, NULL , global ,

local , 0, NULL , &qspmv_csr4_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr_b0 failed %d\n

", nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_csr4_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

}

199

void opencl_qspmv_hyb(int rows , int cols , int nz , float

alpha0 , float alpha1 , int ell_nz_row , int ell_stride ,

int csr_nz ,

cl_mem* d_ell_idx , cl_mem* d_ell_valh ,

cl_mem* d_ell_valt , cl_mem*

d_csr_ptr , cl_mem* d_csr_idx ,

cl_mem* d_csr_valh , cl_mem*

d_csr_valt ,

cl_mem* d_xh , cl_mem* d_xt , float

beta0 , float beta1 , cl_mem* d_yh ,

cl_mem* d_yt)

{

#define DIVIDE_INTO(x, y) (((x) + (y) - 1)/(y))

const unsigned int BLOCK_SIZE_ELL = 256;

unsigned int num_blocks = DIVIDE_INTO(rows ,

BLOCK_SIZE_ELL);

// Prepare data for the ell kernel

size_t sizes [14];

void *values [14];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(float);

values [1] = (void *)&alpha0;

sizes [2] = sizeof(float);

values [2] = (void *)&alpha1;

sizes [3] = sizeof(int);

values [3] = (void *)&ell_nz_row;

sizes [4] = sizeof(int);

values [4] = (void *)&ell_stride;

sizes [5] = sizeof(cl_mem);

values [5] = (void *) d_ell_idx;

sizes [6] = sizeof(cl_mem);

values [6] = (void *) d_ell_valh;

sizes [7] = sizeof(cl_mem);

values [7] = (void *) d_ell_valt;

sizes [8] = sizeof(float);

values [8] = (void *)&beta0;

sizes [9] = sizeof(float);

values [9] = (void *)&beta1;

sizes [10] = sizeof(cl_mem);

values [10] = (void *)d_yh;

sizes [11] = sizeof(cl_mem);

values [11] = (void *)d_yt;

sizes [12] = sizeof(cl_mem);

values [12] = (void *)d_xh;

200

sizes [13] = sizeof(cl_mem);

values [13] = (void *)d_xt;

size_t global [1];

size_t local [1];

local [0] = BLOCK_SIZE_ELL;

global [0] = num_blocks * local [0];

int inc;

// Set kernel args

for (inc = 0; inc < 14; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_ell , inc ,

sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

// Launch the kernel

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_ell , 1, NULL , global , local , 0,

NULL , &qspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_ell failed %d\n", nz);

}

local [0] = CUKR_SSPMV_CSR4_THREADS;

global [0] = CUKR_SSPMV_CSR4_CTAS * local [0];

if(csr_nz){

// The rest in CSR4

double alpha = alpha0 + alpha1;

if (alpha == 1){

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *) d_csr_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) d_csr_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) d_csr_valh;

sizes [4] = sizeof(cl_mem);

201

values [4] = (void *) d_csr_valt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_xh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)d_xt;

sizes [7] = sizeof(cl_mem);

values [7] = (void *)d_yh;

sizes [8] = sizeof(cl_mem);

values [8] = (void *)d_yt;

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr4_a1

, inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4_a1 , 1, NULL , global ,

local , 0, NULL , &qspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr4_a1 failed %d\

n", nz);

}

}

else {

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *) d_csr_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) d_csr_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) d_csr_valh;

sizes [4] = sizeof(cl_mem);

values [4] = (void *) d_csr_valt;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_xh;

sizes [6] = sizeof(cl_mem);

values [6] = (void *)d_xt;

sizes [7] = sizeof(cl_mem);

values [7] = (void *)d_yh;

202

sizes [8] = sizeof(cl_mem);

values [8] = (void *)d_yt;

sizes [9] = sizeof(float);

values [9] = (void *)&alpha0;

sizes [10] = sizeof(float);

values [10] = (void *)&alpha1;

// Set kernel args

for (inc = 0; inc < 11; inc++) {

err = clSetKernelArg(ComputeKernel_qspmv_csr4 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_qspmv_csr4 , 1, NULL , global ,

local , 0, NULL , &qspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel qspmv_csr4 failed %d\n",

nz);

}

}

}

// Synchronize for timing

err = clWaitForEvents (1, &qspmv_hyb_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_qspmv_bcsr(int rows , int cols , int nz , int r

, int c, double a0 , double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 ,

double b1,

cl_mem* yh, cl_mem* yt)

{

printf("test opencl_qspmv_bcsr\n");

}

203

void opencl_qspmv_bcsr4(int rows , int cols , int nz , int

r, int c, double a0, double a1 , cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double b1

,

cl_mem* yh, cl_mem* yt)

{

printf("test opencl_qspmv_bcsr4\n");

}

E.28 Kernels GPU single-double (quasi-double) set-
up, header

/*

* kernels_single.h

*

*

* Created by Olav Aanes Fagerlund.

*

*/

#include "../../../../ init/init_opencl.h"

double opencl_kernel_qdot(int n, cl_mem* xh, cl_mem* xt,

cl_mem* yh, cl_mem* yt);

void opencl_kernel_qaxpy(int n, float a0, float a1 ,

cl_mem* cl_xh , cl_mem* cl_xt , cl_mem* cl_yh , cl_mem*

cl_yt);

void opencl_kernel_qaypx(int n, float a0, float a1 ,

cl_mem* cl_xh , cl_mem* cl_xt , cl_mem* cl_yh , cl_mem*

cl_yt);

void opencl_kernel_qscal(int n, float a0, float a1 ,

cl_mem* xh, cl_mem* xt);

void opencl_qspmv_bcsr(int rows , int cols , int nz , int r

, int c, double a0 , double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 ,

double b1,

cl_mem* yh, cl_mem* yt);

void opencl_qspmv_bcsr4(int rows , int cols , int nz , int

r, int c, double a0, double a1 , cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double b1

,

204

cl_mem* yh, cl_mem* yt);

void opencl_qspmv_csr(int rows , int cols , int nz , double

a0 , double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double b1

,

cl_mem* yh, cl_mem* yt);

void opencl_qspmv_csr4(int rows , int cols , int nz ,

double a0, double a1, cl_mem* ptr ,

cl_mem* idx , cl_mem* valh , cl_mem* valt ,

cl_mem* xh, cl_mem* xt, double b0 , double

b1 ,

cl_mem* yh, cl_mem* yt);

void opencl_qspmv_hyb(int rows , int cols , int nz , float

alpha0 , float alpha1 , int ell_nz_row , int ell_stride ,

int csr_nz ,

cl_mem* d_ell_idx , cl_mem* d_ell_valh ,

cl_mem* d_ell_valt , cl_mem* d_csr_ptr ,

cl_mem* d_csr_idx , cl_mem* d_csr_valh ,

cl_mem* d_csr_valt ,

cl_mem* d_xh , cl_mem* d_xt , float beta0 ,

float beta1 , cl_mem* d_yh , cl_mem* d_yt);

E.29 Kernels GPU double set-up

/*

* kernels_single.c

*

*

* Created by Olav Aanes Fagerlund.

*

*/

#define LOGGER_NAME "CUKr.blas.impl.gpu.opencl.

kernels_double"

#include "kernels_double.h"

#define AUTO_LOCAL 0

#define ORIGINAL_VALUES 0

#if ORIGINAL_VALUES

// Work -group sizes and the number of those equal to the

CUDA version

#include "kernels_config_orig.h"

#else

205

// Work -group sizes and the number of those giving

better OpenCL performance

#include "kernels_config.h"

#endif

double opencl_kernel_ddot(int n, cl_mem* x, cl_mem* y)

{

size_t sizes [5];

void *values [5];

double res = 0.0;

double* res_arr = malloc(CUKR_DDOT_CTAS * sizeof(

double));

cl_mem res_buf = clCreateBuffer(ComputeContext ,

CL_MEM_WRITE_ONLY , CUKR_DDOT_CTAS * sizeof(

cl_double), /*(void*)res*/ NULL , &err);

if (err != CL_SUCCESS) {

printf("Setting up res_buf for sdot failed !\n");

}

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)x;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)y;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)&res_buf;

sizes [4] = CUKR_DDOT_THREADS * sizeof(cl_double);

values [4] = NULL;

int x_inc;

for (x_inc = 0; x_inc <5; x_inc ++) {

err = clSetKernelArg(ComputeKernel_ddot , x_inc ,

sizes[x_inc], values[x_inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d arg sdot\n", x_inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x_inc);

// return -1;

}

}

size_t global [1];

size_t local [1];

206

local [0] = CUKR_DDOT_THREADS;

global [0] = CUKR_DDOT_CTAS * local [0];

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_ddot , 1, NULL , global , local , 0, NULL

, &ddot_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n", n);

}

// Synchronize for timing

err = clWaitForEvents (1, &ddot_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

// Get result

err = clEnqueueReadBuffer(ComputeCommands , res_buf ,

CL_TRUE , 0, CUKR_DDOT_CTAS * sizeof(cl_double), (

void*)res_arr , 0, NULL , NULL);

if (err == CL_INVALID_COMMAND_QUEUE) {

printf("YES !!!\n");

}

else if (err != CL_SUCCESS) {

printf("readback of res_buf in sdot failed! err -code

: %d\n", err);

}

err = clReleaseMemObject(res_buf);

if (err != CL_SUCCESS) {

printf("release of cl memobject res_buf in sdot

failed !\n");

}

int inc;

for (inc = 0; inc < CUKR_DDOT_CTAS; inc ++) {

res += res_arr[inc];

}

// Free the array

free(res_arr);

res_arr = NULL;

return res;

}

207

void opencl_kernel_daxpy(int n, double a, cl_mem* cl_d_x

, cl_mem* cl_d_y)

{

size_t sizes [6];

void *values [6];

size_t global [1];

size_t local [1];

local [0] = CUKR_DAXPY_THREADS;

global [0] = local [0] * CUKR_DAXPY_CTAS;

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(double);

values [1] = (void *)&a;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) cl_d_x;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) cl_d_y;

sizes [4] = CUKR_DAXPY_THREADS * sizeof(cl_double);

values [4] = NULL;

sizes [5] = CUKR_DAXPY_THREADS * sizeof(cl_double);

values [5] = NULL;

/* Kernel invocation */

int x;

for (x = 0; x<6; x++) {

err = clSetKernelArg(ComputeKernel_daxpy , x, sizes[x

], values[x]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", x);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", x);

// return -1;

}

}

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_daxpy , 1, NULL , global , local , 0,

NULL , &daxpy_event);

if (err != CL_SUCCESS)

{

208

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &daxpy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_daypx(int n, double a, cl_mem* cl_d_x

, cl_mem* cl_d_y)

{

size_t sizes [6];

void *values [6];

size_t global [1];

size_t local [1];

local [0] = CUKR_DAYPX_THREADS;

global [0] = local [0] * CUKR_DAYPX_CTAS;

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(double);

values [1] = (void *)&a;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) cl_d_x;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) cl_d_y;

sizes [4] = CUKR_DAYPX_THREADS * sizeof(cl_double);

values [4] = NULL;

sizes [5] = CUKR_DAYPX_THREADS * sizeof(cl_double);

values [5] = NULL;

/* Kernel invocation */

int x;

for (x = 0; x<6; x++) {

err = clSetKernelArg(ComputeKernel_daypx , x, sizes[x

], values[x]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", x);

// return -1;

}

if (err != CL_SUCCESS)

{

209

printf("clSetKernelArg %d failed\n", x);

// return -1;

}

}

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_daypx , 1, NULL , global , local , 0,

NULL , &daypx_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &daypx_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_kernel_dscal(int n, double a, cl_mem* x)

{

size_t sizes [4];

void *values [4];

size_t global [1];

size_t local [1];

local [0] = CUKR_DSCAL_THREADS;

global [0] = local [0] * CUKR_DSCAL_CTAS;

if (x == NULL) {

printf("NULL POINTER x!\n");

}

sizes [0] = sizeof(int);

values [0] = (void *)&n;

sizes [1] = sizeof(double);

values [1] = (void *)&a;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)x;

sizes [3] = CUKR_DSCAL_THREADS * sizeof(cl_double);

values [3] = NULL;

/* Kernel invocation */

int i;

for (i = 0; i<4; i++) {

210

err = clSetKernelArg(ComputeKernel_dscal , i, sizes[i

], values[i]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", i);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", i);

// return -1;

}

}

/* Enqueue kernel for execution */

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dscal , 1, NULL , global , local , 0,

NULL , &dscal_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sscal failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &dscal_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_dcopy(int n, cl_mem* cl_d_x , int incx ,

cl_mem* cl_d_y , int incy)

{

err = clEnqueueCopyBuffer(ComputeCommands , *cl_d_x , *

cl_d_y , 0, 0, n * sizeof(cl_double), 0, NULL , &

dcopy_event);

if (err != CL_SUCCESS)

{

printf("clEnqueueCopyBuffer failed %d\n",n);

}

// Synchronize for timing

err = clWaitForEvents (1, &dcopy_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

211

void opencl_dspmv_csr(int rows , int cols , int nz , double

alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

double beta , cl_mem* d_y)

{

size_t sizes [7];

void *values [7];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)d_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)d_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)d_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(double);

values [6] = (void *)α

size_t global [1];

size_t local [1];

int inc;

/* If beta != 1, do a scaling first */

if (beta != 1 && beta)

opencl_kernel_dscal(rows , beta , d_y);

if (beta) {

local [0] = CUKR_DSPMV_CSR_THREADS; //512;

global [0] = CUKR_DSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_csr , inc ,

sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

212

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_csr , 1, NULL , global , local ,

0, NULL , &dspmv_csr_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr failed %d\n", nz

);

}

// Synchronize for timing

err = clWaitForEvents (1, &dspmv_csr_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

else {

// Set workgroup sizes

local [0] = CUKR_DSPMV_CSR_THREADS; //512;

global [0] = CUKR_DSPMV_CSR_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_csr_b0 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_csr_b0 , 1, NULL , global ,

local , 0, NULL , &dspmv_csr_b0_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr_b0 failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &dspmv_csr_b0_event);

if (err != CL_SUCCESS) {

213

printf("clWaitForEvents failed !\n");

}

}

}

void opencl_dspmv_csr4(int rows , int cols , int nz ,

double alpha , cl_mem* d_ptr ,

cl_mem* d_idx , cl_mem* d_val , cl_mem* d_x ,

double beta , cl_mem* d_y)

{

size_t sizes [7];

void *values [7];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *)d_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *)d_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *)d_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(double);

values [6] = (void *)α

size_t global [1];

size_t local [1];

int inc;

if (beta != 1 && beta)

opencl_kernel_sscal(rows , beta , d_y);

/* If alpha = 1, no need to consider */

if (beta) {

// Set workgroup sizes

local [0] = CUKR_DSPMV_CSR4_THREADS; //512;

global [0] = CUKR_DSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_csr4 , inc

, sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

214

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_csr4 , 1, NULL , global , local ,

0, NULL , &dspmv_csr4_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel sspmv_csr4 failed %d\n",

nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &dspmv_csr4_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

else {

// Set workgroup sizes

local [0] = CUKR_DSPMV_CSR4_THREADS; //512;

global [0] = CUKR_DSPMV_CSR4_CTAS * local [0];

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_csr4_b0 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

// return -1;

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

// return -1;

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_csr4_b0 , 1, NULL , global ,

local , 0, NULL , &dspmv_csr4_b0_event);

if (err != CL_SUCCESS)

{

215

printf("clExecuteKernel sspmv_csr4_b0 failed %d\n"

, nz);

}

// Synchronize for timing

err = clWaitForEvents (1, &dspmv_csr4_b0_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

}

void opencl_dspmv_hyb(int rows , int cols , int nz , double

alpha , int ell_nz_row , int ell_stride , int csr_nz ,

cl_mem* d_ell_idx , cl_mem* d_ell_val

, cl_mem* d_csr_ptr , cl_mem*

d_csr_idx , cl_mem* d_csr_val ,

cl_mem* d_x , double beta , cl_mem*

d_y)

{

#define DIVIDE_INTO(x, y) (((x) + (y) - 1)/(y))

const unsigned int BLOCK_SIZE_ELL = 256;

unsigned int num_blocks = DIVIDE_INTO(rows ,

BLOCK_SIZE_ELL);

// Prepare data for the ell kernel

size_t sizes [9];

void *values [9];

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(double);

values [1] = (void *)α

sizes [2] = sizeof(int);

values [2] = (void *)&ell_nz_row;

sizes [3] = sizeof(int);

values [3] = (void *)&ell_stride;

sizes [4] = sizeof(cl_mem);

values [4] = (void *) d_ell_idx;

sizes [5] = sizeof(cl_mem);

values [5] = (void *) d_ell_val;

sizes [6] = sizeof(double);

values [6] = (void *)β

sizes [7] = sizeof(cl_mem);

values [7] = (void *)d_y;

sizes [8] = sizeof(cl_mem);

values [8] = (void *)d_x;

size_t global [1];

216

size_t local [1];

local [0] = BLOCK_SIZE_ELL;

global [0] = num_blocks * local [0];

int inc;

// Set kernel args

for (inc = 0; inc < 9; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_ell , inc ,

sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

// Launch the kernel

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_ell , 1, NULL , global , local , 0,

NULL , &dspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel dspmv_ell failed %d\n", nz);

}

local [0] = CUKR_DSPMV_CSR4_THREADS;

global [0] = CUKR_DSPMV_CSR4_CTAS * local [0];

if(csr_nz){

// The rest in CSR4

sizes [0] = sizeof(int);

values [0] = (void *)&rows;

sizes [1] = sizeof(cl_mem);

values [1] = (void *) d_csr_ptr;

sizes [2] = sizeof(cl_mem);

values [2] = (void *) d_csr_idx;

sizes [3] = sizeof(cl_mem);

values [3] = (void *) d_csr_val;

sizes [4] = sizeof(cl_mem);

values [4] = (void *)d_x;

sizes [5] = sizeof(cl_mem);

values [5] = (void *)d_y;

sizes [6] = sizeof(double);

values [6] = (void *)α

217

// Set kernel args

for (inc = 0; inc < 7; inc++) {

err = clSetKernelArg(ComputeKernel_dspmv_csr4 ,

inc , sizes[inc], values[inc]);

if (err == CL_INVALID_KERNEL)

{

printf("Failed %d failed\n", inc);

}

if (err != CL_SUCCESS)

{

printf("clSetKernelArg %d failed\n", inc);

}

}

err = clEnqueueNDRangeKernel(ComputeCommands ,

ComputeKernel_dspmv_csr4 , 1, NULL , global ,

local , 0, NULL , &dspmv_hyb_event);

if (err != CL_SUCCESS)

{

printf("clExecuteKernel dspmv_csr4 failed %d\n",

nz);

}

}

// Synchronize for timing

err = clWaitForEvents (1, &dspmv_hyb_event);

if (err != CL_SUCCESS) {

printf("clWaitForEvents failed !\n");

}

}

void opencl_dspmv_bcsr(int rows , int cols , int nz , int r

, int c, double alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta ,

cl_mem* y)

{

printf("test opencl_dspmv_bcsr\n");

}

void opencl_dspmv_bcsr4(int rows , int cols , int nz , int

r, int c, double alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta ,

cl_mem* y)

{

printf("test opencl_dspmv_bcsr4\n");

}

E.30 Kernels GPU double set-up, header

218

/*

* kernels_single.h

*

*

* Created by Olav Aanes Fagerlund.

*

*/

#include "../../../../ init/init_opencl.h"

double opencl_kernel_ddot(int n, cl_mem* x, cl_mem* y);

void opencl_kernel_daxpy(int n, double a, cl_mem *cl_d_x

, cl_mem *cl_d_y);

void opencl_kernel_daypx(int n, double a, cl_mem *cl_d_x

, cl_mem *cl_d_y);

void opencl_dcopy(int n, cl_mem* x, int incx , cl_mem* y,

int incy);

void opencl_kernel_dscal(int n, double a, cl_mem* x);

void opencl_dspmv_bcsr(int rows , int cols , int nz , int r

, int c, double alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta , cl_mem* y);

void opencl_dspmv_bcsr4(int rows , int cols , int nz , int

r, int c, double alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta ,

cl_mem* y);

void opencl_dspmv_csr(int rows , int cols , int nz , double

alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta ,

cl_mem* y);

void opencl_dspmv_csr4(int rows , int cols , int nz ,

double alpha , cl_mem* ptr ,

cl_mem* idx , cl_mem* val , cl_mem* x, double

beta ,

cl_mem* y);

void opencl_dspmv_hyb(int rows , int cols , int nz , double

alpha , int ell_nz_row , int ell_stride , int csr_nz ,

219

cl_mem* d_ell_idx , cl_mem* d_ell_val , cl_mem

* d_csr_ptr , cl_mem* d_csr_idx , cl_mem*

d_csr_val ,

cl_mem* d_x , double beta , cl_mem* d_y);

E.31 OpenCL Initialize

/*

* init_opencl.c

*

*

* Created by Olav Aanes Fagerlund , winter 2010.

*

*/

#include "init_opencl.h"

static char *

load_source(const char *filename)

{

struct stat statbuf;

FILE *fh;

char *source;

fh = fopen(filename , "r");

if (fh == 0)

return 0;

stat(filename , &statbuf);

source = (char *) malloc(statbuf.st_size + 1);

fread(source , statbuf.st_size , 1, fh);

source[statbuf.st_size] = '\0';

return source;

}

int loadAndBuild(const char *file , char *kernel){

/* Load kernel sources into memory */

char *kernel_src = load_source(file);

/* Create the compute program memory object */

ComputeProgram = clCreateProgramWithSource(

ComputeContext , 1, (const char **) &kernel_src ,

NULL , &err);

if (! ComputeProgram || err != CL_SUCCESS)

{

printf("Error: Failed to create compute program

for file %s!\n", file);

return EXIT_FAILURE;

220

}

else {

printf("CL compute program memory object set up

successfully !\n");

}

/* Build the executable and add to the compute program

memory object */

err = clBuildProgram(ComputeProgram , 0, NULL , /*"-cl-

finite -math -only"*/NULL , NULL , NULL);

if (err == CL_BUILD_PROGRAM_FAILURE) {

printf("JA!\n");

}

else if (err != CL_SUCCESS)

{

printf("Error: Failed build program for kernel %s!\n

 %d\n", kernel , err);

}

else {

printf("CL compute program source for %s built

successfully !\n", kernel);

}

if (kernel == "kernels_qdouble"){

ComputeKernel_qdot = clCreateKernel(ComputeProgram ,

"kernel_qdot", &err);

if (! ComputeKernel_qdot || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qdot");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qscal = clCreateKernel(ComputeProgram ,

"kernel_qscal", &err);

if (! ComputeKernel_qscal || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qscal");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

221

ComputeKernel_qaxpy = clCreateKernel(ComputeProgram ,

"kernel_qaxpy", &err);

if (! ComputeKernel_qaxpy || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qaxpy");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qaypx = clCreateKernel(ComputeProgram ,

"kernel_qaypx", &err);

if (! ComputeKernel_qaypx || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qaypx");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr", &err);

if (! ComputeKernel_qspmv_csr || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr_a1 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr_a1", &err);

if (! ComputeKernel_qspmv_csr_a1 || err != CL_SUCCESS

)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr_a1");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

222

ComputeKernel_qspmv_csr_a1_b0 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr_a1_b0", &err);

if (! ComputeKernel_qspmv_csr_a1_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr_a1_b0");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr_b0 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr_b0", &err);

if (! ComputeKernel_qspmv_csr_b0 || err != CL_SUCCESS

)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr_b0");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr4 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr4", &err);

if (! ComputeKernel_qspmv_csr4 || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr4");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr4_a1 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr4_a1", &err);

if (! ComputeKernel_qspmv_csr4_a1 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr4_a1");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

223

}

ComputeKernel_qspmv_csr4_a1_b0 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr4_a1_b0", &err);

if (! ComputeKernel_qspmv_csr4_a1_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr4_a1_b0");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_csr4_b0 = clCreateKernel(

ComputeProgram , "kernel_qspmv_csr4_b0", &err);

if (! ComputeKernel_qspmv_csr4_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_csr4_b0");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

ComputeKernel_qspmv_ell = clCreateKernel(

ComputeProgram , "kernel_qspmv_ell", &err);

if (! ComputeKernel_qspmv_ell || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", "kernel_qspmv_ell");

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sdot"){

ComputeKernel_sdot = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_sdot || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

224

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

size_t auto_local;

// Set workgroup sizes

err = clGetKernelWorkGroupInfo(ComputeKernel_sdot ,

ComputeDeviceId , CL_KERNEL_WORK_GROUP_SIZE ,

sizeof(size_t), &auto_local , NULL);

if (err != CL_SUCCESS) {

printf("clGetKernelWorkGroupInfo failed! : %d\n",

err);

}

AUTO_LOCAL_SIZE_SDOT = auto_local;

}

else if (kernel == "kernel_ddot"){

ComputeKernel_ddot = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_ddot || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sscal"){

ComputeKernel_sscal = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_sscal || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_dscal"){

ComputeKernel_dscal = clCreateKernel(ComputeProgram ,

kernel , &err);

225

if (! ComputeKernel_dscal || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_saxpy"){

ComputeKernel_saxpy = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_saxpy || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_daxpy"){

ComputeKernel_daxpy = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_daxpy || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_saypx"){

ComputeKernel_saypx = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_saypx || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

226

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_daypx"){

ComputeKernel_daypx = clCreateKernel(ComputeProgram ,

kernel , &err);

if (! ComputeKernel_daypx || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr"){

ComputeKernel_sspmv_csr = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr_a1"){

ComputeKernel_sspmv_csr_a1 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr_a1 || err != CL_SUCCESS

)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr_a1_b0"){

227

ComputeKernel_sspmv_csr_a1_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr_a1_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr_b0"){

ComputeKernel_sspmv_csr_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr_b0 || err != CL_SUCCESS

)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr4"){

ComputeKernel_sspmv_csr4 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr4 || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr4_a1"){

ComputeKernel_sspmv_csr4_a1 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr4_a1 || err !=

CL_SUCCESS)

{

228

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr4_a1_b0"){

ComputeKernel_sspmv_csr4_a1_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr4_a1_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_csr4_b0"){

ComputeKernel_sspmv_csr4_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_csr4_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_sspmv_ell"){

ComputeKernel_sspmv_ell = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_sspmv_ell || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

229

printf("CL compute kernel memory object set up

successfully !\n");

}

}

// SPMV double ones

else if (kernel == "kernel_dspmv_ell"){

ComputeKernel_dspmv_ell = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_dspmv_ell || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_dspmv_csr"){

ComputeKernel_dspmv_csr = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_dspmv_csr || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_dspmv_csr_b0"){

ComputeKernel_dspmv_csr_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_dspmv_csr_b0 || err != CL_SUCCESS

)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

230

else if (kernel == "kernel_dspmv_csr4"){

ComputeKernel_dspmv_csr4 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_dspmv_csr4 || err != CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

else if (kernel == "kernel_dspmv_csr4_b0"){

ComputeKernel_dspmv_csr4_b0 = clCreateKernel(

ComputeProgram , kernel , &err);

if (! ComputeKernel_dspmv_csr4_b0 || err !=

CL_SUCCESS)

{

printf("Error: Failed to create compute kernel %s

!\n", kernel);

}

else {

printf("CL compute kernel memory object set up

successfully !\n");

}

}

}

int CukrInit_OpenCL_cl (){

unsigned int num_devices_to_use = 1;

unsigned int size_comp_dev_id = 1;

unsigned int num_platforms = 0;

unsigned int num_devices = 0;

/* Find the OpenCL platform */

err = clGetPlatformIDs (1, &ComputePlatformId , &

num_platforms);

if (err != CL_SUCCESS)

{

printf("Error: Failed to get platform IDs! %d\n"

, err);

return EXIT_FAILURE;

}

/* Find a GPU device */

231

err = clGetDeviceIDs(ComputePlatformId ,

CL_DEVICE_TYPE_GPU , size_comp_dev_id , &

ComputeDeviceId , &num_devices);

if (err != CL_SUCCESS)

{

printf("Error: Failed to get device IDs! %d\n",

err);

return EXIT_FAILURE;

}

printf("\n* * * %d OpenCL devices found in the system

* * *\n", num_devices);

/* Create a compute context using the found OpenCL

device */

ComputeContext = clCreateContext(NULL ,

num_devices_to_use , &ComputeDeviceId , NULL , NULL , &

err);

if (err != CL_SUCCESS)

{

printf("Error: Failed to create compute context!

 %d\n", err);

return EXIT_FAILURE;

}

else {

printf("CL compute context set up successfully !\n");

}

/* Create the command queue */

ComputeCommands = clCreateCommandQueue(ComputeContext ,

ComputeDeviceId , /* CL_QUEUE_PROFILING_ENABLE */0, &

err);

if (err != CL_SUCCESS)

{

printf("clCreateCommandQueue failed\n %d\n", err);

return -1;

}

// Load and build all qdouble kernels (in same file as

they depend on same ds_ops)

loadAndBuild("src/kernels_qdouble.cl", "

kernels_qdouble");

loadAndBuild("src/kernel_saxpy.cl", "kernel_saxpy");

loadAndBuild("src/kernel_daxpy.cl", "kernel_daxpy");

loadAndBuild("src/kernel_saypx.cl", "kernel_saypx");

loadAndBuild("src/kernel_daypx.cl", "kernel_daypx");

232

loadAndBuild("src/kernel_sdot.cl", "kernel_sdot");

loadAndBuild("src/kernel_ddot.cl", "kernel_ddot");

loadAndBuild("src/kernel_sscal.cl", "kernel_sscal");

loadAndBuild("src/kernel_dscal.cl", "kernel_dscal");

loadAndBuild("src/kernel_sspmv_csr.cl", "

kernel_sspmv_csr");

loadAndBuild("src/kernel_sspmv_csr_a1.cl", "

kernel_sspmv_csr_a1");

loadAndBuild("src/kernel_sspmv_csr_a1_b0.cl", "

kernel_sspmv_csr_a1_b0");

loadAndBuild("src/kernel_sspmv_csr_b0.cl", "

kernel_sspmv_csr_b0");

loadAndBuild("src/kernel_sspmv_csr4.cl", "

kernel_sspmv_csr4");

loadAndBuild("src/kernel_sspmv_csr4_a1.cl", "

kernel_sspmv_csr4_a1");

loadAndBuild("src/kernel_sspmv_csr4_a1_b0.cl", "

kernel_sspmv_csr4_a1_b0");

loadAndBuild("src/kernel_sspmv_csr4_b0.cl", "

kernel_sspmv_csr4_b0");

loadAndBuild("src/kernel_dspmv_csr.cl", "

kernel_dspmv_csr");

loadAndBuild("src/kernel_dspmv_csr_b0.cl", "

kernel_dspmv_csr_b0");

loadAndBuild("src/kernel_dspmv_csr4.cl", "

kernel_dspmv_csr4");

loadAndBuild("src/kernel_dspmv_csr4_b0.cl", "

kernel_dspmv_csr4_b0");

loadAndBuild("src/kernel_sspmv_ell.cl", "

kernel_sspmv_ell");

loadAndBuild("src/kernel_dspmv_ell.cl", "

kernel_dspmv_ell");

return num_devices;

}

E.32 OpenCL Initialize, header

/*

* init_opencl.h

*

*

233

* Created by Olav Aanes Fagerlund.

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/stat.h>

#ifdef __APPLE__

#include <OpenCL/cl.h>

#else

#include <CL/cl.h>

#endif

cl_context ComputeContext;

cl_command_queue ComputeCommands;

cl_kernel ComputeKernel_sdot;

cl_kernel ComputeKernel_qdot;

cl_kernel ComputeKernel_ddot;

cl_kernel ComputeKernel_saxpy;

cl_kernel ComputeKernel_qaxpy;

cl_kernel ComputeKernel_daxpy;

cl_kernel ComputeKernel_saypx;

cl_kernel ComputeKernel_qaypx;

cl_kernel ComputeKernel_daypx;

cl_kernel ComputeKernel_sscal;

cl_kernel ComputeKernel_qscal;

cl_kernel ComputeKernel_dscal;

cl_kernel ComputeKernel_sspmv_csr;

cl_kernel ComputeKernel_sspmv_csr_a1;

cl_kernel ComputeKernel_sspmv_csr_a1_b0;

cl_kernel ComputeKernel_sspmv_csr_b0;

cl_kernel ComputeKernel_sspmv_csr4;

cl_kernel ComputeKernel_sspmv_csr4_a1;

cl_kernel ComputeKernel_sspmv_csr4_a1_b0;

cl_kernel ComputeKernel_sspmv_csr4_b0;

cl_kernel ComputeKernel_qspmv_csr;

cl_kernel ComputeKernel_qspmv_csr_a1;

cl_kernel ComputeKernel_qspmv_csr_a1_b0;

cl_kernel ComputeKernel_qspmv_csr_b0;

cl_kernel ComputeKernel_qspmv_csr4;

cl_kernel ComputeKernel_qspmv_csr4_a1;

cl_kernel ComputeKernel_qspmv_csr4_a1_b0;

cl_kernel ComputeKernel_qspmv_csr4_b0;

234

cl_kernel ComputeKernel_dspmv_csr;

cl_kernel ComputeKernel_dspmv_csr_b0;

cl_kernel ComputeKernel_dspmv_csr4;

cl_kernel ComputeKernel_dspmv_csr4_b0;

cl_kernel ComputeKernel_sspmv_ell;

cl_kernel ComputeKernel_qspmv_ell;

cl_kernel ComputeKernel_dspmv_ell;

static cl_program ComputeProgram;

static cl_platform_id ComputePlatformId;

cl_device_id ComputeDeviceId;

int AUTO_LOCAL_SIZE_SDOT;

int err;

cl_mem test;

cl_event qdot_event , sdot_event , ddot_event ,

qaxpy_event , saxpy_event , daxpy_event ,

qaypx_event , saypx_event , daypx_event ,

qscal_event , sscal_event , dscal_event ,

scopy_event , dcopy_event ,

sspmv_csr_event , sspmv_csr_a1_b0_event ,

sspmv_csr_a1_event , sspmv_csr_b0_event ,

sspmv_csr4_event , sspmv_csr4_a1_b0_event ,

sspmv_csr4_a1_event , sspmv_csr4_b0_event ,

qspmv_csr_event , qspmv_csr_a1_b0_event ,

qspmv_csr_a1_event , qspmv_csr_b0_event ,

qspmv_csr4_event , qspmv_csr4_a1_b0_event ,

qspmv_csr4_a1_event , qspmv_csr4_b0_event ,

dspmv_csr_event , dspmv_csr_b0_event ,

dspmv_csr4_event , dspmv_csr4_b0_event ,

sspmv_hyb_event , qspmv_hyb_event , dspmv_hyb_event;

static char * load_source(const char *filename);

int loadAndBuild(const char *filename , char *kernelname)

;

int CukrInit_OpenCL_cl ();

E.33 OpenCL devices probing

#include <stdio.h>

#include <stdlib.h>

235

#include <math.h>

#include <string.h>

#include <stdbool.h>

#include <sys/types.h>

#include <sys/stat.h>

#ifdef __APPLE__

#include <OpenCL/cl.h>

#else

#include <CL/cl.h>

#endif

int

main(int argc , char *argv [])

{

cl_device_id compute_device_id [3];

unsigned int num_devices = 0;

int return_value = 0;

cl_platform_id platform;

cl_uint num_platforms;

clGetPlatformIDs (1, &platform , &num_platforms);

return_value = clGetDeviceIDs(platform ,

CL_DEVICE_TYPE_ALL , 3, compute_device_id , &

num_devices);

printf("\n* * * %d OpenCL devices found in the system

* * *\n", num_devices);

printf("\n");

size_t ret_size;

int x;

for (x = 0; x < num_devices; x++) {

printf("Device number %d :\n

---\n", x);

clGetPlatformInfo(platform , CL_PLATFORM_VENDOR ,

sizeof(char), NULL , &ret_size);

char platform_name[ret_size];

clGetPlatformInfo(platform , CL_PLATFORM_VENDOR ,

sizeof(char[ret_size]), platform_name , NULL);

printf("CL platform vendor: ");

int b;

for (b = 0; b < ret_size; b++) {

printf("%c", platform_name[b]);

}

236

printf("\n");

clGetPlatformInfo(platform , CL_PLATFORM_VERSION ,

sizeof(char), NULL , &ret_size);

clGetPlatformInfo(platform , CL_PLATFORM_VERSION ,

sizeof(char[ret_size]), platform_name , NULL);

printf("CL platform version: ");

for (b = 0; b < ret_size; b++) {

printf("%c", platform_name[b]);

}

printf("\n");

clGetDeviceInfo(compute_device_id[x], CL_DEVICE_NAME

, sizeof(char), NULL , &ret_size);

char devName[ret_size];

clGetDeviceInfo(compute_device_id[x], CL_DEVICE_NAME

, sizeof(char[ret_size]), devName , NULL);

printf("CL device name: ");

int i;

for (i = 0; i < ret_size; i++) {

printf("%c", devName[i]);

}

printf("\n");

unsigned int maxComputeUnits = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_MAX_COMPUTE_UNITS , sizeof(cl_uint), &

maxComputeUnits , NULL);

printf("Max compute units: %d\n", maxComputeUnits);

unsigned int clockFreq = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_MAX_CLOCK_FREQUENCY , sizeof(cl_uint), &

clockFreq , NULL);

printf("Clock frequency: %d MHz\n", clockFreq);

unsigned long globalMemSize = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_GLOBAL_MEM_SIZE , sizeof(cl_ulong), &

globalMemSize , NULL);

printf("Device global memory size: %ld MB\n",

globalMemSize /(1024*1024));

unsigned long long globalMemCacheSize = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_GLOBAL_MEM_CACHE_SIZE , sizeof(cl_ulong)

, &globalMemCacheSize , NULL);

237

printf("Device global memory cache size: %lld KB\n",

globalMemCacheSize /1024);

unsigned int globalMemCacheLine = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE , sizeof(

cl_uint), &globalMemCacheLine , NULL);

printf("Device global memory cache line size: %d

Bytes\n", globalMemCacheLine);

unsigned long long localMemSize = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_LOCAL_MEM_SIZE , sizeof(cl_ulong), &

localMemSize , NULL);

printf("Device local memory size: %lld KB\n",

localMemSize /1024);

unsigned int localMemType = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_LOCAL_MEM_TYPE , sizeof(

cl_device_local_mem_type), &localMemType , NULL);

if (localMemType == CL_LOCAL) {

printf("Device local memory is physical memory

type: CL_LOCAL \n");

}

else if (localMemType == CL_GLOBAL) {

printf("Device local memory is physical memory

type: CL_GLOBAL \n");

}

unsigned long long constBufferSize = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE , sizeof(

cl_ulong), &constBufferSize , NULL);

printf("Device max constant buffer size: %lld KB\n",

constBufferSize /1024);

unsigned int maxWorkItemDimensions = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS , sizeof(

cl_uint), &maxWorkItemDimensions , NULL);

printf("Device max work -item dimensions: %d\n",

maxWorkItemDimensions);

unsigned int maxWorkGroupSize = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_MAX_WORK_GROUP_SIZE , sizeof(size_t), &

maxWorkGroupSize , NULL);

238

printf("Device max work -group size: %d threads\n",

maxWorkGroupSize);

unsigned int timerResolution = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_PROFILING_TIMER_RESOLUTION , sizeof(

size_t), &timerResolution , NULL);

printf("Device profiling timer resolution: %d

nanoseconds\n",timerResolution);

unsigned int vector_w_i = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT , sizeof(

size_t), &vector_w_i , NULL);

printf("Device preferred vector width int: %d\n",

vector_w_i);

unsigned int vector_w_f = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT , sizeof(

size_t), &vector_w_f , NULL);

printf("Device preferred vector width float: %d\n",

vector_w_f);

unsigned int vector_w_d = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE , sizeof(

size_t), &vector_w_d , NULL);

printf("Device preferred vector width double: %d\n",

vector_w_d);

unsigned int image_support = 0;

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_IMAGE_SUPPORT , sizeof(size_t), &

image_support , NULL);

printf("Device image support (1: true , 0 false): %d\

n", image_support);

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_EXTENSIONS , sizeof(char), NULL , &

ret_size);

char extensions[ret_size];

clGetDeviceInfo(compute_device_id[x],

CL_DEVICE_EXTENSIONS , sizeof(char[ret_size]), &

extensions , NULL);

printf("Extensions supported :\n ");

int j;

for (j = 0; j < ret_size; j++) {

239

if(extensions[j] == ' ')

printf("\n ");

else

printf("%c", extensions[j]);

}

printf("\n\n");

}

}

240

	Title Page
	Problem Description
	Introduction
	Thesis problem description
	Research plan
	Interpretation of the thesis problem description
	Thesis structure and overview

	Background for software technologies and tools
	Multi-core programming state-of-the-art
	OpenMP
	Intel Threading Building Blocks (TBB)
	Apple Grand Central Dispatch (GCD)

	OpenCL
	Inspiration from the computer graphics scene
	Execution
	The Low Level Virtual Machine (LLVM) Compiler Infrastructure
	GPU execution
	CPU execution
	The memory hierarchy
	OpenCL CPU support status

	Cmake build system for platform independent builds

	Background for the implementation
	Solvers
	Krylov solvers
	Important compute kernels for the Cg Krylov solver
	AXPY
	AYPX
	DOT
	SCAL
	SpMV

	Sparse Matrix Vector Multiplication (SpMV) on GPUs
	Data formats of relevance for use with SpMV
	Compressed sparse vector format (CSV)
	Compressed sparse row storage format (CSR)
	Block compressed sparse row storage format (BCSR)
	ELLPACK
	Block ELLPACK storage format (BELL)
	Hybrid (HYB)

	The CUDA Krylov (CUKr) software version 1.0
	The structure of CUKr
	The BLAS level
	The data structure level

	Background for relevant hardware
	Nvidia OpenCL capable graphics hardware
	Nvidia Tesla architecture
	Nvidia Fermi architecture
	Ideal global memory access pattern

	AMD/ATI OpenCL capable graphics hardware
	Architectural overview
	Ideal global memory access pattern

	A more CPU-ideal global memory access pattern
	Memory access on the CPU

	Implementing OpenCL support in CUKr
	At the build level
	Additions to the CUKr infrastructure and data-structure level
	Additions to the BLAS level --- the set-up of the OpenCL kernels

	Kernel implementations
	CUKr OpenCL kernels ideal for the GPU
	Common structure

	Differences between the OpenCL and CUDA kernels
	BLAS 1 functions
	SpMV functions

	CUKr OpenCL kernels ideal for the CPU

	Results
	Performance evaluation
	Performance measuring
	Results BLAS 1 GPU-friendly kernels --- individual benchmarks
	Nvidia GTX 280 under Linux, Nvidia OpenCL

	Results AXPY CPU-friendly kernel on CPU
	Results Cg Krylov solver and its GPU-friendly kernels --- real-world problems
	Nvidia GTX 280 under Linux, Nvidia OpenCL 3.0 SDK

	Conclusions
	Further work
	Hardware specifications
	OpenCL devices under different implementations
	Apple Mac Pro, OS X 10.6.4
	Apple Mac Pro, OS X 10.6.3
	Apple Macbook Pro, OS X 10.6.4
	Apple Macbook Pro, OS X 10.6.3
	Nvidia CUDA SDK 3.0 Linux
	ATI Stream SDK 2.1 Linux
	ATI Stream SDK 2.01 Linux

	Matrix properties
	Benchmark graphs
	Code listings
	AXPY CPU Single
	AXPY GPU Single
	AXPY GPU Double
	AYPX GPU Single
	AYPX GPU Double
	DOT GPU Single
	DOT GPU Double
	SCAL GPU Single
	SCAL GPU Double
	SPMV CSR GPU Single
	SPMV CSR_B0 GPU Single
	SPMV CSR_A1 GPU Single
	SPMV CSR_A1_B0 GPU Single
	SPMV CSR GPU Double
	SPMV CSR_B0 GPU Double
	SPMV CSR4 GPU Single
	SPMV CSR4_B0 GPU Single
	SPMV CSR4_A1 GPU Single
	SPMV CSR4_A1_B0 GPU Single
	SPMV CSR4 GPU Double
	SPMV CSR4_B0 GPU Double
	SPMV ELL GPU Single
	SPMV ELL GPU Double
	Kernels GPU single-double (quasi-double)
	Kernels GPU single set-up
	Kernels GPU single set-up, header
	Kernels GPU single-double (quasi-double) set-up
	Kernels GPU single-double (quasi-double) set-up, header
	Kernels GPU double set-up
	Kernels GPU double set-up, header
	OpenCL Initialize
	OpenCL Initialize, header
	OpenCL devices probing

