
Master of Science in Computer Science
June 2010
Alf Inge Wang, IDI
Meng Zhu, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Evolutionary Game Prototyping using
the Unreal Development Kit

Kjetil Guldbrandsen
Kjell Ivar Bekkerhus Storstein

Problem Description
This project will use the Unreal Development Kit to implement a prototype game. The Unreal
Development Kit be evaluated according to its practical use for game prototyping in a small team
environment.

Assignment given: 15. January 2010
Supervisor: Alf Inge Wang, IDI

Abstract

The goal of this thesis was to evaluate the Unreal Development Kit (UDK)
as an evolutionary game prototyping tool. To conduct this evaluation in a
realistic setting, a prototype of a game concept was to be implemented using
this tool.

To aid the prototyping process, extensive research was done into existing theory
on game prototyping, as well as how traditional prototyping techniques can be
utilized in a game prototyping environment.

The project team created their own prototyping process tailored for evolu-
tionary game prototyping, based on the theoretical insight gained through the
research on general prototyping processes. Due to time constraints, the team
was unable to test this process extensively. This is work that remains before
the process can be fully recommended for further use.

During the evaluation process, the team identified key criteria for evaluating
a game prototyping tool and compiled this into an evaluation framework. The
key points identified in the evaluation was that the UDK offers low-risk licens-
ing terms for a game engine suite with an outstanding track-record of successful
game titles. To properly utilize the speed gains that can be achieved through
the UDK, a deep understanding is needed of its feature set.

The main challenge in this project was the balancing act of two somewhat
conflicting goals: Acquiring knowledge of the UDK, thus covering the breadth
of its features, while at the same time following narrowly focused prototyping
techniques.

From this work, the project team has gained deep insight into one of the game
industry’s most widely used engines and how it can be used as an evolution-
ary prototyping tool. The team is particularly satisfied with the evaluation
framework and the evaluation itself, as these will provide useful information
for anyone considering using the UDK, both professionally and academically.
Engine developers will also benefit from a novice user’s point of view.

Contents

I Introduction 1

1 Project Background 2
1.1 Project Context . 2
1.2 Motivation . 2

1.2.1 Trends in the Video Game Industry 3
1.2.2 Personal Motivation . 4

1.3 Project Goal . 5

2 Research 6
2.1 Research Questions . 6
2.2 Research Methodology . 7

2.2.1 The Scientific Method 7
2.2.2 Literature Review . 8
2.2.3 Use of Research Methods 8

3 Development 10
3.1 Development Method . 10
3.2 Tools . 10

II Prestudy 13

4 Game Engines 14
4.1 Background . 14

4.1.1 What is a Game Engine? 14
4.1.2 Game Engine Components 15
4.1.3 Researched Game Engines 17

5 Unreal Development Kit 20
5.1 UnrealScript . 20

5.1.1 Language Terminology 21

i

ii CONTENTS

5.1.2 Language Hierarchy . 22
5.1.3 Code Examples . 23

5.2 UnrealED . 24
5.2.1 Kismet . 24
5.2.2 Archetypes . 26
5.2.3 Matinee . 27
5.2.4 Material Editor . 30
5.2.5 Cascade . 32
5.2.6 AnimSet Editor . 36
5.2.7 AnimTree Editor . 38
5.2.8 Lightmass . 41
5.2.9 The Navigation Mesh . 46

5.3 SpeedTree . 47
5.3.1 Description . 47

5.4 Summary . 48

6 Game Prototyping 51
6.1 Prototyping Basics . 51
6.2 Software Prototyping . 52

6.2.1 The Software Prototyping Cycle 53
6.2.2 Software Prototyping Classifications 53
6.2.3 Software Prototyping Methods 54

6.3 Video Game Prototyping . 56
6.3.1 Aspects of Game Design 56
6.3.2 Game Mechanics Prototyping 57
6.3.3 Game User Interface Prototyping 57
6.3.4 Level Prototyping . 58

6.4 Summary . 60

III Own Contribution 61

7 Game Prototype Requirements 62
7.1 Game Mechanics Requirements 62
7.2 User Interface Requirements . 62
7.3 Level Requirements . 64

8 The Prototyping Process 67
8.1 Prototyping Guidelines . 67
8.2 Detailed Phase Description . 70

8.2.1 Phase I: Establishing the Core Mechanics 71

CONTENTS iii

8.2.2 Phase II: Communicating the Core Mechanics 73
8.2.3 Phase III: Polish . 74

9 Implementation 76
9.1 Overview . 76
9.2 Completeness . 78

10 Evaluation 79
10.1 Evaluation Framework . 79
10.2 Unreal Development Kit . 81

10.2.1 Learning Curve . 81
10.2.2 Development Speed . 83
10.2.3 Flexibility . 86
10.2.4 Stability . 87
10.2.5 Community Support and Documentation 88
10.2.6 Licensing . 91
10.2.7 Competitiveness . 93

10.3 Prototyping Process . 96
10.4 Research . 97

10.4.1 RQ1: Game Prototyping Process 97
10.4.2 RQ2: Game Prototyping Tool Evaluation 98
10.4.3 RQ3: Evaluation of the UDK 98

11 Conclusion and Further Work 100
11.1 Conclusion . 100
11.2 Further Work . 101

A ”Apocalypse” Concept Document 102

B Requirements Fulfilled 108

Bibliography 120

iv CONTENTS

Part I

Introduction

1

Chapter 1

Project Background

“Now it is beginning of a fantastic story!! Let’s make a journey
to the cave of monsters! Good luck!”
- Opening Screen, Bubble Bobble (1986)

This chapter aims to describe the background of this master thesis. The first
section will explain the context of the project, followed by a section on the
motivation behind the project. The last section will describe the project’s
goal.

1.1 Project Context

This project is the master thesis of the authors at the Norwegian University of
Science and Technology(NTNU). It is a part of the game technology research
program at the Department of Computer and Information Science(IDI) under
the Faculty of Information Technology, Mathematics and Electrical Engineer-
ing(IME). The project loosely follows the depth project “Apocalypse Engine -
A Study of Software Architecture and Conventions in Modern Game Engines”
conducted the fall 2009 by the authors [7].

1.2 Motivation

This section describes the motivation behind this project. The first subsection
aims to explain current trends in the video games industry that relate to the
project. The second subsection outlines the personal motivation behind the
thesis.

2

1.2. MOTIVATION 3

1.2.1 Trends in the Video Game Industry

Video games have over the last decade become huge and complex development
efforts [8]. Team sizes, budgets and development hours have consequently risen
to a level comparable with Hollywood blockbusters. As an example Grand
Theft Auto IV by Rockstar Games had an estimated budget of roughly $100
million with over a thousand people involved [9]. Since millions of dollars are
involved, the large studios tend to stick to tried and tested game concepts to
minimize risk.

Another emerging trend in the world of video games is that games are no longer
only sold over the counter, but also in a downloadable digital form. Services
such as Steam for PC and Mac, Xbox Live Marketplace for the Xbox 360 and
Playstation Store for the Playstation 3 give gamers the chance to buy and
download games digitally, in the comfort of their own homes. For developers,
these services provide some major benefits: Traditionally developers want to
maintain creative control over their intellectual property. This has often inter-
fered with the distributor’s need to minimize risk. With digital distribution
this nuisance can be overlooked as there is no unit production cost, and only
a royalty per sold game need to be paid to the digital distributor. Another
benefit is instant access to the worldwide market, since no local distributors
are necessary.

The lack of innovation among the larger game studios, combined with to-
day’s ease of digital distribution has spawned the Independent Game Devel-
oper movement [51]. Indie game developers tend to emphasize innovative game
concepts or a fresh look upon old classics. There are numerous success stories
when it comes to indie games. Among the most successful ones is the critically
acclaimed Braid, developed by only two people selling over 250,000 units on
the Xbox Live Marketplace alone. Another huge success is Castle Crashers
created by a core team of five which has sold over 520,000 units on the Xbox
Live Marketplace [63]. Starting out as an indie developer, however, is no easy
task. With no major financial backup, resources are scarce. Thus, obtaining
state-of-the-art third-party middleware and engines, commonly used in the
larger studios, is not an option.

Epic Games [27] has responded to the emerging need for affordable game tools,
by releasing their Unreal Engine 3 with complete toolkit, named the Unreal
Development Kit (UDK) to the public under a special license. A licensee
may use the toolkit for both educational and commercial purposes, however
for any revenue above $5000 Epic claims a 25% royalty. The up-front cost
for commercial projects aimed to be sold is $99, whereas a business which

4 CHAPTER 1. PROJECT BACKGROUND

internally uses the toolkit must pay a fee of $2500 per development seat per
year [31]. This business scheme can be extremely benificial for indie developers
since the up-front cost is a fraction of the usual six-figure price. It is important
to recognize that the toolkit and engine are in no way scaled down. It is the
same engine and tools used in modern AAA1 titles such as ”Unreal Tournament
3”, ”Gears of War 1 and 2”, ”Mass Effect 1 and 2” and ”Batman: Arkham
Asylum” [88]. The only difference between a UDK license and a full license
is that the latter gets access to the source code. The first beta of the UDK
was released in November 2009 and downloaded over 50,000 times the first
week [29]. A new beta has been released every month since then with added
features and stability improvements. The success of Epic’s licensing strategy
has also been noted by other engine developers. Crytek, developers of the
”CryENGINE 3” recently stated that they will release a free platform based
on their technology [14].

1.2.2 Personal Motivation

In the depth project preceding the thesis, the authors conducted a study of
conventions and architecture of modern video game engines [7]. Unsurprisingly
the research showed that modern game engines are complex behemoths, and
it is unrealistic for small teams to create a competing one from scratch. As
stated in the depth project’s motivation we have developed an award-winning
game concept [3], which we aim to implement. During the implementation
part of the previous project we were not able to test our concept in a game
environment at all, since the whole development effort went into creating the
engine. The approach to this project will therefore be to develop a game
prototype using an existing engine. The release of the UDK coincided very
well with this, and is our obvious choice due to its maturity and reputation.

The game mechanics of our concept are experimental and a bit vague, thus
we need to be able to rapidly prototype different ideas. This challenge is, of
course, not unique in our case, thus researching the UDK as a prototyping
tool is valuable for actors in the video game industry. Since the UDK is not
only limited to entertainment, but can be used as a general visualization tool,
research on the UDK will be of interest for other parties as well. Here lies the
main value of this thesis.

Another aspect of our personal motivation is to increase our general skill set
in game development. During the last project we focused on software archi-
tecture and programming, which are traditional skills in our computer science

1A ”AAA game” is lingo for a big budget commercial game

1.3. PROJECT GOAL 5

background. Creating games is largely a multi-disciplinary effort, thus devel-
oping insight into areas beyond programming is desirable. This is particularly
true for indie game development, where team members typically cover multiple
roles. Larger studios also need multi-disciplinary team members to bridge the
gap between art and code, e.g. “technical artists” [48].

1.3 Project Goal
The main goal of this project is to evaluate the UDK as a game prototyping
tool. An important property of the evaluation is the accessibility of the toolkit
to someone with no prior experience with Epic’s technologies. To reach this
goal a large part of the pre-study will be to familiarize ourselves with the
different tools of the UDK. When a basic understanding of the toolset has
been reached, the actual prototyping of the concept can commence. Since it is
our concept we aim to experiment with, a set of requirements derived from the
concept document will form the basis of our initial prototype. This prototype
will be further refined during the course of the development, via feedback and
observations from user tests. The test base will consist of a chosen few in the
target demographic, including the authors.

The prototyping itself is an interesting process. A subgoal of the project will
be to find a fitting prototype procedure. Here we will explore what established
research on game prototyping exists, or if we must create our own scheme by
lending prototyping schemes from other fields e.g. Human Computer Interac-
tion(HCI) [64] and agile software development [18].

When the prototyping phase is finished, the evaluation can begin. Important
criteria for the evaluation are: How much time is required to learn the basics
of the toolkit until you can starting working on the actual prototype? How
much time is saved versus creating something similar on your own? Here
we will compare with our experiences creating the Apocalypse Engine in the
preliminary project [7]. We will also look at the maturity and stability of the
toolkit, and report potential time lost due to issues out of our control. The
complete evaluation framework is described in Section 10.

Chapter 2

Research

“Foolish are those who fear nothing,
yet claim to know everything.”
- Imperium Thought for the Day, Warhammer 40,000: Dawn of
War (2004)

This chapter explains the research to be conducted on this master thesis and is
divided into two sections. The chapter’s first section will outline the research
questions posed by the authors. The second describes the research method-
ologies applied to answer the research questions, and how we aim to use them
in our project.

2.1 Research Questions

To explain where these questions are coming from, we will revisit some of what
is stated in Section 1.2. First of all, we want to explore whether video game
companies tend to follow any formal process for prototyping a game. This ties
into our investigation on whether there exists any specific research in the area of
game prototyping, or whether it exists mostly in classic areas like user interface
design. If we look at game development from our own perspective, we have a
small team, limited resources and a tight time schedule of 23 weeks. Teams
like this are highly relevant at the time of writing, as digital distribution is
getting common and the amount of independent developers is rising [51]. Such
teams are in need of low-cost time-saving tools if they are to develop cutting
edge 3d games, as modern 3d game engines are huge undertakings. This makes
us want to evaluate the Unreal Development Kit, as it is based on a proven

6

2.2. RESEARCH METHODOLOGY 7

engine and affordable to independent developers1.

Thus, we pose the following questions:

RQ1: What formal game prototyping processes exist?

RQ1.1: What research exists on game prototyping?

RQ1.2: Can prototyping theory from other fields be applicable to game
prototyping?

RQ2: Which factors are important in evaluating a game prototyping tool?

RQ3: How does the UDK score according to the evaluation criteria derived
from RQ2?

It is important to note that there is more to RQ2 than meets the eye. The
question only serves as the starting point for discovering more specific sub-
questions dealing with the criteria for game prototyping tool evaluation. As
these criteria are part of what is to be researched, any related questions would
therefore be based on nothing. They will instead be presented as part of our
own contribution.

2.2 Research Methodology

There are several established research methods applicable to software engi-
neering. These methods are guidelines on how research may be conducted in
software development projects. The ones that apply to our project will be
listed in this section.

2.2.1 The Scientific Method

Basili[4] identifies and describes some of the more common research methods
for software engineering. He describes the the scientific method as:

1. The scientific method: observe the world, propose a model or a theory
of behavior, measure and analyze, validate hypotheses of the model or
theory, and if possible repeat the procedure.

(a) The engineering method: observe existing solutions, propose
better solutions, build/develop, measure and analyze, and repeat
the process until no more improvements appear possible.

199$ royalty-bearing license at the time of writing[31]

8 CHAPTER 2. RESEARCH

(b) The empirical method: propose a model, develop statistical/qual-
itative methods, apply to case studies, measure and analyze, val-
idate the model and repeat the procedure. Statistical/qualitative
methods, apply to case studies, measure and analyze, validate the
model and repeat the procedure.

More thoroughly about the engineering method Basili says:

“This version of the paradigm is an evolutionary improvement ori-
ented approach which assumes one already has models of the soft-
ware process, product, people and environment and modifies the
model or aspects of the model in order to improve the thing being
studied. An example might be the study of improvements to meth-
ods being used in the development of software or the demonstration
that some tool performs better than its predecessor relative to cer-
tain characteristics. Note that a crucial part of this method is the
need for careful analysis and measurement.”

2.2.2 Literature Review

The literature review method consists of reviewing existing literature on the
subject before trying to answer any research questions. This ensures that the
researchers have a solid foundation on previous findings and problems, and
can use this to their advantage during the research process. Of course, it is
important that the literature review is done as early as possible in the project
to have an effect on the rest of the project work.

2.2.3 Use of Research Methods

In this project we aim to evaluate the UDK as a game prototyping tool. To
achieve this goal we must first obtain extensive knowledge about the research
area. Studying the UDK will first and foremost require use of the toolkit.
Learning by doing corresponds to the observation phase of the engineering
method. To develop knowledge of a new toolkit, online documentation and
tutorials is a convenient source. We will, however, not categorize this practice
as a strict ”literature review”, since the knowledge obtained from the ”litera-
ture” in this case does not alone cover the knowledge source. The literature
is merely a supplement to learn the toolkit, it is the actual practice that will
stand for most of the lessons learned.

To expand our insight into game prototyping, we need to study books, articles
and web-pages. This corresponds to the observation phase of the engineering

2.2. RESEARCH METHODOLOGY 9

method, though a literature review is carried out to obtain information. The
result of the conducted study should be a prototyping process we find adequate.
If we are unable to find such a process we will propose our own to better suit our
prototyping needs, as described in the engineering method above. The process
of implementing a game prototype leans toward the engineering methods in
its very nature, since prototyping by definition is about iterative refinement of
a product [16].

Chapter 3

Development

“May the way of the hero lead to the Triforce”
- Rescued Maiden, The Legend of Zelda: A link to the past (1991)

In this chapter we will first provide a comment on the development method to
be used for the implementation part of the project. The next section will list
the tools to be used in the project, both for creating the project report and
for the actual implementation.

3.1 Development Method

The developing efforts in this project will lie in the implementation of a
game prototype. Traditional software development make use of a development
method such as the Waterfall Model [6], or some form of agile development
method, e.g. Scrum [92]. Since game prototyping is not a traditional software
development effort, neither will the development method be a traditional one.
The development method, which in this context is the prototyping process,
will be chosen or developed after the prototyping prestudy is finalized, and is
described in Chapter 8. The development method will later be evaluated in
Section 10.3.

3.2 Tools

This section lists the various development tools used in this project, both for
creating the report and implementing the game prototype.

10

3.2. TOOLS 11

MiKTeX 2.7 by Christian Schenk Implementation of TEX for Windows
[56]. TEX is a typesetting system used for writing books, reports and
technical documents. It is especially designed for math-heavy writing.

TeXnicCenter 1.0 RC 1 by ToolsCenter.org Free open source editor for
creating LATEX projects. It uses the MiKTeX or TeX Live distributions
[93]. The editor gives an overview of the whole LATEX project, supplies
code completion and provides means for easily building the project into
an output file (like a PDF file).

Visual Studio 2008 by Microsoft An Integrated Development Environment
(IDE), supporting several programming languages. It is widely used for
Visual C++ and C# projects, but in this project it is used in combina-
tion with nFringe to write UnrealScript.

nFringe by Pixel Mine Games Is a plugin for Visual Studio 2008, deliver-
ing syntax highlighting, code inspection, debug features, Intellisense and
auto-completion for UnrealScript.

Tortoise SVN by Stefan Kung and Lubbe Onken A free Subversion client
for Windows. It is implemented as a Windows shell extension and used
for version control of code and documents. Used in this project both for
this report and for the prototype implementation.

3ds Max 2010 by Autodesk An advanced 3d modeling, visualization and
animation tool.

Photoshop CS4 Pro by Adobe A graphics editing program. Used for cre-
ating all sorts of graphics, like textures for 3d models, figures or manip-
ulating photos.

Illustrator CS4 by Adobe A vector graphic editing program. Used for cre-
ating line art in the concept document.

InDesign CS4 by Adobe An application for creating publishing layouts.
Used for creating the concept document.

Crazybump by Ryan Clark A tool for creating bump maps, specularity
maps and height maps from regular photos or images. These can be
used to simulate more detail in a 3d model than there actually is, whic
is a crucial trick in real-time 3d.

Mudbox 2010 by Autodesk Is a brush-based sculpting and painting appli-
cation used to create high-resolution 3d-models. Mudbox features func-
tionality to export normal- and height-maps used with lower resolution

12 CHAPTER 3. DEVELOPMENT

models.

Unreal Development Kit by Epic Games Is a complete game develop-
ment kit built around the Unreal Engine 3. The UDK is subject to
scrutiny throughout this project and is thoroughly described in Chapter
5.

Part II

Prestudy

13

Chapter 4

Game Engines

“If you want guarantees, buy a toaster...”
- Morrison, Crysis (2007)

This chapter will start with a background section with a general introduc-
tion to game engines, components commonly present in game engines and a
list of relevant candidates to investigation. This section is largely based on
the research conducted in the depth project preceding this thesis. When the
basics of game engines are established, we move on to introduce the Unreal
Development Kit in the next chapter.

4.1 Background

This section consists of three subsections giving a general introduction to game
engines, their different components and a list of state-of-the-art engines used
in modern, commercial games.

4.1.1 What is a Game Engine?

Jason Gregory of NaughtyDog makes the distinction between a game and a
game engine in his book Game Engine Architecture [45] as:

”Arguably a data-driven architecture is what differentiates a
game engine from a piece of software that is a game but not an
engine. When a game contains hard-coded logic or game rules, or
employs special-case code to render specific types of game objects,
it becomes difficult or impossible to reuse that software to make a

14

4.1. BACKGROUND 15

different game. We should probably reserve the term ”game engine”
for software that is extensible and can be used as the foundation
for many different games without major modification

A game engine is structured around different modules contributing to differ-
ent aspects of a game. This can be rendering, collision detection, physics,
networking, artificial intelligence and tools to name a few [83]. While early
games typically where built from scratch, games nowadays often license third
party tools and components to shorten development time. Such tools can
come in the form of physics, sound or even an entire engine, which in turn
can be modified. Examples of commercially available engines include Valve
Software’s Source engine(used in Half-Life 2 and Portal) [71], Emergent Game
Technologies’ Gamebryo engine(Used in Fallout 3 and Civilization IV) [74],
and of course the Unreal Engine 3 which the UDK is built around and has
been previously used to create games such as Unreal Tournament 3, Gears
of War and Batman: Arkham Asylum [27]. A list of game engines included
toolset is presented in Section 4.1.3. The advantage of licensing a cutting edge
engine, is that the developer can get the advanced visuals that are expected
with newer games, without having world-class game engine programmers on
the team. Developers can therefore put their effort into creating stunning
content and entertaining game mechanics.

4.1.2 Game Engine Components

Here we will give a description of the parts that make up a modern game engine
as an introduction to what might be expected from the Unreal Development
Kit.

Rendering Rendering is an essential part of a game engine. It is the player’s
window into the game, i.e. what makes it possible for the player to get
visual feedback. All the advanced game mechanics in the world is for
naught if there is no way to portray it to the outside world. Performance
is a crucial quality here, while the visuals at the same time should look as
good as possible. These are conflicting goals, and compromises usually
have to be made. Games in the FPS (First Person Shooter) genre have
traditionally been the most innovative in the use of state of the art real-
time rendering technologies.

Animation Few games can do without at least some sort of animation. It’s
essential to give the illusion of life. Be it just a few frames of simple 2d
animation, or many 3d elements on the screen at the same time playing
their own animation cycles. It can be anything from walking animations,

16 CHAPTER 4. GAME ENGINES

to facial expressions or explosions and other effects. 3d animation can
be key-frame determined, motion-captured or procedurally created.

Artificial Intelligence Artificial intelligence (AI) is the intelligence of ma-
chines, and can take many forms in computer games. From a simple
opponent in Pong, to a learning creature in Black & White [81]. With-
out artificial intelligence, many single player games would be rendered
moot as there would not be an opponent. The AI in games has not had
a lot in common with traditional AI research, as games have had a ten-
dency of using finite state machines for the AI. Finite state machines are
not considered part of the AI field, but rather as a part of computation
theory. Though, as AI becomes increasingly more complex in games,
more traditional AI research schemes are being put to action. Automatic
planning and machine learning are two examples.

Sound Sounds play a big part in games by providing the player with audial
feedback using sound effects, story through narration and mood through
music. An up-to-date game engine should therefore support the playing
of multiple sound effects, as well as the streaming of background music.
3d games might also have the need for positional audio (or ”3d sound” if
you will), with a movable listener and sources. There exists third-party
libraries to save developer time. FMOD is an example, used in games
like World of Warcraft and Batman: Arkham Asylum [21].

Scripted Events Scripting is important in bigger engines, as it gives artists
and level designers tools to sculpt a level into their vision. This can
come in the form of programming behaviors via the scripting language,
to time-based or location-based events that are triggered. It is also useful
for creating in-game sequences which can have the purpose of portraying
the story or giving level-specific information. Scripting can make the
levels or the story feel all the more interesting and dynamic, giving the
player a more immersive experience than with static levels.

Physics and Collision Detection Interaction between the player and an
environment where laws of physics apply are getting to be expected in
modern games. It is important for players that objects respond as one
would expect in the real world. This demands a powerful physic simu-
lation engine. A lot of developers implement third party physic engines
or libraries into their games. Examples include Havok Physics [47] and
Open Dynamics Engine [69]. Box2D [12] is another alternative for 2D
games. Collision detection is a part of physics and very important in
games. It deals with the problem of determining whether two or more

4.1. BACKGROUND 17

objects are touching or intersecting. If a collision is detected, a proper
collision response is administered. While this problem might seem simple
enough, it gets extremely complex as a lot of objects are moving around
simultaneously in 3D space. To add to that, you have the problem of
tunneling [20], which can occur if a object moves sufficiently between
frames to move through a surface without intersecting. Collision detec-
tion is therefore a complex subject, but also used all the time in games.
Without it, gamers would find themselves walking through walls, falling
through floors and not hitting enemies with their expensive plasma can-
nons.

Tools No modern game engine is complete without a suite of supporting tools.
These tools all serve the purpose of easing the design and creation of a
game. In short: It gives designers and artists means of focusing on
creating the content that makes the game unique. Level editors are a
classic example. They are usually visual and integrated with a scripting
system. This way, a level designer can design a level without worrying
about any internal game code and get instant feedback on how the end
result will look. Modern editors also provide a host of other advanced
features, like placing of AI path nodes, terrain creation and procedural
creation of vegetation in selected locations.

4.1.3 Researched Game Engines

In the depth project preceding the master thesis, we researched the software
architecture and design conventions in modern game engines [7]. In this section
we have compiled a list of the engines subject to our investigation, outlining
some of the key aspects of the Unreal Engine 3’s competitors.

Gamebryo is an engine created by Emergent Game Technologies (EGT). It
has been used in a wide array of games of different genres: Civilization IV,
The Elder Scrolls IV: Oblivion, Fallout 3, Empire Earth II to name a few [74].
Though these have been based on older versions of the engine than is currently
available.

At the time of writing, EGT’s newest product is the expansion of the Game-
bryo engine, called Gamebryo LightSpeed. It is a superset of the Gamebryo
engine, containing additional design tools to further aid rapid development. It
supports the following platforms: Windows, Wii, Xbox 360 and PlayStation
3.

While engines like Unreal Engine 3 and CryENGINE tend to focus more on

18 CHAPTER 4. GAME ENGINES

the first person shooter gaming aspect, Gamebryo tries to be a more versatile
engine. This is reflected in the diversity in the games that utilizes it, as well as
the range of optional third-party accessories available that integrate into the
engine toolset.

Unity is a game engine created by the Danish company Unity Technologies.
An important point to consider when comparing this engine to the others, is
that it lies in a completely different price range. While the estimated cost
at the time of writing for a full license for the other engines lies somewhere
between 150,000$-500,000$, a Unity Pro license costs $1,500. Though, this is
without the source code available.

The game creation centers around a integrated visual toolkit, the Unity Editor
[75], where terrain, scripts, objects etc. is created. One has no control over the
source code, unless a source code license is bought. This makes the developer
reliant on Unity Technologies to provide updates to their engine to include
the latest technology. Gameplay is programmed via three supported scripting
languages (C#, JavaScript and Boo) [76]. Scripts in Unity are compiled to
native code to ensure high performance..

With a Unity Professional license, it is possible to create games for PC, Mac,
Wii and the iPhone, as well as web-based games via Adobe Flash. Unity has
been used in several iPhone games, like Star Wars: Trench Run and Skee-
Ball[78].

CryENGINE 3 is a game engine created by the German company Crytek
GmbH [44]. Crytek is well known for their innovative solutions leading to cut-
ting edge graphics and physics. The first CryENGINE was pushing boundaries
at its arrival in 2004 with the launch title Far Cry. The second iteration of the
engine, CryENGINE 2, was released in 2007 with the title Crysis and is still
the defining engine for next-gen graphics. CryENGINE 2 has been successfully
used in a number of titles including the mentioned Crysis, Crysis Warhead and
Far Cry 2 1.

CryENGINE 3 steps away from being a PC-only engine and runs on both Xbox
360 and Playstation 3. The engine also utilizes a fully deferred renderer [58]
as opposed to the forward renderer with early z-pass in CryENGINE 2 [57].
Another powerful feature of the CryENGINE 2 which is further enhanced in
CryENGINE 3 is the so-called What you see is what you play (WYSIWYP)-
feature of their level designer. WYSIWYP gives a level designer the opportu-
nity to jump right into the game from the level editor.

1Far Cry 2 uses Ubisoft’s Dunia engine which is a modified version of CryENGINE 2

4.1. BACKGROUND 19

Other engines such as the Unreal Engine 3 supports such a similar feature, but
Crytek pushes it one step further by allowing WYSIWYP on consoles as well
as the PC. Since CryENGINE 3 was released recently so no titles has yet been
released using it.

Chapter 5

Unreal Development Kit

“Work, work, work”
- Peon, Warcraft II: Tides of Darkness (1995)

As mentioned in Section 1.2.1 the Unreal Development Kit is a free version
of Epic Games’ Unreal Engine 3 with a complete toolset included. When
reading the chapter we use the terms ”engine” and ”toolkit” interchangeably,
since the UDK is both an engine and a toolkit. This chapter will introduce
different aspects of the Unreal Development Kit. Due to the size of the toolkit,
individual sections are allocated to discuss its different aspects. Section 5.1 will
introduce UnrealScript, the scripting language developed to use with Unreal
Engine 3. The next section, covering the Unreal Editor, is by far the most
extensive showing the scale and sophistication of the toolkit. The following
section introduces the third-party tool ”Speed Tree” which is included in the
UDK as a separate application.

At the end of the chapter a section is devoted to summarize the chapter’s
content. The weighted relevance of different parts of the UDK in our project
will also be discussed here.

5.1 UnrealScript

UnrealScript is the scripting language used in Unreal Engine 3, and therefore
also in the Unreal Development kit. The language was created for the first
Unreal Engine by Tim Sweeney, the founder of Epic Games (formerly Epic
MegaGames) [72]. It has been expanded and enhanced in further versions of
the engine. The language is constructed to follow the same object-oriented

20

5.1. UNREALSCRIPT 21

principle as Java and C++, while at the same time supporting concepts not
addressed by the traditional languages [40]. These concepts aim to ease game
programming and include:

Time - Functions which take a some amount of time to complete can be
cumbersome to write in a language like C++, often requiring a separate
thread or other measures to prevent the function from choking the en-
tire system. This is taken care of in UnrealScript in the form of latent
functions. Latent functions run in the background without interfering
with the rest of the system, simplifying chains of events that involve the
passage of time.

State - Game logic and perhaps especially game AI have traditionally been
highly dependent on different behaviors depending on what state an ob-
ject is in [81]. This is simplified through UnrealScript’s state-system,
where several state-dependant versions of the same function are able to
exist in the same class.

Network replication - To maintain consistency between server and client
can be a nuisance for developers. Network replication in UnrealScript is
done through its own replication block for variables and separate function
specifiers (Server, Client, Reliable) [40].

5.1.1 Language Terminology

UnrealScript introduces some new terms that bears explaining. The words
themselves might be known, but the meaning is new in this context. The most
central of these is the concept of an Actor. Everything that exists in the game
world is an actor: Players, enemies, weapons, terrain, lights etc. Most engines
have a concept like this; in the ”Apocalypse Engine” developed in the depth
project preceding this master thesis, this was referred to as Entities [7].

The visual representation of a player in the game is called a Pawn. There is
nothing in this class that determines the control scheme. The Pawn can be
the same whether it gets controlled by the computer or by a human player.
It has no ”brain”. The Pawn simply specifies which 3D model to use, what
animations that get played, and functions for moving, attacking and whatever
other actions that the pawn should be able to perform.

The ”brain” in the Pawn is a binding to a Controller. A controller might be a
PlayerController, or an AIController. The PlayerController controls the Pawn
through input done through a device like mouse, keyboard, game pad, joystick
or similar. The human controller scheme is set up through creating bindings

22 CHAPTER 5. UNREAL DEVELOPMENT KIT

between PlayerController functions and inputs in a configuration file.

5.1.2 Language Hierarchy

To begin understanding the class hierarchy in UnrealScript, let us first look
at what Tim Sweeney says in ”UnrealScript Language Reference” about the
object hierarchy within UnrealScript[40]:

“Before beginning work with UnrealScript, it’s important to un-
derstand the high-level relationships of objects within Unreal. The
architecture of Unreal is a major departure from that of most other
games: Unreal is purely object-oriented (much like COM/ActiveX),
in that it has a well-defined object model with support for high-
level object oriented concepts such as the object graph, serializa-
tion, object lifetime, and polymorphism. Historically, most games
have been designed monolithically, with their major functionality
hard coded and unexpandable at the object level, though many
games, such as Doom and Quake, have proven to be very expand-
able at the content level. There is a major benefit to Unreal’s form
of object-orientation: major new functionality and object types
can be added to Unreal at runtime, and this extension can take
the form of subclassing, rather than (for example) by modifying
a bunch of existing code. This form of extensibility is extremely
powerful, as it encourages the Unreal community to create Unreal
enhancements that all interoperate.

Object is the parent class of all objects in Unreal. All of the func-
tions in the Object class are accessible everywhere, because every-
thing derives from Object. Object is an abstract base class, in that
it does not do anything useful. All functionality is provided by
subclasses, such as Texture (a texture map), TextBuffer (a chunk
of text), and Class (which describes the class of other objects).

Actor (extends Object) is the parent class of all standalone game
objects in Unreal. The Actor class contains all of the functionality
needed for an actor to move around, interact with other actors,
affect the environment, and do other useful game-related things.

Pawn (extends Actor) is the parent class of all creatures and players
in Unreal which are capable of high-level AI and player controls.

Class (extends Object) is a special kind of object which describes
a class of object. This may seem confusing at first: a class is

5.1. UNREALSCRIPT 23

an object, and a class describes certain objects. But, the concept
is sound, and there are many cases where you will deal with Class
objects. For example, when you spawn a new actor in UnrealScript,
you can specify the new actor’s class with a Class object.

With UnrealScript, you can write code for any Object class, but
99% of the time, you will be writing code for a class derived
from Actor. Most of the useful UnrealScript functionality is game-
related and deals with actors.”

Like Java, all UnrealScript classes are derived from a common Object super-
class.

The entrypoint for most applications will be a subclass of GameInfo [41]. The
GameInfo class contains information on what PlayerController class to use, as
well as information about the camera.

5.1.3 Code Examples

This section is dedicated to code examples, as this is an effective way of show-
ing the workings of UnrealScript. It is worth noting that UnrealScript is not
case-sensitive, so any use of caps are simply the result of adhering to common
conventions. To start off, let us look at how states are managed in Unre-
alScript. Here is a small example with a imagined walk function, an idle state
and an attack state:
c l a s s Creature

func t i on Walk ()
{

//Walk randomly
}

auto s t a t e I d l e
{
Begin :

S leep (3) ;
i f (! SpottedPlayer ())

Walk () ;
e l s e

GotoState (’ Attack ’) ;
Goto ’ Begin ’ ;

}

24 CHAPTER 5. UNREAL DEVELOPMENT KIT

s t a t e Attack
{

f unc t i on Walk ()
{

//Walk Towards p laye r
}

}

The ’auto’ keyword is used to determine a starting state; i.e. any new objects
of this type will jump straight to the idle state. In this case, any new Creatures
will start out idle. The ’Begin’ label notes the start of state code. State code
can contain jumps between labels and execute latent functions like ’Sleep(n)’.
In fact, latent functions can only be executed in state code [40]. As we can
see, the Creature class has a member function Walk. If different functionality
for this function is desired in another state, then it is easy to override it, as in
the Attack state.

5.2 UnrealED
This section will describe the tools of the Unreal Editor. The individual sub-
sections will each explain a single tool or concept which together form the
editor.

5.2.1 Kismet

Kismet is a visual scripting system for the UDK. It is a graphical, node-based
script editor structured so that non-programmers such as artists and level
designers can design game logic. Kismet script is saved into a map, thus it is
not intended to drive general game rules, but per-level specific events. Figure
5.1 shows a screenshot of the Kismet editor. As seen in the figure, the user is
exposed to a canvas where events and variables may be dropped onto. Logic is
designed by dragging connectors between these nodes. Since kismet supports
math, conditional logic, event handling and actions there is very little Kismet
cannot do. An obvious advantage of this system is that a development team’s
programmers do not need to spend their time on writing simple boilerplate
scripts.

Figure 5.1 above shows an example of setting up a simple third-person camera
using Kismet. When the event ”Player Spawned” is triggered, the ”Attach to
Actor”-action is triggered. ”Attach to Actor” takes in two parameters, namely

5.2. UNREALED 25

Figure 5.1: A screenshot of the Kismet editor

26 CHAPTER 5. UNREAL DEVELOPMENT KIT

the target and the attachment. The parameters are respectively set to the
player and a camera, and the offset from the actor to the attachment is set
to move the camera up and behind the player. The game world will now be
viewed through this camera at an offset relative to the player’s position.

This small example shows another benefit of Kismet: It can be used to pro-
totype functionality. Instead of using a lot of time writing a versatile third-
person camera in UnrealScript, a simple routine can be created in minutes
using Kismet to roughly get the same functionality.

5.2.2 Archetypes

An archetype in the UDK is a way of exposing an UnrealScript class in the
editor. As an example, a simple house can be considered. A programmer
creates a house class with two mesh components: A static mesh for the main
building and a skeletal mesh for the animated door. In addition a particle
emitter is placed in the house’s chimney so that smoke can rise from it when
somebody is home. The programmer, being aware of Archetypes, creates logic
so that the location of the door and particle emitter is relative to the position,
rotation and scale of the house. In addition a variable is created to tell whether
the house is inhabited or not. If the house is inhabited, smoke is rising and
the door is shut, in the opposite case no smoke is rising and the door is open.
Inside the UnrealED the class is located and an archetype is created based on
the class. When looking at the archetype variables the programmer chose to
expose can now be altered. For instance the static mesh can be set, and the
offset to the smoke emitter can be updated to fit the visual representation.
Figure 5.2 shows the visual result of a similar case inside the editor, with the
archetype’s parameters exposed.

This example identifies two key components of what archetypes can do. First
of all it is an easy way to connect logic to a game object. When the house
is placed in the game world, it will operate as specified by the programmer.
Secondly, it enables non-programming-savvy users to alter the properties of
an object without touching the code, assuming the programmer has exposed
enough variables to the archetype. In addition it is easy to create objects that
behave similarly, but look different. The class in the example can create a wide
range of house archetypes by simply altering the house mesh component. An-
other important property of archetypes is that each instance of an archetype
reference the base. If a thousand house instances has been placed in a level, but
the artist wants to alter the base archetype’s mesh, the instances will be up-
dated accordingly. This is a one-way relationship, thus altering the properties
of an instance will not update other instances nor the base archetype.

5.2. UNREALED 27

Figure 5.2: A screenshot from UnrealED showcasing a cottage visualized from
an archetype. The archetype’s exposed parameters are shown to the right.

The use of archetypes explained above does not cover the whole story. Any
object in the UnrealED can be used to create an archetype. At any time a
user may chose to save a ”snapshot” of an object as an archetype. When there
are as many parameters involved per object as in the UDK, this may prove to
be a valuable time saving strategy.

5.2.3 Matinee

Matinee is a tool in the UDK to keyframe actors’ properties over time. Its
functionality ranges from creating per-level animations of movable doors and
elevators, to cut-scene direction with complex animations and camera effects.
Matinee is tightly coupled to Kismet, so that a Matinee sequence is initiated
through Kismet. Matinee can also spawn Kismet events at arbitrary times in
a sequence. A screenshot of the Matinee interface can be seen in Figure 5.3.

Matinee is structured around groups. A group contains a set of tracks con-
trolling the properties of a single actor over time. A property is varied over
time by placing keyframes on a track to control the value/time relationship.
The value of a property between two keyframes is interpolated in a fashion
determined by the user. The four interpolation schemes available are Curve,
Curve(Break),Linear and Constant. There are many types of tracks to control

28 CHAPTER 5. UNREAL DEVELOPMENT KIT

Figure 5.3: A screenshot showcasing the Matinee interface. The dark gray and
orange horizontal bars are groups. All three groups have one movement track
each

5.2. UNREALED 29

different properties of an actor, among these the most important track types
are:

Movement Track: Is used to move an actor over time. When a movement
track has been created, a curve is displayed in the editor. The curve
points may be edited directly here instead of in Matinee to give the user
better visual feedback. The rotation of an actor is also accessed through
the movement track.

Float, Vector and Color Track: These three track types are equal, but dif-
fer in the property types they can control. The tracks let the user change
an actor’s property over time such as the color of a light or the DrawScale
of static mesh.

Event Track: As mentioned introductory Matinee can be used to fire Kismet
events. The event track contains the functionality to name an event to
be fired at a specific time. When an event has been defined on an event
track, it creates a new output connector on the Matinee node in Kismet.
The user may then connect this connector to any Kismet event and it
will be fired when the Matinee sequence reaches the specified time.

Anim Control Track: This track type is used on skeletal meshes to specify
what animations are to be played at different intervals of the Matinee
Sequence. In order to use this track the animation set or sets to be used
must be imported into Matinee.

ParticleSystem Toggle Track: Enables the user to toggle on and off par-
ticle emitters. This track type is useful for keying particles to be spawned
at specific times such as when a character lights a cigarette or a weapon
fires to reveal a muzzle flash.

Director Track: Is a little peculiar compared to other track types. First off
all it is not tied directly to an Actor, but is meant to control the player’s
view of a sequence. When doing a cut-scene from different angles the
director track enables the sequence to be view through different cameras.
The cameras are set up outside the director group with their own tracks
for e.g movement and varying field-of-view, but the active viewpoint is
determined through the director track.

Fade Track: Controls fading of the rendered Matinee sequence into a spe-
cific constant color.

Slomo Track: Controls the speed of all the game actions, physics, particles,
sound etc. in the sequence by altering the playback speed. This track

30 CHAPTER 5. UNREAL DEVELOPMENT KIT

type can be used to produce ”bullet-time” effects which are common in
video games.

5.2.4 Material Editor

UDK’s Material Editor is a visual shader and material authoring tool. Like
many other tools of the UnrealED it is a node-based graph tool where arrows
are dragged between nodes to control the logic. The Material Editor allows, like
Kismet, non-programmers to add functionality to a game or application. The
Material Editor is actually just a visual wrapper around High-Level Shading
Language(HLSL) [87], like Kismet is a visual wrapper around UnrealScript.
A screenshot of the material editor can be seen in Figure 5.4. The Material
Editor can in addition to create materials for mesh-based objects also be used
to create custom post-processing effects. An important notion on materials
in the UDK is that for similar materials, the user can create a parameterized
base material, and then multiple material instances. The parameters of an
instanced material may subsequently be altered without the need of a shader
recompilation.

Figure 5.4: A screenshot of the Material Editor

The UDK supports the creation of a wide array of materials. There are four
different available lighting models: Phong, Anisotropic, Non-Directional and
Unlit. In addition, custom lighting is supported so making e.g. a cel-shader is
relatively easy. A material can also be blended in six different ways: Opaque,

5.2. UNREALED 31

masked, soft-masked, translucent, additive and modulated. An opaque mate-
rial means that the rendered object should be fully opaque. Masked materials
use a texture to determine whether a pixel is opaque or transparent. To avoid
aliasing, which is common with masked blend-mode, soft masked blending is
also available. When using this blend mode, a pixel is not only either fully
opaque or transparent, but can be somewhere in between. Using soft masked
blending is more expensive than regular masking. The translucent blend mode
is used to simulate materials such as colored glass where the material alters the
colors of the underlying frame buffer. The additive and modulated blending
modes respectively adds or multiplies the underlying colors with the material’s
output.

Advanced materials easily surpass hundreds of nodes since e.g multiplying two
numbers requires three nodes. To cope with the visual complexity of a large
number of nodes, a grouping tool is provided so that the user may perceive a
number of nodes as a single operation.

The available material nodes are divided into 16 groups. Some of the nodes
are present in multiple groups:

Color features nodes for color desaturation and color sampling behind the
current pixel (for transparent materials).

Constants contains one to four dimensional floating-point vectors, and nodes
sampling constant colors from either a particle emitter or the vertices of
a mesh.

Coordinates contains nodes related to spatial properties of an object such as
position, orientations and radius. Other coordinates-related nodes such
as texture coordinates, screen position and lightmapUVs are also in this
group.

Custom consists of the nodes ”Custom” and ”Custom Texture”. Custom
is a node wrapper for a custom HLSL function. The use may specify
inputs, and the output format, and write a fully custom HLSL-function.
”Custom Texture” is provided so that a custom-node may refer to a
texture.

Depth provides nodes for sampling the depth values of a scene.

Destination contains nodes for sampling depth and color behind a pixel thus
overlapping with the Color and Depth groups.

Font has nodes for using fonts with materials.

32 CHAPTER 5. UNREAL DEVELOPMENT KIT

HighLevel contains the three unrelated nodes: ”AntiAliasedTextureMask”,
”Distance” and ”SphereMask”. AntiAliasedTextureMask is a texture
sampling node working well with soft masked alpha blending. Dis-
tance returns the euclidian distance between two 1-4 component vectors.
SphereMask is a circular mask where the user can specify the opacity
falloff.

Lens Flare contains nodes related to creating simulated lens flares.

Math is a large group housing common computer graphics math operations,
many of which are native HLSL-functions. The group consists the nodes:
Abs, Add, Ceiling, Cosine, CrossProduct, Divide, DotProduct, Floor,
Floating-point modulo (FMod), Fraction, LinearInterpolate, Multiply,
Normalize, OneMinus, Power, RotateAboutAxis, Sine, SquareRoot and
Subtract.

Parameters houses scalar, vector and texture parameters used with material
instances.

Particles contains nodes aimed at materials used with particle systems.

Texture is a large group made up of nodes related to texture sampling. The
UDK handles both 2D-textures and texture cubes.

Utility contains a number of unrelated nodes. Among the more interesting
are: ”BumpOffset”, ”If” and ”PerInstanceRandom”. ”BumpOffset” is
the UDK’s term for Parallax Mapping [89], a common technique for
increased perceived depth on flat surfaces. ”If” is a node for doing a
comparison between two values A and B, where the output depends
on A being greater, equal or smaller than B. ”PerInstanceRandom” is
self-explanatory and randomizes a number per instance.

VectorOps are vector operations, some of which are already listed in the
”Math”-group. The remaining operations are: AppendVector, DeriveNor-
malZ, Fresnel, Transform and TransformPosition.

Vectors overlaps with the constant group, though provides additional vectors
such as the camera vector, light vector and reflection vector.

5.2.5 Cascade

Cascade is the Unreal Editor’s particle system authoring tool. The toolset is
quite extensive and delivers functionality to create almost any kind of particle
system. A screenshot of Cascade’s user interface can be seen in Figure 5.5.
As the figure shows, the interface is divided into four main areas. The upper

5.2. UNREALED 33

left area previews the current particle system. The upper right area visualizes
emitters as described below. The lower left area exposes the parameters of
a particle system to the designer. The lower right area is a curve editor.
Cascade’s curve editor is used to fine tune the behavior of particles over time.
A Cascade particle system is constructed from one or more emitters. A particle

Figure 5.5: A screenshot of the Cascade, the Unreal Editor’s particle system
authoring tool.

emitter is the point where particles come to life, or ”spawned”. A particle
emitter contains modules affecting how particles behave and what they look
like [65]. In Figure 5.5 three emitters named ”Elec 8”, ”Fluid1” and ”Fluid2”
are depicted in three columns. The boxes of each column are the modules
affecting the particular emitter. All modules are optional except the Required
Module and Spawn Module. The basic property groups of the Required and
Spawn Module are:

Emitter: Contains properties to set the material to be used for the sprites
emitted from the emitter, how the sprites should be aligned to the screen
and which sorting algorithm to use for the emitter.

34 CHAPTER 5. UNREAL DEVELOPMENT KIT

SubUV: When a material to be used with a particle system is created, it
is common to sample multiple pictures from a single texture of e.g. a
smoke puff so the individual particles will not look identical. SubUV
properties deal with the splitting up of a texture and blending between
the sub-images of the texture.

Normals: Determines whether the sampled normal of a particle sprite should
be aligned planarly to the screen, or sampled from a sphere or cylinder.

Duration: The lifetime of an emitter and loop count.

Delay: This group makes it possible to create a delay between the time a
particle system is activated and the spawning starts. Useful to time
interaction between emitters.

Rendering: Here the designer can limit the number of particles drawn per
emitter.

Spawn: Controls the distribution of particle spawning over time.

Burst: If an emitter should spawn a given number of particles at a given
time, bursting controls this behavior.

Cascade: Controls how the emitter is drawn within cascade.

In addition to the ”Required” and ”Spawn” modules, several other exist to
fine-tune an emitter. Note that some groups contain only a single module,
thus the terms ”group” and ”module” are used interchangeably. The optional
module groups are:

Type Data: Cascade supports other types of particles than screen-aligned
sprites. In the type data group an emitter may be modified to spawn a
mesh instance per particle instead of a sprite. Another particle type is
”Beam”. Beams have a source and target point and can simulate effects
such as lightning between a Tesla coil and an unlucky character. A
third particle type is ”Animation Trails”. Animation trails are set up in
collaboration with the AnimSet Viewer and are used to spawn particles
behind a fast-moving object to exaggerate rapid motion.

Acceleration: Contains modules to control particle acceleration and decel-
eration.

Attraction: Attractors are modules to draw particles towards point or lines.
Examples of attractor use are simulation of effects such as worm holes
or magnets.

5.2. UNREALED 35

Beam: This group of modifiers control the behavior of a beam particle emit-
ter.

Collision: The collision allows action to be taken when a particle hits some-
thing in the game world. A common coarse of is to kill a particle upon
collision.

Color: Controls the color of a particle over it’s lifetime.

Event: This group handles the firing and reception of events based on par-
ticle spawning, death, collision etc.

Kill: For large systems it is beneficial to kill particles outside the view.
Killing modifiers removes particles outside a bounding box volume or
at a certain height.

Lifetime: Not to be confused with ”Duration” under the Required group.
The lifetime module contains distributions from which the lifetime of
individual particles are randomly chosen.

Location: This group contains modules to position emitters and control the
direction of particles.

Material: Operates on the materials used on the particle emitter. Can be
used to override a material’s parameters to specify it to a particular
emitter.

Orbit: The orbit module is used to rotate or offset particles away from its
center.

Orientation: The orientation module locks a particle sprite to a world space
axis, overriding sprite particles to always face the camera.

Parameter: Interfaces with parameters from UnrealScript or Kismet to con-
trol the particle emitter through programming.

Rotation: Controls the rotation of sprite particles.

Rotation Rate: Sets the rotation behavior for mesh-based particle systems
over life.

Size: Controls the scaling of particles.

Spawn Per Unit: Controls the spawning rate based on the distance an
emitter has traveled. When for instance fire is emitted from a moving
torch, the spawning rate can be adjusted to spawn many particle when

36 CHAPTER 5. UNREAL DEVELOPMENT KIT

the torch moves fast. When the torch has little movement fewer particles
are spawned, thus the fire will appear realistic in a shifting environment.

Velocity: Controls the velocity of particles.

Particle systems are largely used to simulate natural phenomenas such as fire,
rain and smoke. To simulate the chaotic nature of particles, many of the mod-
ules use distributions from which random values are picked. Cascade supports
a number of different distributions to accommodate different situations. The
most common distribution types include constant, constant over time, vector
and vector over time. The distributions varying over time are handled in the
curve editor.

5.2.6 AnimSet Editor

UDK’s AnimSet Editor is the base tool for setting up and previewing ani-
mations on skeletal meshes. Figure 5.6 show a screen capture from the user
interface. The AnimSet Editor exposes several of the features showcasing the
maturity of UDK’s animation system:

Sockets are points attached to specific bone, optionally with a translation or
rotation offset. When a socket has been created it will move accordingly
to the bone and its offsets. The benefit of sockets is that skeletal or static
meshes may be attached to them. A common area of use for sockets is
weapons. Since modern combat games commonly feature an arsenal of
weapons with different models, it is beneficial to separate the weapon
user model from the weapon itself. Exporting a different character mesh
for each weapon is a waste of memory and time, and sockets removes the
need for such a process.

Animation Notifiers is meta data put into an animation sequence at cer-
tain time. Animation notifiers triggers events which are snapped up by
the engine and handled. The notification types supported are: Cam-
eraEffect, FootStep, Kismet, PlayParticleEffect, Rumble, Script, Pawn-
MaterialParam, ViewShake, Sound, Trails and PlayFaceFXAnim. The
CameraEffect notify is used to notify the camera that a certain effect
should take place. The FootStep is used in collaboration with physical
materials so that when a character places its foot down, a sound cue
is played based on the underlying material. A Kismet notify is similar
to the Script notify, and spawns an event Kismet or UnrealScript can
listen and react to. PlayParticleEffect is self-explanatory, and will play
a particle effect. The Rumble notify sets off the vibration in connected
gamepad controllers. PawnMaterialParam interfaces material parame-

5.2. UNREALED 37

ters so that e.g a magic sword can turn red when it is swung. ViewShake
simply notifies the camera to shake, an effect commonly employed in
first person perspective games when e.g a grenade goes off nearby or
a marauding giant stomps his feet in the ground. Sound notification
is probably the most commonly employed animation notifier, and lets
the user time sound effects to played at a specific time in an animation
sequence. The animation trails notifier works along Cascade to create
particle trails, typically behind a fast moving object. PlayFaceFXAnim
obviously triggers a FaceFX animation.

Mirror Tables exploits the observation that most skeletal mesh hierarchies
are symmetrical. Each bone can therefore be set up to a symmetrical
counterpart. This procedure allows an animation to be flipped along the
symmetrical axis of a skeleton. As a result an animator may create an
animation sequence for a right-handed character, and the sequence can
easily be used for a left-handed character as well.

Morph Targets , or blend shapes, is a different method of doing animation
than skeletal animation. A morph target is a saved pose of a mesh where
some or all of the vertices differ from the base mesh. When animating
with morph targets the vertex positions are interpolated between the
base pose and the morph target. This scheme allows fluent transitions
from one pose to another. Morph targets are commonly used in facial
animation where an animator builds a library of facial poses. The poses
typically represent the facial expressions of a character when pronouncing
the basic sounds in a language. Such a scheme enforces reusability since
all kinds of dialog can be built around a number of base poses. Another
commonly employed use of morph targets is structural damage. For
instance a vehicle can be modeled in a pose where a part of it is damaged.
When the vehicle is damaged in-game, the mesh is morphed into the
damaged pose to visually represent the damage.

Cloth Physics are parts of a skeletal mesh that should be animated by physi-
cal simulation rather than keyframed animation sequences. Cloth physics
are used to give a convincing visual representation of ”flappy bits” such
as capes, pony tails and flags. In the AnimSet Editor the user can assign
bones to be treated as cloth. Note that these bones must be skinned
to the mesh as any other bone. Finally parameters such as thickness,
stiffness and damping must be set to fine tune the look of the simulation..

Soft Body Physics resembles cloth physics but are used to simulate volumes
rather than thin sheets. The simulation is run on a set of tetrahedras

38 CHAPTER 5. UNREAL DEVELOPMENT KIT

whose resolution is controlled independently of the graphical mesh. Dur-
ing simulation the graphical mesh is skinned to the simulated volumes.
Two parameters controls the stiffness of the soft body preventing the
change in volume and stretching. Good candidates for soft body physics
simulations can be a beanbag chair, excessive body fat, the crown of a
falling tree etc.

Figure 5.6: A screenshot of the AnimSet Editor

5.2.7 AnimTree Editor

This section is dedicated to describing the AnimTree Editor tool present in
the UDK package. The aim will be to give a short introduction into what the
tool does, and how it can be used. The concept of animation blending is used
extensively within this section. Animation blending is the process of taking a
base animation sequence and altering it by combining it with some factor. This
can be another animation sequence, the speed of the game object, the physics
state or anything else one can think of. The result is an interpolated animation
sequence. Any deeper explanation of the subject is outside the scope of this
report. Unreal Engine 3 deals with this by using something called animation
trees or blend trees [24].

5.2. UNREALED 39

Overview

The AnimTree Editor is a tool for visually creating animation trees. Animation
trees makes it possible for the developer to specify how and what parts of a
3d model will be animated [25]. To help visualize this concept, we will look at
a concrete example. This will be illustrated by Figure 5.7.

Let us say you have a 3d model of a soldier. You might want to play an idle
animation when he is standing still, emulating breathing, looking around and
other things to create a lifelike character. You want this animation to play on
the entire body. This can be done by connecting a regular Animation Node
(called FullBodyAnim in Figure 5.7) together with a BlendBySpeed Node,
telling it to only play this animation when the speed of the character is 0.
For speeds above that you could specify a walking animation. You could
also specify that the playback speed of the animation should match the speed
in the game itself. In addition you might want to play an animation when
the soldier shoots, this should ideally blend with other animations, so that
only one animation sequence is needed for both shooting while running and
standing still. This is done by hooking up another Animation Node (called
UpperBodyAnim in Figure 5.7) and specifying that this node will only affect
the upper skeleton bones of the model. That way, any animation happening
in the lower part of the skeleton will be retained. Also worth noting in Figure
5.7, is an AnimNodeBlendByPhysics node. This makes for differing animations
depending on what the physics state the object is in within the game.

As one can see, this makes for a fairly intuitive and very powerful system for
controlling and blending together animations. A more complex tree can be
seen in Figure 5.8.

In short, the main purpose of the AnimTree Editor is to provide a visual inter-
face to programmers, animators and technical artists for specifying what parts
of a skeleton should be affected by animation, blending between animations,
providing On-Demand playback of animations and providing direct per-bone
manupulation of a 3d model’s skeleton [30].

Nodes

Here we will go into some further detail to explain the function of the nodes
that can be used. There are essentially four different groups of nodes that can
be used to create an animation tree:

Animation Node The Animation Node group is the largest. It contain the
main animation blending nodes. What differs between them is how the

40 CHAPTER 5. UNREAL DEVELOPMENT KIT

Figure 5.7: Example. Left: 3d model for running tests. Middle: The anima-
tion tree structure itself. Bottom: Properties pane for the UDKAnimBlend-
BySpeed node.

5.2. UNREALED 41

blending is determined. The similarities being that the nodes usually
takes several inputs and output a blended animation. There are pos-
sibilities to blend by speed, posture, physics, direction. There are also
some special blending cases, like a node for additive blending.

Skeletal Control The Skeletal Control nodes, deal with the direct manipu-
lation of bones in the animation skeleton. As an example, this can be
used to control where the player avatar is looking, by affecting the neck
bone. In addition, there are controls for twisting, rotating and scaling
bones, controlling entire limbs, foot placement and recoil.

Morph Node Morph Targets are a way to modify a mesh in realtime, but
with more control than bone-based skeletal animation [32]. This is useful
for controlling facial expressions, for example. The Morph node lets
several Morph Targets be blended together. There’s also a node for
controlling the weight (strength) of Morph Targets.

Animation Sequence This is the lowest level of node and makes up the
end leaves of the tree. An Animation Sequence is a reference to the
animation that is to be played. An empty node might also be specified,
to reserve the spot for later manipulation by UnrealScript (see Section
5.1) or Matinee (see Section 5.2.3).

5.2.8 Lightmass

Lightmass is the UDK’s global illumination solver. It renders high-quality
static light and shadow maps using techniques that are too complex for real-
time integration on current hardware. The Lightmass solver must therefore
be executed offline, before a level is loaded. Since complex light simulation
can be extremely time-consuming, the UDK provides a tool named ”Unreal
Swarm” allowing distributed rendering over multiple machines. The concept of
distributed rendering, exploits computational parallelism, and is ubiquitous in
high-end visualization rendering for film and television where massive clusters
called Render Farms work around the clock to crunch numbers into art [91].

The following description captures the highlights of Lightmass’ features:

Area Lights and Shadows: Lightmass differs from the old Unreal Engine
3 static light system with its us of area lights. An area point light is a
light source where light emits from a sphere as opposed to a traditional
single point. For directional light sources the light is emitted from a disk
instead of from a single direction. Area lights produce more realistic
shadows, where the sharpness of the shadow edges is controlled by the

42 CHAPTER 5. UNREAL DEVELOPMENT KIT

Figure 5.8: A complex animation tree in the AnimTree Editor

5.2. UNREALED 43

size of a light, and the distance to the occluder. A comparison between
point and area lights can be seen in Figure 5.9.

Figure 5.9: A comparison of shadows without area lights (left) and with area
lights (right). With area lights the size of the shadow penumbra [94] grows
further away from the occluder.

Indirect Lighting: Lightmass has the ability to bounce light traces and cre-
ate indirect lighting. True indirect lighting makes the life a lot easier
for a level designer, since he or she does not need to manually place ”fill
lights” to approximate lighting of surfaces that are not directly reached
by a light source. Lightmass’ indirect lighting system also creates shadow
from indirect lighting and simulates ”color bleeding” so that the color of
a surface is picked up when the light bounces [46]. A set of screenshots
illustrating indirect lighting with Lightmass is shown in Figure 5.10.

Figure 5.10: Two screenshots illustrating the visual difference between a scene
lit by only direct lighting (left) and with four bounces of indirect light (right).

44 CHAPTER 5. UNREAL DEVELOPMENT KIT

Translucent Shadows: Another feature of Lightmass the ability to render
translucent shadows. As discussed in Subsection 5.2.4, a material must
have its blend mode set to ”translucent” to enable this feature. Translu-
cent shadows originate from light passing through a semi-transparent
surface so that the colors of the surface affect the resulting shadow color.
An example of translucent shadows can be seen in Figure 5.11.

Figure 5.11: Light passing through a stained glass window creates a translucent
shadow when rendered with Lightmass.

Ambient Occlusion: Ambient occlusion is a technique to enhance the sense
of proximity between objects in a scene. By adding additional shadow
where objects are close together a greater sense of coherence in the scene
can be achieved. Ambient occlusion is not a physically correct procedure,
but tends to produce result perceived as more photo-realistic since the re-
sult ”softens” the commonly ”hard” light of computer graphics L̇ightmass
features the possibility of adding ambient occlusion in addition to indirect
lighting. The ambient occlusion in Lightmass is calculated by approxi-
mating the indirect shadowing by an uniformly lit hemisphere, thus the
resulting look imitates outdoor shadows on an overcast day [85]. Several
parameters are available to the user to tweak Lightmass into producing
the desired ”look” in a scene. A scene with ambient occlusion enabled is
shown in Figure 5.12

5.2. UNREALED 45

Figure 5.12: A scene shadowed with ambient occlusion. The proximity between
the spheres and the floor plane is illustrated through soft shadows, simulating
nearby objects occluding light from each other.

46 CHAPTER 5. UNREAL DEVELOPMENT KIT

5.2.9 The Navigation Mesh

In the pre-UDK era navigation was handled by using a node graph. The node
graph was created by a level designer placing out navigation nodes and defining
reachability between adjacent nodes. With the first release of the UDK the
old system was replaced by a navigation mesh system. The navigation mesh is
connected graph of convex polygons. When an AI agent requests a path from
the navigation mesh, a list of polygonal edges in the mesh the agent needs to
cross to reach its destination is returned. The returned path differs from the
legacy system where a list of user placed nodes the agent had to visit were
returned.

Epic lists a wide number of benefits from using a navigation mesh over a node
graph [79]. The most important are:

Reduction in node density: A large area can be represented by a single
polygon. In the old system several nodes had to be placed over a large
area for an agent to pathfind properly within it. A sparse graph reduces
path finding time.

Optimization of datastructures: The legacy path nodes suffered from a
big overhead from parental classes. The new system however, does not,
and has consequently a smaller memory footprint.

Obviation of FindActor: The old path finding system had to locate the
nearest path node through octree-lookups to locate nearby path nodes
and raycasting to determine which node is the nearest. With the navi-
gation mesh this procedure is obviated by simply finding the polygon in
which the agent resides.

Better pathing behavior: The movement from a waypoint graph can be
unnatural e.g when an agent first moves to the close node behind it in
order to turn and move back the same direction to a node further away.
Such odd behavior is avoided with the navigation mesh since the list of
edges to cross will reflect the ”correct” direction of the path.

Flexibility for agents of varying size: With the navigation mesh, the length
of an edge is stored in the mesh. Having this information available makes
it trivial at run-time to decide whether an agent of a given size may cross
the edge.

In addition to these benefits, the real ”killer feature” of the navigation mesh
is that it is automatically created. Auto-generating navigation meshes is done
in the UnrealED by placing specialized volumes, called ”pylons” into the game

5.3. SPEEDTREE 47

world. A pylon is simply a cube representing the boundaries in which a naviga-
tion mesh should be created. Multiple pylons may overlap, thus non-regularly
shaped levels can still be bounded properly. Figure 5.13 show the navigation
mesh generated from a set of pylons.

Figure 5.13: A screenshot from UnrealED showcasing a navigation mesh cal-
culated from a set of pylons. The polygons of the navmesh are displayed with
purple, cyan and dark blue lines. The outlined bounding box shows the bounds
of the selected pylon. The transparent, red polygons show where the navmesh
are blocking paths.

5.3 SpeedTree
This section will give a brief introduction to the SpeedTree middleware solution
included with the Unreal Development Kit. The focus will be on what it
actually does, rather than delving into technical details.

5.3.1 Description

SpeedTree is a middleware package created by Interactive Data Visualization,
Inc. (IDV) and is used to create foliage for games and simulations [49]. The
SpeedTree real-time solution, which is the one used in games, is industry-
leading when it comes to foliage creation. It has been used in a number of

48 CHAPTER 5. UNREAL DEVELOPMENT KIT

big titles, like Dragon Age: Origins, Batman: Arkham Asylum, Empire: Total
War, Fallout 3 and Grand Theft Auto IV to name a few [50]. At the time of
writing, SpeedTree 5.0 is an integrated part of the Unreal Development Kit.
Part of this integration are two separate tools: The SpeedTree Modeler and
the SpeedTree Compiler [36].

The SpeedTree Modeler lets the user create trees or other foliage by either
drawing them by hand directly in the modeler, or by creating the branch-
es/leaves in a more traditional data-driven approach, where the user tweaks
different variables to get the desired look. Figure 5.14 shows the user interface
of the SpeedTree Modeler. It is possible to let various physical forces affect
the look of the tree. The forces include magnet, direction, twist, curl, planar
and mesh. These provide powerful tools for shaping the trees. The modeler
provides the possibility to assign different materials to the branches and trunk.
The transitions between materials are automatically smoothed, not requiring
any tweaking from the user.

The ability to have several levels of detail (LOD) on a 3d model is important
in games, as processor time is precious. There is no need to have a tree with
a high level of detail if the player only sees it from a distance. LOD levels are
created automatically by simply specifying how many levels you’d like. What
distances they should be displayed at can be set up when they’re imported
into the Unreal Development Kit editor.

It is possible to import geometry into the modeler and let it interact with the
foliage. The tree will automatically collide and wrap around the geometry,
creating a natural look. An example of this is provided in Figure 5.15. Here
we can see how the SpeedTree wraps around the well, exiting from a hole in
the roof.

The Modeler also features automatic positioning of collision primitives. The
user only specifies what primitives and how many should make up the collision
mesh. You could for example specify two spheres and a cylinder as the collision
primitives, and the software will automatically position and scale these to get
the optimal coverage.

The SpeedTree Compiler compiles the tree into textures and a SpeedTree model
that can be read by the editor in the Unreal Development Kit.

5.4 Summary
Throughout this chapter we have introduced the concept of game engines and
the Unreal Development Kit. The chapter is included to be a suitable knowl-

5.4. SUMMARY 49

Figure 5.14: The SpeedTree Modeler user interface

edge base when we later on reference features and tools specific to the UDK.
Since the project is a computer science master thesis, it is natural to assume
that the only relevant parts of the chapter are the ones related to coding; e.g.
UnrealScript, Kismet and Archetypes. We do, however, aim to create a game
prototype, and must therefore travel beyond our native discipline. The parts
of the UDK related to disciplines outside programming are therefore just as
relevant. It is also worth noting that there are aspects of the UDK we have
not included in this chapter e.g. fluid surfaces, fracturing of static meshes and
physical materials. These are tools or concepts that were not required for our
game prototype and are therefore left out.

50 CHAPTER 5. UNREAL DEVELOPMENT KIT

Figure 5.15: Interaction between a mesh (well) and a SpeedTree

Chapter 6

Game Prototyping

“Fantastic! You remained resolute and resourceful in an atmo-
sphere of extreme pessimism”
- GlaDOS, Portal (2007)

This chapter will describe concepts related to prototyping with focus on game
prototyping. The section will start out by explaining the basic ideas and
terminology related to prototyping.

6.1 Prototyping Basics

Oxford Dictionary defines a prototype as [16]:

“A first or preliminary form from which other forms are developed
or copied”

Although a little vague, this definition captures the essence of a prototype. The
prototype captures the basics of a product at an early stage. Prototypes are not
standardized since the prototyping concept applies to almost all constructive
disciplines. There are a vast number of differences between how a new car
may be prototyped compared to a software application or a vaccine. Since
requirements typically form the basis of a prototype [64], prototypes from
different disciplines will naturally differ. Wikipedia offers a reasonable basic
categorization of prototypes [90]:

Proof-of-Principle Prototype: A prototype to test or prove functionality
of parts of the functionality of a product.

51

52 CHAPTER 6. GAME PROTOTYPING

Form Study Prototype: A physical prototype to establish the form of a
product. The form study prototype focuses simply on the form, not
texture, color or materials.

Visual Prototype: Captures the full aesthetical design of a product without
showcasing its functionality.

Functional Prototype: Also called a working prototype. Covers the visual
design and the functionality of a product.

As the categories show, prototypes may emphasize visual appearance and/or
functionality to a varying degree. To what extent a designer wish to empha-
size the form or functionality is, again, depending on the requirements for a
particular product.

Another, important aspect of prototyping is the sophistication of the proto-
type. When for instance prototyping a car, the basic design can be drawn using
pen and paper. Here the design is communicated, though not in a sophisti-
cated manner. An improvement could be to make a 3d model of the car to
better communicate surface details and to remove restrictions on the number
of viewing angles for the design. The next level of sophistication could be to
build a scale model of the car. In prototyping terminology a prototype’s level
of sophistication is called fidelity. A low-fidelity prototype should not take a
long time to make, and will consequently differ a lot from the final product in
both terms of design and functionality [64]. An example of a low-fidelity proto-
type is pen-and-paper sketching. A high-fidelity prototype has a higher degree
of sophistication and is therefore closer to the final product. An example of a
high-fidelity prototype is a scale model.

The fidelity of a prototype touches another key aspect of prototype design,
namely iteration. The design cycle of a product will in most cases start out
with a low-fidelity prototype such as a paper sketch. When the basic sketch
has been approved, the prototype can be enhanced further using prototype
techniques of higher fidelity, coinciding with Oxford’s definition of the word.

6.2 Software Prototyping
This section specifies the general prototyping ideas from the section above to
the field of software prototyping. The section contains three subsection. The
first one discusses a common software prototyping cycle derived from Human
Computer Interaction (HCI). The second establishes software prototyping ter-
minology by outlining classification schemes related to software prototyping.
Last, an introduction to common software prototyping methods is given.

6.2. SOFTWARE PROTOTYPING 53

6.2.1 The Software Prototyping Cycle

Software prototyping is an established technique in the requirement or design
phase of the software development cycle [68]. Conventional software prototyp-
ing lies within the field of HCI and involves testing user interfaces and program
functionality on actual end-users at an early stage. As with general, interdis-
ciplinary prototypes, software prototypes are iterative in their nature. Sharp
[64] defines the software prototyping cycle to contain four activities:

1. Identifying Needs and Establishing Requirements

2. Developing Alternative Designs

3. Enhancing The Prototype

4. Evaluate Designs

These activities may be repeated over several iterations in an interchangeable
order where the fidelity of the prototype may increase at the transition between
cycles.

6.2.2 Software Prototyping Classifications

A common approach to differentiate software prototypes is to classify them
in two dimensions. Prototypes can be horizontal or vertical, as outlined by
usability engineering guru Jakob Nielsen in Usability Engineering [59]. Nielsen
describes a prototype to be horizontal if it shows a broad overview of a system
without focusing on the functionality of individual components. Graphical user
interface prototypes are commonly horizontal. A vertical software prototype
tend to focus on a single function, screen or subsystem where the functionality
is close to a final product, without showcasing the unit’s relation to other
components of the system. The vertical prototype is used to open up and
explore complex parts of an application, so that detailed requirements may be
derived and clarified.

Another way to perceive different types of software prototypes is to look at
their purpose. In some projects a designer or architect may wish to rapidly
explore multiple designs ideas. In such a scenario multiple prototypes are de-
signed, tested and thrown away. This prototype category is referred to as
rapid or throwaway prototyping, and are typically developed using low-fidelity
methods such as pen-and-paper sketching [64]. In a broad sense a rapid pro-
totype does not form the foundation upon which an application is built, but
ideas from rapid prototyping contribute to the application. A contrasting ap-
proach to rapid prototyping is evolutionary prototyping [13]. An evolutionary

54 CHAPTER 6. GAME PROTOTYPING

prototype is a robust prototype which in its earliest iteration envelops the
core of an application. The architecture of an evolutionary prototype should
emphasize the modifiability software tactic [5] so that additional functionality
can be added to the prototype at later iterations. At the final stage of the
metamorphosis, the prototype has evolved into the final product. Evolution-
ary prototypes are helpful in uncharted territories where requirements are not
fixed and evolving.

6.2.3 Software Prototyping Methods

Choosing the right prototyping method is crucial in software development.
There are quite a few methods proven effective. This subsection will outline
some of the most common methods.

Friedl [22] chooses to present different software prototyping methods in a di-
agram with increasing fidelity along the horizontal axis. Figure 6.1 shows
Friedl’s alignment of methods. The seven methods in the figure are:

Figure 6.1: Seven different prototyping methods sorted by fidelity

6.2. SOFTWARE PROTOTYPING 55

Paper Sketches: Sketches are useful to design user interfaces. A paper
sketch is easily created, modified and thrown away making it the method
of the lowest fidelity.

Digital Sketches: As with paper sketches these are again useful to commu-
nicate a user interface. Digital sketches take longer time to create than
paper sketches, but results are consequently more complete and appeal-
ing. The fidelity is therefore higher. Digital sketches will also require
more sophisticated, and often expensive, tools than a sheet of paper and
a pen. Examples of applications suitable for digital sketching are Adobe
Photoshop, Illustrator and Flash [2].

Wizard of Oz: Wizard of Oz prototyping requires a digital prototype, and
is used in user testing for graphical interfaces. A test user sits at one ma-
chine and interacts with the prototype. The feedback from the tester’s
interaction is not driven by software, but remotely from another machine
by an operator. Wizard of Oz prototyping lets the user experience inter-
activity, but without the cost of actually implementing any functionality
[64].

Scenario: Scenarios are written situations or cases where test users are asked
to solve a problem or complete a task list using the software prototype.
Scenarios typically feature a prototype of sufficient complexity for the
test user to be able to complete the case. The prototype does not, how-
ever, need to be a fully functional one as with a vertical prototype.
Scenarios can be combined with any of the three lower-fidelity methods
e.g. trying out a scenario on a paper prototype.

Horizontal and Vertical Simulation: Horizontal and vertical prototypes
have been discussed above.

Fully Functional Simulation: Combines the depth of vertical simulations
with the width of horizontal ones, to create a full-scale testing environ-
ment.

In addition to the methods on Friedl’s list other methods and definitions exist,
and as commented under scenario, methods can be combined to suit a devel-
opers needs. An in-depth description of other prototyping methods is beyond
the scope of this document.

56 CHAPTER 6. GAME PROTOTYPING

6.3 Video Game Prototyping

This section will describe conventions around prototyping video games. Since
games are large, multi-disciplinary efforts, a single prototype is rarely enough
to unveil all the aspects of a game [23]. The first subsection will therefore
uncover the different aspects of video game design. The section will then
continue to discuss prototyping for the different aspects.

6.3.1 Aspects of Game Design

Since the term ”video game” envelops everything from a casual Flash game
to a complex Massive Multiplayer Online Roleplaying Game (MMORPG) in a
huge, persistent world, it is hard to generalize game prototyping. Differences
between game genres and varying project sizes and scope call for different
prototyping needs. Since video games are both highly visual, functional and
interactive applications a single prototype will in most cases not suffice to
capture all aspects of a game. To break down to the different aspects of game
prototyping, we will look at the different aspects of game design.

Brathwaite [10] lists six types of design contributing to an overall game design:

World Design: The overall game setting and back story.

System Design: Game rules and algorithms, also referred to as game me-
chanics.

Content Design: The visual appearance of objects in the game world.

Game writing: Dialog and text encountered in the game.

Level Design: Envelops both the visual appearance of the surroundings of
a game level, along with the events and challenges encountered in a game
level.

User Interface Design: Consists of both how the user interacts with the
game, and how the game gives feedback to the user. The user interface is
almost always persistent between different game levels to avoid confusion
around how to interact with the game.

All of these elements can be prototyped, though we will not discuss world
design, content design and game writing since these aspects are purely creative
efforts outside the scope of this project.

6.3. VIDEO GAME PROTOTYPING 57

6.3.2 Game Mechanics Prototyping

The purpose of prototyping game mechanics is to get an early insight into how
the game is played. Games that are aesthetically appealing with an exciting
back story can still be disastrous, because the game mechanics are erroneous
or simply boring. This statement, however, is not necessarily not true the
other way around. Games with solid mechanics and bad graphics can be hits.
The crown example of a great game with bad graphics is ”Solitaire”, included
on all Windows operating systems since Windows 3.0. ”Solitaire” is estimated
to be the world’s most played computer game [52]. The lesson to be learned
is that game mechanics is the single most important part to ”get right” when
prototyping a game.

Of the software prototyping methods listed in Subsection 6.2.3, some are more
useful than others to prototype game mechanics. Vertical simulation stands
out as way to prototype a single game mechanic, while horizontal simulation
is useful to see how the different mechanics work together. Whether to create
rapid or evolutionary prototypes of a game is also a consideration. Experi-
mental game mechanics may require many iterations to work properly and can
be prototyped using throwaway prototyping. A design derived from a more
established foundation of game elements such as a First Person Shooter(FPS)
game will make sense to make use of evolutionary prototyping.

An alternative approach when working with experimental game mechanics is
to combine the evolutionary and rapid prototyping. Developers can focus on a
small set or a single game mechanic at a time using rapid prototyping. When
the set of game mechanics is in a working state, additional mechanics can be
added in an evolutionary manner [22].

6.3.3 Game User Interface Prototyping

Prototyping user interfaces for games is somewhat similar to any software
user interface design with high focus on interactivity, and will therefore deal
with concepts adapted from traditional HCI. As noted in Subsection 6.3.1 a
game user interface contains both a player’s interaction with the game and the
feedback to the player. An alternative categorization of a game user interface
prototype is to divide it into two parts: Kinesthetics and aesthetics.

Fullerton [23] describes kinesthetics as:

“The kinesthetics are the ”feel” of the game, how the controls feel,
how responsive the interface is, etc.”

58 CHAPTER 6. GAME PROTOTYPING

Games from different genres for different platforms are interacted with differ-
ent input controllers. For instance most games developed for the Nintendo
Wii will be interacted with through a Wiimote [95]. Since a Wiimote is funda-
mentally different from e.g. an Xbox 360 controller, the requirements for the
user interface will be different, which must be considered when designing it.
Games on the same platform but with different gameplay will require differ-
ent interaction mechanics. An example here could be a simple platform game
created in Flash opposed to a sophisticated flight simulator. The platformer
would simply require a keyboard, while the flight simulator requires support
interaction through more specialized input devices such as joysticks and throt-
tle quadrants [86]. It is therefore paramount to uncover which input devices
are to be used in the game, before prototyping begins [23]. Prototyping kines-
thetics with low-fidelity methods such as sketches will not be successful, since
the ”feel” and responsiveness of controls require interactivity between player
and prototype. This is particularly true for user feedback be it, visual, audial
or physical such as controller rumbling.

The aesthetical prototype of a user interface brings forward traditional HCI
prototyping techniques. Low-fidelity methods are very useful at early iterations
since they are quickly updated to accommodate user feedback. Building a
successful user interface is about communicating information to the player in
an intuitive format. Arranging early user tests is therefore a useful strategy to
rapidly uncover pitfalls and weaknesses of a design [64].

6.3.4 Level Prototyping

As described in Section 6.3.1 we regard game level design to contain both
the creation of visual elements in a level, as well as events challenging the
player. Level prototyping is, as with other prototypes, an iterative process.
Sketching a map or flowchart of a game level is a natural part of the level
prototyping. This section will, however, focus on the ”unique” aspects of
level design, meaning the prototyping taking place when the game engine and
mechanics are established.

Adams [1] identifies which features should be included in a level prototype, and
how to effectively communicate a level without creating a full implementation.
Features to be included are:

Basic Geometry: The basic geometry of the level should be included in a
prototype. Whether the level is in 2d or 3d, including blocking geometry
is still paramount to get an early impression of it.

Temporary Textures: Using a set of temporary and generic textures in

6.3. VIDEO GAME PROTOTYPING 59

a 3d level speeds up the prototyping process. For instance it is not
necessary to deploy ten slightly varying grass textures to illustrate that
a part of the level is covered with grass.

Temporary Props: Using temporary placeholders to illustrate the place-
ment of objects or Non-Player Characters (NPCs) speeds up level pro-
totyping time, while still communicating the level layout. For instance a
fancy 10000 polygon building with eight texture maps can be illustrated
with a white box.

AI Paths: Knowing where an NPC roams is crucial to test a level. AI paths
should therefore be included.

Event Triggers: Placing event triggers should be done at an early stage to
create awareness of the level flow. Failing to include the horde of zombies
raising from their graves when the hero enters the graveyard, does not
contribute to an effective representation of how the level will play.

Placeholder Audio: If audio playback communicates important feedback
to the player, it should be included. As with textures and props, it is
recommended to use placeholder audio clips in a level prototype.

Lighting Design: Lighting is an important contribution to setting the ”mood”
of an environment. Lighting used to highlight a landmark or direct the
player’s attention should also be included at the prototyping stage.

When these elements are included, the level prototype is ready for reviewing. A
level review is a test workshop where team members from different departments
get together and deliver feedback on the level. According to Adams a number
of issues should be addressed:

Scale: Determining whether the level is of right size is important. The time
taken to play through the level should be balanced to meet the design
aspiration.

Pace: If the events of the level arrive too close to each other, the result can
be stressing for the player. Long pauses between events make the level
boring, thus the event flow must be balanced to make the level exciting.

Object and Trigger Placement: The placement of objects and event trig-
gers should be reviewed to ensure that the level produces the intended
experience.

Performance Issues: Issues related to performance must be resolved to
make the level playable. If the level prototype designer has cluttered

60 CHAPTER 6. GAME PROTOTYPING

the level with expensive models and effects, these must be removed or
toned down.

Other Code Issues: If the level calls for a lot of additional, expensive pro-
gramming to accommodate e.g. a single event, the event must be ap-
proved by the game producer and the programming team.

Aesthetics: Reviewing the aesthetics to see if the level prototype expresses
the correct atmosphere is crucial. It is less expensive to fundamental
flaws in aesthetics at an early stage, than in the actual level production.

Level prototyping is an iterative process, and should be repeated until the level
is approved and ready for production.

6.4 Summary
Throughout this chapter we have discussed the general concept of prototyping
and increasingly directed it towards game prototyping. The chapter is included
in this document as a background for later discussion of prototyping, however
the research behind it had a more specific goal. As stated in Section 1.3
we ideally wanted to discover some sort of prototyping process tailored to
our game prototyping needs. We have learned, however, that the due to the
diversity of game design, genres, scope and platforms, there are no ”golden
paths” working for all types of game prototyping. Consequently we have rather
used the insight obtained from the research behind this chapter to develop our
own game prototyping process we intend to follow in this project. This process
is outlined in Chapter 8.

Part III

Own Contribution

61

Chapter 7

Game Prototype Requirements

“You require more vespene gas”
- The Overmind, Starcraft (1998)

As noted in Section 6.2.1 the first step of the prototyping cycle is to estab-
lish requirements for the prototype. The Appendix A. The requirements are
divided into three categories, corresponding to three of the design domains
discussed in Section 6.3.1. Consequently there are requirements for Game Me-
chanics, User Interface and Level Design. Each of the requirement categories
are allocated a section in this chapter.

7.1 Game Mechanics Requirements

This section describes the game mechanics requirements derived from the con-
cept document. Each table lists a set of requirements logically grouped to a
game element. Table 7.1 lists requirements related to peasants and Table 7.2
lists requirements related to priests. The requirements listed in Table 7.3 de-
scribe the mechanics of the player controlled avatars, the horsepersons. Finally
Table 7.4 lists requirements related to immovable objects in the game world.

7.2 User Interface Requirements

This section will list the user interface elements necessary to communicate
information about the game to the player in Table 7.5. Solution specific details
will be left out, since the aesthetical expression of the game is not set. The
list will simply act as a reminder of what is strictly required to give the player

62

7.2. USER INTERFACE REQUIREMENTS 63

ID Requirement description Priority

GM01.1 Each peasant has two stats: Health and moral. H
GM01.2 When a peasant’s health is depleted, the peasant dies. H
GM01.3 Peasants have souls. L
GM01.4 Peasants need to eat and drink to stay healthy. H
GM01.5 A peasant’s health affects movement speed. M
GM01.6 Peasants contract disease from infected water. M
GM01.7 Diseases deteriorates health. M
GM01.8 A healthy peasant may contract disease from a sick

peasant.
L

GM01.9 A peasant’s zeal is lowered by time. M
GM01.10 Going to church to attend holy mass will restore a peas-

ant’s moral.
M

GM01.11 Low moral makes a peasant susceptible to unethical be-
havior including violence against fellow peasants, sub-
stance abuse and promiscuity.

L

GM01.12 Peasants can gather food from fields. H
GM01.13 Peasants can gather water from wells. H
GM01.14 A peasant owns a single home. M
GM01.15 Peasants can bring food and water to their home. H
GM01.16 Peasants have traits making them more or less vulner-

able to hunger, disease and moral decay.
L

GM01.17 A peasant belongs to a single congregation. M

Table 7.1: GM01: Game mechanics requirements regarding peasants

ID Requirement description Priority

GM02.1 Priests have one stat: Zeal. H
GM02.2 Priests belong to a single church. H
GM02.3 Zeal is inversely proportional to the moral of a priest’s

congregation.
H

GM02.4 High zeal makes a priest work fast. M
GM02.5 A priest can hurt horsepersons. H
GM02.6 A priest can disinfect wells and replenish fields. M

Table 7.2: GM02: Game mechanics requirements regarding priests

sufficient information about the game’s state. Game menus are not covered in
this section, only the user interface connected to the gameplay.

64 CHAPTER 7. GAME PROTOTYPE REQUIREMENTS

ID Requirement description Priority

GM03.1 There are four playable horsepersons: Death, Pesti-
lence, Famine and War.

H

GM03.2 Death can kill peasants. H
GM03.3 Pestilence can infect water. H
GM03.4 Famine can eat crops. H
GM03.5 War can provoke violence. H
GM03.6 Horsepersons collect souls of dead peasants. M
GM03.7 Souls may be spent to increase the capabilities of

horsepersons.
L

GM03.8 Horsepersons have health. H
GM03.9 When the horsepersons’ health is depleted, the player

is penalized.
H

Table 7.3: GM03: Game mechanics requirements regarding horsepersons

ID Requirement description Priority

GM04.1 There are four immovable game elements: Churches,
peasant homes, fields and wells.

H

GM04.2 Churches have holy auras, where horsepersons may not
enter.

M

GM04.3 Peasant homes act as storage units for food and water. L
GM04.4 Fields contain food. H
GM04.5 Wells contain water. H

Table 7.4: GM04: Game mechanics requirements regarding immovable game
elements

7.3 Level Requirements

A single level is the minimum that is required to have a playable game. This
section will therefore detail the requirements that are needed for a playable
level in the prototype. The level requirements listed here will portray a simple
level to show off the game mechanics. We start out by listing the content
needed to build a prototype level in Table 7.6.

Note that there are four peasants and four peasant cottages listed in Table 7.6
requirement L01.8 and L01.9. Since the level prototype is intended to show
off the game mechanics, the four peasants should be susceptible to each of
the horseperson’s powers. Table 7.7 shows the configuration of the individual

7.3. LEVEL REQUIREMENTS 65

ID Requirement description Priority

UI01 The interface should display the overall corruption level
of the current mission

H

UI02 The interface should display the amount of souls avail-
able and amount harvested

L

UI03 It should be possible to view current health, moral and
traits of any given peasant

L

UI04 The interface should provide continuous feedback
showing the current goal of all peasants

M

UI05 The interface should display the holy aura of churches
and priests

M

UI06 It should be possible to view what current powers are
available

L

UI07 The current horseperson in use should be marked M
UI08 The horsepersons’ health should be clearly viewable H

Table 7.5: UI01: Requirements for the gameplay user interface

ID Requirement description Priority

L01.1 The level contains a church. H
L01.2 The level contains a field. H
L01.3 The level contains a well. H
L01.4 The level contains a priest. H
L01.5 The level contains trees. L
L01.6 The level contains rocks. L
L01.7 The level contains fences. L
L01.8 The level contains four peasants. H
L01.9 The level contains four peasant cottages. H
L01.10 Death is present. H
L01.11 Famine is present. H
L01.12 Pestilence is present. H
L01.13 War is present. H

Table 7.6: L01: Required props to build a prototype level.

peasants named Peasant 1 through 4.

The last requirements listed in Table 7.8 are general requirements to the level
prototype. These requirements are formed according to the features that
should be included in a level prototype discussed in Section 6.3.4.

66 CHAPTER 7. GAME PROTOTYPE REQUIREMENTS

ID Requirement description Priority

L02.1 Peasant 1 should be immune to thirst and moral cor-
ruption, but susceptible to hunger.

H

L02.2 Peasant 1’s cottage should be stocked with water. L
L02.2 Peasant 2 should be immune to hunger and moral cor-

ruption, but susceptible to thirst.
H

L02.3 Peasant 2’s cottage should be stocked with food. L
L02.4 Peasant 3 and Peasant 4 should be immune to hunger

and thirst, but susceptible to moral corruption.
H

L02.5 Peasant 3 and Peasant 4’s cottages should be stocked
with food and water.

L

Table 7.7: L02: Requirements for the individual peasants.

ID Requirement description Priority

L03.1 The level includes a terrain. H
L03.2 The terrain is created with AI-pathfinding in mind.

Peasants should be able to pathfind to and from key
locations without being stuck.

H

L03.3 The level should include light sources to light the ge-
ometry in a bright and warm way.

H

L03.4 When a peasant is killed, corruption increases. M
L03.5 When corruption increases, the lighting changes to ex-

press a more sinister atmosphere.
M

L03.5 The level is completed when all peasants are dead. H

Table 7.8: L03: General level prototype requirements.

Chapter 8

The Prototyping Process

“Thank you Mario. But our princess is in another castle!”
- Toad, Super Mario Bros. (1985)

This chapter will outline the prototyping process we aim to work through to
create a prototype from the game concept document in Appendix A. The first
section of this chapter will introduce how we intend to prototype the game
concept, and justify the process. We will also discuss the prerequisites needed
to go through the process in terms of knowledge. The second section details
the prototyping process by outlining the elements of three consecutive phases.

8.1 Prototyping Guidelines

As observed in Section 6.1, prototyping is about iteratively refining a basic
sketch into a final product. Since the basic sketch of our prototype originates
from a textual description, we must first concretize this document into basic
requirements for the prototype, and implement these requirements. This pro-
cess envelops the first phase of our prototype, and should be reiterated until
we are satisfied with the basic game mechanics. The derived requirements are
listed in Chapter 7. The second phase deals with blocking out a level that
efficiently shows off the game mechanics. In the third phase we refine the level
and finalize visual and audial content. We have chosen to divide the phase
in this manner so it is easy to finalize a phase before moving on to the next.
Details on the three phases are given in the next section.

The process is intended to make use of the UDK in each phase. In the
first phase UDK is used to implement game mechanics through UnrealScript,

67

68 CHAPTER 8. THE PROTOTYPING PROCESS

Archetypes and Kismet, discussed respectively in Section 5.1, 5.2.2 and 5.2.1.
In the second phase a level communicating the game mechanics is built. Here
UDK’s UnrealED will play a large role importing and arranging content, block-
ing out the level’s base geometry and make workable user interface elements.
In the third phase the capabilities of the Unreal Engine 3 is put to the test.
Here materials, particle effects, final animations, lighting and audio is included.
The UDK support all of these features due to its sizable toolset.

Building one prototype on top of another is a principle derived from evolu-
tionary prototyping, explained in Section 6.2.2. The process described in this
chapter is an evolutionary prototype, since the underlying code and content
from a previous phase forms the basis for the next. For an evolutionary pro-
totype to be useful, it is important that the code and content from a previous
phase is sufficiently robust to build upon. However, architecturing extensible
code is quite time consuming and opposes the exploring mindset of quickly try-
ing out new ideas. We will therefore use rapid iterations per phase to quickly
adopt to changing terms. When the prototype has been reviewed to pass all
the requirements for the phase, it may be thrown away and reimplemented
or fundamentally altered to enforce robustness while still meeting all require-
ments. An example when using the UDK is to prototype game mechanics
using Kismet, and when they work satisfyingly, reimplement the functionality
in UnrealScript. Progression to the next phase will not take place before this
process is completed. Evolutionary prototyping is ideally time-saving since the
prototype is the foundation of the final product, and not thrown away. The
discussion of whether the UDK is a well suited candidate for an evolutionary
prototyping process is a key question in this thesis, and is discussed in Section
10.2.

The different phases including sub-iterations call for different prototyping meth-
ods. The intention of our prototyping process is not to set in stone what meth-
ods to use for the different phases. We have, however, found certain methods
to be fitting to certain items in the process. Both vertical and horizontal sim-
ulation can be useful to prototype game mechanics. As mentioned in Section
6.3.2, vertical simulation is useful to test a single feature, while horizontal
prototyping shows how the game mechanics work together. When using the
UDK a lot of the prerequisites for high-fidelity game mechanics prototyping
such as horizontal and vertical simulation, is already there, making the pro-
cess a lot quicker. Section 6.3.2 explains two dimensions of game user interface
prototyping: Aesthetics and kinestethics. Since aesthetic prototyping leans to-
wards traditional HCI user interface prototyping, the use of paper and digital
sketches are intuitively well suited methods to establish the UI elements in

8.1. PROTOTYPING GUIDELINES 69

the first phase and determining form and functionality in the second phase.
Prototyping kinestethics can hardly be done with non-interactive prototyping
methods, thus a high-fidelity vertical simulation is a logical choice. Since the
UDK supports a wide amount of input devices and endless ways to deliver vi-
sual and audial feedback, the software prerequisites are again met, simplifying
high-fidelity kinestethic prototyping. Finally, level prototyping, as discussed
in Section 6.3.4, may require multiple prototyping methods to do right. Paper
and digital sketches are useful for blocking out the level geometry and event
flow, before moving onto a horizontal prototype using the UDK. The same is
true for a level’s visual content: In any design industry, be it web design, archi-
tecture, industry design or game development, common practice is to sketch a
visual element using a simple material before moving onto refining it [62].

As mentioned above, the large feature set of the UDK supports the construc-
tion of high-level game prototypes. An issue we have not yet considered is the
prerequisites of the user. A toolkit of this size will undeniably require training
of the user before it can be used effectively. The learning curve and intuitivity
of building prototypes with the UDK is not the subject of this chapter, and
will be discussed in Section 10.2. We can, however, safely state that one of the
prerequisites of users following our prototyping process, is to be proficient with
the toolkit. Proficiency with the UDK is not the only prerequisite to follow our
prototyping process, since high-fidelity game prototyping requires both skills
in programming and game content creation. Conclusively, an individual or
team aspiring to create a game prototype using the process described in this
chapter must be proficient both in programming and game content creation as
well as the UDK.

Throughout this section we have outlined a prototyping process tailored to
use with the UDK to form a working prototype based on a non-formal, textual
concept document. Even though the UDK is used throughout the described
process it does not mean that another game engine toolkit, such as Unity
Technologies’ Unity [77] or GarageGames’ Torque [42], cannot do the same
job. Our evaluation of using the UDK with the described process is twofold
since it deals with both the evaluation of the UDK, found in Section 10.2, and
the evaluation of the prototyping process itself, found in Section 10.3. The
process is also intended to be applicable to other concept documents in other
genres or on a different platform, since such specifics are abstracted from the
prototyping process description.

70 CHAPTER 8. THE PROTOTYPING PROCESS

8.2 Detailed Phase Description
In Chapter 6 we investigated prototyping concepts and how they relate to the
art of game creation. With this in mind, we went on a quest for a game proto-
typing process tailored to small team sizes. We ended up with developing an
iterative approach, with three broad phases that covers the path from concept
to a complete prototype which can be used directly for production. These
phases will be described in detail in this section.

Each phase will follow an iterative development cycle, based on the Software
Prototyping Cycle described in Section 6.2.1. Figure 8.1 illustrates this internal
phase cycle.

Figure 8.1: The internal development cycle of each prototyping phase.

It is important to emphasize that these steps only form a guideline. They are
meant to be interchangeable and to be mixed and matched as needed. One
might need to perform an evaluation of the requirements right after they are
established, for example. Steps might be omitted if not needed in the current
iteration, though we would recommend that the evaluation step is conducted
throughout the iterations. The reason for this is to catch features that does
not work at an early stage, before countless hours is spent on art and other
related assets.

The thought is that this cycle runs until the prototype fulfills the goal of that
phase. For the first phase, this would be to establish the core mechanics. When
this is satisfactory, the prototype is ready to be taken into the next phase. A

8.2. DETAILED PHASE DESCRIPTION 71

limit to the amount of iterations per phase should be set however, or the team
runs the risk of getting stuck in an infinite loop of always wanting to improve
the design further. The final phase includes the touches needed to sell the idea
properly. Figure 8.2 illustrates the phase process.

Figure 8.2: The three phases of the prototyping process.

8.2.1 Phase I: Establishing the Core Mechanics

Before this phase is started, the developers should have constructed some sort
of concept document or paper outline that provides context to the game and
provide goals for the various game elements. The initial requirements should
be derived from this document. Focus should initially not be on developing
alternative designs, but on identifying the minimum set of requirements that
are needed for a playable prototype. This means finding the elements that
make the game unique, and establishing the rules that will apply in the game
world. The idea here is to keep it simple and find the few key concepts that
will be the driving force behind the entire game. These driving forces is what
is referred to as the core mechanics[1] and can typically be:

• The game’s goal

• The player’s motivation/challenges

72 CHAPTER 8. THE PROTOTYPING PROCESS

• Vital actors in the game, both playable and non-playable

• The minimum set of available actions to the actors

• The game’s economy

To paraphrase Adams, the core mechanics are the building blocks of which
levels and ultimately the entire game will be created from.

A simple test level should be constructed to see game mechanics in action. This
should be more like a playground than an actual level, to let the developers
see the interaction between elements. This is of course in an ideal situation,
as not all games might be suited for this approach. No focus should be put
on creating graphics, levels, sound or other assets. Here the team need to
find or create quick box placeholders. Only user interface elements that are
strictly needed to perform gameplay actions should be developed. Placeholder
graphics should be put in place here as well.

The focus should lie completely with the basic game mechanics. After these are
identified and confirmed to be strictly necessary, they should be implemented
and tested within the team. Do they work? How well do they interact? Could
this be fun?

If the team believes the design/mechanics can be improved significantly, a new
phase iteration should be performed. If not, the team may proceed to the
next phase. Table 8.1 summarizes the highlights of Phase I, grouped by the
elements of the Software Prototyping Cycle.

Cycle element Suggested action

Identifying Needs and Estab-
lishing Requirements

Derived from concept document

Developing Alternative Designs Keep in mind, but do not focus on initially.
Should be considered after an unsatisfactory it-
eration review

Enhancing The Prototype Simple game level to test mechanics, only
placeholder assets

Evaluate Designs Team tests and evaluates prototype

Table 8.1: The development cycle for prototyping Phase I

8.2. DETAILED PHASE DESCRIPTION 73

8.2.2 Phase II: Communicating the Core Mechanics

As core mechanics are mostly in place in this phase, the goal will be to get
them to work in a more practical game setting. In Phase I the level would
not be much more than a testing field. Here the team will design one or more
levels that showcase the game mechanics from the previous phase in more
natural settings. A list of the most essential assets that are required in the
game should be compiled and implemented in the game. The assets do not
necessarily need to be finalized in this phase, but some form of draft versions
showcasing the shape and texture should be implemented. This is to provide
means for more accurate placement in the showcase level, as well as providing
a less abstract playing experience for testers. Level geometry, e.g. terrain,
must also be designed and built in this phase with focus on providing a proper
gameplay arena. While the level architecture is the key here, level geometry
should be textured with generic materials to identify its different areas.

At this stage, preliminary lighting design for the level should be worked out
and implemented. A basic lighting design is essential to communicate any
sort of mood in a level. For instance, portraying a level in bright sunlight, as
opposed to dim moonlight, is solely a matter of lighting and can create entirely
different experiences for the player. The payoff in immersion versus time spent
on lighting design is therefore big enough to implement in this phase. Lighting
can also be an effective to highlight objectives and guide the player through
a level. If the level requirements call for this type of lighting, it should be
included at this stage to aid testers’ understanding of the level.

The UI elements identified in the first phase should be further refined here. The
developers need to decide in what form the information should be presented
to the player. For example, should a player’s health be presented as a number,
a continuous bar or discrete set of tokens, e.g. hearts? It is not the aesthetic
choices that are important, but the feedback delivered to the player when
interacting with the UI.

Prototyping the user interface and the level are independent processes, and
can therefore be performed in parallel or individual cycles. The point of the
entire phase is to end up with a user interface and a level that communicates
the game mechanics in a way that is endorsed by the play testers.

Table 8.2 summarizes the highlights of Phase II, grouped by the elements of
the Software Prototyping Cycle.

74 CHAPTER 8. THE PROTOTYPING PROCESS

Cycle element Suggested action

Identifying Needs and Estab-
lishing Requirements

Derive requirements from identified core me-
chanics. Compile list of essential assets. Iden-
tify form and feedback of UI elements.

Developing Alternative Designs Work out different designs for level and UI.
Choose the ones that gets the most positive
user feedback. Overwhelmingly negative user
feedback might suggest premature conclusion
of phase I.

Enhancing The Prototype Construct level showcasing game mechanics,
basic lighting scheme and essential content.
The user interface should communicate the
game mechanics in an intuitive way.

Evaluate Designs Arrange both external and internal play tests.
Make adjustments according to feedback.

Table 8.2: The development cycle for prototyping Phase II

8.2.3 Phase III: Polish

The goal of this phase is to refine the prototype from the previous phase to a
sufficient level of sophistication to ”sell” the game concept. In other words, this
phase focuses on refining the mood, aesthetics and kinesthetics to a professional
level. By the end of this phase, the prototype should effectively function as
a game demo. A final game would simply include more content, and possible
extensions of the game mechanics.

The work load in this phase is mainly placed on the artists, as content will
need to be created and refined to fill in for placeholders and omitted elements.
Typical content that needs to be created includes: Final models, textures,
materials, particle systems, level geometry and lighting, audio and animation.

For the programmers, the challenge will lie in balancing and fine-tuning the
game mechanics, to not only make it functional but also as entertaining as
possible. This phase encourages short iteration cycles and frequent play tests,
to not ruin the results achieved in the previous phases, but rather enhance it.

A pitfall at this stage, is to get hung up on details and lose perspective on
the larger picture [1]. It is therefore important that the game and art director
maintain a broad overview of both the gameplay and content during this phase,
to ensure an overall consistent quality of the prototype.

8.2. DETAILED PHASE DESCRIPTION 75

Table 8.3 summarizes the highlights of Phase III, grouped by the elements of
the Software Prototyping Cycle.

Cycle element Suggested action

Identifying Needs and Estab-
lishing Requirements

Identify final models, textures, materials, parti-
cle systems, level geometry and lighting, audio
and animation. Identify balancing issues.

Developing Alternative Designs No major design alternatives should be consid-
ered at this point. Locate the various options
for balancing the game mechanics and aesthet-
ics.

Enhancing The Prototype Refine and create content. Balance gameplay.
Strive for consistency.

Evaluate Designs Arrange frequent external and internal play
tests. Make adjustments according to feedback.

Table 8.3: The development cycle for prototyping Phase III

Chapter 9

Implementation

“Great job, Gordon! Throwing that switch and all, I can see
your MIT education really pays for itself.”
- Barney Calhoun, Half-Life 2 (2004)

In this chapter we outline what we have implemented in regards to the game
prototype. The chapter will be introduced with an overview section of the
implementation in its current state. In Chapter 7 a set of requirements was
formed, derived from the concept document in Appendix A. The second sec-
tion, Section 9.2, gives a short summary of the level of completion of these
requirements.

9.1 Overview

In the current state of the prototype, some of the game elements described in
Section 7 are implemented. A lot of emphasis has been put on the peasants and
their interaction with the game world. Peasants will through AI make decisions
to oblige their current needs. A hungry peasant will go to the nearest field to
harvest food and a thirsty peasant will go to the nearest well to fetch water.
The peasants may use consume these resources to prevent being weakened
and eventually dying, or store them in their homes. The decision process is
implemented as a stack of states, thus a more pressing need can be pushed
upon the stack at any time. For instance, a hungry peasant is on his way to
a field when he is surprised by the player character ”Death”. Since ”Death”
may cause immediate death, the peasant will push a ”fleeing” state upon his
decision stack, and run to the sanctuary of the nearest church. When the coast
is clear, the fleeing state is popped from the stack, and the peasant may return

76

9.1. OVERVIEW 77

to the previous task.

To support the process of goal-oriented AI, peasants must be able to pathfind
properly from location to location as well as handle dynamic elements in their
paths. Dynamic pathfinding is currently in a functional state, though a few
bugs remain to be sorted out.

Of the four characters a player can control, we have only implemented one:
”Death”. The player can control ”Death”’s movement, and a third-person
camera follows him around in the game world. ”Death” has also equipped a
melee weapon, his infamous scythe, which he can use to kill peasants. When a
peasant is hit, a particle system is spawned on the impact location simulating
blood spraying from the wound.

Among the game world assets identified in Table 7.6 and 7.4 we have created
two types of trees, a rock, a fence, a well, a field unit, a cottage and a church.
These models are textured and have materials set up with them. In addition
we have created a river model with a dynamically reflecting water surface
material. The model for ”Death” is built, rigged and skinned for use in the
UDK and so is his scythe. A screenshot from the game prototype, showcasing
some of the models and the visual standard, can be seen in Figure 9.1.

Figure 9.1: A screenshot from the prototype implementation.

As seen in the figure, we have also developed an ”edge-darkening” post-process

78 CHAPTER 9. IMPLEMENTATION

shader to emphasize a stylized, cartoonish look, coinciding with the concept
document in Appendix A.

It is not optimal to describe the vividness of the current implementation tex-
tually, though we have included elements such as wind affecting the trees and
the wheat field, water flowing down the river, cloud shadows rolling over the
landscape, and the wheat stalks bending away from a character when he moves
through a field.

9.2 Completeness
Table B.1 through B.8 details which of the original requirements from Chapter
7 that have been implemented.

A total of 25 of the original 78 requirements have been implemented. This
corresponds to a 32% completion rate and is lower than we had initially hoped
for. There are a number of reasons why we have not reached a higher percent-
age of completeness. This discussion is not undertaken here, but left to the
prototyping process evaluation in Section 10.3.

Chapter 10

Evaluation

“I sense a soul in search of answers.”
- Adria the Witch, Diablo (1997)

In this chapter we evaluate different parts of the project. The first two sections
deal with the evaluation of the Unreal Development Kit which is the core
of this project. To properly evaluate the UDK, we introduce an evaluation
framework in the first section. In the second, we apply the framework to
the UDK resulting in an in-depth evaluation. The third section evaluates our
prototyping process described in Chapter 8. Finally we concretize the answers
to our research questions posed at the beginning of the project in Section 2.1.

10.1 Evaluation Framework

To properly evaluate the Unreal Development Kit, or any toolkit or frame-
work for that sake, an evaluation framework must be formalized. This section
outlines an evaluation framework we have tailored to effectively capture the
different aspects of a game development toolkit. The evaluation criteria are
based on the paper ”An Application of a Game Development Framework in
Higher Education” by Wang and Wu [82]. Due to the explorative nature of
this project, the evaluation will be textual and experience-based. Identifying
quantifiable measures would, from our point of view, be artificial and interfere
with the quality of the evaluation. A quantitative study would require a more
experimental nature, for example several groups of developers, each trying to
accomplish the same set of requirements, using the UDK.

1. Learning curve. An important evaluation criterion for a game prototyp-

79

80 CHAPTER 10. EVALUATION

ing toolkit is the ease of use. Does the framework require extensive train-
ing, or is it possible to get results right away? Is it accessible to users
without professional experience in game development e.g. a hobbyist?
Is the programming language used with the toolkit a common language?
If not, is the syntax familiar? Any unconventional GUI-elements in the
tools should be identified and discussed. When evaluating the learning
curve, the user background is essential. We will compile a list of prereq-
uisite knowledge required for a user to effectively use the framework.

2. Development speed. This evaluation criterion is twofold. The first cri-
terion is a measurement of the compile and deploy time when altering
the prototype. Does the framework support changes without recompiles?
The second criterion is the effort required to add or change a game el-
ement. Since changes or additions may be small or large, we find it
impossible to generally quantify the evaluation of this criterion. A tex-
tual description of positive and negative experiences related to additions
and changes will be given instead.

3. Flexibility. Does the framework impose any restrictions on the user? Can
any type of game be created? Does the framework allow both single
and multiplayer game experiences? When evaluating this criterion a
generalization of what the framework does not allow the user to do will
be formed.

4. Stability. How stable is the framework? Is work lost from crashes? Are
the tools and the engine swarming with bugs? Are the developers actively
maintaining the toolkit? The evaluation of this point will outline stability
issues.

5. Community Support and Documentation. This point in the evalua-
tion will look at the amount of documentation available, as well as the
support to and from users. Is the documentation easy to find? Is it easy
to understand? Are there undocumented features? Are the developers
actively publishing and updating the documentation? Is there an active
user community? All these questions should be evaluated at this point.

6. Licensing. The appeal of a development toolkit depends a lot on the li-
censing terms. Important factors to consider when evaluating the license
are: Price, feature restrictions, ownership, closed or open source etc. The
evaluation of the licensing will consist of a draft of the licensing terms,
and a discussion of whether they are positive or negative.

7. Competitiveness. At this point we evaluate the toolkit compared to other

10.2. UNREAL DEVELOPMENT KIT 81

actors on the market. Does the feature set have an edge over the com-
petitors? Is the toolkit sufficiently sophisticated to create state-of-the
art game prototypes? Are there functionality not present in the develop-
ment kit, commonly present in others? This evaluation point will result
in a brief comparison between the toolkit in question and competitors.

10.2 Unreal Development Kit
This section will present the positive and negative sides of choosing the Un-
real Development Kit for developing a game prototype. This evaluation will
be based on the team’s personal experience with the toolkit and follows the
evaluation framework posed in Section 10.1. It is important to once again
note that the evaluation will be from the viewpoint of someone with computer
science background and hobbyist experience in 3d content creation.

10.2.1 Learning Curve

To evaluate the start learning curve, we looked at how long it took to im-
plement a pawn the player could move around. As demo code and assets of
Epic’s first person shooter Unreal Tournament 3 [39] is supplied with the Un-
real Development Kit, we had a custom map up and running within a day
where the player could run around in first person perspective. If the goal is
to prototype a first person concept, the Unreal Development Kit serves as an
excellent starting point. There is a lot of reusable scripting code that can be
modified, as well as existing assets. However, we wanted to see how it would
be to implement something completely different than the existing demo code
base, as well as implementing custom 3d content. This can be effectively called
starting from ”scratch”, only using the engine itself as a starting point. This
proved doable, but considerably harder, leading us to suspect that the UDK
was initially more geared towards modifying the existing Unreal Tournament
3 code than creating entirely new games. It should be noted that Epic has
taken steps to rectify this, as will be discussed in Section 10.2.5.

To someone without previous experience with Unreal Technology, there was an
initial ”shock” when trying to figure out where to start. This was not due to
the complexity of the concept that was to be implemented, but due to all the
setup required before development can begin. First of all, the project needs
to tweak the engine configuration files, or the engine will not recognize the
game, what level to start by default and so on. The sheer wall of information
contained in some of these config files can be overwhelming for new users. It
is hard to tell at first glance what settings are important, what settings can

82 CHAPTER 10. EVALUATION

be ignored and what needs to be changed to start making your own game.
A separate tool for changing engine settings would probably be appreciated
by new users, as it could control in a higher degree that only legal settings
are input, as well as increase the overall readability. But what arguably is
the most hampers the initial understanding of the toolkit for the user, is the
tight coupling between the demo game itself and the toolkit. The distinction
between the two is hard to make in places. In an ideal world, you would
have the engine itself, and then you would have separate example projects
showcasing features, without the examples being spread out over the rest of
the development kit with settings, content and code in various places. This is
of course hard to do in reality, as games are performance-heavy and naturally
require a tight coupling to the engine. We missed an official tutorial on creating
a simple game without relying on Unreal Tournament code. Luckily, there
are lot of community-created tutorials and documentation. Learning all the
workings of the toolkit is a huge undertaking in itself, as it is packed with
features. In fact, a major part of this project was spent learning the intricacies
of the UDK toolset. So while a huge feature set is positive in other ways, like
development speed, time spent in learning/training will naturally lengthen.

Once the initial learning curve is overcome and development is actually started,
there are a lot of exist of features that are intuitive to use. This holds especially
true for some of the accompanying tools, like the Unreal Editor, Cascade,
AnimSet Editor and SpeedTree Modeler. The use of common graphical user
interface conventions helps speed the understanding along. UnrealED has a lot
in common with 3d modeling packages, like 3ds Max, in that it employs four
different perspectives and uses similar methods for creating geometry. Though
one should note that intuitivity is not always the case. The node editors, e.g.
the Material Editor, has a somewhat peculiar user interface. The Ctrl-button
has to be pressed to move nodes with the mouse, not something any of the team
members had encountered in any other user interface. Undo-functionality is
missing as well from these tools. UnrealScript is instantly familiar to anyone
who has programmed in common languages, like C++, C# or Java, as they are
the inspiration source. As the team has experience with all these languages,
scripting was easy to get into. The language incorporates intuitive ways to
implement state and functions that deal with the passage of time, these are
powerful and quick to learn.

To consider the learning curve, one should consider the required background
needed to start using the development kit. It will be considerably steeper if
one or more of these points are not met. The scripting language, UnrealScript,
is an object-oriented language. It is therefore imperative to understand object-

10.2. UNREAL DEVELOPMENT KIT 83

oriented concepts to fully understand how UnrealScript is constructed. On the
other hand, knowledge of object-oriented programming should be expected
when creating games, as game creation by no means is an easy engineering
task and all engines we have introduced in Chapter 5 have a C++ core [7][8].
UnrealScript is inspired by Java and C++ (as mentioned in Section 5.1), so
understanding of C-style programming syntax helps as well, while not strictly
required. Knowledge of a 3d modeling suite, e.g. Autodesk 3ds Studio Max,
is needed to create 3d models and animations. In addition, the Flash-based
UI middleware ScaleForm Gfx was added to UDK in May 2010. Knowledge of
Flash and Actionscript 2.0 for user interface creation is therefore recommended
as well, although there exists several community-created tutorials at the time
of writing. Table 10.1 and 10.2 summarizes the required and recommended
knowledge.

The main pros and cons of this evaluation criterion is summarized in Table
10.3.

Knowledge area Needed to know

Programming Object-oriented programming paradigm
3d content and animation Autodesk 3ds Max, Autodesk Maya, or Au-

todesk Softimage or The Blender Foundation’s
Blender

Table 10.1: Prerequisite knowledge for game creation with the UDK

Knowledge area Recommended to know

Programming C-style syntax, e.g. C, C#, C++, Java
User interface creation Adobe Flash and Actionscript 2.0

Table 10.2: Recommended knowledge for game creation with the UDK

10.2.2 Development Speed

This evaluation criterion is twofold. The first criterion is a measurement of
the compile and deploy time when altering the prototype. Does the framework
support changes without recompiles? The second criterion is the effort required
to add or change a game element. Since changes or additions may be small or
large, we find it impossible to generally quantify the evaluation of this criterion.
A textual description of positive and negative experiences related to additions
and changes will be given instead.

84 CHAPTER 10. EVALUATION

Pros Cons

Familiar syntax in UnrealScript No integrated IDE
Intuitive state system Messy config file system
Helpful and descriptive functions in
UnrealScript

Tight coupling between game demo and
engine

Some familiar user interface choices Some unfamiliar user interface choices
Too many windows at times
Huge feature set
Some incomplete documentation

Table 10.3: A summary of pros and cons of the UDK under the ”Learning
curve” evaluation criterion

UDK uses compiled UnrealScript to define gameplay mechanics. As the engine
itself does not need to be compiled, compile times are short. For a full compile
in our project, average time was 7 seconds. Compiles are needed when some-
thing is changed in script, but recompiles can be avoided by exposing variables
to archetypes which can be tweaked in the Unreal Editor. Compiles are not
needed when changing archetypes, and the game can be run directly from the
editor. This can be a huge time saver, especially as the engine is semi-loaded
when running the editor; start-up of the game itself is therefore faster in the
editor than rebooting the application after a script compile. In addition, vari-
ables can actually be changed at runtime via the Remote Control tool. It is
extremely effective to get instant feedback in situations where numerous small
tweaks are necessary.

On projects with a low programmers-to-artists ratio, kismet can help as well.
As described in Section 5.2.1, Kismet is a node-based, graphical scripting tool,
and can as such be used non-programming savvy developers. This makes
it possible for artists to prototype and test features quickly in cases where
programmers are swamped with higher-priority work.

When changes are made in a level, no matter how small, lighting and AI paths
needs to be rebuilt to function properly. Light building in particular can waste
a lot of time, as proper light building quickly can take several minutes, even
when running on 8 threads. Thankfully, it is not strictly needed to run the
game/level. In periods of tweaking and experimentation of mechanics and
other non-graphical aspects, building of lights can therefore be omitted, until
deemed necessary. Only a warning will be displayed.

Another potential time waster is to have too large packages. Each time any-

10.2. UNREAL DEVELOPMENT KIT 85

thing is changed within the package, all shaders and materials used in it will
need to be recompiled. This was something the team found out the hard way
while developing the prototype, as no warning of this could be found in the of-
ficial documentation. Care should therefore be taken to have as small packages
as possible.

There is no official IDE, which would have increased development speeds, as
jumping into code definitions is essential to understand UnrealScript, as a
lot of documentation exists as comments within the official core UnrealScript
classes. There exists third party IDE’s to remedy this, like PixelMine’s nFringe
plugin to Microsoft Visual Studio [43]. Though an IDE built into the Unreal
Editor would have been ideal, to maintain continuity and enforce the binding
between the editor and UnrealScript.

Of course, the provided tools and features in the development kit contribute
to shortening development time, once the developer has learned them. The
navigation mesh system simplifies path finding, and lets artificial intelligence
programmers focus on the actual intelligence side. Setting up sounds and ani-
mation notifiers in the AnimSet Editor, makes animation-driven development
a breeze. Latent functions and timers greatly simplifies programming functions
that deal with the passage of time. Built-in functionality for e.g. interpola-
tion, cameras, movement and pawns - these are all things that are usually
needed in games, and let the programmers focus on other aspects. The down-
side is that it of course takes time to learn all these functions, as mentioned
in the previous section. But we believe that once the developers have gotten
to grips with this functionality, huge speed gains are possible. Evidence for
this is Trendy Entertainment’s prototype Dungeon Defense created with the
UDK in 4 weeks with only a couple of programmers [19]. Their lead program-
mer, Jeremy Stieglitz, have several years of Unreal experience. The Dungeon
Defense demo has become part of the official showcase for UDK [34].

As a note, in our previous project [7], we tried building an engine/framework
from scratch. We can safely state that using a prebuilt framework speeds up
the development by countless amounts, as this whole part of the game is taken
care of for you. The developer does not have to worry about technicalities like
rendering systems when using an off the shelf engine.

The main pros and cons of this evaluation criterion is summarized in Table
10.4.

86 CHAPTER 10. EVALUATION

Pros Cons

Remote Control Whole package recompile at internal
Low compile times of UnrealScript Lighting and path build times
Kismet allows visual scripting No IDE
Archetypes
Huge feature set

Table 10.4: A summary of pros and cons of the UDK under the ”Development
speed” evaluation criterion

10.2.3 Flexibility

For this evaluation criterion we wanted to look at the restrictions posed by the
engine/framework on the developer.

The UDK gives no access to the C++ code of the internal engine, the way
Unreal Engine 3 licensees get. It is therefore not possible to integrate native
middleware into the engine, other than what is being supplied by Epic, or
tweak the engine if new/changed core functionality is needed. The UDK loses
some flexibility this way, and anyone who are thinking of implementing some
radical or innovative mechanic, will have to investigate whether this can be
accomplished within the confinements of the engine. That being said, Unre-
alScript and the features already present in the UDK provide enough flexibility
to support several sorts of conventional 3d and 2.5d games. There have been
created platformers, sidescrollers, top down games, third person games, in ad-
ditional to the obvious choice of first person games [88]. Though, one has to
consider that the engine has its origin in a first person shooter - A ”crazy”
concept that strays too far from the conventions established in this context
might run into trouble. It is possible in a certain degree to include external
code written in C++, by creating a DLL and making a binding to it. This
should in theory increase the flexibility of the development kit. The team has
not tested this however, and can not comment properly on its usefulness.

Perhaps unsurprisingly, with its 3d roots, the engine does not have a lot of
explicit functionality dealing with 2d. There is no way to set orthographic
projection style (no perspective), for example. A game concept like Super
Paper Mario [60], a mix between 2d and 3d styles, might therefore initially
seem hard to achieve in the UDK. Animated sprites in game elements, like a
pawn, is not something which is directly supported, but is possible through
material usage, or other creative work around. An approximation to ortho-
graphic projection can be achieved by setting the field of view of the camera

10.2. UNREAL DEVELOPMENT KIT 87

Pros Cons

UnrealScript Hardware demands
Engine proven in several settings Not completely platform independent
(DLL-bind) Limited 2d options

Table 10.5: A summary of pros and cons of the UDK under the ”Flexitivity”
evaluation criterion

as low as possible. In general, a lot of additional functionality which might
seem ”impossible” at first glance with the limitations of the engine, can be
done through creative use of the already existing features. This mentality is
useful when prototyping, as the player will not know the internals of the game.
If something works, it does not matter if the solution is not the most elegant,
or if it is ”faked”. The first person philosophical puzzler Hazard: The Journey
of Life is an example of a single person being creative with the UDK [35]. In
addition, the recently added Scaleform middleware allows for powerful usage
of Flash and Actionscript. A 2d mini-game may be written entirely within the
UI, for instance.

A proper argument against the flexibility of the UDK, is its somewhat high
hardware demands. It is scalable and has support for auto-adjusting graphical
settings, but with Epic’s plans to remove support for Shader Model 2.0 graphics
cards in the June 2010 build of UDK [33], games that hope to run on older
hardware will have to look elsewhere, or use earlier builds of the development
kit.

UDK is not platform independent. It runs mainly on the Windows-platform,
with theoretical support for Xbox 360 and PlayStation 3. We say theoretical
here, as Unreal Engine 3 runs on these consoles, but additional development
kits and licenses will have to be acquired to deploy to these consoles. There
is currently no support for Wii or mobiles, although support for Apple’s 3GS
iPhone is at the time of writing currently in development. A demonstration of
Unreal Engine 3 running on iPhone was displayed in November 2009 [67].

The main pros and cons of this evaluation criterion is summarized in Table
10.5.

10.2.4 Stability

Before discussing the stability of the UDK, it is important to stress that the
development kit is still in a beta phase. Since Epic releases a new build every

88 CHAPTER 10. EVALUATION

month, the toolkit is more stable at the latest release (the May 2010 Build),
than it was at the first build in November 2009. The majority of stability
issues are therefore likely to be addressed and eliminated by Epic in future.
This section will evaluate two kinds of stability issues: Errors leading to crashes
and non-fatal issues within the development kit.

We have not quantitatively measured the number of crashes we have had with
the UDK, but we have experienced occasional crashes when working with the
UnrealED. This is not uncommon in the world of software, and has not been
very problematic. The UnrealED features customizable auto-saving function-
ality, where the user may specify how often an auto-save is performed and
whether changes in packages or only the map should be saved. If a lot of
content is lost in a crash, we will therefore put most of the blame on the user,
not the UDK. We have, however, experienced a single crash that corrupted
the UDK to the point that we had to re-install it.

Of non-terminal issues, we have identified three. The first issue relates to phys-
ical bodies of skeletal meshes. When turning a skeletal mesh into a ”ragdoll”,
thus letting the physics solution calculate a character’s animation rather than
being driven by predefined animation, we have experienced some stability is-
sues. If we did not remove the skeletal mesh from the map quickly, we observed
a tenfold in calls to the physics unit, severely impeding engine performance.
The second error is that decals [11] refuse to project on high-detailed terrain
on the workstations we have used with ATI-based graphics cards. On the
workstations with nVIDIA cards, the problem vanishes. The third problem is
a visual one and is illustrated in Figure 10.1. When using Cascaded Shadow
Maps (CSM) the camera frustum is split into a number of volumes, where a
shadow map is calculated for each volume [17]. The idea is that the resolution
of the shadow maps can vary, so that more detailed maps are used close to
the camera, but not on the parts of the scene far away. As seen in the figure,
visual artifacts may occur between the splits.

The main pros and cons of this evaluation criterion is summarized in Table
10.6.

10.2.5 Community Support and Documentation

As described in Section 10.1 we will at this point look at the documentation
and the community support of the UDK. The questions posed in the evaluation
framework are: Is the documentation easy to find? Is it easy to understand?
Are there undocumented features? Are the developers actively publishing and
updating the documentation? Is there an active user community?

10.2. UNREAL DEVELOPMENT KIT 89

Figure 10.1: A screenshot from the UnrealED showing a visual artifact between
camera frustum splits when using Cascaded Shadow Maps. The red ring is
added to highlight the problem area.

Pros Cons

Great overall stability for a beta appli-
cation.

Crashes occasionally.

Customizable auto-save feature reduces
the severity of a crash.

Minor issues with physics, decals and
cascaded shadow maps.

Table 10.6: A summary of pros and cons of the UDK under the ”Stability”
evaluation criterion

90 CHAPTER 10. EVALUATION

Online support for the UDK lies under the Unreal Development Network (UDN)
[38], containing support both for full licensees and UDK licensees. All of the
documentation available to full licensees are available to the public, except for
documentation on the inner workings of the engine. As described in 10.2.6
only full licensees have access to the engine source code, thus UDK users do
not need access to this documentation. Our short answer to whether it is
easy to find the documentation is: Yes. If a developer manages to find and
download the UDK, he or she will also manage to find the documentation;
it is right there on the website. The documentation is also linked to from
the UnrealED’s start page which is displayed when the UnrealED is loaded.
Navigating the documentation is made easy via searching capability and an
intuitive tree-structure for the documentation.

In our experience, the documentation is well written and easily understandable.
Since it is not always easy to describe interactive user interfaces textually, Epic
Games has hired ”3D Buzz”, a company specialized in creating educational
video tutorials for 3d content creation applications, programming and game
design since 2001 [73], to create a series of video tutorials covering different
aspects of the UDK. We have found these video tutorials to be an excellent
supplement to the textual documentation of the UDK.

We have yet to discover any major features to be undocumented. However,
some of the documentation is a little sparse on details, and suffers from in-
consistency. As an example, there are in the particle system editor ”Cascade”
inside the UnrealED, seven types of data type modules: Animation Trails,
Beam, Mesh, PhysX Sprite, PhysX Mesh, Trails and Ribbon. The documen-
tation for Cascade does, however, only list three module types: Beam, Mesh
and Trails [65]. Browsing around in the documentation will reveal that the
data types related to PhysX particles are discussed in a document of its own,
and so is Animation Trails. The example illustrates another point. As de-
scribed is Section 1.2 the UDK is still a beta, and Epic releases a new build
every month with added features and fixes. It is apparent that the documen-
tation is not always in up to date with the current build, however, we deem it
likely that Epic will remedy this when the development kit is finalized. Note
that Epic does release and update documentation with every new build, but
as the example illustrates, some inconsistencies are missed. Even though there
are no major features uncovered in the documentation, a nuisance when start-
ing to learn the UDK was, as mentioned in Section 10.2.1, that there was no
tutorials on ”cleaning” the development kit of Unreal Tournament (UT) spe-
cific elements. The subsequent builds since November 2009 shows that Epic
are actively isolating more and more of the UT-specific elements not only from

10.2. UNREAL DEVELOPMENT KIT 91

Pros Cons

Extensive documentation with no ma-
jor undocumented features.

Occasionaly documentation is not up to
date.

Free, professional video tutorials No official tutorials on starting from
scratch.

Large, active user community.

Table 10.7: A summary of pros and cons of the UDK under the ”Community
Support and Documentation” evaluation criterion

native engine code, but also from heavily referenced UnrealScript classes such
as Actor and Pawn described in Section 5.1.1. It is therefore safe to assume
that the process of starting from scratch will not remain as complex in the
future.

The fact that Epic releases a new build every month, with added features and
bugs fixed, is in itself a testament to the commitment Epic show to increase
the awareness and use of the UDK. As noted in Section 1.2 there were over
50,000 downloads of the November 2009 build, when the UDK was released.
The user community is therefore a large one, and growing. There are at the
time of writing over 160,000 registered users on Epic Games’ forums [28].
Note that this number is merely an indication of the user mass, since Epic
Games’ forums envelop all Epic Games’ products and it is not necessary to be
a registered member to read forum posts. The benefit of having a large user
community is twofold: When posting specific questions on the user forums,
it is likely to be answered quickly. Second, a lot of user-created tutorials are
available. In the case of the problem with ”cleaning” the UDK for UT-specific
features mentioned above, we were able to solve it through tutorials created
by individuals outside of Epic.

The main pros and cons of this evaluation criterion is summarized in Table
10.8.

10.2.6 Licensing

Under this evaluation criterion, we will, as described in Section 10.1, look at
the licensing terms of the UDK. Factors to consider here are: Price, feature
restrictions, ownership, closed or open source etc.

The UDK pricing model is perhaps the biggest selling point for indie develop-
ers. The pricing was to us an important motivational contributor to undertake

92 CHAPTER 10. EVALUATION

this project, as described in Section 1.2. As stated previously: A licensee may
use the toolkit for both educational and commercial purposes, however for any
revenue above $5000 Epic claims a 25% royalty. The up-front cost for commer-
cial projects aimed to be sold is $99, whereas a business which internally uses
the toolkit must pay a fee of $2500 per development seat per year [31]. When
using the toolkit to develop a game prototype, the cost is therefore null and
void. For indie developers and small studios, which are financially vunerable,
this pricing model evens the competition with more established studios since
they get access to similar tools. The risk involved in paying a huge up-front
cost is also eliminated: In a failed project, developers and investors may walk
away with significantly lower financial losses. If the project is a success, it will
also benefit Epic financially, thus enabling continued support for the UDK and
its community. Everybody wins.

On the negative side, a 25% royalty to Epic may be pricy. It is important
to recognize that the 25% cut is not the only cost involved in an indie game
development project when using the UDK. If a licensee wishes to release a title
on the Xbox 360 and/or the Playstation 3, they must contact Epic Games to
discuss ”additional terms” [31]. Since Epic refuses to publish these terms, we
will not hold it against them though there might be a hidden cost here. In
addition, all developers for both the Xbox 360 and the Playstation 3 must
purchase a development kit for the console. While the price of the Xbox
360 Development Kit is unknown for the public, the price of a Playstation 3
Development Kit is currently $2000 [70]. As a general note, the use of digital
distribution channels such as Steam for PC, Xbox Live Arcade for Xbox 360
and Playstation Store for Playstation 3, are not free, though this cost is not
exclusively tied to the UDK.

Mark Rein, vice president of Epic Games stated in an interview with Ars
Technica [84] that:

”It (the UDK) isn’t watered down in any way, so we could expect
to see anyone from beginners to professional developers using it.”

He also explains that the only differences between a full licensee and a UDK
licensee, is that UDK licensees does not have access to the underlying C++
source code of the Unreal Engine 3 and its tools, nor access to direct support
from Epic Games’ engineers. As described in Section 10.2.5 Epic has moved
towards a cleaner engine by moving native Unreal Tournament 3 code to script
and exposing more of the engine’s core features to scripting. When taking
.dll-binding into account as well, there really are not that many cases where a
developer needs to alter the underlying source code. Direct support from Epic’s

10.2. UNREAL DEVELOPMENT KIT 93

engineers would have been a nice gesture. However, the strong user community
and wealth of documentation, commented in Section 10.2.5, largely makes up
for the lack of direct support. A quick glance at some of the questions posed
on the community forums makes it understandable that Epic Games chooses
to only give direct support to full licensees.

Regarding ownership, the UDK End-User License Agreement (EULA) included
in the UDK installer says [26]:

”As between the parties, Epic or its suppliers

...

own the title, copyright, and other intellectual property rights in
the UDK, including all derivative works of the UDK. You own
the title, copyright, and other intellectual property rights in the
applications you develop using the UDK and any derivative works
thereof, but ownership of the UDK and derivative works of the
UDK, and any portion(s) of the UDK and derivative works of the
UDK remains with Epic.”

Effectively this means that Epic owns the UDK, and developers own the games
and content they have created using the UDK. Regarding closed or open source,
Epic says [37]:

”You can’t release your UDK project under terms other than the
UDK EULA (like GPL, LGPL, open source, etc.). You don’t have
the right to encumber the UDK with terms that we have not al-
ready granted to you.”

When evaluation these terms, we find them to be more than reasonable. For
Epic to maintain control of the intellectual property of their own product, it
is understandable that UDK licensees may not change the licensing terms to
open source, nor obtaining the intellectual property of the toolkit itself.

The main pros and cons of this evaluation criterion is summarized in Table
10.8:

10.2.7 Competitiveness

As described in Section 10.1 we will at this point look at the competitive
strengths of the UDK compared to market rivals. Since we have only tested
the UDK and not the competitors, the arguments related to the competitors
will not be based on experience with the engines. We have, however, in the

94 CHAPTER 10. EVALUATION

Pros Cons

No up-front cost. A 25% cut to Epic may be pricy.
No feature restrictions beyond closed
source code.

Console development requires addi-
tional licensing (development kit).

Low risk.

Table 10.8: A summary of pros and cons of the UDK under the ”Licensing”
evaluation criterion

depth project preceding the master thesis conducted a study of these engines
and acquired substantial theoretical knowledge about them. Another factor
to consider is the track record of published games for the rival engines, since
strengths and weaknesses of an engine are ultimately reflected in the games
using it. The rivals we have considered are the ones listed in Section 4.1.3:
Gamebryo, Unity and CryENGINE 3.

The first question posed in the evaluation framework is to determine whether
the feature set of the UDK have an edge over the competitors. The general
answer is: No. The feature set of the UDK is huge, versatile and very good,
which is evident by a glance at Chapter 5. However, none of these features
are strictly unique to the UDK when comparing it to e.g. CryENGINE 3 [15].
The reversed form of the question; whether there are features lacking from the
UDK present in other engines, is neither positive for the UDK. CryENGINE
3 appears to have an edge over UDK, due to its What You See Is What You
Play (WYSIWYP) functionality which allows real-time editing on a PC to be
propagated to other platforms (Xbox 360 and Playstation 3). In UDK changes
must first be made on a PC and then ”cooked” to update on other platforms.
The lighting solution of the CryENGINE 3 does also have an edge over UDK
since it is fully dynamic and does not need offline builds, which Lightmass
does. The CryENGINE 3 lighting solution does still allow indirect lighting
and ambient occlusion, but here it is computed at real-time. The benefit of
the UDK’s solution, however, is that the visual quality will be the same, or
even better, after the offline lighting build is completed, at lower computational
cost. Another annoyance we have identified with the UDK compared to the
CryENGINE 3 is the absence of a dedicated road and river creation tool. Road
and river networks are common in game maps, and the CryENGINE 3 makes
it easy for the user to effortlessly update the terrain height map to integrate
such networks. It is possible to achieve the same results in the UDK, but it
requires a substantial amount of time. To do it in UDK the road or river must
first be created in a 3d content creation application, and then imported into

10.2. UNREAL DEVELOPMENT KIT 95

UDK as a static mesh where the terrain height map must be manually tweaked
to integrate the network into the level. Compared to Unity and Gamebryo,
UDK have an edge with the inclusion of AI functionality, though CryENGINE
3 offers such functionality as well.

Answering the second question, of whether the sophistication of UDK allows
creation of state-of-the-art game prototypes, we look to games created using
Unreal Engine 3. In Section 1.2.1 we mention ”Unreal Tournament 3”, ”Gears
of War 1 and 2”, ”Mass Effect 1 and 2” and ”Batman: Arkham Asylum”
as examples of titles using the engine. Even though tools additional to the
ones included in the UDK are developed for these titles, such as the facial
animation system for Mass Effect 2 [61], the track-record of titles using the
Unreal Engine 3 is unmatched. Among these example titles, ”Batman Arkham
Asylum” was rated the second best PC game of 2009 with a score of 91/100
[54] by ”metacritic.com”, a web service providing an average of all the scores
assigned by other online reviewing institutions [53]. The Xbox 360 version
of ”Mass Effect 2” has a score of 96/100 [55] which is the fourth best of all
times for an Xbox 360 title, and is a likely candidate to win ”Best Xbox 360
Game” of 2010. When comparing the track-record of Unreal Engine 3 titles
to CryENGINE 3 it is an easy match for Unreal, since no titles have yet been
released on the latter platform. The short version of answering whether UDK
allows creation of state-of-the art games and game prototypes is therefore a
resounding: Yes.

A discussion of the platform, and hardware, flexibility of UDK compared to
the rivals is also fitting under the ”Competitiveness”-criterion. UDK allows
multi-platform development for Windows-based PC, Xbox 360 and Playsta-
tion 3, but so does CryENGINE 3. Unity, in the other hand supports ”nor-
mal” windowed or fullscreen games and web-browser games on the PC (thus
platform-independent), as well as deployment to Apple’s iPhone and Nintendo
Wii [77]. The engine is therefore demonstrably more scalable to different hard-
ware than the UDK since it works both on lower-fidelity platforms such as the
iPhone, while delivering competitive results on PC. This statement may not
stand the test of time, as Epic Games has announced that they are working
on porting the Unreal Engine 3 to the iPhone [66].

The big selling point of the UDK compared to its rivals is, however, the li-
censing. With no up-front costs, no watering down of the toolkit, and the
potential proven by its track record, the UDK stands out as an extremely at-
tractive choice for indie developers. Unity has a free indie license, but this
license provides a watered down version of the toolkit, neither does Unity have
the track-record of Unreal. Gamebryo has, like Unreal Engine 3, an impressive

96 CHAPTER 10. EVALUATION

Pros Cons

No up-front cost. Lighting solution not completely dy-
namic.

Richness of tools, including AI. No road and river tool.
Engine proven successful through track
record.

Not demonstrably scalable to low-
fidelity platforms.

Table 10.9: A summary of pros and cons of the UDK under the ”Competitive-
ness” evaluation criterion

track record, but comes with a huge up-front cost. No titles are yet released
using CryENGINE 3, thus even if the feature set looks promising, it is hard to
say if the games will deliver. Licensing the CryENGINE 3 comes with a huge
up-front cost at the moment, however, Crytek recently stated that they will
release a free platform based on their technology [14]. What this upcoming
license, and platform, will look like remains to be seen.

The main pros and cons of this evaluation criterion is summarized in Table
10.9.

10.3 Prototyping Process

Before discussing the prototyping process, we should consider the results from
Section 9.2: Throughout the project, we have implemented 32% of the original
requirements from Chapter 7. Before we conclude our prototyping process
from Section 8.2 to be useless, we should consider our background.

Revisiting the contents of Table 10.3, we have identified both proficiency in pro-
gramming and 3d content creation as prerequisites for efficient use of the UDK.
This project is a computer science master thesis, thus we meet the program-
ming requisite through our education. Our 3d content creation background is
somewhat more sketchy. To prosper in this field, we signed up for web-lessons
at Digital-Tutors.com, a professional training site for digital art used to train
artist in companies (and government agencies) such as Pixar, Disney, Sony,
Microsoft, MTV and CIA among others [80]. Even though the tutoring was
excellent, not to mention expensive, a lot of time went into progressing to a
level where we could create something useful.

As stated in Section 8.1, a prerequisite for using our prototype process was to
have a working knowledge of the UDK. Due to its large feature set, obtaining
a ”working knowledge” of the toolkit consumed a very large portion of the 23

10.4. RESEARCH 97

weeks we had available for the thesis as a whole. The goal of evaluating the
toolkit, thus gaining as much insight as possible in it, conflicts somewhat with
the rigidness of the prototyping process. For instance, the first phase of the
prototyping process stresses that all game mechanics should be implemented
before moving forth. However, for us to get an overview of the UDK feature
set, we had to work with elements from other phases e.g. creating animated
characters. To be as time-efficient as possible, we tried to create material rel-
evant to the concept, when in the phase of exploring the UDK. Thus, as the
implementation clearly shows, there is content in the prototype that should
have been created at later prototype phases, even though not all of the pro-
totype’s game mechanics have been implemented. In essence, this means that
when we designed the prototyping process, we did not foresee that were unable
to meet the prerequisite of having a ”workable knowledge” of the toolkit and
the proposed process has not been tested, nor verified. We do not, however,
find our inability to follow the the prototyping process to hurt the project as
a whole, since it is the evaluation of the UDK in Section 10.2 that is the main
product, not the prototype implementation.

Even though we were unable to get through the prototyping process as in-
tended, we still believe in it, seeing that it is founded on deep, theoretical
insight in game prototyping, as well as previous experience in game develop-
ment. As commented in Section 11.2, we intend to stick to it in the future. In
the depth project preceding the master thesis, we implemented a game engine,
the Apocalypse Engine [7], from scratch. When comparing what we have ac-
complished in this prototype to the Apocalypse Engine, we can safely say that
a lot more has been achieved now even though we had to tame the behemoth
known as the UDK.

10.4 Research
In this section we revisit the research questions posed at the beginning of the
project in Section 2.1, and summarize the answers based on the insight we have
gained throughout the project. An individual subsection has been allocated
to each of the research questions.

10.4.1 RQ1: Game Prototyping Process

The first research question RQ1, posed in Section 2.1, asked: ”What formal
game prototyping processes exist?”. To investigate this research question we
looked into existing literature on the subject. Disappointingly, we did not
manage to come up with a lot of useful literature on the subject, though

98 CHAPTER 10. EVALUATION

”Fundamentals of Game Design” [1] by Ernest Adams and ”Game Design
Workshop” [23] by Tracy Fullerton provided some insight. The conclusion we
reached, as previously noted in Section 6.4, is that due to the multi-disciplinary
nature of game design, the differences between genres and the varying scopes
of games, there is no ”golden path” when it comes to game prototyping. Based
on this conclusion we went on to outline our own process, described in Section
8.

To detail RQ1.2, ”Can prototyping theory from other fields be applicable to
game prototyping?”, we saw in Chapter 6 that understanding prototyping as
a general concept is valuable for game prototyping. More specific knowledge
of software prototyping can also help when working with games, since the pro-
totyping methods and categorization are all applicable to prototyping games.
Insight in software prototyping concepts and terminology is also an asset to
game developers, since it forms a common communication platform. As a
specific prototyping field applicable to game prototyping, user interface proto-
typing from HCI is highly relevant, since user interfaces is an important aspect
of games.

10.4.2 RQ2: Game Prototyping Tool Evaluation

Research question 2 asked: ”Which factors are important in evaluating a game
prototyping tool?”. To investigate this research question, we experimented a
lot with the UDK to derive key elements we found necessary to point out in
an evaluation. A broad categorization of these key elements was the first step
towards the evaluation. Secondly, we tried to identify common methods to
evaluate game development frameworks in general. Even though we were not
able to find an evaluation framework exactly fitted to our needs, we discov-
ered that the evaluation criteria in ”An Application of a Game Development
Framework in Higher Education” by Wang and Wu [82], created a solid basis
for what we were looking for. The combination of the criteria in Wang and
Wu’s paper and the elements identified through exploration of the UDK are
therefore the foundation we build our evaluation framework upon.

The factors we identified to answer RQ2 are, as listed in Section 10.1: Learning
Curve, Flexibility, Stability, Community Support and Documentation, Licens-
ing and Competitiveness.

10.4.3 RQ3: Evaluation of the UDK

In research question RQ3 we asked: ”How does the UDK score according to
the evaluation criteria derived from RQ2?”. The term ”score” here came out

10.4. RESEARCH 99

to not be a quantitaive measure, but a textual evaluation. The key pros and
cons of the UDK according to the evaluation framework is listed in Table 10.3
to 10.9.

Chapter 11

Conclusion and Further Work

“You must gather your party before venturing forth”
- Narrator, Baldur’s Gate (1998)

In this final chapter, we summarize our findings in the section aptly named
”Conclusion”. The final section will discuss the additional work to be done for
the project to reach its optimal state.

11.1 Conclusion
The goal of this project was to evaluate the Unreal Development Kit (UDK)
as an evolutionary game prototyping tool. This would be done by implement-
ing a prototype of the award-winning1 game concept Apocalypse: The four
Unmounted Horsepersons using the UDK. Through our research, we wanted
to investigate any existing theory on game prototyping, as well as determine
how traditional prototyping techniques can be utilized in a game prototyping
environment.

We were unable to locate an existing prototyping process tailored to evolu-
tionary game prototyping. To fill this void, we created our own based on the
deep theoretical insight gained through our research on general prototyping
processes. Due to time constraints, we were unable to test this process exten-
sively in a realistic environment. This is work that remains before the process
can be deemed a success.

Heavy experimentation with the UDK, as well as the framework evaluation
criteria posed by Wang and Wu in their paper ”An Application of a Game

1Committee’s Choice, Norwegian Game Awards 2009 [3]

100

11.2. FURTHER WORK 101

Development Framework in Higher Education” [82] formed the basis for the
criteria used when evaluating the UDK. The key points identified in the evalu-
ation was that the UDK offers low-risk licensing terms for a game engine suite
with an outstanding track-record of successful game titles. To properly utilize
the speed gains that can be achieved through the UDK, a deep understanding
is needed of its feature set. We learned this the hard way, by underestimating
the time and effort needed to reach the required level of insight. In the depth
project preceding this thesis, we implemented a game engine from scratch [7].
When comparing to this project, it is apparent that the time invested in learn-
ing the UDK clearly outweighs the effort of trying to implement something
remotely similar from the ground up.

We deem the main goal of this thesis to be fulfilled. The evaluation framework
is an asset for anyone aiming to evaluate similar tools. The evaluation itself
is a valuable resource for anyone considering using the UDK, or professionals
interested in a novice’s perspective on the toolkit.

11.2 Further Work
Looking ahead, an obvious task for us is to finalize the game prototype, using
the process from Chapter 7. When we actually meet the prerequisite of hav-
ing working knowledge of the UDK, prototyping other game concepts could
also be useful to conform more strictly to the process. The usefulness of our
prototyping process may then be re-evaluated.

It would be interesting to evaluate other game development toolkits, both for
the game development community, or purely as an academic pursuit. By ap-
plying the same evaluation framework as we have to the UDK to e.g. Unity or
CryENGINE 3, the result will be a solid foundation for a comparison between
the engines. Such a comparison would be a useful asset for anyone looking
into licensing an engine for game development or academic purposes.

Appendix A

”Apocalypse” Concept
Document

102

103

1. Game name: Apocalypse: The Four Unmounted Horsepersons
2. Team name: HAX.EXE
3. Game genre: Strategy
4. Multiplayer support: Yes
5. Platform: Xbox 360

104 APPENDIX A. ”APOCALYPSE” CONCEPT DOCUMENT

: THE FOUR UNMOUNTED HORSEPERSONS

Apocalypse is an action-oriented, real-
time tactics game, where your ultimate
goal is to corrupt mankind, thus bringing
the End of Days. By taking command
of the Four Horsemen, which ironically
neither have horses nor are all men,
you will plunge into the land of happi-
ness and bliss, leaving only death and
darkness in your wake.

The game is set in the Dark Ages, whe-
re lawful and God-fearing peasants
happily harvest the fruits of the land.
Peasants are strong and sound, atten-
ding every mass in the local church,
gratefully praising the Lord for their good
health, their wealthy crops and their
pure and fresh water and air. This happy
ecosystem is for you to destroy.

Your various unmounted horsepersons,
have demonic powers related to their
apocalyptic domain. “Pestilence” is the
manifestation of sickness and plague, in-
fecting men and livestock alike, leaving
the lucky dead and the unlucky suffe-
ring horrendously on their deathbeds.
The she-devil “War” possesses demonic
beauty and immense wealth, corrupting
the weak minds of men, turning brother
on brother leaving villages in shambles
and ruins. The mustachioed and fatally

obese “Famine” has the appetite of a
thousand hogs, consuming crops and
livestock as he plods through the land,
leaving the populace starved and wea-
kened in body and mind alike. “Death”
is the ultimate release for the plagued
and starved peasants, harvesting souls
to be sacrificed upon unholy altars in
the eternal fires of Hell. These sacrifices
enable the unmounted horsepersons to
call upon the Seven Deadly Sins to aid
their sinister work.

Unfortunately the Holy Church of Man-
kind stands in your way thwarting your
every move, undermining your powers
by the hands of their zealous priests. The
priests can cure the sick, and remove
the taint of corruption from the land.
Also the priests seek to repel the un-
mounted horsepersons with their blessed
auras. Their one weakness lies in their
dependency on the peasants attending
their holy mass, fueling their powers. The
peasants also benefit from attending
the mass as their curses are lifted and
they recover their strength from the Holy
Commotion. When peasants weaken in
body and spirit, their faith and ability to
attend church diminishes and they stop
attending mass, weakening the powers
of the priesthood and decreasing the

holy aura surrounding the church. As the
situation in the church deteriorates, the
priests are blessed with increased speed
and zeal, counteracting the onslaught
of chaos. At the time of ultimate cor-
ruption, when no peasant is left to serve
the holy cause of the church, the priests
in their despair find the temptation of
sacramental wine to be overwhelming,
and the corruption is total.

The peasants lead a simple life, having
only three major concerns: Gather
precious food to store in their houses,
get pure, pristine water from the surroun-

ding wells, and attend holy mass. The
unmounted horsepersons collectively
possess the necessary skills to disrupt
these activities. Each peasant has a
combination of strengths and weaknes-
ses making them more resilient or more
vulnerable to different types of corrup-
tion. It is paramount that the unmounted
horsepersons combine their strengths
and abilities to destroy each soul.

Gameplaywise Apocalypse is a multi-
player game, intended for 1-4 players.
where one player may control one, two
or all four “hero“-characters. The game

In-game screenshot showcasing the character Pestilence

105

: THE FOUR UNMOUNTED HORSEPERSONS

Apocalypse is an action-oriented, real-
time tactics game, where your ultimate
goal is to corrupt mankind, thus bringing
the End of Days. By taking command
of the Four Horsemen, which ironically
neither have horses nor are all men,
you will plunge into the land of happi-
ness and bliss, leaving only death and
darkness in your wake.

The game is set in the Dark Ages, whe-
re lawful and God-fearing peasants
happily harvest the fruits of the land.
Peasants are strong and sound, atten-
ding every mass in the local church,
gratefully praising the Lord for their good
health, their wealthy crops and their
pure and fresh water and air. This happy
ecosystem is for you to destroy.

Your various unmounted horsepersons,
have demonic powers related to their
apocalyptic domain. “Pestilence” is the
manifestation of sickness and plague, in-
fecting men and livestock alike, leaving
the lucky dead and the unlucky suffe-
ring horrendously on their deathbeds.
The she-devil “War” possesses demonic
beauty and immense wealth, corrupting
the weak minds of men, turning brother
on brother leaving villages in shambles
and ruins. The mustachioed and fatally

obese “Famine” has the appetite of a
thousand hogs, consuming crops and
livestock as he plods through the land,
leaving the populace starved and wea-
kened in body and mind alike. “Death”
is the ultimate release for the plagued
and starved peasants, harvesting souls
to be sacrificed upon unholy altars in
the eternal fires of Hell. These sacrifices
enable the unmounted horsepersons to
call upon the Seven Deadly Sins to aid
their sinister work.

Unfortunately the Holy Church of Man-
kind stands in your way thwarting your
every move, undermining your powers
by the hands of their zealous priests. The
priests can cure the sick, and remove
the taint of corruption from the land.
Also the priests seek to repel the un-
mounted horsepersons with their blessed
auras. Their one weakness lies in their
dependency on the peasants attending
their holy mass, fueling their powers. The
peasants also benefit from attending
the mass as their curses are lifted and
they recover their strength from the Holy
Commotion. When peasants weaken in
body and spirit, their faith and ability to
attend church diminishes and they stop
attending mass, weakening the powers
of the priesthood and decreasing the

holy aura surrounding the church. As the
situation in the church deteriorates, the
priests are blessed with increased speed
and zeal, counteracting the onslaught
of chaos. At the time of ultimate cor-
ruption, when no peasant is left to serve
the holy cause of the church, the priests
in their despair find the temptation of
sacramental wine to be overwhelming,
and the corruption is total.

The peasants lead a simple life, having
only three major concerns: Gather
precious food to store in their houses,
get pure, pristine water from the surroun-

ding wells, and attend holy mass. The
unmounted horsepersons collectively
possess the necessary skills to disrupt
these activities. Each peasant has a
combination of strengths and weaknes-
ses making them more resilient or more
vulnerable to different types of corrup-
tion. It is paramount that the unmounted
horsepersons combine their strengths
and abilities to destroy each soul.

Gameplaywise Apocalypse is a multi-
player game, intended for 1-4 players.
where one player may control one, two
or all four “hero“-characters. The game

In-game screenshot showcasing the character Pestilence

106 APPENDIX A. ”APOCALYPSE” CONCEPT DOCUMENT

: THE FOUR UNMOUNTED HORSEPERSONS

Concept art for the Famine character

is not intended as a network-multiplayer
game, but as a simultaneous hotseat
game, where players may dynami-
cally join and quit as the game passes.
Depending on the number of players,
different players will be assigned diffe-
rent unmonted horsepeople. Since all
characters share the same screen, one
is assigned leader of the group, and is
targeted by the camera.

Leadership is easily transferred between
the different characters, and the pre-
sence and direction of off-screen
char-acters is visualised. The game is
presented through a top-down camera
as seen in many RTS-games, enabeling
broad overview of all players and the
surrounding environment.

The game features a campaign with
several levels. Each level introduces
the players to a peasant community
under one or more church jurisdictions.
A level is completed when all churches
are completely corrupted. Levels start
out in an overly happy, bright and idyllic
environmentwith strong, bright colors,
dan cing peasants, rainbows and sin-
ging birds. As the taint spreads the
environment turns gloomy , the colors
dims, birds die, the sky turns red and
pigs start flying. The music changes from
happy, medieval tunes, to heavy metal.

Despite of the dark theme of the game,
all characters and the environment are
presented in a highly cartoonish style,
contributing to a comical and unrealstic
look and feel.

Peasants have two major statistics:
Health and zeal. Their health is depen-

dent on three factors: Food, pure water
and combat, influenced by the abilities
of respectively Famine, Pestilence and
War. A peasant with low health moves
slower and is thus more vulnerable to
the scythe of the relatively slow moving
Death.

The zeal of the peasants is dependent
on how often the peasant has attended
mass. When zeal is low the peasant is

more receptive to moral corruption such
as bribes and mindless violence against
their fellow peasants.

Priests have one major stat, fanatism,
which increases as peasants in their
jurisdiction start dying and stop atten-
ding mass A priest with high fanatism
runs faster and performs prayers and
blessing faster.

Concept art for the priest character in front of a church

107

: THE FOUR UNMOUNTED HORSEPERSONS

Concept art for the Famine character

is not intended as a network-multiplayer
game, but as a simultaneous hotseat
game, where players may dynami-
cally join and quit as the game passes.
Depending on the number of players,
different players will be assigned diffe-
rent unmonted horsepeople. Since all
characters share the same screen, one
is assigned leader of the group, and is
targeted by the camera.

Leadership is easily transferred between
the different characters, and the pre-
sence and direction of off-screen
char-acters is visualised. The game is
presented through a top-down camera
as seen in many RTS-games, enabeling
broad overview of all players and the
surrounding environment.

The game features a campaign with
several levels. Each level introduces
the players to a peasant community
under one or more church jurisdictions.
A level is completed when all churches
are completely corrupted. Levels start
out in an overly happy, bright and idyllic
environmentwith strong, bright colors,
dan cing peasants, rainbows and sin-
ging birds. As the taint spreads the
environment turns gloomy , the colors
dims, birds die, the sky turns red and
pigs start flying. The music changes from
happy, medieval tunes, to heavy metal.

Despite of the dark theme of the game,
all characters and the environment are
presented in a highly cartoonish style,
contributing to a comical and unrealstic
look and feel.

Peasants have two major statistics:
Health and zeal. Their health is depen-

dent on three factors: Food, pure water
and combat, influenced by the abilities
of respectively Famine, Pestilence and
War. A peasant with low health moves
slower and is thus more vulnerable to
the scythe of the relatively slow moving
Death.

The zeal of the peasants is dependent
on how often the peasant has attended
mass. When zeal is low the peasant is

more receptive to moral corruption such
as bribes and mindless violence against
their fellow peasants.

Priests have one major stat, fanatism,
which increases as peasants in their
jurisdiction start dying and stop atten-
ding mass A priest with high fanatism
runs faster and performs prayers and
blessing faster.

Concept art for the priest character in front of a church

Appendix B

Requirements Fulfilled

This chapter contains a set of tables, Table B.1 to B.8, which are copies of the
tables in Chapter 7. Here we show exactly which requirements that have been
implemented, and the ones remaining.

108

109

ID Requirement description Rank Fulfilled?

GM01.1 Each peasant has two stats: Health and
moral.

H No

GM01.2 When a peasant’s health is depleted,
the peasant dies.

H Yes

GM01.3 Peasants have souls. L No
GM01.4 Peasants need to eat and drink to stay

healthy.
H Yes

GM01.5 A peasant’s health affects movement
speed.

M No

GM01.6 Peasans contract disease from infected
water.

M No

GM01.7 Diseases deteriorates health. M No
GM01.8 A healthy peasant may contract disease

from a sick peasant.
L No

GM01.9 A peasant’s zeal is lowered by time. M No
GM01.10 Going to church to attend holy mass

will restore a peasant’s moral.
M No

GM01.11 Low moral makes a peasant susceptible
to unethical behaviour including vio-
lence against fellow peasants, substance
abuse and promiscuity.

L No

GM01.12 Peasants can gather food from fields. H Yes
GM01.13 Peasants can gather water from wells. H Yes
GM01.14 A peasant owns a single home. M Yes
GM01.15 Peasants can bring food and water to

their home.
H Yes

GM01.16 Peasants have traits making them more
or less vulnerable to hunger, disease
and moral decay.

L Yes

GM01.17 A peasant belongs to a single congrega-
tion.

M No

Table B.1: The implemented requirements of Table 7.1

110 APPENDIX B. REQUIREMENTS FULFILLED

ID Requirement description Rank Fulfilled?

GM02.1 Priests have one stat: Zeal. H No
GM02.2 Priests belong to a single church. H No
GM02.3 Zeal is inversely proportional to the

moral of a priest’s congragation.
H No

GM02.4 High zeal makes a priest work fast. M No
GM02.5 A priest can hurt horsepersons. H No
GM02.6 A priest can disinfect wells and replen-

ish fields.
M No

Table B.2: The implemented requirements of Table 7.2

ID Requirement description Rank Fulfilled?

GM03.1 There are four playable horsepersons:
Death, Pestilence, Famine and War.

H No

GM03.2 Death can kill peasants. H Yes
GM03.3 Pestilence can infect water. H No
GM03.4 Famine can eat crops. H No
GM03.5 War can provoke violence. H No
GM03.6 Horsepersons collect souls of dead peas-

ants.
M No

GM03.7 Souls may be spent to increase the ca-
pabilities of horsepersons.

L No

GM03.8 Horsepersons have health. H Yes
GM03.9 When the horsepersons’ health is de-

pleted, the player is penalized.
H No

Table B.3: The implemented requirements of Table 7.3

111

ID Requirement description Rank Fulfilled?

GM04.1 There are four immovable game ele-
ments: Churches, peasant homes, fields
and wells.

H Yes

GM04.2 Churches have holy auras, where
horsepersons may not enter.

M No

GM04.3 Peasant homes act as storage units for
food and water.

L Yes

GM04.4 Fields contain food. H Yes
GM04.5 Wells contain water. H Yes

Table B.4: The implemented requirements of Table 7.4

ID Requirement description Rank Fulfilled?

UI01 The interface should display the overall
corruption level of the current mission

H No

UI02 The interface should display the
amount of souls available and amount
harvested

L No

UI03 It should be possible to view current
health, moral and traits of any given
peasant

L No

UI04 The interface should provide continu-
ous feeback showing the current goal of
all peasants

M No

UI05 The interface should display the holy
aura of churches and priests

M No

UI06 It should be possible to view what cur-
rent powers are available

L No

UI07 The current horseperson in use should
be marked

M No

UI08 The horsepersons’ health should be
clearly viewable

H No

Table B.5: The implemented requirements of Table 7.5

112 APPENDIX B. REQUIREMENTS FULFILLED

ID Requirement description Rank Fulfilled?

L01.1 The level contains a church. H Yes
L01.2 The level contains a field. H Yes
L01.3 The level contains a well. H Yes
L01.4 The level contains a priest. H No
L01.5 The level contains trees. L Yes
L01.6 The level contains rocks. L Yes
L01.7 The level contains fences. L Yes
L01.8 The level contains four peasants. H Yes
L01.9 The level contains four peasant cot-

tages.
H Yes

L01.10 Death is present. H Yes
L01.11 Famine is present. H No
L01.12 Pestilence is present. H No
L01.13 War is present. H No

Table B.6: The implemented requirements of Table 7.6

ID Requirement description Rank Fulfilled?

L02.1 Peasant 1 should be immune to thirst
and moral corruption, but susceptible
to hunger.

H No

L02.2 Peasant 1’s cottage should be stocked
with water.

L No

L02.2 Peasant 2 should be immune to hunger
and moral corruption, but susceptible
to thirst.

H No

L02.3 Peasant 2’s cottage should be stocked
with food.

L No

L02.4 Peasant 3 and Peasant 4 should be im-
mune to hunger and thirst, but suscep-
tible to moral corruption.

H No

L02.5 Peasant 3 and Peasant 4’s cottages
should be stocked with food and water.

L No

Table B.7: The implemented requirements of Table 7.7

113

ID Requirement description Rank Fulfilled?

L03.1 The level includes a terrain. H Yes
L03.2 The terrain is created with AI-

pathfinding in mind. Peasants should
be able to pathfind to and from key lo-
cations without being stuck.

H Yes

L03.3 The level should include light sources
to light the geometry in a bright and
warm way.

H Yes

L03.4 When a peasant is killed, corruption in-
creases.

M No

L03.5 When corruption increases, the light-
ing changes to express a more sinister
atmosphere.

M No

L03.5 The level is completed when all peas-
ants are dead.

H No

Table B.8: The implemented requirements of Table 7.8

Bibliography

[1] Ernest Adams. Fundamentals of Game Design. New Riders, 2nd edition,
2009.

[2] Adobe. Adobe creative suite 5 design premium [online]. Avail-
able from: http://www.adobe.com/products/creativesuite/design/
whatisdesignpremium.

[3] Norwegian Game Awards. Winners of nga09 [online]. Available from:
http://gameawards.no/news/winners09/.

[4] Victor R. Basili. The experimental paradigm in software engineering.
IEEE Transactions on Software Engineering, 12:733–743, 1986.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 2nd edition, 2003.

[6] Eric J. Baude. Software Engineering: An Object-Oriented Perspective.
Wiley, 1st edition, 2000.

[7] Kjell Iver Bekkerhus and Storstein Kjetil Guldbrandsen. Apocalypse en-
gine - a study of software architecture and conventions in modern game
engines [online]. Available from: http://dl.dropbox.com/u/2086993/
ApocalypseEngine.pdf.

[8] Jonathan Blow. Game development: Harder than you think. Queue 1,
10:28–37, February 2004.

[9] Gillian Bowditch. Grand theft auto producer is godfather of gaming [on-
line]. Available from: http://www.timesonline.co.uk/tol/news/uk/
scotland/article3821838.ece.

[10] Brenda Brathwaite and Ian Schreiber. Challenges for Game Designers.
Charles River Media, 1st edition, 2009.

114

http://www.adobe.com/products/creativesuite/design/whatisdesignpremium
http://www.adobe.com/products/creativesuite/design/whatisdesignpremium
http://gameawards.no/news/winners09/
http://dl.dropbox.com/u/2086993/ApocalypseEngine.pdf
http://dl.dropbox.com/u/2086993/ApocalypseEngine.pdf
http://www.timesonline.co.uk/tol/news/uk/scotland/article3821838.ece
http://www.timesonline.co.uk/tol/news/uk/scotland/article3821838.ece

BIBLIOGRAPHY 115

[11] David Burke. Using decals [online]. Available from: http://udn.
epicgames.com/Three/UsingDecals.html.

[12] Eric Catto. Box2d [online]. Available from: http://www.box2d.org/.

[13] John Crinnion. Evolutionary Systems Development: A Practical Guide to
the Use of Prototyping Within a Structured Systems Methodology. Pitman
Publishing, 1st edition, 1990.

[14] Rob Crossley. Free-to-use cryengine plans emerge [online].
Available from: http://www.develop-online.net/news/34466/
Free-to-use-CryEngine-plans-emerge.

[15] Crytek. Cryengine 3 - specifications [online]. Available from: http://
mycryengine.com/index.php?conid=2.

[16] Oxford Dictionaries. Concise Oxford Dictionary: Luxury Edition. OUP
Oxford, 11th edition, 2009.

[17] Rouslan Dimitrov. Cascaded shadow maps [online]. Available
from: http://developer.download.nvidia.com/SDK/10.5/opengl/
src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf.

[18] Tore Dyb̊a and Torgeir Dingsøyr. Empirical studies of agile software de-
velopment: A systematic review. Inf. Softw. Technol., 50(9-10):833–859,
2008. doi:http://dx.doi.org/10.1016/j.infsof.2008.01.006.

[19] Trendy Entertainment. Dungeon defense blog - day 26 [online]. Available
from: http://utforums.epicgames.com/showthread.php?t=714489.

[20] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann, 1st

edition, 2005.

[21] Ltd. Firelight Technologies Pty. Fmod music & sound effects system [on-
line]. Available from: http://www.fmod.org/.

[22] Markus Friedl. Online Game Interactivity Theory. Charles River Media,
1st edition, 2002.

[23] Tracy Fullerton. Game Design Workshop: A Playcentric Approach to
Creating Innovative Games. Morgan Kaufmann, 2nd edition, 2008.

[24] Epic Games. Animation system overview [online]. Available from: http:
//udn.epicgames.com/Three/AnimationOverview.html.

[25] Epic Games. Animtree editor user guide [online]. Available from: http:
//udn.epicgames.com/Three/AnimTreeEditorUserGuide.html.

http://udn.epicgames.com/Three/UsingDecals.html
http://udn.epicgames.com/Three/UsingDecals.html
http://www.box2d.org/
http://www.develop-online.net/news/34466/Free-to-use-CryEngine-plans-emerge
http://www.develop-online.net/news/34466/Free-to-use-CryEngine-plans-emerge
http://mycryengine.com/index.php?conid=2
http://mycryengine.com/index.php?conid=2
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://utforums.epicgames.com/showthread.php?t=714489
http://www.fmod.org/
http://udn.epicgames.com/Three/AnimationOverview.html
http://udn.epicgames.com/Three/AnimationOverview.html
http://udn.epicgames.com/Three/AnimTreeEditorUserGuide.html
http://udn.epicgames.com/Three/AnimTreeEditorUserGuide.html

116 BIBLIOGRAPHY

[26] Epic Games. Download the unreal development kit [online]. Available
from: http://download.udk.com/UDKInstall-2010-05-BETA.exe.

[27] Epic Games. Epic games [online]. Available from: http://epicgames.
com/.

[28] Epic Games. Epic games forums [online]. Available from: http:
//forums.epicgames.com/index.php.

[29] Epic Games. Epic games’ unreal development kit eclipses 50,000 users in
one week [online]. Available from: http://www.udk.com/udk50k.

[30] Epic Games. Features: Animation - epic udk [online]. Available from:
http://www.udk.com/features-animation.

[31] Epic Games. Licensing - epic udk [online]. Available from: http://udk.
com/licensing.

[32] Epic Games. Morph targets [online]. Available from: http://udn.
epicgames.com/Three/MorphTargets.html.

[33] Epic Games. News - epic udk [online]. Available from: http://www.udk.
com/news-beta-may2010.html.

[34] Epic Games. Showcase: Dungeon defense - epic udk [online]. Available
from: http://udk.com/showcase-dungeon-defense.

[35] Epic Games. Showcase: Hazard - epic udk [online]. Available from: http:
//www.udk.com/showcase-hazard.

[36] Epic Games. Speed tree [online]. Available from: http://udn.
epicgames.com/Three/SpeedTree.html.

[37] Epic Games. Udk frequently asked questions [online]. Available from:
http://udn.epicgames.com/Three/DevelopmentKitFAQ.html.

[38] Epic Games. Udn-three-developmentkithome [online]. Available from:
http://udn.epicgames.com/Three/DevelopmentKitHome.html.

[39] Epic Games. Unreal tournament 3 [online]. Available from: http://www.
unrealtournament.com/.

[40] Epic Games. Unrealscript language reference [online]. Available from:
http://udn.epicgames.com/Three/UnrealScriptReference.html.

[41] Epic Games. Your first unrealscript project [online]. Available from: http:
//udn.epicgames.com/Three/DevelopmentKitFirstScriptProject.
html.

http://download.udk.com/UDKInstall-2010-05-BETA.exe
http://epicgames.com/
http://epicgames.com/
http://forums.epicgames.com/index.php
http://forums.epicgames.com/index.php
http://www.udk.com/udk50k
http://www.udk.com/features-animation
http://udk.com/licensing
http://udk.com/licensing
http://udn.epicgames.com/Three/MorphTargets.html
http://udn.epicgames.com/Three/MorphTargets.html
http://www.udk.com/news-beta-may2010.html
http://www.udk.com/news-beta-may2010.html
http://udk.com/showcase-dungeon-defense
http://www.udk.com/showcase-hazard
http://www.udk.com/showcase-hazard
http://udn.epicgames.com/Three/SpeedTree.html
http://udn.epicgames.com/Three/SpeedTree.html
http://udn.epicgames.com/Three/DevelopmentKitFAQ.html
http://udn.epicgames.com/Three/DevelopmentKitHome.html
http://www.unrealtournament.com/
http://www.unrealtournament.com/
http://udn.epicgames.com/Three/UnrealScriptReference.html
http://udn.epicgames.com/Three/DevelopmentKitFirstScriptProject.html
http://udn.epicgames.com/Three/DevelopmentKitFirstScriptProject.html
http://udn.epicgames.com/Three/DevelopmentKitFirstScriptProject.html

BIBLIOGRAPHY 117

[42] Garage Games. Game development software and tools torquepowered.com
[online]. Available from: http://www.torquepowered.com/.

[43] Pixel Mine Games. Tools:nfringe - pixel mine games wiki [online].
Available from: http://wiki.pixelminegames.com/index.php?title=
Tools:nFringe.

[44] Crytek GmbH. Crytek gmbh: Home [online]. Available from: http:
//www.crytek.com/.

[45] Jason Gregory. Game Engine Architecture. A K Peters, Ltd., 1st edition,
2009.

[46] Steven Haines, Daniel Wright, and Derek Cornish. Unreal lightmass -
static global illumination for unreal engine 3 [online]. Available from:
http://udn.epicgames.com/Three/Lightmass.html.

[47] Havok. Havok physics [online]. Available from: http://www.havok.com/
index.php?page=havok-physics.

[48] Jason Hayes. The code/art divide - how technical artists bridge the gap.
Game Developer Magazine, 8, August 2007.

[49] IDV inc. Speedtree [online]. Available from: http://www.speedtree.
com/.

[50] IDV inc. Sppedtree image gallery [online]. Available from: http://www.
speedtree.com/gallery/.

[51] Mary Jane Irwin. Indie game developers rise up [on-
line]. Available from: http://www.forbes.com/2008/11/20/
games-indie-developers-tech-ebiz-cx_mji_1120indiegames.html.

[52] Josh Levin. Solitaire-y confinement [online]. Available from: http://
www.slate.com/id/2191295/.

[53] Metacritic.com. About metascores [online]. Available from: http://www.
metacritic.com/about/scoring.shtml.

[54] Metacritic.com. Best of 2009 [online]. Available from: http://www.
metacritic.com/games/bests/2009.shtml.

[55] Metacritic.com. Mass effect 2 [online]. Available from: http:
//www.metacritic.com/games/platforms/xbox360/masseffect2?
q=masseffect2.

http://www.torquepowered.com/
http://wiki.pixelminegames.com/index.php?title=Tools:nFringe
http://wiki.pixelminegames.com/index.php?title=Tools:nFringe
http://www.crytek.com/
http://www.crytek.com/
http://udn.epicgames.com/Three/Lightmass.html
http://www.havok.com/index.php?page=havok-physics
http://www.havok.com/index.php?page=havok-physics
http://www.speedtree.com/
http://www.speedtree.com/
http://www.speedtree.com/gallery/
http://www.speedtree.com/gallery/
http://www.forbes.com/2008/11/20/games-indie-developers-tech-ebiz-cx_mji_1120indiegames.html
http://www.forbes.com/2008/11/20/games-indie-developers-tech-ebiz-cx_mji_1120indiegames.html
http://www.slate.com/id/2191295/
http://www.slate.com/id/2191295/
http://www.metacritic.com/about/scoring.shtml
http://www.metacritic.com/about/scoring.shtml
http://www.metacritic.com/games/bests/2009.shtml
http://www.metacritic.com/games/bests/2009.shtml
http://www.metacritic.com/games/platforms/xbox360/masseffect2?q=mass effect 2
http://www.metacritic.com/games/platforms/xbox360/masseffect2?q=mass effect 2
http://www.metacritic.com/games/platforms/xbox360/masseffect2?q=mass effect 2

118 BIBLIOGRAPHY

[56] MiKTeX. About miktex [online]. Available from: http://www.miktex.
org/about.

[57] Martin Mittring. Finding next gen: Cryengine 2. Siggraph 2007, pages
97–121, 2007. doi:http://doi.acm.org/10.1145/1281500.1281671.

[58] Marting Mittring. A bit more deferred - cryengine 3 [online]. Avail-
able from: http://www.crytek.com/fileadmin/user_upload/inside/
presentations/2009/A_bit_more_deferred_-_CryEngine3.ppt.

[59] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 2nd edition,
1994.

[60] Nintendo. Super paper mario at nintendo :: Games [on-
line]. Available from: http://www.nintendo.com/games/detail/
_bua93nkRXBBWiJ8ulRPXASuK0xbcL8l.

[61] Andy Price. Mass effect 2 revealed. 3d World, February 2010.

[62] Pamela Schenk. The role of drawing in the graphic design process. Design
Studies, 12(3):168–181, 1991.

[63] Ben Schlichter. Xbla sales charts [online]. Available from: http://news.
vgchartz.com/news.php?id=2957.

[64] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Be-
yond Human-computer Interaction. John Wiley & Sons, 2nd edition, 2007.

[65] Scott Sherman and Wyeth Johnson. Particle system refer-
ence [online]. Available from: http://udn.epicgames.com/Three/
ParticleSystemReference.html.

[66] Anand Lai Shimpi. Epic demonstrates unreal engine 3 for the ipod
touch/iphone 3gs [online]. Available from: http://www.anandtech.com/
show/2892.

[67] Anand Lal Shimpi. Epic demonstrates unreal engine 3 for the ipod
touch/iphone 3gs [online]. Available from: http://www.anandtech.com/
show/2892.

[68] Michael F. Smith. Software Prototyping: Adoption, Practice and Man-
agement. McGraw-Hill Publishing, 1st edition, 1990.

[69] Russell Smith. Open dynamics engine [online]. Available from: http:
//www.ode.org.

http://www.miktex.org/about
http://www.miktex.org/about
http://dx.doi.org/http://doi.acm.org/10.1145/1281500.1281671
http://www.crytek.com/fileadmin/user_upload/inside/presentations/2009/A_bit_more_deferred_-_CryEngine3.ppt
http://www.crytek.com/fileadmin/user_upload/inside/presentations/2009/A_bit_more_deferred_-_CryEngine3.ppt
http://www.nintendo.com/games/detail/_bua93nkRXBBWiJ8ulRPXASuK0xbcL8l
http://www.nintendo.com/games/detail/_bua93nkRXBBWiJ8ulRPXASuK0xbcL8l
http://news.vgchartz.com/news.php?id=2957
http://news.vgchartz.com/news.php?id=2957
http://udn.epicgames.com/Three/ParticleSystemReference.html
http://udn.epicgames.com/Three/ParticleSystemReference.html
http://www.anandtech.com/show/2892
http://www.anandtech.com/show/2892
http://www.anandtech.com/show/2892
http://www.anandtech.com/show/2892
http://www.ode.org
http://www.ode.org

BIBLIOGRAPHY 119

[70] Blake Snow. Sony tries to boost ps3 development with dev kit price cut
[online]. Available from: http://arstechnica.com/gaming/news/2009/
03/sony-announces-lower-cost-ps3-dev-tools.ars.

[71] Valve Software. Source engine [online]. Available from: http://source.
valvesoftware.com/.

[72] Tim Sweeney. Unrealscript language reference (1998) [online]. Available
from: http://unreal.epicgames.com/UnrealScript.htm.

[73] The 3D Buzz Team. About 3d buzz [online]. Available from: http:
//www.3dbuzz.com/vbforum/content.php?153.

[74] Emergent Game Technologies. Gamebryo [online]. Available from: http:
//www.emergent.net/en/Products/Gamebryo/.

[75] Unity Technologies. Unity: Features [online]. Available from: http:
//unity3d.com/unity/features/.

[76] Unity Technologies. Unity: Features - scripting [online]. Available from:
http://unity3d.com/unity/features/scripting.

[77] Unity Technologies. Unity: Game development tool [online]. Available
from: http://unity3d.com/unity/.

[78] Unity Technologies. Unity’s iphone momentum [online]. Available from:
http://unity3d.com/company/news/unity-iphone-momentum-press.
html.

[79] Matt Tonks. Navigation mesh reference [online]. Available from: http:
//udn.epicgames.com/Three/NavigationMeshReference.html.

[80] Digital Tutors. Digital tutors customers [online]. Available from: http:
//www.digitaltutors.com/09/customers.php.

[81] Michael van Lent. Game smarts. Computer, 40(4):99–101, April 2007.

[82] Alf Inge Wang and Bian Wu. An application of game development frame-
work in higher education. International Journal of Computer Games
Technology, 2009.

[83] Jeff Ward. What is a game engine? [online]. Available from: http:
//www.gamecareerguide.com/features/529/what_is_a_game_.php.

[84] Andrew Webster. Unreal deal: Ars talks unreal dev kit with epic’s mark
rein [online]. Available from: http://arstechnica.com/gaming/news/
2009/11/early-this-month-epic-games.ars.

http://arstechnica.com/gaming/news/2009/03/sony-announces-lower-cost-ps3-dev-tools.ars
http://arstechnica.com/gaming/news/2009/03/sony-announces-lower-cost-ps3-dev-tools.ars
http://source.valvesoftware.com/
http://source.valvesoftware.com/
http://unreal.epicgames.com/UnrealScript.htm
http://www.3dbuzz.com/vbforum/content.php?153
http://www.3dbuzz.com/vbforum/content.php?153
http://www.emergent.net/en/Products/Gamebryo/
http://www.emergent.net/en/Products/Gamebryo/
http://unity3d.com/unity/features/
http://unity3d.com/unity/features/
http://unity3d.com/unity/features/scripting
http://unity3d.com/unity/
http://unity3d.com/company/news/unity-iphone-momentum-press.html
http://unity3d.com/company/news/unity-iphone-momentum-press.html
http://udn.epicgames.com/Three/NavigationMeshReference.html
http://udn.epicgames.com/Three/NavigationMeshReference.html
http://www.digitaltutors.com/09/customers.php
http://www.digitaltutors.com/09/customers.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://arstechnica.com/gaming/news/2009/11/early-this-month-epic-games.ars
http://arstechnica.com/gaming/news/2009/11/early-this-month-epic-games.ars

120 BIBLIOGRAPHY

[85] Wikipedia. Ambient occlusion [online]. Available from: http://en.
wikipedia.org/wiki/Ambient_occlusion.

[86] Wikipedia. Game controller [online]. Available from: http://en.
wikipedia.org/wiki/Game_controller#Throttle_quadrant.

[87] Wikipedia. High level shader language [online]. Available from: http:
//en.wikipedia.org/wiki/Hlsl.

[88] Wikipedia. List of unreal engine games [online]. Avail-
able from: http://en.wikipedia.org/wiki/List_of_Unreal_Engine_
games#Unreal_Engine_3.

[89] Wikipedia. Parallax mapping [online]. Available from: http://en.
wikipedia.org/wiki/Parallax_mapping.

[90] Wikipedia. Prototype [online]. Available from: http://en.wikipedia.
org/wiki/Prototype.

[91] Wikipedia. Render farm [online]. Available from: http://en.wikipedia.
org/wiki/Render_farm.

[92] Wikipedia. Scrum (development) [online]. Available from: http://en.
wikipedia.org/wiki/Scrum_(development).

[93] Wikipedia. Texniccenter [online]. Available from: http://en.wikipedia.
org/wiki/TeXnicCenter.

[94] Wikipedia. Umbra [online]. Available from: http://en.wikipedia.org/
wiki/Penumbra.

[95] Wikipedia. Wii remote [online]. Available from: http://en.wikipedia.
org/wiki/Wii_Remote.

http://en.wikipedia.org/wiki/Ambient_occlusion
http://en.wikipedia.org/wiki/Ambient_occlusion
http://en.wikipedia.org/wiki/Game_controller#Throttle_quadrant
http://en.wikipedia.org/wiki/Game_controller#Throttle_quadrant
http://en.wikipedia.org/wiki/Hlsl
http://en.wikipedia.org/wiki/Hlsl
http://en.wikipedia.org/wiki/List_of_Unreal_Engine_games#Unreal_Engine_3
http://en.wikipedia.org/wiki/List_of_Unreal_Engine_games#Unreal_Engine_3
http://en.wikipedia.org/wiki/Parallax_mapping
http://en.wikipedia.org/wiki/Parallax_mapping
http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Render_farm
http://en.wikipedia.org/wiki/Render_farm
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/TeXnicCenter
http://en.wikipedia.org/wiki/TeXnicCenter
http://en.wikipedia.org/wiki/Penumbra
http://en.wikipedia.org/wiki/Penumbra
http://en.wikipedia.org/wiki/Wii_Remote
http://en.wikipedia.org/wiki/Wii_Remote

	Title Page
	Problem Description
	I Introduction
	Project Background
	Project Context
	Motivation
	Trends in the Video Game Industry
	Personal Motivation

	Project Goal

	Research
	Research Questions
	Research Methodology
	The Scientific Method
	Literature Review
	Use of Research Methods

	Development
	Development Method
	Tools

	II Prestudy
	Game Engines
	Background
	What is a Game Engine?
	Game Engine Components
	Researched Game Engines

	Unreal Development Kit
	UnrealScript
	Language Terminology
	Language Hierarchy
	Code Examples

	UnrealED
	Kismet
	Archetypes
	Matinee
	Material Editor
	Cascade
	AnimSet Editor
	AnimTree Editor
	Lightmass
	The Navigation Mesh

	SpeedTree
	Description

	Summary

	Game Prototyping
	Prototyping Basics
	Software Prototyping
	The Software Prototyping Cycle
	Software Prototyping Classifications
	Software Prototyping Methods

	Video Game Prototyping
	Aspects of Game Design
	Game Mechanics Prototyping
	Game User Interface Prototyping
	Level Prototyping

	Summary

	III Own Contribution
	Game Prototype Requirements
	Game Mechanics Requirements
	User Interface Requirements
	Level Requirements

	The Prototyping Process
	Prototyping Guidelines
	Detailed Phase Description
	Phase I: Establishing the Core Mechanics
	Phase II: Communicating the Core Mechanics
	Phase III: Polish

	Implementation
	Overview
	Completeness

	Evaluation
	Evaluation Framework
	Unreal Development Kit
	Learning Curve
	Development Speed
	Flexibility
	Stability
	Community Support and Documentation
	Licensing
	Competitiveness

	Prototyping Process
	Research
	RQ1: Game Prototyping Process
	RQ2: Game Prototyping Tool Evaluation
	RQ3: Evaluation of the UDK

	Conclusion and Further Work
	Conclusion
	Further Work

	"Apocalypse" Concept Document
	Requirements Fulfilled
	Bibliography

