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Abstract

Background: Similarity retrieval has seen massive growth of interest
lately. Doing this on high dimensional data, while maintaining the dimen-
sionality is difficult, but has its uses in areas like classification and data
mining. Metric indexing does not deal with the actual dimensionality of
the data, only the distances between the data objects, and thus maintains
the actual dimensionality of the data.

Objectives: Determine the application of metric indexing methods for
similarity retrieval on high dimensional data, in this case time series. As
opposed to the traditional approach, where the data is mapped on to
lower dimensional signatures. Specifically determine which kind of data
sets metric indexing will outperform the traditional approach. The main
suspicion is that metric indexing will achieve better results on data sets
with high intrinsic dimensionality, while mapping does better at data sets
with low intrinsic dimensionality.

Methods: Two metric indexing methods will be implemented. One
based on pivot-space filtering (LAESA) and the other based on compact
partitioning (LC). These methods’ performance will be measured in per-
formance by the number of actual distance calculations done. Several
real world data sets will be used as testing material. The results will
then be compared with the results gained from doing piecewise aggregate
approximation signature extraction on the same data sets.
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1 Introduction

This thesis will compare the performance of Metric Indexing methods compared
to the traditional Dimensionality Reduction methods for proximity searching in
Time Series data.

Dimensionality reduction in essence is the removal of details resulting in
smaller amount of data to be processed at the cost of accuracy. Metric indexing
uses only the distance between the data not the actual data, thus making the
size of the data irrelevant.

1.1 Applications

The purpose here is to determine if metric indexing methods can provide bet-
ter performance for searching in high dimensionality data. This could lead to
improvements in such areas as data mining and classification; text and infor-
mation retrieval; searching in DNA strings; function prediction, i.e. predicting
the value of stock, and many other fields where effective and efficient searching
in large amounts of complex data is necessary.



2 Background

This section will introduce the basic building blocks for this project. Firstly
some basic concepts, later followed by an introduction to the indexing methods,
both metric and signature based, that will be implemented for testing.

2.1 Basic Concepts

First off are some of the basic concepts needed to give a decent foundation for
this project. First there is the proximity search.

There are two basic types of proximity searches. Range queries and Nearest
Neighbour queries. Each of these searches takes two variables as input. Both of
them take a query object, q. This is the center of the query, and the results are
the objects which are similar to g. ¢ is not necessarily an object in the database.
In addition, the Range query takes a range, . The result of a range query is all
objects within r distance of q. Nearest Neighbour takes a number k and results
in the k closest objects to q. Nearest Neighbour query is often called KNN for
short.
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(a) K-Nearest Neighbour (b) Range Query
Figure 1: Proximity Searches

Several properties that a good indexing scheme should fulfill are presented
in [5] and extended further in [10]. These are:

1. Speed. The method should at least be faster then sequential search, oth-
erwise it would serve no practical purpose.

2. Correctness. The method should not result in any false dismissals. (False
alarms are acceptable, as these can be easily detected and removed.)

3. Size. The method should only require a reasonable amount of overhead.

4. Dynamic. Changes, i.e. insertions and deletion, in the data, should not
require the index to be reconstructed from scratch.

5. Query Size. The method should be able to handle both data and queries
of varying length.



6. Time. The index should be constructable within reasonable time.

7. Distance measures. The indexing method should be independent of dis-
tance measure.

Spatial indexing methods, like R-trees, suffer the so called Curse of Dimen-
sionality. Originally conceived by Richard E. Bellman, the dimensionality curse
is simply the fact that for each dimension added to a mathematical space, it’s
size grows exponentially. As a result, most spatial indexing methods will be
crippled when the dimensionality of the space approaches high numbers. [2]
showed that most methods loses performance after 8 to 12 dimensions, both
in the time needed and the space required to construct the index. This makes
most spatial methods useless for time series, as this form of data often has as
many as 1000 dimensions, if not more.

Distance Measures, simply a method to measure the distance between two
data objects, and in essence defining the metric space. The most commonly
used and most known distance measure is the Fuclidean distance, or the 2-
norm distance viewed from the more general Minkowski distance. In layman
terms, the euclidean distance is the distance you would measure with a ruler
between two points on a piece of paper.

This simple distance measure does not work in all cases. For some data,
the Euclidean distance can be unintuitive, and for where transformations like
scaling, translation or warping is required, it fails [7]. Also, some domains might
require tailored distance measure. There are some more robust measures, but
Euclidean distance will suffice for this project.

2.2 Time Series

A time series is a sequence of points measured at some (usually uniform) interval.
A time series is usually represented by a list of pair values (x,y), where x is the
time and y is the value at that time. In cases where the time interval between
values is uniform, the x can be neglected as it is implicitly known. Time series
are usually very long, usually 1000 data points per time series, sometimes 10000
or even higher magnitudes. There are also shorter time series as short as 10
or 20 points, but handling these become rather trivial, so the focus will be on
time series that are 1000 or more points long, as these make the normal spatial
indexing methods break down, i.e. require an unreasonable amount of time
and/or space.
Some typical examples of time series are:

e Stock data, typically the stock value of one or more companies over time.
e Seismic data, movements in the earth’s crust recorded by a seismic sensor.

e Weather data: Temperature, air pressure, rainfall or humidity etc. recorded
by a weather station or similar apparatus.

e Cardiology data, the activity of the human heart.
e Sunspot data, the measurement of solar activity.

e Sound and music data. Sounds are usually represented as amplitude over
time, and music can also be considered as time series by assigning a value
to each note.



e DNA, is also similar in structure to time series.

In general anything that can be sampled over time, or represented as such (list
of (z,y) data pairs. x could for instance be distance instead of time or some
other dimension).

One important aspect to note is how time series are matched in regard
to length. That is, is the whole sequence of interest or are the subsequences
interesting. With subsequence matching, the query is shorter sequence than the
data objects. The query sequence is tested against all parts of a data sequence
to find the best fitting match, like sliding a window the same length as the
query sequence across the data sequence. A common example of this would be
work done with DNA, where the subsequences and similar subsequences across
different data sequences are of great interest. In respect to this project only
whole sequences will be matched. All data sets used will contain equal length
sequences, and the queries performed on these will also be of the same length.
This is mainly to keep things simple, and thus reducing the possibilities of errors
introduced by added complexity.

Another interesting feature of time series, is the correlation between the
data values. Note however, that this is not necessarily true for all kinds of time
series data, but is in most cases. Take for example a time series representing the
speed of a automobile, sampled at 1 seconds intervals. The values will always be
dependent on the previous value, as there is a limit to how much the automobiles
speed can change in the course of 1 second, and will therefore not jump wildly
up and down. This is mentioned as it lends an advantage to piecewise aggregate
methods, with which the metric indexing methods will be compared.

2.3 Dimensionality Reduction

Here we will cover some of the basic methods of dimensionality reduction.

2.3.1 Decompositions

Spectral decomposition, also know as the Discrete Fourier Transform, is com-
monly used in the fields of signal analysis and image processing, and is a very
well documented technique. The essence of the discrete Fourier transform is
that any signal can be represented by the combination of a finite number of sine
(or cosine) waves [12]. Each wave is represented by a complex number called
the Fourier coefficient, and the data when transformed is often said to be in the
frequency domain. A time series can easily be considered a signal for the pur-
pose of Fourier transformation. The dimensionality reduction, or in this case,
data reduction, comes from the fact that some frequencies in the transformed
version contribute very little to the original “signal” and can be discarded with
little loss, a “Frequency reduction”. Parseval’s law implies that the Euclidian
distance is preserved in the frequency domain, and that the removal of coeffi-
cients is guaranteed to be an underestimate of the original, satisfying the lower
bounding lemma. It should be noted that this might not be true for other
distance measures.

Another alternative, somewhat similar to the Fourier approach, is the Wavelet
decomposition. Instead of being a sum of waves, as with the Fourier, wavelets
are mathematical functions, and the sum and difference of these. The main dif-
ference being that the wavelets are localized in time, as opposed to frequency.



Work has been done to try and utilize wavelet decomposition for indexing, see
[6], but [10] notes that the Piecewise Aggregate Approximation method is in-
herently better, more about this method later.

Singular Value decomposition should also be mentioned, as it has the novelty
of being a global method as opposed to the above two which are strictly local
methods. Local in the sense that they consider one data object exclusively at a
time, while this global approach considers the data set as a whole. This method
is implemented and tested in [10] where they use the approach presented in [11].

2.3.2 Piecewise Aggregate Approximations

Piecewise Constant Approximation (PCA) is the method that will be used for
comparison with the metric indexing methods. Probably the simplest and most
intuitive signature methods, but despite is shown to have one of the best perfor-
mances, especially on time series [10]. The basic principal behind this method
is simply: Divide the data into n equal length parts, and calculate the mean of
each part. The signature is simply these n means.

There is also a variant to PCA, APCA or Adaptive Piecewise Constant
Approximation [9]. The difference is that the parts no longer need to be of
equal length. That is to say, if there exist in the data a long flat area with little
change, the entire area can be summed up into one mean, while other parts
with many changes and high variance can be covered by several means. This
results in an increase in both accuracy (complex areas can be covered in more
detail), and compression (non-changing areas can be covered by a single value).
The drawback is that this method requires special distance methods to work.
Two have been suggested, one which guarantees to underestimate the Euclidian
distance, and one more efficient one which does not guarantee that and can
produce false dismissals.

Another variant is Piecewise Linear Approximation where instead of repre-
senting each area with a single mean value, it is represented by a linear ap-
proximation (aX + b). This results in even better accuracy and compression
possibilities, but at the cost of having to use even more complex distance mea-
sures.

For this project PCA will be used for its simplicity.

2.4 Metric Indexing Methods

Metric space is defined solely by the distance between the objects it contains.
This distance can be based on any given distance function fulfilling the metric
requirements:

e The distance can not be negative. (non-negativity)

e The distance between two objects can not be 0 unless the objects are
identical. (identity of indiscernibles)

e The distance from object A to object B is the same as the distance from
B to A. (symmetry)

e The distance from A to C' is greater or equal to the sum of the distances
from A to B and B to C. (triangle inequality)



query donut

Figure 2: LAESA filtering

Metric indexing methods can be divided into two main approaches [4]. Compact
Partitioning methods and Pivot-based methods.

Partitioning indexing methods partition the space into spatial zones. Com-
pactness of the zones are important. Whole zones can be discarded by a single
distance calculation between the query object and, in most cases, the zone cen-
troid.

Pivot-based indexing methods utilize a number of pivots and compare the
distances between these pivots and the data objects with the distance from
the pivots to the query object. More pivots provides usually provides better
performance, but at the cost of space.

These two metric indexing methods that will be implemented and bench-
marked in this project. LAESA and LC, below we will examine them in greater
detail.

2.4.1 LAESA

Based on AESA by Vidal, E. AESA uses the pre-calculated distance between
every object in the data set to every other object in the data set to speed up
searches. For any reasonably sized data sets, this becomes unfeasible. LAESA
was developed to counter this. Instead of using the distance between every
object, LAESA compromises by using a subset, the pivots, and pre-calculates
the distance between these objects and every other object. The construction
cost is then limited to kn, where k is the number of pivots and n is the number
of objects. Instead of n? that AESA results in. As can be gathered, LAESA is
a pivot based method.



2.4.2 List of Cluster (LC)

The List of Clusters presented in [3] is a simple metric indexing technique that
is shown to have one of the best performances on high-dimensionality data. LC
is based on partitioning, so both base methods will be represented in the results.

The basic idea is that you partition off some of the data elements, then
you put them aside, so they’re no longer considered part of the original set of
elements, you then select a new partition on the original data set. This is done
by choosing a center and a radius, how to select these will be discussed later.
All elements with the selected radius of the selected center is considered part
of the first partition, these are then put aside, and a new center is selected and
the remaining elements within the radius of this new center becomes the next
partition, which is put aside. This is repeated until all elements are part of a
partition, and thus the original data set is empty.

When searching in the LC, it’s important to traverse the list of partitions
in the same order as they were created. The idea here too is simple, for each
partition, check if there it intersects the query ball, if it doesn’t, all elements in
this partition can be disregarded, if it does intersect there is a possibility that
it contains elements that should be part of the result of the search. The next
partition in the list is then considered in the same way until the end of the list,
or if a partition completely engulfs the query ball, no further partitions need
to be considered, as these will not contain any relevant elements. These would
have been removed from the original data set when the current partition was
created.

A more formal description can be found in [3]. A detailed description of how
it was implemented can be found in the implementation part of this paper.

[3] discusses several methods for center selection and what the radius should
be. These methods will be presented briefly here; first, center selection methods.

e By far the simplest method is to choose one of the data elements at random
as the center. Being trivial to implement, the resulting index is more often
then not, not optimal.

e Another simple method that provides somewhat better results, is to choose
the from the remaining elements the one that is closest to the previous
center, in effect traversing the metric space, but with the side effect of
producing a lot of overlap.

e Opposite to the above, one can instead choose the data element furthest
from the previous center. This approach will result in very little overlap
of the partitions.

e The two above methods can be further extended to be more global. First,
instead of closest to the previous center, the element with the smallest
distance sum to all previous centers can be selected.

e Likewise the element with the largest distance sum to all previous centers
can be selected

For the radius, two different approaches are discussed.

e The first approach is to have the radius a set constant value. I.e. all
elements within r of the center is included in the partition.



e The second approach is to have the radius be dynamic, but keep the
number of elements in each partition constant. I.e. the n closest elements
to the center are included in the partition.

The differences between these two approaches become apparent towards the
end of the index construction when there are few data elements remaining in the
data set. With the first approach, the last clusters in the list will contain few
elements (often just one), as the elements are likely scattered across a big part
of the metric space, as a result they will also be numerous. By using the second
approach, there will be few partitions towards the end of the list, but these will
cover a huge area of the metric space; worst case scenario, two opposite outer
elements remain, causing the last cluster to contain the entire metric space.
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3 Implementation

3.1 Environment

The test application is implemented in Java. The main reason for this is the
author’s experience with the language. It brings with it the advantage of being
platform independent and rich API libraries reducing implementation time.
The main drawback of using Java in this setting, is the bad memory manage-
ment, which is mostly automated, and thus, could result in lots of unnecessary
swapping to the hard drive. Luckily, the data sets that will be used for these
experiments are not large enough for this to be an issue. If at a later time, it
would be necessary for this implementation to handle significantly large data
sets, all the currently implemented algorithms are done so, so that they process
the data sets linearly, thus extending the application to process the data set
from disc instead of memory is feasible. As it stands, Java’s lack of memory
management facilities should have no impact on actual performance.

3.2 Framework

The application itself is designed as a framework for implementing a variety
of methods for indexing time series (or similar formated data) and doing range
queries on them. The main features are independence between indexing method
and distance measure, allowing these to be mixed and matched. A simple tem-
plate are provided for implementing either of these. This framework is similar
to GEMINI as described in [10].

The signature for the distance measure consists of just one method: double
calculateDistance(time series a, time series b). It returns the distance between
the two specified elements. Due to the nature of the application, it is important
that the distance measure meet the metric space requirements.

The template for the indexing methods are slightly more complex, but not
overly so. There are two main methods: construct and rangeQuery. The former
takes as input a data set and a distance measure (mentioned above), and builds
an index from these. The latter method takes as input a time series object
and a search radius and returns all elements in the data set that are within the
search radius distance from the inputed time series object, also called the query
object. Most implementations will also return false positives. That is, objects
that are outside the actual search radius, since most methods are underestimates
of the actual distance in some form or another. The main reason for this is that
false positives are much more acceptable then missed positives, as the false
ones can be filtered out later, while the missed ones are lost and the query
result thus incomplete. Two additional methods are introduced in this template:
resetDistanceCounter and getDistanceCounter. These two are present for the
benchmarking. The first one will set the counter to zero, while the second one
returns the value of the counter. The framework will call the reset before a
range query call and use the get method after the query recording the result.

Another important element of this framework is the configuration file. All
variable settings are set in a configuration file which is globally available in
the application. Examples of settings would be the number of pivots to use
for LAESA or the number of segments to use for the signatures in PCA. The
use of a configuration file allows for easily setting up different environments for
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testing. To make it convenient, the application takes as an input parameter
which configuration file to use. On the subject of input parameters; in addition
to the configuration file, the application also needs to have a data set file, a
query set file and an output file. The data set file and the query set file must
be a perfect matrix with one time series per row. Any inconsistencies in time
series length or if any of the elements contains invalid data, the application will
terminate, thus preventing the errors this would cause during execution.

In the following sections, the four methods that were implemented for this
thesis will be presented and discussed in some detail.

3.3 Brute Force

Being the very reason behind this thesis, the brute force approach is just to
computational expensive to be feasible in any sizable real world implementation.
The size of the available data sets do however not hinder the use of this approach
to determine the “correct answers” to the queries. The results this method
provides will be used to determine the results of the other methods, primarily
for correctness. If any of the other methods misses any of the results that the
brute force approach found, it will be an indication of it being faulty.

There is no magic behind the implementation of this method: Each element
in the data set gets its distance to the query object calculated, if this distance
is lower then the search radius, add it to the result. The approach has no
construction, all computation is done at runtime. For benchmarking the get
counter simply returns the size of the data sets.

3.4 PCA

PCA has already been presented in this thesis. This part will focus on how it
was implemented.

PCA is implemented in a straight forward way. During construction it
fetches from the configuration file how many segments long the signatures should
be. All the time series gets their signature generated in order. For each, all but
the last segment is processed in the main loop, adding up all the values in that
segment from the source, dividing it on number of elements, and inserts the
result into the signature. The last segment is handled independently from the
rest. This is because it needs some special logic to account for the fact that it
is not necessarily as long as the other segments. This removes any conditional
statements form the main loop, allowing it to process faster. As for the han-
dling of the last segment, it is similar to the others, except that the number of
elements is different. This is counted as the values are summed.

One noteworthy feature is that the signatures themselves are saved as time
series objects, just shorter then their parent ones. All methods that then are
applicable on the time series can also be used on the signatures. This advantage
becomes apparent when calculating the distance between the signatures and the
signature of the query object by the same method used for time series.

For the range query, the first step is to generate the signature of the query
object. The same internal method that produces the signatures from the time
series is recycled for this using the same number of segments as specified in the
configuration file. The method then proceeds to use the brute force method on
the signatures with one exception: In [10] Keogh shows that signatures in their
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pure state are a much larger underestimation than necessary, mostly due to the
reduced number of dimensions. They proceed to show that you can optimize
this underestimation by multiplying the distance between two signatures by a
factor. This factor is proven in their paper to be: y/N/n where N is the length
of the original time series and n is the number of segments it is divided into,
i.e. the length of the signature.

For benchmarking, this method does no real distance calculation at search
time, so the distance counter returns zero. Most of the work is done during
construction. One should note however, that the statement about doing no real
distance calculations at runtime is only true when the signature length is a lot
shorter then the actual data series length. In some of the test cases this is not
true, and will be noted. Here lies one of the faults of the application. If one
sets the number of segments to the time series length, the result is a brute force
approach at apparently zero cost, which is not true.

3.5 LC

The theory and workings of LLC, or List of Clusters has also been explained in the
previous sections, as with PCA focus here will be on the actual implementation.

This implementation is using a constant number of elements per cluster, as
opposed to the other approach where cluster radius is constant and number of
elements varies. The first cluster center is chosen amongst all data elements at
random. As mentioned earlier, all implemented methods’ construction processes
the data sets in a linear fashion. The first step is to take the n first elements in
the data set, and put them in the candidate set. n here is the cluster size. The
element in the candidate set that is the furthest away from the center is found.
The remaining elements in the data set are then processed, i.e. the distance from
them to the center is calculated. If this distance is smaller than the biggest in
the candidate set, that element is replaced by the new element, and again,
the element furthest from the center in the candidate set is determined. The
comparison between this element and the remaining elements in the data set
continues in this fashion. Any elements in the data set marked as already used
in a cluster is skipped.

While processing the clusters, the cumulative distance from each center to
each element is recorded. The non-used element with the biggest cumulative
distance from all previous centers is chosen to be the center for the next cluster.
If the number of remaining elements is smaller than the size of a cluster, the
process is terminated and the remaining elements stored in a special center-less
cluster. In many cases the radius of this final cluster would encompass almost
the entire data set space, making normal processing of it useless.

The query processes each cluster in the order they were created. If there is
overlap between the query ball and the cluster, all elements in the cluster are
added to the result and the next cluster is processed. If the cluster envelopes
the query ball, its elements are added to the result and no further clusters are
processed. Finally all the elements in the last center-less cluster mentioned
above are automatically added to the result. Each time a cluster is processed,
the distance counter is incremented.
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3.6 LAESA

The fourth and final method implemented is LAESA.

This implementation of LAESA creates a distance map, a two dimensional
matrix with number of rows equal to number of pivots and columns equal to
number of elements in the data set. The distance map is filled with the distance
between the pivot and the data element matching in the matrix, one pivot at
a time. The first pivot is picked randomly from the entire data set. A similar
method to what was used in the implementation of LC for choosing the next
cluster center is used for picking the next pivot. As the distances between the
current pivot and the data elements are calculated, they are accumulated in an
array. By using the cumulative distance between all current pivots and all data
elements, the next pivot is chosen to be the most distant data element, as per
the LC implementation. As will be indicated later, this approach seems to be a
bad choice. The implementation contains most of an alternative and much more
successful pivot selection method, albeit time did not permit its completion and
its details moved to the conclusion and further work sections.

For the query, the distance map is traversed one pivot at a time using the
distance from the query object to the pivot and the distance from the pivot
to each element to determine if the element falls inside the query donut. The
simple check used here is: p < d+ r and p > d — r, where p is the distance
between pivot and element, d is the distance between query and pivot while r
is the query range. Elements that satisfy both these conditions are added to
the result. Elements that qualify but are already in the results due to being
added when processing a previous pivot are not added a second time. This
implementation does not account for guaranteed positives. It’s possible with
LAESA, when the query ball engulfs the pivot and the distance between the
pivot and an element is smaller then the engulfment, to say that that element
is guaranteed to be a positive. In most big data sets, this should not happen
sufficiently often to have major impact on the results, justifying the change it
would imply on the actual framework and the work involved expanding it to
handle more then one class of results, but should be noted. Number of search
time distance calculations is equal to the number of pivots.

3.7 Benchmark

As mentioned a few times before the metric that is the focus of this thesis is the
number of actual distance calculations. That is, distance calculation between
two full length time series. Only the ones done at the time of the search and
the ones needed to filter out all the false positives are relevant. To filter out the
false positives, all of the elements returned as the result of the query needs to
be compared against the query object in a brute force manner. This makes the
total number of actual distance calculations search time distance calculations
+ number of results returned. As mentioned in the framework section and
subsequent method sections, search time distance calculations is recorded and
available through a method invocation. The framework prints the results to the
log file specified at startup.

For validating the methods the results of each of them are compared with the
results achieved by the brute force approach. This was a vice choice as it made
a flaw in the LC method apparent, where the elements in the final center-less
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cluster were not handled properly. After this flaw being resolved, all queries
have been correct and complete. This data has been removed from the results
tables to simplify them. For determining the number of false positives in each
test, compare the results with the brute force result that is listed at the top.
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Figure 3: Stock Data Sample

4 Results and Findings

4.1 The Time Series

Four data sets were picked from the UCR Time series data [8]. The prime
criterion was their size. A lot of the time series in the collection contained
either very few, very long time series, or the opposite. The chosen series were
big enough both in number and length to provide reasonable results. The second
criterion for picking the data sets was shape. Testing two data sets with almost
identical data would not provide as many insights as two data sets with different
data. The following figures were generated by choosing four time series from
each set at random. Only the first 255 data points of the time series are shown
due to some technical limitations, and trying to display more points would lead
to the graphs being unnecessarily compressed. All the time series continues in
the same pattern as shown in the graphs.

Figure 3 shows typical stock data, a company’s value varying over time with
small local fluctuations and a overall global trend, which the aquamarine line
shows well. The data set contains 400 time series each of them consists of 6481
data points.

As for figure 4, the data here came with no apparent documentation except
its name “hockey”. Characteristic of this data as can be seen form the figure
is the data is flat and almost unchanging for its entire length. Unlike the other
three data sets, the figure here shows the time series in its entirety. The data
set contains 10000 time series, but they are just 257 data points long. This data
set is far larger then the other sets in terms of number of time series at the same
time it also has the shortest time series; points of note.

In figure 5 you see the current of an electric motor. The result of this is a
smooth curve with a somewhat reoccurring pattern, unlike the following, most
of the information here leans towards being global. The set consists of 420 time
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Figure 6: ERP Data Sample

series that are 1501 data points long.

The forth and final set, figure 6, also came without any documentation
other then it’s name: “Converted ERP”. The nature of the data is not crucial
to the success of the tests, but the shape of it is. The time series seems to
be constructed by overlapping reoccurring waves of different frequencies atop of
each other. The parts not shown by the graph are similar to what is, reoccurring
peaks with constant local “noise”. This set is similar to the stock data in size,
there are 496 time series each of which are 6401 data points in length.

4.2 The Queries

Five queries were generated for each of the data sets. This was done by using a
module in the framework called QueryMaker. Its functions are simple; it picks
a specified number of elements from a specified data set, adds to it the specified
amount of noise and writes the results to a specified query file. The syntax of a
query file is identical to that of a data set file.

For all queries generated, additive Gaussian noise was added to 5 randomly
picked time series.

e For the stock data, the average absolute data point value was 50, the
standard deviation on the Gaussian noise was set to 10.

e The average absolute hockey data point value was 96, the standard devi-
ation for the noise was set to 25.

e Motor current’s average was 2.6, noise set to 0.5.
e ERP’s average was 0.6, noise set to 0.1.

With the queries created, the search radius was tweaked until the brute force
results contained a satisfying amount of elements. The same radius was used
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across all 5 queries on the same data set, but it varied between data sets. The

radiuses used were:
e Stock: 1700
e Hockey: 500
e Motor current: 40

e ERP: 60

4.3 The Results

Listed below is the numerical data for each of the test runs. The data is divided
Each table is divided into one section
per method. The top one being the brute force results for comparison. Each
column is a query as mentioned in the above section. For each of the three
tested methods, the leftmost column displays the main variable used for that
method. For LAESA, this is the number of pivots; LC, the cluster size; PCA,
the number of segments. The results that are in bold typeface are the best

into three tables, one per data set.

result for that method in that query.

Table 1: Stock - 400 time series of 6481 Length

query 1 2 3 4 5
BF 67 2 35 107 55
pivots LAESA

5 477 490 482 466 474
10 458 190 384 423 459
15 484 484 481 485 481
20 464 198 398 442 469
25 483 456 486 492 483
50 519 519 519 525 519
99 559 355 560 559 555
csize LC

5 544 399 494 424 539
10 509 419 479 389 509
15 503 473 503 383 503
20 484 484 484 404 464
25 494 494 494 444 494
50 459 459 459 459 459
99 505 406 406 307 505
segments PCA

5 334 139 266 184 353
10 300 48 241 179 315
15 285 34 224 173 290
20 277 21 206 171 281
25 265 9 198 166 272
50 228 3 183 162 255
99 206 2 153 159 225
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Table 2: Hockey - 10000 time series of 257 Length

query 1 2 3 4 5
BF 146 445 196 126 115
pivots LAESA

) 3950 3356 4427 4538 1226
10 4503 2502 4215 3342 2351
15 2212 3788 3547 2263 1344
20 2601 1839 2097 2614 1745
25 2918 1774 2110 2908 2885
50 4454 2157 2514 4505 4695
99 2484 4024 3083 2410 1566
csize LC

5 2534 2634 2424 2409 2444
10 1669 1759 1519 1589 1559
15 1441 1456 1306 1336 1351
20 1279 1339 1159 1299 1279
25 1326 1224 1124 1249 1149
50 1349 1249 1099 1299 1249
99 1389 1191 1290 1191 1290
segments PCA

5 2853 4135 2400 2754 4378
10 2276 2148 1955 2209 2781
15 1837 1680 1616 1786 1917
20 1694 1561 1435 1585 1519
25 1503 1377 1282 1315 1319
50 1034 1126 861 821 865
99 631 748 538 590 577
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Table 3: Motor - 420 time series of 1501 Length

query 1 2 3 4 5
BF 34 19 25 26 31
pivots LAESA

5 87 162 168 169 169
10 188 246 172 185 186
15 118 190 234 192 201
20 242 316 204 235 241
25 207 182 239 112 114
50 230 209 244 140 143
99 441 519 471 512 514
csize LC

5 178 173 168 173 173
10 141 141 141 151 151
15 132 117 132 147 147
20 120 120 120 120 120
25 111 132 132 136 136
50 128 125 125 126 126
99 226 225 225 125 125
segments PCA

5 420 420 420 420 420
10 86 82 83 82 82
15 74 74 69 75 75
20 70 69 65 70 70
25 69 64 99 70 69
50 55 38 48 60 58
99 43 33 43 54 44
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Table 4: ERP - 496 time series of 6401 Length

query 1 2 3 4 5
BF 52 49 35 32 78
pivots LAESA

5 252 313 179 354 264
10 189 160 196 93 136
15 148 303 177 104 256
20 235 153 185 242 146
25 388 270 334 316 443
50 277 230 311 304 179
99 232 405 280 193 341
csize LC

5 235 225 200 175 255
10 195 185 185 155 215
15 199 199 184 169 244
20 200 180 160 140 220
25 215 190 190 102 240
50 205 205 205 150 305
99 303 204 303 101 303
segments PCA

5 496 496 496 496 496
10 496 496 496 496 496
15 496 496 496 496 496
20 496 496 494 496 496
25 496 496 474 496 496
50 496 481 397 463 495
99 466 422 334 332 441
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4.4 Summary and Further Work

Due to the random nature of LAESA’s pivot selection, its results vary greatly
from one run to the other, and no clear pattern can be confidently established
as to the relation between number of pivots and resulting performance. Figure
7 shows an example of the randomness LAESA displays. Implementing some
of the methods in [1] for better pivot selection would most probably lead to
both better and less random results. It might also be possible to adept these
methods for LC as well by applying them to center selection. Although mostly
based on luck, LAESA does sometimes produce very good results, as can be
seen scattered in the various tables, particularly in table 1 on the second query.
These seemingly random occurrences makes further testing with LAESA and
optimized pivot selection an interesting venture.

As expected PCA’s performance only improves as the length of the signature
increases. Figure 7 gives a very nice example of this. It also clearly shows that
as the length increases, performance gained becomes less and less, while the
price in performance takes huge leaps. In figure 8 no noticeable gain is achieved
for increasing the signature size from the lowest length tested.

LC is also affected by some randomness in its construction, but not to the
degree that LAESA is. As expected, in most cases performance improved as
the number of clusters increased up to a certain point, where the price of more
clusters exceeded the performance gained. Both figure 7 and 8 illustrates this.

The results of the different approaches vary greatly depending on the data
they are applied to. PCA fails miserably on the ERP data where oscillations
reoccur and local means will wash out the data. This is clearly show in table
4 where the PCA finds all objects as possible results for almost all the tested
signature sizes, i.e. no objects gets pruned. Both LAESA and LC offer much
improved performance on this kind of data.

On the opposite side of that specter we have the stock data, these results can

23



‘—Q—LC—I—LAESA PCA‘

600

500 \/\//
400 \W//\\
300

200

100

Figure 8: Stock Query 4

be seen in table 1. Here PCA vastly outperforms the two metric methods. This
kind of data is very well suited for PCA, as local details are not as significant
as a stock’s growth over time, which the means capture nicely. As an added
bonus, both the stock data and the ERP data is of small size but long length,
showing that these two factors pale in comparison to the nature of the data.

Combining the motor data (table 3) with the ERP data (table 4), both of
which exhibits cyclic behaviour, it might be probable that PCA needs to reach
a critical signature size before it can effectively function. The motor data is
short, while the ERP data is long. For a signature length of 5 on the motor
data, no objects were pruned, when signature length was increased to 10, the
performance improved greatly. On the ERP data PCA only started showing any
effect for the longest tested signatures. This is probably credited to the locality
of the data, the signature length, or rather, the size of each segment over which
a mean is calculated needs to be smaller then the locality of the data, so that
the discriminating features are not “washed out”.

Overall the performance of the metric methods are good, considering no
optimizations were implemented. On data where the discriminating factors
are to be found in the local data rather then the global data, metric methods
will outperform piecewise approximation methods. It’s conceivable that with
general optimizations regarding pivot or center selection the metric methods
will provide a satisfiable approach to indexing complex data. The methods will
be less sensitive to the nature of the data providing a more robust method
applicable to almost any data set without more adaptation then determining
the optimal number of pivots/clusters. One weakness to the tests applied here is
the sizes of the data sets available. No truly large data set of complex data was
available, i.e. a set on the scale of 10000-100000 objects, each object as longs as
10000-100000, maybe even larger. Not many real world data sets of these sizes
are available, on the other hand artificial ones do exist or can be created. The
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second problem with such sets is computer performance, the implementation will
also have to be expanded to encompass memory management and disk caching.
The current implementation of the methods do process the data sequentially,
making the upgrade for it to handle this size of data possible.
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