
Master of Science in Computer Science
July 2010
Babak Farshchian, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Dynamic Management of Software
Components in a Ubiquitous
Collaborative Environment

Yngvar Kristiansen

Problem Description
Traditionally, computer systems have managed files stored on hard drives. In ubiquitous
computing computers have to manage a distributed collection of files, services, devices, objects
etc. stored in different locations and accessed by many users. In UbiCollab, the collection of
services, devices, objects, files etc. that the user owns or uses are represented as the user's
Service Domain. A user's service domain will typically contain his/her devices at home or office (e.
g. stereo, TV, lights, computers). UbiCollab Service Domain Management subsystem allows users
and the system to manage what is in each user's service domain, how to add or remove things for
the service domain, etc. The objective of this project task is to further develop UbiCollab Service
Domain Management subsystem.

The main research questions to be answered by this project task:

- How can we extend existing service management architectures to support user-centered and
community-based service management?
- What technologies and architectures are most suitable for implementing user-centered and
community-based service management?
- How can we evaluate the usability and utility of user-centered and community-based service
management? What are the most compelling scenarios?

Expected deliverables:
- Scenarios for user-centered service management.
- Architecture and design for UbiCollab Service Domain Management subsystem.
- Extensions, in form of Java code, to the existing Service Domain Management subsystem in
UbiCollab.
- Extensions, in form of Java interfaces, to the existing Service Domain Management APIs in
UbiCollab.
- Implementation (in Java) and testing (in JUnit) of user-centered Service Domain Management
subsystem in UbiCollab.
- GUI (In Java) for allowing users to control UbiCollab Service Domain Management.

Assignment given: 22. February 2010
Supervisor: Babak Farshchian, IDI

i

ii

Abstract
The key motivation of this thesis is to find innovative solutions for facilitating

the deployment of ubiquitous systems, with the purpose of making technology

supported collaboration an easier task. Users, being in a ubiquitous

environment, continuously encounter new resources that might provide some

value. As the number of these resources increase, the management of them

will be a central task in a ubiquitous computing system.

The problems and challenges discussed in this thesis are related to continuous

and unpredictable changes in the ubiquitous environment, which makes it

difficult for users to retrieve appropriate software for utilizing resources. We

also discuss the challenge of managing resources, and sharing them between

users.

The research questions in this thesis are:

RQ-1: How can we extend existing service management architectures to support

user-centered and community-based service management?

RQ-2: What technologies, architectures and platforms are the most suitable for

implementing user-centered and community-based service management?

RQ-3: How can we evaluate the usability and utility of user-centered and

community-based service management? What are the most compelling

scenarios?

The contributions in this thesis are, correspondingly:

C1: We have made a solution proposal and an implementation of an improved

service management system, which is based on earlier works of the Ubicollab

platform.

C2: Four items were found suitable: 1. The deployment model used by

distribution platforms for mobile applications (such as AppStore and Android

Market), 2. OSGi, 3. R-OSGi, and 4. HTTP-based communication using Java

Servlets.

C3: The evaluation of such systems can be done using a three-step process that

includes: 1. Examining the system's fulfillment its requirement specification. 2.

Compare the system's functionality with that of a scenario-described ideal

system. 3. Create applications that demonstrate the utility of the system.

iii

iv

Preface
This thesis represents the final work for the degree of Master in Computer

Science at the Norwegian University of Science and Technology (NTNU),

Department of Computer and Information Science (IDI). The work was done

during the period of Mars to July in 2010.

This work is a contribution to the Ubicollab platform, which aims at supporting

technology-based collaboration between people. This work suggests and

implements a system for user-centered and community-based management of

resources in an ubiquitous environment.

I would like to thank my supervisor, Babak Farshchian, at IDI, NTNU for very

helpful guidance and feedback during my work. I also would like to thank the

other students working on Ubicollab, who provided helpful introduction to the

project, as well as enlightening discussions.

Trondheim, July 19, 2010

Yngvar Kristiansen

v

vi

Table of contents

ABSTRACT ... II

PREFACE ... IV

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. X

LIST OF TABLES .. XII

ABBREVIATIONS ... XIII

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 RESEARCH CONTEXT ... 2

1.3 RESEARCH QUESTIONS .. 2

1.4 RESEARCH METHOD .. 3

1.5 THESIS STRUCTURE ... 4

CHAPTER 2 PROBLEM ANALYSIS ... 6

2.1 PROBLEM SCENARIO ... 7

2.1.1 Summary of problems ... 8

2.2 CONTINUOUS AND UNPREDICTABLE CHANGES IN THE UBIQUITOUS ENVIRONMENT 9

2.2.1 Retrieving appropriate software for utilizing a resource 9

2.2.2 Managing installed software... 12

2.3 SHARING OF RESOURCES .. 13

2.4 REQUIREMENTS SPECIFICATION ... 15

CHAPTER 3 STATE OF THE ART.. 18

3.1 UBICOLLAB ... 18

3.1.1 Background.. 18

3.1.2 Platform ... 18

3.1.3 Communication with resources ... 19

3.1.4 Platform implementation: OSGi .. 19

3.2 CONTINUOUS AND UNPREDICTABLE CHANGES IN THE UBIQUITOUS ENVIRONMENT 20

3.2.1 Retrieving appropriate software for utilizing a resource 20

3.2.2 Managing existing software .. 27

3.3 SHARING OF RESOURCES .. 32

3.3.1 MobiShare ... 32

3.3.2 R-OSGi .. 33

3.4 SUMMARY .. 34

vii

CHAPTER 4 SOLUTION PROPOSAL .. 38

4.1 SOLUTION SCENARIO... 38

4.1.1 Scenario ... 38

4.1.2 Analysis of solved problems ... 40

4.2 CONTINUOUS AND UNPREDICTABLE CHANGES IN THE UBIQUITOUS ENVIRONMENT 43

4.2.1 Retrieving appropriate software for utilizing a resource 43

4.2.2 Managing existing software .. 48

4.3 SHARING OF RESOURCES .. 52

CHAPTER 5 IMPLEMENTATION ... 56

5.1 STARTING POINT .. 56

5.2 CONSTRUCTION METHOD .. 56

5.3 PLATFORM CHOICES ... 60

5.3.1 Selecting mobile operating system .. 60

5.3.2 Selecting OSGi implementation ... 60

5.3.3 Selecting Java version .. 60

5.3.4 Selecting GUI technology ... 60

5.3.5 Summary: Implementation stack .. 62

5.4 ARCHITECTURE .. 63

5.5 COMPONENTS ... 64

5.5.1 GUI ... 64

5.5.2 Service Domain Manager core .. 65

5.5.3 Proxy Service .. 70

5.5.4 Sharing of Proxy Services ... 72

5.5.5 Space Manager .. 74

5.5.6 JUnit tests .. 74

5.5.7 A demonstration application: PptViewer .. 74

5.5.8 Portability .. 77

CHAPTER 6 EVALUATION AND DISCUSSION .. 78

6.1 METHODS USED FOR EVALUATION ... 78

6.2 FULFILLMENT OF REQUIREMENTS SPECIFICATION .. 79

6.2.1 Comments to Table 6.1 .. 82

6.3 FULFILLMENT OF THE PROPOSED SOLUTION ... 82

6.3.1 Scenario analysis ... 82

6.3.2 Summary ... 85

6.4 EVALUATION OF A REAL WORLD APPLICATION: PPTVIEWER ... 85

6.4.1 Scenario evaluation ... 85

6.5 RESEARCH QUESTIONS .. 87

6.5.1 RQ-1 ... 87

viii

6.5.2 RQ-2 ... 88

6.5.3 RQ-3 ... 89

6.5.4 Future work: Selection of scenarios ... 91

6.6 LIMITATIONS OF THIS THESIS ... 91

CHAPTER 7 CONCLUSION AND FURTHER WORK ... 93

7.1 SUMMARY .. 93

7.2 CONTRIBUTIONS .. 94

7.2.1 Contribution 1 .. 94

7.2.2 Contribution 2 .. 94

7.2.3 Contribution 3 .. 95

7.2.4 Other contributions ... 95

7.3 FURTHER WORK ... 96

GLOSSARY .. 98

REFERENCES ... 100

APPENDIX A : USABILITY EXPERIMENT SUGGESTIONS .. 103

A.1 USABILITY EXPERIMENT 1: VIEWING A PRESENTATION ... 103

A.1.1 Test plan .. 103

A.2 USABILITY EXPERIMENT 2: MANAGING PROXY SERVICES ... 104

APPENDIX B : CONTRIBUTIONS .. 105

APPENDIX C : IMPLEMENTATION DETAILS .. 106

C.1 UBICOLLAB ARCHITECTURE ... 106

C.2 MAPPING OF FIGURE NAMES TO REAL PACKAGE NAMES ... 106

C.3 SELECTING GUI TECHNOLOGIES .. 107

C.3.1 An HTML-based GUI .. 107

C.4 IDENTIFYING AN OSGI BUNDLE AS A PROXY SERVICE ... 107

C.4.1 Required properties ... 107

C.4.2 Optional type field ... 107

C.5 SHARING OF PROXY SERVICES ... 108

C.5.1 Internal message flow ... 109

C.6 KNOWN ISSUES WITH CURRENT IMPLEMENTATION .. 109

C.6.1 Limited capabilities of sharing of Proxy Services ... 109

C.6.2 No concurrency handling ... 110

ix

x

List of figures
FIGURE 2.1: THE RELATION BETWEEN RESOURCES, RESOURCE CONTROLLERS APPLICATIONS AND USERS. 10

FIGURE 2.2: MULTIPLE CHOICES ADDS UNNECESSARY COMPLEXITY FOR THE USER. 12

FIGURE 3.1: THE MOBILE CLIENT PROGRAM LISTS RECOMMENDED APPLICATIONS. 21

FIGURE 3.2: BIO-SENSOR DEVICES. .. 22

FIGURE 3.3: A BARCODE FROM MICROSOFT (A MICROSOFT TAG). .. 22

FIGURE 3.4: APP STORE. ... 24

FIGURE 3.5: ANDROID MARKET. ... 24

FIGURE 3.6: WINDOWS SUGGESTIONS WHEN OPENING AN UNKNOWN FILE TYPE. 25

FIGURE 3.7: APPLICATION SUGGESTIONS FOR HANDLING A FILE TYPE. ... 25

FIGURE 3.8: BROWSING GAMES IN UBUNTU SOFTWARE CENTER. ... 26

FIGURE 3.9: THE NETWORK TOPOLOGY IN MOBISHARE. .. 33

FIGURE 4.1: INSTALLING A RESOURCE. ... 44

FIGURE 4.2: FINDING PROXY SERVICES THAT MATCHES SOME CRITERIA. ... 45

FIGURE 4.3: MANAGING PROXY SERVICES. ... 49

FIGURE 4.4: THE USER SHARES A PROXY SERVICE. .. 53

FIGURE 5.1: CONSTRUCTION METHOD. .. 59

FIGURE 5.2: THE IMPLEMENTATION STACK OF UBICOLLAB.. 63

FIGURE 5.3: INTERNAL ARCHITECTURE. .. 64

FIGURE 5.4: THE SDMSERVLET PACKAGE AND ITS CLASSES. ... 65

FIGURE 5.5: THE STARTUP SCREEN ON ANDROID OS. .. 66

FIGURE 5.6: THE OSGI APPLICATION MENU. ... 66

FIGURE 5.7: THE MAIN MENU OF SERVICE DOMAIN MANAGER. .. 66

FIGURE 5.8: LIST OF ALL INSTALLED PROXY SERVICES. ... 67

FIGURE 5.9: AVAILABLE ACTIONS ON A PROXY SERVICE. .. 67

FIGURE 5.10: VIEWING A PROXY SERVICE'S DESCRIPTION. ... 67

FIGURE 5.11: CATEGORIZING PROXY SERVICES BY TYPE. .. 68

FIGURE 5.12: CATEGORIZING PROXY SERVICES BY SPACE. ... 68

FIGURE 5.13: INTERFACE FOR THE COMPONENT SERVICEDOMAINMANAGER................................... 70

FIGURE 5.14: INTERFACE FOR THE PROXYSERVICE COMPONENT. ... 71

FIGURE 5.15: THE INTERNALS FOR SHARING A RESOURCE ... 72

FIGURE 5.16: OPENING A PPT PRESENTATION WITH PPTVIEWER. ... 75

FIGURE 5.17: VIEWING AND CONTROLLING A PPT PRESENTATION FROM ANDROID. 75

FIGURE 5.18: THE SERVER PRESENTATION APPLICATION. ... 75

FIGURE 5.19: EDITING SERVICE PROPERTIES OF THE PPTVIEWER. .. 76

FIGURE D.1: THE ARCHITECTURE OF THE UBICOLLAB PLATFORM. ... 106

FIGURE D.2: THE MESSAGE FLOW WHEN USING A SHARED PROXY SERVICE. 109

file:///C:/netuser/My%20Dropbox/Dokumenter/Skole/NTNU/10v/Report/Service%20Domain%20Manager.docx%23_Toc267326700
file:///C:/netuser/My%20Dropbox/Dokumenter/Skole/NTNU/10v/Report/Service%20Domain%20Manager.docx%23_Toc267326707
file:///C:/netuser/My%20Dropbox/Dokumenter/Skole/NTNU/10v/Report/Service%20Domain%20Manager.docx%23_Toc267326710

xi

xii

List of tables
TABLE 1.1: DESIGN-SCIENCE RESEARCH GUIDELINES .. 3

TABLE 2.1: SCENARIO PROBLEM SUMMARY. .. 9

TABLE 2.2: REQUIREMENTS FOR A SOLUTION... 17

TABLE 3.1: HOW THE STATE-OF-THE-ART CONTRIBUTES TO A OUR REQUIREMENTS FOR A SOLUTION..... 37

TABLE 4.1: CONNECTING PROBLEMS WITH THEIR SOLUTIONS. ... 42

TABLE 6.1: FULFILLMENT OF REQUIREMENTS SPECIFICATION. ... 81

TABLE C.1: MAPPING OF JAVA PACKAGE NAMES. ... 106

xiii

Abbreviations

OS Operation system
UI User Interface
GUI Graphical User Interface
CSCW Computer Supported Cooperative Work
AmI Ambient Intelligence
SOA Service Oriented Architecture
OSGi Former Open Service Gateway initiative, but now the

abbreviation doesn’t stand for anything.
SDM Service Domain Manager
CI Collaboration Instance
API Application Programming Interface

1

Chapter 1 Introduction

The sections in this chapter are structured the following way:

 1.1 presents the motivation for this thesis.

 1.2 describes the relation between this thesis and other research.

 1.3 presents the research questions to be answered by this thesis.

 1.4 explains how this thesis fulfills the design-science research

method.

 1.5 outlines the structure of the rest of this thesis.

1.1 Motivation
The key motivation for this thesis is to find innovative solutions for facilitating

the deployment of ubiquitous computing systems, and by that, make

technology supported collaboration an easier task. Users, being in a ubiquitous

environment, continuously encounter new resources that can enhance the

experience of the users. These resources might enhance user interaction

mechanisms not found on a mobile device, or might provide additional

computational resources. These kinds of ambient resources are the

cornerstone of ubiquitous computing as envisioned by Weiser [1]. As the users

encounter an increasing number of these resources in their daily life in a

ubiquitous computing environment, the management of these resources

becomes a central task for the ubiquitous computing system.

A more fundamental motivation behind this is thesis, is a hope for increased

focus on interoperability and ubiquitous collaboration. As more and more

developers, managers and customers see the benefits of ubiquitous

collaboration, more and more ubiquitous applications will hopefully emerge,

which in turn will bring us nearer Weiser's vision of the disappearing

technology.

2

1.2 Research context
This project is part of the Ubicollab project. The Ubicollab project unifies the

research fields Computer Supported Cooperative Work (CSCW) and Ambient

Intelligence (AmI). This has resulted in the development of the Ubicollab

platform, whose aim is to use technology to aid ubiquitous collaboration

among users. The unifying concept for CSCW and AmI in Ubicollab is the Human

Grid, which “denotes a collection of (geographically distributed) users and the

resources each of them has available in their physical vicinity” [2]. The

Ubicollab platform supports discovery of resources (for instance a projector or

a smart coffee machine), service management, context awareness and user

profiles, amongst other things.

The main basis for this thesis is two earlier works in the Ubicollab project,

namely the thesis of Johansen [3] and the thesis of Mora [4]. Related to this

thesis, the main contribution of Johansen's work was designing and

implementing a user-centered service discovery and management system, i.e. a

foundation for the Ubicollab platform. The main contribution of Mora's work,

related to this thesis, was making an implementation of Ubicollab for mobile

devices, and doing development of new and existing Ubicollab applications and

plug-ins.

This thesis continues the work on the service management system in Ubicollab.

1.3 Research questions
The research questions for our work are the following:

RQ-1: How can we extend existing service management architectures to support

user-centered and community-based service management?

RQ-2: What technologies, architectures and platforms are the most suitable for

implementing user-centered and community-based service management?

RQ-3: How can we evaluate the usability and utility of user-centered and

community-based service management? What are the most compelling

scenarios?

3

1.4 Research method
The research method used in this thesis follows the design-science paradigm

[5]. In this paradigm, new knowledge is gained by creating and evaluating an

innovative artifact (for instance a prototype of a system).

Hevner et al. [5] argue that there are two complementary but distinct

paradigms in information systems' research, with design-science paradigm

being one of them. The other paradigm is the behavioral-science paradigm,

which "seeks to develop and verify theories that explain or predict human or

organizational behavior". It is in other words a more theoretical approach to

expanding knowledge than the design-science paradigm.

Hevner et al. suggest seven guidelines for conducting effective design science

research. However, it is emphasized that the guidelines should be used to assist

researchers, and not be used as a strict scheme.

Guideline Description

Guideline 1: Design as
an Artifact

Design-science research must produce a viable artifact
in the form of a construct, a model, a method, or an
instantiation.

Guideline 2: Problem
Relevance

The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

Guideline 3: Design
Evaluation

The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed
evaluation methods.

Guideline 4: Research
Contributions

Effective design-science research must provide clear
and verifiable contributions in the areas of the design
artifact, design foundations, and/or design
methodologies.

Guideline 5: Research
Rigor

Design-science research relies upon the application of
rigorous methods in both the construction and
evaluation of the design artifact.

Guideline 6: Design as
a Search Process

The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

Guideline 7:
Communication of
Research

Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

Table 1.1: Design-Science Research Guidelines

4

The following sections describes how each of the guidelines in Table 1.1 is

followed in this thesis.

Guideline 1: Design an artifact

The artifact of this thesis is the Service Domain Manager (SDM), described in

Chapter 5.

Guideline 2: Problem relevance

The problem of this thesis and its relevance is described in section 1.1,

“Motivation”, and section 1.2, “Research context”.

Guideline 3: Design evaluation

The evaluation method for the SDM is described in section 6.1, "Methods used

for evaluation".

Guideline 4: Research Contributions

Chapter 3 presents related research to this thesis, and that there exists no

earlier work similar to the main research contribution of this thesis, namely the

Service Domain Manager.

Guideline 5: Research Rigor

The construction and evaluation method of the SDM are described in section

5.2 and 6.1, respectively.

Guideline 6: Design as a Search Process

This thesis represents one iteration in the work of the Ubicollab project. Section

1.2 describes the context of where this iteration fits.

Guideline 7: Communication of Research

This report presents the research done, and thus serves as the

"communication" of the research. Section 6.5 describes in detail the research

contributions of this work.

1.5 Thesis structure
The reminder of this thesis is structured as described in the following

paragraphs:

5

Chapter 2: Problem analysis

Chapter 3: State of the art

Chapter 4: Solution proposal

Chapter 5: Implementation

Chapter 6: Evaluation

Chapter 7: Conclusion and further work

6

Chapter 2 Problem analysis

This chapter is structured the following way:

 Section 2.1 presents a scenario in order to identify problems related

to management of resources in a ubiquitous, collaborative

environment.

 Section 2.2 and 2.3 describes the general problems and challenges

that can be extracted from the scenario.

 Section 2.4 presents requirements for a solution to the discussed

problems.

In ubiquitous computing, there is a vision that a user should be able to freely

move from place to place while interacting with resources in a computing

environment, not paying attention to tools or configuration [1]. Ideally, the user

should be able to interact with resources themselves, not via surrogate

software-based interfaces representing these resources. This is, in other words,

a biologic approach, where a user do not carry any technical device, and is

identified using for instance iris [6] or fingerprint recognition [7]. There are,

however, many technical as well as ethical challenges that must be met before

this vision can become true.

This thesis does not use the biological approach to ubiquitous computing, but

does instead take the approach of using a mobile device as a personal gateway

for connecting the user to the ubiquitous environment. The mobile device will

thus represent the identity of the user, instead of the user's fingerprint or iris as

in the biological approach. As a result, users must carry their mobile device in

order to interact with and be identified by resources in the ubiquitous

environment.

The problems discussed in this chapter lie within the research field of CSCW

(Computer Supported Cooperative Work) and ubiquitous computing.

7

For the rest of this thesis, we will assume that users access resources through

their default mobile device, and that resources can be accessed through an API.

2.1 Problem scenario
This thesis will use one scenario in order to identify problems related to

management of resources in a ubiquitous, collaborative environment. We will

refer to this scenario as the ProblemScenario throughout this thesis.

Eve is a university employee, and is today going to the university library for a

meeting with Joe and Ashley. She has booked a meeting room, where they will

meet at 3pm and discuss some budgets.

After arriving the library, Eve wants to print one of the budgets , so she uses her

smart phone to search for printers on the wireless network. She finds several

printers, but then realizes she does not have any way of opening and printing

the budget, which is a spreadsheet in the XLS file format. Additionally, her smart

phone needs a device driver for installing the printer.

She decides to use the smart phone’s online "marketplace", where she can

search for applications to download, and hopefully find one that can open the

spreadsheet. She issues a search for "print", and gets an overwhelming amount

of hits. Clueless about which application to pick, she chooses the first on the list

and installs it. She runs it, but unfortunately it only supports printing of images.

She tries another application, and this time she gets one that only works with

Bluetooth-enabled HP-printers. She decides to read through the applications'

descriptions more carefully, and finally finds an application "XLSManager", that

claims that it "prints all XLS spreadsheets!". She runs the application and checks

that it is able to find the printers in the library. She also noticed the application

"PDF Printer", that is able to convert spreadsheets to the PDF file format. She

installs that application too, in case she needs it during the meeting.

Eve still needs the device driver for accessing the printer on her smart phone.

Not wanting to browse a lot of applications like she just did, she asks the

library's receptionist for help. The receptionist gives her a URL to a webpage

that contains the device drivers for the printer, so Eve is able to install the

printer. After installation, she is has to enter a username and password for the

printer, as only employees and students are allowed access, so she enters the

username and password for her employee account.

8

Eve suddenly notices that her estimated remaining battery time is alarmingly

low - only two hours left. The battery was fully charged this morning, and she

suspects that one or more of those new applications she installed might be the

cause. She decides to uninstall the two printing applications that couldn't print

her budget. Having had her smart phone for a year, she has to navigate through

a lot of other applications before she finally is able to find those two

applications and uninstall them. Afterwards, the battery still only got two hours

left. Eve wants to keep XLSManager and PDF Printer, so instead of uninstalling

them, she attempts to check if they can be configured to use less battery in

some way. Both applications have placed their configuration in different places

in the GUI, but Eve finally manages to find three checkboxes in XLSManager:

"Always search for new printers, "Search using the wireless network", and

"Search using Bluetooth". XLSManager has already found the library's printers,

so she turns off all of the checkboxes, and is delighted to see that the phone's

estimated battery life now is at around 11 hours.

Eve decides to try to print out the budget. The printer that her smart phone was

able to find, was named "Library printer Room F032", and Eve asks a

receptionist for directions to the printer. Eve finally prints the budget, and sees a

notice above the printer: "Price per page: $0.20. Please pay at reception desk."

Eve heads back to the reception and pays.

At 3pm, Joe and Ashley arrives, and Eve gets back to the meeting room, a

couple of minutes late. At the end of the meeting, they have agreed to use Joe’s

version of the budget. Joe wants to print some copies of the budget for

archiving. Because Eve has access to the library printer, she offers him to print

his budget, and tell him to send his budget on e-mail. When receiving the e-

mail, Eve sees that Joe unfortunately uses the XLSX format, a more recent

version of the XLS format, and the XLSManager isn’t capable of reading this

format. Tired after a long day, Eve doesn’t quite want to do the whole search

process again for finding a working application, so she kindly asks if Joe can

print his budget at a later time.

2.1.1 Summary of problems

Table 2.1 summarizes the problems in the ProblemScenario.

9

Scenario problem summary

- Eve wanted to open an XLS-file and print it.
- She made an application search for "print", and found an overwhelming
amount.
- She had to make three attempts before finding a suitable application.

- Eve attempted to uninstall two recently installed applications, but used some
time to navigate through a great number of previously installed applications
before she could find and uninstall the two applications.

- Eve needed a device driver for the printer, and asked the receptionist for
help, in order to avoid spending a lot of time searching for the driver.

- Eve wanted to view the configuration for two other applications, but she
used some time to find the configuration because each of the GUIs of the
applications looked different, and Eve was unfamiliar with both.

- Eve tried to find the library printer, but had to ask the receptionist for
directions.

- Joe needed to print his budgets on the library printer, but could not print
because he did not have username and password to the printer.

Table 2.1: Scenario problem summary.

2.2 Continuous and unpredictable changes in the

ubiquitous environment
This section describes challenges for a ubiquitous, collaborative computing

platform in which the user's context changes continuously and unpredictably.

For a user moving from place to place, new resources are found while other

disappear. At the same time, the platform must provide a user-friendly

interface to enable interaction between the user and the environment and its

resources. This challenge needs to be concretized further, and based on the

ProblemScenario, two new groups of challenges have been identified:

 Challenges related to retrieving the appropriate software when the

user's mobile device discovers new resources, described in section

2.2.1.

 Challenges related to managing software already installed on the

user's mobile device, described in section 2.2.2.

2.2.1 Retrieving appropriate software for utilizing a resource

In the ProblemScenario, Eve two times needed to find the appropriate software

for utilizing the library printer. One time she needed an application that could

open and print her spreadsheet, and the other time her smart phone needed a

10

device driver in order to communicate with the printer and be able to issue the

print job.

The ProblemScenario scenario identifies a general need in ubiquitous

computing: As the user's context change and new resources are discovered, the

user will need a way to interact with these new resources. This can be done by

installing a resource controller1 and one or more applications that utilize the

resource controller's capabilities. Eve did this by installing a printer driver

(resource controller) and the XLSManager (application). The relation between

these concepts is illustrated in REF _Ref266661068 \h Figure 2.1.

Figure 2.1: The relation between resources, resource controllers applications and users.

However, resources are made by different manufacturers and have their own

communicate protocols. As a result, they are accessed through different APIs.

Consequently, a separate resource controller for each different API has to be

made. For instance, in a series of printers from the same manufacturer, it is

common that each printer comes with separate printer driver.

In order for users to interact with new resources, an appropriate resource

controller is needed for allowing applications to access the resource, and one or

more suitable applications are needed for utilizing the resource controller’s

capabilities. The challenge is how the user's mobile device can retrieve the

1
 See the glossary.

11

appropriate resource controller and applications in a user-friendly way. Using

the ProblemScenario as an example, Eve needed a simple way of retrieving the

printer driver and the XLSManager.

2.2.1.1 Possible approaches and their problems

This section describes possible approaches to how a user can retrieve resource

controllers and applications that enable a user to utilize a resource. The

approaches are based on functionality available on smartphones today ([8],[9]).

Then problems with these approaches are described.

The user can find and download software by using one or more of the following

approaches:

1. Searching the Internet using a standard search engine like Google,

Yahoo, or similar.

2. Searching by using an Internet site dedicated for searching for

software, like download.com.

3. Searching by using a dedicated search application (like App Store2 or

Android Market).

The problems with these approaches are described in the following sections.

Long search time

Searching for software may or may not take a lot of time. This depends on

several factors.

First, determining good search terms can reduce the search time significantly.

In the ProblemScenario, Eve searched for the single word "print", while

searching for "print xls" probably would have given more relevant and fewer3

hits. The result was that she spent extra time on browsing and installing

irrelevant software. This factor is especially true for point 1, because the search

database is much larger for a general search engine than a search engine

specialized for software.

2
 Not to be confused with the Apple Store, which is an online store, while App Store is a

application on iPhone and iTouch for searching and downloading applications for the
device.
3
 Assumed that the search algorithm replaced spaces with the boolean AND operator.

12

Second, a typical search engine is usually unable to tell with certainty that what

the user is looking for does not exist. In the ProblemScenario, if there existed

no applications that could print spreadsheets , Eve may have spent a lot more

time searching, browsing and installing unsuitable applications without finding

anything useful.

Third, if the name of the software does not reveal what it does, it may be

prioritized lower by the search engines and thus be harder to find.

Which application to choose?

A search may give multiple results, illustrated in Figure 2.2. If that is the case,

how does the user choose between the results? In the ProblemScenario, Eve’s

search for “print” gave too many search results, which made her install two

unwanted applications. The user maybe does not care about, or know how to

interpret, the subtle differences of the search results, and just wants some

software that works. In that case, a list with too many results represent

unnecessary complexity for the user.

Figure 2.2: Multiple choices adds unnecessary complexity for the user.

2.2.2 Managing installed software

 So far problems related to acquiring software for interacting with resources

have been discussed. The following sections will describe challenges related to

the management and administration of this kind of software after it has been

deployed on the user’s mobile device.

13

2.2.2.1 Controlling system resource consumption

In the ProblemScenario, the battery consumption were significantly increased

because the application XLSManager was constantly using the wireless network

and Bluetooth. In software systems where software components can be

installed, the need arises for managing these components. Examples of

managerial tasks can be activating, deactivating, uninstalling and configuring a

component. Without such possibilities, there is a risk that components use the

mobile device’s restrained hardware resources unnecessarily. Some negative

effects of this can be faster draining of the device’s battery, and a slower user

interface.

With management capabilities, the user (or a software agent) can disable or

remove unnecessary software components, and configure and optimize existing

components – in other words maintaining the system so it uses the mobile

device’s resources effectively.

2.2.2.2 A usability challenge with resource management

As the user gets more and more resource controllers and applications, she will

increasingly need some way to manage them, as mentioned in the last section

(2.2.2.1). If she is to do managerial actions on more than a few of these

components, the mobile device must offer a quick and user-friendly way for

doing this.

For instance: In the ProblemScenario, Eve was able to uninstall the two

applications she did not need. What if she had 40 applications and resource

controllers, and wanted to uninstall all resource controllers used the week, or

all applications that had been installed while she was at home? Smartphones

today do normally provide only basic sorting capabilities for organizing and

managing installed applications.

2.3 Sharing of resources
This section describes challenges related to enabling users to share resources

with other users.

The ProblemScenario described how Joe was not able to print his budget on the

library printer, because he did not have a username and password to the

printer. However, how would the scenario look like if Eve was able to share the

14

library printer with Joe? Would such an approach be faster than the option Eve

found too time-consuming?

The option Eve discarded was printing Joe’s budget by finding a new application

that supported printing files in the XLSX file-format Joe used. Eve decided this

process possibly would take more time than she was willing to spend, because

of the problems she had with finding a working application (described in

2.2.1.1). Further, Joe was not able to print the budget himself, as the printer

was password protected, and Eve probably did not want to reveal her

employee account's username and password.

The problem in the scenario would have been solved if there was some way Eve

could share the library printer. If she could use her smart phone as some kind

of proxy server, acting as a communication link between the printer and Joe's

mobile device, it should be possible for Joe to utilize the printer without

needing a username and password.

This thesis will attempt to find out if this kind of sharing is possible, and if so,

how it can to be solved in a user-friendly way.

Given that it is possible to share resources as described above, new challenges

and needs arise:

 How can a the host of a shared resource monitor control the

usage of the resource? For instance, say that Eve shares the printer

with five users. If one of them prints a large amount of expensive

color pages, Eve may want to find out who did the print to make

sure that person pays for the print. She may also want to limit the

maximum number of pages that any of the client users can print.

 Is it possible to share not only resources, but also services that

runs on a user's mobile device? If sharing of resources are possible,

it may be possible to share of services as well. Sharing of services

could possibly enable users to share functionality on their mobile

devices with other users. For instance, if Joe was able to share a

service that could convert XLSX files to XLS files, Eve could have

utilized this shared service instead of finding and downloading a

separate application that could open XLSX files.

15

2.4 Requirements specification
Based on the problems and challenges identified and discussed in this chapter,

it is possible to deduce requirements for a solution that can cope with these

problems and challenges. These requirements are presented in Table 2.2. They

are high-level, and not meant to completely specify a system, but detailed

enough for a system that solve the problems described in this chapter.

Each requirement in Table 2.2 has:

 An ID and an abbreviation, which is used for referral later in this

thesis.

 A complexity degree, which is either L(ow), M(edium) or H(igh).

 A priority, with the same possible values as for the complexity.

ID, Abbreviation Description Complexity Priority

R-1,
Mobiliity

The system must be possible to
operate and be fully functional on a
mobile device.

M H

R-2,
Appropriate-
SoftwareRetrieval

When the user’s mobile device
discovers a resource, the system
must be able to retrieve appropriate
software that can utilize that
resource.
By appropriate software, we mean a
software component that is able to
interact with the resource.

H H

R-2.1,
ListOfRetrievable
Software

The software components found by
the system to be appropriate for
the discovered resource, shall be
listed to the user, so that the user
can select which component(s) to
retrieve.

M H

R-2.1.1,
ContextAware-
List

The system must be able to utilize
attributes from the user’s context
in order to produce a list of
appropriate software components.
For instance, the user must be able
to list software that is used in the
physical vicinity.

H H

16

ID, Abbreviation Description Complexity Priority

R-2.1.2,
Prediction-
SortedList

The system shall sort the list of
software components based on
predictions of the user intents and
needs.

H M

R-2.2,
NoSoftware-
Exists

If no appropriate software for a
resource exists, the system must be
able to clarify this to the user.

M M

R-3,
ControlRes-
Consumption

The system must offer some means
to control consumption of the
system’s hardware resources.
Examples of hardware resources are
CPU, memory, storage and
bandwidth.

M M

R-4,
ListSoftware-
Organized

The system must be able to show
installed software components in an
organized way.
Organizing components can be done
for instance by sorting the
components based on properties like
location, time of installation, usage
frequency, etc.

M H

R-5,
ShareSoftware-
Components

The user must be able to share the
abilities of software components
that supports sharing to other users
For instance, User A can share a
converter service or a printer so that
User B can use it as well.

This requirement does not require
that all software components must
be shareable.

H H

17

ID, Abbreviation Description Complexity Priority

R-5.1,
UseComponent-
OnBehalf

A user using shared software
components (a client user), must be
able to utilize the shared
component on behalf of the host
user.
For example: If User A shares a
printer resource, and User B sends a
print task to the printer, the printer
sees the origin of the print task as
User A.

H M

R-5.2,
MonitorShared-
Usage

A device that shares a software
component, must be able to
monitor the usage of the
component.
Usage originating from the device
that is sharing the software
component does not need to be
monitored. Only usage originating
from other devices must be able to
be monitored.

M M

R-5.3,
ControlShared-
Usage

The host user of a shared software
component must be able to control
usage of the resource.
For instance for limiting the number
of users using the resource at once,
or for limiting the time a software
component should be shared.

H M

Table 2.2: Requirements for a solution.

18

Chapter 3 State of the art

This chapter discusses the state of the art related to the problems identified in

Chapter 2. Each research item presented in this chapter contributes to solving

one or more problems from Chapter 2.

The structure of this chapter is as follows:

 Section 3.1: Presents Ubicollab, the platform we will implement a

solution on.

 Section 3.2: Describes research for the problems in section .

 Section 3.3: Describes research for the problems in section .

 Section 3.4: Summarizes how the research solves the problems

from Chapter 2.

3.1 Ubicollab
This section describes how Ubicollab contributes to solving the problems of

Chapter 2. A more thorough and foundational description of the Ubicollab

project is presented in the Ubicollab whitepaper [2]. For the rest of this thesis,

we will use terms from the whitepaper, whereof the most relevant are found in

the glossary of this thesis.

3.1.1 Background

Ubicollab is a platform for supporting technology-based collaboration between

people. The Ubicollab project has its root in the research fields of Computer

Supported Cooperative Work (CSCW) and ubiquitous computing. The Ubicollab

project's "research agenda for ubiquitous collaboration is set to take advantage

of research results in CSCW and AmI in order to create better solutions for

supporting natural collaboration in co-located or distributed groups" [2].

3.1.2 Platform

Ubicollab is based on a service oriented architecture (SOA). It is not dependent

on a central server, so all services reside on the user's UbiNode (mobile device).

As a consequence, communication between UbiNodes are done in a peer-to-

19

peer fashion. Ubicollab’s platform implementation consists of independent

Platform Services.

See Figure C.1 (page 106) for an overview of the architecture of the Ubicollab

platform.

3.1.3 Communication with resources

A UbiNode can communicate with resources in the user’s physical vicinity or on

the Internet. Because resources are not implemented using a standard API, the

UbiNode's communication with resources is done by using Proxy Services. Proxy

Services are in other words similar to resource controllers, see section 2.2.1.

Section 2.2.1 discussed users' difficulties of retrieving appropriate for utilizing a

resource. The current implementation of Ubicollab supports resource discovery

[4], but is not able to retrieve appropriate Proxy Service(s) when discovering a

resource. After a resource has been discovered, no behavior is implemented for

dealing with the new resource. Unless a Proxy Service for that resource has

previously been installed, the UbiNode (and the user) will not be able to utilize

the resource, because of the lack of a standard API. UPnP [10] and DNLA [11]

are approaches that address the lack of a standard API, but before these

solutions become widely deployed, Proxy Services are used for communicating

with resources.

3.1.4 Platform implementation: OSGi

Ubicollab is implemented using OSGi [12], which is a platform for building and

running dynamic and modular applications in Java. OSGi runs on top of the Java

Virtual Machine, and provides a runtime environment for applications.

Applications are implemented using one or more modules called bundles.

Bundles are packaged as JAR files. Bundles support dynamic deployment in

that they can be installed, started, stopped, updated and uninstalled during

runtime, that is, without stopping the host application or the Java Virtual

Machine.

Resources are accessed via Proxy Services, and Proxy Services are implemented

as bundles. Because the dynamic capabilities of bundles, resources can be

added and removed from the user’s UbiNode as the user moves around and

discovers new resources. This is a crucial capability in ubiquitous computing,

20

and is the reason for why OSGi has been selected as platform for Ubicollab in

earlier and this work.

3.2 Continuous and unpredictable changes in the

ubiquitous environment

3.2.1 Retrieving appropriate software for utilizing a resource

In short, section 2.2.1 described problems that can occur when a user wishes to

acquire new software on her mobile device. Several approaches for software

retrieval do exist, and are discussed in this section.

3.2.1.1 A recommender application for mobile devices

Woerndl et al. [13] implements a client program for mobile devices, from now

on called AppRecommender4, that makes software application

recommendations to the user, based on the user's context. The user interface

(Figure 3.1) makes the user select which kind of recommendation she wants,

e.g. "nearby services" or "interesting services". The user interface then shows a

list of applications based on the user's choice. For instance, AppRecommender

can suggest a restaurant-guide application based on the user's location.

The motivation for creating AppRecommender, was the wish to make it easier

for users to get information that is relevant amongst the huge amount of

information that exists today.

Relevance to problem analysis

How does AppRecommender relate to the problems discussed in section 2.1?

Solution 3 in section 2.2.1.1 suggests that a relevant application can be fetched

using a dedicated search application, and AppRecommender is such a search

application.

AppRecommender can address the problem of long search time by utilizing the

user’s context to recommend applications to the user, so that the user does not

have to spend a lot of time finding suitable search terms. How useful the

recommendations are, is dependent on the recommendation algorithm. A

useful recommendation algorithm will select a few applications that all matches

4
 Woerndl et al. does not name their implementation, and is added here for increased

readability.

21

the user’s needs, while a poor algorithm will output a long list of applications

that have no value for the user.

Figure 3.1: The mobile client program lists recommended applications.

3.2.1.2 Automated installation of devices in a ubiquitous healthcare

system

Jung et al. [14] describe a system for automatic installing of newly discovered

bio-sensor devices used in a ubiquitous healthcare system.

Part of the goal of the work of Jung et al. is to utilize a bio-sensor on a mobile

device. In order to do that, the mobile device needs a device driver to be able

to communicate with the resource. This problem is similar to the problem

described in section 2.2.1, "Retrieving appropriate software for utilizing a

resource".

Jung et al. solve this problem by having letting the mobile device recognize the

bio-sensor, request it's device driver from a device driver server, and install the

driver. This process is automatic, so no user intervention is needed.

Jung et al. offers an intriguing approach for quickly finding the appropriate

software based on a resource, by using a mapping between resources and their

appropriate software. However, this work assumes exactly one matching device

22

driver for each resource, while in our problem, there may exist multiple

appropriate software components for a resource.

Figure 3.2: Bio-sensor devices.

3.2.1.3 Mobile barcode readers

Microsoft Tag [15] and NeoReader [16] are two applications for mobile devices,

that let the user take pictures of visual symbols, barcodes, in order to access

mobile web content. Each barcode is unique, making it possible to convert it to

a unique URL. For instance, a user can take a picture of a barcode in an article

about Norway in a travel magazine, and the user’s web browser then opens a

web page allowing the user to see videos of Norway and order tickets.

Mora's implementation of Ubicollab includes a similar function like Microsoft

Tag and NeoReader. It allows a user to take a picture of a barcode in order to

identify a resource [4].

Relevance to problem analysis

The barcode scanning functionality enables a user to take a picture of a

barcode attached to resources in her physical surroundings, and retrieve the

appropriate software based on the unique barcode. This can be done by linking

the barcode to a URL to a web page that either downloads a software

component supporting the resource, or by listing different software so the user

can make a choice.

Figure 3.3: A barcode from Microsoft (a Microsoft Tag).

23

In other words, this approach contributes to how the appropriate software can

be fetched for utilized a resource.

The problem of long search time is addressed by this approach, because the

barcode is able to quickly identify a resource. Because a barcode is unique, this

method also enables the mobile device to either automatically install the

appropriate software for the identified resource, or present several suitable

software choices to the user.

3.2.1.4 Application distribution systems for mobile phones

Major mobile operation systems usually provide an application distribution

system, in the form of an application, along with the operation system. Several

distribution systems for mobile devices exist, perhaps the most known are

Apple's App Store and Google's Android Market, if measuring by the number of

available applications available [17]. These systems are shown in Figure 3.4 and

Figure 3.5, respectively. We'll investigate the most central features of the

distribution systems here, including features from all major application

distribution systems.

There are some common functions that all or most of the distribution systems

offer. If the user wants a new application, she can start the distribution

application (App Store, Android Market, etc.) and browse applications.

Applications can be sorted, usually by category (sports, games, etc.), popularity,

date and paid versus free. The user can also search by using search terms.

Nokia Ovi Store suggests applications to the user via a "Suggested for me"-

feature, which makes recommendations based on what kind of application the

user has earlier downloaded.

These functions do address the problem of getting a suitable application.

Sorting applications by category, popularity and similar do help narrowing

down the amount of applications the user has to investigate in order to find the

right application. However, the vast number of applications existing in these

distribution systems can still make this difficult. In the biggest distribution

market, the AppStore, there were as of June 2010 about 220 000 applications,

and about 5 000 applications are added every week [18].

24

Figure 3.4: App Store.

Figure 3.5: Android Market.

3.2.1.5 Application distribution systems for desktop PCs

Utilizing applications is one of the main purposes for a user using an operation

system (OS). A user may want to fetch another application, and some OSes

provide functionality for doing this.

Windows

In Windows (version Vista and later), there is no direct way of finding and

retrieving new applications. However, if a user tries to open a file with a file

extension that is not associated with an application, Windows suggests to

search for a suitable application (Figure 3.6). Choosing this option brings the

user to a web page which lists links to applications that can handle the file

(Figure 3.7). Clicking on any of these links redirects the user to the application

producer's web page.

This solution enables the user to find a suitable application. The retrieval

process is a quick process, only two mouse clicks are needed to get to a web

page that can offer an application. It is then up to this web page how easy it will

be for the user to fetch the application. For instance, is the user able to

download the application at once, or must she navigate through several pages

in order to download the application?

25

Windows' solution is quick and user-friendly. However, for our purpose, the

solution is probably too basic, as the application selection mechanism is based

only on a file extension.

Figure 3.6: Windows suggestions when opening an unknown file type.

Figure 3.7: Application suggestions for handling a file type.

26

Linux/Ubuntu

Ubuntu is a user friendly [19] Linux distribution for desktop PCs. It includes the

"Ubuntu Software Center" (Figure 3.8), which is an application management

portal that lets the user in few steps search (within a category or not) for

applications, get their description, download and install them. The user can also

browse applications in different categories without entering any search terms.

After download and installation, the application is put in the correct category of

the Ubuntu drop down panel (equivalent to the Windows' start menu). The

Ubuntu Software Center also provides an overview of applications already

installed, and gives the option to uninstall existing applications.

The Ubuntu Software Center (Figure 3.8) gives the user a consistent and user-

friendly way to install, get an overview of, and uninstall applications. However,

it does not recommend or rank applications in any way, nor does it utilize the

user's context, so user must investigate categories, application names and

application descriptions in order to find an application that suits her needs. The

categories help reduce search time, but there may still be many alternatives

within a category.

Figure 3.8: Browsing games in Ubuntu Software Center.

27

3.2.1.6 OSGi bundle repositories

A bundle repository is a web resource that contains pointers to bundles that

clients can download. The web resource can be a XML file that contains a

database with metadata about bundles, or a human-readable web site. The

intention of a bundle repository is to provide a trusted site that clients can use

for discovering bundles [20].

Bundle repositories represent a good idea for how software can be retrieved on

a user's mobile device. When a user discover a resource, metadata about the

resource can be provided to the bundle repository, which will respond with one

or more suitable bundles that the user can download and install on her mobile

device.

3.2.2 Managing existing software

In short, the following issues related to software management were discussed

in section 2.2.2:

 Possibility for increased consumption of a device’s hardware

resources as more and more software components are installed.

 How can the user interface enable the user to effectively manage

many software components?

Section 3.2 discussed solutions related to acquiring software, and this section

continues by examining how management of existing software can be done.

3.2.2.1 Resource consumption

This section will examine how resource consumption can be controlled by

managing software on the Android platform and the Windows (version 7)

platform. The reason for choosing these two platforms is that they include

working, recent solutions for software management and resource consumption

control.

Google Android

When installing software (in form of applications) on Android, there will be

increased usage of the mobile device’s resource because applications use disk

storage, memory, CPU and bandwidth. This results in faster draining of the

mobile device’s battery.

28

In addition to applications, the Android OS enable the use of services, which

also may drain the device's battery.

The user is able to control resource consumption in several ways. The user can

force an application to stop, clear its cache, and uninstall it. As for services, the

user can start, stop and configure them. The service itself is responsible for

what configuration is available, and it is thus possible for a service to include

settings for resource consumption. For instance, a weather forecast service can

include a setting for updating every hour instead of every 30 minutes.

The functionality for resource control mentioned so far is included by the

Android OS. However, there are a great number of applications available on the

Android Market that offer additional functionality for resource control. One

examples is application Advanced Task Manager [21], which offers, amongst

other things, automatic killing (shutting down) applications or services when

they launch, and stopping multiple selected applications or services at once.

Windows

Most versions of the Windows OS can get slower as more and more

applications are installed. By slower, we mean increase in the response time of

the user interface, as well as the startup time of the OS and for applications.

Some reasons for the increased slowness includes (but is not limited to):

 After installation of an application, it can add itself to Window’s list

of applications that are to be run on startup. The same applies to

services. This increases usage of the hardware resources.

 As additional hardware devices are installed on the PC that runs

Windows, more and more device drivers will need to be

continuously run. This increases the CPU and disk usage.

There are many other reasons why Windows can get slower. However, the

listed reasons above are included here because they describe things that can

happen in most systems that can run applications and services.

Windows includes software management functionality that aids the user in

controlling resource usage. The concepts of this management functionality can

possibly also be implemented in a solution to the problems in Chapter 2. We

29

will in the following paragraphs examine the management functionality that

Windows offers.

Uninstall software: A simple solution to removing unnecessary software, is

uninstalling it. Through the control panel, Windows lets the user uninstall

applications.

Remove startup applications: Through the tool "msconfig.exe", the user is able

to select which applications can be included on startup of Windows.

Reduce an application's visual settings: Editing the compatibility settings of an

executable file, a user can set that the application should run in low-color

mode, low-resolution mode, and some other selections for reducing the visual

quality.

Block network access: Windows Firewall allows the user to completely block

network access for an application, which will eliminate any bandwidth usage.

Process management: Through Task Manager, a user can:

 Kill (quit) processes that is currently running.

 Set priority of a process, which sets how much CPU-time a process

gets.

 Set affinity of a process, which sets the number of CPU cores

available to a process.

Service management: The service management tool (started with executable

services.msc) includes the following functionality:

 Starting, stopping, restarting, pausing, and resuming of services.

 Setting the startup type, which can be one of the following:

o Automatic (delayed): The service is started first when

Windows has completed its startup process, in order to

speed up the startup.

o Automatic: The service is started at system startup.

o Manual: The service is started when needed (lazy startup).

o Disabled: The service is prevented from starting.

30

Hardware management: The Device Manager in Windows allows the user to

manage hardware attached to the PC Windows is running on. Several functions

that can be applied on a hardware device are available for the user:

 Uninstall: Removes the device driver for communicating with the

device from the OS.

 Disable: Removes the visibility of the hardware device from the OS

so it is not recognized or identified by any applications. After

disabling, enabling the device again is possible.

 Update device driver: Updates the device driver software (the user

can search for or specify a location to a newer device driver).

 Configure: Configuring a device driver lets the user control internals

of the hardware. The device driver itself provides what settings the

user can change.

 Power management: For some hardware, the user can set if the OS

should be able to turn off the hardware device in order to save

power.

OSGi bundle management

Section 3.1.4, "Platform implementation: OSGi", mentioned that bundles can

be installed, started, stopped, updated and uninstalled during runtime. These

actions are repeated here because they can be used for controlling resource

consumption. For instance:

 If a bundle uses too much CPU-time, it can be stopped.

 If the user's mobile device at a point has too many bundles

installed, they can be uninstalled.

The capability to do these actions at runtime without having to reboot other

systems is another attractive feature for controlling resource consumption.

3.2.2.2 Usability

Section “A usability challenge with resource management” (within section

2.2.2), described a scenario in which the problem was to manage many

software components. None of the solutions examined so far provide a solution

or ideas for solutions to this problem, because they do not utilize the user’s

context in order to manage existing software. Matsumoto et al. [22] and

31

Kamisaka et al. [23], however, present solutions that can be used for further

work in this thesis, and will be examined here.

Matsumoto et al. implemented a context-aware user interface, ordering

applications in a menu based on location and time. The menu contained 15

applications that the user could start. An experiment showed that the method

was able to predict the user’s preferred application better than using only

usage frequency for prediction. The approach of Matsumoto et al. does not

fully solve our problem (in section 2.2.2), because too few context attributes

are used (physical location and time), and our problem will need additional

attributes like existence and properties of nearby resources and logical

locations (Collaboration Spaces in Ubicollab). However, the solution of

Matsumoto et al. is an indicator that a context-aware user interface is actually

an improvement to non-context-aware user interfaces.

Kamisaka et al. try to solve the problem with the difficulties users can have with

trying to find an appropriate application on a mobile device, in complex menus

and with many sub-levels. They attempt “to realize a context-aware UI which

enables a user to access an appropriate application including an infrequently-

used one (calls, e-mails, camera, navigation system, applications installed by a

user, and all other capabilities the mobile phone is equipped with) quickly

according to his/her situation.”

Their problem is in some way similar to our current problem, which is how to

let the user manage many software components. When there are many

software components to choose from, the user would benefit from a smart

user interface that is able to predict which software component she is looking

for.

They concluded that time (which hour of the day) and the last action executed

were useful attributes when making a ranked list of possible actions for the

user. However, useful attributes to use in Ubicollab are likely to be different

because of numerous reasons. They analyzed long-term usage data of users

when using mobile phones for normal usage in order to find attributes such as

time and last action executed. Users most likely did not spend a significant

amount of time on managing software applications in a ubiquitous context, and

thus it is reasonable to assume that the usage data would be different if

analyzed similarly on the Ubicollab platform.

32

What we can learn from the work of both Matsumoto et al. and Kamisaka et al.

is that:

 It is probably wise to include attributes from the user’s context

when creating a user interface that gives the user numerous

options.

 Logs of the user’s actions (navigation, execution, etc) can be used

to choose the order of elements in the user interface.

3.3 Sharing of resources
This section discusses research that can be useful when creating a solution to

the problem of sharing a user’s context and capabilities, described in section

2.3.

3.3.1 MobiShare

MobiShare is “a middleware system that supports publishing, advertising and

semantic discovery of mobile resources encapsulated in services” [24]. The

system is accessed through access points (CASes in Figure 3.9) which

communicates with their own administration server. Each access point

operates within a physical range (called a cell). Users access this system

through a user interface on their mobile device.

Users are able to discover services through a context-aware search process. A

user can specify a search (like “book taxi”), which sends a search request to a

nearby access point. The access point maintains an internal list of available

services, and when a user issues a search, the access points does a context-

based search on this service list. The results are shown to the user as a list of

services. Context parameters supported include location and orientation (e.g.

north).

Users are not limited only to consuming services, they can define their own

services as well. The client user interface includes the service definition tool,

which enables users to share their own services, such as “a cab driver is

accepting reservation on his mobile phone or a sports fan sharing pictures on

his PDA” [24]. In order to formally define what the service can do, the user

must specify input and output parameters, and which part of a static and

previously defined taxonomy it belongs to. The taxonomy is used for instance

to place a service in the category “taxis”, which is a sub-category of “travel”.

33

Figure 3.9: The network topology in MobiShare.

The ProblemScenario described a scenario where collaboration could have

been simplified if it was possible for Eve to share the library printer with Joe.

MobiShare does provide this through the service definition tool described

above.

MobiShare is an interesting contribution to our problems. However, the

MobiShare architecture uses central access points in order to provide service

management (discovery, searching, publishing and removal of services). If these

are not available, the system goes down. No peer-to-peer approach is used,

which is required for our solution.

3.3.2 R-OSGi

R-OSGi enables transparent, remote access to OSGi services [25]. A remote

OSGi service can be retrieved via the network from another peer, using the

OSGi framework as if it was a local service. When the host of the service

registers the service to the OSGi framework, the host has to specify a single

property to indicate that it should be able for remote access. R-OSGi is

deployed as a normal OSGi bundle.

34

In effect, R-OSGi enables creation and usage of distributed applications. And

more importantly, R-OSGi enables software components to be shared among

users, because software components can be deployed as bundles.

The performance of R-OSGi is comparable or better than that of RMI or uPnP,

which are similar distribution mechanisms [25]. The bundle has been tested on

a number of OSGi implementations and hardware platforms.

R-OSGi was suggested as future work for the Ubicollab platform by Mora [4].

3.4 Summary
See Table 3.1 for a summary of the research found relevant for the problems in

Chapter 2. Empty cells means that the system does not support the

requirement. A cell's text content explains how the system solves the

requirement. For instance, we can see that the BioSensor-system supports

requirement R-2.

35

Req-ID

R-1,
Mobiliity

Yes Yes

R-2,
Appropriate-
SoftwareRetrieval

 Yes Yes

Yes. Possible
by creating a

web page
that shows

suitable
software for

the
identified
resource.

Yes.
Windows

finds
programs

based on file
extensions.

Yes. Can
output

bundles
based on
resource

properties.

R-2.1,
ListOfRetrievable-
Software

 Yes
Yes. Same as
above (R-2).

Partly. The
OSes can list
software for
retrieval, but
not based on
a resource.

Yes.
Windows

views a web
page with a

list of
suitable

software.

Yes. Possible
to browse

repositories
on web.

R-2.1.1,
ContextAware-
List

 Yes

Partly. A list
can be made
based on the

time, and
what the tag

can tell
about the
context.

 Yes Yes

System

36

Req-ID

R-2.1.2,
PredictionSortedList

Partly.
Possible by

imple-
menting a
prediction
algortihm.

Partly.
Possible to

some extent
by producing
web content
based on the

tag ID and
time of scan.

 Yes Yes

R-2.2,
NoSoftware-Exists

 Yes

Windows
notifies the
user when

the file
extension is
not known.

Assumed

yes.
Yes

R-3,
Control-
ResConsumption

 Yes Yes Yes .

R-4,
ListSoftware-
Organized

 Yes Yes Yes Yes Unknown

R-5,
ShareSoftware-
Components

 Yes Yes

R-5.1,
UseComponent-
OnBehalf

 Unknown Yes

System

37

Req-ID

R-5.2,
MonitorShared-Usage

 Assumed yes Yes

R-5.3,
ControlShared-Usage

 Unknown Yes

Table 3.1: How the state-of-the-art contributes to a our requirements for a solution.

System

38

Chapter 4 Solution proposal

This chapter describes a Ubicollab Platform Service that shall solve the

problems described in Chapter 2, “Problem analysis”.

The contents is structured in the following way:

 Section 4.1 presents a scenario that illustrates a solution to the

earlier problems, as well as an analysis of the scenario to see how it

solves these problems.

 Section 4.2 and 4.3 state the suggested functionality for the new

system. The sections are structured similarly to their respective

sections in Chapter 2 and Chapter 3.

4.1 Solution scenario

4.1.1 Scenario

This section presents a scenario that starts the same way as the

ProblemScenario, and shows how the system presented in this chapter solves

the problems presented in Chapter 2. This scenario is referred to as the

SolutionScenario for the rest of this thesis. Within the scenario, there are

references, written in bold, to GUI sketches for a solution.

Eve is a university employee, and is to have a budget meeting with Joe and

Ashley at 3pm in a specific meeting room at the university library. They are to

discuss some budgets.

At the library, Eve wants to print her budget. She finds her UbiNode, and makes

a search for printers on the wireless network. She finds one called "Library

printer Room F032", selects "Find services for this resource", selects "Device

driver (1)" , and is able to get a Proxy Service that her UbiNode needs for

accessing the printer (Figure 4.1). After installation, she is prompted for a

username and password for the printer, as only employees and students are

39

allowed access, so she enters the username and password for her employee

account.

Eve notices that she does not have any Proxy Service for opening and printing

the budget, so using her UbiNode, she starts Service Domain Manager and

selects "see installed services". She then chooses to list services for newly

installed devices, which that are tagged with "spreadsheet". She installs the first

on the list, "DocManager" (Figure 4.2). She also thinks they might need

converting the budgets to PDF during the meeting, so she makes Service

Domain Manager to retrieve a list of Proxy Services tagged with "spreadsheet"

and "PDF". She selects the first application suggested, named "XLS-to-PDF",

which tells in its description that it can convert XLS files to PDF.

Eve suddenly notices that the estimated remaining battery time on her UbiNode

is only two hours, even if it was fully charged this morning. She suspects one of

the new Proxy Services to cause the problems, so she uses Service Domain

Manager to get a list of recently installed Proxy Services (Figure 4.3). Eve

chooses XLS-To-PDF, and finds the configuration button in the menu as she is

used to, and clicks it. However, she does not find any setting in the

configuration which would make XLS-To-PDF significantly drain the battery. She

repeats the same process for DocManager, and is able to spot three check

boxes, "Always search for new printers, "Search using the wireless network",

and "Search using Bluetooth". The UbiNode has already found and installed the

library's printer, so Eve turns off all the checkboxes. Afterwards, she is glad to

see that the estimated remaining battery time has increased to 11 hours.

Eve checks the description of the Proxy Service "Library printer Room F032", and

is able to find directions to Room F032, where the printer is located. While

walking, Eve issues her printout and receives a message that says her credit

card has been charged by a total of $1.40, $0.20 per page. At Room F032, Eve

fetches the papers from the printer tray, and goes back to the meeting room, in

good time before Joe and Ashley arrives.

At the end of the meeting, they have agreed upon using Joe’s version of the

budget. Joe wants to print some copies of the budget to hand over to the client

at a later meeting, so Eve creates a Collaboration Instance named "Group

Meeting". She then shares the library printer with the Group Meeting

Collaboration Instance, so Joe’s UbiNode is able to find and install it (Figure

40

4.4) . Joe prints his budgets via Eve’s UbiNode, and Eve is notified that her credit

card has been charged by a total of $1.20, $0.20 per page.

4.1.2 Analysis of solved problems

In Table 4.1, the problems in the column "ProblemScenario" are taken from

Table 2.1, "Scenario problem summary.".

41

Problem ProblemScenario SolutionScenario

Section 2.2.1: Users
discover new
resources when they
move around in a
ubiquitous
environment. In order
to utilize new
resources, new
software is needed.
How can users easily
aquire appropriate
software?

- Eve needed a device
driver for the printer, and
asked the receptionist for
help, in order to avoid
spending a lot of time
searching for the driver.

See Figure 4.1.

The UbiNode
automatically found a
device driver.

- Eve wanted to open an
XLS-file and print it.
- She made an application
search for "print", and
found an overwhelming
amount.
- She had to make three
attempts before finding a
suitable application.

See Figure 4.2.

- Eve was able to use
the installed printer
and a word (type) in
order to find a suitable
application.

Section 2.2.2: After
installing software
components, new
issues arise. These
issues are related to
increased resource
consumption of the
user’s mobile device
and user-friendliness
when managing many
software components.

- Eve attempted to uninstall
two recently installed
applications, but used
some time to navigate
through a great number of
previously installed
applications before she
could find and uninstall the
two applications..

See Figure 4.3.

- Eve quickly found the
two recently installed
Proxy Services in the
SDM by choosing the
"recently installed"
option.

- Eve wanted to view the
configuration for two other
applications, but she used
some time to find the
configuration because each
of the GUIs of the
applications looked
different, and Eve was
unfamiliar with both..

See Figure 4.3.

- Eve were able to
quickly check the
configuration of the
two recently installed
Proxy Services, because
she found the
configuration button
for both of them at the
same general place in
the menu.

42

- Eve tried to find the
library printer, but had to
ask the receptionist for
directions.

See Figure 4.3.

- Eve opened the
description of the
Proxy Service for the
printer and found
directions to the
printer.

Section 2.3: When
users collaborate,
there may be a need
for sharing resources
or functionality
between their mobile
devices (for instance a
nearby projector, or
some file converter
functionality). Users
utilizing a shared
resource, may also
need to use the
resource on behalf of
the user sharing it.

- Joe needed to print his
budgets on the library
printer, but could not print
because he did not have
username and password to
the printer.

See Figure 4.4.

- Eve shared the library
printer with Joe.
- Joe found the shared
printer, and was able to
print the budget.
- Joe's mobile device
used Eve's device as a
proxy, and thus Joe did
not need to provide a
username and
password.

 After a user has
shared a resource,
there may be a need to
monitor other users’
usage of the shared
resource (for instance
for charging them for
usage). There may also
be a need controlling
the usage of the
shared resource (for
instance limit how
many users that can
use the resource at a
time).

(Sharing did not exist in the
ProblemScenario)

- Eve is automatically
charged for her
printouts because the
library monitors her
usage of the printer.
- When Joe prints his
budget on the shared
library printer, Eve is
charged, because her
device works as a
proxy.

Table 4.1: Connecting problems with their solutions.

43

4.2 Continuous and unpredictable changes in the

ubiquitous environment

4.2.1 Retrieving appropriate software for utilizing a resource

Problem summary

Section 2.2.1: Users discover new resources when they move around in a

ubiquitous environment. In order to utilize new resources, new software is

needed. How can users easily acquire appropriate software?

Related functional requirements:

R-2, AppropriateSoftwareRetrieval
R-2.1, ListOfRetrievableSoftware
R-2.1.1, ContextAwareList
R-2.1.2, PredictionSortedList

R-2.2, NoSoftwareExists

GUI sketches

Figure 4.1, Figure 4.2.

44

Figure 4.1: Installing a resource.

45

Figure 4.2: Finding Proxy Services that matches some criteria.

46

Solution

There are two ways to retrieve suitable Proxy Services. The first way is shown in

Figure 4.1, the other in Figure 4.2:

 In Figure 4.1, a resource has been discovered by the UbiNode, and

the user can find Proxy Services based on that exact resource. Only

services that are suitable for the discovered resource is shown. This

is done by keeping a registry of mappings between resources and

Proxy Services. When a user selects a Proxy Service from the list, it

is installed to the user’s UbiNode (Figure 4.1, screen 3).

 In Figure 4.2, the user actively chooses to find Proxy Services, and is

able to navigate through various categories to find what she is

looking for.

When the user opens a category, Proxy Services and possibly additional sub-

categories are listed. Categories can be based on various attributes, for

instance the user’s location. The ordering of the Proxy Services and the

categories should be based on predictions of what the needs or wants.

Solution rationale

The basic idea of letting the user browse through suitable Proxy Services, was

inspired by the way AppStore and Android Market allow users to download

applications, as described in section 3.2.1.4.

This solution solves the problem of retrieving software suitable for a certain

resource. The SDM shows only Proxy Services that are able to utilize the

software in some way. This approach is similar to Windows’ solution of only

showing applications that supports a certain file extension (section 3.2.1.5). It is

also similar to the approach of Jung et al. [14], which retrieves a software driver

based on a bio-sensor device. However, in their approach, a device always

pointed to one software driver, whereas a resource discovered in Ubicollab

may point to many Proxy Services.

When a user discovers a resource, the solution solves the problem of long

search time for finding suitable software, in the following ways:

 Instead that user spends a lot of time choosing search terms in a

search site (either a general, like Google, or a specific, like

47

download.com) in order to find suitable software for a resource,

SDM automatically shows the suitable software (Proxy Services)

that matches and supports the resource.

 If SDM lists no Proxy Services, this immediately indicates that no

software for the resource was found.

 The name of the Proxy Service does not matter, because the

resource itself is used as a search key for finding appropriate Proxy

Services, not a textual name.

 Fourth, SDM predicts which Proxy Service best matches the user’s

intensions, so the most relevant results will be shown first. This

idea is taken from the AppRecommender (section 3.2.1.1).

When a user attempts to find software in general, that is, not just when

discovering a resource, the problem of long search time is solved by using well-

chosen categories. This idea was inspired by application listing systems such as

Android Market, AppStore and Ubuntu Software Center. The utility of this

solution is based on a good choice of categories. Some category suggestions

are:

 Using categories based on attributes from the user's usage history.

Location and time were suggested by Matsumoto et al. [22] as good

attributes.

 A category for Proxy Services for resources that are physically close

to the user, or similar context attributes.

 A category for Proxy Services that are shared by other users

(explained later in this chapter).

 A category for Proxy Services used the last hour.

 A category for Proxy Services tagged with the text "office".

 A category for Proxy Services that represents resources on the web.

The user's problem of choosing the appropriate software when there are

several choices are solved by:

 Predicting the user’s intensions, as suggested by Kamisaka et al.

[23].

 Having categories as explained above, making it easier for the user

to browse the Proxy Services.

48

4.2.2 Managing existing software

Problem summary

Section 2.2.2: After installing software components, new issues arise. These

issues are related to increased resource consumption of the user’s mobile

device and user-friendliness when managing many software components.

Related functional requirements

R-3, ControlResConsumption
R-4, ListSoftwareOrganized

GUI sketches

See Figure 4.3.

49

Figure 4.3: Managing Proxy Services.

50

Solution

In order for the user to manage installed Proxy Services (the software), the user

needs a way to access them. This is solved by using a user interface that works

the same way as described in section 4.2.1. The user accesses Proxy Services by

navigating through the categories (screen 2), and then selecting the wanted

Proxy Service (screen 3). When the wanted Proxy Service has been found, the

user can “open” it and get a list of actions that can be executed on the Proxy

Service (screen 4). These actions are:

 Start/Stop: If started, the Proxy Service can be stopped, and vice

versa. Stopping a Proxy Service means that it’s execution stops and

it’s functionality is disabled, and vice versa for starting. Because a

Proxy Service is implemented using an OSGi bundle, this action

includes starting/stopping the Proxy Service’s bundle. See [26] for

the exact definition of these actions.

 Uninstall: Uninstalling the Proxy Service means that it is removed

from the UbiNode. This action implies uninstalling the bundle the

Proxy Service resides in (explained in section 3.1.4).

 Configure: A Proxy Service may be configured by the user. What

settings the user can change is up to the Proxy Service itself. This

action exists only so that the user can access the Proxy Service’s

configuration.

Solution rationale

The user interface for Proxy Service (i.e. software) management works, as

mentioned above, the same way as described in the section 4.2.1. This means

that they are separate user interfaces, because Proxy Services available for

retrieval and installation should be separated from installed Proxy Services.

However, the inner workings of the user interfaces are the same, meaning that

functionality such as categories and prediction of user intentions is also

included in the user interface for managing Proxy Services.

The reason for using the an interface with the same functionality is that the

user interface offers a good way for browsing and finding suitable Proxy

Services. The categories and user intent prediction may be a bit different, but

the basic functionality of user interface should still be the same. In this way, the

problem of providing a user-friendly management system is solved.

51

The problem with increased resource consumption when more and more Proxy

Services are installed, is solved by:

 Enabling the user to stop or uninstall Proxy Services. Stopped Proxy

Services cannot do anything except exist, so stopping a Proxy

Service reduces usage of the UbiNode’s resources such as the CPU,

storage, bandwidth and battery. Uninstalling a Proxy Service

naturally includes the same effects.

 Enabling the user to configure Proxy Services. The Proxy Service’s

resource consumption may depend on its configuration, and by

letting the user change the configuration, the resource

consumption can be controlled. For instance, a Proxy Service for

streaming music can include a setting for setting the maximum

download bit rate. Conclusively, this option does not necessarily

mean that resource consumption is reduced, but it enables this

possibility.

The functionality described in the first point above was inspired by the

functionality available for bundles in the OSGi framework (“OSGi bundle

management” under section 3.2.2). Because Proxy Services are built on top of

bundles, it is a natural choice to utilize the capabilities of bundles, because

these capabilities solves our challenge with resource consumption control, and

no additional solutions are required as they are already supported by OSGi.

Further, Proxy Services do have some things in common with services in

Android and in Windows (section 3.2.2), as both Proxy Services and services are

able to run continuously in the background (does not have a UI), can offer

functionality to other services, and they do use hardware resources. Because of

this similarity, actions available on services could maybe be used on Proxy

Services as well, such as starting and stopping. Windows does offer a lot of

other functionality that can potentially could have been made available on a

Proxy Service, such as blocking network access, updating, setting CPU priority,

and more. However, this kind of functionality only enables more fine-grained

adjustments of resource usage, and is not critical for resource control, and is

thus not included in this solution.

Configuring Proxy Services, as described by point two above, works the same

way as configuring services on Google Android (section 3.2.2) - the service

52

itself is responsible for what configuration is available. The user interface of

SDM just provides the possibility to access and change this configuration.

4.3 Sharing of resources

Problem summary

Section 2.3: When users collaborate, there may be a need for sharing resources

or functionality between their mobile devices (for instance a nearby projector,

or some file converter functionality). Users utilizing a shared resource, may also

need to use the resource on behalf of the user sharing it.

After a user has shared a resource, there may be a need to monitor other users’

usage of the resource (for instance for charging them for usage). There may

also be a need controlling the usage of the shared resource (for instance limit

how many users that can use the resource at a time).

Related functional requirements

R-5, ShareSoftwareComponents
R-5.1, UseComponent-OnBehalf
R-5.2, MonitorShared-Usage
R-5.3, ControlShared-Usage

GUI sketches

See Figure 4.4.

Solution

The user interface works as follows: A user can get a list of actions available for

a Proxy Service by selecting it and “open” it, as described in 4.2.2 (screen 1 and

2). An action for sharing the Proxy Service is added to this list (screen 3), so that

the user can issue this action on a Proxy Service (that supports sharing). In

other words, a resource is shared by sharing a Proxy Service. Other users will

interact with the resource through this shared Proxy Service.

Issuing the action “Share service” will open a new screen (screen 4), where the

user can add one or more Collaboration Instances (CI) the user wants to share

the resource with (the result of adding a CI is shown in screen 6). The user may

also specify a username and password that can be used to access the shared

resource (screen 5).

53

Figure 4.4: The user shares a Proxy Service.

54

When the user hits “Finish” (or similar), the UbiNodes of the other users

residing in the selected CIs will get a notification about the shared resource.

If User A wants to utilize a Proxy Service shared by User B, User A will use the

UbiNode’s resource discovery functionality in order to find the shared Proxy

Services, just as with any other resource. This means that User A will use the

installation procedure described in section 4.2.1 in order to find a suitable

Proxy Service that can utilize the resource. Even if the resource is shared by

another user, user A will need software that can interact with the resource (like

a device driver), as explained in section 2.2.1.

The last paragraphs mainly described the user interface of the solution, but

some additional explanation of the internals of the solution is required in order

to get a sufficient understanding of it: Sharing of resources are done by sharing

the Proxy Service(s) that utilizes the resource. Other users utilize the resource

by communicating with the shared Proxy Service. In this way, the user can

share not only resources, but also functionality that a Proxy Service implements

(for instance a spreadsheet-to-PDF converter).

Solution rationale

The solution above solves the main problem of enabling a user to share a

resource (through a Proxy Service), so that other users can utilize that resource.

The solution also solves the problem of sharing functionality. This is made

possible by the fact that Proxy Services are software components that offers

functionality, and Proxy Services can be shared.

The problem of monitoring and controlling usage of the resource is solved by

the fact that all communication with the resource goes through a proxy. This

proxy can monitor the communication, and control usage by restricting what

communication that can pass. Or, it can pass this information to a Proxy

Services that handles monitoring and controlling the proxy.

A Proxy Service for monitoring and controlling usage can possibly also

implement a user interface that shows this information to the user. This user

interface could be a part of the SDM, and show information like “Eve and John

are currently using this resource”, and give the user possibly actions like “Set

maximum number of users”, and “Set time limit for sharing this resource”.

However, such user interfaces are not suggested as part of this solution, as the

55

main focus is on sharing resources. Still, third party Proxy Services may

implement this kind of functionality.

The basic idea of letting the user share resources and functionality basically

came up from the problem description itself (section 2.3), but seeing that there

are existing, working solutions like MobiShare (section 3.3.1), suggests that this

is a viable approach. The solution presented here is not as advanced as

MobiShare, but the basic ability of sharing is still covered.

56

Chapter 5 Implementation

This chapter describes the implementation of a system for managing Proxy

Services on a user's UbiNode. The system is named Service Domain Manager

(SDM).

Note that the implementation does not fully cover all the features of the

proposed solution from Chapter 4. This will be evaluated later in this thesis.

The sections in this chapter is structured in the following way:

 Section 5.1 describes what existing systems the SDM will work

further on.

 Section 5.2 states the method used for construction of the SDM.

 Section 5.3 describes the selection of platform components.

 Section 5.4 explains the architecture of the SDM.

 Section 5.5 details the components that constitute the SDM.

5.1 Starting point
As mentioned in section 1.2, ”Research context”, this thesis continues the work

of the Ubicollab project, and specifically the works of Johansen [3] and Mora

[4]. While most of their code was used for getting an understanding of the

inner mechanisms of Ubicollab, Johansen implemented an earlier version of the

Service Domain Manager (SDM). Mora made a few updates to this

implementation, and this update was used as the initial implementation. The

reason for using this initial implementation, was that it contained fundamental

capabilities for service management, such as functionality for installing a Proxy

Service.

5.2 Construction method
The construction method used in implementation phase is illustrated in Figure

5.1. Hevner et al. [5] emphasizes that the construction method of a design

artifact must be rigorous. Our construction method is rigorous because of the

use of scenario-driven and UML-based development.

57

5.2.1.1 Method steps explained

The construction method of the SDM is illustrated in Figure 5.1. The steps

involved are described here:

 "SolutionScenario" (on the top): Refers to the scenario presented in

section 4.1.

 Step 1: By "part scenario", we mean a part of the SolutionScenario

that we want to create a solution for.

 Step 2: We considered solutions to how the problem(s) in the part

scenario could be solved, and the most suitable solution was

selected.

 Step 3: GUIs for the solution were sketched (if a GUI was part of the

solution).

 Step 4: A minimum solution was coded to check if the solution from

step 2 was possible to do. By "core features", we mean essential

parts of the code that were required to work in order for the whole

solution to work.

 Step 5: We created UML sequence diagrams in the creative process

of designing a satisfiable solution (not simply after designing the

solution).

 Step 6: The UML was implemented to create a solution. The

solution was tested for correctness using whatever test methods

seemed appropriate at the time. Further, the code was

continuously "cleaned up" (refactored) to ensure its quality5.

 Step 7: JUnit tests were made to verify that the code was working

as it should, which made later changes to the code a more fail-safe

process. However, this step was only done when creating the core

part of the SDM.

Some criticism to step 7 must be pointed out: It is difficult to ensure the

correctness and validity for a JUnit test that is created after the code it tests. A

5
 By "quality code", we mean code that conforms to well-known code-principles for

clean code design, such as high cohesion, low coupling, a high degree of readability,
and the single responsible principle, amongst other things.

58

better approach is using Test Driven Development (TDD) [27]. However, TDD

was not used as construction method because of:

1. Time consuming problems with getting JUnit to work in OSGi.

2. TDD results in slower implementation progress for projects of the size

of the SDM.

3. The SDM is a proof-of-concept application that does not need the code

quality TDD aims to produce. Step 6 included testing solutions, and was

considered to give a satisfactory level of correctness and validity of the

SDM's source code.

59

Figure 5.1: Construction method.

60

5.3 Platform choices

5.3.1 Selecting mobile operating system

Which kind of mobile device should we implement the SDM and Ubicollab on?

The existing Ubicollab implementation runs on top of OSGi (as mentioned in

section 3.1.4). OSGi can run on any Java specification [28], but this does not

mean that Ubicollab can run on any Java based device. There are numerous

implementations and versions of both OSGi and Java [29], and Ubicollab may

not run or function properly on all of these. The exact platform requirements

for the Ubicollab platform is of today not decided, and is not in focus of this

thesis.

Therefore, a mobile OS that already had a working and running Ubicollab

implementation was selected, namely Google’s Android OS, which runs on

several mobile phones. Android is an increasingly popular platform [30], and is

a developer-friendly in that it is an open platform [31].

Ubicollab also runs properly on Windows Mobile Professional 6.1. However,

this OS will in some future be replaced by Windows Mobile 7, which is not

backwards compatible with earlier versions (6.x and below) [32]. Developing

Ubicollab on a platform that will become obsolete in its next major version

release should be avoided, because the implementation then must be ported.

5.3.2 Selecting OSGi implementation

There also exists a complete software developer kit (SDK) for implementing

OSGi applications on Android, named ProSyst [33]. ProSyst offers integration

with Eclipse [34], a powerful and popular software developer tool. Apache Felix

[35] is another OSGi implementation for Android, but ProSyst appears to be the

simplest to use, and has therefore been chosen.

5.3.3 Selecting Java version

The latest Java platform version supported by ProSyst is J2SE 1.5, and is thus

the Java version used in the implementation.

5.3.4 Selecting GUI technology

The GUI of the SDM was chosen to be HTML-based, generated from Java

Servlets, described further below.

The alternatives considered for GUI implementation was:

61

 Using an HTML-based GUI

 eSWT [36]

 Java Swing [37]

 Android's native GUI framework [38].

Criteria for choosing a suitable GUI was usability, platform-independence, and

simplicity for making the GUI framework run on the ProSyst OSGi runtime.

5.3.4.1 An HTML-based GUI

There were three reasons for choosing an HTML-based GUI:

 HTML is platform-independent.

 Most smart phones are able view a HTML-based GUI. For instance,

Android uses the WebKit API [39], while iPhone uses the

UIWebView API [40].

 Using Java Servlets [41] enable dynamic creation of a GUI, similar to

a scripting language like PHP [42] or JSP [43]6. Additionally, ProSyst

OSGi supports Java Servlets.

The HTML-based GUI does not support using native GUI elements, but this was

outweighed by the reasons listed above. See REF _Ref266972134 \h Figure 5.7

for a screenshot of the HTML GUI for the SDM.

5.3.4.2 eSWT

Mora [4] uses eSWT for implementing the GUI for the resource discovery

process in Ubicollab. eSWT enables a developer to create a GUI that can run on

multiple mobile platforms while using native GUI elements when possible. This

eliminates the need for porting the GUI to each platform in order to use native

GUI elements.

eSWT was chosen for in earlier works of Ubicollab, because it enables the users

to interact with native GUI elements, which supports usability [4]. However,

eSWT was not used in SDM because it could not be set up and run successfully

in the OSGi runtime on Android. More effort could maybe have solved this, but

this project had limited resources, and the HTML-based approach offered a

simple and sufficient alternative.

6
 So why weren't PHP, JSP, or other scripting languages chosen? JSP was considered,

but we could not get it to work, and Java Servlets worked satisfactory.

62

5.3.4.3 Java Swing

Java Swing was not chosen for implementing GUIs in the SDM, because of two

reasons. First, Swing does not support the use of native GUI elements [4].

Second, as for eSWT, Swing could not be set up and run successfully in the OSGi

runtime on Android, while keeping the time budget.

5.3.4.4 Android's native GUI framework

Android's native GUI framework was tested by creating some simple GUI

menus, and these GUIs supported the needs for the SDM. The created GUIs

were difficult to run on the ProSyst's OSGi runtime, and were therefore not

selected as a GUI. Because of time budget constraints and the fact that this

approach was platform-dependent, this option was not further investigated.

5.3.5 Summary: Implementation stack

Figure 5.2 illustrates the final platform. The implementation of SDM was never

tested on a real device during this work, which explains the "(Not tested.)" in

Figure 5.2.

The architecture of Ubicollab is shown in Figure C.1 (on page 106), and the

architecture of the SDM and its related components is shown in Figure 5.3.

63

Figure 5.2: The implementation stack of Ubicollab.

5.4 Architecture
The following sub sections describes the components of the SDM. Figure 5.3

shows the OSGi bundles that constitutes the SDM.

We add some explanations to the figure:

 Package names have been simplified. See Appendix C.2 for a

mapping of the names in Figure 5.3 and real Java package names.

 "JavaxServlet", "ProSyst OSGi for Android" and "JUnit" are external

packages (in blue color), not implemented in this work. The rest are

Java packages implemented as OSGi bundles, which together

constitutes the SDM.

 Arrows denote dependencies between Java packages. For instance,

the ViewServlet package is dependent on the JavaxServlet package.

64

Figure 5.3: Internal architecture.

5.5 Components
This section describes the components of importance that the implemented

solution consists of. Note that figures of components and APIs have been

simplified for readability and intuitiveness.

5.5.1 GUI

5.5.1.1 ViewAndroid

SDM uses a HTML-based GUI, see an example in Figure 5.7. The user browses

the GUI through a Android WebView-component [44] that show can show

HTML pages. This component is named "ViewAndroid" in Figure 5.3.

65

5.5.1.2 ViewServlet

The HTML pages are hosted by a Java Servlet [41], which is managed through a

bundle called ViewServlet. ViewServlet can host web pages, using Java Servlet

functionality. It enables a client to access a HTML GUI through an URL. For

instance, the GUI of the SDM is accessed through the URL

http://localhost:1149/sdm?page=MainMenu.

The ViewServlet itself does not produce HTML pages, it fetches the appropriate

HTML page from a HTML provider based on the incoming HTTP request. In the

URL above, the HTML provider is SDMServlet, identified by the "sdm" part of

the URL.

5.5.1.3 SDMServlet

SDMServlet creates the GUI of the SDM (see Figure 5.7). SDMServlet contains

all the HTML pages of the SDM GUI. The content of a HTML page is returned

whenever ViewServlet requests it.

Figure 5.4: The SDMServlet package and its classes.

5.5.2 Service Domain Manager core

This section describes the core component of the SDM.

5.5.2.1 Screenshots

Note that the GUI uses the term service for Proxy Service. Arrows indicate a

connection between a user clicking a link in the GUI, and the resulting screen.

66

Figure 5.5: The startup screen on Android OS.

Figure 5.6: The OSGi application menu.

Figure 5.7: The main menu of Service Domain

Manager.

67

(Continued from last page)

Figure 5.8: List of all installed Proxy Services.

Figure 5.9: Available actions on a Proxy Service.

Figure 5.10: Viewing a Proxy Service's description.

68

Figure 5.11: Categorizing Proxy Services by type.

Figure 5.12: Categorizing Proxy Services by

Space.

69

5.5.2.2 Functionality

This section describes the capabilities of the implemented SDM, most of which

are visible from the GUI, but some only available at the API level.

Functionality accessible from the GUI

Categorize the list of Proxy Services: The SDM is able to view a list of installed

Proxy Services. The user can list all Proxy Services, or categorize them by place

(Collaboration Space), nearby places or type, or view all her shared Proxy

Services.

Manage Proxy Services: When the user accesses a Proxy Service in the GUI, she

can execute one of the following actions (Figure 5.9):

 "Stop service": Stops the Proxy Service.

 "Uninstall service": Uninstalls the proxy.

 "Put in space": Puts the Proxy Service into a Collaboration Space.

Not implemented into the GUI, but possible at the API level.

 "See description": Views the description of the Proxy Service.

 "Edit service properties": Lets the user configure the Proxy Service,

see an example in Figure 5.19.

Internal functionality

Share service: A Proxy Service can be shared so that other users can utilize it.

Sharing Proxy Services is not implemented into the GUI, but sharing of Proxy

Services is still supported by the platform.

Install Proxy Service:

long installService(String url);
Listing 5.1: Interface method installService.

The method installs a Proxy Service from the given URL. The URL must point to

a JAR file.

Activate Proxy Services in a space:

boolean setActiveSpace(

 Space space, boolean stopOtherServices);
Listing 5.2: Interface method setActiveSpace.

70

The method starts all Proxy Services in the given Collaboration Space first

parameter. If the boolean stopOtherServices is set to true, then all Proxy

Services not in the given Collaboration Space is stopped.

Automatic detection of changes to Proxy Services:

SDM listens for changes to bundles in the OSGi frameworks, in order to detect

when any Proxy Service is either installed, uninstalled, started, stopped or

updated.

Figure 5.13: Interface for the component ServiceDomainManager.

5.5.3 Proxy Service

For a conceptual description of a Proxy Service, see the glossary section.

Proxy Services are implemented as OSGi bundles, but have in this

implementation been given additional properties so that the Ubicollab platform

71

can separate them from regular OSGi bundles. These properties are described

in Appendix C.2.

Figure 5.14: Interface for the ProxyService component.

5.5.3.1 ServiceSettings - configuring a Proxy Service

Proxy Services define their own configuration, that is, which fields the

configuration should consist of, and their initial value. The user can change

these values through the SDM's GUI. An example is shown in Figure 5.19. SDM

generates this GUI based on the Proxy Service's configuration fields. The

container for the configuration is named “ServiceSettings”, and is a part of the

ProxyService component. The configuration values are stored by the

ProxyService using XML.

The reasons for using this solution are the following:

 It allows users to configure Proxy Services.

 The user can access the configuration from one known place, that

is, the menu shown in Figure 5.9.

72

 Proxy Services do not need to provide a GUI in order to be

configurable.

5.5.4 Sharing of Proxy Services

Figure 5.15: The internals for sharing a resource

Sharing of Proxy Services is illustrated in a simple way in Figure 5.15. The figure

is simplified, and a more detailed view can be seen in Appendix C.5. We will

also explain the communication process further here. We will name the client

user "Client", and the host user "Host", as in the figure.

There are two internal components that make sharing of Proxy Services

possible:

1. A Java Servlet implemented by a component named ProxyServer. This

component is used by the host user's UbiNode.

2. A component named ServiceLinkClient. This component is used by the

client user's UbiNode.

The Client sends messages to the Host by sending a HTTP request with the

message to send as a GET-parameter. For instance, sending the message

"PrintHowAreYou" can be done by opening the following URL:

http://<ip_of_Host>/printerProxy/?msg=PrintHowAreYou

The Host returns an answer through the HTTP-response received when opening

the URL above. By opening the URL above in a regular web browser, one can

directly see the response. For instance, the ProxyServer may return the simple

text "IAmFineThanks".

73

Now that communication is in place, sharing of Proxy Services is in principle

possible. The host and client application must use a common protocol for

communication, as SDM does not address this. For instance, the host

application of PptViewer (presented later in this chapter) only accepts message

on the form “openUrl http://...”.

5.5.4.1 ServiceLink

Using a Proxy Service “on behalf of” other users, as explained by requirement

R-5.1, is implemented by making sure that all communication between a Host

and its shared ProxyService goes through a ProxyServer, or an equivalent. In

SDM, an interface named “ServiceLink” is used for classes that can take care of

communication from both the host UbiNode, and a client UbiNode.

5.5.4.2 Discovery of shared Proxy Services

In order to let other users be able to discover the shared Proxy Service, the

following method can be used: User A can find the message proxy if User B

notifies all users in the Collaboration Instance (CI) about the shared Proxy

Service, and this notification includes an URL to the message proxy. This has not

been implemented in the current solution.

5.5.4.3 R-OSGi’s incompatibleness with Android OS

Why was not R-OSGi used in our solution? Research and solution approaches

described earlier in this thesis indicated that R-OSGi should be used.

The simple answer is that we could not get it to work. The problem was the

following:

R-OSGi enables transparent sharing of OSGi services by interpreting the

contents of Java ".class" files, that is, the byte code of classes. These class files

normally reside in the OSGi bundle, that is, the bundle's JAR file.

On Android OS, uses its own format for JAR files. It uses a process called

"dexifying" in order to optimize the JAR files. This process replaces all class files

in a JAR file with a single file called "classes.dex" that the Android OS can read.

As a result, R-OSGi cannot find the class files it needs. And conclusively, R-OSGi

could not be used in our implementation.

During the work with R-OSGi, we came across possible solutions to this

problem (see [45]), but limitations in the time budget denied further research.

74

5.5.5 Space Manager

The Collaboration Space Manager is a Platform Service in the Ubicollab

platform, which is responsible for retrieving a user's current physical location,

and managing Collaboration Spaces.

As no implementation existed when implementing the SDM, a stub ("dummy")

implementation was used instead.

5.5.6 JUnit tests

The JUnit tests perform various tests on the SDM Core.

5.5.7 A demonstration application: PptViewer

The usage of of PptViewer is shown through a scenario.

5.5.7.1 Scenario

Eve has rented the room “G128” for today’s presentation, in which Joe and she

are to talk about the their latest research. When renting the room, she got a

username and password to a projector in the room, which is accessible on the

wireless network. She has configured her UbiNode’s presentation viewing

application, PptViewer, to use that projector (Figure 5.19).

People are set, and she opens her presentation in PptViewer (Figure 5.16), and

navigates through her slides (Figure 5.17) using her UbiNode as a remote

controller to the projector. The projector shows the slides in a Firefox browser

window (Figure 5.18). Soon Joe is up, but not equally well prepared, he asks

her for help setting up the PptViewer on his UbiNode. When Eve tries to

configure the PptViewer on Joe’s UbiNode to use the room’s projector, the

UbiNode alerts “No access to resource!”. Eve has forgotten the username and

password she received for the projector, so instead, she uses her UbiNode to

share the projector with Joe. Finally Joe is able to configure his PptViewer to

use the shared projector instead of using it directly. He then opens his

presentation in PptViewer, and holds his presentation.

75

5.5.7.2 Screenshots

Figure 5.16: Opening a PPT presentation with

PptViewer.

Figure 5.17: Viewing and controlling a PPT

presentation from Android.

Figure 5.18: The server presentation application.

76

Figure 5.19: Editing service properties of the

PptViewer.

77

5.5.8 Portability

The only component of the SDM that is platform dependent to Android, is the

ViewAndroid component (section 5.5.1.1), as this uses the Android WebKit API.

ViewAndroid is completely decoupled from the rest of the SDM, so if SDM are

to be ported to another OS, only the ViewAndroid component should be

needed to be replaced. We say should, because there may be additional

changes required, due to the fact that OSGi implementations vary, even if they

adhere to the same OSGi specification. For instance, the SDM was tested during

this work on the Knopflerfish OSGi framework running on a desktop PC without

succeeding.

78

Chapter 6 Evaluation and discussion

This chapter evaluates and discusses the completed work in this thesis. The

sections are structured the following way:

 Section 6.1 states the methods used for evaluating the

implementation described in Chapter 5.

 Sections 6.2 to 6.4 evaluate the implementation based on the

methods described in section 6.1.

 Section 6.5 answers the research questions stated in section 1.3.

 Section 6.6 describes the limitations of the work in this thesis.

6.1 Methods used for evaluation
Several methods will be used for evaluating the implementation described in

Chapter 5. These methods are:

1. Investigating the implementation's fulfillment of the requirements

specification presented in section 2.4.

2. Investigating if and how the implementation supports the proposed

solution presented in Chapter 4.

3. Evaluating the use of a real-world application, named PptViewer.

The application utilizes the implementation's capabilities that

enable users to share and configure resource controllers.

Executing method 1 will give an overview of the completeness of the

implementation. Method 2 and 3 demonstrate the utility, quality and efficacy

of the implementation.

Method 3 is also motivated by the work of Edwards et al. [46]. Edwards et al.

argue that evaluating an infrastructure that aims to support a certain user

experience, must be done by evaluating the user experience offered by

applications that utilize the infrastructure. In our case, the solution

implementation includes infrastructure that enables users to utilize resources

79

shared by other users, so we evaluate this part of the infrastructure by

evaluating the use of PptViewer.

Note that this evaluation method only evaluates the parts of the infrastructure

related to sharing of resources, and not the complete implementation.

The next sections present the evaluation based on the methods listed above.

6.2 Fulfillment of requirements specification
Table 6.1 shows how the SDM fulfills the requirements specification from

section 2.4. It shows that the functions implemented were related to

management and sharing of existing software components, while those

functions related to the discovery of services were not or partially

implemented.

Table abbreviations
Cp: Complexity

Pr: Priority
I: Implemented

PI: Partially implemented
NI: Not implemented

Requirement ID How is the requirement fulfilled? Cp Pr I PI NI

R-1,
Mobiliity

The SDM is able to run on the
ProSyst OSGi runtime, which are
supported on the mobile
platforms Windows Mobile and
Google Android. The SDM has
been tested on Google's Android
Emulator.

The SDM is able to run on the
ProSyst OSGi runtime, which are
supported on the mobile
platforms Windows Mobile and
Google Android. The SDM has
been tested on Google's Android
Emulator.

M H X

R-2,
Appropriate-

R-2 is not fulfilled, because the
SDM has not been integrated

H H X

80

Requirement ID How is the requirement fulfilled? Cp Pr I PI NI

SoftwareRetrieval with the existing resource
discovery system of Ubicollab,
that is, the Resource Discovery
Manager. Further, several of the
capabilities described in section
4.2.1 have not been
implemented.

However, the SDM supports
retrieval of appropriate software
because it is possible to install
external Proxy Services via the
SDM's API.

R-2.1,
ListOf-
Retrievable-
Software

The SDM is able to list Proxy
Services, and the user is able to
select any Proxy Service from the
list and get a menu of appropriate
actions for that Proxy.

However, the SDM only lists
installed Proxy Services, that is,
Proxy Services that resides on the
user's UbiNode.

M H X

R-2.1.1,
ContextAware
List

The user can select "My nearby
services", which lists Proxy
Services that reside in the same
Collaboration Space as the user.

However, the Platform Service
responsible for giving the user's
current location has not been
implemented yet (not part of this
thesis).

See comments in section 6.2.1 for
details.

H H X

R-2.1.2,
Prediction-
SortedList

The SDM does not include any
means to predict user intents and
needs.

H M X

81

Requirement ID How is the requirement fulfilled? Cp Pr I PI NI

R-2.2,
NoSoftware-
Exists

SDM shows software by using a
list (such as in Figure 5.8). If this
list is empty, we assume the user
understands that no software is
available.

M M X

R-3,
ControlRes-
Consumption

The user is able to stop, uninstall
and configure a Proxy Service (see
Figure 5.9). Stopping and
uninstalling frees up resources for
the rest of the system.

Configuring the Proxy Service
allows the Proxy Service to
include settings that can control
its resource consumption.

M M X

R-4,
ListSoftware-
Organized

The SDM is able to show software
in different categories, as shown
in figures in section 5.5.2.1.

M H X

R-5,
ShareSoftware-
Components

Proxy Services can be shared and
used by other users across the
network, as described in section
5.5.4, and demonstrated by the
PptViewer in section 6.4.

H H X

R-5.1,
UseComponent-
OnBehalf

The demonstration of PptViewer
(section 6.4) showed that one
user could send requests to a web
application through the UbiNode
of another user.

H M X

R-5.2,
MonitorShared-
Usage

It is possible to monitor all usage
originating from other users by
using the ServiceLink component,
as described in section 5.5.4.1.

M M X

R-5.3,
ControlShared-
Usage

This is not supported in the
current implementation, but the
ground work is done through the
ProxyServer and ServiceLink
components.

H M X

Total 8 2 3
Table 6.1: Fulfillment of requirements specification.

82

6.2.1 Comments to Table 6.1

A note to R-2.1.1

A Collaboration Space is currently not linked to a physical location, because the

SpaceManager Platform Service of Ubicollab responsible for this was not

implemented at the time making the SDM. In the current implementation, the

user always reside in one default Collaboration Space (seen in Figure 5.12).

This requirement is considered partially implemented because the SDM's

implementation is ready for utilizing the current location of the user, but is

incomplete because of the missing functionality of another Platform Service,

which is out of the scope of this thesis.

6.3 Fulfillment of the proposed solution
This section investigates if and how the implementation of the SDM fulfills the

proposed solution presented in Chapter 4.

6.3.1 Scenario analysis

This section investigates the SDM's support for the challenges in the

SolutionScenario presented in section 4.1.

This is done by first repeating a relevant part of the scenario, and then stating if

and how the SDM solves or supports the situation described in the repeated

part. Bold text is used to emphasize what parts of the repeated text is

commented.

The implementation of the SDM, presented in Chapter 5, will be referred to

here as the "SDM", and is not to be confused with the solution system in the

scenario, which is referred to as the "Service Domain Manager", in italic.

6.3.1.1 The analysis

1. She finds her UbiNode, and makes a search for printers on the wireless

network.

Implemented: The scenario suggests that the solution shall run on a UbiNode,

which is a mobile device. The SDM is implemented on the Android OS, and is

thus mobile.

83

2. She finds one called "Library printer Room F032", selects "Find services for

this resource", selects "Device driver (1)" , and is able to get a Proxy Service

that her UbiNode needs for accessing the printer (Figure 4.1).

Partly implemented: The SDM does not support finding and installing new

Proxy Services. However, a GUI similar to the GUI in screen 2 in Figure 4.1 has

been made, and shown in Figure 5.7. Also, the SDM supports installation of

Proxy Services on the API level.

3. Eve notices that she does not have any Proxy Service for opening and

printing the budget, so using her UbiNode, she starts Service Domain

Manager and selects "see installed services".

Partly implemented: Starting the SDM is shown in Figure 5.5 and Figure 5.6.

Figure 5.7 shows the startup screen of the SDM, which corresponds to screen 2

in Figure 4.3. However, the startup screen itself is missing (screen 1, Figure 4.3).

4. She then chooses to list services for newly installed devices, which that are

tagged with "spreadsheet". She installs the first on the list, "DocManager"

(Figure 4.2).

Not implemented: Listing Proxy Services for newly installed resources, the

scenario intends that the solution should include a way to list Proxy Services

that are associated with a specific resource. The SDM does not implement

functionality for this.

Implemented: However, finding Proxy Services using tags are possible to some

extent, but is called "type" in the SDM. Categorizing by type is shown in Figure

5.11. There is currently a limitation of one tag per Proxy Service in the SDM.

5. She suspects one of the new Proxy Services to cause the problems, so she

uses Service Domain Manager to get a list of recently installed Proxy

Services (Figure 4.3).

Not implemented: The SDM does not support listing of recently installed Proxy

Services.

84

6. Eve chooses XLS-To-PDF, and finds the configuration button in the menu as

she is used to, and clicks it.

Implemented: The SDM allows the user to configure Proxy Services. An

example of this is shown in Figure 5.19.

7. Eve checks the description of the Proxy Service "Library printer Room F032",

and is able to find directions to Room F032, where the printer is located.

Implemented: The SDM allows the user to see descriptions of a Proxy Services,

as seen in Figure 5.10.

8. While walking, Eve issues her printout and receives a message that says

her credit card has been charged by a total of $1.40, $0.20 per page.

Implemented: The component ServiceLink (part of the Proxy component)

enables resource monitoring, as described in section 5.5.4.1.

9. Joe wants to print some copies of the budget to hand over to the client at a

later meeting, so Eve creates a Collaboration Instance named "Group

Meeting".

Out of scope: Collaboration Instances on the Ubicollab platform are managed

by the Collaboration Instance Manager, which is not a part of the work in this

thesis.

10. She then shares the library printer with the Group Meeting Collaboration

Instance, so Joe’s UbiNode is able to find and install it (Figure 4.4)

Partly implemented: Proxy Services can be shared and used by other users

across the network, as described in section 5.5.4 and demonstrated by the

PptViewer application in section 6.4. However, sharing is not implemented into

the GUI.

85

11. Joe prints his budgets via Eve’s UbiNode, and Eve is notified that her credit

card has been charged by a total of $1.20, $0.20 per page.

Implemented: The ServiceLink (section 5.5.4.1) enables a UbiNode to utilize a

shared Proxy Service on behalf of the host UbiNode.

6.3.2 Summary

Six capabilities were implemented, three were partially implemented, and two

were not implemented. The crucial capability missing was that related to

installing new Proxy Services.

6.4 Evaluation of a real world application: PptViewer

6.4.1 Scenario evaluation

We will here discuss how the capabilities of PptViewer were supported by the

SDM. In other words, we evaluate the SDM through evaluating an application

that utilizes its infrastructure and/or capabilities, as suggested by Edwards et al.

[46]. This evaluation uses the scenario section 5.5.7.1 as basis, and we will refer

to it as the PresentationScenario.

1. She has configured her UbiNode’s presentation viewing application,

PptViewer, to use that projector (Figure 5.19).

Implemented: Eve’s ability to configure the application is supported by the

configuration capability of the SDM.

2. People are set, and she opens her presentation in PptViewer (Figure 5.16),

and navigates through her slides (Figure 5.17) using her UbiNode as a

remote controller to the projector.

Implemented: When Eve opens her presentation in PptViewer, the PptViewer

checks its configuration for the URL to the host web application that is the

backbone of the application. The SDM enables the PptViewer to have its own

configuration through a class called ServiceSettings (section 5.5.3.1).

86

3. Soon Joe is up, but not equally well prepared, he asks her for help setting up

the PptViewer on his UbiNode.

Partly Implemented: There are many steps not mentioned here. If we assume

that Joe already has the PptViewer installed, and only needs configuration, we

have already covered this part.

If Joe didn’t already have the PptViewer application, the current

implementation of SDM does not provide many options for Joe to retrieve the

application. The only way of installing new software, is through the SDM’s API.

4. When Eve tries to configure the PptViewer on Joe’s UbiNode to use the

room’s projector, the UbiNode alerts “No access to resource!”.

Not Implemented: No such alert system currently exists in the SDM. It is

currently not possible to make this kind of alerts unless the configuration

mentioned in the scenario was accessed through a separate GUI accessible only

from the PptViewer.

5. Eve has forgotten the username and password she received for the

projector, so instead, she uses her UbiNode to share the projector with Joe.

Not implemented: The SDM does not allow users to share Proxy Services

through a GUI. Sharing needs to be done on the API level.

6. Finally Joe is able to configure his PptViewer to use the shared projector

instead of using it directly.

Not implemented: This may be possible, dependent on how the PptViewer

interprets its configuration. Still, SDM does not directly support such an action.

An example of how that would look like. would be a configuration in which the

user could select the output device of the application, changing from for

instance “Projector” to “Projector (shared by Eve)”.

87

6.4.1.1 Summary

Some of the points above we have already identified in earlier evaluations.

SDM covered the basic functionality that were needed in the scenario (viewing

a presentation on a projector).

However, some new capabilities were discovered that the SDM lacks.

The scenario tried to alert the user when a Proxy Service was configured wrong

(wrong username and/or password), but this is not currently possible. In

general, the configuration should support more dynamic content.

Also, Joe had the need to switch the output of the application to another Proxy

Service than it was currently set to. Connecting resources with each other is a

crucial capability in ubiquitous computing, which SDM does not currently

support.

6.5 Research questions
This section recapitulate and states contributions to the research questions

stated in section 1.3.

6.5.1 RQ-1

RQ-1: How can we extend existing service management architectures to support

user-centered and community-based service management?

The starting point of this thesis was the Service Domain Manager (SDM),

implemented by Johansen [3] and improved by Mora [4]. This work has been

extended by the following contributions:

 Suggesting an improved version of the SDM, which aims to provide

user-centered and community-based service management. This

work is presented in Chapter 4 and serves as basis for evaluation of

the implementation.

 Implementing parts of the suggested improvement of the SDM. This

work is presented in Chapter 5 and evaluated in sections 6.2 and

6.2.1.

The improved SDM adds support for user-centered service-management in the

following way:

88

 A GUI has been implemented for managing Proxy Services.

 The user can list installed Proxy Services in various categories,

which are based on which Collaboration Space they belong to,

which type they are of, the location of the user, and other

categories.

 Supporting configuring of Proxy Services.

 Supporting sharing of Proxy Services among users.

 Supporting starting, stopping and uninstalling of Proxy Services.

 The user can view the description of a Proxy Service.

The improved SDM adds support for community-based service-management

by:

 Supporting sharing of Proxy Services among users.

6.5.2 RQ-2

RQ-2: What technologies, architectures and platforms are most suitable for

implementing user-centered and community-based service management?

The contribution to this research question is based on the work done in

Chapter 3, "State of the art", and Chapter 5, "Implementation".

The following four items were found suitable:

1. Distribution platforms for mobile applications, such as Apple's App

Store and Google's Android Market, because they provide a suitable

model for how software could be deployed on a user's mobile device.

2. OSGi, because the platform allows dynamic deployment and

management of resources and software.

3. R-OSGi, because it provides a suitable framework that enables users to

share resources and software functionality with other users.

4. HTTP-based communication using Java Servlets, because it made it

possible to create a simple solution for enabling users to share

resources and software functionality with other users.

6.5.2.1 Rationale

Some additional reasoning are made for some the selections above:

89

1. By "suitable model", we mean the way users retrieve applications using

a distribution platform for mobile applications, as described in section

3.2.1.4.

2. Although OSGi has been used in earlier work of Ubicollab, it is included

in the list above because it has not been used with the purpose of

creating user-centered and community-based service management on

mobile devices. OSGi allows dynamic deployment as described in

section 3.1.4 and management of resources and software as described

in section 4.2.2. OSGi in itself does not directly support user-centered

service management, but it's API makes it easy to implement this. The

"community-based" service management aspect is not covered by

OSGi.

3. R-OSGi enables user-centered and community-based service

management in that it allow transparent use of remote resources

through Proxy Services. Even though not used in our solution because

of technical difficulties, the solution were found to be suitable.

4. Enabling sharing of resources and software functionality is a

cornerstone of community-based service-management.

6.5.3 RQ-3

RQ-3: How can we evaluate the usability and utility of user-centered and

community-based service management? What are the most compelling

scenarios? The SDM represents a solution to user-centered and community-

based service management, as stated in section 6.5.1, and can thus be used as

the subject for evaluation.

6.5.3.1 Evaluating usability

Evaluation of usability has been suggested for further work, see section 7.3.

6.5.3.2 Evaluating utility

This thesis has evaluated the utility of the SDM, by using the three methods

presented in section 6.1.

Method 1: Examining coverage of requirements specification

The fulfillment of the SDM's requirements specification was examined to get an

overview the SDM's completeness. Section 6.2 stated that the functions

implemented were related to management and sharing of software

90

components, while functions partially or not implemented were related to the

discovery of resources.

Method 2: Create scenarios that demonstrate problems and their

solutions, and compare the SDM's functionality with that of the

solutions

Next, the evaluation of the SDM's utility was done in the following way:

1. A realistic, detailed scenario, named the ProblemScenario, had already

been made to elicit challenges with today's technology and solutions. A

system was proposed to solve the challenges in this scenario. The utility

of this proposed system was demonstrated through a new scenario,

named the SolutionScenario, which described how the system solved

the problems from the ProblemScenario.

2. The SDM attempted to implement the proposed system. Because the

proposed system's utility already was demonstrated through the

SolutionScenario, the SDM's utility could be evaluated by comparing its

implemented functionality with the proposed system. This comparison

was conducted in section 6.2.1.

Method 3: Demonstrating utility through one or more real-world,

proof-of-concept applications.

As for method 3 in section 6.1, the PptViewer has been evaluated, but it utilizes

only parts of the SDM's capabilities related to sharing and configuration of

resource controllers. Nonetheless, the parts that were evaluated did

demonstrate SDM's utility of enabling users to share resource controllers with

other users, and configure resource controllers. This was done by

demonstrating how the PptViewer was used to solve challenges in a realistic

scenario. The evaluation of the PptViewer was conducted in section 6.4.

Our contribution to RQ-3

Our contribution to RQ-3 are the generalization of methods 1 to 3, described

above. We can evaluate the utility of user-centered and community-based

service management systems, by doing the following steps:

1. Get an understanding of the system's completeness by examining its

fulfillment of its requirements specification.

91

2. Create a scenario that describe current problems. Suggest and describe

a system that solves these problems. Demonstrate the suggested

system's utility by creating a scenario in which the problems are solved

by the system. Then compare the suggested system's functionality with

that of the existing service-management system.

3. Create one or more real-world, proof-of-concepts applications that

demonstrate the utility of the service-management system.

6.5.4 Future work: Selection of scenarios

No research has been done on how to create the most compelling scenarios.

This thesis used a problem-solution pair of scenarios, in which the solution

scenario was a response to the problem scenario. This may approach may have

made the scenarios more compelling than making a problem-solution scenario

pair without any relation.

In any case, this research is left for future work.

6.6 Limitations of this thesis

Privacy and security

Privacy and security of the users have been not been addressed in this thesis,

and this constitutes a major limitation of this thesis. See section 7.3, “Further

work” for further details.

Lack of evaluation of usability

The SDM’s usability has not been evaluated, because of time constraints, and to

some extent, incompleteness of the SDM's implementation. The SDM's

functionality is limited, which makes it challenging to make realistic

experiments to test for usability. Evaluation of usability for service-

management systems in general remains for further work, see section 7.3.

A GUI for retrieving software

The implementation of the SDM does not provide a GUI for retrieving

appropriate software when discovering resources, so it is difficult to test and

evaluate realistic usage of the SDM.

92

Integration with the existing implementation of Ubicollab

The SDM has not been tested with the existing implementation of Ubicollab,

which was last updated by Mora [4], which will make future work with the

Ubicollab code harder.

Further, package names, interfaces and method signatures have been changed

with the purpose of improving the current system, but with the negative side-

effect that the existing implementation of Ubicollab must be updated. The

coupling between the SDM and other components of Ubicollab were, however,

investigated, and there were only dependencies to the SDM from the existing

Resource Discovery Manager.

Other limitations

The implementation had other technical limitations as well, but are of less

importance for the work of this thesis, and may be more of interest for future

developers. These limitations are presented in Appendix C.6.

93

Chapter 7 Conclusion and further work

This chapter summaries what has been done in this thesis, and lists the

contributions made. The structure are as follows:

 Section 7.1 summaries the work of this thesis.

 Section 7.2 describes the contributions made.

 Section 7.3 lists suggestions for further work.

7.1 Summary
In a ubiquitous environment, users continuously encounter new resources that

can enhance the user experience. As users encounter an increasing number of

resources, the management of these resources becomes a central task.

This thesis has used a scenario-driven approach to identify challenges related to

user-centered and community-based management of resources in a ubiquitous

environment. Challenges identified include

1. difficulties with retrieving appropriate software for utilizing a

resource,

2. increased resource consumption and how users can handle this,

and

3. how to share resources among users.

These challenges were used as basis for creating a high-level requirements

specification for a system that overcomes the identified problems.

Next, we examined the state-of-the-art related to the identified challenges in

order to find ideas and solutions for addressing the identified problems. These

ideas and solutions were used as basis for suggesting a system that intends to

solve these problems. The suggested system demonstrated its ability to solve

the problems through a scenario.

94

The suggested system, named Service Domain Manager (SDM), has been

implemented on the Google Android platform. The SDM do not solve problem

one in the list above because of lack of time for implementation. The SDM

addresses mainly problem two and three in the list above. A demonstration

application was also implemented to show that the SDM solves problem three

above. An evaluation of the SDM was done that included contributions to the

research questions of this thesis. These contributions are presented in section

7.2.

7.2 Contributions

7.2.1 Contribution 1

RQ-1: How can we extend existing service management architectures to support

user-centered and community-based service management?

We have implemented the Service Domain Manager (SDM), which is a system

running on the OSGi platform that adds support for user-centered service-

management by including features for managing services on the Ubicollab

platform. The SDM provides a GUI that enable the user to:

 List services by using different, partly context-based, categories.

 Configure services.

 Start, stop or uninstall services.

 View service's description.

Additionally, the SDM provides an API that makes it possible to share services

among users across the network.

7.2.2 Contribution 2

RQ-2: What technologies, architectures and platforms are the most suitable for

implementing user-centered and community-based service management?

The following four items were found suitable:

1. Distribution platforms for mobile applications, such as Apple's App

Store and Google's Android Market, because they provide a suitable

model for how software could be deployed on a user's mobile device.

2. OSGi, because the platform allows dynamic deployment and

management of resources and software.

95

3. R-OSGi, because it provides a suitable framework that enables users to

share resources and software functionality with other users.

4. HTTP-based communication using Java Servlets, because it made it

possible to create a simple solution for enabling users to share

resources and software functionality with other users.

7.2.3 Contribution 3

RQ-3: How can we evaluate the usability and utility of user-centered and

community-based service management? What are the most compelling

scenarios? We can evaluate the utility of user-centered and community-based

service management systems, by doing the following steps:

1. Get an understanding of the system's completeness by examining its

fulfillment of its requirements specification.

2. Create a scenario that describe current problems. Suggest and describe

a system that solves these problems. Demonstrate the suggested

system's utility by creating a scenario in which the problems are solved

by the system. Then compare the suggested system's functionality with

that of the existing service-management system.

3. Create one or more real-world, proof-of-concepts applications that

demonstrate the utility of the service-management system.

7.2.4 Other contributions

This thesis is itself a contribution to the Ubicollab project, because we suggest a

system for the Service Domain Manager, which is a component of the Ubicollab

platform [2].

Further, while the previous sections describe research contributions, an

additional contribution was made as well:

A Java package for building graphical user interfaces (GUI) in OSGi. The

package can be used to build HTML based-GUIs in OSGi based on Java Servlets.

It is deployed as an OSGi bundle, but can be used in non-OSGi based

applications as well.

96

7.3 Further work

How can we support privacy and security of users?

Solutions that aims to provide community-based service management and

ubiquitous collaboration in a mobile environment face serious challenges for

supporting privacy and security for users. This thesis is a work in this area, but

these challenges has not been addressed, and this constitutes a major

limitation of this work.

Some challenges related to privacy and security for users that needs further

research are:

 When new software is needed for utilizing discovered resources,

how can we avoid retrieving and running malicious code?

 How can we minimize the resource consumption when securing

data in mobile, peer-to-peer based systems?

 When users share data in their context with other users, how can

we avoid that this data is read, altered or disrupted by an

adversary?

Related research to these challenges are authentication, certificates, identity

management, access control, encryption, secure peer-groups and trusted

sources.

Evaluation of usability

Parts of RQ-3 questioned for how usability can be evaluated for user-centered

and community based service management, and what the most compelling

scenarios are. These questions has not been addressed by this thesis, and is

thus left for future work. Appendix A contains two suggested usability

experiments that can be conducted. Finding compelling scenarios will also be a

part of this

Make R-OSGi work on Android

R-OSGi is a feature-rich and high-performing OSGi bundle that enables the

creation of distributed applications and sharing of resources and functionality.

It appears to be a suitable approach for Ubicollab, though this must be

97

investigated further. However, we did not succeed in making R-OSGi work on

the Android platform.

98

Glossary

Resource A resource, or system resource, is a physical or non-
physical component of limited availability. Devices
connected to a computer system or communication
network are physical resources [3]. Internal system
components are physical resources. Examples of non-
physical system resources include files, network
connections and services.

Application Software that allows a user to perform tasks through
a GUI.

Device driver Gives access to a hardware device on a computer.
Usually used by higher-level software for accessing
some hardware device. The term is sometimes
referred to by replacing "Device" with the actual
hardware, for instance "printer driver", which means
the device driver for a printer.

Resource controller Software that can access a resource through its API.
The equivalent on the Ubicollab platform is a Proxy
Service. A resource controller is also similar to a
device driver.

Proxy Service Proxy Services implements a uniform way of
communicating with resources [2], similar to device
drivers and resource controllers. They can also be
applications that implement a GUI and utilize other
Proxy Services.

Software component Either a resource controller or an application.
UbiNode A mobile device in the Ubicollab network that has

installed the Ubicollab platform, and provides or uses
Proxy Services [3]. Ubicollab users have their Proxy
Services installed on UbiNodes.

Collaboration Instance Provides a shared context for users, in which users
can put data. It can represent an activity, a social
world, a locale, a cognitive system, or a setting [2].

Bundle A JAR file used by in the OSGi platform to implement
functionality.

ProblemScenario A reference to the scenario in section 2.1.
SolutionScenario A reference to the scenario in section 4.1.
Service Oriented
Architecture (SOA)

A perspective of software architecture that defines
the use of services to support the requirements of

99

users. In a SOA environment, resources on a network
are made available as independent services that can
be accessed without knowledge of their underlying
platform implementation. In SOA the interface
definition hides the implementation of the language-
specific service. SOA-compliant systems can be
independent of development technologies and
platforms.

Ubicollab platform The Ubicollab platform is the container onto which
Proxy Services are deployed, and it consists of core
components such as resource discovery, service
management, and collaboration management. In
addition this.

Usability Usability refers to "the extent to which a product can
be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a
specified context of use" [47].

OSGi service “An OSGi service is a java object instance, registered
into an OSGi framework with a set of properties. Any
java object can be registered as a service, but
typically it implements a well-known interface” [48].
OSGi bundles can register zero or more OSGi services,
which other bundles or the bundle itself can retrieve.
As a result, java object instances can be accessed
across bundles.

Service A service is a program that can run in the
background, and is intended for longer-running
operations or for providing functionality to
applications.

100

References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific American, Sep.

1991.
[2] B.A. Farshchian og M. Divitini, “Collaboration Support for Mobile Users in

Ubiquitous Environments,” Handbook of Ambient Intelligence and Smart
Environments, Heidelberg: Springer, 2009, s. 173-199.

[3] K. Johansen, “User-centered and collaborative service management in
UbiCollab - Design and implementation,” Master, Norwegian University of
Science and Technology (NTNU), 2007.

[4] S. Mora, “A mobile extensible architecture for implementing ubiquitous
discovery gestures based on object tagging,” Master, Norwegian
University of Science and Technology, 2009.

*1+ A.R. Hevner, S.T. March, J. Park, og S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, 2004, s. 75–105.

[1] J.G. Daugman, “High confidence visual recognition of persons by a test of
statistical independence,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 15, Nov. 1993, s. 1148 -1161.

[7] S.B. Lee og S. Tsutsui, Intelligent biometric techniques in fingerprint and
face recognition, Boca Raton, FL, USA: CRC Press, Inc., 1999.

[8] “Android.com - Android at Google I/O.” http://www.android.com/.
[9] “Apple - iPhone 4 - Video calls, multitasking, HD video, and more.”

http://www.apple.com/iphone/.
[10] “UPnP Forum.” http://www.upnp.org/.
[11] “Home - DLNA.” http://www.dlna.org/home.

http://www.osgi.org/Main/HomePage.
[12] “OSGi Alliance | Main / OSGi Alliance.”

http://www.osgi.org/Main/HomePage.
[13] W. Woerndl, C. Schueller, og R. Wojtech, “A Hybrid Recommender System

for Context-aware Recommendations of Mobile Applications,” ICDEW '07:
Proceedings of the 2007 IEEE 23rd International Conference on Data
Engineering Workshop, Washington, DC, USA: IEEE Computer Society,
2007, s. 871–878.

[14] J.Y. Jung og J.W. Lee, “Automatic Discovery and Installation of Wearable
Bio Signal Devices in Ubiquitous Healthcare System,” Advanced
Communication Technology, The 9th International Conference on, 2007, s.
412 -414.

[15] “Microsoft Tag - Connecting Real Life and the Digital World using Mobile
Barcodes!.” http://tag.microsoft.com/consumer/index.aspx.

[16] “NeoReader: Home.” http://www.neoreader.com/.
[17] “List of digital distribution platforms for mobile devices - Wikipedia, the

101

free encyclopedia.”
http://en.wikipedia.org/wiki/List_of_digital_distribution_platforms_for_
mobile_devices.

[18] “148Apps.biz | Apple iTunes App Store Metrics, Statistics and Numbers
for iPhone Apps.” http://148apps.biz/app-store-metrics/.

[19] “Ubuntu Wins Most User Friendly Linux Distribution Award | Ubuntu.”
http://www.ubuntu.com/news/MostUserFriendlyAward.

[20] OSGi Alliance, “RFC-0112 Bundle Repository,” 2005.
http://www.osgi.org/About/FAQ.

[21] “Advanced Task Manager v4.1 Application for Android | Tools.”
http://www.androlib.com/android.application.com-arron-taskmanager-
zpp.aspx.

[22] M. Matsumoto, R. Kiyohara, H. Fukui, M. Numao, og S. Kurihara,
“Proposition of the context-aware interface for cellular phone
operations,” Networked Sensing Systems, 2008. INSS 2008. 5th
International Conference on, 2008, s. 233 -233.

[23] D. Kamisaka, S. Muramatsu, H. Yokoyama, og T. Iwamoto, “Operation
Prediction for Context-Aware User Interfaces of Mobile Phones,”
Applications and the Internet, 2009. SAINT '09. Ninth Annual International
Symposium on, 2009, s. 16 -22.

[24] E. Valavanis, C. Ververidis, M. Vazirgianis, og G.C. Polyzos, “MobiShare:
Sharing Context-Dependent Data and Services from Mobile Sources,” In
Proceedings of IEEE/WIC International Conference on Web Intelligence

(WI�03, 2003, s. 13–17.
[25] J. Rellermeyer, G. Alonso, og T. Roscoe, “R-OSGi: Distributed Applications

Through Software Modularization,” Middleware 2007, 2007, s. 20, 1.
[26] “OSGi Alliance | Release4 / Download Specifications.”

http://www.osgi.org/Release4/Download.
[27] “Introduction to Test Driven Design (TDD).”

http://www.agiledata.org/essays/tdd.html.
[28] “OSGi Alliance | About / FAQ.” http://www.osgi.org/About/FAQ.
[29] N. Bartlett, “OSGi in Pracice,” OSGi in Pracice, s. 1-13.
[30] “comScore Reports May 2010 U.S. Mobile Subscriber Market Share -

comScore, Inc.”
http://www.comscore.com/Press_Events/Press_Releases/2010/7/comSc
ore_Reports_May_2010_U.S._Mobile_Subscriber_Market_Share.

[31] “What is Android? | Android Developers.”
http://developer.android.com/guide/basics/what-is-android.html.

[32] C. Kindel, “Different Means Better with the new Windows Phone
Developer Experience - Charlie Kindel on Windows Phone Development -
Site Home - MSDN Blogs.”

[33] “ProSyst - Developer Zone.” https://dz.prosyst.com/devzone/Mobile.

102

[34] “Eclipse.org home.” http://www.eclipse.org/.
[35] “OSGi Android - open source server - Confluence.”

http://opensource.luminis.net/wiki/display/SITE/OSGi+Android.
[36] “embedded Rich Client Platform (eRCP).” http://www.eclipse.org/ercp/.
[37] “About the JFC and Swing (The Java™ Tutorials > Creating a GUI With

JFC/Swing > Getting Started with
Swing).”http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/
uiswing/start/about.html.

[38] “User Interface | Android Developers.”
http://developer.android.com/guide/topics/ui/index.html.

[39] “android.webkit | Android Developers.”
http://developer.android.com/reference/android/webkit/package-
summary.html.

[40] “UIWebView Class Reference.”
http://developer.apple.com/iphone/library/documentation/uikit/referen
ce/UIWebView_Class/Reference/Reference.html.

[41] “Java Servlet Technology.” http://java.sun.com/products/servlet/.
[42] “PHP: Hypertext Preprocessor.” http://php.net/.
[43] “JavaServer Pages Technology.” http://java.sun.com/products/jsp/.
[44] “WebView | Android Developers.”

http://developer.android.com/reference/android/webkit/WebView.html.
[45] “SourceForge.net: Topic: R-OSGi for Android?.”

http://sourceforge.net/projects/r-
osgi/forums/forum/533562/topic/3220253/index/page/1.

[46] W.K. Edwards, V. Bellotti, A.K. Dey, og M.W. Newman, “The challenges of
user-centered design and evaluation for infrastructure,” Proceedings of
the SIGCHI conference on Human factors in computing systems, Ft.
Lauderdale, Florida, USA: ACM, 2003, s. 297-304.

[47] “ISO 9241-11:1998 - Ergonomic requirements for office work with visual
display terminals (VDTs) -- Part 11: Guidance on usability.”
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883.

[48] “OSGi Service tutorial.”
http://www.knopflerfish.org/osgi_service_tutorial.html#what_is.

[49] “Discover the secrets of the Java Serialization API.”
http://java.sun.com/developer/technicalArticles/Programming/serializati
on/.

103

Appendix A: Usability experiment suggestions

A.1 Usability experiment 1: Viewing a presentation
The PptViewer demonstration application (see section 5.5.7) can be used as

basis for a simple experiment with users. The experiment's goal is to evaluate

the usability of the SDM's configuration capability. Users will get the task to

view a presentation using PptViewer, then open its configuration and change

the URL to the host web application, and then view the presentation again to

confirm that it is working.

A.1.1 Test plan

The prerequisites for the experiment are the following:

 Users must have access to a mobile device with the SDM installed,

as well as the demonstration application PptViewer.

 A PPT (Microsoft PowerPoint) file must be placed on a location that

the user's mobile device can access via a URL.

 A web server with PHP support.

 The web application for PptViewer must reside two places on the

web server. That is, there should exist two unique URLs that point

to the web application, for instance: http://<serverIp/pptViewer

and http://<serverIp>/anotherPptViewer.

 The PptViewer client application must be configured to use one of

the URLs to the web application, for instance

http://<serverIp/pptViewer.

Users will receive the following task:

"

Task 1: Your first task is to view a presentation on a projector. The URL to the

presentation is [insert a valid URL to a PPT file here]. Open the PptViewer, and

use the PptViewer to view the slides in this presentation.

Task 2: Your next task is to configure the PptViewer to use another web host

application. Do this by starting the Service Domain Manager, and then opening

the configuration for the PptViewer service. Change the URL of the web host to

http://<serverIp>/anotherPptViewer.

104

Now repeat Task 1 and confirm that you can still view a presentation.

"

A.2 Usability experiment 2: Managing Proxy Services
The user's mobile device can be pre-installed with many Proxy Services. These

Proxy Services can be configured to reside in a various pre-defined

Collaboration Spaces (CIs), and have their type attribute set to various names as

well.

The experiment's goal is to evaluate the usability of the SDM's service

management capabilities, or more specifically, the functions "stop service" and

"uninstall service" (available from the GUI).

The users will get the task to find certain Proxy Services and either stop or

uninstall them. The users will have to browse the categories in order to find the

Proxy Services, and then uninstall or stop the Proxy Service.

105

Appendix B: Contributions
Additionally, the work listed above has resulted in additional contributions that

are not directly related to the user experience of collaboration setup process,

but serve as concepts or tools for aiding such work.

 A Java package for building graphical user interfaces (GUI) in OSGi.

The package can be used to build HTML based GUIs in OSGi based on

Java Servlets. This can be used by OSGi developers, for instance for

further development of the Ubicollab platform.

106

Appendix C: Implementation details

C.1 Ubicollab architecture
The architecture of Ubicollab is shown in figure .

Figure C.1: The architecture of the Ubicollab platform.

C.2 Mapping of figure names to real package names

Name from Figure 5.3 Real Java package name

SpaceManager sm.model

ProxyService core.service

Proxy core.service.proxy

ViewServlet view.servlet

SDM Core core.sdm

SDMServlet core.sdm.view.servlet

ViewAndroid core.sdm.view.android

JUnit org.knopflerfish.bundle.junit

JUnit org.knopflerfish.bundle.junit_runner

SDM Test testing.sdm.junit
Table C.1: Mapping of Java package names.

107

C.3 Selecting GUI technologies
This section describes the considerations made when selecting the GUI

technologies.

C.3.1 An HTML-based GUI

Described in section5.3.4.1.

C.4 Identifying an OSGi bundle as a Proxy Service

C.4.1 Required properties

Proxy Services are implemented using OSGi bundles, but have in this

implementation been given additional properties so that the Ubicollab platform

can separate them from regular OSGi bundles. These properties as described as

follows.

 The Bundle-SymbolicName field in the MANIFEST.MF file of an

OSGi bundle must start with the text org.ubicollab.service.

For instance, a Proxy Service in SDM’s implementation named PptService uses

the following line in its MANIFEST.MF file:

Bundle-SymbolicName: org.ubicollab.service.PptService
Listing C.1: The manifest-entry required for identifying an OSGi bundle as a Proxy Service.

 The Proxy Service must register a class implementing the interface

ServiceLink as a OSGi service. A ServiceLink is used to

communicate with the Proxy Service.

C.4.2 Optional type field

In order to categorize Proxy Services by type (see section), a Proxy Specify

which

A Proxy Service has an optional attribute called type. Setting a Proxy Service's

type allows it to be put into a category corresponding to that type, as shown in

Figure 5.11.

In order to set the type of a Proxy Service, a new field, Ubicollab-Service-

Type, must be set in the bundle's MANIFEST.MF file. For instance, to set the

type to "display ppt", the manifest field is set the following way:

108

Ubicollab-Service-Type: display ppt
Listing C.2: The manifest-entry for setting the type of a Proxy Service.

If not type field is set, the Proxy Service is not associated with any type.

C.5 Sharing of Proxy Services
The detailed message flow between two users' UbiNodes in a sample scenario

are shown in Figure C.2. The scenario involves the usage of the PptViewer

application presented in section 5.5.7.

109

C.5.1 Internal message flow

Figure C.2: The message flow when using a shared Proxy Service.

C.6 Known issues with current implementation

C.6.1 Limited capabilities of sharing of Proxy Services

One of the capabilities of the SDM is the possibilities for a user to share Proxy

Services with other users. However, this possibility is very limited, because:

110

 Using a shared Proxy Services can only be used by sending text

messages as Java String instances. However, Java Serialization [49]

should be investigated in order to address this limitation.

 Because messages are sent by setting a GET-parameter of an URL to

the shared Proxy Service, the length of the message is limited to the

size of that GET-parameter.

C.6.2 No concurrency handling

Concurrency handling of for instance Java Collections have not been dealt with.

This is needed especially for the components involved in the sharing of Proxy

Services.

	Title Page
	Problem Description
	masteroppgave.pdf

