® NTNU

Det skapende universitet

Evaluering av Chip Multiprosessor
Simulatorer

Arnt Jgrgen Lande

Master i datateknikk
Oppgaven levert: Juli 2006
Hovedveileder: Lasse Natvig, IDI

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknikk og informasjonsvitenskap

Oppgavetekst

Multiprosessorer realisert pa en brikke er en arkitektur med gkende popularitet, og mange
prosessor-leverandgrer tilbyr i dag flerkjerne prosessorer. Dette skyldes at utviklingen av
mikroprosessorer mgter mange store vanskeligheter: (a) hgyt effektforbruk og varmeutvikling, (b)
ekstrem kompleksitet, og (c] stort ytelsesgap mellom prosessor- og minne-teknologi. Samtidig
blir det plass til mer funksjonalitet eller flere like prosessorer inne pd samme brikke. Mange tror
at chip multiprosessorer vil kunne redusere mange av disse vanskelighetene.

For datamaskingruppas forskning pa temaet Chip Multiprosessorer (CMP) er simulering av slike
arkitekturer sentralt. Det finnes i dag et mangfold av forskjellige CMP-simulatorer, og oppgaven
gar ut pa & evaluere et utvalg av disse.

Stikkord for hva evalueringen kan inneholde er:

- Utvidbarhet / Er det mulig a endre pa arkitekturen?

- Hvilke instruksjonsett (ISA) er stgttet?

- Hvilke benchmarks er det mulig a kjgre?

- Hvilke minne- og multiprosessor-arkitekturer er stgttet?
- Hvilke typer parallelitet er stgttet?

- Cache koherens

- Ytelse

- Tilgjengelighet

- Ngyaktighet

Oppgaven bgr inneholde de mest aktuelle av disse simulatorene: RSim, SimpleMP, ASIM, SimOS,
Simics, TFSim, og SimFlex. Var egen simplescalar-baserte CMP simulator skal ogsa evalueres.
Det kan ogsa bli aktuelt 3 utfere forbedringer av denne.

Oppgaven gitt: 20. januar 2006
Hovedveileder: Lasse Natvig, IDI

Abstract

This thesis presents some of the simulators that are available for simulation
of computer architectures, with a special emphasis on simulating chip multi-
processor (CMP) architectures. The simulators Rsim, Asim, SimOS, Simics,
TFsim, SimFlex, GEMS and M5 are described, in addition to an extension to
SimpleScalar written at the department.

The simulators have been evaluated according to various criteria, such as avail-
ability, extensibility, simulation platform, etc. The simulator M5, which has
been selected as a good choice for use in the group for computer architecture
research at the department, has been evaluated in more detail. The simulator
has favourable characteristics such as good extensibility through modular de-
sign and pervasive object orientation, support for both full system simulation
and syscall emulation, an active development team and user forum, and a fair
amount of available documentation.

Preface

This master's thesis was written at the Department of Computer and Informa-
tion Science, Norwegian University of Science and Technology. The problem
description is related to the research being done on computer architecture at
the department. The work was done from January till July 2006.

| would like to thank my supervisor, Professor Lasse Natvig, for valuable advice
during the thesis work. | would also like to thank Marius Grannaes for useful
suggestions and technical expertise.

Trondheim, July 14, 2006

Arnt Jgrgen Lande

Table of contents

Abstract i
Preface ii
1 Introduction 1
1.1 Multithreaded architectures 1
1.2 Motivation for thesis 2
2 Simulators 3
2.1 Simulator evaluation criteria 3
22 Rsim 3
2.2.1 Simulator system 4
2.2.2 Multiprocessor configuration 4
2.2.3 Processor architecture 5
2.2.4 Preliminary conclusion 5

2.3 SimpleMP 6
24 Asim ... 6
241 Modules 7
2.4.2 Preliminary conclusion 8

25 SImOS 9
2.5.1 Direct execution 9
2.5.2 Detailed simulation 10
2.5.3 Preliminary conclusion 10

2.6 Simics 10
2.6.1 Implementation L. 11
2.6.2 Preliminary conclusion 12

27 TFEsim 13
2.7.1 Preliminary conclusion 13

2.8 SimFlex 13
2.8.1 Component-based design 14
2.8.2 Measurement with Smarts 15
2.8.3 Preliminary conclusion 15

29 GEMS 15

TABLE OF CONTENTS

TABLE OF CONTENTS

2.9.1 Preliminary conclusion 17

210 M5 L 17
2.10.1 Preliminary conclusion 18

211 IDl simulator 18
2.11.1 Implementation 20

2.11.2 Shortages 21

2.11.3 Preliminary conclusion 21

2.12 Summary and selection 21

3 M5 24
3.1 Simulator architecture 24
311 CPU . .. 24

3.1.2 Memory system 27

313 Cache 28

3.14 Buses 31

32 Usage 31
321 Building 31

322 Running 33

3.3 Documentation 34
331 Doxygen 34

4 Experiments 38
4.1 Samplerunsof M5o 38
4.1.1 Test 1: four-threaded uniprocessor 38

4.1.2 Test 2: full system simulation. 40

4.2 Mb5 modification experiment 40

5 Conclusions 45
A Mb5 statistics output file 47
B Prefetcher files 56

Chapter 1

Introduction

1.1 Multithreaded architectures

Recently, we have seen a number of multicore processors entering the market,
some of which | have previously surveyed [Lan05]. The first processors were
targeted mainly at servers, where there is a high degree of parallelism inherent
in typical applications [SA05, OHO05]. Currently, the multicore processors are
also conquering the desktop and even notebook markets (just view the model
selection in any store selling computer parts).

The popularity of processors with multiple cores is related to major obstacles
for continued performance increase for single-threaded processors. Tradition-
ally, Moore's law® for processor performance has been true, but the following
difficulties make it hard to follow the same path for increased performances in
the future:

e There is an almost cubic relationship between CPU frequency and power
consumption [SA05], resulting in a high associated cost with increased
clock frequency; this is both in terms of power usage, heat dissipation
(and associated cooling issues), and possibly battery life.

e The processor-memory gap, which is the difference between the CPU and
main memory in performance, is ever-increasing. If the CPU must wait
for data from memory, processor cycles are wasted.

e Processor design has grown to a task of extreme complexity. With an
enormous amount of transistors on a chip, and the need for dynamic
discovery of instruction-level parallelism (instructions that can be executed

!Moore’s law states that the number of transistors, giving roughly the computing power,
will double every 18 months [Wik06].

1.2. MOTIVATION FOR THESIS CHAPTER 1. INTRODUCTION

in parallel without breaking any data dependencies) in program code, it
has become more and more expensive to design new processor generations.

e There is also a hard limitation to instruction-level parallelism; the number
of instructions that can be executed simultaneously without breaking any
data dependencies is usually less than 5 [Wal91].

Chip multithreading (CMT) [SA05] (not to be confused with chip multiprocessor
(CMP)) designs have emerged to attack these difficulties. Instead of using
the larger number of transistors that a single chip can hold to increase the
complexity of the single-threaded architecture, hardware support is added for
concurrent execution of multiple threads (processes or programs). There are
two main approaches to this:

e Simultaneous multithreading (SMT) is the technique where a single CPU
is able to maintain multiple thread contexts at the same time [URS03],
allowing instructions from different threads to be in the execution pipeline
simultaneously.

e Chip multiprocessor (CMP) design achieves parallel execution of threads
by having multiple — but simpler — cores on the same chip instead.

The two techniques are indeed not mutually exclusive; for example, the Sun
UltraSPARC T1 consists of multiple processing cores, each implementing SMT
[KAOO05]. An advantage of the CMP alternative, however, is that older and
more or less unmodified cores can be scaled down to the current production
technology, and duplicated on a single chip. This leads to lowered develop-
ment costs. The first multicore processor for desktop computers, the AMD
Athlon 64 X2, used a relatively simple CMP design with two processing cores
[QTYO05].

1.2 Motivation for thesis

CMP architecture is a major research focus of the research group for computer
architecture at the Department of Computer and Information Science at NTNU.
It is therefore important to have a simulator tool to be able to explore how
design choices will affect overall performance. Since it has not been settled on
a particular simulator tool yet, an overview and an evaluation of the available
choices is desirable. Hence, the purpose of this thesis is to provide that.

Chapter 2

Simulators

2.1 Simulator evaluation criteria

Refer to the problem description for a list of evaluation criteria for the simula-
tors. Some points are easy to determine for any simulator, like for example the
ISAs supported and availability. Others are harder to determine, like accuracy,
performance and extensibility. Such characteristics can only fully be investigated
through thorough testing for the simulator. As | have not been able to do this
for all the simulators, | have had to rely on the information that was available
about each simulator (of which the amount varied). | will however select one
simulator for a closer look and testing (see the next chapter).

2.2 Rsim

Rsim is a simulator for shared-memory multiprocessors, modelling detailed ILP
processors. The background for developing Rsim was that prior shared-memory
multiprocessor simulators had used too simplistic processor models, while new
research showed that shared-memory multiprocessor performance could be im-
proved with the use of techniques such as aggressive implementations of sequen-
tial consistency, based on the ILP-exploitation in modern processors [HPRAO2].

Rsim was developed at the Rice University, Houston? (hence the R), with
memory and network subsystems based on the former Rice Parallel Process-
ing Testbed (RPPT). The first release was made public in 1997, free of charge
for noncommercial use. The simulator can be downloaded from the Rsim home-
page at http://rsim.cs.uiuc.edu/rsim.

!The Rsim group is no longer based at Rice, the group homepage at http://rsim.cs.
uiuc.edu/rsim/ lists people from several places as members.

http://rsim.cs.uiuc.edu/rsim
http://rsim.cs.uiuc.edu/rsim/
http://rsim.cs.uiuc.edu/rsim/

2.2. RSIM CHAPTER 2. SIMULATORS

| Processor I | Processor I

| L1 cache I|Write bufferl | L1 cache I|Wri’(e buﬁerl =]

A 1 Memory ||| 2 A Memory
v v I v v
| L2 cache I Directory | L2 cache I Directory
v v ¢ 3
| Bus | | Bus |

Network interface Network interface

‘ Network

Figure 2.1: Rsim multiprocessor configuration. Figure copied from Hughes et
al. [HPRAO2].

2.2.1 Simulator system

Rsim is made up of interchangeable modules — thus the range of supported
architectures is only limited by the availability of, or willingness to write, new
modules for the desired architecture.

Statistics output from the simulator includes total instructions executed, divided
into different categories, instructions per cycle achieved, functional unit usage,
detailed cache statistics, and more.

Rsim is an execution-drive simulator, and interprets application executables.
The instruction format is in the Sparc V9 format, but is expanded internally
to a simulator-specific format. Internally the simulator is based on the RPPT
Yacsim (Yet another C simulator) library.

2.2.2 Multiprocessor configuration

Figure 2.1 shows the multiprocessor configuration for Rsim. As can be seen, it is
a multiprocessor with non-uniform (distributed over each node) shared memory.
The cache coherency is directory based, using the coherency protocol MESI or
MSI. The interconnect network is a two-dimensional, wormhole-routed mesh
network, but this should be configurable.

CHAPTER 2. SIMULATORS 2.2. RSIM

Visual
2% v > |nstrsue<;non
CR%?rzlﬁqté?‘? Floating-point
: : register Floating-
Exception handling file b ! tQ
poin
Instruction t unit c[;zhae
fetch ~ ~
logic > g =
Register mapping >
(renaming) l +
Instruction 5
translation Instruction | P -
lookaside window P unit T
buffer Address
> | Integer I enerator
) 4 register
Instruction file — Data
cache Arithmetic § Ly| translation
<—>| logic unit/ lookaside
v branch buffer
Branch T 1
prediction

Figure 2.2: Rsim processor architecture. Figure copied from Hughes et al.
[HPRAO2].

2.2.3 Processor architecture

At the time of development, no detailed ILP processor simulator was available,
so the development team created a processor model mostly based on a preprint
of the MIPS R10000 architecture manual [HPRAOQ2].

The processor architecture is shown in Figure 2.2. The complexity of the pro-
cessor can be configured — ranging from single-instruction issue, in-order com-
pletion, to multiple-issue, out-order completion. It supports register renaming,
static and dynamic branch prediction, multimedia instruction set extensions and
simultaneous multithreading. Parameters like issue width and number of func-
tional units are user configurable.

2.2.4 Preliminary conclusion

The main problem with Rsim is that it models a shared-memory multiprocessor
over network, and not a chip multiprocessor. The usefulness of Rsim depends
on how easy it is to replace the network with a bus for inter-chip communication
between CPUs.

2.3. SIMPLEMP CHAPTER 2. SIMULATORS

2.3 SimpleMP

SimpleMP is based on the SimpleScalar simulator, an execution-driven, de-
tailed architectural simulator for uni-processors [ALE02], and extended to sup-
port multi-processors [HS00]. Unfortunately, | have not been able to find more
information about this simulator.

2.4 Asim

Work with Asim was started at Compaq in 1998. At that time the processor
models used for prediction of performance were becoming extremely complex,
and there was no structured method of developing these [EAB102]. Asim is a
performance model framework, based on modularity and reusability, that was
developed as an answer to this problem. Through modularity, the Asim frame-
work allows a complex hardware unit and its functioning to be broken down
into smaller, manageable pieces. Module reusability saves work as it is easy to
re-use an already written module in a new project, and this in turn also increases
confidence in the given module with its use in different settings.

A module in Asim represents a hardware component, such as a cache, or the
functioning of a hardware algorithm, such as a cache replacement policy. Mod-
ules communicate through method calls or ports, the latter being an abstraction
to allow a module to specify its communication and timing characteristics (more
about this later). When a user configures a set of modules for running a simula-
tion, these modules are instantiated in a hierarchical system by a configurator (a
normal C++ compiler and a makefile). The hierarchical collection of instanti-
ated modules, together with an Asim controller, make up a performance model.
Thus, a performance model in this respect includes the hardware model that is
being simulated, and the characteristics that are being measured (e.g. IPC for a
processor, or miss rate for a cache memory). Figure 2.3 illustrates this process.

An important aspect to note about Asim is that these modules are replace-
able, as mentioned. This means that Asim is not a simulator for one specific
performance model, but rather a collection of tools for creating and running
different performance models. To help with these processes, the Asim frame-
work comes with a set of tools called the “Architect’'s Workbench” (AWB). The
basis for this workbench are AWB configuration files. An AWB file is a complete
specification for an experiment, including the performance model, program or
benchmark details, and default parameters. The format is a structured text file.

The other main part of the Architect’'s Workbench is a graphical user interface
for manipulating the AWB files. The GUI lets the user select modules from a
pool of available modules, starting with a top Asim system node, and proceeding

CHAPTER 2. SIMULATORS 2.4. ASIM

Asim’s Architect’s Performance model
collection of Workbench
modules configurator Asim .| Runtime
Ij controller 71 display
I L
| I| I| I| Hierarchy of
instantiated
I‘ ‘ modules

Figure 2.3: Asim framework. A user configures a set of modules to make up
the simulation by using the Architect's Workbench, which are in turn instan-
tiated in a hierarchy and run by a controller. During simulation, the runtime
display shows the actions within the modules on a cycle-by-cycle basis. Figure
copied from Emer et al. [EAB102].

| branch_predictor_class |

/ . & \
\/

branch_predictor_algorithm_class branch_predictor_algorithm_class branch_predictor_algorithm_class
(simple branch predictor) (bimodal branch predictor) (gshare branch predictor)

Figure 2.4: An example of different implementations of a branch predictor
module. Figure copied from Emer et al. [EABT02].

downwards in a hierarchical fashion. The AWB can then generate a build tree
for the model, which can later be run as an experiment.

2.4.1 Modules

The Asim modules that represent hardware structures or functions, are written
in the C++ language. For design alternatives of particular functions, Asim does
not rely on the #ifdef ... #endif feature, which lacks clearly specified code
boundaries, but lets instead each module have its own C++ class.

A module/class representing a hardware unit/function typically inherits a stan-
dard asim_module_class. The module can then be broken down into submod-

24. ASIM CHAPTER 2. SIMULATORS

ules, with the respective submodules representing different implementations of
that particular module. This concept is illustrated in Figure 2.4. In this case, all
the submodules must conform to an agreed upon interface — namely, particular
method calls. This is called a method-call interface style.

The other interface style is called ports. This is communication between hard-
ware units represented as modules, and is realized by having each module im-
plementing a clock method that handles sending and receiving of information in
one cycle. The sender/recipient of the information is decided from an identifier
string. Asim utility code then handles the actual connection of modules through
ports, and exchange of information, based on the identifier strings. Ports have
the important properties of fixed delays and fixed bandwidth. Because of this,
Asim models can take into account the wire delays in physical circuits.

A feeder is a special kind of module that does not represent a hardware unit.
Feeders are responsible for supplying input to the performance model — that is,
instructions to execute. Asim supports three types of feeders:

e The static trace feeder reads instruction traces that could either have
been generated by another performance model, or a real machine, and
feeds them to the performance model. (In other words, the simulation is
trace-driven.)

e The dynamic trace feeder emulates instructions to generate a trace on-
the-fly. For this purpose, it uses the SimQOS full-system simulator to read
instructions from.

e Finally, the Aint feeder supplies the instructions from a program binary,
compiled for the target (simulated) architecture. More specific, the perfor-
mance model instructs the Aint feeder to fetch and execute instructions,
the feeder also maintaining the architectural states. The Aint feeder
is slower than its alternatives, but can, together with the performance
model, simulate a modern, speculative processor. (This option represents
execution-driven simulation.)

2.4.2 Preliminary conclusion

Asim, with the appropriate modules available, is an interesting simulator. For a
multiprocessor, it would be sufficient to simply instantiate multiple copies of the
processor. However, Asim does not seem to be available for download and free
usage. The simulator is a proprietary tool within Compaq and Intel [MAAT02],
and would therefore be hard to obtain.

CHAPTER 2. SIMULATORS 2.5. SIMOS

2.5 SimOS

The developers of SimOS saw the need for a simulator that is able to simulate
not only user applications, but also the operating system [RHWG95]. The reason
for this is that applications depending heavily on operating system services will
not be well understood when the simulation focuses only on the user application.
Second, operating system designers would like to be able to test their own
systems on simulators, in the case of unavailable or even non-existing hardware.

The SimOS simulator aims to solve this problem by being able to simulate an
entire operating system with user applications. For the simulation time not to
be overwhelmingly long, SimQOS relies on the following two advantages:

e SimQOS provides extremely fast simulation of hardware: a factor of only
10 times or less slower than native hardware execution should be possible.

e |t is possible to control the level of detail for the hardware simulation.
That means that the researcher can “fast forward” the simulation, using
SimOS fastest simulator (or direct execution), to a place of interest, and
from there continue simulation at a slower pace and in more detail.

SimQOS development was initiated in 1992, and was taken into usage in 1994,
at the Stanford University. The simulator has a homepage at http://simos.
stanford.edu. It is last updated in 2005, which shows that there might still be
some activity regarding the simulator. The latest release, however, version 2.0,
is from 1998. New in the second release was support for, among others, DEC
Alpha/Unix target system, and a port of the simulator to the x86/Linux plat-
form. SimOS can be downloaded from the homepage by filling out a registration
form.

2.5.1 Direct execution

The direct execution mode is the fastest mode of execution within SimQS.
When the target system (simulated system) and host system (system upon
which SimOS runs) are similar, it is possible to exploit the similarity by executing
simulated instructions at near native speed directly on the hardware. This is not
useful for experiments, because most statistics and details from the execution
will be lost (one might as well just run the application on native hardware). It
can, however, be a useful means for fast forwarding the simulation to a point
of interest (for example run the boot process of an OS).

The direct execution mode was challenging to implement, more about the details
of this later.

http://simos.stanford.edu
http://simos.stanford.edu

2.6. SIMICS CHAPTER 2. SIMULATORS

2.5.2 Detailed simulation

The detailed component simulation (CPU, memory) is provided as a hierarchy of
models that support varying levels of detail. For CPU simulation, it ranges from
binary translation (on-the-fly translation of application code to host machine
code), to detailed software interpretation of instructions.

2.5.3 Preliminary conclusion

SimOS is, however an important simulator when first developed, starting to
get old. Since the last release came out in 1998 — eight years ago — a lot has
happened, and | believe the similar simulator Simics is a better choice for full
system simulation at this time. SimOS still has a relevance, however, as it is
used by Asim (see Section 2.4).

2.6 Simics

Simics is a full system simulator like SimOS, but is — in contrast to SimOS
— offered commercially through a Swedish company called Virtutech. Simics
originates back to a simulator called g88 developed at IBM [MCE'02]. Then
work on a simulator based on g88 called gsim, for simulation of shared-memory
multiprocessors, started in 1991. Finally, in 1994 gsim was renamed Simics.
Simics was first developed as an academic project, but was later transferred to
the Virtutech company.

Simics aims, like SimQOS, to offer relevance through the ability to run complete
and realistic workloads. Magnusson et al. [MCE'02] argue that by running
small, “toy” workloads with great accuracy, there is a danger of obtaining accu-
rate results to irrelevant questions. Simics therefore attempts to find a balance
between accuracy and performance, such that relevant workloads can be run
within acceptable amounts of time.

One of the unique features of Simics, is that it is able to simulate hosts of
different types (hardware and software) in a heterogeneous network, within the
same framework. Figure 2.5 gives an example of this. Distributed over four
host computers, Simics simulates four different target architectures and oper-
ating systems with software, with good enough performance to use the system
interactively. All supported target architectures are simulated with sufficient ac-
curacy to allow device drivers and firmware to run unmodified, and the operating
system to install normally.

10

CHAPTER 2. SIMULATORS 2.6. SIMICS

Host 1 Host 2
Simics/x86 Simics/Hammer
ClientA Client B
Red Hat Linux 6.2 WinXP
KDE Explorer
Netscape
4
1 7
Host3 | o
Simics/Alpha
Web server
Red Hat Linux 6.0 Simics Central
Apache
mwforum
:
E Host 4
Simics/Ultra lll
DB server
Solaris 8
MySQL

Network of simulators
== == Simulated network

Figure 2.5: An example of a distributed Simics simulation of four target ma-
chines of different types. The Simics Central administrates the local clocks and
data exchange over a simulated Ethernet link. Figure copied from Magnusson
et al. [MCE*02].

Simics simulates the following instruction set architectures?: UltraSparc, Alpha,
x86, x86-64, PowerPC, Itanium, MIPS and ARM, and runs on Linux (x86,
PowerPC, Alpha), Solaris/UltraSparc, Tru64/Alpha, and Windows 2000,/x86.

2.6.1 Implementation

Simics is a large and complex simulator, with almost a million lines of code,
having taken more than 50 person-years to develop. Figure 2.6 shows a picture
of the overall system architecture. The core module to the left takes care
of the basic simulation tasks, like event handling, memory management and
CPU instruction interpretation. Other devices, like disks, network and graphics
controllers are connected through the Simics application programmer’s interface
(API). The same are simulator tools like debugging, scripting and the command
line interface that is the main control centre for Simics. Outside is the already
mentioned Simics Central that manages clocks and simulated network links
when running a distributed simulation and/or simulated distributed system.

The target system (to be simulated) is described in a specific object-oriented
language, where an object represents a processor or device, or a virtual object
like a disk image. By the use of the Simics API, the developer can describe a

2According to the article [MCE102] from 2002; support for more architectures might have
been included at a later time.

11

2.6. SIMICS CHAPTER 2. SIMULATORS

T VHDL
I Memory bus < P
Target machine || St
| Graphics
Applications = !

152 Devices Ethernet

Operating IR D,.

system = =
v = ' scsl =
Firmware : 3 Disks
o : }:3 Memory management unit Other
Simics 1 E — Simics
I = | Command-line interface Simics process
Configuration | | € Central
IRE Scripting
Event handling | I £
! = Tracing \
Memory I —

| Debugger Real

Interpreter | | Local network
| Cache models disk

Figure 2.6: Simics architecture. To the left (enclosed by a shaded, gray box)
is the core module, which offers basic simulation features to the target system.
More modules and tools are available through the Simics API. Especially note-
worthy is the Simics Central, mentioned before, and the VHDL simulator that
allows any component written in VHDL language to interface with the system
bus. Figure copied from Magnusson et al. [MCET02].

module in this language, which are then loaded by Simics. The API is written
in C.

The target CPU instruction set architecture (ISA) is coded in a special language,
called SimGen. It is a high-level language allowing the developer to describe
the format, syntax, semantics (functionality) and attributes used with timing
models for the ISA.

2.6.2 Preliminary conclusion

Simics’ main strength is its versatility in support of many different target and
host architectures, and ability to run complete and real workloads, including
entire operating systems and user applications. Simics is by itself not able to
simulate advanced, out-of-order processing cores with enough detail to exper-
iment with CMP microarchitecture, which is done by the research group at
IDI.

Another important advantage of Simics is that it is commercially available,
which ensures it is updated and maintained regularly. And IDI has a license for
using it.

12

CHAPTER 2. SIMULATORS 2.7. TFSIM

2.7 TFsim

TFsim — timing-first simulator — was developed part-time over one and a half
year, by a graduating student at the University of Wisconsin, Madison [MHW02].
“Timing-first can be viewed as an almost correct integrated simulator followed
by a correct functional simulator checker” [MHWO02]. It is a full system simulator
that decouples timing from functional simulation. By simulating timing first,
and then verifying against a functional simulator, a number of advantages are
gained according to the paper by Mauer, Hill and Wood [MHWO02]:

e The timing simulator can ignore certain factors that do not contribute to
the total execution time to a large degree — for example PCl bus transfers.

e Development time is reduced for the simulator itself, as existing simulators
can be used.

e Timing-first simulators can recover from deviations (from the functionally
correct simulation), and supply approximations of timing in situations
where normal simulators would fail.

It is Simics that supplies the functional simulation to TFsim. TFsim combines
Simics with a portable timing simulator written in C4++, that compiles on the
x86 and SPARC platforms. The timing simulator implements a reduced version
of the SPARC V9 instruction set, and does not implement full system func-
tionality including external devices, like Simics does (the idea of timing-first is
rather to approximate the correct performance). Through Simics’ API, the tim-
ing simulator can advance Simics a specific number of steps/cycles, and read its
architectural state for verification against the timing simulation’s internal state.

2.7.1 Preliminary conclusion

This simulator is based on a novel concept, but as a student project it may
not be as updated and error-free as one wishes. Also, the concept in itself is a
bit unusual, and it is not clear that this is the right approach for simulation of
CMPs at IDI.

2.8 SimFlex

The motivation behind SimFlex is that with research on server systems shifting
from scientific to commercial workloads, and processors are increasingly com-
plex, implementing full-system simulators has grown to “a task of herculean
proportions” [HSW04]. The Simics and SimOS simulators are referred to as
examples of this. A result is that researchers must base conclusions from these
simulations on only a fraction of a second'’s native execution time, because of

13

2.8. SIMFLEX CHAPTER 2. SIMULATORS

the slowness of these complex simulators compared to the real hardware.

The relation with Simics is important, as SimFlex uses system emulation features
from that simulator as a basis for SimFlex' own simulation. In this way, SimFlex
can be seen as an extension to Simics. SimFlex is a full-system simulator just as
Simics, but implements two innovations that are meant to assess the problems
mentioned in the previous paragraph:

e Compile-time component interconnection uses standard programming
features of C++ to eliminate the software overhead associated with mod-
ular simulator design. This is achieved by expressing component intercon-
nections at compile-time, and was inspired by the Asim simulator.

e Simulation sampling uses developed SMARTS methodology to select
samples for representative measures of a workload, rather than simulating
all of it.

The “full-system” terms implies that SimFlex can run realistic, commercial work-
loads — such as booting a contemporary operating system — and that it simulates
also operating system code and peripheral devices, factors that are significant
for the overall system performance.

SimFlex is offered for download on the simulator webpage, http://wuw.ece.
cmu. edu/~simflex, through the Flexus software. Flexus is a family of component-
based C++ computer architecture simulators, built on top of Simics, making
up a framework for full-system simulation [WWO05]. The first release of Flexus,
version 1.0, came out summer 2005.

2.8.1 Component-based design

The SimFlex simulator is made up of components that normally correspond
directly to a hardware unit, such as a cache. These are connected with some-
thing called wiring, which is interconnection expressed in C++ language syntax.
In this way, wiring descriptions are taken into account at compile-time, and a
custom simulation binary for that particular wiring is produced.

The C++ feature in use is the generic concept of templates. Components
are then templates with specification of ports to other components, making up
the communication paths. In this way, function calls happen directly between
components at run-time, and the need for using a global table for wire lookup
is saved.

14

http://www.ece.cmu.edu/~simflex
http://www.ece.cmu.edu/~simflex

CHAPTER 2. SIMULATORS 2.9. GEMS

2.8.2 Measurement with Smarts

A simulator such as SimpleScalar is 4000 times slower than the hardware it mod-
els, and a multiprocessor simulator is even slower. For that reason, researchers
often skip a large part of the instructions of benchmarks when drawing con-
clusions, simply because simulating the entire benchmark takes a prohibitive
amount of time.

Smarts stands for Sampling Microarchitecture Simulation. In short, it is a
method of obtaining representative results from executing a benchmark, with-
out having to execute all of it. The principle is to select a minimal subset
of the benchmark, such that the results lie within a given confidence interval.
The basis for the selection is the statistical concept of variation. The subsets
can very well be distributed over the entire instruction span, therefore a way of
jumping ahead in the instruction stream is needed. This is achieved by func-
tion warming, which “warms” the components to the desired microarchitectural
state when going execute instructions from a particular location.

2.8.3 Preliminary conclusion

Conclusion will be the same as for Simics with respect to the issue of whether to
simulate a full system, and the question of how detailed the processor models
are. With reduced execution time and good correctness, this would be an
attractive alternative to Simics.

2.9 GEMS

The Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
toolset [MSB™05] builds on two simulators already described here: Simics and
TFsim. Like many other simulators, it makes use of the full-system simulation
capabilities of Simics, but uses the timing-first approach of TFsim to model
a detailed, SPARC V9 processor. Also, particular emphasis is made on the
modelling of a cache hierarchy and the interconnection network between nodes
in a multiprocessor, experiments with this being a major research objective
when creating the simulator toolset. For the purpose of being able to test
different cache coherency protocols, they developed the Specification Language
for Implementing Cache Coherence (SLICC).

Figure 2.7 shows the GEMS architecture. As can be seen, the heart of the
simulator is the Ruby memory system simulator. Ruby can model a hierarchy
of caches specific to a single processor, as well as shared caches in a chip
multiprocessor. The interconnection network is specified by setting up links

15

2.9. GEMS CHAPTER 2. SIMULATORS

Random
Tester

AT
T

etc.

c
2
=
©
L
=
o
>
.Q
7]
©
m

Contended Locks

Microbenchmarks

Figure 2.7: GEMS architecture. The heart of the simulator is the Ruby mem-
ory system simulator, which can be driven by input from a Random Tester, a
set of microbenchmarks, Simics’ simple in-order processor or Opal dynamically
scheduled processor. Figure copied from Martin et al. [MSBT05].

between switches in the source code. The routing tables are then re-calculated
for every execution, which eases new network topologies to be added. By default,
a switched point-to-point network is modelled in Ruby.

As input to Ruby, one can choose between four modules: a random tester
module, which supplies Ruby with random requests with the purpose of stress-
testing the memory system; a microbenchmark module which supplies data from
microbenchmarks; Simics and its simple in-order processor model; and finally
Opal (together with Simics) which is formerly TFsim and is a timing model of
a detailed out-of-order processor.

Currently GEMS is released in version 1.2, and is licensed under the GNU GPL
license. It is available for download from the simulator's webpage at http:
//www.cs.wisc.edu/gems.

16

http://www.cs.wisc.edu/gems
http://www.cs.wisc.edu/gems

CHAPTER 2. SIMULATORS 2.10. M5

2.9.1 Preliminary conclusion

GEMS seems to be a simulator in active development. The basement upon
Simics can both be an advantage and a disadvantage. In the end, the level of
detail of the Opal processor model is crucial.

210 M5

M5 is a simulation system developed mostly from scratch (only a CPU model
is based on SimpleScalar’'s sim-outorder model) [BHRO3]. It models a detailed
out-of-order processor, an event-driven memory system and detailed network
1/O, in a full-system simulator. The motivation for making a new simulator,
was that the researchers behind it were not satisfied with available simulator
tools, in particular the lack of detailed network 1/O simulation in these (TFsim
is mentioned in this connection). They argue that while network bandwidth has
increased by a hundred times from 1995 to 2002 (from 100 Mbit to 10 Gbit) —
an improvement surpassing that of Moore’s law for microprocessors — network
performance should be an overall system-wide design consideration.

A key property of M5 is the object-oriented modular design, where a com-
ponent is implemented as a (C++) class, with the consequence that compo-
nents/classes easily can be replaced or instantiated multiple times. Also, use
of “private” and “protected” access to object methods ensure a well-defined
interface between simulator components (like would be present in a real im-
plementation). A common superclass to all components, SimObject, provides
functions for configuration, instantiating and others that are used by all simula-
tor components. It is intended by M5’s developers that researchers focusing on
a particular field of hardware design can create M5 classes, and share with dif-
ferent focusing teams (not willing to develop a detailed model of that particular
component(s)).

An M5 simulation is configured by the use of configuration files written in the
Python programming language. Python code then generate textual configura-
tion files following the same style as Windows' “.ini" files. The configuration
files are divided into sections, where a section represents a node (component like
CPU or cache), and the following keyword /value pairs describe that component.
Starting from an obligatory Universe node, proceeding down an example path
through the hierarchy are the nodes System (there can be multiple systems/-
computers in a single simulation), CPU and LiCache.

There are two available processor models in M5, and a third random data read-
er/writer called MemTest. SimpleCPU is a simple in-order CPU model similar to
SimpleScalar's sim-safe, while FullCPU is the mentioned detailed, out-of-order

17

2.11. IDI SIMULATOR CHAPTER 2. SIMULATORS

processor also capable of SMT. The model originates from SimpleScalar’s sim-
outorder model, but is in the process of being entirely rewritten. The simulated
ISA is Alpha. Two cache models have been implemented: an LRU cache and
an indirect index cache.

For evaluation of M5, the benchmarks Netperf and SPECweb99 were used.
Netperf is a simple tool that generates traffic for finding the maximum band-
width of the TCP connection between machines, while SPECweb99 is a more
realistic benchmark that generates HT TP requests from a web server.

M5 models a DEC Tsunami system and can boot Linux 2.4/2.6 and FreeBSD3
[Mic06]. It runs on x86-systems with Linux, OpenBSD or Cygwin, and is avail-
able for free download and use through the simulator's page at Sourceforge,
and contains about 90,000 lines of C4++ code. The simulator web page can be
found at http://m5.eecs.umich.edu.

2.10.1 Preliminary conclusion

M5 seems like a very interesting simulator. Since the simulator paper [BHRO3]
was written, a lot has happened with this simulator. See the last section of this
chapter for more discussion on Mb.

2.11 IDI simulator

Haakon Dybdahl and Marius Grannzs, at the Department of Computer and
Information Science at NTNU in Trondheim, have extended SimpleScalar’s sim-
outorder model to support CMP simulation. | have previously described this
simulator [Lan05], but since then some fixes have been applied, and | will give
some updated information here.

Support for multiple CPUs is implemented through locks around the simulated
pipeline loop, that ensure inter-CPU synchronization on a clock cycle-basis, and
allocated shared memory segments to each simulated CPU simulate physically
shared memory. The simulation is cycle-accurate. Figure 2.8 shows the simu-
lated memory hierarchy, which features independent CPUs and L1 cache, and
shared L2 cache and main memory.

18

http://m5.eecs.umich.edu

CHAPTER 2. SIMULATORS 2.11. IDI SIMULATOR

L/ Main memory \
\\ //
L2 cache
L1 cache L] [[L1 cache
/ - "‘\\\\ ,/ - \\\
sim- [sim-
| outorder ¢ o 0 | outorder |
\ \
N N2

Figure 2.8: CMP simulator memory hierarchy.

Host machine

Host main memory

Program address space

A A A
// "\\\ ,,// '—\\ // 7"‘\\
© sim- /sim- /" sim-
Il
— outorder];> outorder L> outorder — Controller
\ 1 / \ 2 J V' 3)
\\\ 7//’ \\\ //’ \\, ,,//
- - o Host CPU

Figure 2.9: CMP simulator implementation. Example with a single-processor
host, simulating three CPUs (instances of sim-outorder).

19

2.11. IDI SIMULATOR CHAPTER 2. SIMULATORS

2.11.1 Implementation

Figure 2.9 shows how the simulator runs inside the host machine. All simu-
lated CPUs run inside the host CPU, in a round-robin fashion. The horizontal
arrows between sim-outorder instances symbol control flow between CPUs (im-
plemented by semaphore locks). The arrays pointing from the CPUs to main
memory mean that the CPUs communicate with the memory in turns. Finally,
the Controller block represents the controller, that can be used to implement
some desired management function.

In the method simmain() in sim-outorder.c the following relevant steps
happen:

1. Synchronization (inter-CPU), controller and report semaphores are set up.
2. Every CPU is attached to a shared memory segment.
3. Main simulation loop:

e Every 10,000 clock ticks the CPU connects to the controller. This is
not required, but can be a handy way of performing desired tasks in a
regular interval; an example is the original experiment where thread
migration between CPUs was managed during this communication
with the controller.

e A lock is obtained for the CPU next in line for executing (represented
by the variable my_cpuid).

e Normal pipeline functions are executed.

e The lock is released and given to the next CPU to execute (with
wraparound on the total number of CPUs).

4. After a CPU is finished executing, it continues ticking until all the others
are done too.

The controller, implemented in controller.c, creates the shared memory re-
gions and initializes the various semaphores. It also contains a controller loop
that can perform any task needed (as mentioned above). A helper module for
creation and usage of shared memory and semaphores throughout the program
is implemented in shared.{h,c}.

Changes are also made to the cache implementation in cache.c. A new func-
tion, cache_create_shared(), allocates shared memory regions for cache. The
original cache_create() also calls this function when creating L1 cache, but
then with the argument -1, that makes the function act as the original function.

3FreeBSD support is preliminary according to release 1.1 news.

20

CHAPTER 2. SIMULATORS 2.12. SUMMARY AND SELECTION

2.11.2 Shortages

The CMP-extended SimpleScalar simulator had some known bugs and shortages,
some of which are now fixed. In a multiprocessor machine with shared memory,
the simulator could not take advantage of the multiple CPUs, due to a bug in the
synchronization mechanism. This should now be fixed. More a property than a
shortage, is the fact that CPU synchronization on every clock cycle introduces
significant overhead in execution time. It is probably possible to allow each CPU
to execute a few cycles more every turn — to speed up the total simulation time
— without too much reduction in correctness.

Another inaccuracy was present in the simulation of L2 cache. Hit rates in the
cache will be artificially high because of overlapping address space of CPUs'
programs and non-present competition for L2 cache. This was fixed earlier this
year, and should not be an issue anymore.

2.11.3 Preliminary conclusion

IDI's simulator is based on the well-known SimpleScalar, which is widely used,
but lacks many things, such as documentation, easy interface for extensions and
object orientation. To take a step forward, | think it would be wise to look for
a new simulator tool.

2.12 Summary and selection

Table 2.1 gives a short summary and comparison of all the simulators described.
However, there was a limited amount of information available about each sim-
ulator. For a more accurate evaluation of a simulator, a closer look would be
necessary, involving study of source code, and practical experiments.

Unfortunately, there was not enough time to go deeply into every one of these 10
simulators, so a selection was required. Ideally, this would be the simulator that
was best suited for the research going on at the computer architecture research
group at IDI. Considering my impressions from my studies, and a discussion with
people from the research group, we landed on M5 as the simulator of choice
for my thesis; although there were also good arguments for other simulators,
especially GEMS. Reasons for choosing M5 included:

e The processor model in M5 started out from SimpleScalar’s out-of-order
processor model, which has already been used for simulations within the
group. Hence, there might be chances to integrate some existing code
into the new simulator, or at least have some basis for customisation of

21

212

SUMMARY AND SELECTION CHAPTER 2. SIMULATORS

the new simulator. (A somewhat weaker argument as the old SimpleScalar
processor model is currently being phased out from M5.)

M5 supports everything we need: modelling of detailed, out-of-order pro-
cessors, CMP architectures, processors with SMT support, interconnec-
tion networks and full system simulation.

It simulates the Alpha architecture, like has been done previously with
SimpleScalar within the group.

The development team has made emphasis on pervasive object orienta-
tion, modularity and configurability while developing on the simulator,
which results in a well-structured application, and configuration files that
work “out-of-the-box" with little changes required.

It is fairly well documented (at least compared to most other simulators).

And last, but not least, it has a relatively large user base, an active
development team, frequent posts on the mailing lists that are answered
by authors of the simulator; and a new release with many new features is
soon to be made available.

22

2.12. SUMMARY AND SELECTION

CHAPTER 2. SIMULATORS

Simulated ar-

Year started & |) o) of detail | Omulated chitecture/MP | Extensibility Emphasis/novel
availability platforms . . idea
configuration
Rsim 1997, freely Out-of-order SPARC Shared-memory Through Simulate adv.
available CPU V9/Solaris MP over network | modular design CPUs in network
SimpleMP | Can't find Like 557 Alpha/PISA? | CMP? ? Mﬂw_wa SS w/
. 1998, within . Through Ease simulator
Asim Compagq/Intel Speculative CPU | Unknown Al modular design development
. 1994, freely . MIPS/SGI IRIX, . Simulate entire
SimOS available Variable Alpha/UNIX (¥) All Uncertain system
UltraSparc, Simulate
.. 1994, Alpha, x86, . “everything”,
Simics commercial In-order CPU PowerPC, MIPS, Al API provided heterogenous
ARM, ++ (*) networks
TFsim | 2002, can't find Out-of-order Like Simics? (*) | CMP Uncertain New concept:
CPU timing-first
Shorter runtime
SimFlex moo.m. freely Out-of-order SPARC V9 (*) CMP _/_o.a:_mq\oo by mﬁm.ﬁ_mﬁ_nm_
available CPU design sampling of
benchmarks
Simulate
2005, freely Out-of-order % Modular/O0 intercon., extend
GEMS available CPU SPARC VO (%) CMP design Simics w/
detailed CPU
Modular/O0O Written from
M5 2003, freely Out-of-order Alpha, SPARC, CMP, partially design, Python scratch,
available CPU MIPS (*) SMT configuration pervasive OO,
files configurability
. SS's out-of-order Must be Extend SS with
IDI's simulator | 2005 CPU Alpha, PISA CMP “hacked"” CMP

Table 2.1: Simulator summary table. Abbreviations used: (*): full system
simulation, intercon.: interconnection, SS: SimpleScalar

23

Chapter 3

M5

Remark: During the finishing of this thesis, a new major version of M5 is about
to be released (scheduled for the end of July). As both new documentation has
become available, focusing on the new release; and older documentation has
been updated, there has been an issue which version (1.1 or 2.0) to discuss
here. | have tried to include as updated data as possible, but there has not
been time to update all information here with respect to the newly available
information the last days of the thesis work. The reader should assume that,
unless otherwise stated, the given information is either unchanged from version
1.1 to 2.0, or refers to version 1.1.

All test runnings use version 1.1, as 2.0 will not be released until after the
deadline.

3.1 Simulator architecture

Figure 3.1 shows an overview of the M5 architecture — or, to some extent, a
simplified general computer architecture, with references to where the different
components are located in the source code.

3.1.1 CPU

Three CPU models are featured with M5, one simple and two detailed models
[BDH'05]. The simple model is suitable for warming caches and getting to
know the simulator. It is an in-order, one cycle per instruction CPU that works
both in the syscall and full system simulation modes.

The detailed models are one based on SimpleScalar's sim-outorder model, still

24

CHAPTER 3. M5 3.1. SIMULATOR ARCHITECTURE

nb/ ment bus/ *

nb/ meni cache/ *

nb/ dev/ *

Simple: nb/ cpu/ si npl e/ *
Detailed (new): nb/ cpu/ 03/ *

Detailed (old):
nb/ encunber ed/ cpu/ ful I /*

Functional:
b/ ment f uncti onal / *
Timing: nb/ meni tim ng/*

Simulator internals
nb/ si m *

Figure 3.1: An overview of M5 with references to source code. The bold lines

are not meant to show a specific form of physical communication, but rather
general inter-program communication.

25

3.1. SIMULATOR ARCHITECTURE CHAPTER 3. M5

Backwards Communication

Issue

Fetch ||+ Decode |- Rename LI Execute - Commit
Writeback

Figure 3.2: Pipeline of detailed CPU model. The forward and backward
communication is implemented as time buffers. Figure copied from Binkert et
al. [BDH™05].

used for full system simulation and SMT support, and a new model, written
from scratch. It is the new model that is the emphasis of the M5 team, and
support for full system simulation and SMT is planned to be included in this
model to make the old model superfluous.

The new detailed CPU model features an out-of-order CPU with a 5-stage
pipeline (see Figure 3.2), loosely based on the Alpha 21264. Both forward and
backward communication happens through time buffers, which is meant to avoid
unrealistic interaction between pipeline stages [BDH'05]. The time buffers are
similar to queues, and are ticked every cycle. After data is put in the buffer, it
can be read out after a specified number of cycles.

A notable difference between the old and the new detailed CPU models is when
instruction execution happens. While the old model executes the instruction at
fetch, the new model executes it at the execute stage. This allows the timing
of each pipeline stage to be modelled.

ISA

Version 1.1 only supports the Alpha ISA, but SPARC and MIPS will be included
in the 2.0 release, though only with support in syscall emulation mode. Future
plans include full system support for SPARC and MIPS, and possibly new ISAs,
like PowerPC and ARM [RBST06].

M5 includes a custom definition language for ISA descriptions. It gives a com-
pact, human-readable form of ISA descriptions, from which Python classes gen-
erate C++ code representing the ISA. Detailed documentation of the C++
instruction objects, the description language and code parsing can be found at
the simulator homepage at http://m5.eecs.umich.edu/wiki/index.php/
ISA_ description_system.

The concept of representing hardware instructions as C++ objects means that
all information that the simulator needs to execute an instruction, is stored in
the instruction object. A parser takes a binary machine instructions, and returns
the instruction object. A decoded instruction is stored as a StaticInst or a

26

http://m5.eecs.umich.edu/wiki/index.php/ISA_description_system
http://m5.eecs.umich.edu/wiki/index.php/ISA_description_system

CHAPTER 3. M5 3.1. SIMULATOR ARCHITECTURE

DynInst class (dynamic for detailed CPU models, holds renamed registers etc.),
and is accessed with low overhead later in the simulation.

© 00 N O O W N -

o e e o e e =
0 N O b W N = O

decode OPCODE default Unknown::unknown() {

format LoadAddress {
0x08: 1lda({{ Ra = Rb + disp; }});
0x09: 1ldah({{ Ra = Rb + (disp << 16); }});

0x11: decode INTFUNC { // integer logical operations

0x00: and ({{ Rc
0x08: bic ({{ Rc
0x20: bis ({{ Rc

Ra & Rb_or_imm; }1});
Ra & “Rb_or_imm; }3});
Ra | Rb_or_imm; 1}});

0x28: ornot({{ Rc = Ra | “"Rb_or_imm; }});
0x40: xor({{ Rc = Ra "~ Rb_or_imm; }});
0x48: eqv({{ Rc = Ra ~ "Rb_or_imm; }});
(...)

Listing 3.1: These are samples of the actual decoder specifications. The
syntax of the specifications is similar to the C switch statement, with a number
followed by a colon giving different options (the switch keyword is omitted,
however). The operations on registers are given in C syntax. (...) marks
the omission of code.

The ISA description file is divided into two main parts: a part describing the
decoder — the component that takes the binary instruction, and returns a C++
object; and a declaration part that describes global information, most notably
the instruction formats, and templates for C++ code generation from instruc-
tion definitions. Listings 3.1 and 3.2 show example excerpts from both parts of
the description file.

The ISA description language compacts the representation to about 1/10: for
Alpha 3437 lines of description results in about 39,000 lines of C++ code.

3.1.2 Memory system

A new memory system will be included in the 2.0 release. The most significant
change is the melting of the old separate timing and functional models into
one unified memory model. Common to both versions is that every memory
request happens in terms of a MemReq object. After it has been generated by
a CPU or another device, the MemReq is passed to the right cache on a bus.
In case of a cache miss, the cache itself generates a new MemReq object that

27

3.1. SIMULATOR ARCHITECTURE CHAPTER 3. M5

Simple Memory
Reads for Data in Cache Bank

Figure 3.3: M5 memory system in version 1.1. Syscall emulation memory is
shown. Figure copied from Binkert et al. [BDH105].

is sent to memory, while holding on to the request until it is able to send a
response. Figure 3.3 shows the organisation of the old memory system, while
Figure 3.4 shows a new concept called ports in version 2. Ports are a new way
of connecting memory devices together, where both parts act as a peer, that
can execute send and receive operations on eachother.

The major goals for the new memory system were to

e combine the timing and functional models into one model

e simplify code (e.g. remove duplicate code)

e improve modularity of code (particularly through easier component inter-
connects)

3.1.3 Cache
Coherency

M5 supports cache coherence in a multiprocessor. The following coherency
protocols are supported: MSI, MOSI, MESI, MOESI.

Prefetching

Prefetching is a technique commonly used in computer architecture to reduce
the number of cache misses. The concept is to read data or instructions from

28

CHAPTER 3. M5 3.1. SIMULATOR ARCHITECTURE

Cache Cache Cache
Port , Port Port ‘
] Peers Peers | | | Peers
Port g ’ Port Port '
‘ Bus ‘
Mem Port v,
|] | Peers
Port o
Mem
Figure 3.4: Mb.

29

3.1. SIMULATOR ARCHITECTURE CHAPTER 3. M5

memory into the cache before they are needed, so that the processor can have
fast access to them when needed.

e Software prefetching relies on special instructions initiating prefetch, that
a programmer or compiler must call at appropriate places in the code.

o With hardware-based prefetching, the software is unaware of the data
prefetching, and the determination of memory addresses to prefetch is
rather based on speculation. The speculation could be as simple as a
sequential approach. In that case it is assumed that with the fetch of a
particular memory address, it is likely that the consecutive addresses also
will be needed by the program. They are then read into the cache.

A modern processor architecture like AMD64 supports both software- and hardware-
based prefetching [AMDO5].

Tagged prefetching is a hardware prefetching algorithm that associates a bit to
each cache block. When a block is fetched, or a prefetched block is referenced
for the first time, a prefetch of the next block is requested [WL97]. In an ideal
program with only consecutive memory references, this would yield only one
cache miss, at the beginning of the program.

M5 supports both software- and hardware-based prefetching. The software
prefetching support consists of the Alpha prefetch instructions; though only
for data prefetching. With release 1.1 of M5, only one hardware-based policy is
provided: a tagged prefetcher. Although references to a stride prefetcher and a
GHB (Global History Buffer) prefetcher can be found in the code, they are not
yet implemented, and are planned to be included in a later release according to
a post by one of the authors to the M5 user mailing list.

M5's tagged prefetcher takes a degree parameter that decides how many blocks
forward the prefetch goes. There is also an option of whether to prefetch across
page boundaries or not, and a latency associated with the operation.

The hardware prefetcher is implemented in m5/mem/cache/prefetch, and is
based on the template policy for support of various prefetchers. Figure 3.5
shows the implementation hierarchy. There are three levels of inheritance:

1. The base class is BasePrefetcher. It provides common functions needed
by any hardware prefetcher, but leaves certain functions unimplemented
(“virtual” in C++ syntax), to be implemented in specific implementa-
tions.

2. Prefetcher<TagStore, Buffering> describes a prefetcher with a tag
store and a buffer, but leaves the central calculatePrefetch function
unimplemented.

3. Finally, TaggedPrefetcher<TagStore, Buffering>implements the last

30

CHAPTER 3. M5 3.2. USAGE

| Prefetcher< TagStore, Buffering > |
k

[GHBPrefetcher< Tagstore, Bufiering > | [StridePrefetcher< TagStore, Bufiering > | [TaggedPrefetcher Tagstore, Bufiering > |

Figure 3.5: M5 prefetcher implementation hierarchy. GHBPrefetcher and
StridePrefetcher are included although they do not come with release 1.1 of
M5. This figure is generated by the Doxygen documentation system (described
in Section 3.3.1).

function, as a variant of a prefetcher with buffer (other variants are to be
implemented).

Listing 3.3 shows the implementation of the prefetch address calculation for
the tagged prefetcher. As can be seen, it fetches as many pages as the degree
parameter says, or until the end of a page is reached, in the case when pageStop
(a parameter) is true.

To implement a new buffered prefetcher, it would be necessary to create a
new class inheriting Prefetcher<TagStore, Buffering>, that implements
the calculatePrefetch function.

3.1.4 Buses

M5 simulates buses between memory, I/O and CPUs in great detail (see sam-
ple statistics for bus in the output file in Appendix A). Width and speed can
be configured for buses. The interfaces to a bus are called master and slave
interfaces, where the master interface sits closer to memory, and slave interface
closer to CPU.

3.2 Usage

3.2.1 Building

Compiler

M5 builds with the GNU C++ compiler (g++). The README file says that
version 3.4 or newer is required; however, there seems to be a problem with the

newest version (g++ 4.0.x) related to the usage of templates. If during build
one encounters the following error

31

3.2. USAGE CHAPTER 3. M5

m5/sim/syscall_emul.hh:343: error: there are no arguments
to open that depend on a template parameter, so a
declaration of open must be available

changing to g++ 3.4 should solve the problem.

SCons

M5 is built using SCons [Kni02]. SCons is a build tool and a replacement for
the classic Make, but is intended to solve some of the shortcomings of that tool.
These include problems associated with static dependencies, recursive builds of
hierarchies and parallel builds in the case of a multiprocessor system. SCons uses
Python as the language for the implementation of the build engine, and also the
configuration files. Whereas Make was a tool made for programmers, SCons is
supposed to be accessible to non-programmers as well, for example scientists.
A useful feature of SCons is the simple exploitation of a multiprocessor system
during build; by passing the argument “~j N" to scons, where N is the number
of processors available, IV jobs are started in parallel.

Build configuration files

As mentioned, the configuration files for the SCons build process are Python
scripts. The “top” /main script is called SConstruct, and is located in the
m5/build directory. This script does some elementary checks, like if Python
and SCons are installed and of sufficiently recent versions, and determines the
build configuration (see next paragraph). It also sets up the build environment,
and passes command to the SCons build engine to do its job.

In addition to the top level SCons script, there are scripts called SConscript
at the following locations:

e m5/: This file determines how to build a given configuration from all the
source files.

e m5/python/: This file is less well documented, but probably deals with
including the simulator configuration files (which are also Python files) in
the build.

e m5/1libelf/: The two SCons scripts here configure the headers of the
libelf library.

e mb-test/*test*/: The scripts in the test directories are not really needed
for the build process, but for the regression tests! that are included.

!Regression tests are intended to ensure that a new version of an application does not break
any previously fixed errors. The regression tests provided with the M5 distribution are tested
regularly and guaranteed to work by the authors.

32

CHAPTER 3. M5 3.2. USAGE

Build procedure

M5 builds on Unix-like systems on little-endian hosts, preferably Linux/x86. It
can be built in two modes: system call emulation (syscall emulation) and full
system simulation. From m5/build, issue the command

scons <CONFIG>/<binary>

where <CONFIG> is either ALPHA SE for syscall emulation or ALPHA FS for full
system simulation (both can be built successively to enable both modes), and
<binary> is either m5. opt for the optimised version or m5.debug for the debug
version.

A slightly different version of the build command is to be used when regression
tests should be performed to verify the build?:

scons ALPHA_SE/test/opt/quick
for the syscall mode, and
scons ALPHA_FS/test/opt/quick

for the full system simulator.

An important note about building the full system simulator: the user must first
edit the file m5-test/SysPaths.py and update the SYSTEMDIR variable to the
path to where the full-system binaries are unpacked (these are available for
download separately).

3.2.2 Running

To run an M5 simulation, the binary file that was created during build must
be supplied with a configuration script, which is a Python file. Such scripts
are usually named “run.py”, and various examples of these come with the
distribution. The already mentioned regression tests each has a copy of run.py,
and these relatively simple tests is a good starting point to get familiar with
the format. The syntax of the configuration files is described in the online
documentation on http://m5.eecs.umich.edu/docs/config files.html.

It is not entirely true that the Python configuration files are the input to the
simulator, because the Python files are translated to Windows-like “.ini" files

>This seems to be new with version 1.1 of M5, and is described only in the distributed
README file.

33

http://m5.eecs.umich.edu/docs/config_files.html

3.3. DOCUMENTATION CHAPTER 3. M5

prior to simulation, which the simulator then uses to set up the simulation
system. It is planned to remove the necessity for this intermediary step in
future releases [BDH™05].

3.3 Documentation

As of present, there are four major sources of documentation for Mb:

e The documentation wiki at the simulator homepage (http://m5.eecs.
umich.edu/wiki/index.php/Main Page).

e Comments in the source code and Doxygen-generated documentation.

e Paper [BHRO03] describing the simulator (although this is not up-to-date
with latest versions), and tutorials on M5 (one was held at ISCA-32
[BDH'05], and a new was held at ISCA-33 [RBST06]).

e The M5 user mailing list, which can be subscribed to and searched from
the project page at SourceForge (http://sourceforge.net/projects/
m5sim). The mailing list is very active, and is a forum for user problems
and feedback on the simulator, which frequently receive answers from the
simulator authors.

3.3.1 Doxygen

Doxygen is a documentation system for C++ (and more languages) [vHO06].
It generates documentation from structured source comments to a number of
output formats (both “online” and “offline”), and can also extract relations and
generate diagrams from undocumented source code.

Source comments can be in several forms to be recognised by Doxygen. The
style used in M5 follows the same pattern as Javadoc comments. For example:

/*%
* @file
* Describes a tagged prefetcher based on template policies.

*/

where @file is a tag telling Doxygen what is described.

An online version of the Doxygen documentation for M5 can be found at the
simulator’'s webpage. It contains a full list of classes, files, directories and corre-
sponding members. The lists are generated directly from the source codes, and

34

http://m5.eecs.umich.edu/wiki/index.php/Main_Page
http://m5.eecs.umich.edu/wiki/index.php/Main_Page
http://sourceforge.net/projects/m5sim
http://sourceforge.net/projects/m5sim

CHAPTER 3. M5 3.3. DOCUMENTATION

are thus complete. But the descriptions depend of course on written comments,
and are so far highly incomplete.

Apart from listing classes with members, files and more, Doxygen generates class
and collaboration diagrams for classes. Inheritance hierarchy and collaboration
between a few classes can easily seen from these diagrams; though it does
not give an overview of larger parts of the code. There are also some useful
short guides of different subjects on the docs page, like how to compile and
run Mb; the memory hierarchy explained; and guidelines for coding style and
documenting the simulator.

New in June 2006 was that these documentation pages, together with all of
the simulator webpage, have been converted to the Wiki3 format. Since the
conversion to Wiki, the M5 homepage has frequently been updated, and the
online documentation has now been extended, including a new FAQ page and
more.

3Wiki is a concept where users can easily cooperate in editing web pages, like the Wikipedia
encyclopedia.

35

3.3. DOCUMENTATION CHAPTER 3. M5

© 00 N O O W N

B e
N =, O

13

14
15
16
17
18
19
20
21

22
23

24
25
26
27
28

// Universal (format—independent) fields
def bitfield OPCODE <31:26>;

C...)

def operand_types {{
’sb’ : (’signed int’, 8),
...

// Basic instruction class constructor template.
def template BasicConstructor {{
inline %(class_name)s::%(class_name)s(MachInst machInst
)
%(base_class)s ("% (mnemonic)s", machInst, %(op_class
)s)
{
%(constructor)s;
}
1}

...

// The most basic instruction format... used only for a
few misc. insts

def format BasicOperate(code, *flags) {{

iop = InstObjParams (name, Name, ’AlphaStaticInst’,
CodeBlock (code), flags)

header_output = BasicDeclare.subst (iop)
decoder_output = BasicConstructor.subst (iop)
decode_block = BasicDecode.subst (iop)
exec_output = BasicExecute.subst (iop)

s

Listing 3.2: Samples of the definitions of bitfields, operand types, templates
and instruction formats. The code is in Python, except for the output
code in the template, which is C++. That is, C++ code is generated
by the substitution of certain parameters, contained in the InstObjParams
object. The substitution is carried out by Python functions. The various
header_output, decoder_output etc. represent different C4++ objects to be
created.

36

CHAPTER 3. M5 3.3. DOCUMENTATION

1 void calculatePrefetch(MemReqPtr &req, std::list<Addr> &
addresses, std::1list<Tick> &delays)

2 {
3 Addr blkAddr = req->paddr & ~(Addr) (this->blkSize-1);
4
5 for (int d=1; d <= degree; d++) {
6 Addr newAddr = blkAddr + d*(this->blkSize);
7 if (this->pageStop &&
8 (blkAddr & ~“(TheISA::VMPageSize - 1)) !=
9 (newAddr & ~“(TheISA::VMPageSize - 1)))
10 {
11 //Spanned the page, so now stop
12 this ->pfSpanPage += degree - d + 1;
13 return;
14 }
15 else
16 {
17 addresses.push_back (newAddr) ;
18 delays.push_back(latency);
19 }
20 }
21}
-)

Listing 3.3: Function in class TaggedPrefetcher that does the actual
calculation of memory addresses to prefetch.

37

Chapter 4

Experiments

4.1 Sample runs of M5

To show practical use of the M5 simulator, | will in this section show some test
runs, how they were initiated, what output was produced, etc. As | have not
been able to compile any binaries for the Alpha architecture that M5 runs, | rely
on the ready-made test binaries that the simulator is shipped with.

There was expressed interest in running the SPECweb benchmark from the
computer architecture research group at IDI, but unfortunately the authors of
M5 are unable to distribute the SPECweb file image due to legal reasons. It
should however be easy to get the benchmark up and running once having
acquired the necessary files, as it is used by the development team.

4.1.1 Test 1: four-threaded uniprocessor

The regression tests that come with M5 are guaranteed to work with every
release. This is syscall emulation test 4, and can be found in the directory
m5-test/test4/. The test features a detailed uniprocessor running a four-
threaded workload: anagram and gcc, two copies of each.

The test is simply started by typing (from the m5/build/ directory):
ALPHA_SE/m5.opt -d output/ mb-test/test4/run.py

("SE" is for syscall emulation, and the “-d" option makes the output configu-
ration and statistics files be put in the specified directory.)

The run.py file is interesting; it defines in a simple way the system, and the

38

CHAPTER 4. EXPERIMENTS 4.1. SAMPLE RUNS OF M5

workload. Listing 4.1 shows the file in its entirety. The shortness of the file is
possible because it depends on DetailedUniConfig, defined in the mb-test/
directory, which again makes use of ready-made configuration objects that can
be found in m5/python/objects/. The objects’ properties are inherited, as in
standard class inheritance, and it is only necessary to specify the details which
should be different. In this case, the benchmarks are given, and a maximum
instruction count.

o O W N

from m5 import *
AddToPath(’..?)

from DetailedUniConfig import x*
import Benchmarks

BaseCPU.workload = [Benchmarks.AnagramLongCP (),
Benchmarks.GCCLongCP (), Benchmarks.AnagramLong(),
Benchmarks.GCCLong ()]

BaseCPU.max_insts_any_thread = 1000000

root = DetailedStandAlone ()

Listing 4.1: m5-test/test4/run.py. Configuration file for simulation.

Statistics from the execution is dumped in the file mbstats.txt. Listing 4.2
shows a few statistics from this test, while the entire statistics file provides very
detailed information; it counts over 5,000 lines.

—————————— Begin Simulation Statistics ----------

cpu.COM: IPC 4.123961
Committed instructions per cycle
cpu.COM: count 2726458
Number of instructions committed
cpu.dcache.read_hits 754953
number of read hits
cpu.l2.read_miss_rate 0.338584
miss rate for read accesses
toMemBus .data_requests 8920

number of transmissions on bus

Listing 4.2: A small sample of the statistics output from test 4.

To say something about the performance of the simulator, the statistics file gives
some figures for the host computer, namely host_inst_rate, host_mem_usage,
host_seconds and host_tick_rate. On a Pentium M 1.7 GHz with 768 MB
of RAM, it took about 30 seconds to simulate a total number of 2.7 million
instructions, giving an instruction rate of approximately 90,000 instructions per
second.

39

4.2. M5 MODIFICATION EXPERIMENT CHAPTER 4. EXPERIMENTS

4.1.2 Test 2: full system simulation

For a bit more of a challenge, this test boots Linux on two simulated computers —
a server and a client, and runs the Netperf maerts! benchmark. Both computers
have two instances of simple CPUs (two-way CMP).

The configuration files for full system simulation can be found in m5/configs/
fullsys/. The run.py file in this directory is different than the file from the
previous test in the way that it contains multiple choices of configuration, that
can be selected by specifying environmental variables on the command line.
These options include which benchmark to run, what kind of system to set
up, etc. Environmental variables are specified with the “-E <var>[=<val>]"
syntax (if no value, set to ‘True').

The command line to start this test is:

ALPHA_FS/m5.opt -d output-fullsys-netperf/
-E TEST=NETPERF_MAERTS -E NUMCPUS=2
../configs/fullsys/run.py

What happens is that two computers are simulated, both booting Linux with
network drivers, so that they will be able to communicate. Then startup scripts
(which are like normal Linux startup scripts — “*.rcS" files) start the necessary
drivers, and then the benchmark programs. Figure 4.1 shows a screenshot of the
simulation, after both machines are booted, and have started the benchmark
programs. Notice that it is possible to interact with the simulated computer
through a console interface (the application “m5term” makes that possible, and
can be found in m6/util/term/). Interaction is slow, but working.

A similar output statistics file is produced with this test; now there are statistics
for both computers, and both CPUs for each of those, but less details as the
CPUs were configured as simple processors this time. Some samples are shown in
Listing 4.3, while a statistics output file in its entirety can be found in Appendix
A. The host instruction rate for this test is about 1.9 million instructions per
second, more than one order of magnitude faster than in the previous test. This
is probably because simple rather than detailed CPUs are simulated.

4.2 M5 modification experiment

The primary purpose of this experiment was to test the extensibility of M5 in
practice, by attempting to add a new component to the simulator. While |

!Netperf is a micro-benchmark family from Hewlett-Packard for measuring bandwidth and
latency characteristics of networks [Com06]. The maerts benchmark tests receiving data.

40

m5/configs/fullsys/
m5/configs/fullsys/
m5/util/term/

CHAPTER 4. EXPERIMENTS

4.2. M5 MODIFICATION EXPERIMENT

command Line: ALPHA_F!
-E NUMCPUS=2

=) arntjorg@thinkpad: ~/m5/m5_1.1/m5/build

tor, developed by N

nd Steve Reinl

NEE | arntjorg@thinkpad: ~/m5/m5_1.1/m5/util/term

Q VLAN Support v1.8 Ben
bu dded by David s. Mil
[VFS: Mou d root (fil
Freeing unused kernel memor

running

tperf
[TCP MAERTS TEST to 1C
per]_- ma

arntjorg@thinkpad: ~/m5/m5_1.1/m5/utilterm

VvmSize Stat Command
848 S imt
SW [migration
[ksoftirgd

864 root 864 R

< | Gl

Figure 4.1: Screenshot from a full system simulation. The simulation binary
is started from the left window, and the two consoles to the right are connected
to the simulator, showing the console output from the client (top) and server
(bottom). While the server runs the benchmark program in the background,
it is possible to interact with the computer, as shown.

41

4.2. M5 MODIFICATION EXPERIMENT CHAPTER 4. EXPERIMENTS

—————————— Begin Simulation Statistics ----------

client.cpuO.dtb.accesses 6685459
client.cpuO.dtb.acv 54
client.tsunami.etherdevO.totBandwidth 3047239733
client.tsunami.etherdevO.totBytes 50544786
client.tsunami.etherdevO.totPackets 47633
sim_seconds 0.132697
sim_ticks 265393158
Listing 4.3: A small sample from the statistics output from the full system
test.
Cache BasePrefetcher Prefetcher TaggedPrefetcher
| | i
1 I |
handleMiss() ! | |
calcula"E‘Drefetch() []
ad‘dre;sses
inCache(prefetch)
Loz=77
e true
(addr++
\\\\ false

Figure 4.2: Sequence diagram for the operation of the tagged prefetcher.
Many details are omitted; | show only the few calls that are relevant for the
understanding of the operation. (Notation differs a bit from standard UML
notation.)

did not have the time to construct a new major component from scratch, |
chose to modify an existing component, add it to the simulator, and check the
effects. | hope and believe the process of adding a larger and more significant
new component will resemble that of a simple one, though it will probably
require more work to integrate the new component into the simulator (especially
customising the Python configuration files).

My target was the hardware prefetcher, described in Section 3.1.3. As it comes
with the simulator, there is only one prefetcher available: a tagged prefetcher.
A (simplified) sequence diagram is shown of the working of this prefetcher in
Figure 4.2. It is not really correct to picture the three classes as separate
objects collaborating, since TaggedPrefetcher inherits Prefetcher, which
again inherits BasePrefetcher. | merely show them as collaborating objects
to understand how the source code is distributed across those three classes.

My minor experiment was to create a dumb, sequential prefetcher that prefetches

42

CHAPTER 4. EXPERIMENTS 4.2. M5 MODIFICATION EXPERIMENT

one instruction ahead on misses, irrespective of if the address is already in cache
or not. To achieve that, | changed the implementation of the virtual function
bool inCache(MemReqPtr &req) in base_prefetcher.hh to always return
false. It was also necessary to change the method calculatePrefetch(...)
to only calculate one address ahead. The files can be found in Appendix B.

The simulator issued a lot warnings for the times the prefetcher prefetched an
address already in cache,

warn: Trying to issue a prefetch to a block we already have
scabwarn: Trying to issue a prefetch to a block we already

have
warn: Trying to issue a prefetch to a block we already have

Listing 4.4 shows the different in statistics output from the two simulators.
Simulation is in both cases started with the command

ALPHA_SE/m5.opt -d output m5-test/test4/run.py
--root.cpu.max_insts_any_thread=’5000000"
--root.cpu.l2.prefetch_policy=’tagged’
--root.cpu.l2.prefetch_miss=’True’
—--root.cpu.l2.prefetch_degree=’10’

To use the new implementation of the prefetcher, in seq_prefetcher.hh and
seq_prefetcher.cc, a reference to the . cc file must be added to the SConscript
file in m5/, to include the file in the build. Also, m5/mem/cache/cache_
builder.cc needs to be updated with the correct file reference.

43

m5/
m5/mem/cache/cache_builder.cc
m5/mem/cache/cache_builder.cc

4.2. M5 MODIFICATION EXPERIMENT CHAPTER 4. EXPERIMENTS

cpu.COM: IPC 4.615421
Committed instructions per cycle

cpu.l2.hwpf_accesses 36212
number of hwpf accesses(hits+misses)

host_inst_rate 67482

Simulator instruction rate (inst/s)

——————————————— New prefetcher ---------------

cpu.COM:IPC 4.515022
Committed instructions per cycle

cpu.l2.hwpf_accesses 35129
number of hwpf accesses(hits+misses)

host_inst_rate 21987

Simulator instruction rate (inst/s)

Listing 4.4: Comparison of some key figures from a simulation with the old
TaggedPrefetecher, and the new SeqPrefetcher. The numbers are similar,
except for the host instruction rate, which is significantly lower (due to console
output). IPC also drops a small amount.

44

Chapter 5

Conclusions

Chip multiprocessor architectures have recently become increasingly popular,
because of several factors making it difficult to continue making faster single-
threaded processor designs, such as has been done for the past decades. Power
usage, heat, extreme complexity, and lack of parallelism in single-threaded pro-
grams, have made computer architects look for ways to exploit parallelism that
exists between processes and applications. With the large number of transis-
tors that can reside on a single chip today, it is possible to implement multiple
processing cores on a chip, which leads to the term chip multiprocessor (CMP).

The group for computer architecture research at the Department of Computer
and Information Science at NTNU does research on topics related to chip multi-
processor designs. It is thus important to have a good simulator tool available to
test new ideas experimentally. A wide range of computer architecture simulators
are available; a number of them are capable of simulating chip multiprocessor
architectures. | have surveyed 9 different of those simulators, and taken a closer
look at one of them, the simulator called M5.

The simulators have varying characteristics, strengths and weaknesses, and rel-
evance to IDI's research. While most development projects are only a few years
old, | consider a simulator such as SimOS to be too old to be used actively
in research now. Asim has the problem that it is not available publicly, and
would be hard to obtain. Two of the simulators — TFsim and GEMS — use a
timing-first approach to simulation, where a less extensive model simulates the
timing of the processor, which is then later verified by a larger and more complex
execution-drive simulator, such as Simics. All the simulators can simulate CMP
architectures, but only a few can simulate SMT.

My choice of simulator fell on M5. M5 is a full system simulator for the Alpha
ISA (with promise about more to come), that supports CMP, SMT (partially
still), and simulation of networked computers. It is open source, licensed under

45

CHAPTER 5. CONCLUSIONS

GPL, and has an active development team. In my opinion, the simulator is
already a well-developed product; it comes with configuration files that make
things work immediately, and are a good starting point for customising the
simulator. The available documentation is good, but is distributed across several
locations, making it sometimes hard to find the information one is looking for.
The simulator is extensible through a modular, object-oriented design, but it
is unavoidable to look around in the source code a good deal if one wishes to
change or make a new component.

46

Appendix A

M5 statistics output file

Statistics output from full system simulation

—————————— Begin Simulation Statistics ---——------

client.cpu0.dtb.accesses 6685459
client.cpu0.dtb.acv 54
client.cpuO.dtb.hits 58345633
client.cpu0.dtb.misses 2459
client.cpu0.dtb.read_accesses 1193149
client.cpu0.dtb.read_acv 24
client.cpu0.dtb.read_hits 36430644
client.cpu0.dtb.read_misses 1907
client.cpuO.dtb.write_accesses 5492310
client.cpuO.dtb.write_acv 30
client.cpu0O.dtb.write_hits 21914989
client.cpuO.dtb.write_misses 552
client.cpu0.idle_fraction 0.967426
client.cpu0.itb.accesses 1077469
client.cpu0.itb.acv 23
client.cpu0.itb.hits 1076680
client.cpu0O.itb.misses 789
client.cpu0.kern.callpal 581034
client.cpu0.kern.callpal_wripir 4 0.00% 0.00%
client.cpu0.kern.callpal_swpctx 7750 1.33% 1.33%
client.cpu0.kern.callpal_tbi 2 0.00% 1.33%
client.cpu0.kern.callpal_swpipl 326654 56.22Y 57.55%
client.cpu0.kern.callpal_rdps 200781 34.56Y% 92.11%
client.cpu0.kern.callpal_wrusp 2 0.00% 92.11%
client.cpu0.kern.callpal_rdusp 1 0.00% 92.11%
client.cpu0.kern.callpal_rti 25005 4.30% 96.41%
client.cpu0.kern.callpal_callsys 20805 3.58% 99.99%
client.cpu0.kern.callpal_imb 30 0.01% 100.00%
client.cpuO.kern.faults 7269
client.cpu0.kern.faults_interrupt 3944 54.26Y 54.267
client.cpuO.kern.faults_dtb_miss_single 1959 26.95% 81.21%
client.cpu0.kern.faults_dtb_miss_double 500 6.887% 88.09%
client.cpu0.kern.faults_dfault 30 0.41Y% 88.50%

47

APPENDIX A. M5 STATISTICS OUTPUT FILE

client.cpu0.kern.faults_dfault 24 0.33Y% 88.83Y%
client.cpuO.kern.faults_itbmiss 789 10.85% 99.68Y%
client.cpuO.kern.faults_iaccvio 23 0.32% 100.00%
client.cpuO.kern.inst.arm 0
client.cpu0O.kern.inst.hwrei 588303
client.cpuO.kern.inst.ivlb 0
client.cpuO.kern.inst.ivle 0
client.cpuO.kern.inst.quiesce 3799
client.cpuO.kern.ipl_count 355603
client.cpu0.kern.ipl_count_0 167717 47.16Y% 47 .16%
client.cpu0.kern.ipl_count_21 42 0.01% 47.18Y%
client.cpuO.kern.ipl_count_22 385 0.11% 47 .28
client.cpu0.kern.ipl_count_30 3766 1.06% 48 .34,
client.cpu0.kern.ipl_count_31 183693 51.66% 100.00%
client.cpuO.kern.ipl_good 336102
client.cpuO.kern.ipl_good_O 167713 49.907% 49.90%
client.cpu0.kern.ipl_good_21 42 0.01% 49.91Y%
client.cpuO.kern.ipl_good_22 385 0.11% 50.03%
client.cpuO.kern.ipl_good_30 3766 1.12% 51.15%
client.cpu0.kern.ipl_good_31 164196 48.85% 100.00%
client.cpuO.kern.ipl_ticks 265909335
client.cpuO.kern.ipl_ticks_O 246012985 92.52), 92.52},
client.cpu0.kern.ipl_ticks_21 7098 0.00% 92.52Y,
client.cpu0O.kern.ipl_ticks_22 128208 0.05% 92.57%
client.cpuO.kern.ipl_ticks_30 851152 0.32} 92.89%
client.cpuO.kern.ipl_ticks_31 18909892 7.11% 100.00%
client.cpuO.kern.ipl_used 0.945161
client.cpuO.kern.ipl_used_O 0.999976
client.cpu0O.kern.ipl_used_21 1
client.cpu0O.kern.ipl_used_22 1
client.cpuO.kern.ipl_used_30 1
client.cpu0O.kern.ipl_used_31 0.893861
client.cpu0.kern.mode_good_kernel 24822
client.cpuO.kern.mode_good_user 21057
client.cpu0.kern.mode_good_idle 3764
client.cpuO.kern.mode_good_interrupt 0
client.cpu0.kern.mode_switch_kernel 46411
client.cpu0.kern.mode_switch_user 21057
client.cpuO.kern.mode_switch_idle 11528
client.cpuO.kern.mode_switch_interrupt 0
client.cpu0.kern.mode_switch_good 0.628424
client.cpu0.kern.mode_switch_good_kernel 0.534830
client.cpuO.kern.mode_switch_good_user 1
client.cpu0.kern.mode_switch_good_idle 0.326509
client.cpu0.kern.mode_switch_good_interrupt <err: div-0>
client.cpu0.kern.mode_ticks_kernel 185868608 69.88% 69.88Y%
client.cpu0.kern.mode_ticks_user 1340605 0.50% 70.38%
client.cpuO.kern.mode_ticks_idle 78771127 29.62% 100.00%
client.cpu0.kern.mode_ticks_interrupt 0 0.00% 100.00%
client.cpu0.kern.swap_context 7750
client.cpuO.kern.syscall 20791
client.cpu0.kern.syscall_fork 1 0.00% 0.00%
client.cpu0.kern.syscall_read 4 0.02% 0.02%
client.cpuO.kern.syscall_close 4 0.02Y% 0.04Y%

48

APPENDIX A. M5 STATISTICS OUTPUT FILE

client.cpu0.kern.syscall_obreak 6 0.03% 0.07%
client.cpu0.kern.syscall_lseek 1 0.00% 0.08%
client.cpu0.kern.syscall_open 9 0.04% 0.12%
client.cpuO.kern.syscall_sigprocmask 1 0.00% 0.13%
client.cpu0.kern.syscall_execve 1 0.00% 0.13%
client.cpu0.kern.syscall_pre_F64_stat 2 0.01% 0.147
client.cpu0.kern.syscall_mmap 10 0.05% 0.19%
client.cpu0.kern.syscall_mprotect 3 0.01% 0.20%
client.cpuO.kern.syscall_pre_F64_fstat 3 0.01% 0.22%
client.cpu0.kern.syscall_socket 1 0.00% 0.22%
client.cpu0.kern.syscall_connect 1 0.00% 0.23%
client.cpu0.kern.syscall_old_recv 20744 99.77% 100.00%
client.cpuO.not_idle_fraction 0.032574
client.cpu0.numCycles 190952626
client.cpu0.num_insts 190951814
client.cpu0O.num_refs 58605345
client.cpul.dtb.accesses 3718122
client.cpul.dtb.acv 86
client.cpul.dtb.hits 71322254
client.cpul.dtb.misses 2875
client.cpul.dtb.read_accesses 2643831
client.cpul.dtb.read_acv 49
client.cpul.dtb.read_hits 48641930
client.cpul.dtb.read_misses 1964
client.cpul.dtb.write_accesses 1074291
client.cpul.dtb.write_acv 37
client.cpul.dtb.write_hits 22680324
client.cpul.dtb.write_misses 911
client.cpul.idle_fraction 0.955019
client.cpul.itb.accesses 2004537
client.cpul.itb.acv 46
client.cpul.itb.hits 2003661
client.cpul.itb.misses 876
client.cpul.kern.callpal 866280
client.cpul.kern.callpal_wripir 3766 0.43% 0.43%
client.cpul.kern.callpal_swpctx 245 0.03% 0.46%
client.cpul.kern.callpal_tbi 4 0.00% 0.46%
client.cpul.kern.callpal_swpipl 643686 74.30% T4.77%
client.cpul.kern.callpal_rdps 202622 23.39% 98.16%
client.cpul.kern.callpal_wrusp 1 0.00% 98.16%
client.cpul.kern.callpal_rdusp 2 0.00% 98.16%
client.cpul.kern.callpal_rti 15746 1.82% 99.98%
client.cpul.kern.callpal_callsys 171 0.02% 100.00%
client.cpul.kern.callpal_imb 37 0.00% 100.00%
client.cpul.kern.faults 19135
client.cpul.kern.faults_interrupt 15252 79.71% 79.71%
client.cpul.kern.faults_dtb_miss_single 2302 12.03% 91.74%
client.cpul.kern.faults_dtb_miss_double 573 2.997% 94.73Y%
client.cpul.kern.faults_dfault 37 0.19% 94.93%
client.cpul.kern.faults_dfault 49 0.26Y% 95.18Y%
client.cpul.kern.faults_itbmiss 876 4.58% 99.76%
client.cpul.kern.faults_iaccvio 46 0.247% 100.00%
client.cpul.kern.inst.arm 0
client.cpul.kern.inst.hwrei 885415

49

APPENDIX A. M5 STATISTICS OUTPUT FILE

client.cpul.kern.inst.ivlb 0
client.cpul.kern.inst.ivle 0
client.cpul.kern.inst.quiesce 8
client.cpul.kern.ipl_count 674684
client.cpul.kern.ipl_count_0 200342 29.69% 29.69%
client.cpul.kern.ipl_count_21 15113 2.249% 31.93%
client.cpul.kern.ipl_count_22 282 0.04Y% 31.98Y%
client.cpul.kern.ipl_count_30 4 0.00% 31.98Y%
client.cpul.kern.ipl_count_31 458943 68.02% 100.00%
client.cpul.kern.ipl_good 415989
client.cpul.kern.ipl_good_0 200291 48.15Y% 48.15%
client.cpul.kern.ipl_good_21 15113 3.63% 51.78%
client.cpul.kern.ipl_good_22 282 0.07% 51.85%
client.cpul.kern.ipl_good_30 4 0.00% 51.85%
client.cpul.kern.ipl_good_31 200299 48.15Y% 100.00%
client.cpul.kern.ipl_ticks 265393564
client.cpul.kern.ipl_ticks_0 206432363 77.78% 77.78%
client.cpul.kern.ipl_ticks_21 2448175 0.92% 78.71%
client.cpul.kern.ipl_ticks_22 92406 0.03% 78.74%
client.cpul.kern.ipl_ticks_30 976 0.00% 78.74%
client.cpul.kern.ipl_ticks_31 56419644 21.267, 100.00%
client.cpul.kern.ipl_used 0.616569
client.cpul.kern.ipl_used_O 0.999745
client.cpul.kern.ipl_used_21 1
client.cpul.kern.ipl_used_22 1
client.cpul.kern.ipl_used_30 1
client.cpul.kern.ipl_used_31 0.436435
client.cpul.kern.mode_good_kernel 15559
client.cpul.kern.mode_good_user 446
client.cpul.kern.mode_good_idle 0
client.cpul.kern.mode_good_interrupt 16112
client.cpul.kern.mode_switch_kernel 31891
client.cpul.kern.mode_switch_user 446
client.cpul.kern.mode_switch_idle 0
client.cpul.kern.mode_switch_interrupt 15112
client.cpul.kern.mode_switch_good 0.655799
client.cpul.kern.mode_switch_good_kernel 0.487881
client.cpul.kern.mode_switch_good_user 1
client.cpul.kern.mode_switch_good_idle no value
client.cpul.kern.mode_switch_good_interrupt 1
client.cpul.kern.mode_ticks_kernel 233554109 88.00% 88.00%
client.cpul.kern.mode_ticks_user 2065910 0.78% 88.78%
client.cpul.kern.mode_ticks_idle 0 0.00% 88.78%
client.cpul.kern.mode_ticks_interrupt 29768024 11.22% 100.00%
client.cpul.kern.swap_context 245
client.cpul.kern.syscall 142
client.cpul.kern.syscall_fork 2 1.41% 1.41%
client.cpul.kern.syscall_read 3 2.11% 3.52%
client.cpul.kern.syscall_write 1 0.70% 4.23%
client.cpul.kern.syscall_close 3 2.11% 6.34%
client.cpul.kern.syscall_obreak 19 13.38Y% 19.72%
client.cpul.kern.syscall_lseek 0.70% 20.42Y%
client.cpul.kern.syscall_getpid 0.70% 21.13%
client.cpul.kern.syscall_open 2.82), 23.94Y,

50

APPENDIX A. M5 STATISTICS OUTPUT FILE

client

client
client

client

client
client

client

client

client

client

client

client.
client.
client.

client.
client.
client.

client.
client.
client.

client.
client.
client.

client.
client.
client.
client.
client.
client.
client.
.tsunami.etherdevO.
client.tsunami.etherdevO.
client.
client.
client.
client.
client.
client.
client.

client.
client.

client.
client.
client.
.tsunami.etherdev0.rxBytes
client.
client.
client.

client.
client.
client.
client.

cpul.kern.
cpul.kern.
cpul.kern.
.cpul.kern.
cpul.kern.
cpul.kern.
cpul.kern.
.cpul.kern.
.cpul.kern.
cpul.kern.
cpul.kern.
cpul.kern.
.cpul .kern.
cpul.kern.
cpul.kern.

syscall_sigprocmask
syscall_joctl
syscall_execve
syscall_pre_F64_stat
syscall_mmap
syscall_mprotect
syscall_pre_F64_fstat
syscall_select
syscall_socket
syscall_connect
syscall_old_send
syscall_old_recv
syscall_bind
syscall_setsockopt
syscall_getsockopt

cpul.not_idle_fraction

.cpul.numCycles
.cpul.num_insts
client.

cpul.num_refs
kern.fnCalls

tsunami.etherdevO.
tsunami.etherdevO.

tsunami.etherdev0.coalescedRx0k
tsunami.etherdev0.coalescedRx0rn
tsunami.etherdev0.coalescedSwi
tsunami.etherdev0.coalescedTotal

tsunami.etherdev0.coalescedTx0k
tsunami.etherdev0.descDMAReads
tsunami.etherdevO.descDMAWrites

tsunami.etherdevO.
tsunami.etherdevO.

tsunami.etherdev0.droppedPackets

tsunami.etherdev0.
.tsunami.etherdev0.postedRxDesc
client.

tsunami.etherdev0.postedRxIdle
tsunami.etherdev0.postedRx0k
tsunami.etherdevO.postedRx0Orn

.tsunami.etherdev0.postedSwi
client.

tsunami.etherdevO.postedTxDesc
tsunami.etherdevO.postedTxIdle
tsunami.etherdev0.postedTx0k
tsunami.etherdev0.rxBandwidth

tsunami.etherdev0.rxIpChecksums
tsunami.etherdevO.rxPPS
tsunami.etherdevO.rxPackets

.tsunami.etherdevO.rxTcpChecksums
client.

tsunami.etherdevO.rxUdpChecksums
tsunami.etherdevO.totBandwidth
tsunami.etherdevO.totBytes
tsunami.etherdevO.totPackets
tsunami.etherdev0.totalRxDesc

51

coalescedRxDesc
coalescedRxIdle

coalescedTxDesc
coalescedTxIdle

descDmaReadBytes
descDmaWriteBytes

postedInterrupts

NP, NN OE NN

(o]
w = N

2
0.044981
263684542
263683620
71918107

OFrr OFr OO OO OO

14699
47633
235184
381064
0
15112
467

O O O OO

14645

1
2999354610
49750512
32934
248190
32934
32934

0
3047239733
50544786
47633

1077

H OO kFr P O WOoOrFr O K

al
~

= N O

.41
.70%
.41Y,
.70%
.52
.70%
.41Y%
.41%
.70%
.70%
.41Y%
.75%
.70%
L11%
.41Y%,

25

35

100

.35%
26.
27.
28.
31.
32.
33.
.21Y%
35.
36.
38.
95.
96.
98.
.00Y%

06%
46Y%
17%
69%
39%
80%

92%
62%
03%
7%
48%
59%

APPENDIX A. M5 STATISTICS OUTPUT FILE

client.tsunami.etherdev0.totalRxIdle 0
client.tsunami.etherdev0.totalRx0k 0
client.tsunami.etherdevO.totalRx0Orn 0
client.tsunami.etherdev0.totalSwi 0
client.tsunami.etherdev0.totalTxDesc 0
client.tsunami.etherdevO.totalTxIdle 14699
client.tsunami.etherdev0.totalTx0k 0
client.tsunami.etherdev0.txBandwidth 47885123
client.tsunami.etherdev0.txBytes 794274
client.tsunami.etherdev0.txIpChecksums 2
client.tsunami.etherdev0.txPPS 110772
client.tsunami.etherdev0.txPackets 14699
client.tsunami.etherdev0.txTcpChecksums 2
client.tsunami.etherdev0.txUdpChecksums 0
host_inst_rate 1905131
host_mem_usage 352108
host_seconds 997.57
host_tick_rate 266039
server.cpu.dtb.accesses 322632589
server.cpu.dtb.acv 219
server.cpu.dtb.hits 444851646
server.cpu.dtb.misses 15435
server.cpu.dtb.read_accesses 213960701
server.cpu.dtb.read_acv 102
server.cpu.dtb.read_hits 287993853
server.cpu.dtb.read_misses 9348
server.cpu.dtb.write_accesses 108671888
server.cpu.dtb.write_acv 117
server.cpu.dtb.write_hits 156857793
server.cpu.dtb.write_misses 6087
server.cpu.idle_fraction 0.969169
server.cpu.itb.accesses 999249599
server.cpu.itb.acv 90
server.cpu.itb.hits 999244725
server.cpu.itb.misses 4874
server.cpu.kern.callpal 2263614
server.cpu.kern.callpal_swpctx 981 0.04% 0.04%
server.cpu.kern.callpal_tbi 52 0.00% 0.05%
server.cpu.kern.callpal_swpipl 1855213 81.96 82.00%
server.cpu.kern.callpal_rdps 353496 15.62, 97.62%
server.cpu.kern.callpal_wrusp 3 0.00% 97.62%
server.cpu.kern.callpal_rdusp 6 0.00% 97 .62
server.cpu.kern.callpal_rti 52008 2.30% 99.92Y%
server.cpu.kern.callpal_callsys 1701 0.08% 99.99Y%
server.cpu.kern.callpal_imb 154 0.01% 100.00%
server.cpu.kern.faults 70137
server.cpu.kern.faults_interrupt 49519 70.60% 70.60%
server.cpu.kern.faults_dtb_miss_single 13290 18.95% 89.55,
server.cpu.kern.faults_dtb_miss_double 2145 3.06% 92.61%
server.cpu.kern.faults_dfault 117 0.17% 92.78%
server.cpu.kern.faults_dfault 102 0.15% 92.92%
server.cpu.kern.faults_itbmiss 4874 6.95% 99.87%
server.cpu.kern.faults_iaccvio 90 0.13% 100.00%
server.cpu.kern.inst.arm 0

52

APPENDIX A. M5 STATISTICS OUTPUT FILE

server.cpu.kern.inst.hwrei 2333751
server.cpu.kern.inst.ivlb 0
server.cpu.kern.inst.ivle 0
server.cpu.kern.inst.quiesce 4784
server.cpu.kern.ipl_count 1956740
server.cpu.kern.ipl_count_0 782711 40.00% 40.00%
server.cpu.kern.ipl_count_21 49383 2.52Y% 42.52%
server.cpu.kern.ipl_count_22 401 0.02% 42.547,
server.cpu.kern.ipl_count_31 1124245 57.46Y 100.00%
server.cpu.kern.ipl_good 1615219
server.cpu.kern.ipl_good_0 782585 48.45Y% 48.45%
server.cpu.kern.ipl_good_21 49383 3.06% 51.51%
server.cpu.kern.ipl_good_22 401 0.02% 51.53Y%
server.cpu.kern.ipl_good_31 782850 48.47% 100.00%
server.cpu.kern.ipl_ticks 266403576
server.cpu.kern.ipl_ticks_0 255405697 95.87Y% 95.87Y%
server.cpu.kern.ipl_ticks_21 997264 0.37% 96.25Y%
server.cpu.kern.ipl_ticks_22 14133 0.01% 96.25Y%
server.cpu.kern.ipl_ticks_31 9986482 3.75% 100.00%
server.cpu.kern.ipl_used 0.825464
server.cpu.kern.ipl_used_0 0.999839
server.cpu.kern.ipl_used_21 1
server.cpu.kern.ipl_used_22 1
server.cpu.kern.ipl_used_31 0.696334
server.cpu.kern.mode_good_kernel 52270
server.cpu.kern.mode_good_user 10685
server.cpu.kern.mode_good_idle 137
server.cpu.kern.mode_good_interrupt 41448
server.cpu.kern.mode_switch_kernel 128343
server.cpu.kern.mode_switch_user 10685
server.cpu.kern.mode_switch_idle 28815
server.cpu.kern.mode_switch_interrupt 41448
server.cpu.kern.mode_switch_good 0.499496
server.cpu.kern.mode_switch_good_kernel 0.407268
server.cpu.kern.mode_switch_good_user 1
server.cpu.kern.mode_switch_good_idle 0.004754
server.cpu.kern.mode_switch_good_interrupt 1
server.cpu.kern.mode_ticks_kernel 42662207 16.01% 16.01%
server.cpu.kern.mode_ticks_user 124955038 46.90% 62.92%
server.cpu.kern.mode_ticks_idle 93934709 35.26% 98.18%
server.cpu.kern.mode_ticks_interrupt 4851716 1.82% 100.00%
server.cpu.kern.swap_context 981
server.cpu.kern.syscall 1646
server.cpu.kern.syscall_fork 4 0.24% 0.24Y%
server.cpu.kern.syscall_read 123 7.47% 7.72%
server.cpu.kern.syscall_write 42 2.55% 10.27%
server.cpu.kern.syscall_close 114 6.93% 17.19%
server.cpu.kern.syscall_obreak 27 1.64Y 18.83%
server.cpu.kern.syscall_setuid 3 0.18% 19.02%
server.cpu.kern.syscall_getuid 3 0.18% 19.20%
server.cpu.kern.syscall_open 124 7.53% 26.73%
server.cpu.kern.syscall_getgid 3 0.18% 26.91%
server.cpu.kern.syscall_sigprocmask 3 0.18% 27.10%
server.cpu.kern.syscall_ioctl 11 0.67% 27.76%

53

APPENDIX A. M5 STATISTICS OUTPUT FILE

server.cpu.kern.syscall_execve 3 0.18% 27.95%
server.cpu.kern.syscall_pre_F64_stat 45 2.73% 30.68%
server.cpu.kern.syscall_pre_F64_lstat 37 2.25% 32.93%
server.cpu.kern.syscall_mmap 126 7.65% 40.58Y%
server.cpu.kern.syscall_munmap 105 6.38% 46.96Y%
server.cpu.kern.syscall_mprotect 6 0.36% 47.337
server.cpu.kern.syscall_pre_F64_fstat 114 6.93Y% 54 .25Y
server.cpu.kern.syscall_fcntl 3 0.18% 54.43Y,
server.cpu.kern.syscall_socket 1 0.06% 54.50%
server.cpu.kern.syscall_old_accept 2 0.12% 54.62Y%
server.cpu.kern.syscall_old_send 734 44 .59Y, 99.21%
server.cpu.kern.syscall_old_recv 2 0.12% 99.33%
server.cpu.kern.syscall_bind 1 0.06% 99.39%
server.cpu.kern.syscall_setsockopt 3 0.18% 99.57%
server.cpu.kern.syscall_listen 1 0.06% 99.64Y%
server.cpu.kern.syscall_getsockopt 2 0.12% 99.76%
server.cpu.kern.syscall_setgid 3 0.18% 99.94Y%
server.cpu.kern.syscall_old_getsockname 1 0.06% 100.00%
server.cpu.not_idle_fraction 0.030831

server.cpu.numCycles 1445878294

server.cpu.num_insts 1445873330

server.cpu.num_refs 445624373

server.kern.fnCalls 0
server.tsunami.etherdev0.coalescedRxDesc 0
server.tsunami.etherdev0.coalescedRxIdle 0
server.tsunami.etherdev0.coalescedRx0k 0
server.tsunami.etherdev0.coalescedRx0Orn 0
server.tsunami.etherdev0.coalescedSwi 0
server.tsunami.etherdev0.coalescedTotal 1
server.tsunami.etherdev0.coalescedTxDesc 0
server.tsunami.etherdev0.coalescedTxIdle 1
server.tsunami.etherdev0.coalescedTx0k 0
server.tsunami.etherdev0.descDMAReads 32934
server.tsunami.etherdev0.descDMAWrites 47633
server.tsunami.etherdevO.descDmaReadBytes 526944
server.tsunami.etherdev0.descDmaWriteBytes 381064
server.tsunami.etherdev0.droppedPackets 0
server.tsunami.etherdevO.postedInterrupts 47531
server.tsunami.etherdevO.postedRxDesc 14688
server.tsunami.etherdev0O.postedRxIdle 0
server.tsunami.etherdev0O.postedRx0k 0
server.tsunami.etherdevO.postedRx0Orn 0
server.tsunami.etherdevO.postedSwi 0
server.tsunami.etherdevO.postedTxDesc 0
server.tsunami.etherdevO.postedTxIdle 32934
server.tsunami.etherdev0.postedTx0k 0
server.tsunami.etherdevO.rxBandwidth 47885123
server.tsunami.etherdev0.rxBytes 794274
server.tsunami.etherdevO.rxIpChecksums 14699
server.tsunami.etherdevO.rxPPS 110772
server.tsunami.etherdev0.rxPackets 14699
server.tsunami.etherdevO.rxTcpChecksums 14699
server.tsunami.etherdevO.rxUdpChecksums 0
server.tsunami.etherdev0O.totBandwidth 3047239733

54

APPENDIX A. M5 STATISTICS OUTPUT FILE

server.
server.
server.
.tsunami.
tsunami.

server

server.
.tsunami.

server

server.
server.
server.
server.

server

server

server.
server.
server.
server.

tsunami.
tsunami.
tsunami.

tsunami.
tsunami.
tsunami.
tsunami.
.tsunami.
server.tsunami.
.tsunami
tsunami.
tsunami.
tsunami.

tsunami

sim_freq
sim_insts
sim_seconds
sim_ticks

etherdevO.totBytes 50544786
etherdev0.totPackets 47633
etherdev0.totalRxDesc 14686
etherdev0O.totalRxIdle 0
etherdev0.totalRx0k 0
etherdev0.totalRx0rn 0
etherdev0.totalSwi 0
etherdev0.totalTxDesc 0
etherdev0.totalTxIdle 32934
etherdev0.totalTx0k 0
etherdev0.txBandwidth 2999354610
etherdev0.txBytes 49750512
.etherdev0.txIpChecksums 32931
etherdev0.txPPS 248190
etherdev0.txPackets 32934
etherdev0.txTcpChecksums 32931
.etherdev0.txUdpChecksums 0
2000000000

1900508764

0.132697

265393158

Simulation Statistics --————---—-

Statistics output from full system simulation

55

Appendix B

Prefetcher files

Listing B.1: seq_prefetcher.hh

N o O W N

10
11
12

13
14

15

16

17

18

19
20

21

22

Ve

* X ¥ X ¥

Copyright (c) 2005
The Regents of The University of Michigan
All Rights Reserved

This code is part of the M5 simulator, developed by Nathan
Binkert ,

Erik Hallnor, Steve Raasch, and Steve Reinhardt, with
contributions

from Ron Dreslinski , Dave Greene, Lisa Hsu, Kevin Lim, Ali
Saidi,

and Andrew Schultz.

Permission is granted to use, copy, create derivative works
and

redistribute this software and such derivative works for any

purpose, so long as the copyright notice above, this grant
of

permission, and the disclaimer below appear in all copies
made; and

so long as the name of The University of Michigan is not
used in

any advertising or publicity pertaining to the use or
distribution

of this software without specific, written prior
authorization .

THIS SOFTWARE 1S PROVIDED AS 1S, WITHOUT REPRESENTATION FROM
THE
UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE,
AND
WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND,
EITHER

56

23
24
25

26
27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67

APPENDIX B. PREFETCHER FILES

* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
x WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT
BE
x LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
x INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY
CLAIM
* ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE
, EVEN
x |IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
SUCH
x DAMAGES.

*/

VAT
x Ofile

x Describes a tagged prefetcher based on template policies.

*/

#ifndef __MEM_CACHE_PREFETCH_PREFETCHER_HH__
#define __MEM_CACHE_PREFETCH_PREFETCHER_HH__

#include "base/misc.hh" // fatal, panic, and warn

#include "mem/cache/prefetch/base_prefetcher.hh"

VAT

x* A template—policy based cache. The behavior of the cache can
be altered by

x supplying different template policies. TagStore handles all
tag and data

x storage ©@sa TagStore. Buffering handles all misses and
writes/writebacks

x Osa MissQueue. Coherence handles all coherence policy
details @sa

x UniCoherence, SimpleMultiCoherence.

*/
class SeqPrefetcher : public BasePrefetcher
{

public:

SeqPrefetcher (int size, bool pageStop, bool serialSquash,
bool cacheCheckPush, bool onlyData)
:BasePrefetcher (size, pageStop, serialSquash,
cacheCheckPush, onlyData);

~“SeqPrefetcher () {}
void calculatePrefetch(MemReqPtr &req, std::list<Addr> &
addresses,

std::1ist<Tick> &delays);

bool inCache(MemReqPtr &req);

57

APPENDIX B. PREFETCHER FILES

68

69 bool inMissQueue (Addr address, int asid);

70

71

72 };

73

74 #endif // _MEM_CACHE PREFETCH PREFETCHER_-HH__

Listing B.1: seq_prefetcher.hh
Listing B.2: seq_prefetcher.cc

1

2/

3 «x Copyright (c) 2005

4 x The Regents of The University of Michigan

5 * All Rights Reserved

6 *

7 x This code is part of the M5 simulator, developed by Nathan
Binkert ,

8 x Erik Hallnor, Steve Raasch, and Steve Reinhardt, with
contributions

9 x from Ron Dreslinski, Dave Greene, Lisa Hsu, Kevin Lim, Ali
Saidi,

10 and Andrew Schultz.

11

12 Permission is granted to use, copy, create derivative works
and

13 redistribute this software and such derivative works for any

14 purpose, so long as the copyright notice above, this grant
of

15 * permission , and the disclaimer below appear in all copies
made; and

16 * so long as the name of The University of Michigan is not
used in

17 x any advertising or publicity pertaining to the use or
distribution

18 x of this software without specific, written prior
authorization .

19

20 THIS SOFTWARE 1S PROVIDED AS IS, WITHOUT REPRESENTATION FROM
THE

21 x UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE,
AND

22 x WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND,
EITHER

23 x EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED

24 x WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

25 x PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT
BE

26 x LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,

27 x INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY

CLAIM

58

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

APPENDIX B. PREFETCHER FILES

* ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE
EVEN
« IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
SUCH
x DAMAGES
«/
VAT
x @file
x* Prefetcher template instantiations.
«/
#include "mem/cache/tags/cache_tags.hh"

#include "mem/cache/tags/lru.hh"
#include "base/compression/null_compression.hh"

#include "mem/cache/miss/miss_queue.hh"
#include "mem/cache/miss/blocking_buffer.hh"

#include "mem/cache/prefetch/seq_prefetcher.hh"

SeqPrefetcher (int size, bool pageStop, bool serialSquash,
bool cacheCheckPush, bool onlyData)
:BasePrefetcher (size, pageStop, serialSquash,
cacheCheckPush, onlyData)
{3}

“Prefetcher () {}

void calculatePrefetch(MemReqPtr &req, std::list<Addr> &
addresses,
std::1ist<Tick> &delays)
{
Addr blkAddr = req->paddr & ~(Addr) (this->blkSize-1);

//Prefetch one address ahead
Addr newAddr = blkAddr + this->blkSize;
if (this->pageStop &&
(blkAddr & ~“(TheISA::VMPageSize - 1)) !=
(newAddr & ~“(TheISA::VMPageSize - 1)))
{
//Spanned the page, so now stop
this ->pfSpanPage += degree - d + 1;
return;
}
else
{
addresses.push_back (newAddr) ;
delays.push_back(latency);
}

59

79
80
81
82
83
84
85
86
87
88
89
90
91

APPENDIX B. PREFETCHER FILES

bool

{

return

}

bool

{

return

}

inCache (MemReqPtr &req)

false;

inMissQueue (Addr address, int asid)

false;

Listing B.2: seq_prefetcher.cc

60

Bibliography

[ALEO2]

[AMDO5]

[BDH*05]

[BHRO3]

[Com06]

[EAB+02]

[HPRAO2]

[HS00]

Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infras-
tructure for computer system modeling. Computer, 35(2):59-67,
February 2002.

Advanced Micro Devices, Inc. Software Optimization Guide for
AMDG64 Processors, 3.06 edition, September 2005. Publication
25112. Available at: http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/25112.PDF.

Nathan Binkert, Ron Dreslinski, Lisa Hsu, Kevin Lim, Ali Saidi, and
Steve Reinhardt. Using the M5 simulator. Tutorial at the 32nd
Annual International Symposium on Computer Architecture (ISCA-
32), June 2005. Available from: http://m5.eecs.umich.edu.

N. Binkert, E. Hallnor, and S. Reinhardt. Network-oriented full-
system simulation using M5. In Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW).
February 2003.

Hewlett-Packard Company. Netperf: A network performance bench-
mark. Benchmark's webpage, July 2006. Available at: http:
//www.netperf .org.

J. Emer, P. Ahuja, E. Borch, A. Klauser, Chi-Keung Luk, S. Manne,
S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and

T. Juan. Asim: a performance model framework. Computer,
35(2):68-76, February 2002.

C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve.
Rsim: simulating shared-memory multiprocessors with ILP proces-
sors. Computer, 35(2):40-49, February 2002.

Timothy H. Heil and James E. Smith. Relational profiling: en-
abling thread-level parallelism in virtual machines. In International
Symposium on Microarchitecture, pages 281-290, 2000.

61

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://m5.eecs.umich.edu
http://www.netperf.org
http://www.netperf.org

BIBLIOGRAPHY BIBLIOGRAPHY

[HSW+04]

[KAQO5]

[Kni02]

[Lan05]

[MAA*+02]

[MCE*02]

[MHWO02]

[Mic06]

[MSB+05]

[OHO5]

Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch,
Roland E. Wunderlich, Shelley Chen, Jangwoo Kim, Babak Fal-
safi, James C. Hoe, and Andreas G. Nowatzyk. SimFlex: a fast,
accurate, flexible full-system simulation framework for performance
evaluation of server architecture. SIGMETRICS Perform. Eval. Rev.,
31(4):31-34, 2004.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun.
Niagara: A 32-way multithreaded Sparc processor. IEEE Micro,
25(2):21-29, March—April 2005.

Steven Knight. SCons design and implementation. In Tenth
International Python Conference, February 2002. Available at:
http://wuw.pythonl0.org/pl0-papers/16/index.htm.

Arnt Jgrgen Lande. Multithreading in chip multiprocessors. Project
report from the course “"Computer Design and Architecture, Spe-
cialization” at the Norwegian University of Science and Technology.
Supervised by Prof. Lasse Natvig, Dept. of Computer and Informa-
tion Science, December 2005.

S. S. Mukherjee, S. V. Adve, T. Austin, J. Emer, and P. S. Mag-
nusson. Performance simulation tools. Computer, 35(2):38-39,
February 2002.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics:
A full system simulation platform. Computer, 35(2):50-58, Febru-
ary 2002.

Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system
timing-first simulation. In SIGMETRICS '02: Proceedings of the
2002 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 108-116, New York, NY,
USA, 2002. ACM Press.

The M5 simulator system. Simulator's webpage, July 2006. Avail-
able at http://m5.eecs.umich.edu.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. SIGARCH Com-
put. Archit. News, 33(4):92-99, 2005.

Kunle Olukotun and Lance Hammond. The future of microproces-
sors. ACM Queue, 3(7), September 2005.

62

http://www.python10.org/p10-papers/16/index.htm
http://m5.eecs.umich.edu

BIBLIOGRAPHY BIBLIOGRAPHY

[QTYO05]

[RBST06]

[RHWGO5]

[SA05]

[URS03]

[VHOO]

[Wal91]

[Wiko6]
[WL97]

[WW05]

Kelly Quinn, Vernon Turner, and Jessica Yang. The next evolu-
tion in enterprise computing: The convergence of multicore x86
processing and 64-bit operating systems. White paper 05C4442,
IDC, Sponsored by: Advanced Micro Devices Inc., April 2005.
Available at: http://multicore.amd.com/WhitePapers/IDC_
WhitePaper_Convergence_en.pdf.

Steve Reinhardt, Nathan Binkert, Ali Saidi, Ron Dreslinski, and
Kevin Lim. Using the M5 simulator. Tutorial at the 33rd Annual In-
ternational Symposium on Computer Architecture (ISCA-33), June
2006. Available from: http://m5.eecs.umich.edu.

M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete
computer system simulation: the SimOS approach. Parallel & Dis-
tributed Technology: Systems & Applications, IEEE [see also IEEE
Concurrency], 3(4):34-43, Winter 1995.

L. Spracklen and S. G. Abraham. Chip multithreading: opportuni-
ties and challenges. In High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, pages 248-252,
February 2005.

Theo Ungerer, Borut Robi¢, and Jurij Silc. A survey of processors
with explicit multithreading. ACM Comput. Surv., 35(1):29-63,
2003.

Dimitri van Heesch. Doxygen. Project's homepage, May 2006.
Available at: http://www.doxygen.org.

David W. Wall. Limits of instruction-level parallelism. In ASPLOS-
1V: Proceedings of the fourth international conference on Architec-

tural support for programming languages and operating systems,
pages 176-188, New York, NY, USA, 1991. ACM Press.

Moore's law. From Wikipedia, the free encyclopedia, July 2006.
Available at: http://en.wikipedia.org/wiki/Moore’s_law.

S. P. Vander Wiel and D. J. Lilja. When caches aren't enough: data
prefetching techniques. Computer, 30(7):23-30, July 1997.

Thomas F. Wenisch and Roland E. Wunderlich. SimFlex: Fast,
accurate and flexible simulation of computer systems. Tutorial
at the International Symposium on Microarchitecture (MICRO-
38), November 2005. Available at http://www.ece.cmu.edu/
~simflex/software/SimFlex-tutorial.pdf.

63

http://multicore.amd.com/WhitePapers/IDC_WhitePaper_Convergence_en.pdf
http://multicore.amd.com/WhitePapers/IDC_WhitePaper_Convergence_en.pdf
http://m5.eecs.umich.edu
http://www.doxygen.org
http://en.wikipedia.org/wiki/Moore's_law
http://www.ece.cmu.edu/~simflex/software/SimFlex-tutorial.pdf
http://www.ece.cmu.edu/~simflex/software/SimFlex-tutorial.pdf

