
June 2010
Lasse Natvig, IDI
Marius Grannæs, Energy Micro

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Operating system directed power
reduction on EFM32

Martin Tverdal

Problem Description
Energy Micro is a Norwegian semiconductor company, located in Oslo, which focuses on 32-bit
microcontrollers with ultra low energy consumption. The EFM32 microcontroller family is based on
the ARM Cortex-M3. EFM is short for energy friendly microcontrollers. FreeRTOS is a small and
free open source OS targeted for embedded devices. The goal of this master thesis project is to get
FreeRTOS to run on an EFM32 micro controller with as low power consumption as possible.
Central subtasks are:

Implementing/Exploring a tickless scheduler for FreeRTOS.
Implementing/Exploring a peripheral driver structure for low-power.

Assignment given: 15. January 2010
Supervisor: Lasse Natvig, IDI

Abstract

Power consumption has become a major concern of embedded systems. Currently
FreeRTOS wastes a power waking up regularly to keep track of time. In this work
FreeRTOS is modified to sleep when there is no work for the CPU to be done.
Timekeeping while sleeping is done by a low frequency oscillator, consuming very
little power. Drivers for peripherals have been developed, in order to optimise
power consumption even more. Battery life time has been increased from 56 hours
to 1867 hours for a simple self made benchmark. The goal is to get the changes
into the official FreeRTOS distribution, but it has not been accepted yet. However,
a customer of Energy Micro has started to develop an application based on this
design.

Acknowledgments

I want to thank my supervisor, Lasse Natvig for his guidance and encouragement
throughout this spring. Marius Grannæs deserves my best, for always being sin-
cerely helpful and supportive. Last but not least I want to thank my friends in
office 443b for all the help, and for making university work fun. Especially Kjetil
Wathne Oftedal for helping me in practical matters.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Energy Micro . 1

1.3 IAR Embedded Workbench . 1

1.4 Goals . 2

1.5 Contributions . 2

1.6 Structure of this report . 3

2 Background 5

2.1 ARM Cortex M3 . 5

2.2 EFM32 . 5

2.2.1 Interrupts and Sleep modes . 5

2.2.2 Peripherals . 8

2.2.3 Timing peripherals . 10

2.2.4 HFXO and HFRCO . 11

2.3 FreeRTOS . 11

2.3.1 Tasks . 11

2.3.2 Co routines . 12

2.3.3 FreeRTOS and systick . 14

2.3.4 Interrupts . 14

2.4 Dynamic Power Management . 15

2.4.1 Linux power management governors 15

2.5 Timekeeping . 16

3 FreeRTOS on EFM32 19

3.1 IAR Project . 19

3.2 Demo application . 19

4 Tickless idle 21

4.1 Difference in power consumption . 22

4.2 Chosen solution . 23

4.3 Interrupt handling . 23

4.4 Time until next event . 24

4.5 Calculating how long to sleep . 26

4.6 Calculating how long was slept . 27

4.6.1 Storing reminder . 28

4.6.2 xTickCount following RTC . 29

4.7 Consequences for interrupt latency . 29

5 Managing EFM32 energy modes 31

5.1 #1 Clocks enabled . 31

5.2 #2 Explicit control . 31

5.3 Chosen solution . 33

6 Methodology 35
6.1 Testing . 35
6.2 Benchmark . 35

6.2.1 Effect of load . 37
6.3 Versions of FreeRTOS tested . 37

6.3.1 Versions with DMA driver . 37
6.4 Power measurement . 38

7 Results 39
7.1 Testing . 39
7.2 Power consumption . 40

8 Conclusion 47
8.1 Future work . 47

A Demo application 51
A.1 main.c . 51
A.2 lcdtest.c . 52
A.3 ledtest.c . 53
A.4 ParTest.c . 54
A.5 startup efm32.s . 55

B Code 61
B.1 energymode.c . 61
B.2 checktiming.c . 65
B.3 Application . 66

B.3.1 main.c . 66
B.3.2 measurement.c . 69
B.3.3 adc.c . 72

B.4 Diff for task.c in FreeRTOS . 73
B.5 C++ program simulating GPS . 75
B.6 Drivers . 77
B.7 Serial . 77

B.7.1 Serial with DMA . 80
B.8 I2C . 85

B.8.1 Modified driver from EFMLIB . 85
B.8.2 My own I2C Driver . 87
B.8.3 Script to process power csv files . 91

C Figures 92

List of Figures

1 Schematic of the Cortex M3 core. 6
2 Energy Modes on EFM32 . 7
3 Peripherals on EFM32 . 7
4 Peripherals used for timekeeping in EFM32 10
5 Shows how a delayed list may look like. 13
6 Interrupt priorities in FreeRTOS. 14
7 Power state machine for StrongARM SA-1100 16
8 Code handling overflow . 22
9 vTaskTickoverflow() . 22
10 Sequence diagram of code . 24
11 xTaskNextTick function in task.c . 25
12 xCoRoutineNextTick function in croutine.c 26
13 xCoRoutineNextTick in croutine.c 27
14 Cause of error in timekeeping . 28
15 Modified idle task . 30
16 Benchmark application . 36
17 Drift on clock . 39
18 Drift on clock . 40
19 Drift on clock . 41
20 Power consumption with different version of FreeRTOS 43
21 Power consumption with different versions of FreeRTOS 44
22 Battery life time using 220mAh battery 45
23 Battery life time using 220mAh battery 46
24 Bit assignments in HFPERCLKEN0. 92
25 Bit assignments in HFCORECLKEN0. 93

List of Tables

1 Lists used for task management in FreeRTOS 12
2 Sub tasks, benchmark . 35
3 Parameters to load benchmark . 37

Abbreviations

ADC Analog to Digital Converter

AEM Advanced Energy Monitor

CMU Clock Management Unit

DMA Direct Memory Access

DPM Dynamic Power Management

EM Energy Mode

GCC GNU Compiler Collection

GPL GNU General Public License

HFRCO High Frequency Resistor Capacitor Oscillator

HFXO High Frequency Crystal Oscillator

IAR IAR Embedded Workbench

ISR Interrupt Service Routine

LETIMER Low Energy Timer. Clocked by low frequency clocks. Remains active
in EM2

NVIC Nested Vector Interrupt Controller

MPU Memory Protection Unit

LCD Liquid Crystal Display

RTC Real Time Clock

SCB System Control Block

SRAM Static Random Access Memory

TCB Task Control Block

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous Asynchronous Receiver/Transmitter

WFE Wait For Event

WFI Wait For Interrupt

xTickCount Variable used in FreeRTOS to count number of tick interrupts.

1 INTRODUCTION

1 Introduction

1.1 Motivation

Reduced power consumption prolongs the battery life time of embedded systems,
and other systems running on battery. This is especially important on certain
embedded devices which need expensive recharging/replacement of batteries. It
can be costly, or even impossible to access the device when the battery runs out.
For some devices the life time is over when the battery is exhausted. Examples
of this can be motion sensors embedded into the concrete of buildings, medical
equipment(implants), equipment on satellites or sensors on the sea bed. Portable
energy sources such as kinetic energy, or solar panels produce little power and are
expensive. Low power allows the use of smaller, lower cost solar panels. Reducing
the power consumption also reduces the need for cooling, which lowers the cost of
electrical equipment.

Other reasons to reduce the power consumption of microprocessors is that power
expensive, Rivoire et al. [Rivoire et al., 2007] reports that in data centres it can
potentially exceed the cost of purchasing hardware. Using less energy reduces
the emission of greenhouse gasses which, needless to say in 2010 is good for the
environment. Reduced power consumption also reduces the need for cooling, which
aside from reducing cost is also attractive because it makes computer systems make
less noise. This can be an important selling point in home electronics. Less cooling
requirement makes computer systems take less space, which is important in every
segment of the computer market, from big computer centres to small embedded
systems.

1.2 Energy Micro

This project is done in cooperation with Energy Micro. Energy Micro is a Nor-
wegian semiconductor company focusing on 32 bit microcontrollers with ultra low
energy consumption. The founders was also the founders of Chipcon AS which was
acquired by Texas Instruments for approximately 200M USD. The EFM32 Gecko
(Energy Friendly Microcontroller) has a core based on the ARM Cortex-M3. It
was announced on the 21. October 2009 with prototype chips available. The chips
were made available for ordinary distribution in February 2010. The chip used in
this work is an early engineering sample.

1.3 IAR Embedded Workbench

The tool chosen for this project is IAR Embedded Workbench (IAR). It is a devel-
opment environment from IAR Systems, a Swedish computer technology company.
It includes a C/C++ compiler, and it got support for EFM32 early in my project.
The alternative was GNU Compiler Collection (GCC). Since IAR is expensive,
some customers of Energy Micro demanded GCC support. However, at the start
of my project there was no support for EFM32 in GCC. In order to get started on
work relevant to my thesis IAR was chosen. In IAR everything worked right out of

1

1.4 Goals 1 INTRODUCTION

the box, interrupt routines, single step debugging and uploading my programs to
the development kit worked well. If GCC was to be used, much time would have
spent too much time on tasks not relevant for my thesis.

1.4 Goals

Goal 1. Introduce basic EFM32 support in FreeRTOS, without any
support for energy modes.

Goal 1 is to get a basic port to the EFM32 introduced officially in FreeRTOS.
Initially without any support for tickless idle or any other form of taking advantage
of the different energy modes.

A basic port was made as a first step, partly to make it easier to get accep-
tance for a bigger change of the kernel itself at a later point if a port is already
accepted in the main distribution, and partly because customers of Energy Micro
were expecting RTOS support as soon as possible.

Goal 2. Implement FreeRTOS support for tickless idle on EFM32.

Implement a way for FreeRTOS to be totally idle while sleeping. This means that
if all tasks are to sleep for 1 second, the core should also sleep for the whole second,
without waking up to execute instructions. The kernel should also support keeping
track of time while the EFM32 is in Energy Mode (EM)2. The complication here
is that in EM2 the high frequency clock used by the core is turned off. The
timekeeping has to be done with the low frequency clock.

Goal 3. Implement FreeRTOS management for different energy modes.

Implement support for FreeRTOS to manage the Energy Modes on EFM32. This
means finding a way for FreeRTOS to determine what Energy Mode to go to when
the core is idle.

Goal 4. Get changes into official FreeRTOS.

Get the changes developed in order to achieve goal 2 and 3 included officially
in FreeRTOS. Since FreeRTOS is licensed under a Modified GNU General Public
License (GPL) license, I am free to make any changes I want to the kernel as long as
they are made open source. This means that Energy Micro AS is free to distribute
my changes to their customers. It is however a goal to get the changes submitted
to the official FreeRTOS. If the modifications gets included officially in FreeRTOS,
customers of Energy Micro would be more assured that the quality is high.

1.5 Contributions

The contributions of this work is mainly a fulfilling of goals 1-3 in the previous
section. In addition an application has been developed to illustrate how to use
the modified FreeRTOS in order to reduce power consumption. This has involved

2

1 INTRODUCTION 1.6 Structure of this report

using the I2C bus, serial bus and Analog to Digital Converter (ADC) in a way such
that the EFM32 can enter the lowest possible sleep state while these modules do
work.

A serial driver has been developed which enables the serial bus to stay in EM
while the Direct Memory Access (DMA) copies data to to/from the transmit/re-
ceive buffer. When a transmission is complete an interrupt is issued waking up
the core. When a linefeed is received or the DMA buffer is full, the core is also
woken up by an interrupt. When the ADC is set up to perform a conversion, since
ADC needs the high frequency oscillator, FreeRTOS is instructed not to enter any
Energy Mode below EM1. The I2C is used to read the temperature. When an I2C
transfer is ongoing FreeRTOS is instructed not to enter any energy mode below
EM1.

A customer of Energy Micro from the US has started using my code in a project
developing a new product where battery life time of multiple months is important.
Because of competition the customer wants not to be mentioned by name in this
thesis.

1.6 Structure of this report

Section 2 explains some background information which can be useful to read in
order to understand the rest of the report better. Section 3 deals with the first part
of my thesis, porting FreeRTOS to the EFM32 architecture. Section 4 deals with
implementing tickless idle in FreeRTOS. Section 5 deals with making FreeRTOS
able to go to correct energy mode. Section 6.2 explains the benchmark used, while
section 6.4 explains how power consumption has been measured. Section 7 presents
the results of tests of power consumption and tests for drift on the clock.

3

1.6 Structure of this report 1 INTRODUCTION

4

2 BACKGROUND

2 Background

2.1 ARM Cortex M3

This paragraph is a small extension to the one in my project thesis [Tverdal, 2009].
Much of the information was found in Cortex-M3 Technical Reference Manual
[arm, 2005]. The EFM32 has a CPU core based on the ARM Cortex-M3. This
core implements the Thumb-2 instruction set, which has both 16 and 32 bit in-
structions. It has a 3 stage pipeline, fetch, decode and execute. It has Harvard
architecture, with separate data and instruction memory. Data memory is Static
Random Access Memory (SRAM), while instruction memory is flash. Figure 1
shows a block diagram of the core of the Cortex M3. The ALU supports 32 bit in-
teger multiplication in one cycle. It also has a hardware divider which can perform
integer divides in 2-12 cycles, depending on the operands. The division is com-
pleted faster if the dividend and divisor is closer in size. It also includes a Nested
Vector Interrupt Controller (NVIC) interface (see section 2.2.1) and an optional
ETM (Embedded Trace Macrocell) interface. The ETM is optional and provides
debug and trace facilities. DAP (Debug Access Port) is implemented with Serial
Wire Debug, using only 2 pins (clock and data).

2.2 EFM32

Figure 3 is a schematic overview of the peripherals on the EFM32. Figure 2 is
an overview of the energy modes. There are in total 5 Energy Mode (EM)s. The
most relevant ones for this thesis is EM0, EM1 and EM2. EM0 is the run mode.
Everything is turned on and the core is executing instructions. In EM1 the core and
the Memory Protection Unit (MPU) is shut down. Both the high frequency clock
and the low frequency clock is running, meaning that the high frequency peripherals
and the low frequency can be active. In EM2 the high frequency clock is turned off,
but the low frequency clock is running. Which means that only the low frequency
peripherals can be used. In EM3 the low frequency clock is also disabled, leaving
nothing to keep track of time, the EFM32 can only be woken by the events listed
in Figure 2. The flash memory code size ranges from 8KB to 128KB while SRAM
data memory size ranges from 2KB to 16KB. More information can be found in
Reference Manual, EFM32G Microcontroller Family [EFM32 Manual,]

2.2.1 Interrupts and Sleep modes

The NVIC on the EFM32 supports 8 priority levels for interrupts. Priorities are
from 0-7, with 0 being the highest priority while 7 is the lowest. There is three
exception mask registers which can affect the handling of exceptions by the pro-
cessor. The technical details in this sections were found in Cortex-M3 Technical
Reference Manual [arm, 2005].

Priority Mask Register Writing one to bit 0 prevents activation of all interrupts
with configurable priority.

5

2.2 EFM32 2 BACKGROUND

Figure 1: Schematic of the Cortex M3 core, taken from [Sadasivan, 2006]

6

2 BACKGROUND 2.2 EFM32

Figure 2: Energy Modes on EFM32

Figure 3: Peripherals on EFM32

7

2.2 EFM32 2 BACKGROUND

Fault Mask Register Writing one to bit 0 prevents the activation of all excep-
tions except for Non-Maskable Interrupt.

Base Priority Mask Register If for example a 5 is written to this register it
prevents the activation of all exceptions with priority lower than or equal to
5 (5, 6 and 7).

There are two instructions used for entering sleep modes, Wait For Interrupt
(WFI) and Wait For Event (WFE). If SLEEPDEEP bit in the System Control
Block (SCB) is set to 0, EM1 is chosen, if it is set to 1, EM2 is chosen. EM3 is
equal to EM2, except that the low frequency clocks are stopped in EM3. They
have to be stopped by software explicitly. In EM3 there is no way to keep to track
of time.

WFI When the WFI instruction is issued EFM32 enters a low energy mode. It is
woken by an interrupt with high enough priority to preempt execution, disregarding
the Priority Mask Register. This means that even if the Priority Mask Register is
set to disable interrupts, the core will be woken up by interrupts which would have
high enough priority to wake the core had it not been set to disable interrupts. This
means that if the Base Priority Mask Register is set to mask out all interrupts with
priority below 5 (5, 6 and 7), interrupts with these priorities will not wake up the
core. An interrupt with priority of 4 and above, will wake up the core regardless
of Priority Mask Register.

When the core is woken up execution proceeds at the instruction after the WFI
instruction if Priority Mask Register is set. If the Priority Mask Register is not set
execution proceeds in the Interrupt Service Routine (ISR).

WFE The other instruction that can be used to enter low energy mode is WFE.
If the SEVONPEND bit in the System Control Register is set, the core is woken
up by all interrupts entering the Pending state, even if they are disabled or has too
low priority to cause ISR entry. When woken up, execution proceeds at the next
instruction after WFE if the pending interrupt does not have high enough priority
to preempt execution, or it proceeds in the ISR if it does.

2.2.2 Peripherals

ADC Analog to Digital Converter is available in EM0 and EM1. It is used to
convert an analog signal to a digital representation.

AES Advanced Encryption Standard is available in EM0 and EM1. It is a hard-
ware accelerator for encrypting and decrypting with 128 or 256 bit keys.

DAC Digital to Analog Converter is available in EM0 and EM1. It is used to
convert a digital value to an analog signal.

8

2 BACKGROUND 2.2 EFM32

Analog Comparator is available in EM0,EM1,EM2 and EM3. It is used to
compare two analog signals. It can monitor a signal to see if it passes a certain
threshold while the EFM32 is in EM3, consuming very little power.

Peripheral Reflex System is available in EM0 and EM1 and allows very simple
communication between peripherals.

Timer/Counter is available in EM0 and EM1 and keeps track of timing and
counting events.

UART is available in EM0 and EM1 and is used for Universal Asynchronous
Receiver/Transmitter (UART) communication.

USART is available in EM0 and EM1 and is used for Universal Synchronous
Asynchronous Receiver/Transmitter (USART) communication.

DMA Controller Direct Memory Access is available in EM0, EM1 and EM2
and can move data while the core either sleeps, or is busy.

External Bus Interface is available in EM0 and EM1 and is used to access
external devices. They are mapped to the memory space of the core, making them
easy to use.

General Purpose I/O is used to communicate with external devices and can
wake up the EFM32 in EM1, EM2 and EM3.

I2C Inter-Integrated Circuit interface supports communication on I2C buses. I2C
is a common bus protocol used in embedded systems. It can be configured to wake
up the EFM in EM1, EM2 and EM3.

LCD Controller is able to drive a Liquid Crystal Display (LCD) display with
up to 4x40 segments in EM0, EM1 and EM2.

Low Energy TIMER can keep track of time and output waveforms in EM0,
EM1, EM2 and EM3.

Low Energy UART is available in EM0, EM1 and EM2 and provides UART
communication.

Real Time Counter is available in EM0, EM1 and EM2. It is a 24 bit timer
used to keep track of time.

Pulse Counter is available in EM0, EM1, EM2 and EM3. It count pulses and
can wake up the core.

9

2.2 EFM32 2 BACKGROUND

Watchdog Timer is available in EM0, EM1, EM2 and EM3 and resets the
EFM32 when a fault condition is reached. If the core does not reset the watchdog
within the configured timeout period the watchdog resets the EFM32.

Brown-out Detector monitors the supply voltage in EM0, EM1, EM2 and
EM3. It resets the EFM32 if it drops below a safe value.

Power-on Reset is available in all energy modes and monitors the supply voltage
and signals when it reaches the operating value.

2.2.3 Timing peripherals

Figure 4: Peripherals used for timekeeping in EFM32

Figure 4 shows the peripherals relevant for this thesis when it comes to keeping
track of time. The Cortex M3 core has a built in System Timer, it works by
decrementing Current Value Register every time the clock beats. When it reaches
0, an interrupt is issued to the core and it reloads the Current Value Register with
the value set in the Reload Register. Then it continues to decrement the Current
Value Register. This way a the System Timer can be used to generate a periodic
interrupt. If for example 14’000’000 is written to the Reload Register, and the
14MHz clock is used, an interrupt occurs every second. The Current Value Register

10

2 BACKGROUND 2.3 FreeRTOS

can also be clocked by the least significant bit in the Real Time Clock (RTC), that
way it can be clocked indirectly by the low frequency clock rather than the high
frequency clock.

The RTC works in a similar way, it is however clocked by the low frequency
32kHz clock, which means it is available for timekeeping in EM2. The Counter
Register (which is only 24 bits) is incremented every time the clock beats. The
clock can be divided, to make it increment at a slower rate. When the value is
equal to the value in the Compare Register an interrupt is issued to the Cortex M3
core, and starts to count up again from 0.

2.2.4 HFXO and HFRCO

The core clock can be generated either by High Frequency Crystal Oscillator
(HFXO) or High Frequency Resistor Capacitor Oscillator (HFRCO). HFXO is
more accurate but has a considerably longer wake-up time. According to
[EFM32G890F128 Datasheet,] HFXO has a start up time of 400µs, while HFRCO
has a start up time of only 0.6µs. When waking up from EM2 or EM3 when the
high frequency oscillator is turned of, the EMF32 is always running with HFRCO.
If HFXO is wanted, software has to enable it, then wait for it to start up before
switching clock source. The Clock Management Unit (CMU) module of the EFM32
supports waiting for 8, 256, 1024 or 16384 cycles of the HFRCO. Since 1024 cycles
of 14MHz is only 73µs, 16384 cycles has to be used. This equals to waiting for
1.1ms.

2.3 FreeRTOS

The information about FreeRTOS was found by reading the work of Sadasivan
[Sadasivan, 2006], the FreeRTOS web site (http://www.freertos.org/) and the
source code [FreeRTOS Code, 2010].

This paragraph is taken from my project thesis. There exists a vast amount
of operating systems for microcontrollers, the decision to go with FreeRTOS came
from Energy Micro. FreeRTOS is a small and free open source OS targeted for
embedded devices. It contains approximately 4000 lines of code. It is a very simple
OS, there is no support for complex memory management, no device drivers or
any support networking. It lets the programmer create tasks with priorities and
schedules them either cooperatively or preemptively. It uses a simple round robin
algorithm within a priority, and does not schedule lower priorities as a long as tasks
with higher priorities are ready. It provides mechanisms for tasks to communicate
and share data safely (queues, semaphores and mutexes). FreeRTOS has been
ported to many different architectures, including the Cortex-M3. The latest version
also supports the MPU. on the Cortex-M3.

2.3.1 Tasks

Table 1 shows the lists used by the scheduler to manage lists. For every priority
there is one list ReadyTasksList[N] of tasks ready to run. If configured in FreeR-

11

2.3 FreeRTOS 2 BACKGROUND

TOSConfig.h there is one list TasksWaitingTerminiation of tasks that is waiting to
be deleted, and one list SuspendedTaskList with suspended tasks. Suspended tasks
are tasks that are delayed indefinitely, and will not be made ready by the kernel
itself no matter how long time elapses. They have asked to be delayed indefinitely
by calling for example by calling vTaskDelay(MAX DELAY).

The PendingReadyList list is used by the kernel for tasks that have been made
ready while the scheduler has been suspended. It is needed since the scheduler
can be suspended, meaning that it will not perform any tasks switches even if a
task becomes ready. While the scheduler is suspended the ready list can not be
modified. The task is instead added to the PendingReadyList, and moved to the
Ready list when the scheduler is resumed.

The DelayedTaskList and OverflowDelayedTaskList is where delayed tasks are
kept. They are sorted by wake up time. The reason for using two lists is that the
wake up time might overflow. If at tick number 250 a task wants to sleep for 30
ticks, 250+30 will overflow and result in 25 (if a 8 bit counter is used). The task
is then inserted into the overflowed list. When the Variable used in FreeRTOS
to count number of tick interrupts. (xTickCount) variable overflows, the two lists
are swapped. This implementation results in that the maximum time a task can
sleep is 255 if a 8 bit counter is used. If a task was to sleep for 256 ticks when
xTickCount was 150. 150+256 would result in 151.

List Description
ReadyTaksList[N] Tasks ready to run, one for each priority level.

TasksWaitingTermination Tasks that has terminated, but not yet deleted

SuspendedTaskList Suspended tasks will not get scheduled to run again
by the scheduler.

PendingReadyList Pending tasks will be put in the ReadyTaskList
once the scheduler is re-enabled.

DelayedTaskList Tasks that have been delayed. Sorted by wake up
time.

OverflowDelayedTaskList Due to arithmetic overflow, tasks delayed until after
the tick count overflows are put here.

Table 1: Lists used for task management in FreeRTOS

Figure 5 shows how a delayed list looks like. pxDelayedTaskList points to a
struct of type xList. The first variable in a xList tells how many items is in the
list. The next variable pxIndex is used when traversing the list, to keep track of
the next element to be returned. The xListEnd is the end marker. In this case it
contains MAX DELAY in xItemValue. The two other tasks in the list contain 24,
and 45 in that position. Task x is delayed until xTickCount reaches 24, while task
y is delayed until it reaches 45.

12

2 BACKGROUND 2.3 FreeRTOS

Figure 5: Shows how a delayed list may look like. Taken from [Sadasivan, 2006]

13

2.4 Dynamic Power Management 2 BACKGROUND

2.3.2 Co routines

FreeRTOS also has the concept of co routines. They are intended to be used
on very small processors that have very little memory. To save memory, all co
routines share stack. They are handled very similar to tasks, with a ready list for
each priority, a pending ready list, a delayed list and an overflowed delayed list.
The difference is that they all share a stack. The consequence of sharing a stack is
that the variables declared on the stack can loose the value when the co routine is
blocked. The way co routines are scheduled is worth noticing. They are scheduled
by repeated calls to vCoRoutineSchedule(). The normal place to call this is in the
application idle hook, which is a function repeatedly called by the idle task. This
has the effect that co routine has a lower priority than tasks.

2.3.3 FreeRTOS and systick

FreeRTOS keeps track of time by incrementing a counter at a configurable rate,
normally 1000Hz or 100Hz. The system timer of the Cortex M3 core is set up to
issue an interrupt at one of these intervals. At every interrupt the xTickCount
variable is incremented, and the scheduler also checks if it needs to perform any
scheduler tasks.

2.3.4 Interrupts

Figure 6 illustrates how interrupts are handled in FreeRTOS. The macro configK-
ERNEL INTERRUPT PRIORITY defines the priority all the kernel interrupts
use, SysTick and PendSV. Systick is executed periodically in order to keep track
of time, while PendSV is a software interrupt used for switching tasks. configK-
ERNEL INTERRUPT PRIORITY is set to the lowest possible priority, which on
EFM32 is 7 (The highest priority is 0). configMAX SYSCALL INTERRUPT PRI-
ORITY defines the highest priority an interrupt which uses the FreeRTOS API
can have. An interrupt with priority below this value however only call API func-
tions with names ending in FromISR. Interrupts with priority above configMAX
SYSCALL INTERRUPT PRIORITY is never delayed by anything the kernel does.
They can not call any API functions in FreeRTOS.

2.4 Dynamic Power Management

Dynamic Power Management (DPM) is different techniques for turning off, or
reducing the performance of components when they are idle. There is a lot of
research on this topic. Benini et al. in [Benini et al., 2000] presents a survey of
different techniques where figure 7 is used as an example. It shows the states of
StrongARM SA-1100 has three states, which are summarized in the figure. RUN,
IDLE and SLEEP. The power consumption and transition times between states are
shown. Break-even time for a state is the minimum idle required to justify entering
the state. A prediction of the idle period is needed in order to determine which
state to enter. Timeout is the simplest prediction, wait for a fixed amount of time
and if nothing has happened enter the low power state.

14

2 BACKGROUND 2.4 Dynamic Power Management

Figure 6: Figure illustrating how interrupt priorities are divided in FreeRTOS.
Taken from www.FreeRTOS.com

Predictive shutdown techniques makes a decision of which state to go to as soon
as the idle period starts based on previous idle and active periods.

To reduce the delay imposed when the device has to go from an idle state back to
the active state, Predictive wake up techniques wake up the device before anything
has happened. The technique proposed by [Hwang and Wu, 2000] predicts the
length of the idle period as the weighted sum of the last idle period, and the last
prediction. It wakes up the device when the predicted idle period has elapsed. If
the idle period is lower the the break-even time, the device stays in the active state
but the calculation done over again when the break-even time has elapsed. This is
to avoid staying awake when a long idle period occurs.

2.4.1 Linux power management governors

The way Linux (version 2.6.34) [Lin, 2010] manages sleep states is interesting. The
infrastructure used is called power management governors. There are two governors
to choose from, ladder.c or menu.c. They can both found in drivers/cpuidle/gov-
ernors/ in the Linux source code [Lin, 2010]. The ladder governor is the simplest
one, it starts by entering the lightest sleep state. If that was successful it tries the
next sleep state the next time.

The menu governor is more advanced. To estimate how long the idle period will
be it uses the next scheduled event as a starting point. If timer is set to wake up the
CPU in 500ms the idle period will not be longer than that. Since the idle period
will rarely be that long, a correction factor which is based on previous behaviour
is used. If for example all the previous idle periods was 50% of the time until the
next timer event, the estimated idle period will be 50% of the time until next event.
12 independent factors used based on how long the expected idle period is, and if
there is disk IO pending or not. If for example it is 50µs until the next timer event,
a different factor is used than if it is 500µs until the next timer event. Another
constraint used to limit the performance impact is a performance multiplier. It is
used like this on line 237 in menu.c of the Linux kernel:

15

2.5 Timekeeping 2 BACKGROUND

if (s->exit_latency * multiplier > data ->predicted_us)

break;

This means that if the exit latency of a sleep state multiplied with a multiplier is
larger than the expected idle period, the state is not considered. This multiplier is
based on current load of the system. The higher the load, the higher the multiplier.

Both the menu governor and the ladder governor lets device drivers register
their latency constraints. For example an audio driver might know that it will get
an interrupt when it has 200 µs of samples left in the DMA buffer. Then it could
set a latency constraint of 150 µs. That way it can be sure it will have time enough
to put more samples in the buffer before it runs out.

Figure 7: Power state machine for the StrongARM SA-1100 processor. Taken from
[Benini et al., 2000].

2.5 Timekeeping

Traditionally Linux counted the number of timer interrupts in a variable called
Jiffy. A hardware device was used to generate a periodic interrupt at a specific rate.
Every time the interrupt occurs, a CPU increments the jiffy variable. This scheme
has a number of shortcomings. One being that the rate of the timer interrupt
limits the resolution timekeeping. This was the major concern of Srinivasan et al.
[Srinivasan et al., 1998]. Other issues reported by Stultz et al. concerns correctness
[J Stultz, 2005]. If a buggy driver blocks interrupts for too long, timer interrupts
could be lost. Stultz et al. also argues that the code introduced in the Linux kernel
to increase the resolution of timekeeping could also be buggy [J Stultz, 2005]. To
increase the resolution time between ticks was interpolated by a high resolution
hardware timer.

Corbert [Corbet, 2005] describes how tickless idle was first implemented on
Linux. Linux had support for being tickless during idle periods on some architec-
tures (at least on S390 and OMAP ARM) already in Kernel 2.6.6. When the CPU
was idle, the hardware timer was set up to give an interrupt in time for the next
event. When an interrupt woke up the CPU, the jiffy variable was updated before
the interrupt handler was allowed to run. The jiffy variable was updated by calling

16

2 BACKGROUND 2.5 Timekeeping

the do timer interrupt() function as many times as necessary. It is interesting to
note that in kernel 2.6.13, a variable called modulo count was used to store the
reminder when updating jiffies. For example if 300 32768Hz ticks had elapsed in
the idle period, the jiffy should be updated with 300 * 32768 / 1000 = 9.15. (With
1000Hz frequency on the timer interrupt). The jiffy variable (being an integer) can
only be updated with 9. This way the reminder is always lost. In kernel 2.6.13
in arch/arm/mach-omap1/time.c [LiA,] this is compensated for by incrementing
the modulo count with the reminder every time, and when modulo count gets big
enough, increase the jiffy one extra time. In kernel 2.6.14 in the same file, this
modulo compensation is removed because this rounding error is compensated for
by the interpolation between ticks.

[Srinivasan et al., 1998] modifies the Linux kernel to use the hardware timer
to interrupt the core when the next event is scheduled to occur (Rather than
interrupting it periodically). This is done to achieve higher accuracy of timekeeping.
Since other subsystems in the Linux kernel uses the jiffy variable and relies on it to
be updated, it is kept up to date. [Gleixner and Niehaus., 2006] started as a fork of
the work presented in [Srinivasan et al., 1998]. It is the code from this project that
is used in the kernel today (2.6.34). The periodic tick is not used for timekeeping at
all (when configured with the option CONFIG NO HZ). Timekeeping is not done
with the periodic tick at all. There is still a periodic tick when the core is active
though, but it is used for other tasks than timekeeping.

17

2.5 Timekeeping 2 BACKGROUND

18

3 FREERTOS ON EFM32

3 FreeRTOS on EFM32

3.1 IAR Project

Since FreeRTOS is already ported to Cortex-M3, getting FreeRTOS to run on
EFM32 was really just a question about setting up a project in IAR Embedded
Workbench, including the right files and setting up the interrupt vector table. In
addition a demo application was created.

In the FreeRTOS directory there is a directory named Demo. Every vendor
supported by FreeRTOS puts demo applications here. The demo includes a project
that can be built without warnings or errors and run directly on the MCU from the
vendor and work on a development kit. For example, STM as 4 demo applications
for the STM32F103 which are in directories named: CORTEX STM32F103 IAR,
CORTEX STM32F103 IAR, CORTEX STM32F103 Primer GCC and CORTEX
STM32F107 GCC Rowley. This makes it easier for customers wanting to develop
an application with FreeRTOS on the MCU. They can simply copy the project for
the compiler they are using and have a working project they can start modifying.

A new directory called CORTEX EFMG890F128 IAR was created, and inside
an IAR project was configured to compile, upload, run and debug applications on
the development kit from Energy Micro. In order to make it self-contained, the
BSP1 and CMSIS2 files provided by Energy Micro was added to the directory.
This makes it easier for new developers to download FreeRTOS and start develop-
ing applications on the development kit. It is however not ideal from a software
development point of view since it leads to duplication of code if the CMSIS and
BSP code is included inside different FreeRTOS projects. If there is a new release
of either BSP or CMSIS, there would be several places to apply the updates. How-
ever, the requirement for the project in IAR to be self-contained and compilable
as downloaded outweighed this consideration.

In order to set up the interrupt vector table, startup efm32.s was copied from the
CMSIS directory and modified. The modified version can be found in Appendix
A.5. The interrupts changed are vPortSVCHandler, xPortPendSVHandler and
xPortSysTickHandler.

3.2 Demo application

The demo application demonstrates how the LCD is used, and how the leds on the
development kit can be used. This demo was added in the official FreeRTOS release
6.0.4 released March 14. 2010 [Changelog, 2010]. Richard Barry, the maintainer
of FreeRTOS made some small changes to the application. The code can be found
in appendix A. There is one task called LCDTask that prints out some text to
the LCD display, and another that toggles leds 8-15 on the development kit. The
demo application also uses a demonstration task which is included by FreeRTOS.

1Board Support Package is code code provided by Energy Micro to make it easy to develop
applications on the development kit.

2Cortex Microcontroller Software Interface Standard contains name definitions, address defi-
nitions and helper functions to access registers and peripherals.

19

3.2 Demo application 3 FREERTOS ON EFM32

The task is called crflash and is common to demos from other vendors. It uses 8
co-routines to flash leds 1-7.

Every demo in FreeRTOS should implement the functions in partest.h. They
are used to initialise and test the leds on the development kit. See appendix A.4
for ParTest.c. There is one function used to initialise the leds, which utilises the
functions DVK init and DVK setLEDs from the BSP. There is also one function
vParTestSetLED(uxLED,value) which sets led uxLed to either on or off according
to value. The last function called vParTestToggleLED(uxLED) toggles led uxLED.

20

4 TICKLESS IDLE

4 Tickless idle

In order for the EFM32 to take advantage of EM2 where the high frequency clock
is turned off, a way to keep track of time with the low frequency clock is needed.
It is also needed in order to stay in EM1 for longer periods than the period of the
SysTick interrupt.

Several solutions has been tried. This subsection contains a short description of
the ideas. The next subsection is a thorough description of the chosen solution. The
main issue is keeping xTickCount up to date. When woken up by something, for
example receiving something on the LEUART, the xTickCount has to be updated.
One strategy is to modify FreeRTOS and make xTickCount point to a register
which is updated when the core is sleeping. That way there is no need to update
xTickCount when waking up, since the hardware has been updating it while the
core was sleeping. The other conceptual idea is to update xTickCount according
to the length of the period slept when the core is woken up. Care has to be taken
to avoid that execution of the application is allowed to proceed before xTickCount
is updated.

Idea #1: Cortex Systick count register as xTickCount The first idea
tried out was to use the register used by the System Timer in the Cortex core.
This register is used to count down to 0, and then give a systick interrupt. This
register can be clocked by either the core clock (14MHz) or the last bit of the RTC
counter value. The idea was to modify the xTickCount in FreeRTOS to point to
this register. This was done with a #define, leading all references to xTickCount to
dereference the memory location of the register. A prototype was implemented and
seemed to work. A big problem however was that the register stopped counting
when the MCU went to EM2, even though the RTC counter value continued to
increment in EM2. The idea was discarded because of this.

Idea #2: RTC counter value as xTickCount The second idea tried is an
adjustment of the first. The fact that the counter value register of the system
timer in the Cortex core stops counting in EM2 led me to the idea to use the RTC
counter value register instead. This has been implemented and seemed to work.
The main reason for dropping this idea is the fact that it required bigger changes
to the FreeRTOS code in order to work.

The code below shows how xTickCount was defined to be the value of the RTC
count register (RTC-¿CNT).

#if configUSE_TICKLESSIDLE == 1

#define xTickCount (portTickType)(RTC ->CNT)

#else

The RTC CNT value is only 24 bits, which made it more complex to get FreeRTOS
to handle using it as xTickCount . Figure 8 shows how the vTaskDelay() function
in task.c was modified in order to get overflowing correct. Normally xTimeToWake
is calculated as a normal addition. To check for overflow vTaskDelay checks if
xTimeToWake is smaller then xTickCount. If that is the case, a overflow has

21

4.1 Difference in power consumption 4 TICKLESS IDLE

happened and the task is put into the overflowed delay list. If the 24 bit CNT
register was to be used as xTickCount, this overflowing had to be done manually
in software by using the modulo operator.

#if configUSE_TICKLESSIDLE == 1

xTimeToWake = (xTickCount + xTicksToDelay)%0 x1000000;

#else

xTimeToWake = xTickCount + xTicksToDelay;

#endif

Figure 8: The code used in vTaskDelay to get overflow correct when using 24 bit
register as xTickCount

When the RTC CNT overflows, the RTC gives an interrupt. The function called
by the RTC interrupt routine can be found in figure 9. This interrupt however is
asynchronous to the execution of the kernel. Meaning that there is no guarantee
for what the kernel is doing when the RTC CNT overflows. The RTC CNT could
overflow, without giving the kernel the opportunity to swap the delayed lists right
away. In turn, this could lead to unwanted behaviour. This problem was not solved
completely before abandoning this Idea.

#if configUSE_TICKLESSIDLE == 1

void vTaskTickoverflow(void){

xList *pxTemp;

/* Tick count has overflowed so we need to swap the delay lists.

If there are any items in pxDelayedTaskList here then there is

an error! */

pxTemp = pxDelayedTaskList;

pxDelayedTaskList = pxOverflowDelayedTaskList;

pxOverflowDelayedTaskList = pxTemp;

xNumOfOverflows ++;

}

#endif

Figure 9: The function called by the RTC interrupt routine when the RTC CNT
overflows

Idea #3: Sleeping and updating xTickCount in idle loop This is the cho-
sen idea. Namely because it requires the least amount of changes to the FreeRTOS
source code. Description follows in the rest of this section.

4.1 Difference in power consumption

The difference in power consumption between the ideas has not been investigated
in depth, but is considered not to be significant enough to outweigh the advantages
with the chosen solution.

22

4 TICKLESS IDLE 4.2 Chosen solution

A optimisation that could be applied to idea #2 is the need to wait for HFXO
(if HFXO is used as core clock, and not HFRCO) to start up before proceeding.
When woken up FreeRTOS could start HFXO but continue to run with HFRCO
until HFXO was ready. That way the wake up time could be reduced with idea
#1 and #2, which would reduce the power consumption, since the core could stay
in low energy mode for longer. The order of magnitude here is milliseconds as
explained in 2.2.4. This could result in a higher power consumption with idea #3
than the first two.

A drawback to this idea is the fact that the systick interrupt would for a small
period occur at a different frequency than defined by the application. This could
lead to unwanted behaviour. If the systick interrupt was still used as the source for
periodically running the scheduler, tasks would end up getting an uneven time slice.
But if this difference could be accepted, power could be saved. Even with idea #3
this method could be used if timing while active is not very crucial. Using HFRCO
for timekeeping while FreeRTOS is configured to a higher frequency because it is
set up to use HFXO would lead to a drift on the clock while active. This would be
corrected by the scheme presented in section 4.6.2.

4.2 Chosen solution

The idle loop is scheduled to run by the scheduler every time there is no tasks with
higher priority than the idle task ready to run. This makes the idle loop a good
place to put the core to sleep, and wake it up again in time for the next task to
run. The matter is complicated a bit by the fact that the co routines are scheduled
by the idle loop making a call to vCoRoutineSchedule();

Figure 10 shows a sequence diagram for the common case when FreeRTOS
puts the core to sleep. The idle task calls a function called sleepWhileIdle() which
is implemented in in energymodes.c. sleepWhileIdle disables interrupts and calls
xTaskGetTickCount() to get the number of ticks elapsed. Then it continues to
call xCoRoutineNextTick(int) and xTaskNextTick() to determine the next event
scheduled to happen. The RTC is then set up to wake up the core before the
next event. When an interrupt is received, either from the RTC or something
else, sleepWhileIdle() determines how long the core was sleeping by looking at the
counter value in the RTC and returns the value. The idle task then updates the
xTickCount value and enables interrupts. It is important that the xTickCount is
updated before the interrupt is processed since the interrupt may wake up a task,
and if a preemptive scheduler is used it may cause a task to run while xTickCount
still has an old value for xTickCount .

4.3 Interrupt handling

It is considered imperative that the xTickCount variable is updated before inter-
rupts are allowed to be processed. If an interrupt is allowed to be processed before
xTickCount is updated to the correct value, a task might be woken up by the
interrupt and start running while the xTickCount has an old value. This could

23

4.4 Time until next event 4 TICKLESS IDLE

Figure 10: Sequence diagram showing interactions between files in my solution.

lead to unwanted behaviour, if for example the task calls vTaskDelay() while the
xTickCount is old.

To make sure the xTickCount variable is updated before processing any in-
terrupts, interrupts are disabled while sleeping. This is done by using FreeR-
TOS macro called portDISABLE INTERRUPTS(). It disables all interrupts with
priority lower than configMAX SYSCALL INTERRUPT PRIORITY (see Section
2.3.4). Disabling all interrupts and then going to sleep would usually make the core
sleep forever. However, if the SEVONPEND bit in the System Control Register is
set the core is woken up from a WFE instruction when an interrupt goes to the
pending state, even if it does not have a high enough priority to wake up the core.

If an interrupt has a higher priority than configMAX SYSCALL INTERRUPT
PRIORITY the interrupt service routine will get processed right away, without up-
dating the xTickCount . Those interrupts are not allowed by to call any FreeRTOS
API functions. This scheme ensures that those interrupts will not be delayed by
code in this project. If the core is sleeping when such an interrupt occurs, the delay
to start up the core (around 2 µs) will be encountered. The interrupt will in this
case be processed with HFRCO even if HFXO is used by the application.

4.4 Time until next event

In order to determine the time until next event two functions has been added to
FreeRTOS. xTaskNextTick() in task.c and xCoRoutineNextTick(currentTick). See

24

4 TICKLESS IDLE 4.4 Time until next event

Figure 11 and Figure 12 for code. They both return the next tick count on which
a task or co routine is ready to run. They both return 0 if execution of a task or
co routine needs to be performed, and sleeping is not possible.

1 #if configUSE_TICKLESSIDLE == 1

2 portTickType xTaskNextTick(void){

3 if(uxTopReadyPriority >0

4 || xPendingReadyList.uxNumberOfItems >0

5 || pxReadyTasksLists [0]. uxNumberOfItems >1){

6 return 0;

7 }

8 if(pxDelayedTaskList ->uxNumberOfItems >0){

9 return (pxDelayedTaskList ->xListEnd.pxNext ->xItemValue);

10 }else{

11 return portMAX_DELAY;

12 }

13 }

14 #endif

Figure 11: xTaskNextTick function in task.c

Figure 11 shows the xTaskNextTick() function. In line 3 a check is made to
see if there are any tasks ready to run right now. Since this is all done from the
idle task, one should think that no tasks could be ready run when the idle task is
running. However, tasks could be sharing the idle priority. That way tasks with
the same priority as the idle task could be ready to run even if the idle task is
running. Even if no tasks are sharing the idle priority, higher priority tasks could
have been woken up by interrupts before interrupts where disabled in the idle task.
This is only possible when a cooperative kernel is in use. Because if the kernel
is preemptive, a task becoming ready to run would preempt the idle task and
start running right away. If the kernel is cooperative the task that becomes ready
would not be able to run before the idle task yields on its own. There could be a
task in one of the xReadyTasksLists. If uxTopReadyPriority is set to something
above 0, it means that a task is ready to run in one of the readyTask lists. If
however it is 0, a task could still be ready to run at priority 0, which is why the
pxReadyTaksLists[0] is checked. If any tasks are in the xPendingReadyList sleep
mode can not be entered either.

If there are no tasks ready to run at this time, the next task can be found in the
pxDelayedTaskList. If there are no tasks here, either no tasks have been created
at all, or they are all in the pxOverflowedTaskList. Either way, portMAX DELAY
is returned. Meaning the core will wake up in time to handle the xTickCount
overflow.

Figure 13 shows xCoRoutineNextTick(portTickType currentTick), it takes in
the current tick count and is called when interrupts are disabled. croutine.c main-
tains its one tick count variable xCoRoutineTickCount, and it is not always up to
date with the ”original” xTickCount in task.c. This is why xCoRoutineNextTick
differs from xTaskNextTick in that it returns 0 if currentTick has overflowed and
xCoRoutineTickCount has not overflowed yet. If that is the case sleep mode will

25

4.5 Calculating how long to sleep 4 TICKLESS IDLE

1 #if configUSE_TICKLESSIDLE == 1

2 portTickType xCoRoutineNextTick(portTickType currentTick){

3 if(uxTopCoRoutineReadyPriority >0 || xPendingReadyCoRoutineList

.uxNumberOfItems >0 || pxReadyCoRoutineLists [0].

uxNumberOfItems >0){

4 //there are co routines ready to run.

5 return 0;

6 }

7 if(xCoRoutineTickCount >currentTick){

8 //this means there has been an overflow on current tick ,

which needs to updated.

9 return 0;

10 }

11 if(pxDelayedCoRoutineList != NULL && pxDelayedCoRoutineList ->

uxNumberOfItems >0){

12 return (pxDelayedCoRoutineList ->xListEnd.pxNext ->

xItemValue);

13 }else{

14 return portMAX_DELAY;

15 }

16 }

17 #endif

Figure 12: xCoRoutineNextTick function in croutine.c

not be entered now, but rather have FreeRTOS update the xCoRoutineTickCount.
The only way xCoRoutineTickCount can be bigger is if currentTick overflowed
while xCoRoutineTickCount did not.

4.5 Calculating how long to sleep

if((ticksUntillNextEvent -1) >=((0 xFFFFFFFF)/RTCTICKFREQ))

{

ticksUntillNextEvent =((0 xFFFFFFFF)/RTCTICKFREQ);

}

unsigned int rtcWakeUpVal =(((ticksUntillNextEvent -1)*RTCTICKFREQ

)/configTICK_RATE_HZ)+rtcCountBefore;

When calculating how many RTC cycles to sleep, the number of ticks until next
event is multiplied with the frequency of the RTC (which is 32768 if no prescaling
is used). This is divided by the frequency of the systick (configTICK RATE HZ).
The current value of the RTC CNT register is added to the result.

Since ticksUntillNextEvent can be 32bits, multiplying it with 32768 might over-
flow. To guard against this a check is performed in advance. If the multiplication
would overflow, tickUntillNextEvent is set so that it will not. This means that the
maximum number of ticks that can be slept is 0xFFFFFFFF/32768 = 131071.
Meaning that if it is above 131071 ticks until next event, 131071 ticks will be tried
to be slept. This is equal to 1310 seconds if 100Hz SysTick is used. The RTC
would overflow in 512 seconds running at 32768Hz anyway, which means that this
way of calculating how many RTC ticks to sleep is not the limitation in a normal

26

4 TICKLESS IDLE 4.6 Calculating how long was slept

#if configUSE_TICKLESSIDLE == 1

portTickType xCoRoutineNextTick(portTickType currentTick){

if(uxTopCoRoutineReadyPriority >0 || xPendingReadyCoRoutineList.

uxNumberOfItems >0 || pxReadyCoRoutineLists [0]. uxNumberOfItems >0

){

return 0;

}

if(xCoRoutineTickCount >currentTick){

return 0;

}

if(pxDelayedCoRoutineList != NULL && pxDelayedCoRoutineList ->

uxNumberOfItems >0){

return (pxDelayedCoRoutineList ->xListEnd.pxNext ->xItemValue);

}else{

return portMAX_DELAY;

}

}

#endif

Figure 13: xCoRoutineNextTick in croutine.c

use scenario.
The alternative would be to multiply ticksUntillNextEvent with RTCTICK-

FREQ/configTICK RATE HZ directly. This way ticksUntillNextEvent could be
be bigger. However the RTC frequency would have to be evenly divisible by the
tick frequency used by FreeRTOS. Essentially this would mean having the FreeR-
TOS systick as a power of 2. This disadvantage was to great. A very normal
systick frequency are 100Hz or 1000Hz. Using this alternative they would have to
be 128Hz or 1024Hz.
4.6 Calculating how long was slept

When the core is woken up, it is necessary to calculate how long it was sleeping.
This is done by storing the RTC CNT value in a variable before going to sleep and
comparing it to the RTC value when the core is woken up.

if(RTC ->IF & RTC_IF_OF){

rtcCounterValue = RTC ->CNT;

rtcTicksElapsed = (rtcCounterValue +0xFFFFFF -rtcCountBefore);

}else{

rtcTicksElapsed =(rtcCounterValue - rtcCountBefore);

}

xTickCountIncrement=rtcTicksElapsed*configTICK_RATE_HZ/

RTCTICKFREQ;

The code above shows how the number of RTC cycles the core was sleeping is
calculated. If an overflow on the RTC CNT value has happened, 0xFFFFFF, has
to be added in order to get it correct. In the next line RTC cycles is translated
into xTickCount cycles. Because of the way the RTC is set up, this calculation can
not overflow. Another issue is that the division when translating to xTickCount
almost always result in truncation of bits, leading to a large rounding error. If for

27

4.6 Calculating how long was slept 4 TICKLESS IDLE

example 50’000 RTC cycles has elapsed while sleeping. This division will result in
50000 ∗ 1000/32768 = 1525.9. Since integer arithmetic is used, the reminder will
be truncated away, with 0.9 xTickCount cycles being lost.

Another problem which could lead to time drifting is illustrated in figure 14.
When reading the RTC CNT value there is an error margin. The value could be
read anywhere in the gray area. This means that in the worst case, the error could
be up to 1 period of the RTC clock. With the RTC running at 32768Hz, this
is an error of around 30µs. On average however one could suspect that the read
operation is performed in the middle of the clock period, e.g. when the clock is
falling. If this was true, the timing errors would even them self out. One problem
however is that when the interrupts which wakes the core up is synchronous to the
RTC clock, the RTC will be read at the same place every time. This could lead to
errors being accumulated.

Section B.2 shows a task used when developing the tickless while idle feature. It
is uses the LETIMER to keep track of time unaffected by FreeRTOS. Periodically
the task examines the FreeRTOS systick, and compares it with the value from the
LETIMER. The difference is sent over the LEUART.

Figure 14: The RTC CNT value could be read anywhere in the grey area, possibly
resulting in error.

4.6.1 Storing reminder

One way to solve the first problem in the previous subsection is to store the reminder
in a variable called rounding.

rounding +=(rtcTicksElapsed*configTICK_RATE_HZ) % RTCTICKFREQ;

In the following lines of code, a check is performed to see if there is room for
incrementing xTickCountIncrement by one more than the time slept this time
actually dictates. It is unwanted to increase the xTickCount by any more than
until one cycle before the next event is scheduled to happen. Since this might
result in undefined behaviour in FreeRTOS.

if(rounding >= RTCTICKFREQ){

if(xTickCountIncrement +1< ticksUntillNextEvent){

xTickCountIncrement +=1;

rounding -= RTCTICKFREQ;

}

}

When the rounding variable is larger than the frequency of the RTC, the xTick-
Count is rounded one up. This is very similar to what Linux did in 2.6.13, (see
section 2.5).

28

4 TICKLESS IDLE 4.7 Consequences for interrupt latency

4.6.2 xTickCount following RTC

To compensate for the error introduced by truncating the reminder, and the un-
certainty in illustrated in 14 a different scheme was developed. The idea is to keep
track of the time using the RTC, and make sure xTickCount is kept in sync with
the RTC. To keep track of time with the RTC, the number of overflows is stored
in a variable. When compensating for rounding errors, the time derived from the
RTC is compared to the time derived from xTickCount, if they differ, xTickCount
is rounded up by one.

The code below shows how this is done. First, the tick from both the RTC
and from FreeRTOS (xTickCount in task.c) is calculated. Currently 64 bits is used
to avoid problems with overflow. Using a 64 bit counter at 32768kHz, which is
the worst case, the counter will overflow in over 17 million years. If the tick from
the RTC is higher than the one in xTickCount, xTickCountIncrement is increased
by one. xTickCountIncrement is the value returned to task.c, and is the value
xTickCount is incremented by. There is also a check to make sure xTickCount is
not incremented to past the next event scheduled to happen in FreeRTOS.

The reason this works is that in the calculation of xTickCountIncrement a
truncating division is performed. This way the time slept is always rounded down,
making xTickCount run slower than the RTC. When the xTickCount gets behind
the tick count from the RTC, xTickCount is rounded up by one.

uint64_t currentTickFromRTC = ((uint64_t) rtcOverflows <<24 |

rtcCounterValue)* (uint64_t)configTICK_RATE_HZ/RTCTICKFREQ;

uint64_t currentTickInXTickCount = (uint64_t)((uint64_t)

ltaskGetNumberOfOverflows () <<32| currentTick)+

xTickCountIncrement;

if(currentTickFromRTC >currentTickInXTickCount){

if(xTickCountIncrement +1< ticksUntillNextEvent){

xTickCountIncrement +=1;

}

}else if(currentTickFromRTC <currentTickInXTickCount){

if(xTickCountIncrement >0){

xTickCountIncrement --;

}

}

4.7 Consequences for interrupt latency

The interrupt latency is impacted by my changes to the kernel. In the worst case an
interrupt occurring right after interrupts are disabled, would have to wait until the
entire xSleepWhileIdle() function executes. It would skip sleeping since the core
would terminate the WFE instruction right away because of the pending interrupt.
But still, all the instructions in the xSleepWhileIdle would have to be executed.
In non optimised code (meaning compiler optimisations turned off), this was mea-
sured to around 300 CPU cycles. This corresponds to around 10µs, and should be
acceptable. If a lower latency is required by the application, an interrupt priority
above configMAX SYSCALL INTERRUPT PRIORITY could be used. Interrupt

29

4.7 Consequences for interrupt latency 4 TICKLESS IDLE

latency with such a priority would be unaffected by the FreeRTOS kernel. They
can not call any FreeRTOS API functions.

static portTASK_FUNCTION(prvIdleTask , pvParameters)

{

/* Stop warnings. */

(void) pvParameters;

for(;;)

{

prvCheckTasksWaitingTermination ();

#if (configUSE_PREEMPTION == 0)

{

taskYIELD ();

}

#endif

#if ((configUSE_PREEMPTION == 1) && (configIDLE_SHOULD_YIELD

== 1))

{

if(listCURRENT_LIST_LENGTH(&(pxReadyTasksLists[

tskIDLE_PRIORITY])) > (unsigned portBASE_TYPE) 1)

{

taskYIELD ();

}

}

#endif

#if (configUSE_IDLE_HOOK == 1)

{

extern void vApplicationIdleHook(void);

vApplicationIdleHook ();

}

#endif

#if (configUSE_TICKLESSIDLE == 1)

extern portTickType sleepWhileIdle ();

portTickType tickSlept=xSleepWhileIdle ();

xTickCount += tickSlept;

portENABLE_INTERRUPTS ();

#endif

}

}

Figure 15: idle task, I added the part after configUSE TICKLESSIDLE

30

5 MANAGING EFM32 ENERGY MODES

5 Managing EFM32 energy modes

This section handles the issue of which energy mode FreeRTOS should put the
EFM32 in when all the tasks are delayed. Two approaches has been implemented,
and both works well. Which one is best is really more a question about which one
is most convenient for the programmer of an application or device driver.

5.1 #1 Clocks enabled

The first solution is for the xSleepWhileIdle() function to look at which clock is
enabled in the CMU register. The CMU has two registers which needs to be
examined, HFCORECLKEN0 and HFPERCLKEN0. Figure 24 and 25 in appendix
C shows the bit assignments of these register. The idea of this implementation is
to look at these registers in order to determine which energy mode to go to. A
peripheral module can not possibly be in use if it is clock is disabled in these
registers. If all high frequency clocks are turned of in the CMU, then it is safe to
go to EM2, where the high frequency clock is turned off. In the HFCORECLKEN0
register the only peripheral that needs to be checked is AES. The other modules
need not be checked, since the DMA will keep the core awake automatically if it is in
use. The PRS can only be accessed by the core or DMA. In the HFPERCLKEN0
register GPIO clock bit can be disregarded. Even if the GPIO clock is enabled
energy mode 2 can still be entered.

The implementation of this becomes very simple.

if((CMU ->HFCORECLKEN0 & CMU_HFCORECLKEN0_AES) || (CMU ->HFPERCLKEN0

& ~CMU_HFPERCLKEN0_GPIO)){

//Go to EM1

}else{

//Go to EM2

}

5.2 #2 Explicit control

This scheme is to have tasks tell which energy mode they can go to. If one tasks
needs to stay in EM1, it will issue a function call vTaskCanGoToEM(1); Then
FreeRTOS will not go to an energy mode lower than 1 until the task calls vTaskCan-
GoToEM(int) with a parameter with a lower value than 1. If one task demands to
stay in a particular energy mode, FreeRTOS will not go to a lower energy mode
before the tasks calls vTaskCanGoToEM again. This scheme is easy to expand to
also include energy mode 0 and 3. If a task needs to, it can call vTaskCanGo-
ToEM(0) and FreeRTOS will not go to any sleep state until the task lets it. If all
tasks agree to to EM3 (they all called vTaskCanGoToEM(3), FreeRTOS can put
the core in EM3.

Several ways of implementing this was considered. One idea was to have a
variable for each energy mode, with one bit for each task indicating that the task
needs to stay in the respective energy mode. A difficulty with this mode was to
map tasks to position in array, since no obvious way of mapping a task to a bit

31

5.2 #2 Explicit control 5 MANAGING EFM32 ENERGY MODES

in the array exists in FreeRTOS. They do not have their own numerical ID for
example. Another problem is that the number of tasks changes dynamically. The
number of bits needed in the variables would not be known at compile time.

Another approach explored was to store which energy mode a task can go to in
the Task Control Block (TCB) of the Task. A traversal through all the tasks would
be needed in order to determine which energy mode to go to. As FreeRTOS has
several lists where tasks could be located, the complexity of this approach, both in
run time and in coding complexity was considered to high.

A simpler, yet just as powerful approach was conceived. In the TCB of every
task, it is stored which energy mode the task needs the core to stay in. The
calculation of which energy mode FreeRTOS can go to if facilitated by keeping the
count of how many tasks can go to which energy mode in an array. An array which
contains an integer for every energy mode is kept updated with how many tasks
can enter the respective energy mode. For example, pucTaksAbleToGoToEM[0]
contains the number of tasks that needs the core to stay in EM0.

#if configUSE_TICKLESSIDLE == 1

PRIVILEGED_DATA static unsigned char pucTaksAbleToGoToEM[

configENERGYMODES];

#endif

When a task is created, it is initialized to stay in a value which can be set
by the programmer in FreeRTOSConfig.h. This is shown below. The function
prvInitialiseTCBVariables() is used by FreeRTOS every time a new task is created.

static void prvInitialiseTCBVariables (.....){

(....)

#if (configUSE_TICKLESSIDLE == 1)

pxTCB ->ucEmAbleToGoTo = confgiDEFAULT_EM_FOR_NEW_TASK;

pucTaksAbleToGoToEM[confgiDEFAULT_EM_FOR_NEW_TASK]++;

#endif

The code below shows how pucTaksAbleToGoToEM is handled when a task is
deleted. One less task needs to stay in the energy mode found in the tasks TCB.

void vTaskDelete(xTaskHandle pxTaskToDelete)

{

(...)

#if configUSE_TICKLESSIDLE == 1

pucTaksAbleToGoToEM [(pxTCB ->ucEmAbleToGoTo)]--;

#endif

The function below is called when a task wants to tell FreeRTOS that it needs to
stay in an energy mode. For example if it calls vTaskCanGoToEM(1), the core will
not go to a deeper sleep than EM1, until the core again calls vTaskCanGoToEM()
with a higher value than 1.

vTaskCanGoToEM(unsigned char em){

vPortEnterCritical ();

pucTaksAbleToGoToEM[pxCurrentTCB ->ucEmAbleToGoTo]--;

pucTaksAbleToGoToEM[em]++;

pxCurrentTCB ->ucEmAbleToGoTo = em;

vPortExitCritical ();

}

32

5 MANAGING EFM32 ENERGY MODES 5.3 Chosen solution

The function bellow is called by xSleepWhileIdle() to figure out which energy
mode to go to. Simply iterate through the pucTaksAbleToGoToEM array, until a
non zero value is found, and return that number. If no value is found,

unsigned char ucTaskEmAllowed(unsigned char em){

for(int i = 0; i < configENERGYMODES;i++){

if(pucTaksAbleToGoToEM[i] > 0){

return i;

}

}

return configENERGYMODES; //The current implementation will

never reach here. Because every task will be located in one

of the fields in the array.

}

5.3 Chosen solution

Solution #2 gives more flexibility. It is quite generic, as what it really does is
simply return the highest number (energy mode) among all tasks. It was easy
to also implement a way for the application to stay in EM0. Support for EM3
also comes with solution #2. #2 is also easier for the programmer to get correct
behaviour. This has been experienced while developing driver. It is awkward
and little intuitive to remember to turn of the clocks before delaying a task. The
disadvantage of #2 over #1 is difficult to spot. The run time cost is negligible.
The only disadvantage is that it needs changes to the FreeRTOS kernel.

33

5.3 Chosen solution 5 MANAGING EFM32 ENERGY MODES

34

6 METHODOLOGY

6 Methodology

6.1 Testing

One test used is based on having the LETIMER keep track of time on its own,
unaffected by FreeRTOS. Then the time reported by FreeRTOS can be compared
to the time reported by LETIMER. See appendix B.2. Since the LETIMER is
only 16 bits, it overflows quite often. If 32768Hz is used, it would overflow every 2
seconds. To reduce overflows 1024Hz is used. Overflow happens every 64 seconds.

The time reported by FreeRTOS is plotted against the time reported by the
LETIMER. If the difference is more than what can be expected due to normal
variation something is wrong. Example of normal variation is variation due to the
issue described in 4.6.

6.2 Benchmark

Figure 16 visualizes the benchmark used. 3 tasks are used. One task receives
on RS232 simulating receiving GPS information. It does not do anything with
the data, just receive it. One task uses the ADC and the light sensor on the
development kit and measure the light level. After doing 10 conversions, it does
some calculations on them, then sends data over the RS232 bus. This is to simulate
sending them over GSM. Another task uses the I2C bus to get the temperature
from a temperature sensor on the development kit. It sends the temperature over
the RS232 bus on every temperature reading.

Task name Description Frequency Bytes
transmitted/received

vTaskRxLeuart GPS(RX LEUART) 1Hz 65 Bytes Rx

vMeasurementLight Measure
Light(ADC)

1Hz 0

vMeasurementLight Calculate and send
light data

0.1Hz 125 Bytes Tx

vMeasurementTemp Measure Temp(I2C)
and TX it on
LEUART

1Hz 157 Bytes Tx

Table 2: Sub tasks performed by the benchmark application

Figure 2 shows at which rate the sub tasks of the benchmark application is
run. The task named vTaskRxLeuart performs a receive on the LEUART once
every second, receiving 65 bytes. vMeasurementLight performs two sub tasks. It
measures the the light level and stores it in an array once every second. Every ten
seconds it calculates and sends light data over RS232.

35

6.2 Benchmark 6 METHODOLOGY

Figure 16: Benchmark application

36

6 METHODOLOGY 6.3 Versions of FreeRTOS tested

6.2.1 Effect of load

How the load affects the power saving of my solution was measured. A task was
used, which is awake for given time and then sleeps for a given amount of time.
This task was run with the lowest priority along with all the other tasks in the
application. The task has a period of 400 ms. The tests are shown in Table 3.
For example in the 3rd test, the task does work for 40ms then it sleeps for 360ms.
Giving 10% load time and 90% idle time.

Test Load per cent Idle per cent
1 0(0ms) 100 (400ms)
2 1(4ms) 99 (396 ms)
3 10 (40ms) 90 (360 ms)
4 25 (100ms) 75 (300 ms)
5 50 (200ms) 50 (200 ms)
6 75 (400ms) 25 (100 ms)
7 100 (400ms) 0 (0 ms)

Table 3: Distribution of idle and load time for task.

6.3 Versions of FreeRTOS tested

Vanilla is the standard FreeRTOS which now is included in the standard FreeRTOS
source. Simple EM1 is a very simple extension of FreeRTOS taking advantage of
EM1. The IDLE task enters EM1, keeping the SysTick active and waking up to
increment xTickCount. EM2 No DMA is my extension to FreeRTOS described in
section 4 with a LEUART driver not utilizing the DMA.

6.3.1 Versions with DMA driver

EM2 With DMA is the same as EM2 No DMA, but with a LEUART driver which
uses the DMA while transmitting and receiving. EM2 With DMA Bug is the same
as EM2 With DMA but with a very small difference. It uses a different signal for
the LEUART to request a new character for transmission. EM2 With DMA uses
TXBL, which means that the LEUART will request a new character as soon as
it has room in its transmit buffer. EM2 With DMA Bug uses TXEMPTY, which
means that the LEUART will request a new character when the transmit buffer is
empty.

The EFM32 should be able to stay in EM2 when using DMA to receive on
LEUART. But because of what is suspected to be an errata to the chip at hand,
the RXDATAV interrupt has to be turned on in the LEUART. With the result
that the core is woken up from sleep when a byte is received, even if it is copied to
memory with DMA. An errata for this is not listed in the errata history of EFM32
[EFM32 Errata,]. A similar errata for transmitting is listed. A bug report has
been submitted to my supervisor at Energy Micro. My EFM32 chip is an early
engineering example.

37

6.4 Power measurement 6 METHODOLOGY

6.4 Power measurement

The Dev kit has a built in way to measure the power consumption of the MCU.
It is called AEM(Advanced Energy Monitor), and samples the current consump-
tion and the voltage at a rate of 60Hz when the current is bellow 200µA and
at 120Hz when the current is above. A rate of 120Hz means one sample every
8.3ms.[Dev kit Manual,].

An application (energyAware Profiler version 0.92) developed by my supervisor
at Energy Micro was used to get these values in CSV (comma separated values)
format. These CSV files where then processed in order to plot them with gnuplot.
The python script used for this can be found in B.8.3. energyAware Profiler was
also has a feature to give the average current the application has used over a time
interval. This feature was used to calculate the expected battery lifetime of the
different applications.

38

7 RESULTS

7 Results

7.1 Testing

Figure 17 shows the result of the timing test on two versions of the code. The
difference between the time in the FreeRTOS xTickCount variable, and the one
in Low Energy Timer. Clocked by low frequency clocks. Remains active in EM2
(LETIMER) is plotted. The error was 1111ms after the application went to sleep
and woke up to update the xTickCount variable 6350 times. In the worst case there
should only be 30µs error each time a sleep mode is entered (see section 4.6.1). The
error should, in worst case, only be roughly 6350 ∗ 30µs = 194ms. Something was
clearly wrong. The error was only observed when using HFXO as the core clock,
and not while using HFRCO. The main difference between the two is start up
time. HFXO has a start up time of 400µs, while HFRCO has a start up time of
only 0.6µs. See section 2.2.4. The bug was due to the fact that when waking up
from EM2, the routine has to wait for 1.1ms for HFXO to become ready. This
resulted in that there was never room to counter act the rounding error introduced
by integer arithmetic. See section 4.6.

Figure 18, shows the same application as in figure 17, but with only for the cor-
rect application, and with a different scale. After 6336 sleep periods, the difference
is 41ms. This small enough to be within the concerns expressed in 4.6.1.

-1200

-1000

-800

-600

-400

-200

 0

 200

 0 1000 2000 3000 4000 5000 6000 7000

D
iff

 b
e

tw
e

e
n

 le
tim

e
r a

n
d

 s
ys

tic
k

(m
s)

Number of times gone to sleep

No known bugs
With bug

Figure 17: X-axis is the number of time the application enters EM2. Y-axis is the
difference between the time in the systick variable, and the time from LETIMER

39

7.2 Power consumption 7 RESULTS

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 1000 2000 3000 4000 5000 6000 7000

D
iff

 b
e

tw
e

e
n

 le
tim

e
r a

n
d

 s
ys

tic
k

Number of sleep periods

Vanila

Figure 18: X-axis is the number of time the application enters EM2. Y-axis is the
difference between the time in the systick variable, and the time from LETIMER

”No known bugs” in figure 19 shows the drift when the rounding scheme in
4.6.1 is applied. ”No drift” is when the scheme in 4.6.2 is used. As can be seen,
the clock drift has been eliminated with the later scheme.

7.2 Power consumption

Figure 20 shows power consumption of the application in 6.2 running on different
versions of FreeRTOS. The lines represent the power consumption of different ver-
sions of FreeRTOS. The different versions are described in section 6.3. The Y axis
is the power consumption in mW on a logarithmic scale. The X axis is time in ms.
The snapshot is 9 seconds into the application.

The spikes marked ”1” is when the application is measuring and transmitting
the the temperature over LEUART. The spikes marked ”2” is when the application
is receiving data from the ”GPS”. The spikes marked ”3” is when the application
is measuring the light level using the ADC. The spike marked ”4” is when the
application does the calculations on the measured light values and then transmits
them over the LEUART.

It is obvious that utilising the EM2 enabled version of FreeRTOS saves a lot
of power. The power consumption while idle is only 0.02mW when EM2 is used
compared to 13mW when the core stays in EM0. In the version where EM1 is
used, 6mW is consumed.

40

7 RESULTS 7.2 Power consumption

-50

-40

-30

-20

-10

 0

 10

 20

 0 1000 2000 3000 4000 5000 6000 7000

D
iff

 b
e

tw
e

e
n

 le
tim

e
r a

n
d

 s
ys

tic
k

(m
s)

Number of times gone to sleep

No known bugs
No Drift

Figure 19: X-axis is the number of time the application enters EM2. Y-axis is the
difference between the time in the systick variable, and the time from LETIMER

41

7.2 Power consumption 7 RESULTS

More observations can be made in the graph is that DMA saves power. This
can be seen in the spikes marked ”1”. Using DMA EFM32 can enter EM2 while
transmitting the temperature. Using DMA for receiving does not save as much
power as one should expect.

The spikes marked ”2” shows that when the application is receiving on the
LEUART the version with DMA uses only slightly less power than the version
without DMA. The DMA should use significantly lower power, but because of
the issue explained in 6.3.1, the core is woken up from EM2 every time a byte is
received.

The spikes marked ”3” are roughly the same both with and without DMA. This
is expected because no transmission or receiving performed. The only thing done
at this spike is a measurement of the light level.

The spike marked ”4” is a longer more complex calculation on the values col-
lected at spikes ”3”. As can be seen on the graph both with and without DMA
uses roughly the same power when calculating. When the data is transmitted over
the LEUART at the end of the spike, the DMA version uses less power.

Figure 21 is almost the same as figure 20 EM2 With DMA Bug (described in
6.3.1) is added to the plot. As can be seen in the graph, the bug version of the
DMA driver uses more power when transmitting. This is due to the fact that it is
woken up every time the DMA transfers a byte to the LEUART TX register.

Figure 22 shows the expected battery lifetime of the different versions of the
application. As expected the version which utilises EM2 will last a lot longer with
a standard 220mAh battery. The Vanilla version lasts 56 hours, EM1 lasts roughly
twice as long, 118 hours. While the version which utilises EM2, lasts for 883 hours.
The benefit of also utilising DMA with the EM2 version is also significant. The
DMA version lasts roughly twice as long, 1867 hours. As expected the buggy DMA
version makes things worse and lasts shorter the the version without DMA, 768
hours.

Figure 23 shows the result of the tests described in 6.2.1. As expected the
benefit of taking advantage of EM2 decreases as the load increases. Already at 1
per cent load time time, the batter lifetime decreased to 69% of what it was. From
2040 hours to 1417 hours.

42

7 RESULTS 7.2 Power consumption

 0
.0

1

 0
.1 1 1
0

 1
00 9

00
0

 9
50

0
 1

00
00

 1
05

00
 1

10
00

 1
15

00
 1

20
00

Power (mW)

Ti
m

e
 (

m
s)

1
1

1
2

2
2

3
3

4

V
a

n
illa

Si
m

p
le

 E
M

1
EM

2
N

o
 D

M
A

EM
2

W
ith

 D
M

A

F
ig

ur
e

20
:

P
ow

er
co

ns
um

pt
io

n
w

it
h

di
ffe

re
nt

ve
rs

io
n

of
Fr

ee
R

T
O

S

43

7.2 Power consumption 7 RESULTS

 0.01

 0.1 1

 10

 100 9000
 9500

 10000
 10500

 11000
 11500

 12000

Power (mW)

Tim
e

 (m
s)

1
1

1
2

2
2

3
3

4

EM
2 N

o
 D

M
A

EM
2 W

ith
 D

M
A

EM
2 W

ith
 D

M
A

 Bug

F
igure

21:
P

ow
er

consum
ption

w
ith

different
versions

of
FreeR

T
O

S

44

7 RESULTS 7.2 Power consumption

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Vanilla EM1 No DMA DMA bug DMA

Ba
tt

e
ry

 li
fe

tim
e

 u
sin

g
 s

ta
n

d
a

rd
 2

20
m

A
h

 (
H

o
ur

s)

Task percent of load time

56.3
118.2

883.2
768.8

1867.3

Figure 22: Expected battery life time for applications using a standard 220mAh
battery

45

7.2 Power consumption 7 RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 20 40 60 80 100

Ba
tt

e
ry

 li
fe

tim
e

 u
sin

g
 s

ta
n

d
a

rd
 2

20
m

A
h

Task percent of load time

Vanilla
DMA

Figure 23: Expected battery life time for applications using a standard 220mAh
battery. X axis is per cent of ticks the additional calculation task keeps the core
awake.

46

8 CONCLUSION

8 Conclusion

In this work FreeRTOS has been modified to stay idle for long periods while there
are no tasks ready to run. Avoiding the time to drift has been a major issue. In the
end the chosen solution has been to have time follow the low frequency oscillator.
This is considered the best option since this is the oscillator that is on when the
high frequency oscillator is off to save power. And hence probably the oscillator
used most of the time in the workloads of the targeted customers of Energy Micro.

An interface has been implemented which lets the application/driver tell FreeR-
TOS which energy mode it can put the EFM32 in. A different solution where
FreeRTOS puts the EFM32 in energy modes automatically based on how peripher-
als has been configured was also implemented, but abandoned. It was abandoned
mostly because of the constraint on how the peripherals had to be configured for
the scheme to work correctly.

It has been a goal to get the changes made included in the official FreeRTOS
release. This has been a consideration in all design decisions. Minimal changes are
needed to the FreeRTOS source code in order for the solution to work.

A demonstration of how the modified FreeRTOS can be configured in order
save power has also been implemented. This has also included implementing a way
for the drivers to work in an energy efficient manner. For example using DMA
to transfer/receive on RS232. Getting this to work correctly has included days of
debugging, both due to my own bugs, but also due to not reading the errata of
chip at hand carefully enough.

8.1 Future work

Future work depends on what the maintainer of FreeRTOS thinks of the code.
If he says some modifications has to be made in order to get the code into the
main FreeRTOS release, those modification should be made. It is suspect that
the changes made in order to effectively manage the energy modes is hardest for
him to accept. Those changes are much more intrusive as they alter the process
descriptor. On the other hand, my changes only alter the FreeRTOS if it is compiled
for EFM32.

Using a register which is updated while sleeping as the reference for time in
FreeRTOS would also be an improvement to my solution. (This is like idea 1 and
2 in section 4.) Not having to calculate how long was slept when woken up from
deep sleep would make the clock drifting issue disappear. It would reduce the wake
up time, and the core could then sleep longer. This should be considered on the
next generation of EFM32 where a 32 (or 64) bit register will be used to count
clock edges on the low power clock source. On the other hand, this kind of change
would require a lot more intrusive changes to FreeRTOS.

Another very interesting project would be to make FreeRTOS totally tickless.
This would involve a major redesign of the FreeRTOS scheduler, as it would have
to look at the next scheduled task and set up a hardware interrupt at that time.
In contrast to at every timer interrupt check if an event is scheduled now. Having
a totally tickles operating system, makes entering sleep mode trivial. This is what

47

8.1 Future work 8 CONCLUSION

Linux does, and as a side note I want to mention that what I have implemented is
very similar to what Linux did before they implemented a totally tickless kernel.

A more complex way of doing dynamic power management (≈ entering sleep
state) would also be interesting to look into. One of the algorithms described by
Benini et al. [Benini et al., 2000] could be looked into. However intuition tells me
that as long as the wake up time is as small as it is on the EFM32 (≈ 2µs) it is
not worth using clock cycles to predict how long an idle period will be. Embedded
programmers might want control of when and when not to enter sleep states. Pre-
dictability and determinism is often much more important in embedded and real
time application.

48

REFERENCES REFERENCES

References

[LiA,] Linux source. http://lxr.linux.no/linux+v2.6.13/arch/arm/
mach-omap1/time.c.

[arm, 2005] (2005). Cortex m3 technical reference manual. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_
cortex_m3_r1p1_trm.pdf.

[Lin, 2010] (2010). Linux source 2.6.34. http://lxr.free-electrons.com/
source/.

[Benini et al., 2000] Benini, L., Bogliolo, A., and De Micheli, G. (2000). A survey
of design techniques for system-level dynamic power management. IEEE Trans.
Very Large Scale Integr. Syst., 8(3):299–316.

[Changelog, 2010] Changelog (2010). Freertos changelog. http://www.freertos.
org/History.txt.

[Corbet, 2005] Corbet, J. (2005). The dynamic tick patch. Available: https:
//lwn.net/Articles/138969/ Viewed: 1. March 2010.

[Dev kit Manual,] Dev kit Manual. User manual development kit efm32-g8xx-dk.
http://www.energymicro.com/downloads/tools-documents.

[EFM32 Errata,] EFM32 Errata. Efm32 errata history. http://downloads.
energymicro.com/devices/pdf/errata/d0028_efm32g890_errata_history.
pdf.

[EFM32 Manual,] EFM32 Manual. Reference manual, efm32g microcontroller
family. http://www.energymicro.com/downloads/reference-manuals.

[EFM32G890F128 Datasheet,] EFM32G890F128 Datasheet. Gecko
datasheet efm32g890f128/efm32g890f64/efm32g890f32. http://downloads.
energymicro.com/devices/pdf/d0010_efm32g890_datasheet.pdf.

[FreeRTOS Code, 2010] FreeRTOS Code (2010). Freertos source code. http://
sourceforge.net/projects/freertos/files/FreeRTOS/.

[Gleixner and Niehaus., 2006] Gleixner, T. and Niehaus., D. (2006). Hrtimers and
beyond: Transforming the linux time subsystems. in proceedings of the ottawa
linux symposium (ols’06).

[Hwang and Wu, 2000] Hwang, C.-H. and Wu, A. C.-H. (2000). A predictive sys-
tem shutdown method for energy saving of event-driven computation. ACM
Trans. Des. Autom. Electron. Syst., 5(2):226–241.

[J Stultz, 2005] J Stultz, N Aravamudan, D. H. (2005). We are not getting any
younger: A new approach to time and timers. in proceedings of the ottawa linux
symposium (ols’05).

49

http://www.freertos.org/History.txt
http://www.freertos.org/History.txt
http://www.energymicro.com/downloads/tools-documents
http://downloads.energymicro.com/devices/pdf/errata/d0028_efm32g890_errata_history.pdf
http://downloads.energymicro.com/devices/pdf/errata/d0028_efm32g890_errata_history.pdf
http://downloads.energymicro.com/devices/pdf/errata/d0028_efm32g890_errata_history.pdf
http://www.energymicro.com/downloads/reference-manuals
http://downloads.energymicro.com/devices/pdf/d0010_efm32g890_datasheet.pdf
http://downloads.energymicro.com/devices/pdf/d0010_efm32g890_datasheet.pdf
http://sourceforge.net/projects/freertos/files/FreeRTOS/
http://sourceforge.net/projects/freertos/files/FreeRTOS/

REFERENCES REFERENCES

[Rivoire et al., 2007] Rivoire, S., Shah, M. A., Ranganathan, P., Kozyrakis, C., and
Meza, J. (2007). Models and metrics to enable energy-efficiency optimizations.
Computer, 40(12):39–48.

[Sadasivan, 2006] Sadasivan, S. (2006). An introduction to the arm cortex-m3
processor.

[Srinivasan et al., 1998] Srinivasan, B., Pather, S., Hill, R., Ansari, F., and
Niehaus, D. (1998). A firm real-time system implementation using commercial
off-the-shelf hardware and free software. In RTAS ’98: Proceedings of the Fourth
IEEE Real-Time Technology and Applications Symposium, page 112, Washing-
ton, DC, USA. IEEE Computer Society.

[Tverdal, 2009] Tverdal, M. (2009). Power saving features in microprocessors.
tdt4592 fall 2009.

50

A DEMO APPLICATION

A Demo application

This file was developed as a part of this thesis.

A.1 main.c

/*

* This demo application creates 8 coroutines which flashes the 8 leds

0-7.

* It creates one task which toogles the leds 8-16, and it creates one

* task that uses the LCD.

*

*

*/

#include "FreeRTOS.h"

#include "croutine.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

#include "partest.h"

#include "crflash.h"

#include "lcdcontroller.h"

#include "ledtest.h"

#include "lcdtest.h"

// The prioritys of the tasks

#define mainLCD_TASK_PRIORITY (tskIDLE_PRIORITY + 1)

#define mainLED_TASK_PRIORITY (mainLCD_TASK_PRIORITY + 1)

/*

* Sets up the hardware used in the demo

*/

static void prvSetupHardware(void);

/*

**

*//**

* @brief Main function

**

*/

int main(void)

{

prvSetupHardware ();

/*Start the standard coroutines that flashes and set them to flash

the

8 lower order leds*/

vStartFlashCoRoutines (8);

/*Start the task that animates and writes to the display */

xTaskCreate(vLedtestLedTask , "LedTask", configMINIMAL_STACK_SIZE ,

NULL ,mainLCD_TASK_PRIORITY , NULL);

51

A.2 lcdtest.c A DEMO APPLICATION

/*Start the task that animates the 8 uper order leds*/

xTaskCreate(vLcdtestLcdTask , "LCDTask", configMINIMAL_STACK_SIZE ,

NULL ,mainLED_TASK_PRIORITY , NULL);

/*Start the scheduler */

vTaskStartScheduler ();

return 0;

}

/*

* Application Idle Hook is only used to schedule the coroutines.

* As long as preemtion is used , we can repedetly

*/

void vApplicationIdleHook(void)

{

vCoRoutineSchedule ();

}

static void prvSetupHardware(void)

{

/* Initiaise the LEDS*/

vParTestInitialise ();

/*Set up the LCD*/

LCD_Init(LCD);

}

A.2 lcdtest.c

This file was modified to use the FreeRTOS API.

#include "lcdtest.h"

/*

**

*//**

* @brief LCD Test Routine , shows various text and patterns

**

*/

void vLcdtestLcdTask(void *pvParameters)

{

int i;

LCD_TypeDef *lcd = LCD;

char *stext = "FreeRTOS Energy Micro ";

/* Loop through funny pattern */

while (1)

{

LCD_ScrollText(lcd ,stext);

LCD_AllOff(lcd);

/*Count down from 100 on the number section of the LCD display */

for (i = 100; i > 0; i--)

{

LCD_Number(lcd , i);

vTaskDelay (10);

}

52

A DEMO APPLICATION A.3 ledtest.c

LCD_NumberOff(lcd);

/*Turn on gecko and efm32 symbol */

LCD_Symbol(lcd , LCD_SYMBOL_GECKO , 1);

LCD_Symbol(lcd , LCD_SYMBOL_EFM32 , 1);

LCD_Write(lcd , " Gecko ");

vTaskDelay (1000);

LCD_AllOn(lcd);

vTaskDelay (1000);

LCD_AllOff(lcd);

LCD_Write(lcd , "OOOOOOO");

vTaskDelay (62);

LCD_Write(lcd , "XXXXXXX");

vTaskDelay (62);

LCD_Write(lcd , "+++++++");

vTaskDelay (62);

LCD_Write(lcd , "@@@@@@@");

vTaskDelay (62);

LCD_Write(lcd , "ENERGY ");

vTaskDelay (250);

LCD_Write(lcd , "@@ERGY ");

vTaskDelay (62);

LCD_Write(lcd , " @@RGY ");

vTaskDelay (62);

LCD_Write(lcd , " M@@GY ");

vTaskDelay (62);

LCD_Write(lcd , " MI@@Y ");

vTaskDelay (62);

LCD_Write(lcd , " MIC@@ ");

vTaskDelay (62);

LCD_Write(lcd , " MICR@@");

vTaskDelay (62);

LCD_Write(lcd , " MICRO@");

vTaskDelay (62);

LCD_Write(lcd , " MICRO ");

vTaskDelay (250);

LCD_Write(lcd , "-EFM32 -");

vTaskDelay (250);

}

}

A.3 ledtest.c

This file was developed as a part of this thesis.

#include "ledtest.h"

void vLedtestLedTask(void *pvParameters)

{

/*ledOn is used toogle leds*/

portBASE_TYPE ledOn=pdTRUE;

for(;;)

{

53

A.4 ParTest.c A DEMO APPLICATION

for(int i = 8;i<16;i++){

/* Depending on if ledOn is true or false , turn on or off

led number i*/

vParTestSetLED(i,ledOn);

/*Delay for 1000 ms*/

vTaskDelay (1000/ portTICK_RATE_MS);

}

/*After the for loop , we flip ledOn. On the next run through

the

for loop above , the leds will be flipped.*/

ledOn=~ ledOn;

}

}

A.4 ParTest.c

This file was developed as a part of this thesis.
#include "FreeRTOS.h"

#include "partest.h"

#include "task.h"

#include "dvk.h"

int j=0;

void vParTestInitialise(void){

DVK_init ();

DVK_setLEDs (0);

}

void vParTestSetLED(unsigned portBASE_TYPE uxLED , signed

portBASE_TYPE xValue){

// Suspend all other tasks , in order to make sure no

// other tasks excecutes this code at the same time

vTaskSuspendAll ();

portBASE_TYPE leds =DVK_getLEDs ();

if(xValue == pdTRUE){

//If xValue is set to True , we are turning on a led.

//We do that by oring 1 into the correct position.

leds=leds|(1<<uxLED);

}else{

//If xValue is set to False , we are turning a led off.

//We do that by anding 0 into the correct position.

leds&=~(1<< uxLED);

}

DVK_setLEDs(leds);

xTaskResumeAll ();

}

void vParTestToggleLED(unsigned portBASE_TYPE uxLED){

vTaskSuspendAll ();

portBASE_TYPE leds =DVK_getLEDs ();

//Use XOR to toogle led since xoring a bit with one toogles the bit ,

//and xoring with 0 leves the bit alone.

leds=leds^(1<<uxLED);

DVK_setLEDs(leds);

xTaskResumeAll ();

}

54

A DEMO APPLICATION A.5 startup efm32.s

A.5 startup efm32.s

This file was only slightly modified in order to set up the interrupts needed by
FreeRTOS.

MODULE ?cstartup

;; Forward declaration of sections.

SECTION CSTACK:DATA:NOROOT (3)

SECTION .intvec:CODE:NOROOT (2)

EXTERN __iar_program_start

EXTERN SystemInit

PUBLIC __vector_table

PUBLIC __vector_table_0x1c

PUBLIC __Vectors

PUBLIC __Vectors_End

PUBLIC __Vectors_Size

DATA

__vector_table

DCD sfe(CSTACK)

DCD Reset_Handler

DCD NMI_Handler

DCD HardFault_Handler

DCD MemManage_Handler

DCD BusFault_Handler

DCD UsageFault_Handler

__vector_table_0x1c

DCD 0

DCD 0

DCD 0

DCD 0

DCD vPortSVCHandler

DCD DebugMon_Handler

DCD 0

DCD xPortPendSVHandler

DCD xPortSysTickHandler

; External Interrupts

DCD DMA_IRQHandler ; 0: DMA Interrupt

DCD GPIO_EVEN_IRQHandler ; 1: GPIO_EVEN Interrupt

DCD TIMER0_IRQHandler ; 2: TIMER0 Interrupt

DCD USART0_RX_IRQHandler ; 3: USART0_RX Interrupt

DCD USART0_TX_IRQHandler ; 4: USART0_TX Interrupt

DCD ACMP0_IRQHandler ; 5: ACMP0 Interrupt

DCD ADC0_IRQHandler ; 6: ADC0 Interrupt

DCD DAC0_IRQHandler ; 7: DAC0 Interrupt

DCD I2C0_IRQHandler ; 8: I2C0 Interrupt

DCD GPIO_ODD_IRQHandler ; 9: GPIO_ODD Interrupt

DCD TIMER1_IRQHandler ; 10: TIMER1 Interrupt

DCD TIMER2_IRQHandler ; 11: TIMER2 Interrupt

DCD USART1_RX_IRQHandler ; 12: USART1_RX Interrupt

DCD USART1_TX_IRQHandler ; 13: USART1_TX Interrupt

DCD USART2_RX_IRQHandler ; 14: USART2_RX Interrupt

55

A.5 startup efm32.s A DEMO APPLICATION

DCD USART2_TX_IRQHandler ; 15: USART2_TX Interrupt

DCD UART0_RX_IRQHandler ; 16: UART0_RX Interrupt

DCD UART0_TX_IRQHandler ; 17: UART0_TX Interrupt

DCD LEUART0_IRQHandler ; 18: LEUART0 Interrupt

DCD LEUART1_IRQHandler ; 19: LEUART1 Interrupt

DCD LETIMER0_IRQHandler ; 20: LETIMER0 Interrupt

DCD PCNT0_IRQHandler ; 21: PCNT0 Interrupt

DCD PCNT1_IRQHandler ; 22: PCNT1 Interrupt

DCD PCNT2_IRQHandler ; 23: PCNT2 Interrupt

DCD SYSTICCK_IRQHandler;DCD RTC_IRQHandler ; 24: RTC

Interrupt

DCD CMU_IRQHandler ; 25: CMU Interrupt

DCD VCMP_IRQHandler ; 26: VCMP Interrupt

DCD LCD_IRQHandler ; 27: LCD Interrupt

DCD MSC_IRQHandler ; 28: MSC Interrupt

DCD AES_IRQHandler ; 29: AES Interrupt

__Vectors_End

__Vectors EQU __vector_table

__Vectors_Size EQU __Vectors_End - __Vectors

;;

;;

;; Default interrupt handlers.

;;

THUMB

PUBWEAK Reset_Handler

SECTION .text:CODE:REORDER (2)

Reset_Handler

LDR R0, =SystemInit

BLX R0

LDR R0, =__iar_program_start

BX R0

PUBWEAK NMI_Handler

SECTION .text:CODE:REORDER (1)

NMI_Handler

B NMI_Handler

PUBWEAK HardFault_Handler

SECTION .text:CODE:REORDER (1)

HardFault_Handler

B HardFault_Handler

PUBWEAK MemManage_Handler

SECTION .text:CODE:REORDER (1)

MemManage_Handler

B MemManage_Handler

PUBWEAK BusFault_Handler

SECTION .text:CODE:REORDER (1)

BusFault_Handler

B BusFault_Handler

PUBWEAK UsageFault_Handler

56

A DEMO APPLICATION A.5 startup efm32.s

SECTION .text:CODE:REORDER (1)

UsageFault_Handler

B UsageFault_Handler

PUBWEAK vPortSVCHandler

SECTION .text:CODE:REORDER (1)

vPortSVCHandler

B vPortSVCHandler

PUBWEAK DebugMon_Handler

SECTION .text:CODE:REORDER (1)

DebugMon_Handler

B DebugMon_Handler

PUBWEAK xPortPendSVHandler

SECTION .text:CODE:REORDER (1)

xPortPendSVHandler

B xPortPendSVHandler

PUBWEAK SYSTICCK_IRQHandler

SECTION .text:CODE:REORDER (1)

SYSTICCK_IRQHandler

B SYSTICCK_IRQHandler

; EFM32G specific interrupt handlers

PUBWEAK DMA_IRQHandler

SECTION .text:CODE:REORDER (1)

DMA_IRQHandler

B DMA_IRQHandler

PUBWEAK GPIO_EVEN_IRQHandler

SECTION .text:CODE:REORDER (1)

GPIO_EVEN_IRQHandler

B GPIO_EVEN_IRQHandler

PUBWEAK TIMER0_IRQHandler

SECTION .text:CODE:REORDER (1)

TIMER0_IRQHandler

B TIMER0_IRQHandler

PUBWEAK USART0_RX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART0_RX_IRQHandler

B USART0_RX_IRQHandler

PUBWEAK USART0_TX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART0_TX_IRQHandler

B USART0_TX_IRQHandler

PUBWEAK ACMP0_IRQHandler

SECTION .text:CODE:REORDER (1)

ACMP0_IRQHandler

B ACMP0_IRQHandler

PUBWEAK ADC0_IRQHandler

SECTION .text:CODE:REORDER (1)

57

A.5 startup efm32.s A DEMO APPLICATION

ADC0_IRQHandler

B ADC0_IRQHandler

PUBWEAK DAC0_IRQHandler

SECTION .text:CODE:REORDER (1)

DAC0_IRQHandler

B DAC0_IRQHandler

PUBWEAK I2C0_IRQHandler

SECTION .text:CODE:REORDER (1)

I2C0_IRQHandler

B I2C0_IRQHandler

PUBWEAK GPIO_ODD_IRQHandler

SECTION .text:CODE:REORDER (1)

GPIO_ODD_IRQHandler

B GPIO_ODD_IRQHandler

PUBWEAK TIMER1_IRQHandler

SECTION .text:CODE:REORDER (1)

TIMER1_IRQHandler

B TIMER1_IRQHandler

PUBWEAK TIMER2_IRQHandler

SECTION .text:CODE:REORDER (1)

TIMER2_IRQHandler

B TIMER2_IRQHandler

PUBWEAK USART1_RX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART1_RX_IRQHandler

B USART1_RX_IRQHandler

PUBWEAK USART1_TX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART1_TX_IRQHandler

B USART1_TX_IRQHandler

PUBWEAK USART2_RX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART2_RX_IRQHandler

B USART2_RX_IRQHandler

PUBWEAK USART2_TX_IRQHandler

SECTION .text:CODE:REORDER (1)

USART2_TX_IRQHandler

B USART2_TX_IRQHandler

PUBWEAK UART0_RX_IRQHandler

SECTION .text:CODE:REORDER (1)

UART0_RX_IRQHandler

B UART0_RX_IRQHandler

PUBWEAK UART0_TX_IRQHandler

SECTION .text:CODE:REORDER (1)

UART0_TX_IRQHandler

B UART0_TX_IRQHandler

58

A DEMO APPLICATION A.5 startup efm32.s

PUBWEAK LEUART0_IRQHandler

SECTION .text:CODE:REORDER (1)

LEUART0_IRQHandler

B LEUART0_IRQHandler

PUBWEAK LEUART1_IRQHandler

SECTION .text:CODE:REORDER (1)

LEUART1_IRQHandler

B LEUART1_IRQHandler

PUBWEAK LETIMER0_IRQHandler

SECTION .text:CODE:REORDER (1)

LETIMER0_IRQHandler

B LETIMER0_IRQHandler

PUBWEAK PCNT0_IRQHandler

SECTION .text:CODE:REORDER (1)

PCNT0_IRQHandler

B PCNT0_IRQHandler

PUBWEAK PCNT1_IRQHandler

SECTION .text:CODE:REORDER (1)

PCNT1_IRQHandler

B PCNT1_IRQHandler

PUBWEAK PCNT2_IRQHandler

SECTION .text:CODE:REORDER (1)

PCNT2_IRQHandler

B PCNT2_IRQHandler

PUBWEAK xPortSysTickHandler

SECTION .text:CODE:REORDER (1)

xPortSysTickHandler

B xPortSysTickHandler

PUBWEAK CMU_IRQHandler

SECTION .text:CODE:REORDER (1)

CMU_IRQHandler

B CMU_IRQHandler

PUBWEAK VCMP_IRQHandler

SECTION .text:CODE:REORDER (1)

VCMP_IRQHandler

B VCMP_IRQHandler

PUBWEAK LCD_IRQHandler

SECTION .text:CODE:REORDER (1)

LCD_IRQHandler

B LCD_IRQHandler

PUBWEAK MSC_IRQHandler

SECTION .text:CODE:REORDER (1)

MSC_IRQHandler

B MSC_IRQHandler

PUBWEAK AES_IRQHandler

59

A.5 startup efm32.s A DEMO APPLICATION

SECTION .text:CODE:REORDER (1)

AES_IRQHandler

B AES_IRQHandler

END

60

B CODE

B Code

B.1 energymode.c

This file was developed as a part of this thesis.

#include "energymodes.h"

/* If this flag is set we will disconnect the debug interface to allow

* going down when debugger is connected. However this will disable

debug

* access , and thus can be a potential hazard if we’re locked out from

* debug completly */

#undef DISCONNECT_DEBUG_INTERFACE

#define RTCTICKFREQ (configRTCCLOCKFREQUENCY /((1<< configRTCDIVIDER)))

void EM_Enter(unsigned char em)

{

int dmaclk , auxclk;

/* Disable AUXHFRCO (debug clock prevents E Modes) */

if (CMU ->STATUS & CMU_STATUS_AUXHFRCOENS)

{

auxclk = 1;

CMU ->OSCENCMD = CMU_OSCENCMD_AUXHFRCODIS;

}

/* Make sure DMA clock is running to enter EM2 (see chip errata) */

if (CMU ->HFCORECLKEN0 & CMU_HFCORECLKEN0_DMA)

{

dmaclk = 1;

}

else

{

CMU ->HFCORECLKEN0 |= CMU_HFCORECLKEN0_DMA;

dmaclk = 0;

}

/* Disconnect debug interface (disable pull -up/down) */

#if defined(DISCONNECT_DEBUG_INTERFACE)

GPIO ->ROUTE = 0;

#endif

if(em==1){

//EM 1

SCB ->SCR &= ~(1 << SCB_SCR_SLEEPDEEP_Pos);

}else if(em==2) {

//EM2

SCB ->SCR |= (1 << SCB_SCR_SLEEPDEEP_Pos);

}else if(em ==3){

SCB ->SCR |= (1 << SCB_SCR_SLEEPDEEP_Pos);

CMU ->OSCENCMD = CMU_OSCENCMD_LFXODIS | CMU_OSCENCMD_LFRCODIS;

}

__WFE();

if(em==3){

CMU ->OSCENCMD = CMU_OSCENCMD_LFXOEN | CMU_OSCENCMD_LFRCOEN;

61

B.1 energymode.c B CODE

}

#if configUSE_HFXO_AS_HFCLK == 1

CMU ->OSCENCMD = CMU_OSCENCMD_HFXOEN;

while (!(CMU ->STATUS & CMU_STATUS_HFXORDY)) ;

CMU ->CMD=CMU_CMD_HFCLKSEL_HFXO;

#endif

/* Renenable AUXHFRCO */

if (auxclk == 1)

{

CMU ->OSCENCMD = CMU_OSCENCMD_AUXHFRCOEN;

}

/* Restore DMA clock (see chip errata) */

if (! dmaclk)

{

CMU ->HFCORECLKEN0 &= ~CMU_HFCORECLKEN0_DMA;

}

}

/*Used to compensate for rounding errors.*/

unsigned int rtcOverflows =0;

unsigned int numberOfSleeps = 0;

portTickType xSleepWhileIdle (){

portTickType xTickCountIncrement =0;

/*Make sure the eventregister is set to 0 before we interrupts

are disabled.*/

__SEV();

__WFE();

portENTER_CRITICAL ();

/*Get tickcount , cant use xTaskGetTickCount () since it enables

interrupts */

portTickType currentTick = xTaskGetTickCount ();

unsigned char emToGoTo = ucTaskEmAllowed ();

if(emToGoTo ==0)

{

return 0;

}

/*If the RTC is syncing the previously written value of COMP0 ,

it is

not safe to go to sleep now*/

if(RTC ->SYNCBUSY){

return 0;

}

/* tickNextEvent is set to portMAX_DELAY. We will not try to

sleep

longer than that. If the tick count is going to overflow before

the next

event , we will wake up in time to handle it.*/

portTickType tickNextEvent = portMAX_DELAY;

#if configUSE_CO_ROUTINES == 1

portTickType nextCoRoutine= xCoRoutineNextTick(currentTick);

if(nextCoRoutine == 0 || nextCoRoutine < currentTick){

return 0;

}else{

62

B CODE B.1 energymode.c

tickNextEvent=nextCoRoutine;

}

#endif

portTickType nextTask = xTaskNextTick ();

if(nextTask ==0 || nextTask < currentTick){

return 0;

}else{

if(nextTask <tickNextEvent){

tickNextEvent=nextTask;

}

}

portTickType ticksUntillNextEvent = tickNextEvent - currentTick;

if(ticksUntillNextEvent <2){

return 0;

}

/*Check against overflow in calculation of rtcWakeUpVal */

if((ticksUntillNextEvent -1) >=((0 xFFFFFFFF)/RTCTICKFREQ))

{

ticksUntillNextEvent =((0 xFFFFFFFF)/RTCTICKFREQ);

}

unsigned int rtcCountBefore = RTC ->CNT;

SysTick ->CTRL &= ~(1 << SysTick_CTRL_ENABLE_Pos); //Stop the

systick counter

unsigned int rtcTickcUntillWakeup = (((ticksUntillNextEvent -1)*

RTCTICKFREQ)/configTICK_RATE_HZ);

#if configUSE_HFXO_AS_HFCLK == 1

/* If HFXO is used as core clock , compensate for the long

startup time of the clock.

* By default it takes 16384 cycles to start it up.

*

* This could be changed to read what startup time is

confgured for HFXO in the CMU

*/

if(rtcTickcUntillWakeup > 16384* RTCTICKFREQ /14000000){

rtcTickcUntillWakeup -= 16384* RTCTICKFREQ /14000000;

}else{

SysTick ->CTRL |= (1 << SysTick_CTRL_ENABLE_Pos); //Start

the systick counter

return 0;

}

#endif

unsigned int rtcWakeUpVal=rtcTickcUntillWakeup+rtcCountBefore;

/*

* Guard against overflow in the RTC CNT register.

* Needed because we can not guarentee if it overflowed before

or after we read it.

*

* If it is less then 4 rtc ticks untill we have to wake up , we

can not go to sleep.

* since it can take up to 3 cycles to synchronize the value

into RTC ->COMP0

63

B.1 energymode.c B CODE

*/

if(RTC ->IF & RTC_IF_OF || rtcTickcUntillWakeup <4){

SysTick ->CTRL |= (1 << SysTick_CTRL_ENABLE_Pos); //Start the

systick counter

return 0;

}

if(rtcWakeUpVal >0 xFFFFFF){

RTC ->COMP0=0 xFFFFFF;

}else{

RTC ->COMP0=rtcWakeUpVal;

}

if(rtcWakeUpVal <= rtcCountBefore){

while (1);

}

if(tickNextEvent <= currentTick){

while (1);

}

EM_Enter(emToGoTo);

unsigned int rtcCounterValue = RTC ->CNT;

SysTick ->CTRL |= (1 << SysTick_CTRL_ENABLE_Pos); //Start the

systick counter

unsigned int rtcTicksElapsed;

if(RTC ->IF & RTC_IF_OF){

rtcCounterValue = RTC ->CNT;

rtcTicksElapsed = (rtcCounterValue +0xFFFFFF -rtcCountBefore);

}else{

rtcTicksElapsed =(rtcCounterValue - rtcCountBefore);

}

RTC ->COMP0=0 x00FFFFFF;

xTickCountIncrement=rtcTicksElapsed*configTICK_RATE_HZ/

RTCTICKFREQ;

/*

* These next lines are to compensate for rounding errors.

* Since the xTickCountIncrement calculation above is done with

a integer division , it will

* always round down. Over time , this leads to a big drift on

the time.

*

* Another source of error is the fact that we do know where on

the RTC clock the CNT value is read.

* This leads to a error of up to one period of the RTC clock

each time we co to sleep.

* Over time , this also leads to an error.

*

* To compensate for this xTickCountIncrement is incremented by

1 if the time in xTickCount (in task.c)

* is behind the time reported by the number of RTC ticks.

*

* To make it simpler to handle overflows , 64 bit arithmetic is

used at the moment.

*

* The effect of this scheme of correcting rounding errors , is

that the xTickCount (in task.c)

64

B CODE B.2 checktiming.c

* follows the RTC clock.

*/

uint64_t currentTickFromRTC = ((uint64_t) rtcOverflows <<24 |

rtcCounterValue)* (uint64_t)configTICK_RATE_HZ/RTCTICKFREQ;

uint64_t currentTickInXTickCount = (uint64_t)((uint64_t)

lTaskGetNumberOfOverflows () <<32| currentTick)+

xTickCountIncrement;

if(currentTickFromRTC >currentTickInXTickCount){

if(xTickCountIncrement +1< ticksUntillNextEvent){

xTickCountIncrement +=1;

}

}else if(currentTickFromRTC <currentTickInXTickCount){

if(xTickCountIncrement >0){

xTickCountIncrement --;

}

}

numberOfSleeps ++;

if(xTickCountIncrement >= ticksUntillNextEvent){

while (1);//wtf happenend?

}

return xTickCountIncrement;

}

B.2 checktiming.c

This file was developed as a part of this thesis.

#include "checktiming.h"

#define RTCTICKFREQ (configRTCCLOCKFREQUENCY /((1<< configRTCDIVIDER)))

void LETIMER_init (){

CMU ->LFAPRESC0 &= ~_CMU_LFAPRESC0_LETIMER0_MASK;

CMU ->LFAPRESC0 |= _CMU_LFAPRESC0_LETIMER0_DIV32 <<

_CMU_LFAPRESC0_LETIMER0_SHIFT;

CMU ->LFACLKEN0 |= CMU_LFACLKEN0_LETIMER0;

while (CMU ->SYNCBUSY) ;

NVIC_DisableIRQ(LETIMER0_IRQn);

NVIC_ClearPendingIRQ(LETIMER0_IRQn);

NVIC_EnableIRQ(LETIMER0_IRQn);

NVIC_SetPriority(LETIMER0_IRQn ,7);

LETIMER0 ->IEN=LETIMER_IEN_UF;

LETIMER0 ->COMP0 =0; // Count down to 0, at frequency 256Hz. Should

take 511 seconds.

LETIMER0 ->CMD = LETIMER_CMD_START;

LETIMER0 ->IFC=LETIMER_IFC_UF;

while(LETIMER0 ->SYNCBUSY);

}

extern unsigned int numberOfSleeps;

int underflows =0;

char pcOutput3 [100];

int maxDiff =0;// Maximum change between two diffs

int previous =6;

extern unsigned int rtcOverflows;

65

B.3 Application B CODE

void vCheckTiming(void *pvParameters)

{

LETIMER_init ();

for (;;){

vTaskDelay (5000/ portTICK_RATE_MS);

portTickType currentTick=xTaskGetTickCount ();

unsigned int tickFromLetimer = underflows < <16|(0xFFFF -LETIMER0 ->

CNT);

tickFromLetimer = ((uint64_t) tickFromLetimer * (uint64_t)

configTICK_RATE_HZ) / (uint64_t) (configRTCCLOCKFREQUENCY

/32);

int currentDiff = currentTick -tickFromLetimer;

int diffFromPrev = currentDiff - previous;

if(abs(diffFromPrev)>maxDiff){

maxDiff = abs(diffFromPrev);

}

previous = currentDiff;

int currentTickFromRTC =((uint64_t) rtcOverflows <<24 | RTC ->CNT)

* (uint64_t) configTICK_RATE_HZ/RTCTICKFREQ;

sprintf(pcOutput3 ,"timer: %d, %d, %d, %d, %d\r\n\0",currentTick ,

tickFromLetimer ,currentDiff ,maxDiff ,numberOfSleeps);

vSerialPutString(pcOutput3 ,strlen(pcOutput3));

}

}

void LETIMER0_IRQHandler (){

if(LETIMER0 ->IF & LETIMER_IF_UF){

underflows ++;

LETIMER0 ->IFC = LETIMER_IFC_UF;

}

}

B.3 Application

B.3.1 main.c

This file was developed as a part of this thesis.

#include <stdio.h>

#include <stdlib.h>

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

#include "croutine.h"

#include "rtc.h"

#include "dvk.h"

#include "crflash.h"

#include "serial.h"

#include "i2cdrv.h"

#include "checktiming.h"

#include "inithw.h"

66

B CODE B.3 Application

#include "measurement.h"

#include "lcdtest.h"

#include "serial.h"

#if configUSE_TICKLESSIDLE == 0

#define vTaskCanGoToEM(x)

#endif

#define mainMEASUREMENT_PRIORITY (tskIDLE_PRIORITY + 1)

#define mainCHECKTIMING_PRIORITY (mainMEASUREMENT_PRIORITY)

#define mainRXLEUART_PRIORITY (mainMEASUREMENT_PRIORITY)

#define mainSTACK_SIZE_FOR_TASK_USING_SPRINTF (

configMINIMAL_STACK_SIZE + 50)

xSemaphoreHandle bsemLetimerFlashLed;

xComPortHandle * portHandle;

/*

* vTaskRxLeuart continuously reads characters from the LEUART.

* It provides the xSerialGetString () function with a buffer big

enough

* to store the maximum size of the receive buffer.

*

* When it recives a string , it sends the string back to the LEUART ,

adding

* text before and a line feed after the string.

*/

static void vTaskRxLeuart(void *pvParameters);

/*

**

*//**

* @brief Main function

**

*/

static void vTaskCalc(void *pvParameters)

{

portTickType time;

vTaskCanGoToEM (2);

for (;;){

vTaskDelay (40);

time = xTaskGetTickCount ();

while(xTaskGetTickCount ()<time +360);

}

}

int main(void)

{

inithw ();

vSemaphoreCreateBinary(bsemLetimerFlashLed);

// xTaskCreate(vLCDTask , "LCD", configMINIMAL_STACK_SIZE , NULL , 2,

NULL);

xTaskCreate(vMeasurementTemp , "Temperature",

mainSTACK_SIZE_FOR_TASK_USING_SPRINTF , NULL ,

mainMEASUREMENT_PRIORITY , NULL);

xTaskCreate(vTaskRxLeuart , "RXLEUART", configMINIMAL_STACK_SIZE ,

NULL ,mainRXLEUART_PRIORITY , NULL);

67

B.3 Application B CODE

xTaskCreate(vMeasurementLight , "Light",

mainSTACK_SIZE_FOR_TASK_USING_SPRINTF , NULL ,tskIDLE_PRIORITY ,

NULL);

// xTaskCreate(vTaskCalc , "Calc",

mainSTACK_SIZE_FOR_TASK_USING_SPRINTF , NULL ,tskIDLE_PRIORITY ,

NULL);

// xTaskCreate(vCheckTiming , "Check",

mainSTACK_SIZE_FOR_TASK_USING_SPRINTF , NULL ,

mainCHECKTIMING_PRIORITY , NULL);

#if configUSE_CO_ROUTINES == 1

vStartFlashCoRoutines (2);

#endif

vTaskStartScheduler ();

return 0;

}

/*

* This task listens to the RS223 bus , if the first character read is

[0-3] it

* set this as the energy mode used.

*

* It also echos back the string read.

*/

static void vTaskRxLeuart(void *pvParameters)

{

/*

* Buffer used to to give to xSerialGetString , it is important that it

* has roomfor all the chars the function might write.

*/

static char rxBuffer[RXBUFFERSIZE];

/*

* Buffer used to send over the LEUART.

*/

static char txBuffer[RXBUFFERSIZE +25];

vTaskCanGoToEM (2);

for(;;)

{

xSerialGetString(rxBuffer);

switch (rxBuffer [0])

{

case ’0’: vTaskCanGoToEM (0);

break;

case ’1’: vTaskCanGoToEM (1);

break;

case ’2’: vTaskCanGoToEM (2);

break;

case ’3’: vTaskCanGoToEM (3);

break;

default:

break;

}

sprintf(txBuffer ,"Received: \"%s\" \r\n",rxBuffer);

vSerialPutString(txBuffer ,strlen(txBuffer));

68

B CODE B.3 Application

}

}

void vApplicationIdleHook(void)

{

#if configUSE_CO_ROUTINES == 1

vCoRoutineSchedule ();

#endif

}

vApplicationStackOverflowHook(xTaskHandle *pxTask , signed portCHAR *

pcTaskName){

while (1);

}

B.3.2 measurement.c

This file was developed as a part of this thesis.
#include "measurement.h"

#if configUSE_TICKLESSIDLE == 0

#define vTaskCanGoToEM(x)

#endif

/*Three functions to to some calculation on the Light values */

static double prvMin(double * array);

static double prvMax(double * array);

static double prvAvg(double * array);

#define measurmentPOWERDELAY 1000

static char* createTemperatureString(TEMPSENS_Temp_TypeDef *);

/*Queue with ADC result */

extern xQueueHandle xQueueADC0Result;

/*Array of ADC values */

static double prvValues [10];

/*Used by booth tasks to store the string they want to send over

LEUART */

char pcOutput [150];

void vMeasurementLight(void *pvParameters)

{

int receive = 0;

portTickType xLastWakeTime;

CMU_ClockEnable(cmuClock_ADC0 ,1);

vTaskDelay (750);

xLastWakeTime = xTaskGetTickCount ();

for(;;)

{

for(int i =0;i<10;i++){

vTaskCanGoToEM (1);

ADC0 ->CMD=ADC_CMD_SINGLESTART;

xQueueReceive(xQueueADC0Result , &receive , portMAX_DELAY);

prvValues[i]= receive;

vTaskCanGoToEM (2);

vTaskDelayUntil (& xLastWakeTime ,measurmentPOWERDELAY/

portTICK_RATE_MS);

69

B.3 Application B CODE

}

for(int i = 0;i<60;i++){

sprintf(pcOutput ,"Light Level: max: %f, min: %f, avg

: %f

\r\n",prvMax(prvValues),prvMin(prvValues),prvAvg

(prvValues));

}

vSerialPutString(pcOutput ,strlen(pcOutput));

}

}

void vMeasurementTemp(void *pvParameters)

{

portTickType xLastWakeTime;

int stack = uxTaskGetStackHighWaterMark(NULL);

TEMPSENS_Temp_TypeDef temp;

int returnValue;

vTaskDelay (250);

xLastWakeTime = xTaskGetTickCount ();

for(;;)

{

vTaskCanGoToEM (1);

returnValue= TEMPSENS_TemperatureGet(I2C0 ,

TEMPSENS_DVK_ADDR ,&temp);

vTaskCanGoToEM (3);

if(returnValue <0){

sprintf(pcOutput ,"Temperature: invalid :\r\n");

}else{

sprintf(pcOutput ,"Temperature: %s

\r\n",createTemperatureString (&temp));

}

vSerialPutString(pcOutput ,strlen(pcOutput));

vTaskDelayUntil (& xLastWakeTime ,measurmentPOWERDELAY/

portTICK_RATE_MS);

}

}

static double prvMin(double * array){

double min = 10E37;

for(int i = 0; i<10;i++){

if(array[i]<min){

min=array[i];

}

}

return min;

}

static double prvMax(double * array){

double max = 0;

for(int i = 0; i<10;i++){

if(array[i]>max){

max=array[i];

}

}

70

B CODE B.3 Application

return max;

}

static double prvAvg(double * array){

double sum = 0;

for(int i = 0; i<10;i++){

sum+=array[i];

}

return sum /10;

}

char text [8];

static char* createTemperatureString(TEMPSENS_Temp_TypeDef * temp){

int showFahrenheit = 0;

/* Work with local copy in case conversion to Fahrenheit is required

*/

TEMPSENS_Temp_TypeDef dtemp;

dtemp = *temp;

memset(text , ’ ’, sizeof(text) - 1);

text[sizeof(text) - 1] = 0;

text [7] = ’\0’;

if (showFahrenheit)

{

text [6] = ’F’;

TEMPSENS_Celsius2Fahrenheit (&dtemp);

}

else

{

text [6] = ’C’;

}

/* Round temperature to nearest 0.5 */

if (dtemp.f >= 0)

{

dtemp.i += (dtemp.f + 2500) / 10000;

dtemp.f = (((dtemp.f + 2500) % 10000) / 5000) * 5000;

}

else

{

dtemp.i += (dtemp.f - 2500) / 10000;

dtemp.f = (((dtemp.f - 2500) % 10000) / 5000) * 5000;

}

if ((dtemp.i < 0) || (dtemp.f < 0))

{

text [0] = ’-’;

}

else

{

text [0] = ’+’;

}

/* 100s */

if (abs(dtemp.i) >= 100)

text [1] = ’0’ + (abs(dtemp.i) / 100);

71

B.3 Application B CODE

/* 10s */

if (abs(dtemp.i) >= 10)

text [2] = ’0’ + ((abs(dtemp.i) % 100) / 10);

/* 1s */

text [3] = ’0’ + (abs(dtemp.i) % 10);

text [4] = ’.’;

/* 0.1s */

text [5] = ’0’ + (abs(dtemp.f) / 1000);

return text;

}

B.3.3 adc.c

This file was developed as a part of this thesis.
#include "adc.h"

xQueueHandle xQueueADC0Result;

/*

**

*//**

* @brief ADC0 interrupt handler

**

*/

void ADC0_IRQHandler(void)

{

ADC_TypeDef *adc = ADC0;

uint16_t cRx;

portBASE_TYPE xHigherPriorityTaskWoken=pdFALSE;

if (adc ->IF & ADC_IF_SINGLE)

{

cRx = adc ->SINGLEDATA;

xQueueSendFromISR(xQueueADC0Result ,&cRx ,&

xHigherPriorityTaskWoken);

adc ->CMD=ADC_CMD_SINGLESTOP;

adc ->IFC = 0xFF;

}

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

}

void initADC (){

/* Amient Light sensor gives out values between 0.1 to 2V

* Refference of 2.5V is used.

*/

DVK_enablePeripheral(DVK_AMBIENT);

xQueueADC0Result = xQueueCreate(1, (unsigned portBASE_TYPE)

sizeof(uint16_t));

CMU ->HFPERCLKEN0 |= CMU_HFPERCLKEN0_ADC0;

ADC_TypeDef *adc= ADC0;

/* Clear all pending interrupts */

adc ->IFC = _ADC_IFC_MASK;

adc ->IEN = ADC_IEN_SINGLE;

NVIC_SetPriority(ADC0_IRQn ,7);

/* Enable interrupt in Cortex Core */

NVIC_ClearPendingIRQ(ADC0_IRQn);

72

B CODE B.4 Diff for task.c in FreeRTOS

NVIC_EnableIRQ(ADC0_IRQn);

DVK_enablePeripheral(DVK_I2C);

ADC0 ->SINGLECTRL = ADC_SINGLECTRL_AT_256CYCLES|

ADC_SINGLECTRL_INPUTSEL_CH5 | ADC_SINGLECTRL_REF_2V5;

// CMU_ClockEnable(cmuClock_ADC0 ,0);

}

B.4 Diff for task.c in FreeRTOS

This shows the changes made to task.c as a part of this thesis.

--- FreeRTOS6040rignal/FreeRTOS/Source/tasks.c Sun Mar 14 12:38:14

2010

+++ martintv -master.git/FreeRTOS/Source/tasks.c Wed May 26 10:01:09

2010

@@ -113,6 +113,9 @@

#if (configGENERATE_RUN_TIME_STATS == 1)

unsigned long ulRunTimeCounter; /*< Used for calculating how

much CPU time each task is utilising. */

#endif

+ #if (configUSE_TICKLESSIDLE == 1)

+ unsigned portBASE_TYPE ucEmAbleToGoTo;

+ #endif

} tskTCB;

@@ -136,6 +139,9 @@

PRIVILEGED_DATA static xList * volatile pxDelayedTaskList ;

/*< Points to the delayed task list currently being used. */

PRIVILEGED_DATA static xList * volatile pxOverflowDelayedTaskList;

/*< Points to the delayed task list currently being used to

hold tasks that have overflowed the current tick count. */

PRIVILEGED_DATA static xList xPendingReadyList;

/*< Tasks that have been readied while the scheduler was

suspended. They will be moved to the ready queue when the

scheduler is resumed. */

+#if configUSE_TICKLESSIDLE == 1

+ PRIVILEGED_DATA static unsigned portBASE_TYPE pucTaksAbleToGoToEM[

configENERGYMODES];

+#endif

#if (INCLUDE_vTaskDelete == 1)

@@ -553,6 +559,9 @@

scheduler for the TCB and stack. */

vListRemove(&(pxTCB ->xGenericListItem));

+ #if configUSE_TICKLESSIDLE == 1

+ pucTaksAbleToGoToEM [(pxTCB ->ucEmAbleToGoTo)]--;

+ #endif

/* Is the task waiting on an event also? */

if(pxTCB ->xEventListItem.pvContainer)

{

@@ -1826,9 +1835 ,56 @@

vApplicationIdleHook ();

73

B.4 Diff for task.c in FreeRTOS B CODE

}

#endif

+

+ #if (configUSE_TICKLESSIDLE == 1)

+ extern portTickType xSleepWhileIdle ();

+ portTickType tickSlept=xSleepWhileIdle ();

+ xTickCount += tickSlept;

+ portEXIT_CRITICAL ();

+ #endif

}

} /*lint !e715 pvParameters is not accessed but all task functions

require the same prototype. */

+#if configUSE_TICKLESSIDLE == 1

+ portTickType xTaskNextTick(void){

+ /*If any tasks are ready to run , start from the top of idle

loop again ,

+ and turn on interrupts. The fact that uxTopReadyPriority is

used to check

+ if any tasks are ready to run will ignore tasks sharing the

priority of the

+ idle task*/

+ if(uxTopReadyPriority >0 || xPendingReadyList.uxNumberOfItems

>0

+ || pxReadyTasksLists [0]. uxNumberOfItems >1){

+ return 0;

+ }

+ /*Find out when the next task is to be woken up, and set

tickNextEvent to

+ this value if it is smaller.*/

+ if(pxDelayedTaskList ->uxNumberOfItems >0){

+ return (pxDelayedTaskList ->xListEnd.pxNext ->xItemValue);

+ }else{

+ return portMAX_DELAY;

+ }

+ }

+

+ void vTaskCanGoToEM(unsigned portBASE_TYPE em){

+ vPortEnterCritical ();

+ pucTaksAbleToGoToEM[pxCurrentTCB ->ucEmAbleToGoTo]--;

+ pucTaksAbleToGoToEM[em]++;

+ pxCurrentTCB ->ucEmAbleToGoTo = em;

+ vPortExitCritical ();

+ }

+

+ unsigned portBASE_TYPE ucTaskEmAllowed (){

+ for(int i = 0; i < configENERGYMODES;i++){

+ if(pucTaksAbleToGoToEM[i] > 0){

+ return i;

+ }

+ }

+ return configENERGYMODES -1;

+ }

+

+ portBASE_TYPE lTaskGetNumberOfOverflows (){

+ return xNumOfOverflows;

+ }

74

B CODE B.5 C++ program simulating GPS

+#endif

@@ -1904,6 +1960 ,10 @@

(void) xRegions;

(void) usStackDepth;

}

+ #endif

+ #if (configUSE_TICKLESSIDLE == 1)

+ pxTCB ->ucEmAbleToGoTo = confgiDEFAULT_EM_FOR_NEW_TASK;

+ pucTaksAbleToGoToEM[confgiDEFAULT_EM_FOR_NEW_TASK]++;

#endif

}

/* ---*/

B.5 C++ program simulating GPS

This file was developed as a part of this thesis.

#include <iostream >

#include <windows.h>

#include <process.h>

#include <string.h>

#include <ctime >

using namespace std;

void receive(void *arg);

HANDLE hSerial;

int main(void){

hSerial=CreateFile(TEXT("COM1"), GENERIC_READ|GENERIC_WRITE , 0, 0,

OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,0);

if(hSerial == INVALID_HANDLE_VALUE){

if(GetLastError ()== ERROR_FILE_NOT_FOUND){

cout << "Does not exsist" << endl;

}

cout << "Some other error" << endl;

}

DCB dcbSerial;

DCB dcbSerialParams ={0};

dcbSerial.DCBlength=sizeof(dcbSerialParams);

if(! GetCommState(hSerial ,& dcbSerialParams)){

cout << "Error getting state" << endl;

}

dcbSerialParams.BaudRate=CBR_9600;

dcbSerialParams.ByteSize =8;

dcbSerialParams.StopBits=ONESTOPBIT;

dcbSerialParams.Parity=NOPARITY;

if(! SetCommState(hSerial ,& dcbSerialParams)){

cout <<"error setting serial port state" << endl;

}

HANDLE whSerial=CreateFile(TEXT("Z:\\fag\\ master \\ report \\martintv -

master \\plot\\ powerMeasurment"), GENERIC_WRITE , 0, 0,

CREATE_ALWAYS , FILE_ATTRIBUTE_NORMAL ,0);

if(whSerial == INVALID_HANDLE_VALUE){

if(GetLastError ()== ERROR_FILE_NOT_FOUND){

cout << "Does not exsist" << endl;

75

B.5 C++ program simulating GPS B CODE

}

cout << "Some other error 2" << endl;

}

int run =1;

int write = 1;

bool startNewThread = true;

while(run){

char szBuff [2]={0};

DWORD dwBytesRead =0;

if(! ReadFile(hSerial ,szBuff ,1,& dwBytesRead ,NULL)){

cout << "Error receiving!"<<endl;

// erroroccurred.Reporttouser.

}

if(dwBytesRead == 1){

cout << szBuff [0];

if(write ==1)

{

string h(1,szBuff [0]);

DWORD dwBytesRead =0;

if(! WriteFile(whSerial ,h.c_str(),h.length () ,&dwBytesRead ,

NULL))

{

cout << "Error writing file" << endl;

write = 0;

}

FlushFileBuffers(whSerial);

}

if(startNewThread)

{

_beginthread(receive , 0, (void*)12);

startNewThread = false;

cout << "Started new thread" << endl;

}

}else{

cout <<"Received more or less then 1" << endl;

}

}

cout << "closing down! " <<endl;

CloseHandle(hSerial);

while (1);

}

void send(string s){

DWORD dwBytesRead =0;

if(! WriteFile(hSerial ,s.c_str(),s.length () ,&dwBytesRead ,NULL))

{

}

}

76

B CODE B.6 Drivers

void receive(void * arg)

{

Sleep (200);

while (1){

clock_t start_tick(clock());

send("$GPGGA ,123519 ,4807.038 ,N ,01131.000 ,E,1 ,08 ,0.9 ,545.4 ,M

,46.9,M, ,*47\r");

Sleep (500);

while(clock ()-start_tick < CLOCKS_PER_SEC);

}

}

B.6 Drivers

B.7 Serial

This file was developed as a part of this thesis. The prvLEUART1 Init function is
based on the serial driver from Energy Micro.

#include "FreeRTOS.h"

#include "queue.h"

#include "task.h"

#include "semphr.h"

#include "efm32_cmu.h"

#include "efm32_gpio.h"

#include "efm32_leuart.h"

#include "serial.h"

#include "efm32.h"

#include "dvk.h"

#define serialLEUART_SIGFRAME ’\r’

static xQueueHandle xRxedChars;

static xQueueHandle xCharsForTx;

static xSemaphoreHandle bsemI2C;

/*

**

*//**

* @brief Intializes LEUART1 for use as an output interface , 9600-8-N

-1

**

*/

static void prvLEUART1_Init(void)

{

LEUART_TypeDef *leuart = LEUART1;

LEUART_Init_TypeDef init;

/* Enable CORE LE clock in order to access LE modules */

CMU_ClockEnable(cmuClock_CORELE , true);

/* Do not prescale clock */

CMU_ClockDivSet(cmuClock_LEUART1 , cmuClkDiv_1);

77

B.7 Serial B CODE

/* Enable clock */

CMU_ClockEnable(cmuClock_LEUART1 , true);

/* Use default location 0: TX - Pin C6 , RX - Pin C7 */

/* To avoid false start , configure output as high */

GPIO_PinModeSet(gpioPortC , 6, gpioModePushPull , 1);

/* Define input , no filtering */

GPIO_PinModeSet(gpioPortC , 7, gpioModeInput , 0);

/* Enable pins at default location */

leuart ->ROUTE = LEUART_ROUTE_RXPEN | LEUART_ROUTE_TXPEN;

/* Configure LEUART1 */

init.enable = leuartDisable;

init.refFreq = 0;

init.baudrate = 9600;

init.databits = leuartDatabits8;

init.parity = leuartNoParity;

init.stopbits = leuartStopbits1;

LEUART_Init(leuart , &init);

/* Clear previous RX interrupts */

LEUART_IntClear(LEUART1 , LEUART_IF_RXDATAV);

NVIC_ClearPendingIRQ(LEUART1_IRQn);

/* Enable RX interrupts */

LEUART_IntEnable(LEUART1 , LEUART_IF_RXDATAV);

NVIC_EnableIRQ(LEUART1_IRQn);

NVIC_SetPriority(LEUART1_IRQn ,7);

LEUART_IntEnable(LEUART1 , LEUART_IF_TXC);

/* Finally enable it */

LEUART_Enable(leuart , leuartEnable);

}

/*

**

*//**

* @brief LEUART1 interrupt handler

**

*/

void LEUART1_IRQHandler(void)

{

LEUART_TypeDef *leuart = LEUART1;

portCHAR cRx;

portCHAR cTx;

portBASE_TYPE xHigherPriorityTaskWoken=pdFALSE;

if (leuart ->IF & LEUART_IF_RXDATAV)

{

cRx = leuart ->RXDATA;

xQueueSendFromISR(xRxedChars ,&cRx ,& xHigherPriorityTaskWoken);

}

if(leuart ->IF & LEUART_IF_TXC){

if(xQueueReceiveFromISR(xCharsForTx ,&cTx ,&

xHigherPriorityTaskWoken) == pdTRUE){

leuart ->TXDATA = 0xFF & cTx;

while(leuart ->SYNCBUSY);

78

B CODE B.7 Serial

}

leuart ->IFC = LEUART_IFC_TXC;

}

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

}

xComPortHandle xSerialPortInitMinimal(unsigned long ulWantedBaud ,

unsigned portBASE_TYPE uxQueueLength)

{

xRxedChars = xQueueCreate(uxQueueLength , (unsigned portBASE_TYPE

) sizeof(signed portCHAR));

xCharsForTx = xQueueCreate(uxQueueLength , (unsigned portBASE_TYPE

) sizeof(signed portCHAR));

vSemaphoreCreateBinary(bsemI2C);

CMU ->HFPERCLKEN0 |= CMU_HFPERCLKEN0_USART2;

DVK_enablePeripheral(DVK_RS232B);

if(xRxedChars != 0 && xCharsForTx !=0){

prvLEUART1_Init ();

return NULL;

}else{

return 0;

}

};

signed portBASE_TYPE xSerialPutChar(signed char cOutChar ,

portTickType xBlockTime){

if(xQueueSend(xCharsForTx ,&cOutChar ,xBlockTime)== pdPASS){

if(LEUART1 ->STATUS & LEUART_STATUS_TXBL){

if(!(LEUART1 ->SYNCBUSY & LEUART_SYNCBUSY_TXDATA)){

LEUART1 ->IFS |= LEUART_IFS_TXC;

}

}

return pdPASS;

}

return pdFAIL;

}

void vSerialPutString(char * pcString , unsigned short usStringLength

){

signed portCHAR * pcChar = (signed char *) pcString;

xSemaphoreTake(bsemI2C ,2);

while(* pcChar){

xSerialPutChar (*pcChar ,2);

pcChar ++;

}

xSemaphoreGive(bsemI2C);

}

/*

* Returns , in pcRxString the string read. The pointer needs

* to have room for RXBUFFERSIZE bytes.

*/

void xSerialGetString(char * pcRxedString)

{

int i = 0;

79

B.7 Serial B CODE

xQueueReceive(xRxedChars ,& pcRxedString[i],portMAX_DELAY);

while(pcRxedString[i] != serialLEUART_SIGFRAME & i < RXBUFFERSIZE){

i++;

xQueueReceive(xRxedChars ,& pcRxedString[i],portMAX_DELAY

);

}

pcRxedString[i] = ’\0’;// insert a \0 at the end to make it a

propper string.

}

B.7.1 Serial with DMA

This file was developed as a part of this thesis. The prvLEUART1 Init function is
based on the serial driver from Energy Micro.

/*Read this if LEUART and EM2 does not work!

Errata LEUART1:

LEUART + DMA

EM2 cannot be entered when transmit -

ting the last byte using LEUART and

DMA.

*/

#include "FreeRTOS.h"

#include "queue.h"

#include "task.h"

#include "semphr.h"

#include "efm32_cmu.h"

#include "efm32_gpio.h"

#include "efm32_leuart.h"

#include "serial.h"

#include "efm32.h"

#include "dvk.h"

#include "efm32_dma.h"

#define serialDMATXCHANEL 0

#define serialDMARXCHANEL 1

#define serialLEUART_SIGFRAME ’\r’

/*

* Semaphore used to Signal when the DMA cycle has completed.

* Is released in the DMACallback () function.

*/

static xSemaphoreHandle bsemDmaTx;

/*

* Used to ensure that only one task tries to use the DMA for TX at a

time.

*/

static xSemaphoreHandle bsemDmaActiveTx;

/*

* Semaphore used to signal when the DMA receive cycle has completed.

80

B CODE B.7 Serial

* Is released in the DMACallback () function

*/

static xSemaphoreHandle bsemDmaRx;

/*

* Called when a DMA cycle has completed.

*/

void DMACallback(unsigned int channel , bool primary , void *user);

/*

* Structs used to init the DMA

*/

DMA_Init_TypeDef init;

DMA_CB_TypeDef cbStruct;

DMA_CfgChannel_TypeDef chCfgStuctTx;

DMA_CfgDescr_TypeDef cfgDescrTx;

DMA_CfgChannel_TypeDef chCfgStuctRx;

DMA_CfgDescr_TypeDef cfgDescrRx;

/*

* Two buffers are used when receiving from the LEUART using the DMA ,

* too ensure that the DMA does not write over something before we are

* able to copy it.

*/

static char RxBuffer1[RXBUFFERSIZE];

static char RxBuffer2[RXBUFFERSIZE];

static char* RxBufferInUseByDMA = RxBuffer1;

static char* RxBufferIdle = RxBuffer2;

/*

**

*//**

* @brief Intializes LEUART1 for use as an output interface , 9600-8-N

-1

**

*/

static void prvLEUART1_Init(void)

{

LEUART_TypeDef *leuart = LEUART1;

LEUART_Init_TypeDef init;

/* Enable CORE LE clock in order to access LE modules */

CMU_ClockEnable(cmuClock_CORELE , true);

/* Do not prescale clock */

CMU_ClockDivSet(cmuClock_LEUART1 , cmuClkDiv_1);

/* Enable clock */

CMU_ClockEnable(cmuClock_LEUART1 , true);

/* Use default location 0: TX - Pin C6 , RX - Pin C7 */

/* To avoid false start , configure output as high */

GPIO_PinModeSet(gpioPortC , 6, gpioModePushPull , 1);

/* Define input , no filtering */

GPIO_PinModeSet(gpioPortC , 7, gpioModeInput , 0);

/* Enable pins at default location */

81

B.7 Serial B CODE

leuart ->ROUTE = LEUART_ROUTE_RXPEN | LEUART_ROUTE_TXPEN;

/* Configure LEUART1 */

init.enable = leuartDisable;

init.refFreq = 0;

init.baudrate = 9600;

init.databits = leuartDatabits8;

init.parity = leuartNoParity;

init.stopbits = leuartStopbits1;

LEUART_Init(leuart , &init);

/* Clear previous RX interrupts */

LEUART_IntClear(LEUART1 , LEUART_IF_SIGF);

NVIC_ClearPendingIRQ(LEUART1_IRQn);

LEUART1 ->CTRL |= LEUART_CTRL_TXDMAWU | LEUART_CTRL_RXDMAWU;

/* Enable RX interrupts */

LEUART_IntEnable(LEUART1 , LEUART_IEN_SIGF);

NVIC_EnableIRQ(LEUART1_IRQn);

while(LEUART1 ->SYNCBUSY);

NVIC_SetPriority(LEUART1_IRQn ,7);

LEUART1 ->SIGFRAME = serialLEUART_SIGFRAME;

/*If revision A of chip , TXC inerrupt and rxdatav must be active */

volatile uint32_t *reg = (volatile uint32_t *) 0xE00FFFE8;

uint32_t minor = reg[0] & 0xF0;

minor |= (reg [1] >> 4) & 0xF;

if (minor == 0)

{

LEUART1 ->IEN |= LEUART_IEN_TXC |LEUART_IEN_RXDATAV;

}

/* Finally enable it */

LEUART_Enable(leuart , leuartEnable);

}

xComPortHandle xSerialPortInitMinimal(unsigned long ulWantedBaud ,

unsigned portBASE_TYPE uxQueueLength)

{

vSemaphoreCreateBinary(bsemDmaTx);

bsemDmaActiveTx = xSemaphoreCreateMutex ();

vSemaphoreCreateBinary(bsemDmaRx);

xSemaphoreTake(bsemDmaTx ,portMAX_DELAY);

xSemaphoreTake(bsemDmaRx ,portMAX_DELAY);

CMU ->HFPERCLKEN0 |= CMU_HFPERCLKEN0_USART2;

DVK_enablePeripheral(DVK_RS232B);

init.hprot = 0;

char * tempPtr = pvPortMalloc ((16 * DMA_CHAN_COUNT * 2 * 2));

/*

*This if is needed to ensure that the pointer is alligned to 256

bits.

*/

if(((uint32_t)(tempPtr) & ((16 * DMA_CHAN_COUNT * 2) - 1))){

82

B CODE B.7 Serial

tempPtr = (char *) (~((16 * DMA_CHAN_COUNT * 2) - 1)&(uint32_t)

tempPtr);

tempPtr += ((16 * DMA_CHAN_COUNT * 2));

}

init.controlBlock =(DMA_DESCRIPTOR_TypeDef *) tempPtr;

DMA_Init (&init);

chCfgStuctTx.highPri =1;

chCfgStuctTx.enableInt = 1;

chCfgStuctTx.select = DMAREQ_LEUART1_TXEMPTY;

cbStruct = (DMA_CB_TypeDef){DMACallback ,0,0};

chCfgStuctTx.cb = &cbStruct;

DMA_CfgChannel(serialDMATXCHANEL ,& chCfgStuctTx);

cfgDescrTx.dstInc=dmaDataIncNone;

cfgDescrTx.srcInc=dmaDataInc1;

cfgDescrTx.size=dmaDataSize1;

cfgDescrTx.arbRate=dmaArbitrate1;

cfgDescrTx.hprot = 0;

DMA_CfgDescr(serialDMATXCHANEL ,1,& cfgDescrTx);

chCfgStuctRx.highPri =1;

chCfgStuctRx.enableInt = 1;

chCfgStuctRx.select = DMAREQ_LEUART1_RXDATAV;

chCfgStuctRx.cb = &cbStruct;

DMA_CfgChannel(serialDMARXCHANEL ,& chCfgStuctRx);

cfgDescrRx.dstInc=dmaDataInc1;

cfgDescrRx.srcInc=dmaDataIncNone;

cfgDescrRx.size=dmaDataSize1;

cfgDescrRx.arbRate=dmaArbitrate1;

cfgDescrRx.hprot = 0;

DMA_CfgDescr(serialDMARXCHANEL ,1,& cfgDescrRx);

/* Important to set the DMA interrupt to a level below

configMAX_SYSCALL_INTERRUPT_PRIORITY */

NVIC_SetPriority(DMA_IRQn ,7);

prvLEUART1_Init ();

DMA_ActivateBasic(serialDMARXCHANEL ,1,0, RxBufferInUseByDMA ,(void *)

&LEUART1 ->RXDATA ,RXBUFFERSIZE -1);

return NULL;

};

/*

* pcString is the string to send.

* The function will not return untill the string has been transfered

by DMA ,

* hence it is safe to reuse the pointer.

*/

void vSerialPutString(char * pcString , unsigned short usStringLength)

{

xSemaphoreTake(bsemDmaActiveTx ,portMAX_DELAY); // ensures that

only task is allowed to start the DMA at a time.

83

B.7 Serial B CODE

DMA_ActivateBasic(serialDMATXCHANEL ,1,0,(void *)&LEUART1 ->

TXDATA ,pcString ,usStringLength -1);

xSemaphoreTake(bsemDmaTx ,portMAX_DELAY); //wait untill the DMA

cycle is complete.

xSemaphoreGive(bsemDmaActiveTx);

}

/*

* Returns , in pcRxString the string read. The pointer needs

* to have room for RXBUFFERSIZE bytes.

*/

void xSerialGetString(char * pcRxedString)

{

xSemaphoreTake(bsemDmaRx ,portMAX_DELAY);

int i = 0;

while(RxBufferIdle[i] != serialLEUART_SIGFRAME & i < RXBUFFERSIZE){

pcRxedString[i] = RxBufferIdle[i];

i++;

}

pcRxedString[i] = ’\0’;// insert a \0 at the end to make it a

propper string.

}

void DMACallback(unsigned int channel , bool primary , void *user){

static signed portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

if(channel == serialDMATXCHANEL){

xSemaphoreGiveFromISR(bsemDmaTx , &xHigherPriorityTaskWoken)

;

}

if(channel == serialDMARXCHANEL){

static char * tmp;

tmp = RxBufferInUseByDMA;

RxBufferInUseByDMA= RxBufferIdle;

RxBufferIdle = tmp;

DMA_ActivateBasic(serialDMARXCHANEL ,1,0, RxBufferInUseByDMA ,(void

*)&LEUART1 ->RXDATA ,RXBUFFERSIZE -1);

xSemaphoreGiveFromISR(bsemDmaRx , &xHigherPriorityTaskWoken);

}

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

}

/*

* Only the SIGFRAME interrupt is enabled.

* Meaning that this interrut occurs when the LEUART recives a

character

* defined in the serialLEUART_SIGFRAME macro.

*

* When a sigframe arrives , stop the DMA channel. and run the

DMACallback function.

*/

void LEUART1_IRQHandler (){

int tmp;

if(LEUART1 ->IF & LEUART_IF_SIGF){

DMA ->CHENC = 0x1UL << serialDMARXCHANEL;

LEUART1 ->IFC=LEUART_IF_SIGF;

DMACallback(serialDMARXCHANEL ,1,NULL);

}

84

B CODE B.8 I2C

if(LEUART1 ->IF & LEUART_IF_TXC){

LEUART1 ->IFC = LEUART_IF_TXC;

}else if(LEUART1 ->IF &LEUART_IF_RXDATAV){

tmp = LEUART1 ->RXDATA;

}

}

B.8 I2C

B.8.1 Modified driver from EFMLIB

#include "i2cdrv.h"

#include "FreeRTOS.h"

#include "queue.h"

#include "i2cdrv.h"

#include "efm32.h"

#include "dvk.h"

#include "semphr.h"

#include "efm32_gpio.h"

/*

* Queue used to send item from interrupt routine to the

I2CDRV_Transfer function

*

*/

static xQueueHandle xRxedChars;

/*

* Semaphore used to make sure only one task uses the I2C buss

* at once.

*/

static xSemaphoreHandle bsemI2C;

#include <stddef.h>

#include "dvk_boardcontrol.h"

#include "i2cdrv.h"

#include "efm32_cmu.h"

#include "efm32_gpio.h"

/*

*//**

* @brief

* Initalize basic I2C master mode driver for use on the DVK.

*

* @details

* This driver only supports master mode , single bus -master. In

addition

* to configuring the EFM32 I2C peripheral module , it also

configures DVK

* specific setup in order to use the I2C bus.

*

* @param[in] init

85

B.8 I2C B CODE

* Pointer to I2C initialization structure.

*/

void I2CDRV_Init(const I2C_Init_TypeDef *init)

{

int i;

vSemaphoreCreateBinary(bsemI2C);

xRxedChars = xQueueCreate(1, (unsigned portBASE_TYPE) sizeof(

signed portCHAR));

DVK_enablePeripheral(DVK_I2C);

CMU_ClockEnable(cmuClock_HFPER , true);

CMU_ClockEnable(cmuClock_I2C0 , true);

/* Use location 3: SDA - Pin D14 , SCL - Pin D15 */

/* Output value must be set to 1 to not drive lines low... We set

*/

/* SCL first , to ensure it is high before changing SDA. */

GPIO_PinModeSet(gpioPortD , 15, gpioModeWiredAnd , 1);

GPIO_PinModeSet(gpioPortD , 14, gpioModeWiredAnd , 1);

/* In some situations (after a reset during an I2C transfer), the

slave */

/* device may be left in an unknown state. Send 9 clock pulses just

in case. */

for (i = 0; i < 9; i++)

{

/*

* TBD: Seems to be clocking at appr 80kHz -120 kHz depending on

compiler

* optimization when running at 14MHz. A bit high for standard

mode devices ,

* but DVK only has fast mode devices. Need however to add some

time

* measurement in order to not be dependable on frequency and

code executed.

*/

GPIO_PinModeSet(gpioPortD , 15, gpioModeWiredAnd , 0);

GPIO_PinModeSet(gpioPortD , 15, gpioModeWiredAnd , 1);

}

/* Enable pins at location 3 (which is used on the DVK) */

I2C0 ->ROUTE = I2C_ROUTE_SDAPEN |

I2C_ROUTE_SCLPEN |

(3 << _I2C_ROUTE_LOCATION_SHIFT);

NVIC_SetPriority(I2C0_IRQn ,7);

/* Enable interrupt in Cortex Core */

NVIC_ClearPendingIRQ(I2C0_IRQn);

NVIC_EnableIRQ(I2C0_IRQn);

I2C_Init(I2C0 , init);

CMU_ClockEnable(cmuClock_I2C0 , false);

}

86

B CODE B.8 I2C

/*

*//**

* @brief

* Perform I2C transfer.

*

* @details

* This driver only supports master mode , single bus -master. It does

not

* return until the transfer is complete. Uses interrupts to poll

for completion

*

* @param[in] seq

* Pointer to sequence structure defining the I2C transfer to take

place. The

* referenced structure must exist until the transfer has fully

completed.

*/

I2C_TransferReturn_TypeDef I2CDRV_Transfer(I2C_TransferSeq_TypeDef *

seq)

{

I2C_TransferReturn_TypeDef ret;

ret = I2C_TransferInit(I2C0 , seq);

if(ret == i2cTransferInProgress)

{

xQueueReceive(xRxedChars , &ret , portMAX_DELAY);

}

return(ret);

}

/*

**

*//**

* @brief I2C0 interrupt handler

**

*/

void I2C0_IRQHandler(void)

{

I2C_TransferReturn_TypeDef ret;

I2C_TypeDef *I2C = I2C0;

portBASE_TYPE xHigherPriorityTaskWoken=pdFALSE;

ret = I2C_Transfer(I2C0);

if(ret != i2cTransferInProgress){

xQueueSendFromISR(xRxedChars ,&ret ,& xHigherPriorityTaskWoken);

}

I2C ->IFC = _I2C_IFC_MASK;

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

}

B.8.2 My own I2C Driver

This is a driver I developed. When the official I2C driver from Energy Micro was
released, I modified that driver to use my version of FreeRTOS instead of using
this driver.

#include "FreeRTOS.h"

87

B.8 I2C B CODE

#include "queue.h"

#include "i2c.h"

#include "efm32.h"

#include "dvk.h"

#include "semphr.h"

static xQueueHandle xRxedChars;

static xSemaphoreHandle bsemI2C;

/*

**

*//**

* @brief Intializes I2C0 interrupt on RX (receive)

**

*/

static void I2C0_IRQ_init(void)

{

I2C_TypeDef *I2C = I2C0;

/* Clear all pending interrupts */

I2C ->IFC = _I2C_IFC_MASK;

/* Enable desired I2C interrupts */

I2C ->IEN = I2C_IEN_ARBLOST|I2C_IEN_RXDATAV|I2C_IEN_ACK|I2C_IEN_NACK;

// I2C_IEN_TXBL

NVIC_SetPriority(I2C0_IRQn ,7);

/* Enable interrupt in Cortex Core */

NVIC_ClearPendingIRQ(I2C0_IRQn);

NVIC_EnableIRQ(I2C0_IRQn);

}

/*

**

*//**

* @brief Intializes LFXO as LFBCLK for use with I2C0

**

*/

static void I2C0_CMU_init(void)

{

CMU_TypeDef *cmu = CMU;

/* Setup and enable I2C clock */

cmu ->HFPERCLKEN0 |= CMU_HFPERCLKEN0_I2C0;

cmu ->HFPERCLKDIV |= CMU_HFPERCLKDIV_HFPERCLKEN;

}

/*

**

*//**

* @brief Intializes I2C0 for use as an output interface

* @param baudrate 300 - 9600 baud

* @param databits 7 or 8 data bits

88

B CODE B.8 I2C

* @param parity 0 = No parity , 01 = Resrvd , 02 = Even parity , 03 =

Odd parity

* @param stopbits 0 or 1 stop bits

**

*/

void I2C0_init ()

{

GPIO_TypeDef *gpio = GPIO;

I2C_TypeDef *I2C = I2C0;

uint32_t clkdiv;

//This connects the temperature sensor on the kit to the i2c buss.

DVK_enablePeripheral(BC_PERCTRL_I2C);

DVK_disablePeripheral(BC_PERCTRL_I2C);

DVK_enablePeripheral(BC_PERCTRL_I2C);

/* Configure I2C0 LFBCL */

I2C0_CMU_init ();

/* Clear RX/TX buffers */

I2C0 ->CMD = I2C_CMD_CLEARTX |I2C_CMD_ABORT | I2C_CMD_CLEARPC|

I2C_CMD_CLEARTX;

I2C0 ->CLKDIV =0xFF;

I2C0 ->ROUTE=I2C_ROUTE_SCLPEN|I2C_ROUTE_SDAPEN|

I2C_ROUTE_LOCATION_LOC3;

gpio ->P[3]. DOUT = (1 << 14) | (1 << 15);

gpio ->P[3]. MODEH &= ~(

_GPIO_P_MODEH_MODE14_MASK|

_GPIO_P_MODEH_MODE15_MASK);

gpio ->P[3]. MODEH |= GPIO_P_MODEH_MODE14_WIREDAND;

gpio ->P[3]. MODEH |= GPIO_P_MODEH_MODE15_WIREDAND;

/* Configure interrupt handler */

I2C0_IRQ_init ();

I2C0 ->CTRL |= I2C_CTRL_EN;

}

/*

**

*//**

* @brief I2C0 interrupt handler

**

*/

void I2C0_IRQHandler(void)

{

I2C_TypeDef *I2C = I2C0;

signed portCHAR cRx;

portBASE_TYPE xHigherPriorityTaskWoken=pdFALSE;

if (I2C ->IF & I2C_IF_RXDATAV)

{

cRx = I2C ->RXDATA;

xQueueSendFromISR(xRxedChars ,&cRx ,& xHigherPriorityTaskWoken);

I2C ->CMD=I2C_CMD_NACK;

I2C ->CMD=I2C_CMD_STOP;

I2C ->IFC = I2C_IFC_RXDATAV;

89

B.8 I2C B CODE

}

if (I2C ->IF & I2C_IF_ACK)

{

I2C ->IFC = I2C_IFC_ACK;

}

if (I2C ->IF & I2C_IF_NACK)

{

I2C ->CMD=I2C_CMD_STOP;

I2C ->IFC = I2C_IFC_NACK;

}

if (I2C ->IF & I2C_IF_ARBLOST)

{

I2C ->IFC = I2C_IFC_ARBLOST;

}

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

}

xComPortHandle xI2CPortInitMinimal()

{

vSemaphoreCreateBinary(bsemI2C);

xRxedChars = xQueueCreate(1, (unsigned portBASE_TYPE) sizeof(

signed portCHAR));

I2C0_init ();

}

signed portBASE_TYPE xI2CGetChar(unsigned portCHAR pcAdress , signed

portCHAR *pcRxedChar , portTickType xBlockTime)

{

I2C_TypeDef *i2c = I2C0;

portBASE_TYPE read = pdFALSE;

if(xSemaphoreTake(bsemI2C ,xBlockTime)){

// Transmit the adress , 7 bits , bluss the last bit set to 0, to

signal a read

// I2C0 ->CMD = I2C_CMD_CLEARTX |I2C_CMD_ABORT | I2C_CMD_CLEARPC|

I2C_CMD_CLEARTX;

/* i2c ->CMD=I2C_CMD_START;

i2c ->CMD=I2C_CMD_STOP;

*/

i2c ->CMD=I2C_CMD_START;

portBASE_TYPE tx=pcAdress |0x01;//(pcAdress <<1) | 1;

i2c ->TXDATA =tx;

read = xQueueReceive(xRxedChars , pcRxedChar , xBlockTime);

xSemaphoreGive(bsemI2C);

}

if (read== pdTRUE){

return pdTRUE;

}else{

return pdFALSE;

}

}

90

B CODE B.8 I2C

B.8.3 Script to process power csv files

This file was developed as a part of this thesis.

import os

dirList=os.listdir(".")

listOfFiles = []

for fname in dirList:

if fname.find(".csv") >=0:

if fname.find("~") <0:

listOfFiles.append(fname)

timeStart = -1

minTimeDiff = 4000000000

i = 0

filenameOfSmalest = ""

for fileName in listOfFiles:

timeStart = -1

file = open(fileName ,"r")

fileWriteTo = open(fileName.replace(".csv","Temp.csv"),"w")

fileWriteAlso = open(fileName.replace(".csv","TempAlso.csv"),"w")

print "Working on file: " + str(file)

lastTime = 0

for line in file:

fileWriteAlso.write(line.replace("\r\n","") + "; 4856 ; 14 ; 0

x449ef90 ; 0x449edf0 ; 1775\r\n")

#fileWriteAlso.write(line + "MARTINERKUL")

if line [0] != "#":

values = line.split(";")

if(timeStart <0):

timeStart=int(values [0])

lastTime = int(values [0])-timeStart

fileWriteTo.write(str(int(lastTime)))

fileWriteTo.write(" ")

fileWriteTo.write(str(float(values [1])*float(values [2])))

fileWriteTo.write("\n")

if lastTime <minTimeDiff:

minTimeDiff = lastTime

filenameOfSmalest = file

print "minumu timeDiff" + str(minTimeDiff) + "in File" + str(

filenameOfSmalest)

dirList=os.listdir(".")

listOfFiles =[]

for fname in dirList:

if fname.find("Temp.csv") >=0:

if fname.find("~") <0:

listOfFiles.append(fname)

for fileName in listOfFiles:

file = open(fileName ,"r")

fileWriteTo = open(fileName.replace("Temp.csv", "New.csv"),"w")

print "\tWorking on file second Time: " + str(file)

for line in file:

values = line.split(" ")

timeOfLine=int(values [0])

if timeOfLine <= minTimeDiff:

if timeOfLine >=9000 and timeOfLine <=11900:

91

C FIGURES

fileWriteTo.write(line)

else:

print "\t\tStoping at time " + str(timeOfLine) + "in file

" + str(file)

break

C Figures

Figure 24: Shows bit assignments in HFPERCLKEN0. This is where the
clock to high frequency peripherals are turned disabled/enabled. Taken from
[EFM32 Manual,].

92

C FIGURES

Figure 25: Bit assignments in HFCORECLKEN0. Taken from [EFM32 Manual,].

93

	Title Page
	Problem Description
	Introduction
	Motivation
	Energy Micro
	IAR Embedded Workbench
	Goals
	Contributions
	Structure of this report

	Background
	ARM Cortex M3
	EFM32
	Interrupts and Sleep modes
	Peripherals
	Timing peripherals
	HFXO and HFRCO

	FreeRTOS
	Tasks
	Co routines
	FreeRTOS and systick
	Interrupts

	Dynamic Power Management
	Linux power management governors

	Timekeeping

	FreeRTOS on EFM32
	IAR Project
	Demo application

	Tickless idle
	Difference in power consumption
	Chosen solution
	Interrupt handling
	Time until next event
	Calculating how long to sleep
	Calculating how long was slept
	Storing reminder
	xTickCount following RTC

	Consequences for interrupt latency

	Managing EFM32 energy modes
	#1 Clocks enabled
	#2 Explicit control
	Chosen solution

	Methodology
	Testing
	Benchmark
	Effect of load

	Versions of FreeRTOS tested
	Versions with DMA driver

	Power measurement

	Results
	Testing
	Power consumption

	Conclusion
	Future work

	Demo application
	main.c
	lcdtest.c
	ledtest.c
	ParTest.c
	startup_efm32.s

	Code
	energymode.c
	checktiming.c
	Application
	main.c
	measurement.c
	adc.c

	Diff for task.c in FreeRTOS
	C++ program simulating GPS
	Drivers
	Serial
	Serial with DMA

	I2C
	Modified driver from EFMLIB
	My own I2C Driver
	Script to process power csv files

	Figures

