
Marius Grannæs

Reducing Memory Latency by
Improving Resource Utilization

Doctoral thesis
for the degree of philosophiae doctor

Trondheim, June 2010

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

NTNU
Norwegian University of Science and Technology

Doctoral thesis
for the degree of philosophiae doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

c© Marius Grannæs

ISBN 978-82-471-2177-1 (printed version)
ISBN 978-82-471-2178-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2010:106

Printed by NTNU-trykk

Typeset with LATEX 2ε in Computer Modern 10pt

Abstract
Integrated circuits have been in constant progression since the first prototype in
1958, with the semiconductor industry maintaining a constant rate of miniaturisa-
tion of transistors and wires. Up until about the year 2002, processor performance
increased by about 55% per year. Since then, limitations on power, ILP and mem-
ory latency have slowed the increase in uniprocessor performance to about 20%
per year. Although the capacity of DRAM increases by about 40% per year, the
latency only decreases by about 6 – 7% per year. This performance gap between
the processor and DRAM leads to a problem known as the memory wall.

This thesis aims to improve system memory latency by leveraging available re-
sources with excess capacity. This has been achieved through multiple techniques,
but mainly by using excess bandwidth and improving scheduling policies.

The first approach presented, destructive read DRAM, changes the underlying
assumptions about the contents of a DRAM cell being unchanged after a read.
The latency of a read is reduced, but the rest of the memory system requires
changes to conserve data.

Prefetching predicts what data is needed in the future and fetches that data into the
cache before it is referenced. This dissertation presents a technique for generating
highly accurate prefetches with good timeliness called Delta Correlating Prediction
Tables (DCPT). DCPT uses a table indexed by the load’s address to store the
delta history of individual loads. Delta correlation is then used to predict future
misses. Delta Correlating Prediction Tables with Partial Matching (DCPT-P) ex-
tends DCPT by introducing L1 hoisting which moves data from the L2 to the L1
to further increase performance. In addition, DCPT-P leverages partial matching
which reduces the spatial resolution of deltas to expose more patterns.

The interaction between the memory controller and the prefetcher is especially im-
portant, because of the complex 3D structure of modern DRAM. Utilizing open
pages can increase the performance of the system significantly. Memory controllers
can increase bandwidth utilization and reduce latency at the same time by schedul-
ing prefetches such that the number of page hits are maximized. The interaction
between the program, prefetcher and the memory controller is explored.

This thesis examines the impact of having a shared memory system in a CMP.
When resources are shared, one core might interfere with another core’s execution
by delaying memory requests or displacing useful data in the cache. This effect
is quantified and which components are most prone to interference between cores
identified. Finally, we present a framework for measuring interference at runtime.

Preface

This doctoral thesis was submitted to the Norwegian University of Science and
Technology (NTNU) in partial fulfillment of the requirements for the degree phil-
osophiae doctor (PhD). The work herein was performed at the Department of Com-
puter and Information Science, NTNU, under the supervision of Professor Lasse
Natvig.

This thesis consists of two parts. The first part consists of introduction, back-
ground, research process, a summary of papers and final conclusions. The second
part is the main contribution, presented as a collection of nine research papers.

Acknowledgements

There are many people to whom I am very grateful for their help and encouragement
while undertaking the work described in this thesis.

First, I would like to thank my advisor Lasse Natvig for his support, guidance
and keeping me on track. He has allowed me to explore this wonderful area of
computer science in the way I wanted. My co-advisors, Professor Mads Nyg̊ard
and Dr. Gaute Myklebust deserves credit for guiding this work, especially in the
early phases. Their insights provided much valuable knowledge for completing this
thesis.

I would especially like to thank my co-authors: Dr. Haakon Dybdahl, Magnus
Jahre and Dr. Per Gunnar Kjeldsberg. Thank you for all the marvellous computer
architecture discussions that have led to such wonderful research ideas. Asbjørn
Djupdal deserves my gratitude as he did a wonderful job proof-reading the final
manuscript for this thesis. I would also like to thank all my coworkers at the Com-
plex Systems Section at NTNU: Morten, Dragana, Gunnar T, Gunnar L, Pauline,
Kostas, Bjørn-Magnus, Frode, Sigve, Christina, Jan-Christian, Thorvald, Magnus,
Nils and Truls.

I would like to thank Professor Per Stenström for letting me visit Chalmers during
the spring of 2007. This visit was very inspiring and very valuable. Thanks to

vi

all the people I met there; Martin, Magnus, Wolfgang and Daniel. Thank you for
taking so good care of me and making my stay so memorable.

I would like to thank the Faculty of Information Technology, Mathematics and
Electrical Engineering and the Department of Computer and Information Science
for funding my research. NOTUR provided computational resources which were
very valuable for making simulating systems easier and less time-consuming. I
would like to thank the HiPEAC European network of excellence. I was fortunate
to attended the ACACES summer school on two separate occasions, both of which
were very interesting.

I would like to thank my family for inspiring me and supporting me through all
these years. Finally, I would like to thank Maria Kristina for her love and support.

Marius Grannæs
June 09, 2010

Contents

Abstract iii

List of Figures xiii

List of Tables xvi

Abbreviations xix

1 Introduction 1
1.1 The Memory Gap . 1
1.2 Analyzing the Memory Hierarchy 2
1.3 Overcoming the Memory Wall 3

1.3.1 Tolerating or Hiding the Memory Gap 3
1.3.2 Increasing Bandwidth Utilization 4
1.3.3 Parallel Throughput-Oriented Architectures 4

1.4 Research Questions . 5
1.5 Thesis Outline . 5

2 Background 7
2.1 Performance and Fairness Metrics 7

2.1.1 Measuring Performance 7
2.1.2 Aggregating Performance Numbers 9
2.1.3 Multiprogrammed Workload Metrics 9

2.2 Main Memory . 10
2.2.1 Memory Cells . 10
2.2.2 DRAM Organization 12
2.2.3 DRAM Scheduling . 14

2.3 Cache . 17
2.3.1 Set-associative caches 17
2.3.2 Cache Misses . 18
2.3.3 Replacement Policies 20
2.3.4 Miss Status Holding Registers 20

2.4 Prefetching . 20
2.4.1 Sequential Prefetching 21
2.4.2 Instruction-Based Prefetchers 23

viii Contents

2.4.3 Address-Based Prefetchers 24
2.4.4 Spatial Locality Prediction 25
2.4.5 Linked Data Prefetchers 26
2.4.6 Adaptive Prefetchers 26
2.4.7 Runahead Execution 27
2.4.8 Software Prefetching 27

3 Research Process and Methodology 29
3.1 Research Process . 29

3.1.1 Master Thesis . 29
3.1.2 Destructive Read DRAM - Paper I & II 30
3.1.3 Shadow Tags - Paper III 30
3.1.4 Changing Simulators 31
3.1.5 Prewriting . 32
3.1.6 Low-Cost Open-Page Prefetch Scheduling - Paper IV . 32
3.1.7 Data Prefetching Championship - Paper V & VII . . . 33
3.1.8 3D Stacking . 34
3.1.9 Memory System Interference - Paper VI & VIII 35
3.1.10 Opportunistic Prefetch Scheduling - Paper IX 36

3.2 Research Methodology . 37
3.2.1 Simulators . 37
3.2.2 Benchmarks . 39

4 Research Contributions 43
4.1 Paper I . 43

4.1.1 Abstract . 43
4.1.2 Retrospective View . 44
4.1.3 Roles of the Authors 44

4.2 Paper II . 45
4.2.1 Abstract . 45
4.2.2 Retrospective View . 45
4.2.3 Roles of the Authors 45

4.3 Paper III . 46
4.3.1 Abstract . 46
4.3.2 Retrospective View . 46
4.3.3 Roles of the Authors 46

4.4 Paper IV . 47
4.4.1 Abstract . 47
4.4.2 Retrospective View . 47
4.4.3 Roles of the Authors 47

4.5 Paper V . 48
4.5.1 Abstract . 48
4.5.2 Retrospective View . 48
4.5.3 Roles of the Authors 49

4.6 Paper VI . 49
4.6.1 Abstract . 49

Contents ix

4.6.2 Retrospective View . 49
4.6.3 Roles of the Authors 49

4.7 Paper VII . 50
4.7.1 Abstract . 50
4.7.2 Roles of the Authors 50

4.8 Paper VIII . 50
4.8.1 Abstract . 50
4.8.2 Roles of the Authors 51

4.9 Paper IX . 51
4.9.1 Abstract . 51
4.9.2 Roles of the Authors 52

5 Concluding Remarks 53
5.1 Conclusion . 53
5.2 Contributions . 54
5.3 Future Work . 55
5.4 Outlook . 56
Bibliography . 57

Papers 71

I Cache Write-Back Schemes for Embedded
Destructive-Read DRAM 73
Abstract . 75
I.1 Introduction . 76
I.2 Embedded Destructive-Read DRAM 77

I.2.1 Embedded Memory . 77
I.2.2 Destructive-Read DRAM 78

I.3 New Write-back Schemes . 79
I.4 Methodology . 82
I.5 Evaluation . 84

I.5.1 Initial experiment . 84
I.5.2 IPC for Different Write-back Schemes 85
I.5.3 Cache size . 87
I.5.4 Latency and number of DRAM banks 88
I.5.5 Write-back Buffer size 88

I.6 Discussion . 90
I.7 Related Work . 91
I.8 Conclusion . 91
Bibliography . 92

II Destructive-Read in Embedded DRAM, Impact on Power
Consumption 95
Abstract . 97
II.1 Introduction . 98
II.2 Embedded Destructive-Read DRAM 99

x Contents

II.2.1 Embedded Memory . 99
II.2.2 Related Work . 99
II.2.3 Destructive-Read DRAM 100
II.2.4 Write-backs . 102

II.3 Model for Power Consumption 102
II.3.1 Power model of DRAM with bus 103

II.4 Simulations . 105
II.5 Results . 106
II.6 Discussion . 110
II.7 Conclusions . 111
Bibliography . 112

III Hardware Prefetching Using Shadow Tagging 115
Abstract . 117
III.1 Introduction . 118

III.1.1 Contributions . 118
III.2 Previous Work . 119

III.2.1 Feedback Directed Prefetching 119
III.2.2 Tuning . 119
III.2.3 Shadow Tag Directories 120

III.3 Methodology . 120
III.3.1 Shadow Tag Controlled Prefetching 120
III.3.2 Prefetch Configuration Selection Heuristic 122
III.3.3 Experimental Setup 123

III.4 Results . 124
III.4.1 Bandwidth Usage . 126
III.4.2 Sensitivity Analysis . 126

III.5 Discussion . 128
III.5.1 Parameter Space Exploration 128
III.5.2 Clearing the Shadow Tags 129

III.6 Conclusion . 129
Bibliography . 129

IV Low-Cost Open-Page Prefetch Scheduling in Chip Multipro-
cessors 133
Abstract . 135
IV.1 Introduction . 136
IV.2 Previous Work . 137

IV.2.1 Prefetching . 137
IV.2.2 Memory Controllers 137

IV.3 Prefetch Scheduling . 138
IV.4 Low cost open page prefetching 139
IV.5 Methodology . 140
IV.6 Results . 142

IV.6.1 Scheduled Region Prefetching 142
IV.6.2 Importance of Coverage 142

Contents xi

IV.6.3 Insertion policy . 143
IV.6.4 Treshold parameter . 143
IV.6.5 Quality of Service . 144

IV.7 Discussion . 145
IV.8 Conclusion . 146
Bibliography . 146

V Storage Efficient Hardware Prefetching using Delta Corre-
lating Prediction Tables 149
Abstract . 151
V.1 Introduction . 152
V.2 Previous Work . 152

V.2.1 Reference Prediction Tables 152
V.2.2 PC/DC Prefetching 153

V.3 Delta Correlating Prediction Tables 154
V.4 Methodology . 155
V.5 Results . 155

V.5.1 DCPT Parameters . 157
V.6 Discussion . 158
V.7 Conclusion . 159
Bibliography . 160

VI A Quantitative Study of Memory System Interference in Chip
Multiprocessor Architectures 163
Abstract . 165
VI.1 Introduction . 166
VI.2 Related Work . 168
VI.3 Methodology . 169

VI.3.1 Chip Multiprocessor Architectures 169
VI.3.2 Measuring and Reporting Interference 169
VI.3.3 Processor Model Scaling 171
VI.3.4 Simulation Methodology 172

VI.4 Results . 174
VI.5 Conclusion and Further Work 179
Bibliography . 180

VII Multi-Level Hardware Prefetching using Low Complexity Delta
Correlating Prediction Tables with Partial Matching 183
Abstract . 185
VII.1 Introduction . 186
VII.2 Previous Work . 186
VII.3 Delta Correlating Prediction Tables 188

VII.3.1 Overview . 188
VII.3.2 DCPT-P Implementation 189
VII.3.3 L1 Hoisting . 192
VII.3.4 Partial Matching . 192

xii Contents

VII.4 Methodology . 194
VII.5 Results . 194

VII.5.1 Area and performance trade-offs 197
VII.6 Discussion . 199
VII.7 Conclusion . 201
Bibliography . 201

VIII DIEF: An Accurate Interference Feedback Mechanism for
Chip Multiprocessor Memory Systems 205
Abstract . 207
VIII.1 Introduction . 208
VIII.2 Background . 209

VIII.2.1Interference Definition and Metrics 209
VIII.2.2Modern Memory Bus Interfaces 210

VIII.3 Shared Memory System Latency Taxonomy 210
VIII.4 The Dynamic Interference Estimation Framework 212

VIII.4.1Estimating Private Memory Bus Latency (L̂mt, L̂mq

and L̂me) . 213
VIII.4.2Estimating Cache Capacity Interference Îcc 217
VIII.4.3Estimating Interconnect Interference (Î ie, Î iq, Î it and

Î id) . 217
VIII.5 Methodology . 218
VIII.6 Results . 218

VIII.6.1Estimation Accuracy 219
VIII.6.2DIEF Parameters . 222

VIII.7 Related Work . 222
VIII.8 Conclusion . 224
Bibliography . 224

IX Exploring the Prefetcher/Memory Controller Design Space:
An Opportunistic Prefetch Scheduling Strategy 227
Abstract . 229
IX.1 Introduction . 230
IX.2 Related Work . 231

IX.2.1 Prefetching . 231
IX.2.2 Memory Controllers 231

IX.3 Prefetch Scheduling Strategies 232
IX.3.1 Opportunistic Prefetch Scheduling 233

IX.4 Methodology . 233
IX.5 Results . 235

IX.5.1 Performance . 235
IX.5.2 Maximum Performance Regression 236
IX.5.3 Accuracy and Coverage 237
IX.5.4 Increasing DRAM Bandwidth 238

IX.6 Discussion . 239
IX.7 Conclusion . 240

Bibliography . 240

List of Figures

1.1 Development of CPU performance versus memory latency 2
1.2 Size of the last level on-die cache as a function of year of intro-

duction for some Intel microprocessors 3

2.1 Schematic diagram of a single DRAM cell. 11
2.2 Schematic diagram of a single CMOS SRAM cell. 12
2.3 Organization of DRAM. 13
2.4 DRAM latency as a function of bandwidth for common consumer-

grade main memory technologies 14
2.5 Example of a memory hierarchy with 2 levels of cache. 17
2.6 Cache access time and energy as a function of size 18
2.7 Organization of a 4K two-way set associative cache with 64B

cache lines. 19
2.8 Conceptual MSHR entry . 20
2.9 Format of a Stride Directed Prefetching entry. 23
2.10 Format of a Reference Prediction Table entry. 23
2.11 Construction of the delta table in PC/DC. 24

I.1 A logical sketch of a DRAM macro. 78
I.2 Conceptual waveform diagrams of conventional DRAM architec-

ture vs. destructive-read . 78
I.3 Conceptual view of DRAM. 79
I.4 Example of execution with the two different write-back schemes 81
I.5 The simulated computer. 82
I.6 Source code for the initial experiment. 84
I.7 Results from the initial experiment. 85
I.8 Performance of baseline configuration for different SPEC2000

benchmarks. 86
I.9 Speedup in terms of increased IPC. 87
I.10 Comparison of the total number of accesses to DRAM from

caches for the two different write-back schemes 88
I.11 Average IPC as a function of latency 89
I.12 Average IPC as a function of the number of DRAM banks and

buffer size . 89
I.13 Cache size saving in % by using destructive-read DRAM 90

xiv List of Figures

II.1 Multiple cores and memory in a single chip. 98
II.2 Inside a DRAM bank. 99
II.3 Conceptual waveform diagrams of conventional DRAM architec-

ture vs. destructive-read . 101
II.4 Conceptual view of DRAM. 101
II.5 IPC for the applications in the SPEC2000 benchmark suite . . . 103
II.6 Data communication when accessing a memory bank. 104
II.7 The simulated single chip computer. 106
II.8 Energy consumption for various applications in the SPEC2000

suite . 107
II.9 Energy consumption for gcc . 108
II.10 Number of DRAM accesses per clock cycle for 16 kbytes cache . 108
II.11 Number of clock cycles and energy consumption for Ammp, Art

and Twolf . 109
II.12 Product of execution time and energy consumption for Ammp,

Art and Tworlf . 110

III.1 The proposed architecture. The L1 cache is connected to both
the L2 cache and the shadow tag directory. The controller evalu-
ates the performance of the two configurations and reconfigures
the prefetchers accordingly. 121

III.2 Performance of dynamic parameter selection on static prefetching.124
III.3 Performance of dynamic parameter selection on C/DC prefetching.125
III.4 Performance of dynamic parameter selection on RPT prefetching.126
III.5 Number of main memory accesses for different combinations of

prefetching heuristics and parameter selection methods. Values
are normalized to no prefetching. 127

III.6 Performance of shadow tag prefetching as a function of param-
eters to the heuristic. 127

III.7 Performance of shadow tag prefetching as a function of the band-
width threshold parameter. 128

IV.1 The 3D structure of modern DRAM. 136
IV.2 Prefetch scheduling policies . 139
IV.3 IPC improvement as a function of accuracy 140
IV.4 Speedup in IPC relative to no prefetching using a FR-FCFS

memory controller. 142
IV.5 Average speedup in IPC relative to no prefetching. 143
IV.6 Effects of insertion policy on average IPC speedup. 144
IV.7 IPC improvement as a function of treshold 144
IV.8 Maximum IPC degradation for any thread as a function of work-

loads. 145

V.1 Format of a Reference Prediction Table entry. 153
V.2 Example of a Global History Buffer. 153
V.3 Format of a Delta Correlating Prediction Table Entry. 154

List of Figures xv

V.4 Speedup compared to no prefetching. 2 MB L2 cache with un-
limited bandwidth. 156

V.5 Speedup compared to no prefetching. 2 MB L2 cache with lim-
ited bandwidth. 156

V.6 Speedup compared to no prefetching. 512KB L2 cache with
limited bandwidth. 156

V.7 Coverage and speedup as a function of the number of bits used
to represent a delta. 158

V.8 Speedup vs. the number of deltas per entry. 159
V.9 Speedup vs table size. 160

VI.1 Performance Impact of Interference in the 4-core, Crossbar-Based
CMP with 4 Memory Channels 167

VI.2 Crossbar-based CMP . 167
VI.3 Ring-based CMP . 168
VI.4 Interference Measurement Workflow 171
VI.5 4-core Fairness Metric Values . 177
VI.6 Interference Impact Breakdown 177
VI.7 4-core CMP Interference Impact (cores-interconnect-channels) . 178
VI.8 16-core Ring Interference Impact 178

VII.1 Format of a single DCPT-P entry. 188
VII.2 Impact of increasing the numbers of bits used to represent a delta.189
VII.3 Position in the circular buffer where a match is found. 190
VII.4 DCPT-P Pipeline . 191
VII.5 Pattern matching implementation. 191
VII.6 Speedup of Sphinx as a function of LSB masked in partial match-

ing. 193
VII.7 2 MB L2 cache. Benchmarks with large speedups. 195
VII.8 2 MB L2 cache. Benchmarks with small speedups. 195
VII.9 512KB L2 cache. Benchmarks with large speedups. 196
VII.10 512KB L2 cache. Benchmarks with small speedups. 196
VII.11 Breakdown of performance contribution of DCPT-P. Benchmarks

with large speedups. 197
VII.12 Breakdown of performance contribution of DCPT-P. Benchmarks

with small speedups. 197
VII.13 Average speedup as a function of the number of deltas in each

entry . 198
VII.14 Average speedup as a function of the number of table entries . . 198
VII.15 Distribution of the number of deltas registered in a table entry

upon replacement. 199

VIII.1 Dynamic Interference Estimation Framework (DIEF) Architecture212
VIII.2 Private Memory Bus Emulation 213
VIII.3 Memory Bus Queue and Transfer Latency Estimation Example . 215
VIII.4 Relative Estimation Errors and Number of Estimates 219

VIII.5 Interference Estimation Error Breakdown 219
VIII.6 ATD Estimation Error . 220
VIII.7 4-core Bus Queue Error . 221
VIII.8 Root Mean Squared Error. 8-core CMP Sample Size Accuracy

Impact . 221
VIII.9 Average Latency Between Estimates. 8-core CMP Sample Size

Accuracy Impact . 222
VIII.10 4-core Page Locality Factor . 223
VIII.11 4-core Bus Buffer Size . 223

IX.1 3D structure of DRAM. 230
IX.2 Average speedup for all cores over all workloads for different

scheduling strategies and prefetchers. 236
IX.3 Lowest speedup for any core in any workload for different sch-

eduling strategies and prefetchers. 236
IX.4 Average accuracy for all workloads. 237
IX.5 Average coverage for all workloads. 237
IX.6 Effect of increasing the amount of bandwidth available on se-

quential prefetching. 238
IX.7 Effect of increasing the amount of bandwidth available on RPT

prefetching. 239

List of Tables

II.1 Random cycle time for various memories [11]. 100

III.1 The simulation parameters used with SimpleScalar. 123

IV.1 Processor Core Parameters . 141
IV.2 Memory System Parameters . 141
IV.3 Multiprogrammed Workloads . 146

V.1 Example delta stream. 154

VI.1 Shared Memory System Latency Breakdown 170
VI.2 Architecture Parameter Scaling 172
VI.3 Cache Parameters (4-core/8-core/16-core) 172
VI.4 Processor Core Parameters . 173
VI.5 Interconnect and DRAM Interface 173

List of Tables xvii

VI.6 Randomly Generated 4-core Multiprogrammed Workloads 174
VI.7 Randomly Generated 8-core Multiprogrammed Workloads 175
VI.8 Randomly Generated 16-core Multiprogrammed Workloads . . . 176

VII.1 Example delta stream. 190

VIII.1 Memory System Latency Taxonomy 211
VIII.2 Status Bits . 214
VIII.3 L̂mt Estimates . 214
VIII.4 CMP Models . 218

IX.1 Example Page Vector Table showing a strided prefetch pattern
for page address 100. 233

IX.2 Processor Core Parameters . 234
IX.3 Memory System Parameters . 234
IX.4 Multiprogrammed Workloads . 235

xviii

Abbreviations

AMPM Access Map Pattern Matching

API Application Programming Interface

AWS Aggregated Weighted Speedup

C/DC CZone/Delta Correlation

CDP Content-Directed Prefetching

CMP Chip Multi-Processor

CPU Central Processing Unit

DCPT Delta Correlating Prediction Tables

DCPT-P Delta Correlating Prediction Tables with Partial Matching

DDR Double Data Rate

DPC Data Prefetching Championship

DRAM Dynamic Random Access Memory

EDP Energy Delay Product

ED2P Energy Delay Squared Product

eDRAM Embedded Dynamic Random Access Memory

FCFS First-Come First-Served

FIFO First In, First Out

FR-FCFS First-Ready First-Come First-Served

GA Genetic Algorithms

GHB Global History Buffer

GHB-LDB Global History Buffer - Local Delta Buffer

HMS Harmonic Mean of Speedups

xx Abbreviations

ICCD International Conference on Computer Design

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

IQ Instruction Queue

ITRS International Technology Roadmap for Semiconductors

JILP Journal of Instruction-Level Parallelism

LRU Least Recently Used

MSHR Miss Status Holding Register

MLP Memory Level Parallelism

NFQ Network Fair Queuing

NUCA Non-Uniform Cache Architecture

OoO Out-of-Order

PC Program Counter

PC/DC Program Counter/Delta Correlation Prefetching

PDFCM Prefetching based on a Differential Finite Context Machine

PVT Page Vector Table

RL Reinforcement Learning

ROB Reorder Buffer

RPT Reference Prediction Tables

SDP Stride Directed Prefetching

SMS Spatial Memory Streaming

SMT Simultaneous Multithreading

SRAM Static Random Access Memory

TCP Tag Correlating Prefetching

TLB Translation Lookaside Buffer

TMS Temporal Memory Streaming

TPS Transactions Per Second

WAM Weighted Arithmetic Mean

WHM Weighted Harmonic Mean

Chapter 1

Introduction

There is an old network saying: Bandwidth problems can be cured with
money. Latency problems are harder because the speed of light is fixed
– you can’t bribe God.
– Anonymous

1.1 The Memory Gap

Each year exponentially more transistors can be put into a single integrated cir-
cuit [57, 99]. Moore’s law is the empirical observation that the number of transistors
that can be placed on an integrated circuit, with respect to minimum component
cost, will double every 24 months. Increased transistor density, in turn, translates
into faster computers for consumers.

Up until about the year 2002, processor performance increased by about 55% per
year [47]. Since then, limitations on power, Instruction Level Parallelism (ILP) and
memory latency have slowed the increase in uniprocessor performance to about 20%
per year. Although the capacity of Dynamic Random Access Memory (DRAM)
increases by about 40% per year, the latency only decreases by about 6-7% per
year [111]. This gap between the processor and DRAM leads to a performance
problem known as the “memory wall” (or “memory gap”) [149]. Figure 1.1 shows
the relative uniprocessor performance versus memory latency.

The most important technique in overcoming the memory wall was the introduc-
tion of caches in the memory hierarchy [47, 128]. Caches were first introduced in
literature in 1968 in a description of the memory system in a IBM Model 85 [137].
Caches are smaller and faster memories which exploits spatial and temporal lo-
cality. Spatial locality is the tendency for programs to access data that is close
in address space, for example instructions. Temporal locality is the tendency for
programs to access the same data repeatedly. Examples include: read-modify-write

2 Chapter 1. Introduction

 1

 10

 100

 1000

 10000

 100000

 1980 1985 1990 1995 2000 2005 2010

P
er

fo
rm

an
ce

Year

CPU performance
Memory performance

Figure 1.1: Development of CPU performance versus memory latency [47].

cycles and single variables in tight loops. These observations can be exploited by
moving recently used data closer to the processor. This makes it faster to access
data on average, which in turn speeds up overall computation. The importance of
this technique is clearly shown in figure 1.2 where the size of the cache is plotted
as a function of the year of introduction for some Intel processors.

1.2 Analyzing the Memory Hierarchy

Equation 1.1 shows a simplified1 analytical model to calculate the overall system
latency given a single level cache memory hierarchy. For a more complete analytical
model see Jacob et al. [63].

Lsystem = Lcache + pmiss · (Lmain memory + Lcongestion) (1.1)

In this equation Lsystem is the overall memory system latency as observed by the
processor. Decreasing Lsystem can thus increase overall system performance. Lcache
is the latency of the cache. pmiss is the probability that the data is not found in the
cache. If the data is not found in the cache, then the data is found in main mem-
ory. The latency of main memory consists of two components: Lmain memory is the
minimum time to transfer data over the memory bus. Additionally, modern proces-
sors (or Chip Multi-Processors (CMPs)) can issue multiple memory requests that
can be serviced concurrently which can cause congestion, which in turn increases
latency (Lcongestion).

1This model assumes no virtual memory and infinite cache bandwidth. In addition, in most
implementations the latency of a cache miss is different from a cache hit.

1.3. Overcoming the Memory Wall 3

 1

 10

 100

 1000

 10000

 1985 1990 1995 2000 2005 2010

C
ac

he
 s

iz
e

(k
B

)

Year

80
48

6D
X

Pe
nt

iu
m

Pe
nt

iu
m

 P
ro

Pe
nt

iu
m

 II
Pe

nt
iu

m
 II

I
Pe

nt
iu

m
 4

Pe
nt

iu
m

 4
E

C
or

e
2

C
or

e
i7

Figure 1.2: Size of the last level on-die cache as a function of year of introduction for
some Intel microprocessors. Note that only one cache size is shown per processor.
In practice Intel varies the amount of cache on a processor as a way to differentiate
products and to enhance yield [147].

1.3 Overcoming the Memory Wall

To increase memory system performance there are three main strategies: Tolerating
or hiding the latency, increasing bandwidth utilization and moving to a parallel
throughput-oriented architecture (CMPs).

1.3.1 Tolerating or Hiding the Memory Gap

Naturally, because of the importance of the memory system in achieving high
performance several techniques have been developed to decrease or tolerate the
memory system latency. Using a memory hierarchy of caches is a technique that
hides the memory latency from the processors viewpoint. Although access to main
memory is slow, in most cases the data that is needed will be in a faster cache.
Prefetching or speculative loads, i.e. moving data from main memory to caches
speculatively, can hide more of main memory latency [47]. Scratchpad memory
makes the programmer explicitly move data from main memory to faster stor-
age [8], which can increase performance. The Cell processor uses such an approach
where each processor core has a relatively small local storage area [72, 79, 148].

Because cache misses will occur, it is important to be able to tolerate these events
and, if possible, continue execution. Out-of-Order (OoO) execution allows the
processor to continue execution of instructions which do not depend on the load [47].
By using caches that can handle multiple concurrent misses (lock-up free) the
processor can then issue multiple loads that might also miss in the caches while
waiting for the original load to complete [116].

4 Chapter 1. Introduction

In most operating systems, the processor will schedule another thread if it is stalled
waiting for a long I/O operation. Simultaneous Multithreading (SMT) takes this
further by allowing multiple threads to execute on the same core [141]. If one core
stalls because of a load, the other threads will be able to continue execution.

The UltraSPARC T1 (“Niagara”) processor uses up to eight cores which can process
four threads simultaneously [77]. This adds up to a total of 32 concurrent threads.
The idea is that by having a large number of concurrently executing threads, stalling
is minimized.

1.3.2 Increasing Bandwidth Utilization

Overall, the amount of off-chip communication is limited by the number of pins
on the chip package [52]. In the short term (2007-2015) International Technology
Roadmap for Semiconductors (ITRS) projects that the number of pins will increase
by only 7% p.a. [57]. Because the number of transistors per chip increases much
faster, this results in that the number of transistors per pin increases exponentially.
This in turn increases the bandwidth requirements per pin.

To meet this demand for increased bandwidth, a variety of techniques have been
employed. DRAM interfaces have moved from asynchronous to synchronous with
fast page buffers. The fast page buffers holds the most recently used data in a
faster access buffer to exploit the same spatial locality as caches. Double Data
Rate (DDR) memory was introduced to further increase effective bandwidth by
transferring data on both edges of the DRAM clock signal. These techniques have
all increased bandwidth by a significant amount, but at the expense of higher
latency [47]. In addition, these advances have increased the complexity of the
DRAM interface, thus increasing the interest in DRAM scheduling policies [119].
In particular, scheduling decisions can effect the utilization of the memory bus by
prioritizing requests that can utilize the fast page buffer (page hits). Furthermore,
by speculatively prefetching data into the cache, a lower latency can be traded for
higher bandwidth usage.

1.3.3 Parallel Throughput-Oriented Architectures

Recently, there has been a shift in the industry from uniprocessors to CMPs. A
CMP is multiple processor cores in a single package [109]. This shift is partially
due to the memory gap, but equally important is the limits on ILP, power dissi-
pation and design complexity. This also marks a shift in programming paradigms.
To achieve maximum performance, a parallel implementation of the application is
required [112]. Additionally, this shifts the focus away from single-threaded perfor-
mance to system throughput. However, due to Amdahl’s law [47], there are limits
to the maximum speedup achievable by having a parallel implementation as some
portions of the code are bound to be sequential. In practice, some applications are
more difficult to parallelize than others. Webservers or search engines are typical

1.4. Research Questions 5

examples of programs that can easily be made parallel as each client can use a
separate thread and there are typically more users than cores available. Other ap-
plications are harder to parallelize, because of dependencies between computations
that forces serialization, such as long pointer-chains. In this context, there are two
optimization goals: reducing the overall memory latency for the serial portion and
increasing memory throughput and decreasing latency in the parallel portion.

1.4 Research Questions

The main research question for this thesis is:

How, and at what cost, can memory system latency be reduced by im-
proving resource utilization?

This question can be subdivided further according to equation 1.1 into the following
subquestions:

1. How can excess memory bandwidth be utilized to achieve a lower maximum
memory latency (Lmain memory) ?

2. How can excess memory bandwidth be utilized to achieve a lower average
memory latency (pmiss) ?

3. How does scheduling decisions in modern highly parallel and complex DRAM
interfaces affect the bandwidth/latency trade-off (pmiss and Lcongestion) ?

4. How does interference in the shared memory system affect Chip Multiproces-
sor performance (Lcongestion) ?

1.5 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 contains background
information regarding measuring performance, DRAM, caches and prefetching.
Chapter 3 describes the research process, introduces each paper, describes the
simulators used and the methodology. Each paper is described in chapter 4 with a
breakdown of the roles of each author and a retrospective view (where applicable).
Chapter 5 concludes the thesis with a summary of contributions, some thoughts
on future work and an outlook. The appendix holds each paper I have authored
or coauthored in chronological order. These papers are reproduced faithfully with
regard to the published text, but has been reformatted to increase readability.

6

Chapter 2

Background

Those who don’t know history are doomed to repeat it.
– Edmund Burke

2.1 Performance and Fairness Metrics

2.1.1 Measuring Performance

Measuring performance is a tricky task even for a single processor system. The
ideal measure of performance is the wall clock time needed to complete a compu-
tation [47, 129]. “Completing a computation” can have different meanings from a
user and a system perspective. A user is often interested in the response time of the
system. That is the time it takes from the user issues a request to the completion
of that request. The system has a different, and perhaps conflicting, view. In the
system view the objective is to maximize the overall throughput. Throughput is a
measure of the amount of computation performed by the system as a whole during
a time interval. These two views can be conflicting, because the system might opt
to delay one task (thus increasing that task’s response time) in order to prioritize
some other task, which would in turn increase throughput.

However, measuring wall clock time is not always practical. This is especially true
when simulating a computer system where running an entire benchmark suite to
completion could take several weeks. Thus, Instructions Per Cycle (IPC) is often
used as a proxy for overall performance. The IPC of a system can often be measured
directly through performance counters, which are present in most modern high-
performance processors [14]. In practice architects often simulate a portion of the
benchmark and measure the IPC during that portion of the benchmark. Another
approach is to reduce the dataset, which in turn reduces simulation time [150].

8 Chapter 2. Background

Such an approach can lead to non-representative performance measurements due
to phase changes in program behaviour. This effect can be mitigated through the
use of Simpoints [113]. Simpoints uses a statistical model to select several represen-
tative points in the program execution and aggregates the results from several such
points. A related approach is used by the SMARTS system [150]. SMARTS uses
random samples and uses statistics to determine when the measurements converge
and thus stop simulating.

IPC can be misleading as an indicator of performance in situations where a program
can commit instructions, but fail to make forward progress. This is especially
true in multi-threaded applications where threads can be waiting in a spinlock.
A spinlock is often implemented as a tight loop which a modern processor can
execute very quickly in terms of IPC. In this case, IPC will be high, but the
actual work that is performed is none. This has lead to the development of more
work-oriented metrics such as Transactions Per Second (TPS), where the number
of useful (database-)transactions per second is measured.

In practice, one is often more interested in the speedup that is achieved by using a
certain technique rather than raw IPC numbers. Speedup is calculated according
to equation 2.1 [47]. In this equation new refers to the enhanced system, while old
refers to a system without the enhancement.

Speedup =
Execution Timeold

Execution Timenew
(2.1)

If the same program with the same dynamic instructions are run and with the
same clock frequency, then equation 2.1 can be rewritten to include IPC as shown
in equation 2.2.

Speedup =
Execution Timeold

Execution Timenew
=

IPCnew

IPCold
(2.2)

In recent years there has been an increased interest in reducing the amount of power
required by the processor. This interest has been sparked by the increasing number
of mobile devices, which are powered by batteries. Therefore, decreasing the power
requirements of the processor increases the life-time of the device considerably. In
addition, as processors dissipate more power, the core temperature increases. To
keep processors stable, significant cooling is required, which adds to the overall
operating cost of the system [9].

It is possible to measure power (P) directly, but this is often not a very useful
metric by itself as it does not give any indication of the computational performance.
A more useful metric is the Energy Delay Product (EDP). This metric has an
equal balance between the energy requirements and the performance of the system.
However, the problem with EDP is that because it favors energy and performance
equally, the metric favors small and slow processors, because power consumption

2.1. Performance and Fairness Metrics 9

increases more than linearly with performance. Thus, the delay is often squared
(ED2P) or cubed (ED3P) thus increasing the emphasis on performance [43].

2.1.2 Aggregating Performance Numbers

To properly characterize an architectural technique it must be simulated on a wide
range of programs in order to ensure that the proposed technique applies to a broad
range of applications, rather than exploiting a feature of a particular program. This
is often achieved through using a benchmark suite which is comprised of several
benchmarks. It is often useful to aggregate the performance results from the entire
benchmark suite into a single number.

The simplest approach is to use Weighted Arithmetic Mean (WAM) as shown in
equation 2.3. In this equation a measurement of program i is denoted by Mi. Each
program is given a weight (ωi) which can be adjusted according to user preference
(program execution time, program importance in day-to-day use, etc.). Typically,
when running experiments with a fixed number of cycles per benchmark WAM can
be used with equal weights to measure average IPC [68].

WAM =
1

n

n∑
i=1

ωi ·Mi (2.3)

Another possibility is to use the Weighted Harmonic Mean (WHM) which is shown
in equation 2.4. This metric is typically useful when aggregating rates [68, 129].

WHM =
n∑n

i=1
ωi

Mi

(2.4)

The third option is the geometric mean shown in equation 2.5. The use of the
geometric mean is discouraged by several researchers [62, 68, 129]. The problem
with the use of the geometric mean is that it is less useful as an predictor of actual
performance [129]. Furthermore, it is harder to visualize than the harmonic and
arithmetic mean, because it uses an n-dimensional space.

G = n

√√√√ n∏
i=1

Mi (2.5)

2.1.3 Multiprogrammed Workload Metrics

In a multiprocessor or Chip Multi-Processor (CMP) it is possible to increase the
performance of one thread at the expense of another. One thread might use a dis-
proportional amount of shared resources, such that a second thread’s performance

10 Chapter 2. Background

suffers. To measure this effect it is convenient to use a fairness metric such as the
one proposed by Gabor et.al. [37, 41], as shown in equation 2.6.

Fairness = min
j,k

(
Speedupj
Speedupk

)
= min

j,k


(

IPCMP
j

IPCAlone
j

)
(

IPCMP
k

IPCAlone
k

)
 (2.6)

In this metric the speedup1 for every core/processor is computed relative to the
performance of that core running alone in the system (i.e. no sharing of resources).
A fairness value of 1 indicates that all cores have equal speedup, while 0 indicates
that at least one core is not making forward progress.

Furthermore, optimizing for this fairness metric alone is meaningless as it is easy
to slow down every thread such that this metric approaches 1. Instead, this metric
must be coupled with a performance metric, such as Aggregated Weighted Speedup
(AWS) or Harmonic Mean of Speedups (HMS) [41, 92, 130]. AWS2 is defined
as [130]:

AWS =

n∑
i=1

Speedupi =

n∑
i=1

IPCMP
i

IPCAlone
i

(2.7)

Where n is the number of processors/cores in the system and the speedup is cal-
culated compared to a baseline where the core does not compete for resources (i.e.
the other cores are idle).

HMS is defined as [92]:

HMS =
n∑n

i=1
1

Speedupi

(2.8)

2.2 Main Memory

2.2.1 Memory Cells

Dynamic Random Access Memory (DRAM) is the most common technology used
to implement main memory. To store a single bit of information, a capacitor and
transistor is used as shown in figure 2.1. Such a DRAM cell works by storing a
charge in the capacitor (CB) [48]. If the storage capacitor (CB) is charged to the
supply voltage (VDD) then the cell stores a 1. To access the data the cell transistor

1In practice, there will be a slowdown, because the performance of running alone in the system
is higher.

2The weight in AWS and HMS is not explicit in these equations. The weight is inversely
proportional to IPC. Lower IPC threads will get a higher speedup compared to high IPC threads
with an equal increase in the number of committed instructions.

2.2. Main Memory 11

DRAM Cell

Row Select Q1

C C LB

To Sense Amplifiers

Figure 2.1: Schematic diagram of a single DRAM cell.

(Q1) must be switched on. Because the sense line is comparatively large it has a
capacitance (CL) significantly larger than CB . Thus the change in voltage in the
sense line is comparatively small according to equation 2.9.

∆v = VDD
CB

CB + CL
(2.9)

This small voltage change is amplified by sense amplifiers at the end of the sense
line. After the data has been read, the sense lines must be returned to their neutral
state such that charge transferred to the sense lines does not interfere with later
reads. This action is normally known as precharging. The capacitor CB will slowly
leak its charge over time due to leakage. In order to preserve data the cell contents
must be read and then rewritten periodically by the system (refresh). This interval
is typically in the order of once per millisecond [48]. The performance impact of
refreshing can be neglible by using techniques to mask this periodic operation [42].

Static Random Access Memory (SRAM), on the other hand, is made entirely in
transistors as shown in figure 2.2. The cell can be in two stable states: Either Q1

and Q4 are active, or Q2 and Q3 are active. In this figure the two transistors QA
control access to the data stored in the cell, in a similar manner as Q1 for DRAM
cells. Because SRAM uses six transistors per bit, while DRAM only requires one
transistor and a capacitor per bit, SRAM requires six to eight times as much area
as DRAM [96]. SRAM has three advantages compared to DRAM: It has lower
latency than DRAM, no need for refresh and can be built in the same logic-process
used by high-performance processors. Thus, SRAM is often used for on-chip caches.

Embedded Dynamic Random Access Memory (eDRAM) offers a compromise. It
uses a similar cell as regular DRAM. However, eDRAM can be integrated with the
processor, because it uses the same logic-based process used in high-performance
processors [61]. The use of a non-optimized process for eDRAM results in increased
area requirements per bit, but the requirement is still much less than for SRAM [96].
This has led some researchers to investigate the possibility for using eDRAM as

12 Chapter 2. Background

Q4

Q2Q1

Q3

VDD

D D

Row Select

Q QA A

Figure 2.2: Schematic diagram of a single CMOS SRAM cell. Note that it is
possible to construct other types of SRAM cells using other technology and number
of transistors.

on-chip caches [139], scratchpad memory [8], or main memory [88].

Recently, 3D stacking has become an option for integrating DRAM on a chip. 3D
stacking is a technique where multiple dies are stacked on top of each other and
inter-die vias connect them [26, 88, 115]. This technique has two major advan-
tages. First, it reduces average wire latency, because the dies are typically very
close. Secondly, because the dies can be produced separately, each die can be
produced in different production technologies, thus enabling mixing high-density
DRAM processes with high performance logic processes [12].

2.2.2 DRAM Organization

In order to store more than a single bit, DRAM cells are organized in a matrix as
shown in figure 2.3. The row address is first decoded into activating a single row in
the matrix (Row Select). This in turn activates all DRAM cells in that row. Each
DRAM cell outputs its content into the corresponding bit lines, which in turn is
amplified by the sense amplifiers. Finally, the column decoder selects the relevant
bits and the data is transferred to the processor.

The matrix organization at the core of DRAM has changed very little over the past
couple of decades. However, there has been a number of significant improvements
in the interface to the matrix. The most significant improvements are fast page
mode, synchronous transfer and Double Data Rate (DDR) transfer [47]. However,
as shown in figure 2.4 these improvements have for the most part improved memory
bandwidth, rather than reduced memory latency [111].

2.2. Main Memory 13

Figure 2.3: Organization of DRAM.

2.2.2.1 Fast Page Mode

Most programs exhibit spatial locality. Spatial locality is the tendency for programs
to access data that are close in address space. To improve performance multiple
columns are read by the sense amplifiers and stored in a row buffer [22]. Accessing
data in this row buffer has a much lower latency as it bypasses the need for the
original data from the DRAM cells. An access to data that is located in this buffer
is often referred to as a page hit. In contemporary DRAM this row buffer is typically
1-8KB large.

The contents of this buffer is controlled by the memory controller. Leaving data
in the buffer blocks the precharging of the bit lines, because the buffer is closely
tied to the sense amplifiers. Thus, the memory controller has to make a trade-off
between leaving the data in the buffer (open page policy) and precharging the bit
lines (closed page policy) [2]. The open page policy lowers latency if there is a page
hit. Conversely, the closed page policy lowers the latency if there is a page miss.
Thus, the best policy depends on the amount of spatial locality in the execution of
the program.

2.2.2.2 Synchronous DRAM

Up until early 1997, all DRAM was asynchronous [98]. In an asynchronous design
there is no central clocking common to both the DRAM and the Central Process-
ing Unit (CPU). Instead, the bus was designed to use timing constraints and/or
timing strobes. In particular, the CPU had to wait for one memory transfer to com-
plete before issuing another memory request. Using a synchronous design (where
the processor and DRAM module use a single master clock) made it possible to
pipeline requests to different DRAM banks. A bank is essentially another DRAM
matrix, which can be independently accessed (though multiple banks may share

14 Chapter 2. Background

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000 10000 100000

La
te

nc
y

(n
s)

Bandwidth (MB/s)

D
R

AM
 (1

98
0)

Pa
ge

 M
od

e
D

R
AM

 (1
98

3)
Fa

st
 P

ag
e

M
od

e
D

R
AM

 (1
98

6)

Fa
st

 P
ag

e
M

od
e

D
R

AM
 (1

99
3)

Sy
nc

hr
on

ou
s

D
R

AM
 (1

99
7)

D
D

R
 S

D
R

AM
 (2

00
0)

D
D

R
2

SD
R

AM
 (2

00
3)

D
D

R
3

SD
R

AM
 (2

00
7)

D
D

R
3-

16
00

 S
D

R
AM

 (2
00

9)

Figure 2.4: DRAM latency as a function of bandwidth for common consumer-grade
main memory technologies [111, 146].

the same memory bus). Additionally, a synchronous design removed the need for
timing strobes, which reduces latency [22]. Overall, this technique reduced latency
dramatically, while increasing throughput at the same time.

2.2.2.3 Double Data Rate

The third major innovation in DRAM technology was the introduction of DDR
DRAM. In DDR DRAM data is transferred on both edges of the clock, thus
effectively doubling the bandwidth to main memory [25, 98].

2.2.3 DRAM Scheduling

DRAM controllers have typically served memory requests in a First-Come First-
Served (FCFS) manner. Because of the increased complexity and parallelism in
modern DRAM it is possible to increase performance or enforce memory fairness
by reordering requests [104, 119]. Memory scheduling is currently a very active
research field. The research focuses mostly on five distinct areas: Exploiting open
pages, prioritizing critical loads, minimizing bank conflicts, increasing fairness and
prefetch scheduling.

2.2.3.1 Increasing Page Hit Rates

Accessing an open page results in a page hit, which has a much lower latency than
a regular operation. Rixner et al. [119] introduced First-Ready First-Come First-
Served (FR-FCFS). In FR-FCFS requests that use an open page are prioritized
over other requests with the following priority rules:

2.2. Main Memory 15

1. Row-hit requests before row-miss requests.

2. Column commands over row commands.

3. Older requests before newer requests.

In burst scheduling multiple read and write requests to the same DRAM page are
issued together to achieve high bus utilization [123]. In addition, burst scheduling
prioritize reads over writes to reduce access latency. Pending writebacks to an open
page are serviced after all reads to this page have been serviced.

However, prioritizing reads over writes is not always beneficial. If writebacks are
not serviced the write queue will become full and block the memory controller,
which cascades through the memory system. To avoid this, it is possible to es-
timate the ratio of reads to writes, such that writes and reads can be prioritized
accordingly [55].

Because of the complexity of DRAM scheduling, some researchers have examined
the possibility of using Reinforcement Learning (RL) [58]. In this approach, the
RL-agent senses the current state of its environment and executes an action. If the
action is beneficial, it receives an reward, which reinforces the possibility of using
the same action given the same state. Overall, the RL-agent tries to maximize
it’s reward over the long term. In DRAM scheduling, a high data bus utilization
represents a reward, while the possible commands and their attributes are the state.

2.2.3.2 Memory Criticality

Another important aspect when scheduling DRAM accesses is that not all memory
requests are equally important to the performance of a program. By predicting
which loads are more important than others it is possible to prioritize these loads
over other requests and thus increase performance. One possibility for predicting
load criticality is to examine the Reorder Buffer (ROB) and Instruction Queue
(IQ) [47] occupancy status [153].

One of the biggest bottlenecks in modern processors is off-chip memory. Because
modern memory interfaces can handle multiple simultaneous memory requests,
it is critical for performance to exploit this property. Memory Level Parallelism
(MLP) refers to the system’s ability to issue multiple overlapping memory requests
simultaneously.

Batch scheduling increases both page hit-rates and MLP by using batches [100].
A batch is formed when the previous batch of requests is completed. All memory
requests in a batch are serviced before any other request. This strategy makes
starvation impossible and increases fairness. In addition, higher priority processes
(either set by the operating system, or by a heuristic) is serviced first. This ensures
that MLP is increased by ensuring that all requests from a given process are serviced
as simultaneously as possible. The priority rules for batch scheduling are:

1. Requests within the current batch before any other requests.

16 Chapter 2. Background

2. Row-hit requests before row-miss requests.

3. Requests from higher-priority threads before requests from lower priority
threads.

4. Oldest request before newer requests.

2.2.3.3 Minimizing Bank Conflicts

Bank conflicts are one of the main reasons for reduced memory bus utilization in
modern, high-bandwidth memory interfaces. Therefore, a number of researchers
have looked into how these conflicts can be reduced by changing the way memory
addresses map on to banks. For instance, bit-reversal mapping results in a high
probability of placing two adjacent rows in different DRAM banks [124]. Conse-
quently, high row buffer hit rates are achieved at the same time as the probability
of bank conflict is reduced.

2.2.3.4 Fairness

In CMPs, the memory bus is shared between all processing cores. This can cause
unfairness as one high locality thread can effectively starve other threads, or get an
unfair portion of off-chip bandwidth. A number of researchers have looked into how
the off-chip interconnect can be shared in a fair way [60, 101, 108, 117]. In general,
these techniques divide bandwidth among threads according to their priorities at
the same time as requests are scheduled in a way that improves DRAM throughput.

2.2.3.5 Prefetch Prioritization

Prefetching (section 2.4) consumes bandwidth. Prioritizing prefetches and demand
requests equally can thus delay a useful demand request and cause memory bus
congestion [85, 107]. However, prioritizing demand requests over prefetches dimin-
ishes the usefulness of prefetching, because the prefetches are issued too late or not
at all.

One approach to this problem is to use a dedicated prefetch queue which holds
prefetches that are ready to be issued [85]. Then, the memory controller can
adaptively chose to issue these prefetches depending on the estimated accuracy
of the prefetches. Thus, in a scarce bandwidth situation with an estimated low
accuracy, the memory controller can simply ignore the prefetch requests. In a high
accuracy situation, it can chose to prioritize reads and prefetches equally which in
turn can result in higher page-hit ratios.

2.3. Cache 17

2.3 Cache

Caches are the most important technique in bridging the processor - memory gap.
Conceptually, caches duplicate data from main memory into smaller and faster
storage [128]. Because of spatial and temporal locality, the data needed by the
processor is often found in caches [47]. Typically, caches form a part of a larger
memory hierarchy as shown in figure 2.5. In this figure there are two levels of cache
between main memory and the CPU.

CPU L1//oo L2//oo Main memory//oo

Figure 2.5: Example of a memory hierarchy with 2 levels of cache.

The fastest type of storage is the registers within the CPU itself. Next, the L1
cache is typically 32 – 64Kb large and has a latency of 2-3 clock cycles. The L2
cache is typically 512 KB – 16 MB large and has a latency of about 20 clock cycles.
Equation 2.3 shows the overall system latency for this organization3.

Lsystem = LL1 + pL1 miss · (LL2 + pL2 miss · LMain Memory) (2.10)

Because of spatial and temporal locality, the probability of not finding the required
data in the first level of cache is quite low (pL1 miss), even though it is quite small
compared to main memory. This decreases the second term in the equation leading
the average overall memory latency (LSystem) to be low. Increasing the size of the
cache also increases the probability of a cache hit. However, increasing the size also
increases it’s latency as shown in figure 2.6. Furthermore, increasing the size also
increases the energy requirements significantly.

2.3.1 Set-associative caches

There are several ways to build a cache in hardware. Because caches can only hold
a small portion of main memory at any point, some way to map main memory to
cache is needed. To exploit spatial locality a cache usually stores data in chunks
called cache blocks (lines), which are typically larger than the wordsize of the
machine.

3This model, like the model in equation 1.1 assumes no virtual memory and infinite cache
bandwidth. In addition, in most implementations the latency of a cache miss is different from a
cache hit.

18 Chapter 2. Background

 1

 1.5

 2

 2.5

 3

 3.5

 4

216 217 218 219 220 221 222 223
 0

 1

 2

 3

A
cc

es
s

T
im

e
(n

s)

D
yn

am
ic

 R
ea

d
E

ne
rg

y
(n

J)

Cache Size

Access Time
Read Energy

Figure 2.6: Cache access time and energy as a function of size. CACTI [127] was
used to model this 4-way associative cache with 64B cache lines.

A cache can be organized in several ways:

• Direct mapped - A cache block can only be placed in one position based on
its address.

• Fully associative - A cache block can be placed anywhere in the cache.

• Set associative - A cache line can be placed in exactly one set. Each set can
hold n cache blocks. If there are n cache blocks per set, the cache is called
n-way set associative.

In essence, a direct mapped cache can be viewed as a 1-way set-associative cache.
Similarly, a fully associative cache can be viewed as a set associative cache with
only one set.

Figure 2.7 shows how cache lookup is performed in a set-associative cache. The
address is split into three parts: the tag, the index and the offset. The index is
used to index two SRAM arrays, the tag array and the data array. Since this is a
two-way set associative cache, each index holds two tags. The tags from this array
is compared to the tag portion of the address. If either tag matches, the data is in
the cache (cache hit). The corresponding data line is then brought out of the data
array by using a multiplexer. Since the cache lines are typically longer than the
size of a word, the offset is used to further select what data from the cacheline to
forward.

2.3.2 Cache Misses

There are three main reasons why data is not found in the cache. These are:

Definition 1 (Compulsory [47]):
The very first access to a block cannot be in the cache, so the block must be brought

2.3. Cache 19

Figure 2.7: Organization of a 4K two-way set associative cache with 64B cache
lines.

into the cache. These are also called cold-start misses or first-reference misses.

Definition 2 (Capacity [47]):
If the cache cannot contain all the blocks needed during the execution of a program,
capacity misses (in addition to compulsory misses) will occur because of blocks being
discarded and later retrieved.

Definition 3 (Conflict [47]):
If the block placement strategy is set associative or direct mapped, conflict misses
(in addition to compulsory and capacity misses) will occur because a block may be
discarded and later retrieved if too many blocks map to its set. These misses are
also called collision misses or interference misses.

In a multiprocessor where data is shared between processors or cores, there is a
fourth type of cache miss called coherence miss. A coherence miss occurs due to
cache flushes to keep multiple caches coherent in a multiprocessor [31, 47, 140]. As
an example, consider a two core CMP with separate private caches: Both cores
reads the value of variable X from main memory. The value of X is then stored in
both private caches. Core 1 then proceeds to modify X and stores the value. Now
the value of X in main memory and core 2’s cache differs from the value in core 1’s

20 Chapter 2. Background

Block Address Target Information Valid Bit

Figure 2.8: Conceptual MSHR entry

cache. These values are said to be invalid. An access by core 2 to X would then
cause a coherence miss.

2.3.3 Replacement Policies

After a cache miss new data is inserted into the cache. However, because of the
cache’s limited capacity other data must be removed from the cache. There are
several possible replacement policies such as: Least Recently Used (LRU), First In,
First Out (FIFO) and random [128]. The most common replacement policy for
general purpose processors is LRU, where the least recently accessed cache block
is removed.

With the increased interest in CMPs and Non-Uniform Cache Architecture (NUCA)
there has been revived interest in cache replacement policies. Most cache misses are
not performance-critical. In many cases, execution can continue regardless whether
the load is a cache hit or miss. By reducing the number of isolated performance-
critical cache misses, it is possible to increase the amount of MLP and perfor-
mance [116]. When a cache block is evicted in NUCA, it can be moved to another
cache. In that case, a policy for selecting a new cache is needed [32, 34].

2.3.4 Miss Status Holding Registers

Processors which can execute instructions Out-of-Order (OoO) has the potential
to issue multiple independent loads. To support this capability, caches need to be
able to service more than a single access at a time. In particular, it must be able to
handle multiple misses. To achieve this, it must keep an account of which misses
are being serviced further down the memory hierarchy [80].

Miss Status Holding Registers (MSHRs) can be used for this purpose. A conceptual
MSHR is shown in figure 2.8. A cache can sustain as many misses as there are
MSHRs without blocking. Each MSHR holds the address that is being serviced
and the target information for that miss. The target information is mainly what
instruction caused the miss, and thus which instruction is waiting for the data and
the destination register.

2.4 Prefetching

Prefetching is a technique to reduce the number of misses in a cache through
predicting future memory references and fetching the corresponding data before it

2.4. Prefetching 21

is referenced by the CPU. It is especially effective for reducing compulsory misses,
as caches only retain previously referenced data. This can potentially speed up
execution significantly as pmiss decreases and Lsystem decreases. However, because
prefetching is a speculative technique some prefetched data will not be used, which
causes cache pollution and increased bandwidth usage. A good prefetch is defined
as:

Definition 4 (Good prefetch [136]):
A prefetch is classified as good if the prefetched block is referenced by the application
before it is replaced or bad otherwise.

A useful metric for dealing with prefetching is accuracy. Accuracy is a metric for
how often the prefetcher’s prediction is correct:

Definition 5 (Accuracy [136]):
The accuracy of a given prefetch algorithm that yields G good prefetches and B bad
prefetches is calculated as:

Accuracy =
G

G+B
(2.11)

It is not enough for a prefetcher to be accurate if the prefetches are issued too late.
A prefetch must be issued sufficiently in advance so that it can be inserted into the
cache before it is referenced. This property is known as timeliness.

However, high accuracy and timeliness is not enough to ensure high performance.
A significant portion of the program’s original cache misses must be eliminated to
increase performance. This is covered in the coverage metric:

Definition 6 (Coverage [136]):
If a conventional cache has M misses without using any prefetch algorithm, the
coverage of a given prefetch algorithm that yields G good prefetches and B bad
prefetches is calculated as:

Coverage =
G

M
(2.12)

2.4.1 Sequential Prefetching

The simplest prefetching scheme is sequential prefetching [128]. Sequential pre-
fetching simply fetches the next cache block when a cache block is accessed. Al-
though this policy is simple, it is very effective because of sequential locality. Be-
cause processors are much faster than main memory it is in practice necessary to
fetch blocks further away than the next block such that the data is ready when the
processor needs it. This is known as the prefetch distance:

Definition 7 (Prefetch distance [143]):
If a loop contains small computational bodies, it may be necessary to initiate pre-

22 Chapter 2. Background

fetches δ iterations before the data is referenced where δ is known as the prefetch
distance and is expressed in units of loop iterations:

δ =

⌈
l

s

⌉
(2.13)

l is the average cache miss latency, measured in processor cycles and s is the esti-
mated cycle time of the shortest possible execution path through one loop iteration.

Additionally, it might be beneficial to fetch multiple blocks at the same time. This
parameter is the prefetch degree:

Definition 8 (Prefetch degree [143]):
It is possible to increase the number of blocks prefetched by any arbitrary number
K. This number is known as the prefetching degree. As an example; a prefetching
degree of 1 fetches 1 block from memory, while a prefetching degree of 3 fetches 3
blocks from memory.

These two parameters are often collectively referred to as the prefetcher’s aggres-
siveness. Increasing coverage usually comes at the expense of accuracy. A good
prefetching scheme must thus balance the aggressiveness of the prefetcher to ensure
a good trade-off between accuracy and coverage within the system’s limited off-chip
bandwidth and cache capacity.

Tagged prefetching is a simple improvement over sequential prefetching [142]. In
this scheme prefetched data is marked with a single bit in the cache. When this
block is accessed the prefetcher knows that the previous prefetch for this data was
successful and can initiate a request for the next line. This information can also
be used to estimate prefetcher accuracy [135].

In most implementations, the prefetched data is inserted directly into the cache,
which can cause useful data to be evicted. Another option is to use dedicated
structures to hold the prefetched data such as stream buffers [71, 110]. A stream
buffer is a structure that holds prefetched data which can be tailored to the type
of prefetcher used. It is typically accessed in parallel with the main cache.

Another possibility is to predict which blocks in the cache is not needed any-
more [82]. This information can be used to initiate prefetching for a new block
to replace the old block, or it can be used to decide which block to replace when
inserting new prefetches.

Additionally, in a CMP or multiprocessor system prefetching might cause invalida-
tion of cache blocks in other cores [66]. For example, core 1 might hold an exclusive
copy of a variable X, when core 2 decides to prefetch that block into it’s own cache.
This forces core 1 to downgrade it’s copy of X to a shared state. However, if core 1
modifies X later, core 2’s copy must be invalidated which can decrease performance.
A possible solution is to use instruction based sharing prediction to guide when to
prefetch shared data, or simply avoid prefetching shared data [75].

2.4. Prefetching 23

2.4.2 Instruction-Based Prefetchers

When the processor’s referencing pattern strides through nonconsecutive mem-
ory blocks, sequential prefetching will cause needless prefetches and will thus be-
come ineffective [142]. An initial approach to this was Stride Directed Prefetching
(SDP) [40]. SDP has a table indexed by the load address as shown in figure 2.9.
When a load instruction is first encountered, its Program Counter (PC) and the
data address is stored in the table and the valid bit is set. The second time the in-
struction is encountered the stride (delta) between the current data address and the
stored value is computed. Finally, the current address plus the stride is prefetched.

PC Address Last Address Valid Bit

Figure 2.9: Format of a Stride Directed Prefetching entry.

An improvement over SDP is Reference Prediction Tables (RPT) [18, 23]. RPT
extends SDP by adding state information as shown in figure 2.10. Several variants
to the basic state machine has been proposed [23]. The basic principle is to use an
initial state when a load is first encountered. On the next miss, the stride between
the first miss address and the current is computed and stored in the table, and the
entry enters the training state. On the third miss, a new delta is computed. If that
delta matches the one found in the table, the entry enters the prefetching state and
prefetches are issued by using the computed delta.

PC Address Last Address Stride State

Figure 2.10: Format of a Reference Prediction Table entry.

A further enhancement is the use of a Global History Buffer (GHB) [106]. A GHB
is essentially a FIFO containing the last misses observed by the memory system
as shown in figure 2.11. Each entry in the GHB is linked to the previous entry
which originated from the same load instruction by a pointer. By traversing the
linked list a miss history can be obtained for that load. In Program Counter/Delta
Correlation Prefetching (PC/DC) [106], the deltas between consecutive misses are
computed and stored in a delta table as shown in figure 2.11.

After the history of deltas are computed, delta correlation begins. Delta correlation
means searching for the most recent pair of deltas (9 and 1 in figure 2.11) in the
delta history. In this example, the pair can also be found at the end of the delta
history (top of the delta table). The deltas after the pair are then added to the
current miss address, and prefetches are issued for the calculated addresses.

Further refinements have been proposed, such as Global History Buffer - Local Delta
Buffer (GHB-LDB), which improves upon the GHB prefetcher by also including
global correlation (as opposed to the local correlation directed by the PC of the
load) [30]. By doing global analysis, inter-load patterns can be seen, such as con-
stant global stride. In addition, GHB-LDB includes pattern matching for the most
common stride.

24 Chapter 2. Background

Index Table

Global History
 Table

10

11

20

21

30

FIFO

100

PC Ptr

PtrAddress

Delta

Delta Table

9

1

9

1

Figure 2.11: Construction of the delta table in PC/DC.

A third variant is Prefetching based on a Differential Finite Context Machine
(PDFCM), which uses a hash-based approach with two tables [118]. The His-
tory Table is indexed by the PC which contains a hashed representation of the
recent history of that entry. This hash points to an entry in the Delta Table which
contains the predicted delta. By computing new hashes based on the predicted
deltas, an arbitrary prefetch degree and distance can be calculated.

2.4.3 Address-Based Prefetchers

Instruction-based prefetchers have been shown to be very effective [114]. The prob-
lem with instruction-based prefetchers is that they require the load address, which
either requires that the load-address is transmitted along with the memory request
or coupling the prefetcher with the processor core. A third option is to not use this
information at all and only use the miss address.

Markov Prefetchers uses a 1-history Markov model in order to predict future ref-
erences [70]. Such a model uses a graph where each node represents a cache block.
Each transition from node X to node Y is assigned a weight representing the frac-
tion of references to X that are followed by a reference to Y. When X is accessed,
then the outgoing edges from X is examined. The weighting on the edges can be
used to reject or accept prefetching to the node which the edge points to. However,
keeping an entire Markov model in memory would require O(n2) amount of storage
as each cache block can theoretically be preceded by every other. Thus, a practical
implementation must limit the number of nodes and edges per node 4 [70].

Hu et al. observed that the misses that occurred within a cache set had highly
repetitive patterns when looking at the tag portion of the miss addresses [49]. The

4The original paper used 4 edges per node.

2.4. Prefetching 25

per-set tag sequence for one set would often repeat on other cache sets. This
observation is used in Tag Correlating Prefetching (TCP) to reduce the size of
tables, because a single tag sequence covers multiple address sequences (one for
each set in the cache).

A very common pattern in media applications (video and audio) is sequential data
being used for computation and not used again. This type of access pattern is
often called streaming. The basic stream prefetcher [71] starts prefetching when it
detects such streams by detecting sequential miss addresses. The stream prefetcher
will then prefetch the next sequential addresses into a stream buffer. This basic
operation can be extended by using any of the techniques discussed above, such as
stride detection and Markov prediction [125].

2.4.4 Spatial Locality Prediction

Another approach is to detect when there is a high level of spatial locality in the
program [69]. When the program has high spatial locality it is potentially beneficial
to fetch more than a single cache line into the cache. One approach for detecting
high spatial locality is to have a separate tag-array that mimics a cache with larger
cache blocks. If there are more than a set threshold of hits to the same larger
virtual cache block, then there is a high probability of high spatial locality and a
larger block of data can be prefetched into the actual cache [69]. Rather than using
a separate tag-array, it is possible to use a smaller table of bitvector or offsets to
represent the same information [17, 78]. By indexing these patterns with the PC
of the load, it is possible to use this bitvector when that load misses and prefetch
according to the bitvector.

Taking these ideas further, Spatial Memory Streaming (SMS) uses code correlation
across loads [131]. In this approach, an initial trigger access to a spatial region
starts recording subsequent accesses to the same spatial region. The blocks that
are touched are stored in a bitvector representing the spatial region. The recording
stops when the first cache block from the spatial region is evicted from the primary
cache. This pattern can then be used to prefetch large spatial blocks. The memory
requirements of SMS can be quite large, but it is possible to compress the size of
the tables by using rotated patterns [39].

Streams of memory also exhibit temporal locality (i.e. the exact same sequence
of addresses are observed in succession) [132]. This observation is exploited in
Temporal Memory Streaming (TMS) by storing the observed miss address stream
in a circular buffer and using it to detect repeating patterns [132]. This approach
is especially useful for programs using shared memory.

Access Map Pattern Matching (AMPM) uses another approach where the patterns
are stored in bitvectors [59]. The key observation is that modern compilers can
obfuscate memory access orderings, especially when loop unrolling is performed.
Consequently, more patterns can be discovered by ignoring temporal information.
Each spatial region is tracked by using a 2-bit vector for each cache line in that

26 Chapter 2. Background

region. This vector is analyzed to see if there are any constant stride patterns in
that vector. If there are any patterns, the predicted pattern is prefetched.

2.4.5 Linked Data Prefetchers

Linked data structures pose special problems for prefetchers as the address of the
next cache block to be referenced is often embedded in the data currently being
fetched. One approach, called Content-Directed Prefetching (CDP), is to monitor
the incoming data for possible pointers [21]. CDP uses a virtual address matching
predictor, which examines each word in the cache block separately. Most virtual
addresses share the same common high-order bits. If a value in the incoming cache
block has the same high-order bits as the address of the block, then the value is
predicted to be a pointer. However, this approach can lead to many false positives
(values which are identified as pointers, but are not), and it has a potential for
creating an exponential amount of prefetches as each prefetched block can contain
multiple new pointers (for example in trees) [35]. A possible solution to this problem
is to use compiler-generated hints which indicate which positions in the incoming
cache blocks are possible pointers [35].

However, because the prefetcher must follow the same linked list as the main pro-
gram it is difficult to achieve good timeliness. One possibility is to embed jump-
pointers into the data structure [73, 121]. These pointers point to an entry further
down the linked list, such that this entry might be prefetched. However, maintain-
ing these jump-pointers can be difficult when data is inserted and removed.

A less invasive possibility is to use pointer caches [20, 83]. A pointer cache holds
mappings between heap pointers and the address of the heap object they point to.
If there is a hit in the pointer cache and a miss in the regular data cache, the entire
object can be fetched at the same time. Furthermore, this technique can be used
for value prediction, which in combination with runahead execution [102] can be
very effective at increasing MLP [20, 103].

2.4.6 Adaptive Prefetchers

Most prefetchers have a static configuration with regard to prefetch distance and
degree as well as other prefetcher-specific parameters. To provide the best average
performance across a multitude of benchmarks a moderately aggressive prefetch-
ing configuration would be used. This leads to performance degradation on some
programs, as the prefetching is too aggressive, leading to memory bus congestion
and cache pollution. On other programs, the full potential of prefetching can not
be achieved because the aggressiveness is too low. Consequently, adapting the
prefetching parameters to the running program by analyzing its behaviour can be
beneficial.

By using the prefetch tags the accuracy of the prefetcher can be estimated. This

2.4. Prefetching 27

is done by measuring how many times a cache block with the prefetch bit set is
accessed relatively to the total number of prefetches issued. [24, 135]. If the pre-
fetcher’s accuracy is estimated to be high, then the aggressiveness of the prefetcher
can be increased. Similarly, the timeliness of the prefetcher can be estimated by
tracking which prefetches have been issued, but have not been completed before a
demand miss occurs. If the timeliness of the prefetcher is determined to be low,
then the prefetch distance can be increased [135].

An alternative approach is to track program phases [107]. If a program phase
change occurs, a search for a better prefetcher configuration is initiated. This
search continues until a good configuration is found [7, 126]. Multiple techniques
for detecting phase changes exists, such as examining instruction working sets,
basic block vectors5 and conditional branch counts [28, 29].

One problem with stream prefetchers is that the length of the stream is unknown.
Overestimating the stream length leads to useless prefetches, while underestimating
it lowers performance. The length of a stream can be predicted by using a histogram
of previous stream lengths [53, 54].

2.4.7 Runahead Execution

OoO execution can only hide a certain amount of latency before the instruction
window of the processor becomes full and the processor must stall. Runahead Exe-
cution allows the processor to continue execution speculatively while the processor
waits for a long latency load [102, 103]. To enable a processor to run speculatively
it must have capabilities for checkpointing its state such that when the processor
unblocks from the memory stall it can restore its non-speculative state. While the
processor runs in this speculative mode it encounters loads further down in the
program, which can then be issued speculatively as prefetches. This increases the
probability of the loads that were encountered during runahead mode will be in
the cache when the processor resumes normal execution.

2.4.8 Software Prefetching

Prefetching can be accomplished in software by extending the instruction set with
appropriate opcodes [16]. These instructions fetch data into the cache, but do not
block execution of the program on a cache miss. Most modern high-performance
processors incorporate such instructions [74]. These instructions can either be
inserted manually by the programmer [122] or by the compiler [19]. This type of
prefetching can be especially useful in programs where the programmer has essential
information regarding the underlying data structure. Using this knowledge she can
provide hints to the compiler or insert prefetch instructions directly [90].

5Basic block vectors is a method for characterizing the currently executing program using
performance counters etc.

28

Chapter 3

Research Process and
Methodology

Science is a way of trying not to fool yourself. The first principle is
that you must not fool yourself, and you are the easiest person to fool.
– Richard Feynman

3.1 Research Process

3.1.1 Master Thesis

This thesis is a continuation of my master thesis entitled “Bandwidth-Aware Pre-
fetching in Chip Multiprocessors” [44]. Because prefetching can potentially consume
large amounts of bandwidth, this work examined how prefetching impacts systems
with limited bandwidth. Furthermore, I proposed a strategy for estimating future
bandwidth usage and used this information to guide how prefetches were scheduled.

I implemented a general framework for prefetching in SimpleScalar [5] and several
prefetching heuristics (sequential [128], RPT [18] and CZone/Delta Correlation
(C/DC) [106]). SimpleScalar has a very simple DRAM model, which does not
model bandwidth contention at all. Instead, it only provides a fixed latency re-
gardless of the number of concurrent DRAM accesses. I extended this simple model
with a more accurate and realistic DRAM model. Most importantly, this model
supported contention and open pages. Because of sequential locality, the probabil-
ity of hitting an open page when prefetching is high, which reduces the latency of
prefetching.

Furthermore, I extended SimpleScalar such that it was capable of simulating a

30 Chapter 3. Research Process and Methodology

CMP. This was accomplished by using several SimpleScalar instances which com-
municated through shared memory.

3.1.2 Destructive Read DRAM - Paper I & II

Our two first papers were inspired by a paper by Hwang et al. [56]. This paper
described a destructive read DRAM macro, which had lower latency than a regular
DRAM macro. However, when data was read out of the cell, the contents were
destroyed.

In order to preserve data, some other mechanism is needed. Hwang et al. used
a large (25% of the size of main memory) writeback buffer. Because there were 4
main memory banks in their design, this size ensured that the system would never
need to issue both a writeback and a read to the same main memory bank at the
same time.

Haakon Dybdahl was a senior PhD student at the time. He became interested in
this technique and we started to discuss ways to improve upon it. Our idea was
to use the cache as the writeback buffer. By using an existing structure, we would
eliminate much of the area overhead. However, this would also introduce some
contention in the main memory interconnect.

Haakon integrated parts of the memory model I developed for my master thesis
into his model of destructive read DRAM and we started discussing methodology.
Haakon conducted several experiments and wrote the first draft of the paper, which
I commented on and improved.

After writing Paper I it became obvious that a power estimate would be valuable.
Haakon integrated Wattch [13] and HotLeakage [152] into our simulator. However,
we did not know how to estimate the power requirements of our technique and
asked Per Gunnar Kjeldsberg for assistance. He helped us develop a power model
for accessing the destructive read DRAM and interpret the results. This work
resulted in Paper II.

3.1.3 Shadow Tags - Paper III

After completing the destructive read DRAM project, Haakon started to examine
cache replacement policies in CMPs. He developed a cache replacement policy
which worked better than LRU in some cases, while degrading performance in
others [33]. In order to detect at runtime when to use his replacement policy and
when to use LRU Haakon used a shadow tag directory1.

A shadow tag directory is similar to a regular cache tag directory. However, there
is no corresponding data for that tag directory. The purpose of this tag directory

1Interestingly, Qureshi et al. developed the same approach to increase MLP at the same
time [116].

3.1. Research Process 31

is to simulate a cache with a different replacement policy. The L2 access stream
would be inserted both into the shadow tag directory and the regular cache. The
number of cache hits and misses are recorded for both the regular tag directory
and the shadow tag directory. The regular cache would use one replacement policy
and the shadow tag directory would use the other. After a set interval of cache
misses, the number of cache misses in the two tag directories are examined. If there
are less misses in the shadow tag directory, the policies are swapped, such that the
replacement policy that was used on the shadow tags is now used on the regular
cache and vice versa.

Shadow tags was interesting, because it offered a more robust method for evaluating
prefetcher configurations with regard to accuracy and bandwidth utilization than
the methods used in my master thesis. The idea was to use a shadow tag directory
to evaluate a particular prefetch configuration and use that configuration if it proved
to be better than the current one. In particular, this allowed the prefetcher to be
turned off if that was the most effective solution.

There were two main obstacles: The first is that there is a very large configuration
space for the prefetchers. In order to find a good prefetch configuration, a good
candidate prefetch configuration had to be chosen. The initial approach used hill-
climbing, but that approach was slow to converge. The final paper used a random
configuration.

The second problem was evaluating which configuration was the better of the two
configurations being explored. Naively selecting the configuration with the fewest
misses leads to selecting the most aggressive prefetch configuration as there is no
penalty for issuing DRAM requests. To solve this problem I was inspired by Genetic
Algorithms (GA) to use fitness functions to evaluate configurations. This fitness
function balanced the reduction in misses to the increase in bandwidth usage. This
approach was published in Paper III.

Finally, Sigmund Vinsnesbakk took this idea further by implementing shadow tag
prefetching in CMPs by using M5 [10] for his master thesis [145].

3.1.4 Changing Simulators

After working with SimpleScalar for several years, the limitations of that simulator
became apparent. In particular, the support for CMPs and the comparatively
simple model of the memory hierarchy (no limitations on bandwidth, no MSHRs)
became an issue. The biggest issue was that rather than being event-driven the
memory hierarchy model was just one function call to compute the latency of a
memory request. This meant that it was very difficult to model reordering of
memory requests efficiently, which is critical to performance of modern DRAM
controllers.

In parallel with my work on Paper III, Arnt Jørgen Lande did an evaluation of sev-
eral simulators for his master thesis [84]. His initial evaluation included Rsim [51],

32 Chapter 3. Research Process and Methodology

Asim [36], SimOS [120], Simics [93], TFSim [97], SimFlex [46], GEMS [95] and
M5 [10]. Based on his initial evaluation he made a more thorough evaluation on
M5 to examine its suitability for our research group’s needs. After this evaluation,
the group decided to switch to the M5 simulator as it offered CMP support and an
event-driven memory hierarchy model.

3.1.5 Prewriting

Although M5 provided many of the features we required for our research, the
DRAM model was quite poor. Although bandwidth congestion was modeled,
DRAM behaviour such as page-hits, banks and minimum precharge-to-activate
latency was not modelled. Additionally, each memory access was scheduled in ar-
rival order, which is a very simple scheduling policy and does not exploit open
pages.

Magnus Jahre and I started to implement a DRAM model by examining the DDR2
specification [65]. This implementation used explicit activation, reads, writes and
precharge commands. It supported limitations on the number of banks that could
be activated, open pages, minimum activate-to-precharge latencies, pipelining of
memory request and many other improvements. Secondly, we implemented a
flexible memory controller, which could use FR-FCFS [119] and Network Fair
Queuing (NFQ) [108] scheduling in addition to FCFS scheduling.

While implementing the memory controllers for M5 we noticed that scheduling
writebacks was an interesting problem. As noted in section 2.2.3.1 prioritizing
demand reads over writebacks pays off as the processor is stalled for a shorter
period of time. However, this strategy breaks down if the writeback queue becomes
full and the memory controller has to block [123].

We started examining this problem and came up with an idea to speculatively write
back dirty cache lines before they were evicted (“prewriting”) if there was sufficient
bandwidth to do so. However, in practice, this was not a significant problem for
the SPEC2000 benchmark suite as the writeback buffer was big enough to keep
the controller from blocking. Finally, Lee et al. had published a study on eager
writeback, which used a similar approach [86]. They showed that eager writeback
could speed up applications with large numbers of writebacks such as software 3D
rendering. This previous study and the lack of good results led to the project’s
abandonment.

3.1.6 Low-Cost Open-Page Prefetch Scheduling - Paper IV

While working with memory scheduling it became apparent that exploiting page
hits was critical for reducing latency and bandwidth congestion. Since prefetchers
often prefetch data which are spatially close, this would often lead to page hits.
Thus prefetching while a page was open could both decrease latency and increase

3.1. Research Process 33

effective bandwidth. Because a prefetch that is issued to an open page is cheaper
(in terms of latency and bandwidth utilization), prefetching accuracy can be low,
while still providing a net gain as shown in equation 3.1.

Prefetching Accuracy · Cost of Prefetching < Cost of Single Read (3.1)

To investigate this further I modified M5 further to include prefetching of several
well known prefetching heuristics (sequential [128], RPT [18] and C/DC [107]). I
examined several strategies for issuing prefetches, but the key insight came when I
plotted prefetch accuracy vs speedup for all the prefetchers in a single graph (See
figure IV.3 in paper IV). This graph shows that when the prefetching accuracy was
around 40%, equation 3.1 would be balanced. Thus by using different scheduling
strategies depending on the prefetcher’s accuracy performance could be improved.
This work was published at International Conference on Computer Design (ICCD)
in 2008 (Paper IV).

A couple of months after the presentation of this work at ICCD, Lee et al. pub-
lished a related study at MICRO [85]. Their work explored using both a dedicated
prefetch queue and inserting prefetches directly into the read queue.

3.1.7 Data Prefetching Championship - Paper V & VII

Garzia Perez et al. published a comparative survey of many proposed prefetching
heuristics in 2004 [114]. That paper showed that the evaluation of prefetchers
could give significantly different results depending on the benchmark and simulator.
They also found that evaluating different prefetching schemes was difficult, because
the papers describing these techniques often lacked significant details which were
important to the implementation.

In order to address these issues the Journal of Instruction-Level Parallelism (JILP)
organized a Data Prefetching Championship (DPC) similar to the earlier branch
prediction championships. The idea was that all contestants would use the same
simulator to implement their prefetching heuristics. This simulator was provided
in binary form, with a simple, well-defined interface that could only be used for
prefetching. Each contestant would submit their prefetching code (2 files) to the
competition organizers. The organizers would then run the simulator with their
own benchmarks. This would ensure a fair comparison of the prefetching heuristics.

During my work with prefetching I had examined several prefetchers and knew their
strengths and weaknesses. In particular, Delta correlation proposed by Nesbit et
al. [106] is very effective and has a very high accuracy. However, the Global History
Buffer (GHB) which is often used in combination is not as effective. Because the
GHB acts as a FIFO some load-instructions would have much history associated
with them, while others would have less. Much of the information contained would
also be useless, because there is a limit to the amount of history that is useful in
generating new prefetches. Although delay was not modelled in the competition

34 Chapter 3. Research Process and Methodology

a GHB would require recomputation of the deltas, which would increase cost and
delay the prefetches.

Our submission (Paper V), called Delta Correlating Prediction Tables (DCPT),
used a table indexed by the PC of the load. This table contained the last n deltas
observed by that load which could then be used to issue prefetches by using delta
correlation. Because each entry has a fixed size this ensures that the amount of
history per entry can not decrease. This property is useful, because this in turn
ensures that delta correlation does not produce overlapping prefetches. In addition,
because we used a table based approach more state could be associated with each
entry. We used this to track the last issued prefetch. This is very useful for
eliminating redundant prefetches.

Our submission was awarded 4th place (out of 20 submissions). There were many
original and interesting submissions to the competition. Second place was awarded
to Dimitrov et al. which used an approach which was very similar to ours [30].
Their approach also used delta correlation, but rather than using a GHB or a table
they used a hybrid approach and prefetched into the L1 rather than the L2.

The contestants code was later published on the DPC website [67]. By looking at
the contestants code it was clear that our biggest design mistake was the lack of
L1 prefetching. In the design of the DCPT we abandoned L1 prefetching too early
as our initial experiments showed that the L1 was very sensitive to pollution. We
developed a technique called L1 hoisting to address this issue. L1 hoisting predicts
which data that has been prefetched into the L2 will be used by the processor in
the near future and moves it to the L1. Another problem with the design was the
lack of handling for pointer chasing or partially irregular patterns. This part was
addressed by using partial matching. If a pattern is not found using regular delta
correlation, then partial matching reduces the spatial resolution by removing the
least significant bits from the delta stream. This exposes more patterns, which can
then be prefetched. The improved prefetching heuristic is called DCPT-P and is
presented in Paper VII.

After the competition I was invited to Ghent by Veerle Desmet to implement DCPT
in Unisim [4]. Their ongoing Archexplorer online competition is similar to DPC.
Archexplorer tries to find good memory systems by randomly combining known
techniques in a memory system hierarchy using random parameters [27]. Each
generated memory hierarchy is evaluated in terms of performance, area and power.
The port to Unisim was successful, but the processor model (embedded PowerPC
core) and area requirements (The baseline configuration has only a very small
L1 cache) is not very well suited for prefetching. The team is now moving the
competition to a more aggressive processor model.

3.1.8 3D Stacking

I became interested in 3D stacking after reading Gabriel H. Loh’s paper on 3D
stacked memory architectures [88]. 3D stacking is a technique for stacking dies

3.1. Research Process 35

vertically (see section 2.2.1). The bandwidth between layers can be quite high,
because inter-die vias can be densely packed [26]. Furthermore, the dies can be
in different technologies. This enables mixing of dies optimized for logic and for
DRAM, thus eliminating many of the drawbacks of eDRAM. Loh’s paper examined
how the very large inter-die bandwidth can be exploited in a 3D architecture.
Latency is very low compared to a off-chip solution, because main memory and
processor can be integrated on the same chip.

I wanted to explore the possibilities for destructive-read DRAM and prefetching.
Using destructive-read DRAM would further reduce the latency of a memory oper-
ation. Prefetching, on the other hand, could exploit the large amount of bandwidth
available to further decrease latency.

My initial research used a modified version of SimFlex [46] which included a power
model. Modelling power and thermal effects is important in 3D architectures,
because using multiple layers increase power density, while heat dissipation becomes
more difficult [89]. To model thermal effects I started using HS3D [87]. HS3D is
based on Hotspot [50] and models thermal effects in 3D stacked architectures.

I made some progress simulating a 3D stacked architecture. Modelling power dis-
sipation requires a good model of the processors, in terms of floorplan, thermal
properties of materials, power dissipation of individual components, static power
dissipation, etc. Developing a realistic model of power dissipation for Paper II re-
quired considerable research, even though this type of single-die chips have been in
production for some time. Developing realistic models for a 3D architecture would
be even more difficult and the project was abandoned.

3.1.9 Memory System Interference - Paper VI & VIII

During our work with CMPs it became apparent that contention for shared re-
sources would cause problems both in terms of performance and latency. Because
access to shared resources is traditionally managed on a FCFS basis, programs
which access shared resources more often would get a larger share of the resources.
As an example, program A can displace data in the cache that is needed by program
B, thus reducing program B’s performance. In other words, program A interferes
with program B.

Magnus Jahre began to investigate this property of CMPs and I became interested
in this work because prefetching could potentially increase interference, and thus
unfairness. Prefetching is typically triggered by a miss in the cache. A program
with many misses in the cache, would thus trigger more prefetches than a program
with few misses. If the prefetches are not accurate, then the program will consume
an even larger part of the shared resources.

Our initial investigation (Paper VI) into fairness was focused on establishing which
components of the memory system contributed the most to unfairness. We did this
because there is much previous research that focuses on solving the problem at the

36 Chapter 3. Research Process and Methodology

component level, rather than understanding the nature of interference at a system
level [11, 60, 105]. In this work we found that the memory controllers are the main
source of interference.

Paper VI used a static off-line method for determining interference. Our next pa-
per (Paper VIII) focused on determining interference at run-time. Determining
interference at run-time would enable us to enforce fairness by dividing resources
accordingly. Our approach tries to determine the latency of every memory oper-
ation that each core would observe if there was no interference (i.e. no sharing
of memory resources). Thus, the difference between the actual latency observed
in the shared memory system and the estimated latency becomes our estimate of
the interference each core observes. Shadow tags are used to estimate the effect of
cache sharing and a novel system for estimating the effect of sharing off-chip band-
width. This system essentially simulates at runtime a private memory controller
by storing a virtual private scheduling of memory requests.

Magnus Jahre continues to research this area and is currently working on using
this run-time estimation technique in combination with a mechanism to regulate
memory accesses to increase fairness in CMPs.

3.1.10 Opportunistic Prefetch Scheduling - Paper IX

The final paper in this thesis started out as an idea for a prefetcher. In my previous
work I had seen how important exploiting open pages is for high performance. Tra-
ditional prefetchers take as input the miss address streams and produces prefetch
addresses as an output regardless of the state of the DRAM system. The original
idea behind opportunistic prefetch scheduling was to turn this around. The idea
was to take the state of the memory system (i.e. which pages are open at the time)
and produces prefetch addresses. The key component of this system was a Page
Vector Table (PVT). A DRAM page is typically much larger than a single cache
line. The PVT is a table indexed by the page address. Each table entry has a
bit vector where each bit corresponds to one cache line in that DRAM page. The
idea was to track both the access pattern and issued prefetches using the same
structure.

However, while researching this idea, we discovered that the method we developed
for issuing prefetches could be used in the general case. By decoupling how pre-
fetches are generated and how prefetches are issued we could explore how different
prefetching scheduling policies affected known prefetchers. Inspired by the positive
feedback we got from Paper IV we started an exploration of the design space com-
bining many well-known prefetchers with different prefetch scheduling policies and
bandwidth constraints.

3.2. Research Methodology 37

3.2 Research Methodology

3.2.1 Simulators

The research conducted at the Computer Architecture Research Group at NTNU
is primarily done by using simulations of systems. Using simulations, rather than
developing hardware, allows us to rapidly test our ideas without large investments.
However, because a simulation is not real hardware, special care must be taken to
ensure the accuracy and applicability of our simulations. The research presented
in this thesis has been conducted by using several simulators, each with strengths
and weaknesses. Our group has chosen to use publicly available simulators rather
than develop our own to conserve effort and reduce verification work.

3.2.1.1 SimpleScalar

SimpleScalar [5, 15] is a cycle-accurate simulator capable of simulating out-of-
order superscalar processors. It was developed by Todd Austin during his PhD
at the University of Wisconsin in Madison. Today, the simulator is developed and
supported by SimpleScalar LLC. It can accurately model a wide range of processors,
and give accurate information about cache performance as well as other aspects
within the processor.

SimpleScalar has been used extensively in the computer architecture research com-
munity. In June 2009, Google Scholar reports that the main papers regarding
SimpleScalar has been cited over two and a half thousand times. SimpleScalar has
seen extensive testing and verification. As our group focuses primarily on memory
systems, it is interesting to examine how the memory system works in SimpleScalar.

The biggest problem with the memory system in SimpleScalar is how it is designed.
When the processor core wants to access the memory hierarchy it calls a function
(cache access) with the address of the load. This function returns an int repre-
senting the latency of the cache operation. If the data is not found in that cache,
the cache access function calls the next level cache’s cache access function. The
problem with this approach is that the function must return a latency, it cannot
defer computing the latency until a later time. This in turn makes memory access
reordering impractical to simulate. For instance, in FR-FCFS memory scheduling
one access might skip ahead in the memory controllers queue if it hits an open
page. This would delay memory accesses that have preceded it. This is difficult to
simulate in SimpleScalar, because the latency of previous operations have already
been computed and used in the simulation.

The DRAM model is also very simple. It uses a fixed latency model with no
bandwidth constraints. In addition, the model lacks support for MSHRs, cache
bandwidth and interconnect.

Because of SimpleScalar’s popularity there has been numerous extensions to the

38 Chapter 3. Research Process and Methodology

simulator [94]. We have used Wattch [13] for dynamic energy and power estimation
and HotLeakage [152] for static energy and power estimation. Our own extensions
include a CMP model and a DRAM model, which models contention and open
pages, and shadow tag directories.

3.2.1.2 M5Sim

M5 [10] (version 1.1) is now the primary simulator used by our research group. This
simulator (version 1.1.) reuses some of the code from SimpleScalar, but extends
it with an eventdriven [151] memory model. This is particularly useful for our
research group as it allows for the reordering of memory accesses. In addition, it
models cache to cache buses and MSHRs. However, DRAM is modelled by using
a constant latency and no memory access reordering is performed.

We have extended M5 to include a detailed model of DDR2 memory, multiple
types of memory controllers, prefetching2, crossbar interconnects and interference
measurement.

M5 uses an event queue to hold all the events that needs to be serviced by the
system. An event is essentially an object with a process() method. The event queue
is sorted primarily on the time the event occurs and secondary on the priority of
the event. The simulator removes the head event from the queue and calls the
process() method on that event. That event might create new events, which are
then scheduled by inserting them into the event queue.

Each memory request is modelled as a single object holding the relevant information
regarding that specific memory request such as virtual and physical address. The
memory hierarchy uses events and a request/response system to move these objects.
When a component in the memory hierarchy receives a memory request, it can
either compute the latency for that operation directly and schedule a response event
or it can put the request into a queue and defer the scheduling of the response event.
We use this property extensively in our implementation of memory controllers.

3.2.1.3 CMP$im

CMP$im [64] was the simulator used in the Data Prefetching Championship (DPC).
This simulator uses memory traces obtained from execution of regular binaries using
the Pin tool [91]. CMP$im was modified by the contest organizers and distributed
as a binary with a small Application Programming Interface (API) for prefetching.
This API consisted of only 6 functions. The most important function was the
IssuePrefetches function which was called every cycle by the simulator with the
current memory hierarchy activity such as hits and misses in the caches. This
function was to be written by the contestants. There were two functions for issuing

2M5 1.1 supports some prefetching in the default installation, but this implementation was
inadequate for our needs.

3.2. Research Methodology 39

prefetches into the L1 and L2 respectively and three functions for getting and
setting prefetch bits in the cache.

Because of it’s simplicity the simulator had a number of shortcomings. DRAM
latency was modeled as a constant regardless of page hits or misses. DRAM band-
width was modelled as a queue which would service one DRAM request every 10
cycles. This queue could hold 1000 entries and it’s content could not be inspected
by the prefetchers. Many of the contestant thus made their own mechanism for
tracking outstanding loads and prefetches, as this is very useful for reducing re-
dundant prefetches. Furthermore, the API did not allow access to the data that
was returned by the DRAM. This effectively made pointer-prefetching impossible
as the pointers are embedded in this data.

Despite it’s weaknesses, the most import property of this simulator is that every
contestant used it. This enabled a fair comparison of the prefetching heuristics.

3.2.1.4 CACTI

CACTI [127] is an advanced cache model capable of modeling the timing, power
requirements and area of any given cache. It is very useful for understanding the
trade-offs between power, area and timing. The model used is very complex and
considers most of the available design-techniques. We have used this tool mainly
for estimating the latency of caches, but also for power estimation in Paper II.

3.2.2 Benchmarks

3.2.2.1 SPEC2000 and SPEC2006

In the majority of the work presented in this thesis we have used the SPEC2000
benchmark suite [133]. The SPEC2000 benchmark suite consists of 26 programs
which are intended to measure the performance of a computer system in a standard-
ized way. The original intent of SPEC2000 is to enable hardware manufacturers,
compiler vendors, and operating system vendors to fairly compare products. Thus,
the benchmark suite is intended to be run on actual hardware, rather than simu-
lations of hardware. Because it is a standardized set of programs, it has been used
extensively in the computer architecture research community.

SPEC2000 has now been superseded by SPEC2006. SPEC2006 was used in Paper
V and VI. This is mainly because the organizers of DPC hinted that they would
use a subset of SPEC2006 in their evaluation. Because CMP$im uses Pin, it is
relatively easy to obtain traces using regular hardware.

40 Chapter 3. Research Process and Methodology

3.2.2.2 Multi-Programmed Workloads

Each SPEC2000 benchmark runs as a single thread, and is thus not useful for
evaluating the performance of a CMP. To evaluate the performance of CMPs I have
randomly generated several multi-programmed workloads. A multi-programmed
workload is simply running multiple benchmarks at the same time, one per core.

However, if there are multiple instances of the same SPEC benchmark in a work-
load, special care must be taken. A naive approach would start each benchmark
concurrently, but this leads to problems as the benchmarks would execute nearly in
lockstep. Thus the program phases would change at the same instance which would
be a very uncommon event in a real system. The easiest solution to avoiding this
problem is to either avoid having workloads with multiple instances of benchmarks
or start each instance at a separate point in time.

3.2.2.3 Running Experiments

Running the entire benchmark suite to completion would take a considerable amount
of time. To avoid this I have used two different strategies.

The first strategy is to use a reduced dataset called lgred [76]. This reduced dataset
is crafted so that the execution time of the benchmark is reduced by a significant
fraction, but so that the original mix of instructions is roughly the same. However,
a reduced dataset usually has a smaller working set. Because the working set
becomes smaller, the need for large caches and off-chip bandwidth becomes less
and the memory system is stressed less. This is unfortunate because it is the
performance of the memory system we are focused on improving. Using a reduced
dataset reduces the relative importance of the memory subsystem.

The second strategy is fast-forwarding and limited simulation. This strategy sim-
ulates only a portion of the original benchmark. This avoids the problem with a
small working set, but because the benchmark is not run to completion it is difficult
to determine if the smaller sample is representative for the entire benchmark. In
particular, the initialization code at the beginning of the benchmarks execution is
not representative. Thus, each benchmark is fast-forwarded past the initialization
portion of the benchmark. This has the additional benefit of warming up the caches
with useful data, such that a more representative memory access behaviour is seen.

However, the problem remains that one cannot be certain that a single datapoint
chosen randomly is representative for the entire workload. There exists methods for
statistically making such measurements, such as Simpoints [113] or SMARTS [150].
We have not used these methods, because they are not integrated with M5 (ver-
sion 1.1.), or any of the simulators we have used in our research. Additionally,
using these methods for evaluating multiprogrammed workloads have been shown
to require considerable amounts of simulation time to be accurate [144].

Fortunately, these methods focus on making the measurements on a benchmark as

3.2. Research Methodology 41

accurate as possible such that it is possible to give accurate performance numbers
for any given technique. In my work I am usually more interested in comparing
two techniques to each other and the relative performance difference between them.
Thus, the actual performance for a technique for the entire benchmark is not as
important as it’s relative performance compared to another technique in a smaller
segment of the benchmark.

3.2.2.4 Exploring the Solution Space

In computer architecture research there are so many degrees of freedom that it
is impractical to simulate the entire solution space. Parallelizing the exploration
of the solution space is fortunately trivial. Each combination of parameters and
benchmark/workload can be run independently. This makes it possible to explore
a larger portion of the solution space using large clusters of machines.

Our research group have been fortunate to be given a generous amount of comput-
ing resources from Notur, which is the Norwegian metacenter for computational
science. This has enabled us to explore very large solution spaces in a very short
amount of time.

42

Chapter 4

Research Contributions

Doubt grows with knowledge.
– Johann Wolfgang von Goethe

This thesis is a collection of papers that I have authored or coauthored during my
time as a PhD student. Each paper is presented in the appendix. Many of these
papers had very small figures to conserve space. Rather than including the double-
column PDF files, I have opted to reformat each paper to increase readability of
the graphs and text. However, I have not altered the text or figures, only the layout
and size.

The order of papers presented here are in rough chronological order. In practice,
some of the research in these papers have been conducted concurrently.

4.1 Paper I: Cache Write-Back Schemes for
Embedded Destructive-Read DRAM

4.1.1 Abstract

Much of the chip area and power consumption in a modern processor are caused by
mechanisms that compensate for slow main memory such as caches, out-of-order
execution and prefetching. In this work we attack this problem by utilizing a new
DRAM macro that is faster than conventional DRAM macros. The macro made
by Hwang et. al enables faster random access to data, but does not conserve data
in the DRAM cells after reading. Hwang et. al. included a large write-back buffer
in their prototype for conserving data and hiding all write-backs. We eliminate
this buffer by utilizing the already existing cache in processor designs at the cost of
potential memory bank congestions. The modified cache conserves data by writing

44 Chapter 4. Research Contributions

data back to DRAM. We have studied the impact of different write-back schemes
from cache to DRAM and looked at different performance issues in this context such
as number of independent DRAM banks, write-back buffers and latency of DRAM.
A theoretical scheme with free write-backs for data conversation is studied, and we
show that our implementable schemes do not create significant congestion due to
write-backs. Our baseline architecture for evaluation is a low-power processor with
small caches and embedded DRAM. Our first conclusion is that the size of the cache
can be highly reduced without degrading performance when utilizing our write-back
schemes with destructive-read DRAM compared to conventional DRAM. Secondly,
the large write-back buffer can be omitted when destructive-read DRAM is used
with a processor with cache.

4.1.2 Retrospective View

This work looked at an architecture where there is much bandwidth available and
the DRAM matrix itself is the biggest contributor to latency. One problem with
eDRAM is that it is less dense than pure DRAM technologies. Recently, there
has been an increased focus on 3D stacking techniques. This technique allows
for the integration of DRAM processes with logic processes. This allows for the
combination of high density DRAM and fast logic. Utilizing destructive read in
such a context could be interesting.

On the presentation side of this paper, we have used IPC as our metric. The
problem with using IPC directly is that many of the more interesting cases be-
comes quite small in the graphs. Using speedup rather than IPC would have been
preferable.

4.1.3 Roles of the Authors

Dybdahl came up with the idea for this paper. On the implementation side, he
implemented destructive read DRAM in SimpleScalar, while I made the DRAM
bandwidth model. Dybdahl and I had long discussions regarding methodology
and how to present our results. He conducted all of the experiments, and wrote
the paper, while I reviewed it and made improvements to the manuscript. Natvig
worked as an advisor and gave us many valuable comments which improved the
overall quality of the paper.

4.2. Paper II 45

4.2 Paper II: Destructive-Read in Embedded DRAM,
Impact on Power Consumption

4.2.1 Abstract

This paper explores power consumption for destructive-read embedded DRAM.
Destructive-read DRAM is based on conventional DRAM design, but with sense
amplifiers optimized for lower latency. This speed increase is achieved by not con-
serving the content of the DRAM cell after a read operation. Random access time
to DRAM was reduced from 6 ns to 3 ns in a prototype made by Hwang et. al. A
write-back buffer was used to conserve data. We have proposed a new scheme for
write-back using the usually smaller cache instead of a large additional write-back
buffer. Write-back is performed whenever a cache line is replaced. This increases
bus and DRAM bank activity compared to a conventional architecture which again
increases power consumption. On the other hand computational performance is
improved through faster DRAM accesses. Simulation of a CPU, DRAM and a 2
kbytes cache show that the power consumption increased by 3% while the perfor-
mance increased by 14% for the applications in the SPEC2000 benchmark. With
a 16 kbytes cache the power consumption increased by 0.5% while performance
increased by 4.5%.

4.2.2 Retrospective View

As Paper II and Paper I were in many ways researched in parallel, most of the
comments for Paper I are applicable for this paper as well. On the presentation
side, the lack of normalization makes many of the graphs hard to read. This makes
comparison of the breakdown of energy components harder.

I did not pursue power simulations in the rest of my work, because power simula-
tions were at that time outside the focus of our research group.

4.2.3 Roles of the Authors

The distribution of work was similar to Paper I. To simulate power and energy,
Dybdahl integrated Wattch and Hotleakage. Kjeldsberg helped us develop the
model for destructive DRAM energy consumption and power and helped with his
expertise on power modelling in general. Natvig worked as an advisor and made
many valuable comments which improved the overall quality of the paper.

46 Chapter 4. Research Contributions

4.3 Paper III: Hardware Prefetching Using Shadow
Tagging

4.3.1 Abstract

This paper presents a novel technique for dynamic selection of parameters for pre-
fetching heuristics based on the use of shadow tag directories. Previous methods
have been either static, made for a specific prefetching heuristic, or based on phase
detection and tuning. The most flexible of these methods is phase detection and
tuning. However, it has a serious drawback as it degrades performance while ex-
ploring the parameter space, as each configuration is tested on the running pro-
gram. Our approach explores the parameter space using an extra structure called
a shadow tag directory. This allows us to explore the parameter space without
interfering with the running program, such that a larger parameter space can be
explored without impacting performance. This paper examines the performance of
this technique on tagged sequential prefetching, czone/delta correlation prefetching
and reference prediction tables. In addition, we compare our results with a feed-
back directed approach. We show an overall 24% improvement over the best static
sequential prefetcher and an 18% improvement versus feedback directed sequential
prefetching on memory intensive SPEC benchmarks.

4.3.2 Retrospective View

Shadow tags are very versatile structures which can be used for many purposes. In
this paper we used it to explore possible prefetcher configurations. The presentation
in this paper could have been better. In particular, we use IPC directly, instead
of using speedup. This makes figure III.2 harder to read and makes the significant
improvements on Ammp hard to see. In addition, we use the harmonic mean
throughout the paper which makes the relative difference between the techniques
less pronounced to the reader. After finishing this paper, Sigmund Visnesbakk
implemented prefetching using shadow tags in CMP by using M5 [10] for his master
thesis [145].

4.3.3 Roles of the Authors

I did most of the work on this paper, although I must credit Haakon Dybdahl for
giving me the idea of examining the use of shadow tags for prefetcher configuration.
Lasse worked as an advisor and provided helpful comments and improvements to
the many revisions of this paper.

4.4. Paper IV 47

4.4 Paper IV: Low-Cost Open-Page Prefetch
Scheduling in Chip Multiprocessors

4.4.1 Abstract

The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM is exploited to increase throughput.

Traditionally, prefetching reduces latency by fetching data before it is needed. In
this paper we explore how prefetching can be used to increase memory throughput.
We present our own low-cost open-page prefetch scheduler that exploits the 3D
structure of DRAM when issuing prefetches. We show that because of the complex
structure of modern DRAM, prefetches can be made cheaper than ordinary reads,
thus making prefetching beneficial even when prefetcher accuracy is low. As a
result, prefetching with good coverage is more important than high accuracy. By
exploiting this observation our low-cost open page scheme increases performance
and QoS. Furthermore, we explore how prefetches should be scheduled in a state of
the art memory controller by examining sequential, scheduled region, CZone/Delta
Correlation and reference prediction table prefetchers.

4.4.2 Retrospective View

This paper explores how prefetches should be scheduled in a modern DRAM con-
troller. At the time, this was a largely unexplored area [38]. After I presented
this paper at ICCD, Lee et al. presented another approach to the same problem
at the International Symposium on Microarchitecture. They noticed that some
benchmarks would perform better when prefetches were inserted directly into the
read queue. On other benchmarks, performance would increase if the prefetches
were inserted into a dedicated prefetch queue. Their approach uses the estimated
prefetch accuracy to choose where to insert new prefetches.

This work was continued and resulted in another paper (Paper IX) which further
investigates prefetch scheduling.

4.4.3 Roles of the Authors

The initial idea and preliminary investigations were carried out by me.

I proposed the initial design. This design was then refined through extensive dis-
cussions with Jahre. I implemented the refined idea in our common simulator
framework which leverages code produced by both Jahre and me. Furthermore,

48 Chapter 4. Research Contributions

I devised the initial experimental methodology and planned which experiments
should be carried out. The experiment plan and methodology was then discussed
thoroughly with Jahre.

I wrote the first draft of the paper and had the final word in all matters regarding
the paper. Jahre read the draft thoroughly and provided significant improvements
to the presentation, organization and language. Natvig helped with proof-reading
and guidance.

4.5 Paper V: Storage Efficient Hardware
Prefetching using Delta Correlating
Prediction Tables

4.5.1 Abstract

This paper presents a novel prefetching heuristic called Delta Correlating Predic-
tion Tables (DCPT). DCPT builds upon two previously proposed techniques, RPT
prefetching by Chen and Baer and PC/DC prefetching by Nesbit et al. It combines
the storage-efficient table based design of Reference Prediction Tables (RPT) with
the high performance delta correlating design of PC/DC. DCPT substantially re-
duces the complexity of PC/DC prefetching by avoiding expensive pointer chasing
in the GHB and recomputation of the delta buffer.

We show that DCPT prefetching can increase performance by up to 3.7X for single
benchmarks, while the geometric mean of speedups across all SPEC2006 bench-
marks is 42% compared to no prefetching.

4.5.2 Retrospective View

This paper was written for the DPC contest. We received 4th place out of 20 sub-
missions. Because of the competition rules, we had to use the CMP$im simulator
which has a number of shortcomings (described in section 3.2.1.3). Competition
rules limited the number of pages to four and dictated the use of the geometric
mean for aggregating performance numbers.

After the competition I had the opportunity to examine the other contestant’s code.
During my examination of this code I discovered that the three top contestant
used some form of L1 prefetching. Additionally, some of the submissions also
had techniques for predicting pointer-chasing code. This lead to paper VII which
addresses these shortcomings of the original technique.

4.6. Paper VI 49

4.5.3 Roles of the Authors

The division of labour is similar to Paper IV (See section 4.4.3).

4.6 Paper VI: A Quantitative Study of Memory
System Interference in Chip Multiprocessor
Architectures

4.6.1 Abstract

The potential for destructive interference between running processes is increased
as Chip Multiprocessors (CMPs) share more on-chip resources. We believe that
understanding the nature of memory system interference is vital to achieve good
fairness/complexity/performance trade-offs in CMPs. Our goal in this work is to
quantify the latency penalties due to interference in all hardware-controlled, shared
units (i.e. the on-chip interconnect, shared cache and memory bus). To achieve this,
we simulate a wide variety of realistic CMP architectures. In particular, we vary
the number of cores, interconnect topology, shared cache size and off-chip memory
bandwidth. We observe that interference in the off-chip memory bus accounts for
between 63% and 87% of the total interference impact while the impact of cache
capacity interference can be lower than indicated by previous studies (between 5%
and 32% of the total impact). In addition, as much as 11% of the total impact can
be due to uncontrolled allocation of shared cache Miss Status Holding Registers
(MSHRs).

4.6.2 Retrospective View

This paper is very latency oriented. However, it is important to remember that
increased memory system latency does not necessarily decrease overall system per-
formance. It would be interesting to study more closely the correlation between
memory system interference and system performance.

4.6.3 Roles of the Authors

The initial idea and preliminary investigations were carried out by Jahre.

Jahre proposed the initial design. This design was then refined through extensive
discussions with me. Jahre implemented the refined idea in the common simulator
framework which leverages code produced by both me and Jahre. Furthermore,
Jahre devised the initial experimental methodology and planned which experiments
should be carried out. The experiment plan and methodology was then discussed
thoroughly with me.

50 Chapter 4. Research Contributions

Jahre wrote the first draft of the paper and had the final word in all matters regard-
ing the paper. I read the draft thoroughly and provided significant improvements
to the presentation, organization and language. Natvig helped with proof-reading
and guidance.

4.7 Paper VII: Multi-Level Hardware Prefetching
using Low Complexity Delta Correlating
Prediction Tables with Partial Matching

4.7.1 Abstract

This paper presents a low complexity table-based approach to delta correlation
prefetching. Our approach uses a table indexed by the load address which stores
the latest deltas observed. By storing deltas rather than full miss addresses, con-
siderable space is saved while making pattern matching easier. The delta-history
can predict repeating patterns with long periods by using delta correlation. In
addition, we propose L1 hoisting which is a technique for moving data from the L2
to the L1 using the same underlying table structure and partial matching which
reduces the spatial resolution in the delta stream to expose more patterns.

We evaluate our prefetching technique using the simulator framework used in the
Data Prefetching Championship. This allows us to use the original code sub-
mitted to the contest to fairly evaluate several alternate prefetching techniques.
Our prefetcher technique increases performance by 87% on average (6.6X max) on
SPEC2006.

4.7.2 Roles of the Authors

The division of labour is similar to Paper IV (See section 4.4.3).

4.8 Paper VIII: DIEF: An Accurate Interference
Feedback Mechanism for Chip Multiprocessor
Memory Systems

4.8.1 Abstract

Chip Multi-Processors (CMPs) commonly share hardware-controlled on-chip units
that are unaware that memory requests are issued by independent processors. Con-
sequently, the resources a process receives will vary depending on the behavior of
the processes it is co-scheduled with. Resource allocation techniques can avoid

4.9. Paper IX 51

this problem if they are provided with an accurate interference estimate. Our
Dynamic Interference Estimation Framework (DIEF) provides this service by dy-
namically estimating the latency a process would experience with exclusive access
to all hardware-controlled, shared resources. Since the total interference latency is
the sum of the interference latency in each shared unit, the system designer can
choose estimation techniques to achieve the desired accuracy/complexity trade-off.
In this work, we provide high-accuracy estimation techniques for the on-chip inter-
connect, shared cache and memory bus. This DIEF implementation has an average
relative estimate error between -0.4% and 4.7% and a standard deviation between
2.4% and 5.8%.

4.8.2 Roles of the Authors

The division of labour is similar to Paper VI (See section 4.6.3).

4.9 Paper IX: Exploring the Prefetcher/Memory
Controller Design Space: An Opportunistic
Prefetch Scheduling Strategy

4.9.1 Abstract

Prefetching is a well-known technique for bridging the memory gap. By predicting
future memory references the prefetcher can fetch data from main memory and
insert it into the cache such that overall performance is increased. Modern memory
controllers reorder memory requests to exploit the 3D structure of modern DRAM
interfaces. In particular, prioritizing memory requests that use open pages increases
throughput significantly.

In this work, we investigate the prefetcher/memory controller design space along
three dimensions: prefetching heuristic, prefetch scheduling strategy and available
memory bandwidth. In particular, we evaluate 5 different prefetchers and 6 prefetch
scheduling strategies. Through this extensive investigation, we observed that prior
prefetch scheduling strategies often cause memory bus contention in bandwidth
constrained CMPs which in turn causes performance regressions. To avoid this
problem, we propose a novel prefetch scheduling heuristic called Opportunistic Pre-
fetch Scheduling that selectively prioritizes prefetches to open DRAM pages such
that performance regressions are minimized. Opportunistic prefetch scheduling re-
duces performance regressions by 6.7X and 5.2X, while improving performance by
17 % and 20 % for sequential and scheduled region prefetching, compared to the
direct scheduling strategy.

52 Chapter 4. Research Contributions

4.9.2 Roles of the Authors

The division of labour is similar to Paper IV (See section 4.4.3).

Chapter 5

Concluding Remarks

All models are wrong, but some are useful.
– George E. P. Box

5.1 Conclusion

This dissertation has examined several techniques for reducing system memory
latency. This has been achieved through multiple approaches, but mainly by using
excess bandwidth and scheduling policies.

Destructive read DRAM changes the underlying assumptions about the content in
DRAM cells being unchanged after a read. By doing this, the latency of a read
is much smaller, but it requires changes to the rest of the memory system so that
data is not lost. Because data must not be lost, writeback of cache content must
be performed. This increases the amount of bandwidth used. If the system has
enough bandwidth to support this change in DRAM semantics, then overall latency
is reduced.

The second approach discussed in this thesis is prefetching. Prefetching is a tech-
nique for predicting what data is needed in the future and fetching that data into
the cache before it is referenced. Prefetching is speculative, thus some of the data
that is prefetched will not be used and some bandwidth will be wasted. This thesis
presents a technique for generating highly accurate prefetches with good timeliness
called DCPT. DCPT uses a table indexed by the load to store the delta history
of individual loads. This delta history is then used in Delta Correlation to predict
future misses. The next version, DCPT-P, introduces L1 hoisting which moves
data from the L2 to the L1 to further increase performance, and partial matching
which reduces the spatial resolution of deltas to expose more patterns.

The interaction with the memory controller is especially important in prefetching.

54 Chapter 5. Concluding Remarks

Utilizing open pages can increase the performance of the system significantly. By
exploiting this, prefetching can increase bandwidth utilization and reduce latency
at the same time. This affects prefetch scheduling decisions. Scheduling prefetches
will often delay a demand read or a writeback. However, if the prefetch is issued
to an open page and the prefetch is accurate, then doing so pays off in terms of
reduced average latency. Because of this, it can pay off to issue many low accuracy
prefetches, rather than issue few highly accurate prefetches.

Finally, this dissertation has examined the impact of having a shared memory
system in CMPs. When resources are shared, one core might interfere with an-
other core’s execution by delaying memory requests or displacing useful data in the
cache. This thesis quantifies this effect and identifies which components are most
prone for generating interference between cores. Finally, a system for determining
interference at runtime is presented.

5.2 Contributions

In section 1.4 I formulated the main research question for this thesis as:

How, and at what cost, can memory system latency be reduced by im-
proving resource utilization?

This question was further subdivided into four questions. In this section I will
review these questions in light of the papers presented in this thesis.

1. How can excess memory bandwidth be utilized to achieve a lower
maximum memory latency ?

Paper I and II approaches this question through the use of destructive read DRAM.
By changing the semantics of a read to DRAM, the latency of main memory DRAM
operations can be drastically reduced, especially in eDRAM. This approach re-
quires additional bandwidth between main memory and cache as every line in the
cache is initially dirty and must be written to main memory to conserve data.

2. How can excess memory bandwidth be utilized to achieve a lower
average memory latency ?

Paper III introduces a technique for reconfiguring prefetching heuristics depending
on the amount of available bandwidth and estimated accuracy. Paper VI and IX
examines how prefetches can be scheduled in order to maximize the amount of page
hits, thus increasing DRAM throughput and lowering latency. This effect relies on
the relative lower cost of a page hit versus a page miss in DRAM. Paper V and VII
lowers average memory latency by introducing a new prefetching heuristic called
DCPT.

5.3. Future Work 55

3. How does scheduling decisions in modern highly parallel and complex
DRAM interfaces affect the bandwidth/latency trade-off ?

Paper IV and IX examines prefetch scheduling in detail and finds that because of
the relative cost difference between page hits and page misses, scheduling prefetches
to open pages is beneficial, even with relatively low prefetch accuracy. Depending
on the details of the DRAM interfaces, this might make it more beneficial to issue
many low accuracy prefetches, rather than few high accuracy prefetches.

4. How does interference in the shared memory system affect Chip
Multiprocessor performance ?

Because of the shared memory subsystem in modern CMPs, there is significant
probability that the cores will interfere with each other’s execution. This effect is
documented in Paper VI. This paper found that the most significant contributor to
interference is the shared DRAM controllers. Paper VIII expands on this work and
introduces a framework for determining interference at runtime. This is done by
estimating the latency of a memory request if the memory system was not shared.
The difference between this estimate and the actual time it took for the completion
of the request is the estimated interference.

5.3 Future Work

Simulating such complex systems leads to many interesting details being left out.
With the exception of Paper II, power is not modelled in this thesis. This is due
to the difficulty of modelling the power requirements of an unknown component
without implementing it in hardware (or hardware description languages). This
also applies to area requirements. Where it has been possible we have tried to
estimate area based on the memory requirements of the techniques presented as
this often becomes the dominant contributor to area.

Furthermore, the simulator leaves out interesting aspects of the system such as
virtual memory. In particular it would be interesting to examine how prefetching
should handle page faults and Translation Lookaside Buffer (TLB) misses. Can
page faults be predicted? And if so, is it beneficial to bring in pages from disk to
main memory and warm up the TLB with sufficient timeliness?

This thesis presents many contributions to the state of the art. However, many
questions remains unanswered. In particular, the impact of prefetching on fairness
is unclear. Can prefetching increase fairness, or is it inherently unfair? Further-
more, how do these techniques apply to new 3D stacking techniques?

The interaction between the program, the prefetcher and the memory controller is
interesting. Pointer-chasing codes still present a significant problem for prefetch-
ing. While scientific code often uses sequential access across arrays to increase

56 Chapter 5. Concluding Remarks

computation speeds, commercial applications are often pointer-intensive. Finding
good solutions to these problems will give a large performance benefit to this large
class of applications.

5.4 Outlook

The techniques presented in this thesis makes some underlying assumptions about
the memory hierarchy, which may or may not hold in the future. There are two
main assumptions. The first assumption is that lower memory latency increases
performance. The second assumption is that there is enough off-chip bandwidth to
support the techniques presented in this thesis.

Both of these assumptions are directly linked to what kind of computing environ-
ment will be dominant in the future. The recent shift to CMPs has prompted a
more throughput oriented view on performance. In a pure throughput oriented
system it is acceptable to delay one thread waiting for memory if there is available
work in another thread. Prefetching might be useful to increase page hit-rates and
thus increase DRAM throughput.

Many applications cannot be made completely parallel and will have a serial por-
tion. Amdahl’s law states that increasing the number of cores will only increase
the execution speed of the parallel portion of the program, while the execution
speed of the serial portion is not affected [3]. As the number of cores increases, the
serial portion becomes more dominant. For such programs it is beneficial to use
heterogeneous CMPs with one high performance core optimized for single-thread
performance and several small cores optimized for throughput for the parallel por-
tion of the program [6, 81, 138]. In such a system, prefetching can reduce the
memory latency in the serial portion of the program and increase page hit rates in
the parallel portion of the benchmark.

One of the reasons for turning to CMPs is the increased power consumption of
modern processor cores. This increase in power consumption reduces battery time
for mobile devices and causes thermal problems. Using prefetching increases energy
usage as more data is moved between main memory and cache [45]. However,
as static power consumption becomes a larger component of the overall power
consumption, it is possible to reduce power by reducing overall execution time.
Agarwal et al. demonstrated that it is possible to transfer the performance gains
of prefetching to an overall reduction in energy consumption [1].

Furthermore, as the number of cores increases, the severeness and probability of in-
terference increases. This can lead to load unbalances and violations of the quality
of service requirements. Developing and implementing techniques for fairly sharing
memory system resources with acceptable performance is a difficult task. Provid-
ing fairness becomes difficult because each core can interact both positively and
negatively with every other core in many parts of the system. Novel techniques to
address these issues are needed in the future.

Bibliography 57

Bibliography

[1] D. Agarwal, S. Pamnani, G. Qu, and D. Yeung. Transferring performance
gain from software prefetching to energy reduction. In IEEE International
Symposium on Circuits and Systems, volume 2, pages 241–244, May 2004.

[2] J. Alakarhu and J. Niittylahti. A comparison of precharge policies with mod-
ern DRAM architectures. In Electronics, Circuits and Systems, 9th Interna-
tional Conference on, volume 2, pages 823–826, 2002.

[3] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the spring joint computer
conference, pages 483–485, 1967.

[4] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. Penry,
O. Temam, and N. Vachharajani. Unisim: An open simulation environment
and library for complex architecture design and collaborative development.
Computer Architecture Letters, 6(2):45–48, July-December 2007.

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. Computer, 35(2):59–67, 2002.

[6] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of perfor-
mance asymmetry in emerging multicore architectures. In ISCA ’05: Proceed-
ings of the 32nd annual international symposium on Computer Architecture,
pages 506–517, 2005.

[7] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In MICRO 33: Proceedings of the 33rd an-
nual ACM/IEEE international symposium on Microarchitecture, pages 245–
257, 2000.

[8] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in embed-
ded systems. In CODES: Proceedings of the tenth international symposium
on Hardware/Software codesign, pages 73–78, 2002.

[9] C. Belady. Cooling and power considerations for semiconductors into the next
century. In Low Power Electronics and Design, International Symposium on.,
pages 100–105, 2001.

[10] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[11] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Mul-
tiple Resources in Chip Multiprocessors: A Machine Learning Approach. In
MICRO 41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture,
2008.

58 Bibliography

[12] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb. Die stacking (3D) microarchitecture.
Micro, 0:469–479, 2006.

[13] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA ’00: Proceed-
ings of the 27th annual International Symposium on Computer Architecture,
pages 83–94, 2000.

[14] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface to
hardware performance counters. In Proceedings of Department of Defense
HPCMP Users Group Conference, June 1999.

[15] D. Burger and T. M. Austin. Simplescalar toolset 3.0b, 2003. http://www.

simplescalar.com.

[16] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In
ASPLOS-IV: Proceedings of the fourth international conference on Architec-
tural support for programming languages and operating systems, pages 40–52,
1991.

[17] C. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accurate and complexity-
effective spatial pattern prediction. In High Performance Computer Architec-
ture, HPCA-10. Proceedings. 10th International Symposium on, pages 276–
287, Feb. 2004.

[18] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for
high-performance processors. Computers, IEEE Transactions on, 44:609–
623, May 1995.

[19] L. Chi-Keung and T. Mowry. Automatic compiler-inserted prefetching for
pointer-based applications. Computers, IEEE Transactions on, 48:134–141,
Feb. 1999.

[20] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted pre-
fetching. In Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on, pages 62–73, 2002.

[21] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed data
prefetching mechanism. In ASPLOS-X: Proceedings of the 10th international
conference on Architectural support for programming languages and operating
systems, pages 279–290, 2002.

[22] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of
contemporary DRAM architectures. In Proceedings of the 26th International
Symposium on Computer Architecture, pages 222–233, 1999.

http://www.simplescalar.com
http://www.simplescalar.com

Bibliography 59

[23] F. Dahlgren and P. Stenström. Evaluation of hardware-based stride and
sequential prefetching in shared-memory multiprocessors. Parallel and Dis-
tributed Systems, IEEE Transactions on, 7(4):385–398, Apr. 1996.

[24] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and adaptive sequential
prefetching in shared memory multiprocessors. In Parallel Processing, 1993.
ICPP 1993. International Conference on, volume 1, pages 56–63, Aug. 1993.

[25] B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and low latency variants.
In Proc. Memory Wall Workshop at the 26th Ann Int’l Symp. Computer
Architecture, May 2000.

[26] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule,
M. Steer, and P. D. Franzon. Demystifying 3D ICs: The pros and cons of
going vertical. IEEE Design and Test of Computers, 22(6):498–510, 2005.

[27] V. Desmet, S. Girbal, and O. Temam. Archexplorer.org: Joint compiler/hard-
ware exploration for fair comparison of architectures. In INTERACT-13,
Workshop on Interaction Between Compilers and Computer Architecture,
2009.

[28] A. Dhodapkar and J. Smith. Managing multi-configuration hardware via
dynamic working set analysis. In Proceedings. 29th Annual International
Symposium on Computer Architecture, pages 233–244, 2002.

[29] A. S. Dhodapkar and J. E. Smith. Comparing program phase detection tech-
niques. In Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on, 2002.

[30] M. Dimitrov and H. Zhou. Combining local and global history for high
performance data prefetching. In Data Prefetching Championship-1, 2009.
http://www.jilp.org/dpc/.

[31] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenström.
The detection and elimination of useless misses in multiprocessors. SIGARCH
Comput. Archit. News, 21(2):88–97, 1993.

[32] H. Dybdahl and P. Stenstrom. An adaptive shared/private NUCA cache par-
titioning scheme for chip multiprocessors. In HPCA ’07: Proceedings of the
2007 IEEE 13th International Symposium on High Performance Computer
Architecture, pages 2–12, 2007.

[33] H. Dybdahl, P. Stenstrom, and L. Natvig. An LRU-based replacement al-
gorithm augmented with frequency of access in shared chip-multiprocessor
caches. In MEDEA Workshop, PACT, 2006.

[34] H. Dybdahl, P. Stenström, and L. Natvig. An LRU-based replacement al-
gorithm augmented with frequency of access in shared chip-multiprocessor
caches. SIGARCH Comput. Archit. News, 35(4):45–52, 2007.

http://www.jilp.org/dpc/

60 Bibliography

[35] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for bandwidth-efficient pre-
fetching of linked data structures in hybrid prefetching systems. High Per-
formance Computer Architecture, 2009. IEEE 15th International Symposium
on, pages 7–17, 2009.

[36] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukher-
jee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A
performance model framework. Computer, 35(2):68–76, 2002.

[37] S. Eyerman and L. Eeckhout. System-level performance metrics for multi-
program workloads. Micro, IEEE, 28(3):42–53, May-June 2008.

[38] W. fen Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies with
an integrated memory hierarchy design. In HPCA ’01: Proceedings of the
7th International Symposium on High-Performance Computer Architecture,
pages 301–312, 2001.

[39] M. Ferdman, S. Somogyi, and B. Falsafi. Spatial memory streaming with
rotated patterns. In Data Prefetching Championship-1, 2009. http://www.

jilp.org/dpc/.

[40] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in
scalar processors. In MICRO 25: Proceedings of the 25th annual international
symposium on Microarchitecture, pages 102–110, 1992.

[41] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in switch
on event multithreading. In MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 149–160,
2006.

[42] M. Ghosh and H.-H. S. Lee. Smart refresh: An enhanced memory controller
design for reducing energy in conventional and 3D die-stacked drams. Mi-
croarchitecture, IEEE/ACM International Symposium on, 0:134–145, 2007.

[43] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose mi-
croprocessors. Solid-State Circuits, IEEE Journal of, 31(9):1277–1284, Sep
1996.

[44] M. Grannaes. Bandwidth-aware prefetching in chip multiprocessors. Master’s
thesis, Norwegian University of Science and Technology, Norway, June 2006.

[45] Y. Guo, S. Chheda, I. Koren, C. M. Krishna, and C. A. Moritz. Energy char-
acterization of hardware-based data prefetching. ICCD, 00:518–523, 2004.

[46] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen,
J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk. Simflex: a fast, ac-
curate, flexible full-system simulation framework for performance evaluation
of server architecture. In SIGMETRICS Perform. Eval. Rev., pages 31–34,
2004.

http://www.jilp.org/dpc/
http://www.jilp.org/dpc/

Bibliography 61

[47] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 4th Edition. Morgan Kaufmann Publishers, 2007.

[48] M. N. Horenstein. Microelectronic circuits and devices. Prentice Hall, 1996.

[49] Z. Hu, M. Martonosi, and S. Kaxiras. TCP: Tag correlating prefetchers.
In HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, page 317, Washington, DC, USA, 2003.
IEEE Computer Society.

[50] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotspot: a compact thermal modeling methodology for early-stage
VLSI design. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 14(5):501–513, May 2006.

[51] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: Simulating
shared-memory multiprocessors with ilp processors. Computer, 35(2):40–49,
2002.

[52] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space of fu-
ture cmps. Parallel Architectures and Compilation Techniques, International
Conference on, 2001.

[53] I. Hur and C. Lin. Memory prefetching using adaptive stream detection.
In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 397–408, 2006.

[54] I. Hur and C. Lin. Feedback mechanisms for improving probabilistic memory
prefetching. In HPCA ’09: Proceedings of the 15th International Symposium
on High-Performance Computer Architecture, pages 443–454, 2009.

[55] I. Hur and C. Lin. Adaptive history-based memory schedulers. In MICRO
37: Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 343–354, 2004.

[56] C.-L. Hwang, T. Kirihata, M. Wordernan, J. Fifield, D.Storaska, D. Pontius,
G. F. B. Ji, S. Tomashot, and S. Dhong. A 2.9ns random access cycle em-
bedded DRAM with a destructive-read. VLSI Circuits Digest of Technical
Papers, Symposium on, pages:174-175, June 2002.

[57] International Technology Roadmap for Semiconductors. ITRS roadmap,
2007. http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[58] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing memory
controllers: A reinforcement learning approach. In Computer Architecture,
2008. ISCA ’08. 35th International Symposium on, pages 39–50, June 2008.

[59] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern matching prefetch:
Optimization friendly method. In Data Prefetching Championship-1, 2009.
http://www.jilp.org/dpc/.

http://www.itrs.net/Links/2007ITRS/Home2007.htm
http://www.jilp.org/dpc/

62 Bibliography

[60] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS policies and architecture for cache/memory
in CMP platforms. In SIGMETRICS ’07: Proc. of the 2007 ACM SIGMET-
RICS international conference on Measurement and modeling of computer
systems, pages 25–36, 2007.

[61] S. Iyer and H. Kalter. Embedded DRAM technology: opportunities and
challenges. Spectrum, IEEE, 36(4):56–64, Apr 1999.

[62] B. Jacob and T. Mudge. Notes on calculating computer performance. Tech-
nical Report 231-95, University of Michigan, March 1995.

[63] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge. An analytical
model for designing memory hierarchies. IEEE Trans. Comput., 45(10):1180–
1194, 1996.

[64] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A pin-based
on-the-fly multi-core cache simulator. In MoBS, 2008.

[65] DDR2 SDRAM Specification. JEDEC Solid State Technology Association,
May 2006.

[66] N. Jerger, E. Hill, and M. Lipasti. Friendly fire: understanding the effects of
multiprocessor prefetches. In Performance Analysis of Systems and Software,
2006 IEEE International Symposium on, pages 177– 188, March 2006.

[67] JILP. DPC Webpage. http://www.jilp.org/dpc/online/DPC-1Program.

htm, 2009.

[68] L. K. John. More on finding a single number to indicate overall performance
of a benchmark suite. SIGARCH Comput. Archit. News, 32(1):3–8, 2004.

[69] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu. Run-time spatial lo-
cality detection and optimization. In MICRO 30: Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture, pages 57–
64, 1997.

[70] D. Joseph. Prefetching using markov predictors. In The 24th Annual Inter-
national Symposium on Computer Architecture, pages 252–263, 1997.

[71] N. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In Computer Architecture,
1990. Proceedings., 17th Annual International Symposium on, pages 364–373,
May 1990.

[72] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev., 49
(4/5):589–604, 2005.

http://www.jilp.org/dpc/online/DPC-1 Program.htm
http://www.jilp.org/dpc/online/DPC-1 Program.htm

Bibliography 63

[73] M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefetching technique for
irregular accesses to linked data structures. In High-Performance Computer
Architecture. HPCA-6. Proceedings. Sixth International Symposium on, pages
206–217, 2000.

[74] K. Kaspersky. Code Optimization: Effective Memory Usage. A-List Publish-
ing, 2003.

[75] S. Kaxiras and J. Goodman. Improving CC-NUMA performance using
instruction-based prediction. In High-Performance Computer Architecture,
1999. Proceedings. Fifth International Symposium On, pages 161–170, Jan
1999.

[76] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new spec benchmark work-
load for simulation-based computer architecture research. Computer Archi-
tecture Letters, 1, June 2002.

[77] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multi-
threaded sparc processor. Micro, IEEE, 25(2):21–29, March-April 2005.

[78] D. M. Koppelman. Neighborhood prefetching on multiprocessors using in-
struction history. Parallel Architectures and Compilation Techniques, Inter-
national Conference on, 2000.

[79] K. Krewell. Cell moves into the limelight. Microprocessor Report, Feb. 2005.

[80] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA
’98: 25 years of the international symposia on Computer architecture (se-
lected papers), pages 195–201, 1998.

[81] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization
for heterogeneous chip multiprocessors. In PACT ’06: Proceedings of the 15th
international conference on Parallel architectures and compilation techniques,
pages 23–32, 2006.

[82] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block corre-
lating prefetchers. In Computer Architecture, 2001. Proceedings. 28th Annual
International Symposium on, pages 144–154, 2001.

[83] S.-C. Lai and S.-L. Lu. Hardware-based pointer data prefetcher. In Computer
Design, 2003. Proceedings. 21st International Conference on, pages 290 – 298,
Oct. 2003.

[84] A. J. Lande. Evaluering av chip multiprosessor simulatorer (in norwegian).
Master’s thesis, Norwegian University of Science and Technology, Norway,
June 2006.

[85] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM
controllers. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 200–209, 2008.

64 Bibliography

[86] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a technique
for improving bandwidth utilization. In MICRO 33: Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture, pages 11–
21, 2000.

[87] G. M. Link and N. Vijaykrishnan. Thermal trends in emerging technologies.
In ISQED ’06: Proceedings of the 7th International Symposium on Quality
Electronic Design, pages 625–632, 2006.

[88] G. H. Loh. 3D-stacked memory architectures for multi-core processors. In
ISCA ’08: Proceedings of the 35th International Symposium on Computer
Architecture, pages 453–464, Washington, DC, USA, 2008. IEEE Computer
Society.

[89] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Baner-
jee. A thermally-aware performance analysis of vertically integrated (3-d)
processor-memory hierarchy. In DAC ’06: Proceedings of the 43rd annual
conference on Design automation, pages 991–996, 2006.

[90] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data
structures. SIGPLAN Not., 31(9):222–233, 1996.

[91] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI ’05: Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 190–200, 2005.

[92] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness
in SMT Processors. In ISPASS, 2001.

[93] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[94] N. Manjikian. More enhancements of the simplescalar tool set. SIGARCH
Comput. Archit. News, 29(4):5–12, 2001.

[95] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s gen-
eral execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH
Comput. Archit. News, 33(4):92–99, 2005.

[96] R. E. Matick and S. E. Schuster. Logic-based eDRAM: origins and rationale
for use. IBM J. Res. Dev., 49(1):145–165, 2005.

[97] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system timing-first simula-
tion. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
pages 108–116, 2002.

Bibliography 65

[98] T. Mitra. Dynamic random access memory: A survey. Research Proficiency
Examination Report, march 1999.

[99] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), Apr. 1965.

[100] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared DRAM systems. SIGARCH Comput.
Archit. News, 36(3):63–74, 2008.

[101] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Proc. of the 40th Annual IEEE/ACM
Int. Symp. on Microarchitecture, 2007.

[102] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order processors.
In HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, page 129, Washington, DC, USA, 2003.
IEEE Computer Society.

[103] O. Mutlu, H. Kim, and Y. N. Patt. Address-value delta (AVD) prediction: In-
creasing the effectiveness of runahead execution by exploiting regular memory
allocation patterns. In 38th Annual International Symposium on Microarchi-
tecture (MICRO-38), pages 233–244, 2005.

[104] C. Natarajan, B. Christenson, and F. Briggs. A study of performance im-
pact of memory controller features in multi-processor server environment. In
WMPI ’04: Proceedings of the 3rd workshop on Memory performance issues,
pages 80–87, 2004.

[105] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[106] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. Micro, IEEE, 25:90–97, Jan. 2005.

[107] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data
cache prefetcher. In Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques, pages 135–145, 2004.

[108] K. J. Nesbit, N. Aggarwal, J. L., and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Proc. of the 39th Annual IEEE/ACM Int. Symp.
on Microarchitecture, pages 208–222, 2006.

[109] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. SIGOPS Oper. Syst. Rev., 30(5):2–11,
1996.

[110] S. Palacharla and R. Kessler. Evaluating stream buffers as a secondary cache
replacement. In Computer Architecture, 1994., Proceedings the 21st Annual
International Symposium on, pages 24–33, Apr 1994.

66 Bibliography

[111] D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75,
2004.

[112] D. A. Patterson. Computer science education in the 21st century. Commun.
ACM, 49(3):27–30, 2006.

[113] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder.
Using simpoint for accurate and efficient simulation. In ACM SIGMETRICS
the International Conference on Measurement and Modeling of Computer
Systems, June 2003.

[114] D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case for the quantita-
tive comparison of micro-architecture mechanisms. In MICRO 37: Proceed-
ings of the 37th annual IEEE/ACM International Symposium on Microar-
chitecture, pages 43–54, 2004.

[115] K. Puttaswamy and G. H. Loh. Implementing caches in a 3D technology for
high performance processors. ICCD, pages 525–532, 2005.

[116] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for MLP-aware
cache replacement. In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 167–178, 2006.

[117] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int.
Conf. on Parallel Architecture and Compilation Techniques (PACT 2007),
pages 245–258, 2007.

[118] L. M. Ramos, J. L. Briz, P. E. Ibáñez, and V. Viñals. Multi-level adaptive
prefetching based on performance gradient tracking. In Data Prefetching
Championship-1, 2009. http://www.jilp.org/dpc/.

[119] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. In ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, pages 128–138, 2000.

[120] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer
system simulation: the SimOS approach. Parallel & Distributed Technology:
Systems & Applications, IEEE, 3(4):34–43, 1995.

[121] A. Roth and S. Gurindar S. Effective jump-pointer prefetching for linked
data structure. In Computer Architecture, 1999. Proceedings of the 26th
International Symposium on, pages 111–121, 1999.

[122] S. Sandeep. Gcc-inline-assembly-howto, March 2003. http://www.ibiblio.
org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

[123] J. Shao and B. Davis. A burst scheduling access reordering mechanism.
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, pages 285–294, 2007.

http://www.jilp.org/dpc/
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

Bibliography 67

[124] J. Shao and B. T. Davis. The bit-reversal SDRAM address mapping. In
SCOPES ’05: Proceedings of the 2005 workshop on Software and compilers
for embedded systems, pages 62–71, 2005.

[125] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In
MICRO 33: Proceedings of the 33rd annual ACM/IEEE international sym-
posium on Microarchitecture, pages 42–53, 2000.

[126] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In Pro-
ceedings. 30th Annual International Symposium on Computer Architecture,
pages 336– 347, 2003.

[127] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache timing, power,
and area model. Technical Report 2, Compaq Western Research Laboratory,
August 2001.

[128] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.

[129] J. E. Smith. Characterizing computer performance with a single number.
Communications of the ACM, 31(10), October 1988.

[130] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In Arch. Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

[131] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
memory streaming. In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 252–263, 2006.

[132] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-temporal
memory streaming. SIGARCH Comput. Archit. News, 37(3):69–80, 2009.

[133] SPEC. Spec 2000 benchmark suites, 2000. http://www.spec.org.

[134] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[135] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers.
Technical report, University of Texas at Austin, May 2006. TR-HPS-2006-
006.

[136] V. Srinivasan, E. Davidson, and G. Tyson. A prefetch taxonomy. Computers,
IEEE Transactions on, 53:126–140, Feb. 2004.

[137] G. C. Stierhoff and A. G. Davis. A history of the IBM systems journal. IEEE
Annals of the History of Computing, 20(1):29–35, 1998.

[138] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating crit-
ical section execution with asymmetric multi-core architectures. In ASPLOS
’09: Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems, pages 253–264, 2009.

http://www.spec.org
http://www.spec.org/cpu2000/

68 Bibliography

[139] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi.
A comprehensive memory modeling tool and its application to the design and
analysis of future memory hierarchies. In ISCA ’08: Proceedings of the 35th
International Symposium on Computer Architecture, pages 51–62, 2008.

[140] J. Torrellas, H. Lam, and J. Hennessy. False sharing and spatial locality
in multiprocessor caches. IEEE Transactions on Computers, 43(6):651–663,
1994.

[141] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:
maximizing on-chip parallelism. In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture, pages 392–403, 1995.

[142] S. Vander Wiel and D. Lilja. When caches aren’t enough: data prefetching
techniques. Computer, 30(7):23–30, Jul 1997.

[143] S. VanderWiel. A survey of data prefetching techniques. Technical Report 5,
University of Minnesota, October 1996.

[144] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and
M. Valero. Fame: Fairly measuring multithreaded architectures. In PACT
’07: Proceedings of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques, pages 305–316, 2007.

[145] S. Vinsnesbakk. Implementation and testing of shadow tags in the m5 sim-
ulator. Master’s thesis, Norwegian University of Science and Technology,
Norway, June 2008.

[146] Wikipedia. CAS Latency, 2009. http://en.wikipedia.org/wiki/Cas_

latency, Retrieved 18.Jul 2009.

[147] Wikipedia. List of intel microprocessors, 2009. http://en.wikipedia.org/
wiki/List_of_Intel_microprocessors, Retrieved 18.Jul 2009.

[148] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The
potential of the cell processor for scientific computing. In Computing Fron-
tiers, 2006.

[149] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.
ACM Computer Architecture New, 23(1), march 1995.

[150] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing and
comparing prevailing simulation techniques. In High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on, pages 266–
277, Feb. 2005.

[151] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simu-
lation, 2nd ed. 2000.

http://en.wikipedia.org/wiki/Cas_latency
http://en.wikipedia.org/wiki/Cas_latency
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors

Paper 69

[152] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. R. Stan.
HotLeakage: An architectural, temperature-aware model of subthreshold and
gate leakage. University of Virginia Dept. of Computer Science, Tech. Report
CS-2003-05, Mar. 2003.

[153] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system
optimizations for SMT processors. In HPCA ’05: Proceedings of the 11th In-
ternational Symposium on High-Performance Computer Architecture, pages
213–224, 2005.

[154] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain priority scheduling on
multi-channel memory systems. Eighth International Symposium on High-
Performance Computer Architecture, 2002, pages 107–116, 2002.

70

Papers

I Haakon Dybdahl, Marius Grannæs and Lasse Natvig, “Cache Write-Back
Schemes for Embedded Destructive-Read DRAM”, Architecture of Computing
Systems (ARCS), 2006

II Haakon Dybdahl, Per Gunnar Kjeldsberg, Marius Grannæs and Lasse Natvig,
“Destructive-Read in Embedded DRAM, Impact on Power Consumption”,
Journal of Embedded Computing, Vol 2, Issue 2, 2006

III Marius Grannæs and Lasse Natvig, “Hardware Prefetching Using Shadow
Tagging”, CMP-MSI: 2nd Workshop on Chip Multiprocessor Memory Systems
and Interconnects, 2008

IV Marius Grannæs, Magnus Jahre and Lasse Natvig, “Low-Cost Open-Page
Prefetch Scheduling in Chip Multiprocessors”, XXVI IEEE International
Conference on Computer Design (ICCD), 2008

V Marius Grannæs, Magnus Jahre and Lasse Natvig, “Storage Efficient Hard-
ware Prefetching using Delta Correlating Prediction Tables”, Data Prefetch-
ing Championship - 1, 2009

VI Magnus Jahre, Marius Grannæs and Lasse Natvig, “A Quantitative Study
of Memory System Interference in Chip Multiprocessor Architectures”, 11th
IEEE International Conference on High Performance Computing and Com-
munications, 2009

VII Marius Grannæs, Magnus Jahre and Lasse Natvig, “Multi-Level Hardware
Prefetching using Low Complexity Delta Correlating Prediction Tables with
Partial Matching”, Accepted to the 5th HiPEAC Conference, 2010, Nomi-
nated for best paper award

VIII Magnus Jahre, Marius Grannaes and Lasse Natvig, “DIEF: An Accurate In-
terference Feedback Mechanism for Chip Multiprocessor Memory Systems”,
Accepted to the 5th HiPEAC Conference, 2010

IX Marius Grannæs, Magnus Jahre and Lasse Natvig, “Exploring the Prefetcher
/ Memory Controller Design Space: An Opportunistic Prefetch Scheduling

72

Strategy”, Preprint submitted to Journal of Instruction Level Parallelism,
January 2010

Paper I

Cache Write-Back Schemes
for Embedded
Destructive-Read DRAM

Haakon Dybdahl, Marius Grannæs and Lasse Natvig
In Architecture of Computing Systems (ARCS), 2006

74

Paper I 75

Abstract
Much of the chip area and power consumption in a modern processor are caused by
mechanisms that compensate for slow main memory such as caches, out-of-order
execution and prefetching. In this work we attack this problem by utilizing a new
DRAM macro that is faster than conventional DRAM macros. The macro made
by Hwang et. al enables faster random access to data, but does not conserve data
in the DRAM cells after reading. Hwang et. al. included a large write-back buffer
in their prototype for conserving data and hiding all write-backs. We eliminate
this buffer by utilizing the already existing cache in processor designs at the cost of
potential memory bank congestions. The modified cache conserves data by writing
data back to DRAM. We have studied the impact of different write-back schemes
from cache to DRAM and looked at different performance issues in this context such
as number of independent DRAM banks, write-back buffers and latency of DRAM.
A theoretical scheme with free write-backs for data conversation is studied, and we
show that our implementable schemes do not create significant congestion due to
write-backs. Our baseline architecture for evaluation is a low-power processor with
small caches and embedded DRAM. Our first conclusion is that the size of the cache
can be highly reduced without degrading performance when utilizing our write-back
schemes with destructive-read DRAM compared to conventional DRAM. Secondly,
the large write-back buffer can be omitted when destructive-read DRAM is used
with a processor with cache.

76 I.1. Introduction

I.1 Introduction

The pipeline of a processor is now running at a higher frequency than main mem-
ory. Caches are used to reduce the number of memory accesses that request data
from main memory and hence reduce the effect of the slow main memory. How-
ever, caches have several disadvantages, they require substantial chip area, increase
power consumption and do not work equally well for all applications. Other mech-
anisms are out-of-order execution, prefetching and thread switching. These tech-
niques increase the complexity of the processor, power consumption and chip area
as well. Increasing the chip area increases the cost of manufacturing the chip as the
yield and number of chips per wafer are reduced. Increasing the power consump-
tion increases the cost of packaging the chip due to increased cooling requirements
and reduces the operation time when powered by batteries.

By reducing the latency of the main memory itself the processor core and cache
system can be simplified without degrading performance. The latency of main
memory can be decomposed into different parts: Cache miss latency, latency of
bus to main memory and DRAM latency. The latency of the off-chip bus to main
memory can be eliminated by integrating the DRAM and processor on the same
chip. Several projects have researched into merging processors and memory over
a long period of time ([2, 4, 6, 10, 11, 14–16, 18, 19]). There have been many
obstacles in producing chips which have both dense main memory and fast logic.
However, embedded DRAM has become more common during the last years, and
more chips of this type are in mass production in graphics or network processors
such as Sony’s Playstation 2, EZchip’s NP-1c network processor[7] and Nintendo’s
GameCube.

Embedding DRAM does not reduce the latency of the DRAM bank itself, and
even with the off-chip bus latency eliminated the DRAM is much slower than the
pipeline of the processor.

Reading a memory cell with DRAM technology clears the content of the cell. The
data is stored as a charge in a capacitor and this charge is used by the sense
amplifier in the DRAM bank to enter a logic state depending on the content. Data
has to be written back, and this causes part of the long DRAM latency. The
sense amplifier writes back the data to the cell before the data is sent out of the
chip. A new type of embedded DRAM has been prototyped by Hwang et al. [8]
which omits this write-back of the data to the memory cell. All computer programs
assume that a read to the memory is not destructive so there should be a way of
conserving the content of the memory. In the pioneer work by Hwang et al. [8] they
used a write-back buffer which was made of SRAM technology. This guaranteed
that write-backs are done without disturbing fast read accesses to the memory.
The prototype required a write-back buffer with a storage capacity of 25% of the
DRAM banks. This size was needed to ensure adequate buffering and total removal
of congestion. In a computer with caches, congestions only causes the processor
to stall and causes a degradation of performance. There is no need to remove all
congestion, but there should be as few as possible.

Paper I 77

We have earlier studied the effect on power consumption by using destructive-read
DRAM [3]. The findings were only a slightly increase in system power consumption
(0.5% and 3% for 16kbyte and 2kbyte caches respectively). This paper studies
writing back data without using large write-backs buffers. The baseline architecture
is a small processor with small caches and embedded DRAM. This represents an
embedded system. We compare performance by utilizing the modification proposed
by Hwang et. al and compare the performance in terms of instructions per clock
cycle (IPC). We propose two new schemes for write-backs based on the existing
cache in a processor. The cache architecture is modified in different ways so data
are conserved.

Our findings are that the cache can be much smaller without degrading instructions
per clock cycle (IPC) compared to conventional main memory. The large write-back
buffer in the prototype can be omitted by using the cache for this purpose.

The next section describes the concept of destructive-read DRAM. Section I.3
presents two new schemes for conserving data based on cache write-backs. Ex-
perimental methodology and results are covered in Section I.4 and I.5. Related
work are found in Section I.7, discussion in Section I.6 and we conclude in Section
I.8.

I.2 Embedded Destructive-Read DRAM

I.2.1 Embedded Memory

The two dominating technologies for storing data inside a chip are static memory
(SRAM) technology and dynamic memory (DRAM) technology. Chips based on
DRAM memory are cheaper, denser and consume less power than memory chips
based on other technologies with the same storage capacity; therefore it is the
main choice for main memory. However, DRAM is not as fast as SRAM due to
the construction of the cell and the way data are accessed. In SRAM the data
is already represented in logic gates, whereas in DRAM the capacitors have to be
read and decoded into logic signal voltages and data has to be written back to the
cell. SRAM is made of logic gates and integrates well with processor cores. SRAM
is therefore more suited as technology for on-chip caches.

DRAM chips are highly optimized for storing data and a large amount of the design
is analog. DRAM uses capacitors to store data (see Figure I.1) which fills a large
area of the chip. Logic circuits on the other hand are optimized for speed and
power distribution.

Merging these technologies results in compromises. In a processor in memory so-
lution the processor is slow while in a memory in processor the memory is less
dense. However, much effort has been put into reducing compromises when merg-
ing memory and logic, and this is claimed to be easier to do with future technology

78 I.2. Embedded Destructive-Read DRAM

Memory

array

R

o
w

d

e
c

o
d

e
r

B

i
t

l
i

n

e

s

Word lines

Sense amps

Column decoder

Transistor

Capacitor

Figure I.1: A logical sketch of a DRAM macro.

(1) signal development

and sense

(2) write
 (3) precharge

bit line

word line

a) Conventional DRAM

b) Destructive-Read read
 c) Destructive-Read write back

(1) signal development

and sense

(3) precharge

(3)

precharge

(2) write back

Figure I.2: Conceptual waveform diagrams of conventional DRAM architecture vs.
destructive-read [8].

[5]. Embedded DRAM is still not as dense (bits per area) as pure DRAM chips
(typically 50% less bits per area).

The latency of a DRAM bank is a function of the size of the bank. Reducing the size
of the memory array reduces the length and capacity of the lines and thus latency.
Each memory bank has extra circuitry such as sense amplifiers, and reducing the
size of the memory array increases this overhead and hence lowers density. Reducing
the size of the memory bank reduces dynamic power consumption since a smaller
bank is activated, but the static leakage from the added transistors will limit the
optimal minimum size.

I.2.2 Destructive-Read DRAM

Destructive-read DRAM [8] is a modified version of conventional DRAM. A memory
bank with conventional DRAM is shown in Figure I.1. The row decoder is the first

Paper I 79

DRAM

cells
 Buffer
 Cache

Bus

Sense amp

DRAM

cells

Cache

Sense amp

(a) Conventional DRAM

(b) Destructive-read DRAM

Figure I.3: Conceptual view of DRAM.

component activated in a read access. It enables one word line and causes all
transistors in that row to be activated. These transistors connect the capacitors in
the memory array to the sense amplifiers through bit lines. The sense amplifiers
work in three phases as shown in Figure I.2a. In the first phase the charge from
the capacitor drives the sense amplifier into a logic state. In the second phase that
logic state is locked. In Figure I.3a the locking works as a buffer. From this buffer
the data is sent to the processor and written back to memory. In the final phase
the bit lines are pre-charged so they are ready for the next access. Destructive-read
DRAM memory works differently. The read operation of conventional DRAM (see
Figure I.2a) is split into two cycles (see Figure I.2b and c) Destructive-read DRAM
does not lock the data after reading (as shown in Figure I.3b). Instead the data
are sent directly out of the cell, in this case to cache memory. Since data is not
sent back to memory, data is destroyed after reading. Data is conserved by writing
it back to DRAM after use as shown in I.2c. However, write-back can be done
later in contrast to conventional DRAM where read and write-back are one single
operation.

Hwang et al. made a prototype where random access time to DRAM was reduced
from 6 ns (conventional read) to 3 ns (destructive-read). The prototype had four
independent memory banks and large write back buffer (WBB) that was the same
size as one memory bank. The WBB was made of SRAM. The purpose of the WWB
was to hide write-backs, not to reduce latency. The WBB could write to several
banks simultaneously and required significant chip area. Later a new scheme was
made where the WBB was replaced with destructive-read DRAM[9]. Both designs
guaranteed that write-backs never conflicted with read operations.

I.3 New Write-back Schemes

The design by Hwang et. al included a large write-back buffer and in this work
we utilize the cache of the system to do this task so the write-back buffer can be
removed. However, it is not obvious when data should be written back from the

80 I.3. New Write-back Schemes

cache and how this will impact performance since the cache is much smaller than
the original write-back buffer. As shown in the evaluation section, simulations show
that these schemes work well.

We call the first scheme the delayed write-back scheme. It can be compared to a
cache that always has dirty cache lines. This implies that all data that are read
into the cache have to be written back when replaced. A different approach is to
write back data immediately after reading and we call this the immediate write-
back scheme. The differences between conventional DRAM and destructive-read
DRAM with the immediate write-back scheme can be clarified by examining the
steps in a read operation. For conventional DRAM a read operation is completed
with the bit line not being changed. There is only one access on the memory bus.
For destructive-read with immediate write-back scheme, the data is first transferred
to the cache and then written back to main memory. Two accesses are executed
on the bus to perform one read operation. One intuitive idea might be to insert a
buffer inside the conventional DRAM macro so data becomes available earlier. An
important factor is that the DRAM is embedded. Insertion of extra latches for each
DRAM bank will require substantial chip area. Each independent memory bank
seen from the processor can have several sub banks. In this case the sense amplifiers
have to drive both the extra latch and data to the cache and will therefore have
to be more powerful. By centralizing these latches fewer are needed at the cost
of extra (on-chip) bus traffic. This enables buffering of write-backs for subsequent
accesses which will improve performance. In a system with non-embedded DRAM,
the situation is different as bus traffic is slow, limited and energy expensive.

In the delayed write-back scheme data in the cache has to be written back to make
space before a read operation can start. If the data to be written and the data
to be read belong to different DRAM banks, the two operations can be executed
in parallel. The advantage with this scheme is that data is only written back to
DRAM once. With the immediate write-back scheme, data might be written back
to DRAM twice. First, the data is written back right after reading. Then, if the
data is modified, it is written a second time when it is thrown out of the cache.

As an example to illustrate the difference between the two write-back schemes, a
simple program is executed with the two different write-back schemes (see Figure
I.4). The program is executed on hardware with the following properties: There
is only one DRAM bank, and a read or write operation to DRAM takes 3 clock
cycles. The read operations are destructive, the content of the loaded addresses
are erased in DRAM. The data cache has two cache lines and each line can store
one word. The cache has a 1 cycle latency and is not write-through. The cache is
initialized with unmodified cache lines for addresses x and y. The example shows
the difference in access patterns (number refers to lines in Figure I.4):

1. Address 0 is loaded into the cache and address x is thrown out. This line is
clean and there is no need for a write-back.

2. Address 1 is about to be loaded into cache, but the bus is busy with the
write-back from the previous instruction and this has to finish before loading

Paper I 81

 Cache content before

instruction is executed

Immediate
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 Line 0
 Line 1

1
 ADR[0]
 R1
 L0
 L0
 L0
 x
 y

2
 ADR[1]
 R2
 S0
 S0
 S0
 L1
 L1
 L1
 0
 y

3
 R1+R2
 ADR[0]
 S1
 0
 1

4
 ADR[2]
 R2
 S1
 S1
 S0
 S0
 S0
 L2
 L2
 L2
 0 *
 1

Delayed
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 Line 0
 Line 1

5
 ADR[0]
 R1
 Sx
 Sx
 Sx
 L0
 L0
 L0
 x
 y

6
 ADR[1]
 R2
 Sy
 Sy
 Sy
 L1
 L1
 L1
 0
 y

7
 R1+R2
 ADR[0]
 0
 1

8
 ADR[2]
 R2
 S0
 S0
 S0
 L2
 L2
 L2
 0
 1

Figure I.4: Example of execution with the two different write-back schemes. DRAM
bus activity is shown with LA for reading and SA for writing address A. The ad-
dresses that are kept in the cache(i.e. the state of the cache) before the instruction
is executed are shown to the right. The cache is initialized with addresses X and
Y which are not address 0, 1 or 2. Addresses 0, 2 map into the first cache line,
while address 1 maps into the second cache line. * indicates a modified cache line.
In all cases the delayed write-back scheme has to write data back to DRAM on
replacement, so cache lines can always be considered to be dirty.

can start.

3. The result of an addition is written in address 0. Since this address is in the
cache, it is a cache hit, and no activity on the bus is needed. The write-back
from the previous instruction starts as well.

4. Data from address 2 is loaded into the cache. However, before any DRAM
accesses can start, the write-back from instruction in line 2 has to finish (2
clock cycles). Then, the data in the cache has to be written back since it has
become dirty (address 0 and address 2 map to the same cache line). Finally
the load operation can start.

5. In the delayed write-back scheme data in cache is always treated as dirty.
Therefore before loading data for address 0, data in the cache has to be
written back.

6. Same as line 5.

7. Cache hit, no activity on the system bus.

8. Data in the cache has to be written back before loading can start.

In the delayed write-back scheme data for address 0 is only written once, while in the
immediate write-back scheme it is written twice for address 0. A load instruction
with the delayed write-back scheme takes 3 or 6 cycles; if the data in the cache line
that is replaced is on the same memory bank as the data that is loaded, it takes 6
cycles. Otherwise, when the data in the cache line and the data to be read are on
different banks, it takes 3 cycles. Load instructions with the immediate write-back

82 I.4. Methodology

Alpha

Processor

Pipelined

Level 1

Instruction

Cache

Level 1

Data

Cache

Switch and

write back buffer

....
 DRAM

bank n

DRAM

bank 1

Figure I.5: The simulated computer.

scheme takes 3 to 9 cycles. The first 3 clock cycles might be needed to wait for the
bus to become available due to earlier background writing operations. 3 additional
cycles are needed when the data in the cache line is dirty and have to be written
back to the same memory bank. Finally, 3 cycles are always needed for reading
data.

One important question is which of the two schemes has the highest performance.
With the immediate write-back scheme the result from a load operation is available
after only 3 cycles when the cache line is clean. The strength of the delayed write-
back scheme is the reduced traffic on the memory bus. In cases where data in the
cache is modified, the number of transactions on the bus is reduced to only one.

The advantage of the immediate write-back scheme depends on unmodified cache
lines while the advantage of the delayed write-back scheme depends on a modified
cache lines. Smaller caches will have a lower ratio of modified cache lines that are
replaced because data are swapped out before they are written to, while larger
caches will have a higher ratio of modified cache lines. The ratio of modified cache
lines that are replaced depends on the program as well.

I.4 Methodology

The purpose of our simulation is to study the performance of different write-back
schemes with destructive-read DRAM and compare this to conventional embedded
DRAM and to a theoretical write-back scheme with free write-backs for data con-
versation. The simulator is based on SimpleScalar version 3 [1]. It is extended to
simulate a configurable number of DRAM banks and a configurable stand alone
write-back buffer in addition to the two write-back schemes and Hwang’s original
scheme.

Paper I 83

A logical sketch of the simulated computer is shown in Figure I.5. The target is a
computer with embedded memory and one level of cache. The processor is simple
to save area and power. The configuration for the baseline of the simulations are:

• Cycle-true simulation.

• Alpha processor with a five stage pipeline running at 1 GHz.

• Single issue, no branch prediction buffer, no translation look-aside buffer,
in-order execution, single decode, single commit width, single ALU.

• Two independent caches, one instruction cache and one data cache. Both are
one kbyte, two way set associative caches with 64 bytes cache lines. Latency
is 1 ns.

• Four independent memory banks with simulation of congestion. Memory bus
width is the same as cache line width (64 bytes).

• Latency of DRAM is 6 ns for a read operation. For destructive-read, this is
3 ns for reading and 3 ns for writing. DRAM Refresh is not simulated as it
is presumed to have little effect on the result. Total access time for a cache
miss includes 1 ns for cache plus access time for DRAM.

• In simulations of Hwang’s original scheme, the latency of the memory system
is always 3 ns (write-backs are perfectly hidden in the large write-back buffer).

• A write-back buffer is implemented for each memory bank capable of storing
one cache line.

SPEC2000 applications were used as benchmark with lgred (large reduced input
dataset)[12] as the data set. One of the 26 applications found in the SPEC2000
did not work with the simulator (vortex application). In order to reduce compu-
tation time experiments that return average values are based on a subset of the
applications (gzip, gcc, crafty, mcf, swim, mgrid and equake). Sample tests show
that the subset represents the total average values within +/- 2%.

Four different configurations were simulated:

• Conventional represents the conventional DRAM scheme. Access latency is
double the latency of destructive-read DRAM (i.e. 6 ns), but no write-back
is required.

• Immediate is the immediate write-back scheme. Data is written back imme-
diately or put in the write-back buffer if enabled. Access time is 3 ns.

• Delay is the delayed write-back scheme. The cache behaves like a normal
cache, but the lines are always written back on replacement. Access time is
3 ns.

• No cost represents an ideal DRAM, combining the speed of destructive-read
and the data integrity of conventional DRAM. The intention is to study the

84 I.5. Evaluation

/∗ Code f o r read experiment ∗/
for (x=0;x<30000;x++) {

y=y+data [x] ;
z=z+data [x] ;

}
/∗ Code f o r read / w r i t e experiment ∗/
for (x=0;x<30000;x++) {

data [x]= data [x]+y ;
data [x]= data [x]+z ;

}

Figure I.6: Source code for the initial experiment.

performance degradation imposed by the extra write-backs for conserving
data. Access time is 3 ns.

• Hwang represents the original scheme from Hwang. Access time is 3 ns. The
accesses are guaranteed to be congestion free. No fast cache is included.

I.5 Evaluation

I.5.1 Initial experiment

An initial experiment was run to verify the predictions regarding performance (see
Figure I.4) of the two write-back schemes. The experiment has two test programs,
one that reads data and one that reads and writes data into a data structure as
shown in Figure I.6. To reduce the effect of instruction cache misses, the experiment
was run with a very large instruction cache. The data cache was limited (128
bytes) in the same way as in the example. There was only one memory bank
with 10 ns latency. The latency was set high so the effect of memory latency
becomes dominant. This configuration does not reflect a real system, but is used
to illustrate the differences between the two write-back schemes. The immediate
write-back scheme should suit the read experiment as the second line in the loop
can execute while write-back from the first line is executed in the background. The
delayed write-back scheme should suit the read/write experiment as the number of
write-backs to DRAM is reduced compared to the immediate write-back scheme.
The results from the experiment are summarized in Figure I.7 and are according
to predictions.

Paper I 85

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

Read/Write test
 Read test

IP
C

Immediate

Delayed

Figure I.7: Results from the initial experiment.

I.5.2 IPC for Different Write-back Schemes

Simulation of the different write-back schemes for the baseline architecture is shown
in Figure I.8. Average values are shown to the right. First of all we see that all
applications benefit from destructive-read DRAM except for art where the Hwang
scheme degrades performance. Secondly we see that the schemes with free write-
backs for data conversation, no cost, does not perform much better than the delayed
and immediate schemes. This indicates that the write-backs are well hidden in both
the delayed and immediate schemes. Even though Hwang scheme perform well for
some applications such as mgrid and crafty due to less congestion, the overall
performance is lower than the other scheme. This is because there is no fast cache
in this scheme.

Compared to conventional DRAM, the delayed write-back scheme is 13.2% faster,
immediate write-back scheme is 13.5% faster, no cost write-back scheme is 14.4%
faster and Hwang’s original write-back scheme is 12.1% faster. The differences in
performance of the applications are related to memory access patterns and locality
of the applications. Applications with poor locality that are memory bound such as
ammp, mcf and crafty benefit the most from destructive-read DRAM. Applications
with good locality that are CPU bound such as lucas and sixtrack have less but
significant advantage of destructive-read DRAM. The buffer size of Hwang’s original
scheme was 25% of the DRAM size. For the simulated applications the size of the
buffer is in the range of 170k-5714kbyte, depending on necessary memory size. The
other schemes are simulated with 1kbyte cache. By comparing the no cost scheme
with the other two destructive schemes, it is found that 1% of the performance is
lost due to extra write-backs for both immediate and delayed write-back schemes.

86 I.5. Evaluation

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
am
m

p

applu

apsi

art

bzi2p

crafty

eon
equake

facerec

fm
a

galgel

gap

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser
perlbm
k
sixtrack

swim

twolf

vpr
wupwise

average

IPC

C
onventional

D
estructive_delayed

D
estructive_im

m
ediate

D
estructive_no_cost

H
w

ang

Figure I.8: Performance of baseline configuration for different SPEC2000 bench-
marks.

Paper I 87

1

1.05

1.1

1.15

1.2

1.25

1.3

512
 1024
 2048
 4096
 8192
 16384
 32768
 65536
 131072
 262144
 524288

Cache size

S
pe

ed
up

 v
s.

 c
on

v.
 a

rc
h.

Non buffered Immediate

Non buffered Delayed

Buffered Immediate

Buffered Delayed

Figure I.9: Speedup in terms of increased IPC.

I.5.3 Cache size

The IPC for different cache sizes are shown in Figure I.9. Two different configu-
rations are simulated, with a small write-back buffer in addition to the cache, and
without this write-back buffer. We see that this small write-back buffer (one entry)
has a big impact on the performance for the delayed write-back scheme. The buffer
changes the access pattern for a memory access; in cases with congestion the de-
layed write-back is performed after the read access. For the immediate write-back
schemes the buffer has less impact, but is still significant.

Smaller caches increase the miss rate and the number of accesses to the memory
system. Larger caches increase the hit rate until a point where compulsory misses
start to dominate. The immediate write-back scheme is slightly better than the
delayed write-back scheme for small caches. For larger caches they perform more
or less equal. In order to understand this advantage, the ratio of the number of
accesses to the DRAM subsystems for the two schemes is shown in Figure I.10.
In the delayed write-back scheme, data are not written back immediately. For
modified data (by the CPU), the total number of accesses is reduced compared to
immediate write-back scheme where data are written twice in this case. Larger
caches improve the probability of data being modified before being replaced for
data caches. The advantage of the immediate write-back scheme is that data is
available earlier in cases where there is a conflict between writing and reading data.
Even though the two models are different, performance is similar except for small
caches where the immediate write-back scheme is better.

88 I.5. Evaluation

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

512
 1024
 2048
 4096
 8192
 16384
 32768
 65536
 131072
 262144
 524288

Cache size

R
a

ti
o

 o
f

n
o

.
o

f
D

R
A

M
 a

c
c
e

s
s
e

s

b
e

tw
e

e
n

 d
e

la
y
e

d
 a

n
d

im
m

e
d

ia
te

 w
ri
te

-b
a

c
k
 s

c
h

e
m

e

Figure I.10: Comparison of the total number of accesses to DRAM from caches
for the two different write-back schemes. For larger caches more data are modified
before they are written back to DRAM, and this gives the delayed write-back
scheme an advantage.

I.5.4 Latency and number of DRAM banks

Simulation of different DRAM-latencies is shown in Figure I.11. As latency in-
creases, performance degrades as the CPU is stalled. Even though the IPC is de-
graded by increasing the latency of the memory, the speedup of using destructive-
read memory increases with increasing cache size. The delayed and immediate
schemes degrade faster than the no cost scheme due to conflicts between reading
and writing. Increasing the number of memory banks reduces the probability of
congestion. The effect of increasing (or decreasing) the number of DRAM banks
is shown in Figure I.12a. In this configuration each bank is independent and can
handle one memory access each simultaneously. In addition to increasing the max-
imum number of parallel accesses, increasing bank count decreases the probability
that two accesses are to the same memory bank as data are spread out to more
banks.

I.5.5 Write-back Buffer size

The write-back buffer is complementary to the cache and each memory bank has its
own small fully associative write-back buffer. They are important for performance
of the delayed write-back scheme as shown in Figure I.12b. In this scheme data has
to be written back when the cache line is replaced. Without a buffer the processor
has to wait for both operations to finish before data becomes available. In the
immediate write-back scheme this buffer is less important. A write-back buffer
with only one entry for each memory channel (total 256 bytes) is adequate for the
simulated configuration.

Paper I 89

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

4
 6
 12
 24
 48

DRAM read (including writeback) cycle time [ns]

IP
C

Conventional

Destructive_delayed

Destructive_immediate

Destructive_no_cost

Figure I.11: Average IPC as a function of latency. Write-backs become blocking
as latency is increased. The values on the x-axis are non-linear, the first value is
increased from 3 to 4 ns to match the cycle time of the CPU.

0.42

0.44

0.46

0.48

0.5

0.52

1
 2
 4
 8

Number of independent DRAM banks

I
P

C

Conventional

Destructive_delayed

Destructive_immediate

Destructive_no_cost

0
 256
 512
 1024

Size of write-back buffer in byte

Figure I.12: (a) To the left, average IPC as a function of the number of DRAM
banks. For a small number of DRAM banks, write-backs blocks performance. (b)
To the right, average IPC as function of number of buffer size. By turning off the
write-back buffer, the delayed write-back model has to wait for the data in the
cache to be written back before a new line can be loaded in cases where these two
line are mapped to the same memory bank.

90 I.6. Discussion

0

10

20

30

40

50

60

70

80

90

100

4096
 8192
 16384
 32768
 65536
 131072
 262144
 524288

Conventional cache size

C
ac

he
 s

iz
e

re
dc

uc
tio

n
in

 %

Figure I.13: Cache size saving in % by using destructive-read DRAM compared
to conventional DRAM for equal or better performance. This figure is based on
Figure I.9.

I.6 Discussion

The simulated results support our predictions regarding cache size and write-back
schemes. In systems with a relatively large cache, delayed write-back is the pre-
ferred scheme due to less traffic on the DRAM bus, while for smaller caches, im-
mediate write-back results in slightly increased performance due to data being
available earlier.

The buffer size of Hwang’s original scheme was 25% of the DRAM size. For the
simulated applications this buffer will be in the range of 170k-5714kbyte, and this
is outperformed with the new schemes with a smaller 1kbyte cache.

The simulations show that the process of writing back data is hidden quite well
(about 1% of IPC is lost due to write-backs in the baseline scheme), this is true
for both write-back schemes. This is shown to be connected to the number of
independent memory banks and the write-back buffers for each memory bank. More
banks reduces the probability of congestion. Write-back buffers change the delayed
write-back scheme to first read data before the existing cache line is written, and
therefore data becomes available earlier and performance is increased. For longer
memory latencies, congestion is more likely as a write operation has to finish before
a read operation can start.

By comparing the performance of different configurations it can be seen that by
replacing conventional DRAM with destructive-read DRAM, cache sizes can be
reduced without degrading performance. The savings in cache size is shown in
Figure I.13. Even though the baseline for the simulation has small caches, we have
found that the cache size can be reduced with median 75% for cache size in the range
4kbytes to 512 kbytes when applying destructive-read DRAM without degrading
performance. Reducing cache size has a positive impact on power consumption and
less chip area is needed.

Paper I 91

The bus between DRAM and cache has to run at double the speed with destructive-
read DRAM compared to conventional DRAM. Since the bus is on-chip this should
result in only slightly higher power consumption. DRAM contributes to just a small
portion to the total power consumption in most computers (not including off-chip
buses).

We have used a constant latency for the caches in our simulation. In real caches
the latency of the cache is a function of the size of the cache. Smaller caches are
faster than larger caches. A more accurate model would be to reduce the latency of
the cache for smaller caches. This would be an advantage for the destructive-read
DRAM schemes, and by using a constant cache access time we introduce an error
that is a disadvantage for our schemes.

We have simulated a factor two difference in latency for destructive-read compared
to conventional read from DRAM. This was based on the number from a prototype.
However, we have shown that the write-backs are hidden very well. Less than 1%
of the performance is lost due to congstion for the baseline scheme. Therefore, even
a small decrease in latency for destructive-read DRAM will increase IPC.

I.7 Related Work

Most of projects that have researched into merging processors and memory have
not looked into DRAM design, but presume a conventional design. The C*RAM
project[4] is an exception that integrated small processing elements into the sense
amplifiers and utilized the parallelism available at that level. A scaled down pro-
totype was made. It was a SIMD computer with single bit processors. This archi-
tecture was mainly suitable for problems with high data locality because of limited
communication between the single bit processing elements.

Many other projects use SIMD architectures to utilize the extra bandwidth: the
IRAM project [17], Yukon [11], Terasys [6] and Execube [13]. The Mitsubishi
M32R/D [15] chip uses the bandwidth to increase the number of bits in the data bus
between main memory and cache. The use of FPGA technology and independent
processors have also been proposed to utilize the bandwidth ([2, 14]).

I.8 Conclusion

In order to reduce cache sizes we have looked into increasing the speed of the
DRAM bank in combination with enhancing the tasks of the cache. In our schemes
the caches are responsible for conserving data read from DRAM memories. We
have shown that this does not infer any bottlenecks and that the cache size can
be dramatically reduced by 75% compared to a conventional architecture without
degrading performance in terms of IPC. The large write-back buffer used in the
prototype by Hwang et. al can be eliminated without significant performance

92 Bibliography

degradation. The possible reduction in cache size reduces both dynamic and static
power consumption as well as system size. The chip area made available by reducing
cache size can be used to increase the number of processors or memory size.

Bibliography

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for com-
puter system modeling. IEEE Computer, Volume 35, Issue 2, Feb. 2002.

[2] J. Draper, C. W. Kang, I. Kim, G. Daglikoca, J. Chame, M. Hall, C. Steele,
T. Barrett, J. LaCoss, J. Granacki, J. Shin, and C. Chen. The architecture of
the DIVA processing-in-memory chip. Proc. 16th ACM Int’l Conf. Supercom-
puting, p:14-25, 2002.

[3] H. Dybdahl, P. Kjeldsberg, M. Grannæs, and L. Natvig. Destructive-read
in embedded DRAM, impact on power consumption. Journal of Embedded
Computing, Special Issue on Embedded Single-Chip Multicore Architectures,
Issue 2, 2006, 2006.

[4] D. G. Elliott, W. M. Snelgrove, and M. Stumm. Computational RAM: A
memory-SIMD hybrid and its application to DSP. In CICC, Boston, MA,
pages:30.6.1-30.6.4, 1992.

[5] T. Furuyama. Trends and challenges of large scale embedded memories. Cus-
tom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004,
Page(s):449 - 456, 2004.

[6] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory; the Terasys
massively parallel PIM array. IEEE Computer, pages:23-31, Apr. 1995.

[7] L. Gwennap. Embedded DRAM use rises. Nikkei Electronics Asia, June, June
2003.

[8] C.-L. Hwang, T. Kirihata, and M. W. et.al. A 2.9ns random access cycle
embedded DRAM with a destructive-read architecture. VLSI Circuits, Digest
of Technical Papers, IEEE Symposium on, p:174-175, 2002.

[9] B. Ji, S. Munetoh, C.-L. Hwang, M. Wordeman, and T. Kirihata. Destructive-
read random access memory system buffered with destructive-read memory
cache for SoC applications. VLSI Circuits, Digest of Technical Papers. Sym-
posium on, pages:85 - 88, June 2003.

[10] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Patnaik, and
J. Torellas. FlexRAM: Towards an advanced intelligent memory system. Int.
Conference on Computer Design, 1999.

[11] G. Kirsch. Active memory: Micron’s Yukon. Parallel and Distributed Process-
ing Symposium, Proceedings. International, number of pages:11, Apr. 2003.

Paper I 93

[12] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new spec benchmark work-
load for simulation-based computer architecture research. Computer Architec-
ture Letters, 1, June 2002.

[13] P. Kogge, T. Sunaga, H. Miyataka, K. Kitamura, and E. Retter. Combined
DRAM and logic chip for massively parallel systems. IEEE, Adv. Research in
VLSI,16th Conf. on, 1995.

[14] K. Mai, T. Paaske, N. Jayasena, W. R. Ho, Dally, and M. Horowitz. Smart
Memories: A modular reconfigurable architecture. ISCA, June 2000.

[15] Y. Nunomura, T. Shimizu, and O. Tomisawa. M32R/D-integrating DRAM
and microprocessor. Micro, IEEE, Volume: 17, Issue: 6, pages:40-48, Nov.
1997.

[16] M. Oskin, F. Chong, and T. Sherwood. Active Pages: A model of computation
for intelligent memory. International Symposium on Computer Architecture,
Barcelona, Spain, 1998.

[17] D. Patterson, T. Anderson, and K. Yelick. A case for intelligent DRAM:
IRAM. Presented at Hot Chips VIII, Palo Alto CA, pages:18-20, Aug. 1996.

[18] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: the case
for processor/memory integration. In ISCA ’96: Proc. of the 23rd annual int.
symp. on Computer architecture, pages 90–101, New York, NY, USA, 1996.
ACM Press. ISBN 0-89791-786-3. doi: http://doi.acm.org/10.1145/232973.
232984.

[19] L. Yerosheva, S. Kuntz, J. Brockman, and P. Kogge. A microserver view of
HTMT. Parallel and Distributed Processing Symposium, Proceedings 15th
International, number of pages:10, Apr. 2001.

94

Paper II

Destructive-Read in
Embedded DRAM, Impact
on Power Consumption

Haakon Dybdahl, Per Gunnar Kjeldsberg, Marius Grannæs and Lasse
Natvig
In Journal of Embedded Computing, Vol 2, Issue 2, 2006

96

Paper II 97

Abstract
This paper explores power consumption for destructive-read embedded DRAM.
Destructive-read DRAM is based on conventional DRAM design, but with sense
amplifiers optimized for lower latency. This speed increase is achieved by not con-
serving the content of the DRAM cell after a read operation. Random access time
to DRAM was reduced from 6 ns to 3 ns in a prototype made by Hwang et. al. A
write-back buffer was used to conserve data. We have proposed a new scheme for
write-back using the usually smaller cache instead of a large additional write-back
buffer. Write-back is performed whenever a cache line is replaced. This increases
bus and DRAM bank activity compared to a conventional architecture which again
increases power consumption. On the other hand computational performance is
improved through faster DRAM accesses. Simulation of a CPU, DRAM and a 2
kbytes cache show that the power consumption increased by 3% while the perfor-
mance increased by 14% for the applications in the SPEC2000 benchmark. With
a 16 kbytes cache the power consumption increased by 0.5% while performance
increased by 4.5%.

Keywords: Embedded DRAM, power estimation, Simplescalar, destructive-read
memory, processing in memory

98 II.1. Introduction

Cache
 DRAM
 Cache
 DRAM

Processing

unit

Cache
 DRAM

Processing

unit

Cache
 DRAM

Processing

unit

Processing

unit

Figure II.1: Multiple cores and memory in a single chip.

II.1 Introduction

Main memory and central processing units (CPUs) have both become increasingly
powerful during the last 30 years, but their progress have taken different directions.
CPUs have got faster clock cycles and more computations per clock cycle while main
memory can store more data. Today there is a magnitude of difference in cycle time
between main memory and CPUs, often referred to as the processor memory perfor-
mance gap. Reducing the effect of this gap has been a main research objective for
decades. This has resulted in various mechanisms such as caches, out-of-order sch-
eduling, prefetchers and simultaneous multithreading. These mechanisms consume
a substantial amount of power and are thus a challenge when designing battery
driven equipment, but also for design of high performance CPUs. For systems
with multiple cores on a single chip the overall power usage limits the performance
and/or the number of cores that can be integrated.

The target architecture is shown in Figure II.1. Each processor is relatively simple
and has its own cache, DRAM banks and a communication channel to the other
processors. Hwang et al. [10] made a prototype which enables lower latencies in
DRAM by modifying the sense amplifiers to omit write-backs. Reading a memory
cell thus destroys its content and the only copy now exists in a write-back buffer.
To ensure that later write-backs of data to DRAM do not inflict a performance
penalty, this buffer must at least be as large as the DRAM bank size. We have
proposed a new scheme for write-back utilizing the usually smaller cache instead
of this large additional write-back buffer [5]. In our scheme the size of the cache is
not dependent on DRAM bank size. Simulations of a system with 2 kbytes cache
show that speed is improved by 14% with our approach compared to conventional
DRAM. Due to the increased speed of the DRAM, the cache size can be reduced by
a factor four in a system with destructive-read DRAM compared to conventional
DRAM without degrading performance. Our previous work has not considered
energy consumption, and this is the topic for this work.

The concept of destructive-read DRAM is explained in Section II.2. The models
used for power estimation is described in Section II.3. Section II.4 describes the
simulations that are run and Section II.5 describes the results. Section II.6 is
discussion and Section II.7 conclusions followed by references.

Paper II 99

Memory

array

R

o
w

d

e
c

o
d

e
r

B

i
t

l
i

n

e

s

Word lines

Sense amps

Column decoder

Transistor

Capacitor

Figure II.2: Inside a DRAM bank.

II.2 Embedded Destructive-Read DRAM

II.2.1 Embedded Memory

DRAM is cheap, dense and consumes little power compared to other technologies;
therefore it is the main choice for main memory. DRAM is traditionally found on
separate chips and connected to the CPU through off-chip buses. These off-chip
buses introduce capacitance which again increases power consumption and latency.
The number of pins available on the CPU packages introduces a practical limit for
the bus width. By merging main memory and CPUs, this external bus is eliminated.
Main memory has a much higher internal bandwidth than what is available through
the off-chip buses. By utilizing embedded DRAM the internal bandwidth of main
memory is available to the CPU. However, the process of merging main memory
and central processing unit is not trivial as DRAM uses capacitors to store data (see
Figure II.2). DRAM chips are optimized for these analog circuits. Logic circuits on
the other hand are optimized for speed and power distribution. As a consequence,
embedded DRAM is not as dense (bits per area) as conventional DRAM chips.
The actual density depends on the technology used[13]. The most sophisticated
technology combines processes from DRAM manufacturing and CMOS logic chip
manufacturing while the simplest generates the cells in pure CMOS. An additional
advantage of embedded DRAM, compared to the normally faster embedded SRAM,
is that the standby leakage power is much smaller. This factor becomes increasingly
important as the technology continues to shrink below 180nm[12].

II.2.2 Related Work

Several projects have done research into merging processors and memory ([4, 6, 7,
15, 17, 20, 22, 23, 28, 30]). Most of these projects assume a conventional DRAM
design. The C*RAM project[6] is an exception where small processing elements
are integrated into the sense amplifiers, utilizing the parallelism available at that
level. A scaled down prototype was made. It was a SIMD computer with single bit

100 II.2. Embedded Destructive-Read DRAM

Type Access Time
PC133 SDRAM 71.4nS
DDR266 DRAM 58.8nS
RL DRAM 25.0nS
130nm embedded DRAM 12.0nS
90 nm embedded DRAM Dense 8.0nS
90 nm embedded DRAM Fast 4.5nS
DDR SRAM 3.3nS
Embedded SRAM 2.0nS

Table II.1: Random cycle time for various memories [11].

processors. This architecture is only suitable for problems with high data locality
because of limited communication between the single bit processing elements.

Many other projects use SIMD architectures to utilize the extra bandwidth: e.g.
the IRAM project [26], Yukon [17], Terasys [7] and Execube [19]. The Mitsubishi
M32R/D chip [22] and Saulsbury et. al [28] use the bandwidth to increase the
number of bits in the data bus between main memory and cache. FPGA and in-
dependent processors have also been proposed to utilize the bandwidth ([4, 20]).
During the last few years, embedded DRAM has become more common, and chips
are in mass production with this type of memory integrated with graphics or net-
work processors such as Sony’s Playstation 2, Xbox 360, EZchip’s NP-1c[8] network
processor and Nintendo’s GameCube. Embedded DRAM is becoming commercially
available at different speeds. Table II.1 contains random access latency time for
various memory technologies. By reducing the size of each memory bank, a smaller
unit is activated during an access. As will be explained in Section III, the bank
size has a large influence on the power consumption.

A comprehensive study of different aspects of memory and data intensive design
can be found in [3] and [24].

II.2.3 Destructive-Read DRAM

Destructive-read DRAM [10] is a modified version of conventional DRAM. A mem-
ory bank with conventional DRAM is shown in Figure II.2. A charged capacitor
(normally) represents the logic high value, while an uncharged capacitor represents
the logic low value. The row decoder is the first component activated in a read
access. It enables one word line and causes all transistors in that row to be acti-
vated. These transistors connect the capacitors in the memory array to the sense
amplifiers through bit lines. The bus out of a DRAM macro often has fewer lines
than the number of bit lines inside the macro. The column decoder controls which
subset of bit lines that are read or written. The sense amplifiers work in three
phases as shown in Figure II.3a. In the first phase the charge (or lack of charge)
from the capacitor drives the sense amplifier into a logic high (or low), in both cases

Paper II 101

(1) signal development

and sense

(2) write
 (3) precharge

bit line

word line

a) Conventional DRAM

b) Destructive-Read read
 c) Destructive-Read write back

(1) signal development

and sense

(3) precharge

(3)

precharge

(2) write back

Figure II.3: Conceptual waveform diagrams of conventional DRAM architecture
vs. destructive-read [10].

DRAM

cells
 Buffer
 Cache

Bus

Sense amp

DRAM

cells

Cache

Sense amp

(a) Conventional DRAM

(b) Destructive-read DRAM

Figure II.4: Conceptual view of DRAM.

leaving the capacitor discharged. In the second phase the logic state is locked. In
Figure II.4a the locking works as a buffer. From this buffer the data is both sent
to the processor and written back to memory. In the final phase the bit lines are
precharged so they are ready for the next access. Destructive-read DRAM memory
works differently. The read operation of conventional DRAM (see Figure II.3a) is
split into two cycles (see Figure II.3b and c). The destructive-read DRAM does
not lock the data after reading (as shown in Figure II.4b). Instead the data are
sent directly out of the chip, in this case to cache memory. Since data is not sent
back to memory, the capacitor is left discharged and data is destroyed. Data is
conserved by writing it back to DRAM later as shown in II.3c. However, write-
back is not performed immediately after the read, this in contrast to conventional
DRAM where read and write-back are a single operation.

102 II.3. Model for Power Consumption

II.2.4 Write-backs

Hwang et al. made a prototype where random access time to DRAM was reduced
from 6 ns (conventional read) to 3 ns (destructive-read). The prototype had four
independent memory banks and a large write back buffer (WBB) that was the same
size as one memory bank. The WBB was made out of SRAM. The purpose of the
WBB was to hide write-backs, not to reduce latency. The WBB could write-back
to several banks simultaneously and required significant chip area. Later a new
scheme was made where the WBB was replaced with destructive-read DRAM[14].
The designs guaranteed that write-backs never conflicted with read operations. We
have proposed new schemes that remove the large write-back buffer and increase
performance by utilizing the cache [5]. The data is first read from DRAM and into
the cache. At this time data are not stored in DRAM, only in the cache. Data are
written back to DRAM when the cache line is replaced. In a conventional scheme
data is only written back if data is modified, while in this scheme data is always
written back. Therefore this scheme can be compared to a cache that always has
dirty cache lines. Write-backs are partially hidden by using several memory banks
so data can be read from one bank while writing to a different bank. However, in
some cases the read operation and the write back access the same memory bank,
causing a delay. Figure II.5 shows the number of instructions per clock cycle (IPC)
for a system with conventional DRAM and our destructive-read DRAM scheme,
both with a 2 and 16 kbytes cache for the applications in SPEC2000 benchmark
suite.

II.3 Model for Power Consumption

Power consumption in computers can be divided into static and dynamic power
consumption. Dynamic power consumption for a CMOS chip is shown in Equation
II.1.

Pdynamic = Cswitched ∗ V 2
dd ∗ fclk (II.1)

Vdd is supply voltage, fclk is frequency and Cswitched is the total effective switched
capacitance, i.e. is the average capacitance of the transistors and communication
lines that are switch in each clock cycle. In synchronous designs such as a micro-
processor the clock distribution adds a significant value to Cswitched.

As chips get denser, leakage power increases, and transistors consume more power
without switching[12]. This is called static power consumption. Caches have higher
leakage currents per stored bit compared to DRAM because of higher transistor
count, and will therefore consume more power in denser technologies compared to
DRAM.

Paper II 103

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

gz
ip

gc
c

cr
af

ty

m
cf

sw
im

m
gr

id

eq
ua

ke

ap
pl

u
 vp
r

am
m

p

m
es

a

ga
lg

el

lu
ca

s

fm
a

pa
rs

er

si
xt

ra
ck

eo
n

pe
rlb

m
k

ga
p

bz
i2

p

ap
si

w
up

w
is

e

tw
ol

f

fa
ce

re
c
 ar
t

IP
C

Conv_2

Dest_2

Conv_16

Dest_16

Figure II.5: IPC for the applications in the SPEC2000 benchmark suite for con-
ventional (conv) and destructive-read (dest) DRAM with 2 and 16 kbytes cache
configuration. The average IPC is 13.7% higher for dest 2 compared to conv 2,
and 4.5% higher for dest 16 compared to conv 16.

II.3.0.1 Voltage and Frequency

The following relationship between frequency and power has been described by
Khellah and Elmasry[16]:

Td ≈
CL ∗ Vdd

κ ∗ (Vdd − Vth)ᾱ
(II.2)

Td is the delay of a CMOS gate, where CL is the load capacitance, κ is a factor that
depends on the process and gate size, ᾱ takes a value between one and two, Vth is
the threshold voltage and Vdd is the supply voltage. Even though the formula is not
complicated, a lot of complexity is hidden in the ᾱ, Vth, CL and κ factors. However,
what can be read from this formula is that for a given technology and circuit, the
maximum operating frequency is a function of supply voltage. This fact is used
for power saving in commercial computer systems in a technique called dynamic
voltage-frequency scaling. The technique reduces both frequency and voltage for
the system when maximum computational performance is not needed.

II.3.1 Power model of DRAM with bus

The data flow of accessing DRAM from cache is shown in Figure II.6. The address
and control signals are sent to the DRAM bank. Data are read out of the bank

104 II.3. Model for Power Consumption

Figure II.6: Data communication when accessing a memory bank.

and written back along the route shown as a thick gray line. Equation II.3 shows a
model for the energy consumption (EMEM) for these components for the execution
of a complete application, e.g. one of the benchmarks from Figure II.5.

EMEM = NACC ∗ (EDRAM + ESWITCH + EBUS) (II.3)

NACC is the number of DRAM memory accesses, and for a single access: EDRAM
is energy consumed in the DRAM banks, EBUS is energy consumed by the bus and
ESWITCH is energy consumed by the switch and the write-back buffer.

Yong-Ha Park et. al. [25] have made a model for the dynamic power consumption
of embedded DRAM at an abstraction level that matches the simulation model
that we are using for the processor. We have based Equation II.4 on this model.

EDRAM = NROW ∗ EROW +NCOL ∗ ECOL (II.4)

NROW is the number of row activations, NCOL is the number of column activations,
EROW is energy consumed by activation of a row in the embedded DRAM and
ECOL is energy consumed by activation of a column in the embedded DRAM. All
these variables are for a single memory access. Burst transfer is not used in this
work because communication is on-chip and the bus width is increased instead. In
this way the column decoder is not needed as one word line of the memory array
is read or written simultaneously. Refresh of DRAM is not different for the two
DRAM models and is therefore omitted for simplicity. The result is that NCOL
is one and NROW is the number of data bits which is 512 in our model. The
consequence is that EDRAM is equal for all memory accesses because each access
activates one row and 512 columns. In order to quantify EDRAM we use a DRAM
macro made by Morishita et.al [21]. The power consumption is 0.260 W at 250
MHz (in 130 nm technology) for accessing a 16 Mb bank. This is approx. 1 nJ
for one access with 128 bits, and we conservatively multiply this with 4 for 512
bits width resulting in EDRAM = 4nJ for our DRAM bank. Power consumption
depends on DRAM macro size as this impacts wire lengths, the number of cells
activated in parallel, etc. Smaller macros consume less power while larger macros

Paper II 105

consume more power per access. Research on interconnection is a large topic and
several techniques exists (see for example [27]). Ron Ho et.al.[9] have made efforts
to quantify energy consumption for buses, and found that a wire of length 10 mm
in 180 nm with 1.8 volt require < 1 pJ per bit for techniques with voltage swing
reduction and < 10 pJ for a simple bus wire. We conservatively use the simple wire
and 10 mm bus (10 pJ). This result in EBUS = 5.4pJ for 544 bus lines (512 data
+ 32 address).

The power consumption for the write-back buffer and switch was modeled as a 2 kB
cache with four banks and 64 bytes block size in CACTI[29] (in 180 nm technology).
It consumes 0.31 nJ per bank per access. We conservatively use ESWITCH = 1nJ .

This results in EMEM = 10.5nJ ∗NACC . The same energy model is applied to both
destructive-read DRAM and conventional DRAM, and used for both read and write
operation. This is acceptable as our main goal is to compare the two techniques, not
necessarily to have exact estimates. There are fewer operations performed in the
destructive-read DRAM since no write-back is performed during each read. Static
power consumption is not included in this power model as it is not different for
conventional and destructive-read DRAM. Using destructive-read DRAM results
in shorter execution time and the static power consumption will be slightly lower.
If in error, the power consumption penalty of using the destructive-read DRAM
will therefore be overestimated.

II.4 Simulations

The purpose of our simulations is to study the energy consumption and perfor-
mance of the destructive-read DRAM and compare this to conventional DRAM.
For simplicity, only one node of the parallel architecture is simulated. The simu-
lator is based on SimpleScalar version 3 [1]. It is extended with Wattch [2] and
HotLeakage [31]. We have further extended it to simulate a configurable number
of DRAM banks with congestion and a configurable stand alone write-back buffer.
A logical sketch of the simulated computer is shown in Figure II.7.

Wattch with HotLeakage contain parameters for power consumption for different
technologies and the simulation model is fully configurable. However, they do not
contain values for DRAM and memory buses to DRAM. For this, the estimate
of 10.5 nJ per access from the previous section is used. The configurations for
the baseline of the simulations are cycle-true simulation with a five stage Alpha
processor at 180 nm technology. Processor properties are single issue, static branch
prediction, no translation look-aside buffer, in-order execution, single decode, single
commit and single ALU. There are two independent caches, one instruction cache
and one data cache each with 64 bytes cache lines, two ways set associative, and
cache size of one kbytes each. Latency is one clock cycle. Eight independent
memory banks are used for simulation of congestion. Memory bus width is the
same as cache line width (64 bytes). Latency of conventional DRAM is six clock

106 II.5. Results

Alpha

Processor

Pipelined

Level 1

Instruction

Cache

Level 1

Data

Cache

Switch and

write back buffer

....
 DRAM

bank n

DRAM

bank 1

Figure II.7: The simulated single chip computer.

cycles for a read operation. For destructive-read, this is three clock cycles for
reading and three clock cycles for writing. DRAM refresh is not simulated as it
is presumed to have little and similar effects on the result for both configurations.
Total access time for a cache miss includes one clock cycle for cache plus access
time for DRAM. A write-back buffer is implemented for each memory bank capable
of storing one cache line.

SPEC2000 applications were used as benchmark with lgred (large reduced input
dataset)[18] as the data set. One of the 26 applications found in the SPEC2000
did not work with the simulator (vortex application).

II.5 Results

The energy consumption for the various SPEC2000 benchmarks is shown in Figure
II.8. The total energy consumption level shows little difference between the two
models. However, for the destructive-read DRAM model, a larger part of the energy
is consumed in the DRAM. On average the energy consumption is increased with
0.46% for destructive-read DRAM compared to conventional DRAM. As will be
shown later, this is compensated by a much larger increase in performance.

Details of the energy consumption components for gcc is shown in Figure II.9. Since
the destructive-read DRAM model results in less computational time, less energy
is spent on clock distribution and other active waiting components. On the other
hand more energy is spent on DRAM components.

The average number of DRAM accesses per clock cycle is shown in Figure II.10.
The number of accesses is more than doubled for some applications. This is because
more instructions are executed per clock cycle due to lower memory latency. Other

Paper II 107

0

10

20

30

40

50

60

70

80

90

gzip conv

gzip dest

gcc conv

gcc dest

crafty conv

crafty dest

mcf conv

mcf dest

swim conv

swim dest

mgrid conv

mgrid dest

equake conv

equake dest

applu conv

applu dest

vpr conv

vpr dest

ammp conv

ammp dest

mesa conv

mesa dest

galgel conv

galgel dest

lucas conv

lucas dest

fma conv

fma dest

parser conv

parser dest

sixtrack conv

sixtrack dest

eon conv

eon dest

perlbmk conv

perlbmk dest

gap conv

gap dest

bzi2p conv

bzi2p dest

apsi conv

apsi dest

wupwise conv

wupwise dest

twolf conv

twolf dest

facerec conv

facerec dest

art conv

art dest

Energy consumed, 16 kbyte [J]

dram

clock

dcache

icache

lsq

resultbus

renam
e

regfile

alu

bpred

window

0

10

20

30

40

50

60

70

80

Energy consumed, 2 kbyte [J]

Figure II.8: Energy consumption for various applications in the SPEC2000 suite
for conventional DRAM (conv) and destructive-read DRAM (dest). Total cache
size is 16 kbytes to the left and 2 kbytes to the right. Average increase in power
consumption from conventional to destructive are 0.5% and 3% for 16 kbytes and
2 kbytes caches respectively. The graphs of sixtrack and art are invisible due to
short execution time.

108 II.5. Results

window

8,7 %

bpred

6,1 %

alu

8,1 %

regfile

1,7 %

rename

0,6 %

resultbus

1,4 %

lsq

1,4 %

icache

9,1 %

dcache

6,3 %

clock

50,2 %

dram

6,3 %

window

8,9 %

bpred

6,4 %

alu

8,4 %

regfile

1,8 %

rename

0,6 %

resultbus

1,4 %

lsq

1,4 %

icache

9,3 %

dcache

6,5 %

clock

51,5 %

dram

3,8 %

Figure II.9: Energy consumption for gcc for destructive-read DRAM to the left
and conventional DRAM to the right. Cache size is 16 kbytes.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

gz
ip

gc
c

cr
af

ty

m
cf

sw
im

m
gr

id

eq
ua

ke

ap
pl

u

vp
r

am
m

p

m
es

a

ga
lg

el

lu
ca

s

fm
a

pa
rs

er

si
xt

ra
ck

eo
n

pe
rlb

m
k

ga
p

bz
i2

p

ap
si

w
up

w
is

e

tw
ol

f

fa
ce

re
c

ar
t

N
o

. o
f

D
R

A
M

 a
cc

es
se

s
p

er
 c

lo
ck

 c
yc

le

 Conventional

Destructive

Figure II.10: Number of DRAM accesses per clock cycle for 16 kbytes cache. Due
to increased IPC the number of DRAM accesses can be more than doubled for each
clock cycle.

Paper II 109

1.6

1.8

2

2.2

2.4

512
 1024
 2048
 4096
 8192
 16384
 32768
 65536
 131072
 262144

Total cache size [bytes]

T

o

t
a

l

n

u

m

b

e

r

o

f

c

y

c

l
e

s

[

b

i
l

l
i
o

n

s

]

13

15

17

19

21

23

E

n

e

r
g

y

c

o

n

s
u

m

p

t
i

o

n

[

J
]

0.008

0.009

0.01

0.011

0.012

0.013

0.03

0.05

0.07

0.09

0.11

0.13

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

15

20

25

30

35

Time Conventional

Time Destructive

Power Conventional

Power Destructive

A)

B)

C)

Figure II.11: Number of clock cycles and energy consumption for a) Ammp., b)
Art and c) Twolf.

applications show little increase, as more data is modified by the processor and has
to be written back in both schemes.

Three of the applications from the SPEC2000 benchmark were selected for further
study: art, ammp and twolf. art was chosen because of the small energy consump-
tion in DRAM, ammp was chosen due to high amount of DRAM energy usage and
twolf was chosen as an average application.

Performance and energy consumption for twolf as function of cache size is shown
in Figure II.11c). Optimizing for low execution time gives larger cache sizes and
optimizing for low energy consumption results in cache size of 4 kbytes. The
destructive-read architecture consumes more energy than the conventional model
for this application. The difference is largest for small caches. This is due to
reduced DRAM traffic for larger caches caused by lower miss-ratio in the cache.
Performance is better for destructive-read DRAM, especially for small caches. The
product of execution time and energy consumption is shown in Figure II.12c). A
cache of size 16 kbytes is the optimal for minimizing (linearly) both energy con-
sumption and execution time.

For the art application the energy consumption and execution time are shown
in Figure II.11b). For small caches there is a difference while for caches larger
than 4 kbytes there is little difference. The product of execution time and energy
consumption is shown in Figure II.12b). Caches of 4 kbytes is the optimal size for
minimizing (linearly) both energy consumption and execution time.

110 II.6. Discussion

24

26

28

30

32

34

36

38

40

512
 1024
 2048
 4096
 8192
 16384
 32768
 65536
 131072
 262144

Total cache size [bytes]

Product Conventional

Product Destructive

0.0006

0.0007

0.0008

0.0009

0.001

45

55

65

75

85

A)

B)

C)

Figure II.12: Product of execution time and energy consumption for a) Ammp., b)
Art and c) Twolf

A study of performance and energy consumption for ammp application as a function
of cache size is shown in Figure II.11a). For larger caches the destructive-read model
requires less energy than the conventional model. This is due to shorter execution
time. The product of execution time and energy consumption is shown in Figure
II.12a). Caches of 2 kbytes is the optimal size for minimizing (linearly) both energy
consumption and execution time.

II.6 Discussion

It is assumed that EMEM = 10.5nJ is consumed for each access to the DRAM
subsystem. This assumption influences the power consumption and not the com-
putational speed (IPC). The impact of this value depends on factors such as cache
miss ratio and the power consumption of the processor. We have assumed that
energy consumption is proportional with the number of DRAM accesses plus the
energy consumption in processor and cache. For the twolf application with 16
kbytes cache the power consumption is shown in Equations II.5 and II.6. The val-
ues are taken from simulations. By looking at the components in Equation II.5
and comparing this to Equation II.6 it can be seen that a system with conventional
DRAM uses more energy in the processor and less in DRAM memory compared
to destructive-read DRAM, and vice versa. The number of DRAM accesses is
increased from 58 million to 97 million with the destructive-read DRAM configu-

Paper II 111

ration, an increase of 70%. The processor itself consumes 2% less energy since it
executes the task in less time. With higher leakage currents in denser technologies
this difference will be even more significant.

Econv = 13.2J + 58 ∗ 106 ∗ EMEM (II.5)

Edest = 12.9J + 97 ∗ 106 ∗ EMEM (II.6)

For the simulated architecture, technology, and applications, destructive-read DRAM
has slightly higher power consumption. Smaller DRAM memories will result in a
smaller EMEM , and can result in less energy consumption for DRAM due to shorter
computation time. The result is also dependent on processor architecture: More
complex processor will require more static power. Also, denser technology will
have more leakage current and computation time will be more important. These
estimates should be conservative since static power is still not significant at 180 nm
technology.

There are several benefits by using destructive-read DRAM. (1) Cache size can
be reduced by a factor four, decreasing chip area correspondingly [5]. This has a
positive impact on power because each access to the smaller cache consumes less
energy. In dense technologies with high leakage currents this will be even more
the case, since caches have many transistors. (2) Power consumption in CPU is
also reduced since computation time is reduced. However, since the number of
accesses to the DRAM is increased the total power consumption is also increased.
In our simulation models power is increased by 0.5% and 3% for 16 and 2 kbytes
cache respectively. For the same execution time, the frequency and voltage can
be scaled down when utilizing destructive-read DRAM since the instructions per
clock cycle (IPC) is higher. This reduces power consumption, but is not analyzed
in this paper. (3) The performance is increased, in our simulation this is 5% with
16 kbytes caches and 14% with 2 kbytes caches.

In systems with multiple processors and shared memory with cache coherence pro-
tocol, the cache line has to be marked dirty when read so that data is conserved.
For multiple processors with message passing the data has to be read through the
corresponding cache, i.e. the local processor should process the messages in order
to conserve the data.

II.7 Conclusions

Destructive-read DRAM looks promising both from an energy and a speed perspec-
tive. More energy is spent on the DRAM memory and bus, but the execution time
is reduced and energy is saved in the processor. Denser technologies with higher
leakage currents will benefit even more as more energy is wasted when the processor
is stalled waiting for memory access to finish. For the simulated architecture the av-
erage power consumption were increased with 0.5% and 3% while the performance
were increased with 4.9% and 14% for the applications in SPEC2000 benchmark

112 Bibliography

for 16 kbytes and 2 kbytes caches respectively. Benefits from using destructive-read
DRAM are increased performance and a reduction of chip area (by reducing cache
size). Lower energy consumption might be possible through voltage-frequency scal-
ing, but this also depends on the configuration and technology used. With higher
leakage currents in denser technologies the destructive-read DRAM will be even
more beneficial as the leakage currents (static power consumption) is higher.

Bibliography

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for com-
puter system modeling. IEEE Computer, Volume 35, Issue2, Feb. 2002.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA ’00: Proceed-
ings of the 27th annual International Symposium on Computer Architecture,
pages 83–94, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-232-8.
doi: http://doi.acm.org/10.1145/339647.339657.

[3] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. G.Kjeldsberg,
T. Van Achteren, and T. Omnes. Data Access and Storage Management for
Embedded Programmable Processors. Kluwer Acad. Publ., Boston, USA, 2002.
ISBN 0-7923-7689-7.

[4] J. Draper, C. W. Kang, I. Kim, G. Daglikoca, J. Chame, M. Hall, C. Steele,
T. Barrett, J. LaCoss, J. Granacki, J. Shin, and C. Chen. The architecture of
the DIVA processing-in-memory chip. Proc. 16th ACM Int’l Conf. Supercom-
puting, pages:14-25, June 2002.

[5] H. Dybdahl, M. Grannaes, and L. Natvig. Cache write-back schemes for em-
bedded destructive-read DRAM. Submitted to ARCS 2006, 2006.

[6] D. G. Elliott, W. M. Snelgrove, and M. Stumm. Computational RAM: A
memory-SIMD hybrid and its application to DSP. In Custom Integrated Cir-
cuits Conference, Boston, MA, pages:30.6.1-30.6.4, May 1992.

[7] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory; the Terasys
massively parallel PIM array. IEEE Computer, pages:23-31, Apr. 1995.

[8] L. Gwennap. Embedded DRAM use rises. Nikkei Electronics Asia, June, June
2003.

[9] R. Ho, K. Mai, and M. Horowitz. Efficient on-chip global interconnects. IEEE
Symposium on VLSI Circuits, 2003.

[10] C.-L. Hwang, T. Kirihata, M. Wordernan, J. Fifield, D.Storaska, D. Pontius,
G. F. B. Ji, S. Tomashot, and S. Dhong. A 2.9ns random access cycle embedded
DRAM with a destructive-read. VLSI Circuits Digest of Technical Papers,
Symposium on, pages:174-175, June 2002.

Paper II 113

[11] IBM. IBM microelectronics presentation: Embedded DRAM comparison
charts. IBM Microelectronics, 2003.

[12] ITRS. International technology roadmap for semiconductors.
http:public.itrs.net, 2003.

[13] S. S. Iyer, J. J. E. Barth, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan,
and D. Hoyniak. Embedded DRAM: Technology platform for the Blue Gene/L
chip. IBM J. Res & Dev. vol 49 no. 2/3 March/may, 2005.

[14] B. Ji, S. Munetoh, C.-L. Hwang, M. Wordeman, and T. Kirihata. Destructive-
read random access memory system buffered with destructive-read memory
cache for SoC applications. VLSI Circuits, Digest of Technical Papers. Sym-
posium on, pages:85 - 88, June 2003.

[15] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Patnaik, and
J. Torellas. FlexRAM: Towards an advanced intelligent memory system. In-
ternational Conference on Computer Design, Oct. 1999.

[16] M. Khellah and M. Elmasry. Power minimization of high-performance submi-
cron CMOS circuits using a dual-vdd dual-vth (DVDV) approach. ACM Int’l
Symp. Low-Power Electronics and Design, pages:106-108, 1998.

[17] G. Kirsch. Active memory: Micron’s Yukon. Parallel and Distributed Pro-
cessing Symposium, Proceedings. International, pages:11, Apr. 2003.

[18] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark work-
load for simulation-based computer architecture research. Computer Architec-
ture Letters, 1, June 2002.

[19] P. Kogge, T. Sunaga, H. Miyataka, K. Kitamura, and E. Retter. Combined
DRAM and logic chip for massively parallel systems. IEEE, Advanced Re-
search in VLSI, Proceedings. Sixteenth Conference on, pages:4-16, Mar. 1995.

[20] K. Mai, T. Paaske, N. Jayasena, W. R. Ho, Dally, and M. Horowitz. Smart
Memories: A modular reconfigurable architecture. ISCA, June 2000.

[21] F. Morishita, I. Hayashi, H. Matsuoka, K. Takahashi, K. Shigeta, T. Gyohten,
M. Niiro, H. Noda, M. Okamoto, A. Hachisuka, A. Amo, H. Shinkawata,
T. Kasaoka, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, and T. Yoshi-
hara. A 312-MHz 16-Mb random-cycle embedded DRAM macro with a power-
down data retention mode for mobile applications. Solid-State Circuits, IEEE
Journal of, Vol.40, Iss.1, Pages: 204- 212, 2005.

[22] Y. Nunomura, T. Shimizu, and O. Tomisawa. M32R/D-integrating DRAM
and microprocessor. Micro, IEEE, Volume: 17, Issue: 6, pages:40-48, Nov.
1997.

[23] M. Oskin, F. Chong, and T. Sherwood. Active Pages: A model of computation
for intelligent memory. International Symposium on Computer Architecture,
Barcelona, Spain, 1998.

114 Bibliography

[24] P. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, A. V. E. Brockmeyer,
C. Kulkarni, and P. Kjeldsberg. Data and memory optimization techniques
for embedded systems. ACM Trans. Design Automation of Electronic Systems,
6(2):149–206, Apr. 2001.

[25] Y.-H. Park, H.-J. Yoo, and J. Kook. Embedded DRAM (eDRAM) power-
energy estimation for system-on-a-chip (SoC) applications. Proceedings of
the 15th International Conference on VLSI Design (VLSID), p. 625, ASP-
DAC/VLSI, 2002.

[26] D. Patterson, T. Anderson, and K. Yelick. A case for intelligent DRAM:
IRAM. Presented at Hot Chips VIII, Palo Alto CA, pages:18-20, Aug. 1996.

[27] V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of techniques
for energy efficient on-chip communication. In DAC ’03: Proceedings of the
40th conference on Design automation, pages 900–905, New York, NY, USA,
2003. ACM Press. ISBN 1-58113-688-9. doi: http://doi.acm.org/10.1145/
775832.776059.

[28] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: the case
for processor/memory integration. In ISCA ’96: Proc. of the 23rd annual int.
symp. on Computer architecture, pages 90–101, New York, NY, USA, 1996.
ACM Press. ISBN 0-89791-786-3. doi: http://doi.acm.org/10.1145/232973.
232984.

[29] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timing, power
and area model. Western Research Lab, Research Report 2001/2, 2001.

[30] L. Yerosheva, S. Kuntz, J. Brockman, and P. Kogge. A microserver view of
HTMT. Parallel and Distributed Processing Symposium, Proceedings 15th
International, pages:10, Apr. 2001.

[31] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. R. Stan.
HotLeakage: An architectural, temperature-aware model of subthreshold and
gate leakage. University of Virginia Dept. of Computer Science, Tech. Report
CS-2003-05, Mar. 2003.

Paper III

Hardware Prefetching Using
Shadow Tagging

Marius Grannæs and Lasse Natvig
In CMP-MSI: 2nd Workshop on Chip Multiprocessor Memory
Systems and Interconnects, 2008

116

Paper III 117

Abstract
This paper presents a novel technique for dynamic selection of parameters for pre-
fetching heuristics based on the use of shadow tag directories. Previous methods
have been either static, made for a specific prefetching heuristic, or based on phase
detection and tuning. The most flexible of these methods is phase detection and
tuning. However, it has a serious drawback as it degrades performance while ex-
ploring the parameter space, as each configuration is tested on the running pro-
gram. Our approach explores the parameter space using an extra structure called
a shadow tag directory. This allows us to explore the parameter space without
interfering with the running program, such that a larger parameter space can be
explored without impacting performance. This paper examines the performance of
this technique on tagged sequential prefetching, czone/delta correlation prefetching
and reference prediction tables. In addition, we compare our results with a feed-
back directed approach. We show an overall 24% improvement over the best static
sequential prefetcher and an 18% improvement versus feedback directed sequential
prefetching on memory intensive SPEC benchmarks.

118 III.1. Introduction

III.1 Introduction

The performance of general purpose microprocessors continue to increase at a rapid
pace, but main memory has not been able to keep up. In essence, the processor
is able to process several orders of magnitude more data than main memory is
able to deliver on time. Numerous techniques have been developed to tolerate or
compensate for this gap, including out-of-order execution, caches, prefetching and
bypassing [9].

By utilizing prefetching, data that has not been referenced before can be inserted
into the cache by analyzing the behaviour of the program and anticipating what
data is needed in the future. Previous prefetching engines, such as sequential [17],
reference prediction tables [4] (RPT) and czone/delta correlation [11] (C/DC), have
static configurations. To provide the best average performance across a multitude
of benchmarks a moderately aggressive prefetching configuration would be used.
This leads to performance degradation on some programs, as the prefetching is
too aggressive, leading to memory bus congestion and cache pollution, while on
other programs the full potential of prefetching can not be achieved because the
aggressiveness is too low.

Consequently, there has been much interest in dynamic parametrization of pre-
fetching heuristics. The idea is to adapt the prefetching heuristic to the running
program by analyzing its behaviour. After analyzing the behaviour of the program,
the parameters of the prefetcher(prefetching degree, prefetch distance, czone size
etc) is adjusted accordingly.

III.1.1 Contributions

This paper investigates a general method for dynamically selecting prefetching pa-
rameters based on a shadow tag directory. Conceptually, a shadow tag directory
is similar to a regular cache tag directory, which allows us to simulate the effects
of altering the prefetcher configuration without interfering with the running pro-
gram [7, 8, 14]. This method can be adapted to new prefetching heuristics with
little effort. In addition, we show the benefit of dynamic parameterization with
a sample heuristic that optimizes for performance by estimating prefetcher useful-
ness and bandwidth usage. The method is then evaluated on the memory intensive
benchmarks in the SPEC2000 suite. We evaluate the technique combined with
three different prefetchers, sequential, C/DC and RPT prefetching. We compare
our scheme to no prefetching, their static counterpart, feedback directed prefetching
and a perfect L2 (a cache that always hits). We show an overall 24% improvement
over the best static sequential prefetcher and an 18% improvement versus feedback
directed sequential prefetching on memory intensive SPEC benchmarks.

Paper III 119

III.2 Previous Work

III.2.1 Feedback Directed Prefetching

A few researchers have investigated dynamic parameterization of prefetching heuris-
tics in the past. A direct method is the feedback-based approach, which measures
accuracy, timeliness and cache pollution caused by the prefetcher at runtime [19].
The values obtained are then fed into a state machine which in turn increases or
decreases aggressiveness accordingly. Feedback directed prefetching estimates pre-
fetcher accuracy by tagging each cache line with a single bit to signify that the
line has been prefetched, but not yet accessed. Two counters are used; one that is
incremented every time a prefetch is issued and another that is increased when a
cache line that has the bit set is accessed. The ratio can then be used to estimate
prefetcher accuracy. If the accuracy is high then the prefetcher aggressiveness is
increased. Prefetcher timeliness and cache pollution is estimated in a similar way.

III.2.2 Tuning

A more general approach to dynamic reconfiguration is tuning. It has been suc-
cessfully used in other areas as well, such as adapting the size of the issue queue to
make it more power-efficient [3]. AC/DC prefetching is an extension of the static
C/DC prefetcher that uses tuning to adapt to program phases [12].

Tuning works by detecting program phase changes by using instruction working
sets, basic block vectors (BBV) and conditional branch counts [6]. When the
program changes phase, it is likely that it will benefit from a reconfiguration of its
resources [5]. The prefetching hardware will then search through the parameter
space and select the best configuration for that phase. Each configuration is tried
for a set amount of time (measured in clock cycles, number of L2 misses etc). When
all the configurations have been explored, the best configuration is then used until
the next phase change. However, as the parameter space grows, the time consumed
by the search can become large. Thus, performance is degraded while the algorithm
searches [15].

Tuning is usually implemented as a state machine with three states: stable, unstable
and tuning [1, 5]. The stable state indicates that the best configuration is selected
for that particular portion of the program. When a program undergoes a phase
change it enters the unstable state. In this state the tuning algorithm simply waits
while the program stabilizes. Once the program has stabilized, the tuning algorithm
enters the tuning state, where it will search for the best selection of parameters.

Efficient tuning relies on good phase detection mechanisms to reliably detect phase
changes and identify similar phases. Phase change detection must be accurate, but
allow for minor changes in program behaviour, so that it doesn’t trigger tuning
unnecessarily.

120 III.3. Methodology

III.2.3 Shadow Tag Directories

A shadow tag directory is functionally similar to a regular cache directory. However,
the shadow tag directory does not have a corresponding data array. Its purpose is to
simulate, at runtime, the result of having a different prefetching configuration. Both
directories receive the same memory access stream, and is manipulated accordingly.

Dybdahl et al. used this technique to augment a cache replacement policy for chip
multiprocessors [7]. They used shadow tags for dynamically switching between their
cache replacement policy and the traditional LRU policy, based on their relative
performance. A similar work by Dybdahl et al. used shadow tags to improve cache
partitioning in chip multiprocessors [8]. Simultaneously, Qureshi et al. used shadow
tags1 to switch between a cache replacement policy that optimizes the amount of
memory level parallelism and the traditional LRU policy [14].

Both papers illustrate that the shadow tag directory only needs to contain about
20 sets to be effective. Qureshi establishes this by use of an interesting statistical
proof. Although the two papers differ in the selection of the 20 sets, the results are
similar.

III.3 Methodology

III.3.1 Shadow Tag Controlled Prefetching

We propose a new approach to dynamic tuning of prefetching heuristics by using a
shadow tag directory. Our architecture has two levels of cache and main memory
as shown in Figure III.1. The main prefetching engine is connected to the second
level cache. All second level cache accesses are also propagated to the shadow tag
directory. The shadow tag directory is similar in configuration to the L2 cache, but
does not hold any actual data. It is connected to another prefetch engine running
with an alternative configuration.

The controller is a small unit responsible for reconfiguring the prefetch engines
based on data gathered from the two tag directories. After 20002 cache misses
have occurred in the real L2 cache, the performance of the two configurations are
compared. If the results from the shadow tags are better than the results from
the real L2 cache, then the configuration of the shadow-prefetcher is applied to the
main prefetcher.

In either case, the shadow-prefetcher is then reconfigured, so that another config-
uration is explored.

1Qureshi et al. uses the term auxiliary tag directory.
2Earlier research has by Dybdahl[8] has shown that comparing every 1000 misses is preferable.

We found that an interval of 2000 L2 misses provided more robustness.

Paper III 121

L2
Shadow
Tags

Prefetcher

Main Memory

Controller

Prefetcher

CPU

L1

Figure III.1: The proposed architecture. The L1 cache is connected to both the L2
cache and the shadow tag directory. The controller evaluates the performance of
the two configurations and reconfigures the prefetchers accordingly.

The shadow tag directory is similar to the L2 tag directory, every access by the
processor is inserted into the tag directory. In addition, the miss address stream
fed into the shadow-prefetcher which uses this information to generate (simulated)
shadow-prefetches. These shadow prefetches are then inserted into the shadow tag
directory, so that the shadow tag directory reflects the state it would have been in
if the prefetches would have been issued.

To estimate the hardware overhead of using a shadow tag directory we have used
the cache modelling tool Cacti [16]. In 65nm technology the tag directory of the
L2 cache used in this paper uses 0.12 mm2, while the L2 itself uses 7.48 mm2. A
shadow tag array would thus increase the size of the L2 by 1.6%.

However, both Dybdahl and Qureshi [7, 8, 14] have shown that it is only necessary
to replicate 20 of the 512 sets for accurate predictions. In other words, the area
requirements for the shadow tags can potentially be reduced to around 0.005 mm2,
or about an increase in L2 size of 0.06%.

Additionally, it is possible to use the shadow tag directory for other performance
enhancing techniques such as increasing the amount of memory level parallelism [14]
and temporal locality of the cache [7, 8]. Thus this hardware cost can be amortized
across several techniques.

In this paper we have used a full-sized shadow tag directory for our simulations,
replicating all the sets in the original L2 cache.

122 III.3. Methodology

III.3.2 Prefetch Configuration Selection Heuristic

The overall goal is to increase performance in terms of IPC (Instructions Per Clock
Cycle). It is not possible to directly measure the effect on IPC by using shadow
tags as they contain no data. By using the methods described by Srinath [19] it is
possible to estimate prefetcher accuracy, timeliness and cache pollution in addition
to the number of cache misses and cache hits.

When a prefetch is issued, a counter is increased (indicating the number of pre-
fetches issued) and a prefetched-bit is set in the corresponding cache line. This bit
is already present when using sequential prefetching, and thus causes no additional
overhead. The first time a cache line with this bit set is referenced by the pro-
gram, the bit is cleared and another counter (indicating the number of successful
prefetches) is increased. By dividing the two numbers, we get an estimate of the
prefetchers accuracy.

A simple method for estimating memory traffic is used. We record the number of
L2 misses that would have occurred if the shadow tag directory configuration was
used. By dividing the number of clock cycles elapsed by the amount of L2 misses,
we get an estimate of the amount of memory traffic that would occur if the shadow
configuration is used.

Initially, the real prefetcher is set to a prefetching degree of zero (or off). The
shadow prefetcher is set to a random prefetching degree (0-16) and a random pre-
fetch distance (0-16) (and a random czone size (4KB-4MB) if applicable). After
2000 L2 misses has occurred, the two configurations are evaluated.

We use a fitness function to evaluate both configurations:

F = Hits− Late

4
− b2BW−T c (III.1)

Our heuristic has three components. First, we use the number of cache hits. Since
we evaluate the two configurations after 2000 L2 misses, this gives us indirectly
a measurement of the hit-ratio. The second component is the number of late
prefetches. Late prefetches are prefetches that have been issued, but have been
issued too late to fully cover the complete memory latency. This component is
estimated by using a prefetch bit in the MSHRs in a similar manner as the method
used by Srinath [19]. To decrease the number of late prefetches a prefetcher needs
to issue prefetches with a larger prefetch distance. The last component is a simple
function depending on the bandwidth usage. We estimate bandwidth usage by
using the number of cache misses that have occurred and the time elapsed, this
number is denoted BW (Bandwidth Usage). To ensure that this component does
not become dominant when there is ample bandwidth available, we subtract a fixed
threshold value from this number (T).

If the fitness of the shadow tag directory exceeds that of the real cache, the config-
uration of the shadow tag prefetcher is adopted to the real prefetcher. Then a new

Paper III 123

Clock Frequency 4 GHz
Processor Width 4 instructions/cycle
Register Update Unit 64 instructions
Load/Store Queue 32 instructions
Fetch Queue 16 instructions

4 ALUs, 1 Integer Multiply/Divide
Functional Units 4 FPUs, 1 Floating Point Multiply/Divide

Combined, Bimodal 4K entry table, 2-level 1K
table, 10 bit history table, 4K Chooser, 4-way

Branch Predictor 512 entry BTB, 15 cycles miss predict penalty
TLB (D & I) 128 entry full associative, 30 cycle miss penalty
Level 1 D-Cache 8K 4-way, 64B blocks, LRU 2 cycle latency
Level 1 I-Cache 8K 4-way, 64B blocks, LRU 2 cycle latency
Level 2 Cache 512K 8-way, 128B blocks, LRU, 7 cycle latency
Main Memory 160 cycle latency, max bandwidth 9GB/s

Table III.1: The simulation parameters used with SimpleScalar.

random configuration for the shadow tags is chosen and the process is repeated.

III.3.3 Experimental Setup

For the evaluation of this proposed architecture we have extended the Simplesca-
lar [2] simulator with shadow tag directories, prefetching and a new model for
main memory that simulates contention. Our main memory model models DDR2
memory and accounts for split transactions, open/closed pages, burst mode, mul-
tiple channels and pipelining. The setup can be found in table III.1. We used the
reduced data set [10] SPEC2000 benchmarks [18]. This datasets allows us to run
each benchmark to completion. To compensate for the small datasets, the L2 cache
is relatively small compared to the aggressive core. This was done to force more
misses in the L2 cache and further stress the memory subsystem.

Out of the 26 benchmarks in the suite, we have selected the 10 most memory
intensive applications measured in terms of the number of memory accesses per
instruction. On the remaining 16 benchmarks in the SPEC2000 benchmark suite
we observe no significant performance improvement or degradation. This is due
to the entire data set of the benchmark fitting inside the L2 cache, thus giving
little opportunity for prefetching. Thus these 16 benchmarks are omitted in the
remainder of this paper.

124 III.4. Results

 0

 0.5

 1

 1.5

 2

 2.5

M
cf

S
w

im

M
gr

id

A
pp

lu

A
m

m
p

P
ar

se
r

B
zi

p2

W
up

w
is

e

F
ac

er
ec A
rt

H
-m

ea
n

IP
C

Benchmark

No Prefetching
Static

Shadow tags
Feedback directed

Perfect L2

Figure III.2: Performance of dynamic parameter selection on static prefetching.

III.4 Results

We have examined our technique on three different prefetching heuristics, tagged
sequential, czone/delta correlation (C/DC) and reference prediction tables (RPT).
We compare our dynamic scheme to no prefetching, the best static parameter
selection, feedback directed prefetching and a perfect L2 (a L2 that never misses).
The original implementation of feedback directed prefetching included a method
for controlling the insertion policy of prefetched cachelines. This part of feedback
directed prefetching has been omitted to make it easier to compare the two methods.

III.4.0.1 Sequential Prefetching

In figure III.2 we show the performance of the 10 most memory-constrained bench-
marks in the SPEC2000 benchmark using sequential prefetching. First, we observe
that the static configuration leads to degraded performance on both Mcf and Bzip2
compared to the case of no prefetching, while our shadow tag scheme only has a
minor regression on Bzip2. Furthermore, we see significant improvements on the
Ammp benchmark. Shadow tag prefetching gets an IPC of 0.55 while feedback
directed prefetching gets an IPC of 0.46. This is due to the very low accuracy (4%)
of sequential prefetching, which leads feedback directed prefetching to not increase
aggressiveness to the required level. In total we observe a 18% increase in harmonic
mean compared to feedback directed prefetching, 24% improvement over the static
configuration and 48% over no prefetching. In addition, we observe that the largest
regression compared to feedback directed prefetching is 5% (Bzip2).

Paper III 125

 0

 0.5

 1

 1.5

 2

 2.5

M
cf

S
w

im

M
gr

id

A
pp

lu

A
m

m
p

P
ar

se
r

B
zi

p2

W
up

w
is

e

F
ac

er
ec A
rt

H
-m

ea
n

IP
C

Benchmark

None
Static

Shadow Tags
Feedback Directed

Perfect L2

Figure III.3: Performance of dynamic parameter selection on C/DC prefetching.

III.4.0.2 C/DC prefetching

In figure III.3 we show the performance of the techniques on czone/delta corre-
lation prefetching. Feedback directed prefetching has no method for controlling
czone size directly, so we have used the best static value for the czone size. We
observe that the static configured C/DC prefetcher shows regressions on Applu
and Facerec. However, shadow tags performs better than both feedback directed
and static prefetching. In addition, the performance on Ammp is increased even
further. Overall, we observe an increase in harmonic mean by 58% compared to no
prefetching, 5.6% improvement versus static prefetching and a 5% improvement ver-
sus feedback directed prefetching. It is worth noting that we observe a significantly
higher prefetching accuracy on C/DC prefetching than sequential prefetching.

III.4.0.3 RPT prefetching

Reference Prediction Tables is a very robust technique. Our results for this pre-
fetching technique is shown in figure III.4. It has a very high prefetch accuracy
(more than 90%), but lower coverage than the other prefetchers. Even with a static
configuration we observe no regressions versus the case of no prefetching. The dy-
namic schemes perform as well or better than the static configuration in all but
two cases: Ammp and Facerec. We observe an increase of 58.2% in harmonic mean
by using shadow tags versus no prefetching. However, the gains versus static pre-
fetching is smaller, only 4.8%. The difference versus feedback directed is minimal,
0.48%. It should be noted that RPT prefetching requires that the address of the
load-instruction is included with every memory request, thus making it expensive
to implement in hardware.

126 III.4. Results

 0

 0.5

 1

 1.5

 2

 2.5

M
cf

S
w

im

M
gr

id

A
pp

lu

A
m

m
p

P
ar

se
r

B
zi

p2

W
up

w
is

e

F
ac

er
ec A
rt

H
-m

ea
n

IP
C

Benchmark

No Prefetching
Static

Shadow Tags
Feedback Directed

Perfect L2

Figure III.4: Performance of dynamic parameter selection on RPT prefetching.

III.4.1 Bandwidth Usage

Prefetching will necessarily increase bandwidth requirements (unless the prefetcher
is 100% accurate). Figure III.5 shows the bandwidth usage for each benchmark.
The numbers have been normalized to the case of no prefetching. Overall, se-
quential prefetching requires a substantially more bandwidth than C/DC or RPT
prefetching. Furthermore, the bandwidth requirements of Ammp and Bzip2 stands
out as excessive. This can be justified, especially on Ammp where performance is
increased by a considerable amount. On average shadow tag prefetching requires
11% more bandwidth for sequential prefetching compared to a static configuration,
while it requires 0.7% more on C/DC prefetching and 3.4% more on RPT prefetch-
ing. However, it should be added that our heuristic is designed to use whatever
bandwidth is available.

III.4.2 Sensitivity Analysis

In this section, we look at some of the parameters that we have used in our heuris-
tic. In figure III.6 we look at how often the reconfiguration occurs (Misses between
reconfiguration) and the number of consecutive checks where the shadow tags must
outperform the real cache for the configuration of the shadow tags to be adopted
(Count). These two parameters do not have a significant impact on the harmonic
mean of IPC. The difference in IPC is only 2.5%. It should be noted that configu-
rations such as 500 L2 misses and a count of 1 is more unstable. Some benchmarks
will benefit greatly, while others gets reduced performance, however, the speedups
and slowdowns evens up over multiple benchmarks.

Paper III 127

 0

 2

 4

 6

 8

 10

 12
M

cf

S
w

im

M
gr

id

A
pp

lu

A
m

m
p

P
ar

se
r

B
zi

p2

W
up

w
is

e

F
ac

er
ec A
rt

A
-m

ea
n

N
or

m
al

iz
ed

 #
A

cc
es

se
s

to
 M

em
or

y

Benchmark

Sequential - Static
Sequential - Shadow

Sequential - Feedback
C/DC - Static

C/DC - Shadow
C/DC - Feedback

RPT - Static
RPT - Shadow

RPT - Feedback

Figure III.5: Number of main memory accesses for different combinations of pre-
fetching heuristics and parameter selection methods. Values are normalized to no
prefetching.

 1
 2

 3
 4

 5
 6

 7
 8

 9

Count

 500
 1000

 1500
 2000

 2500
 3000

L2 Misses

 0.54

 0.542

 0.544

 0.546

 0.548

 0.55

 0.552

 0.554

IPC

 0.54

 0.542

 0.544

 0.546

 0.548

 0.55

 0.552

 0.554

Figure III.6: Performance of shadow tag prefetching as a function of parameters to
the heuristic.

128 III.5. Discussion

 0.515

 0.52

 0.525

 0.53

 0.535

 0.54

 0.545

 0.55

 0.555

 0 20 40 60 80 100

IP
C

Treshold (Clock cycles/Dram access

Figure III.7: Performance of shadow tag prefetching as a function of the bandwidth
threshold parameter.

Figure III.7 shows the harmonic mean of IPC for the benchmarks as a function
of the bandwidth threshold. The number on the X-axis represents the average
number of clock cycles between memory accesses. A low number denotes that
a configuration with a high bandwidth usage will be penalized less. This graph
shows that if the heuristic is not penalized for using too much bandwidth then
performance drops. It is worth noting the sharp increase in IPC in the interval 20
to 40. This interval represents a bus utilization around 80%.

III.5 Discussion

III.5.1 Parameter Space Exploration

In this paper the configuration to be tested on the shadow tags were chosen ran-
domly across the whole parameter space. We have also experimented with using
hill climbing to explore the parameter space. Hill climbing only looks at small
changes in the configuration and selects the best configuration out of those tested.
A known problem with hill climbing is that it can get stuck in local optima and
thus not find the global optimum. We believe that such local optima are not likely
to be stable as the program runs. However, because hill climbing “moves” slower
across the parameter space, we observed a 18% decrease in performance on some
benchmarks that were too short for the hill climbing technique to converge on a
good solution.

There are other approaches that could be used, such as genetic algorithms and
simulated annealing [13].

Paper III 129

III.5.2 Clearing the Shadow Tags

Initially, we were concerned that not clearing the shadow tag directory between two
configurations would pollute subsequent measurements. We examined the effect of
copying the contents of the real tag directory to the shadow tag directory after
each reconfiguration. We found that copying had little impact on performance (we
observed only a 0.1% improvement by using a copying function). In addition, the
cost of such a mechanism would be prohibitive both in terms of area and power.

III.6 Conclusion

In this paper we present a novel technique for dynamic parameterization of pre-
fetching heuristics. By using this technique we observe an overall improvement in
IPC by 24% over the static configuration and a 18% improvement over feedback-
directed prefetching. However, the relatively large improvements seen on single
benchmarks are equally important. In addition, we observed no regressions against
the case of no prefetching, which makes the method robust and only one regression
against the case of a static prefetcher.

In terms of cost, the L2 is increased in size by 1.6% for an overall gain of 24%. It
might be possible to reduced this to about 0.06% if the methods by Dybdahl et al.
and Qureshi et al. can be used with prefetching. The shadow tag directory can
be used for other purposes as well, such as optimizing memory level parallelism
and enhancing the cache replacement policy, thus amortizing this cost over several
performance enhancing techniques.

Bibliography

[1] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In MICRO 33: Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, pages 245–257,
2000. ISBN 1-58113-196-8. doi: http://doi.acm.org/10.1145/360128.360153.

[2] D. Burger and T. M. Austin. Simplescalar toolset 3.0b, 2003. http://www.

simplescalar.com.

[3] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and D. Albonesi.
An adaptive issue queue for reduced power at high performance. In Power-
Aware Computer Systems: First International Workshop, PACS 2000, 2000.

[4] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. Computers, IEEE Transactions on, 44:609–623, May
1995.

http://www.simplescalar.com
http://www.simplescalar.com

130 Bibliography

[5] A. Dhodapkar and J. Smith. Managing multi-configuration hardware via dy-
namic working set analysis. In Proceedings. 29th Annual International Sym-
posium on Computer Architecture, pages 233–244, 2002.

[6] A. S. Dhodapkar and J. E. Smith. Comparing program phase detection tech-
niques. In Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on, 2002.

[7] H. Dybdahl, P. Stenstrom, and L. Natvig. An LRU-based replacement al-
gorithm augmented with frequency of access in shared chip-multiprocessor
caches. In MEDEA Workshop, PACT, 2006.

[8] H. Dybdahl, P. Stenstrom, and L. Natvig. A cache-partitioning aware replace-
ment policy for chip multiprocessors. In Proceedings of IEEE International
Conference on High Performance Computing, 2006.

[9] J. L. Hennesey and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 3rd Edition. Morgan Kaufmann Publishers, 2003. ISBN 1-55860-
724-2.

[10] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new spec benchmark work-
load for simulation-based computer architecture research. Computer Architec-
ture Letters, 1, June 2002.

[11] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. Micro, IEEE, 25:90–97, Jan. 2005.

[12] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data
cache prefetcher. In Proceedings of the 13th International Conference on Par-
allel Architecture and Compilation Techniques, pages 135–145, 2004.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[14] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for MLP-aware
cache replacement. In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 167–178, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2608-X. doi: http://dx.doi.org/
10.1109/ISCA.2006.5.

[15] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
Proceedings. 30th Annual International Symposium on Computer Architecture,
pages 336– 347, 2003.

[16] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache timing, power,
and area model. Technical Report 2, Compaq Western Research Laboratory,
August 2001.

Paper III 131

[17] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/356887.356892.

[18] SPEC. Spec 2000 benchmark suites, 2000. http://www.spec.org.

[19] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers.
Technical report, University of Texas at Austin, May 2006. TR-HPS-2006-006.

http://www.spec.org

132

Paper IV

Low-Cost Open-Page
Prefetch Scheduling in Chip
Multiprocessors

Marius Grannæs, Magnus Jahre and Lasse Natvig
In XXVI IEEE International Conference on Computer Design
(ICCD), 2008

134

Paper IV 135

Abstract
The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM is exploited to increase throughput.

Traditionally, prefetching reduces latency by fetching data before it is needed. In
this paper we explore how prefetching can be used to increase memory throughput.
We present our own low-cost open-page prefetch scheduler that exploits the 3D
structure of DRAM when issuing prefetches. We show that because of the complex
structure of modern DRAM, prefetches can be made cheaper than ordinary reads,
thus making prefetching beneficial even when prefetcher accuracy is low. As a
result, prefetching with good coverage is more important than high accuracy. By
exploiting this observation our low-cost open page scheme increases performance
and QoS. Furthermore, we explore how prefetches should be scheduled in a state of
the art memory controller by examining sequential, scheduled region, CZone/Delta
Correlation and reference prediction table prefetchers.

136 IV.1. Introduction

IV.1 Introduction

Chip Multiprocessors have been introduced by virtually all makers of high perfor-
mance processors. CMPs shifts the focus away from the traditional uniprocessor
paradigm, where low latency and instruction-level parallelism (ILP) is important
to a paradigm where throughput and thread-level parallelism (TLP) dominates.

This shift is reflected in the memory subsystem as well, where the memory con-
trollers have traditionally been used to reduce system latency. However, as more
cores are added to a chip, off-chip bandwidth are shared across cores, thus in-
creasing the pressure on this resource and lowering locality in the memory access
stream. Thus, memory controllers have been designed to optimize for maximum
throughput, at the expense of increasing worst-case latency.

This increase in throughput has been made possible by exploiting the 3D structure
of modern DRAM [4]. DRAM is organized in several banks. Each bank is organized
as a matrix of rows and columns of DRAM cells as shown in figure IV.1. In a normal
read operation, a bank and a row is first selected for activation. The charges from
this row of capacitors are then amplified by sense-amplifiers in the DRAM module
and stored in a large latch. Each such row is commonly referred to as a page. A
page is normally about 1KB to 4KB large, whereas a cacheline is typically 64-256B
large. Thus, a page will typically hold several consecutive cachelines. The portion
of the page that was requested is then transferred over the data-bus. When the
page is no longer needed, the memory controller instructs the DRAM module to
write the latch contents back into the DRAM cells, preserving the contents of the
page. This is referred to as closing the page.

Figure IV.1: The 3D structure of modern DRAM.

In terms of latency, opening and closing a page is expensive, while getting data out
of the latches and over the data-bus is comparatively cheap. In addition, there is a
minimum allowed time between opening and closing a page (the minimum activate-
to-precharge latency). Thus a single read is slow, but reading the next cache block

Paper IV 137

is relatively cheap as the page is already open and the data is in the latch. This
property is exploited by the First Ready, First Come, First Served (FR-FCFS)
memory controller proposed by Rixner et al. [16]. This type of memory controller
allows accesses that uses an already open page to be scheduled even if the request
is not the oldest.

Traditionally, prefetching has been used to decrease latency for a single operation
by speculatively bringing data into the cache before it is needed. In this paper
we exploit the 3D structure of modern DRAM to demonstrate how prefetching
can be used to increase off-chip bandwidth utilization. Because there is a lower
cost associated with fetching data that resides in an open page, we prefetch this
data, provided that our confidence that the data will be useful is high enough. In
addition, we show that prefetching can be effective at relatively low accuracy, due
to the low cost of piggybacking prefetches compared to single reads. Finally, we
present our low cost open page prefetching scheduling heuristic which exploits this
observation.

IV.2 Previous Work

IV.2.1 Prefetching

Previously, Wei-Fen et al. [8] have examined how prefetches can be scheduled in a
uniprocessor context with Rambus DRAM. They used a dedicated prefetch queue
with a LIFO insertion policy with a scheduled region prefetcher. In addition,
Cantin et al. [2] exploited open pages to increase the performance of their stealth
prefetcher.

There exists a multitude of different prefetching schemes. The simplest is the
sequential prefetcher [18], which simply fetches the next block whenever a block is
referenced. However, more complex types exists as well, such as the CZone/Delta
Correlation (C/DC) prefetcher proposed by Nesbit et al. [12, 13]. C/DC divides
memory into CZones and analyses patterns contained in the reference stream by
using a Global History Buffer (GHB) to store recent misses to the cache. Lin et al.
[9] introduced scheduled region prefetching (SRP) which issues prefetches to blocks
spatially near the addresses of recent demand missed when the memory channel
is idle. Other types, such as the Reference Prediction Table Prefetcher (RPT)
proposed by Chen and Baer [3] examines the pattern generated by a load instruction
with a state machine. Somogyi et al. proposed Spatial Memory Streaming (SMS)
[19]. SMS uses code-correlation to predict spatial access patterns.

IV.2.2 Memory Controllers

Memory access scheduling is the process of reordering memory requests to improve
memory bus utilization. Rixner et al. [16] showed that significant speed-ups are

138 IV.3. Prefetch Scheduling

possible when memory request reordering is applied to stream processors. In ad-
dition, Shao et al. [17] proposed burst scheduling in which multiple read and write
requests to the same DRAM page are issued together to achieve high bus utilization.
Finally, Zhu et al. [24] showed that it is beneficial to divide the memory requests
into smaller parts, and give priority to the words responsible for a processor stall
in a multi-channel DRAM system.

CMPs, processors with SMT support and conventional shared-memory multipro-
cessors also benefit from memory access scheduling. Zhu et al. [23] showed that
DRAM throughput could be increased in an SMT processor by using ROB and IQ
occupancy status to prioritize requests. Furthermore, Hur et al. [5] use a history-
based arbiter to adapt the DRAM port and rank schedule to the application’s mix
of reads and writes for the dual-core Power5 processor. In addition, Natarajan et al.
[11] showed that a significant performance improvement is available by exploiting
memory controller features in a conventional, shared-memory multiprocessor.

In CMPs, the memory bus is shared between all processing cores and a number of
researchers have looked into how this can be accomplished in a fair way [6, 10, 14,
15]. In general, bandwidth is divided among threads according to their priorities at
the same time as requests are scheduled in a way that improves DRAM throughput.

IV.3 Prefetch Scheduling

A prefetching heuristic can be characterized by using two distinct metrics: Accuracy
is a measure of how many of the issued prefetches have actually been useful to the
processor [22], while coverage measures how many of the potential prefetches have
been issued.

Because prefetching is a speculative technique, there are two potential sources for
performance degradation. Firstly, prefetching consumes additional bandwidth as
some data transferred over the memory bus is not used. Secondly, it can pollute
the cache, by displacing data that is still needed.

The FR-FCFS memory scheduler [16] is a high throughput memory scheduler. It
exploits the 3D structure of modern DRAM by allowing requests that would access
an already open page to bypass the normal FCFS queue. FR-FCFS prioritizes
memory requests in the following manner: 1) Ready operations (operations that
access open pages), 2) CAS (column selection) over RAS (row selection) commands,
and 3) Oldest request first. In addition, reads have a higher priority than writes.

There are two basic ways to introduce prefetching into the FR-FCFS memory
controller. The simplest approach is to insert prefetch requests into the read queue,
as shown in figure IV.2(a). A more sophisticated approach introduced by Lin
Wei-Fen et al. [8] is to use a dedicated queue for prefetches as shown in figure
IV.2(b). In this approach, prefetches are prioritized after writebacks, so the priority

Paper IV 139

rule becomes: Prioritize read operations over writeback operations over prefetch
operations.

(a) Conventional prefetch scheduling (b) Dedicated prefetch queue

Figure IV.2: Prefetch scheduling policies

IV.4 Low cost open page prefetching

After a demand read to DRAM is serviced, the page that the demand read resided
in is still open, and in most cases cannot be closed due to the minimum activate to
precharge latency. Other DRAM banks can still be utilized. If a prefetch or read
is issued to this open page, there is little latency as the data requested is already
in the latch. In this paper we refer to this as piggybacking.

By allowing prefetches to piggyback on regular read requests, the cost of prefetching
is effectively reduced. In the dedicated prefetch queue approach, prefetches are only
issued if they can piggyback on another request, or if the bus is idle. Suppose a
processor requires data at locations X1 and X2 that are located on the same page
at times T1 and T2. There are two separate outcomes: If T1 and T2 are sufficiently
close, both requests will be in the memory controller at the same time, and request
2 can piggyback on request 1. Thus the page only needs to be opened once. If
the two requests are sufficiently separated in time, the two requests cannot be
piggybacked on each other, thus forcing the page to be opened twice. This reduces
overall throughput. In the second case, prefetching X2 can increase performance
by both reducing latency and increase memory throughput. However, because
prefetching is a speculative technique, its prediction for what data is needed in
the future might be wrong. Thus, there is a break-even point where the benefit of
prefetching is balanced against the cost of prefetching.

To test this assumption we have conducted experiments on 4 different prefetching
heuristics (Sequential, SRP, C/DC and RPT) with 10 different prefetching con-
figurations (each) on 40 different workloads. We measured the accuracy of the
prefetcher and the IPC improvement (versus a configuration with no prefetching).
Our results are shown in figure IV.3.

In this graph it is clear that most of the points fall into 2 quadrants. One where
accuracy is below 38% and performance is decreased, while another where accuracy

140 IV.5. Methodology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-40 -20 0 20 40 60

A
cc

ur
ac

y

IPC improvement (%)

Sequential prefetching
Scheduled Region prefetching

CZone/Delta Correlation prefetching
Reference Predicton Tables prefetching

Treshold

Figure IV.3: IPC improvement as a function of accuracy

is above 38% and performance is increased.

Our prefetch scheduler exploits this observation by measuring prefetch accuracy
at runtime. If the accuracy falls below a treshold (in our experiments 38%) then
prefetches are no longer piggybacked on open pages and only issued if the bus is
idle.

We use an accuracy estimator similar to the one used by Sriniath et al. [21]. When a
prefetch is issued, a counter is increased (indicating the number of prefetches issued)
and a prefetched-bit is set in the corresponding cache line. This bit is already
present when using sequential prefetching, and thus causes no additional overhead.
The first time a cache line with this bit set is referenced by the program, the bit
is cleared and another counter (indicating the number of successful prefetches) is
increased. By sampling the successful prefetch counter every time the 10 bit issued
counter wraps, we get an estimate of the prefetchers accuracy.

IV.5 Methodology

We used the system call emulation mode of the cycle-accurate M5 simulator [1]
to evaluate our scheme. The processor architecture parameters for the simulated
4-core CMP are shown in table IV.1, and table IV.2 contains the baseline memory
system parameters. We have extended M5 with a crossbar interconnect, a de-
tailed DDR2 memory bus and DRAM model, a FR-FCFS memory controller and
prefetching.

Paper IV 141

Table IV.1: Processor Core Parameters
Parameter Value

Processor Cores 4

Clock frequency 3.2 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional units

4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor

Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table IV.2: Memory System Parame-
ters
Parameter Value

Level 1 Data Cache

64 KB, 8-way set
associative, 64B
blocks, 3 cycles
latency

Level 1 Instruction
Cache

64 KB, 8-way set
associative, 64B
blocks, 1 cycle
latency

Level 2 Unified
Shared Cache

4 MB, 16-way set
associative, 64B
blocks, 14 cycles
latency, 8 MSHRs
per bank, 4 banks

L1 to L2
Interconnection
Network

Crossbar topology, 9
cycles latency, 64B
wide transmission
channel

DDR2 memory

400 Mhz Clock, 8
banks, 1KB
pagesize, 4-4-4-12
timing, dual channel
in lock-step

Our DDR2-implementation [7] models separate RAS, CAS and precharge com-
mands. In addition, we model pipelining of requests, independent banks, burst
mode transfers and bus contention. The FR-FCFS memory controller has a 128
entry read-queue, 64 entry writeback queue and a 128 entry prefetch queue. As the
conventional method of issuing prefetches has no separate prefetch queue, the read
queue has been increased to 256 entries to make comparison more fair in terms of
area. Unless otherwise noted, we use 4KB regions in scheduled region prefetch-
ing, 256KB CZones, a 1024-entry global history buffer and a 16-entry reference
prediction table.

The SPEC CPU2000 benchmark suite [20] is used to create 40 multiprogrammed
workloads consisting of 4 SPEC benchmarks each as shown in table IV.3. We picked
benchmarks at random from the full SPEC CPU2000 benchmark suite, and each
processor core is dedicated to one benchmark. The only requirement given to the
random selection process was that each SPEC benchmark had to be represented in
at least one workload. To avoid unrealistic interference when more than a single
instance of a benchmark is part of a workload, the benchmarks are fast-forwarded a
random number of clock cycles between 1 and 1.1 billion. Then, detailed simulation
is carried out for 100 million clock cycles measured from the clock cycle the last core
finished fast forwarding. As our metric of throughput we have used the average
IPC of all 4 cores. In most cases, performance is measured as the relative increase
in speed compared to the no prefetching case.

142 IV.6. Results

IV.6 Results

IV.6.1 Scheduled Region Prefetching

In figure IV.4 we show the relative performance of each of the prefetch scheduling
policies. In this experiment we use a scheduled region prefetcher (SRP) with 4KB
regions. The conventional and dedicated prefetch queue options give an average
of 14.4% increase in performance versus the no prefetching case, while the average
increase for our scheme is 17.1%. In addition, prefetching causes performance
degradation in 9 out of the 40 cases. Our prefech scheduling policy reduces the
performance penalty on 6 of these workloads. However, a lot of information is lost
in averages. For instance, the performance increased on workload 1 is only 1% in
other schemes, while our method increases performance by 15%. Similar results
can be seen in workload 6, 7, 23, 25, 27, 28, 32 and 38.

-20

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

 3
0

 3
1

 3
2

 3
3

 3
4

 3
5

 3
6

 3
7

 3
8

 3
9

 4
0

A
V

G

IP
C

 im
pr

ov
em

en
t (

%
)

Workload

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure IV.4: Speedup in IPC relative to no prefetching using a FR-FCFS memory
controller.

IV.6.2 Importance of Coverage

In figure IV.5 we show the average relative performance increase by using other
types of prefetchers, including Scheduled Region Prefetching, CZone/Delta Corre-
lation and Reference Prediction Tables. Both C/DC and RPT prefetching have
high accuracy. Because yhe prefetching accuracy is higher than the treshold in
almost all workloads, our method degrades into the dedicated prefetch queue. In
turn, the performance of our prefetch scheduling scheme is almost equal to the

Paper IV 143

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Scheduled Region C/DC RPT

IP
C

 im
pr

ov
em

en
t (

%
)

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure IV.5: Average speedup in IPC relative to no prefetching.

dedicated prefetch queue scheme. However, this graph shows another interesting
property. Scheduled Region Prefetching, which has a comparatively low accuracy,
outperforms both of the more complex prefetcher heuristics. This is due to it hav-
ing a much higher prefetch coverage. It provides more prefetches with acceptable
accuracy, thus increasing performance.

IV.6.3 Insertion policy

In our scheme and the dedicated prefetch queue scheme there is a separate queue
for handling prefetches. There are multiple possibilities on how to insert new pre-
fetches into the queue. If the prefetch queue is full, then there are two possibilities,
either discard the prefetch or insert the prefetch and evict the oldest prefetch. In
figure IV.6 we show the performance of FIFO and LIFO policies with and without
evictions. From this graph it is clear that evicting old data is beneficial, as well as
using a LIFO policy. Evicting old prefetches is useful, because newer prefetches are
based on newer demand reads, thus increasing both the accuracy and the probabil-
ity that it can be piggybacked. The LIFO policy ensures that the newest prefetches
are given priority over old ones. As shown in the graph, for both techniques, evic-
ing old data is preferable, while a LIFO policy gives marginally better results over
FIFO.

IV.6.4 Treshold parameter

In figure IV.7 we show the average speedup as a function of the required accuracy
(treshold). In effect, setting the treshold to 0% makes the low cost open page
prefetcher a dedicated queue prefetcher. Both RPT and C/DC prefetching have
a very high accuracy, so the treshold doesn’t affect performance until it becomes
too high, effectively disabling prefetching, and in turn degrades performance. In
addition, the peak for both sequential and scheduled region prefetching is relatively

144 IV.6. Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dedicated Prefetch Queue Low Cost Open Page Prefetching

IP
C

 im
pr

ov
em

en
t (

%
)

FIFO
FIFO w/eviction

LIFO
LIFO w/eviction

Figure IV.6: Effects of insertion policy on average IPC speedup.

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

IP
C

 im
pr

ov
em

en
t (

%
)

Accuracy treshold (%)

Sequential prefetching
SRP prefetching

C/DC prefetching
RPT prefetching

Figure IV.7: IPC improvement as a function of treshold

low (around 20-30 %). This further supports the observation that coverage is more
important as long as accuracy is acceptable.

IV.6.5 Quality of Service

We have measured the maximum slowdown for any thread compared to the case
where no prefetching is performed on each workload to get an indicator of the
quality of service. Figure IV.8 shows the maximum performance degradation as a
function of the number of workloads included. This graph shows three important
properties. Firstly, 25% of the workloads experience no performance degradation
on any thread when doing prefetching. Secondly, our scheme gives consistently
higher quality of service. Using the other scheme 33% of the workloads show a
thread getting a performance degradation of above 10%. In our scheme only 20%
of the workloads show a thread getting more than 10% performance degradation.
Finally, the maximum degradation for any thread for our scheme is only 36%, while
the maximum for the dedicated prefetch queue approach is 49%.

Paper IV 145

-50

-40

-30

-20

-10

 0

 10

0 25 50 75 100

M
ax

im
um

 p
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

fo
r a

ny
 th

re
ad

Portion of workloads (%)

Dedicated Prefetch Queue
Low Cost Open Page Prefetching

Figure IV.8: Maximum IPC degradation for any thread as a function of workloads.

IV.7 Discussion

Our results show that it is more important to have good prefetching coverage, while
having acceptable accuracy. This is due to the relatively lower cost of piggybacked
prefetches compared to isolated demand reads. Normally prefetch heuristics have
been optimized for maximizing accuracy, so that the impact on bandwidth is as
low as possible. This is due to the assumption that the cost of a single prefetch
is about the same as a demand read. By carefully scheduling prefetches so that
they are piggybacked on normal demand reads, this assumption no longer holds.
We have demonstrated that a simpler, high coverage prefetcher outperforms more
sophisticated high accuracy prefetchers in a bandwidth-constrained, 4-core chip
multiprocessor system.

In our prefetch scheduling heuristic, we have used an accuracy estimator to control
when prefetches should be issued. Other researchers have used such an estimator
to control the aggressiveness of the prefetcher [21]. Such a technique can be used in
conjunction with our scheduler. By using a feedback directed prefetcher, coverage
can be increased while keeping accuracy at an acceptable level, thus providing
higher performance.

Our simulator does not include a power model. However, our scheme piggybacks
prefetches on demand reads. If a prefetch is successful then a later read is not
needed, thus reducing the number of pages opened and closed, which in turn reduces
power consumption in the DRAM module. Prefetching invariably increases bus
traffic as some data transferred is not needed. Our scheme reduces the amount
of useless traffic compared to other schemes by filtering out prefetches with low
accuracy, thereby saving power.

146 IV.8. Conclusion

Table IV.3: Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1
ammp, mgrid,
perlbmk, parser

11
vpr, twolf,
applu, eon

21
perlbmk, apsi,
lucas, equake

31
mgrid, equake,
vpr, eon

2
lucas, gcc, mcf,
twolf

12
galgel, crafty,
mgrid, swim

22
vpr, crafty,
vpr, mcf

32
wupwise, gap,
twolf, facerec

3
eon, eon, mesa,
facerec

13
twolf, fma3d,
galgel, vpr

23
gzip, equake,
mgrid, mesa

33
galgel, equake,
lucas, gzip

4
vortex1, ammp,
equake, galgel

14
bzip, vpr, bzip,
equake

24
facerec, applu,
fma3d, lucas

34
facerec, gcc,
facerec, apsi

5
gcc, galgel,
apsi, crafty

15
galgel, crafty,
vpr, swim

25
gap, applu,
parser, facerec

35
mesa, mcf,
swim, sixtrack

6
applu, equake,
art, facerec

16
mcf, wupwise,
mesa, mesa

26
mcf, apsi,
twolf, ammp

36
mesa, sixtrack,
equake, bzip

7
applu, gap, gcc,
parser

17
applu, parser,
apsi, perlbmk

27
swim, sixtrack,
ammp, applu

37
mcf, gap, gcc,
vortex1

8
gap, swim,
twolf, mesa

18
mgrid,
perlbmk, gzip,
mgrid

28
art, fma3d,
swim, parser

38
facerec, lucas,
mcf, parser

9
sixtrack,
fma3d, apsi,
vortex1

19
mcf, sixtrack,
gcc, apsi

29
apsi, gcc,
vortex1, twolf

39
twolf, eon,
mesa, eon

10
ammp, bzip,
equake, parser

20
ammp, gcc, art,
mesa

30
mgrid, gzip,
apsi, equake

40
apsi, apsi, mcf,
equake

IV.8 Conclusion

In this paper we have shown that by carefully scheduling prefetches so that they
piggyback on ordinary demand reads, performance can be increased. This is done
by exploiting the 3D structure of modern DRAM, where opening and closing pages
is an expensive operation. As it becomes more important to issue prefetches that
can be piggybacked on ordinary demand reads, emphasis shifts from high accuracy
to high coverage with acceptable accuracy.

We have demonstrated our own prefetch scheme on a state of the art memory
controller that exploits these findings. Our prefetch policy outperforms traditional
scheduling policies in terms of performance, quality of service and power consump-
tion.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth prefetching. SIGPLAN

Paper IV 147

Not., 41(11):274–282, 2006. ISSN 0362-1340. doi: http://doi.acm.org/10.
1145/1168918.1168892.

[3] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. Computers, IEEE Transactions on, 44:609–623, May
1995.

[4] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of
contemporary DRAM architectures. In Proceedings of the 26th International
Symposium on Computer Architecture, pages 222–233, 1999.

[5] I. Hur and C. Lin. Adaptive history-based memory schedulers. In MICRO
37: Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 343–354, 2004.

[6] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS policies and architecture for cache/memory in
CMP platforms. In SIGMETRICS ’07: Proc. of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
pages 25–36, 2007.

[7] DDR2 SDRAM Specification. JEDEC Solid State Technology Association,
May 2006.

[8] W.-F. Lin, S. K. Reinhardt, and D. Burger. Designing a modern memory
hierarchy with hardware prefetching. IEEE Transactions on Computers, 50
(11):1202–1218, 2001. ISSN 0018-9340. doi: http://doi.ieeecomputersociety.
org/10.1109/12.966495.

[9] W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies with
an integrated memory hierarchy design. In HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, pages
301–312, 2001.

[10] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Proc. of the 40th Annual IEEE/ACM
Int. Symp. on Microarchitecture, 2007.

[11] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact
of memory controller features in multi-processor server environment. In WMPI
’04: Proceedings of the 3rd Workshop on Memory Performance Issues, pages
80–87, New York, NY, USA, 2004. ACM. ISBN 1-59593-040-X. doi: http:
//doi.acm.org/10.1145/1054943.1054954.

[12] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. Micro, IEEE, 25:90–97, Jan. 2005.

[13] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data
cache prefetcher. In Proceedings of the 13th International Conference on Par-
allel Architecture and Compilation Techniques, pages 135–145, 2004.

148 Bibliography

[14] K. J. Nesbit, N. Aggarwal, J. L., and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Proc. of the 39th Annual IEEE/ACM Int. Symp. on
Microarchitecture, pages 208–222, 2006.

[15] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective Management of DRAM
Bandwidth in Multicore Processors. In PACT ’07: Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques (PACT 2007), pages
245–258, 2007.

[16] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. In ISCA ’00: Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 128–138, 2000.

[17] J. Shao and B. Davis. A burst scheduling access reordering mechanism. High
Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on, pages 285–294, 2007.

[18] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/356887.356892.

[19] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
memory streaming. SIGARCH Comput. Archit. News, 34(2):252–263, 2006.
ISSN 0163-5964. doi: http://doi.acm.org/10.1145/1150019.1136508.

[20] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[21] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers.
Technical report, University of Texas at Austin, May 2006. TR-HPS-2006-006.

[22] V. Srinivasan, E. Davidson, and G. Tyson. A prefetch taxonomy. Computers,
IEEE Transactions on, 53:126–140, Feb. 2004.

[23] Z. Zhu and Z. Zhang. A performance comparison of dram memory system
optimizations for smt processors. In HPCA ’05: Proceedings of the 11th In-
ternational Symposium on High-Performance Computer Architecture, pages
213–224, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2275-0. doi: http://dx.doi.org/10.1109/HPCA.2005.2.

[24] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain priority scheduling on
multi-channel memory systems. Eighth International Symposium on High-
Performance Computer Architecture, 2002, pages 107–116, 2002.

http://www.spec.org/cpu2000/

Paper V

Storage Efficient Hardware
Prefetching using Delta
Correlating Prediction
Tables

Marius Grannæs, Magnus Jahre and Lasse Natvig
In Data Prefetching Chamionship - 1, 2009

150

Paper V 151

Abstract
This paper presents a novel prefetching heuristic called Delta Correlating Predic-
tion Tables (DCPT). DCPT builds upon two previously proposed techniques, RPT
prefetching by Chen and Baer and PC/DC prefetching by Nesbit et al. It combines
the storage-efficient table based design of Reference Prediction Tables (RPT) with
the high performance delta correlating design of PC/DC. DCPT substantially re-
duces the complexity of PC/DC prefetching by avoiding expensive pointer chasing
in the GHB and recomputation of the delta buffer.

We show that DCPT prefetching can increase performance by up to 3.7X for single
benchmarks, while the geometric mean of speedups across all SPEC2006 bench-
marks is 42% compared to no prefetching.

152 V.1. Introduction

V.1 Introduction

The performance of general purpose microprocessors continue to increase at a rapid
pace, but main memory has not been able to keep up [6]. In essence, the processor
is able to process several orders of magnitude more data than main memory is
able to deliver on time. Numerous techniques have been developed to tolerate or
compensate for this gap, including out-of-order execution, caches and prefetching.

Prefetching predicts what data the processor will need in the future, and fetch that
data from main memory before it is referenced. Most prefetching heuristics work
by finding patterns in the memory access stream and use this knowledge to predict
future accesses.

In this paper we present a new prefetching heuristic called Delta Correlating Pre-
diction Tables (DCPT). DCPT builds upon two previously proposed prefetcher
techniques, combining them and refining the ideas to achieve better performance.
This heuristic provides a significant speedup (42% on average), while only needing
4KB of storage.

V.2 Previous Work

Many prefetching heuristics have been proposed in the past. The simplest is the
sequential prefetcher [8], which simply fetches the next block when there is a miss
in the cache. An improvement over this simple heuristic is the tagged sequential
prefetcher which adds an extra bit per cache line (the tag). This bit is set when a
block is prefetched into the cache. If there is a cache hit on a block where this bit
is set, then the next cacheline is fetched.

Perez et al. [7] did a comparative survey in 2004 of many proposed prefetching
heuristics and found that tagged sequential prefetching, reference prediction tables
(RPT) and Program Counter/Delta Correlation Prefetching (PC/DC) were the top
performers.

V.2.1 Reference Prediction Tables

Reference Prediction Tables is a strided prefetching heuristic originally proposed
by Chen and Baer in 1995 [1]. Although improvements to the original design have
been proposed [2], the basic design is the same.

As the name implies, RPT prefetching is a large table indexed by the address of
the load which caused the miss. Each table entry has the format shown in figure
V.1.

The first time a load instruction causes a miss, a table entry is reserved, possibly
evicting the table entry for an older load instruction. The miss address is then

Paper V 153

PC Last
Address

StateDelta

Figure V.1: Format of a Reference Prediction Table entry.

recorded in the last address field and the state is set to initial. The next time this
instruction causes a miss, last address is subtracted from the current miss address
and the result is stored in the delta (stride) field. Last address is then updated
with the new miss address. The entry is now in the training state. The third time
the load instruction misses a new delta is computed. If this delta matches the one
stored in the entry, then there is a strided access pattern. The prefetcher then uses
the delta to calculate which cache block(s) to prefetch.

V.2.2 PC/DC Prefetching

In 2004, Nesbit et al. [5] proposed a different approach using a Global History
Buffer (GHB). The structure of the GHB is shown in figure V.2.

Index Table

Global History
 Table

10

11

20

21

30

FIFO

100

PC Ptr

PtrAddress

Delta

Delta Table

9

1

9

1

Figure V.2: Example of a Global History Buffer.

Each cache miss or cache hit to a tagged (prefetched) cache block is inserted into
the GHB in FIFO order. The index table stores the address of the load instruction
and a pointer into the GHB to the last miss issued by that instruction. Each entry
in the GHB has a similar pointer, which points to the next miss issued by the same
instruction. By traversing the pointers, the history of the latest misses issued by a
certain instruction can be obtained.

154 V.3. Delta Correlating Prediction Tables

PC/DC prefetching calculates the deltas between successive cache misses and stores
them in a delta-buffer. The history in figure V.2 yields the following address stream
and corresponding deltas:

Address: 10 11 20 21 30
Deltas: 1 9 1 9

Table V.1: Example delta stream.

The last pair of deltas is (1,9). By searching the delta-stream (correlating), we find
this same pair in the beginning. A pattern is found, and prefetching can begin.
The deltas after the pair are then added to the current miss address, and prefetches
are issued for the calculated addresses.

V.3 Delta Correlating Prediction Tables

Our prefetch heuristic combines the approaches of both RPT and PC/DC prefetch-
ing by using a table based approach to delta correlation. In DCPT we use a large
table indexed by the address (PC) of the load. Each entry has the format shown
in figure V.3.

PC Last
Address

Last
Prefetch

Delta
1

Delta
n

Delta
Pointer

Figure V.3: Format of a Delta Correlating Prediction Table Entry.

The last address field works in a similar manner as in RPT prefetching. Each delta
is initially set to 0 and the delta pointer points to the first delta. The n delta fields
acts as a circular buffer, holding the last n deltas observed by this load instruction
and the delta pointer points to the head of this circular buffer. The buffer is only
updated if the delta is non-zero. Each delta is stored as a n bit value. If the
value cannot be represented with only n bits, a 0 is stored in the delta buffer as an
indicator of an overflow error.

After updating the circular buffer, the deltas are traversed in reverse order, looking
for a match to the two most recently inserted deltas. If a match is found the next
stage begins. The first prefetch candidate is generated by adding the delta after the
match to the value found in last address. The next prefetch candidate is generated
by adding the next delta to the previous prefetch candidate. These candidates
are stored in a temporary buffer. This process is repeated for each of the deltas
after the matched pair including the newly inserted deltas. If a prefetch candidate
matches the value stored in last prefetch, the content of the prefetch candidate
buffer up to this point is discarded.

In the example in table V.1 the last pair of deltas is (1,9). Searching from the
left, we find this pattern at the beginning. The first delta after the pattern is 1.

Paper V 155

This delta is then added to the last address (30), producing a prefetch request for
address 31. The next delta is 9, adding 9 to 31 yields 40, producing a prefetch
request for address 40.

After computing the prefetch candidate buffer, every prefetch candidate is looked
up in the cache to see if it is already present. If it is not present, then it is checked
against the miss status holding registers to see if a demand request for the same
line has already been issued. Third, the candidate is checked against a buffer that
holds other prefetch request that have not been completed. This buffer can only
hold 32 prefetches, if it is full, then the prefetch is discarded. Finally, the last
prefetch field is updated with the address of the issued prefetch.

V.4 Methodology

To evaluate the performance of our prefetcher, we have used the SPEC2006 [9]
benchmarks with the CMP$im simulator [4]. Each benchmark was fast forwarded
40 billion instructions and then a memory trace of the next 100 million instructions
was recorded.

The simulated processor is a 15 stage, 4-wide OoO processor with a 128 entry
instruction window with perfect branch prediction in accordance with competion
rules [3]. A maximum of two loads and one store can be issued per clock cycle. The
L1 is a 32KB 8-way set associative cache with a latency of 1 cycle. In this paper
we use either a 512KB or a 2MB L2 cache, both 16 way set associative with a 20
cycle latency. Main memory has a 200 cycle latency.

The tagged sequential prefetcher was configured with a prefetching degree of 5, and
a distance of 4. The RPT prefetcher has a 256 entry table, a prefetching degree of 16
and a distance of 4. To keep within the 32 Kbit limit set by the competition [3], the
PC/DC prefetcher has a 702 entry GHB and a 32 entry delta buffer. Our prefetcher
was set up with a 98 entry table with 19 12-bit deltas. These parameters were found
experimentally to maximize performance on each prefetcher.

V.5 Results

In figure V.4, we compare the performance of the 4 prefetchers relative to no pre-
fetching in a system with unlimited bandwidth. Prefetching has very little impact
on performance (< 2%) for the benchmarks perlbench, gcc, gobmk, sjeng, gamess,
namd, dealII, povray and tonto and are not shown to conserve space. Furthermore,
the results have been split into two graphs so that the benchmarks showing large
speedups does not dwarf the others and the geometric mean of speedups.

Although DCPT and PC/DC prefetching share the same underlying pattern recog-
nition engine, DCPT is able to capture more of the potential due to a more space-

156 V.5. Results

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
lib

qu
an

tu
m

m
ilc

le
sl

ie
3d

G
em

sF
D

TD lb
m

sp
hi

nx
3

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

bz
ip

2

m
cf

hm
m

er

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

bw
av

es

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

so
pl

ex

ca
lc

ul
ix w
rf

G
-m

ea
n

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

Figure V.4: Speedup compared to no prefetching. 2 MB L2 cache with unlimited
bandwidth.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

lib
qu

an
tu

m

m
ilc

le
sl

ie
3d

G
em

sF
D

TD lb
m

sp
hi

nx
3

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6
bz

ip
2

m
cf

hm
m

er

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

bw
av

es

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

so
pl

ex

ca
lc

ul
ix w
rf

G
-m

ea
n

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

Figure V.5: Speedup compared to no prefetching. 2 MB L2 cache with limited
bandwidth.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

lib
qu

an
tu

m

m
ilc

le
sl

ie
3d

G
em

sF
D

TD lb
m

sp
hi

nx
3

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

bz
ip

2

m
cf

hm
m

er

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

bw
av

es

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

so
pl

ex

ca
lc

ul
ix w
rf

G
-m

ea
n

S
pe

ed
up

Benchmark

Sequential
RPT

PC/DC
DCPT

Figure V.6: Speedup compared to no prefetching. 512KB L2 cache with limited
bandwidth.

Paper V 157

efficient implementation. Because there is no penalty for issuing several prefetches,
sequential prefetching performs quite well on several benchmarks but is unable to
capture the patterns observed in milc and leslie3d. Overall, DCPT prefetching
acheives a geometric mean of speedups of 1.31, while PC/DC achieves 1.29.

Our second experiment, shown in figure V.5, limits the bandwidth to one request
per 10 clock cycles. In this configuration there is a more significant performance
difference between DCPT (1.38 geometric mean speedup) and PC/DC (1.32 geo-
metric mean speedup), even though there are several benchmarks where prefetching
has no effect. Again there is a marked difference between DCPT and PC/DC in
both milc and leslie3d.

In figure V.6 we reduce the size of the L2 cache to 512KB. In this case, sequential
prefetching causes a severe slowdown on mcf and astar. However, it is also the top
performer on GemsFDTD. Again, DCPT outperforms the other prefetchers.

Surprisingly, RPT prefetching does not perform very well. This is mainly due to it
being to conservative with respect to bandwidth and at the same time not being
able to detect the same access patterns as PC/DC and DCPT. In this configuration,
DCPT achieves a geometric mean speedup of 1.42 vs 1.33 for PC/DC.

V.5.1 DCPT Parameters

One of the main differences between DCPT and PC/DC is that DCPT stores deltas,
while PC/DC stores entire addresses in its GHB. Because the deltas are usually
quite small, fewer bits are needed to represent a delta than a full address. In figure
V.7 we show the average portion of deltas that can be represented with a given
amount of bits across all SPEC2006 benchmarks. Additionally, the geometric mean
of speedups is plotted as a function of the number of bits used per delta. In this
experiment we have used a 256 entry DCPT prefetcher with 16 deltas per entry.

Although the coverage steadily increases with the amount of bits used, speedup has
a distinct knee at around 7 bits. Thus, high deltas are not useful for prefetching.

In figure V.8 we show the geometric mean of speedups as a function of the number
of deltas per table entry. In this experiment we used 16 bits deltas and 256 table
entries. In effect, increasing the number of deltas increases the prefetch distance
of DCPT, thus the optimal choice will be both processor and program dependant.
However, there is a clear trend that performance flattens after about 14 deltas per
table entry.

Finally, in figure V.9 we show the geometric mean of speedups as a function of the
number of table entries. There is a steady performance improvement up to about
100 table entries. After this point, there is virtually no gain in adding extra entries.

158 V.6. Discussion

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

 1.2

 1.25

 1.3

 1.35

 1.4

C
ov

er
ag

e

S
pe

ed
up

Bits

Coverage
Speedup

Figure V.7: Coverage and speedup as a function of the number of bits used to
represent a delta.

V.6 Discussion

Our proposed prefetching technique is quite memory efficient. However, the com-
plexity of calculating each prefetch is high. Each calculation involves searching
the entire length of the deltas for possible matches and then adding the remaining
deltas. Thus, each calculation has a fixed latency as each delta is either used in a
comparison or an addition which lends itself well to pipelining.

Because of the relative infrequency of L2 misses several design points are available
depending on the needed performance and available power and area. At one end
of the spectrum, a single comparator and a single adder is sufficient to implement
DCPT in addition to the memory storage. At the other end, the pattern matching
step can be performed in a single cycle, provided enough comparators, while the
additions can be performed by several pipelined adders.

In all our experiments, we unrealistically assumed that the calculation would not
take any time to perform. We experimented with increasing the delay of the cal-
culation from 1 to 100 clock cycles, and found there was only a minor (< 1%)
performance impact in the same configuration. However, this penalty can be offset
by increasing the number of deltas per entry - indirectly increasing the prefetch
distance and thus timeliness.

In most cases, the patterns observed are quite simple, as they often repeat them-
selves after only a few deltas. We did some initial experimentation with storing
fewer deltas per entry and extrapolate the pattern from those deltas. However,
there was little to gain from this technique, and we chose to eliminate it from the
final design to keep it simpler.

Paper V 159

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20 25 30 35

S
pe

ed
up

Deltas per Entry

Figure V.8: Speedup vs. the number of deltas per entry.

Furthermore, because most memory access patterns are relatively stable, the last
prefetch candidate is often the only one that is not filtered out by the last pre-
fetch entry. This observation can be exploited by only calculating the last possible
prefetch candidate.

In our experiments we used n bits to represents the delta range, representing the
values between 2n−1 and −2n−1. We observed more positive deltas than negative
deltas, leading us to believe that adding a bias to the delta might be beneficial. We
did not explore this further as the maximum potential of this technique would be
equal to adding a single extra bit to each delta.

V.7 Conclusion

In this paper we have presented a new prefetching heuristic called Delta Correlating
Prediction Tables (DCPT). DCPT builds upon two previously proposed techniques,
Reference Prediction Tables by Chen and Baer [1] and PC/DC prefetching by
Nesbit et al. [5]. It combines the table based design of RPT and the delta correlating
design of PC/DC, as well as improving upon the ideas.

We show that DCPT prefetching can increase performance by up to 3.7X, while
the average speedup across all benchmarks is 42%. This is an improvement over
PC/DC prefetching by 27.2%.

160 Bibliography

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

10 20 30 40 50 60 70 80 90 100 1000

S
pe

ed
up

Number of Entries

Figure V.9: Speedup vs table size.

Bibliography

[1] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. Computers, IEEE Transactions on, 44:609–623, May
1995.

[2] F. Dahlgren and P. Stenstrom. Evaluation of hardware-based stride and se-
quential prefetching in shared-memory multiprocessors. Parallel and Distributed
Systems, IEEE Transactions on, 7(4):385–398, Apr. 1996.

[3] DPC-1. Data prefetching championship rules. URL http://www.jilp.org/

dpc/framework.html.

[4] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A pin-based on-the-
fly multi-core cache simulator. In MoBS, 2008.

[5] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. High-Performance Computer Architecture, International Symposium on,
0:96, 2004. ISSN 1530-0897. doi: http://doi.ieeecomputersociety.org/10.1109/
HPCA.2004.10030.

[6] D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75, 2004.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1022594.1022596.

[7] D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case for the quantitative
comparison of micro-architecture mechanisms. In MICRO 37: Proceedings of
the 37th annual IEEE/ACM International Symposium on Microarchitecture,
pages 43–54, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2126-6. doi: http://dx.doi.org/10.1109/MICRO.2004.25.

http://www.jilp.org/dpc/framework.html
http://www.jilp.org/dpc/framework.html

Paper V 161

[8] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/356887.356892.

[9] SPEC. Spec 2006 benchmark suites, 2006. http://www.spec.org.

http://www.spec.org

162

Paper VI

A Quantitative Study of
Memory System Interference
in Chip Multiprocessor
Architectures

Magnus Jahre, Marius Grannæs and Lasse Natvig
in 11th IEEE International Conference on High Performance
Computing and Communications, 2009

164

Paper VI 165

Abstract
The potential for destructive interference between running processes is increased
as Chip Multiprocessors (CMPs) share more on-chip resources. We believe that
understanding the nature of memory system interference is vital to achieve good
fairness/complexity/performance trade-offs in CMPs. Our goal in this work is to
quantify the latency penalties due to interference in all hardware-controlled, shared
units (i.e. the on-chip interconnect, shared cache and memory bus). To achieve this,
we simulate a wide variety of realistic CMP architectures. In particular, we vary
the number of cores, interconnect topology, shared cache size and off-chip memory
bandwidth. We observe that interference in the off-chip memory bus accounts for
between 63% and 87% of the total interference impact while the impact of cache
capacity interference can be lower than indicated by previous studies (between 5%
and 32% of the total impact). In addition, as much as 11% of the total impact can
be due to uncontrolled allocation of shared cache Miss Status Holding Registers
(MSHRs).

166 VI.1. Introduction

VI.1 Introduction

Chip Multiprocessors (CMPs) or multi-core architectures are the prevalent archi-
tecture for modern general-purpose, high-performance processors. In these ar-
chitectures, it is common to share some part of the hardware-controlled memory
system between cores. When multiple processes are run concurrently, the presence
of shared resources makes destructive interference possible. In addition, the on-
chip shared resources are managed by simple hardware policies that are unaware
that the requests belong to different processes. The performance effects caused
by destructive interference are hard to predict since they are a consequence of
the runtime interaction between the memory request streams from co-scheduled
processes. Consequently, destructive interference is an undesirable property and a
considerable research effort has been aimed at developing techniques that reduce
its performance impact [3, 16].

Figure VI.1 illustrates that the current CMP memory systems are unable to pro-
vide predictable performance. To evaluate interference, we use a baseline configu-
ration called the private mode where the benchmark is run in one of the processing
cores while the remaining cores are idle. Consequently, it has exclusive access to
all shared resources. Conversely, all benchmarks in a workload are run concur-
rently and compete for access to the shared resources in the shared mode. Figure
VI.1 shows the private- and shared mode IPCs of all benchmarks in two of our
40 randomly generated workloads. These measurements are taken from the 4-core,
crossbar-based architecture with 4 memory channels which is the architectural con-
figuration with the lowest amount of interference of the configurations used in this
work. In workload 17, facerec and mgrid are heavily impacted by interference
with a performance reduction of 46% and 21%, respectively. However, the perfor-
mance of mcf is only reduced by 1%. This illustrates that the performance impact
of interference can be substantial and that it does not affect all running processes
equally. Furthermore, the performance impact of interference is unpredictable since
facerec is only slowed down by 7% in workload 13. Since these effects are clearly
undesirable, there is a need for architectural techniques that provide predictable
performance and improve fairness.

Previously, cache capacity interference has received a great deal of attention [3, 6,
9, 12, 15, 21] while only a few researchers have proposed techniques that reduce
memory bus interference [16, 17, 19]. Furthermore, there has been little interest in
the details of designing a complete, thread-aware memory system [2, 10, 18]. A first
step towards a unified approach to reducing interference in the hardware-managed
memory system is to develop an understanding of the problem. For instance,
we found that memory bus interference accounts for 64% of the total amount of
interference while cache capacity interference only accounts for 25% with a powerful
4-channel memory bus in our 4-core crossbar-based CMP. When the complexity of
current fair cache sharing techniques is taken into account, the fairness requirements
on the system must be strict for thread-aware cache techniques to be worth the
cost.

Paper VI 167

0

0,2

0,4

0,6

0,8

1

1,2

Facerec Mgrid Swim Mcf Facerec Gzip Ammp Equake

Workload 17 Workload 13

Workload and Benchmark

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (I

PC
)

0

0,2

0,4

0,6

0,8

1

1,2

Sp
ee

du
p

(S
ha

re
d

M
od

e
IP

C
 /

Pr
iv

at
e

M
od

e
IP

C
)

Shared Mode Private Mode Speedup

Figure VI.1: Performance Impact of Interference in the 4-core, Crossbar-Based
CMP with 4 Memory Channels

CPU 0
L1 I

L1 D

CPU c
L1 I

L1 D

Shared
L2

Bank 0

Shared
L2

Bank b

Memory
Controller

0

Memory
Controller

m

Channel 0

Channel m

C
rossbar

...

Figure VI.2: Crossbar-based CMP

In this work, we aim to increase the understanding of the interference problem and
thus help architects achieve good complexity/fairness trade-offs. This understand-
ing is developed through detailed analysis of interference at the memory request
level. Consequently, we are able to analyze both the relative interference impact
of the different shared units as well as the distribution of interference penalties.
Handling memory bus interference yields the largest gain, and we believe that em-
ploying a fairness-aware technique here will be sufficient for many architectures
and usage scenarios. However, we have also observed interference due to shared
cache Miss Status Holding Register (MSHR) allocation which must be handled if
the fairness requirements are sufficiently strict. Finally, we show that the main
driver of memory system interference is insufficient memory bus bandwidth. Since
this parameter is limited by the number of physical pins on a chip and the elec-
tronic characteristics of the circuit board, it is likely that thread-aware memory

168 VI.2. Related Work

CPU 0
L1 I

L1 D

CPU c
L1 I

L1 D

Private
L2

Private
L2

Shared
L3

Bank 1

Shared
L3

Bank b

Memory
Controller

1
Channel 1R

ing Interconnect

Memory
Controller

m
Channel m

...

Figure VI.3: Ring-based CMP

bus schedulers will become a necessity in the near future.

VI.2 Related Work

It is common to aim an interference reduction technique at providing fairness
and/or Quality of Service (QoS). A memory system is fair if the performance re-
duction due to interference between threads is distributed across all processes in
proportion to their priorities [12]. QoS is provided if it is possible to put a limit on
the maximum slowdown a process can experience when it is co-scheduled with any
other process [3]. Furthermore, the allowed slow-down can depend on the priority
of the process. In other words, the objective of fairness techniques is not to remove
interference completely but to equalize its impact on all running processes.

There has been a considerable amount of research on how the performance impact
from interference can be reduced in the hardware-controlled, shared memory sys-
tem. However, most of these studies have focused on a single component of the
entire system. For example, techniques have been proposed to reduce cache capac-
ity interference [3, 6, 9, 12, 15, 21], cache bandwidth interference [20] and memory
bus transfer interference [16, 17, 19]. Unfortunately, a technique that reduces in-
terference in one component is not adequate to provide interference control for
the complete memory system. Consequently, a few researchers have investigated
how a chip-wide resource management technique can be designed. Iyer et al. [10]
proposed a high-level framework for implementing a QoS-aware memory system,
while Nesbit et al. [18] proposed the Virtual Private Machines framework where
a private virtual machine is created by dividing the available physical resources
among applications. In addition, Bitirgen et al. [2] showed how machine learning
can be applied to the resource allocation problem. The focus of these works has
been to partition all shared resources amongst processes according to some allo-
cation policy. In this work, we investigate the impact of interference and provide
guidance on how trade-offs can be handled in resource allocation implementations.

Paper VI 169

VI.3 Methodology

VI.3.1 Chip Multiprocessor Architectures

There is still considerable debate regarding the high-level organization of CMPs
[7, 13, 23]. Therefore, we use two different CMP architectures that are similar
to current general-purpose, high-performance CMP implementations for our inter-
ference investigations. Furthermore, we scale these architectures according to the
expected improvements in process technology [8]. The first CMP type uses a cross-
bar interconnect to connect the private L1 caches to a large, shared L2 cache as
shown in Figure VI.2. Unfortunately, the crossbar does not scale in terms of area
[14]. Consequently, we also use a different CMP model where a bi-directional ring
is used as the interconnect. Since the ring has lower bandwidth than the crossbar,
we add a private L2 cache to each processor to reduce the number of accesses to the
interconnect. This is reasonable since the ring uses considerably less area than the
crossbar. Furthermore, the number of processing cores and memory bus channels
can be configured in both processor models which makes it possible to investigate
the impact of memory system interference across a wide range of realistic CMP
architectures. For convenience, we will refer to these architectures by the tuple
c-i-m where c is the number of cores, i is the interconnect and m is the number of
memory bus channels.

VI.3.2 Measuring and Reporting Interference

To gather accurate interference measurements, it is convenient to compare to a
baseline where interference does not occur [4]. In this work, we create such a base-
line by letting the process run in one processing core and leaving the remaining
cores idle. Consequently, the process has exclusive access to all shared resources
and we will refer to this configuration as the private mode. Conversely, all pro-
cessing cores are active and the processes compete for the shared resources in the
shared mode. Mutlu and Moscibroda observed that memory system interference is
related to the memory latencies in the shared and private modes with the formula:
interference penalty = shared mode latency− private mode latency [17].

In our CMP models, there are three shared units: the interconnect, the memory
bus and the shared cache. To assess the interference impact of each of these units,
we partition the memory request latency through the shared memory system as
shown in Table VI.1. For the interconnect, we divide the latency into three types:
entry, transfer and delivery. The interconnect has a finite entry queue. If this queue
becomes full, the interconnect can not accept any more requests and the request is
delayed in the private cache MSHR. We refer to this as Interconnect Entry Inter-
ference if it causes a different delay in the shared mode than in the private mode.
Furthermore, the shared cache can block. In this case, all requests waiting behind
a request for a blocked bank are delayed since reordering requests can cause star-
vation. We refer to interference arising from this situation as Interconnect Delivery

170 VI.3. Methodology

Table VI.1: Shared Memory System Latency Breakdown
Type Description

Interconnect Entry
The number of cycles a request was kept in the private cache
MSHR before it is accepted into a interconnect queue

Interconnect Transfer
The number of cycles spent in the interconnect queue plus the
interconnect transfer latency

Interconnect Delivery
The number of cycles a request was delayed because a shared cache
bank could not accept requests due to insufficient buffer space

Memory Bus Entry
The number of cycles a request was delayed in a shared cache
MSHR before it was accepted into a memory controller queue

Memory Bus Transfer
The number of cycles a request spent in the memory controller
queue plus the number of cycles used to retrieve the requested data
from DRAM

Cache Capacity
The number of cycles used to service misses that would not occur if
the process had exclusive access to the shared cache

Interference. Finally, Interconnect Transfer Interference is the difference between
the shared mode and private mode latencies when there is no cache blocking.

In the memory bus, we divide the latency into two types: entry and transfer. Again,
the entry delay is the number of cycles the request is kept in an MSHR before it
is accepted into the memory bus queue. If this latency is different for the shared
and private modes, we refer to it as Memory Bus Entry Interference. In addition,
Memory Bus Transfer Interference is the difference between the memory bus queue
latency plus service latency in the two modes. Since there is no buffer allocation in
the shared cache on a response, the memory bus does not have a delivery latency.

Finally, competition for space in the shared cache can lead to Cache Capacity Inter-
ference. Unlike the interference types discussed above, cache capacity interference
does not have a latency value directly associated with it. The key observation is
that if a request experiences a bus transfer latency in the shared mode and no
bus transfer latency in the private mode, we have a miss in the shared cache that
would have been a hit if the process had the entire cache to itself. The extra latency
caused by this event in our CMP models is the number of cycles used to service the
request in the memory bus. Consequently, the latency penalty of cache capacity
interference is the sum of the bus entry latency and the bus transfer latency of the
request.

Figure VI.4 illustrates the two stage process of gathering interference measure-
ments and aggregating them for a single architecture. In the first stage, we
create a compact representation of the measured interference for each benchmark
in all workloads and architectures. First, we record the latency of all shared mode
memory requests and all private mode memory requests. For all shared mode
requests, we find the corresponding private mode request and compute the inter-
ference penalties for all interference types. If there are more than one request for
the same address, we assume that the requests occur in the same order in both the
private and shared modes. Then, we create a histogram representation of the data
by counting the number of requests that experience a certain interference penalty

Paper VI 171

Shared Mode
Latency Trace

Private Mode
Latency Trace

Interference per
Memory
Request

à
Interference

Penalty
Frequencies

(IPF)

Benchmark
IPFs

Benchmark 1
Workload 1

IPFs

Benchmark m
Workload n

IPFs

Architecture
IIFs

... +

Aggregate IPF
à

Interference
Impact

Factors (IIF)

Stage 1 – For all Benchmarks Stage 2 – For all Architectures

Figure VI.4: Interference Measurement Workflow

for each interference type. For example, if a request for memory address 15 expe-
riences 12 cycles of interconnect transfer interference, we add 1 to the interconnect
transfer interference entry at position 12. We refer to this data as the Interference
Penalty Frequency (IPF), and stage 1 of the analysis is complete when we have
created IPF files for all workloads and architectures.

Stage 2 is the process of aggregating the per benchmark IPF files into one file for
each architecture. First, we sum the request counts for each interference penalty
from all files belonging to the architecture of interest. For some of the interfer-
ence types, it is very common to not experience interference. These entries are of
little interest and will dominate the results if we use plot the number of requests
per interference penalty directly. Consequently, we devise a new metric called the
Interference Impact Factor (IIF) that balances the latency penalty of interference
against the probability of it arising (i.e. IIF(i) = i · P (i)). For example, an experi-
ment that results in 15 requests with 3 cycles interconnect transfer interference and
100 requests in total gives IIF(3) = 3 · 15

100 . When we have computed the IIFs for
all interference penalties, stage 2 is finished. In most cases, there is a large range of
possible interference values and there is a need to summarize the IIFs for a range
of interference penalties into a single number. To do this, we use the Aggregate
Interference Impact Factor (AIIF) which is simply the sum of the IIFs for all or a

subset of the observed interference penalties (i.e. AIIF(a, b) =
∑b
i=a IIF(i)).

VI.3.3 Processor Model Scaling

To investigate the impact of interference in multi-core architectures, it is important
that reasonable parameters are used to scale the latency, bandwidth and capacity
of the various units in the memory system. To this end, we have used the Interna-
tional Technology Roadmap for Semiconductors [8] to estimate scaling trends and
CACTI 5.3 [25] to find reasonable caches for the multi-core architectures used in
this work. Table VI.2 summarizes the main multi-core model parameters. With
each improvement in feature size, we double the number of processing cores but use
the same core implementation. Furthermore, we follow the ITRS expectation that

172 VI.3. Methodology

Table VI.2: Architecture Parameter Scaling
Crossbar Based Architecture Ring Based Architecture

4-core 8-core
16-
core

4-core 8-core
16-
core

ITRS Year of Production 2007 2010 2013 2007 2010 2013

Feature Size (nm) 65 45 32 65 45 32

Shared Cache Size (MB) 8 16 32 8 16 32

Memory Bus Channels
1, 2 or

4
1, 2 or

4
1, 2 or

4
1, 2 or

4
1, 2 or

4
1, 2 or

4

Interconnect Latency

(End-to-End/Per Hop) 8/- 16/- 30/- -/4 -/4 -/8

Table VI.3: Cache Parameters (4-core/8-core/16-core)
L1 Private Cache L2 Private Cache L2/L3 Shared Cache

Size 64KB 1 MB 8/16/32 MB
Associativity 2 4 16
Access Latency (cycles) 3/2/2 9/6/5 16/12/12
Cycle Time (cycles) 2 4/3/2 4
MSHRs / WB (per bank) 16MSHRs/4WB 16 16/32/64
Banks 1 1 4
Area (mm2) 2.3/1.1/0.5 14.6/7.0/3.6 94.0/91.9/84.7

the interconnect transfer latency will roughly double with each technology genera-
tion. The only exception is the per hop latency of the 4-core ring architecture which
we assume is limited by the cache cycle time. To account for this latency increase,
we double the ring bandwidth across generations. Since the ITRS projections for
off-chip bandwidth results in a large range of possible pin counts, we simulate all
architectures with 1, 2 and 4 independent memory channels.

Table VI.3 contains the parameters of our scaled on-chip caches. Here, we choose
to keep the percentage of the total chip area occupied by L2 and L3 caches in the
ring-based CMP constant. We use the same shared cache for the crossbar based
CMP, but here we only use two levels of caches. Consequently, we assume that the
area made available by using a two level cache hierarchy is sufficient to implement
a crossbar interconnect. To reduce the shared cache access time and increase the
opportunity for cache access parallelism, we divide the shared cache into 4 banks.

VI.3.4 Simulation Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [1] for
our experiments. The processor architecture parameters for the simulated CMPs
are shown in Table VI.4. Table VI.5 contains the interconnect and memory bus
parameters, and the cache parameters are outlined in Table VI.3. We have ex-
tended M5 with crossbar and ring interconnects and a detailed DDR2-800 memory
bus and DRAM model [11]. For the shared mode, we generated 40 different 4-core
workloads (Table VI.6), 20 8-core workloads (Table VI.7) and 10 16-core work-
loads (Table VI.8) by picking benchmarks at random from the full SPEC CPU2000
benchmark suite [24]. The only requirement given to the random selection process

Paper VI 173

Table VI.4: Processor Core Parameters
Parameter Value

Clock frequency 4 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 4 instructions/cycle

Functional units

4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor

Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table VI.5: Interconnect and DRAM
Interface
Parameter Value

Crossbar
Interconnect

8/16/30 cycles
end-to-end transfer
latency, 32 entry
request queue,
Pipelined (2/4/6
pipe stages)

Ring Interconnect

4/4/8 cycles per hop
transfer latency,
1/1/2 pipe stages
per hop, 32 entry
request queue, 1/2/2
request rings, 1
response ring

Point to Point Link
4/3/2 transfer
latency, 32 entry
request queue

Main memory

DDR2-800, 4-4-4-12
timing, 64 entry read
queue, 64 entry write
queue, 1 KB pages, 8
banks, FR-FCFS
scheduling [22],
Closed page policy

is that a benchmark can only appear once in each workload. These workloads are
fast-forwarded for 1 billion clock cycles before we gather traces for 100 million clock
cycles. For our interference measurement methodology to be accurate, it is critical
to minimize the difference between the memory requests in the shared and private
modes. To ensure this, we use static cache partitioning and an infinite bandwidth
interconnect and memory bus during fast forwarding such that the simulation sam-
ple starts on a similar instruction in both modes. Furthermore, we run the shared
mode experiments first and then retrieve the number of instructions the benchmark
committed. Then, we run the private mode simulation for the exact same number
of instructions.

Since our processor cores are out-of-order, we can get cache misses from wrong
path instructions that only occur in either the private or shared mode. Secondly,
the start and termination of the simulation sample is not perfectly synchronized
between the two modes. Thirdly, our memory controller reorders requests to achieve
high page hit rates which can affect the private cache access patterns and miss
rates. For these reasons, there can be small differences between the private and
shared mode memory request traces. We remove these differences by applying two
preprocessing steps before analyzing the traces. Firstly, we remove the requests
for addresses that only occur in the private or shared modes. Secondly, we remove
the superfluous requests of the mode that has the most requests in the cases where
there are a different number of requests for the same address in the shared and
private modes. These steps result in the removal of 0.1% of the observed requests.

174 VI.4. Results

Table VI.6: Randomly Generated 4-core Multiprogrammed Workloads
ID BenchmarksID BenchmarksID BenchmarksID BenchmarksID Benchmarks

1
mesa,
twolf, art,
vpr

9

crafty,
twolf,
bzip,
perlbmk

17
mgrid,
facerec,
mcf, swim

25
twolf,
crafty,
bzip, art

33
swim, gap,
vortex1,
perlbmk

2

art,
vortex1,
applu,
crafty

10
eon, twolf,
galgel,
crafty

18
equake,
applu,
eon, gzip

26

applu,
gap,
perlbmk,
crafty

34

equake,
twolf,
bzip,
galgel

3
gap, eon,
art,
wupwise

11
vortex1,
eon, art,
equake

19
galgel,
mesa,
gzip, gcc

27
galgel,
facerec,
eon, mesa

35

applu,
eon,
fma3d,
vortex1

4

fma3d,
applu,
parser,
swim

12
gzip,
lucas,
twolf, apsi

20
art, galgel,
parser,
eon

28

vpr,
crafty,
applu,
vortex1

36

lucas,
ammp,
twolf,
fma3d

5
mcf, swim,
gzip,
vortex1

13

facerec,
ammp,
gzip,
equake

21
bzip, gzip,
perlbmk,
eon

29
twolf, vpr,
swim,
wupwise

37
eon,
parser,
bzip, mcf

6

swim,
galgel,
apsi,
applu

14

swim,
sixtrack,
mgrid,
vortex1

22
vpr, swim,
apsi, gcc

30

parser,
mesa,
vortex1,
gcc

38

vpr,
vortex1,
wupwise,
applu

7

gzip,
wupwise,
eon,
equake

15

sixtrack,
fma3d,
parser,
mcf

23
art, applu,
perlbmk,
mesa

31

lucas,
mgrid,
sixtrack,
gap

39
lucas,
mgrid,
swim, gzip

8

sixtrack,
gcc,
facerec,
perlbmk

16

twolf,
galgel,
crafty,
applu

24
facerec,
eon, bzip,
mesa

32

facerec,
galgel,
vpr,
sixtrack

40
gzip,
swim, eon,
fma3d

VI.4 Results

Modern out-of-order processors and memory systems contain a substantial amount
of logic dedicated to hiding memory latency. Since our interference measurement
methodology is latency focused, it is necessary to verify that the observed inter-
ference result in an asymmetric performance reduction. To this end, we use the
fairness metric of Gabor et al. [5]. This metric expresses the difference between the
largest and smallest shared mode slowdowns for one workload and provides values
in the range from 0 to 1 where 1 indicates that the slowdown is the same for all
benchmarks. A value of 0 indicates that at least one benchmark is not making
forward progress.

Figure VI.5 shows the distribution of fairness metric values for all 4-core CMPs used
in this work. Here, we plot the lowest fairness value observed when a certain number
of workloads are taken into account for the different CMP architectures. The
main observation from Figure VI.5 is that many workloads have reasonably good
fairness values. However, there are also workloads where interference leads to large

Paper VI 175

Table VI.7: Randomly Generated 8-core Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1

ammp, mcf,
vpr, fma3d,
equake,
sixtrack, galgel,
bzip

6

applu, mcf,
perlbmk,
parser, crafty,
eon, galgel,
fma3d

11

ammp, lucas,
wupwise, eon,
twolf, fma3d,
gcc, equake

16

apsi, ammp,
vortex1, vpr,
gap, perlbmk,
art, bzip

2

crafty, vortex1,
facerec, ammp,
bzip, parser,
mcf, perlbmk

7

fma3d, gzip,
lucas, perlbmk,
bzip, apsi,
crafty, gap

12

mcf, galgel,
gap, gzip,
swim, sixtrack,
vpr, fma3d

17

gzip, art,
equake, facerec,
eon, apsi, gcc,
wupwise

3

lucas, vpr,
mesa, apsi,
swim, art, gzip,
twolf

8

swim, gzip,
ammp, facerec,
perlbmk,
equake, gcc,
apsi

13

mesa, fma3d,
gap, lucas,
wupwise,
galgel, sixtrack,
parser

18

perlbmk, gap,
parser, swim,
sixtrack,
fma3d, lucas,
vortex1

4

art, mcf,
perlbmk,
wupwise,
ammp, applu,
mesa, swim

9

gap, mcf, vpr,
apsi, vortex1,
lucas, parser,
applu

14

bzip, mgrid,
facerec, art,
eon, swim,
equake, apsi

19

lucas, mesa,
apsi, fma3d,
mcf, parser,
crafty, gcc

5

eon, apsi,
equake, vpr,
fma3d, facerec,
gcc, vortex1

10

mcf, sixtrack,
vpr, swim,
gzip, mgrid,
ammp, lucas

15

swim, vpr, gap,
facerec, twolf,
sixtrack, mcf,
crafty

20

gcc, perlbmk,
sixtrack,
parser, vortex1,
eon, facerec,
galgel

performance differences between the benchmarks (i.e. low fairness). This supports
the claim that interference-aware techniques are necessary to reduce performance
variability.

Figure VI.6 shows the interference results for all architectures examined in this
work. The main observation is that memory bus transfer interference is the major
interference contributor across all architectures. This trend is also visible in Figure
VI.5. Cache capacity interference is the second most important source of interfer-
ence, but its impact is considerably smaller than the impact of bus interference. In
addition, there are architectures (e.g. 16-CB-4) where the impact of cache capacity
interference is small. Finally, there is more interconnect transfer interference in the
crossbar interconnect than in the ring for the 16-core CMP. This seemingly counter
intuitive result is due to two factors. Firstly, the ring-based architecture has a
private L2 cache that reduces the pressure on the interconnect. Secondly, we do
not increase the number of banks in the shared cache which reduces the parallelism
available in the crossbar.

Figure VI.7 shows the interference distribution for the 4-core CMP for both inter-
connects and all memory bus configurations used in this work. Here, the interfer-
ence impact factors are aggregated into bins of size 300, and we remove all bins
that have a AIIF value of less than 0.35 to improve readability. While Figure VI.6
showed that interference is reduced when more memory bus bandwidth is made
available, Figure VI.7 illustrates that the interference distribution also changes sig-
nificantly. For the bandwidth constrained architectures (e.g. Figure VI.7(a) and

176 VI.4. Results

Table VI.8: Randomly Generated 16-core Multiprogrammed Workloads
ID Benchmarks ID Benchmarks

1
lucas, art, ammp, bzip, sixtrack, vpr,
gzip, fma3d, equake, gcc, vortex1,
facerec, galgel, crafty, apsi, twolf

6
parser, mesa, bzip, vortex1, vpr, fma3d,
gap, gcc, perlbmk, gzip, mcf, crafty, eon,
equake, facerec, galgel

2
lucas, ammp, mgrid, bzip, swim, crafty,
galgel, equake, vortex1, parser, vpr, eon,
wupwise, gzip, twolf, mcf

7
gzip, sixtrack, gap, fma3d, eon, galgel,
perlbmk, art, bzip, ammp, equake, lucas,
parser, facerec, apsi, crafty

3
lucas, ammp, art, bzip, twolf, applu,
facerec, apsi, mesa, eon, swim, galgel,
gzip, crafty, gap, perlbmk

8
perlbmk, gzip, apsi, twolf, wupwise, gap,
vpr, mgrid, galgel, facerec, gcc, eon, mcf,
lucas, fma3d, ammp

4
crafty, twolf, mgrid, applu, wupwise,
swim, parser, fma3d, mesa, perlbmk,
facerec, gcc, lucas, vortex1, galgel, bzip

9
mgrid, art, facerec, gcc, vpr, gzip, parser,
ammp, fma3d, galgel, crafty, applu,
twolf, bzip, mcf, apsi

5
bzip, facerec, vortex1, ammp, gzip, swim,
fma3d, equake, lucas, apsi, applu, vpr,
perlbmk, sixtrack, mcf, mesa

10
apsi, swim, crafty, art, sixtrack, ammp,
galgel, lucas, vortex1, gzip, perlbmk, vpr,
gcc, mesa, gap, equake

VI.7(d)), the interference impact increases to a maximum before it decreases. In
the 4-channel architectures (Figure VI.7(c) and VI.7(f)), the largest interference
impact is in the 0 to 300 bin and the impact decreases rapidly. The interference
impact of the low penalty bins is significantly higher for the 4-channel architectures
but the total impact is lower because of the distribution’s short tail.

Figure VI.7 illustrates that the cache capacity interference impact is heavily de-
pendent on the amount of memory bus interference. The reason is that the cost
of cache capacity interference is the memory bus service time of the additional
requests. Furthermore, the impact from interconnect transfer interference is small
across all architectures. Although this interference type occurs very frequently, the
interference penalty is small which results in a low interference impact. In addition,
there is some interconnect delivery interference in all architectures which is due to
shared cache blocking. The impact from this type of interference is large enough
that it most likely must be dealt with in architectures with strict QoS requirements.

There is also a considerable amount of constructive interference. With the 4-Ring-
1 architecture (Figure VI.7(a)), constructive memory bus interference leads to a
noticeable impact in the -1500 to -1200 cycles bin. This can be explained by taking
into account that our memory controller allows some requests to skip past the queue
to achieve higher page hit rates and better memory bus utilization [22]. For the
interconnect transfer interference, the impact from constructive interference is much
lower. In this case, the constructive interference is due to some benchmarks having
significant interconnect delays when they have the memory bus to themselves. In
the shared mode, memory bus interference reduces execution speed enough that
the interconnect congestion disappears which results in lower transfer delays in the
shared mode.

Paper VI 177

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Number of Workloads

Lo
w

es
t F

ai
rn

es
s

Va
lu

e

Crossbar-Based, 1 channel Crossbar-Based, 2 channels
Crossbar-Based, 4 channels Ring-Based, 1 channel
Ring-Based, 2 channels Ring-Based, 4 channels

Figure VI.5: 4-core Fairness Metric Values

0

50

100

150

200

250

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

C
B

 1

C
B

 2

C
B

 4

R
in

g
1

R
in

g
2

R
in

g
4

4-core CMP 8-core CMP 16-core CMP

A
gg

re
ga

te
 In

te
rf

er
en

ce
 Im

pa
ct

 F
ac

to
r

Memory Bus Entry Interference Memory Bus Transfer Interference
Cache Capacity Interference Interconnect Delivery Interference
Interconnect Entry Interference Interconnect Transfer Interference

Figure VI.6: Interference Impact Breakdown

178 VI.4. Results

-5

 0

 5

 10

 15

 20

-1
50

0
-1

20
0

-9
00

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

57
00

60
00

63
00

66
00

69
00

72
00

75
00

78
00

81
00

84
00

87
00

90
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(a) 4-Ring-1

-5

 0

 5

 10

 15

 20

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(b) 4-Ring-2

-5

 0

 5

 10

 15

 20

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(c) 4-Ring-4

-5

 0

 5

 10

 15

 20

-1
20

0
-9

00
-6

00
-3

00 0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(d) 4-Crossbar-1

-5

 0

 5

 10

 15

 20

-6
00

-3
00 0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(e) 4-Crossbar-2

-5

 0

 5

 10

 15

 20

-3
00 0

30
0

60
0

90
0

12
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(f) 4-Crossbar-4

Figure VI.7: 4-core CMP Interference Impact (cores-interconnect-channels)

-5

 0

 5

 10

 15

 20

 25

 30

 35

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0
10

50
0

11
00

0
11

50
0

12
00

0
12

50
0

13
00

0
13

50
0

14
00

0
14

50
0

15
00

0
15

50
0

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(a) 16-Ring-1

-5

 0

 5

 10

 15

 20

 25

 30

 35

-5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

A
gg

re
ga

te
 Im

pa
ct

 F
ac

to
r

Interference Penalty (cycles)

Memory Bus Entry
Memory Bus Transfer

Cache Capacity
Interconnect Delivery

Interconnect Entry
Interconnect Transfer

(b) 16-Ring-4

Figure VI.8: 16-core Ring Interference Impact

Paper VI 179

To illustrate the impact on interference by increasing the number of processing
cores, we show the results of two 16-core ring-based architectures in Figure VI.8.
Here, we use a bin size of 500 and only show bins that have an AIIF value of
1.0 or more. As expected, Figure VI.8(a) shows that there is a large amount
of interference if the memory bus bandwidth is not scaled with the number of
cores. Furthermore, memory bus entry interference has a considerable impact for
this architecture. Consequently, a significant part of the interference is due to
shared cache misses not being accepted into the memory bus queue because it is
full. This further illustrates the need for fair buffer management observed in all
4-core architectures. Figure VI.8(b) shows the effect of increasing the number of
memory bus channels to 4. Here, the distribution has a considerably shorter tail.
However, the impact of the 0 to 500 cycle bin is large which indicates that low-
penalty interference is frequent. In other words, providing more resources reduces
the impact of interference but does not remove it. This indicates that fairness
techniques are useful even when there are no severe performance bottlenecks.

VI.5 Conclusion and Further Work

In this work, we have shown that the impact of interference will increase as more
cores are added to the chip by investigating a variety of realistic CMP architec-
tures with 4, 8 and 16 cores. Consequently, techniques that reduce this interference
are needed in future CMPs. We found that memory bus interference is the major
source of interference and it is responsible for between 63% and 87% of the total
interference impact depending on the architectures. Furthermore, it is unlikely
that this situation will improve in the future as memory bus bandwidth is limited
by the number of physical pins on a chip and the electronic characteristics of the
circuit board. We also observed that cache capacity interference can be a relatively
small part of the total interference impact (between 5% and 32%). Consequently,
adding a fair memory controller might be sufficient to achieve acceptable fairness
and QoS for many near-term architectures. However, we have also observed ar-
chitectures where 11% of the total interference impact is due to the shared cache
MSHR allocation policy for which no solutions are currently known.

In this work, we have developed an understanding of memory system interference
that can be useful for future research. However, we have only investigated CMPs
where no fairness techniques have been implemented. A possible avenue of further
work is to investigate how implementing fairness techniques in one shared unit will
influence the interference impact of the other shared units. For instance, a cache
capacity sharing technique might reduce the overall number of cache misses enough
to reduce the impact of memory bus interference. On the other hand, it can poten-
tially increase the number misses by limiting the cache space available to a process
which might result in more memory bus interference. In addition, we observed that
shared cache blocking and memory controller blocking can be important contribu-
tors to interference in certain architectures. One possible solution to this problem

180 Bibliography

is to allocate MSHR entries and memory bus queue space per thread. However, this
must be done carefully to ensure that the provided resources are utilized efficiently.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Resources in Chip Multiprocessors: A Machine Learning Approach. In MICRO
41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture, 2008.

[3] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[4] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[5] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in switch
on event multithreading. In MICRO 39: Proc. of the 39th Int. Symp. on
Microarchitecture, pages 149–160, 2006.

[6] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing Quality
of Service in Chip Multi-Processors. In MICRO 40: Proc. of the 40th An.
IEEE/ACM Int. Symp. on Microarchitecture, 2007.

[7] H. Hofstee. Power Efficient Processor Architecture and the Cell Processor.
HPCA 11: 11th Int. Symp. on High-Performance Comp. Arch., pages 258–
262, 2005.

[8] ITRS. International Technology Roadmap for Semiconductors - 2007 Edition.
http://www.itrs.net/.

[9] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Plat-
forms. In ICS ’04: Proceedings of the 18th An. Int. Conf. on Supercomputing,
pages 257–266, 2004.

[10] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu,
and S. Reinhardt. QoS Policies and Architecture for Cache/Memory in CMP
Platforms. In SIGMETRICS ’07: Proc. of the 2007 ACM SIGMETRICS Int.
Conf. on Measurement and Modeling of Comp. Sys., pages 25–36, 2007.

[11] DDR2 SDRAM Specification. JEDEC Solid State Technology Association,
May 2006.

http://www.itrs.net/

Paper VI 181

[12] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int. Conf.
on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[14] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core
Architectures: Understanding Mechanisms, Overheads and Scaling. In ISCA
’05: Proc. of the 32nd Int. Symp. on Comp. Arch., pages 408–419, 2005.

[15] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap between Sim-
ulation and Real Systems. In HPCA ’08: Proc. of the 13th Int. Symp. on
High-Perf. Comp. Arch., 2008.

[16] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA ’08: Proc.
of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[17] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Proc. of the 40th Annual IEEE/ACM
Int. Symp. on Microarchitecture, 2007.

[18] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[19] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on
Microarch., pages 208–222, 2006.

[20] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

[21] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Op-
erating System-driven CMP Cache Management. In PACT ’06: Proc. of the
15th Int. Conf. on Parallel Architectures and Compilation Techniques, pages
2–12, 2006.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Proc. of the 27th An. Int. Symp. on Comp.
Arch., pages 128–138, 2000.

[23] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan. Larrabee: a Many-core x86 Architecture for Visual Computing.
In ACM SIGGRAPH 2008, pages 1–15, 2008.

[24] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[25] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACI 5.1.
Technical report, HP Laboratories Palo Alto, 2008.

http://www.spec.org/cpu2000/

182

Paper VII

Multi-Level Hardware
Prefetching using Low
Complexity Delta
Correlating Prediction
Tables with Partial Matching

Marius Grannæs, Magnus Jahre and Lasse Natvig
Accepted to the 5th HiPEAC Conference, 2010

184

Paper VII 185

Abstract
This paper presents a low complexity table-based approach to delta correlation
prefetching. Our approach uses a table indexed by the load address which stores
the latest deltas observed. By storing deltas rather than full miss addresses, con-
siderable space is saved while making pattern matching easier. The delta-history
can predict repeating patterns with long periods by using delta correlation. In
addition, we propose L1 hoisting which is a technique for moving data from the L2
to the L1 using the same underlying table structure and partial matching which
reduces the spatial resolution in the delta stream to expose more patterns.

We evaluate our prefetching technique using the simulator framework used in the
Data Prefetching Championship. This allows us to use the original code sub-
mitted to the contest to fairly evaluate several alternate prefetching techniques.
Our prefetcher technique increases performance by 87% on average (6.6X max) on
SPEC2006.

186 VII.1. Introduction

VII.1 Introduction

In 2004, Gracia Perez et al. [13] published a paper that evaluated several prefetching
techniques in a common framework. They found that several techniques were not
as good as the original authors claimed. This discrepancy was due to researchers
using different simulator infrastructure and benchmarks as well as the difficulty in
implementing other techniques due to a lack of documentation. In this work, we
avoid these problems by using the simulation infrastructure and original code from
the first Data Prefetching Championship (DPC-1). This competition was similar
to the earlier JILP Championship Branch Prediction Competition (CBP). In order
to ensure a fair comparison of prefetcher performance, the organizers published a
common simulator framework. Each prefetcher could use a maximum of 4KB of
storage, but there was no limit on prefetcher complexity. Each contestant submit-
ted their code to the competition for evaluation. This code was later published.
This allows us to do a fair comparison with the top three DPC entries using their
submitted code.

Our submission, Delta Correlating Prediction Tables (DCPT), used a table indexed
by the PC of the load [7]. Each table entry stores a large amount of history per
load instruction in the form of deltas. By storing deltas rather than full miss
addresses, we save a significant amount of memory and make pattern matching
easier. Pattern matching is done by using Delta Correlation, originally proposed
by Nesbit et al. [11]. This technique is very effective at detecting patterns with
periods shorter than the amount of history stored.

In this paper, we improve DCPT by proposing DCPT-P which incorporates many
of the lessons learned during DPC-1. We introduce the concept of L1 hoisting,
which is a highly accurate and timely method for moving data into the L1 cache.
L1 hoisting does not require complex additions to the L1 cache which could interfere
with the critical path of the processor. The key idea in L1 hoisting is to first issue
prefetches to the L2 cache with a high prefetch distance, thus ensuring timeliness
in the L2 cache. To further increase performance, we predict when the prefetched
data will soon be used and hoist it to the L1 cache.

Second, we introduce partial matching which is a technique to enhance delta cor-
relation in hard to predict cases such as pointer chasing. Partial matching reduces
the spatial resolution in the delta stream to reveal more possibilities for prefetch-
ing. Thus, this technique increases coverage at the price of reduced accuracy, for
an overall increase in performance.

VII.2 Previous Work

Because of the large gap between the latency of the processor and main memory,
prefetching has a large potential for increasing processor performance. Therefore,
it has been an active research topic for several decades. The simplest prefetcher

Paper VII 187

is sequential (next line) prefetching, which simply fetches the next line whenever a
cache line is accessed, thus exploiting spatial locality [15]. Its improvement, tagged
sequential prefetching, uses an extra bit per cache line to indicate that this cache
line was prefetched. When the processor subsequently hits in the cache on a cache
block with this bit set, it fetches the next block.

Reference prediction tables use a table to store the recent history of a single load [1].
Each table entry is indexed by the address of the load and contains the last miss
address as well as the delta (the difference between the address of the latest con-
secutive misses) as well as a state [2]. Then, on the next miss, the delta between
the first miss address and the current is computed and stored in the table and the
entry enters the training state. Finally, on the third miss, a new delta is computed.
If that delta matches the one found in the table, the entry enters the prefetching
state and prefetches are issued by using the computed delta.

The use of a Global History Buffer (GHB) was proposed by Nesbit et al. [11].
A GHB is essentially a FIFO containing the last misses observed by the memory
system. Each entry in the GHB is linked to the previous entry of its class by a
pointer. Because of the versatility of the GHB, a class can be defined in multiple
ways such as belonging to the same memory region (C/DC) or originating from the
same load (PC/DC) [12]. In PC/DC the entries in the GHB belong to the same
class if they originate from the same load instruction.

By traversing the linked list, a miss history can be obtained for that load. This
operation can be expensive in terms of energy and latency as the GHB structure
is read multiple times to generate the miss history. In PC/DC, the deltas between
consecutive misses are computed and stored in a delta table. This operation is
repeated every time a L2 miss occurs. After the history of deltas are computed,
delta correlation begins. Delta correlation means searching for the most recent pair
of deltas in the delta history. If a corresponding pair is found in the delta history,
the deltas after the match is used to predict future deltas.

During the first Data Prefetching Championship (DPC-1) several novel prefetcher
designs were presented. Second place was awarded to GHB-LDB (Global History
Buffer - Local Delta Buffer) which was proposed by Dimitrov et al. [3]. GHB-
LDB improves upon the PC/DC prefetcher by also including global correlation (as
opposed to the local correlation directed by the PC of the load) and most common
stride prefetching. Furthermore, their prefetcher issues prefetches directly into the
L1 cache.

Third place was awarded to Ramos et al. [14] for their multi-level prefetcher based
on the PC/DC concept. Their PDFCM (Prefetching based on a Differential Finite
Context Machine) prefetcher uses a hash-based approach with two tables. The
History Table is indexed by the PC which contains a hashed representation of the
recent history of that entry. This hash points to an entry in the Delta Table which
contains the predicted delta. By computing new hashes based on the predicted
deltas, an arbitrary prefetch degree and distance can be used.

188 VII.3. Delta Correlating Prediction Tables

PC Last
Address

Last
Prefetch

Delta
1

Delta
n

Delta
Pointer

Figure VII.1: Format of a single DCPT-P entry.

Finally, the winner was the AMPM (Access Map Pattern Matching) prefetcher
proposed by Ishii et al. [9]. Their prefetcher divides memory into hot zones similar
to Czones [12]. Each hot zone is tracked by using a 2-bit vector for each cache line
in that zone. This vector is then analyzed to see if there are any constant stride
patterns in that zone. If there are any patterns, the predicted pattern is prefetched.

VII.3 Delta Correlating Prediction Tables

VII.3.1 Overview

The core of our prefetching heuristic is a table indexed by the PC of the load.
Each entry has the format shown in Figure VII.1. In addition to the PC tag, each
entry holds the last miss address, the address of the last prefetch that was issued
in addition to a circular buffer containing the last n deltas. The circular buffer is
managed by the delta pointer. This field points to the most recently added delta.

This organization has a number of advantages. Each entry holds a comparatively
large history which can be used to predict any repeating pattern as long as the
period is shorter than n − 2. In addition, entries do not compete for space, thus
ensuring that the amount of history per entry is monotonically increasing, which
reduces the risk that prefetches are issued for the same line. Finally, by storing
deltas, rather than full miss addresses it is possible to save considerably memory
space.

In Figure VII.2, we show the portion of deltas we observed that can be represented
as a function of the number of bits used to represent each delta in the table. By
far, the most common delta is one which is to be expected as this represents the
common sequential pattern. As the number of bits per delta increases, the portion
of the deltas we can represent increases monotonically.

Figure VII.2 also plots the performance impact of increasing the number of bits
used to represent a single delta. Interestingly, the speedup has a much steeper
slope than the coverage. Performance rises sharply as one increases the number of
bits up to 12, and then trails off. Although more bits increases the information
content, performance degrades because of false matches (high delta values are often
generated by pointer chasing codes). Thus, performance can be improved and the
memory footprint reduced by limiting the number of bits used.

Paper VII 189

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 1

 1.25

 1.5

 1.75

 2

P
or

tio
n

of
 d

el
ta

s
re

pr
es

en
ta

bl
e

S
pe

ed
up

Bits used

Deltas covered
Speedup

Figure VII.2: Impact of increasing the numbers of bits used to represent a delta.

VII.3.2 DCPT-P Implementation

A basic implementation of the DCPT-P pipeline is shown in Figure VII.4. When
there is an access to the L2 cache the same request enters the pipeline. The first
step is to look up the PC of the load in the table. If a corresponding entry is not
found, an old entry is replaced using a LRU replacement policy. This new entry is
initialized with the miss address and the rest of the entry is initialized to zero.

If a corresponding entry is found, we first compute the delta between the current
access and the value stored in last address. If the delta is not zero, then the delta
is stored in the circular buffer and the delta pointer and last address is updated.
In our experiments, the L2 cache uses 128 byte cache blocks. To conserve space we
mask out the lower six bits (64). Thus, a delta of two represents an increment of a
single cache block. As shown by Hur et al. [8], many streams are short (2-4 cache
lines). By using deltas that are smaller than a cache block we enable DCPT-P
to start prefetching without waiting for too many misses to the L2. If we cannot
represent a delta with the available bits, we store a zero instead (not valid). Finally,
the entry is passed on to the pattern matching step.

The pattern matching logic is similar to the logic used in PC/DC [11]. In essence,
we search for the first occurrence of the last pair of deltas in the circular stream.
In Figure VII.3, we show the distribution of match locations in a 20 entry circular
delta buffer. There are two peaks. The first peak is at the first possible position
(the last two deltas in the circular buffer matches the first two deltas). This po-
sition represents constant strides or repeating patterns (for example 1-2-1-2-1-2).
However, a match in the first possible position does not necessarily mean that the
other stored deltas are redundant. Consider a blocking implementation of a ma-
trix multiply. In this situation, the access pattern would be a series of sequential

190 VII.3. Delta Correlating Prediction Tables

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20

P
ro

ba
bi

lit
y

Match position

Figure VII.3: Position in the circular buffer where a match is found.

accesses followed by a large stride when the blocking algorithm moves to the next
row, which in turn would be followed by a series of sequential accesses. By stor-
ing multiple deltas in this manner, this behaviour can be effectively captured by
DCPT-P. The last peak (at 19) represent situations where the pattern is not found.
This data point is included to illustrate the amount of times no pattern is found.
Our implementation of the pattern matching step uses several comparators working
in parallel in combination with a priority encoder as shown in Figure VII.5.

The next step is to generate prefetch candidates. The first prefetch candidate is
generated by adding the first delta after the match to the current miss address.
The second prefetch candidate is generated by adding the second delta after the
match to the previous miss address. This is done for all deltas after the match.
Thus, by increasing the number of deltas per table entry the prefetch distance is
also increased.

Table VII.1: Example delta stream.
Address: 10 11 20 21 30
Deltas: 1 9 1 9

As an example, consider the stream shown in Table VII.1. In this example, time
increases to the right (i.e. the most recent address observed is 30). The last pair of
deltas is thus (1,9) (Marked with boldface). We search for this pair of deltas and
find the same pair of deltas in the beginning of the stream (Marked with italics).
The next delta after this match is 1. We then add 1 to the last last address (30)
and obtain 31. This is our first prefetch candidate. The next delta is 9. In a similar
manner we add 9 to the previous prefetch candidate and obtain 40. We repeat this
procedure for all the deltas in the circular buffer.

Paper VII 191

Load address
& PC

Pattern Matching

Table look-up

Use deltas to compute prefetch candidates

Filter prefetches

Issue prefetches & Update table

PCDC entry

PCDC entry
& match posit ion

Prefetch
candidates

Filtered prefetch
candidates

Figure VII.4: DCPT-P Pipeline

Delta
1

Delta
2

Delta
3

Delta
n - 1

Delta
n

= = = = = =

1 2 n-2 n-1

1

Match Position

Priority Encoder

Figure VII.5: Pattern matching implementation.

192 VII.3. Delta Correlating Prediction Tables

This approach generates several redundant prefetches so prefetch filtering is needed.
The most important mechanism is the last prefetch field in each entry. This entry
keeps the address of the last prefetch issued by that entry. If a candidate is made
that matches the last prefetch field during prefetch candidate generation, all pre-
vious prefetch candidates are dropped. In the steady state, this ensures that only
a single prefetch is issued.

We use a 32 entry pending prefetch buffer to store the prefetches that have been
issued. This table serves a dual purpose; first it is checked prior to issuing a
prefetch request, thus eliminating redundant prefetches. Second, by only allowing
32 outstanding prefetch requests we limit the amount of bandwidth used by the
prefetcher and the probability of severe bandwidth contention.

VII.3.3 L1 Hoisting

Although the greatest latency is from the last level cache to the main memory, there
is a significant performance potential to prefetching into the L1 cache. However,
due to its limited capacity, cache pollution becomes a significant problem. To avoid
this, highly accurate and timely prefetches are needed. In addition, because the
L1 cache is on the critical path it becomes much more difficult to construct large
and complex prefetch heuristics that interact with the L1 access stream without
degrading overall performance.

To overcome this problem we propose L1 hoisting. L1 hoisting is a natural addition
to DCPT-P. DCPT-P is highly accurate, but issuing prefetches directly into the L1
cache brings the data in too early and displaces data that is currently needed, which
in turn reduces overall performance. Our solution is prefetch hoisting. The first
prefetch candidate that is generated is treated as a candidate for prefetch hoisting
as well. This candidate is predicted to be the next required by the processor. In the
steady state, this candidate has already been prefetched into the L2 by an earlier
miss by the same load. Thus, we check if this block is present in the L2. If it
is present, then the block is moved (hoisted) into the L1. Even though prefetch
distance is low (only one block) it is enough to be timely, because the latency from
the L1 cache to L2 cache is much lower than the latency from L1 to main memory,

VII.3.4 Partial Matching

DCPT captures most regular repeating patterns. However, many programs exhibit
more complex and irregular patterns. Consider the code from soplex shown in
Listing VII.1. Although the load in line 7 might seem hard to predict there is some
structure to the addresses issued. One pattern of deltas we observed was -2, -1, 4,
-2, -3, -3, -1, 3. In this case, there are no repeating pair of deltas, but most deltas
are small. Because the observed deltas are so small, using previous deltas to issue
new prefetches might be beneficial. Another pattern we observed was 9, 9, 9, 9, 9,

Paper VII 193

1 for (i = x.size (); i-- > 0; ++xi) {

2 svec = const_cast <SVector *>(& A[*xi]);

3 elem = &(svec ->element (0));

4 last = elem + svec ->size ();

5 y = vl[*xi];

6 for (; elem < last; ++elem)

7 v[elem ->idx] += y * elem ->val;

8 }

Listing VII.1: Loop from 450.Soplex

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Masked bits

Figure VII.6: Speedup of Sphinx as a function of LSB masked in partial matching.

-54, 73, 9, 9, 9. In this case, a regular pattern is interrupted by an abrupt jump.
Simply prefetching using the most common delta (9) would be preferable.

In this work, we propose a general approach to exposing such patterns called partial
matching. If a pattern is not found using the exact match, we try partial matching.
In essence, we reduce the spatial resolution by masking out the least significant bits
and try to find a match using only the MSB’s of the delta. This allows us to issue
prefetches in both of the cases above.

In Figure VII.6, we show the speedup of the benchmark sphinx as a function of
the number of LSB masked. Increasing the number of masked bits increases the
number of prefetches issued. In the case of Sphinx, many of these prefetches are
hits, but in other benchmarks increasing the number of masked bits increases the
probability of cache pollution and wasted bandwidth.

194 VII.4. Methodology

VII.4 Methodology

Gracia Perez et al. [13] showed that the choice of simulator and benchmarks as well
as the implementation of other data cache mechanisms can severely bias the results
when evaluating prefetcher performance. Therefore, to evaluate our prefetcher
proposal we have used the Data Prefetching Championship (DPC-1) simulator
framework [4] as well as the code submitted by the contestants to the competition.

The simulator framework is based on the CMP$im simulator [10]. This framework
models a simple 15 stage, 4 wide out-of-order core with a 128-entry instruction
window. The core can issue a maximum of two loads and a single store each cycle.
The framework models a two level cache hierarchy, consisting of a 32KB, 8-way L1
cache with 64B cache lines. The L2 is a 2MB 16-way set-associative cache with 128
Byte cache lines and a LRU replacement policy. The second level cache has a 20
cycle latency, while main memory has a 200-cycle latency. Each cache is coupled
with a queue for storing outstanding requests to the next level in the hierarchy.
These queues issues requests in FIFO order and does not prioritize demand requests
over prefetch requests [4]. The queue to main memory issues one request per 10
clock cycles, while the queue to the L2 issues 1 per clock cycle. This simulator
setup was referred to as configuration 2 in DPC-1.

For our experiments we have generated traces for the SPEC2006 [16] benchmark
suite. Each benchmark was fast forwarded by 40 billion instructions and then
executed for 100 million instructions. The benchmarks were compiled with the
Intel C Compiler version 10.0.

To evaluate the performance of our prefetching heuristic we have selected 5 state-
of-the-art prefetchers. In the study by Gracia Perez et al. [13] mentioned earlier,
Reference Prediction Tables [1] and PC/DC using a GHB [11] were found to give
the highest performance. Therefore, we have implemented these two approaches
with the same 4KB limitation. In addition, we have selected the top three per-
formers from DPC-1. The contestants’ prefetching code was made public after the
competition so we have used their code without modification. The top performers
were AMPM [9], PDFCM (Maxperf) [14] and GHB-LDB [3].

To keep within the same 4KB limit imposed on the other prefetcher implementa-
tions we have used a 95 entry table with 20 12-bit deltas. On the pattern matching
pass with partial matching we mask the low 8 bits of the delta. The pending
prefetch buffer can hold a maximum of 32 requests.

VII.5 Results

We begin our evaluation by comparing the performance of our prefetcher to the
top three DPC-1 prefetchers, Reference Prediction Tables and PC/DC with the
SPEC2006 benchmark suite. The results are shown in Figure VII.7 and VII.8. In
all of the results presented in this paper, speedup refers to a speedup compared

Paper VII 195

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d
lbm sphinx3

S
pe

ed
up

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Figure VII.7: 2 MB L2 cache. Benchmarks with large speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves
cactusADM

calculix
soplex

hmmer
bzip2

h264ref

zeusmp
gcc gromacs

wrf astar
xalancbmk

mcf
omnetpp

geomean

average

S
pe

ed
up

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Figure VII.8: 2 MB L2 cache. Benchmarks with small speedups.

to a baseline where no prefetching is performed. Because there is a wide range of
speedups (up to 6.6X) we have opted to use two graphs to increase readability. In
addition, we do not show the benchmarks dealII, gobmk, tonto, perlbench, sjeng,
gamess, namd, povray. In all of these benchmarks, the performance impact of
prefetching was less than 5% for all the prefetchers. In cases where the simulation
did not terminate within 48 hours we show an speedup of 0, rather than tampering
with the original code.

Overall, DCPT-P shows good performance across all benchmarks. DCPT-P is
the best performing prefetcher on 11 of the 21 benchmarks shown. The good
performance of both soplex and sphinx3 is due to partial matching. Leslie3d and
milc benefits greatly from the L1 hoisting technique. Also, it is worth noting that
GHB-LDB performs very well on xalncbmk, mcf and omentpp. This is due to the
global (intra-PC) analysis done by this type of prefetcher. However, GHB-LDB
performs worse than it’s predecessor, PC/DC, on GemsFDTD and libquantum.
Although both GHB-LDB and PDFCM both extends PC/DC, their performance
is on average almost equal. Although AMPM prefetching is not the best prefetcher
for any single benchmark, it nevertheless achieves signifcant speedups across the
entire benchmark suite. On average, DCPT-P provides an arithmetic mean speedup

196 VII.5. Results

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d
lbm sphinx3

S
pe

ed
up

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Figure VII.9: 512KB L2 cache. Benchmarks with large speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves
cactusADM

calculix
soplex

hmmer
bzip2

h264ref

zeusmp
gcc gromacs

wrf astar
xalancbmk

mcf
omnetpp

geomean

average

S
pe

ed
up

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Figure VII.10: 512KB L2 cache. Benchmarks with small speedups.

of 87%. AMPM, GHB-LDB and PDFCM has speedups of 50%, 32% and 44%
respectively.

In Figure VII.9 and VII.10 we reduce the L2 capacity to 512KB. This is the same
configuration as config 3 in DPC-1. Overall, we observe the same general trends.
The most significant changes from reducing the size of the L2 can be observed
on leslie3d, calculix, bzip2 and h264ref. In this configuration PDFCM causes per-
formance degradation on astar and omnetpp. Surprisingly, RPT prefetching is the
best prefetcher on astar. On this benchmark, most of the other prefetchers has very
high miss rates, especially when prefetching into the L1 cache. Thus, the more con-
servative prefetcher performs well. Additionally, the benefits of GHB-LDB on mcf,
omnetpp and xalncbmk increases.

Figure VII.11 and VII.12 provides insight into the relative performance benefits of
the three techniques proposed in this work. Undoubtedly, the basic DCPT design
is responsible for most of the performance gain. This is because it is responsible
for bridging the last level cache to main memory gap and thus has the most poten-
tial. Both Partial matching and L1 hoisting contribute to the overall performance.
Interestingly, the effects of the two does not seem to be cumulative, but rather

Paper VII 197

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d
lbm sphinx3

S
pe

ed
up

DCPT-P
DCPT + L1 hoisting

DCPT + Partial matching
DCPT

Figure VII.11: Breakdown of performance contribution of DCPT-P. Benchmarks
with large speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves
cactusADM

calculix
soplex

hmmer
bzip2

h264ref

zeusmp
gcc gromacs

wrf astar
xalancbmk

mcf
omnetpp

geomean

average

S
pe

ed
up

DCPT-P
DCPT + L1 hoisting

DCPT + Partial matching
DCPT

Figure VII.12: Breakdown of performance contribution of DCPT-P. Benchmarks
with small speedups.

synergistic. For instance, on libquantum, switching off partial matching reduces
performance somewhat. Switching off L1 hoisting reduces performance even more,
but there is no difference between this configuration and switching both L1 hoisting
and partial matching off. On both omnetpp and astar we see that partial matching
actually causes a performance degradation. This effect is due to the much lower
accuracy of partial matching, which in turn causes bandwidth saturation.

VII.5.1 Area and performance trade-offs

So far, we have focused our attention on performance. However, it is possible to
optimize for area as well. The largest structure in DCPT-P is the table holding the
entries. In this section, we explore the area and performance trade-off of changing
some of the key table parameters. In Figure VII.13, we show the performance
impact of increasing the number of deltas in each entry. The speedups are reported
relative to the same case with no prefetching. Although the unlimited bandwidth

198 VII.5. Results

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40

S
pe

ed
up

Deltas per Table Entry

2MB cache, unlimited bandwidth
2MB cache, limited bandwidth

512K cache, limited bandwidth

Figure VII.13: Average speedup as a function of the number of deltas in each entry

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250

S
pe

ed
up

Number of Table Entries

2MB cache, unlimited bandwidth
2MB cache, limited bandwidth

512K cache, limited bandwidth

Figure VII.14: Average speedup as a function of the number of table entries

Paper VII 199

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20
Number of deltas

Figure VII.15: Distribution of the number of deltas registered in a table entry upon
replacement.

case has higher absolute performance, the relative speedup of prefetching is lower.
Increasing the number of deltas has three distinct effects. Firstly, it increases
the probability of a match, thus the number of prefetches increases. Secondly, it
increases the effective prefetch distance. Finally, it increases power and area as the
number of comparators has to be increased. Although DCPT-P is highly accurate,
a large prefetch distance can cause problems, because blocks are fetched too soon.
This poses a problem because the blocks may be either evicted before they are
used and/or displace other data that is currently needed. This effect can be seen
by examining the difference between the 2MB and 512K cases in Figure VII.13.
In the 512K case, performance starts to drop after about 18 deltas, and declines
faster than in the 2MB case. Additionally, the knee in the graph in the bandwidth
unlimited case is shifted to the left compared to the bandwidth limited cases. This
suggests that a higher prefetching distance can mask some transient bandwidth
contention as well.

In Figure VII.14, we show the average speedup as a function of the number of
entries in the DCPT-P table. Performance increases as the number of entries is
increased. After roughly 100 entries there is no performance gain in increasing the
size of the table.

VII.6 Discussion

In the design of DCPT-P we have omitted several interesting design ideas, either
because they provide little performance benefit or that they will increase the overall
complexity of the design and obscure the more central mechanisms in DCPT-P. In
this section, we will discuss some of these design options.

In Figure VII.15, we show the distribution of the number of deltas that has been
registered in a entry when it is replaced. DCPT-P requires at least three deltas
before it can begin prefetching. As such, the wast majority of table entries are

200 VII.6. Discussion

never used for actual prefetching. Thus, much of the table space is wasted on
inactive table entries. A possible solution is to use two tables. The first table is
a smaller version of the DCPT table, that can hold up to two deltas. If the entry
produces more deltas, then that table entry is promoted into the larger table. A
second approach is to modify the simple LRU replacement policy in the table to
give increased weight to entries with more deltas.

We observed that several of the patterns are simple repeating patterns with a
short period. It is possible to capture much of the benefit of DCPT-P by using
fewer deltas and analyze the delta pattern to see if it repeats. If it does, then the
pattern can be extrapolated. In addition to decreasing the storage requirements
by requiring fewer deltas, this approach also gives the possibility of varying the
prefetch distance dynamically [5, 17].

The pattern matching step is at the core of the DCPT-P heuristic. It is possible
to implement this step in a variety of ways depending on the performance and
area requirements. Our implementation uses several comparators to examine every
possible match location in parallel. To reduce the number of comparators, it is
possible to split this step into multiple stages. Consequently, pattern matching can
be performed in an iterative fashion by reusing the comparators. As previously
shown in Figure VII.3, the probability of finding a match in the beginning of
the delta stream is high. This is because of the prevalence of repeating patterns
with short periods. Thus, the probability of finding a match during the first few
iterations is high, reducing the average latency.

Another possibility is to limit the search to a subset of the deltas, thus reducing the
number of comparators or iterations needed. We investigated limiting the number
of deltas searched for a match. As expected, reducing the probability of finding
a match decreases overall performance because patterns with long periods are not
detected.

Partial matching increases coverage at the cost of decreased prefetcher accuracy.
In our implementation we treat prefetches generated by full and partial matching
equally. In a more bandwidth-constrained environment it might be beneficial to
not treat them equally and only issue prefetches generated by partial matching if
there is ample off-chip bandwidth available [6].

Finally, we looked at allowing partial matching to issue multiple prefetches per
delta. Because partial matching reduces spatial resolution, the deltas after the
match also have reduced resolution. It is possible to compensate for this reduced
resolution by issuing multiple prefetches covering the range of possible LSBs. How-
ever, because partial matching reduces overall accuracy, we found that issuing
multiple prefetches quickly saturated off-chip bandwidth which resulted in reduced
performance.

The simulation framework we have opted to use has some limitations. For instance,
the look-up time of the predictor is not accounted for. Furthermore, a very simple
DRAM model is used, the 4KB storage limit is somewhat arbitrary and techniques

Paper VII 201

which can deal with large off-chip meta-data has been developed [18]. Overall, we
chose to use this framework so that a fair comparison with previously proposed
prefetchers could be conducted.

VII.7 Conclusion

In this paper, we have presented a novel low-complexity prefetching heuristic called
DCPT-P. DCPT-P uses a table indexed by the PC of the load. Each table entry
stores a large amount of history per load instruction in the form of deltas. By
storing deltas rather than full miss addresses, we save a significant amount of
memory and make pattern matching easier. Pattern matching is done by using
Delta Correlation, originally proposed by Nesbit et al. [11]. This technique is very
effective at detecting patterns with periods shorter than the amount of history
stored.

We also introduce the concept of L1 hoisting. L1 hoisting is a technique that
combines with DCPT-P to issue highly accurate and timely prefetches into the
L1 cache. To deal with several real-world problems with prefetching, we have
introduced a mechanism called partial matching which reveals previously hidden
patterns by reducing spatial resolution.

Our technique builds upon and expands several ideas presented during the first
data prefetching championship (DPC-1). We have examined the top performers
extensively and extracted key properties of these prefetchers and improved upon
their ideas and synthesised them into a low complexity, storage efficent and high
performance prefetcher. By using the code submitted to the DPC-1 contest we can
be confident that the comparison with other prefetching techniques is accurate. On
average, DCPT-P provides an arithmetic mean speedup of 87% on the SPEC2006
benchmark suite.

Bibliography

[1] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. Computers, IEEE Transactions on, 44:609–623, May
1995.

[2] F. Dahlgren and P. Stenstrom. Evaluation of hardware-based stride and
sequential prefetching in shared-memory multiprocessors. Parallel and Dis-
tributed Systems, IEEE Transactions on, 7(4):385–398, Apr. 1996.

[3] M. Dimitrov and H. Zhou. Combining local and global history for high per-
formance data prefetching. In Data Prefetching Championship-1, 2009.

[4] DPC-1. Data prefetching championship rules. http://www.jilp.org/dpc/

framework.html.

http://www.jilp.org/dpc/framework.html
http://www.jilp.org/dpc/framework.html

202 Bibliography

[5] M. Grannaes and L. Natvig. Dynamic parameter tuning for hardware prefetch-
ing using shadow tagging. In CMP-MSI: 2nd Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2008.

[6] M. Grannaes, M. Jahre, and L. Natvig. Low-cost open-page prefetch schedul-
ing in chip multiprocessors. In IEEE International Conference on Computer
Design (ICCD) 2008, 2008.

[7] M. Grannaes, M. Jahre, and L. Natvig. Storage efficient hardware prefetching
using delta correlating prediction tables. In Data Prefetching Championships,
2009.

[8] I. Hur and C. Lin. Feedback mechanisms for improving probabilistic memory
prefetching. In HPCA ’09: Proceedings of the 15th International Symposium
on High-Performance Computer Architecture, pages 443–454, 2009.

[9] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern matching prefetch:
Optimization friendly method. In Data Prefetching Championship-1, 2009.

[10] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A pin-based
on-the-fly multi-core cache simulator. In MoBS, 2008.

[11] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. High-Performance Computer Architecture, International Symposium
on, 0:96, 2004. ISSN 1530-0897. doi: http://doi.ieeecomputersociety.org/10.
1109/HPCA.2004.10030.

[12] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data
cache prefetcher. In Proceedings of the 13th International Conference on Par-
allel Architecture and Compilation Techniques, pages 135–145, 2004.

[13] D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case for the quantita-
tive comparison of micro-architecture mechanisms. In MICRO 37: Proceedings
of the 37th annual IEEE/ACM International Symposium on Microarchitecture,
pages 43–54, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-
7695-2126-6. doi: http://dx.doi.org/10.1109/MICRO.2004.25.

[14] L. M. Ramos, J. L. Briz, P. E. Ibáñez, and V. Viñals. Multi-level adap-
tive prefetching based on performance gradient tracking. In Data Prefetching
Championship-1, 2009.

[15] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/356887.356892.

[16] SPEC. Spec 2006 benchmark suites, 2006. http://www.spec.org.

[17] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers.
Technical report, University of Texas at Austin, May 2006. TR-HPS-2006-006.

http://www.spec.org

Paper VII 203

[18] T. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos. Practi-
cal off-chip meta-data for temporal memory streaming. In High Performance
Computer Architecture (HPCA), 2009.

204

Paper VIII

DIEF: An Accurate
Interference Feedback
Mechanism for Chip
Multiprocessor Memory
Systems

Magnus Jahre, Marius Grannaes and Lasse Natvig
Accepted to the 5th HiPEAC Conference, 2010

206

Paper VIII 207

Abstract
Chip Multi-Processors (CMPs) commonly share hardware-controlled on-chip units
that are unaware that memory requests are issued by independent processors. Con-
sequently, the resources a process receives will vary depending on the behavior of
the processes it is co-scheduled with. Resource allocation techniques can avoid
this problem if they are provided with an accurate interference estimate. Our
Dynamic Interference Estimation Framework (DIEF) provides this service by dy-
namically estimating the latency a process would experience with exclusive access
to all hardware-controlled, shared resources. Since the total interference latency is
the sum of the interference latency in each shared unit, the system designer can
choose estimation techniques to achieve the desired accuracy/complexity trade-off.
In this work, we provide high-accuracy estimation techniques for the on-chip inter-
connect, shared cache and memory bus. This DIEF implementation has an average
relative estimate error between -0.4% and 4.7% and a standard deviation between
2.4% and 5.8%.

208 VIII.1. Introduction

VIII.1 Introduction

Chip Multi-Processors (CMPs) commonly share parts of the memory system. While
some CMPs have private caches and only share off-chip bandwidth, other CMPs
share an on-chip interconnect and cache space between cores. This resource sharing
is often beneficial since it can improve resource utilization compared to a private
design and facilitates efficient inter-core communication. However, sharing may
also adversely affect performance when the system resources are insufficient for
co-scheduled processes. This is due to the use of rudimentary hardware policies
like First Come First Served (FCFS) and Least Recently Used (LRU) which were
primarily designed for use in single-core processors. These policies do not provide
predictable resource allocations because processes with higher access frequencies
receive a larger part of the shared resource [11, 15]. Since CMPs often run multipro-
grammed workloads, the performance of a single process can be heavily influenced
by the processes it is co-scheduled with.

Resource allocation techniques that attempt to alleviate interference problems,
commonly aim their effort at improving fairness and/or Quality of Service (QoS).
A memory system is fair if the performance reduction due to interference between
threads is distributed across all processes in proportion to their priorities [9]. QoS
is provided if it is possible to put a limit on the maximum slowdown a process can
experience when co-scheduled with any other process [3]. Nesbit et al. [12] propose
a high-level architecture for resource allocation systems which divide the system
into three independent, cooperating modules. Here, the feedback mechanisms pro-
vide measurements of the current resource utilization and/or the performance of
the running programs. Then, the allocation policy decides on a new and improved
resource allocation and implements this with the allocation mechanisms. Since
resource allocations do not change very often, allocation policies should be im-
plemented in software to achieve flexibility. On the other hand, allocation and
feedback mechanisms that interact closely with the hardware resources, must be
implemented in hardware for efficiency.

In this work, we provide the first detailed implementation of a unified feedback
mechanism for the hardware-managed, shared memory system called the Dynamic
Interference Estimation Framework (DIEF). DIEF dynamically estimates the av-
erage memory latency a process would experience if it had exclusive access to all
shared resources. In addition, DIEF measures the actual shared memory latency to
establish the relative latency impact from sharing effects. Choosing average mem-
ory latency as the interference metric has the advantage that the total interference
latency is the sum of the interference latency of each shared unit. Consequently, the
system designer can choose interference estimation techniques that achieve the ap-
propriate accuracy/complexity trade-off. Since processing cores can hide latency,
an allocation policy needs a performance-oriented feedback mechanism to com-
plement DIEF which can be provided by well-known techniques like performance
counters [19].

In this work, we aim our efforts at providing an accurate DIEF implementation.

Paper VIII 209

To accomplish this, we develop interference measurement mechanisms for ring and
crossbar interconnects, shared caches and a multi-channel DDR2 memory bus.
These mechanisms are tested on a variety of CMP architectures with 4, 8 or 16
cores, 2 or 3 cache levels and 1, 2 or 4 memory bus channels. DIEF is very accurate
for these architectures and has an average relative estimate error between -0.4%
and 4.7% and a standard deviation between 2.4% and 5.8%.

VIII.2 Background

VIII.2.1 Interference Definition and Metrics

When evaluating CMP memory system fairness, it is convenient to compare to a
baseline where interference does not occur. One way of creating such a baseline is
to let the process run in one processing core of the CMP and leave the remaining
cores idle [5, 10]. Consequently, the process has exclusive access to all shared
resources, and we will refer to this configuration as the private mode. Conversely,
all processing cores are active and the processes compete for shared resources in
the shared mode. We refer to a baseline created in this way as a Single Program
Baseline (SPB).

It is also possible to create a fairness baseline by statically partitioning all shared
resources equally among the processors [3]. We refer to this baseline type as a
Multiprogrammed Baseline (MPB). The main advantage of MPB is that it exists
in the shared mode. Consequently, it is easy to ensure that a fairness technique
does not perform worse than the baseline. However, MPB also has three major
disadvantages. Firstly, it only accounts for interference in the resources that have
been statically and equally partitioned. This can lead to erroneous results if impor-
tant interference sources are missed. Secondly, static and equal division of DRAM
bandwidth does not lead to a static and equal division of latency [11]. The reason
is that the latency of a request depends heavily on which requests was issued before
it. Consequently, it may be difficult to implement a good static and equal sharing
baseline for the memory interface. Finally, the relationship between performance
and resource allocation is rarely linear [15]. Consequently, a process may experi-
ence severe performance degradation in the statically shared baseline. If a fairness
technique then removes this degradation, one might be lead to believe that the
technique also improves throughput when the degradation in fact was due to the
baseline’s suboptimal resource allocation.

These problems can be avoided by using the Single Program Baseline (SPB). Un-
fortunately, SPB does not exist in the shared mode. By definition, it requires that
the performance in the shared mode is compared to the interference-free private
mode. In this work, we provide a feedback mechanism that estimates SPB la-
tency at runtime. We define the interference Ii experienced by a request i as the
difference between the shared mode latency Li and private mode latency Li (i.e.

210 VIII.3. Shared Memory System Latency Taxonomy

Ii = Li−Li). This definition is an extension of the interference definition by Mutlu
and Moscibroda [11].

The shared mode estimate of the private mode latency L̂i may be different from
the actual private mode latency Li. Consequently, it is important that a feedback
mechanism minimizes the difference between these values. We define the measure-
ment error for request i to be Ei = L̂i − Li. Since the interference estimate Î is
related to the private mode latency estimate L̂ by the formula L̂i = Li − Îi, the
feedback mechanism can choose to estimate either L̂i or Îi and compute the other.
A dynamic resource allocation technique will use L̂ to establish the relative impact
of interference on the different running processes. Consequently, the impact of the
error depends on the shared mode latency L. To account for this we define the
relative error Ei = Ei/Li. We aggregate multiple errors by using the arithmetic
mean, standard deviation and root mean squared error of E and E .

VIII.2.2 Modern Memory Bus Interfaces

Memory bus scheduling is a challenging problem due to the 3D structure of DRAM
consisting of rows, columns and banks. Commonly, a DRAM read transaction con-
sists of first sending the row address, then the column address and finally receiving
the data. When a row is accessed, its contents are stored in a register known as the
row buffer, and a row is often referred to as a page. If the row has to be activated
before it can be read, the access is referred to as a row miss or page miss. It is
possible to carry out repeated column accesses to an open page, called row hits or
page hits. This is a great advantage as the latency of a row hit is much lower than
the latency of a row miss. The situation where two consecutive requests access
the same bank but different rows is known as a row conflict and is very expensive
in terms of latency. DRAM accesses are pipelined, so there are no idle cycles on
the memory bus if the next column command is sent while the data transfer is
in progress. Furthermore, command accesses to one bank can be overlapped with
data transfers from a different bank.

Rixner et al. [17] proposed the First Ready - First Come First Served (FR-FCFS)
algorithm for scheduling DRAM requests. Here, memory requests are reordered
to achieve high page hit rates which result in increased memory bus utilization.
This algorithm prioritizes requests according to three rules: prioritize ready com-
mands over commands that are not ready, prioritize column commands over other
commands and prioritize the oldest request over younger requests.

VIII.3 Shared Memory System Latency Taxon-
omy

The main advantage of measuring interference in terms of average round trip la-
tency through the shared memory system is that the total interference of a single

Paper VIII 211

Table VIII.1: Memory System Latency Taxonomy

Module Type Description SM PM Int.

In
te

r
c
o
n
n
e
c
t Entry (ie)

The number of cycles a request is kept in
the private cache MSHR before it is ac-
cepted into an interconnect queue

Lie
i Lie

i Iiei

Queue (iq)
The number of cycles spent in the inter-
connect queue

Liq
i Liq

i Iiqi

Transfer (it)
The number of cycles spent on transfer-
ring the request from source to destina-
tion

Lit
i Lit

i Iiti

Delivery (id)

The number of cycles a request was de-
layed because a shared cache bank could
not accept requests due to insufficient
buffer space

Lid
i Lid

i Iidi

S
h
a
r
e
d

C
a
c
h
e

Capacity (cc)
The number of cycles used to service a
miss that would not occur if the process
had exclusive access to the shared cache

- - Icci

M
e
m

o
r
y

C
o
n
tr
o
ll
e
r Entry (me)

The number of cycles a request was de-
layed in a shared cache MSHR before it
was accepted into a memory controller
queue

Lme
i Lme

i Ime
i

Queue (mq)
The number of cycles a request spent in
the memory controller queue

Lmq
i Lmq

i Imq
i

Transfer (mt)
The number of cycles the request occupied
the memory data bus

Lmt
i Lmt

i Imt
i

S
h
a
r
e
d

M
e
m

o
r
y

S
y
st
e
m

Total
The total number of cycles a request uses
through the entire hardware-controlled,
shared memory system

Li Li Ii

request is the sum of the interference it experiences in each of the shared units.
Consequently, it is possible to independently implement and validate the feedback
mechanism for each source of interference. In this work, we develop a comprehen-
sive view of memory system interference which is shown in Table VIII.1.

The hardware-controlled, shared memory system commonly consists of three types
of units. Firstly, an interconnect is needed to connect the private caches to one
or more shared caches. Secondly, there can be one or more levels of shared caches
with varying sharing degrees. Finally, off-chip bandwidth can be shared between
cores. Although the organization of these shared units will vary from CMP to
CMP, we believe that this model captures the essential types of interference in the
hardware-controlled, shared memory system.

Within these units, the shared resources are either bandwidth or capacity. In the
memory bus and interconnects, bandwidth is the main shared resource. However,
memory requests are kept in finite buffers while waiting for access to the shared
transmission channels. Consequently, there are also different forms of capacity in-

212 VIII.4. The Dynamic Interference Estimation Framework

CPU 0 L1

CPU 1 L1

CPU 2 L1

CPU 3 L1

L2

L2

L2

L2 Bank 3

Interference Manager

R
ing Interconnect

M
em

ory
C

ontroller 0
M

em
ory

C
ontroller 1

Bank 2

Bank 1

Bank 0

Shared and Private
Average Round Trip

Latencies 4

4

Shared L3Private L2

Figure VIII.1: Dynamic Interference Estimation Framework (DIEF) Architecture

terference in these units. We divide the latency through the units where bandwidth
is the main shared resource into four parts. The entry latency is the latency the
request experiences while waiting to be accepted into the input queue. Then, the
queue latency is the number of cycles it spends in the queue before it is granted
access to the resource. The next latency type is the transfer latency which is the
number of cycles it takes to transfer the request from source to destination. Fi-
nally, it might not be possible to deliver the request if the destination lacks sufficient
buffer space. In this case, the request experiences an additional delivery latency.
There is no delivery latency in the memory bus since the last level cache must be
able to receive responses to avoid deadlocks.

To provide system-wide, latency-based interference measurements, the latency cost
of shared cache interference misses must be established. This problem can be solved
by observing that interference misses are associated with the latency penalty of
retrieving the data from the next cache level or memory. If we assume one level of
shared caches, the cache capacity interference experienced by request i is the sum of
request i’s memory bus entry, queue and transfer latency (Icc

i = Lme
i +Lmq

i +Lmt
i).

For convenience, we use the first letter of the shared unit (i.e. i, c or m) and the
first letter of the latency type (i.e. e, q, t, d or c) to produce a two-letter identifier
(e.g. interconnect entry is ie).

VIII.4 The Dynamic Interference Estimation Frame-
work

The purpose of a dynamic interference estimation technique is to provide a reli-
able measure of how memory system interference affects the running processes. In

Paper VIII 213

Bank 0

Oldest Request
Pointer 0

Last Scheduled
Pointer 0

Bank 1

Bank 7

...

Bank 0

Bank 1

Bank 7

...
...

Open Page Emulation Registers
CPU 0 CPU n

Memory Latency Estimation Buffers (MLEB)

CPU 0

Oldest Request
Pointer 1

Last Scheduled
Pointer 1CPU 1

Oldest Request
Pointer n

Last Scheduled
Pointer nCPU n

...

... ...

Memory Latency Estimation Entry

64 Entries

Oldest Valid
Pointer 0

Oldest Valid
Pointer 1

...

...

... Oldest Valid
Pointer n

Head (6) Previous (6)Next (6)

S (1) L (1)

Address (42)

W (1)

Latency (3)

P (1) V (1)
Storage: 68 bits

6 bits 6 bits 6 bits

Total Storage per CPU: 4706 bits

42 bits 42 bits

Figure VIII.2: Private Memory Bus Emulation

this work, we propose the Dynamic Interference Estimation Framework (DIEF)
that continuously monitors all shared units to provide accurate interference es-
timates. Figure VIII.1 shows DIEF’s high-level architecture where each shared
unit is augmented with extra functionality (not on the unit’s critical path) that
measures interference and/or latencies at runtime. These measurements are con-
tinuously communicated to the Interference Manager which uses it to measure the
shared mode average round trip latency L and create an estimate L̂ of the private
mode latency L. Since memory bus interference is the interference type with the
largest impact, most of our efforts are directed at estimating this latency type [7].
The operating system must inform DIEF of context switches to ensure that the
measurements are not polluted by the actions of other processes. In the case of
multi-threaded applications, the operating system also needs to instruct DIEF to
treat the application’s set of processing cores as one entity. Without loss of general-
ity, we consider the situation where each core runs one single-threaded application
in the remainder of this work.

VIII.4.1 Estimating Private Memory Bus Latency (L̂mt, L̂mq

and L̂me)

VIII.4.1.1 Estimating Transfer and Queue Latencies (L̂mt and L̂mq)

Modern memory bus scheduling algorithms reorder requests to improve memory
bus throughput [17]. Therefore, the execution order of memory requests depend on

214 VIII.4. The Dynamic Interference Estimation Framework

Table VIII.2: Status Bits
S Transfer latency estimation L̂mt is valid

L L̂mq and L̂mt has been computed

W The request is a write

P Entry is private mode only

V Entry is valid

Table VIII.3: L̂mt Estimates
Next State

Prev. State
Read

Bank i
Write
Bank i

Hit (any bank) 40 40

Miss (any bank) 120 110

Conflict Read Bank i 200 190

Conflict Write Bank i 260 250

Conflict Read Bank j 170 160

Conflict Write Bank j 260 250

the memory bus queue contents and can be very different in the shared and private
modes. However, the arrival order of requests is very similar. Consequently, it is
possible to estimate the private mode execution order by emulating the private sch-
eduling algorithm on the shared mode requests. Then, the private execution order
and bank state determine the transfer latency estimate L̂mt. The queue latency
L̂mq can be estimated by following the private execution order and accumulating
transfer latencies.

Figure VIII.2 shows the hardware support needed to emulate a private memory
bus. This hardware is not on the critical path and consists of n Memory Latency
Estimation Buffers (MLEB) (one for each processor). Each time the memory con-
troller receives a request from a certain CPU, it is added to the corresponding
MLEB. When the request is serviced by the memory controller, the state stored
in this buffer is used to estimate its private mode queue latency L̂mq and transfer
latency L̂mt. This calculation can be allowed to take on the order of tens of pro-
cessor cycles since the memory bus is commonly clocked at a much lower frequency
than the processing core.

Each estimation entry has a head pointer, a next pointer and a previous pointer.
The previous/next pointers store the private execution order by pointing to the
element that was scheduled before/after the request in the private mode. The head
pointer points to the estimation entry that was the next to be serviced when the
request was added, and it is used to estimate queue latency. Furthermore, each
entry contains five status bits: S, L, W , P and V . These are explained in Table
VIII.2. Finally, the Oldest Valid Pointer points to the oldest valid MLEB entry,
the Oldest Request Pointer points to the oldest non-serviced entry and the Last
Scheduled Pointer points to the most recently scheduled entry.

To improve estimation accuracy, we add the Open Page Emulation Registers. These
where originally proposed by Mutlu and Moscibroda [11] and are used to estimate
whether a request is a page hit, miss or conflict. Here, each register holds the
address of the last accessed memory page. These registers are also used to schedule
requests according to the FR-FCFS scheduling algorithm [17].

Generally, there are more queued requests in the MLEB than in the private mode

Paper VIII 215

Algorithm 1 Private Memory Bus Queue and Transfer Latency Estimation

procedure estimatePrivateLatencies(Memory request r)
while r not serviced do

Emulate FR-FCFS scheduling of elements within horizon given by the
Page Locality Factor

Initialize request pointer c to point to head(r) and queue latency L̂mq
r to 0

while c is not equal to r and c is scheduled before r do
Increment queue latency L̂mq

r with the transfer latency L̂mt
c of request c

Update c by following the next pointer of c

Invalidate any entries that are no longer needed to compute queue and trans-
fer latencies

return transfer latency L̂mt
r and queue latency L̂mq

r of request r

Arrival Order
(Buffer Order)
Head Pointer
Execution Order
(Next/Previous Pointers)

B
120

D
-

E
40

C
40

A
120

Oldest Request Last Scheduled

O
ldest V

alid

Figure VIII.3: Memory Bus Queue and Transfer Latency Estimation Example

memory bus queue since competition for the bus is more severe in the shared
mode. This can result in overestimating the number of page hits if the process
has sufficient page locality. To account for this, we add a parameter called the
Page Locality Factor. This factor determines the number of estimation entries that
should be examined while looking for a page hit. Setting the page locality factor
to 1 assumes no reordering in the private memory system.

If we ignore the effects of shared cache interference, the requests that reach the
memory bus are the ones that are not filtered out by the on-chip caches. Since
we use the same cache hierarchy in the shared configuration and the baseline, the
order of the memory request are nearly identical but their timing will be different.
However, there may be differences resulting from the interleaving of writebacks
and reads since the memory controller may reorder requests differently in the two
configurations. When cache interference is taken into account, the request stream
can be very different. Consequently, the shared cache interference technique should
identify both private- and shared-only requests and communicate this information
to the memory bus interference technique.

Finally, we need to produce estimates of the shared mode queue latency. This can
be accomplished by adding a register for all queue entries and incrementing it with
the memory bus transfer latency every time a request is finished. Alternatively, a
request can be assigned a timestamp on arrival and this timestamp can then be
compared to the value of a counter when the request is issued.

216 VIII.4. The Dynamic Interference Estimation Framework

The Latency Estimation Algorithm Algorithm 1 summarizes the estimation
algorithm for the private memory bus transfer latency L̂mt and queue latency L̂mq.
We illustrate the estimation procedure with the example in Figure VIII.3. There
are five queued requests, and request E has just been serviced by the shared mode
memory controller. To determine the transfer latency L̂mt

E of E, the estimation
algorithm emulates scheduling requests within the limit given by the Page Locality
Factor. In this example, request A is serviced first and its transfer latency is
estimated. Then, request C is serviced before B since it is a private mode page
hit. Finally, request E is serviced before D since it accesses the same page as B
which gives L̂mt

E = 40. Then, we can estimate L̂mq
E by following E’s head pointer

to A and accumulating the transfer latencies of all elements between A and E in
the private execution order. Consequently, the queue latency estimate for E is
L̂mq

E = L̂mt
A + L̂mt

C + L̂mt
B = 120 + 40 + 120.

There are a number of possible transfer latencies due to different active pages, over-
lapping of commands with data transfers from other banks and timing constraints
regarding when a bank can be precharged. However, we observed that only a small
number of these possible latencies occur frequently in the private mode. Conse-
quently, it is possible to store the most common transfer latencies in a lookup table.
Then, the latency is determined by whether the previous and next requests are to
the same bank and whether they are reads or writes. This lookup table is created at
design time by analyzing the private mode access behavior for the chosen memory
bus type. Table VIII.3 shows the lookup table of the DDR2 memory bus used in
this work.

A private-only entry (P bit set) can be invalidated when its latency is not needed
to compute the queue latency of any other element. For shared mode entries, the
latency of the entry must also be computed before it can be deleted. In addition, we
require that the most recently scheduled element is not invalidated. The deletion
algorithm is based on the observation that the head pointer of the oldest undeletable
element e in the arrival order will point to the oldest head element h in the arrival
order. Consequently, we know that all elements after h in the execution order are
needed to compute the queue latency for e. If an entry has been removed due to
insufficient buffer space, we use the last computed transfer and queue latency.

VIII.4.1.2 Estimating Memory Bus Entry Interference Îme

When the memory bus queue becomes full, the memory controller blocks and the
requests remain in the shared cache MSHRs. We account for this interference
by observing that the maximum number of requests a processor core can issue
simultaneously is the sum of MSHRs and writeback buffers in the last-level private
cache. Furthermore, the shared buffers will be dimensioned to handle roughly c
times this number of requests (c = number of cores) since too few buffers will lead
to frequent performance bottlenecks. The effect of this observation is that a single
core will not be able to fill the buffers in the shared part of the memory system.
Consequently, any shared mode latency due to memory bus blocking is interference.

Paper VIII 217

VIII.4.2 Estimating Cache Capacity Interference Îcc

To identify shared cache interference misses, we use an Auxiliary Tag Directory
(ATD) [4, 16] per core. Each time a request is received in the shared cache, the
request is inserted into the ATD belonging to the processor that sent the request.
Consequently, the ATD contains the tags the processor would have had in the
shared cache if it was running alone. On each access, we compare the output from
the ATD with the output from the actual cache. If the request is a hit in the ATD
and a miss in the real cache, we store a timestamp and tag the request as a shared
mode only cache miss. This bit is used to keep the request out of the memory
bus private mode latency estimation. When the request has been serviced in the
memory bus and returned to the cache, we retrieve its latency and communicate
it to the Interference Manager as cache capacity interference. We also record if
an ATD entry would have been written to in the private mode. In this case, a
replacement would have triggered a writeback in the private mode. When this
happens, we insert a private mode only writeback request into the memory bus
private mode latency estimation.

In this work, our aim is to accurately measure interference. Consequently, we are
willing to invest a fair bit of area into making the estimates accurate. We use
CACTI version 5.3 [20] to establish that the size of each ATD is roughly 4% of the
shared cache area. Qureshi et al. [16] showed that sampling as few as 16 to 32 sets
can be sufficient to represent cache behavior. With 32 sets, the area of each ATD is
reduced to around 0.01 % of the shared cache area. In DIEF, using set sampling is
not straight forward since the memory bus interference estimation mechanism needs
to know which misses are shared-only interference misses. This problem can likely
be avoided at the cost of reduced accuracy by using an estimated interference miss
probability to select requests for the memory bus interference estimation. The area
overhead can be further reduced at the cost of accuracy and measurement latency
by time multiplexing the ATDs. Work in this direction is underway.

VIII.4.3 Estimating Interconnect Interference (Î ie, Î iq, Î it

and Î id)

The main component of interconnect interference is due to requests having to wait
for access to the shared transmission medium (Î iq). It is easy to measure inter-
ference in the ring and crossbar interconnects used in this work since latency is
independent of access order. If a processor i is not able to issue a request because a
request r from processor j is being transferred, we add the number of cycles request
r occupied the transmission medium for each delayed request from processor i to
the interference estimate. Since the interconnects may be pipelined, the number of
cycles a processor delays another processor may be less than the transfer latency.
In the ring interconnect, the transfer latency depends on which core the process is
scheduled on and this needs to be taken into account when estimating interference.
Again, we assume that all blocking due to full buffers is interference.

218 VIII.5. Methodology

Table VIII.4: CMP Models

Interconnect #CPUs Process Private Cache Shared Cache Memory Bus

Crossbar, 8/16/30
cycles end-to-end
transfer latency, 32
entry queue

4 65 nm 2-way 64KB L1
Data, 2-way 64KB
L1 Inst.

16-way 8MB L2 DDR2-800,
4-4-4-12 timing, 8
banks, 1KB pages,
64 entry read
queue, 64 entry
write queue,
FR-FCFS, Open
Page Policy

8 45 nm 16-way 16MB L2

16 32 nm 16-way 32MB L2

Ring, 4/4/8 cycles
per hop transfer
latency, 32 entry
queue

4 65 nm 2-way 64KB L1
Data, 2-way 64KB
L1 Inst., 4-way
1MB Unified L2

16-way 8MB L3

8 45 nm 16-way 16MB L3

16 32 nm 16-way 32MB L3

VIII.5 Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [1] for
our experiments and have extended M5 with crossbar and ring interconnects as
well as a detailed DDR2-800 memory bus and DRAM model [8]. We model two
CMP architectures that are similar to current general-purpose, high-performance
CMP implementations and identify these models by the name of the on-chip in-
terconnect (i.e. crossbar or ring). Table VIII.4 summarizes the CMP models used
in this work, and a further discussion of the models is provided by Jahre et al. [7].
The only difference between Jahre et al.’s configuration and ours is that we use an
open page policy in the memory controller. We also use Jahre et al.’s 40 4-core
workloads, 20 8-core workloads and 10 16-core workloads that were generated by
picking benchmarks at random from the full SPEC CPU2000 benchmark suite [18].
The only requirement given to the random selection process is that a benchmark
can only appear once in each workload. These workloads are fast-forwarded for 1
billion clock cycles before we run detailed simulation for 100 million clock cycles.
To achieve synchronized measurements of L and L, it is critical to minimize the
difference between the memory requests in the shared and private modes. To en-
sure this, we use static cache partitioning and an infinite bandwidth interconnect
and memory bus during fast forwarding such that the simulation sample starts
on a similar instruction in both modes. Furthermore, we run the shared mode
experiments first and then retrieve the number of instructions the benchmark com-
mitted. Then, we run the private mode simulation for the exact same number of
instructions.

VIII.6 Results

In this section, we present the results from our experiments with DIEF. When not
otherwise stated, we use our best performing configuration with 8192 requests per
sample, a page locality factor of 3 and a 64 entry bus estimation buffer. These
values were found empirically by extensive simulation.

Paper VIII 219

10000
0
10000
20000
30000

0 %
5 %

10 %

ve
 E
rr
or

Average Error (left axis) Number of Estimates (right axis)

‐30000
‐20000
‐10000

‐10 %
‐5 %

1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C

4 Cores 8 Cores 16 Cores 4 Cores 8 Cores 16 CoresA
ve
ra
ge
 R
el
at
iv

Crossbar Ring

Figure VIII.4: Relative Estimation Errors and Number of Estimates

40
60
80
100

Pe
r‐

ni
t
RM

S
le
s)

Bus Queue Bus Service Interconnect Request Queue

0
20
40

1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C

4 Cores 8 Cores 16 Cores 4 Cores 8 Cores 16 CoresSu
m
 o
f A

ve
ra
ge

nc
hm

ar
k
Pe

r‐
U
n

Er
ro
r (
cl
oc
k
cy
c

Crossbar Ring

Be

Figure VIII.5: Interference Estimation Error Breakdown

VIII.6.1 Estimation Accuracy

Figure VIII.4 shows the average relative error and one standard deviation of all
estimates produced by DIEF. In addition, Figure VIII.4 contains the number of
estimates used to compute these statistics. We use the abbreviations 1C, 2C and
4C to represent 1 memory bus channel, 2 memory bus channels and 4 memory bus
channels, respectively. The main observation is that the average error is close to
zero in all cases. Furthermore, the standard deviation is at most 5.8%.

Figure VIII.5 breaks down the average root mean squared (RMS) error for all ar-
chitectures used in this work. We have removed all interference types where the
average RMS error is less than 2 clock cycles to improve readability. Furthermore,
cache capacity interference is not included since it has no corresponding private
mode latency. Figure VIII.5 shows that most of the measurement error is due to
the memory bus queue estimate L̂mq. This is not surprising as our queue latency es-
timation model does not cover the case where a request is delayed by page hits that
arrive after it. Furthermore, our model does not accurately predict the difference
between the number of simultaneously queued requests in the two models. How-
ever, given the good average accuracy shown in Figure VIII.4, the measurements
are likely accurate enough to be used by a dynamic fairness technique. Another
observation is that the absolute measurement error is larger in the ring architec-
tures. This is due to poor utilization of the L3 cache because the private L2 caches
reduce the access frequency. Consequently, a cache thrashing process is able to
evict a larger amount of the data needed by a less cache intensive thread which in

220 VIII.6. Results

‐3 %

‐2 %

‐1 %

0 %

1 %

2 %

3 %

4 %

el
at
iv
e
Sh
ar
ed

 C
ac
he

 M
is
s

Es
ti
m
at
e
Er
ro
r

‐4 %

1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C

4 8 16 4 8 16

Crossbar Ring

Re

Figure VIII.6: ATD Estimation Error

turn puts a larger strain on the memory bus.

To quantify the accuracy of the ATD interference miss estimates, we count the
number of actual misses and the number of interference misses. Here, the shared
mode miss count estimate is computed by subtracting the number of additional
shared cache misses identified by the ATD from the shared mode miss count. Then,
we adapt the relative error metric to cache misses by using the estimated number
of misses M̂, the actual private mode number of misses M and the shared mode
number of misses M (E = (M̂−M)/M). Figure VIII.6 shows that our ATD-based
interference miss estimation has an average relative estimation error of at most
0.8% and maximum standard deviation of 3.4%.

Figure VIII.7 shows the distribution of the memory bus queue RMS errors for the
4-core CMP models. Here, we represent the measurement error for each instance
of a benchmark by the average RMS error of the estimates for this benchmark.
Then, we sort the average RMS errors such that each point in the figure represents
the maximum average RMS error observed for a certain percentage of benchmarks.
Figure VIII.7 shows that the memory bus queue estimates are very accurate. When
60% of the benchmarks are taken into account, the worst average RMS error ob-
served for any architecture is 20 clock cycles. However, there is a short tail where
the measurement error is significant. Since the average round trip memory latency
is high in these cases, the values are most likely good enough to be used by dy-
namic resource allocation techniques. Finally, the lines stop at 82% for the ring
architecture and 97% for the crossbar architecture because some benchmarks have
too few memory requests to produce any estimates.

Paper VIII 221

0,1

1

10

100

1000

ve
ra
ge
 R
M
S
Er
ro
r

ck
 c
yc
le
s)

Ring 1C Ring 2C Ring 4C

Crossbar 1C Crossbar 2C Crossbar 4C

0,001

0,01

1
%

6
%

12
 %

18
 %

23
 %

29
 %

34
 %

40
 %

46
 %

51
 %

57
 %

63
 %

68
 %

74
 %

79
 %

85
 %

91
 %

96
 %

M
ax
im

um
 A
v

(c
lo
c

Percentage of Benchmarks

Figure VIII.7: 4-core Bus Queue Error

0 %
50 %
100 %
150 %
200 %
250 %
300 %
350 %
400 %

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

A
ve
ra
ge
 R
el
at
iv
e
RM

S
Er
ro
r

Sample Size (Number of Memory Requests)

Crossbar 1C Crossbar 2C Crossbar 4C

Ring 1C Ring 2C Ring 4C

Figure VIII.8: Root Mean Squared Error. 8-core CMP Sample Size Accuracy
Impact

222 VIII.7. Related Work

100
1000
10000
100000
1000000

10000000

ve
ra
ge
 L
at
en

cy

Crossbar 1C Crossbar 2C Crossbar 4C

Ring 1C Ring 2C Ring 4C

1
10

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

A
v

Sample Size (Number of Memory Requests)

Figure VIII.9: Average Latency Between Estimates. 8-core CMP Sample Size
Accuracy Impact

VIII.6.2 DIEF Parameters

In this section, we provide an empirical analysis of DIEF’s main parameters: sam-
ple size, page locality factor and memory bus estimation buffer size. The choice
of sample size is a trade-off between achieving low variability and receiving new
estimates often enough to make high quality resource allocation decisions. Fig-
ure VIII.8 and VIII.9 shows the average relative RMS error and average latency
between estimates for the 8-core architectures. Our choice of 8192 requests per
sample is on the flat part of the error plot and has an acceptable average latency.

Figure VIII.10 shows the average RMS error for different page locality factors. The
general trend is that the page locality factor should be low because there is usually
more locality in the shared mode estimation buffer than in the private memory bus
queues. This is because a larger number of requests are available to the scheduler
in the shared mode due to more competition. A page locality factor of 3 is the best
overall. Finally, Figure VIII.11 shows the error resulting from varying the memory
bus estimation buffer size. Here, 64 entries are necessary to achieve low error for
the ring architecture.

VIII.7 Related Work

A few researchers have addressed the issue of dynamic interference measurement
in CMPs. Cache Scouts [21] is a shared cache interference measurement technique
that estimates interference by counting the number of cache blocks that are evicted
by different processors. Consequently, they assume that all blocks evicted by a
different processor would have been reused which may lead to measurement errors.

Paper VIII 223

0

20

40

60

80

100

120

1C 2C 4C 1C 2C 4C

Crossbar Ring Average

A
ve
ra
ge
 R
M
S
Er
ro
r (
cl
oc
k
cy
cl
es
)

FCFS (1 Request) 3 Requests 5 Requests

10 Requests 20 Requests Unlimited

Figure VIII.10: 4-core Page Locality Factor

100

150

200

250

300

M
S
Er
ro
r
(c
lo
ck
 c
yc
le
s)

16 Entries 32 Entries 64 Entries 128 Entries 256 Entries

0

50

1C 2C 4C 1C 2C 4C

Crossbar Ring Average

A
ve
ra
ge
 R
M

Figure VIII.11: 4-core Bus Buffer Size

224 VIII.8. Conclusion

Mutlu and Moscibroda [11] propose a run-time interference measurement technique
that they use to guide a memory bus scheduling algorithm in a system with private
caches.

Most previous studies that aim to improve resource sharing in CMP memory sys-
tems, have focused on a single component of the entire system. For example,
techniques have been proposed to reduce cache capacity interference (e.g. [3, 9]),
cache bandwidth interference [14] and memory bus interference [10, 11, 13]. In
addition, a few researchers have investigated how a chip-wide resource manage-
ment technique can be designed. Iyer et al. [6] proposed a high-level framework for
implementing a QoS-aware memory system, while Nesbit et al. [12] proposed the
Virtual Private Machines framework where a private virtual machine is created by
dividing the available physical resources among applications. In addition, Bitirgen
et al. [2] showed how machine learning can be applied to the resource allocation
problem.

VIII.8 Conclusion

Accurate feedback mechanisms are needed to implement robust resource allocation
systems in future CMPs. In this work, we propose the Dynamic Interference Esti-
mation Framework (DIEF) which is the first detailed implementation of a unified
feedback mechanism for CMP memory systems. DIEF is a collection of techniques
that cooperate to estimate the average memory latency a process would experience
if it had exclusive access to all shared resources. Choosing the average memory
latency as the unit of interference has the advantage that the total memory la-
tency is the sum of the latency in each shared unit. Consequently, CMP designers
can choose estimation techniques that achieve the desired accuracy/complexity
trade-off for each shared unit. In this work, we describe a high accuracy DIEF
implementation which has an average relative estimate error between -0.4% and
4.7% and a standard deviation between 2.4% and 5.8%.

Acknowledgments

This project was supported in part by the Norwegian Metacenter for Computational
Science (NOTUR). Lasse Natvig is a member of HiPEAC2 NoE.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

Paper VIII 225

[2] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Resources in Chip Multiprocessors: A Machine Learning Approach. In MICRO
41: Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture, 2008.

[3] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In ICS ’07: Proc. of the 21st Annual Int. Conf. on Supercomputing,
pages 242–252, 2007.

[4] H. Dybdahl, P. Stenstrom, and L. Natvig. An LRU-based Replacement Al-
gorithm Augmented with Frequency of Access in Shared Chip-Multiprocessor
Caches. In MEDEA ’06: Proc. of the 2006 workshop on MEmory performance,
pages 45–52, 2006.

[5] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro, 28(3):42–53, 2008.

[6] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In SIGMETRICS ’07, pages 25–36, 2007.

[7] M. Jahre, M. Grannaes, and L. Natvig. A Quantitative Study of Memory
System Interference in Chip Multiprocessor Architectures. In HPCC ’09: 11th
IEEE Int. Conf. on High Performance Computing and Communications, pages
622–629, 2009.

[8] DDR2 SDRAM Specification. JEDEC Solid State Tech. Association, May
2006.

[9] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In PACT ’04: Proc. of the 13th Int. Conf.
on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[10] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA ’08: Proc.
of the 35th An. Int. Symp. on Comp. Arch., pages 63–74, 2008.

[11] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO 40: Int. Symp. on Microarchitecture, 2007.

[12] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith.
Multicore Resource Management. IEEE Micro, 28(3):6–16, 2008.

[13] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. In MICRO 39: Int. Symp. on Microarchitecture, pages 208–222,
2006.

[14] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA
’07: Proc. of the 34th An. Int. Symp. on Comp. Arch., pages 57–68, 2007.

226 Bibliography

[15] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on
Microarch., pages 423–432, 2006.

[16] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-
Aware Cache Replacement. In ISCA ’06: Int. Symp. on Comp. Arch., pages
167–178, 2006.

[17] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In ISCA ’00: Int. Symp. on Comp. Arch., pages 128–138,
2000.

[18] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

[19] B. Sprunt. The Basics of Performance-Monitoring Hardware. IEEE Micro, 22
(4):64–71, 2002.

[20] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACI 5.1.
Technical report, HP Laboratories Palo Alto, 2008.

[21] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms.
In PACT ’07: Proc. of the 16th Int. Conf. on Parallel Arch. and Comp. Tech.,
pages 339–352, 2007.

http://www.spec.org/cpu2000/

Paper IX

Exploring the
Prefetcher/Memory
Controller Design Space: An
Opportunistic Prefetch
Scheduling Strategy

Marius Grannæs, Magnus Jahre and Lasse Natvig
Preprint submitted to the Journal of Systems Architecture,
November 2010

228

Paper IX 229

Abstract
Prefetching is a well-known technique for bridging the memory gap. By predicting
future memory references the prefetcher can fetch data from main memory and
insert it into the cache such that overall performance is increased. Modern memory
controllers reorder memory requests to exploit the 3D structure of modern DRAM
interfaces. In particular, prioritizing memory requests that use open pages increases
throughput significantly.

In this work, we investigate the prefetcher/memory controller design space along
three dimensions: prefetching heuristic, prefetch scheduling strategy and available
memory bandwidth. In particular, we evaluate 5 different prefetchers and 6 prefetch
scheduling strategies. Through this extensive investigation, we observed that prior
prefetch scheduling strategies often cause memory bus contention in bandwidth
constrained CMPs which in turn causes performance regressions. To avoid this
problem, we propose a novel prefetch scheduling heuristic called Opportunistic Pre-
fetch Scheduling that selectively prioritizes prefetches to open DRAM pages such
that performance regressions are minimized. Opportunistic prefetch scheduling re-
duces performance regressions by 6.7X and 5.2X, while improving performance by
17 % and 20 % for sequential and scheduled region prefetching, compared to the
direct scheduling strategy.

Keywords: Memory Systems, Prefetch Scheduling, Prefetching, Oppor-
tunistic Prefetch Scheduling, DRAM, Page Vector Table

230 IX.1. Introduction

IX.1 Introduction

The pressure on off-chip memory increases significantly as more cores compete for
the same resources. A CMP deals with the memory wall by exploiting thread
level parallelism (TLP), shifting the focus from reducing overall memory latency to
memory throughput. This extends to the memory controller where the 3D structure
of modern DRAM (Figure IX.1) is exploited to increase throughput. Because of
this 3D structure, the latency of a memory operation varies depending on bank
conflicts and open pages. In particular, fetching data from open pages is beneficial
as it has low latency and increases DRAM throughput [14].

Banks

Columns

DRAM

Rows

Figure IX.1: 3D structure of DRAM.

Prefetching reduces latency by fetching data before it is needed. Research has
shown that prefetching can also increase bandwidth utilization by tight integra-
tion of the prefetcher with the memory controller [4, 8]. This is achieved through
prioritizing prefetches based on prefetcher accuracy, available memory bandwidth
and interaction with open pages. Fetching data from an open page has a much
lower cost than a complete cycle of opening a page, fetching the data and closing
the page. Because of this difference in cost, speculatively prefetching data from an
open page is beneficial even at relatively low prefetcher accuracy [4].

Because of the complex interaction between the prefetcher and the memory con-
troller, prefetch scheduling can be as important as determining which addresses
to prefetch. In this work, we investigate the prefetcher/memory controller design
space along three dimensions: prefetching heuristic, prefetch scheduling strategy
and available memory bandwidth. In particular, we evaluate 5 different prefetchers
and 6 prefetch scheduling strategies. Through this extensive investigation, we ob-
served that prior prefetch scheduling strategies often cause memory bus contention
in bandwidth constrained CMPs, which in turn causes performance regressions. To
avoid this problem, we propose a novel prefetch scheduling heuristic called Oppor-
tunistic Prefetch Scheduling that selectively prioritizes prefetches to open DRAM
pages such that performance regressions is minimized. This scheduling strategy

Paper IX 231

is able to bridge the gap between the simpler prefetchers (e.g. sequential) and
the more complex prefetchers in future multicore architectures where there will be
more contention for off-chip bandwidth. Using simple prefetchers is an advantage
because they are easier to implement and verify.

IX.2 Related Work

IX.2.1 Prefetching

There exists a multitude of different prefetching schemes. The simplest is the
sequential prefetcher [16], which simply fetches the next block whenever a block is
referenced. However, more complex types exists as well, such as the CZone/Delta
Correlation (C/DC) prefetcher proposed by Nesbit et al. [12, 13]. C/DC divides
memory into CZones and analyses patterns contained in the reference stream by
using a Global History Buffer (GHB) to store recent misses to the cache. Lin et
al. [10] introduced scheduled region prefetching (SRP) which issues prefetches to
blocks spatially near the addresses of recent demand missed when the memory
channel is idle. Other types, such as the Reference Prediction Table Prefetcher
(RPT) proposed by Chen and Baer [3], examines the pattern generated by a load
instruction with a state machine. Delta Correlating Prediction Table (DCPT) is
a table based approach which stores the history of each load instruction in the
form of address deltas [5]. DCPT prefetches new data by using delta correlation
to find patterns in the history of deltas. Somogyi et al. proposed Spatial Memory
Streaming (SMS) [17]. SMS uses code-correlation to predict spatial access patterns.

IX.2.2 Memory Controllers

Memory access scheduling is the process of reordering memory requests to improve
memory bus utilization. Rixner et al. [14] showed that significant speed-ups are
possible when memory request reordering is applied to stream processors. In ad-
dition, Shao et al. [15] proposed burst scheduling in which multiple read and write
requests to the same DRAM page are issued together to achieve high bus utilization.
Finally, Zhu et al. [20] showed that it is beneficial to divide the memory requests
into smaller parts, and give priority to the words responsible for a processor stall
in a multi-channel DRAM system.

CMPs, processors with SMT (Simultanous Multi-Threading) support and conven-
tional shared-memory multiprocessors also benefit from memory access scheduling.
Zhu et al. [19] showed that DRAM throughput could be increased in an SMT
processor by using ROB (ReOrder Buffer) and IQ (Instruction Queue) occupancy
status to prioritize requests. Furthermore, Hur et al. [6] use a history-based arbiter
to adapt the DRAM port and rank schedule to the application’s mix of reads and
writes for the dual-core Power5 processor. In addition, Natarajan et al. [11] showed

232 IX.3. Prefetch Scheduling Strategies

that a significant performance improvement is available by exploiting memory con-
troller features in a conventional, shared-memory multiprocessor.

IX.3 Prefetch Scheduling Strategies

Earlier work have focused on the interaction between a specific prefetcher and
the memory controller. Wei-Fen et al. [9] have examined how prefetches can be
scheduled in a uniprocessor context with Rambus DRAM. They used a dedicated
prefetch queue with a LIFO insertion policy with a scheduled region prefetcher.
Cantin et al. [2] exploited open pages to increase the performance of their stealth
prefetcher. In this work, we decouple the prefetching scheduling strategy from the
prefetcher and examine new combinations of prefetcher and prefetch scheduling
strategy. This allows us to do a design space exploration where we examine many
combinations of prefetchers and prefetch scheduling strategies.

The simplest way to schedule prefetches in a memory controller is to treat them
as demand reads. This method requires no additional infrastructure and most
controllers can easily accommodate this technique. Because the prefetches are
treated as reads, they cannot be discarded by the memory controller which in turn
can lead to memory congestion and memory controller blocking due to full queues.
In this paper, we refer to this strategy as the Direct prefetch scheduling strategy.

This situation can be improved by adding an additional queue called the prefetch
queue [2, 8, 9]. A dedicated prefetch queue can hold prefetches separate from the
reads which enables the memory controller to selectively issue or discard prefetches.
Because prefetches can be discarded, the memory controller can choose to discard
prefetches in the prefetch queue rather than block. However, because there are now
two (in addition to the write queue) queues, a method for choosing which queue to
issue reads or prefetches from is needed.

The most restrictive method is to only issue prefetches from the dedicated prefetch
queue when there are no other operations pending. We refer to this as the Idle
prefetch scheduling strategy. A more aggressive approach is to schedule prefetches
when any of the prefetches currently in the queue would read data from a currently
open page. This is often beneficial because a prefetch into an open page costs less
than a demand read. In this paper, we refer to this strategy as the Ready prefetch
scheduling strategy.

The accuracy of the prefetcher can be measured at runtime by tagging each prefetched
cache block with a prefetch bit. This bit is set when a cache block is inserted by a
prefetch. The first time the cache block is accessed, the bit is cleared and a counter
is updated. Similarly, when a prefetch is issued another counter is updated. The
ratio between these two counters is the estimated accuracy.

Grannaes et al. used this estimated accuracy to switch between the Idle and the
Ready prefetch scheduling strategy [4]. If the estimated accuracy was below 40%,

Paper IX 233

Page Address Bit Vector

. .

100 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

. .

Table IX.1: Example Page Vector Table showing a strided prefetch pattern for page
address 100.

the Idle strategy was used. If it was over 40% the Ready strategy was used. In
this work, we refer to this strategy as the Low Cost strategy.

Lee et al. used the estimated accuracy to switch between the Ready and the Direct
scheduling strategies [8]. When the accuracy was estimated to be high, the Direct
strategy was used. Conversely, the Ready strategy was used when the accuracy was
estimated to be low. In this paper, we refer to this strategy as the Hybrid strategy.

IX.3.1 Opportunistic Prefetch Scheduling

In this paper, we propose a prefetch scheduling strategy called Opportunistic Pre-
fetch Scheduling which is strongly tied to the observation that prefetching from
open pages is beneficial. Instead of using a queue of prefetches, we use a Page Vec-
tor Table (PVT) indexed by the page-address. An example of a PVT is shown in
Table IX.1. The page-address is the portion of the memory address which maps to
physical DRAM pages. In our setup, each DRAM page is 1KB large and each cache
block is 64B large. Each PVT entry consists of a 16-bit vector where each bit rep-
resents one cache block in the page. When the prefetcher generates a prefetch for
a cache block, it looks up the DRAM page in the table and sets the corresponding
bit in the vector for that page.

The table is then consulted before the memory controller closes any page. If there
are bits set in the corresponding bit-vector and no demand reads have been issued
for those cache blocks, prefetches are issued for those addresses. This approach
ensures that prefetches are only issued if they access an open page. The bitvector
representation is very compact as only one bit is stored per prefetch (excluding the
page tag) compared to the traditional approach using queues which holds the full
address.

To reduce the potential for performance regressions, Opportunistic estimates the
accuracy of the issued prefetches to choose one of two substrategies. If accuracy is
high, prefetches are issued when a page is closed. If accuracy is low, prefetches are
only issued when a page is closed and there are no demand reads in the queue.

IX.4 Methodology

To examine the impact of different prefetch scheduling strategies we have used the
M5 simulator [1]. The processor architecture parameters for the simulated 4-core

234 IX.4. Methodology

Table IX.2: Processor Core Parameters
Parameter Value

Processor Cores 4

Clock frequency 3.2 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch
Queue

32 entries

Load/Store Queue 32 instructions

Issue Width 8 instructions/cycle

Functional units

4 Integer ALUs, 2
Integer
Multipy/Divide, 4
FP ALUs, 2 FP
Multiply/Divide

Branch predictor

Hybrid, 2048 local
history registers,
4-way 2048 entry
BTB

Table IX.3: Memory System Parame-
ters
Parameter Value

Level 1 Data Cache

64 KB, 8-way set
associative, 64B
blocks, 3 cycles
latency

Level 1 Instruction
Cache

64 KB, 8-way set
associative, 64B
blocks, 1 cycle
latency

Level 2 Unified
Shared Cache

4 MB, 16-way set
associative, 64B
blocks, 14 cycles
latency, 8 MSHRs
per bank, 4 banks

L1 to L2
Interconnection
Network

Crossbar topology, 9
cycles latency, 64B
wide transmission
channel

DDR2 memory

400 Mhz Clock, 8
banks, 1KB
pagesize, 4-4-4-12
timing, dual channel
in lock-step

Memory Controller

128 entry queue,
Ready First - First
Come, First Served
policy for reads

CMP are shown in Table IX.2, and Table IX.3 contains the baseline memory system
parameters. We have extended M5 with a crossbar interconnect, a detailed DDR2
memory bus and DRAM model and a detailed FR-FCFS (First Ready, First Come,
First Served) [14] memory controller with integrated prefetching capabilities.

Our DDR2-implementation [7] models separate RAS, CAS and precharge com-
mands. In addition, we model pipelining of requests, independent banks, burst
mode transfers and bus contention. All prefetchers use a prefetching degree of 10.
We use 1KB regions in scheduled region prefetching, 256KB CZones, a 1024-entry
global history buffer and a 16-entry reference prediction table. DCPT uses a 128
entry table with each entry holding 20 18-bit entries. These values were found by
extensive simulation aimed at identifying values that are suitable across a wide
range of scheduling strategies and memory systems.

The SPEC CPU2000 benchmark suite [18] is used to create 40 multiprogrammed
workloads consisting of 4 SPEC benchmarks each as shown in Table IX.4. We
picked benchmarks at random from the full SPEC CPU2000 benchmark suite, and
each processor core is dedicated to one benchmark. The only requirement given to
the random selection process was that each SPEC benchmark had to be represented
in at least one workload. Each workload is first fast forwarded 1 billion clock cycles
and then detailed simulation is carried out for 100 million clock cycles.

Paper IX 235

Table IX.4: Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks

1
ammp, mgrid,
perlbmk, parser

11
vpr, twolf,
applu, eon

21
perlbmk, apsi,
lucas, equake

31
mgrid, equake,
vpr, eon

2
lucas, gcc, mcf,
twolf

12
galgel, crafty,
mgrid, swim

22
vpr, crafty,
vpr, mcf

32
wupwise, gap,
twolf, facerec

3
eon, eon, mesa,
facerec

13
twolf, fma3d,
galgel, vpr

23
gzip, equake,
mgrid, mesa

33
galgel, equake,
lucas, gzip

4
vortex1, ammp,
equake, galgel

14
bzip, vpr, bzip,
equake

24
facerec, applu,
fma3d, lucas

34
facerec, gcc,
galgel, apsi

5
gcc, galgel,
apsi, crafty

15
galgel, crafty,
vpr, swim

25
gap, applu,
parser, facerec

35
mesa, mcf,
swim, sixtrack

6
applu, equake,
art, facerec

16
mcf, wupwise,
applu, mesa

26
mcf, apsi,
twolf, ammp

36
mesa, sixtrack,
equake, bzip

7
applu, gap, gcc,
parser

17
applu, parser,
apsi, perlbmk

27
swim, sixtrack,
ammp, applu

37
mcf, gap, gcc,
vortex1

8
gap, swim,
twolf, mesa

18
mgrid,
perlbmk, gzip,
mgrid

28
art, fma3d,
swim, parser

38
facerec, lucas,
mcf, parser

9
sixtrack,
fma3d, apsi,
vortex1

19
mcf, sixtrack,
gcc, apsi

29
apsi, gcc,
vortex1, twolf

39
twolf, eon,
mesa, lucas

10
ammp, bzip,
equake, parser

20
ammp, gcc, art,
mesa

30
mgrid, gzip,
apsi, equake

40
apsi, gzip, mcf,
equake

IX.5 Results

IX.5.1 Performance

Figure IX.2 shows the average speedup of each prefetch scheduling strategy with
five different prefetchers (Sequential, RPT, C/DC, SRP and DCPT) in a system
with one DRAM channel. Opportunistic performs well in combination with both
the sequential and the SRP prefetcher. For RPT, C/DC and DCPT, the Ready
and Low cost strategies performs slightly better. However, Opportunistic prefetch
scheduling is able to bridge the performance gap between the simple sequential pre-
fetcher and the more complex RPT, CDC and DCPT prefetchers. This is because
the overall accuracy of these prefetchers is typically higher than for sequential and
SRP prefetching. This same effect can be observed for the Direct strategy where
performance is low for the sequential and SRP prefetcher while it is higher for
the other prefetchers. This is because the strategy does not make any distinction
between prefetches and demand reads. Thus, inaccurate prefetches can disrupt
demand reads. The performance for the Idle strategy is comparably low for most
prefetchers because it issues less prefetch requests due to it’s strict policy. The dif-
ference between the Low cost and Ready strategies is also apparent. In combination
with high accuracy prefetchers such as RPT, C/DC and DCPT, the Ready strategy
performs better than Low Cost. In combination with low accuracy prefetchers, the
situation is reversed. Finally, the performance of the Hybrid strategy is between

236 IX.5. Results

 1

 1.1

 1.2

 1.3

 1.4

Sequential RPT C/DC SRP DCPT

A
ve

ra
ge

 S
pe

ed
up

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure IX.2: Average speedup for all cores over all workloads for different scheduling
strategies and prefetchers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Sequential RPT C/DC SRP DCPT

Lo
w

es
t S

pe
ed

up

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure IX.3: Lowest speedup for any core in any workload for different scheduling
strategies and prefetchers.

the Ready and Direct strategies.

IX.5.2 Maximum Performance Regression

Prefetching can drastically increase average system performance. Because prefetch-
ing is a speculative technique it might also lead to performance regressions on some
workloads. In Figure IX.3, we show the lowest speedup for any core on any workload
for all the prefetch scheduling strategies. Overall, we observe that the prefetchers
with low accuracy shows the largest performance regressions. The strategies utiliz-
ing prefetch accuracy measurements (Low cost, Opportunistic) perform quite well
as they are mostly able to adapt to this situation, thus avoiding large performance
regressions. The Direct strategy shows quite large performance regressions because
it does not differentiate between prefetches and demand reads. Thus, a prefetcher
which issues many useless prefetches can saturate off-chip bandwidth and delay
demand reads. The Idle strategy has comparatively low performance regressions,
because the strategy is inherently defensive and only issues prefetches when there

Paper IX 237

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Sequential RPT C/DC SRP DCPT

A
cc

ur
ac

y

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure IX.4: Average accuracy for all workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

Sequential RPT C/DC SRP DCPT

C
ov

er
ag

e

Prefetcher

Direct
Idle

Ready
Low Cost

Hybrid
Opportunistic

Figure IX.5: Average coverage for all workloads.

are no demand reads in the queue. Hybrid uses accuracy estimates to select between
two strategies (Direct and Ready). By increasing the threshold, the behaviour of
this strategy can be made more similar to the Ready strategy.

IX.5.3 Accuracy and Coverage

Figure IX.4 shows the average accuracy of every workload in each combination of
prefetcher and prefetch scheduling strategy. Note that only prefetches that have
been issued by the memory controller are shown in this figure. This is not neces-
sarily the same as the accuracy of the prefetcher because the prefetch scheduling
strategy may drop prefetches. However, the Direct strategy does not drop pre-
fetches and issues all prefetches generated by the prefetcher. By examining the
results for sequential and SRP, we observe that Idle, Low Cost and Opportunistic
are able to achieve higher degrees of accuracy than the Direct approach. In the
high accuracy prefetchers, there is little difference in the scheduling strategies.

238 IX.5. Results

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 S
pe

ed
up

 (%
)

DRAM Channels

Direct
Idle

Ready

Low Cost
Opportunistic

Hybrid

Figure IX.6: Effect of increasing the amount of bandwidth available on sequential
prefetching.

Figure IX.5 shows the average coverage of every workload in each combination
of prefetcher and prefetch scheduling strategy. Because the Direct strategy issues
every prefetch generated by the prefetcher, it has a very high coverage. Conversely,
Idle has very low coverage because it issues few prefetches. Opportunistic has a
comparatively low coverage compared to the other prefetch scheduling strategies
because it issues fewer prefetches than the other strategies. The Hybrid strategy
is very near the performance of the Direct strategy in terms of coverage. This is
due to the value of the accuracy threshold used in our experiments. Low Cost has
a slightly lower coverage than Ready for the low accuracy prefetchers (sequential,
SRP), because it drops prefetches when the accuracy becomes too low.

IX.5.4 Increasing DRAM Bandwidth

Figure IX.6 and IX.7 shows the effect of increasing the amount of bandwidth in
the system for sequential and RPT prefetching respectively. Note that the speedup
is computed versus a system with the same amount of bandwidth but with no
prefetching. Thus, the speedup for 8 DRAM channels is lower than for 1 DRAM
channel, although the performance is higher. For sequential prefetching, we observe
that the relative performance of opportunistic versus the other prefetch scheduling
strategies is highest in low bandwidth situations. Furthermore, we observe that Idle
performs well compared to the other scheduling algorithms with one channel but
worse when more bandwidth is available. The reason is that Idle issues prefetches
cautiously which makes it less likely to create congestion.

For RPT prefetching we observe a similar pattern as the amount of bandwidth is
increased. RPT is a high accuracy prefetcher and the aggressive strategies such as

Paper IX 239

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 S
pe

ed
up

 (%
)

DRAM Channels

Direct
Idle

Ready

Low Cost
Opportunistic

Hybrid

Figure IX.7: Effect of increasing the amount of bandwidth available on RPT pre-
fetching.

Direct, Low Cost, Hybrid and Ready performs better when bandwidth is increased
compared to Idle and Opportunistic.

IX.6 Discussion

Three of the strategies (Low Cost, Hybrid and Opportunistic) examined in this
paper utilizes prefetch accuracy measurements. All of these use a threshold value
to switch between two strategies. Typically, if accuracy is high, then an aggressive
strategy is used. Conversely, if accuracy is low, then a more restrictive strategy
is used. Thus, the behaviour of these strategies can be adapted by changing the
threshold value. In this paper, we have used the same threshold value for all three
strategies for easier comparison. The value we have chosen matches the value used
in previous work [4, 8].

In this work, we use the same method for estimating prefetch accuracy for all
strategies. This method uses special bits in the cache to mark prefetched cache
blocks (cache tagging). However, Opportunistic prefetch scheduling offers another
method. All prefetches generated by the prefetcher are stored in the PVT, while the
cache tagging method only stores prefetches that have been issued and completed.
Thus, the cache tagging method measures the combined accuracy of the prefetcher
and the scheduling strategy, while the PVT isolates the accuracy of the prefetcher.
We have examined this method and found that it offers slightly better performance.
However, the threshold value has to be changed, because this method measures
something different (issued prefetches accuracy vs. generated prefetches accuracy).
Therefore, we have opted to use the same estimation technique for all prefetchers

240 IX.7. Conclusion

to achieve a fair comparison.

IX.7 Conclusion

It is clear from our results that no single prefetch scheduling strategy is suitable for
every scenario. The best strategy depends on a variety of factors such as: the pre-
fetcher, the memory controller, the amount of memory bandwidth, the application,
design complexity and the amount of acceptable performance regressions. For in-
stance, Idle is a good option for minimizing performance regressions. On the other
end, Low Cost and Ready provides the highest average performance. Opportunistic
provides a trade-off between these two. Because it actively reduces performance re-
gressions, it also provides the highest average performance for sequential and SRP
prefetchers.

In this paper, we have presented a novel prefetch scheduling strategy called Oppor-
tunistic. This strategy emphasises the use of open pages to provide good average
performance without large performance regressions. It is particularly suited for sys-
tems with relatively low amounts of bandwidth combined with highly aggressive
prefetchers. As more cores compete for the same shared off-chip bandwidth, utiliz-
ing this limited resource becomes more important. Opportunistic prefetch schedul-
ing addresses this problem by utilizing open pages to increase effective bandwidth,
while using accuracy estimates to avoid bandwidth saturation. We show that Op-
portunistic prefetch scheduling reduces performance regressions by 6.7X and 5.2X,
while improving performance by 17 % and 20 % for sequential and scheduled region
prefetching, compared to the direct scheduling strategy.

Bibliography

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[2] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth prefetching. SIGPLAN
Not., 41(11):274–282, 2006.

[3] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. Computers, IEEE Transactions on, 44:609–623, May
1995.

[4] M. Grannaes, M. Jahre, and L. Natvig. Low-cost open-page prefetch sch-
eduling in chip multiprocessors. In XXVI IEEE International Conference on
Computer Design (ICCD), 2008.

Paper IX 241

[5] M. Grannaes, M. Jahre, and L. Natvig. Storage efficient hardware prefetching
using delta correlating prediction tables. In Data Prefetching Championships,
2009.

[6] I. Hur and C. Lin. Adaptive history-based memory schedulers. In MICRO
37: Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 343–354, 2004.

[7] DDR2 SDRAM Specification. JEDEC Solid State Technology Association,
May 2006.

[8] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware DRAM
Controllers. In MICRO ’08: Proceedings of the 41st IEEE/ACM International
Symposium on Microarchitecture, pages 200–209, 2008.

[9] W.-F. Lin, S. K. Reinhardt, and D. Burger. Designing a modern memory
hierarchy with hardware prefetching. IEEE Transactions on Computers, 50
(11):1202–1218, 2001.

[10] W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies with
an integrated memory hierarchy design. In HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, pages
301–312, 2001.

[11] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact
of memory controller features in multi-processor server environment. In WMPI
’04: Proceedings of the 3rd Workshop on Memory Performance Issues, pages
80–87, 2004.

[12] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. Micro, IEEE, 25:90–97, Jan. 2005.

[13] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data
cache prefetcher. In Proceedings of the 13th International Conference on Par-
allel Architecture and Compilation Techniques, pages 135–145, 2004.

[14] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. In ISCA ’00: Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 128–138, 2000.

[15] J. Shao and B. Davis. A burst scheduling access reordering mechanism. High
Performance Computer Architecture, IEEE 13th International Symposium on,
pages 285–294, 2007.

[16] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.

[17] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
memory streaming. SIGARCH Comput. Archit. News, 34(2):252–263, 2006.

[18] SPEC. SPEC CPU 2000 Web Page. http://www.spec.org/cpu2000/.

http://www.spec.org/cpu2000/

242 Bibliography

[19] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system
optimizations for SMT processors. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Computer Architecture, pages
213–224, 2005.

[20] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain priority scheduling on
multi-channel memory systems. Eighth International Symposium on High-
Performance Computer Architecture, 2002, pages 107–116, 2002.

	Title page
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	The Memory Gap
	Analyzing the Memory Hierarchy
	Overcoming the Memory Wall
	Tolerating or Hiding the Memory Gap
	Increasing Bandwidth Utilization
	Parallel Throughput-Oriented Architectures

	Research Questions
	Thesis Outline

	Background
	Performance and Fairness Metrics
	Measuring Performance
	Aggregating Performance Numbers
	Multiprogrammed Workload Metrics

	Main Memory
	Memory Cells
	DRAM Organization
	DRAM Scheduling

	Cache
	Set-associative caches
	Cache Misses
	Replacement Policies
	Miss Status Holding Registers

	Prefetching
	Sequential Prefetching
	Instruction-Based Prefetchers
	Address-Based Prefetchers
	Spatial Locality Prediction
	Linked Data Prefetchers
	Adaptive Prefetchers
	Runahead Execution
	Software Prefetching

	Research Process and Methodology
	Research Process
	Master Thesis
	Destructive Read DRAM - Paper I & II
	Shadow Tags - Paper III
	Changing Simulators
	Prewriting
	Low-Cost Open-Page Prefetch Scheduling - Paper IV
	Data Prefetching Championship - Paper V & VII
	3D Stacking
	Memory System Interference - Paper VI & VIII
	Opportunistic Prefetch Scheduling - Paper IX

	Research Methodology
	Simulators
	Benchmarks

	Research Contributions
	Paper I
	Abstract
	Retrospective View
	Roles of the Authors

	Paper II
	Abstract
	Retrospective View
	Roles of the Authors

	Paper III
	Abstract
	Retrospective View
	Roles of the Authors

	Paper IV
	Abstract
	Retrospective View
	Roles of the Authors

	Paper V
	Abstract
	Retrospective View
	Roles of the Authors

	Paper VI
	Abstract
	Retrospective View
	Roles of the Authors

	Paper VII
	Abstract
	Roles of the Authors

	Paper VIII
	Abstract
	Roles of the Authors

	Paper IX
	Abstract
	Roles of the Authors

	Concluding Remarks
	Conclusion
	Contributions
	Future Work
	Outlook
	Bibliography

	Papers
	Cache Write-Back Schemes for Embedded Destructive-Read DRAM
	Abstract
	Introduction
	Embedded Destructive-Read DRAM
	Embedded Memory
	Destructive-Read DRAM

	New Write-back Schemes
	Methodology
	Evaluation
	Initial experiment
	IPC for Different Write-back Schemes
	Cache size
	Latency and number of DRAM banks
	Write-back Buffer size

	Discussion
	Related Work
	Conclusion
	Bibliography

	Destructive-Read in Embedded DRAM, Impact on Power Consumption
	Abstract
	Introduction
	Embedded Destructive-Read DRAM
	Embedded Memory
	Related Work
	Destructive-Read DRAM
	Write-backs

	Model for Power Consumption
	Power model of DRAM with bus

	Simulations
	Results
	Discussion
	Conclusions
	Bibliography

	Hardware Prefetching Using Shadow Tagging
	Abstract
	Introduction
	Contributions

	Previous Work
	Feedback Directed Prefetching
	Tuning
	Shadow Tag Directories

	Methodology
	Shadow Tag Controlled Prefetching
	Prefetch Configuration Selection Heuristic
	Experimental Setup

	Results
	Bandwidth Usage
	Sensitivity Analysis

	Discussion
	Parameter Space Exploration
	Clearing the Shadow Tags

	Conclusion
	Bibliography

	Low-Cost Open-Page Prefetch Scheduling in Chip Multiprocessors
	Abstract
	Introduction
	Previous Work
	Prefetching
	Memory Controllers

	Prefetch Scheduling
	Low cost open page prefetching
	Methodology
	Results
	Scheduled Region Prefetching
	Importance of Coverage
	Insertion policy
	Treshold parameter
	Quality of Service

	Discussion
	Conclusion
	Bibliography

	Storage Efficient Hardware Prefetching using Delta Correlating Prediction Tables
	Abstract
	Introduction
	Previous Work
	Reference Prediction Tables
	PC/DC Prefetching

	Delta Correlating Prediction Tables
	Methodology
	Results
	DCPT Parameters

	Discussion
	Conclusion
	Bibliography

	A Quantitative Study of Memory System Interference in Chip Multiprocessor Architectures
	Abstract
	Introduction
	Related Work
	Methodology
	Chip Multiprocessor Architectures
	Measuring and Reporting Interference
	Processor Model Scaling
	Simulation Methodology

	Results
	Conclusion and Further Work
	Bibliography

	Multi-Level Hardware Prefetching using Low Complexity Delta Correlating Prediction Tables with Partial Matching
	Abstract
	Introduction
	Previous Work
	Delta Correlating Prediction Tables
	Overview
	DCPT-P Implementation
	L1 Hoisting
	Partial Matching

	Methodology
	Results
	Area and performance trade-offs

	Discussion
	Conclusion
	Bibliography

	DIEF: An Accurate Interference Feedback Mechanism for Chip Multiprocessor Memory Systems
	Abstract
	Introduction
	Background
	Interference Definition and Metrics
	Modern Memory Bus Interfaces

	Shared Memory System Latency Taxonomy
	The Dynamic Interference Estimation Framework
	Estimating Private Memory Bus Latency (mt, mq and me)
	Estimating Cache Capacity Interference cc
	Estimating Interconnect Interference (ie, iq, it and id)

	Methodology
	Results
	Estimation Accuracy
	DIEF Parameters

	Related Work
	Conclusion
	Bibliography

	Exploring the Prefetcher/Memory Controller Design Space: An Opportunistic Prefetch Scheduling Strategy
	Abstract
	Introduction
	Related Work
	Prefetching
	Memory Controllers

	Prefetch Scheduling Strategies
	Opportunistic Prefetch Scheduling

	Methodology
	Results
	Performance
	Maximum Performance Regression
	Accuracy and Coverage
	Increasing DRAM Bandwidth

	Discussion
	Conclusion
	Bibliography

