
Distribuerte Inverterte Indekser

Simon Jonassen

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Master i datateknikk
Oppgaven levert:
Hovedveileder:
Biveileder(e):

Juni 2008
Svein Erik Bratsberg, IDI
Øystein Torbjørnsen, FAST

Oppgavetekst
I søkemotorer finnes det forskjellige måter å organisere termindeksen på når vi har distribusjon.
Gjør en litteraturstudie på sammenligning mellom term- og dokumentpartisjonering. Andre navn
på det samme konseptet er lokale vs. globale inverterte filer.

Arbeidet kan muligens videreføres med egne eksperimenter for validering av tidligere forskning,
eller for å prøve ut nye last- og dokumentsamlinger.

Oppgaven gitt: 15. januar 2008
Hovedveileder: Svein Erik Bratsberg, IDI

Distributed Inverted Indexes

Simon Jonassen

Norwegian University of Science and Technology

Department of Computer and Information Science

Abstract

This document presents and compares di�erent organizations for distributed inverted
indexes for large document collections. Two main schemes are known as Global and
Local Inverted Index organizations, or partitioning by the term ID's and partitioning by
the document ID's. There are also a number of modi�cations and hybrids formed from
these two organizations presented and discussed in this document.

This report provides a brief background overview for a distributed full-text retrieval
system using an inverted index. The processing principles and the algorithms for query
search in a stored index using the di�erent partitioning schemes is presented and discussed
in the background part. All the relevant previous work, some of the most important
papers published in the last two decades and the work performed earlier by the author,
are discussed with the purpose to explain di�erences in the results as an outcome of
the assumptions and the techniques that have been used. The main intention for this is
to discover at which circumstances, such as the system architecture, disk and network
speci�c characteristics, document and query set speci�c features, ranking methods, etc.,
a particular partitioning approach can be superior.

A new simulation model together with a semi-mathematical description are provided
to compare the performance of the methods presented. The main di�erence from the
previous simulation model developed by the author is a higher simplicity of the process
model itself, at the same time as it provides more realistic metrics and a higher number of
di�erent partitioning and retrieving methods. The metrics provided in the new simulation
model are based on the tests and benchmarks performed by the author.

A great number of simulation experiments based on a real document collection and a
real query set show the advantage of the local indexing over the global indexing in form
of a higher query rate and smaller wait times. The local indexing can also provide an
even better performance, if the associated disk-bottleneck issues can be resolved.

On the other hand, for a conjunctive query model, a variation of the global indexing
known as the pipelined indexing may provide an even better performance. This indexing
method provides also a better scalability with both the number of nodes and the number
of the concurrent queries in the system.

The results obtained from the experiments partly support the results known from the
previously published papers. All the di�erences between the results from the most recent
publications and the results obtained from the simulation experiments can be explained
by the limitations of a simulation model which fails to reproduce the complexity and all

the small details of a real processing system.
Three of the issues partly discussed but not tested in this master thesis are �nally

proposed as relevant topics for a further research.

Preface

This is a master thesis for the Master in Computer Technology program at the Depart-
ment of Computer and Information Science at the Norwegian University of Science and
Technology. The assignment was given by the Information Access Disruptions research
group and carried out during �ve months of spring 2008.

The author would like to thank his supervisors, Svein Erik Bratsberg and Øystein Tor-
bjørnsen, for valuable feedback and help; Ph.D student Truls A. Bjørklund for providing
the source code of Brille and a dictionary dump of TREC GOV2 document collection,
and master student Asjbørn A. Fellinghaug for providing a reference to the Terabyte
TRACK 05 query set.

Simon Jonassen
Trondheim, 2nd June 2008

Contents

1 Introduction 1

2 Background 3

2.1 An Introduction to Search Engines . 3

2.2 Inverted Indexes . 4

2.2.1 The Vocabulary File . 4

2.2.2 Inverted Lists . 4

2.3 Inverted Index Creation . 6

2.4 Inverted Index Update . 6

2.5 Query Processing with an Inverted Index 7

2.5.1 Query Processing Models . 7

2.5.2 Basic Algorithms . 9

2.5.3 Approximation Methods for the Vector Model 11

2.6 Distributed Inverted Indexes . 14

2.7 Scalability of a Search Platform . 14

2.8 Partitioning Schemes for an Inverted Index 14

2.8.1 Local Indexing . 16

2.8.2 Global Indexing . 19

2.8.3 Alternative Indexing Schemes . 23

2.9 Other Related Issues: Caching . 26

3 Previous Work and Results 27

3.1 Tomasic and Garcia-Molina, 1992 . 27

3.1.1 Results . 29

3.1.2 Critics . 31

3.1.3 Relevance . 31

3.2 Jeong and Omiecinski, 1995 . 32

3.2.1 Results . 32

3.2.2 Critics . 33

3.2.3 Relevance . 33

3.3 Ribeiro-Neto and Barbosa, 1998 . 33

3.3.1 Results . 33

3.3.2 Critics . 34

i

3.3.3 Relevance . 34
3.4 MacFarlane, McCann and Robertson, 2000 34

3.4.1 Results . 35
3.4.2 Critics . 35
3.4.3 Relevance . 35

3.5 Badue, Ribeiro-Neto, Baeza-Yates, Zivani, 2001 36
3.5.1 Results . 36
3.5.2 Critics . 36
3.5.3 Relevance . 36

3.6 Xi, Sornil, Luo, Fox, 2002 . 37
3.6.1 Results . 37
3.6.2 Critics . 38
3.6.3 Relevance . 38

3.7 Badue, Ribeiro-Neto, Barbosa, Golgher, Zivani, 2005 38
3.8 Mo�at, Webber, Zobel, Baeza-Yates, 2005 39

3.8.1 Results . 39
3.8.2 Critics . 41
3.8.3 Scienti�c Remarks . 42
3.8.4 Relevance . 42

3.9 Mo�at, Webber, Zobel, 2006 . 43
3.9.1 Results . 43
3.9.2 Critics . 43
3.9.3 Relevance . 44

3.10 Jonassen, 2007 . 44
3.10.1 Results . 45
3.10.2 Critics . 47
3.10.3 Relevance . 48

4 State of the Art 49
4.1 The Assignment Text and The Solution Approach 49
4.2 The Approach . 49
4.3 The Previous Simulation Model . 50

4.3.1 Visualisation of the Simulation Results 52
4.4 The Roadmap to a New Simulation Model 52

5 Simulation Model 55
5.1 Ideas and Decisions behind a New Simulation Model 55

5.1.1 Framework . 56
5.1.2 Study of a Real Search Engine . 62
5.1.3 Processing Model . 64
5.1.4 Simulation of the Document Collection and the Query Set 64
5.1.5 Algorithms and Metrics . 65
5.1.6 Visualisation Tool and Reporting 75

5.2 Implementation of the New Simulation Model 78

ii

5.2.1 simulation.node . 78

5.2.2 simulation.query . 78

5.2.3 simulation.model . 80

5.2.4 simulation.process . 80

5.2.5 simulation.log . 82

5.2.6 simulation.micro . 83

5.3 Micro-Benchmarking and Parameter Estimation 83

5.3.1 Network Characteristics . 84

5.3.2 Disk Characteristics . 84

5.3.3 CPU Characteristics . 85

5.3.4 Data Structures and Memory Requirements 86

5.3.5 Document Collection Parameters and Characteristics 87

5.3.6 Term Disjunction and Conjunction Frequency 88

6 Simulation Experiments and Results 91

6.1 Speci�cations for the Performance Evaluation 91

6.2 The Plan . 92

6.3 The Schedule . 92

6.4 Experiment Results . 93

6.4.1 Baseline Experiments . 94

6.4.2 Node Number and Concurrency Level Experiments 98

6.4.3 CPU con�guration experiments . 101

6.4.4 Network con�guration experiments - Bandwidth 105

6.4.5 Disk con�guration experiments . 107

6.4.6 Additional experiments . 112

6.4.7 Combination of the Experiment Results with the Previous Results 112

7 Conclusions and Further Work 113

7.1 Further Work . 114

7.2 Interesting Topics Related to this Master Thesis 114

Bibliography 117

A Appendix 121

A.1 Samples of Dictionary Data . 121

A.1.1 docstat . 121

A.1.2 querylog . 122

A.2 Network Microbenchmark . 124

A.2.1 clustis.c . 124

A.2.2 clustis.out . 126

A.3 An example experiment property �le . 128

A.4 Trace Mode Simulation Reports for Baseline Experiments 130

iii

B Source code 143
B.1 Simulation Model Source Code . 143

B.1.1 simulation.model.Con�g . 143
B.1.2 simulation.model.ModelS . 146
B.1.3 simulation.model.QueryLogReader 149
B.1.4 simulation.processes.model.GeneratorProcess 150
B.1.5 simulation.log.LogProcess . 151
B.1.6 simulation.log.LogWriter . 152
B.1.7 simulation.log.Statistics . 163
B.1.8 simulation.micro.HeapInterleaveTest 165
B.1.9 simulation.micro.InterleaveTwoTest 167
B.1.10 simulation.node.Node . 169
B.1.11 simulation.node.ResHandler . 174
B.1.12 simulation.processes.QueryProcess 175
B.1.13 simulation.processes.QueryProcessGI 177
B.1.14 simulation.processes.QueryProcessGIPM 179
B.1.15 simulation.processes.QueryProcessHD 181
B.1.16 simulation.processes.QueryProcessHDPM 183
B.1.17 simulation.processes.QueryProcessLI 185
B.1.18 simulation.processes.QueryProcessLIPM 187
B.1.19 simulation.processes.QueryProcessPL 189
B.1.20 simulation.processes.QueryProcessPLPM 191
B.1.21 simulation.processes.SubQueryProcess 194
B.1.22 simulation.processes.SubQueryProcessGI 195
B.1.23 simulation.processes.SubQueryProcessGIPM 196
B.1.24 simulation.processes.SubQueryProcessHD 197
B.1.25 simulation.processes.SubQueryProcessHDPM 199
B.1.26 simulation.processes.SubQueryProcessLI 200
B.1.27 simulation.processes.SubQueryProcessLIPM 202
B.1.28 simulation.query.IndexHitList . 203
B.1.29 simulation.query.IndexTools . 203
B.1.30 simulation.query.Query . 207
B.1.31 simulation.query.QueryResult . 210
B.1.32 simulation.query.SimpleIndexHit 211
B.1.33 simulation.query.SimulatedIndexHitList 211
B.1.34 simulation.query.SubQuery . 212
B.1.35 simulation.query.SubQueryResult 214

iv

List of Figures

2.1 Information Retrieval Process . 3

2.2 Partitioning by the document id . 15

2.3 Partitioning by the term id . 15

2.4 An Example of Inverted Index Partitioning for a Document Collection,
[XSLF02] . 16

4.1 A class diagram for the simulation model used in [Jon07] 50

5.1 Resource Handler Routine . 58

5.2 Process coopeartion using Method 2 . 59

5.3 Memory Handler Routine . 61

5.4 A class diagram for the simulation.query package 79

5.5 A class diagram for some of the classes contained in the simulation.model,
simulation.node and simulation.log packages 81

5.6 A class diagram for the simulation.query package 82

5.7 Joint frequency of two terms using the AND model obtained with the Join
Method 1 . 88

5.8 Joint frequency of two terms using the OR model obtained with the Join
Method 1 . 89

5.9 Joint frequency of two terms using the OR model obtained with the Join
Method 2 . 90

6.1 The average QPS with a varied concurrency level using 4 nodes 98

6.2 The average query response time with a varied concurrency level using 4
nodes . 99

6.3 The average QPS with a varied concurrency level using 8 nodes 99

6.4 The average query response time with a varied concurrency level using 8
nodes . 100

6.5 The average CPU load with a varied number of CPUs 101

6.6 The average QPS rate with a varied number of CPUs 102

6.7 The average query response time with a varied number of CPUs 102

6.8 The average CPU load with a varied CPU factor 103

6.9 The average QPS with a varied CPU factor 104

6.10 The average query response time with a varied CPU factor 104

v

6.11 The average Ethernet load with a varied network bandwidth 105
6.12 The average QPS rate with a varied network bandwidth 106
6.13 The average query response time with a varied network bandwidth 106
6.14 The average CPU load with a varied number of disks 107
6.15 The average disk load with a varied number of disks 108
6.16 The average QPS with a varied number of disks 108
6.17 The average query response time with a varied number of disks 109
6.18 The average CPU load with a varied disk type 110
6.19 The average disk load with a varied disk type 110
6.20 The average QPS rate with a varied disk type 111
6.21 The average query response time with a varied disk type 111

A.1 Local Indexing - Node Status . 131
A.2 Local Indexing - Process Status . 132
A.3 Global Indexing - Node Status . 133
A.4 Global Indexing - Process Status . 134
A.5 Pipelined Indexing - Node Status . 135
A.6 Pipelined Indexing - Process Status . 136
A.7 Local Indexing - Node Status . 137
A.8 Local Indexing - Process Status . 138
A.9 Global Indexing - Node Status . 139
A.10 Global Indexing - Process Status . 140
A.11 Pipelined Indexing - Node Status . 141
A.12 Pipelined Indexing - Process Status . 142

vi

List of Tables

3.1 Summary of previous work . 28
3.2 The index size and the relative throughput of the system in [MWZB07] . . 42

5.1 Comparison between search engine alternatives 62
5.2 Variables to be used in the simulation model, part 1. 66
5.3 Variables to be used in the simulation model, part 2. 67

6.1 Results summary of the baseline experiments (50000ms, 4 nodes, MNQ 12) 94
6.2 Results summary of the baseline experiments (50000ms, 4 nodes, MNQ 12) 97

vii

viii

List of Algorithms

1 Basic query processing with the Boolean AND/OR model. 10
2 Basic query processing with the Vector model. 11
3 Query processing with the Vector model and a restricted number of accu-

mulators. 12
4 A simple approximation algorithm using the vector model and the impact-

ordered inverted lists . 13
5 Query processing with the local indexing according to the boolean model . 17
6 Query processing with the local indexing according to the vector model. . . 18
7 Query processing with the global indexing according to the boolean model 20
8 Query processing with global indexing according to the boolean model . . . 21
9 Query processing with the global indexing according to the vector model . 22
10 Query processing with the pipelined indexing according to the vector model 24
11 LI query process, algorithm details . 69
12 LI sub-query process, algorithm details . 69
13 GI query process, algorithm details . 70
14 GI sub-query process, algorithm details . 70
15 PL query process, algorithm details . 71
16 LIPM query process, algorithm details . 73
17 LIPM sub-query process, algorithm details 74
18 GIPM query process, algorithm details . 74
19 GIPM sub-query process, algorithm details 75
20 PLPM query process, algorithm details . 76

ix

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Full-Text Retrieval Systems are a subset of Information Retrieval Systems which deal with
the gathering, storage and access to textual information. Full-text retrieval is limited
to provide a number of documents or document excepts from a document collection in
return for a user-speci�ed textual query.

The use of an index in the full-text retrieval systems was �rst introduced by Salton
et al. [SM86]. An inverted index �le allows to perform time and result e�ective search,
even for a large document collection with a big number of document and query terms.
On a single computer the index can be stored on a single disk or striped over a number
of disks which will solve both the capacity and some of disk-access performance issues.
However the use ofa distributed index and a number of computing nodes will improve
the performance, not only for disk-access, but also for processing of the data itself.

Distributed Index Organizations include two main methods, replication and parti-
tioning. Replication of an index allows a higher number of queries to be processed at
the same time using a higher number of nodes. Partitioning of an index allows the same
query to be partially processed on a number of nodes in parallel. A fully scalable search
engine architecture can be viewed as a two-dimensional array of nodes, where one of the
dimensions describes replication and the other one describes partitioning. To handle a
di�erent query rate the system can be scaled within the �rst dimension, and to handle a
bigger document collection or to reduce the processing time for a single query, the system
can be scaled within the second dimension.

A modern search engine, such as those developed by FAST and Google, provides
scalability in the way described above. In fact, all of those systems split the document
index into a number of partitions speci�ed by the document ID range, maintaining a
Local Inverted Index for a subset of the document collection on each node. An alternative
approach is to split the document index by the term ID, maintaining a subset of a Global
Inverted Index on each node. A number of hybrid approaches and improvements for
these two fundamental methods were proposed. However the performance of these can
be speculated when the underlying architecture and document collection features are
taken into the account.

A number of papers aimed to describe and compare di�erent index partitioning meth-

Simon Jonassen

2

ods were published in the last two decades. The target for some of those papers was to
establish whether one of the two principal approaches is the superior one, while the oth-
ers supposed to describe some alternative approaches and demonstrate a performance
improvement. All these papers have used di�erent architectures, scienti�c methods and
query and document collection models, and the results were also di�erent.

The previous work performed by author of this master thesis supposed to evaluate
previous study and, if it was possible, to �nd at which circumstances a global index
organization can outperform a local index organizations or vice versa. As it turns out,
the results depend on a careful choice of the system parameters and the implementation
of the system model. The �nal answer is still unclear, and a better simulation model is
required to provide more reliable results.

This document and all the related work are based on the work performed during
the Specialization Project in Complex Computer Systems, autumn 2007. Some of the
information presented in the background and previous study part is aimed to re�ne the
information presented in the project report, [Jon07].

Organization of this document is as follows. Chapter 2 gives a complete introduction
to inverted indexes, retrieving models, implementation concepts, approximation methods,
index replication and partitioning. Chapter 3 will present previous work relevant for this
master thesis and results from the work performed during the preceding project. Chapter
5 presents a new simulation model together with a detailed description of the ideas and
the guidelines for simulation of system behavior and estimation of system performance.
All the metrics needed for the simulation model are estimated using micro-benchmarking,
both the methods and the results are presented in the same chapter. Chapter 6 will �nally
present and discuss the results gathered from the simulation. The �nal conclusions and
the proposals for further work are given in the Chapter 7.

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 3

Chapter 2

Background

This chapter introduces text search engines which use an inverted index. All the infor-
mation in this chapter is an improved version of the background part from [Jon07] and
is based on the ideas and the theory described in [ZM06, WMB99, BR99, LM06].

2.1 An Introduction to Search Engines

A complete search engine can be viewed as a number of di�erent processes used to gather
and store the content of a document collection, together with a number of processes used
to answer incoming queries using the stored information. The whole system can be
illustrated by Figure 2.1.

Figure 2.1: Information Retrieval Process

A Crawler Process explores the speci�ed document collection and sends every docu-
ment containing in it to a Parser Process. The Crawler Process can use cross-references
between the documents and document locations to rank the results at the query time.
The Parser Process in its turn �rst strips the document content from the document
markup, which can also be used later for the results ranking. Then, all the letters are

Simon Jonassen

4 2.2. INVERTED INDEXES

folded to lower case and all the stop words (i.e. most frequent words such as a, about,
after, again, all, almost, etc., which cannot be used to identify the document content
uniquely) are removed. To limit the number of distinct words with the same roots and
to allow more �exibility for the later search, all the words are stemmed by removing all
the irrelevant pre�xes, su�xes and endings.

The preprocessing operations presented are very important for later search, as they
limit the amount of storage used and the work demand. On the other hand, these
operations can induce enormous consequences for a later search. Phrases such as "the
who" and "to be or not to be", and the words with common stems but di�erent meaning
must be processed carefully.

When all the documents are processed, all of the preserved words they contain, terms,
are stored in a special way to be able to perform a time and result e�ective query search
later. There are many ways to do this. The method considered in this master thesis is
to use an Inverted Index, as it will be explained below. Other common methods are to
use bitmaps, signatures, etc.

2.2 Inverted Indexes

The most e�ective and a relatively simple approach to represent and store the content
of a document to be able perform a query search ever known is to use an Inverted Index.
An inverted index consists of two parts, a vocabulary for the relevant terms (or their
stems) and their occurrences. This structure is very similar to a book index presented
in the end of any book ever known to the reader.

2.2.1 The Vocabulary File

The vocabulary �le for an inverted index consists of a lexically sorted array of terms with
pointers to the associated inverted lists. Di�erent types of codings can be applied to save
the storage space. If the resulting structure is too large to be stored in the main memory,
it can be partially stored on the disk, while the most used part of it will be placed in
the main memory. In this case it results in a two-level dictionary where the �rst level
is stored in the main memory as an array and the second level is stored on the disk.
The �rst level of the vocabulary can also be stored in a hash-map, which provides fast
access to the second level pointers. A variation of this approach is to use a B-tree where
all the leaf nodes stored on the disk, while the internal nodes are stored in the main
memory. [MG] shows that with a such organization, an index with 1.6 million records
consuming 320MB can be stored using 8KB blocks (400 records) by maintaining only
4000 tree-nodes in the memory, about 1MB of data in total.

2.2.2 Inverted Lists

An inverted list for each term contains all the term occurrences in the document collection
and some additional information used for result ranking. Inverted lists are normally

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 5

placed on the disk, but a small fraction of the most frequently used posts can be cached
in the main memory.

Granularity

Inverted lists may have many di�erent representations. One of the most important issues
is the granularity of the inverted index. At the �rst extreme it may contain only the IDs
of the documents containing a given term, while at the second extreme it may contain
both the document IDs and each single occurrence position for each single term and
document pair. In the �rst case, the inverted lists are small, but it is impossible to
match a phrase or expression. The second case is completely opposite to the �rst one.
An alternative to both methods is to split each document in a number of blocks and
use the block number as a position identi�er. This approach is less storage-consuming
than the one storing each single occurrence of each single term, while it is possible to
determine whether the required terms occurs near each other or not. Any additional
information about the term occurrence frequency in the document collection and each
single document can be stored in the inverted lists. This information is usually used to
calculate the similarity score, a metric describing how relevant a given document is for a
given query.

Content

For the models which will be explained shortly a suitable inverted list representation
is something like [ft :< d : ft,d >]. In this notation ft is the frequency of a term t,
d is a document id and ft,d is the frequency of the the term t within the document d.
Alternatively, the number of occurrences can be used instead of the term frequency. In
addition, all the occurence positions of a single term in each single document can be
included to provide phrase matching. A simple compression method for a such inverted
index is to use d-gaps, i.e. use the di�erence between two consecutive document IDs
instead of IDs themself.

Although there are two other representations which can result in a better performance
as it will be explained later. Since an inverted list contains only term frequencies and
document numbers, its content can be ordered either by document IDs or by term fre-
quencies. The approach demonstrated so far is known as the document-ordered inverted
lists since it orders the content of a single inverted list by the document ID. Two other
organizations are known as the frequency-ordered inverted lists and the impact-ordered
inverted lists.

The content of an frequency-ordered list is something like [ft :< ft,∗ : k :< d >>]
ordered by decreasing ft,∗ value, which can be interpreted as a kind of a histogram for
a given term. In this case the D-gap approach cannot be used, but a similar approach,
perhaps f-gaps, can be used to reduce the size of an index �le.

Impact-ordered lists have a syntax similar to frequency-ordered lists, but in addition
they store an impact value for a block of inverted list records. The impact value is de�ned

Simon Jonassen

6 2.3. INVERTED INDEX CREATION

by the query processing model.

Later organizations combined with a number of approximation methods result in a
time and space e�ective processing as it will be explained later in Section 2.5.3.

Compression Issues

D-gaps and f-gaps can slightly reduce the size of an inverted index. Unary, β- or γ other
parameterless codes applied carefully can be used to reduce the storage consumed by
the position values. Parameter based codes such as Golumb codes can also be used.
While it requires more e�ort to estimate the parameter values for each term. Other
data-compression methods [WMB99] can be applied to reduce the size of inverted lists.
This techniques can be either adaptive (dynamic) or non-adaptive (static). The latter
results in a much better compression but the whole inverted list is then needed to be
decoded before the required data can be used. A possible solution in this case is to divide
the inverted list for a single term into blocks and compress them on their own.

In general, compression can reduce the size of an index entry from 48 to about 12
bits. A such data volume reduction would also improve the disk access time. Otherwise
there is a trade-o� between the time saved by reducing the size of the index and the
additional time spent on decoding of the index data. Because of di�culties to estimate the
processing demands, the compression methods will be never considered in the simulation
model described later.

2.3 Inverted Index Creation

There are a number of di�erent methods to build an inverted index. First, the indexing
process can make a pass through the whole collection and count the number of document
occurrences for each term, then allocate the required number of records on disk and make
a second pass storing the right record to the right place. Alternatively, the indexer can
perform only a single pass through the document collection and store a tuple for each
term-document match, thereafter all the tuples can be sorted to create a term-ordered
index. An even more e�cient method is to create a large index is to build a number of
small indexes in the memory and �ush them to disk, then to merge them hierarchically
until a single index is obtained.

2.4 Inverted Index Update

If some of the documents in the collection are removed or updated, or a number of new
documents is added to the collection, the index is needed to be updated. This is a
very important problem for the last decade. There are three general methods to handle
updates. First, the whole index can be rebuilt once an update is performed. If the
document collection is large and dynamic this method is very ine�ective. But it can be
used for small collections with a low update frequency. Another method is to create a
small index for the updated part of the collection and then merge it with the rest of

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 7

the collection on an update. This method is also problematic for a large and dynamic
collection, but it avoids to re-index unchanged documents. Third method is to create a
partial index for the updated part of the document collection, but do not merge it with
the rest of the index at once. The partial index can be also maintained in the memory.
A background process can be scheduled to merge the partial index and the main index
once in a while.

In the later presentation of a small search engine called Brille, an inverted index can
be actually stored in a number of small indexes which are then �ushed to the original
one by a background process. A hierarchical index is a variation of an inverted index
which maintains a number of inverted �les of di�erent size, instead of a single inverted
�le. Each of the index �les maintained by a hierarchical index is usually by a factor
bigger than the previous one, the content of a such �le is moved to a larger one when the
index �le becomes full. Brille maintains a list of update-indexes and uses a background
process to �ush them to the main index.

2.5 Query Processing with an Inverted Index

2.5.1 Query Processing Models

There are three classic models used to perform a search in an inverted index and to
rank the results: the Boolean model, the vector and the probabilistic model. All the
models can be described in terms of a term t, a document d and the associated weight
wt,d. It is expected that the total number of the documents in the collection is N and
the occurrence frequency of the term t is ft for the whole collection and ft,d inside the
document d. Result ranking returns the results according to a similarity value, sim(d, q),
and limits the number of the returned results to a prede�ned value r.

Boolean Model

The Boolean model is the simplest one, the wt,d is simply 1 if the term t occurs in
the document d and 0 if not. The weighting function is described below. A Boolean
query is a logical expression on a number of terms using operators such as AND, OR
and NOT. A simple approach to process a such query is to transform it to a disjunctive
normal form, which is a disjunction of conjunctions (an OR of ANDs), then to solve each
of the conjunctions by taking only the documents containing every term in the given
conjunction, �nally merge the results from the previous stage. The similarity function is
not relied on the weighting function, but it is ofter calculated afterwards using either one
of the other models described here or an alternative model such as HITS/Page-Rank or
Layout Based Boosting.

wt,d =
{

1 if t ∈ d
0 otherwise

(2.1)

Simon Jonassen

8 2.5. QUERY PROCESSING WITH AN INVERTED INDEX

Probabilistic Model

The probabilistic model uses the probability that a given document d is relevant and
the probability that this document is irrelevant to estimate the its similarity value for a
given query q.

sim(d, q) =
P (R|d)
P (R|d)

(2.2)

sim(d, q) =

∏
t∈q P (kt|R)×

∏
t6∈q P (kt, R)∏

t∈q P (kt|R)×
∏

t6∈q P (k,R)
(2.3)

Equation 2.3 shows the basic formula used to calculate the similarity value of a
single document. R is the subset of the document collection containing the approved
documents. Since the relevance scores for all the documents in the collection are expected
to be independent, the Bayes' theorem and the chain rule can be used to calculate the
total similarity value for any subset of the document collection. Usually an initial subset
of the document collection is chosen at random, then some of the documents are excluded
from the subset while some other documents are included into the subset in the way to
maximize the total similarity value.

P (kt|R) =
St

S
(2.4)

P (kt|R) =
Nt − St

N − S
(2.5)

The remaining problem is how to estimate the relevance probability of a single docu-
ment itself. Usually these values are given by something like Equation 2.4 and Equation
2.5 for any set N . In these equations S is the cardinality of subset of the documents
described as relevant, St is the number of documents in the subset containing the term
t, N is the cardinality of the set itself and �nally the Nt is the subset of S containing
the term t. Now it depends only on which documents are considered as relevant, usually
it is determined by the user feedback. This is why the probabilistic models are more
often used in the interactive document content management rather than in the full-text
retrieval. This is also the reason why the probabilistic model will never be used any later
in this report.

Vector Model

The vector model is relatively simple and very �exible, and it provides a relatively high
precision1 together with a high recall2. The idea behind is to view the document d and
the query q as two vectors of the associated weights wt,d and wt,q. Then the similarity
value is given by Equation 2.6.

1- the number of the relevant documents retrieved to the number of the documents in the retrieved
2- the number of the relevant documents retrieved to the number of the relevant documents in the

collection

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 9

sim(d, q) =
∑

t(wt,d × wt,q)
Wd ×Wq

(2.6)

The wt,d and wt,q are usually estimated using Equation 2.7, where N is the number
of the documents in the collection and ft and ft,d is the term collection and document
frequencies as it was mentioned earlier. This approach is also known as the TFxIDF
scheme since it uses the term frequency in the document and the inverse term frequency
for the whole collection.

wt,d = 1 + loge ft,d wt,d = loge(1 +N/ft)

Wd =
√∑

tw
2
t,d Wq =

√∑
tw

2
t,q

(2.7)

Other Models

Other models that are out of scoop of this report are layout based model, web based
models such as HITS and PageRank, Bayesian network based models, fuzzy set models,
etc.

Okapi BM25 is a promising scheme based on the probabilistic model, while it uses
the term frequency and the inverse document frequency which is not typical for a pure
probabilistic model described above. Equations 2.8 - 2.9 show the formulas used to
calculate the weighs and the similarity score for a document using Okapi BM25. WA is
the average document weight (average Wd), ft,q is the term frequency in the query and
k1, k2 and b are system-de�ned parameters.

sim(d, q) =
∑

t

(wt,dwt,q) (2.8)

w(t, d) = (k1+1)ft,d

k1((1−b)+b
Wd
WA

)+ft,d

w(t, q) = ln(N−ft+0.5
ft+0.5) (k2+1)ft,q

k2+ft,q (2.9)

Di�erent sources such as [Bjø07] provide results which show the advantages of Okapi
BM25 scheme compared to the TFxIDF. However this scheme is not discussed in this
report any further.

2.5.2 Basic Algorithms

This part of the report will now present the basic algorithms for the Boolean and the
Vector models. Note that many alternative, more sophisticated and e�ective processing
schemes are possible, while this report presents only some of them at a high level. These
algorithms will be later used to demonstrate the di�erence between the processing on a
single-node system and the processing on a group of nodes.

Simon Jonassen

10 2.5. QUERY PROCESSING WITH AN INVERTED INDEX

Using the Boolean Model

The query processing algorithm for a single Boolean AND query is very simple. The
inverted lists for all of the required terms are �rst fetched to the memory and merged
using a number of pointers. Using the document-ordered lists the lowest document
pointer can always be increased until all the pointers refer to the same document id,
in this case there is an occurrence. All the other common occurrences can be obtained
by traversing the rest of the inverted lists in this manner. More sophisticated Boolean
queries can be executed by performing a number of AND queries and then interleaving
the results just as it was described above. Finally, result ranking and result set extraction
must be performed at the end. Algorithm 1 presents the whole processing for a simple
version of the Boolean model.

Bring q to the disjunctive normal form;1

foreach conjunction C in query q do2

Let RD be an empty result set;3

Fetch all the inverted lists It for every non-negated term t in C;4

Assign a pointer to the start of each of the inverted lists;5

repeat6

if all of the pointers refer to equal d values then7

Add the referred value to the result set;8

Increment all the pointers by one;9

else10

Increment the pointer referring to the lowest value;11

until Any pointer runs over the end of its list ;12

Let Rq be an empty result set;13

Assign a pointer to the start of each result set RD;14

repeat15

Add the lowest referred value v to Rq;16

Increment all the pointers referring to the values equal v;17

until All pointer run over the end its list ;18

Calculate similarity scores for documents in Rq;19

Extract r top-scored candidates;20

Algorithm 1: Basic query processing with the Boolean AND/OR model.

Using The Vector Model

The processing algorithm for the Vector Model is actually easier than the one for the
Boolean Model. It simply allocates an array of accumulators, one for every document
in the collection. Then it uses the inverted list content of the query terms to increment
the accumulator values. Since Wq is constant for a query it is never considered in the
calculation of the resulting similarity score, as it is demonstrated by Algorithm 2. Note

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 11

that it is expected that the Wd values are stored on disk since they are constant for each
document in the collection.

Let A be an array of accumulators, one for every document in the collection;1

Set every Ad to 0;2

foreach term t in q do3

Fetch the inverted list It;4

Calculate wt,q based on fi from the inverted list I;5

foreach record di:ft,d in I do6

Set Ad ← Ad + wt,qwt,d calculated using ft,d;7

Get Wd values;8

Set Sd ← Ad/Wd;9

Extract r top candidates;10

Algorithm 2: Basic query processing with the Vector model.

Sorting and Extraction of Top-values

Extraction of the top candidates can be performed easily by using a Min-Heap. The
trick is to initialize a heap on the �rst r elements of the accumulator list. Then each of
the |A| − r remaining elements is evaluated against the lowest value stored in the heap.
If the value of an element is greater than the lowest heap value, then the lowest heap
value is extracted and a new value is inserted. The total processing time for this stage
is O(N + 2N log r).

Sniplet Generation

An important detail here is that the result for a query is usually more than just a
document id. Usually it requires a sniplet, i.e. a fragment of the document, if possible
containing and highlighting the searched terms. This part requires a cached copy of the
document which can be used at the query time.

2.5.3 Approximation Methods for the Vector Model

The problem with the implementation of the vector model described above is that requires
too much memory and processing. There are a number of tricks that can be applied to
improve this.

First of all, the value of the most of the accumulators created by Algorithm 2 is
either 0 or insigni�cantly low, so there is no need to maintain an accumulator for every
document in the collection. Perhaps using r = 1000 and a collection of several millions of
documents, a number of accumulators about 30000 may be large enough to provide good
precision and recall. The problem is then to �nd when to create accumulators and what
to do when the maximum number of the accumulators is reached. Two heuristics solving

Simon Jonassen

12 2.5. QUERY PROCESSING WITH AN INVERTED INDEX

the later issue is called break and continue . The break-heuristic stops the processing when
the number of accumulators is exceeded, while the continue-heuristic restricts the creation
of new accumulators, but allows to update existing accumulators. The continue heuristic
is the most used one. [AdKM01] Algorithm 3 demonstrates the continue heuristic using
up to L accumulators.

Let A be an empty set of accumulators;1

foreach term t in q by decreasing wt,q do2

Fetch the inverted list It;3

Calculate wt,q based on ft from the inverted list I;4

foreach record d:ft,d in I do5

if |A| < L and Ad 6∈ A then6

Add a new accumulator Ad;7

if Ad ∈ A then8

Set Ad ← Ad + wt,qwt,d;9

Get Wd values;10

Set Sd ← Ad/Wd;11

Extract r top candidates;12

Algorithm 3: Query processing with the Vector model and a restricted number of
accumulators.

Since it is needed to maximize the value of allocated accumulators, the creation
of the accumulators is usually performed by maximizing wt,dwt,q for newly created ac-
cumulators. A further observation shows that the records with the lowest ft and the
highest ft,d values will normally result in the most optimal candidates. This is where
frequency-ordered inverted lists become advantageous. Since the content of each list is
organized by descending ft,d it requires just to process all the lists in parallel restricting
wt,dwt,q > S, where S is chosen to be as high as possible. When the number of proved
candidates reaches 0, S is recalculated and the whole process repeated until all the data
is processed. The main advantage of this solution is that it limits not only the memory
usage, but it may also limit the amount of the inverted lists to be fetched from disk.
The processing time can be limited to a prede�ned value and accumulation for a query
stops when the value exceeded. The drawback of this approach is that it requires a data
structure which allows a fast accumulator look-up and insertion.

A further improvement of this approach can be obtained by using the impact-ordered
inverted lists with the impact value de�ned by wt,d/Wd, since the impact of a single
inverted list record is not wt,dwt,q, but wt,dwt,q/Wd. In this case the impact value of a
block of records is stored together with the inverted lists. At the query time the inverted
lists are processed nearly as described above. The di�erences are that the minimal impact
value is used instead of the minimal product of term weights, and that the accumulators
are increased not by the real impact of a document, but by an approximated value. The
approach is demonstrated by Algorithm 4. Note that the algorithm does not provide the

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 13

same result set as the original one, but [ZM06] ensures that the quality of the answer set
is unchanged.

Let A be an empty set of accumulators;1

Fetch the �rst blocks of inverted lists for every term t in q;2

Let st be the impact values of fetched blocks;3

repeat4

Let b be the block with the highest value of C = stwt,q;5

foreach d referenced in b do6

if |A| < L and Ad 6∈ A then7

Add a new accumulator Ad;8

if Ad ∈ A then9

Set Ad ← Ad + C;10

Fetch a new block if possible, update the value of st;11

until processing time is exhausted ;12

Extract r top candidates from A;13

Algorithm 4: A simple approximation algorithm using the vector model and the
impact-ordered inverted lists

Simon Jonassen

14 2.6. DISTRIBUTED INVERTED INDEXES

2.6 Distributed Inverted Indexes

A simple inverted index on a single machine is proved to be an e�ective approach with
good precision and recall characteristics. However a problem arises when the document
collection becomes too large or the query rate becomes too high to be processed by a
single computing node. In this case a number of computer nodes and a careful processing
architecture are needed.

A Distributed Inverted Index is an inverted index stored on a number of computer
nodes with a provided cooperation for index maintenance and query solving. Usually
it means both partitioning and replication. Replication is usually obtained by storing
either a full-copy of the index on a number of other machines, or storing only a small
and frequently used fraction of the index. Partitioning is obtained by dividing the index
into a number of disjoint subsets, where each subset is then assigned to one of the nodes.
The main di�erence between these two is that replication does not require as much
cooperation between the nodes as partitioning does. From this point this report looks
at the partitioning methods for an inverted index, while the replication part is still an
interesting issue to research and evaluate.

2.7 Scalability of a Search Platform

As it was mentioned in the Introduction chapter, a scalable search engine [Ris04] can
be viewed as a two-dimensional array of processing nodes. With this organization, the
columns replicate the index, while the rows split it into a number of partitions. A
number of additional nodes is then needed to route a query through the processing node
array. The advantage of this system is that processing time and delay for a single query
remains nearly the same when either the size of the document collection or the query rate
is increased, by adding a number of new rows or new columns. The only di�erence in
the �nal performance is induced by an increase in the routing time, which is logarithmic
to the array dimensions.

2.8 Partitioning Schemes for an Inverted Index

There are a number of di�erent partitioning schemes and their variation presented during
the last two decades, but this report looks only at the partitioning schemes designed for
a multi-node system. Two essential approaches are known as global indexing and local
indexing, or partitioning by the term id and partitioning by the document id.

The main di�erence between these is that for the �rst one all of the terms in the
vocabulary are partitioned over a number of nodes, while for the second one all the
documents in the collection are partitioned over a number of nodes. The di�erence in
the partitioning concepts leads to a completely di�erent index construction, processing
algorithms and associated trade-o�s and bene�ts. There are also a number of alternative
approaches such as pipelined indexing which di�ers from the global indexing in the query
processing, as it uses a pipeline rather than a scatter-gather/master-slave processing

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

node 1 d1 × t1 d1 × t2 ... d1 × tk
...

dn/m × t1 dn/m × t2 ... dn/m × tk
node 2 dn/m+1 × t1 dn/m+1 × t2 ... dn/m+1 × tk

...
d2n/m × t1 d2n/m × t2 ... d2n/m × tk

...

node m d(m−1)n/m+1 × t1 d(m−1)n/m+1 × t2 ... d(m−1)n/m+1 × tk
...

dn/m × t1 dn/m × t2 ... dn/m × tk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Figure 2.2: Partitioning by the document id

∣∣∣∣∣∣∣∣∣∣

node 1 node 2 ... node m

d1 × t1 ... d1 × tk/m d1 × tk/m+1 ... d1 × t2k/m ... d1 × t(m−1)k/m+1 ... d1 × tk
d2 × t1 ... d2 × tk/m d2 × tk/m+1 ... d1 × t2k/m ... d2 × t(m−1)k/m+1 ... d2 × tk

...
dn × t1 ... dn × tk/m dn × tk/m+1 ... dn × t2k/m ... dn × t(m−1)k/m+1 ... dn × tk

∣∣∣∣∣∣∣∣∣∣
Figure 2.3: Partitioning by the term id

Simon Jonassen

16 2.8. PARTITIONING SCHEMES FOR AN INVERTED INDEX

• d1: a b a c d, d2: a d e a, d3: b c a b; d4: b

• LI:
N1: a:<d1:1>,<d1:3> b:<d1:2> c:<d1:4> d:<d1:5>
N2: a:<d2:1>,<d2:4> d:<d2:2> e:<d2:5>
N3: a:<d3:3> c:<d3:2> b:<d3:1>,<d3:4>
N4: b:<d4:1>

• GI:
N1: a:<d1:1>,<d1:3>,<d2:1>,<d2:4>,<d3:1>
N2: b:<d1:2>,<d1:5>,<d3:1>,<d3:4>,<d4:1>
N3: c:<d1:4>,<d3:2>
N4: d:<d2:2> e:<d2:3>

• HD (chunk size 4):
N1: a:<d1:1>,<d1:3>,<d2:1>,<d2:4>
N2: b:<d1:2>,<d1:5>,<d3:1>,<d3:4>
N3: a:<d3:1> c:<d1:4>,<d3:2>
N4: b:<d4:1> d:<d2:2> e:<d2:3>

Figure 2.4: An Example of Inverted Index Partitioning for a Document Collection,
[XSLF02]

model, or hybrid indexing which splits its inverted lists into a number of chunks which
are then mapped to a number of nodes. Figures 2.2 - 2.4 visualizes the ideas.

2.8.1 Local Indexing

When the local indexing is used, the document collection is divided into a number of
equally large subsets and each of the subsets is then assigned to a node. Since a node is
responsible only for its own documents, a local index for its document subset is created.
This can be performed by a single node on its own and no other nodes are needed to
be involved. An index update such as an addition, deletion or modi�cation of a single
document requires to update the index on a single node which can be again performed
by this node on its own.

The main advantage of the local indexing is that most part of the query processing
can be performed by the node containing the required index data. The node responsible
for solving of a query requires only to broadcast the query to all of the other nodes
and combine the results returned. However, the processing is somewhat di�erent for the
boolean and the vector models. Query processing according to the vector model has also
many possible optimizations which will be shortly presented.

As it will be explained later, it is expected that the length of the inverted list fetched
by a single node is lt/n. However it requires that each term in the collection has equally

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 17

many occurrences in each of the document subsets. The problem in this case is how to
map the documents to the nodes. If the documents are mapped to the di�erent nodes
using a simple modulo-hash based on the document id and the number of nodes, in the
worst case a single term can be contained only in a single partition. A mapping where
all the nodes would have an equally high load is a NP-Complete problem.

Query Processing according to the Boolean Model

Query processing according to the boolean model requires basically nothing more than
a broadcast of the query followed by a retrieval of the partial results. If the local results
from the nodes do not provide any similarity score, upto r random results are chosen
from the provided local results by the receptionist node (i.e. the node responsible for
this query). Otherwise, upto r top-scored results are chosen based on the associated
similarity score. Given that a node provides upto r′ local results, the receptionist node
can normally chose between upto n · r′ results. Usually r′ is chosen to be equal r, since
in the worst case only the local results from a single node will be used in the �nal result
set. Algorithm 5 illustrates the idea.

Broadcast the query to all the nodes;1

foreach node in parallel do2

Retrieve the inverted lists from the disk;3

Process the local results according to the bolean model;4

Send up to r′ local results to the receptionist node;5

Receive up to r′ results from each of the nodes;6

Return up to r results as the answer set;7

[Opt: provide a sniplet for each of the results in the answer set];8

Algorithm 5: Query processing with the local indexing according to the boolean
model

Query Processing according to the Vector Model

Query processing using a local index according to the vector model is only slightly more
complicated than the one using the boolean model. The major di�erences here are that
(1) results returned from a node are always ranked and (2) results returned from the
receptionist node must contain the r top-scored results chosen among the local results.
A modi�ed solution is given by Algorithm 6.

The algorithm provided describes the processing at a very high level. Processing of
the local results using the vector model operations requires to increment the accumulator
values according to the equations provided earlier or similar. In this case information
about the global term frequency is needed. This implies that after constructing an index,
each node requires to exchange the ft-values for its own terms with the values stored by
the other nodes. Alternatively, these values can be replicated. The �nal retrieval of the

Simon Jonassen

18 2.8. PARTITIONING SCHEMES FOR AN INVERTED INDEX

Broadcast the query to all the nodes;1

foreach node in parallel do2

Retrieve the inverted lists from the disk;3

Process the local results according to the vector model;4

Send up to r′ top-scored local results to the receptionist node;5

Receive up to r′ results from each of the nodes;6

Return up to r top-scored results as the answer set;7

[Opt: provide a sniplet for each of the results in the answer set];8

Algorithm 6: Query processing with the local indexing according to the vector
model.

top-scored local results can be implemented using a min-heap, just as it was described
in the previous chapter.

In the �nal stage r top-scored must be chosen from up to n · r provided local results.
This can be implemented either by using a min-heap which results in an asymptotic
complexity O(nr log(r)), or by using a multi-way merge which results in an asymptotic
complexity O(nr). Despite to a factor of log(r) the min-heap solution provides an ad-
vantage, since the multi-way merge requires for all partial results to be stored before the
post-processing can begin. If the number of results required is low, the imbalance be-
tween the node load or index size is high or a higher multiprogramming level is provided,
the min-heap solution is a better alternative.

The most important observation here is that for both the boolean and the vector
model it requires to perform |q| disk seeks on each node, n · |q| disk seeks in total. A
number of papers describing the index partitioning suggest that the total volumes of the
inverted lists fetched by each single node and are expected to be equal. Note that in the
worst case it will be false. A term can be more common in the one of the sub-collections
than in the others, it would induce more imbalance. On the other hand, when the number
of documents and the number of words are very high, the real values are expected to be
nearly equal to the average value, but not necessary.

Optimizations of the Processing Algorithms using the Vector Model

One of the most important advantages of the local indexing is that query processing for
a subset of the document collection can be performed by a single node on its own. It
results in that the approximation techniques described earlier can be used in the �rst
stage of the query processing.

Sniplet Generation

Another advantage of the local indexing is in the sniplet generation. If the query pro-
cessing requires to provide a document fragment along with the results returned, the
receptionist node can extend the query processing with a stage when it retrieves stored

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 19

cache copies of the documents by given id's. The main advantage here is that the node
responsible for storing index records for a given document can also store a cached copy of
this document. It can be stored either explicitly by storing a full copy of the document
or implicitly by using a high granularity index.

A short summary of the advantages and disadvantages

The main advantages and the disadvantages of the local indexing can be summed up to
the following:

• The index is relatively easy to construct and update, but an additional informa-
tion/information exchange is needed if the processing model requires any document
collection related data, not only the collection subset related data.

• The query processing is relatively easy, requires only slightly more e�ort than the
processing on a monolithic system.

• On a system with n nodes the local indexing requires n times as many disk seeks
as a monolithic system, but these can be performed in parallel. On the other hand,
the size of the inverted lists fetched by a single node and the amount of the work
performed by a single node are expected to be n times smaller.

2.8.2 Global Indexing

Using the global indexing the vocabulary is divided into a number of equally large subsets
and each of the subsets is then assigned to a node. This results in that a single node
contains complete inverted lists for a number of terms. Since the di�erent documents
will occur on di�erent nodes, the index construction and update are more complicated
than for the local indexing.

The index construction can be simply performed by creating a local index for a subset
of the document collection on each node, then sending a local inverted list for a term to
the node responsible for this term. This node needs then to re-merge all the gathered
inverted lists and calculate and store the document collection frequency for this term. An
index update is complicated since it involves a number of nodes. A solution is to store a
small in-memory index for new/updated terms before updating the stored index. But it
may also be problematic since it requires a high level of cooperation and synchronization
between the nodes.

The main advantage of the global indexing is that some of the nodes are not involved
in the processing of a single query. During the processing of a typical query containing
|q| < n terms, at least n−|q| nodes are expected to be idle. Therefore the global indexing
provides a higher concurrency than the local indexing does. The drawback of this is that
the query processing itself is much more complicated than for the local indexing.

Similar to the local indexing, a very critical issue which combines index construction
and query processing is mapping of terms. The question is which terms should be assigned
to which node. The easiest solution is to use a hash function which maps a term to a node

Simon Jonassen

20 2.8. PARTITIONING SCHEMES FOR AN INVERTED INDEX

either lexicographically or in any other way without using any statistical information.
The problem in this case is that it results in a high load imbalance since some more
frequent terms can then occur on the di�erent nodes.

Another solution is to use the term rank in the document collection to determine the
hosting node. It requires additional processing and has a drawback - terms mapped to a
single node can now be more frequent in the query set than the terms having a similar
term rank, which will again lead to a high imbalance. So a better solution is to use both
the term rank in the document collection and the expected term rank in the query set
to determine the hosting node. This will not result in an optimal solution, but it should
maximize the load balancing as much as possible. On the other hand, it is di�cult to
predict the query rank and all the small changes in the query term frequency will a�ect
the load balancing. A �nal solution is to allow some of the most used inverted-lists to
migrate to the less saturated nodes. This solution is even more complex, but it should
both maximize the load balancing and automatically adapt to the changes in the query
term frequency. Term mapping for the global indexing is a very di�cult and interesting
issue itself and there are many di�erent techniques that can be researched and tested.

Query Processing according to the Boolean Model

Query processing according to the boolean model can be performed in two di�erent ways.
In the �rst case, the receptionists sends a number of sub-queries to the di�erent nodes
and receives the inverted lists for the terms involved in the query. Then it uses the
received index data to perform the processing on its own. The only advantage in this
case is a parallel disk access, the disadvantages are a high network and processing loads
at the receptionist node. The idea behind is demonstrated by Algorithm 7.

Send a sub-query to each of the nodes containing the inverted lists for the relevant1

terms;
foreach active node in parallel do2

Retrieve the inverted lists from the disk;3

Send the retrieved term occurrences to the receptionist;4

Receive the results from each of the nodes;5

Process the retrieved data according to the boolean model;6

Return up to r documents as the answer set;7

[Opt: provide a sniplet for each of the results in the answer set];8

Algorithm 7: Query processing with the global indexing according to the boolean
model

A more sophisticated approach is demonstrated by Algorithm 8. In this case a query
is �rst transformed to a disjunction of term conjunctions. For each of the conjunctions a
number of sub-queries is transferred to the nodes, conjunctions for the terms contained on
a single node can be processed by a single node on this own. The results are then needed
to be transferred to the receptionist node. The receptionist needs then to interleave the
local results for the di�erent conjunctions. When all the conjunctions are processed, the

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 21

receptionist node needs to merge the results to provide a complete answer.

It is also possible to combine the terms from the di�erent conjunctions in a single
query transferred to a single node. But it would not reduce the post-processing time in
the later stage while it would complicate the sub-query processing.

Transform the query into DNF;1

foreach conjunction of terms do2

Send sub-queries to the nodes containing the inverted lists for the relevant3

terms;
foreach active node in parallel do4

Retrieve the inverted lists from the disk;5

Generate results using boolean AND operations;6

Send the retrieved document id's to the receptionist;7

Interleave the local results;8

Receive the results from each of the nodes;9

Merge the partial results and return up to r top-scored documents as the answer10

set;
[Opt: provide a sniplet for each of the results in the answer set];11

Algorithm 8: Query processing with global indexing according to the boolean
model

Query Processing according to the Vector Model

The processing algorithm for the vector model looks to be easier than the one used for
the Boolean model. Each of the nodes needs to process the inverted lists for the relevant
terms and accumulate the similarity scores, just like for a monolithic systems. However,
in the next stage the accumulated values are transferred to the receptionist node where
they are combined/accumulated together. Finally the receptionist node can use a min-
heap or similar to determine the top-ranked documents. Algorithm 9 demonstrates this

Simon Jonassen

22 2.8. PARTITIONING SCHEMES FOR AN INVERTED INDEX

idea.

Send a number of sub-queries to the nodes containing the inverted lists for the1

relevant terms;
foreach active node in parallel do2

Retrieve the inverted lists from the disk;3

Accumulate the similarity values according to the vector model;4

Send the accumulated values to the receptionist;5

Receive the partial values accumulated by the nodes;6

Accumulate the partial values together;7

Return up to r top-ranked documents as the answer set;8

[Opt: provide a sniplet for each of the results in the answer set];9

Algorithm 9: Query processing with the global indexing according to the vector
model

Optimizations of the Processing Algorithms using the Vector Model

The main disadvantage of the global indexing is that it induces a higher network and
processing loads on the receptionist node. The problem lies in how many accumulators
are needed to be returned to the receptionist node. In the worst case it requires an accu-
mulator for each document in the collection, multiplied by the number of nodes involved
in the query. This data must be accumulated and post-processed by the receptionist
node.

Limiting the number of accumulators returned to the receptionist must be performed
very carefully, since it can destroy the original ranking order. But there are at least
two di�erent solutions to the problem. First, each node can send the number of the
accumulators and the highest accumulator value it has. The receptionist can then use
this information to determine the fraction of the accumulators it needs from each node.

Another solution is to use a query bundle. The receptionist sends �rst a sub-query
to the node containing either the term with highest document frequency or the highest
number of terms. The number of accumulators returned from this node are expected to
be minimal. The accumulator list returned to the receptionist node and can then be in-
cluded into the later sub-queries. Alternatively the accumulator array can be transferred
back and forth between the receptionist node and the other nodes according to increasing
lowest document frequency, where each of the descending nodes will update the accumu-
lator array. Accumulator thresholding techniques can now be applied. In the latter case
the early termination technique can be used - after a time limit the receptionist stops
sending/receiving sub-queries and moves to the post-processing stage.

Sniplet Generation

In contrast to the local indexing, with the global indexing a cached copy for a docu-
ment cannot be stored implicitly using a high granularity index. Also the mapping of a
document to a node has nothing to do with the term to node mapping. It implies that

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 23

some of the nodes not involved in the term processing can be later involved in the query
processing if they are responsible for the sniplet generation for one or more results for
this query.

A short summary of the advantages and disadvantages

• A global index is much more di�cult to construct and update than a number of
local indexes.

• The number of disk seeks performed by all of the nodes is only |q|, but in the worst
case all the disk seeks would be performed by a single node. The size of the inverted
lists fetched for each term is the same as the original size. Combining these two,
the worst case the processing time for inverted lists will be equal or worse than the
processing time on a monolithic system.

• The amount of data to be transferred to the receptionist node and the amount of
work to be performed during the post-processing may be very high. This results in
a potential bottleneck at the last stage of the query processing.

• It is expected that di�erent nodes have dramatically di�erent work load using the
global indexing resulting in a high load imbalance. In addition the term mapping
is a very critical issue which a�ects the load balancing characteristics.

• It is very di�cult to apply known optimization techniques to the global index-
ing. Even if it possible, the performance advantage gained will be very di�cult to
predict.

• Due to the fact that some of the terms having a similar document frequency are
more popular in the query set than the others, the load imbalance of the global
indexing is expected to be high. However, a number of dynamic mapping strategies
can be applied to improve the load balancing. The price for this is an additional
amount of workload required to move the inverted lists and to update the dictionary
structures.

2.8.3 Alternative Indexing Schemes

In addition to the local and the global indexing a number of alternative indexing methods
is known. Two most interesting of these are the hybrid indexing method by Sornil et al.
and the pipelined indexing method by Mo�at et al..

Pipelined Indexing

The pipelined model can be viewed as an alternative to the query bundle optimization
technique for the global indexing. The only di�erence is that, instead of sending an
accumulator set/array between the nodes containing the relevant terms, a query bundle
is routed through these nodes. In this case, the last node in the route takes over the task of

Simon Jonassen

24 2.8. PARTITIONING SCHEMES FOR AN INVERTED INDEX

the receptionist node, it post-processes the results and returns the answers. Accumulator
limiting techniques and early termination can be used during the processing. Algorithm
10 demonstrates the idea.

Generate a route over the nodes containing the terms involved in the query based1

on the statistical data;
Send the query structure and an empty accumulator set to the �rst node in the2

route;
foreach active node in turn do3

Receive the accumulator set from the previous node;4

Retrieve the inverted lists from the disk;5

Accumulate the similarity values according to the vector model;6

if The last node is reached or the time limit exceeded then7

Return up to r top-ranked documents as the answer set;8

[Opt: provide a sniplet for each of the results in the answer set];9

else10

Send the updated query and the accumulator structure to the next node in11

the route;

Algorithm 10: Query processing with the pipelined indexing according to the
vector model

The most important issue here is how to choose the route for a query-bundle. The
easiest approach is to use the increasing lowest ft for each node. But [MWZB07] [MWZ06]
show that it results in a low load balancing if used alone. Since the workload for a single
term is a product of the term frequency and the document frequency, Lt = Qt · Bt,
the document collection terms should be processed according to the decreasing Lt and
mapped to the node having the lowest workload so far. The Lt value used for a such
mapping can be calculated using theQt from the previous query history. This information
must be stored on the receptionist node in addition to term mapping information itself.

The main advantage of this scheme is that it requires less work at the receptionist
node. Further, it provides a higher concurrency, however a single node can easily become
a bottleneck if too many queries are routed through it. The main disadvantage of this
technique is that it induces a high network load and high imbalance. Because of the
network transfers, the pipelined indexing cannot result in a better performance than a
monolithic system can provide. But it provides an advantage in multiprogramming/con-
currency and distributed storage.

Hybrid Indexing

Another variation of the global indexing designed by Sornil [Sor01] is known as the hybrid
indexing. In this scheme a global inverted list for a single term is divided into a number
of chunks which are then distributed between the nodes using (termid⊕chunkid) mod n
as the id of the destination node. The main advantage with this is that lists contained
on a single node are shorter and the load balancing is supposed to be much higher. The

Distributed Inverted Indexes

CHAPTER 2. BACKGROUND 25

downside of this is that it introduces a higher number of disk accesses than with the
global indexing.

The processing algorithm is almost similar to the one provided for the global indexing
itself, the only di�erence is that the receptionist node needs to determine all the nodes
that may contain a single term. This information can be estimated using the document
frequency.

Index creation and update are even more problematic than for the global indexing
since there are a greater number of small indexes to be stored. But an update of a single
document requires to update only a number of small chunks instead of the modi�cation
of the whole index. On the other hand, all the global index information must to be
updated, and it may be also di�cult to determine which chunks must be updated and
which are not.

Di�erent chunk sizes will result in di�erent performance. Too small chunks result in
too many disk seeks, while too large chunks make the hybrid indexing to look more like
the global indexing. Sornil [Sor01] suggest that a chunk size at 1024 entries provides the
best results.

Finally, since the processing with the hybrid indexing is similar to the global indexing,
most of the optimization techniques applicable for the global indexing suppose to work
with the hybrid indexing.

Simon Jonassen

26 2.9. OTHER RELATED ISSUES: CACHING

2.9 Other Related Issues: Caching

The purpose of this master thesis is to analyze the performance issues of the di�erent
partitioning schemes presented so far. As it will be presented later, a simulation approach
is chosen to perform this task. However, one important issue that is not taken care of by
the simulation model is caching of the inverted lists. For a real search engine, caching
can result in a great performance improvement if it is implemented properly.

For a real search engine, the submitted queries tend to be correlated over the time
3. So the query answers themselves can be cached. On the other hand, users have a
tendency to modify their queries [SWJS01] and submit them for a re-evaluation, or try
di�erent permutations of popular query phrases. Therefore caching of the inverted lists
can improve the performance even better.

One of the key issues for the distributed inverted indexes and parallel processing in
general is the processing imbalance. The imbalance is de�ned as a ratio between the
longest execution time and the average execution time along the parallel processes. It
means also that the imbalance is de�ned by the performance of the slowest process.

As it was demonstrated by Badue et al. [BBR+07], the sources of the imbalance
among homogeneous4 index servers in a web search system are the disk cache, the total
size of the memory and the number of the servers in the cluster.

Surprising enough, the imbalance depends on the ratio between the query size and
the query frequency. [BBR+07] shows that queries having this ratio between 0.25 and
4 are large lists and frequent, but they are cached. While all the other queries have
either small lists and are cached or have long lists and are not cached. The former of
these results in a much shorter processing time, while the latter results in a much longer
processing time. Either of these results in a high performance imbalance. From the
results presented in [BBR+07], long and infrequent queries correspond to about a half of
a query set.

A further investigation by Badue et al. looks at three di�erent scenarios for query
processing: No caching; a best case, when all servers performs from cache, and a worst
case, when at least one server has a long execution time while all the others use cache.
The best case and no cache result in best performance. But a larger number of servers
increases the chances for the worst case, and less memory has the same e�ect, since the
cache region is much smaller.

To summary up, a high number of the query servers and a smaller cache size result
in a much higher imbalance. The imbalance itself depends also not only on hardware
characteristics, but also on the queries submitted by the public. For a later discussion of
the simulation results it must be kept in mind that both the performance and the load
balancing of a real search engine caching the inverted lists may be completely di�erent.

3http://www.google.com/trends allows to see the chronological and geographical popularity of terms

and phrases
4ie. all of the servers has same con�guration, so it excludes the imbalance induced by di�erences in

hardware or software implementation.

Distributed Inverted Indexes

http://www.google.com/trends

CHAPTER 3. PREVIOUS WORK AND RESULTS 27

Chapter 3

Previous Work and Results

The �rst part of this chapter presents an improved version of the "Previous Work and
Results" chapter from [Jon07]. The original text is modi�ed to eliminate all the irrelevant
information, while some additional information is added. The �nal version contains
a complete overview of the performed work, results, critics and comments about how
relevant the performed work is to this thesis and which facts can be used or questioned.

3.1 Tomasic and Garcia-Molina, 1992

In the paper 'Query Processing And Inverted Indices in Shared Nothing Text Docu-
ment Information Retrieval Systems' [TG93], Tomasic and Garcia-Molina look at the
distributed index organization for text document retrieval systems and compare di�erent
index organizations using a probabilistic simulation model of the database and queries.

The inverted index organizations studied in this paper di�er from those presented so
far. The main di�erence is that these organizations adapt distribution at the disk level,
not only at the node level.
The organizations discussed in this paper are:

• System - each disk keeps a part of the index �le. This is similar to the global
indexing at the disk level.

• Host and I/O Bus - each host or I/O Bus keeps an index for its own documents, but
the index may be striped over a number of disks to reduce the internal fragmenta-
tion. This is similar to the local indexing at the node level, but hybrid indexing at
the disk level.

• Disk - each disk keeps an index for its own documents. This is similar to the local
indexing at the disk level.

There are also three optimization techniques for the system organization:

• Prefetch I - determine a query keyword k with the shortest interleaved list, then:
(1) send a single sub-query containing k to the host that handles k, and (2) attach

Simon Jonassen

28 3.1. TOMASIC AND GARCIA-MOLINA, 1992

Authors Query Result Model
Architecture

Document Collection
Query Collection

Superior
model

[TG93] Boolean (AND-only)
probabilistic + simulated,
shared-nothing

-
-

host (disk
is worst)

[JO95] Boolean
analytical + simulation,
shared-everything

synthetic
uniform + Zipf synthetic

local

[RB98] Vector
shared-nothing

TREC3
50 real queries

global

[MMR00] Probabilistic
shared-nothing

base1 and base10 subsets
of VLC2
50 short queries adopter
from TREC-7

local

[BBRZ01] Vector
shared-nothing

TREC3
50 real and 2000 arti�cial
queries

global

[XSLF02] N/A
shared-nothing

TREC9/10 100GB
200 real queries

hybrid
(local is
worst)

[MWZB07] Boolean
shared-noting

TREC Gov2 420GB
pseudo-natural

local
(global is
worst)

[MWZ06] Boolean
shared-noting

TREC Gov2 420GB
GOVQ

local
(global is
worst)

Table 3.1: Summary of previous work

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 29

a partial answer set from that node to all other sub-queries. This way the lists
produced from nodes in (2) are expected to be very short.

• Prefetch II - analogous to Prefetch 1, but use a sub-query with the largest number
of keywords.

• Prefetch III - use Prefetch II, when the choice is ambiguous - use Prefetch I.

Authors chose to look at the Boolean AND-only model which implies a simple esti-
mation for the size of the result set. The term distribution for the document collection
itself is modeled using an equation similar to Zipf's law. The query-term distribution is
modeled using a uniform distribution which cuts o� most infrequent words as it presented
by Equation 3.1.

Q(t) =
{

1/uT if 1 ≤ t ≤ uT
0 otherwise

(3.1)

The size of the answer set is then obtained by multiplying the total number of docu-
ments by the probability that a single document contains the required query terms. The
expected length of the index list for a term in the number of entries is then given by
Equation 3.2 and the number of scored documents is given by Equation 3.3.

|It| = Z(t)WD (3.2)

|Rq| = D

k∏
ti∈q

(1− e−WZ(ti)) (3.3)

The complete system behavior is described using the equations presented so far, a
number of equations for disk, CPU and LAN access and a number of system variables.
The whole system is then �nally simulated using DeNeT.

3.1.1 Results

Authors expect that, as with the global indexing, the system organization has a potential
bottleneck at the receptionist node, which interleaves inverted lists gathered from other
nodes with its own, since it requires more network resources and a higher CPU-load.
However, as with the local indexing, the disk approach, which merges inverted lists instead
of interleaving them, needs a higher number of disk seeks. Also as it was mentioned
earlier, regardless to the index organization, the same amount of data would be fetched
from the disk using any of the organizations.

From the results presented, the system organization is the worst one in terms of both
the query response time and the query throughput. The problem lies in a high network
load, since all the inverted lists must be transferred to the receptionist node, which causes
a bottleneck. Prefetch I, II and III result in a signi�cantly better performance since the
amount of data transferred later is dramatically reduced, but a single sub-query is needed

Simon Jonassen

30 3.1. TOMASIC AND GARCIA-MOLINA, 1992

to be processed before any other sub-queries can be scheduled. Therefore the performance
of an improved system organization is only two times better than the performance of the
original one, while the network load is reduced by a factor of eight or more.

The disk organization provides a four times better performance than the system
organization. The improvement is limited by a high disk utilization, just as it was
expected. The I/O utilization is lowest with this organization. The host organization
performs only slightly better than the disk organization, while the disk utilization is
much lower than with the disk system organization and the network utilization is slightly
lower than with the Prefetch I. But the I/O bus utilization is highest for the I/O bus
organization.

The I/O bus organization shows the best average query response time and query
throughput, nearly �ve times better than the disk organization. The disk utilization is
high, but is slightly lower than with the disk organization. LAN utilization is nearly equal
to the utilization with the Prefetch I and the I/O utilization is somewhat higher than for
the disk organization, but lower than for the host organization. This organization shows
the highest CPU load (60.9%), but it does not seem to be a problem.

An increase in the maximum keyword rank a�ects the system approach most dra-
matically, while the disk organization seems to perform only slightly better. The reason
is that the disk organization has more load balancing among its disks. In a worst case,
the query response time with the system organization is more than �ve times higher than
with the disk organization. Because of reduction in network load the Prefetch I shows
a good improvement for low maximum keyword rank, but still has a worst case query
response time nearly 2.5 times higher than with the disk, I/O bus or host organizations.

On the other hand, an increase in disk seek time a�ects the disk approach mostly.
Experiments show that, with a disk seek time at 0 milliseconds, the disk organization
performs slightly better than the host organization does, but with a disk seek time at
100 milliseconds the query response time for the disk organization is just as large as for
the system organization. The increase is by a factor of six. I/O bus has a somewhat
similar behavior, but the increase observed has a factor of three. Other organizations are
observed to be una�ected by the increased disk seek time.

With an increase in the multiprogramming level, the host organization outperforms
the I/O bus organization. But the disk organization is getting worse with a higher
multiprogramming level, because of a disk access bottleneck on each node. The system
organization has no improvement with an increase in the multiprogramming level, while
the query throughput for the Prefetch I is improved by a factor of three at 30 processes
per host. This con�rms the suspicions about the limitations in the scalability of the
system organization caused by a network bottleneck.

With an increasing number of words in a single query the query response time in-
creases most for the system organization and its optimizations, and least for the host
and I/O bus organizations.

All the results show that the host and I/O bus organizations are the most suitable
ones. While the system and disk organizations show both a low performance and a low
scalability. Finally, the authors try to see what happens if the network bottleneck at the

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 31

receptionist is removed and the disk time is increased. This experiment shows that for
16 hosts with one I/O bus per host, a high network bandwidth and a high disk seek time
(about 80 ms), the Prefetch I outperforms the alternative organizations.

3.1.2 Critics

The �nal observation from the experiments is very interesting since it shows that unre-
warding to the earlier tests, the system organization and its modi�cations can have a
superior performance on a high-speed network if the disk seek time is increased. How-
ever, it requires the disk seek time to be at least 65ms, which is at least ten times greater
than an expected value for a real system. On the other hand, these results will be true if
all the other system parameters would be improved by a factor of ten and the disk time
will be unchanged.

This paper can be criticized for using a limited simulation model which considers
only simple Boolean AND queries. However, it has a number of advantages. AND-only
queries provide more simplicity and precision in the estimation of the total number of
the results for a single query. A simulation model with synthetic document and query
sets makes it easy to alter the system parameters and run many di�erent tests in an easy
and �exible way.

On the other hand, fetches from the disk was not modeled. Otherwise it would induce
a higher disk load, if both the sniplet generation and the query execution were performed
by the same set on nodes. Further, the simulation model has no pipelined resource access
that would possibly provide a greater throughput for the system organization at a higher
multiprogramming level. The algorithms implemented have no early termination, while
the authors mention that it could be a great improvement. The simulation model is
closed and high penalties for the system throughput are caused by large response times.
Finally, the broadcast functions were not so well implemented, so the network issues
are should be re-validated. These issues result in that the prefetch organizations could
possibly obtain better results than they did under the tests presented so far.

3.1.3 Relevance

This paper was the �rst article about the distributed inverted indexes the author of this
report has studied and it is the oldest one presented in this report. The organizations
presented and tested by the authors di�er from the organizations presented in the previ-
ous chapter, but the simulation model and the tests performed are very impressive and
inspiring. In fact, the �nal observations from this paper show that, unrewarding to the
current system setup, there can exist an alternative setup where an organization showing
the best results can be equal or worse than the one showing the worst results. As it will
be demonstrated later, this is also true for a later discussion about whether the global or
the local indexing is the most suitable organization. This paper is the source for many
interesting observations and arguments presented in the previous chapter. The equations
presented in this paper can be reused by a future simulation models.

Simon Jonassen

32 3.2. JEONG AND OMIECINSKI, 1995

3.2 Jeong and Omiecinski, 1995

The article 'Inverted File Partitioning Schemes in Multiple Disk Systems' [JO95] by
Jeong and Omiecinski shows an analytical model for the basic inverted �le partition-
ing schemes on a shared-everything multiple disk systems tested by a simulation on a
synthetic document collection with a probability distribution based on the Zipf's law.

As in the previous paper, the authors use a Boolean query model on a simulated
computer multi-node system. The partitioning methods described this time are similar
to those presented in the previous chapter.

The article introduces also two alternative techniques for the term partitioning approach:

• Partition by Term 1 - the inverted lists are grouped into partitions of equal size

• Partition by Term 2 - the inverted lists are grouped according to access frequencies
in addition to partition size

In addition to a uniform query term distribution model used by Tomasic and Garcia-
Molina (Equation 3.1) the authors use a skewed query distribution-model (Equation 3.4).

Q(t) =
{
C ∗ Z(t) if 1 ≤ t ≤ uT
0 otherwise

(3.4)

3.2.1 Results

The main problem appointed by the authors is the need for multiple I/O requests to
the posting �le for each term in a query with the partitioning by the document id, but
the data transfer time is expected to be much shorter with this technique. The authors
appoint also to that the partitioning by the term id can result in a poor query performance
due to the I/O load imbalance among disks, especially if the term distribution frequencies
are highly skewed.

The skew in the query term distributions has a solid impact on the simulation results.
From the experiments, as the term distribution becomes more skewed, the partitioning
by the document id becomes more advantageous. In a highly skewed environment the
performance ratio of the partitioning by the document id increases together with the
number of disks. But for the partitioning by the term id, heavy I/O loads is observed
on the disks that keep the high frequency terms. The reason for a such performance
degradation within the partitioning by the term id is the performance imbalance. But
with a uniform distribution the partitiong by the term id is more e�ective, since it requires
fewer I/O requests.

The partitioning by the document id provides more disk utilization in general. The
authors say also that the partitioning by the document id gains a relatively high through-
put increase with an increase of multiprogramming level, also when the data distribution
is highly skewed. Optimization techniques for the partitioning by the term id provide
some improvement, but the performance is not as good as with the partitioning by the
document id. As the number of disks increases, the performance improvement with load

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 33

balancing decreases, if the skew is high. But if the skew is low, the performance of ob-
tained with the optimization techniques increases. The partitioning by the term id is
highly dependent on the data skew, and it can be advantageous only when the skew is
low.

3.2.2 Critics

The authors of this paper use a shared-everything system, which is not so practical for a
distributed search engine and has di�erent memory and disk access issues than a shared-
nothing system. Both the number of documents and the number of words per document
in the simulation model are very low.

The most critical issue associated with this paper is that no experiments werer per-
formed to see what happens when the network access or disk characteristics change. So
the experiments performed show only how the system performs at a particular setup.

3.2.3 Relevance

This paper presents another simulation model which can be an inspiration source for a
later simulation models. A new issue introduced by the authors is the skew in the query
term distribution. Another important issues introduced are the number of disks and the
disk site. This paper contains also a number of interesting conclusions and observations
(presented above) which can be used in the later work. The most important one is
that the partitioning by the document id is the method of choice when the query term
distribution and the number of disks per node are both high.

3.3 Ribeiro-Neto and Barbosa, 1998

In their paper 'Query Performance for Tightly Coupled Distributed Digital Libraries'
[RB98], Ribeiro-Neto and Barbosa describe an analytical model for the performance
analysis of an inverted index distributed over a network of workstations. The analytical
model presented is tested with a small simulator using the Tipset/TREC3 document
collection and 50 real queries. The system described in this paper uses disjunctive queries
processed according to the vector model with the weighting function given by Equations
2.6 - 2.7, instead of conjunctive queries discussed by earlier papers.

3.3.1 Results

One of the most important arguments presented in this paper is that, for the global
indexing, there are some machines that are not involved in the processing of a single
query, and many of the query terms may be mapped to a single machine. Therefore a
higher concurrency is essential for the global indexing. There are also some problems
with the ranking using the global indexing, since only a small fraction of the query result
information is available. Also using the local indexing, a query must be processed by
every single node, but with the global indexes only a single sub-query may be sent.

Simon Jonassen

34 3.4. MACFARLANE, MCCANN AND ROBERTSON, 2000

The overall conclusion is that a global index organization can be quite advantageous in
presence of fast communication channels. The authors also experiment with the number
of machines used, however the number of queries and the size of the document collection
are both constant. The global index outperforms the local index in provided results.
The authors suggest that number of disk seeks performed locally drops as the number
of the network machines gets higher. But a central broker may become a bottleneck.
The authors state �nally that a fast network and disk access are essential for the global
indexing method.

3.3.2 Critics

The mathematical model presented in this paper seems to be too vague at the �rst glance.
But a closer look makes this model to appear very �exible and informative. However, the
model cannot predict the execution time for a single query in presence of other queries
in the system.

The results from the simulation performed supposed to agree with the analytical
model presented in this paper. However, it is di�cult to see how many queries have been
executed at any given time. I addition, such small number of executed queries makes the
results to be di�cult to generalize for a large scale system.

3.3.3 Relevance

This paper is excellent at presenting the basic algorithms for the global and the local
inverted indexes and describing their pros and cons. It is also one of the earliest papers
studied by the author of this report. A lot of the theory in the previous chapter is taken
from this paper.

The most interesting idea presented by the authors is the fact that the local index-
ing exploits a parallel query processing while the global indexing exploits a concurrent
processing.

The conclusions about the relationship between the global and local indexing using
di�erent disk seek time and the network bandwidth seem to be true from the simulation
results performed by the author of this report during the preliminary work. But they
need to be veri�ed with a better model, as it will be described later.

Both the analytical model and the experiments performed are very inspiring and they
will be used as a reference work for a later simulation model.

3.4 MacFarlane, McCann and Robertson, 2000

In their paper,'Parallel Search using Partitioned Inverted Files' [MMR00], MacFarlane,
McCann and Robertson use BASE1 and BASE10 subsets of the 100GB VLC2 document
collection together with the Okapi BM25 query processing model. The authors use 50
small queries adopted from the TREC-7 topic descriptions.

All the tests were performed using the PLIERS system running on a shared-nothing
system consisting of eight Fujitsu AP3000 workstations with 167Mhz Ultra1 processors

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 35

and 128MB of main memory (running Solaris 2.5.1) and a 200MBps torus network. The
probability of the code has been tested using an Alpha farm consisting of eight Digital
Alpha 600 266Mhz workstations with 128Mb RAM. The network interconnects used are
155Mbps ATM LAN and a 10MBps Ethernet LAN. The results from the �rst installation
were veri�ed on the second one.

3.4.1 Results

There are two hypotheses tested by the authors:

1. Users tend to submit short queries and therefore to force the load imbalance when
the term partitioning is used.

2. If all the documents are evenly distributed, a good load balance is provided when
the document partitioning is used.

The results show that for the whole topic search, the partitioning by the document
id provides two to four times faster query execution together with a �ve times greater
speedup when the number of leaf processes increases. But at the same time, the document
partitioning seems to have a slightly lower load imbalance and a much higher e�ciency,
while the e�ciency of the term partitioning decreases by a factor as the number of leaf
processes increases up to eight.

The alternative allocation schemes for the partitioning by the term id proposed in the
paper result in a small improvement, as it demonstrated in the appendix of [MMR00].
But the term partitioning outperforms these by a signi�cant factor even when the load
imbalance ratios for the term and the document partitioning are equal.

The latter results show that the document partitioning is a much better alternative,
since the term partitioning has a bottleneck at the top node. However, since the later
allocation schemes result that the term partitioning gains a slightly lower load balancing
than the document partitioning, the authors conclude that the term partitioning can be
useful.

3.4.2 Critics

The main weakness of the work and the experiments performed by the authors is a too
small number of queries. In addition, the article says nothing whatsoever about the pos-
sible improvements associated with the use of higher concurrency or multiprogramming
levels.

3.4.3 Relevance

The most interesting contribution in this paper is the study on how a di�erent term
allocation scheme can be used to reduce the load imbalance in the term partitioning.
But the scienti�c approach itself and the query processing model described in the paper
di�er completely from the approach and the model chosen for this report.

Simon Jonassen

36 3.5. BADUE, RIBEIRO-NETO, BAEZA-YATES, ZIVANI, 2001

3.5 Badue, Ribeiro-Neto, Baeza-Yates, Zivani, 2001

An updated study by Badue, Ribeiro-Neto, Baeza-Yates, Zivani, 'Distributed Query Pro-
cessing Using Partitioned Inverted Files' [BBRZ01], shows the advantages of the global
indexing over the local indexing. This paper can be viewed as a proceeding of [RB98] pre-
sented earlier. The authors use the vector space model, TREC-3 document collection and
a shared-nothing architecture. This time the authors present some real results instead of
a simulation model. The query set being used consists of 50 real queries and about 2000
arti�cial queries. All the tests were executed on �ve 500MHz AMD-k6-2 workstations
with 256MB RAM and 30GB IDE disks (running Linux 2.2.14), interconnected with a
100Mbps Ethernet through a 16 port switch.

3.5.1 Results

The authors expect that the global indexing has a higher concurrency and less disk seeks,
a lower imbalance, larger inverted lists and a larger local answer set. Also more data is
to be returned to the receptionist. Despite to this fact, the results given by the authors
show that the global indexing is a better technique than the local indexing in terms of
the throughput, especially when the number of nodes exceeds the average query length.

The most exciting idea introduced in this work is the use of a �ltering technique which
considers only the documents with a high within-document frequency as the candidate
answers. The preparatory study presented in the article says that �ltering reduces the
memory load to about 2 percent and the amount of the terms required to about 10
percent.

The results show a higher speedup for the global indexing, but also a higher growth
in the load. Using 4 processors, the processing time associated with the global indexing
is slightly better than with the local indexing. The processing time with the global
indexing is less than 80% of the processing time using the local indexing on more than
two processors and 50 real TREC-3 queries. Even better results are achieved using 2000
arti�cial queries.

3.5.2 Critics

Unfortunately, the authors say nothing about the fact that a higher query rate or a
higher multiprogramming level may advocate the local indexing. The number of the real
queries used in this paper is just as low as in the papers presented earlier. However, 2000
arti�cial queries provides more con�dence for the results.

3.5.3 Relevance

Both the theory and the results provided by the authors are very interesting, especially
those considering the approximation technique and the resulting processing time and
load imbalance. The later simulation model and its results presented in this report will
use this information as a reference.

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 37

Another important issue is the implementation details for the system presented by
the authors. From the article, the receptionist process consists of an insertion thread,
a merging thread, and a number of scheduling threads (one for each server process).
There are also a number of scheduling queues shared by these processes and a result
bu�er. All the communication between processes is socked-based. The insertion thread
is responsible for inserting a query/sub-query into the scheduling queue for the required
server. The scheduling thread is responsible for taking a query out of the queue and
sending it to its server, receiving an answer and storing the local results into the result
bu�er. The merging thread is responsible for merging the local results as soon as they
arrive.

Some of the implementation details described by the authors are slightly di�cult to
understand, but the main idea is that it is possible to run a greater number of queries
or sub-queries in the system without a requirement to run a greater number of threads.
Thus the thread start-up and switching costs can be ignored.

Finally, the conclusions about the advantage of the global indexing when the average
number of query terms is less than the number of processing nodes. It can be very
interesting to see what happens for very long queries. Longer queries will probably
involve all of the nodes when the local indexing is used. On the other hand, the number
of disk seeks would increase when the global indexing is used. But if a conjunctive query
model is used (a Boolean AND-only model), the volume of the data to be transferred to
the receptionist node would decrease for both the local and the global indexing. Thus the
disk access and the sub-query processing would be most critical issues. However, if the
disjunctive queries are used, the data volume to be transferred and post-processed would
increase dramatically, especially for the global indexing, making the network transfer and
query post-processing to be the most critical issues.

3.6 Xi, Sornil, Luo, Fox, 2002

In their paper, 'Hybrid Partition Inverted Files: Experimental Validation' [XSLF02], Xi,
Sornil and Fox look at a hybrid partitioning approach for an inverted index distributed
across the nodes of a parallel shared-nothing system. The document collection used is
100GB of TREC-9 and 10 data and the query set used consists of 200 real queries. All the
tests were performed on a VT-PetaPlex-1 system consisting of 100 nodes with a 200Mhz
CPU and 25GB disk at each node, and an IR server connected through a 100BaseT
network.

3.6.1 Results

From the paper, the hybrid partitioning provides a much higher utilization than the
distribution by the term id, at the same time there is some performance gain with a
higher multiprogramming level, even more than with the distribution by the term id.

The results show that the hybrid approach achieves a better load balancing than the
document partitioning does. Two very interesting, perhaps strange, features are: (1) the

Simon Jonassen

38 3.7. BADUE, RIBEIRO-NETO, BARBOSA, GOLGHER, ZIVANI, 2005

load balancing gets better with a smaller chunk size, and (2) a higher multiprogramming
level results in a higher throughput level. The experiments show also that the term
partitioning is better than the document partitioning at a high multiprogramming level,
but the hybrid partitioning with chunk size 1024 is better than the term partitioning.

3.6.2 Critics

The paper fails to explain why and how the hybrid approach is better than the others,
and some other sources such as [MWZB07] say that the hybrid approach results in a
greater number of disk accesses and has no any clear advantages.

3.6.3 Relevance

The hybrid partition has already been presented in the previous chapter. For the later
simulation experiments it could be interesting to retest this scheme with di�erent chunk
sizes and to see how its performance compares to the other schemes. However as it will
be presented later, the hybrid indexing does not allow to use conjunctive queries in a easy
and �exible way. The reason for this is that the chunks containing same the document
range will be probably placed on di�erent nodes (see Figure2.4).

3.7 Badue, Ribeiro-Neto, Barbosa, Golgher, Zivani, 2005

In the paper named 'Basic Issues on the Processing of Web Queries' [BBG+05], Badue,
Barbose, Golgher, Ribeiro-Neto and Zivani explain a number of important advantages
associated with the local indexing used on a shared-nothing system. Some of the advan-
tages are the dominance of the disk utilization over the CPU utilization, the avoidance
of a bottleneck at the broker and the elimination of the load imbalance provided by a
random document distribution.

To provide enough evidence, a number of experiments with the ToroBR search engine
on an eight node cluster were performed. The document collection during these exper-
iments was at 80000 documents distributed over the nodes, resulting in 16GB of index
data at each node. The query set used consists of 20000 real queries from a query log,
where the �rst 10000 were used to warm-up the system, and the last 10000 were used to
measure the results. The authors have also simulated a cluster with a high number of
servers and seen what happens with the broker.

During the experiments it was observed that using 100 queries per second and 256
servers, the broker could spent up to 10ms on processing of a single query. Since the
broker executes only simple operations, it cannot be a problem at this time. The report
shows also that the query execution time for a query reduces with a higher number of
queries, but it fails to explain whether it is an e�ect of a high concurrency or multi-
programming, or if it is a cache bi-e�ect. All the advantages named in this paper are
very important for the evaluation of the local indexing and they are useful for the later
discussion, but the authors fail to explain the reasons and results.

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 39

3.8 Mo�at, Webber, Zobel, Baeza-Yates, 2005

A very impressive paper called 'A pipelined architecture for distributed text query evalua-
tion' [MWZB07] was published by Mo�at, Weber, Zobel and Bayeza-Yates. In this paper
the authors present the pipelined approach as an alternative method for the distribution
by the term id. This approach retains the disk access bene�ts from the term partitioning,
but su�ers from load balancing problems. The main intention with this technique is to
reduce the number of disk accesses at the same time as to reduce the bottleneck at the
receptionist node. The experiments show that this approach is more scalable than the
original term partitioning approach.

All the tests were performed using 426GB of the TREC GOV2 data collection and
pseudo-realistic queries, synthetic query stream based on a real query log from the Ex-
cite97 with removed stop-words and all the words replaced to match the terms in the
collection (all the frequencies and co-occurrences remain to be the same, while none of
queries makes sense). The average query length used was about 2.15 terms per query.
The authors experimented also with the size of the accumulator structure and claim that
100000 accumulators are a good choice, while 400000 accumulators are needed for an
absolute retrieval (i.e. a retrieval with a highest possible precision).

A good solution for the performance analysis was to look at the normalized through-
put rate (q × T)/(k × s), that is the product of the number of queries and the size in
Terabytes divided by the product of the number of machines used and the elapsed time.
An increase in both the data volume and the number of nodes at the same time is ex-
pected to result in a constant normalized throughput rate. However a possible drawback
here is that adding new machines will increase not only the amount of processor power,
but also the size of the main memory available, and therefore result in a performance
improvement.

The test system used consists of eight nodes with 2.8Ghz Pentium IV, 1GB main
memory and 250GB Sata disks, interconnected by a 1Gbit Ethernet network. Finally a
dual 2.8Gh Xeon with 2GB main memory, a 73GB SCSI disk and twelve 148GB SCSI
disks (RAID-5). A modi�ed version of Zettair system (http://www.seg.rmit.edu.au/
zettair/) has been developed to evaluate the concepts.

3.8.1 Results

The results show that, because of the synchronization issues, the multi-threading results
in 75% active load with the document partitioning. The authors experiment with the
number of threads in the di�erent organizations and come with the following results. For
the document partitioning and the given document collection, the highest normalized
throughput is using 32 threads. The same result yields also the term partitioning, but
the di�erence in normalized throughput at four threads and 32 threads is only 4.5%. The
most interesting result here is that the pipelined indexing shows the highest normalized
throughput using 64 threads. Since this is only 1.5 % improvement from 32 threads,
authors conclude that 32 is the optimal number. The connection between the number of
threads and the query throughput is more clean using the pipelined approach, since the

Simon Jonassen

http://www.seg.rmit.edu.au/zettair/
http://www.seg.rmit.edu.au/zettair/

40 3.8. MOFFAT, WEBBER, ZOBEL, BAEZA-YATES, 2005

number of threads is an number of queries in the system at the moment.

Here is a short summary over the results for each distributed index organization type
discussed. The results stated below uses an approximation method with an accumulator
target size at 100000, 32 threads, and the number of nodes varied between 1 and 8
unless otherwise is stated. The collection size is varied between 1 and 1/64 of the whole
collection.

• Monolithic It was expected that the normalized throughput should halve as the
size of the collection doubles. But the results show that the normalized throughput
using 32 threads increments as the collection size doubles. On the other hand, the
I/O wait load increments at the same time.

• Document partitioning The document partitioning method has been tested us-
ing 10000 queries and a varied number of machines. The number of documents
gathered from each node was limited to r′ = 1000 while the total number of doc-
uments in the result set was limited to r = 1000. The statistics needed for the
document ranking were created locally and then gathered at the receptionist node.

An interesting result observed with increasing of the data set and the number of
nodes by a factor of two is that the degradation is very small, only about 4.8% at
a change from one to eight nodes in average. However a twice as high number of
nodes and the same amount of data result in a throughput degradation, in average
29.7% at a transition from one to eight nodes. It may be explained by the network
overhead and the fact that the query response time is determined by the slowest
machine.

• Term partitioning As it was mentioned earlier, the number of documents required
in the result set is 1000, but using the term partitioning every node returns the
accumulators for the whole inverted index for each term. As a result, the total
normalized throughput degradation is observed to be about 60% for a constant
data set, and about 50% when the data set was doubled at the same time as
the number of nodes was doubled. The main reason for this is a bottleneck at
the receptionist and a high network load. The network load on TB/01 has been
recorded to be about 0.43Gbps using the term partitioning, while only some tens
or hundreds of megabytes using the document partitioning.

• Pipelined approach The observed normalized throughput degradation is under
20% when both the data set and the number of nodes are doubled, and about 40%
with the size of the dataset is remained constant However its value is only about
75% of the normalized throughput achieved by the document partitioning. But the
network load during the test was only 0.1Gbps this time.

The pipelined indexing results in a three times smaller amount of sector reads, dis-
tinct reads and I/O waits. But this does not help as much as expected. Communi-
cation between the nodes seems to be the most problematic part of the processing.

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 41

The pipelined indexing fetches only 40% as much data as the document indexing
and uses only 15% of the disk-read operations, spending only 25% on blocking
for the I/O. But the load is unbalanced, some of the nodes have been busy for
only 40% of the time, resulting in 60% of the average load, while the average load
for the document partitioning is greater than 95%. The single node load and the
commutative load are very varied with the pipelined system, between 38% and
73% of the communication load using the document distributed system. It looks
like the load balancing and the communication itself are two weakest points of the
pipelined approach.

The authors observed also that a greater number of accumulators results in a lower
throughput rate. At a transition from 40000 to 400000 accumulators, the throughput
falls by about 35% using the document partitioning, but it falls by 50% using either the
pipelined approach or the term partitioning.

Finally, the overall results show that the pipelined indexing is a more e�cient and
scalable method than the term partitioning. On the other hand, it su�ers from a poor
workload distribution and therefore does not scale as well as the document partitioning.
Authors claim that in a less skewed environment this approach is the method of choice,
but the document partitioning is the best approach so far.

3.8.2 Critics

The queries used are not fully synthetic since they are based on the real queries. However
changing query terms even if the co-occurrence frequency remains unchanged results in
unrealistic queries that will result in completely di�erent answer sets.

Another problem that can be mentioned here is the relationship between the network
capacity and the memory size per node. The authors say that the network was close to
be saturated using the global indexing. However, other articles presented so far looked
at the network capacity versus disk access. So the memory and the disk performance
characteristics have always been of an important consideration in the discussion. For the
experiments presented each node has 1GB of memory. Say that each node stores 400000
accumulators for each of its 32 sub-queries and 8 query processes and some more memory
to process other data. At least 3/4 of the memory for each single node is still empty, it
means that at least 700MB can be used to cache most frequent indexes. A careful look
at Table 3.2 reveals the transmission from TB/16, where the whole index can be placed
in the memory of a single node (given k ≥ 2), to a next case where disk access may be
needed. After this point, the I/O load is a nearly constant fraction of the processing
time for a query. A possible conclusion from this is the number of the disk accesses could
be decreased by using an index or qurey result cache. Than the only issues considered
in this paper are the network load and the load at the receptionist. The load balancing
appointed by the authors to be the main problem of the global indexing may therefore
be a side e�ect of the index/result cache use.

Simon Jonassen

42 3.8. MOFFAT, WEBBER, ZOBEL, BAEZA-YATES, 2005

collection TB/64 TB/32 TB16 TB/08 TB/04 TB/02 TB/01

Index size (GB) 0.3 0.7 1.2 2.4 4.5 8.7 16.6
Disk read (GB) 0.0 0.0 0.10 0.38 1.23 3.33 9.37
I/O wait load (%) 0.0 0.0 0.0 4.7 6.1 5.5 6.0
Throughput 3.18 4.25 5.15 5.41 5.75 6.67 6.83

Table 3.2: The index size and the relative throughput of the system in [MWZB07]

3.8.3 Scienti�c Remarks

Some other remarks have been published in the 'In Search of Reliable Retrieval Exper-
iments' [WM05] by Webber and Mo�at, which describes the problems and the process
behind the paper presented above. This paper gives a very interesting and informative
description of a 2 year long scienti�c process. But it also mentions some important factors
to in�uence the performance of an inverted index organization, most important factors
are:

1. More imbalance will be induced for the term partitioning with a higher number of
nodes using any approach.

2. More imbalance will be induced for the term partitioning when the query set is
appropriate for the document collection.

3. k machines have k times as much memory as one machine, k times as much data
can be located in the main memory.

4. Since the radial velocity of a hard disk is constant, the placement of the data on
the disk is a very critical issue.

5. Some disks from the same series are slower than the others.

3.8.4 Relevance

A closer look at the paper reveals an important detail missing, namely that term to node
mapping plays a very important role for the load balancing using the term partitioning.
Authors of this paper say that a mapping based on the term frequency would improve
the load balancing and therefore provide much better results.

Provided all the critics for the memory size and the disk access, it would be interesting
to see how much will the �nal results alter if there is no disk access needed or if the
memory cannot cache any index or result data. It could be also interesting to simulate
the cache e�ects, but this is a very di�cult task itself.

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 43

3.9 Mo�at, Webber, Zobel, 2006

Another paper, 'Load Balancing for Term-Distributed Parallel Retrieval' [MWZ06], by
Mo�at, Webber and Zobel tries to improve the results obtained in the previous work by
using the pipelined approach together with a load based assertion method and replication
of the most work-consuming terms. The system and the test con�guration were almost
the same as in the previous paper - a modi�ed version of the Zettair search engine running
on an eight node Beowulf cluster with 2.8GHz Pentium IV with 1GB RAM and 250GB
local SATA disks, and a dual 2.8GHz Intel Xeon with 2GB RAM, a 73GB SCSI disk
and twelve 146GB SCSI disk organized in a RAID-5 array. 426GB TREC GOV2 has
been used as the document collection. An important di�erence from the previous paper
was the query set, this time it is a modi�ed version of GOVQ queries provided by the
Microsoft Search. The total number of queries was 60000, 10000 in each of 6 batches.

To remind, in the original approach the route is chosen after an increasing lowest
term frequency, Ft, for each relevant node. The performance using this method was not
as good as it was expected because of a high work imbalance, where a small number
of terms resulted in the enormously high loads. As the authors point out, it is not the
most common terms that cause this problem, but the terms with the lowest product of
both the term frequency in the query set and the frequency in the document collection.
To eliminate this problem, the authors have introduced the de�nition of workload, Lt,
presented earlier and made an alternative term to node assertion scheme where all the
terms are processed after their decreasing workload and asserted to a node with the least
total workload. Since the workload cannot be predicted exactly, the term frequency from
the previous batch is used to predict the workload for the next batch. The query route
itself is chosen by the increasing lowest term frequency for a sub-query mapped to a node.

Another trick proposed was to duplicate the inverted lists for the terms with the
highest workload, it was observed that the replication of each inverted list is not better
than the duplication of 100 most workload consuming terms.

3.9.1 Results

The modi�ed version of the pipelined approach results in a 30% improvement in the
query throughput, but it is not as good as the document partitioning. The scalability
test shows that the normalized throughput using the modi�ed pipelined approach and
32 active query threads degrades by 11% when both the number of nodes and the total
collection size double eight times, and 11% when only the number of nodes is altered.
At the same time, the normalized throughput for the document-distributed approach
degrades by 45% in the �rst case, but only by 2% in the second.

3.9.2 Critics

The query set has similar problems as the one in the previous paper. Also just as in
previous work, the authors use the normalized query throughput to measure the e�ciency
of the partitioning scheme. However, it does not tell anything about the query response

Simon Jonassen

44 3.10. JONASSEN, 2007

times which are more critical for the end-user. Finally, there are no mention of any
possible improvements in the performance that could be achieved by using a faster disk,
processing unit or network.

3.9.3 Relevance

The alternative approach presented is very interesting. Authors mention that this time
the performance degradation is caused by the di�erence in the term workload in two
di�erent batches. Therefore, it could be useful to consider about an approach where the
information from the previous batch together with some partial workload information
for this batch could be used to re-map the inverted lists. But it would require access to
real-time workload information and real-time data exchange between the nodes in the
cluster. In addition, event this approach may provide a low performance when the term
workload varies within the same batch.

In any matter, the ideas proposed in this paper and the associated ideas can be
considered for a further investigation, but it would be di�cult to compare the measured
results provided in this paper against the results produced by a simulation model.

Due to the time limits for this master thesis, evaluation of alternative assertion meth-
ods would be a way to much. Thus, the impact of di�erent assertion methods for the
global indexing and its variations would be proposed as an alternative topic for a later
master thesis assignment or a research project, along with the impact of the approxima-
tion methods.

3.10 Jonassen, 2007

The preparatory study for this master thesis was presented in a project report named
"Global vs Local Indexing" [Jon07] by Simon Jonassen. A �rst half of the project report
contains much of the information presented so far, but limiting it to only the standard
local/global indexing. The second part of the project report states a number of hy-
potheses based on the results from the papers given as the previous study, describes a
simple simulation model for a disjunctive query processing system used then to test these
hypotheses and �nally presents and discusses the simulation results.

There are seven Truth/Myth statements proposed:

1. The partitioning by the term id is advantageous only when the skew in the query
distribution is low. [JO95]

2. The partitioning by the document id does it signi�cantly better with a higher number
of disks and a higher multiprogramming level in a high skew environment. [JO95]

3. The global indexing organization is quite advantageous in presence of a fast com-
munication channel. [RB98]

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 45

4. The global indexing outperforms the local indexing using the vector model and a
number of approximation techniques in the terms of the processing time and scala-
bility. [BBRZ01]

5. The load balancing is a critical issue for the global indexing using the vector model.
[BBRZ01]

6. For the global indexing, the receptionist node's load is manageable at a de�ned query
rate. [BBG+05]

7. The global indexing is signi�cantly less advantageous than the local indexing due
to a high imbalance together with a high network load and the workload at the
receptionist. [MWZB07] [MWZ06]

The simulation model implemented with the Desmo-J attempted to mimic a shared-
nothing system with various network, disk and load characteristics. Both the document
collection and the document were generated using the numbers and equations gathered
from [ZS05] (query length) and [BBR+07] (term frequency), and a uniform and an expo-
nential distribution for the query terms. Many of the ideas behind the simulation model
are inspired by [TG93].

The model itself considers only the processing of a simple disjunctive query resulting
in a number of document id's. Only two standard algorithms and no sniplet generation,
no approximation techniques and no more sophisticated mechanisms were used.

3.10.1 Results

The report describes more than 24 test runs performed, divided between the baseline
experiments with a standard con�guration, high skew experiments using an exponential
query term distribution, and experiments with a double number of nodes, disks or CPUs,
experiments with ten times slower network or disk, or no disk access at all.

From the baseline experiments, the local indexing results in a much higher number
of query and sub-query processes and up to nine times longer query processing times for
a single query and almost twice as much time to process all the 50 queries used in tests.

Suggested explanation for this is that the disk is the bottleneck for the local indexing,
a higher number of processes in the system would make it only worse. On the other hand,
the global indexing shows worse disk access times for its sub-queries. The CPU load is
much higher and denser for the global indexing, but the processing takes longer time in
total. The local indexing uses much more memory and the disk usage is constantly at
100% which supports the expectations about the disk access bottleneck.

A careful analysis of the graphical reports shows that for the global indexing, the
queries arrived �rst tend to be solved �rst, but it is less true for the local indexing.

More skew in the query term frequency results in a higher CPU and Disk utilization
for both schemes. For the local indexing the CPU times are almost not observable in
either queries or sub-queries, while the service wait times are up to four times longer

Simon Jonassen

46 3.10. JONASSEN, 2007

than for the global indexing. The global indexing does it worse than in the original test,
but much better then the local indexing in the either of these two tests.

A double amount of nodes results in a lower CPU and memory usage, but the disk
usage seems to be una�ected. There is more imbalance between the nodes when the
global indexing is used. The worst case query and sub-query times drop by a half when
the global indexing is used, but they remain unchanged when the local indexing is used.
A double amount of CPUs results only in a lower CPU load, while the processing times
remain unchanged. A double amount of disks has very interesting results. As the disk
load reduces from being constantly 100% to variate between 0 and 100% for the local
indexing, the service wait time reduces too, since more sub-queries can be served at the
same time. As a result, the processing time for the local indexing is reduced by a factor
of four when the number of disks per node is increased by a factor of two, but the total
processing time for the global indexing is reduced only by a factor of two at the same
time. The total processing times used by the local and the global indexing are nearly
the same in this test.

A ten times slower disk results in a worse performance for the local indexing. Under
the test for the global indexing the total time used on a single query is greater than
1000ms. On the other hand, a ten times slower network bandwidth shows dramatic
results for the average query time when the global indexing is used. But even in this test
the worst case query times are nearly the same as for the original experiments.

So-called Batch2 experiments show that 4 disks on each node and a slower network
results in sub-query times di�erent only by 30%, but the �nal query times are exactly
the same. No disk access makes the local indexing to be a better alternative.

After a number of experiments it was observed that the relationship between the local
and the global indexing depends on the parameters chosen for the system con�guration.
Corrected CPU metrics would result in a much worse performance for the global indexing,
or even make the local indexing to be a better alternative. A faster disk access would
result in the local indexing performing signi�cantly better, especially for a higher number
of nodes or processes. Finally, a higher skew in the query set would make the di�erence
between the local and the global indexing even greater.
Despite to these observations, the truth and myth statements can be answered as follows:

1. False from the results presented, but it is possible to disprove the results.

2. From the results, a higher multiprogramming level and a high skew will result in a
bottleneck. But a higher number of disks will reduce the e�ect or even change the
relationship between the local and the global indexing if the network and/or CPU
access are slow.

3. The results show that the global indexing is faster when a high speed communica-
tion channel is used. But it could be false if the other CPU costs were di�erent.

4. No approximation techniques were tested during the project, but in the current
situation the global indexing is more advantageous. However, any approximation
techniques are easier to apply on the local indexing. On the other hand, it is

Distributed Inverted Indexes

CHAPTER 3. PREVIOUS WORK AND RESULTS 47

possible that with di�erent system parameters the relationship between these two
schemes could be di�erent. This statement needs a further investigation.

5. No balancing problems were observed, but the imbalance will be higher for a higher
number of nodes or a higher query rate. In this case at some point load balancing
can be a critical issue.

6. In the current situation the imbalance is low.

7. False for the presented results, but the situation can be changed by adjusting the
system variables.

The �nal conclusion in the report is that there are many di�erent trade-o�s which
can either advocate or penalize the use of the local or the global indexing. Some of these
trade-o�s are the network bandwidth, disk bandwidth and disk delay, instruction costs,
document collection and query set relevant characteristics. The testing approach, the
assumptions made and the implementation itself play an important role as well.

3.10.2 Critics

First of all, the processing metrics used in the simulation model, such as the number
of cycles to perform a single instruction, gathered by guessing were completely underes-
timated. A memory access instruction would probably take a hundred of clock cycles,
not just 8 as it was proposed. This makes the statements about the processing times
to be very uncertain. Benchmark based metrics would provide more realistic and valid
results. Also in the current implementation of the simulation model, the average disk
seek time and the rotation delay time are used as constant parameters, a normal distri-
bution for these would result in a more realistic scenario, but the standard deviation of
these variables needs to be estimated in this case. Next, the network transfers blocks
the CPU. A real network adapter would rather use the DMA mode which allows the
CPU to perform other tasks at the same time as a transfer occurs. Perhaps, whole the
network implementation looks somewhat strange and unreliable. Finally, simulated CPU
uses clock frequency to estimate the instruction costs. The problem with this is that a
CPU with a di�erent clock frequency would in addition use a di�erent number of clock
cycles to perform the same instruction. A better solution is to use an average instruction
time rather than the number of clock cycles and the clock frequency. It solves also the
problems associated with simulation of a pipelined or superscalar CPU.

The query set and the document collection itself are simulated using a set of very
unrealistic equations which cannot be used to estimate the real-world processing times,
even if the algorithms and the processing metrics would be corrected. A log from a real
search engine or a real document collection and a real query set would provide more
realistic results. As it was mentioned before, a synthetic query set allows more control
over the query skew, but the correlation between the query and the document terms is
completely wrong in this case. The query arrival distribution itself is a wrong approach
to measure the maximum performance since the time between the arrivals is randomized

Simon Jonassen

48 3.10. JONASSEN, 2007

and the system implementation needs a lot of processing to dispatch and queue arrived
queries (not to mention a bug in the dispatching process causing a high CPU usage). A
better alternative could be to maintain either the number of queries and sub-queries or
the total number of processes in the system constant and generate new queries when this
number is too low. Then the number of queries processed during a time period could be
used as a performance estimate.

The report refers to a number of errors contained in the code such as those with
the dispatching processes and the memory allocation. From the report, there was an
incident where the load distribution has suddenly changed and the results from the
previous experiments could not be reproduced any further.

Another important issue is the term mapping. When the global indexing is used the
simulation model maps a term ti to the node i mod n. In the particular implementation
the term id is the rank of the term. Now, since the elements with nearly equal ranks
are spread allover the nodes, the load balancing is expected to be very good. Instead, in
a more realistic situation, a lexicographical mapping would result in a situation where
many high frequent terms are assigned to a single node resulting in a higher imbalance.
These two allocation schemes are discussed in [RB98] and [MWZ06].

The mapping used with the local indexing has also a kind of miscalculation. In the
particular implementation a term contained in x documents would have bx/nc documents
on each of n − 1 nodes and x − nbx/nc documents on the last node. This is actually a
hybrid partitioning with a dynamic chunk size, rather than a local partition. In a more
realistic case it could end up with all of the term occurrences contained on a single node,
but none on the other nodes. On the other hand, if there are x occurrences of a single
term. The probability that a single document contains a particular term is x/D. Since
a node contains about D/n documents, the expected number of the term occurrences on
this node is x/n.

Approximation methods and caching e�ects were never considered in the simulation
model presented, but it could be interesting to see if any of the techniques named earlier
could be used to get a signi�cant performance improvement.

3.10.3 Relevance

Despite to the critics presented, the work performed had an enormous impact on gather-
ing new ideas for an improved simulation model. The simulation results were also helpful
for a revision of the previous study and a better understanding of details and results in
the papers presented. This report will now proceed with a further development of the
simulation model aimed to evaluate the partitioning schemes for an inverted index.

Distributed Inverted Indexes

CHAPTER 4. STATE OF THE ART 49

Chapter 4

State of the Art

This chapter presents the essence of this master thesis. It begins with a free translation
of the assignment text in Section 4.1, followed by a description of the scienti�c method
chosen to perform this task. Section 4.3 will present the old simulation model produced
during the preparatory work. Then Section 4.4 will present the transition to a new and
better simulation model. The model itself, ideas behind and all the micro-benchmarking
experiments performed to measure the required system parameters will be presented in
the next chapter.

4.1 The Assignment Text and The Solution Approach

The assignment text for both the preparatory work and the master thesis itself, freely
translated from Norwegian to English, sounds as follows:

For a search platform there are many di�erent ways to organize a distributed inverted
index. Perform a literature study to compare the inverted index partitioning by the term id
and the document id. Another names for these two concepts are local and global inverted
index �les.

The work performed can be extended with a number of original experiments aimed to
re-validate previous research, or to test di�erent query and document collections

As the �rst part of the assignment was already presented, the second part aimed to
verify or re-validate the previous research will now be presented. The next few sections
will present the chosen approach to solve this task and a number of important decisions
and choices.

4.2 The Approach

The approach chosen for the practical part of the assignment is a simulation model.
Two alternative approaches discussed in the [Jon07] were an analytical model and a real
implementation. The problems with an analytical model are a di�culty to describe
a complex real-time system and to get any results that would be valid for the real

Simon Jonassen

50 4.3. THE PREVIOUS SIMULATION MODEL

world. A real implementation, on other hand, requires a very high level of detail and
provides almost no parameter �exibility or ability to easily redo all the experiments if it
is required. As a compromise, a simulation model requires a low enough level of detail,
while it provides a dynamic behavior similar to a real system. And the most important
advantages that all the system parameters, all the small details, can be easily altered
and all the test results can always be reproduced or re-validated.

4.3 The Previous Simulation Model

The simulation model programmed during the preparatory work [Jon07] for this master
thesis was implemented using the Desmo-J, a Discrete Event Simulator for Java. The
source code of the simulation model consists of 13 Java classes: Config, QueryGenerator,
ExperimentLog, SystemMonitor, Query, SubQuery, Node, QuerDispatchingProcess,
SubQueryDispatchingProcess, QueryProcess, SubQueryProcess, ResultTransfer and
�nally Simulation. Figure 4.1 demonstrates the class diagram.

Figure 4.1: A class diagram for the simulation model used in [Jon07]

The QueryGenerator is a SimProcess which is responsible for generating queries
and submitting them to a queue contained by a Node. The QueryGenerator uses an
exponential distribution with a median at 20ms to determine the query arrival times,
an empirical distribution based on the data from [ZS05] to determine the query length
and either a uniform distribution or an exponential distribution with a median at 1000
to determine the rank of the query terms. The term document frequency is based on
the normalized frequency from [BBR+07] (which is actually wrong since the cumulative

Distributed Inverted Indexes

CHAPTER 4. STATE OF THE ART 51

frequency of the terms contained in the query dictionary would be greater than 1.0).
Queries are submitted to the nodes in a round-robin manner.

One important detail here also mentioned earlier is that the term id used is the
same as the term rank. It results in that the distribution of the terms to a number of
documents is very balanced across the nodes. A distribution based only on the term id,
with no considerations to the term rank, would result in a less optimal case for the global
indexing.

A SubQueryProcess simulates the disk accesses and sub-query processes by blocking
the Node's disk and CPU resources. It tries also to simulate the memory allocation, but
there are some miscalculations which lead to the fact that the total allocated amount of
data is not large enough to perform all the required processing.

Each Node in the simulation model have an associated QueryDispatchingProcess

which removes Query objects from its query queue and, if it has enough resources and
if the number of the processes running on this node is small enough, starts a new
QueryProcess for each incoming Query. A QueryProcess would then block a node's
CPU for the time required to transfer all the required sub-queries and add the corre-
sponding SubQuery objects to the queues of the destination nodes.

A SubQueryDispatchingProcess running on each node does the same task as the
QueryDispatchingProcess, namely it checks the �rst SubQuery object in the queue and,
if it is possible, starts a new SubQueryProcess for this one.

To limit the processing load, both QueryDispatchingProcess and the
SubQueryDispatchingProcess passivate when there are no objects in the queue and
they are automatically activated when a new object arrives. However, there is a bug in
the implementation which causes the dispatching process to overload the CPU when the
number of running processes is reached.

The equations for the processing estimates used in the project report will be not
explained here. However, there are a number of important details to mention.

First, the number of scored documents for a single term was suggested to be the
same as the global term frequency, ft, multiplied by the number of the documents in the
collection. That is D · ft. A more correct estimate based on the binomial distribution is
1 minus the probability that a given term does not occur in a document, also D · (1 −
(1− ft)W).

Second, the number of scored documents for a number of terms was estimated as the
total number of the documents in the collection multiplied by the minimum between 1.0
and the summary term frequency for these terms. The resulting value is an overestimate.
Two possible solutions to this problem will be presented and explained later.

Third, the processing costs are estimated as the number of bytes in the data volume
to be processed multiplied by the number of the CPU cycles for a single processing in-
structions. First, the number of CPU cycles cannot be applied directly since it misses
the bene�ts of a super-scalar/pipelined CPU architecture. Second, the values used in

Simon Jonassen

52 4.4. THE ROADMAP TO A NEW SIMULATION MODEL

the model were guessed without any idea about what they should be. No considerations
about the memory access or on-chip cache bene�ts for large data volumes were applied.

When a sub-query is processed, its partial answer (an imaginary accumulator list)
is moved back to the query node by blocking the CPU on both nodes for the time
required for the transfer. This operation is realized by ResultTransfer which implements
the ProcessCoop interface. The process cooperation allows to simulate a synchronized
transaction. However, from the results obtained from the simulation model it is uncertain
how e�ective it is. In other words, the sub-query result transfer implementation looks to
be ugly and buggy.

In addition, blocking of the CPU to simulate a network transfer was inspired by a
number of outdated simulation models. Modern computers however use a special process-
ing unit contained at each Ethernet board which allows the data transfer to be performed
in the DMA1 mode. So a better idea would be to use a dedicated resource which would
be responsible for the network transfer.

When the data is transferred back to the query node, all the required post-processing
is applied and the query process is �nished. All the relevant statistics and metrics are
then stored using the methods provided by ExperimentLog. Some of a node's status
data is measured during the simulation run by the SystemMonitor process and stored
by a number of methods also provided by the ExperimentLog.

Finally, the Simulation class encapsulate the simulation model setup and control
itself and the Config class is used to de�ne the parameters and metrics used by the
simulation model.

4.3.1 Visualisation of the Simulation Results

In addition to the Java code, a number of Gnuplot scripts were used to transform the
textual simulation data into a number of visual diagrams. However, the results were not
so e�ective as it was expected. The node utilization charts have too much detail and
too many plots, so it is practically impossible to determine a node's state at a particular
point. The query time and sub-query data provides a lot of insight into the distribution
of processing and disk access times and the accumulated system wait time. But it does
not explain when those di�erent times take place or why a given query or sub-query
has a given time value. To be more e�cient, the graphical reports for the simulation
runs should provide enough information to explain wait times. It would also simplify the
debugging of the model.

4.4 The Roadmap to a New Simulation Model

The progression during this master thesis was not as straightforward as it can seems, and
a lot of time was spent on thinking which way is the best way to go, analyzing which

1Direct Memory Access

Distributed Inverted Indexes

CHAPTER 4. STATE OF THE ART 53

alternative is best to choose, and sometimes going back and choosing another alternative.

As it started, the �rst task was to rewrite the previous study and the background
chapters. The results obtained from the previous simulation model were very useful to
get a better understanding of the issues and the results mentioned in the previously
published papers. A number of errors and misunderstandings were also corrected.

As the previous simulation model had too many problems, a reasonable decision was
to write a new simulation model using the experience from the old one in a back hand.
However, as it will be mentioned, there were at least two di�erent architectures to choose,
to begin with. The easiest and most �exible one was chosen.

At the next stage, the simulation model framework was programmed and a number
of di�erent algorithms were designed. To begin with, the old simulation model had
to support only OR-queries and had to use a sum of term frequencies as the resulting
frequency. Keeping in mind that this would produce incorrect results, the simulation
model was altered to use real arrays �lled up with randomly generated data as inverted
lists. The problem with this approach was a low scalability in both time and memory. So
the simulation model was extended to support numerical only simulation. The disjunction
frequency issue of inverted lists for distinct terms was solved by generating a look-up table
for disjunction of two terms. This part was later replaced by a simple mathematical
formula. Further it was observed that resource allocation can slowdown the Desmo-J
performance. A numerical only simulation together with a small change in the source
code had to improve the overall performance of the simulation model, so it would run
fast enough even with a large number of nodes and a very high number of simulated
documents.

At the same time with the work mentioned over an integrated visualization tool to
plot the query processes and the node state data was programmed. The source code and
ideas behind are based on the Bootchart, a Boot Process Performance Visualization tool
for Linux by Ziga Mahkovec.

Another task performed at the same time was to �nd a search engine to use for the
master thesis. But it was not quite clear whether a real search engine should be used
along with the simulation model or used only to perform benchmarking for the system
parameters, or just studied to see how a real implementation looks on the inside. A
number of di�erent open source search engines were studied and a small search engine
developed by Truls A. Bjørklund called Brille was considered as the one to be used. The
source code of the search engine was analyzed, but when the author of this master thesis
started to index the TREC GOV2 document collection a number of problematic issues
came up.

First, the main memory of the computer workstation used by the author was only
1GB while the system had to run a great number of user and system processes, just as
any normal workstation does. To be e�ective it would require a dedicated workstation
that would run only the search engine and a number of essential processes. Second,
the document collection to be indexed was about 480GB, stored on a USB disk. The
primary disk of the system was only 80GB, but the inverted index for the document

Simon Jonassen

54 4.4. THE ROADMAP TO A NEW SIMULATION MODEL

collection supposed to be about 60GB. However, since a merge based inversion algorithm
was used, it would require about 120GB of disk storage to construct the index. Third,
an alternative solution was to get a dumped dictionary for the TREC GOV2 collection
indexed with Brille and use it instead of the search engine. Since the source code of the
simulation model contained a lot of the processing implementation details, it would be
an improvement anyway.

By doing this, a study of a real search engine resulted in a better understanding of
the topic and a possible implementation. So it cannot be considered as a great amount of
time wasted without any useful results. On the other hand, the system metrics were not
estimated at this point. The master thesis by Truls A. Bjørklund [Bjø07] contains the
performance model for the Brille. But the algorithm implemented in Brille reads a small
part of an inverted list at a time, while the algorithms implemented in simulation model
so far supposed to read a whole inverted list and to merge it with the data accumulated
so far. An idea that came up here was to read all the inverted lists �rst and then
to interleave/merge them together in a single heap-interleave/merge operation. So the
algorithms implemented in the simulated model were extended by an alternative version
for each one, resulting in a slightly di�erent performance.

The system performance was �nally measured by implementing a number of small
code fragments doing partial processing tasks such as merging two inverted lists imple-
mented as numerical arrays or extracting the top candidates from a result list. These
results from these tests was used to describe the time characteristics of a CPU. The
estimates for required network characteristics were gathered from a practical exercise
performed by the author of this master thesis at the course 'TDT4200 Parallel Com-
putations' at NTNU during the spring 2007. The disk performance characteristics were
taken from a number of data sheets and a couple of memory metrics were taken from
[Bjø07].

In addition to the dumped dictionary intended to simulate the document collection,
a query log containing 50000 queries for the Terabyte track 05 was obtained to be used
as the query set. However, the dumped dictionary containing an textual representation
of the terms and associated number of documents was about 1.1GB which is a way too
large to be contained in memory or to be processed e�ectively. But it was observed
that the query set contains only 32000 words, which can be easily stored as a textual
document to be read and kept in memory under a simulation experiment. The simulation
model was now �nally altered to support the query set and the dictionary data. Then a
number of features to store a textual log for simulation tests and to read the con�guration
parameters aimed to automate the simulation process were added.

The rest of the project consisted of writing the report, performing simulation experi-
ments, analyzing the results and making a �nal conclusion and suggestions for a further
work. The next section would now explain some of the most important issues and deci-
sions for the simulation model introduced above. The following chapter will present the
implementation of the simulation model itself, ideas and decisions behind and all of the
related micro-benchmark experiments and their results.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 55

Chapter 5

Simulation Model

5.1 Ideas and Decisions behind a New Simulation Model

To summary up the for the two previous chapters, the most critical issues needed to be
resolved by a new simulation model were:

1. A more realistic simulation of the network transfers, avoid to use CPU to perform
a transfer.

2. An improved routine for dispatching and synchronization between a query process
and its sub-query processes.

3. An improved memory usage model.

4. More realistic CPU estimates and model parameters.

5. A more realistic implementation of algorithms for global (GI), local (LI), hybrid
(HD) and pipelined (PL) indexing.

6. A mapping for GI which is not based on the term rank.

7. A better estimation for the total number of scored documents.

8. An improved document collection and query set simulation.

9. Support for approximation and �ltering methods to reduce the memory usage, disk,
cpu and network loads.

10. An improved method to measure and analyze the performance of the simulated
system.

This section will now proceed with an explanation about how the di�erent issues
were solved and how the �nal decisions were taken, and the next section will present the
source code of the new simulation model.

Simon Jonassen

56 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

5.1.1 Framework

As it was observed, the approach and its implementation used to execute, dispatch and
synchronize query and sub-query processes implemented in the previous model had a
bad architecture. However, there are at least two quite di�erent methods to implement
a better simulation model.

Method 1

A realistic implementation would use one single thread on each node to receive queries,
one thread to perform query dispatching and sub-query scheduling, one to perform trans-
fer of scheduled sub-queries, one to receive sub-queries, one to dispatch incoming sub-
queries, one to perform disk access, one to combine results, one to transfer the results
back, then one thread to receive partial answers, one to combine the answers and �nally
one more to transfer the complete answers back. The number of threads can be either
reduced or increased by combining some of the described tasks or splitting them into a
number of sub-tasks. But the main idea is to use a number of constantly running threads
and a message based communication approach to co-operate between them.

This method is very realistic, and it can provide a lot of �exibility and e�ciency by
using priority queues to store tasks and messages. However, there are many di�culties
and weaknesses here. First, the implementation is much more complicated than the one
implemented in the previous simulation model. Second, it would be di�cult to track
a single query or sub-query, since now it would be just a message and a bunch of the
associated data passed between the threads and nodes.

Method 2

An alternative method is to think of a query or a sub-query as a process itself. A process
in this case means not a sequence of instructions performed by a single CPU, but a
number of processing events performed for a single purpose. In this case a such process
can just use the resources on the di�erent nodes if they are available, or just wait if they
are not. Now it would not provide any details on how the processing is implemented,
whether there are a single thread to perform a similar task for all the queries (Method 1),
or if there are a single thread to progress the whole query (previous simulation model).

For so far, this method is less realistic. But this one is more easy to implement, and
it can easily provide information about the lifetime and the progression of a single query.

Decision and additional details

The �nal decision is to use the Method 2 in the new simulation model. In this case, each
query process will consist of a query transfer to a node in the system, scheduling a number
of sub-query processes, waiting for all of the processes to �nish, partially performing post-
processing of incoming sub-query answers, �nally postprocessing the query results and
performing a �nal transfer of the results.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 57

An important advantage with this model, is that whole the processing can now be
performed using a pull model instead of a push model. It means also that instead on
maintaining a queue for incoming queries, the system can just fetch a new query and start
a new query process when the number of executing queries falls below a given number.

This text will now proceed with some of the most important details for the chosen
concept. Some of the details explained below may be quite di�cult to understand, but
the source code for the new simulation model, which will be introduced in the next sec-
tion, provides a quite simple implementation of these.

(In the later discussion words like 'allocate', 'free' , 'process' , etc. refers to simulated
events, and not the actually events performed by the program code.)

Synchronization There are two important issues here. The �rst one is how to syn-
chronize query process and sub-query processes. The solution is to maintain a queue
for sub-query results at each of the query processes. Then, when all of the sub-queries
are scheduled, the query process would passivate itself. A sub-query process will put its
results into the sub-query result queue maintained at its query process and re-activate
the query process, then terminate. A newly re-activated query process can now serve all
of the sub-query results stored in its queue, then either passivate again or, if all of the
sub-queries have already �nished, proceed to the post-processing of the results.

Network model Another issue is how to provide a realistic network model and resource
control for the simulation model. A solution is to de�ne a query or a sub-query process
as a whole sequence of events from the point when a transfer of a query or a sub-
query to a particular node is initiated to the point when the result is received by the
receptionist node. Then the network can be simulated by keeping a network resource at
each node, and when a transfer between two nodes occurs, a process needs to take the
network resource from the destination and the source node, hold if for the time required
to perform the transfer and �nally return its resources.

The problem here is that, if an allocation for a number of resources is requested,
some of resources can be taken, while some of them can be free. Doing it in a standard
Desmo-J way by calling provide() would block if one of the resources was unavailable.
So allocating a part and waiting for another can result in a dead lock.

A solution to this is to use a global resource handler structure with a number of
associated routines where each pending process would check whether all of the resources
it demands are available. If so, it would retrieve the resources right away. If not, the
process will place itself in a queue and passivate. When some of the resources are returned
through the resource handler routine, the returning process will reactivate all of the
processes waiting for the resources which are now available in the system. Some of the
reactivated processes will now get the required resources, while some of them would be
placed back to the resource handler queue and passivated.

Figure 5.1 illustrates the resource handler idea and Figure 5.2 shows a complete
lifeline of a query process and four sub-query processes on four di�erent nodes with just

Simon Jonassen

58 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

Figure 5.1: Resource Handler Routine

one disk access on each node. CPU access is ignored for simplicity.

One �nal note here is that the resource handler itself could also be implemented
as a process rather than a structure. In this case it would maintain a queue over the
pending requests. Then it would be activated once in a while to check if there are enough
resources. If so, it would reactivate the process. Further the resource handler process
would passivate when the queue becomes empty and be reactivate again on request.
However, the simulation model which would be presented in the next chapter uses a
resource handler implemented as a structure and not as a process. The process approach
seems to be more elegant, but in this case it would be impossible to see which processes
has been activated after which event and which resources has been used by which process.

CPU model The previous simulation model viewed a CPU as a resource with a ca-
pacity corresponding to the number of processing units and the allocation times based on
working cycles. However, this approach is quite wrong since the model does not simulate
super-scalar or pipelined CPU execution. Instead of using CPU cycles and estimates on
based on a workload per byte, the new simulation model can estimate the CPU load
based on a number of empirically estimated time costs per data element.

Another weakness with the previous model is that the processing of a whole inverted
list is executed as a single processing phase on the CPU, where all other processes are
required to block and wait. A real operating system will never work this way. A single
thread or process is scheduled to the CPU for a small fraction of time, then moved to a
queue and replaced by another thread or process. This allows a number of processes to
perform concurrently.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 59

Figure 5.2: Process coopeartion using Method 2

Simon Jonassen

60 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

A good thread multiplexer which supports interrupts, exceptions etc. may be quite
di�cult to implement (in fact, a popular Unix-like operating system has started as a
thread multiplexer). But a poorer version which switches between processes on a round
robin basis can be easily implemented by splitting the total time needed to perform a
task into a number of small slices and then use a for loop to perform these. DesmoJ will
now take care of queueing of the running processes etc.

Memory model Memory can be easily implemented just as in the previous model,
using a dedicated resource with a capacity corresponding to the amount of the memory
blocks in the system. However, as it was observed - DesmoJ will slow down when the
capacity of a resource is too high. Therefore the capacity of the memory resources needs
to be reduced. Using 1MB blocks instead of 10KB blocks reduces the number of resources
by 100, but the problem is now that the blocks are a way too large and a single block can
provide enough memory for a number of di�erent requests. A reasonable solution is to
keep track on the allocated memory (i.e. the provided amount of the memory resource)
but unused memory and, if it is possible, to use it instead of allocating more memory.
The problem now is that the number of memory resources provided and returned by
a query or a sub-query process would be di�erent and Desmo-J disallows a process to
return more resources than it has allocated or to return a fractional number of resources.

To illustrate the problems, suppose it is only possible to allocate only a whole number
of resources entities at once. Suppose now that a Process1 allocates 1.8 entities of the
momory resource, then a Process2 allocates 0.1. Using the naive method, the total
amount of memory allocated would be 3. By using allocated but unused memory, the
total amount of the allocated memory can now be reduced to 2. But suppose now
that Process1 �nishes before the Process2. Process1 cannot return 2 since 0.1 is used
by Process2 and it can return only a whole number, so it may return only 1 entity.
When Process2 terminates it cannot return any data either since it had not allocated
any resources to begin with, and in addition the �oor value of 0.1 is 0. In this case when
both of processes terminates one whole entity of the memory resource is lost.

A solution is to introduce a memory handler which is a process maintaining two
request queues, one used to allocate resources and one to return them back. The reason
for maintaining the second queue is that the resources allocated by a process must be
returned by the same process, and in this case it is the memory handler that does both.

Now the number of the available (i.e. allocated but not used) resource entities can
be maintained by the memory handler. A process requesting an amout of a resource will
place a request in the request-queue, re-activate the memory handler and passivate itself.
A process which returns an amount of a resource will place a request and re-activate the
memory handler without passivating itself.

When the memory handler serves a request from the request-queue, it can either just
increase the availiable amount of this resource, or allocate the amount missing to serve
the request. If the total amount that can be allocated is too small, the process requesting
these must be passivated. When a free-request is served, the returned amount is added
to the available amount and as much as possible of the total amount is returned to the

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 61

Figure 5.3: Memory Handler Routine

Simon Jonassen

62 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

system. When the queue becomes empty or if it is impossible to serve any of the requests,
the memory handler would passivate. Figure 5.3 illustrates the complete idea.

Disk model The disk access can be implemented just as in the previous simulation
model. The number of disks per node can be speci�ed by the capacity of the disk resource.

5.1.2 Study of a Real Search Engine

As it was mentioned earlier, it was expected to study an open source search engine and,
if it could be possible, use it in some way to provide more realistic measurements and
processing. Surprisingly there are many di�erent search engines that can be used in terms
of GPL, BSD or Apache licenses. Five of these - Brille, Lucene, MG4J, Zettair and MG
- written in C and Java were considered as possible candidates. Table 5.1 compares
di�erent alternatives based on the number of lines of code, calculated using

find -name *.java | xargs cat | grep [\{\}\;] | wc -l

or similar.

After a short overview of the code structure and its content, Brille and Lucene were
considered as two most interesting alternatives. Since Lucene does not provide a native
support for the TREC GOV2 �le format (this part however can be solved by adopting
a parser from Brille or MG4J) and in addition there is almost no on-line documentation
for Lucene, besides two presentations and an API which does not provide any useful
information that could be used to get started.

There is no on-line documentation for Brille either, but for the author of this master
thesis it was much easier to contact the author of Brille directly when it was needed. Also
some of the implementation details and performance estimates for Brille are documented
in [Bjø07]. In addition Brille is the smallest engine considered.

Name Language Version LOC

Brille Java 0.0.1 8958 (src)
Lucene Java 2.3.1 27867 (src/java)
MG4J Java 2.0.1 34979 (java/it)
Zettair C 0.9.3 43688
MG C 1.2.1 11603 (src/text)

Table 5.1: Comparison between search engine alternatives

Brille : a short introduction

This part explains shortly how the Brille Search Engine works. More details can be
achieved by reading the source code (http://www.idi.ntnu.no/~trulsamu/brille.
tar.gz).

Distributed Inverted Indexes

http://www.idi.ntnu.no/~trulsamu/brille.tar.gz
http://www.idi.ntnu.no/~trulsamu/brille.tar.gz

CHAPTER 5. SIMULATION MODEL 63

Brille uses an index structure called Hierarchic Index. A hierarchic index consists
of two lists of sorted listed dictionaries. The �rst one contains a number of searchable
indexes of di�erent sizes, and the second one contains a number of small dictionaries
�ushed by the thread adding new documents. At the search time, both of the lists are
processed, the searchable dictionaries are processed �rst.

The content of a dictionary itself is usually stored on disk, it contains the term id,
a pointer to the corresponding inverted list, the number of documents and the total
number of occurrences. However, the lowest record of each bu�er block is also stored in
the memory. In this case it requires only one single disk access to perform the dictionary
look-up. Look-up at each level is performed using a binary search. Finally it returns an
inverted list iterator which refers to the beginning of each inverted list.

An inverted lists iterator takes the required sorted list dictionary entry as an argu-
ment, then it can iterate over the inverted list by pinning new bu�ers (ensuring that the
current bu�er is in memory) automatically when the old one ends. Note that in this case
it will not fetch the whole inverted list at once, but fetch one bu�er after another.

Inverted list iterators for all the terms are then accumulated into a single array list
and passed to a search result merger which maintains a min-heap of the inverted list
iterators based on the current document number. The search result merger will then
calculate the score for each document, and the document id and an associated score will
be passed to the result heap which may either accept it or discard it, depending on how
many results are received so far and whether a new candidate's score is higher than the
lowest known score or not.

There are two important aspects here. First, to calculate a �nal score a ranking
value for the document (IDF) is needed. This values can be stored in memory using a
custom-made array list. Second, when all of the top-ranking documents identi�ed, an
URI must be resolved. This can be performed by looking-up into a B-Tree, records of
which are again stored on disk.

Finally note that the current implementation of Brille does support only single-word
queries. However, multiple-word queries can be implemented by using a mechanism
similar to the merging of di�erent indexes for the same word. In other words, a number
of iterators for each word can be processed using a min-heap. Values from the iterators
can then be combined and inserted into the result heap. This method is known as
parallel merge [CP97]. However the di�erence between the proposed method and the
method described in [CP97], is that latter does not use a hierarchic index.

Practical Use for Brille

Unfortunately, as it was explained earlier, the Brille Search Engine itself was never prac-
tically used in the new simulation model. However, the document collection simulation
part of the simulation model, as it will be presented, uses data from a dumped dictio-
nary created with Brille. Otherwise, the algorithms to be presented will be based on the
information gathered from the source code of Brille.

Simon Jonassen

64 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

5.1.3 Processing Model

Most of the previous papers evaluate either a Boolean-AND or the Vector model. There-
fore it could be interesting to look at both types of query processing models. The �rst
one expects disjunctive queries, just as in the previous simulation model. However, the
second one expects conjunctive queries, just as with a Boolean-AND model. Later these
to models will be referred as the AND-model and the OR-model.

5.1.4 Simulation of the Document Collection and the Query Set

The previous simulation model had to use a synthetic document collection and a syn-
thetic query set. The advantage with this was the �exibility to alter the skew of query
terms. The drawback of this however was that all of the values and measurements were
unrealistic and probably wrong. In addition, the assignment text states indirectly that
it could be interesting to look at a real document collection. Also, both of the papers
evaluating the pipelined indexing using a real document collection and a real query set.

Therefore a real document collection, TREC GOV2, and a real query set, Terabyte
Track 05, could be used. But since it was impossible to use the Brille itself, just a
dumped dictionary from the collection indexed with Brille could be used. On the other
hand, there are two problems in this case.

Dictionary

First, the dictionary is stored as a text �le have a total size at 1.1GB. The dictionary is
a way too large to be stored into the main memory. However, the query set consisting of
50000 queries contains only about 32000 distinct words. A good solution is to store all of
the words contained in the query set into a hash-map. Then go through the dictionary
and perform a look-up for each single word. If a word occurs in both the dictionary and
the query set, then store both the number of the scored documents and the term id. To
simulate a larger query set it is important to store the right id.

Remind that the previous simulation model had a bug where the term id was expected
to be the same as the term rank, resulting in a better load balancing for the global in-
dexing. Using the dictionary position as the term id avoids this problem. For any of the
words not occurring in the dictionary the term id is stored as a negative number and the
number of the scored documents is 0. Those negative numbers must also be distinct to
separate between non-existing terms, while they would not be used to assign a term to
a node in any way.

(Note that in following discussion, the 'probability of a term' means the probability that
a term occurs in a given document, not that a randomly chosen word is the given word.)

Joint Frequency

Second, a problem arise when a query contains a number of distinct terms. Namely
how to �nd the joint probability of a number of terms. This problem has two solutions.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 65

The �rst one is to generate inverted lists �lled with random data. This solution will be
very slow when the number of simulated documents increases. The second one is to use
either a mathematical expression (Join Method 1) or a look-up table (Join Method 2) to
estimate the joint probability for a number of terms. This solution will require the same
amount of time when the size of the simulated document collection increases. However,
as it will be explained later, it is quite di�cult to estimate the joint frequency for the
hybrid indexing using the OR-model. Therefore both of the solutions are needed to be
implemented. The �rst solution is straight forward, but the other one can be explained
in details.

Join Method 1 For the AND-model the join probability for a number of terms can
be the same as the product of the probabilities for each single term, given that all of the
words are statistically uncorrelated (which is not true for the real word). That is:

P (t1 ∩ t2 . . . ∩ tk) = P (t1) · P (t2) · . . . · P (tk) (5.1)

For the OR-model the total probability, given that all of the terms are independent,
is 1 minus the probability that none of the words occurs, which is a product of 1 minus
the probability of a single word. That is:

P (t1 ∪ t2 . . . ∪ tk) = 1− (1− P (t1)) · (1− P (t2)) · . . . · (1− P (tk)) (5.2)

Join Method 2 An alternative approach is to generate a table for join frequency
P (x, y) based on the randomly generated data. The problem here is that the information
will be limited to the scale of the look-up table and it would require more precision for the
low-frequent terms than for the high-frequent terms. A possible solution in this case is to
use an n×n look-up table with a cell x,y containing the value of P ((x/n)k, (y/n)k). The
value of k should be de�ned in a such way that (1/n)k would be the same as (1/D), where
D is the number of the documents in the collection. For example, having D = 2500000
and n = 100 , the value of k is 4.

Since the latter approach limits precision and requires additional data, the �rst ap-
proach will be used. But the micro-benchmarking part will provide a comparison between
the Join Method 1 and the Join Method 2 based on a graphical plot. The �nal imple-
mentation of the simulation model implements a real join based on the random data and
the Join Method 1.

5.1.5 Algorithms and Metrics

This part is actually most important for the whole simulation model since it designs the
implementation of the algorithms and sets the requirements for the system metrics and
constants needed to be measured for the new simulation model. Some of the implemen-
tation details are based on the background information presented earlier, while others
are based on the source code of Brille and related theory.

Simon Jonassen

66 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

This section will now proceed with a semi-mathematical model for all of the algo-
rithms to be implemented. To do so, it requires �rst to de�ne a number of system
variables and fundamental functions. The �nal implementation of the algorithms which
can be found in Appendix B.1 is completely consistent with the following description.

System Variables

All the required variables and related descriptions are provided in Table 5.2-5.3.

D total number of documents
B size of a memory bu�er block
n number of nodes
r maximum number of results (hits) required
ft document collection frequency of a term t
|q| number of terms in a query q
|q′| number of sub-queries to be constructed from a query q
rq total number of results (hits) for a query q
r′q total number of results (hits) for a query q accumulated so far

|sq| number of terms in a sub-query sq
rsq total number of results (hits) for a sub-query sq
r′sq total number of results (hits) for a sub-query sq accumulated so far

tnd network delay time in ms.
tnt inverse network bandwidth in ms.
trd disk rotation delay time in ms.
trs disk seek time in ms.
tmc in-memory binary compute/compare and update time in ms.

Table 5.2: Variables to be used in the simulation model, part 1.

System Functions

To describe the algorithms in details, the simulation model requires to specify a number
of fundamental system functions to provide memory management, in-memory look-up,
disk fetch, network transfer and a number of CPU operations.

Network Transfer The time required to transfer b bytes of data is speci�ed by Equa-
tion 5.3, where tnd is the network delay and tnt is the inverse network bandwidth. It is
expected that the networking units on both the sending and the receiving node are busy
during the transfer operation, thereafter the transferred data is automatically stored in
the memory of the receiving node. It is expected also that the network transfer does not
require any CPU access.

τ(b) = tnd + tnt · b (5.3)

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 67

sidx size of an index entry in bytes
sacc size of an accumulator entry in bytes
sres size of a result entry in bytes
st size of a query/sub-query entry in bytes
sqh size of a query header in bytes
ssqh size of a sub-query header in bytes
sqrh size of a query result header in bytes
ssqrh size of a sub-query result header in bytes
schd number of index entries in a chunk used by hybrid partitioning
tlu time to perform a dictionary look-up in memory only
thts constant factor to perform a determine a top result using a heap
ti2l constant factor to perform interleave/merge on two accumulator sets
tmm constant factor to perform a interleave/merge on a number of accumu-

lator sets using a heap
tc time required to perform a compare and store operation on two elements
k any particular number of elements
l any particular number of accumulator lists/sets

Table 5.3: Variables to be used in the simulation model, part 2.

Disk Transfer The time required to read b bytes of data from disk is speci�ed by
Equation 5.3, where tds is the disk seek time, trd is the disk rotation delay and tdt is
the inverse disk bandwidth. Disk access is expected to be performed in the DMA mode,
where disk is blocked for the time required by the transfer function, afterward the data
is stored in the memory. As with the network transfer, it is expected that a disk transfer
does not require any CPU access.

ϕ(b) = tds + trd + tdt · b (5.4)

Dictionary Look-Up Further it requires to specify a number of CPU functions. The
�rst one is then the time to look-up a number of terms in memory. A memory look-up
requires to block the CPU for the time needed to search the B-tree de�ned by tlu. Then
a block of size B is needed to be transferred from disk. Finally it requires to perform a
binary search on the dictionary block, but this time is also included in tlu.

In addition, when a look-up for k terms is performed. it requires to sort the resolved
terms by increasing document frequency. It can be performed by blocking the CPU for
n · log2(n) · tc.

All the operations described here performed on k terms will be referred as λ(k).

Memory Allocation It is expected that the memory allocation does not require any
CPU access. This is actually wrong for a real system. But this value is so small that it
can probably be ignored.

Simon Jonassen

68 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

Interleave Two Lists One of the most important operations performed during the
search is an interleave operations on two accumulator lists of a total size k. This requires
to block the CPU for ζi2l(k) = ti2l · k milliseconds.

Heap Top And Merge Next, when the results from a number of accumulator lists
are combined, some of the processing algorithms will require to determine r top-scored
results from any k candidates and sort these in a decreasing order. This can be normally
performed using a min-heap of r elements. The total time complexity of this operation
is ζhts(k, r) = thts · (k + 2 · r) · log2(r) milliseconds.

Multi-way Merge One more operation which is performed when a number of accu-
mulator lists are merged into a single accumulator list. The total time complexity of this
operation is ζmm(k, l) = tmm · k · log2(l) milliseconds.

Basic Algorithms

Local Indexing The basic implementation of the query processing with the local in-
dexing is demonstrated by Algorithms 11 - 12. The algorithm describes di�erent pro-
cessing stages and time constrains. An important detail missing is the estimation of rq,
r′q, rsq and r

′
sq. These values are either calculated from a randomly generated data set or

calculated using the Join Method 1. In this case r′sq can be calculated iteratively from
its previous r′sq/(D/n) and the current ft/n.

r′sq ← (
r′sq
D

./ ft/n) ·D (5.5)

The �nal value of r′sq is the rsq itself.

Since the sub-query result sets do not overlap, the values of r′q and rq can be calculated
as follows:

r′q ← r′q + rsq (5.6)

Global Indexing The basic implementation of the query processing with the global
indexing is demonstrated by Algorithms 13 - 14. As with the local indexing, the values of
rq, r

′
q, rsq and r

′
sq are calculated either from a randomly generated data set or calculated

using the Join Method 1. The values of r′sq and rq are calculated using the current ft.

r′sq ← (
r′sq
D

./ ft) ·D (5.7)

. The �nal value of r′sq is assigned to rsq. As a di�erence from the local indexing,
distinct sub-query result sets do overlap in this case. The values of r′q and rq can therefore
be calculated as:

r′q ← (
r′q
D
./
rsq
D

) ·D (5.8)

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 69

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Allocate sacc · r · (|q′|+ 1) bytes of memory;2

Generate and schedule the sub-queries for this query;3

Initialize an accumulator list;4

repeat5

Wait for the next result, rsq;6

until All of the sub-query results are received ;7

Parallel merge the results to determine the top-scored results,8

ζmms(
∑

(min(rsq, r)), |q′|) with an additional cost of ζhts(
∑

(min(rsq, r)), r) ;
Transfer the results back to the gateway node,9

τ(sqrh + min(
∑

(min(rsq, r)), r) · sres);
Free the allocated memory;10

Terminate;11

Algorithm 11: LI query process, algorithm details

Receive a sub-query sq from the query node, τ(ssqh + |sq| · st) ;1

Perform a dictionary look-up for the sub-query terms, λ(|sq|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(ssqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate D · (sidx/n+ sacc);9

Initialize an accumulator list;10

for sub-query terms ordered by increasing ft do11

Fetch the inverted list for a term t, ϕ(D/n · ft · sidx);12

Merge the inverted list into the accumulator list, ζi2l(r′sq +D/n · ft) ;13

Determine and sort the top-scored results, ζhts(rsq, r);14

Transfer the results back to the gateway node, τ(sqrh + min(rsq, r) · sres);15

Free the allocated memory;16

Terminate;17

Algorithm 12: LI sub-query process, algorithm details

Simon Jonassen

70 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Perform a dictionary look-up for the query terms, λ(|q|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(sqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate D · sacc · |q′| bytes of memory;9

Generate and schedule the sub-queries for this query;10

Initialize an accumulator list;11

repeat12

Wait for the next result, rsq;13

Interleave the current list with the previous achieved result, ζi2l(r′q + rsq);14

until All of the sub-query results are received ;15

Determine and sort the top-scored results, ζhts(rq, r);16

Transfer the results back to the gateway node, τ(sqrh + min(rq, r) · sres);17

Free the allocated memory;18

Terminate;19

Algorithm 13: GI query process, algorithm details

Receive a sub-query sq from the query node, τ(ssqh + |sq| · st) ;1

Perform a dictionary look-up for the sub-query terms, λ(|sq|);2

Allocate D · (sidx + 2 · sacc);3

Initialize an accumulator list;4

for sub-query terms ordered by increasing ft do5

Fetch the inverted list for a term t, ϕ(D · ft · sidx);6

Merge the inverted list into the accumulator list, ζi2l(r′sq +D · ft) ;7

Transfer the results back to the gateway node, τ(sqrh + rsq · sres);8

Free the allocated memory;9

Terminate;10

Algorithm 14: GI sub-query process, algorithm details

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 71

Pipelined Global Indexing The basic implementation of the query processing with
the global indexing is demonstrated by Algorithm 15. The values of rq, r

′
q, rsq and r′sq

are estimated using the same equations as for the global indexing.

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Perform a dictionary look-up for the query terms, λ(|q|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(sqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate 2 ·D · sacc bytes of memory as Bu�er1;9

Generate the sub-queries for this query and create a query bundle with an empty10

accumulator list;
for All of the sub-queries ordered by increasing lowest ft do11

Transfer the query-bundle to the next node sq from the query node,12

τ(ssqh · |q′||q| · st + r′q · sacc) ;
Free Bu�er1 on the previous node;13

Perform a dictionary look-up for the sub-query terms, λ(|sq|);14

Allocate D · sidx as Bu�er2;15

for sub-query terms ordered by increasing ft do16

Fetch the inverted list for a term t, ϕ(D · ft · sidx);17

Merge the inverted list into the accumulator list, ζi2l(r′q +D · ft) ;18

Free Bu�er2;19

if this sub-query is the last one then20

Determine and sort the top-scored results, ζhts(rq, r);21

Transfer the results back to the gateway node, τ(sqrh + min(rq, r) · sres);22

Free Bu�er1;23

Terminate;24

Algorithm 15: PL query process, algorithm details

Hybrid Indexing The simulation of the hybrid indexing is very problematic. As it
turns out, the hybrid indexing does not provide an easy approach to perform AND-model
query processing. Since in this case, the corresponding documents for the di�erent terms
are stored on di�erent nodes. In this case, these cannot be merged at the sub-query
processing stage, so all the inverted lists must be transferred to the receptionist node and
then merged together. Since all the processing must be performed by the receptionist
node, this approach has a bad performance.

An alternative approach is to, while processing a sub-query, create a number of lists

Simon Jonassen

72 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

where a range of documents is hashed to a node and then to transfer those records to
the di�erent nodes in a kind of all-to-all exchange operation. When these records arrives
on the destination nodes, each node will now receive the document id's corresponding to
the same range, now the inverted indexes can be interleaved to solve the sub-queries. In
a �nal stage, the sub-query results are needed to be transferred to the receptionist node
and �nally combined using a multi-way merge operation.

This approach will in practice never be implemented in the new simulation model, but
its performance seems to be similar or worse than the performance of the local indexing.

The hybrid indexing can be implemented for the OR-queries. The processing and
the calculation itself will be the same as for the GI, except from an important detail. In
the calculations for a sub-query, a partial term frequency f ′t will be used instead of the
actual term frequency ft. Since a chunk contains schd entries, the term frequency impact
of a chunk is either schd

D , for all the chunks except from the last one, or (D·ft) mod schd

D ,
for the last chunk. The total number of chunks is dft ·D/schde.

However, since the records for the same document are probably mapped to a number
of di�erent nodes, the total number of the sub-query results cannot be estimated using
the Join Method 1. The only way to simulate the hybrid indexing for the OR-model
is therefore to generate the inverted lists, divide them and then combine them back.
Because of the limited scalability, this method cannot be used for a large simulated
document collection.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 73

Parallel Merge

An interesting observation is as follows: since the standard algorithms tend to merge
two and two lists, it requires to merge each new list into the list combined so far. For j
inverted lists of size l, the worst case number processed elements would be O(j) times
larger than the total number of elements. This is because of the fact that, the number
of processed elements would be 2l+ 3l+ 4l+ . . .+ jl = O(lj2). But the total number of
the elements to be processed is only lj.

A parallel merge version, which retrieves all of the inverted lists and merges them
using a min-heap would in this case result in O(lj log(j)) processed elements. The number
of processed element in this case is O(log(j)) times faster than the �rst version.

Note that the parallel merge concept is not the same to the one described in [CP97]
or implemented in Brille, since it retrieves the whole inverted list for each term and
stores it into the main memory before it starts to process the data. As a result it would
require much more memory than the original approach, but reduce the CPU load. The
original parallel merge in the other hand, would take more processing time but reduce the
memory load. Ironically, both of the methods perform a merge operation on a number
of inverted lists in parallel, hence the name.

Local Indexing A modi�ed version of the processing algorithms for the local indexing
using a parallel merge is demonstrated by Algorithms 16 - 17. The only di�erence is the
memory requirements and the processing of the inverted lists for sub-query.

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Allocate sacc · r · (|q′|+ 1) bytes of memory;2

Generate and schedule the subqueries for this query;3

Initialize an accumulator list;4

repeat5

Wait for the next result, rsq;6

until All of the sub-query results are received ;7

Parallel merge the results to determine the top-results, ζmms(
∑

(min(rsq, r)), |q′|)8

with an additional cost of ζhts(
∑

(min(rsq, r)), r) ;
Transfer the results back to the gateway node,9

τ(sqrh + min(
∑

(min(rsq, r)), r) · sres);
Free the allocated memory;10

Terminate;11

Algorithm 16: LIPM query process, algorithm details

Global Indexing A parallel merge version of the basic global indexing implementation
is demonstrated by Algorithms 18-19. This version di�ers from the previous one in the
memory requirements and in how the partial data is processed.

Simon Jonassen

74 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

Receive a sub-query sq from the query node, τ(ssqh + |sq| · st) ;1

Perform a dictionary look-up for the sub-query terms, λ(|sq|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(ssqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate D/n · (sidx · |sq|+ sacc);9

Initialize an accumulator list;10

for sub-query terms ordered by increasing ft do11

Fetch the inverted list for a term t, ϕ(D/n · ft · sidx);12

Merge the inverted lists into the accumulator list, ζmm(
∑

(D/n · ft), |sq|) ;13

Determine and sort the top-scored results, ζhts(rsq, r);14

Transfer the results back to the gateway node, τ(sqrh + min(rsq, r) · sres);15

Free the allocated memory;16

Terminate;17

Algorithm 17: LIPM sub-query process, algorithm details

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Perform a dictionary look-up for the query terms, λ(|q|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(sqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate D · sacc · (|q′|+ 1) bytes of memory;9

Generate and schedule sub-queries for this query;10

Initialize an accumulator list;11

repeat12

Wait for the next result, rsq;13

until All of the sub-query results are received ;14

Interleave the accumulator lists into a single accumulator list, ζmm(
∑

(rsq), |q′|);15

Determine and sort the top-scored results, ζhts(rq, r);16

Transfer the results back to the gateway node, τ(sqrh + min(rq, r) · sres);17

Free the allocated memory;18

Terminate;19

Algorithm 18: GIPM query process, algorithm details

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 75

Receive a sub-query sq from the query node, τ(ssqh + |sq| · st) ;1

Perform a dictionary look-up for the sub-query terms, λ(|sq|);2

Allocate D · (sidx · |sq|+ sacc);3

Initialize an accumulator list;4

for sub-query terms ordered by increasing ft do5

Fetch the inverted list for a term t, ϕ(D · ft · sidx);6

Merge the inverted lists into the accumulator list, ζmm(
∑

(D · ft), |sq|) ;7

Transfer the results back to the gateway node, τ(sqrh + rsq · sres);8

Free the allocated memory;9

Terminate;10

Algorithm 19: GIPM sub-query process, algorithm details

Pipelined Global Indexing A parallel merge version of the pipelined indexing is
demonstrated by Algorithm 20. The basic algorithm is modi�ed in the memory require-
ments and the processing of the inverted lists.

Hybrid Indexing A parallel merge version of the hybrid indexing can be implemented
by replacing the sequential merge of the inverted index chunks with a parallel one. How-
ever, the problems associated with the AND-model and Join Method 1 estimation pre-
sented previously are still unresolved. The implementation of the HDPM will therefore be
also limited. Otherwise, the algorithm itself is similar to the one for the global indexing,
except from the ft.

Approximation Techniques and Filtering Methods

Due to the time limits of this master thesis, none of the �ltering methods or approxima-
tion techniques were implemented.

5.1.6 Visualisation Tool and Reporting

The �nal task is to provide enough information so it would be possible to analyze and
understand the performance issues under the experiments. For this purpose, the exper-
iment reports can be presented in two di�erent versions. In the �rst one, a graphical
history for each node showing the information about the disk, Ethernet, memory and
CPU loads during the whole experiment can be stored. The disk and the network load
information must in this case provide not only the resource load, but also the e�ective
transfer bandwidth. In addition to the node state information it is interesting to provide
a graphical representation of all of the processes in the system. This information can
be used to determine problems and errors, and to explain long delays. For the textual
reports it is interesting to measure the amount of the data read from disk, sent and
received by a node. The query and term evaluation metrics such as the query response

Simon Jonassen

76 5.1. IDEAS AND DECISIONS BEHIND A NEW SIMULATION MODEL

Receive a query q from the gateway node, τ(sqh + |q| · st);1

Perform a dictionary look-up for the query terms, λ(|q|);2

if at least one term is missing then3

if system is in AND-mode then4

Transfer 0 results to the gateway node, τ(sqrh);5

Terminate;6

else7

Eliminate the non-existing terms;8

Allocate 2 ·D · sacc bytes of memory as Bu�er1;9

Generate the sub-queries for this query and create a query bundle with an empty10

accumulator list;
for all of the sub-queries ordered by increasing lowest ft do11

Transfer the query-bundle to the next node sq from the query node,12

τ(ssqh · |q′||q| · st + r′q · sacc) ;
Free Bu�er1 on the previous node;13

Perform a dictionary look-up for sub-query terms, λ(|sq|);14

Allocate D · sidx · |sq| as Bu�er2;15

for sub-query terms ordered by increasing ft do16

Fetch the inverted list for a term t, ϕ(D · ft · sidx);17

Merge the inverted lists and the accumulator list into a new accumulator list,18

ζmm(r′q +
∑

(D · ft), |sq|+ 1) ;
Free Bu�er2;19

if this sub-query is the last one then20

Determine and sort the top-scored results, ζhts(rq, r);21

Transfer the results back to the gateway node, τ(sqrh + min(rq, r) · sres);22

Free Bu�er1;23

Terminate;24

Algorithm 20: PLPM query process, algorithm details

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 77

time, the total number of terms and results and the total index size are of the highest
interest. DesmoJ allows to create Histograms for such data in an easy way.

The simulation model to be presented, supports both textual and graphical reports.
All the graphical experiments are referred later as the trace mode. In this case it will be
impossible to specify a number of warm-up queries. The trace mode is not suitable for
long runs, the non-trace mode in other hand can use a number of queries to warm-up.
Since it does not log any node states or process events it runs slightly faster. However,
in both modes, it is possible to use the built-in tracing mechanism and the reporting and
debugging functionality provided by the DesmoJ.

Finally, the most important result metrics to be used in later discussion of the ex-
periment results are the average number of queries per second (QPS) and the average
query response time. But because of the multiprogramming, there is a kind of a trade of
between these two.

Simon Jonassen

78 5.2. IMPLEMENTATION OF THE NEW SIMULATION MODEL

5.2 Implementation of the New Simulation Model

The code base of the simulation model consists of 37 classes divided between 6 pack-
ages: simulation.model, simulation.node, simulation.query, simulation.process,
simulation.log and simulation.micro. Most of the ideas and concepts of the simu-
lation model have been already explained. This section will therefore give only a short
overview over how the code and interaction between the classes is organized. More de-
tails can be achieved either from the previous section of directly from the source code
provided in Appendix B.1.

5.2.1 simulation.node

The node package provides one of the most fundamental parts of the simulation model,
namely it creates a Node abstraction for the later simulation model by a number of
methods such as malloc, free, fetch, transfer, lookupTerms, holdCPU,
heapTopAndSort, etc., which can later be used by any query or sub-query process without
going into calculation details. The network transfer, disk access and CPU times and
memory requirements are based on the equations speci�ed in the previous section. The
Node class tracks also the total amount of the data read from disk, sent to and from this
node, and the total number of disks seeks performed.

The Node encapsulates a MemHandler process which implements the memory handler
idea described in the previous section. The second class in this package, ResHandler,
implements in its turn the previously described idea with the resource handler.

5.2.2 simulation.query

The second fundamental part of the simulation model is contained in the query package
which consists of 9 di�erent classes: Query, QueryResult, IntexTools, IndexHitList,
SimpleIndexHitList, SimpleIndexHit, SimulatedIndexHitList, SubQueryResult and
�nally QueryResult.

The Query is an Entity class used to store a number of terms speci�ed by a term
id and an IndexHitList. This class provides also a number of methods to retrieve the
term ids, total index size, eliminate non-existing terms and, most important, to partition
a query into a number of sub-queries. There are three di�erent methods to partition a
query into a number of sub-queries - one for the global indexing, one for the local indexing
and one for the hybrid indexing. And all of the methods use di�erent scenarios whenever
the document collection is simulated using the Join Method 1 for the approximation, or
if it actually uses a kind of inverted lists �lled with random data.

The SubQuery is also an Entity class similar to the Query itself. It stores a number
of term ids associated with a number of IndexHitLists. This class provides a number of
methods to retrieve the number of scored elements, �nd which term has the least number
of scored document, retrieve a sorted list of the terms based on the number of scored
documents, etc.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 79

The IndexHitList is just an interface implemented by SimpleIndexHitList and
SimulatedIndexHitList. The di�erence between these two is that the �rst one maintains
an array list of SimpleIndexHit, which is a document id and a corresponding number of
documents, but the other one uses only a fractional number to specify the term frequency.

Hit lists implement both the accumulator and the inverted index concepts. When a
query is scheduled it contains one single hit list for each of its terms. When a query is par-
titioned into a number of sub-queries, the corresponding hit lists are partitioned according
to the indexing scheme. During the processing the inverted litsts are combined into a
number of larger inverted lists till a single inverted list for the whole sub-query/query is
obtained.

The IndexTools class provides four static methods to interleave or merge hit lists,
either two and two or all at the same time. The implemented methods use also di�erent
scenarios whether the simulated-only mode is used or not and whether the AND-query
mode is used or not.

The SubQueryResult is an Entity class used to represent the result set for a sub-
query. It can be initiated either with a single IndexHitList or with an array list of
IndexHitLists. There are only two non-constructor methods provided in this class: one
to get the total number of the documents (hits) and one to get the resulting hit list.

The QueryResult is another Entity class used to represent the �nal result set for a
query. The class contains a hit list which can be obtained either by assigning it using a
public method setHitList, or by adding a number of QueryResult and combining them
using the methods provided by IndexTools.

Figure 5.4 demonstrates the structure of the query package.

Figure 5.4: A class diagram for the simulation.query package

Simon Jonassen

80 5.2. IMPLEMENTATION OF THE NEW SIMULATION MODEL

5.2.3 simulation.model

The model package consist of four classes: Config, ModelS, GeneratorProcess and
QueryLogReader. The �rst one de�nes a number of the system constants, such as sim-
ulation type, indexing mode, experiment duration, AND/OR mode, CPU factor, CPU
time constants. Config provides also a method to load the system parameters from a
.property �le. An example con�guration �le is provided in Appendix 1.3.

QueryLogReader is a class which reads the docstat �le and the querylog �le stored
in the directory speci�ed by the DATAPATH constant and provides a method to retrieve a
next query resolved as an array of integer values, where an element 2 ∗ i speci�es a term
id and an element 2 ∗ i+ 1 speci�es the corresponding number of scored documents.

ModelS is the main simulation class which initializes and schedules the simulation
experiment. The most important methods provided in this class are shceduleQuery,
which is used by a GeneratorProcess (see simulation.process) to start a new query
process on a given node, when the number of query processes falls below the speci�ed
number, and querySolved which is used by a query process to notify the simulation
model about its termination and store the query statistics.

The interaction here is follows, the GeneratorProcess would start up-to a given num-
ber of queries and passivate. When a query process �nishes, it calls querySolved on the
simulation model. The latter in its turn re-activates the generator process which submits
a number of new queries to the di�erent nodes using the scheduleQuery method. The
query content data used by the GeneratorProcess is retrieved from the QueryLogReader
using the getNextQuery method.

Note that the model creates one more Node that it is speci�ed in the con�guration.
The last node is just a gateway to receive queries and transfer results.

Figure 5.4 shows how the simulation classes cooperate, the diagram does not include
any classes from the query or the process packages.

5.2.4 simulation.process

The process package combines all the other classes into a complete model. The package
contains 16 classes including two abstract classes, QueryProcess and SubQueryProcess

and a number of classes implementing the indexing algorithms described in the previous
section.

Each class extending the QueryProcess contains a reference to a Node, a Query,
a Queue to store the incoming SubQueryResults and �nally a QueryResult. It saves
also its starting time which is used to calculate the query response time. Two most
important functions implemented in the Query class are checkQueue and ackQuery, which
implements the ideas described in the previous section: ackQuery is meant to be called
by a sub-query process to post its results into the sub-query result queue. In response for
this event the corresponding query process is scheduled to be activated. When a process
extending the QueryProcess is activated, it needs to perform its own implementation of
the checkQueue function, which usually does the post-processing and the removal of the
sub-query results from the result queue.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 81

Figure 5.5: A class diagram for some of the classes contained in the simulation.model,
simulation.node and simulation.log packages

Simon Jonassen

82 5.2. IMPLEMENTATION OF THE NEW SIMULATION MODEL

The SubQueryProcess class provides a framework for the sub-query processes. The
class contains the referrences to its sub-query, node and query process.

The rest of the package extends these two classes used to implement the previously
presented algorithms by using the methods provided by simulation.node, simulation.query
and eventually stores the progression using the methods provided by simulation.log.

Figure 5.6 illustrates the class diagram for query package.

Figure 5.6: A class diagram for the simulation.query package

5.2.5 simulation.log

This package provides three classes used to log the process and the node state information
and to report the �nal statistics for an experiment. LogProcess is a SimProcess which
samples all the information such as the average CPU, Disk, Memory and Ethernet usage,
th amount of the data transferred from and to a node, and the amount of the data
transferred from disk. This process is used only in the trace mode and all of the sampled
information is then passed to an instance of the LogWriter.

The LogWriter is the class responsible for creation and storage of a graphical report
for the experiment performed in the trace mode. It is also the largest class in the simu-

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 83

lation model. The graphical report �les have always the same pre�x as the experiment
name, but the su�x is either '_node.png' or '_process.png' corresponding to the node or
process state log. The maximum size of the report diagram is speci�ed by two constant
in the source code, the current size is 2000 by 5000 pixels. For longer runs the images
will be scaled down to satisfy these constraints, therefore the trace mode is best to be
used on the experiments with a duration between 1000 and 30 000 ms and a number of
nodes between 2 and 8.

Statistics is an other class used to measure the experiment results. This class
encapsulates a number of histograms for the number of the query terms, the maximum
possible number of the query results, the total index size and the query response time.
Results from all of the histograms are automatically stored in the basic DesmoJ report,
but the average, minimum and maximum values for these are also stored in the graphical
and the textual report.

Finally, the Statistics is used to store a short textual summary for the experiment
performed in the non-demo mode. This information stored is stored in a '.log' �le with
the experiment name.

5.2.6 simulation.micro

The �nal package provides three classes used to estimate the CPUmetrics: InterleaveTwoTest,
HeapInterleaveTest and HeapTopAndSortTest. The content and the results of these
will be explained in the next section.

5.3 Micro-Benchmarking and Parameter Estimation

This section provides both the information and the estimated values for system constants
used in the simulation model presented in previous chapter. Some of these metrics are
obtained from a number of small code fragments executed on the author's workstation,
while some of these metrics are obtained from the external sources, such as data sheets,
practical exercisese in earlier courses, other master thesis reports or Internet reviews. Two
�nal subsections of this chapter reviews also some of the features and the characteristics
of the document collection, query set and calculation methods used to estimate the joint
probability of a combination of two di�erent terms.

Network, Disk and CPU characteristics are discussed in subsections 5.3.1, 5.3.2, refmi-
crocpu respectively. Subsection 5.3.4 explains how metrics used to de�ne sizes of the data
structures were chosen. Finally Subsection 5.3.5 reviews some of the aspects of the com-
bination of the query set and the document collection and Subsection 5.3.6 reviews the
joint probability estimates and compares it to the real world.

The next chapter will de�nine the goals for the experiments to be performed and
then present and discuss the obatined results.

Simon Jonassen

84 5.3. MICRO-BENCHMARKING AND PARAMETER ESTIMATION

5.3.1 Network Characteristics

As it was stated earlier, the disk performance is estimated using Equation 5.3, where
tnd is the network delay and tnt is the inverse bandwidth. For a Gigabit network tnt is
therefore 8e-6ms. However, the network delay will vary from a system to another system.
Fortunately, the author of this master thesis had taken a course in parallel programming
where one of the practical assignments was to measure the network bandwidth and the
network delay for a cluster of DELL 750 (3.4Ghz Pentium IV, 1GB RAM) interconnected
with a gigabit Ethernet switch. The source code for the assignment is provided in the
Appendix 1.2.

The measured tnd is somewhere between 6.5775e-05s and 8.26295e-05s, so the esti-
mated value to be used is assumed to be 0.08ms.

5.3.2 Disk Characteristics

As a reminder, the disk transfer time is usually estimated by Equation 5.4. In this
equation tds is the average disk seek time, trd is the average disk rotation delay and
�nally tdt is the average inverse disk transfer bandwidth.

Magnetic Hard Drive

The previously used disk characteristics were taken from the data sheet for the Barracuda
ES hard-drive [LLC08b] using tds at 8.5ms, trd at 4.16ms and tdt at 1.25e-5ms. The same
bandwidth, somewhere about 80Mbps, is measured by [Bjø07]. However an updated
version of this hard-drive, Barracuda ES 2 [LLC08a], provides a sustained bandwidth
at 105MBps instead of only 78MBps resulting in tdt at 0.95e-5ms. Even more, Seagate
provides also two other enterprise disk branches, Cheetah [LLC08c] and Savio [LLC08d].
Cheetah NS provides disk read seek time at 3.9ms, rotation delay at 2.98ms, and sustained
transfer rate at 97Mbps (tdt at 1.03e-5ms). The total capacity of a Cheetah NS can be
up to 300GB. Savio 15K is a 2.5 inch disk with the total capacity up to 73GB, providing
a disk read seek time at 2.9ms, and a rotation delay at 2.0ms. The transfer rate varies
between 112 and 79MBps depending on the track position on the disk.

Flash Hard Drive

An interesting alternative for a classic hard drive is a �ash hard drive. Today there are a
number of such products having quite di�erent characteristics. As an example, a Samsung
64GB SSD disk reviewed by an Internet hardware web-site called slashgear.com provides
a measured transfer rate at 59.3MBps and an average disk access time at 0.3ms. There
are also a number of other �ash drives providing much better performance, but the
performance of a Samsung SSD disk is a great improvement compared to the performance
of a hard drive such as Barracuda ES.

For the later expirements it can be interesting to evaluate the performance of a
system using a simulated �ash disk. This can be easily integrated into the current

Distributed Inverted Indexes

slashgear.com

CHAPTER 5. SIMULATION MODEL 85

implementation of the model by setting the average seek time to the value of the random
access time and the average rotation delay to 0.

5.3.3 CPU Characteristics

To estimate the values for the CPU parameters used in the simulation model the code base
for the simulation model were extended with three new classes: HeapInterleaveTest,
InterleaveTwoTest and HeapTopAndSort, which can be found in the package
simulation.micro of the source code provided in Appendix B.1.

All the following tests were performed on a workstation with two Intel Pentium 4
3.0GHz CPUs and 1GB RAM, running Java 1.6.0_03.

Interleave Two Lists

InterleaveTwoTest performs simply a test consisting of the user-de�ned number of runs,
where each run generates two integer arrays (suggested default value is 200000) �lled with
random data. Each 2ith element is suggested to be a document id, and each 2i + 1th
element is suggested to be the corresponding score. These two lists is then interleaved to
produce a combined list and the time used to perform this operation is measured. The
average value to the number of elements (a half of the resulting array size) over all of the
runs is then printed out as the test result.

From the tests performed it was observed that the resulting value depends on both
the size of the array used and the number of runs. Two possible reasons for this are the
speculative prefetching of the memory data and the run-time compiling in Java. Long
arrays processed linearly can be e�ectively stored in the processor cache, so it would
require less time then to access the required data stored in the main memory. Since a
single method will be performed over and over, the run-time compiling provided by the
Java VM signi�cantly improves the �nal performance for the longer runs.

Anyway, under the latest performed experiments consisting of 5 consecutive tests
of 1000 runs each, the resulting values were 2.4594515e-5, 2.4065914e-5, 2.4076205e-5,
2.4136100e-5 and 2.4219670e-5 milliseconds for each element. This results in estimated
ti2l at 2.421848e-05.

Finally, the comparison instruction time, tc, used currently as a scaled time estimate
for sorting of the resolved terms is expected to be the same as the interleave time for a
single element or better.

Heap Extraction

HeapTopAndSortTest contains a simple implementation of a binary heap which can be
used to extract and sort the top-scored documents from a hit list. Just as in the previous
case, the hit list itself is simulated using an integer array where the document ids is then
used as the heap values and their scores as the corresponding keys. A heap of a given size
(with 1024 used as the default value) is then initiated at the beginning of the array. Then
all the remaining entries are evaluated against the root element (the smallest element

Simon Jonassen

86 5.3. MICRO-BENCHMARKING AND PARAMETER ESTIMATION

contained in the heap). If the current element is smaller than the root element, the root
element is replaced and the heap is updated. The code does not perform any sorting
itself, but this task could be performed easily by replacing the root element with the
rightmost leave element and updating the heap. This would be equivalent to an in-place
O(n log(n)) sorting.

All the tests are processed in runs, and the total processing time for each run is then
divided by the number of the entries and the binary logarithm to the size of the heap.
The average value is then �nally returned.

An experiment with 5 tests containing 1000 runs each for a list of 100000 entries and a
heap of 1024 elements resulted in 5.999120e-7, 5.885690e-7, 5.847940e-7, 5.880140e-7 and
5.869340e-7 milliseconds for each element. The average thts measured is then 5.896446e-7
milliseconds. This result is very suspicious, but the program code seems to be free from
errors or miscalculations.

Heap-Interleave Lists

HeapInterleaveTest provides the code used to simulate and evaluate the time required
by an interleave operation of a number of lists using a heap.

The code generates a number of hit lists using a number of integer arrays just as in
the last case, then it initializes a number of pointers to a position inside each of the lists.
These pointers are contained in a heap which allows to extract a pointer referring to the
hit list with the lowest current document id. The lists are then processed in turn by
extracting the lowest pointer, combining this result with the data extracted so far (which
results in either an increment of the partial score or in a write back of the partial score
and reseting it to the current value) and �nally incrementing the pointer and updating
the heap. The resulting time value used to perform extraction is divided by the total
number of the elements and the logarithm base two to the number of lists, and then
averaged over a number of runs.

An experiments with 5 consecutive tests with 100 runs each, using 4 lists with 40000
elements resulted in a average cost at 5.405691e-5, 4.874002e-5, 4.819033e-5, 4.806042e-5
and 4.823812e-5 milliseconds for each element. The average tmm value is then 4.945716e-
05 milliseconds.

Look-up

The time needed to look-up a term in the dictionary contained in memory was never
measured by the author of this report, but it was provided along with the e�ciency
model of Brille in [Bjø07]. The expected value of tlu is therefore chosen to be 0.0105
milliseconds.

5.3.4 Data Structures and Memory Requirements

The sizes of the data structures were actually never measured, but they are expected to
be reasonably large. The data structures presented in [Bjø07] support these assumptions.

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 87

The header lengths for a query, query result, sub-query or a sub-query result are
expected to be about 32 bytes.

An index location entry, which is an entry in an inverted list describing a single oc-
currence of a term, contains normally the position number and a single byte description
resulting in 5 bytes of data. An index document entry, which describes a single doc-
ument containing a term, contains normally the document number and the number of
occurrences, 8 bytes in total.

It is also expected that an accumulator entry consists of the document id and a partial
score, resulting in a 8 bytes of data in total. The same value is also used for a result
entry. But a query entry representing a term can consist of a single term id, instead of
the actually word representation, this results in only 4 bytes of data.

The total memory size for a basic con�guration is chosen to be 4GB. To be e�ective
in Desmo-J the memory is then simulated as a number of 1MB blocks (1048576 bytes),
resulting in 4096 blocks in total.

The basic chunk size used by a hybrid index is expected to be 1024 entries as it
suggested by Sornil [Sor01].

Finally, the dictionary look-up for a single word requires a single disk access to fetch
a block of dictionary entries and then perform a binary search within the block. The
question is how much data is needed to be fetched from the disk in the case. For Brille
this value is de�ned by the BUFFER_SIZE system constant, which has a default value at
131072 bytes.

5.3.5 Document Collection Parameters and Characteristics

Since the query set and the document set used by the simulation model are based on the
real data, no estimation of the set characteristics is required. But it can be interesting
to know some of the characteristics of the used data.
From the data contained in the dictionary, query log and stat-�les:

• Document Collection

� Trec GOV2

� 32 801 629 words

� 25 205 179 documents

• Query Set

� Terabyte track 05

� 50 000 queries

� 31 220 words are contained in the document collection

� 3912 words are not contained in the document collection

Other characteristics such as the term frequencies and the average query length for
the whole collection were not measured, but the simulation model includes the observed
query length and load distribution in both the graphical and the textual reports.

Simon Jonassen

88 5.3. MICRO-BENCHMARKING AND PARAMETER ESTIMATION

A sample of the �rst 50 queries from the query log are provided in Appendix 1.1.2.
The resulting frequency for each word in the query phrase is given in the square brackets.

5.3.6 Term Disjunction and Conjunction Frequency

This part describes not a benchmark used to estimate some of the simulator parameters,
but a validation of the methods chosen to calculate the joint frequency of two terms. As
a reminder, the joint frequency of two terms can be estimated either as a function of the
term frequencies or as a result of a number of table look-ups for each two and two terms.
The resulting frequency distributions for both the AND and the OR models using the
Join Method 1 are illustrated by Figures 5.7-5.8.

Figure 5.7: Joint frequency of two terms using the AND model obtained with the Join
Method 1

The results from the diagrams can be explained by two di�erent cases. In the �rst
case one of the frequencies is signi�cantly higher or lower than another, while in the
other case the frequencies are almost equal. When the frequencies are quite di�erent,
the AND model would reduce the resulting frequency to be a fraction of the lowest one,
while the OR model would make it to be larger than the highest one, reducing the e�ect
by an inverse of the frequency. But when the frequencies are mostly equal, the resulting
frequency would be squared for the AND model, while it would be higher for the OR
model (again, much higher when both of the frequencies are low, and only slightly higher
when the both of them are high).

A practical example is as follows. Suppose the word 'katy' occurs in 8664 out of

Distributed Inverted Indexes

CHAPTER 5. SIMULATION MODEL 89

Figure 5.8: Joint frequency of two terms using the OR model obtained with the Join
Method 1

25205179 documents and the word 'augustus' occurs in 4905 documents. The corre-
sponding document frequencies of these words are 3.437e-4 and 1.946e-4. Now suppose
the query phrase is 'katy augustus'. The AND model would result in 1 document in
the joint result set, while the OR model results in 12376 documents. To compare this
result to a real world model, the word katy results in 18 800 000 documents if searched
at Google, and the word augustus occurs in 38 500 000 documents. As a result, both of
the words occur in 96 800, but either or both occur in 53 500 000 documents.

However, the problem with the both of the the models is that all of the terms are
assumed to be statistically independent, while this is not true for a real document collec-
tion. Suppose Katy Augustus was a rock star, the search on the phrase 'Katy Augustus'
would result in a dozen of millions of results, and probably just as many as for 'Katy
Or Augustus'. Another consequence here is that a query consisting of a high number of
medium frequent terms would probably result in 0 common occurrences using the AND
model. If the co-occurrences were taken into the calculation, the resulting number of the
documents in this case would be higher.

Finally, for the discussion of the Join Method 1 and Join Method 2. It took several
hours to generate a look-up table for an OR-join of two terms for a document collec-
tion encounting 25 millions documents. However, the resulting distributions di�ers only
slightly from the distribution obtained with the Join Method 1, so the Join Method 1
is almost as good as Join Method 2. Figure 5.9 illustrates the results for the OR-model
and Join Method 2.

Simon Jonassen

90 5.3. MICRO-BENCHMARKING AND PARAMETER ESTIMATION

Figure 5.9: Joint frequency of two terms using the OR model obtained with the Join
Method 2

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 91

Chapter 6

Simulation Experiments and Results

The main idea for this part was to perform a number of experiments similar to those
performed for the previous version of the simulation model. However the simulation
model has too many variables that can be varied for each single experiment. For example,
for each single combination of the node performance related characteristics, both the
number of nodes and the number of concurrent queries in the system can be varied. For
this reason a good idea is to perform a single experiment that compares the performance
at di�erent concurrency levels for a number of di�erent cluster sizes.

In addition, the simulation model provides a sequential and a parallel merge version
of each single algorithm. Therefore it can be of a practical interest to compare those two
in a single experiment and then to use only one of them in the later experiments.

The simulation model provides a quite di�erent performance behavior for conjunctive
and disjunctive queries. Therefore it can be useful to test both types in the later tests.

Finally, it can be interesting to observe the changes in the system performance when
di�erent CPU, network a disk characteristics are used.

This chapter starts with a speci�cation for the system performance evaluation in Section
6.1. The experiment plan will be given in Section 6.2 and the experiment schedule in
Section 6.3. The experiment results will be �nally presented and discussed in Section
6.4.

6.1 Speci�cations for the Performance Evaluation

The most important system performance metrics are the average number of queries per
second (QPS) and the average query response time. These two metrics are also correlated.
To begin with, a higher number of concurrent queries results in a higher QPS, but also
in a longer average response time for a single query. On the other hand, since the
average response time does not evaluate the un�nished queries, a slightly better system
performance may show a lower average response time, just because the system can process
a higher number of longer queries.

Simon Jonassen

92 6.2. THE PLAN

Next, it can be interesting to evaluate the system load and the imbalance. The
system load alone cannot be used, since if some of the resources are overloaded while all
the others are idle, the average load is moderate, but the total system performance is
very low.

Finally, to get a more complete picture of the system performance and its behavior,
it can be a good idea to look at both the numerical results for long experiment runs and
the graphical process and node status charts for short runs.

6.2 The Plan

The �nal experiment plan to perform a number of experiments divided into the following
groups:

• Baseline Experiments - a small number of experiments aimed to compare dif-
ferent indexing schemes and processing implementations (sequential vs parallel
merge).

• Node Number and Concurrency Level Experiments - a large number of
experiments aimed to compare the system performance for a varied number of
queries

• CPU con�guration experiments - a number of experiments aimed to compare
the system performance using a varied number of CPUs and di�erent CPU factors.

• Network con�guration experiments - a number of experiments aimed to com-
pare the system performance using a varied network bandwidth.

• Disk con�guration experiments - a number of experiments aimed to compare
the system performance using a varied number of disks and di�erent disk charac-
teristics.

• Additional experiments : HD - a number of experiments with generated data
aimed to compare the performance of the Hybrid Indexing to the other methods
for the OR model.

6.3 The Schedule

All of the experiments besides the node number and the concurrency level experiments
were be performed using 4 nodes and up to 12 concurrent queries. For each of these
experiments it was provided a corresponding benchmark run for 50000 milliseconds and
a trace run for 5000 milliseconds.

To organize the simulation process a directory hierarchy is created. In this hierar-
chy each subdirectory name describes either an experiment class (cpu, cpu_demo, disk,
disk_demo, etc), a model type (and, or) or an indexing scheme (LI, GI, PL, etc). Each
leaf directory in the hierarchy contains a number of property �les with a name describing

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 93

their special features (PL_2CPU for an experiment aimed to test the pipelined indexing
for a system with 2 CPUs, or GI_CPUd100 for an experiment aimed to test the global
indexing for a system with a 100 times slower CPU).

There are many reasons to maintain a con�guration hierarchy. First, it provides a
great structure and an easy and quick way to �nd the required results (experiment type
→ query mode → indexing scheme → test name). Second, it is very easy to add new
experiments by making a copy of some part of the hierarchy, then to modify some of the
con�guration parameters and rename the �les. A modi�cation of a system parameter in
all of the con�guration �les in a sub-directory can be easily performed by the following
one-line program:

find . -name *. property | xargs perl -pi -w -e 's/METRIC_NAME = oldval/METRIC_NAME

= newval/g;'

The �nal version of the simulation model encounters more than 332 experiment con-
�guration �les, running for more than 14 hours. To automate the execution a simple
BASH script is used to crawl through the hierarchy, run of all the experiments and store
the results in the directory containing the corresponding property �le:

#!/bin/bash

export run='java -Xmx800m -Xms200m -classpath /home/simonj/workspace/Sim2/bin:/

home/simonj/desmoj_2 .1.1. jar simulation.model.ModelS '

for i in $(find . \(! -regex '.*/\..*' \) -type d); do

cd $i;

for j in $(ls | grep .property | sed -e 's/. property //g'); do

$run $j

done;

cd -;

done;

Another advantage of this approach is that in the previous simulation model all of the
experiments were executed from the Eclipse by modifying the source code, recompiling
and scheduling the resulting code to execution. This approach resulted in a quite di�erent
system behavior in the most recent experiments. The approach used this time avoids to
recompile the source code.

Finally, all of the experiments were performed using Java(TM) SE Runtime Environ-
ment (build 1.6.0_03-b05), Java HotSpot(TM) Client VM (build 1.6.0_03-b05, mixed
mode, sharing) on a Dual Pentium IV 3.2 Ghz /w 1GB RAM, running Ubuntu Linux
7.10 (i686, GNU/Linux 2.6.22-14-generic).

The experiment con�guration hierarchy and its results are provided along with the
digital version for this master thesis (either as a compressed archive on the Internet or
as a CD-ROM).

6.4 Experiment Results

This section provides the experiment results and the result discussion. All of the perfor-
mance metrics is and data is taken from the log-�les and manually post-processed by the
author. All of the source �les for plots and the Gnuplot scripts used can be found along
with the digital version of this master thesis. Only a small number of the trace charts are

Simon Jonassen

94 6.4. EXPERIMENT RESULTS

provided in the appendix, while all of them can be found along with the digital version.
Finally, not all of the experiment results will be discussed, but only the most important
ones.

6.4.1 Baseline Experiments

GI, LI and PL - Impact of the query processing model

Table 6.1 shows the general results for the local, global and pipelined indexing on a
simulated system using a default con�guration with 4 nodes and th maximum number of
concurrent queries set to 12. Each simulated experiment lasted for 50000 milliseconds,
with no warm-up queries. The observed query length was between 1 and 8 terms, 2.7-2.8
terms in average.

LI or GI or PL or LI and GI and PL and

QPS 4.56605 2.98764 3.64826 4.62639 3.68944 4.73072

Avg. query response time 2589.2 3102.4 3117.1 2542.9 2987.7 2452.7

Avg. CPU load 0.26709 0.28589 0.26113 0.16420 0.19519 0.16741

Tot. avg. CPU imb. 1.00000 1.26076 1.23165 1.00055 1.36631 1.17353

Avg. disk load 1.00000 0.55546 0.66923 1.00000 0.66284 0.82174

Tot. avg. disk imb. 1.00000 1.35075 1.18793 1.00000 1.32525 1.15859

Avg. eth. load 0.00151 0.39689 0.36311 0.00134 0.18873 0.00597

Tot. avg. eth. imb. 1.00000 1.09310 1.22522 1.00746 1.36793 1.17923

Avg. mem. load 0.17067 0.41655 0.28384 0.16675 0.46903 0.27931

Tot. avg. mem. imb. 1.00205 1.21476 1.19955 1.00222 1.26860 1.23515

Tot. disk seek 5060 1283 1561 5084 1568 1977

Table 6.1: Results summary of the baseline experiments (50000ms, 4 nodes, MNQ 12)

The OR model From the results, when the OR model is used, both the highest QPS
rate and the lowest average query response time are provided by the LI. The PL provides
only a slightly higher QPS rate than the GI, but also a slightly longer average response
time.

The CPU load and the CPU imbalance are highest for the GI. Remarkably, the LI
has no disk, Ethernet or CPU imbalances, and only a low memory imbalance, while the
resource imbalances for the GI are between 21% and 35%. Most notable that the Ethernet
load is 260 times higher for the GI than for the LI. This may explain the di�erences in the
QPS rate and the average query wait time. It also con�rms all the suspicions about the
imbalance problems resulting in a low performance in a system using the global indexing.
Keeping in mind that the tested system has no cache simulation, the imbalance in a real
system would be much higher.

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 95

However, for the local indexing the disk is utilized by 100% already with a concurrency
level at 12 queries. The reason for this is, just as it was expected, the total number of
the disk seeks performed by the system. This con�rms the previous statements about a
disk access bottleneck in a system using the local indexing. Even if the global indexing
shows the best performance for the OR model during this experiment, it is a question if
it will be the superior approach on a system with a greater concurrency level.

For the OR model, the pipelined indexing has a slightly better CPU, disk and memory
load balancing than the global indexing, and as a result it solves a higher number of
queries. But the consequence of this is a much higher network load imbalance. A high
network load and imbalance explains why the pipelined indexing performs worse than
the local indexing during the experiments for the OR model.

The AND model The interesting part of the results is what happens when the system
uses the AND model instead of the OR model. The LI performs only slightly better,
1% improvement in the QPS rate and 2% improvement in the average query response
time. The CPU load drops by 40%, but the disk load is still a problem. The GI improves
its QPS rate by whole 23% and reduces the average query response time by about 4%.
There is also a decrease in the average CPU load, but it results in a 10% higher load
imbalance as a consequence. Notable that the Ethernet load is decreased by 50%, but
the imbalance is increased by 25%.

The pipelined indexing provides some remarkable results for the AND model - its
QPS is increased by 29% and the average query response time is decreased by 32%. The
CPU load is reduced just as with the other indexing schemes, but since it does more work,
the disk utilization is increased by 23%, resulting actually in a lower disk imbalance than
when using the OR model. Finally, the Ethernet load is decreased by 98% (ninety eight
percent). As a result, the di�erence in the Ethernet load between the LI and the PL is
only three times in favor of the LI, but the disk load using the PL is lower than using
the LI.

The conclusion from the results is that, because of a great decrease in the Ethernet
load and the data volumes in the later processing stages, the pipelined indexing provides
the highest utilization of the resources which results in a better system performance in
terms of the highest QPS rate and the lowest average query response time.

Since none of the resources are critical for the pipelined indexing when the AND
model is used, an interesting question is what happens with a higher concurrency level.
From the current situation, because of the disk load at 100%, the performance of the
LI cannot be expected to be improved by using a higher concurrency level, while the
performance of the PL and the GI can be at least slightly increased by increasing the
system load. From the experiment results, there is also an observation that a higher
average resource load results normally in a lower load imbalance 1.

1otherwise it can be stated that a higher resource imbalance results in a lower average resource load,

which is also true from the experiment results

Simon Jonassen

96 6.4. EXPERIMENT RESULTS

Trace Mode All the information presented above and in the standard reports is very
interesting, but it does not explain what does actually happens in the system when
the di�erent partitioning methods and processing algorithms are used. For this reason
Appendix 1.4 provides a number of process diagrams and node state diagrams for all of
the algorithms described.

The process diagram for the global indexing using the OR model shows a number
of long periods where some of the processes wait for the network access over a long
period of time, more than 1000ms. However, this problem could be solved if the network
implementation in the simulation model could provide a concurrent access, just as the
cpu implementation for a single node. There is also a period where a number of processes
wait for memory over a thousand of milliseconds. Because of the CPU implementation,
there are no visible CPU wait times, but all of the processes running on the same node
share the CPU load. Anyway, the diagram shows that 70% of total query times are the
disk wait times and the process report shows that the average disk wait time on a single
node is as high as 330.19152ms for a single disk access.

The process diagram for the local indexing shows more disk wait times induced by a
high number of disk seeks, but no Ethernet wait times or memory problems. The sub-
query processing times are much shorter due to shorter disk access and post-processing
times.

The pipelined indexing, from the process diagram, has much shorter disk wait times
in average, but many long disk, cpu and network accesses resulting sometimes in long
network and disk wait periods. This could again be improved if the simulation model
could provide concurrent disk/network access. But the main point here is that, because
of a smaller number of simulated processes, the pipelined indexing seems to use the
system resources in a more e�ective way than the global or the local indexing alone.

The only di�erence between the processing with the OR and the AND models for the
local indexing is shorter processing times and as a result shorter periods with a high CPU
load. For the global indexing, on the other hand, the di�erence is in both the reduced
memory, network and CPU loads. The memory and the network wait times named above
are eliminated when the AND model is used. Finally, for the pipelined indexing the is a
signi�cant decrease in both the Ethernet transfer volume and the post-processing times,
which explains the signi�cant performance improvement observed.

Serial vs. Parallel Merge A number of the experiments in the trace mode show that
the Parallel Merge approach for processing of the inverted lists and accumulators does
not improve the system performance. The results presented in Table 6.2 show a decrease
in the QPS rate by 5% in average and a higher average query response time, especially
for the global indexing using the OR model. The reason for this is a more bursted CPU
load.

The explanation for these results is as follows. In the standard version of the sub-
query processing algorithms, all the disk accesses are followed by a single CPU access to
merge the inverted list with the partial results achieved so far, and a single CPU access to
post-process the partial results at the end. But in the modi�ed version all the algorithms

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 97

LI or GI or PL or LI and GI and PL and

QPS change -11% -11% -5% -11% -5% -0%

Wait time change +0% +36% +5% +0% +3% +8%

Table 6.2: Results summary of the baseline experiments (50000ms, 4 nodes, MNQ 12)

require a number of disk accesses then a long CPU access to process the index data. The
outcome is that resource load over the time is less balanced and it requires longer wait
times in the second case, therefore the total performance is also reduced.

This observations support also the prognoses about a potential improvement in the
load balancing and the total system performance that can be achieved by providing a
concurrent disk and network access.

Simon Jonassen

98 6.4. EXPERIMENT RESULTS

6.4.2 Node Number and Concurrency Level Experiments

Because of the trade-o� between the number of concurrent queries, the resulting QPS
rate and query wait times, a large number of experiments were performed with the only
purpose to see what happens when the maximum number of concurrently executing
queries increases. Figures 6.1 - 6.4 show the results for a change from 2 to 24 queries
for a system using 4 nodes, and from 2 to 34 for a system with 8 nodes. These charts
provide also information about the scalability of the system when the number of nodes
is increased.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

Q
P

S

number of concurrent queries

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.1: The average QPS with a varied concurrency level using 4 nodes

The results show that the local indexing provides the worst scalability since there is
no notable gain in the QPS rate when the number of queries is increased, but the average
query response time increases linearly. The same situation is for both of the systems and
it is notable that by using twice as many nodes the gain in the QPS rate is about 44%
and there is almost no change in the average query response time.

The the results look very interesting for as the concurrency level gets higher. At
a level higher than 10 queries the pipelined indexing outperforms the local indexing in
both the QPS rate and the average query wait time when the AND model is used. On a
system with 4 nodes the pipelined indexing is almost as good as the local indexing when
the OR model is used, and for the same model on a system with 8 nodes the pipelined
indexing outperforms the local indexing when the concurrency level is greater than 22
queries. This looks very exciting as it shows that, because of the provided scalability, the
pipelined indexing can is the superior approach for both the AND and the OR model if

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 99

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25

m
s

number of concurrent queries

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.2: The average query response time with a varied concurrency level using 4
nodes

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

Q
P

S

number of concurrent queries

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.3: The average QPS with a varied concurrency level using 8 nodes

Simon Jonassen

100 6.4. EXPERIMENT RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35

m
s

number of concurrent queries

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.4: The average query response time with a varied concurrency level using 8
nodes

the number of nodes and the concurrency level are high enough. In addition, the QPS
rate seems to increase logarithmically when the query wait times increases linearly, but
with a smaller constant factor than for the local indexing.

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 101

6.4.3 CPU con�guration experiments

There are two types of the CPU experiments that were performed. The �rst type exper-
iments with the number of CPUs per node, and the second type experiments with the
CPU factor, if it is assumed that a CPU with a factor f can perform all of the CPU
operations f times faster.

Number of CPUs

The experiments with the number of CPUs show that an increase in the number of CPUs
results in a corresponding decrease in the CPU load, but no additional gain in form of a
higher QPS rate or a shorter average respons time. The reason for this is that the CPU
is not a critical resource, but if it would be, there would be a notable improvement.

 0.01

 0.1

 1

 1 2 4

number of CPUs

Avg. CPU load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.5: The average CPU load with a varied number of CPUs

Simon Jonassen

102 6.4. EXPERIMENT RESULTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4

qp
s

number of CPUs

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.6: The average QPS rate with a varied number of CPUs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4

m
s

number of CPUs

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.7: The average query response time with a varied number of CPUs

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 103

CPU factor

The results from the experiments with a varied CPU factor are very interesting as they
show that for a ten times faster CPU there is almost no di�erence in the QPS rate and
the average query response time between the local and the pipelined indexing. But for
a 100 times slower CPU, the local indexing may o�er a slightly higher QPS rate, while
the pipelined indexing will provide a shorter average query response time.

 0.01

 0.1

 1

 0.01 0.1 1 10

CPU speed

Avg. CPU load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.8: The average CPU load with a varied CPU factor

Simon Jonassen

104 6.4. EXPERIMENT RESULTS

 0.1

 1

 10

 0.01 0.1 1 10

qp
s

CPU speed

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.9: The average QPS with a varied CPU factor

 1000

 10000

 100000

 0.01 0.1 1 10

m
s

CPU speed

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.10: The average query response time with a varied CPU factor

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 105

6.4.4 Network con�guration experiments - Bandwidth

The network experiments performed were aimed to demonstrate what happens when
the network bandwidth is changed. The results in Figures 6.11-6.13 show that the local
indexing is not a�ected by a decrease in the bandwidth, even if the decrease is 100 times.
Both the QPS rate and the average query response time for the local indexing remain
constant, and the Ethernet load increases just slightly (it can be suggested a logarithmic
increase in the Ethernet load when a linear decrease in the bandwidth is applied).

The pipelined indexing using the AND model provides a slightly lower QPS rate and
a slightly longer average query response time, both are by about three times when the
network bandwidth is reduced from 0.1Gbps to 0.01Gbps.

One interesting detail here is that the average query response time for the pipelined
indexing is much shorter when the network bandwidth is decreased by a factor of 100. It
can be very misleading, but a true reason for this is that the system can perform only a
few short queries while all the longer queries are timed out and therefore are not taken
into the calculation. A closer look at the experiment report shows that on two of the
nodes the Ethernet load is 99%, so all the queries involved in those two tests are probably
timed out.

The �nal conclusion from this is that the pipelined indexing using the OR-model is
the worst one when a very slow network is used, and the local indexing is the best one
for both the AND and the OR models.

 0.001

 0.01

 0.1

 1

 0.01 0.1 1

Ethernet Bandwidth (times to 1Gbps)

Avg. Ethernet load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.11: The average Ethernet load with a varied network bandwidth

Simon Jonassen

106 6.4. EXPERIMENT RESULTS

 0.1

 1

 10

 0.01 0.1 1

qp
s

Ethernet Bandwidth (times to 1Gbps)

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.12: The average QPS rate with a varied network bandwidth

 1000

 10000

 100000

 0.01 0.1 1

m
s

Ethernet Bandwidth (times to 1Gbps)

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.13: The average query response time with a varied network bandwidth

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 107

6.4.5 Disk con�guration experiments

There are two kinds of the disk experiments that have been performed. The �rst one
supposed to show what happens when the number of disks on a single node increases,
in which case more disk accesses can be performed simultaneously. The second one,
supposed to show how a better disk seek time can improve the system performance.

Number of Disks

The results for the experiments with the number of disks are presented in Figures 6.14-
6.17. As it was expected, the disk seek time is the most critical issue for the performance
of the local indexing. The results show that the QPS rate increases linearly when the
number of disks increases, and the local indexing with 4 disks per node provides a QPS
rate as high as 18.8 queries per second.

As it was also expected, the performance of the global indexing is least in�uenced by
the increasing number of disks. Surprisingly, the performance of the pipelined indexing
improves when the number of disks is increased. A possible explanation for this is that
the disk access on a single node may become a bottleneck when a number of query bundles
are routed through this node. So a higher number of disks allows a higher number of
queries 'route' through a single node and proceed on the other nodes.

 0.1

 1

 1 2 4

number of disks

Avg. CPU load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.14: The average CPU load with a varied number of disks

Simon Jonassen

108 6.4. EXPERIMENT RESULTS

 0.1

 1

 1 2 4

number of disks

Avg. disk load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.15: The average disk load with a varied number of disks

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 4

qp
s

number of disks

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.16: The average QPS with a varied number of disks

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 109

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4

m
s

number of CPUs

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.17: The average query response time with a varied number of disks

Disks Characteristics

The results for the experiments with the disk seek times are very surprising. As Figures
6.18-6.21 show, a high-end disk improves the system performance, but a �ash disk pro-
vides actually a lower performance than the original one. The reason for this is that the
high-end disk provides the same bandwidth and a shorter seek-time and rotation delay,
while the �ash disk provides a better access time, but a 26% lower bandwidth.

Under the experiments simulating a �ash disk the disk seek time was actually de�ned
as 0.03ms, when 0.3ms was the suggested value for the disk random access time. But
even a ten times shorter disk access time had no remarkable positive e�ect.

Simon Jonassen

110 6.4. EXPERIMENT RESULTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

normal high end flash disk

disk type

Avg. CPU load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.18: The average CPU load with a varied disk type

 0

 0.2

 0.4

 0.6

 0.8

 1

normal high end flash disk

disk type

Avg. disk load

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.19: The average disk load with a varied disk type

Distributed Inverted Indexes

CHAPTER 6. SIMULATION EXPERIMENTS AND RESULTS 111

 0

 1

 2

 3

 4

 5

 6

normal high end flash disk

qp
s

disk type

QPS

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.20: The average QPS rate with a varied disk type

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

normal high end flash disk

m
s

disk type

Average query response time

GI OR

GI AND

LI OR

LI AND

PL OR

PL AND

Figure 6.21: The average query response time with a varied disk type

Simon Jonassen

112 6.4. EXPERIMENT RESULTS

6.4.6 Additional experiments

To validate the performance of the hybrid indexing a number of experiments with gen-
erated inverted lists were performed. Because of the limited main memory capacity, the
document collection size in these experiments was only 250000, 100 times smaller than in
the original experiments. From the experiment results, the hybrid indexing has a three
times lower QPS rate and two times longer average query response time than the global
indexing. Performance of the pipelined indexing is better than the global indexing, while
none of the tests for the local indexing have completed.

6.4.7 Combination of the Experiment Results with the Previous Re-

sults

An interesting question is how do this results compare to the previously achieved results.
First of all, all of the statements about all of the pros and cons of the indexing methods
seem to be true. Second, rthe esults from the current simulation model disagree with
the results obtained from the previous simulation model. However, the current model
improves all of the weaknesses and errors done with the previous model. Therefore is the
di�erence.

Third, a superior performance of the local indexing was appointed by 4 out of 7
studied papers. The most important of these are the most recent papers by Mo�at et
al., [AdKM01] and [MWZ06]. From the results in these papers, the pipelined indexing
provides a better performance than the global indexing, but not a good as the local
indexing may provide.

The di�erence in the conclusions about the performance can be explained as follows.
The simulation model expects that for all of the terms the occurrence of a single term
in a single document has no impact for the occurrences of the other terms in the same
document. So the number of the �nal results (hits) using the conjunctive model is
much smaller than it would be in the real world. If this number would be greater, the
performance of the pipelined indexing would be lower. But the local indexing seems to
have only a small di�erence in the performance for the conjunctive query model compared
to the disjunctive query model.

The search engine used in [MWZ06] and [MWZB07], on the other hand, is a real
implementation which provides a much greater number of the �nal results. At the same
time, the search engine may use �ltering techniques to improve the algorithm perfor-
mance. Finally, a real search engine may also get an performance improvement by using
an index/result cache, but the system load imbalance would be also much greater in this
case.

Distributed Inverted Indexes

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 113

Chapter 7

Conclusions and Further Work

This master thesis has presented a number of di�erent approaches to perform query
processing on an inverted index distributed over a number of nodes. The fundamental
part of the master thesis has presented and analyzed the most important papers in this
�eld published over the last twenty years. In addition, a simulation model was created
to compare the search performance of the di�erent distribution schemes. A dictionary
for a real document collection, TREC GOV2, and a real query set, Terabyte Track 05,
were used to perform the simulation experiments.

The results from the experiments with the simulation model show that the local in-
dexing provides a better performance than the global indexing because of a better load
balancing and shorter disk access, network access, network wait, memory wait and post-
processing times. But the price for this is a very high disk load resulting in longer disk
wait times. The disk load is actually the bottleneck for the local indexing, and by im-
proving this part by either providing more disks or by improving the disk characteristics,
the performance advantage of the local indexing can be even greater. The load imbalance
is the most important issue with the global indexing, even when the observed average
disk load is signi�cantly lower using the global indexing than using the local indexing,
the di�erence between the average disk load on two di�eren nodes in the same system
can be as high as 8 times.

However, the most interesting results are provided by the pipelined indexing. The
pipelined indexing can be viewed as an improvement technique for the global indexing,
and its performance on a disjunctive query model is only slightly better than the per-
formance of the global indexing. The improvement is a result of a slightly lower system
load and a better load balancing. But for the conjunctive query model, the pipelined
indexing provides an even better performance than the local indexing may provide. The
main reason for this is a great decrease in the data volume in the later pipeline stages,
resulting in a signi�cant decrease in the network load and a better utilization of the other
resources.

The advantage of the pipelined indexing is even greater for a higher number of nodes
and a higher concurrency level. On a system with 8 nodes and a concurrency level greater
than 22 queries the pipelined indexing is the superior approach in terms of the QPS rate

Simon Jonassen

114 7.1. FURTHER WORK

for both the AND and the OR query models, while the local indexing does not seems to
scale at all.

On the other hand, both the experiments with a 100 times slower CPU and the
experiments with a 100 times slower network make the local indexing to be the method
of choice.

The experiments with a higher number of disks show a linear increase in the QPS
rate for the local indexing when the number of disks increases. There is also a signi�cant
improvement for the local indexing when a simulated high end disk is used, but only a
small improvement for a simulated �ash disk with a insigni�cantly short disk access time
(0.03ms). The conclusion from this is that the number of concurrent disk accesses and
the combination of the disk characteristics, but not the disk seek time on its own, are
the most critical issues for the local indexing.

Finally, the simulation results do agree with the previous study and all the statement
about the performance issues for the di�erent inverted indexing methods. However, the
obtained results do not agree with the previous results by 100%. But the di�erence in the
�nal results can be explained by a smaller number of the query results, no approximation
methods or �ltering techniques applied and �nally no simulation of the index/result
cache.

7.1 Further Work

The simulation model, the algorithms described and the �nal performance can be slightly
improved by providing a concurrent network access, where a number of transfers to or
from the same node can be performed simultaneously. The performance of the pipelined
indexing will be probably much better in this case.

Next, it could be interesting to implement the original version of the parallel merge
approach described earlier, the one aimed to perform a higher number of disk accesses to
reduce the memory consumption. Here it could be also interesting to see if a concurrent
disk access can improve the �nal performance.

Finally, there was a problem with the estimation of the average query response time.
The problem was that none of the timed out queries were include into the calculation
of the query response time. This problem could be solved by running a large number
of warm-up queries over a long-period, and then running a long period measuring the
response times for the queries that terminates during its time bounds. If the perfor-
mance is stable, the characteristics of the queries started outside and �nished inside the
time bounds and the queries started inside and �nished outside suppose to be similar.
Therefore the resulting value would be a better estimate.

7.2 Interesting Topics Related to this Master Thesis

The use of �ltering techniques was partly discussed in the background part but never
implemented for the simulation model. The reason for this is that the approximation

Distributed Inverted Indexes

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 115

algorithms described in the background chapter require a data structure that would
provide a fast look-up operation to insert or update the accumulator values and a quick
sort based either on the accumulator score or on the accumulator id. Otherwise it could
be interesting to see if there are any alternative ways to perform an approximated query
processing for the global indexing.

Another important issue named but not tested by the simulation model is the con-
struction of the index itself. Even if the global indexing or its variations would provide
a better performance than the local indexing, it is much more di�cult to generate a
distributed global index than a local index. An even more di�cult task is to perform
updates on a global index. Therefore it is an important argument in the discussion about
whether the global or the local indexing is a better alternative.

A third issue closely related to the �rst two, and also discussed in this master thesis,
is the term mapping used for the global indexing. As it was suggested, neither a lexi-
cographical or a rank based mapping would ever provide a perfect load balancing, since
some of the terms having similar rank may be more popular in the query set than the
other ones, resulting in a lower load balancing. The alternatives proposed in [MWZ06]
was to redistribute the terms after the end of each batch and to replicate the most work
demanding terms. Another method proposed but not tested in this thesis was to move
the most work demanding term to the other nodes in real-time. Of course, the last
method would require a higher synchronization level and result in a higher network load,
but the question is if it would result in a workload decrease that can compensate the
work performed.

Simon Jonassen

116 7.2. INTERESTING TOPICS RELATED TO THIS MASTER THESIS

Distributed Inverted Indexes

Bibliography

[AdKM01] Vo Ngoc Anh, Owen de Kretser, and Alistair Mo�at. Vector-space ranking
with e�ective early termination. In SIGIR '01: Proceedings of the 24th an-
nual international ACM SIGIR conference on Research and development in
information retrieval, pages 35�42, New York, NY, USA, 2001. ACM.

[BBG+05] Claudine Badue, Ramurti Barbosa, Paulo Golgher, Berthier Ribeiro-Neto,
and Nivio Ziviani. Basic issues on the processing of web queries. In SIGIR
'05: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 577�578, New
York, NY, USA, 2005. ACM Press.

[BBR+07] C. S. Badue, R. Baeza-Yates, B. Ribeiro-Neto, A. Ziviani, and N. Ziviani.
Analyzing imbalance among homogeneous index servers in a web search sys-
tem. Inf. Process. Manage., 43(3):592�608, 2007.

[BBRZ01] Claudine Santos Badue, Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto,
and Nivio Ziviani. Distributed query processing using partitioned inverted
�les. In SPIRE, pages 10�20, 2001.

[Bjø07] Truls A. Bjørklund. Experimentation with inverted indexes for dynamic
document collections, 2007.

[BR99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[CP97] Douglas R. Cutting and Jan O. Pedersen. Space optimizations for total
ranking. In RAIO Proceedings, 1997.

[JO95] Byeong-Soo Jeong and Edward Omiecinski. Inverted �le partitioning schemes
in multiple disk systems. IEEE Trans. Parallel Distrib. Syst., 6(2):142�153,
1995.

[Jon07] Simon Jonassen. Global vs. Local inverted indexes. Report in TDT4590
Complex Computer Systems, Specialization Project, December 2007.

117

118 BIBLIOGRAPHY

[LLC08a] Seagate Technology LLC. Seagate Barracuda ES 2 Data Sheet. http://www.
seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es_2.pdf, 2008.

[LLC08b] Seagate Technology LLC. Seagate Barracuda ES Data Sheet. http://www.
seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es.pdf, 2008.

[LLC08c] Seagate Technology LLC. Seagate Cheetah NS Data Sheet. http://www.

seagate.com/docs/pdf/datasheet/disc/ds_cheetah_ns.pdf, 2008.

[LLC08d] Seagate Technology LLC. Seagate Savio 15K Data Sheet. http://www.

seagate.com/docs/pdf/datasheet/disc/ds_savio_15k.pdf, 2008.

[LM06] Amy N. Langville and Carl D. Meyer. Gooogle's PageRank and Beyond: The
Science of Search Engine Rankings. Princeton University Press, Princeton,
NJ, USA, 2006.

[MMR00] A. MacFarlane, J. A. McCann, and S. E. Robertson. Parallel search using
partitioned inverted �les. In SPIRE '00: Proceedings of the Seventh Interna-
tional Symposium on String Processing Information Retrieval (SPIRE'00),
page 209, Washington, DC, USA, 2000. IEEE Computer Society.

[MWZ06] Alistair Mo�at, William Webber, and Justin Zobel. Load balancing for
term-distributed parallel retrieval. In SIGIR '06: Proceedings of the 29th
annual international ACM SIGIR conference on Research and development
in information retrieval, pages 348�355, New York, NY, USA, 2006. ACM
Press.

[MWZB07] Alistair Mo�at, William Webber, Justin Zobel, and Ricardo Baeza-Yates.
A pipelined architecture for distributed text query evaluation. Inf. Retr.,
10(3):205�231, 2007.

[RB98] Berthier A. Ribeiro-Neto and Ramurti A. Barbosa. Query performance for
tightly coupled distributed digital libraries. In DL '98: Proceedings of the
third ACM conference on Digital libraries, pages 182�190, New York, NY,
USA, 1998. ACM Press.

[Ris04] Knut Magne Risvik. Scaling Internet Search Engines - Methods and Analysis.
PhD thesis, 2004. Chair-Edward A. Fox.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[Sor01] Ohm Sornil. Parallel inverted index for large-scale, dynamic digital libraries.
PhD thesis, 2001. Chair-Edward A. Fox.

[SWJS01] Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Sarace-
vic. Searching the web: the public and their queries. J. Am. Soc. Inf. Sci.
Technol., 52(3):226�234, 2001.

Distributed Inverted Indexes

http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es_2.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es_2.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_es.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_cheetah_ns.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_cheetah_ns.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_savio_15k.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_savio_15k.pdf

BIBLIOGRAPHY 119

[TG93] Anthony Tomasic and Hector Garcia-Molina. Query processing and inverted
indices in shared nothing text document information retrieval systems. The
VLDB Journal, 2(3):243�276, 1993.

[WM05] William Webber and Alistair Mo�at. In search of reliable experiments. In
10th Australasian Document Computing Symposium, pages 26�33. University
of Syndey, 2005.

[WMB99] Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. Managing gigabytes
(2nd ed.): compressing and indexing documents and images. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1999.

[XSLF02] Wensi Xi, Ohm Sornil, Ming Luo, and Edward A. Fox. Hybrid partition
inverted �les: Experimental validation. In ECDL '02: Proceedings of the
6th European Conference on Research and Advanced Technology for Digital
Libraries, pages 422�431, London, UK, 2002. Springer-Verlag.

[ZM06] Justin Zobel and Alistair Mo�at. Inverted �les for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

[ZS05] Jiangong Zhang and Torsten Suel. E�cient query evaluation on large textual
collections in a peer-to-peer environment. In P2P '05: Proceedings of the
Fifth IEEE International Conference on Peer-to-Peer Computing (P2P'05),
pages 225�233, Washington, DC, USA, 2005. IEEE Computer Society.

Simon Jonassen

120 BIBLIOGRAPHY

Distributed Inverted Indexes

APPENDIX A. APPENDIX 121

Appendix A

Appendix

A.1 Dictionary Data

A.1.1 docstat

Here are 50 sample entries from the resolved dictionary, each line starts with a dictionary
term followed by the term id and the associated number of occurrences. Non-existing
terms are represented with a negative number as the term id.

1 consumtionjuction -958 0

2 contac 15513992 1275

3 contact 15514061 8088813

4 contacting 15514601 172339

5 contacts 15514975 1111228

6 contadora 15515311 95

7 container 15515887 152450

8 containers 15516120 126371

9 contempary 15519022 5

10 contemporary 15519321 63015

11 contender 15519547 1470

12 contenential 15519678 1

13 content 15519798 2483799

14 contential 15520087 8

15 contentinal 15520107 1

16 contessa 15520866 374

17 contest 15520874 81221

18 contestants 15520928 3624

19 contests 15521098 23572

20 contienentl -959 0

21 contigo 15526738 227

22 continenalairlines -960 0

23 continental 15527293 90702

24 continentalairlines -961 0

25 continential 15527422 161

26 continuing 15529050 566719

27 contos 15531309 179

28 contour 15531332 38040

29 contract 15532176 1308870

30 contracted 15532484 148725

31 contracters 15532549 19

32 contractors 15533244 647536

33 contracts 15533603 816571

Simon Jonassen

122 A.1. DICTIONARY DATA

34 contracture 15534037 2707

35 contractures 15534058 866

36 contradictory 15534295 15880

37 contrast 15535199 203274

38 contributions 15536907 423689

39 control 15537999 2484208

40 controled 15538479 520

41 controling 15538687 419

42 controllato 15538795 62

43 controlled 15538827 456845

44 controller 15539026 84276

45 controlling 15539237 203067

46 controls 15539693 406455

47 contromatics 15540156 5

48 contruction 15540668 1425

49 contusion 15541375 1681

50 convayor 15542781 1

A.1.2 querylog

Here are 50 sample entries from the query log, each line starts contains a single query.
The sample is extended with the resolved frequency for each query term.

1 pierson s twin lakes marina [3.6853537124255294E-4 0.564495812547096

0.00512466108651718 0.028598686008141423 0.00155579137128921]

2 nurseries in woodbridge new jersey [6.573252266924984E-4 0.6285635186324208

3.1870434246866487E-4 0.3192352651016682 0.028013290443206135]

3 miami white pages [0.01596394137887297 0.06149037862417085 0.040436729292817164]

4 delta air lines [0.010095028486010751 0.05969118489497734 0.05331987525262169]

5 hsn [3.217592701880832E-5]

6 ironman ivan stewart s super off road [1.011696842145021E-5 8.931101024912381E-4

0.004465352140526358 0.564495812547096 0.0034602015720658044

0.08134475061653004 0.05042459726233248]

7 pajaro carpintero [1.9983988211311652E-4 4.284833684378912E-6]

8 kitchen canister sets [0.002957051009239014 3.992830203665683E-4

0.041297147701272026]

9 buy pills online [0.008666671242445849 4.7930625686094114E-4 0.09294871502400359]

10 hotel meistertrunk [0.005740090161629084 3.967438596647142E-8]

11 cingular [6.141594947609775E-5]

12 katy augustus [3.4373888001350836E-4 1.946028631655423E-4]

13 what is the sales tax in columbus ohio [0.1446839159523525 0.49777012097394746

0.7599695284846023 0.046713970966046306 0.06045162385079669 0.6285635186324208

0.0096314729603785 0.029383683408874026]

14 notes on the green mile [0.06307481490212785 0.5207393686829203 0.7599695284846023

0.058345548746152526 0.011601980688175235]

15 frazier road villa rica georgia [7.089416028348777E-4 0.05042459726233248

7.485763144153827E-4 0.001940156822532385 0.02511721896519759]

16 free picnic table centerpieces crafts [0.07545675434401795 0.0015915776674309673

0.098766527307741 2.297146947458695E-5 0.0011018370470608442]

17 louisiana technical school [0.02708578264808197 0.06805097476197253

0.06806394828618356]

18 auctions unlimited in ri [7.447675733626013E-4 0.005182228620554529

0.6285635186324208 0.005357033965122803]

19 yahoo [0.001929286040777572]

20 tyson fight [3.833339172080468E-4 0.004957949316686067]

21 land rover series 11a [0.061289348510478736 4.889471326507937E-4

0.08000831892524946 9.419492716159643E-4]

22 soaringeaglecasino [0.0]

23 beatles [3.6302063159321346E-5]

24 alltheweb be [8.220532772252876E-5 0.35002127935691313]

Distributed Inverted Indexes

APPENDIX A. APPENDIX 123

25 modesto bee [0.001784117462526253 0.001911194520776861]

26 wild plum jelly [0.010023336870569338 7.348489768709835E-4 4.695860322991557E-4]

27 kaiser [0.0016067332828701593]

28 kingsway financial services [2.920034807132296E-5 0.04246159092938796

0.24414280096959437]

29 british airways [0.0047237910907119525 7.195346638879256E-4]

30 chevrolet [3.7980289685703085E-4]

31 hud [0.004283881499115717]

32 rattlesnake trail head camping [6.7529772353531E-4 0.025018905836772673

0.02428965094832296 0.020904830709593453]

33 youve got pictures [1.4877894737426781E-5 0.007956301361716177

0.006302831652177515]

34 thirteen buddy icons [0.00215451752990923 6.128502400240839E-4

0.0038691254682222255]

35 star wars [0.008968037878247166 0.0013508334933864188]

36 hooker furniture company [6.151513544101392E-4 0.0064313766627088825

0.06517228066501729]

37 new york grandparents rights [0.3192352651016682 0.06894741751288495

0.001289576241454187 0.07837540054764142]

38 nike id [1.4754904140930718E-4 0.052050334576080576]

39 real estate forms [0.03689872624987111 0.017312434083487364 0.058699087199499754]

40 cn8 [5.0783214037083414E-6]

41 er cast [0.007362613850113899 0.007343887539937725]

42 touch kirby [0.004563387548249509 7.014828182731811E-4]

43 business loans [0.12252374799639391 0.008088893159616126]

44 water958 [0.0]

45 fare tracker [0.0010462532323218176 0.0048283727721195715]

46 real estate zumstein ave cincinnati [0.03689872624987111 0.017312434083487364

2.8565557895859417E-6 0.012445061389962753 0.006867675885182168]

47 obi won [5.697241824785295E-5 0.0077451939539885835]

48 model girls [0.05785922012297552 0.0025792715060662733]

49 ticonderoga [8.609341754724297E-5]

50 noir chloe [5.9233858247941825E-5 1.3326626246137747E-4]

Simon Jonassen

124 A.2. NETWORK MICROBENCHMARK

A.2 Network Microbenchmark

A.2.1 clustis.c

1 /*

2 * All rights for the original code belongs to TDT4200 staff ,

3 * Thorvald Natvig and Jan Christian Meyer , 2007 -2008

4 *

5 * This program will measure the pingpong bandwidth of the cluster.

6 *

7 * As Clustis2 uses gigabit ethernet , we expect 125MB of transfer to take

8 * about 1 second.

9 *

10 */

11

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include <unistd.h>

15 #include <mpi.h>

16

17 int rank , size;

18

19 /*

20 * Function to perform a pingpong test

21 */

22

23 double pingtime(int buffsize , int ntimes)

24 {

25 int i;

26 double start , stop;

27 unsigned char *buffer;

28 MPI_Status status;

29

30 /* Allocate dynamic memory for buffer and initialize */

31 buffer = malloc(buffsize);

32 for (i = 0; i < buffsize; i++)

33 buffer[i] = i;

34

35 /* Synchronize all nodes */

36 MPI_Barrier(MPI_COMM_WORLD);

37 start = MPI_Wtime ();

38

39 /* Rank 0 should send , then recevie.

40 * Rank 1 should receive , then send.

41 * Everyone else should do nothing.

42 */

43

44 if (rank == 0) {

45 for (i = 0; i < ntimes; i++) {

46 MPI_Send(buffer , buffsize , MPI_UNSIGNED_CHAR , 1, 0, MPI_COMM_WORLD);

47 MPI_Recv(buffer , buffsize , MPI_UNSIGNED_CHAR , 1, 0, MPI_COMM_WORLD , &

status);

48 }

49 } else if (rank == 1) {

50 for (i = 0; i < ntimes; i++) {

51 MPI_Recv(buffer , buffsize , MPI_UNSIGNED_CHAR , 0, 0, MPI_COMM_WORLD , &

status);

52 MPI_Send(buffer , buffsize , MPI_UNSIGNED_CHAR , 0, 0, MPI_COMM_WORLD);

53 }

54 }

55

Distributed Inverted Indexes

APPENDIX A. APPENDIX 125

56 stop = MPI_Wtime ();

57

58 /* Free (deallocate) dynamic memory */

59 free(buffer);

60

61 /* Return average time spent. We did ntimes *2 transfers */

62 return (stop - start) / (ntimes * 2.0L);

63 }

64

65 double reducetest(int els , int ntimes , int all){

66 int i;

67 double start , stop;

68 MPI_Status status;

69

70 int *isend=(int*) malloc(els*sizeof(int));

71 int *irecv=(int*) malloc(els*sizeof(int));

72

73 for (i=0;i<els;i++){

74 isend[i]=i;

75 }

76

77

78 MPI_Barrier(MPI_COMM_WORLD);

79 start = MPI_Wtime ();

80

81 if (all)

82 for (i=0;i<ntimes;i++)

83 MPI_Allreduce (isend , irecv , els , MPI_INT , MPI_SUM , MPI_COMM_WORLD);

84 else

85 for (i=0;i<ntimes;i++)

86 MPI_Reduce (isend , irecv , els , MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD);

87

88 stop = MPI_Wtime ();

89

90 free(isend);

91 free(irecv);

92

93 return (stop - start) / ntimes;

94 }

95

96 double alltoalltest(int els , int ntimes , int pros){

97 int i;

98 double start , stop;

99 MPI_Status status;

100

101 int *isend=(int*) malloc(els*sizeof(int));

102 int *irecv=(int*) malloc(els*sizeof(int));

103

104 for (i=0;i<els;i++){

105 isend[i]=i;

106 }

107

108 MPI_Barrier(MPI_COMM_WORLD);

109 start = MPI_Wtime ();

110

111 for (i=0;i<ntimes;i++)

112 MPI_Alltoall (isend , els/pros , MPI_INTEGER , irecv , els/pros , MPI_INTEGER ,

MPI_COMM_WORLD);

113

114 stop = MPI_Wtime ();

115 free(isend);

116 free(irecv);

Simon Jonassen

126 A.2. NETWORK MICROBENCHMARK

117 return (stop - start) / ntimes;

118 }

119 int main(int argc , char **argv){

120 double ts, beta;

121 double tests []={0,0,0,0,0,0,0,0,0};

122

123 /* Initialize MPI */

124 MPI_Init (&argc , &argv);

125 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

126 MPI_Comm_size(MPI_COMM_WORLD , &size);

127

128 /* Find Ts and beta */

129 ts = pingtime(0, 1000);

130 beta = pingtime (10000000 , 10) / 10000000.0;

131

132 /* Broadcast this to all nodes */

133 MPI_Bcast (&ts, 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

134 MPI_Bcast (&beta , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

135

136 /* Print out results */

137 if (rank == 0) {

138 printf("Time: Tick %g, Ts %g, Beta %g\n", MPI_Wtick (), ts, beta);

139 printf("Sanity test: 125 MB in %fs\n", 125000000.0 * beta);

140 }

141

142 /* Your code goes here.

143 * You should measure the time it takes for a MPI_Reduce ,

144 * MPI_Allreduce and MPI_Alltoall , all with varying

145 * buffer sizes and see how that matches up to

146 * expectations.

147 */

148 tests [0]= reducetest (0 ,100,0);

149 tests [1]= reducetest (1000 ,100 ,0);

150 tests [2]= reducetest (1000000 ,100 ,0);

151 tests [3]= reducetest (0 ,100,1);

152 tests [4]= reducetest (1000 ,100 ,1);

153 tests [5]= reducetest (1000000 ,100 ,1);

154 tests [6]= alltoalltest (0,100, size);

155 tests [7]= alltoalltest (1000 ,100 , size);

156 tests [8]= alltoalltest (1000000 ,100 , size);

157 // MPI_Bcast (&tests , 9, MPI_DOUBLE , 0, MPI_COMM_WORLD);

158 if (rank == 0) {

159 printf("Reduce tests:\n");

160 printf("### %f with 0 bytes\n",tests [0]);

161 printf("### %f with %d bytes\n",tests [1] ,1000* sizeof(int));

162 printf("### %f with %d bytes\n",tests [2] ,1000000* sizeof(int));

163 printf("Allreduce tests:\n");

164 printf("### %f with 0 bytes\n",tests [3]);

165 printf("### %f with %d bytes\n",tests [4] ,1000* sizeof(int));

166 printf("### %f with %d bytes\n",tests [5] ,1000000* sizeof(int));

167 printf("Alltoall tests :\n");

168 printf("### %f with 0 bytes\n",tests [6]);

169 printf("### %f with %d bytes\n",tests [7] ,1000* sizeof(int));

170 printf("### %f with %d bytes\n",tests [8] ,1000000* sizeof(int));

171 }

172

173 MPI_Finalize ();

174 }

A.2.2 clustis.out

1 Clustis_test_info: 27. januar 2007, 18:54

Distributed Inverted Indexes

APPENDIX A. APPENDIX 127

2

3 Time: Tick 1e-06, Ts 8.26295e-05, Beta 2.3626e-08

4 Sanity test: 125 MB in 2.953253s

5 Reduce tests:

6 ### 0.000000 with 0 bytes

7 ### 0.000872 with 4000 bytes

8 ### 0.168039 with 4000000 bytes

9 Allreduce tests:

10 ### 0.000000 with 0 bytes

11 ### 0.000919 with 4000 bytes

12 ### 0.272745 with 4000000 bytes

13 Alltoall tests:

14 ### 0.000000 with 0 bytes

15 ### 0.000552 with 4000 bytes

16 ### 0.138842 with 4000000 bytes

17 =>> PBS: job killed: walltime 99 exceeded limit 90

18

19 Time: Tick 1e-06, Ts 6.5775e-05, Beta 2.63078e-08

20 Sanity test: 125 MB in 3.288473s

21 Reduce tests:

22 ### 0.000000 with 0 bytes

23 ### 0.000562 with 4000 bytes

24 ### 0.100720 with 4000000 bytes

25 Allreduce tests:

26 ### 0.000000 with 0 bytes

27 ### 0.000355 with 4000 bytes

28 ### 0.171127 with 4000000 bytes

29 Alltoall tests:

30 ### 0.000000 with 0 bytes

31 ### 0.000253 with 4000 bytes

32 ### 0.088699 with 4000000 bytes

33 =>> PBS: job killed: walltime 127 exceeded limit 90

34

35 Time: Tick 1e-06, Ts 7.92665e-05, Beta 2.33988e-08

36 Sanity test: 125 MB in 2.924849s

37 Reduce tests:

38 ### 0.000000 with 0 bytes

39 ### 0.000889 with 4000 bytes

40 ### 0.206218 with 4000000 bytes

41 Allreduce tests:

42 ### 0.000000 with 0 bytes

43 ### 0.001710 with 4000 bytes

44 ### 0.359614 with 4000000 bytes

45 Alltoall tests:

46 ### 0.000000 with 0 bytes

47 ### 0.001719 with 4000 bytes

48 ### 0.176309 with 4000000 bytes

49 =>> PBS: job killed: walltime 121 exceeded limit 90

Simon Jonassen

128 A.3. AN EXAMPLE EXPERIMENT PROPERTY FILE

A.3 An example experiment property �le

1 //main test parameters , those are stored into

2 SIMULATED_ONLY = true

3 USE_AND_QUERIES = true

4 DEMO_MODE = true

5 //LI 0, GI 1, PL 2, HD 3, LIPM 4, GIPM 5, PLPM 6, HDPM 7

6 INDEXING_MODE = 2

7 NUMBER_OF_NODES = 4

8 NUMBER_OF_CPUS_PER_NODE = 1

9 NUMBER_OF_DISKS_PER_NODE = 1

10 MAX_NUMBER_OF_QUERY_PROCESSES = 12

11 CPU_FACTOR = 1.0

12

13 // number of queries to process before the non -demo benchmark

14 NUMBER_OF_WARMUP_QUERIES = 0

15 // maximum length of the experiment

16 SIM_DURATION = 5000

17 //log sample time for demo run

18 LOG_SAMPLE_TIME = 10

19

20 // document collection constants

21 NUMBER_OF_RESULTS_REQUIRED = 1000

22 NUMBER_OF_DOCUMENTS = 25000000

23 NUMBER_OF_DOCUMENTS_STAT = 25205179

24 //used only for the microbenchmarking

25 NUMBER_OF_WORDS_PER_DOCUMENT = 10000

26

27 // memory constants

28 //in BLOCKS

29 SIZE_OF_MEMORY_PER_NODE = 4096

30 //4096

31 //in bytes

32 MEMORY_BLOCK_SIZE = 1048576

33 BUFFER_SIZE = 131072

34

35 // network performance constants

36 NETWORK_INVERSE_BANDWIDTH = 8E-6

37 NETWORK_OVERHEAD = 0.08

38

39 //disk performance constants

40 DISK_INVERSE_BANDWIDTH = 1.25E-5

41 DISK_SEEK_TIME = 8.5

42 DISK_ROTATION_DELAY = 4.16

43

44 //cpu processing constants , to be divided by CPU_FACTOR

45 COMPARSION_INSTRUCTION_TIME = 1.75E-5

46 INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME = 2.421848E-5

47 HEAP_INSTRUCTION_TIME = 5.896446E-7

48 HEAP_MULTIWAY_INTERLEAVEMERGE_TIME = 4.945716E-5

49 LOOKUP_TIME = 0.0105

50

51 //data structure constants

52 QUERY_HEADER_LENGTH = 32

53 SUBQUERY_HEADER_LENGTH = 32

54 SUBQUERY_RESULT_HEADER_LENGTH = 32

55 QUERY_RESULT_HEADER_LENGTH = 32

56 //loc + 1byte descr

57 SIZE_OF_INDEX_LOCATION_ENTRY = 5

58 // docnum + occs

59 SIZE_OF_INDEX_DOCUMENT_ENTRY = 8

Distributed Inverted Indexes

APPENDIX A. APPENDIX 129

60 SIZE_OF_ACC_ENTRY = 8

61 SIZE_OF_QUERY_ENTRY = 4

62 SIZE_OF_RESULT_ENTRY = 4

63 // number of entries per chunk using the hybrid scheme

64 HYBRID_CHUNK_SIZE = 1024

65

66 //cpu time slice for each process

67 CPU_SLICE_SIZE = 0.1

Simon Jonassen

130A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

A.4 Trace Mode Simulation Reports for Baseline Experi-

ments

Distributed Inverted Indexes

APPENDIX A. APPENDIX 131

F
ig
u
re

A
.1
:
L
o
ca
l
In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

132A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.2:

L
o
cal

In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX A. APPENDIX 133

F
ig
u
re

A
.3
:
G
lo
b
al
In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

134A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.4:

G
lob

al
In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX A. APPENDIX 135

F
ig
u
re

A
.5
:
P
ip
el
in
ed

In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

136A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.6:

P
ip
elin

ed
In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX A. APPENDIX 137

F
ig
u
re

A
.7
:
L
o
ca
l
In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

138A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.8:

L
o
cal

In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX A. APPENDIX 139

F
ig
u
re

A
.9
:
G
lo
b
al
In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

140A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.10:

G
lob

al
In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX A. APPENDIX 141

F
ig
u
re

A
.1
1:

P
ip
el
in
ed

In
d
ex
in
g
-
N
o
d
e
S
ta
tu
s

Simon Jonassen

142A.4. TRACE MODE SIMULATION REPORTS FOR BASELINE EXPERIMENTS

F
igu

re
A
.12:

P
ip
elin

ed
In
d
ex
in
g
-
P
ro
cess

S
tatu

s

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 143

Appendix B

Source code

B.1 Simulation Model Source Code

B.1.1 simulation.model.Con�g

1 package simulation.model;

2 import java.util .*;

3 import java.io.*;

4

5 public class Config {

6 public static String DATAPATH = "/home/simonj/workspace/Sim2/data/";

7

8 // algorithm choices

9 public static final int LOCAL_INDEXING = 0;

10 public static final int GLOBAL_INDEXING = 1;

11 public static final int GLOBAL_PIPELINED_INDEXING = 2;

12 public static final int HYBRID_INDEXING = 3;

13 public static final int LOCAL_INDEXING_PARALLEL_MERGE = 4;

14 public static final int GLOBAL_INDEXING_PARALLEL_MERGE = 5;

15 public static final int GLOBAL_PIPELINED_INDEXING_PARALLEL_MERGE = 6;

16 public static final int HYBRID_INDEXING_PARALLEL_MERGE = 7;

17

18 //main test parameters , those are stored into

19 public static boolean SIMULATED_ONLY = true;

20 public static boolean USE_AND_QUERIES = true;

21 public static boolean DEMO_MODE = true;

22 public static int INDEXING_MODE = -1;

23 public static int NUMBER_OF_NODES = 4;

24 public static int NUMBER_OF_CPUS_PER_NODE = 1;

25 public static int NUMBER_OF_DISKS_PER_NODE = 1;

26 public static int MAX_NUMBER_OF_QUERY_PROCESSES = 12;

27 public static double CPU_FACTOR = 1.0;

28 // number of queries to process before the non -demo benchmark

29 public static int NUMBER_OF_WARMUP_QUERIES = 0;

30 // maximum length of the experiment

31 public static int SIM_DURATION = 10000; //

32 //log sample time for demo run

33 public static int LOG_SAMPLE_TIME = 10;

34

35 // document collection constants

36 public static int NUMBER_OF_RESULTS_REQUIRED = 1000;

37 public static int NUMBER_OF_DOCUMENTS = 25000000;

38 public static int NUMBER_OF_DOCUMENTS_STAT = 25205179;

Simon Jonassen

144 B.1. SIMULATION MODEL SOURCE CODE

39 public static int NUMBER_OF_WORDS_PER_DOCUMENT = 10000; //used only for the

microbenchmarking

40

41 // memory contants

42 public static int SIZE_OF_MEMORY_PER_NODE = 4096; //in BLOCKS

43 public static int MEMORY_BLOCK_SIZE = 1048576; //in bytes

44 public static int BUFFER_SIZE = 131072; //in bytes

45

46 // network performance constants

47 public static double NETWORK_INVERSE_BANDWIDTH = 8E-6;

48 public static double NETWORK_OVERHEAD = 0.08;

49

50 //disk performance constants

51 public static double DISK_INVERSE_BANDWIDTH = 1.25E-5;

52 public static double DISK_SEEK_TIME = 8.5;

53 public static double DISK_ROTATION_DELAY = 4.16;

54

55 //cpu processing constants

56

57 public static double COMPARSION_INSTRUCTION_TIME = 2.421848E-05 / CPU_FACTOR;

58 public static double INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME = 2.421848E-05 /

CPU_FACTOR;

59 public static double HEAP_INSTRUCTION_TIME = 5.896446E-07 / CPU_FACTOR;

60 public static double HEAP_MULTIWAY_INTERLEAVEMERGE_TIME = 4.945716E-05 /

CPU_FACTOR;

61 public static double LOOKUP_TIME = 0.0105 /CPU_FACTOR;

62

63 //data structure constants

64 public static int QUERY_HEADER_LENGTH = 32;

65 public static int SUBQUERY_HEADER_LENGTH = 32;

66 public static int SUBQUERY_RESULT_HEADER_LENGTH = 32;

67 public static int QUERY_RESULT_HEADER_LENGTH = 32;

68 public static int SIZE_OF_INDEX_LOCATION_ENTRY = 5; //loc + 1byte descr

69 public static int SIZE_OF_INDEX_DOCUMENT_ENTRY = 8; // docnum + occs

70 public static int SIZE_OF_ACC_ENTRY = 8;

71 public static int SIZE_OF_QUERY_ENTRY = 4;

72 public static int SIZE_OF_RESULT_ENTRY = 8;

73 // number of entries per chunk using the hybrid scheme

74 public static int HYBRID_CHUNK_SIZE = 1024;

75

76 //cpu time slice for each process

77 public static double CPU_SLICE_SIZE = 0.1;

78

79 public static void loadProperties(String filename){

80 try {

81 Properties prop = new Properties ();

82 prop.load(new FileInputStream(filename));

83 // DATAPATH = prop.getProperty (" DATAPATH ");

84 SIMULATED_ONLY = Boolean.parseBoolean(prop.getProperty("SIMULATED_ONLY

"));

85 USE_AND_QUERIES = Boolean.parseBoolean(prop.getProperty("

USE_AND_QUERIES"));

86 DEMO_MODE = Boolean.parseBoolean(prop.getProperty("DEMO_MODE"));

87 INDEXING_MODE = Integer.parseInt(prop.getProperty("INDEXING_MODE"));

88 NUMBER_OF_NODES = Integer.parseInt(prop.getProperty("NUMBER_OF_NODES")

);

89 NUMBER_OF_CPUS_PER_NODE = Integer.parseInt(prop.getProperty("

NUMBER_OF_CPUS_PER_NODE"));

90 NUMBER_OF_DISKS_PER_NODE = Integer.parseInt(prop.getProperty("

NUMBER_OF_DISKS_PER_NODE"));

91 MAX_NUMBER_OF_QUERY_PROCESSES = Integer.parseInt(prop.getProperty("

MAX_NUMBER_OF_QUERY_PROCESSES"));

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 145

92 CPU_FACTOR = Double.parseDouble(prop.getProperty("CPU_FACTOR"));

93 NUMBER_OF_WARMUP_QUERIES = Integer.parseInt(prop.getProperty("

NUMBER_OF_WARMUP_QUERIES"));

94 SIM_DURATION = Integer.parseInt(prop.getProperty("SIM_DURATION"));

95 LOG_SAMPLE_TIME = Integer.parseInt(prop.getProperty("LOG_SAMPLE_TIME")

);

96 NUMBER_OF_RESULTS_REQUIRED = Integer.parseInt(prop.getProperty("

NUMBER_OF_RESULTS_REQUIRED"));

97 NUMBER_OF_DOCUMENTS = Integer.parseInt(prop.getProperty("

NUMBER_OF_DOCUMENTS"));

98 NUMBER_OF_DOCUMENTS_STAT = Integer.parseInt(prop.getProperty("

NUMBER_OF_DOCUMENTS_STAT"));

99 NUMBER_OF_WORDS_PER_DOCUMENT = Integer.parseInt(prop.getProperty("

NUMBER_OF_WORDS_PER_DOCUMENT"));

100 SIZE_OF_MEMORY_PER_NODE = Integer.parseInt(prop.getProperty("

SIZE_OF_MEMORY_PER_NODE"));

101 MEMORY_BLOCK_SIZE = Integer.parseInt(prop.getProperty("

MEMORY_BLOCK_SIZE"));

102 BUFFER_SIZE = Integer.parseInt(prop.getProperty("BUFFER_SIZE"));

103 NETWORK_INVERSE_BANDWIDTH = Double.parseDouble(prop.getProperty("

NETWORK_INVERSE_BANDWIDTH"));

104 NETWORK_OVERHEAD = Double.parseDouble(prop.getProperty("

NETWORK_OVERHEAD"));

105 DISK_INVERSE_BANDWIDTH = Double.parseDouble(prop.getProperty("

DISK_INVERSE_BANDWIDTH"));

106 DISK_SEEK_TIME = Double.parseDouble(prop.getProperty("DISK_SEEK_TIME"

));

107 DISK_ROTATION_DELAY = Double.parseDouble(prop.getProperty("

DISK_ROTATION_DELAY"));

108 COMPARSION_INSTRUCTION_TIME = Double.parseDouble(prop.getProperty("

COMPARSION_INSTRUCTION_TIME"))/CPU_FACTOR;

109 INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME = Double.parseDouble(prop.

getProperty("INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME"))/CPU_FACTOR;

110 HEAP_INSTRUCTION_TIME = Double.parseDouble(prop.getProperty("

HEAP_INSTRUCTION_TIME")) /CPU_FACTOR;

111 HEAP_MULTIWAY_INTERLEAVEMERGE_TIME =Double.parseDouble(prop.

getProperty("HEAP_MULTIWAY_INTERLEAVEMERGE_TIME")) /CPU_FACTOR;

112 LOOKUP_TIME = Double.parseDouble(prop.getProperty("LOOKUP_TIME"))/

CPU_FACTOR;

113 QUERY_HEADER_LENGTH = Integer.parseInt(prop.getProperty("

QUERY_HEADER_LENGTH"));

114 SUBQUERY_HEADER_LENGTH = Integer.parseInt(prop.getProperty("

SUBQUERY_HEADER_LENGTH"));

115 SUBQUERY_RESULT_HEADER_LENGTH = Integer.parseInt(prop.getProperty("

SUBQUERY_RESULT_HEADER_LENGTH"));

116 QUERY_RESULT_HEADER_LENGTH =Integer.parseInt(prop.getProperty("

QUERY_RESULT_HEADER_LENGTH"));

117 SIZE_OF_INDEX_LOCATION_ENTRY = Integer.parseInt(prop.getProperty("

SIZE_OF_INDEX_LOCATION_ENTRY"));

118 SIZE_OF_INDEX_DOCUMENT_ENTRY = Integer.parseInt(prop.getProperty("

SIZE_OF_INDEX_DOCUMENT_ENTRY"));

119 SIZE_OF_ACC_ENTRY = Integer.parseInt(prop.getProperty("

SIZE_OF_ACC_ENTRY"));

120 SIZE_OF_QUERY_ENTRY = Integer.parseInt(prop.getProperty("

SIZE_OF_QUERY_ENTRY"));

121 SIZE_OF_RESULT_ENTRY = Integer.parseInt(prop.getProperty("

SIZE_OF_RESULT_ENTRY"));

122 HYBRID_CHUNK_SIZE = Integer.parseInt(prop.getProperty("

HYBRID_CHUNK_SIZE"));

123 CPU_SLICE_SIZE = Double.parseDouble(prop.getProperty("CPU_SLICE_SIZE")

);

124 } catch (IOException e){

Simon Jonassen

146 B.1. SIMULATION MODEL SOURCE CODE

125 e.printStackTrace ();

126 }

127 }

128 }

B.1.2 simulation.model.ModelS

1 package simulation.model;

2 import java.util.ArrayList;

3

4 import simulation.log .*;

5 import simulation.node .*;

6 import simulation.processes .*;

7 import simulation.query .*;

8 import desmoj.core.simulator .*;

9

10 public class ModelS extends Model {

11 ArrayList <Node > nodes;

12 Node broker;

13

14 private LogWriter logwr;

15 private GeneratorProcess gen;

16 private ResHandler res;

17 private LogProcess logpr;

18 private Statistics st;

19 private boolean warmedup = false;

20 private int scheduledqueries , solvedqueries , runningqueries;

21

22 public static String runName;

23

24

25 public ModelS(Model owner , String name , boolean showInReport , boolean

showIntrace) {

26 super(owner , name , showInReport , showIntrace);

27 runningqueries =0;

28 scheduledqueries =0;

29 solvedqueries =0;

30 }

31

32 public ArrayList <Node > getNodes (){

33 return nodes;

34 }

35 public LogWriter getLogWriter (){

36 return logwr;

37 }

38

39 public Node getBroker (){

40 return broker;

41 }

42

43 @Override

44 public String description () {

45 return "\\,,/ o.O \\,,/";

46 }

47

48 @Override

49 public void doInitialSchedules () {

50 }

51

52 public ResHandler getResHandler (){

53 return res;

54 }

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 147

55

56 public GeneratorProcess getGenerator (){

57 return gen;

58 }

59 public boolean scheduleQuery(Query q, int nodenr){

60 if (runningqueries <Config.MAX_NUMBER_OF_QUERY_PROCESSES){

61 runningqueries ++;

62 scheduledqueries ++;

63 QueryProcess newqp;

64 switch (Config.INDEXING_MODE){

65 case (Config.HYBRID_INDEXING):

66 newqp = new QueryProcessHD(this , "QP"+nodenr , true , q, nodes.

get(nodenr));

67 break;

68 case (Config.HYBRID_INDEXING_PARALLEL_MERGE):

69 newqp = new QueryProcessHDPM(this , "QP"+nodenr , true , q, nodes

.get(nodenr));

70 break;

71 case (Config.GLOBAL_PIPELINED_INDEXING):

72 newqp = new QueryProcessPL(this , "QP"+nodenr , true , q, nodes.

get(nodenr));

73 break;

74 case (Config.GLOBAL_PIPELINED_INDEXING_PARALLEL_MERGE):

75 newqp = new QueryProcessPLPM(this , "QP"+nodenr , true , q, nodes

.get(nodenr));

76 break;

77 case (Config.GLOBAL_INDEXING):

78 newqp = new QueryProcessGI(this , "QP"+nodenr , true , q, nodes.

get(nodenr));

79 break;

80 case (Config.GLOBAL_INDEXING_PARALLEL_MERGE):

81 newqp = new QueryProcessGIPM(this , "QP"+nodenr , true , q, nodes

.get(nodenr));

82 break;

83 case (Config.LOCAL_INDEXING):

84 default:

85 newqp = new QueryProcessLI(this , "QP"+nodenr , true , q, nodes.

get(nodenr));

86 break;

87 case (Config.LOCAL_INDEXING_PARALLEL_MERGE):

88 newqp = new QueryProcessLIPM(this , "QP"+nodenr , true , q, nodes

.get(nodenr));

89 break;

90

91 }

92

93 newqp.activate(new SimTime (0.0));

94 if (Config.DEMO_MODE)

95 logwr.logSystemStatus(currentTime ().getTimeValue (),

scheduledqueries , solvedqueries);

96 return true;

97 } else {

98 if (Config.DEMO_MODE)

99 logwr.logSystemStatus(currentTime ().getTimeValue (),

scheduledqueries , solvedqueries);

100 return false;

101 }

102 }

103

104 public void querySolved(QueryProcess qp , Query q, QueryResult qr){

105

106 st.addQueryTerms(q.getNumberOfTerms ());

Simon Jonassen

148 B.1. SIMULATION MODEL SOURCE CODE

107 st.addQueryIndexSize(q.getTotalIndexSize ());

108 st.addQueryResults(qr.getNumberOfDocuments ());

109 st.addQueryTime(SimTime.diff(currentTime (), qp.getStartTime ()));

110

111 if (! Config.DEMO_MODE && solvedqueries == Config.NUMBER_OF_WARMUP_QUERIES

&& !warmedup){

112 // resetAllCounters

113 solvedqueries =0;

114 scheduledqueries=runningqueries;

115 reset();

116 for (Node node: nodes){

117 node.resetCounters ();

118 }

119 warmedup=true;

120

121 }

122

123 runningqueries --;

124 solvedqueries ++;

125 if (runningqueries <Config.MAX_NUMBER_OF_QUERY_PROCESSES){

126 gen.activate(new SimTime (0.0));

127 }

128 }

129

130 public Statistics getStatistics (){

131 return st;

132 }

133

134 public int getSolved (){

135 return solvedqueries;

136 }

137

138 @Override

139 public void init() {

140 st = new Statistics(this);

141 nodes=new ArrayList <Node >();

142 res=new ResHandler ();

143 for (int i=0;i<Config.NUMBER_OF_NODES;i++){

144 nodes.add(new Node(this ,i, Config.NUMBER_OF_DISKS_PER_NODE ,

145 Config.NUMBER_OF_CPUS_PER_NODE , Config.SIZE_OF_MEMORY_PER_NODE

));

146 }

147 if (Config.DEMO_MODE) {

148 logwr = new LogWriter(this);

149 logpr = new LogProcess(this , "Logger", false);

150 logpr.activate(new SimTime (0.0));

151 }

152 broker = new Node(this , Config.NUMBER_OF_NODES +1, 1, 1, 51200);

153 gen = new GeneratorProcess(this ,"Generator",true);

154 gen.activate(new SimTime (0.0));

155 }

156

157 public static void main(String args []){

158 if (args.length >0) runName = args [0];

159 else runName = "default";

160

161 Config.loadProperties(runName+".property");

162

163 ModelS model = new ModelS(null , runName , true , true);

164 Experiment exp = new Experiment(runName);

165 model.connectToExperiment(exp);

166

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 149

167 exp.setShowProgressBar(false);

168

169 //exp.getReportManager ().

170 exp.stop(new SimTime(Config.SIM_DURATION));

171 exp.tracePeriod(new SimTime (0.0), new SimTime (1000.0));

172 exp.debugPeriod(new SimTime (0.0), new SimTime (0.0));

173 exp.start ();

174

175 exp.report ();

176 exp.finish ();

177

178 if (Config.DEMO_MODE){

179 model.logwr.renderNodeLog ();

180 model.logwr.renderProcLog ();

181 } else {

182 model.st.storeAll ();

183 }

184

185 System.out.println("results:"+Config.MAX_NUMBER_OF_QUERY_PROCESSES+"\t"+

Config.NUMBER_OF_NODES+"\t"+(model.getSolved () * 1000 / SimTime.diff(

model.currentTime (), model.resetAt ()).getTimeValue ()) + "\t" +model.st

.queryTimes.getMean ());

186 }

187 }

B.1.3 simulation.model.QueryLogReader

1 package simulation.model;

2

3 import java.util .*;

4 import java.io.*;

5 import simulation .*;

6 import simulation.query.Query;

7 import simulation.query.SimpleIndexHitList;

8 import simulation.query.SimulatedIndexHitList;

9 import desmoj.core.simulator .*;

10

11 public class QueryLogReader {

12 private BufferedReader br;

13 private HashMap <String , int[]> dict;

14 private Model model;

15

16 public QueryLogReader(Model model){

17 this.model = model;

18 dict = new HashMap <String , int [] >(31220);

19

20 try {

21 br = new BufferedReader(new FileReader(Config.DATAPATH + "docstat"));

22 String line , tmp[];

23 while ((line = br.readLine ()) != null){

24 tmp = line.split(" ");

25 dict.put(tmp[0], new int[]{ Integer.parseInt(tmp [1]), Integer.

parseInt(tmp [2])});

26 }

27 } catch (FileNotFoundException fnfe){

28 System.out.println("Query statistics cannot be found!");

29 } catch (IOException e){

30 System.out.println("Input error!");

31 }

32

33 try {

34 br = new BufferedReader(new FileReader(Config.DATAPATH + "querylog"));

Simon Jonassen

150 B.1. SIMULATION MODEL SOURCE CODE

35 }catch (FileNotFoundException fnfe){

36 System.out.println("Query log cannot be found!");

37 }

38 }

39

40 public int[] getNextQuery (){

41 Query q = new Query(model , "Query", false);

42 try {

43 String line = br.readLine ();

44 if (line==null) return null;

45 // System.out.print(line+" [");

46 String tmp[] = line.split(" ");

47 int ans[] = new int[tmp.length * 2];

48 for (int i=0; i<tmp.length; i++){

49 int data[] = dict.get(tmp[i]);

50 ans [2*i] = data [0];

51 ans [2*i+1] = data [1];

52 // System.out.print (((double) data [1]) / Config.

NUMBER_OF_DOCUMENTS_STAT +" ");

53 }

54 // System.out.println ("]");

55 return ans;

56 }catch (IOException e){

57 System.out.println("Input error!");

58 return null;

59 }

60 }

61 }

B.1.4 simulation.processes.model.GeneratorProcess

1 package simulation.model;

2 import java.util .*;

3 import simulation .*;

4 import simulation.node .*;

5 import simulation.query .*;

6 import desmoj.core.dist .*;

7 import desmoj.core.simulator .*;

8

9

10 public class GeneratorProcess extends SimProcess{

11 private IntDistUniform hitdist;

12 private QueryLogReader qlr;

13

14

15 public GeneratorProcess(Model owner , String name , boolean showInTrace) {

16 super(owner , name , showInTrace);

17 qlr = new QueryLogReader(owner);

18 hitdist = new IntDistUniform(owner ,"" ,0,Config.NUMBER_OF_DOCUMENTS -1,false

,false);

19 }

20

21 @Override

22 public void lifeCycle () {

23 ModelS model = (ModelS) this.getModel ();

24 ArrayList <Node > nodes = model.getNodes ();

25

26 while (true){

27 for (int i=0; i<nodes.size(); i++){

28 Query q= new Query(model , "Query", false);

29 int data[] = qlr.getNextQuery ();

30 int nterms= data.length / 2;

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 151

31 for (int j=0; j<nterms; j++){

32 int termid = data [2*j];

33 double freq = ((double)data [2*j+1])/Config.

NUMBER_OF_DOCUMENTS_STAT;

34 if (Config.SIMULATED_ONLY)

35 q.addTerm(termid , new SimulatedIndexHitList(freq));

36 else

37 q.addTerm(termid , makeHitList(freq));

38 }

39

40 while(!model.scheduleQuery(q, i)){

41 passivate ();

42 }

43

44 }

45 }

46 }

47

48 public SimpleIndexHitList makeHitList(double freq){

49 int numscored = (int)(freq * Config.NUMBER_OF_DOCUMENTS);

50 int hits[] = new int[Config.NUMBER_OF_DOCUMENTS];

51 for (int k=0; k< Config.NUMBER_OF_DOCUMENTS; k++){

52 hits[k]=0;

53 }

54 for (int k=0; k< numscored; k++){

55 int t=(int) hitdist.sample ();

56 while (hits[t]>0){

57 t=(t+1) % hits.length;

58 }

59 hits[t]=1;

60 }

61 return new SimpleIndexHitList(hits);

62 }

63 }

B.1.5 simulation.log.LogProcess

1 package simulation.log;

2 import java.util.ArrayList;

3

4 import simulation.model.Config;

5 import simulation.model.ModelS;

6 import simulation.node.Node;

7

8

9

10

11 import desmoj.core.simulator .*;

12

13

14 public class LogProcess extends SimProcess {

15

16 public LogProcess(Model owner , String name , boolean showInTrace) {

17 super(owner , name , showInTrace);

18 }

19

20 private double fixRange(double i){

21 if (i<0) return 0;

22 else if (i>1) return 1;

23 else return i;

24 }

25

Simon Jonassen

152 B.1. SIMULATION MODEL SOURCE CODE

26 @Override

27 public void lifeCycle () {

28 ModelS model = (ModelS) getModel ();

29 ArrayList <Node > nodes = model.getNodes ();

30

31 double lastTime = currentTime ().getTimeValue ();

32 double currTime;

33 double lastCPU [] = new double[nodes.size()];

34 double lastMem [] = new double[nodes.size()];

35 double lastDisk [] = new double[nodes.size()];

36 double lastEth [] = new double[nodes.size()];

37 double lastread [] = new double[nodes.size()];

38 double lastrecv [] = new double[nodes.size()];

39 double lastsend [] = new double[nodes.size()];

40

41 double cpu , mem , disk , eth , dtime , dcpu , dmem , ddisk , deth , rdbw , sdbw ,

rvbw , send , recv , read;

42 while(true){

43 hold(new SimTime(Config.LOG_SAMPLE_TIME));

44 currTime=currentTime ().getTimeValue ();

45 dtime=currTime -lastTime;

46 for (int i=0; i< nodes.size(); i++){

47 Node node=nodes.get(i);

48

49 cpu = node.getCPU ().avgUsage ();

50 mem = node.getMemory ().avgUsage ();

51 disk = node.getDisk ().avgUsage ();

52 eth = node.getEth ().avgUsage ();

53 read = node.getDiskread ();

54 recv = node.getEthrecv ();

55 send = node.getEthsend ();

56

57 dcpu = fixRange ((cpu*currTime -lastCPU[i]* lastTime)/dtime);

58 dmem = fixRange ((mem*currTime -lastMem[i]* lastTime)/dtime);

59 ddisk = fixRange ((disk*currTime -lastDisk[i]* lastTime)/dtime);

60 deth = fixRange ((eth*currTime -lastEth[i]* lastTime)/dtime);

61 rdbw = fixRange ((read -lastread[i])/dtime*Config.

DISK_INVERSE_BANDWIDTH);

62 rvbw = fixRange ((recv -lastrecv[i])/dtime*Config.

NETWORK_INVERSE_BANDWIDTH);

63 sdbw = fixRange ((send -lastsend[i])/dtime*Config.

NETWORK_INVERSE_BANDWIDTH);

64

65 lastCPU[i] = cpu;

66 lastDisk[i] = disk;

67 lastMem[i] = mem;

68 lastEth[i] = eth;

69 lastsend[i] = send;

70 lastread[i] = read;

71 lastrecv[i] = recv;

72

73 model.getLogWriter ().logNodeStatus(i, currTime , dcpu , ddisk , dmem ,

deth , rdbw , sdbw , rvbw);

74 }

75 lastTime=currTime;

76 }

77 }

78

79 }

B.1.6 simulation.log.LogWriter

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 153

1 package simulation.log;

2 import java.awt .*;

3 import java.awt.image .*;

4 import java.util .*;

5 import java.io.*;

6

7 import javax.imageio.ImageIO;

8

9 import desmoj.core.simulator.SimTime;

10

11 import simulation.model.Config;

12 import simulation.model.ModelS;

13 import simulation.node.Node;

14

15 /**

16 * All the graphic -related code is based on the ImageRender.java from Bootchart -

Boot Process Visualization

17 * Copyright (C) 2004 Ziga Mahkovec <ziga.mahkovec@klika.si>

18 *

19 * Modified by Simon Jonassen , 2006

20 */

21

22 public class LogWriter {

23 public static final int START = 0;

24 public static final int WAIT = 1;

25 public static final int GRANT = 2;

26 public static final int RELEASE = 3;

27 public static final int FINISH = 4;

28

29 public static final int CPU=0;

30 public static final int DISK =1;

31 public static final int ETH=2;

32 public static final int MEM=3;

33 public static final int OTHER =4;

34

35 private ArrayList <SystemStatus > sstatus;

36 private ArrayList <ArrayList <NodeStatus >> nstatus;

37 private HashMap <String ,ArrayList <ProcessStatus >> pstatus;

38 private HashMap <String ,ArrayList <String >> ptree;

39 private ModelS model;

40

41 protected Graphics g = null;

42 protected BufferedImage img = null;

43

44 private class SystemStatus{

45

46 double time;

47 public int solved , scheduled;

48 public SystemStatus(double time , int scheduled , int solved){

49 this.time = time;

50 this.scheduled = scheduled;

51 this.solved = solved;

52 }

53 }

54

55 private class NodeStatus{

56 public double time , cpu , disk , mem , eth , read , send , recv;

57

58 public NodeStatus(double time , double cpu , double disk , double mem , double

eth , double read , double send , double recv){

59 this.time=time;

60 this.cpu=cpu;

Simon Jonassen

154 B.1. SIMULATION MODEL SOURCE CODE

61 this.disk=disk;

62 this.mem=mem;

63 this.eth=eth;

64 this.read=read;

65 this.send=send;

66 this.recv=recv;

67 }

68 }

69

70 private class ProcessStatus{

71 public double time;

72 public int op;

73 public int dev;

74 private ProcessStatus(double time , int op, int dev){

75 this.time=time;

76 this.op=op;

77 this.dev=dev;

78 }

79 }

80

81 public LogWriter(ModelS model){

82 this.model=model;

83 sstatus = new ArrayList <SystemStatus >();

84 pstatus=new HashMap <String , ArrayList <ProcessStatus >>();

85 nstatus=new ArrayList <ArrayList <NodeStatus >>();

86 ptree = new HashMap <String , ArrayList <String >>();

87 ptree.put(null , new ArrayList <String >());

88 for (int i=0; i<Config.NUMBER_OF_NODES; i++){

89 nstatus.add(new ArrayList <NodeStatus >());

90 }

91 }

92

93 public void logSystemStatus(double time , int running , int solved){

94 sstatus.add(new SystemStatus(time , running , solved));

95 }

96

97 public void logProcess(String procName , String parentProcName , double time){

98 if (ptree.get(parentProcName)==null){

99 ptree.put(parentProcName , new ArrayList <String >());

100 }

101 ptree.get(parentProcName).add(procName);

102 pstatus.put(procName , new ArrayList <ProcessStatus >());

103 }

104

105 public void logNodeStatus(int nodenr , double time , double cpu , double disk ,

double mem , double eth , double read , double send , double recv){

106 nstatus.get(nodenr).add(new NodeStatus(time , cpu , disk , mem , eth , read ,

send , recv));

107 }

108

109 public void logProcessStatus(String procName , double time , int op, int dev){

110 if (pstatus.get(procName)==null) pstatus.put(procName , new ArrayList <

ProcessStatus >());

111 pstatus.get(procName).add(new ProcessStatus(time , op, dev));

112 }

113

114 private final int MAXW = 2000;

115 private final int MAXH = 5000;

116 private final Color TICK_COLOR = new Color (220, 220, 220, 255);

117 private final Color TICK_COLOR_BOLD = new Color (170, 170, 170, 255);

118 private final Color CPU_COLOR = new Color (102, 140, 178, 100);

119 private final Color DISK_COLOR = new Color (194, 122, 122, 100);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 155

120 private final Color ETH_COLOR = new Color(50, 140, 50, 100);

121 private final Color MEM_COLOR = new Color (150, 150, 150, 100);

122 private final Color CPU_COLOR_NT = new Color (102, 140, 178, 200);

123 private final Color DISK_COLOR_NT = new Color (194, 122, 122, 200);

124 private final Color MEM_COLOR_NT = new Color (150, 150, 150, 200);

125 private final Color ETH_COLOR_NT = new Color(50, 140, 50, 200);

126

127 private final Color IN_COLOR = new Color (102, 140, 178, 150);

128 private final Color OUT_COLOR = new Color (194, 122, 122, 150);

129 // private final Color NO_COLOR = new Color(0, 0, 0, 0);

130

131 public void renderHeader(Graphics g, int rectX , int rectY){

132 g.setColor(Color.BLACK);

133 g.setFont(new Font("SansSerif", Font.BOLD , 16));

134 g.drawString(ModelS.runName , rectX , rectY +16);

135 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

136

137 g.drawString(

138 "("+(Config.SIMULATED_ONLY ? "simulated only" : "") +", "+

139 (Config.USE_AND_QUERIES ? "AND -mode" : "OR-mode") +") "

140 , rectX , rectY +28);

141

142 g.setFont(new Font("SansSerif", Font.BOLD , 12));

143 g.drawString("Indexing Mode:",rectX , rectY +40);

144 g.drawString("Number of Nodes:",rectX , rectY +52);

145 g.drawString("CPUs per Node:",rectX , rectY +64);

146 g.drawString("Disks per Node:",rectX , rectY +76);

147 g.drawString("Maximum number of processes:",rectX , rectY +88);

148 g.drawString("Test duration: ",rectX , rectY +100);

149 g.drawString("Number of documents:",rectX , rectY +112);

150 g.drawString("Max number of res. required:",rectX , rectY +124);

151

152 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

153 g.drawString(Config.INDEXING_MODE+"",rectX +200, rectY +40);

154 g.drawString(Config.NUMBER_OF_NODES+"",rectX +200, rectY +52);

155 g.drawString(Config.NUMBER_OF_CPUS_PER_NODE+"",rectX +200, rectY +64);

156 g.drawString(Config.NUMBER_OF_DISKS_PER_NODE+"",rectX +200, rectY +76);

157 g.drawString(Config.MAX_NUMBER_OF_QUERY_PROCESSES+"",rectX +200, rectY +88);

158 g.drawString(Config.SIM_DURATION+"ms",rectX +200, rectY +100);

159 g.drawString(Config.NUMBER_OF_DOCUMENTS+"",rectX +200, rectY +112);

160 g.drawString(Config.NUMBER_OF_RESULTS_REQUIRED+"",rectX +200, rectY +124);

161

162 g.setFont(new Font("SansSerif", Font.BOLD , 12));

163 g.drawString("Memory per node:",rectX +290, rectY +40);

164 g.drawString("Buffer size:",rectX +290, rectY +52);

165 g.drawString("Network bandwidth:",rectX +290, rectY +64);

166 g.drawString("Network overhead:",rectX +290, rectY +76);

167 g.drawString("Disk overhead:",rectX +290, rectY +88);

168 g.drawString("Disk rotation delay: ",rectX +290, rectY +100);

169 g.drawString("Disk bandwidth:",rectX +290, rectY +112);

170

171 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

172 //g.drawString ((* Config.MEMORY_BLOCK_SIZE)+"B",rectX +500, rectY +40);

173 g.drawString ((int)((double)Config.MEMORY_BLOCK_SIZE /1048576* Config.

SIZE_OF_MEMORY_PER_NODE)+"MB",rectX +490, rectY +40);

174 g.drawString(Config.BUFFER_SIZE+"",rectX +490, rectY +52);

175 g.drawString ((int)(1.0/ Config.NETWORK_INVERSE_BANDWIDTH)+"Bps",rectX +490,

rectY +64);

176 g.drawString(Config.NETWORK_OVERHEAD+"ms",rectX +490, rectY +76);

177 g.drawString(Config.DISK_SEEK_TIME+"ms",rectX +490, rectY +88);

178 g.drawString(Config.DISK_ROTATION_DELAY+"",rectX +490, rectY +100);

Simon Jonassen

156 B.1. SIMULATION MODEL SOURCE CODE

179 g.drawString ((int)(1.0/ Config.DISK_INVERSE_BANDWIDTH)+"Bps",rectX +490,

rectY +112);

180

181 g.setFont(new Font("SansSerif", Font.BOLD , 12));

182 g.drawString("Comp instr time:",rectX +600, rectY +40);

183 g.drawString("Int instr time:",rectX +600, rectY +52);

184 g.drawString("Heap instr time:",rectX +600, rectY +64);

185 g.drawString("Heap multiway instr time:",rectX +600, rectY +76);

186 g.drawString("Lookup time (mem only):",rectX +600, rectY +88);

187

188 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

189 g.drawString(Config.COMPARSION_INSTRUCTION_TIME+"ms",rectX +770, rectY +40);

190 g.drawString(Config.INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME+"ms",rectX +770,

rectY +52);

191 g.drawString(Config.HEAP_INSTRUCTION_TIME+"ms",rectX +770, rectY +64);

192 g.drawString(Config.HEAP_MULTIWAY_INTERLEAVEMERGE_TIME+"ms",rectX +770,

rectY +76);

193 g.drawString(Config.LOOKUP_TIME+"ms",rectX +770, rectY +88);

194

195 double duration = Config.SIM_DURATION;

196 g.setFont(new Font("SansSerif", Font.BOLD , 12));

197 //g.drawString (" Results",rectX , rectY +148);

198 g.drawString("Query Statistics:",rectX , rectY +160);

199 g.drawString("QPS:",rectX , rectY +172);

200 g.drawString("Query time:",rectX , rectY +184);

201 g.drawString("Query terms:",rectX , rectY +196);

202 g.drawString("Query results:",rectX , rectY +208);

203 g.drawString("Query total index size:",rectX , rectY +220);

204

205 Statistics st = model.getStatistics ();

206

207 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

208 g.drawString(model.getSolved () * 1000 / duration+"",rectX +100, rectY +172);

209 g.drawString(st.queryTimes.getMean ()+" ("+st.queryTimes.getMinimum ()+","+

st.queryTimes.getMaximum ()+")",rectX +200, rectY +184);

210 g.drawString(st.queryNumTerms.getMean ()+"("+st.queryNumTerms.getMinimum ()+

","+st.queryNumTerms.getMaximum ()+")",rectX +200, rectY +196);

211 g.drawString(st.queryNumResults.getMean ()+" ("+st.queryNumResults.

getMinimum ()+","+st.queryNumResults.getMaximum ()+")",rectX +200, rectY

+208);

212 g.drawString(st.queryIndexSize.getMean ()+" ("+st.queryIndexSize.getMinimum

()+","+st.queryIndexSize.getMaximum ()+")",rectX +200, rectY +220);

213

214 ArrayList <Node > nodes = model.getNodes ();

215

216 g.setFont(new Font("SansSerif", Font.BOLD , 12));

217 g.drawString("Node statistics:",rectX , rectY +244);

218 g.drawString("Node #",rectX , rectY +256);

219 g.drawString("CPU load",rectX , rectY +268);

220 g.drawString("Disk load",rectX , rectY +280);

221 g.drawString("Eth load",rectX , rectY +292);

222 g.drawString("Mem load",rectX , rectY +304);

223 g.drawString("Disk seeks",rectX , rectY +316);

224 g.drawString("Data read",rectX , rectY +328);

225 g.drawString("Data sendt",rectX , rectY +340);

226 g.drawString("Data received",rectX , rectY +352);

227

228 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

229 int i=0;

230 for (Node node : nodes) {

231 g.drawString ((i++)+"",rectX +100*i, rectY +256);

232 g.drawString(node.getCPU ().avgUsage ()+"",rectX +100*i, rectY +268);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 157

233 g.drawString(node.getDisk ().avgUsage ()+"",rectX +100*i, rectY +280);

234 g.drawString(node.getEth ().avgUsage ()+"",rectX +100*i, rectY +292);

235 g.drawString(node.getMemory ().avgUsage ()+"",rectX +100*i, rectY +304);

236 g.drawString(node.getSeeks ()+"",rectX +100*i, rectY +316);

237 g.drawString(node.getDiskread ()+"",rectX +100*i, rectY +328);

238 g.drawString(node.getEthsend ()+"",rectX +100*i, rectY +340);

239 g.drawString(node.getEthrecv ()+"",rectX +100*i, rectY +352);

240

241 }

242

243 }

244

245 public void renderNodeLog (){

246 int barh = 55;

247 int barw = 50;

248 int offx = 5;

249 int offy = 5;

250 int sw = 1000;

251 int w = (int) (Config.SIM_DURATION * sw / 1000) + 2 * offx;

252 int hh = 500;

253 int h = hh + (barh * 4+50) * Config.NUMBER_OF_NODES + 2 * offy;

254 if (w > MAXW){

255 w = MAXW;

256 sw = (w - 2 * offx) * 1000 / Config.SIM_DURATION;

257 barw=sw/10;

258 // System.out.println(barw);

259 }

260

261 //for (int i=0;)

262 //g.drawString(uname , offX , headerY + (hoff ++) * (TEXT_FONT.getSize () + 2)

);

263 // System.out.println(w+" "+h);

264

265 img = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);

266 g = img.createGraphics ();

267 if (g instanceof Graphics2D) {

268 Map renderHints = new HashMap ();

269 renderHints.put(RenderingHints.KEY_ANTIALIASING , RenderingHints.

VALUE_ANTIALIAS_ON);

270 renderHints.put(RenderingHints.KEY_COLOR_RENDERING , RenderingHints.

VALUE_COLOR_RENDER_QUALITY);

271 renderHints.put(RenderingHints.KEY_DITHERING , RenderingHints.

VALUE_DITHER_DISABLE);

272 renderHints.put(RenderingHints.KEY_RENDERING , RenderingHints.

VALUE_RENDER_QUALITY);

273 renderHints.put(RenderingHints.KEY_TEXT_ANTIALIASING , RenderingHints.

VALUE_TEXT_ANTIALIAS_ON);

274 ((Graphics2D)g).addRenderingHints(renderHints);

275 }

276

277 g.setColor(Color.WHITE);

278 g.fillRect(0, 0, w, h);

279 g.setColor(Color.BLACK);

280 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

281

282 renderHeader(g, offx , offy);

283 int rectX , rectY ,rectW ,rectH;

284

285

286 rectX = offx;

287 rectY = offy +400;

288 rectW = w - 2 * offx;

Simon Jonassen

158 B.1. SIMULATION MODEL SOURCE CODE

289 rectH = 50;

290

291

292 {//do local scoop :)

293 int xpoints [] = new int[sstatus.size()+3];

294 int ypoints1 [] = new int[sstatus.size()+3];

295 int ypoints2 [] = new int[sstatus.size()+3];

296

297

298 int max = sstatus.get(sstatus.size() -1).scheduled;

299 int b=0;

300 for (int j = 0; j < rectW; j += sw/10, b++) {

301 g.setColor(b % 10==0 ? TICK_COLOR_BOLD: TICK_COLOR);

302 g.drawLine(rectX+j, rectY , rectX + j, rectY+rectH);

303 }

304

305 int i=1;

306 for (SystemStatus systemStatus : sstatus) {

307 xpoints[i] = rectX + (int) (systemStatus.time * rectW / Config.

SIM_DURATION);

308 ypoints1[i] = rectY +(50 - (int)((double)systemStatus.scheduled /

max * 50));

309 ypoints2[i] = rectY +(50 - (int)((double)systemStatus.solved / max

* 50));

310 // System.out.println(systemStatus.solved);

311 i++;

312 }

313 xpoints [0]= rectX;

314 xpoints[xpoints.length -2]= rectX+rectW;

315 xpoints[xpoints.length -1]= rectX+rectW;

316 ypoints1 [0] = ypoints2 [0] = rectY +50;

317 ypoints1[ypoints1.length -2] = ypoints1[ypoints1.length -3];

318 ypoints2[ypoints1.length -2] = ypoints2[ypoints2.length -3];

319 ypoints1[ypoints1.length -1] = rectY +50;

320 ypoints2[ypoints1.length -1] = rectY +50;

321 g.setColor(IN_COLOR);

322 g.fillPolygon(xpoints , ypoints1 , sstatus.size()+3);

323 g.setColor(OUT_COLOR);

324 g.fillPolygon(xpoints , ypoints2 , sstatus.size()+3);

325

326 g.setColor(Color.GRAY);

327 g.drawRect(rectX , rectY , rectW , rectH);

328 }

329

330 g.setColor(Color.BLACK);

331 g.setFont(new Font("SansSerif", Font.BOLD , 12));

332 g.drawString("Queries", rectX , rectY +66);

333 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

334

335 g.drawString("scheduled", rectX +112, rectY +66);

336 g.drawString("solved", rectX +212, rectY +66);

337

338 g.setColor(IN_COLOR);

339 g.fillRect(rectX +100, rectY+58, 8, 8);

340 g.setColor(OUT_COLOR);

341 g.fillRect(rectX +200, rectY+58, 8, 8);

342 g.setColor(Color.GRAY);

343 g.drawRect(rectX +100, rectY+58, 8, 8); g.drawRect(rectX +200, rectY +58, 8,

8);

344

345 rectX = offx;

346 rectY = offy+hh;

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 159

347 rectW = w - 2 * offx;

348 rectH = h - 2 * offy;

349

350 for (int i=0; i<Config.NUMBER_OF_NODES; i++){

351 ArrayList <NodeStatus > ns = nstatus.get(i);

352 int[] xpoints = new int[ns.size()+2];

353 int [][] ypoints = new int [7][ns.size()+2];

354 int pi=1;

355

356 xpoints [0]= rectX;

357 xpoints[ns.size()+1]= rectX+rectW;

358 for (int k=0; k<4; k++){

359 int b=0;

360 for (int j = 0; j < rectW; j += sw/10, b++) {

361 g.setColor(b % 10==0 ? TICK_COLOR_BOLD: TICK_COLOR);

362 g.drawLine(rectX+j, rectY+(barh +5)*k+(barh *4+50)*i, rectX + j,

rectY+(barh +5)*k+(barh *4+50)*i+barh);

363 }

364

365 g.setColor(Color.GRAY);

366 g.drawRect(rectX , rectY+(barh +5)*k+(barh *4+50)*i, rectW , barh);

367 ypoints[k][0]= ypoints[k][ns.size()+1] = rectY+(barh +5)*k+(barh

*4+50)*i+barh;

368 }

369

370 ypoints [4][0]= ypoints [4][ns.size()+1] = rectY+(barh +5)+(barh *4+50)*i+

barh;

371 ypoints [5][0]= ypoints [5][ns.size()+1]= ypoints [6][0]= ypoints [6][ns.size

()+1]=

372 rectY+(barh +5) *3+(barh *4+50)*i+barh;

373

374 g.setColor(Color.GRAY);

375 for (NodeStatus nodeStatus : ns) {

376 xpoints[pi] = rectX + (int) (nodeStatus.time * rectW / Config.

SIM_DURATION);

377 ypoints [0][pi] = rectY+(barh *4+50)*i+barh - (int)(nodeStatus.cpu

* barh); //cpu

378 ypoints [1][pi] = rectY+(barh +5)+(barh *4+50)*i+barh - (int)(

nodeStatus.disk * barh); //disk

379 ypoints [2][pi] = rectY+(barh +5) *2+(barh *4+50)*i+barh - (int)(

nodeStatus.mem * barh); // memory

380 ypoints [3][pi] = rectY+(barh +5) *3+(barh *4+50)*i+barh - (int)(

nodeStatus.eth * barh); //eth

381 ypoints [4][pi] = rectY+(barh +5)+(barh *4+50)*i+barh - (int)(

nodeStatus.read * barh); //disk

382 ypoints [5][pi] = rectY+(barh +5) *3+(barh *4+50)*i+barh - (int)(

nodeStatus.recv * barh); //eth

383 ypoints [6][pi] = rectY+(barh +5) *3+(barh *4+50)*i+barh - (int)(

nodeStatus.send* barh); //eth

384 g.setColor(Color.GRAY);

385 for(int k=0; k<4; k++){

386 if (pi >0) g.drawLine(xpoints[pi -1], ypoints[k][pi -1], xpoints[

pi], ypoints[k][pi]);

387 }

388

389 pi++;

390 }

391

392 g.setColor(Color.GRAY);

393 for(int k=0; k<7; k++){

394 g.drawLine(xpoints[ns.size()],ypoints[k][ns.size()], xpoints[ns.

size()+1], ypoints[k][ns.size()+1]);

Simon Jonassen

160 B.1. SIMULATION MODEL SOURCE CODE

395 }

396

397 g.setColor(OUT_COLOR);

398 g.fillPolygon(xpoints , ypoints [4], ns.size()+2);

399 g.fillPolygon(xpoints , ypoints [6], ns.size()+2);

400 //g.setColor(NO_COLOR);

401 g.setColor(IN_COLOR);

402 g.fillPolygon(xpoints , ypoints [5], ns.size()+2);

403

404 g.setColor(CPU_COLOR);

405 g.fillPolygon(xpoints , ypoints [0], ns.size()+2);

406 g.setColor(DISK_COLOR);

407 g.fillPolygon(xpoints , ypoints [1], ns.size()+2);

408 g.setColor(MEM_COLOR);

409 g.fillPolygon(xpoints , ypoints [2], ns.size()+2);

410 g.setColor(ETH_COLOR);

411 g.fillPolygon(xpoints , ypoints [3], ns.size()+2);

412

413 g.setColor(Color.BLACK);

414 int ly = rectY+(barh +5)*4 + (barh *4+50)*i+12;

415 int lx = rectX;

416 g.setFont(new Font("SansSerif", Font.BOLD , 12));

417 g.drawString("Node"+i, lx , ly);

418

419 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

420 g.drawString("CPU load", lx+112, ly);

421 g.drawString("disk load", lx+212, ly);

422 g.drawString("memory load", lx+312, ly);

423 g.drawString("ethernet load", lx+412, ly);

424 g.drawString("(additional", lx+532, ly);

425 g.drawString("in", lx+612, ly);

426 g.drawString("out)", lx+642, ly);

427

428 g.setColor(CPU_COLOR);

429 g.fillRect(lx+100, ly -8, 8, 8);

430 g.setColor(DISK_COLOR);

431 g.fillRect(lx+200, ly -8, 8, 8);

432 g.setColor(MEM_COLOR);

433 g.fillRect(lx+300, ly -8, 8, 8);

434 g.setColor(ETH_COLOR);

435 g.fillRect(lx+400, ly -8, 8, 8);

436 g.setColor(IN_COLOR);

437 g.fillRect(lx+600, ly -8, 8, 8);

438 g.setColor(OUT_COLOR);

439 g.fillRect(lx+630, ly -8, 8, 8);

440 g.setColor(Color.GRAY);

441 g.drawRect(lx+100, ly -8, 8, 8); g.drawRect(lx+200, ly -8, 8, 8);

442 g.drawRect(lx+300, ly -8, 8, 8); g.drawRect(lx+400, ly -8, 8, 8);

443 g.drawRect(lx+600, ly -8, 8, 8); g.drawRect(lx+630, ly -8, 8, 8);

444 }

445

446 try {

447 ImageIO.write(img , "png", new File(ModelS.runName+"_node.png"));

448 } catch (IOException e) {

449 e.printStackTrace ();

450 }

451 }

452

453 public ArrayList <String > prefixTrace(String parentProcName){

454 ArrayList <String > ans= new ArrayList <String >();

455 ArrayList <String > tmp=ptree.get(parentProcName);

456 if (tmp == null) return ans;

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 161

457

458 for (String name : tmp) {

459 ans.add(name);

460 ans.addAll(prefixTrace(name));

461 }

462

463 return ans;

464 }

465

466

467 public void renderProcLog () {

468

469 ArrayList <String > names = prefixTrace(null);

470

471 int barh = 12;

472 int barw = 50;

473 int hh = 0;

474 int offx = 5;

475 int offy = 5;

476

477 int sw = 1000;

478

479 int w = (int) (Config.SIM_DURATION * sw / 1000) + 2 * offx + 70 ;

480 int h = barh * names.size() + hh + 2 * offy;

481

482 if (w > MAXW +70){

483 w = MAXW +70;

484 sw = (w - 2 * offx - 70) * 1000 / Config.SIM_DURATION;

485 barw=sw/10;

486 }

487

488 if (h > MAXH){

489 h = MAXH;

490 barh = (h - 2 * offy - hh) / names.size();

491 }

492

493 img = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);

494 g = img.createGraphics ();

495

496 if (g instanceof Graphics2D) {

497 // set best quality rendering

498 Map renderHints = new HashMap ();

499 renderHints.put(RenderingHints.KEY_ANTIALIASING , RenderingHints.

VALUE_ANTIALIAS_ON);

500 renderHints.put(RenderingHints.KEY_COLOR_RENDERING , RenderingHints.

VALUE_COLOR_RENDER_QUALITY);

501 renderHints.put(RenderingHints.KEY_DITHERING , RenderingHints.

VALUE_DITHER_DISABLE);

502 renderHints.put(RenderingHints.KEY_RENDERING , RenderingHints.

VALUE_RENDER_QUALITY);

503 renderHints.put(RenderingHints.KEY_TEXT_ANTIALIASING , RenderingHints.

VALUE_TEXT_ANTIALIAS_ON);

504 ((Graphics2D)g).addRenderingHints(renderHints);

505 }

506

507 g.setColor(Color.WHITE);

508 g.fillRect(0, 0, w, h);

509 g.setColor(Color.BLACK);

510 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

511

512 int rectX = offx;

513 int rectY = offy+hh;

Simon Jonassen

162 B.1. SIMULATION MODEL SOURCE CODE

514 int rectW = w - 2 * offx -70;

515 int rectH = h - 2 * offy;

516 double scale = (double)(rectW)/Config.SIM_DURATION;

517

518 int b=0;

519 for (int j = 0; j < rectW; j += sw/10, b++) {

520 g.setColor(b % 10==0 ? TICK_COLOR_BOLD: TICK_COLOR);

521 g.drawLine(rectX+j, rectY , rectX + j, rectY+rectH);

522 }

523

524 for (int i=0; i<names.size(); i++){

525 String procName = names.get(i);

526 ArrayList <ProcessStatus > st = pstatus.get(procName);

527 int cnt = st.size();

528

529 ProcessStatus tmp = st.get(0);

530 double starttime = (tmp.op==START) ? tmp.time : 0.0;

531

532 tmp = st.get(cnt -1);

533 double endtime = (tmp.op== FINISH) ? tmp.time : Config.SIM_DURATION;

534

535 double lasttime , nexttime;

536 for (int j=0; j<cnt; j++){

537 tmp=st.get(j);

538 lasttime=tmp.time;

539 nexttime = ((j+1<cnt) ? st.get(j+1).time : Config.SIM_DURATION);

540

541 if (tmp.op == WAIT || tmp.op == GRANT){

542 if (tmp.dev==CPU){

543 if (tmp.op==WAIT) g.setColor(CPU_COLOR);

544 else g.setColor(CPU_COLOR_NT);

545 } else if (tmp.dev==DISK){

546 if (tmp.op==WAIT) g.setColor(DISK_COLOR);

547 else g.setColor(DISK_COLOR_NT);

548 } else if (tmp.dev==ETH){

549 if (tmp.op==WAIT) g.setColor(ETH_COLOR);

550 else g.setColor(ETH_COLOR_NT);

551 } else if (tmp.dev==MEM){

552 if (tmp.op==WAIT) g.setColor(MEM_COLOR);

553 else continue; // nothing!

554 }

555

556 g.fillRect ((int)(rectX+lasttime*scale), rectY+i*barh , Math.max

((int)((nexttime -lasttime)*scale) ,1), barh);

557 }

558 }

559 g.setColor(Color.DARK_GRAY);

560 g.drawRect ((int)(rectX+starttime*scale), rectY+i*barh , (int)((endtime -

starttime)*scale), barh);

561 g.setColor(Color.BLACK);

562 g.setFont(new Font("SansSerif", Font.BOLD , barh));

563 g.drawString(procName , (int)(rectX +2+ endtime*scale), rectY +(i+1)*barh)

;

564 }

565 g.drawRect(rectX , rectY , rectW , rectH);

566

567

568 int ly = offy+rectH -10;

569

570 g.setColor(Color.BLACK);

571 g.setFont(new Font("SansSerif", Font.BOLD , 12));

572 g.drawString("Processes", rectX +20, ly);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 163

573

574 g.setFont(new Font("SansSerif", Font.PLAIN , 12));

575 g.drawString("CPU request", rectX +112, ly);

576 g.drawString("CPU access", rectX +212, ly);

577 g.drawString("Disk request", rectX +312, ly);

578 g.drawString("Disk access", rectX +412, ly);

579 g.drawString("Network request", rectX +512, ly);

580 g.drawString("Network access", rectX +637, ly);

581 g.drawString("Memory request", rectX +762, ly);

582

583 g.setColor(CPU_COLOR);

584 g.fillRect(rectX +100, ly -8, 8, 8);

585 g.setColor(CPU_COLOR_NT);

586 g.fillRect(rectX +200, ly -8, 8, 8);

587 g.setColor(DISK_COLOR);

588 g.fillRect(rectX +300, ly -8, 8, 8);

589 g.setColor(DISK_COLOR_NT);

590 g.fillRect(rectX +400, ly -8, 8, 8);

591 g.setColor(ETH_COLOR);

592 g.fillRect(rectX +500, ly -8, 8, 8);

593 g.setColor(ETH_COLOR_NT);

594 g.fillRect(rectX +625, ly -8, 8, 8);

595 g.setColor(MEM_COLOR);

596 g.fillRect(rectX +750, ly -8, 8, 8);

597

598 g.setColor(Color.GRAY);

599 g.drawRect(rectX +100, ly -8, 8, 8);

600 g.drawRect(rectX +200, ly -8, 8, 8);

601 g.drawRect(rectX +300, ly -8, 8, 8);

602 g.drawRect(rectX +400, ly -8, 8, 8);

603 g.drawRect(rectX +500, ly -8, 8, 8);

604 g.drawRect(rectX +625, ly -8, 8, 8);

605 g.drawRect(rectX +750, ly -8, 8, 8);

606

607 try {

608 ImageIO.write(img , "png", new File(ModelS.runName+"_process.png"));

609 } catch (IOException e) {

610 e.printStackTrace ();

611 }

612 }

613

614

615 }

B.1.7 simulation.log.Statistics

1 package simulation.log;

2 import java.io.FileWriter;

3 import java.io.PrintWriter;

4 import java.util.ArrayList;

5

6 import desmoj.core.advancedModellingFeatures.Bin;

7 import desmoj.core.simulator.SimTime;

8 import desmoj.core.statistic .*;

9

10 import simulation.model.Config;

11 import simulation.model.ModelS;

12 import simulation.node.Node;

13 import simulation.query.QueryResult;

14

15 public class Statistics {

16 private ModelS model;

Simon Jonassen

164 B.1. SIMULATION MODEL SOURCE CODE

17

18 public Histogram queryNumTerms;

19 public Histogram queryNumResults;

20 public Histogram queryIndexSize;

21 public Histogram queryTimes;

22

23 public Statistics(ModelS model){

24 this.model=model;

25 queryNumTerms = new Histogram(model ,"Number of terms per query"

,1.0,10.0,10,true ,false);

26 queryNumResults = new Histogram(model ,"Number of results per query"

,0.0 ,1000000.0 ,20 ,true ,false);

27 queryIndexSize = new Histogram(model ,"Total index size per query" ,0.0,

28 Config.NUMBER_OF_DOCUMENTS*Config.SIZE_OF_INDEX_DOCUMENT_ENTRY ,20,

true ,false);

29 queryTimes = new Histogram(model ,"Query Times" ,0.0, Config.SIM_DURATION ,

10, true ,false);

30 }

31

32 public void addQueryTerms(int terms){

33 queryNumTerms.update(terms);

34 }

35

36 public void addQueryResults(int results){

37 queryNumResults.update(results);

38 }

39

40 public void addQueryIndexSize(double sz){

41 queryIndexSize.update(sz);

42 }

43

44 public void addQueryTime(SimTime t){

45 queryTimes.update(t.getTimeValue ());

46 }

47

48 public void storeAll (){

49 try {

50 PrintWriter pwr = new PrintWriter(new FileWriter(ModelS.runName+".log"

));

51 double duration = SimTime.diff(model.currentTime (), model.resetAt ()).

getTimeValue ();

52 pwr.println(ModelS.runName+" : experiment results");

53 pwr.println("Test Duration");

54 pwr.println(duration);

55 pwr.println("");

56 pwr.println("Query Statistics");

57 pwr.println("QPS \t" + model.getSolved () * 1000 / duration+"\n");

58 pwr.println("Query time (ms)\t"+queryTimes.getMean ()+" "+queryTimes.

getMinimum ()+" "+queryTimes.getMaximum ());

59 pwr.println("Query terms \t"+queryNumTerms.getMean ()+" "+queryNumTerms

.getMinimum ()+" "+queryNumTerms.getMaximum ());

60 pwr.println("Query results \t"+queryNumResults.getMean ()+" "+

queryNumResults.getMinimum ()+" "+queryNumResults.getMaximum ());

61 pwr.println("Query index size \t"+queryIndexSize.getMean ()+" "+

queryIndexSize.getMinimum ()+" "+queryIndexSize.getMaximum ());

62 pwr.println("");

63

64 ArrayList <Node > nodes = model.getNodes ();

65 pwr.println("Node Statistics: \t CPU load \t Disk load \t Eth load \t

Mem load \t Disk seeks \t Data read \t Data sendt \t Data received

");

66 int i=0;

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 165

67 for (Node node : nodes) {

68 pwr.println ((i++)+"\t"+

69 node.getCPU ().avgUsage ()+"\t"+

70 node.getDisk ().avgUsage ()+"\t"+

71 node.getEth ().avgUsage ()+"\t"+

72 node.getMemory ().avgUsage ()+"\t"+

73 node.getSeeks ()+"\t"+

74 node.getDiskread ()+"\t"+

75 node.getEthsend ()+"\t"+

76 node.getEthrecv ()

77);

78 }

79 pwr.close ();

80 } catch (Exception e) {

81 e.printStackTrace ();

82 }

83 }

84 }

B.1.8 simulation.micro.HeapInterleaveTest

1 package simulation.micro;

2 import java.util.Random;

3

4 import simulation.model.Config;

5

6 public class HeapInterleaveTest {

7

8 private static class PHeap{

9 private int[] data;

10 private int last , heapsize;

11

12

13 public PHeap(int[] data){

14 this.data = data;

15 this.last = data.length -2;

16 this.heapsize=data.length /2;

17 buildHeap ();

18 }

19

20 private void buildHeap (){

21 for (int i=(heapsize -1) /2; i>=0; i--) heapify(i);

22 }

23

24 private void heapify(int p){

25 int l = p*2+1;

26 int r = p*2+2;

27

28 if (l >= heapsize) return;

29

30 int n = (r >= heapsize) ? l : ((data[l*2] < data[r*2]) ? l : r);

31

32 if (data[p*2] > data[n*2]) {

33 int t1 = data[p*2];

34 int t2 = data[p*2+1];

35

36 data[p*2] = data[n*2];

37 data[p*2+1] = data[n*2+1];

38 data[n*2] = t1;

39 data[n*2+1] = t2;

40

41 heapify(n);

Simon Jonassen

166 B.1. SIMULATION MODEL SOURCE CODE

42 }

43 }

44

45 public int getFirstValue (){

46 /*

47 for (int i=0;i<heapsize; i++){

48 System.out.print(data[i*2]+":"+ data[i*2+1]+" ");

49 }

50 System.out.println ();

51 */

52 return data [1];

53 }

54

55 public void setFirst(int key , int value){

56 data [0] = key;

57 data [1] = value;

58 heapify (0);

59 }

60

61 public void removeFirst (){

62 heapsize --;

63 data [0] = data[heapsize *2];

64 data [1] = data[heapsize *2+1];

65 heapify (0);

66 }

67 }

68

69 public static void test(int runs){

70 double time =0.0;

71 int listnum = 4;

72

73 for (int j=0; j<runs;j++){

74 int num = 200000;

75 Random r = new Random (42);

76 int lists [][] = new int[listnum][num];

77

78 int last []={0,0,0,0,0,0,0,0};;

79 for (int k=0; k<listnum; k++){

80 for (int i=0; i<num; i+=2){

81 last[k]+=r.nextInt (10);

82 lists[k][i] = last[k];

83 lists[k][i+1] = (int) (r.nextDouble () * Config.

NUMBER_OF_WORDS_PER_DOCUMENT);

84 }

85 }

86

87 Runtime.getRuntime ().freeMemory ();

88 long start = System.nanoTime ();

89 int reslist [] = new int[num*listnum];

90 int p[] = {0,0,0,0,0,0,0,0};

91 int pr = 0;

92

93 int done = 0;

94

95 int heap[] = new int[listnum *2];

96

97 for (int i=0; i<listnum; i++){

98 heap[i*2] = lists[i][0];

99 heap[i*2+1] = i;

100 }

101

102 PHeap pheap = new PHeap(heap);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 167

103

104 int lastdoc =-1;

105 int acc = 0;

106 while (done <listnum){

107 int listnr = pheap.getFirstValue ();

108

109 int docnr = lists[listnr][p[listnr]];

110 int val = lists[listnr][p[listnr]+1];

111

112 if (docnr== lastdoc){

113 acc+=val;

114 } else{

115 if (lastdoc !=-1){

116 reslist[pr++] = lastdoc;

117 reslist[pr++] = acc;

118 }

119 lastdoc=docnr;

120 acc=val;

121 }

122 p[listnr]+=2;

123

124 if (p[listnr]<num){

125 pheap.setFirst(lists[listnr][p[listnr]], listnr);

126 } else {

127 pheap.removeFirst ();

128 done ++;

129 }

130 }

131

132 /*

133 for (int i=0; i<pr; i+=2){

134 System.out.println(reslist[i] + ":" + reslist[i+1]+"+");

135 }

136 */

137

138 long end = System.nanoTime ();

139 time +=((double)(end -start))/(num*listnum /2) / (Math.log(listnum)/Math.

log (2));

140 }

141 System.out.println(time/runs / 1000000);

142 }

143

144 public static void main(String args []){

145 test (100);

146 test (100);

147 test (100);

148 test (100);

149 test (100);

150 }

151 }

B.1.9 simulation.micro.InterleaveTwoTest

1 package simulation.micro;

2 import java.util.Random;

3

4 import simulation.model.Config;

5 import simulation.query.IndexTools;

6 import simulation.query.SimpleIndexHit;

7 import simulation.query.SimpleIndexHitList;

8

9

Simon Jonassen

168 B.1. SIMULATION MODEL SOURCE CODE

10 public class InterleaveTwoTest {

11 public static void test(int runs){

12 double time =0.0;

13

14 for (int j=0; j<runs;j++){

15 int num = 200000;

16 Random r = new Random (42);

17 int lista[] = new int[num];

18 int listb[] = new int[num];

19

20

21 int lasta =0;

22 int lastb =0;

23 for (int i=0; i<num; i+=2){

24 lasta+=r.nextInt (10);

25 lastb+=r.nextInt (10);

26

27 lista[i] = lasta;

28 lista[i+1] = (int) (r.nextDouble () * Config.

NUMBER_OF_WORDS_PER_DOCUMENT);

29 listb[i] = lastb;

30 listb[i+1] = (int) (r.nextDouble () * Config.

NUMBER_OF_WORDS_PER_DOCUMENT);

31 }

32

33 Runtime.getRuntime ().freeMemory ();

34 long start = System.nanoTime ();

35 int listc[] = new int[num *2];

36 int a=0, b=0, c=0;

37 while (a<num && b<num){

38 if (lista[a] < listb[b]){

39 listc[c]= lista[a];

40 listc[c+1] = lista[a+1];

41 a+=2;

42 c+=2;

43 } else if (lista[a] > listb[b]){

44 listc[c]= lista[b];

45 listc[c+1] = lista[b+1];

46 b+=2;

47 c+=2;

48 } else {

49 listc[c]= lista[a];

50 listc[c+1] = lista[a+1]+ lista[b+1];

51 a+=2;

52 b+=2;

53 c+=2;

54 }

55 }

56

57 while (a<num){

58 listc[c]= lista[a];

59 listc[c+1] = lista[a+1];

60 a+=2;

61 c+=2;

62 }

63

64 while (b<num){

65 listc[c]= lista[b];

66 listc[c+1] = lista[b+1];

67 b+=2;

68 c+=2;

69 }

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 169

70

71 long end = System.nanoTime ();

72 time +=((double)(end -start))/(num);

73 }

74 System.out.println(time/runs / 1000000);

75 }

76

77 public static void main(String args []){

78 test (1000);

79 test (1000);

80 test (1000);

81 test (1000);

82 test (1000);

83 }

84

85 }

B.1.10 simulation.node.Node

1 package simulation.node;

2

3 import simulation.log.LogWriter;

4 import simulation.model.Config;

5 import simulation.model.ModelS;

6 import desmoj.core.advancedModellingFeatures .*;

7 import desmoj.core.simulator .*;

8

9 public class Node {

10 private ModelS owner;

11 private Res cpu;

12 private Res disk;

13 private Res eth;

14 private Res mem;

15 private int nodenr;

16

17 private int seeks =0;

18 private double diskread =0;

19 private double ethrecv =0;

20 private double ethsend =0;

21

22 // private double allocatedmemfree =0;

23 private MemHandler memhandler;

24

25 public Node(ModelS owner , int nodenr , int disks , int cpus , int mem){

26 this.owner=owner;

27 this.nodenr = nodenr;

28 this.cpu = new Res(owner ,"CPU"+nodenr ,cpus ,true ,true);

29 this.eth = new Res(owner ,"ETH"+nodenr ,1,true ,true);

30 this.disk = new Res(owner ,"DISK"+nodenr ,disks ,true ,true);

31 this.mem = new Res(owner ,"MEM"+nodenr ,mem ,true ,true);

32 memhandler = new MemHandler(this , owner , "memhandler"+nodenr , false);

33 memhandler.activate(new SimTime (0.0));

34 }

35

36 public void resetCounters (){

37 seeks =0;

38 diskread =0;

39 ethrecv =0;

40 ethsend =0;

41 }

42

43 public Res getCPU (){

Simon Jonassen

170 B.1. SIMULATION MODEL SOURCE CODE

44 return cpu;

45 }

46

47 public Res getDisk (){

48 return disk;

49 }

50

51 public Res getMemory (){

52 return mem;

53 }

54

55 public Res getEth (){

56 return eth;

57 }

58

59 public int getNumber (){

60 return nodenr;

61 }

62

63 public SimTime lookupTermsMemOnly(SimProcess process , int numberofterms){

64 SimTime totalTime = new SimTime (0.0);

65 for (int i=0; i<numberofterms; i++){

66 SimTime lookupTime = new SimTime(Config.LOOKUP_TIME);

67 totalTime = SimTime.add(totalTime , lookupTime);

68 holdCPU(process , Config.LOOKUP_TIME);

69 }

70

71 if (numberofterms >1)

72 holdCPU(process , numberofterms * Math.log(numberofterms)/ Math.log(2)

*

73 Config.COMPARSION_INSTRUCTION_TIME);

74 return totalTime;

75 }

76

77 public SimTime lookupTerms(SimProcess process , int numberofterms){

78 SimTime totalTime = new SimTime (0.0);

79 for (int i=0; i<numberofterms; i++){

80 totalTime = SimTime.add(totalTime , fetch(process , Config.BUFFER_SIZE))

;

81 SimTime lookupTime = new SimTime(Config.LOOKUP_TIME);

82 totalTime = SimTime.add(totalTime , lookupTime);

83 holdCPU(process , Config.LOOKUP_TIME);

84

85 }

86

87 if (numberofterms >1)

88 holdCPU(process , numberofterms * Math.log(numberofterms)/ Math.log(2)

*

89 Config.COMPARSION_INSTRUCTION_TIME);

90 return totalTime;

91 }

92

93 public SimTime fetch(SimProcess process , double size){

94 SimTime transferTime = new SimTime(Config.DISK_SEEK_TIME + Config.

DISK_ROTATION_DELAY +

95 Config.DISK_INVERSE_BANDWIDTH* size);

96

97 if (Config.DEMO_MODE)

98 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

99 LogWriter.WAIT , LogWriter.DISK);

100 disk.provide (1);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 171

101 if (Config.DEMO_MODE)

102 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

103 LogWriter.GRANT , LogWriter.DISK);

104 process.hold(transferTime);

105 disk.takeBack (1);

106 if (Config.DEMO_MODE)

107 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

108 LogWriter.RELEASE , LogWriter.DISK);

109

110 diskread +=size;

111 seeks ++;

112 return transferTime;

113 }

114

115 public SimTime transfer(Node src , Node dest , SimProcess process , double size){

116 if (src==dest) return new SimTime (0.0);

117 SimTime transferTime = new SimTime(Config.NETWORK_OVERHEAD + Config.

NETWORK_INVERSE_BANDWIDTH * size);

118 ResHandler rh = ((ModelS) owner).getResHandler ();

119

120 if (Config.DEMO_MODE)

121 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (), LogWriter.WAIT , LogWriter.ETH);

122 while (!rh.atomicResOp(process , new Res[]{src.getEth (),dest.getEth ()}, new

int[]{1,1}, true)){

123 process.passivate ();

124 }

125 if (Config.DEMO_MODE)

126 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (), LogWriter.GRANT , LogWriter.ETH);

127 process.hold(transferTime);

128 rh.atomicResOp(process , new Res[]{src.getEth (), dest.getEth ()}, new int

[]{1,1}, false);

129 if (Config.DEMO_MODE)

130 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (), LogWriter.RELEASE , LogWriter.ETH);

131

132 src.ethsend +=size;

133 dest.ethrecv +=size;

134

135 return transferTime;

136 }

137

138 public SimTime heapInterleave(SimProcess process , int elements , int lists){

139 double totaltime = elements * Config.HEAP_MULTIWAY_INTERLEAVEMERGE_TIME *

Math.log(lists) / Math.log (2);

140 holdCPU(process , totaltime);

141 return new SimTime(totaltime);

142 }

143

144 public SimTime interleaveTwoLists(SimProcess process , int elements){

145 double totaltime = elements * Config.INTERLEAVE_TWO_LISTS_INSTRUCTION_TIME

;

146 holdCPU(process , totaltime);

147 return new SimTime(totaltime);

148 }

149

150 public SimTime heapMerge(SimProcess process , int elements , int lists){

151 double totaltime = elements * Config.HEAP_MULTIWAY_INTERLEAVEMERGE_TIME *

152 Math.log(lists) / Math.log(2);

Simon Jonassen

172 B.1. SIMULATION MODEL SOURCE CODE

153 holdCPU(process , totaltime);

154 return new SimTime(totaltime);

155 }

156

157 public SimTime heapTopAndSort(SimProcess process , int elements , int results){

158 double totaltime = (elements + 2 * results) *

159 Config.HEAP_INSTRUCTION_TIME * Math.log(results) / Math.log(2) ;

160 holdCPU(process , totaltime);

161 return new SimTime(totaltime);

162 }

163

164 public void holdCPU(SimProcess process , double totaltime){

165 int slices = (int) (totaltime/Config.CPU_SLICE_SIZE);

166 double last = totaltime - slices * Config.CPU_SLICE_SIZE;

167 for (int i=0; i<= slices +1; i++){

168 if (Config.DEMO_MODE)

169 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

170 LogWriter.WAIT , LogWriter.CPU);

171 cpu.provide (1);

172 if (Config.DEMO_MODE)

173 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

174 LogWriter.GRANT , LogWriter.CPU);

175 process.hold(new SimTime(i== slices?last:Config.CPU_SLICE_SIZE));

176 cpu.takeBack (1);

177 if (Config.DEMO_MODE)

178 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

179 LogWriter.RELEASE , LogWriter.CPU);

180 }

181 }

182

183 public void malloc(SimProcess process , double size){

184 /* System.out.println(size/Config.MEMORY_BLOCK_SIZE);

185 if (allocatedmemfree < size){

186

187

188 mem.provide ((int)Math.ceil(size/Config.MEMORY_BLOCK_SIZE));

189

190

191 allocatedmemfree += Math.ceil(size/Config.MEMORY_BLOCK_SIZE);

192 }

193 allocatedmemfree -=size;

194 */

195 if (Config.DEMO_MODE)

196 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

197 LogWriter.WAIT , LogWriter.MEM);

198 memhandler.malloc(process , size);

199 if (Config.DEMO_MODE)

200 owner.getLogWriter ().logProcessStatus(process.getName (), process.

currentTime ().getTimeValue (),

201 LogWriter.GRANT , LogWriter.MEM);

202

203 }

204

205 public void free(double size){

206 /*

207 allocatedmemfree += ((int) size) % Config.MEMORY_BLOCK_SIZE;

208 mem.takeBack ((int)(size/Config.MEMORY_BLOCK_SIZE));

209 */

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 173

210 memhandler.free(size);

211 }

212

213 public double getEthrecv () {

214 return ethrecv;

215 }

216

217 public double getEthsend () {

218 return ethsend;

219 }

220

221 public double getDiskread () {

222 return diskread;

223 }

224

225 public int getSeeks (){

226 return seeks;

227 }

228

229 private class MemRequest extends Entity{

230 public SimProcess process;

231 public double size;

232

233 public MemRequest(Model owner , String name , boolean showInTrace) {

234 super(owner , name , showInTrace);

235 }

236

237 public MemRequest(SimProcess process , double size , Model owner , String

name , boolean showInTrace) {

238 super(owner , name , showInTrace);

239 this.process = process;

240 this.size = size;

241 }

242 }

243

244 private class MemHandler extends SimProcess {

245 public Queue reqFree;

246 public Queue reqMalloc;

247 public double disposable = 0;

248 public Node node;

249

250

251 public MemHandler(Model owner , String name , boolean showInTrace) {

252 super(owner , name , showInTrace);

253 }

254

255 public MemHandler(Node node , Model owner , String name , boolean showInTrace

) {

256 super(owner , name , showInTrace);

257 this.node = node;

258 reqFree = new Queue(owner , "free", false , false);

259 reqMalloc = new Queue(owner , "malloc", false , false);

260 }

261

262 public void free(double size){

263 reqFree.insert(new MemRequest(null , size ,getModel (),"",false));

264 this.activate(new SimTime (0.0));

265 }

266

267 public void malloc(SimProcess process , double size){

268 reqMalloc.insert(new MemRequest(process ,size ,getModel (),"",false));

269 this.activate(new SimTime (0.0));

Simon Jonassen

174 B.1. SIMULATION MODEL SOURCE CODE

270 process.passivate ();

271

272 }

273

274 @Override

275 public void lifeCycle () {

276 while (true){

277 // System.out.println (" asdas");

278 while (reqFree.first() != null){

279 MemRequest req = (MemRequest) reqFree.first();

280 double size = req.size;

281 disposable += size;

282 int blocks = (int) disposable / Config.MEMORY_BLOCK_SIZE;

283 disposable %= Config.MEMORY_BLOCK_SIZE;

284 if (blocks >0) node.mem.takeBack(blocks);

285

286 reqFree.remove(req);

287 }

288

289 MemRequest req = (MemRequest) reqMalloc.first(), next;

290 while (req != null){

291 next = (MemRequest) reqMalloc.succ(req);

292 double size = req.size;

293 if (disposable >= size){

294 disposable -= size;

295 reqMalloc.remove(req);

296 req.process.activate(new SimTime (0.0));

297

298 } else {

299 int blocks = (int) Math.ceil(size / Config.

MEMORY_BLOCK_SIZE);

300 if (blocks < node.mem.getAvail ()){

301 node.mem.provide(blocks);

302 disposable = size % Config.MEMORY_BLOCK_SIZE;

303 reqMalloc.remove(req);

304 req.process.activate(new SimTime (0.0));

305 }

306 }

307 req = next;

308 }

309 this.passivate ();

310 }

311 }

312 }

313 }

B.1.11 simulation.node.ResHandler

1 package simulation.node;

2 import java.util .*;

3

4 import desmoj.core.advancedModellingFeatures.Res;

5 import desmoj.core.simulator .*;

6

7

8 public class ResHandler {

9 private ArrayList <ProcRecord > regprocs;

10 public ResHandler (){

11 regprocs = new ArrayList <ProcRecord >();

12 }

13

14 public void checkWaiting (){

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 175

15 for (int i=0; i<regprocs.size(); i++) {

16 ProcRecord rec = regprocs.get(i);

17 boolean ok=true;

18 for (int j=0; j<rec.ress.length; j++){

19 if (rec.ress[j]. getAvail () < rec.cnts[j]){

20 ok = false;

21 }

22 }

23 if (ok){

24 rec.process.activate(new SimTime (0.0));

25 regprocs.remove(i--);

26 }

27 }

28 }

29

30 public synchronized boolean atomicResOp(SimProcess proc , Res[] ress , int[]

cnts , boolean provide){

31 if (provide){

32 boolean ok= true;

33 for (int i=0; i<ress.length; i++){

34 if (ress[i]. getAvail () < cnts[i]){

35 ok = false;

36 }

37 }

38 if (ok){

39 for (int i=0; i<ress.length; i++){

40 ress[i]. provide(cnts[i]);

41 }

42 return true;

43 } else {

44 regprocs.add(new ProcRecord(proc ,ress ,cnts));

45 return false;

46 }

47 } else {

48 for (int i=0; i<ress.length; i++){

49 ress[i]. takeBack(cnts[i]);

50 }

51 checkWaiting ();

52 return true;

53 }

54 }

55

56 private class ProcRecord{

57 public SimProcess process;

58 public Res[] ress;

59 public int[] cnts;

60 public ProcRecord(SimProcess sp, Res[] r, int[] c){

61 process=sp;

62 ress=r;

63 cnts=c;

64 }

65 }

66 }

B.1.12 simulation.processes.QueryProcess

1 package simulation.processes;

2 import java.util.ArrayList;

3

4 import simulation.model.Config;

5 import simulation.model.ModelS;

6 import simulation.node.Node;

Simon Jonassen

176 B.1. SIMULATION MODEL SOURCE CODE

7 import simulation.query.Query;

8 import simulation.query.QueryResult;

9 import simulation.query.SubQueryResult;

10

11

12 import desmoj.core.simulator .*;

13

14

15 public abstract class QueryProcess extends SimProcess{

16 protected Query query;

17 protected Node node;

18 protected int subcnt;

19 protected Queue resultQueue;

20 protected QueryResult queryResult;

21 protected SimTime startTime;

22

23 public QueryProcess(Model owner , String name , boolean showInTrace) {

24 super(owner , name , showInTrace);

25 }

26

27 public QueryProcess(Model owner , String name , boolean showInTrace , Query query

, Node node) {

28 super(owner , name , showInTrace);

29 this.query=query;

30 this.node=node;

31 resultQueue = new Queue(owner , "RQ", false , false);

32 queryResult = new QueryResult(owner , "QueryResult", false);

33 startTime=currentTime ();

34 if (Config.DEMO_MODE)

35 ((ModelS) owner).getLogWriter ().logProcess(getName (), null , startTime.

getTimeValue ());

36 }

37

38 public void checkQueue (){

39 SubQueryResult sqr;

40 while ((sqr = (SubQueryResult)resultQueue.first())!=null){

41 resultQueue.remove(sqr);

42 queryResult.addResult(sqr);

43 subcnt --;

44 }

45 }

46

47 protected void ackQuery(SimProcess ackpro , SubQueryResult sqr){

48 if (sqr!=null) resultQueue.insert(sqr);

49 else subcnt --;

50

51 if (this.isScheduled ()){

52 if (SimTime.isSmallerOrEqual(this.currentTime (), this.scheduledAt ()))

{

53 this.reActivate(new SimTime (0.0));

54 } else {

55 System.out.println("bugbug");

56 }

57 } else if (this.isBlocked ()){

58 //do nothing? got lucky?

59 } else {

60 this.activate(new SimTime (0.0));

61 }

62 }

63

64 public Query getQuery () {

65 return query;

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 177

66 }

67

68 public Node getNode () {

69 return node;

70 }

71

72 @Override

73 public void lifeCycle () {

74 }

75

76 public SimTime getStartTime (){

77 return startTime;

78 }

79 }

B.1.13 simulation.processes.QueryProcessGI

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12 import simulation.query.SubQueryResult;

13

14

15

16 import desmoj.core.simulator .*;

17

18

19 public class QueryProcessGI extends QueryProcess {

20

21

22 public QueryProcessGI(Model owner , String name , boolean showInTrace) {

23 super(owner , name , showInTrace);

24 }

25

26 public QueryProcessGI(Model owner , String name , boolean showInTrace , Query

query , Node node) {

27 super(owner , name , showInTrace , query , node);

28 }

29

30 @Override

31 public void checkQueue (){

32 SubQueryResult sqr;

33

34 IndexHitList reslist= queryResult.getHitList ();

35

36 while ((sqr = (SubQueryResult)resultQueue.first())!=null){

37 resultQueue.remove(sqr);

38 queryResult.addResult(sqr);

39

40 IndexHitList subreslist= sqr.getHitList ();

41

42 node.interleaveTwoLists(this , subreslist.getNumDocs ()+(reslist !=null?

reslist.getNumDocs ():0));

43

Simon Jonassen

178 B.1. SIMULATION MODEL SOURCE CODE

44 if (reslist == null)

45 reslist = subreslist;

46 else

47 reslist = IndexTools.interleaveEntries(reslist , subreslist);

48

49 subcnt --;

50 }

51 queryResult.setHitList(reslist);

52 }

53

54 @Override

55 public void lifeCycle () {

56 ModelS ms = (ModelS) getModel ();

57 if (Config.DEMO_MODE)

58 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

59 LogWriter.OTHER);

60

61 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

62 Config.SIZE_OF_QUERY_ENTRY);

63

64 //node.lookupTerms(this , query.getNumberOfTerms ());

65 node.lookupTerms(this , query.getNumberOfTerms ());

66

67 //no results for and query

68 if (query.getTerms ().get(0) < 0){

69 if (Config.USE_AND_QUERIES) {

70 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

71 if (Config.DEMO_MODE)

72 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

73 LogWriter.FINISH , LogWriter.OTHER);

74 ms.querySolved(this , query , queryResult);

75 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

76 return;

77 } else {

78 query.eliminateNonExistingTerms ();

79 }

80 }

81

82 ArrayList <Node > nodes = ms.getNodes ();

83 ArrayList <SubQuery > subs = query.partitionByTerm ();

84 subcnt = subs.size();

85

86 // allocate enough memory

87 int memreq = Config.NUMBER_OF_DOCUMENTS * Config.SIZE_OF_ACC_ENTRY *

subcnt;

88 node.malloc(this ,memreq);

89

90 for (SubQuery subQuery : subs) {

91 int destNode = subQuery.getNodeNumber ();

92 SubQueryProcessGI sp = new SubQueryProcessGI(ms,"SQP"+destNode ,true ,

93 this , subQuery , nodes.get(destNode));

94 sp.activate(new SimTime (0.0));

95 }

96

97 // result trick

98 do{

99 passivate ();

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 179

100 checkQueue ();

101 } while (subcnt >0);

102

103 // postprocess

104 node.heapTopAndSort(this , queryResult.getNumberOfDocuments (), Config.

NUMBER_OF_RESULTS_REQUIRED);

105

106 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

107 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

108 Config.SIZE_OF_RESULT_ENTRY);

109 node.free(memreq);

110

111 if (Config.DEMO_MODE)

112 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

113 LogWriter.OTHER);

114 ms.querySolved(this , query , queryResult);

115 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

116 }

117 }

B.1.14 simulation.processes.QueryProcessGIPM

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12 import simulation.query.SubQueryResult;

13

14

15

16 import desmoj.core.simulator .*;

17

18

19 public class QueryProcessGIPM extends QueryProcess {

20 private int totalentries = 0;

21 private ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

22

23 public QueryProcessGIPM(Model owner , String name , boolean showInTrace) {

24 super(owner , name , showInTrace);

25 }

26

27 public QueryProcessGIPM(Model owner , String name , boolean showInTrace , Query

query , Node node) {

28 super(owner , name , showInTrace , query , node);

29 }

30

31 @Override

32 public void checkQueue (){

33 SubQueryResult sqr;

34

35 while ((sqr = (SubQueryResult)resultQueue.first())!=null){

Simon Jonassen

180 B.1. SIMULATION MODEL SOURCE CODE

36 resultQueue.remove(sqr);

37 queryResult.addResult(sqr);

38

39 IndexHitList subreslist= sqr.getHitList ();

40 totalentries += subreslist.getNumDocs ();

41 hitlists.add(subreslist);

42

43 subcnt --;

44 }

45 }

46

47 @Override

48 public void lifeCycle () {

49 ModelS ms = (ModelS) getModel ();

50 if (Config.DEMO_MODE)

51 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

52 LogWriter.OTHER);

53

54 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

55 Config.SIZE_OF_QUERY_ENTRY);

56

57 //node.lookupTerms(this , query.getNumberOfTerms ());

58 node.lookupTerms(this , query.getNumberOfTerms ());

59

60 //no results for and query

61 if (query.getTerms ().get(0) < 0){

62 if (Config.USE_AND_QUERIES) {

63 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

64 if (Config.DEMO_MODE)

65 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

66 LogWriter.FINISH , LogWriter.OTHER);

67 ms.querySolved(this , query , queryResult);

68 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

69 return;

70 } else {

71 query.eliminateNonExistingTerms ();

72 }

73 }

74 ArrayList <Node > nodes = ms.getNodes ();

75 ArrayList <SubQuery > subs = query.partitionByTerm ();

76 subcnt = subs.size();

77

78 // allocate enough memory

79 int memreq = Config.NUMBER_OF_DOCUMENTS * Config.SIZE_OF_ACC_ENTRY * (

subcnt +1);

80 node.malloc(this ,memreq);

81

82 for (SubQuery subQuery : subs) {

83 int destNode = subQuery.getNodeNumber ();

84 SubQueryProcessGIPM sp = new SubQueryProcessGIPM(ms,"SQP"+destNode ,

true ,

85 this , subQuery , nodes.get(destNode));

86 sp.activate(new SimTime (0.0));

87 }

88

89 // result trick

90 do{

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 181

91 passivate ();

92 checkQueue ();

93 } while (subcnt >0);

94

95 // postprocess

96 queryResult.setHitList(IndexTools.interleaveEntries(hitlists));

97

98 node.heapInterleave(this , totalentries , hitlists.size());

99 node.heapTopAndSort(this , queryResult.getNumberOfDocuments (), Config.

NUMBER_OF_RESULTS_REQUIRED);

100

101 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

102 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

103 Config.SIZE_OF_RESULT_ENTRY);

104 node.free(memreq);

105 if (Config.DEMO_MODE)

106 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

107 LogWriter.OTHER);

108 ms.querySolved(this , query , queryResult);

109 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

110 }

111 }

B.1.15 simulation.processes.QueryProcessHD

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12 import simulation.query.SubQueryResult;

13

14

15 import desmoj.core.simulator .*;

16

17

18 public class QueryProcessHD extends QueryProcess {

19

20 public QueryProcessHD(Model owner , String name , boolean showInTrace) {

21 super(owner , name , showInTrace);

22 }

23

24 public QueryProcessHD(Model owner , String name , boolean showInTrace , Query

query , Node node) {

25 super(owner , name , showInTrace , query , node);

26 }

27

28 @Override

29 public void checkQueue (){

30

31 SubQueryResult sqr;

32 IndexHitList reslist= queryResult.getHitList ();

Simon Jonassen

182 B.1. SIMULATION MODEL SOURCE CODE

33

34 while ((sqr = (SubQueryResult)resultQueue.first())!=null){

35 resultQueue.remove(sqr);

36 queryResult.addResult(sqr);

37

38 IndexHitList subreslist= sqr.getHitList ();

39

40 node.interleaveTwoLists(this , subreslist.getNumDocs ()+(reslist !=null?

reslist.getNumDocs ():0));

41

42 if (reslist ==null)

43 reslist = subreslist;

44 else

45 reslist = IndexTools.interleaveEntries(reslist , subreslist);

46

47 subcnt --;

48 }

49 queryResult.setHitList(reslist);

50 }

51

52 @Override

53 public void lifeCycle () {

54

55 ModelS ms = (ModelS) getModel ();

56 if (Config.DEMO_MODE)

57 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

58 LogWriter.OTHER);

59

60 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

61 Config.SIZE_OF_QUERY_ENTRY);

62

63 //node.lookupTerms(this , query.getNumberOfTerms ());

64 node.lookupTerms(this , query.getNumberOfTerms ());

65

66 //no results for and query

67 if (query.getTerms ().get(0) < 0){

68 if (Config.USE_AND_QUERIES) {

69 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

70 if (Config.DEMO_MODE)

71 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

72 LogWriter.FINISH , LogWriter.OTHER);

73 ms.querySolved(this , query , queryResult);

74 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

75 return;

76 } else {

77 query.eliminateNonExistingTerms ();

78 }

79 }

80

81 ArrayList <Node > nodes = ms.getNodes ();

82 ArrayList <SubQuery > subs = query.partitionHybrid ();

83 subcnt=subs.size();

84

85 // allocate enough memory

86 int memreq = Config.NUMBER_OF_DOCUMENTS * Config.SIZE_OF_ACC_ENTRY * (

subcnt + 2);

87 node.malloc(this , memreq);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 183

88

89 for (SubQuery subQuery : subs) {

90 int destNumber = subQuery.getNodeNumber ();

91 SubQueryProcessHD sp = new SubQueryProcessHD(ms,"SQP"+destNumber ,true ,

92 this , subQuery , nodes.get(destNumber));

93 sp.activate(new SimTime (0.0));

94

95 }

96

97 // result trick

98 do{

99 passivate ();

100 checkQueue ();

101 } while (subcnt >0);

102

103 // postprocess

104 node.heapTopAndSort(this , queryResult.getNumberOfDocuments (), Config.

NUMBER_OF_RESULTS_REQUIRED);

105

106

107 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

108 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

109 Config.SIZE_OF_RESULT_ENTRY);

110

111 node.free(memreq);

112 if (Config.DEMO_MODE)

113 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

114 LogWriter.OTHER);

115 ms.querySolved(this , query , queryResult);

116 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

117 }

118 }

B.1.16 simulation.processes.QueryProcessHDPM

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12 import simulation.query.SubQueryResult;

13

14

15

16 import desmoj.core.simulator .*;

17

18

19 public class QueryProcessHDPM extends QueryProcess {

20 private int totalentries = 0;

21 private ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

22

23 public QueryProcessHDPM(Model owner , String name , boolean showInTrace) {

Simon Jonassen

184 B.1. SIMULATION MODEL SOURCE CODE

24 super(owner , name , showInTrace);

25 }

26

27 public QueryProcessHDPM(Model owner , String name , boolean showInTrace , Query

query , Node node) {

28 super(owner , name , showInTrace , query , node);

29 }

30

31 @Override

32 public void checkQueue (){

33 SubQueryResult sqr;

34

35 while ((sqr = (SubQueryResult)resultQueue.first())!=null){

36 resultQueue.remove(sqr);

37 queryResult.addResult(sqr);

38

39 IndexHitList subreslist= sqr.getHitList ();

40 totalentries += subreslist.getNumDocs ();

41 hitlists.add(subreslist);

42

43 subcnt --;

44 }

45 }

46

47 @Override

48 public void lifeCycle () {

49

50 ModelS ms = (ModelS) getModel ();

51 if (Config.DEMO_MODE)

52 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

53 LogWriter.OTHER);

54

55 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

56 Config.SIZE_OF_QUERY_ENTRY);

57

58 //node.lookupTerms(this , query.getNumberOfTerms ());

59 node.lookupTerms(this , query.getNumberOfTerms ());

60

61 //no results for and query

62 if (query.getTerms ().get(0) < 0){

63 if (Config.USE_AND_QUERIES) {

64 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

65 if (Config.DEMO_MODE)

66 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

67 LogWriter.FINISH , LogWriter.OTHER);

68 ms.querySolved(this , query , queryResult);

69 System.out.println(query.getNumberOfTerms ()+":"+queryResult.

getNumberOfDocuments ());

70 return;

71 } else {

72 query.eliminateNonExistingTerms ();

73 }

74 }

75

76 ArrayList <Node > nodes = ms.getNodes ();

77 ArrayList <SubQuery > subs = query.partitionHybrid ();

78 subcnt=subs.size();

79

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 185

80 // allocate enough memory

81 int memreq = Config.NUMBER_OF_DOCUMENTS * Config.SIZE_OF_ACC_ENTRY * (

subcnt + 2);

82 node.malloc(this , memreq);

83

84 for (SubQuery subQuery : subs) {

85 int destNumber = subQuery.getNodeNumber ();

86 SubQueryProcess sp = new SubQueryProcessHDPM(ms ,"SQP"+destNumber ,true ,

87 this , subQuery , nodes.get(destNumber));

88 sp.activate(new SimTime (0.0));

89

90 }

91

92 // result trick

93 do{

94 passivate ();

95 checkQueue ();

96 } while (subcnt >0);

97

98 // postprocess

99 queryResult.setHitList(IndexTools.interleaveEntries(hitlists));

100 node.heapInterleave(this , totalentries , hitlists.size());

101 node.heapTopAndSort(this , queryResult.getNumberOfDocuments (), Config.

NUMBER_OF_RESULTS_REQUIRED);

102

103

104 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

105 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

106 Config.SIZE_OF_RESULT_ENTRY);

107

108 node.free(memreq);

109 if (Config.DEMO_MODE)

110 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

111 LogWriter.OTHER);

112 ms.querySolved(this , query , queryResult);

113 }

114 }

B.1.17 simulation.processes.QueryProcessLI

1 package simulation.processes;

2 import java.util.ArrayList;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.Query;

9 import simulation.query.SubQuery;

10 import simulation.query.SubQueryResult;

11

12

13 import desmoj.core.simulator .*;

14

15

16 public class QueryProcessLI extends QueryProcess {

17 private double numres = 0;

18

19 public QueryProcessLI(Model owner , String name , boolean showInTrace) {

Simon Jonassen

186 B.1. SIMULATION MODEL SOURCE CODE

20 super(owner , name , showInTrace);

21 }

22

23 public QueryProcessLI(Model owner , String name , boolean showInTrace , Query

query , Node node) {

24 super(owner , name , showInTrace , query , node);

25 }

26

27 @Override

28 public void checkQueue (){

29 SubQueryResult sqr;

30 while ((sqr = (SubQueryResult) resultQueue.first())!=null){

31 resultQueue.remove(sqr);

32 queryResult.addResult(sqr);

33 numres +=Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , sqr.

getNumberOfDocuments ());

34 subcnt --;

35 }

36 }

37

38 @Override

39 public void lifeCycle () {

40 ModelS ms = (ModelS) getModel ();

41

42 if (Config.DEMO_MODE)

43 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

44 LogWriter.OTHER);

45

46 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

47 Config.SIZE_OF_QUERY_ENTRY);

48

49 ArrayList <Node > nodes = ms.getNodes ();

50 ArrayList <SubQuery > subs = query.partitionByDoc ();

51 subcnt = subs.size();

52

53 // allocate enough memory

54 int memreq = Config.NUMBER_OF_RESULTS_REQUIRED * subcnt * Config.

SIZE_OF_RESULT_ENTRY;

55 node.malloc(this , memreq);

56

57

58 for (SubQuery subQuery : subs) {

59 int destNumber = subQuery.getNodeNumber ();

60 SubQueryProcess newsqp = new SubQueryProcessLI(ms,"SQP"+destNumber ,

true ,

61 this , subQuery , nodes.get(destNumber));

62 newsqp.activate(new SimTime (0.0));

63 }

64

65 do{

66 passivate ();

67 checkQueue ();

68 } while (subcnt >0);

69

70

71 queryResult.combineResults ();

72

73 //FIXME: there is an alternative here! progressive heapmerge

74

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 187

75 node.heapMerge(this , (int) Math.min(Config.NUMBER_OF_RESULTS_REQUIRED ,

numres), Config.NUMBER_OF_NODES);

76

77 node.heapTopAndSort(this , (int) Math.min(Config.NUMBER_OF_RESULTS_REQUIRED

, numres),

78 Config.NUMBER_OF_RESULTS_REQUIRED);

79

80 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

81 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

82 Config.SIZE_OF_RESULT_ENTRY);

83

84 node.free(memreq);

85 if (Config.DEMO_MODE)

86 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

87 LogWriter.OTHER);

88

89 ms.querySolved(this , query , queryResult);

90 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

91 }

92 }

B.1.18 simulation.processes.QueryProcessLIPM

1 package simulation.processes;

2 import java.util.ArrayList;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.Query;

9 import simulation.query.SubQuery;

10 import simulation.query.SubQueryResult;

11

12

13 import desmoj.core.simulator .*;

14

15

16

17 public class QueryProcessLIPM extends QueryProcess {

18 private double numres = 0;

19

20 public QueryProcessLIPM(Model owner , String name , boolean showInTrace) {

21 super(owner , name , showInTrace);

22 }

23

24 public QueryProcessLIPM(Model owner , String name , boolean showInTrace , Query

query , Node node) {

25 super(owner , name , showInTrace , query , node);

26 }

27

28 @Override

29 public void checkQueue (){

30 SubQueryResult sqr;

31 while ((sqr = (SubQueryResult) resultQueue.first())!=null){

32 resultQueue.remove(sqr);

33 queryResult.addResult(sqr);

Simon Jonassen

188 B.1. SIMULATION MODEL SOURCE CODE

34 numres +=Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , sqr.

getNumberOfDocuments ());

35 subcnt --;

36 }

37 }

38

39 @Override

40 public void lifeCycle () {

41 ModelS ms = (ModelS) getModel ();

42 if (Config.DEMO_MODE)

43 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

44 LogWriter.OTHER);

45

46 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms () *

47 Config.SIZE_OF_QUERY_ENTRY);

48

49 //dont need to lookup , just broadcast

50 //node.lookupTerms(this , query.getNumberOfTerms ());

51 ModelS model = (ModelS) getModel ();

52 ArrayList <Node > nodes = model.getNodes ();

53 ArrayList <SubQuery > subs = query.partitionByDoc ();

54 subcnt = subs.size();

55

56 // allocate enough memory

57 int memreq = Config.NUMBER_OF_RESULTS_REQUIRED * (subcnt + 1)* Config.

SIZE_OF_RESULT_ENTRY;

58 node.malloc(this , memreq);

59

60

61 for (SubQuery subQuery : subs) {

62 int destNumber = subQuery.getNodeNumber ();

63 SubQueryProcess newsqp = new SubQueryProcessLIPM(model ,"SQP"+

destNumber ,true ,

64 this , subQuery , nodes.get(destNumber));

65 newsqp.activate(new SimTime (0.0));

66 }

67

68 do{

69 passivate ();

70 checkQueue ();

71 } while (subcnt >0);

72

73

74 queryResult.combineResults ();

75

76 node.heapMerge(this , (int) Math.min(Config.NUMBER_OF_RESULTS_REQUIRED ,

numres),

77 Config.NUMBER_OF_NODES);

78 node.heapTopAndSort(this , (int) Math.min(Config.NUMBER_OF_RESULTS_REQUIRED

, numres),

79 Config.NUMBER_OF_RESULTS_REQUIRED);

80

81 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

82 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , queryResult.

getNumberOfDocuments ()) *

83 Config.SIZE_OF_RESULT_ENTRY);

84

85 node.free(memreq);

86 if (Config.DEMO_MODE)

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 189

87 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

88 LogWriter.OTHER);

89

90 model.querySolved(this , query , queryResult);

91 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

92 }

93 }

B.1.19 simulation.processes.QueryProcessPL

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12

13

14

15

16 import desmoj.core.simulator .*;

17

18

19 public class QueryProcessPL extends QueryProcess {

20

21 public QueryProcessPL(Model owner , String name , boolean showInTrace) {

22 super(owner , name , showInTrace);

23 }

24

25 public QueryProcessPL(Model owner , String name , boolean showInTrace , Query

query , Node node) {

26 super(owner , name , showInTrace , query , node);

27 }

28

29 @Override

30 public void checkQueue (){}

31

32 @Override

33 public void lifeCycle () {

34

35 ModelS ms = (ModelS) getModel ();

36 if (Config.DEMO_MODE)

37 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

38 LogWriter.OTHER);

39

40 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms ()

41 * Config.SIZE_OF_QUERY_ENTRY);

42

43 node.lookupTerms(this , query.getNumberOfTerms ());

44 if (query.getTerms ().get(0) < 0){

45 if (Config.USE_AND_QUERIES) {

46 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

Simon Jonassen

190 B.1. SIMULATION MODEL SOURCE CODE

47 if (Config.DEMO_MODE)

48 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

49 LogWriter.FINISH , LogWriter.OTHER);

50 ms.querySolved(this , query , queryResult);

51 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

52 return;

53 } else {

54 query.eliminateNonExistingTerms ();

55 }

56 }

57

58 ArrayList <Node > nodes = ms.getNodes ();

59 ArrayList <SubQuery > subs = query.partitionByTerm ();

60 subcnt=subs.size();

61

62 int subcntc = subcnt;

63 Node prev = null;

64 Node curr = node;

65 int memreq = 2* Config.NUMBER_OF_DOCUMENTS*Config.SIZE_OF_ACC_ENTRY;

66

67

68 curr.malloc(this , memreq);

69 IndexHitList reslist=null;

70

71 if (subcnt ==0){

72 queryResult.setHitList(reslist);

73 curr.transfer(curr , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

74 } else {

75 while(true){

76 int bestcand =0;

77 for (int i=1; i < subcnt; i++){

78 //TODO: fix the heuristic part here!

79 if (subs.get(bestcand).getLowestScore ()>subs.get(i).

getLowestScore ()){

80 bestcand=i;

81 }

82 }

83 prev=curr;

84 curr=nodes.get(subs.get(bestcand).getNodeNumber ());

85

86 SubQuery subquery=subs.get(bestcand);

87

88 if (prev!=curr){

89 prev.transfer(curr , prev , this , Config.SUBQUERY_HEADER_LENGTH*

subcntc + query.getNumberOfTerms () *

90 Config.SIZE_OF_QUERY_ENTRY +(reslist !=null?reslist.

getNumDocs ()*Config.SIZE_OF_ACC_ENTRY :0));

91 prev.free(memreq);

92 curr.malloc(this , memreq);

93 }

94

95 node.lookupTerms(this , subquery.getNumberOfTerms ());

96 int memreq2 = Config.NUMBER_OF_DOCUMENTS * Config.

SIZE_OF_ACC_ENTRY;

97 curr.malloc(this , memreq2);

98

99 for (Integer termid : subquery.getSortedTermList ()) {

100 IndexHitList termlist=subquery.getHitList(termid);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 191

101 node.fetch(this , subquery.getNumberOfDocuments(termid) *

Config.SIZE_OF_INDEX_DOCUMENT_ENTRY);

102

103 node.interleaveTwoLists(this , termlist.getNumDocs ()+(reslist !=

null?reslist.getNumDocs ():0));

104 if (reslist ==null)

105 reslist = termlist;

106 else

107 reslist = IndexTools.interleaveEntries(reslist , termlist);

108 }

109

110 curr.free(memreq2);

111 subs.remove(bestcand);

112

113 if (--subcnt ==0){

114 // postprocess

115 queryResult.setHitList(reslist);

116

117 curr.heapTopAndSort(this , queryResult.getNumberOfDocuments (),

Config.NUMBER_OF_RESULTS_REQUIRED);

118 curr.transfer(curr , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

119 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED ,queryResult

.getNumberOfDocuments ()) *

120 Config.SIZE_OF_RESULT_ENTRY);

121

122 break;

123 }

124 }

125 }

126

127 curr.free(memreq);

128 if (Config.DEMO_MODE)

129 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

130 LogWriter.OTHER);

131

132 ms.querySolved(this , query , queryResult);

133 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

134 }

135 }

B.1.20 simulation.processes.QueryProcessPLPM

1 package simulation.processes;

2 import java.util .*;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.Query;

11 import simulation.query.SubQuery;

12

13

14

15

16 import desmoj.core.simulator .*;

17

Simon Jonassen

192 B.1. SIMULATION MODEL SOURCE CODE

18

19 public class QueryProcessPLPM extends QueryProcess {

20

21 public QueryProcessPLPM(Model owner , String name , boolean showInTrace) {

22 super(owner , name , showInTrace);

23 }

24

25 public QueryProcessPLPM(Model owner , String name , boolean showInTrace , Query

query , Node node) {

26 super(owner , name , showInTrace , query , node);

27 }

28

29 @Override

30 public void checkQueue (){}

31

32 @Override

33 public void lifeCycle () {

34

35 ModelS ms = (ModelS) getModel ();

36 if (Config.DEMO_MODE)

37 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

38 LogWriter.OTHER);

39

40 node.transfer(ms.getBroker (), node , this , Config.QUERY_HEADER_LENGTH +

query.getNumberOfTerms ()

41 * Config.SIZE_OF_QUERY_ENTRY);

42

43 node.lookupTerms(this , query.getNumberOfTerms ());

44 if (query.getTerms ().get(0) < 0){

45 if (Config.USE_AND_QUERIES) {

46 node.transfer(node , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

47 if (Config.DEMO_MODE)

48 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (),

49 LogWriter.FINISH , LogWriter.OTHER);

50 ms.querySolved(this , query , queryResult);

51 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

52 return;

53 } else {

54 query.eliminateNonExistingTerms ();

55 }

56 }

57

58

59 ArrayList <Node > nodes = ms.getNodes ();

60 ArrayList <SubQuery > subs = query.partitionByTerm ();

61 subcnt=subs.size();

62

63 int subcntc = subcnt;

64 Node prev = null;

65 Node curr = node;

66 int memreq = Config.NUMBER_OF_DOCUMENTS*Config.SIZE_OF_ACC_ENTRY;

67

68

69 curr.malloc(this , memreq);

70 IndexHitList reslist=null;

71 if (subcnt ==0){

72 queryResult.setHitList(reslist);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 193

73 curr.transfer(curr , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH);

74 } else {

75 while(true){

76 int bestcand =0;

77 for (int i=1; i < subcnt; i++){

78 // TODO: fix the heuristic part here!

79 if (subs.get(bestcand).getLowestScore ()>subs.get(i).

getLowestScore ()){

80 bestcand=i;

81 }

82 }

83

84 prev=curr;

85 curr=nodes.get(subs.get(bestcand).getNodeNumber ());

86

87 if (prev!=curr){

88 prev.free(memreq);

89 prev.transfer(curr , prev , this , Config.SUBQUERY_HEADER_LENGTH*

subcntc + query.getNumberOfTerms () *

90 Config.SIZE_OF_QUERY_ENTRY +(reslist !=null?reslist.

getNumDocs ()*Config.SIZE_OF_ACC_ENTRY :0));

91 curr.malloc(this , memreq);

92 }

93

94 SubQuery subquery=subs.get(bestcand);

95 node.lookupTerms(this , subquery.getNumberOfTerms ());

96

97 int memreq2 = subquery.getNumberOfTerms () * Config.

NUMBER_OF_DOCUMENTS *

98 Config.SIZE_OF_ACC_ENTRY;

99

100 curr.malloc(this , memreq2);

101

102 ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

103 if (reslist !=null) hitlists.add(reslist);

104 int totalentries = (reslist !=null)?reslist.getNumDocs ():0;

105

106 for (Integer termid : subquery.getSortedTermList ()) {

107 IndexHitList termlist=subquery.getHitList(termid);

108 node.fetch(this , subquery.getNumberOfDocuments(termid) *

Config.SIZE_OF_INDEX_DOCUMENT_ENTRY);

109 hitlists.add(termlist);

110 totalentries += termlist.getNumDocs ();

111 }

112

113 // simulates merging extraction from heap. fetched lists and the

old list

114 reslist = IndexTools.interleaveEntries(hitlists);

115 node.heapInterleave(this , totalentries , hitlists.size());

116 curr.free(memreq2);

117

118 subs.remove(bestcand);

119

120 if (--subcnt ==0){

121 // postprocess

122 queryResult.setHitList(reslist);

123

124 curr.heapTopAndSort(this , queryResult.getNumberOfDocuments (),

125 Config.NUMBER_OF_RESULTS_REQUIRED);

126 curr.transfer(curr , ms.getBroker (), this , Config.

QUERY_RESULT_HEADER_LENGTH +

Simon Jonassen

194 B.1. SIMULATION MODEL SOURCE CODE

127 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED ,queryResult.

getNumberOfDocuments ()) *

128 Config.SIZE_OF_RESULT_ENTRY);

129 break;

130 }

131 }

132 }

133 curr.free(memreq);

134 if (Config.DEMO_MODE)

135 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

136 LogWriter.OTHER);

137 ms.querySolved(this , query , queryResult);

138 // System.out.println(query.getNumberOfTerms ()+":"+ queryResult.

getNumberOfDocuments ());

139 }

140 }

B.1.21 simulation.processes.SubQueryProcess

1 package simulation.processes;

2 import simulation.model.Config;

3 import simulation.model.ModelS;

4 import simulation.node.Node;

5 import simulation.query.SubQuery;

6 import desmoj.core.simulator .*;

7

8 public abstract class SubQueryProcess extends SimProcess{

9 protected SubQuery subquery;

10 protected Node node;

11 protected QueryProcess queryprocess;

12

13 public SubQueryProcess(Model owner , String name , boolean showInTrace) {

14 super(owner , name , showInTrace);

15 }

16

17 public SubQueryProcess(Model owner , String name , boolean showInTrace ,

18 QueryProcess queryprocess , SubQuery subquery , Node node) {

19 super(owner , name , showInTrace);

20 this.subquery=subquery;

21 this.node=node;

22 this.queryprocess=queryprocess;

23 if (Config.DEMO_MODE)

24 ((ModelS) owner).getLogWriter ().logProcess(getName (), queryprocess.

getName (), currentTime ().getTimeValue ());

25 }

26

27 @Override

28 public void lifeCycle (){

29 }

30

31 public Node getNode () {

32 return node;

33 }

34

35 public SubQuery getSubquery () {

36 return subquery;

37 }

38

39 }

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 195

B.1.22 simulation.processes.SubQueryProcessGI

1 package simulation.processes;

2

3 import simulation.log.LogWriter;

4 import simulation.model.Config;

5 import simulation.model.ModelS;

6 import simulation.node .*;

7 import simulation.query .*;

8 import desmoj.core.simulator .*;

9

10 public class SubQueryProcessGI extends SubQueryProcess{

11

12 public SubQueryProcessGI(Model owner , String name , boolean showInTrace) {

13 super(owner , name , showInTrace);

14 }

15

16 public SubQueryProcessGI(Model owner , String name , boolean showInTrace ,

17 QueryProcess queryprocess , SubQuery subquery , Node node) {

18 super(owner , name , showInTrace , queryprocess , subquery , node);

19 }

20

21 @Override

22 public void lifeCycle () {

23 // example

24 Node othernode = queryprocess.getNode ();

25 ModelS ms = (ModelS) getModel ();

26 if (Config.DEMO_MODE)

27 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

28 LogWriter.OTHER);

29

30 // transfer data

31 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

32 subquery.getNumberOfTerms ());

33

34 // lookup for the terms

35 node.lookupTerms(this , subquery.getNumberOfTerms ());

36

37 // allocate

38 int memreq = Config.NUMBER_OF_DOCUMENTS * (Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY + 2 * Config.SIZE_OF_ACC_ENTRY);

39 node.malloc(this , memreq);

40

41 IndexHitList reslist=null;

42 for (Integer termid : subquery.getSortedTermList ()) {

43 //FIXME: just documentbased

44 IndexHitList termlist=subquery.getHitList(termid);

45 node.fetch(this , termlist.getNumDocs () * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

46

47 node.interleaveTwoLists(this , (termlist.getNumDocs ()+(reslist !=null?

reslist.getNumDocs ():0)));

48 if (reslist ==null)

49 reslist = termlist;

50 else

51 reslist = IndexTools.interleaveEntries(reslist , termlist);

52

53 }

54 // transfer back:

Simon Jonassen

196 B.1. SIMULATION MODEL SOURCE CODE

55 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

56 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+

57 Config.SIZE_OF_ACC_ENTRY * subqueryresult.getNumberOfDocuments ());

58

59 //free memory

60 node.free(memreq);

61 if (Config.DEMO_MODE)

62 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

63 LogWriter.OTHER);

64 //ack query

65 queryprocess.ackQuery(this , subqueryresult);

66 }

67

68 }

B.1.23 simulation.processes.SubQueryProcessGIPM

1 package simulation.processes;

2 import desmoj.core.simulator .*;

3 import java.util .*;

4

5 import simulation.log.LogWriter;

6 import simulation.model.Config;

7 import simulation.model.ModelS;

8 import simulation.node.Node;

9 import simulation.query.IndexHitList;

10 import simulation.query.IndexTools;

11 import simulation.query.SubQuery;

12 import simulation.query.SubQueryResult;

13

14

15

16

17 public class SubQueryProcessGIPM extends SubQueryProcess{

18 public SubQueryProcessGIPM(Model owner , String name , boolean showInTrace) {

19 super(owner , name , showInTrace);

20 }

21

22 public SubQueryProcessGIPM(Model owner , String name , boolean showInTrace ,

23 QueryProcess queryprocess , SubQuery subquery , Node node) {

24 super(owner , name , showInTrace , queryprocess , subquery , node);

25 }

26

27 @Override

28 public void lifeCycle () {

29 // example

30 Node othernode = queryprocess.getNode ();

31 ModelS ms = (ModelS) getModel ();

32 if (Config.DEMO_MODE)

33 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

34 LogWriter.OTHER);

35

36 // transfer data

37 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

38 subquery.getNumberOfTerms ());

39

40 // lookup for the terms

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 197

41 node.lookupTerms(this , subquery.getNumberOfTerms ());

42

43 // allocate

44 int memreq = Config.NUMBER_OF_DOCUMENTS * (Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY *

45 subquery.getNumberOfTerms () + Config.SIZE_OF_ACC_ENTRY);

46 node.malloc(this , memreq);

47

48 ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

49 int totalentries = 0;

50 for (Integer termid : subquery.getSortedTermList ()) {

51 //FIXME: just documentbased

52 IndexHitList termlist=subquery.getHitList(termid);

53 node.fetch(this , termlist.getNumDocs () * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

54 hitlists.add(termlist);

55 totalentries += termlist.getNumDocs ();

56 }

57

58 IndexHitList reslist = IndexTools.interleaveEntries(hitlists);

59 // simulates merging extraction from heap

60 node.heapInterleave(this , totalentries , hitlists.size());

61

62 //FIXME: storage to memory

63

64 // transfer back:

65 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

66 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+

67 Config.SIZE_OF_ACC_ENTRY * subqueryresult.getNumberOfDocuments ());

68

69 //free memory

70 node.free(memreq);

71 if (Config.DEMO_MODE)

72 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

73 LogWriter.OTHER);

74 //ack query

75 queryprocess.ackQuery(this , subqueryresult);

76 }

77 }

B.1.24 simulation.processes.SubQueryProcessHD

1 package simulation.processes;

2 import simulation.log.LogWriter;

3 import simulation.model.Config;

4 import simulation.model.ModelS;

5 import simulation.node.Node;

6 import simulation.query.IndexHitList;

7 import simulation.query.IndexTools;

8 import simulation.query.SubQuery;

9 import simulation.query.SubQueryResult;

10 import desmoj.core.simulator .*;

11

12 public class SubQueryProcessHD extends SubQueryProcess{

13

14 public SubQueryProcessHD(Model owner , String name , boolean showInTrace) {

15 super(owner , name , showInTrace);

16 }

17

Simon Jonassen

198 B.1. SIMULATION MODEL SOURCE CODE

18 public SubQueryProcessHD(Model owner , String name , boolean showInTrace ,

19 QueryProcess queryprocess , SubQuery subquery , Node node) {

20 super(owner , name , showInTrace , queryprocess , subquery , node);

21 }

22

23 @Override

24 public void lifeCycle () {

25 // example

26 Node othernode = queryprocess.getNode ();

27 ModelS ms = (ModelS) getModel ();

28 if (Config.DEMO_MODE)

29 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

30 LogWriter.OTHER);

31

32 // transfer data

33 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

34 subquery.getQuery ().getNumberOfTerms ());

35

36 node.lookupTerms(this , subquery.getQuery ().getNumberOfTerms ());

37

38 // allocate

39 int memreq = Config.NUMBER_OF_DOCUMENTS * (Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY +2 * Config.SIZE_OF_ACC_ENTRY);

40 node.malloc(this , memreq);

41

42 IndexHitList reslist=null;

43 for (Integer termid : subquery.getSortedTermList ()) {

44 //FIXME: just documentbased

45 IndexHitList termlist=subquery.getHitList(termid);

46 node.fetch(this , termlist.getNumDocs () * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

47

48 node.interleaveTwoLists(this , termlist.getNumDocs ()+(reslist !=null?

reslist.getNumDocs ():0));

49

50 if (reslist == null)

51 reslist = termlist;

52 else

53 reslist = IndexTools.interleaveEntries(reslist , termlist);

54 }

55

56

57 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

58 // transfer back:

59 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+ Config.SIZE_OF_ACC_ENTRY *

60 subqueryresult.getNumberOfDocuments ());

61

62 //free memory

63 node.free(memreq);

64 if (Config.DEMO_MODE)

65 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

66 LogWriter.OTHER);

67

68 //ack query

69 queryprocess.ackQuery(this , subqueryresult);

70 }

71

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 199

72 }

B.1.25 simulation.processes.SubQueryProcessHDPM

1 package simulation.processes;

2 import java.util.ArrayList;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.SubQuery;

11 import simulation.query.SubQueryResult;

12

13

14 import desmoj.core.simulator .*;

15

16 public class SubQueryProcessHDPM extends SubQueryProcess{

17

18 public SubQueryProcessHDPM(Model owner , String name , boolean showInTrace) {

19 super(owner , name , showInTrace);

20 }

21

22 public SubQueryProcessHDPM(Model owner , String name , boolean showInTrace ,

23 QueryProcess queryprocess , SubQuery subquery , Node node) {

24 super(owner , name , showInTrace , queryprocess , subquery , node);

25 }

26

27 @Override

28 public void lifeCycle () {

29 // example

30 Node othernode = queryprocess.getNode ();

31 ModelS ms = (ModelS) getModel ();

32 if (Config.DEMO_MODE)

33 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

34 LogWriter.OTHER);

35

36 // transfer data

37 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

38 subquery.getQuery ().getNumberOfTerms ());

39

40 node.lookupTerms(this , subquery.getQuery ().getNumberOfTerms ());

41

42 // allocate

43 int memreq = Config.NUMBER_OF_DOCUMENTS * (Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY *

44 subquery.getNumberOfTerms () + Config.SIZE_OF_ACC_ENTRY);

45 node.malloc(this , memreq);

46

47 ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

48 int totalentries = 0;

49 for (Integer termid : subquery.getSortedTermList ()) {

50 IndexHitList termlist=subquery.getHitList(termid);

51 node.fetch(this , termlist.getNumDocs () * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

52 hitlists.add(termlist);

53 totalentries += termlist.getNumDocs ();

54 }

Simon Jonassen

200 B.1. SIMULATION MODEL SOURCE CODE

55 IndexHitList reslist = IndexTools.interleaveEntries(hitlists);

56 // simulates merging extraction from heap

57 node.heapInterleave(this , totalentries , hitlists.size());

58

59 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

60 // transfer back:

61 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+ Config.SIZE_OF_ACC_ENTRY *

62 subqueryresult.getNumberOfDocuments ());

63

64 //free memory

65 node.free(memreq);

66 if (Config.DEMO_MODE)

67 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

68 LogWriter.OTHER);

69

70 //ack query

71 queryprocess.ackQuery(this , subqueryresult);

72 }

73

74 }

B.1.26 simulation.processes.SubQueryProcessLI

1 package simulation.processes;

2 import simulation.log.LogWriter;

3 import simulation.model.Config;

4 import simulation.model.ModelS;

5 import simulation.node.Node;

6 import simulation.query.IndexHitList;

7 import simulation.query.IndexTools;

8 import simulation.query.SubQuery;

9 import simulation.query.SubQueryResult;

10 import desmoj.core.simulator .*;

11

12 public class SubQueryProcessLI extends SubQueryProcess{

13

14 public SubQueryProcessLI(Model owner , String name , boolean showInTrace) {

15 super(owner , name , showInTrace);

16 }

17

18 public SubQueryProcessLI(Model owner , String name , boolean showInTrace ,

19 QueryProcess queryprocess , SubQuery subquery , Node node) {

20 super(owner , name , showInTrace , queryprocess , subquery , node);

21 }

22

23 @Override

24 public void lifeCycle () {

25 // example

26 Node othernode = queryprocess.getNode ();

27 ModelS ms = (ModelS) getModel ();

28 if (Config.DEMO_MODE)

29 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

30 LogWriter.OTHER);

31 // transfer data

32 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

33 subquery.getQuery ().getNumberOfTerms ());

34

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 201

35 node.lookupTerms(this , subquery.getQuery ().getNumberOfTerms ());

36

37 //no results for and query

38 if (subquery.getTerms ().get(0) < 0){

39 if (Config.USE_AND_QUERIES) {

40 node.transfer(node , othernode , this , Config.

SUBQUERY_RESULT_HEADER_LENGTH);

41 queryprocess.ackQuery(this , null);

42 if (Config.DEMO_MODE)

43 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (), LogWriter.FINISH ,

44 LogWriter.OTHER);

45 return;

46 } else {

47 subquery.eliminateNonExistingTerms ();

48 }

49 }

50

51 // allocate

52 int memreq = Config.NUMBER_OF_DOCUMENTS / Config.NUMBER_OF_NODES * (Config

.SIZE_OF_INDEX_DOCUMENT_ENTRY + Config.SIZE_OF_ACC_ENTRY);

53 node.malloc(this , memreq);

54

55 IndexHitList reslist=null;

56 for (Integer termid : subquery.getSortedTermList ()){

57 IndexHitList termlist=subquery.getHitList(termid);

58 node.fetch(this , subquery.getNumberOfDocuments(termid) * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

59

60 node.interleaveTwoLists(this , termlist.getNumDocs ()+(reslist !=null?

reslist.getNumDocs ():0));

61 if (reslist == null)

62 reslist = termlist;

63 else

64 reslist = IndexTools.interleaveEntries(reslist , termlist);

65 }

66

67 // postprocess

68 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

69

70 node.heapTopAndSort(this , subqueryresult.getNumberOfDocuments (),

Config.NUMBER_OF_RESULTS_REQUIRED);

71

72

73 // transfer back:

74 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+ Config.SIZE_OF_RESULT_ENTRY *

75 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , subqueryresult.

getNumberOfDocuments ()));

76

77 //free memory

78 node.free(memreq);

79

80 //ack query

81 queryprocess.ackQuery(this , subqueryresult);

82 if (Config.DEMO_MODE)

83 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

84 LogWriter.OTHER);

85 }

86

Simon Jonassen

202 B.1. SIMULATION MODEL SOURCE CODE

87 }

B.1.27 simulation.processes.SubQueryProcessLIPM

1 package simulation.processes;

2 import java.util.ArrayList;

3

4 import simulation.log.LogWriter;

5 import simulation.model.Config;

6 import simulation.model.ModelS;

7 import simulation.node.Node;

8 import simulation.query.IndexHitList;

9 import simulation.query.IndexTools;

10 import simulation.query.SubQuery;

11 import simulation.query.SubQueryResult;

12

13

14 import desmoj.core.simulator .*;

15

16 public class SubQueryProcessLIPM extends SubQueryProcess{

17

18 public SubQueryProcessLIPM(Model owner , String name , boolean showInTrace) {

19 super(owner , name , showInTrace);

20 }

21

22 public SubQueryProcessLIPM(Model owner , String name , boolean showInTrace ,

23 QueryProcess queryprocess , SubQuery subquery , Node node) {

24 super(owner , name , showInTrace , queryprocess , subquery , node);

25 }

26

27 @Override

28 public void lifeCycle () {

29 // example

30 Node othernode = queryprocess.getNode ();

31 ModelS ms = (ModelS) getModel ();

32 if (Config.DEMO_MODE)

33 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.START ,

34 LogWriter.OTHER);

35 // transfer data

36 node.transfer(othernode , node , this , Config.SUBQUERY_HEADER_LENGTH +

Config.SIZE_OF_QUERY_ENTRY *

37 subquery.getNumberOfTerms ());

38

39 node.lookupTerms(this , subquery.getQuery ().getNumberOfTerms ());

40

41 if (subquery.getTerms ().get(0) < 0){

42 if (Config.USE_AND_QUERIES) {

43 node.transfer(node , othernode , this , Config.

SUBQUERY_RESULT_HEADER_LENGTH);

44 queryprocess.ackQuery(this , null);

45 if (Config.DEMO_MODE)

46 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime

().getTimeValue (), LogWriter.FINISH ,

47 LogWriter.OTHER);

48 return;

49 } else {

50 subquery.eliminateNonExistingTerms ();

51 }

52 }

53 // allocate

54 int memreq = Config.NUMBER_OF_DOCUMENTS / Config.NUMBER_OF_NODES *

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 203

55 (Config.SIZE_OF_INDEX_DOCUMENT_ENTRY * subquery.getQuery ().

getNumberOfTerms () +

56 Config.SIZE_OF_ACC_ENTRY);

57

58 node.malloc(this , memreq);

59

60 ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

61 int totalentries = 0;

62 for (Integer termid : subquery.getSortedTermList ()){

63 IndexHitList termlist=subquery.getHitList(termid);

64 node.fetch(this , subquery.getNumberOfDocuments(termid) * Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY);

65

66 hitlists.add(termlist);

67 totalentries += termlist.getNumDocs ();

68 }

69

70 IndexHitList reslist = IndexTools.interleaveEntries(hitlists);

71

72 // simulates merging extraction from heap

73 node.heapInterleave(this , totalentries , hitlists.size());

74 node.heapTopAndSort(this , reslist.getNumDocs (), Config.

NUMBER_OF_RESULTS_REQUIRED);

75

76 // postprocess

77 SubQueryResult subqueryresult = new SubQueryResult(getModel (), "

SubQueryResult", false , reslist);

78

79 // transfer back:

80 node.transfer(node , othernode , this , Config.SUBQUERY_RESULT_HEADER_LENGTH

+ Config.SIZE_OF_RESULT_ENTRY *

81 Math.min(Config.NUMBER_OF_RESULTS_REQUIRED , subqueryresult.

getNumberOfDocuments ()));

82

83 //free memory

84 node.free(memreq);

85

86 //ack query

87 queryprocess.ackQuery(this , subqueryresult);

88 if (Config.DEMO_MODE)

89 ms.getLogWriter ().logProcessStatus(this.getName (), currentTime ().

getTimeValue (), LogWriter.FINISH ,

90 LogWriter.OTHER);

91 }

92

93 }

B.1.28 simulation.query.IndexHitList

1 package simulation.query;

2 public interface IndexHitList{

3 public int getNumDocs ();

4 }

B.1.29 simulation.query.IndexTools

1 package simulation.query;

2 import java.util .*;

3 import java.io.*;

4

5 import simulation.model.Config;

Simon Jonassen

204 B.1. SIMULATION MODEL SOURCE CODE

6

7 public class IndexTools {

8 public static IndexHitList mergeEntries(ArrayList <IndexHitList > entries){

9 if (Config.SIMULATED_ONLY){

10 if (entries.size()==0) return new SimulatedIndexHitList (0.0);

11 SimulatedIndexHitList first = (SimulatedIndexHitList)entries.get (0);

12 SimulatedIndexHitList tmp;

13 double acc = (first !=null) ? first.getDocFrequency () : 0;

14 for(int i=1; i<entries.size(); i++){

15 tmp=(SimulatedIndexHitList) entries.get(i);

16 if (tmp!=null) acc += tmp.getDocFrequency ();

17 }

18 return new SimulatedIndexHitList(acc);

19 } else {

20 SimpleIndexHitList res = new SimpleIndexHitList ();

21 int nums = entries.size();

22 if (nums ==1) return entries.get(0);

23 int scores [] = new int[Config.NUMBER_OF_DOCUMENTS];

24 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

25 scores[i]=0;

26 }

27

28 for (IndexHitList entry : entries) {

29 ArrayList <SimpleIndexHit > hitlist = ((SimpleIndexHitList)entry).

getHitList ();

30 for (SimpleIndexHit record : hitlist) {

31 scores[record.getDocid ()]= record.getHits ();

32 }

33 }

34

35 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

36 if (scores[i]>0) res.addHits(i, scores[i]);

37 }

38 return res;

39 }

40 }

41

42 public static IndexHitList interleaveEntries(ArrayList <IndexHitList > entries){

43 if (Config.SIMULATED_ONLY){

44 if (Config.USE_AND_QUERIES){

45 if (entries.size()==0) return new SimulatedIndexHitList (0.0);

46 double acc = ((SimulatedIndexHitList)entries.get(0)).

getDocFrequency ();

47 for(int i=1; i<entries.size(); i++){

48 acc *= ((SimulatedIndexHitList) entries.get(i)).

getDocFrequency ();

49 }

50 return new SimulatedIndexHitList(acc);

51 } else {

52 if (entries.size()==0) return new SimulatedIndexHitList (0.0);

53 double acc = 1 - ((SimulatedIndexHitList)entries.get(0)).

getDocFrequency ();

54 for(int i=1; i<entries.size(); i++){

55 acc *= 1 - ((SimulatedIndexHitList) entries.get(i)).

getDocFrequency ();

56 }

57 return new SimulatedIndexHitList (1-acc);

58 }

59

60 } else {

61 SimpleIndexHitList res = new SimpleIndexHitList ();

62 if (Config.USE_AND_QUERIES){

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 205

63 int nums = entries.size();

64 if (nums ==1) return entries.get(0);

65 int scores [] = new int[Config.NUMBER_OF_DOCUMENTS];

66 int cnts[] = new int[Config.NUMBER_OF_DOCUMENTS];

67 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

68 scores[i]=0;

69 cnts[i]=0;

70 }

71

72 for (IndexHitList entry : entries) {

73 ArrayList <SimpleIndexHit > hitlist = ((SimpleIndexHitList)entry

).getHitList ();

74

75 for (SimpleIndexHit record : hitlist) {

76 if (scores[record.getDocid ()] > record.getHits ())

77 scores[record.getDocid ()]= record.getHits ();

78 cnts[record.getDocid ()]++;

79 }

80 }

81

82 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

83 if (scores[i]>0 && cnts[i]== nums) res.addHits(i, scores[i]);

84 }

85 return res;

86 } else {

87 int nums = entries.size();

88 if (nums ==1) return entries.get(0);

89 int scores [] = new int[Config.NUMBER_OF_DOCUMENTS];

90 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

91 scores[i]=0;

92 }

93

94 for (IndexHitList entry : entries) {

95 ArrayList <SimpleIndexHit > hitlist = ((SimpleIndexHitList)entry

).getHitList ();

96

97 for (SimpleIndexHit record : hitlist) {

98 scores[record.getDocid ()]+= record.getHits ();

99 }

100 }

101

102 for (int i=0; i<Config.NUMBER_OF_DOCUMENTS; i++){

103 if (scores[i]>0) res.addHits(i, scores[i]);

104 }

105 return res;

106 }

107 }

108 }

109

110

111 public static IndexHitList interleaveEntries(IndexHitList lista , IndexHitList

listb){

112 if (lista==null) return listb;

113 if (listb==null) return lista;

114 if (Config.SIMULATED_ONLY){

115 if (Config.USE_AND_QUERIES)

116 return new SimulatedIndexHitList(

117 ((SimulatedIndexHitList) lista).getDocFrequency () *

118 ((SimulatedIndexHitList) listb).getDocFrequency ());

119 else

120 return new SimulatedIndexHitList(1 -

121 (1-((SimulatedIndexHitList) lista).getDocFrequency ()) *

Simon Jonassen

206 B.1. SIMULATION MODEL SOURCE CODE

122 (1-((SimulatedIndexHitList) listb).getDocFrequency ()));

123 } else {

124 SimpleIndexHitList res = new SimpleIndexHitList ();

125 ArrayList <SimpleIndexHit > hitsa = ((SimpleIndexHitList)lista).

getHitList ();

126 ArrayList <SimpleIndexHit > hitsb = ((SimpleIndexHitList)listb).

getHitList ();

127 int as = hitsa.size();

128 int bs = hitsb.size();

129 int ap=0, bp=0;

130 while (ap<as && bp<bs){

131 SimpleIndexHit hita = hitsa.get(ap);

132 SimpleIndexHit hitb = hitsb.get(bp);

133 int hits1 = hita.getHits ();

134 int hits2 = hita.getHits ();

135

136 if (hita.compareTo(hitb) < 0){

137 if (! Config.USE_AND_QUERIES) res.addHits(hita.getDocid (),

hits1);

138 ap++;

139 } else if (hita.compareTo(hitb) > 0){

140 if (! Config.USE_AND_QUERIES) res.addHits(hitb.getDocid (),

hits2);

141 bp++;

142 } else {

143 if (Config.USE_AND_QUERIES) res.addHits(hitb.getDocid (),

hits1 <hits2?hits1:hits2);

144 else res.addHits(hitb.getDocid (), hits1+hits2);

145 ap++; bp++;

146 }

147 }

148 if (! Config.USE_AND_QUERIES) {

149 if (ap==as){

150 SimpleIndexHit hitb;

151 for (; bp < bs; bp++){

152 hitb = hitsb.get(bp);

153 res.addHits(hitb.getDocid (), hitb.getHits ());

154 }

155 } else if (bp==bs){

156 SimpleIndexHit hita;

157 for (; ap < as; ap++){

158 hita = hitsa.get(ap);

159 res.addHits(hita.getDocid (), hita.getHits ());

160 }

161 }

162 }

163 return res;

164 }

165 }

166

167 public static IndexHitList mergeEntries(IndexHitList lista , IndexHitList listb){

168 if (lista==null) return listb;

169 if (listb==null) return lista;

170 if (Config.SIMULATED_ONLY){

171 return new SimulatedIndexHitList(

172 ((SimulatedIndexHitList) lista).getDocFrequency () +

173 ((SimulatedIndexHitList) listb).getDocFrequency ());

174 } else {

175 SimpleIndexHitList res = new SimpleIndexHitList ();

176 ArrayList <SimpleIndexHit > hitsa = ((SimpleIndexHitList)lista).

getHitList ();

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 207

177 ArrayList <SimpleIndexHit > hitsb = ((SimpleIndexHitList)listb).

getHitList ();

178 int as = hitsa.size();

179 int bs = hitsb.size();

180 int ap=0, bp=0;

181 while (ap<as && bp<bs){

182 SimpleIndexHit hita = hitsa.get(ap);

183 SimpleIndexHit hitb = hitsb.get(bp);

184 int hits1 = hita.getHits ();

185 int hits2 = hita.getHits ();

186

187 if (hita.compareTo(hitb) < 0){

188 res.addHits(hita.getDocid (), hits1);

189 ap++;

190 } else if (hita.compareTo(hitb) > 0){

191 res.addHits(hitb.getDocid (), hits2);

192 bp++;

193 }

194 }

195 if (ap==as){

196 SimpleIndexHit hitb;

197 for (; bp < bs; bp++){

198 hitb = hitsb.get(bp);

199 res.addHits(hitb.getDocid (), hitb.getHits ());

200 }

201 } else if (bp==bs){

202 SimpleIndexHit hita;

203 for (; ap < as; ap++){

204 hita = hitsa.get(ap);

205 res.addHits(hita.getDocid (), hita.getHits ());

206 }

207 }

208 return res;

209 }

210 }

211 }

B.1.30 simulation.query.Query

1 package simulation.query;

2 import java.util .*;

3

4 import simulation.model.Config;

5 import desmoj.core.simulator .*;

6

7 public class Query extends Entity{

8 private HashMap <Integer , IndexHitList > termHits;

9

10 public Query(Model owner , String name , boolean showInTrace) {

11 super(owner , name , showInTrace);

12 termHits = new HashMap <Integer , IndexHitList >();

13 }

14

15 public void addTerm(int termid , IndexHitList hitlist){

16 termHits.put(termid , hitlist);

17 }

18

19 public int getNumberOfTerms (){

20 return termHits.size();

21 }

22

23 public ArrayList <Integer > getTerms (){

Simon Jonassen

208 B.1. SIMULATION MODEL SOURCE CODE

24 ArrayList <Integer > res = new ArrayList <Integer >(termHits.keySet ());

25 Collections.sort(res);

26 return res;

27 }

28

29 public double getTotalIndexSize (){

30 double ret = 0.0;

31 for (Integer key : termHits.keySet ()) {

32 ret+= termHits.get(key).getNumDocs ()*Config.

SIZE_OF_INDEX_DOCUMENT_ENTRY;

33 }

34 return ret;

35 }

36

37 public void eliminateNonExistingTerms (){

38 ArrayList <Integer > keyset = new ArrayList <Integer >(termHits.keySet ());

39 int i=0;

40 while (i<keyset.size()){

41 if (keyset.get(i) < 0){

42 termHits.remove(keyset.get(i));

43 keyset.remove(i);

44 } else {

45 i++;

46 }

47 }

48 }

49

50 public ArrayList <SubQuery > partitionByDoc (){

51 ArrayList <SubQuery > res = new ArrayList <SubQuery >();

52 SubQuery subs[] = new SubQuery[Config.NUMBER_OF_NODES];

53 for (int i=0; i < Config.NUMBER_OF_NODES; i++){

54 subs[i] = new SubQuery(getModel (), "SubQuery", false , i, this);

55 }

56 if (Config.SIMULATED_ONLY){

57 for (Integer termid : termHits.keySet ()) {

58 double freqpart = ((SimulatedIndexHitList)termHits.get(termid)).

getDocFrequency ()/Config.NUMBER_OF_NODES;

59 for (int i=0; i < Config.NUMBER_OF_NODES; i++){

60 subs[i]. addTermFreq(termid , freqpart);

61 }

62 }

63 } else {

64 for (Integer termid : termHits.keySet ()) {

65 ArrayList <SimpleIndexHit > hitlist = ((SimpleIndexHitList)termHits.

get(termid)).getHitList ();

66 for (SimpleIndexHit hit : hitlist){

67 subs[hit.getDocid () % Config.NUMBER_OF_NODES]. addTermHits(

termid , hit.getDocid (), hit.getHits ());

68 }

69 }

70 }

71 for (int i=0; i<Config.NUMBER_OF_NODES; i++){

72 //if (subs[i]. getNumberOfTerms () >0) res.add(subs[i]);

73 //just add it anyway since the query is broadcasted

74 res.add(subs[i]);

75 }

76

77 return res;

78 }

79

80 public ArrayList <SubQuery > partitionByTerm (){

81 ArrayList <SubQuery > res = new ArrayList <SubQuery >();

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 209

82 SubQuery subs[] = new SubQuery[Config.NUMBER_OF_NODES];

83 for (int i=0; i < Config.NUMBER_OF_NODES; i++){

84 subs[i] = new SubQuery(getModel (), "SubQuery", false , i, this);

85 }

86

87 //same for both simulated and real

88 for (Integer termid : termHits.keySet ()) {

89 subs[termid % Config.NUMBER_OF_NODES]. addTerm(termid , termHits.get(

termid));

90 }

91

92 for (int i=0; i<Config.NUMBER_OF_NODES; i++){

93 if (subs[i]. getNumberOfTerms () >0) res.add(subs[i]);

94 }

95

96 return res;

97 }

98

99

100 public ArrayList <SubQuery > partitionHybrid (){

101

102 ArrayList <SubQuery > res = new ArrayList <SubQuery >();

103 SubQuery subs[] = new SubQuery[Config.NUMBER_OF_NODES];

104 for (int i=0; i < Config.NUMBER_OF_NODES; i++){

105 subs[i] = new SubQuery(getModel (), "SubQuery", false , i, this);

106 }

107

108 if (Config.SIMULATED_ONLY){

109 double chunkimpact =((double) Config.HYBRID_CHUNK_SIZE)/Config.

NUMBER_OF_DOCUMENTS;

110

111 for (Integer termid : termHits.keySet ()) {

112

113 double frequency =((SimulatedIndexHitList)termHits.get(termid)).

getDocFrequency ();

114 int chunkcnt =(int) Math.ceil(frequency / chunkimpact);

115

116 for (int i=0; i<chunkcnt; i++){

117 int node = (i ^ termid) % Config.NUMBER_OF_NODES;

118 if (i==chunkcnt -1){

119 subs[node]. addTermFreq(termid , frequency -chunkimpact *(

chunkcnt -1));

120 } else {

121 subs[node]. addTermFreq(termid , chunkimpact);

122 }

123 }

124 }

125 } else {

126 for (Integer termid : termHits.keySet ()) {

127 ArrayList <SimpleIndexHit > hitlist = ((SimpleIndexHitList)termHits.

get(termid)).getHitList ();

128

129 int currChunkId = 0;

130 int currChunkEntry = 0;

131 for (SimpleIndexHit hit : hitlist){

132 int docid = hit.getDocid ();

133 int numhits = hit.getHits ();

134 int node = (termid ^ currChunkId) % Config.NUMBER_OF_NODES;

135 if (currChunkEntry + numhits < Config.HYBRID_CHUNK_SIZE){

136 subs[node]. addTermHits(termid ,

137 docid , numhits);

138 currChunkEntry += numhits;

Simon Jonassen

210 B.1. SIMULATION MODEL SOURCE CODE

139 } else {

140 while (numhits > 0){

141 int newnumhits = numhits -Config.HYBRID_CHUNK_SIZE;

142 subs[node]. addTermHits(termid ,

143 docid , (newnumhits >0)?Config.HYBRID_CHUNK_SIZE

:numhits);

144 numhits=newnumhits;

145 currChunkId ++;

146 currChunkEntry =0;

147 }

148 }

149 }

150 }

151 }

152 for (int i=0; i<Config.NUMBER_OF_NODES; i++){

153 if (subs[i]. getNumberOfTerms () >0) res.add(subs[i]);

154 }

155

156 return res;

157 }

158 }

B.1.31 simulation.query.QueryResult

1 package simulation.query;

2 import java.util .*;

3

4 import desmoj.core.simulator .*;

5 import simulation .*;

6 import simulation.model.Config;

7

8 public class QueryResult extends Entity{

9 private ArrayList <SubQueryResult > results;

10 private IndexHitList hitlist;

11

12 public QueryResult(Model owner , String name , boolean showInTrace) {

13 super(owner , name , showInTrace);

14 results = new ArrayList <SubQueryResult >();

15 }

16

17 public void addResult(SubQueryResult result){

18 results.add(result);

19 }

20

21 public void combineResults (){

22 if (hitlist !=null) return;

23 ArrayList <IndexHitList > hitlists = new ArrayList <IndexHitList >();

24 for (SubQueryResult result : results) {

25 hitlists.add(result.getHitList ());

26 }

27 if (Config.INDEXING_MODE == Config.LOCAL_INDEXING ||

28 Config.INDEXING_MODE == Config.LOCAL_INDEXING_PARALLEL_MERGE

29) hitlist = IndexTools.mergeEntries(hitlists);

30 else hitlist=IndexTools.interleaveEntries(hitlists);

31 }

32

33 public void setHitList(IndexHitList hitlist){

34 this.hitlist=hitlist;

35 }

36 public IndexHitList getHitList (){

37 if (hitlist ==null)

38 if (results.size() >0) combineResults ();

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 211

39 else return null;

40 return hitlist;

41 }

42

43 public int getNumberOfDocuments (){

44 if (hitlist ==null) combineResults ();

45 return hitlist.getNumDocs ();

46 }

47 }

B.1.32 simulation.query.SimpleIndexHit

1 package simulation.query;

2 public class SimpleIndexHit implements Comparable <SimpleIndexHit >{

3 private int docid , hits;

4

5 public SimpleIndexHit(int docid , int hits){

6 this.docid=docid;

7 this.hits=hits;

8 }

9

10 public int getDocid (){

11 return docid;

12 }

13

14 public int getHits (){

15 return hits;

16 }

17

18 public int compareTo(SimpleIndexHit hit) {

19 if (this.docid > hit.docid) return 1;

20 else if (this.docid < hit.docid) return -1;

21 else return 0;

22 }

23 }

B.1.33 simulation.query.SimulatedIndexHitList

1 package simulation.query;

2

3 import simulation.model.Config;

4

5 public class SimulatedIndexHitList implements IndexHitList{

6 private double frequency;

7

8 public SimulatedIndexHitList (){

9 frequency =0.0;

10 }

11

12 public SimulatedIndexHitList(double frequency) {

13 this.frequency = frequency;

14 }

15

16 public void addHits(double freqfrac){

17 frequency += freqfrac;

18 }

19

20 public int getNumDocs (){

21 return (int) (Config.NUMBER_OF_DOCUMENTS * frequency);

22 }

23

Simon Jonassen

212 B.1. SIMULATION MODEL SOURCE CODE

24 public double getDocFrequency (){

25 return frequency;

26 }

27 }

B.1.34 simulation.query.SubQuery

1 package simulation.query;

2 import java.util .*;

3

4 import desmoj.core.simulator .*;

5

6 public class SubQuery extends Entity{

7 private HashMap <Integer , IndexHitList > termHits;

8 private int nodeNumber;

9 private Query query;

10

11 public SubQuery(Model owner , String name , boolean showInTrace){

12 super(owner , name , showInTrace);

13 termHits = new HashMap <Integer , IndexHitList >();

14 }

15

16 public SubQuery(Model owner , String name , boolean showInTrace , int nodeNumber ,

Query query){

17 super(owner , name , showInTrace);

18 termHits = new HashMap <Integer , IndexHitList >();

19 this.nodeNumber = nodeNumber;

20 this.query = query;

21 }

22

23 public int getNumberOfTerms (){

24 return termHits.size();

25 }

26

27 public ArrayList <Integer > getTermList (){

28 return new ArrayList <Integer >(termHits.keySet ());

29 }

30

31 public IndexHitList getHitList(int termid){

32 return termHits.get(termid);

33 }

34

35 public int getNumberOfDocuments(int termid){

36 return termHits.get(termid).getNumDocs ();

37 }

38

39 public int getNodeNumber (){

40 return nodeNumber;

41 }

42

43 public void addTerm(int termid , IndexHitList hitlist){

44 termHits.put(termid , hitlist);

45 }

46

47 /**

48 * used only by SimulatedIndexHitList

49 */

50 public void addTermFreq(int termid , double freq) {

51 IndexHitList hitlist = termHits.get(termid);

52 if (hitlist == null){

53 hitlist = new SimulatedIndexHitList ();

54 termHits.put(termid , hitlist);

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 213

55 }

56 ((SimulatedIndexHitList) hitlist).addHits(freq);

57 }

58

59 /**

60 * used only by SimpleIndexHitList

61 */

62 public void addTermHits(int termid , int docid , int hits) {

63 IndexHitList hitlist = termHits.get(termid);

64 if (hitlist == null){

65 hitlist = new SimpleIndexHitList ();

66 termHits.put(termid , hitlist);

67 }

68 ((SimpleIndexHitList) hitlist).addHits(docid , hits);

69 }

70

71 public SubQueryResult getSubQueryResult (){

72 return new SubQueryResult(getModel (), "SubQueryResult", false ,

73 new ArrayList <IndexHitList >(termHits.values ()));

74 }

75

76 public int getLowestScore () {

77 int lowest = Integer.MAX_VALUE;

78 for (IndexHitList hitlist : termHits.values ()) {

79 if (hitlist.getNumDocs () < lowest) lowest = hitlist.getNumDocs ();

80 }

81 return lowest;

82 }

83

84 public Query getQuery (){

85 return query;

86 }

87

88 public ArrayList <Integer > getTerms (){

89 ArrayList <Integer > res = new ArrayList <Integer >(termHits.keySet ());

90 Collections.sort(res);

91 return res;

92 }

93

94 public void eliminateNonExistingTerms (){

95 ArrayList <Integer > keyset = new ArrayList <Integer >(termHits.keySet ());

96 int i=0;

97 while (i<keyset.size()){

98 if (keyset.get(i) < 0){

99 termHits.remove(keyset.get(i));

100 keyset.remove(i);

101 } else {

102 i++;

103 }

104 }

105 }

106

107 public ArrayList <Integer > getSortedTermList () {

108 // TODO Auto -generated method stub

109 int cnt = termHits.size();

110 if (cnt ==1){

111 return new ArrayList <Integer >(termHits.keySet ());

112 }

113 ArrayList <Integer > res = new ArrayList <Integer >(cnt);

114

115 ArrayList <Pair > vals = new ArrayList <Pair >(termHits.size());

116 for (Integer key : termHits.keySet ()){

Simon Jonassen

214 B.1. SIMULATION MODEL SOURCE CODE

117 vals.add(new Pair(key , getNumberOfDocuments(key)));

118 }

119 Collections.sort(vals);

120

121 for (int i=0; i<cnt; i++){

122 res.add(vals.get(i).getId ());

123 }

124

125 return res;

126 }

127

128 private class Pair implements Comparable <Pair >{

129 private int id, value;

130

131 public Pair(int id , int value){

132 this.id = id;

133 this.value = value;

134 }

135

136 public int compareTo(Pair p){

137 if (value > p.value) return 1;

138 else if (value < p.value) return -1;

139 else return 0;

140 }

141

142 public int getId(){

143 return id;

144 }

145 }

146 }

B.1.35 simulation.query.SubQueryResult

1 package simulation.query;

2 import java.util .*;

3

4 import desmoj.core.simulator .*;

5

6 public class SubQueryResult extends Entity {

7 private IndexHitList hitlist;

8

9 public SubQueryResult(Model owner , String name , boolean showInTrace) {

10 super(owner , name , showInTrace);

11 }

12

13 public SubQueryResult(Model owner , String name , boolean showInTrace ,

IndexHitList hitlist){

14 super(owner , name , showInTrace);

15 this.hitlist = hitlist;

16 }

17

18 public SubQueryResult(Model owner , String name , boolean showInTrace , ArrayList

<IndexHitList > hitlists){

19 super(owner , name , showInTrace);

20 this.hitlist = IndexTools.interleaveEntries(hitlists);

21 }

22

23 public IndexHitList getHitList (){

24 return hitlist;

25 }

26

27 public int getNumberOfDocuments (){

Distributed Inverted Indexes

APPENDIX B. SOURCE CODE 215

28 return (hitlist != null) ? hitlist.getNumDocs () : 0;

29 }

30 }

Simon Jonassen

216 B.1. SIMULATION MODEL SOURCE CODE

Distributed Inverted Indexes

	Tittelside
	Oppgavetekst
	Introduction
	Background
	An Introduction to Search Engines
	Inverted Indexes
	The Vocabulary File
	Inverted Lists

	Inverted Index Creation
	Inverted Index Update
	Query Processing with an Inverted Index
	Query Processing Models
	Basic Algorithms
	Approximation Methods for the Vector Model

	Distributed Inverted Indexes
	Scalability of a Search Platform
	Partitioning Schemes for an Inverted Index
	Local Indexing
	Global Indexing
	Alternative Indexing Schemes

	Other Related Issues: Caching

	Previous Work and Results
	Tomasic and Garcia-Molina, 1992
	Results
	Critics
	Relevance

	Jeong and Omiecinski, 1995
	Results
	Critics
	Relevance

	Ribeiro-Neto and Barbosa, 1998
	Results
	Critics
	Relevance

	MacFarlane, McCann and Robertson, 2000
	Results
	Critics
	Relevance

	Badue, Ribeiro-Neto, Baeza-Yates, Zivani, 2001
	Results
	Critics
	Relevance

	Xi, Sornil, Luo, Fox, 2002
	Results
	Critics
	Relevance

	Badue, Ribeiro-Neto, Barbosa, Golgher, Zivani, 2005
	Moffat, Webber, Zobel, Baeza-Yates, 2005
	Results
	Critics
	Scientific Remarks
	Relevance

	Moffat, Webber, Zobel, 2006
	Results
	Critics
	Relevance

	Jonassen, 2007
	Results
	Critics
	Relevance

	State of the Art
	The Assignment Text and The Solution Approach
	The Approach
	The Previous Simulation Model
	Visualisation of the Simulation Results

	The Roadmap to a New Simulation Model

	Simulation Model
	Ideas and Decisions behind a New Simulation Model
	Framework
	Study of a Real Search Engine
	Processing Model
	Simulation of the Document Collection and the Query Set
	Algorithms and Metrics
	Visualisation Tool and Reporting

	Implementation of the New Simulation Model
	simulation.node
	simulation.query
	simulation.model
	simulation.process
	simulation.log
	simulation.micro

	Micro-Benchmarking and Parameter Estimation
	Network Characteristics
	Disk Characteristics
	CPU Characteristics
	Data Structures and Memory Requirements
	Document Collection Parameters and Characteristics
	Term Disjunction and Conjunction Frequency

	Simulation Experiments and Results
	Specifications for the Performance Evaluation
	The Plan
	The Schedule
	Experiment Results
	Baseline Experiments
	Node Number and Concurrency Level Experiments
	CPU configuration experiments
	Network configuration experiments - Bandwidth
	Disk configuration experiments
	Additional experiments
	Combination of the Experiment Results with the Previous Results

	Conclusions and Further Work
	Further Work
	Interesting Topics Related to this Master Thesis

	Bibliography
	Appendix
	Samples of Dictionary Data
	docstat
	querylog

	Network Microbenchmark
	clustis.c
	clustis.out

	An example experiment property file
	Trace Mode Simulation Reports for Baseline Experiments

	Source code
	Simulation Model Source Code
	simulation.model.Config
	simulation.model.ModelS
	simulation.model.QueryLogReader
	simulation.processes.model.GeneratorProcess
	simulation.log.LogProcess
	simulation.log.LogWriter
	simulation.log.Statistics
	simulation.micro.HeapInterleaveTest
	simulation.micro.InterleaveTwoTest
	simulation.node.Node
	simulation.node.ResHandler
	simulation.processes.QueryProcess
	simulation.processes.QueryProcessGI
	simulation.processes.QueryProcessGIPM
	simulation.processes.QueryProcessHD
	simulation.processes.QueryProcessHDPM
	simulation.processes.QueryProcessLI
	simulation.processes.QueryProcessLIPM
	simulation.processes.QueryProcessPL
	simulation.processes.QueryProcessPLPM
	simulation.processes.SubQueryProcess
	simulation.processes.SubQueryProcessGI
	simulation.processes.SubQueryProcessGIPM
	simulation.processes.SubQueryProcessHD
	simulation.processes.SubQueryProcessHDPM
	simulation.processes.SubQueryProcessLI
	simulation.processes.SubQueryProcessLIPM
	simulation.query.IndexHitList
	simulation.query.IndexTools
	simulation.query.Query
	simulation.query.QueryResult
	simulation.query.SimpleIndexHit
	simulation.query.SimulatedIndexHitList
	simulation.query.SubQuery
	simulation.query.SubQueryResult

