& NTNU

Innovation and Creativity

Forensic analysis of an unknown
embedded device

Jarle Eide
Jan Ove Skogheim Olsen

Master of Science in Computer Science
Submission date: June 2006

Supervisor: Stig Frode Mjglsnes, ITEM
Co-supervisor: Svein Y. Willassen, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem Description

Sometimes investigators must extract digital evidence from an embedded
device with unknown specifications. The manufacturer of the device could be
unknown, or the manufacturer may choose to keep information about the
device's inner workings confidential. In order to be able to interpret

digital evidence on such devices, an investigator must carefully analyze a
similar device by inserting known data and observing the changes in the
contents of the device.

The task is to treat a mobile phone with the Windows Mobile Operating System
as an unknown embedded device. Find a methodologically sound approach for
analyzing the device. Interpret the contents in a such a way that the result

can be applied in forensic analysis of real evidence.

Describe and evaluate the analysis methodology. Is the methodology

applicable for forensic analysis of other unknown embedded devices?

Assignment given: 16. January 2006
Supervisor: Stig Frode Mjglsnes, ITEM

Abstract

Every year thousands of new digital consumer device models come on
the market. These devices include video cameras, photo cameras, com-
puters, mobile phones and a multitude of different combinations. Most
of these devices have the ability to store information in one form or an-
other. This is a problem for law enforcement agencies as they need access
to all these new kinds of devices and the information on them in investi-
gations. Forensic analysis of electronic and digital equipment has become
much more complex lately because of the sheer number of new devices
and their increasing internal technological sophistication. This thesis tries
to help the situation by reverse engineering a Qtek S110 device. More
specifically we analyze how the storage system of this device, called the
object store, is implemented on the device’s operating system, Windows
Mobile. We hope to figure out how the device stores user data and what
happens to this data when it is “deleted”. We further try to define a gen-
eralized methodology for such forensic analysis of unknown digital de-
vices. The methodology takes into account that such analysis will have to
be performed by teams of reverse-engineers more than single individuals.
Based on prior external research we constructed and tested the methodol-
ogy successfully. We were able to figure our more or less entirely the object
store’s internal workings and constructed a software tool called BlobEx-
tractor that can extract data, including ”deleted”, from the device without
using the operating system API. The main reverse engineering strategies
utilized was black box testing and disassembly. We believe our results can
be the basis for future advanced recovery tools for Windows Mobile de-
vices and that our generalized reverse engineering methodology can be
utilized on many kinds of unknown digital devices.

Contents

Introduction

1.1 Background
12 Reverse Engineering
1.3 Objective
14 Focus e e
1.5 DocumentQutline

Work Method

A Forensic Reverse Engineering Methodology

3.1 Benefits from Using a Methodology

3.2 Exploring PreviousWork oL
3.2.1 Model-Driven Reverse Engineering (MDRE)
3.22 UML and RM-ODP Viewpoints
3.2.3 Other Reverse Engineering Methodologies

3.3 Defining a Methodology
3.3.1 Guidelines for a New Methodology
3.3.2 Sketching a Forensic Reverse Engineering Method-

ology

Reverse Engineering the Object Store

4.1 InitializationPhase
41.1 Defining the Problem
4.1.2 Documentation Review
413 CreatingCIM

42 ExplorationPhase
421 Defining a Strategy - First Loop
422 AboutBlack BoxTesting
423 Testing
424 Defining a Strategy - Second Loop
425 AboutDisassembling

II

CONTENTS

426 Testing

427 Defining a Strategy - Third Loop

428 Testing

429 Evaluate PIM/CIM Consistency

4.3 ValidationPhase.

5 Discussion

51 TheObjectStore
511 FutureWork
52 TheMethodology
521 FutureWork

6 Conclusion
A Qtek S110 basics

Source Code

B.1 BlobExtractor
B.2 Extensions to the Judas Forensic Tool . .

C ARM Instruction Set Quick Reference Card

153

159

162
163
197

208

List of Figures

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

411
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

Workmethod. o oo L 13
MDA transformation. L. 20
MDRE transformation. 27
Flow chart of our methodology. 28
Computation Independent Model 35
Black box and white box testing. 39
Test1- User-created file. 41
Test 1 - Hex Workshop default view. 42
Test 1 - Hex Workshop searchbox. 43
Test 1 - Found "HESTE” in memory dump. 45
Test2-Newfile. 47
Test 2 - Compare basedumps. 49
Test2 - Looking atnew files. 51
Test 2 - Applying the BlobHeader structure to a blob in Hex

Workshop.o 52
Windows CE API - CeOidGetInfo 55
Test 2 - Jackson Data Structure diagram of a file. 56
Test 2 - What happens to the blobs of a deleted file. 59
Windows CE API - Windows CE Memory Layout[16] 60
Test 3 - User-created directories 61
Test 3 - View of user-created directories 62
Test 3 - Neighbor and childid. 64
Test 3 - Data files on the device. 64
WINDOWS CE API - CEOIDINFOEX structure 67
WINDOWS CE API - CEFILEINFO structure 68
Test 3 - Propertiesof afile. 69
WINDOWS CE API - FILETIME structure 70
Test 4 - New user-created directories 74
Test5-Textmessages 76

LIST OF FIGURES \Y

4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
441
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65

Test5-Robthemuseum. 77
Test 5 - Rob the museum’s parent. 77
Test5 - Database found. 78
Test 5 - Databaseblob. 81
WINDOWS CE API - CEDBASEINFOEX structure 82
WINDOWS CE API - SORTORDERSPECEX structure 83
Test6-VFAT? 86
Test 6 - BlobExtractor first edition output 87
Test6-OffsetOx0 88
Test 6 - Offset 0x1000 89
Test 6 - Offset 0x5000 90
Test6-Randomfile 91
The compile, assemble, disassemble cycle. 97
IDAs user interaction interface. 100
Flirtand PIT 102
High level constructs. 103
Interactive register renaming. 105
Code control flow graph. 106
Test 7 - CeOidGetInfo in coredil.dll. 108
Windows CE API - CeOidGetInfoEx 109
Test 7 - The start of CeOidGetInfoEx in coredIl.dll. 110
Test 7 - Converting from 2’s Complement to binary. 111
Test 7 - Changeson thestack. 112
Test7-Listof APIsets. 114
Test 7 - Table at the beginning of filesys.exe. 115
Test 7 - Code segment at 0x00012D50 116
Test 7 - Assembly flow graph. 118
Windows CE API - MapCallerPtr 119
Test 7 - Seperating MSBpaths. 121
Test 7 - Validating that object store path is correct. 122
Windows CE API - CEGUID structure 123
Windows CE API - CHECK_SYSTEMGUID macro 124
Test 7 - Redirecting to 0x00023FCC. 125
Test 7 - The file dogbark.wav used in the simulation. 125
Test 7 - Utilizing the rest of the object identifier. 126
Windows CE API - CEOIDINFOEX structure 127
Test7 - Locatinganobject. 130
Test 7 - Locatingafile. 131
Test 8 - Object table list and Object tables. 133
Test8-Zebrafound. 134

Test 8 - Objecttablelist. 134

LIST OF FIGURES VI

4.66 Test8-Objecttable 135
4.67 Test 8 - Objects completely deleted. 136
4.68 Test9 - Pointers to deleted space. 137
4.69 Test9 - The objects of svein.txt.. 138
470 Test9 - Locating gjertrud.txt. 139
4.71 Test9 - A temporary object. 140
4.72 Test9 - Object store reorganized 142
4.73 Test9 - Locating msn.gif. 142

4.74 Test9 - Linked list pointing to free space. 143

List of Tables

41 Test3 -5 directories in objectstore 63
42 Test3-Filetimedwords 71
43 Test3-Property flagword. 71
44 Test3-Property flagbitmasks 72
45 Test7-Simulating a filelookup.. 129
A1 Qtek S110 specification 161

VII

Listings

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Test 1 - Blob structuresvl 46
Test 2 - Blob structuresv2 50
Test 2 - Blob structuresv3 53
Test 2 - Blob structuresv4 57
Test 3 - Directory blob structure 65
Test 3 - Blob structuresvb 72
Test 5 - CEDB property types 78
Test5-Textmessage 79
Test 5 - Database blob structures 84
Test 6 - Blob structuresvé 91
BlobExtractor: Blob.cs 163
BlobExtractor: BlobExtractor.cs 168
BlobExtractor: BlobFactory.cs 176
BlobExtractor: DatabaseRecordBlob.cs 182
BlobExtractor: FileBlob.cs 184
BlobExtractor: FreeBlob.cs 187
BlobExtractor: Property.cs. 190
BlobExtractor: PropertyFactory.cs 192
Extensions to the Judas ForensicTool 197

VIII

Abbrevations

API Application Programming Interface
ARM Acorn RISC Machine

CEDB CE DataBase

CIM Computation Independant Model
DLL Dynamic Link Library

FAT File Allocation Table

HW Hex Workshop

IDA (PRO) Interactive Disassembler (Professional)
LSB Least Significant Bit

MDA Model-Driven Architecture

MDRE Model-Driven Reverse Engineering
MSB Most Significant Bit

MSDN Microsoft Developers Network
ODP Open Distributed Processing

OID Object Identifier

OMG Object Management Group

OS Operating System

PIM Platform Independant Model

PSM Platform Specific Model

IX

LISTINGS

RAM Random Access Memory

RAPI Remote Application Programming Interface

RM-ODP The Reference Model for Open Distributed Processing
SIM Subscriber Identity Module, smart card for mobile phones.
UML Unified Modeling Language

VFAT (see FAT)

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 2

1.1 Background

The digital world is all around us. Every year thousands of new digi-
tal consumer device models come on the market. These devices include
video cameras, photo cameras, computers, mobile phones and a multi-
tude of different combinations. Most of these devices have the ability to
store information in one form or another. Cameras store video or pictures,
computers store the users work and mobile phones store call logs and text
messages.

Among the fastest growing segments of new digital consumer devices are
so-called smartphones. These are hybrids between a small computer and
a mobile phone. They have the phone capabilities of a mobile phone and
at the same time they can play music, record video and run programs like
any other computer. One of the biggest operating systems suppliers for
such devices is Microsoft with their Windows Mobile platform. Accord-
ing to Gartner[1] the smartphone market is expected to double every year,
reaching 200 million by 2008. Currently Windows Mobile runs on around
10 percent of these, but their market share is rising every year. Microsoft
distributes parts of the internal functions in its operating system freely
through its shared source initiative[2], but several of the key components
are not included. Unfortunately this includes all code pertaining to how
the device stores user data at a low level, which would be very helpful
for forensic analysts. This fact combined with the future market share of
Windows Mobile makes it a very attractive target for analysis, as it could
be helpful in many investigations in years to come.

The explosion of new digital devices has led to an explosion of both amounts
and types of available information. This is a problem for law enforcement
agencies as they need access to all these new kinds of devices and the in-
formation on them in investigations[3]. Forensic analysis of electronic and
digital equipment has become much more complex lately because of the
sheer number of new devices and their internal technological sophistica-
tion. One would expect that manufacturers of these devices would help
out in this endeavor, but the fact is that the manufacturers often can not or
will not reveal the internal workings of their devices. They can not because
they have simply bought the underlying technology from a third party or
they will not because they view the technical implementation details as
business secrets. The fact that manufacturers can be located anywhere in
the world and can be difficult to get in touch with on tight investigation
schedules hardly helps either. There are also legal problems with letting

CHAPTER 1. INTRODUCTION 3

just anybody handle evidence, which these devices are in an investigation.
This leaves it up to the law enforcement agencies themselves or third party
specialists to analyze them. Earlier this could be done by lone wolfs with
high technology skills, but with the sophistication level and high volume
of new devices this is becoming increasingly difficult. Cooperation among
several individuals is essential to keep up and they need to be able to ex-
change their findings. What is needed is a methodology and model for
doing and documenting forensic analysis of unknown devices, based on
the principles of reverse engineering.

CHAPTER 1. INTRODUCTION 4

1.2 Reverse Engineering

"The process of analyzing a subject system to identify the system’s com-
ponents and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction.” (IEEE 1990)

Reverse engineering is the process of figuring out the inner technological
workings of a device or system without having access to its architectural
and design details. A device is to be understood as any device, be it me-
chanical, electrical, software or anything else. The process usually consists
of, by some kind of means, deconstructing the device. How this is done, of
course varies wildly according to what kind of device one has. Mechanical
components are usually just taken apart physically to understand what the
different parts are and how they interact. Electrical components are ana-
lyzed with advanced equipment like oscilloscopes and logical analyzers,
while software can be tested with different input/output combinations or
a reverse-engineer can analyze the raw machine instructions that make up
the program with the help of a disassemb]er.

The purpose of this process can be several things, depending on the type
of system one is reverser engineering. For software systems the two main
purposes are redocumentation and design recovery according to [4]. They
describe them like this:

7.

.. is the creation or revision of a semantically equiva-
lent representation within the same relative abstrac-
tion level. The resulting form of representation are
usually considered alternative views (for example,
dataflow, data structure, and flow control) intended
for a human audience.

Redocumentation

Redocumentation is the simplest and oldest form of
reverse engineering, and many consider it to be an un-
intrusive, weak form of restructuring. The “re-” pre-
fix implies that the intent is to recover documentation
about the subject system that existed or should have
existed.

CHAPTER 1. INTRODUCTION

Design discovery

Some common tools used to perform redocumenta-
tion are pretty printers (which display a code listing in
an improved form), diagram generators(which create
diagrams directly from code, reflecting control flow or
code structure), and cross-reference listing generators.
A key goal of these tools is to provide easier ways to
visualize relationships among program components
so you can recognize and follow paths clearly.”[4]

”.. is a subset of reverse engineering in which do-
main knowledge, external information, and deduc-
tion or fuzzy reasoning are added to the observations
of the subject system to identify meaningful higher
level abstractions beyond those obtained directly by
examining the system itself. Design recovery is dis-
tinguished by the sources and span of information it
should handle.”[4]

According to Biggerstaff design recovery also “recre-
ates design abstractions from a combination of code,
existing design documentation (if available), personal
experience, and general knowledge about program
and application domains ... Design recovery must
reproduce all of the information required for a per-
son to fully understand what a program does, how
it does it, why it does it, and so forth. Thus, it deals
with a far wider range of information than found in
conventional software-engineering representations or
code.”[5]

CHAPTER 1. INTRODUCTION 6

1.3 Objective

The following presents the project description, as defined by the univer-
sity:

Forensic analysis of an unknown embedded device

Sometimes investigators must extract digital evidence from an embed-
ded device with unknown specifications. The manufacturer of the device
could be unknown, or the manufacturer may choose to keep information
about the device’s inner workings confidential. In order to be able to inter-
pret digital evidence on such devices, an investigator must carefully ana-
lyze a similar device by inserting known data and observing the changes
in the contents of the device.

The task is to treat a mobile phone with the Windows Mobile Operating
System as an unknown embedded device. Find a methodologically sound
approach for analyzing the device. Interpret the contents in such a way
that the result can be applied in forensic analysis of real evidence.

Describe and evaluate the analysis methodology. Is the methodology ap-
plicable for forensic analysis of other unknown embedded devices?

CHAPTER 1. INTRODUCTION 7

1.4 Focus

We now define more precisely what our focus will be in this thesis.

Based on Windows Mobile devices rising popularity and the thesis de-
scription we are going to treat one of these mobile phones as an unknown
device and try to analyze it. Analysis of a phone can include many things,
but we have chosen to focus on how the phone stores user created data.

User created data is of course interesting because it can contain a lot of
information about the device’s user. In criminal cases call logs that keep
tracks of who the user has been talking to can help the investigation. Text
messages not only shows who the user has been talking to, but also what
has been said. Other user created files of interest are pictures, videos and
just any file with data that can help an investigation.

How call logs, text messages and user files are physically formatted on
the “disk” of the phone is unknown. Some Windows Mobile Smartphones
do not actually have non-volatile storage. Instead, parts of the devices
RAM is used as storage. This means the user can actually lose all his data
if the device runs out of power. The parts of RAM allocated for storage
is called the object store. In this store the device stores all non-OS data
on the phone. The layout and implementation of this store is not publicly
available outside Microsoft. The biggest focus in our task has been to re-
cover this layout. With this information we can construct forensic utilities
to extract data from the phone without relying on the API exposed by the
operating system itself. This is very important for forensic work because
we do not know what side effects using the API might lead to. Forensic
analysis must be free of side effects that change the data in any way.The
integrity of the data must always be maintained so that it can be used as
possible evidence in legal matters.

The capture of the raw memory contents of the phone is a daunting task
in itself, but it is not within our scope. Our task starts when such a dump
is available. The exact way this is done, is not important for us. Both
hardware and software ways of doing this can be constructed. As far as
we know no one has done this with a pure hardware approach at present
time, but both [6] and [7] have made available software tools capable of
this. We will use these to get our memory dumps. Our device also has a
compact flash drive for additional storage space. We have defined this to
be outside our scope as it is not considered part of the device’s object store.

CHAPTER 1. INTRODUCTION 8

The second part of the task has been to develop a model and methodology
for doing our analysis. How should we start analysis of a completely un-
known device? Where do we begin, what steps should we follow, which
tools should we use and how do we document our progress? We have to
find out and make a system out of it. This is primarily done before attack-
ing the object store so that we have a model to work from. Our model will
be based on prior models combined with our own ideas. After testing the
model on the Microsoft Mobile device we will discuss whether the model
is general enough to work with other types of unknown devices as well.

CHAPTER 1. INTRODUCTION 9

1.5 Document Outline

Reverse engineering a system such as the object store requires us as the
reverse-engineers to dive into detailed low-level concepts in order to be
able to analyze the system. When presenting the work from this process it
makes no sense not to go into these details, even though they may require
extra attention from the reader. We are fully aware of this dilemma, and
have therefore taken some precautions in order to make the presentation
as readable as possible.

Chapter 1, “Introduction”, starts with an introduction to the domain of
forensic analysis, and presents the objective and focus of the project.

Before moving on to present our work, chapter 2, “Work Method”, gives
a brief insight into our process throughout the project. This includes how
we moved from planning and brainstorming sessions, towards defining a
methodology and finally the actual reverse engineering. This chapter will
also note some of the tools and programming languages we learned in or-
der to carry out the project.

In chapter 3, “A Forensic Reverse Engineering Methodology”, we start
presenting our work on a methodology. The chapter starts with a discus-
sion of why such a methodology could prove beneficial. It then continues
by introducing the existing methodologies we decided to build our work
on. Then, towards the end of the chapter, a new methodology is defined,
which is to be used in our own reverse engineering process.

Chapter 4, "Reverse Engineering the Object Store”, is where we present
the detailed analysis of the object store. In order to make this chapter as
readable as possible, we try to present the work by continuously referring
to the methodology from the previous chapter in order to make it easier
for the reader to follow the process. We have also made figures and screen-
shots a high priority in situations where we found them useful to explain
details. We believe that this has resulted in a readable presentation of these
low-level details.

Chapter 5, “Discussion”, discuss both of the two objectives of the project.
It starts by discussing the results from the reverse engineering process,
and then moves on to discuss our experience with the methodology. Some
thoughts on future work are presented for both topics.

CHAPTER 1. INTRODUCTION 10

In chapter 6, “Conclusion”, we sum up the project with some final con-
clusions.

Chapter 2
Work Method

11

CHAPTER 2. WORK METHOD 12

This chapter gives an overview of how we have arranged our work.

Our task was to define and evaluate a methodology for forensic analysis
of an unknown device. We started of with brainstorming sessions on how
we should attack our task. We soon found that we wanted to define a
stepwise approach built around general concepts. This approach should
be developed to help assist us in performing and documenting forensic
analysis of any unknown device.

Seeing no need to re-invent the wheel, we did a literature study on method-
ologies for forensic analysis and general reverse engineering. Based on
this study we constructed what we felt was a good methodology for ap-
proaching an unknown device for analysis. This methodology and the
basis for constructing it is found in chapter 3.

After having constructed our methodology, we tested it quite thoroughly
on our unknown device in chapter 4. This testing involved black box test-
ing and disassembling of the device. The black box testing was performed
by giving known input and dumping the phones memory content. This
dump was then analyzed with the help of a hex editor and its built-in
structure definition library. Several small test programs were written in
C++/C for Windows Mobile. We also developed a memory dump val-
idation and analysis tool called BlobExtractor. For this we used Visual
Studio .NET 2005 and C#. The disassembling phase also gave us consider-
able challenges. First we had to learn how to use the advanced Interactive
DisAssembler (IDA). In order to synchronize the discoveries found with
IDA with each other we had to modify a third party utility to work with
our version of IDA. This utility, called ida_sync, is written in Python and
C++. Next, in order to use IDA on the dll files from the unknown device
and understand its output we also had to learn the ARM assembly lan-
guage and the executable file format used on Windows Mobile. We also
had to familiarize ourselves with Windows Mobile (Windows CE)’s inter-
nal architecture and memory layout in order to interpret what the ARM
assembly instructions were actually doing to the phone. In the disassem-
bly phase we also further enhanced BlobExtractor to make use of the new
knowledge gained here.

The results from the reverse engineering phase and possible further en-
hancements to the model or its utilization was then documented in chap-
ter 5.

CHAPTER 2. WORK METHOD 13

Figure 2.1 shows the large picture steps in our work method. We only used
our method for one main cycle as we only analyzed only one unknown de-

vice.

Need plan
and
structure

Brain
storming

Jl Planning

Need
methodol-
ogy to
follow

Methodology
literature
study

Manage
methodology

Test

Create/
methodol-

modify ——1»
%\7 methodol- ogy on
ogy unknown

Evaluate
results

Generalize
results

Figure 2.1: Work method.

Chapter 3

A Forensic Reverse Engineering
Methodology

14

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY15

3.1 Benefits from Using a Methodology

Before going into the details of a reverse engineering methodology, we
need to discuss why such a methodology could be beneficial. We believe
that there are many aspects supporting the use of a defined methodology.
The resources spent on developing the methodology itself are clearly jus-
tified by long-term benefits.

The new methodology should first of all build on techniques from exist-
ing related work. This could help avoid common pitfalls, and would take
advantage of knowledge gained during years of research. This implies the
use of well-defined modeling techniques, which in turn would bring sev-
eral possible benefits to the table.

A standard indicating what to model would encourage the reverse-engineer
to document all information found, and arrange it in a way that improves
readability. Section 3.3.1 argues that the representation and arrangement
of information is of great importance in a reverse engineering process.

Using well-defined modeling techniques also improves co-operation when
several reverse-engineers work together on the same project. This could
prove useful when time is a concern. It also gives the reverse-engineer
easier access to the knowledge from other reverse engineering projects.
When the same methodology is used over time, knowledge from previous
projects become more available to upcoming projects. This is of particular
interest to the forensic analysts, as the target devices often share character-
istics.

Another benefit that could have great impact on both the quality and effi-
ciency of the reverse engineering process is that using a standard method-
ology would lay the foundation for developing a more involving tool to
be used throughout the process. The tool could feature many useful func-
tions based on the methodology, including support for co-operation, au-
tomatic model creation, structured knowledge base arrangement, incon-
sistency checks, import of information from previous projects, resource
gathering, report generation, and many more.

In general, considerable improvement in two vital areas could be the re-
sult of a defined methodology: quality and efficiency. Quality, because the
reverse-engineer can follow a step by step procedure almost as a checklist,
which guides the reverse-engineer using a quality-tested process. Also

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY16

because the work of the reverse-engineer could more easily be quality-
controlled afterwards. Efficiency, because the reverse-engineer can get
into what he knows best, the actual reverse engineering, almost imme-
diately. A substantial load from the planning phase of the project is re-
moved, since this wheel has already been invented. The above discussion
also mentioned several other aspects affecting the efficiency, including co-
operation, using knowledge from other projects, and enabling advanced
tools to be used.

From the forensic perspective, quality and efficiency is of great impor-
tance. The forensic analyst would need to document both the process and
his findings, and a well-defined methodology could be of great assistance
when defending the quality of the work. In addition, during an investiga-
tion, time is always an issue. If the forensic evidence could be discovered
at an earlier stage, this could have a great impact on the investigation.

3.2 Exploring Previous Work

As discussed in the previous section, we wanted to build our new method-
ology on existing related work by taking advantage of well-defined stan-
dards and concepts. Our job was to gather only what we found most suit-
able for the methodology, and use these references as a guide.

3.2.1 Model-Driven Reverse Engineering (MDRE)

Model-Driven Reverse Engineering[8] is an ongoing research field, de-
signed to overcome the difficulties of predicting the time consumption of a
reverse engineering project, and evaluating the quality of the reverse engi-
neering. As the name suggests, MDRE is based on using models to guide
the reverse engineering process. The models are divided into different ab-
straction levels, and the key element of the process is to make connections
between models at different abstraction levels.

MDRE is based on the Object Management Groups (OMG) Model-Driven
Architecture (MDA). MDA is an approach to using models in software de-
velopment. It is based on separating the specification of the operation of a
system from the details of the way that system uses the capabilities of its
platform. As MDA is designed for forward engineering, the idea of MDRE
is to reverse processes described in MDA, but still use the same ideas and
models. The following will include a short description of MDA concepts,

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY17

taken from the MDA Guide Version 1.0.1 [9].

The Basic Concepts

System

Model

Model-Driven

Architecture

Viewpoint

MDA concepts are presented in terms of some existing
or planned system. That system may include anything,
like: a program, a single computer system, some combi-
nation of parts of different systems, a federation of sys-
tems, each under separate control, people, an enterprise
or a federation of enterprises.

A model of a system is a description or specification of
that system and its environment for some certain pur-
pose. A model is often presented as a combination of
drawings and text. The text may be in a modeling lan-
guage or in natural language.

MDA is an approach to system development, which in-
creases the power of models in that work. It is model-
driven because it provides a means for using models to
direct the course of understanding, design, construction,
deployment, operation, maintenance and modification.

The architecture of a system is a specification of the parts
and connectors of the system and the rules for the inter-
actions of the parts using the connectors.

The Model-Driven Architecture prescribes certain kinds
of models to be used, how those models may be prepared
and the relationships of the different kinds of models.

A viewpoint on a system is a technique for abstraction
using a selected set of architectural concepts and struc-
turing rules, in order to focus on particular concerns
within that system. Here abstraction is used to mean the
process of suppressing selected detail to establish a sim-
plified model. The concepts and rules may be considered
to form a viewpoint language. The Model-Driven Archi-
tecture specifies three viewpoints on a system: a compu-
tation independent viewpoint, a platform independent
viewpoint and a platform specific viewpoint.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY18

View

Platform

Application

Platform Inde-
pendence

Computation
Independent
Viewpoint

Platform Inde-
pendent View-
point

Platform
Specific View-
point

A viewpoint model or view of a system is a represen-
tation of that system from the perspective of a chosen
viewpoint.

A platform is a set of subsystems and technologies that
provide a coherent set of functionality through interfaces
and specified usage patterns, which any application sup-
ported by that platform can use without concern for the
details of how the functionality provided by the platform
is implemented.

The term application is used to refer to a functionality be-
ing developed. A system is described in terms of one or
more applications supported by one or more platforms.

Platform independence is a quality, which a model may
exhibit. This is the quality that the model is independent
of the features of a platform of any particular type. Like
most qualities, platform independence is a matter of de-
gree.

The computation independent viewpoint focuses on the
on the environment of the system, and the requirements
for the system; the details of the structure and processing
of the system are hidden or as yet undetermined.

The platform independent viewpoint focuses on the op-
eration of a system while hiding the details necessary
for a particular platform. A platform independent view
shows that part of the complete specification that does
not change from one platform to another. A platform
independent view may use a general purpose modeling
language, or a language specific to the area in which the
system will be used.

The platform specific viewpoint combines the platform
independent viewpoint with an additional focus on the
detail of the use of a specific platform by a system.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY19

Computation A computation independent model is a view of a sys-

Independent tem from the computation independent viewpoint. A

Model (CIM) CIM does not show details of the structure of systems.
A CIM is sometimes called a domain model and a vocab-
ulary that is familiar to the practitioners of the domain in
question is used in its specification. It is assumed that
the primary user of the CIM, the domain practitioner,
is not knowledgeable about the models or artifacts used
to realize the functionality for which the requirements
are articulated in the CIM. The CIM plays an important
role in bridging the gap between those that are experts
about the domain and its requirements on the one hand,
and those that are experts of the design and construction
of the artifacts that together satisfy the domain require-
ments, on the other.

Platform A platform independent model is a view of a system

Independent from the platform independent viewpoint. A PIM ex-

Model (PIM) hibits a specified degree of platform independence so as
to be suitable for use with a number of different plat-
forms of similar type.

A very common technique for achieving platform inde-
pendence is to target a system model for a technology-
neutral virtual machine. A virtual machine is defined
as a set of parts and services (communications, schedul-
ing, naming, etc.), which are defined independently of
any specific platform and which are realized in platform-
specific ways on different platforms. A virtual machine
is a platform, and such a model is specific to that plat-
form. But that model is platform independent with re-
spect to the class of different platforms on which that
virtual machine has been implemented. This is because
such models are unaffected by the underlying platform
and, hence, fully conform to the criterion of platform in-
dependence.

Platform Spe- A platform specific model is a view of a system from the

cific - Model platform specific viewpoint. A PSM combines the speci-

(PSM) fications in the PIM with the details that specify how that
system uses a particular type of platform.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY20

PIM

PSM

Figure 3.1: MDA transformation.

Model Trans- Model transformation is the process of converting one

formation model to another model of the same system. Figure 3.1
illustrates the MDA pattern, by which a PIM is trans-
formed to a PSM.
The drawing is intended to be suggestive. The plat-
form independent model and other information are com-
bined by the transformation to produce a platform spe-
cific model.

The drawing is also intended to be generic. There are
many ways in which such a transformation may be done.
However it is done, it produces, from a platform inde-
pendent model, a model specific to a particular platform.

3.2.2 UML and RM-ODP Viewpoints
UML

The Unified Modeling Language (UML)[10] is OMGs most-used specifi-

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?21

cation. It is used to model not only application structure, behavior, and ar-
chitecture, but also business process and data structure. The latest version
of the specification, UML 2.0, defines thirteen types of diagrams, divided
into three categories:

Structure Diagrams include the Class Diagram, Object Diagram, Com-
ponent Diagram, Composite Structure Diagram, Package Diagram, and
Deployment Diagram.

Behavior Diagrams include the Use Case Diagram (used by some method-
ologies during requirements gathering), Activity Diagram, and State Ma-
chine Diagram.

Interaction Diagrams, all derived from the more general Behavior Dia-
gram, include the Sequence Diagram, Communication Diagram, Timing
Diagram, and Interaction Overview Diagram.

UML form a foundation for MDA, and can be used for CIM, PIM, and
PSM.

RM-ODP Viewpoints

The Reference Model For Open Distributed Processing (RM-ODP)[11] was
a joint effort by the international standards bodies ISO and ITU-T to de-
velop a coordinating framework for the standardization of open distributed
processing (ODP). In a world of interconnected computer systems, het-
erogeneity in interaction models prevents interworking between systems.
RM-ODP targets this dilemma with an architecture that supports distribu-
tion, interworking, interoperability, and portability.

The RM-ODP framework defines ODP concerns using five viewpoints: en-
terprise, information, computational, engineering, and technology.

Enterprise Three keywords describe the enterprise viewpoint: pur-

view pose, scope, and policies. It focuses on the environment
and general organization of the system, concerned with
objects, communities, and the roles of the objects within the
communities.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?22

Information The information viewpoint focuses on the semantics of

view information and information processing, divided into
three schemas. A static schema captures the state and
structure of an object, typically represented by an object
diagram. An invariant schema restricts the state and struc-
ture of an object, e.g. by a class diagram with associations
and other constraints. A dynamic schema defines the per-
mitted change in the state and structure of an object in a
behavior specification.

Computational The computational viewpoint is an object-based, modu-

view lar view. A computational specification defines the ob-
jects within an ODP system, the activities within those
objects, and the interactions that occur among objects.

Engineering ~ The engineering viewpoint focuses on the mechanisms
view and functions required to support distributed interac-
tions between object in the system.

Technology The technology viewpoint focuses on the choice of tech-
view nology in the system.

MDA uses these ODP viewpoints as a guide for the models at different
abstraction levels. A CIM of a system may include several models, based
on the enterprise and information viewpoints. A PIM uses models based
on the enterprise, information, and computational viewpoints. The more
specific viewpoints, engineering and technology, are left for the PSM.

3.2.3 Other Reverse Engineering Methodologies

In ”A Reverse Engineering Mehodology For Data Processing Applications”
[12] K. Spencer and S. Rugaber from the Software Research Center at Geor-
gia Institute of Technology defines a reverse engineering methodology
based on four phases: a documentation review, an analysis of system in-
put/output structure, an analysis of the structure of the input and output
files, and a detailed analysis of the source code using a technique called
Synchronized Refinement. It should be noted that the methodology was
tested on a system targeted for redesign, with reasonably accurate docu-
mentation available, and also access to all source code, which the article
claims was cleanly structured.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?23

They start with a review of existing documents. The purpose of this phase
is to establish an overview and a functional description of the system, ig-
noring the implementation details.

They continue with an analysis of the systems input/output behavior. The
key concept here is data flow diagrams. The top level diagram is called a
Context Diagram, which only include one activity, the system itself, and all
external files as repositories with the direction of the arc denoting whether
the file is used as input or output. The context diagram is then verified
by examining source code. The data flow diagrams can be nested, to de-
scribe different levels in the system. That is, a process node at one level
can be expanded into an entire diagram at a lower level. The nesting of

the diagrams proceeds until all system input/output behavior has been
described.

The next phase consists of an analysis of the structure of the files used
in the system. The analysis is expressed in terms of Jackson Data Struc-
ture diagrams[13], which describes the file as a tree-structured collection
of boxes.

The final phase uses a technique called Synchronized Refinement. Syn-
chronized Refinement is a code reading technique developed by Rugaber
et al. that simultaneously examines and abstracts source code while elab-
orating an application description. It is used to obtain a detailed descrip-
tion of a specific function. Captured understanding is expressed in terms
of how identified code constructs realize specific application domain con-
cepts. The process is driven by the detection of design decisions in the
source code. The key concepts are recognition and abstraction. When a de-
sign decision is recognized and annotated, the code segment representing
the design decision is replaced by a description of what it does. This way,
the source code gets shorter, while the description of the system grows.

The process begins with a high-level description obtained from the doc-
umentation review. This description leads to some expectations about the
system. A dynamic list of expectations is kept, while exploring expecta-
tions by examining the source code. This may lead to some expectations
being discarded, while new expectations emerge. This process is contin-
ued until enough connections have been made between the high-level and
low-level descriptions to cover the system being analyzed.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?24

3.3 Defining a Methodology

This section will introduce our new methodology for forensic reverse engi-
neering. As mentioned, it is based on concepts from other methodologies
and standards presented in the previous section.

3.3.1 Guidelines for a New Methodology

As part of our preparations for the development of this methodology, we
made some guidelines to lead us in our development. The guidelines are
based on a combination of experiences from similar projects studied and
our own thoughts on important aspects of such a methodology.

First of all, the methodology needs to be specific enough to be used as
a guide through a reverse engineering process, while at the same time be
general enough to be used on entirely different systems.

"Program Comprehension For Reverse Engineering” [14] discuss some
concerns related to program comprehension, and states that reverse en-
gineering is difficult because of the need to bridge different worlds. Of
particular importance, they mention five gaps:

* The gap between a problem from some application domain and a
solution in some programming language.

* The gap between the concrete world of physical machines and com-
puter programs and the abstract world of high level descriptions.

* The gap between the desired coherent and highly structured descrip-
tion of the system and the actual system whose structure may have
disintegrated over time.

* The gap between the hierachical world of programs and the associa-
tional nature of human cognition.

* The gap between the bottom-up analysis of the source code and the
top-down synthesis of the description of the application.

[14] states that these difficulties manifest themselves in three ways: lack
of a systematic methodology, lack of an appropriate representation for the
information discovered during reverse engineering, and lack of powerful
tools to facilitate the reverse engineering process.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?25

The lack of a systematic methodology is the main objective of this project,
and we will target this problem directly.

We also want to target the problem with lack of appropriate representa-
tion. We believe that in a reverse engineering project, having a clear and
organized overview of what is known at all times may be the difference be-
tween success and failure. New information needs to be connected to what
we already know. To do this, the representation of information will be im-
portant to decrease the chances of overlooking possibly important new
information. We will not, however, go into the details of any requirements
or languages used in the representation of information, but acknowledge
its importance, encourage the reverse-engineer to see its importance, and
build a methodology that supports this idea and future work on a specific
representation.

Finally, we want to target the problem related to a lack of supporting tools
indirectly by developing a methodology suitable to lay the foundation for
such tools to be developed based on the it.

3.3.2 Sketching a Forensic Reverse Engineering Methodol-
0gy

It is time to start presenting the new methodology. First of all, the method-
ology is based on the ideas from Model-Driven Reverse Engineering and
the Model-Driven Architecture, presented in section 3.2.1. We want the
main focus of our methodology to be aimed at the Computation Inde-
pendent Model, the Platform Independent Model, the Platform Specific
Model, and the mappings between these models. These models are gen-
eral enough to be adjusted to any reverse engineering problem, but still
specific enough to lay the foundation for the reverse engineering process.
One of our main thoughts behind the idea of building the methodology
around such models is to encourage the reverse-engineer to document all
stages of the process. This is particularly important in a forensic setting.

In most cases, the reverse-engineer will have some level of knowledge
about the domain in question. That is, if the target device was a digi-
tal camera, depending on experience, the reverse-engineer would imme-
diately expect to find some sort of storage chip, a file system, some al-
gorithms and parameters related to interpolation, compression, etc. This

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY26

knowledge is part of the foundation for building the CIM. The other part
is gained from a documentation review. As with the methodology pre-
sented in 3.2.3, developed by K. Spencer and S. Rugaber, we want a docu-
mentation review to be one of the initial stages of the process. This should
support the building of the CIM, and also construct an initial knowledge
base that at any stage contains all the information known about the system
so far. But, as opposed to Spencer and Rugaber’s methodology, we believe
that the choice of strategy and techniques used in the reverse engineering
process should be chosen after the documentation review. While they de-
fined their strategy at the very beginning of the project, we believe that the
reverse-engineer can come to a better conclusion about his strategy after
having gained more knowledge about the system. In addition, we don’t
want the strategy to be static, but instead use a dynamic approach where
strategies may be swapped as the process reveals new information about
the system.

When a CIM of the system has been built, the fundamental idea is to pick
strategies and techniques for reverse engineering and gradually build a
PSM of the system. The CIM works as a high-level guide in the reverse
engineering, guiding the choice of attack-angles, and giving a better un-
derstanding of the revealed information. From the general ideas of the
CIM to the specific information represented in the PSM, the goal is to ab-
stract the PSM to create a PIM. This is done by mappings from the PSM to
the PIM, based on recognizing the intended purpose of PSM concepts. The
process can be seen as the opposite of how MDA uses a PIM to transform
it into a PSM. To validate the result of the reverse engineering, we want to
use the idea of “adequate reverse engineering” from “"Model-Driven Re-
verse Engineering” [8]. The article compares adequate reverse engineering
with how the term adequacy is used in software testing. Testers use var-
ious adequacy criteria to ensure that requirements have been met. These
criteria derive their benefit from being deterministic and measurable.

The article further states that ”“if adequacy criteria existed for reverse engi-
neering, then software engineers could start collecting experience reports
and building databases of project statistics to help predict reverse engi-
neering time and effort.” Two characteristics are introduced to form the
basis for adequacy: thoroughness and lucidity. Thoroughness is “the extent to
which the reverse engineering covers the entire system being examined.”
Lucidity is "the extent to which the reverse engineering sheds light on the
purpose of the system and how that purpose is accomplished by the code.”
The intension is to use the models to help measure the thoroughness and

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY27

PIM

PSM

Figure 3.2: MDRE transformation (modified version of figure 3.1, taken
from [9]).

lucidity of the system. To do this, they introduce the term “reverse reverse
engineering.” Reverse reverse engineering is used for validation, by using
the resulting models from the reverse engineering to build a new imple-
mentation of the system, hence reversing the reverse engineering. The
idea is to compare this new version with the original, to determine if the
match is close enough. The article discusses reversing a software program,
using a code generation tool for the reverse reverse engineering task, gen-
erating the code automatically from a standard representation of the mod-
els and comparing the results. In our situation, the system may not be a
software program, but the general idea of reverse reverse-engineering still
hold.

Our methodology is presented with the flow chart shown in figure 3.3,
and a step by step explanation is given below.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY28

~——1 Initialization phase—.

1.1 Define problem

6.2 Documentation namew)

l 1.3 Create CIM l

kS A

(-—3 Validation phase———, - 2 Experimentation phase

[3.1 Test against success mﬁa)

_Yﬂé
Yes
Mo
Continue?

(22 Ewl@— '_ [27 Evaluate PIMICIM consistency |
| 24 Exvactinfo | [2.6 Transform 1o PIM |

Figure 3.3: Flow chart of our methodology.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?29

1. Initialization phase This phase includes the initial preparations be-
fore moving on to analyze the system itself. At the end of this phase, the
reverse-engineer should have a general idea of the functioning of the tar-
get system.

1.1 Define problem

The first step of the methodology is to define the problem, in order to get
a clear understanding of what to target. The important part in this step is
to limit the problem to only include what is necessary. This step should
include a definition of the success criteria.

1.2 Documentation review

The documentation review was discussed above. The goal of this step is
to get an initial understanding of the problem and its domain. The knowl-
edge gained during the documentation review will be the basis for three
important aspects of the methodology:

1. A knowledge base is formed based on the information found. This
knowledge base should contain all known information at any time,
and represent the reverse-engineers current understanding of the
system.

2. A CIMis created based on a general idea of the domain of the system.

3. The first strategy chosen in the Experimentation phase is based on
knowledge from the documentation review.

1.3 Create CIM

A CIM should be created based on the domain knowledge gained during
the documentation review. The CIM will be used throughout the process
to guide what part of the system to address at any time and to validate the
models created for consistency. The CIM can change during the process,
in cases where the actual domain differs from the expected.

2. Experimentation phase

This is the phase where all tests and experiments on the system are per-
formed. The idea is to increase the knowledge about the system incremen-
tally by continuously making new connections between new information

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY30

and the current state of the knowledge base.
2.1 Define strategy

When the reverse-engineer has gained a general impression of the system,
it is time to start analyzing it. The choice of strategy will vary depend-
ing on the system and the information found during the documentation
review. A chosen strategy is kept as long as it produces new informa-
tion, but a strategy could be re-used at some later stage if new information
from other strategies causes this strategy to be valuable again. Examples
of strategies, which will be seen in action in our case study, are black-box
testing and disassembling.

2.2 Create tests

At this stage, tests are created according to the chosen strategy. The tests
should be targeted at a particular part of the CIM they intend to explore.

2.3 Perform tests

Tests are performed according to the plan created in the previous step.
2.4 Extract info

Information is extracted from the results of the tests.

2.5 Adjust PSM

If new information was found in the previous step, the information is in-
corporated into the PSM.

2.6 Transform to PIM

When new information is incorporated into the PSM, we try to abstract
the PSM into a PIM. The CIM helps us understand the concepts explored
in the PSM.

2.7 Evaluate PIM/CIM consistency

As the PIM grows, we evaluate the consistency between the PIM and the
CIM to see if we have covered the entire system. This corresponds to

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY?31

the discussion of adequate reverse engineering above, and the characteris-
tics thoroughness and lucidity. If we believe to have covered what we need,
we move on to test against our success criteria. If we have not yet covered
everything, we go back to create a new set of tests to test new aspects of
the system.

3. Validation phase

There are two ways to enter this phase. Either you believe to have covered
the entire system in question, and need to test against the success criteria.
Or you have performed a set of tests that gave no new information.

3.1 Test against success criteria

When the reverse engineering is believed to be adequate, it is time to test
against the success criteria. This is done by reverse reverse engineering, to
see if our understanding of the system is accurate. This stage could either
end with the conclusion that the project is successfully completed, or if
the test fails, a valuation of the project is needed to determine if the project
should be closed, or if we should continue analyzing the system.

3.2 Evaluate project

When this stage is reached, the question to answer is whether or not we
still see possibilities of finding new information about the system. We
could reach this stage either by failing to match the success criteria, or by
failing to extract new information from a given set of tests. In the latter
case, we would normally decide to continue, but with a different strat-
egy, a new test set, or a different target for the test set. This is unless we
have failed to extract information from several strategies in a row, and
see no reason to continue the project. On the other hand, when the stage
is reached from failing to meet the success criteria, we should perform a
more detailed evaluation of the project to determine if and how we are
likely to reach a more accurate understanding of the system.

Chapter 4

Reverse Engineering the Object
Store

32

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 33

Now that a sketch of a methodology has been developed, we need a sys-
tem to test the methodology on. The system chosen for this task was Win-
dows Mobile’s object store. This choice was made not only because the
object store suits as a good candidate for testing the methodology, but also
because knowing the inner workings of the object store could be an im-
portant forensic discovery in itself.

4.1 Initialization Phase

4.1.1 Defining the Problem

The system to be analyzed is Windows Mobile’s object store. We are not
concerned with Windows Mobile functionality that does not affect the ob-
ject store. We seek to get enough information about the structure of the
object store to be able to locate objects and their data using only our own
program code. We will base our work on the acquisition techniques dis-
cussed in “Mobile Forensics” [6], which also showed examples of recog-
nizable data in the object store. We wish to get a good understanding of
the data related to the objects, in order to extract the important parts of in-
formation. We should also be able to distinguish between objects that are
deleted and those that are not. More precisely, we want to be able to lo-
cate all unused areas of the object store, which are the areas where deleted
information can be found.

We defined three success criteria for the analysis:
1. Be able to distinguish between deleted and non-deleted data.

2. Understand the format used to store objects, in order to extract data
and attributes.

3. Make sure that we have covered the entire object store.

All tests will be performed on a Qtek S110[15] device (Appendix A).

4.1.2 Documentation Review

We started off with an in-depth documentation review. Our focus was on
gathering as much relevant information as possible in order to establish a
knowledge base for the upcoming process. This included:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

”Mobile Forensics”

Qtek S110 basics

Windows Mobile

Windows CE API

ARM instruction set

Shared Source Initiative

The work presented by Jarle Eide in the
report named ”"Mobile Forensics”[6] was
available. The report gave an introduction
to forensic analysis of Qtek S110.

The basics of Qtek 5110 (appendix A) were
known from "Mobile Forensics”.

An overview of Windows Mobile was also
presented in “Mobile Forensics”. This in-
cluded some basic knowledge of the ob-
ject store. Microsoft entered the handheld
market with the Windows CE operating
system. Since then, many different plat-
forms have been based on the core Win-
dows CE functionality. Windows Mobile is
the name of a subset of these platforms, in-
cluding Pocket PC and Smartphone. The
Pocket PC operating system evolved along
with Windows CE from WinCE 2.0/PPC
2000 to WinCE 3.0/PPC 2002 to WinCE
4.2 /PPC 2003. PPC 2003 was re-branded
as Windows Mobile 2003, and with some
additional functionality a new version was
released as Windows Mobile 2003 Second
Edition in March 2004.

The Windows CE API was available
from the Microsoft Developers Network
(MSDN) website [16].

As Qtek S110 uses an ARM-processor, the
ARM instruction set was available in case
we needed to use a disassembler. See ap-
pendix C for a ARM instruction Set Quick
Reference found at [17]. For a thorough ex-
planation of the ARM processor architec-
ture see [18].

Some of the Windows CE source code
are available through Microsoft’s Shared
Source Initiative[2].

34

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

In addition, we had several tools available:

Itsutils

IDA PRO Disassembler

Judas Forensic Tool

4.1.3 Creating CIM

The Itsutils tools [7] were available, which
provide useful functionality when working
with Windows Mobile.

The IDA PRO Disassembler (4.2.5) was
made available to us from the university,
which made it possible to disassemble sys-
tem files if necessary.

The Judas Forensic Tool was available from
”"Mobile Forensics”, in order to make com-
plete bit-by-bit images of memory on the
phone.

35

To represent our expectations of the domain, we created the CIM shown in
figure 4.1. The model was fairly simple, containing two main components:
an object allocation table and the object as found in the object store.

~—Object allocation table——

(8][n] Address o

bject

—— Attributes

Data

Figure 4.1: Computation Independent Model

3

~_

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 36

From the documentation review we knew that object identifiers (OID), a
unique 32-bit numerical value, were used to identify objects. We expected
to find some sort of allocation table, mapping these identifiers to the loca-
tions of the objects.

Many examples of stored objects had been presented in [6]. We expected to
find both object attributes and the data stored together according to some
unknown format, where the data could possibly be compressed.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 37

4.2 Exploration Phase

The initialization phase had given us the basic system understanding we
needed to start the analysis. According to the methodology, the next step
was to define a strategy. We will present our analysis by continuously
referring to the steps defined in the methodology. However, steps such
as 2.7 Evaluate PIM/CIM consistency will not be included in the early stages
where every such evaluation concluded that our knowledge was still inad-
equate. In addition, we will not show the results from 3.2 Evaluate project
every time no new information was found, since this step, though use-
ful during the process, does not provide any information valuable for the
presentation.

4.2.1 Defining a Strategy - First Loop

“Mobile Forensics” ([6]) had shown that memory dumps from Qtek 5110
could provide a complete bit-by-bit copy of the object store, and also pro-
vided many examples on how investigation of such memory dumps could
reveal information about the contents of the object store. It seemed like a
good idea to continue this work. But while “Mobile Forensics” sought to
determine if it was at all possible to re-discover previously deleted data,
we were now interested in finding exactly how objects are stored, and de-
termine what actually happens when objects are deleted.

We summarized our situation with the following:

¢ have an "unknown” device, with unknown behavior

have the ability to input data to the device

have the ability to delete data from the device

have the ability to reset the device to its initial state

have the ability to make a complete bit-by-bit copy of data on the
device

From this we decided that our first strategy should be to run black box
tests, treating the phone as the black box, and analyze the changes seen in
memory dumps as input is introduced.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 38

4.2.2 About Black Box Testing

Black box testing[19] is a well known testing methodology. It gets its name
from the fact that it treats the system you test as a black box you can not
look inside. The inner workings of the system are not known by the people
doing the test. The testing consists of giving the system certain controlled
inputs and comparing the resulting outputs to the functional specification.
Because of its dependency on the functional requirements, black box test-
ing is also often called functional, behavioral, opaque box and closed box
testing. Because testing every possible permutation of inputs to a device is
extremely time-consuming and not practical in any realistic scenario, there
are some techniques available to reduce the input testing space.

Equivalence Also called equivalence partitioning. This technique tries

sets to partition the possible input set into subsets that are
expected to test the system in the same way. You then
make sure you select at least 1 input from all the subsets.
It’s optimal to design the sets such that all values belong
to one set and one set alone. The difficulty with this tech-
nique is choosing the correct strategy for set partitioning
without knowing anything about the inner workings of
the component.

Limit testing ~ Also called boundary value analysis. This technique
tests the limits of the input set. These limits are set by
the input type and the input domain. If you have a black
box device that it supposed to give you the square root of
its input you would check the limits -1, 0, 1 and the max
value of the input type. The downside of this technique
is that few tests are generated and you can miss essential
parts of the black box inner workings.

Black box testing has a natural counterpart in white box testing, where one
uses information about the structure of the program to check how it func-
tions. White box testing is better suited for times when one has access to
the systems detailed plans and/or source code. With an unknown device
this is not very likely. The difference between black box and white box
testing is illustrated in figure 4.2.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 39

Black box

Inputs
)

White box

Inputs
y

R

L]

F

Ouputs
U D
Ouputs
HP >
Internal
lbehaviour>

Figure 4.2: Black box and white box testing.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 40

Hex Workshop (HW)

Hex Workshop is a hex editor. It displays data from files in both their
raw hexadecimal numeric representation and the visual symbols associ-
ated with these representations through standards like ASCIL. It gives the
user the ability to view, find and edit the data. Hex Workshop also has
advanced features like its own structure language, bookmarks and com-
parison between different files.

Concept clarifications

To help the readability of the rest of the thesis we define a couple of key
concepts that appear in the text:

Ox All numerical values prefixed with Ox are in base 16, hex-
adecimal.

byte An unsigned byte, 8 bits wide.

word An unsigned word, 16 bits wide.

dword An unsigned double word, 32 bits wide.

quad An unsigned quadruple word, 64 bits wide.

little- This concerns how data is stored in a computer. Little-

endian/big- endian means the LSB is stored first and big-endian means

endian the MSB is stored first. Given the value 0x4A3B2C1D,

it is stored as 0x1D2C3B4A in little-endian and as
0x4A3B2C1D in big-endian.

id, oid, OID, All these are meant as the 32 bits wide numerical identi-
CEQID, iden- fer of an object in the object store.
tifer

4.2.3 Testing

The ultimate goal of our testing was to figure out the physical and logical
format our device use in order to store objects in the object store. The abil-
ity to do this is important because one is no longer limited by the official

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 41

APIs, but can access all the raw data and might extract more information
than the API makes available.

Referring to the methodology as shown in figure 3.3, the following will
include the tests executed during this first choice of strategy.
4231 Testl

Create test
We want to find out how a user-created file is stored in the object store.
We assume the data bytes in the file are stored in sequence and that meta-

data about that file is also somehow saved. We also assume that there
exists some way to link the data and the metadata to each other.

Figure 4.3 contains the first test.

Test 1
Goal
Find out how a user-created file is stored in the ohject store.
Input
1|hestedokument.ixt. 1 KB in size. Content is "HESTEPE S" repeated 111 times.
Steps
Action Input Output
1{Dump object store fest1 1
2|Add new file. hestedokument txt
3|Dump object store again. fest1 2

Figure 4.3: Test 1 - User-created file.

Extract info/Adjust PSM

Our tool of choice was Hex Workshop. Opening test1_1.bin in it we got
the default view in figure 4.4. The first thing we notice is the hex value at
offset 0x4; 0x454B494D454B494D or the text version "EKIMEKIM”. These
bytes are always present first in the object store as a “magic number” iden-
tifier. This is not officially documented by Microsoft, but was found to al-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

H Hex Workshop - [test1_1]

File Edit Disk Options Tools

Window Help

42

~=lolx|
=181 x|

DN N EEENEEEE

ORI 5

& ¥ <K
O i &

FECERE L EE R

e A T a1

<] 1

[a1 ol |llea s &

% % E |

noooooon
no00001E
nooooo3c
00000054
oooooo7a
ooo0o09e
000000B4
0000002
noooooFo
no00010E
nooooize
00000143
ooo0oled
ooo0001se
000001A4
nooooicz?
nooooiEn
no0001FE
noooozic
00000234
ooooozsa
ooonoz7e
ooonoza4
00000282
noooozoo
n00002EE
noooo3oc
aoo003z2a
ooooo34s
00000366
00000364
00000342
noooo3co
n00003DE

test1_1

aon4
aoon
aoon
aoon
aoon
aoon
aoon
3397
0400
aoon
nion
aoon
0400
ooon
F301
7C4z
Doz4
aoon
nion
aoon
0400
ooon
0504
7C4z
E860
aoon
nion
aoon
0400
038F
09AF
E4FD
70F0
070n

aoon
aoon
aoon
aoon
aoon
aoon
aoon
OE2F
aoon
G460
aoon
o100
aoon
0400
aoon
oooo
7C4z
7C7B
aoon
o100
aoon
ozoo
aoon
ooon
np4z
303E
aoon
o100
aoon
FO70
OF 8F
438F
90F 2
95FB

454B
ooon
ooon
ooon
ooon
ooon
ooon
0507
ooon
on4z
4660
oooo
o100
ooon
ozoo
oooo
D&1S
BE42
2625
oooo
o100
ooon
o400
oooo
BE29
042
AN3D
oooo
0108
70B1
F090
8698
OF0F
7 4BA

494D
ooon
ooon
ooon
oooo
oooo
oooo
S0F1
ooon
EEZ9
0042
433
oooo
0100
oooo
0400
ooon
C1iD4
0D42
S0EF
oooo
0100
oooo
0400
ooon
0300
0242
BO3D
032E
1B27
SOF0
BOF1
290F
OEOF

4548
ooon
ooon
ooon
oooo
oooo
oooo
40F 4
o009
ooon
F41cC
EE42
1034
oooo
o100
oooo
0400
7E10
0006
0c4z
EG0le
oooo
o100
oooo
0400
ooon
FaOO
0442
40FE
DE2F
OB4F
DOFO
BOFD
naoc

494D
anoo
anoo
anoo
aooo
aooo
aooo
ODoF
0400
0400
anoo
Fz0l
74z
acvB
aooo
o100
anoo
0400
E4FE
S05E
74z
SB7F
aooo
o100
anoo
0400
anoo
GCAT
EOF1
SO0F1
a7 1F
0ADE
EOFO
FOF 2

ao4n
aoon
aoon
aoon
aoon
aoon
aoon
151B
aoon
aoon
n40n
aoon
3500
6B42
coz4
aoon
aoion
aoon
n40n
SEFS
aoon
6p42
6813
aoon
aoion
aoon
n40n
c401
O11F
7OF2
FOFz
OF 8E
OF OF
FOFO

6990
aoon
aoon
aoon
ooon
ooon
ooon
FO73
aoon
o100
aoon
nzoo
ooon
1DE4
7caz
CcCz4
aoon
o100
aoon
0400
ooon
ooon
7caz
2807
aoon
o100
aoon
0400
030F
Q72F
2030
FOD4
059F
030F

no40 9607
aoon 0ooo
aoon 0ooo
aoon 0ooo
o000 gooo
o000 gooo
o000 oooo
AOD1 D050
34C3 71B3
aoon ncz4
0100 o0ooo
aoog 0100
0400 0000
7BO0 0400
4C00 0050
7C42 EF29
2434 7C42
aoon 2034
0100 o0ooo
aoog 0100
0400 0000
1407 0400
ooooQ oooo
7C42 0000
30BD DA42
aoon 0C3E
0100 o0ooo
aoog 0100
7OFZ C23E
0AZF DOFD
OBOF 0B3F
EOED DEZ7
ADEZ B4ED
07EF 70EBS

00s0 oooo
ooon oooo
ooon oooo
ooon oooo
0000 0oo0o
0000 0oo0o
0000 0oo0o
0042 0000
OADF 0&2F
7C42 0000
DE24 7042
0000 8c7E

]

100 0000

0000 0100
0400 0000
0000 0400
F229 0000
7C42 0000
84EF 0C42
0000 E406
0100 0000
0000 0100
0400 0000
0000 0400
ooon oooo
0&42 0100
8CB0 0A42
0000 AC3D
05AD 030F
3073 030F
E0SZ S0A0
OB4F 30F0
017F 0D9F
F1F3 OFSF

anoo
anoo
anoo
anoo
aooo
aooo
aopo
oooo
7O0FD
anoo
nzoo
GE42
2034
aooo
0100
oooo
0400
anoo
SEAR
742
4888
aooo
0100
oooo
0400
anoo
anoo
a4z
32F4
290F
2F3E
BZF1
7O0FD
070E

aoon
aoon
aoon
aoon
aoon
aoon
2894
0300
ADF&
n40n
aoon
aoon
7caz
483
aoon
o100
aoon
0400
c401
aoon
6B42
6413
aoon
o100
aoon
n40n
aoon
G083
E2F1
7070
171F
4F 1F
FOFO
BOEO

aoon
aoon
aoon
aoon
aoon
aoon
aoon
oooo
nion
aoon
0400
cco?
ooon
6B42
C424
oooo
nion
aoon
0400
ooon
c401
7caz
2407
oooo
nion
aoon
0400
QOEAS
01CF
2070
EDOFD
270F
4F0OF
B074

:Imenre Viewer

= *

x|
|

ﬁnd Results

Address [Name

[value

Address

[Length

4]

<

] o

Datz Inspector) Structure Viewer

Compare), Checksum

Find

Bookmarks_fy Output [

Ready

[offset: nooooo00

[value: 1024

|63643648 bytes

[ovr moD’ [READ. 4

Figure 4.4: Test 1 - Hex Workshop default view.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 43

Find ﬁl

Criteria |

— Find What:
Type: IHe:-‘. Walues j

Value: |4B455354—455D454553| j

Teat: IHESTEF'EIS

— Options Direction —
¥ Find Al Instances © Up
* Down

ok | cance | ey |

Figure 4.5: Test 1 - Hex Workshop search box.

ways be present by Jarle Eide in his "Mobile Forensics”[6]. We will use the
presence of this value as a strong indicator that we have a memory dump
from the correct location.

We also notice that there is a strong repeating pattern of the data in the
area of memory from offset OXEO to offset 0x34C. Exactly what this data
is is unknown at this point but its noted as an interesting area to ex-
plore later. The interest in this area is further enhanced by the knowl-
edge that many file systems (like VFAT) store their lookup tables for file
indexing at start of the disk. Utilizing the search-functionality of HW we
conducted a binary search(figure 4.5) for the content of our test file, heste-
dokument1.txt. The content of our file was the text "THESTEPEIS” repeated
111 times. This means that the phrase "THESTEPEIS” and its hex equivalent
0x484553544550454953 should be present at least 111 times unless the ob-
ject store utilized some kind of data compression. In its documentation[20]
Microsoft do however mention that the object store may internally use
compression, but this should be completely transparent for anybody uti-
lizing the official APIs. We are not, and have to investigate whether or not
compression is used. The search resulted in no instances found, which im-
mediately implies that compression is indeed used (given that our mem-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 44

ory dump is correct, something we assume at this point). Refining the
search to "HESTE” and its hex equivalent 0x4845535445 yields one hit at
offset 0x036FF6DD (figure 4.6 - yellow markings).

We see that the string "HESTEPEI” is followed by much “random” data
until offset 0XO36FF7FC. We have no knowledge of the format of this data,
but we make the assumption that some or all of it contains the compressed
data of our test file. The data from offset 0036 FF7FC is very interesting,
however (marked in red in figure 4.6), as this is actually the name of our
file, encoded in some kind of Unicode variant where each character oc-
cupies two bytes. The filename is not zero-terminated, but is prefixed
with the value 0x1100, which in decimal is 17. This also happens to be
the number of characters in the filename. At this point this can be purely
coincidental, but we make the assumption that every Unicode string in
the object store is prefixed with its length. We will check if this holds true
for other files in later tests. We also make the assumption that files in the
object store is stored with the file’s data first, in a compressed form, with
the file’s name afterwards.

Next we notice that right before our "THESTEPEI” string, at offset 0x036FF6D0,
the hex value 0xEC290000 is stored. Also, before the filname, at offset
0x036FF7DA, we find the hex value OxEB290000. Now these two values
look like a counter that is increased with one. Might this be some kind
of id for our file? It could of course be only coincidence, but this seems
less likely when we also notice that the same two values are stored at off-
set 0x036FF684, which is right before our "THESTEPEI” string. These val-
ues are marked in green. In fact, the whole byte patterns before each of
the values seem to have things in common. Looking at the grey mark-
ings we see that before the value OxEC290000 at offset 0x0x036FF7DA, the
value 0xEB290000 at offset 0x036FF7DA and the value 0xEB290000 at off-
set 0x036FF684 we see that the bytes in front of them seem to follow this
pattern: XX00 00Y0 0000 0000 where XX is a number between 0 and 0xFF,
and Y is a number greater than zero. The fact that this pattern is repeated
before both the data and the name of the file leads us to suspect that it is
part of some kind of header and that the data and the filename both in-
dividually have this header. This again leads us to suspect that they are
actually threated as two separate objects in the object store.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 45

O36FFSED(SCAE C401 0000 0400 6800 6500 7300 7400 (~....... h.e.s.t.
O36FFSFO(z000 00D0O 0000 0000 EAZ9 0000 CezZ9 0000f Teoudon
036FFe00(0100 0e00 0O¥00 4DO0O0 5200 5500 4C00 e900(...... M.R.U.L.1.
036FFe10(7300 7400 &Z00 6100 0000 0000 1000 OODO(s.t.b.a.........
03eFFez0(0000 0000 7829 0000 FOZ9 0000 0100 OzZO00(....=Z)...).eeu.s
036FF630 (0102 3100 0000 5700 1400 00DO 0000 OOOOf..1...W.........
036FFb40 (7029 0000 BC29 0000 0100 0200 0200 3100(p)..l)........ 1.
036FF650 (3000 0000 6500 BEOD 1800 0ODO 0OOO OOOOfO...e.n.........
036FFeR0(ED29 0000 1C13 0000 0300 08500 0100 3400(.0.....00eann. 4,
036FFe70(00F1 232A BDAE C401 4100 4300 4000 0030(..#*m...A.C.@..0
036FF6580 (0000 0000 EB29 0000 ECZ9 0000 0000 0000) PR I

036FFe%0 (0000 0000 0000 0000 0000 0000 0000 0000f.....cveeeinnnnnn
036FFeAD (0000 OO0O 0000 OOCO OO0O00 0000 0000 O000f......ceenennn..
03eFF6ED | 0000 0000 0000 OO0O0 0000 0000 0000 0000 (f..........na....
03eFF&CO|0000 0000 0000 OO0O0 FCOO OO0 OOOO OOOO(f...........)

036FFeDO0(EC22 0000 0100 E703 OOFA 0000 0048 4553 .3 HES
036FFRED (5445 5045 49FE 5308 0098 0028 01BG 0148 |TEPEI.=....(...H
03eFFeF0O(02DE8 0268 0O3FF FG03 8304 1805 A805 3g06(...h.......... g.
03eFF700(CE06 5807 ESOV FEFY¥E 0808 0998 0928 DABS|..X....=z..... (..
03eFF710(0A458 0OBDE 0BRSS OCFF F&OC 350D 180E ASOE|(.H...h..........
036FF720(380F CG0F 5810 EG10 FF70 1108 1298 1228(6...H....x=..... {

03pFF730| 1388 1345 14DE 1468 15FF FS15 8816 1817 (...H...h........
03eFF740 |AB17 3818 CB818 5819 ES19 FF78 1A08 1B98(|..8...X....=....
03eFF750|1B28 1CES 1C48 1DDE 1Des 1EFF FS1E 881F|.(...H...h......
036FF760(1820 ABZ0 3821 C821 5522 ES2Z FEYG 2308 (. . gl.1X". .
036FF770(2498 2428 25B8 2548 Z2eD8 2668 Z7FF FG27 (5.5(%.5H&.&h'..'
036FF7580 (85828 1829 ABZ9 382A CGZh 582B EGZB FF7G(.(.).)
03eFEF7890(2C08 2D%3 zD:z28 ZEBS ZE48 2FDS ZFed 30FF|(,.-.-(...H-.~-h0.
03pFF7AD |FGE30 8531 1832 AB3Z 3833 CH33 5834 EB54(.0.1.2.283.3¥4.4
03eFF7BO |FF78 3508 3698 3628 37B0 3748 38D8 3865 (.x5.6.6(7.7HE.Gh
03eFF7C0|397F FB839 883A 183F AB3B 353C C83C 583D
03eFF7D0 | 4400 0050 0000 0000 7329 0000 EBZ9 0000(D. 3 I
O36FFYEO(EYO0S 0000 0100 OOBF EGZ9 0000 0000 O0OOf......... Toeuonn
036FFYFO(00ER 425E 5SCAE C401 1100 1100 6300 &500(..B"~.......
03eFFG00 (7300 7400 6500 6400 eFOO0 &EBOO 7500 &DO0(s.t.=.d.o
03eFFG10 (6500 REOO 7400 ZEOO 7400 7800 7400 O0ZFF |e.n.t...t.
03eFFE20|2C00 00DO 0000 O0O00 7925 0000 7729 0000(,....... vE. .
03eFFE30 | 0100 OCO0 0900 4C00 6FO0 6300 6100 6COO(...... L
03eFFE40 5000 6100 7400 6500 5C00 e800 6500 7300(P.a.t.h.
036FFG50 (7400 0000 2024 7C42 2800 00DO 0000 0OOOO|t... S|
036FFG6R0(ES29 0000 7925 0000 0400 0400 OCEBR 4C00(.)..w&%........ L.
03eFFG70 (6100 7300 7400 4C00 eFO0 &300 b100 7400(a.s.t.L.o.z.a.t.

=
]

o .

Figure 4.6: Test 1 - Found "HESTE” in memory dump.

~ [e) a 'S w N —

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 46

Transform to PIM

Listing 4.1 shows the Hex Workshop structure we can construct based on
this information. This structure can be super-imposed by the program
upon the raw hex listing, letting us view the data as an instance of the
structure.

Listing 4.1: Test 1 - Blob structures v1

rstruct ObjectHeader
{
WORD unknown; //XX00
WORD unknown; //00Y0
DIWNORD zeroFiller; //0000 0000
DWORD suspected_ID;

4.2.3.2 Test2

Create test

We now want to further check our assumption on the existence of an id
for each file, and how the data and metadata of a file is connected to each
other. From the first test we made the assumption that they are treated
separately and somehow linked together. An id would be practical for
just this purpose. We now check these assumptions by testing if they hold
when adding multiple files.

We also wanted to start looking at what happens when we delete a file
from the object store. How does this affect the data in object store? Is it
just marked as deleted, overwritten by new data or actually erased by fill-
ing it with zeros or any other deletion pattern?

When we compare two memory dumps we can see what differences there
exist between them. These differences can be caused by our actions, but
they can also be caused by other process on the telephone or the operat-
ing system itself. We have no way of getting single atomic access to the
phone, so when analyzing changes we have to do it “best effort” and keep
our eyes open for changes not connected to our actions. In order to pre-
pare for this, we need to have a "base” dump of the phone. This means

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

47

Test 2
Goal
ajlnvestigate how the object dump looks like when phone is reset.
bilnvestigat further how new files are stored.
c)investigate what happens when files are deleted.
Input
Filename Content
1|Dokhest1 Binary data.
2|Dokhest?2 Binary data.
3| Dokhest3 Binary data.
4|Dakhest4 Binary data.
Steps
Action Input Qutput
1{Dump object store. fest2 1
2|Dump object store. test2 2
3| Dump object store. test2 3
4| Add 1 new file. Dokhest1 test2 4
5|Add 1 new file. Dokhest2 test2 5
6|Add 1 new file. Dokhest3 test? 6
7|Delete Dokhest1. test2 7
8|Add 1 new file. Dokhest4 test?2 8
9|Delete all added files. test? 9

Figure 4.7: Test 2 - New file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 48

a dump of the phone without any user actions having had any influence
on it. This is achieved by dumping the phones memory just after remov-
ing the battery and letting it drain itself completely for both primary and
backup power. We dump three times to make sure the "base” is more or
less stable.

Figure 4.7 contains the second test.
Extract info/Adjust PSM

From figure 4.8 we can see parts of the three "base” dumps. They are
overall almost identical, except for the big block starting at offset 0x110
and ending at 0x1D4. These bytes are different (marked with blue), but
they follow an overall pattern. From this we conclude that this area can
change quite a lot even without user interference, and any changes here
should not automatically be considered effects of user input. The struc-
tured layout and constant location gives us the distinct impression that
this might be part of the file systems own data structures, not user data
itself. It cannot be user data, as there has been no user data stored on the
device after it was reset. At this point we hazard to guess that it is in-
deed part of the object stores object table, the structure that maps objects
to the memory addresses that contain the object (much like the FAT table
in the VFAT file system is). This is later proven not to be the case, but
further tests were needed to come to that conclusion. Next we turned our
attention to the new files that had been added to the phone, looking at the
dump named test2_6. By now we know that the name of files can be found
as Unicode clear text in the object store dumps, so we did a binary search
and ended up with three hits. These are marked with yellow in figure
4.9. We see that our assumption that Unicode strings are prefixed with a
length word holds true for all the filenames. dokhest1 is indeed 8 charac-
ters long, as is dokhest and dokhest3. In test 1 we found some kind of header
before both the file data and the file metadata (filename). Is this present in
this object store dump as well? Yes, it is. In fact, we can see the pattern
from test 1 (XX00 00Y0 0000 0000) ten times, marked with red in figure
4.9. Examining the Y-part of the pattern at the different locations gives us
the following values of it: 3,6,5,3,6,5,D,3,6,5. The pattern with Y value D is
disregarded for now, it only appears one time. Three files were added to
the device before this dump. Three times three headers was added, with
Y values 3, 6, 5 respectively. This does not seem like a coincidence! If we
look closer we notice that the pattern appearing right before the metadata
of the file (filename) the Y-value is always 5! The header right before the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

B test2_1

gooooaco
gooooapo
ooooooED
oooooaro
gooooloo
goooolio
ooooolzo
ooooo130
ooooo140
ooooo1so
ooooole0
goooolvo
oooools0
gooool1so
ooooo14a0
ooooo1E0
gooooico
oooooibo

OOnn-iEn

goooooco
oooooopo
ooooo0ED
ooooooro
gooooloo
ooooo1lo
ooooo1lzo
ooooo130
ooooo140
goooo1so
goooolen
goooo1lyo
gooooiso
gooooi19o
goooo1lan
oooooien
gooooico
gooooipo

OnCn oA

H test2_3

goooooco
gooooopo
ooooooED
oooooorEo
goooolioo
goooolio
ooooolzo
ooooo130
ooooo140
ooooo1so
ooooole0
goooolyo
oooooiso
oooooi190
oooooi1an
ooooo1en
oooooico
oooooibo
nononieEn

i test2_2

agoood oooo
ao a7
FO73 A0D1
0400 oooo
34C3 7183

oooo oooo
oo 97
FO73 aA0D1
o400 0o00o
J4C3 71B3

gooo oooo
oo a7
FO73 aA0D1
o400 oooo
34C3 7183

oooo
OEOF
oosao
oooo
0A0F

aooo
asoz
ao4z
aooo
06 2F

oooo oooo
S0F1 6OF4
oooo oooo
ooos o400
70F0 AOFS

aoDo
apor
o300
aooo
a1oo

2894
151E
oooa
oooa
oooa

29 0000 0400 0000 0100 OO0oO

NonC 7™AD TaiC nonn Ao nonn 100 o0nn

gooo
OEOF
ooso
gooo
0AOF

oooo
osov
oo4z2
oooo
O6zF

oooo oooo
S0F1 60F4
oooo oooo
ooos 0400
70F0 AODFGS

oopo
oDor
o300
oooo
oioo

2894
151B
oooo
oooo
oooo

29 0000 0400 0000 0100 Q00O

ConC WA o4 oo o ndno o nonn ad 00 nnns

oooo
OEOF
ooso
oooo
0A0F

gooo
oso7
oo4z
gooo
UbZF

oooo oooo
S0F1 BOF4
oooo oooo
ooos 0400
70F0 ADES

ooDo
oDoF
o300
gooo
o100

2894
151B
oooo
oooo
oooo

29 0000 0400 Q00O 0100 oooo
NANS 7042 NAIS Onnn nd4nn Onnn ainn nnnn

49

..... P.".....
s...P.B....... .
4.0 .. P
IR

(=
.............. (.
..... F. ...
= o -
dog. . P
|

| T
.............. (.
..... P.".....
s...P.B.... ...
4.0 .. P
e e e
[=

Figure 4.8: Test 2 - Compare base dumps.

© ® ~ o & S W N —

Ju = = =
[N [o

—_
'S

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 50

data of a file mysteriously always has 6 as Y-value. The same goes for the
headers with Y-value 3, they always appear right before a header with Y-
value 6. By now it is a pretty safe bet to assume that the second word of
our pattern is a type indicator. The value 0x0050 means “this is metadata”
and 0x0060 means “this is data”. The meaning of 0x0030 is not yet clear,
but as it seems to always appear next to file metadata and file data it’s a
good bet that it has something to do with the files!

Transform to PIM

We can now safely say that metadata about a file and the data itself is
treated as separate entities prefixed by the similar headers. We call these
entities for blobs and update our earlier HW-structure to take into account
our new discoveries (listing 4.2). The second word of the pattern is defined
as a word enumeration, called BLOBTYPE. As we see in figure 4.10, this
helps us to quickly assess what the data we are looking at means. When
the cursor is placed at an offset, a BlobHeader structure is filled with data
from there. The result is that we can view the data as a structure of data
types instead of a simple hex dump of a byte stream.

Listing 4.2: Test 2 - Blob structures v2
typedef enum tagBLOBTYPE

{
UNKNOWN_FILE RELEATED= 12288, //0x3000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000

} BLOBTYPE;

struct BlobHeader

{
WORD unknown; //XX00
BLOBTYPE blobType; //00Y0
DWORD zeroFiller; //0000 0000
DWORD suspected_ID;

¥

Extract info/Adjust PSM

We still have a number of unknowns in our BlobHeader, like the first word

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 51

036FF430
036FF440
036FF450
036FF 460
036FF470
036FF480
036FF 450
036FF4A0
036FF4E0
036FF4C0
036FF4D0
036FF4ED
036FF4F0
036FF500
036FF510
036FF520
036FF530
036FF540
036FF550
036FF560
036FFS70
036FF580
036FF550
036FF5AD
036FF5ED
036FF5CO
036FF5D0
036FF5SED
036FFSF0
036FFB00
036FF610
036FFB20
036FFB30
036FFB40
036FFB50
036FFBA0
036FFB70
036FFB30
036FFB50
036FFBAD
036FFBED
036FFBCO
036FFBDO
036FFBED
036FFBFO

aooz
oooo
aooo
aooo
oooo
oooo
C429
4567
c229
aooo
1100
7400
C7z9
oooo
0ooo
aooo
1c0oao
o019
0101
C529
oooo
1100
7400
7029
7400
6300
c401
aooo
C529
SFO0
7EOD
3700
oooo
aooo
aooo
aooo
oooo
CAaZ9
AR33
BEZ9
aooo
1100
7400
EO15
9ron

aooo
oooo
aooo
aooo
oooo
oooo
0o0o
89AB
oooo
aooo
asoo
3100
oooo
oooo
0ooo
aooo
0o0e0
aooo
2900
oooo
oooo
0500
3200
aooo
4100
2400
gEOS
aooo
oooo
5000
3200
3500
oooo
aooo
aooo
aooo
oooo
0o0o
9933
oooo
aooo
asoo
3300
7042
FFO0

aoon
C3z29
aoon
aoon
oooo
oooo
0220
CDEF
C3z29
J01C
6400
4000
oooo
oooo
oooo
aoon
aoon
FCAA
0101
Caz9
Cczz29
6400
3400
400
7500
6300
4000
E0la
8050
6500
3700
2E00
caz9
aoon
aoon
aoon
oooo
0220
5833
caz9
C529
6400
21149
oooo
Fh4z

FFFF
aoon
anon
anon
oooo
oooo
FEDC
BF29
anon
anon
6FO0
o030
oooo
oooo
oooo
anon
aoon
AA01
0110
anon
oooo
6FO0
ooDo
agon
7400
&DO0
anon
JC42
9EF7
6700
3200
7400
aoon
anon
anon
anon
oooo
FF33
FE44
anon
anon
eFO0
4E03
oooo
7763

FFFF
C429
aooo
aooo
oooo
1400
BA9S
3000
1000
oove
6EO0
aoon
oooo
oooo
oooo
aooo
C729
0101
3000
2400
gorD
6B00
oooo
10&2
6FO0
6300
aooo
o100
g7A7
4600
3700
6000
CAZY
aooo
aooo
aoon
1400
EE33
3000
1000
g0s0
6E00
aooo
FEODO
6FE1

c401
aoon
aoon
aoon
oooo
0060
7654
0050
aoon
D7E4
6E00
ooon
oooo
oooo
oooo
aoon
ooon
0101
o050
aoon
4873
6600
oooo
4C00
2300
g0BC
aoon
2900
C401
6500
3100
7000
aoon
aoon
aoon
aoon
0060
DD33
0050
aoon
9EF7
6300
aoon
FFOG
FFOO

4000
0000
0000
0000
0000
0000
3210
000
0100
BEAT
6500
0629
0000
0000
000
0000
0110
EBFE
0000
0100
B7A7
6500
GF 29
6100
7900
7B9I3
6B29
0000
1100
OO0
3900
4000
0000
0000
0000
0000
0000
CCas
0000
0100
B7A7
6500
DF 38
FAOC
BEEF

o030
aoon
aoon
aoon
oooo
oooo
0123
0ooo
FFan
c401
7300
ooon
oooo
oooo
oooo
aoon
2400
BEO1
ooon
FEAD
C401
7300
0ooo
7300
6EON
g¥Aay
aoon
aoon
1600
7400
3300
o030
aoon
aoon
aoon
aoan
oooo
BE33
0ooo
FF&0
c401
7300
4F 40
FFoc
EDBF

Figure 4.9: Test 2 - Looking at new files.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 52

T B T

O036FF520|0000 0000 0000 0000 0000 0000 0000 0000
O036FF530 0110 2400 (. =
O036FF540|0019 0000 7CAA AAOD1 0101 0101 BEFE BEOL1|....|...........
O03pFF550|0101 2900 0101 0110 3000 0050 0000 O0000f..)..... o..°P....
O03pFFSR0I1CSZ9 0000 Ce29 0000 2400 0000 0100 FEAOI.%...h%..5.......

test? 2

i' tructure Viewer (ObjectHeader. hsl) = +

Address [Name | Value |
(£1036FF530 struct BlobHeader L.}

036FF530 WORD unknown 28

036FF532 BLOBTYPE blobType FILEDATA (24576)

036FF534 DWORD zeroFiller a

036FF538 DWORD suspected_ID 10695

Data Inspector }\ Structure Viewer jr

Figure 4.10: Test 2 - Applying the BlobHeader structure to a blob in Hex
Workshop.

of data. Figure 4.10 shows us that its value is 28(0x1C00), which is a low
value considering that an unsigned word (16 bits) can have values as high
as 656535(0xFFFF). This in itself is not evidence of anything, but when we
look at the first word of all the other headers in figure 4.9 we see that this
word has the following values: 0x4000, 0x1400, 0x3000, 0x4000, 0x1C00,
0x3000, 0x3400, 0x4000, 0x1400, 0x3000. If we once again disregard the
header with a blob type of 0x00D0, we see a repeating pattern. In head-
ers with blob type UNKNOWN_FILE_RELEATED(0x0030), the first word
is always 0x4000. Likewise, in headers of blobtype FILEMETADATA, the
first word is always 0x3000. This leads us to suspect the BLOBTYPE of
maybe actually being a double word (dword) instead of a word, because
the unknown first word seems to have a special value based on the value
of the next word, the blob type. This suspicion was false, as headers with
the blobtype value FILEDATA have different values of the unknown first
word (0x1C00 and 0x1400). Keep in mind that our device stores informa-
tion in little-endian format, so the value 0x1400 in the hex dump is the
decimal value 20.

So, we had no luck uncovering the meaning of the first word in our header.
Starting from another angle we see that at offset 0x036FF678 we have a
header starting with value 20(0x1400), and at offset 0x036FF698 we have
a header starting with the value 48(0x3000). The length of each header is

© @ ~ o &} 'S w N —_

= = = - =
'S w N —_ o

Jun
«@

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 53

12(0x0C) bytes. The space between the end of the first header and the start
of the next header is 0x036FF698 - (0x036FF678 + 0x0C) = 20 decimal. This
is the same value as the unknown word! The unknown word gives the dis-
tance from after the header until the next header, or put in another way:
the size of the data between headers. Looking at the actual data between
the two headers reveals OxFF33EE33DD33CC33BB33AA3399338833. This
is the file content of our input file dokhest3. We know assume that the data
immediately following a blob header is the data the user stored, and that
a header and data together makes a complete object in the object store,
which we call blob. The first word in a blob’s header is the size of the
blob’s data.

Transform to PIM

Once again we update our HW-structure based on the new knowledge(listing
4.3). Applying it to the start of each header gives us further faith that the
first word is size. All the blobs can be described by it. The end offset
indicated by the size field of each of the blobs match perfectly with the
start offset of the next blob, except for the blob with blob type 0x00D0. An
example is the blob at offset 0x036FF62C. According to our updated HW-
structure it should last until the next blob, which starts at 0x036FF678.
Using the formula: start offset + length (header) + data size = start of next
header, we get 0x036FF62C + 0x0C + 0x40 = 0x036FF678. Success.

Listing 4.3: Test 2 - Blob structures v3

(typedef enum tagBLOBTYPE

{
UNKNOWN_FILE RELEATED= 12288, //0x3000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000

} BLOBTYPE;

struct Blob
{
WORD size;
BLOBTYPE blobType; //00Y0
DWORD zeroFiller; //0000 0000
DWORD suspected_ID;
BYTE Data[size |;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 54

Extract info/Adjust PSM

After test 1 we had a suspicion that the last dword of the header was some
kind of id. This is pretty much confirmed in this test. Every header has
a unique value at this location, and the values vary with only one or two
from header to header (0xC3290000, 0xC4290000, 0xC2290000 and so on).
At this point we wanted to verify completely that this was indeed an id
because it would be important to know when analyzing further. In the
Windows CE API documentation Microsoft mention that every object in
the object store has its own unique id. So far, so good. But we need to
make sure that what we believe to be the id in fact is this very same id as
mentioned by Microsoft. In order to do this we decided to extend the C++
Forensic tool, called Judas, created by Jarle Eide[6]. The tool was modi-
tied to take an id as input and looking it up using the Windows CE APL
If we feed this tool what we believe to be the id of a file from our anal-
ysis and the API call returns with information about the correct file, we
can conclude that this is in fact a valid id. The API call utilized for this
was CeQOidGetInfo(figure 4.11). The id 0xC2290000(10690) was reported by
Windows CE as belonging to a file with the name dokhest1, which we al-
ready know from looking at the blob at offset 0X036FF4AS8 in figure 4.9. It
is confirmed, the last field of the blob header is definitely the id of a blob!

The size field is only 16 bits wide. This means a max value of 65535(given
that the value is unsigned). Does this mean the object store can’t store ob-
jects larger than this? According to the API the maximum file size is 32MB.
How can it support files larger than 65535 bytes when the object size is lim-
ited to this? The obvious solution is to utilize several objects for each file.
One would have to construct some kind of mechanism to map a filename
or id to several file data objects. This mechanism would have to be able to
connect the id of a metadata blob with the id of several filedata blobs. If
we look at offset 0x036FF564(figure 4.9)we see that the first dword in the
data field of the blob starting here contains what looks suspiciously like
an id (0xC6290000). In fact it’s the id of the UNKNOWN_FILE_RELEATED
blob located right above, at offset 0X036FF4E4! The metadata blob of a file
has a “pointer” to a blob of type UNKNOWN_FILE_RELEATED. Look-
ing closely at this UNKNOWN_FILE_RELEATED blob we see that the first
dword of it’s data contains yet another id(0xC7290000), which is the id of
the FILEDATA blob starting at 0x036FF530. Now this is interesting! This
means that we have a ”pointer chain” for this file. The file’s metadata
blob contains a “pointer” to a UNKNOWN_FILE_RELEATED blob which
again contains a “pointer” to a FILEDATA blob. We also notice that the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 55

Microsoft Windows CE NET 4.2
CeQidGetInfo

BOOL CeDidGetInfo(
CEOID oid,
CEDIDINFO* poidInfo
)

Parameters
oid
[in] Identifier of the object for which information is to be retrieved.

paidinfo
[out] Painter to 3 CEQIDINFD structure that contains information about the object.

Return Yalues
TRUE indicates success, FALSE indicates failure. To get extended error infarmation, call
GetlastError. GetLastError may return ERROR_IMWALID_HAMDLE if the specified object
identifier is invalid.

Remarks

Use the CeOidGetInfo function to retrieve information about any object in the object
store database or file system,

Figure 4.11: Windows CE API - CeOidGetInfo

UNKNOWN_FILE_RELEATED blob has a data size of 0x40 bytes accord-
ing to it’s header, yet it only utilizes 8 of them. We think this is because
it has reserved these bytes in the case that the file’s content should grow
beyond what a single FILEDATA can store. If this happens, it could just
insert a pointer to yet another FILEDATA blob right after the first one.
We investigate this further in later tests. UNKNOWN_FILE_RELEATED
is no longer completely unknown; we assume it’s a list of “pointers” to
FILEDATA blobs. From now on we call it FILEDATALIST instead of UN-
KNOWN_FILE_RELEATED.

Armed with our new knowledge we follow the “pointer chain” from FILEMETA-
DATA to FILEDATA via FILEDATALIST for all the input files in this test.
dokhest1 and dokhest3 is easily proven correct as the FILEDATA blob for
each of these contains the file content directly, only prefixed by the hex
value 0x0220. The data in the FILEDATA blob of dokhest2 is different how-
ever. It is prefixed with another hex value, 0x110, and the data is now
stored as the raw file content. Might this be because the object store has
compressed the contents? Anyway it is obvious that the first word of the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

O38FF4EQ | 7400
O36FF4FD |C72Y
O38FF500 | 0000
O36FF510 | 0000
O3eFF520 | 0000
O36FF530 | 1C00
036FF540 0019
O036FF550|0101
036FF56R0|C529
O03eFFS570 | 0000
036FF580 (1100
O36FF590 | 7400

3100
oooo
oooo
oooo
oooo
0060
ooon
2900
ooon
oooo
asoo
3200

4000
oooo
oooo
oooo
aooo
oooo
TCAA
o101
Chz24
Cz229
G400
3400

o030
oooo
oooo
oooo
aooo
oooo
AA01
0110
aoan
oooo
BFO0
ooDo

gooo oooo
oooo oooo
gooo oooo
oooo oooo
gooo oooo
C729 0000
0101 0101
3000 0050
2400 0000
SOFD 4573
BEOO 6300
oooo oooo

Chz29
aooo
aooo
aooo
aooo
o110
BEFE
aooo
o100
B7AT
6500
BF 29

File

oooo
oooo
oooo
oooo
oooo
2400
BEO1
oooo
FEAD
C401
7300
oooo

56

Metadata

Filedata list

Filedata

Figure 4.12: Test 2 - Jackson Data Structure diagram of a file.

© ® N o & S W N —

N [N] N N N N N [¥) = Ju = = = = Ju o = =
N [=N a £ @] [S © 3 N SN ar S) N [1S

N
®

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 57

data in a FILEDATA blob is some kind of type or flag field indicating the
way the data is stored.

Transform to PIM
A Jackson Data Structure diagram of a file is illustrated in figure 4.12.
All our new findings make us able to refactor and update our HW-structures

quite a lot. Listing 4.4 summarizes what we now know about the object
store data structures, called blobs.

Listing 4.4: Test 2 - Blob structures v4
;
typedef enum tagBLOBTYPE

{
FILEDATALIST= 12288, //0x3000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000

} BLOBTYPE;

typedef struct BlobHeader

{
WORD size ;
BLOBTYPE blobType;
DWORD zeroFiller;
DWORD 1D

} HEADER;

struct GeneralBlob
{
HEADER header;
BYTE data[header.size];

}s

struct FileDataListBlob

{
HEADER header;

DWORD fileDatalD ;

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 58

BYTE unknown[header.size — 4]; //we suspect
this might contain more fileDatalDs if the
file is larger than 65535 bytes.

}
struct FileMetaDataBlob
{

HEADER header;

DWORD fileDataListID;

BYTE unknown[26];

WORD filenameLength;

WORD filename [filenameLength |;

}
struct FileDataBlob
{

HEADER header;

WORD suspected_storageType;

BYTE fileData[header.size — 2];

}

Extract info/Adjust PSM

The last thing we wanted to check in test 2 was what happens in the ob-
ject store when you delete a file. Figure 4.13 give us some starting points.
It shows the difference, marked with green, between the three blobs con-
nected to dokhest2(FILEMETADATA, FILEDATALIST, FILEDATA) before
and after the file is deleted.

The first thing we notice is that the length and type field in all the blobs
have been altered. The type field is simply set to 0. The length field is
somewhat more complicated. For all the blobs it has at least the least sig-
nificant bit set. This has never been observed in the length field of any
normal blob, as these are always divisible by 2. Maybe this is quick way
for OS to check whether a blob is deleted or not? For the FILEDATA and
METADATA blobs at offsets 0x036FF530 and 0x036FF558 we see that the
length offsets have simply had their least significant bit set. The FILE-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 59

DATALIST blob at offset 0x036FF4EQ however has been given the value
0x69 as its length. Why this is, we don’t know yet. Further testing is
needed. An interesting observation is that 0x69 is pretty close to 0x40 +
0x1C, which is the combined length of FILEDATALIST and FILEDATA.
We also see that the first 8 bytes of the blobs” data area have been over-
written with new data. Not much can be said about this at the time, but
we do notice that the 8 bytes seem to consist of two dwords each having
42 as their most significant byte (remember that data is stored little-endian
wise). According to Microsoft (figure 4.14), 0x42000000 is the start of the
object store and memory mapped files in our mobile device. So a value
with 42 as the most significant byte might be addresses in this memory
area. Could these values be some kind of pointers? We have to test more
to find out.

The last step in the test was to delete all the added files. No new results
were drawn from this, as the blobs were altered the same way as dokhest2.

a) "dokhest2" not deleted

036FF4E0| 7400 3100 4000 0030 0000 OOOO CezZ9 0000)t.1.@..0..... 1.
036FF4F0|C729 0000 0000 0OOO0 0000 0000 0000 0000(.) .. nennnnn
036FF500|0000 0000 0OOO OOOO 0000 0000 0000 0000 (... venennnnn
O036FF510|0000 0000 0OOO OOOO 0000 0000 0000 0000 |... . vennnnnnn
O036FF5Z20|0000 0000 0OOO OO0O 0000 0000 0000 0000 |... . vnnnnnnn
O036FF530|1C00 00e0 0OOO 0OO0O C7Z29 0000 0110 2400)...7 To...5.
036FF540|001%9 0000 ¥CAA AAD1 0101 0101 BBFE BBEOL|....|...........
036FF550|0101 Z800 0101 0110 3000 0050 0000 0000 ..)..... 0..F....
036FF5R0|C528 0000 CeZY9 0000 2400 0000 0100 FEAO|.)...)..%.......
O036FF570|0000 0000 C2Z9% 0000 BOFD 4B73 B7AT C401).....) IR =
036FF580 (1100 0500 6400 sFOO0 BEOO 6800 6500 7300(....d.o.k.h.e.s.
036FF590|7400 3200 3400 00ODO 0000 0000 eFZ29 0000 |t.Z2.4....... al..

b} "dokhest2" deleted

036FF4E0Q| 7400 3100 6900 0000 0000 0000 CezZ9 0000 |t.l.i........ 1..
036FF4F0 | 0415 7C42 E015 7C42 0000 0000 0000 oOoO|d.|B..|B........
036FF500|0000 0000 0000 0000 0000 0000 o000 o000 ... eee e e
036FF510|0000 0000 0000 0000 0000 0000 0000 0000 een e nnn
O36FF5Z20|0000 0000 0000 0000 0000 0000 O000 000). ... eee i
036FF530|1D00 0000 0000 0000 C729 0000 0000 oo0od|......... Toouaan
036FF540|E015 7C42 7CAA AAOD1 0101 0101 BBFE BEO1|..|B|...........
036FF550|0101 2900 0101 0110 3100 0000 o000 oooo|..)..... 1.......
036FF560|C529 0000 0000 0000 FO14 7C4Z 0000 FEAO|.)........ [B....
036FF570|0000 0000 CzZ9 0000 80FD 4B73 87A7 C401|..... ... Es. ...
036FF580| 1100 0800 £400 BFOO0 BBOO BBO00 K500 7300|....d.o.k.h.=.s.
036FF590| 7400 3200 3400 00DO 0000 0000 eFZ9 0000 |t.Z.4....... aj..

Figure 4.13: Test 2 - What happens to the blobs of a deleted file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 60

UFFFF FFFF Kernel addreszes: KPAGE,
Trap area, others
AEELAL Y statically mapped virtual
addresses: OEM addtional
0xC 400 0000
K | Slot 97: Nk exe (Secure slat)
Erne 0C 200 0000
Space Unused
et i Statically mapped virtual
TR addresses UNCACHED
Statically mapped virdual
addresses: CACHED
0x5000 0000

0x7FFF FFFF
0x7 EO0 0000

=lot 63: R esource mappings

Slots 33-62:; Object store and
memaory mapped files

Uszer Oz4 200 0000
Tpace
Slots 2-32: Processes
00400 0000

00200 0000
00000 0000

Slot 1: XIP dils
Slot 0: Current process

Figure 4.14: Windows CE API - Windows CE Memory Layout[16]

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 61

Test3

Goal

Investigate how user-created directories are stored in the object store

Input

Directoryname
1|eselbase
2|eselbase\esell
3|eselbase\esel2
4
5

eselbase\esel3
eselbase\esel4

Steps

Action Input Qutput
Create the directories. All the directories.
Dump object store. test3 1

—

M

Figure 4.15: Test 3 - User-created directories

4.2.3.3 Test3

Create test

We want to find out how user-created directories are stored in the object
store. We assume that in addition to the name of the directory, other meta-
data like the creation date and some flags are stored. Most likely there
must also exist some kind of mechanism to allow the OS to keep track of
the hierarchies of directories. That is, to know which directories are sub di-
rectories of other directories. Making assumptions based on what we now
know about files, it would not be surprising if each directory is stored as
at least one blob. Most likely this blob will have the same header as the
other blobs, but with a new value for the blob type field to indicate that
this is a directory.

Figure 4.15 contains the third test.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 62

03700810 |202E COAY C401 7600 3000 0040 0OOO0 OOOO(...... w0, @, ..
03700820 (FE1C 0000 EBZ9 0000 B428 7C42 1001 0072(..... 1...(|B...r
037008300000 0000 701C 0000 0OOD3 ED33 COAT7 C401(....p...... J.o.o..
03700840 (0000 0800 6300 7300 6500 BCOO0 6200 6100(....e.s.e.l.b.a.
03700850 (7300 6500 2CO0 0040 000O OOOO BEZ9 0000 (s.e....@..... 1.
03700860 (0000 0000 FOZ8 7C42 1001 OIFF FEIC 0O0O0O(..... [
03700870 (0000 0000 O05A 8137 COAY C401 0000 OS00(..... 27 0o,
03700880 (6500 7300 6500 6CO0 3100 b330 3500 0000 |e.s.e.1l.l.e=5...
03700890 (0000 0000 EBZ9 0000 0000 0000 80Z9 7C42(.....) IR 1B
037008A0(902E COAY FE1C 0000 BFZ29 0000 OOCZ Q&A41(......... Teean A
037008B0 (COAY C401 0000 0a00 4E00 e300 7700 2000(........ H.oe.w. .
037008C0 (4000 eFO0 6CO0 6400 6500 7200 2C00 0040(F.oc.l.d.e.r.,...@
03700800 (0000 0000 COZ9 0000 0000 0000 O0o0 dooof..... Tevinn e,
037008E0(902E 6500 FE1C 0000 BEZ9 0000 S04A 7C3A (. .e...... I
037008F0 (COAY C401 0000 0500 6500 ¥300 6500 &CO0(........ e.s.e.1.
03700900 (3200 0000 ZCOO 0040 0000 0000 BFZ9 O000(2......@..... T
03700910 (0000 0000 1029 7C4Z2 902E b330 FEI1C O00O(..... 1B .e=.. ..
03700920 (C029 0000 S0D1 OF3E COAY C401 0000 Os00(.)..... P
03700930 (6500 7300 6500 eCO0 3300 bleC ZC00 0040(e.s.e.1.3.al...@
03700940 (0000 0000 EBZ9 0000 0000 0000 4829 7C42(.....) PRI H)|B
03700950 (%02E 0000 FE1C 0000 BFZ9 0000 OOCZ2 0&A41(......... Teouan &
03700960 (COAY C401 0000 0500 6500 ¥300 6500 &CO0(........ e.5.e.1.
037009703400 0000 8106 4E03 0000 0O00O COOOO o000 (4..... Noooooos,

Figure 4.16: Test 3 - View of user-created directories

Extract info/Adjust PSM

A quick search for the string “esel” gives us 5 relevant hits. They all re-
side in the same area of memory shown in figure 4.16.

All of them have the blob header, and the blob type value for directories
is 0x0040. The last data in the data field is the Unicode encoded directory
name. Looking closer at the data field of the directory blobs we see that
the first dword often contains values of the pattern 0xXX290000. So does
the 4th and 5th dword. Values matching this pattern have earlier been
shown to have a high likelihood of being an id of another blob. Might this
be the case also? We make the analysis easier by showing the name and id
together with the first, fourth and fifth dwords of the data of each blob in
table 4.1.

Now we see straight away that esel1-4 all have the same fourth dword,
with the value OxFE1CO0000. This is also the id of eselbase. We assume this
is a “parent” field that points to the directory’s immediate parent direc-
tory. eselbase has 0 as it’s parent id, which makes sense considering that
this directory was put straight in the root of the object store and therefore

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 63

Directory ID dword 1 dword 4 dword 5
eselbase 0xFE1C0000 | 0xEB290000 | 0 0x701C0000
eselbase/esell | OxBE290000 | O OxFE1C0000 | 0
eselbase/esel2 | 0xC0290000 | 0 0xFE1C0000 | 0xBE290000
eselbase/esel3 | 0OxBF290000 | 0 0xFE1C0000 | 0xC0290000
eselbase/esel4 | 0xEB290000 | 0 0xFE1C0000 | 0xBF290000

Table 4.1: Test 3 - 5 directories in object store

has no actual parent directory. The fourth dword is a parent id.

esel4’s fifth word contains the id of esel3, which in turn has esel2’s id as its
5th word. Not surprisingly, esel2’s tifth word is esel1’s id. We have a linked
list of pointers from the “last” subdirectory to the “first” subdirectory. This
tifth word is some kind of neighbor id. It makes perfect sense for a object
store to have this, as this makes directory traversal very easy. Simply start
with the “last” directory and follow it’s neighbor id field recursively. Now
how does the object store know which subdirectory is the “last”? The first
dword in eselbase conveniently has the “last” directory’s (esel4) id in it.
This might be a child id field, with the id of the first or “last” child added.
Directory traversal is now very simple. Just look up the id in the direc-
tory’s child field and follow the neighbor ids recursively from there.

Further evidence that the fifth dword is a neighbor id was needed. eselbase
has the hex value 0x701C0000 as it’s neighbor id. A search for the hex
string 0040 0000 0000 701C 0000”, which is the header of the blob with id
0x701C0000, results in one hit. The hit is the directory blob for the directory
called "ConnMgr”(see figure 4.17, red markings). Looking at the file listing
of the phone (figure 4.18) we see that this is indeed a directory with the
same parent as eselbase. The fifth dword is a neighbor id. In the exact
same manner we see that the child id in "ConnMgr’s” blob is 0x721C0000.
The blob with this id is located at offset 0x03808FC8(figure 4.17, marked
with yellow). It is a file called “"CMMapP”. This file can be found in the
“ConnMgr” directory on the phone. Notice also its fourth data dword has
its parent directory id in it. The file points right back to the "ConnMgr”
blob. The first dword is a child id.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

03809F50
0380%F60
03809F70
0380%9F&0
035059F50
03809FAD
0380%FBO
03809FCO
0380%FDO
0380%FED
0380%FF0

EZ207
7Z21C
A418
4300
200
5000
80EB
4D00
721C
701C
1100

B407
aooo
aooo
6E00
o050
oooo
97081
6100
oooo
aooo
0e00

3000
BOE9
80EE
REDD
aoon
o100
BCAT
7000
741C
Jl1C
4300

0040
0B4:z
89781
REON
anoon
FF54
C401
4700
anon
anoon
4000

oooo
EEZ0
gCAT
4000
711C
701cC
1100
2C00
4E00
g0EE
4000

0ooo
FF40
c401
6700
ooon
oooo
0600
0050
aoon
9781
6100

701C
aoon
aoon
7200
731C
oooo
4300
oooo
o100
QrAT
7000

0ooo
aoon
a¥an
FFo4
aoon
oooo
4D00
0ooo
16FA
401
2000

64

Figure 4.17: Test 3 - Neighbor and child id.

@ ConnMagr

Eile Edit View

Favarites

Tools

Help

=101]|

‘.#

@Eack - _) -

¥

/.__) Search

H—T:‘ Folders

5 5 X 9 @

Address I[a \ConnMgr

ECE

Folders

x

'ﬁ ConnMagr
E I3 esel
[esell
[eselz
[eselz
[esela

IC3) profiles

[ﬁ Storage
@ Temp
() Windows

B My Windows Mobile-Based Device
Databases

() My Documents

[C3) Program Files

[

5iE

Mame =

size | Type | Modified |

CMMapG
CMMapP

30 bytes File
78 bytes File

01,10,2004 10:00:18
01,10,2004 10:00:18

Figure 4.18: Test 3 - Data files on the device.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 65

Transform to PIM

Our assumptions about the nature of the first, fourth and fifth word of
the directory blobs has yet to see any contradictional evidence. We cele-
brate this by creating a new HW-structure for directory blobs(listing 4.5).

© ® ~ o & S W N —

@WOWONN N NN NN NN N = e e e s s s
P < T t- T - BN R - NS B~ 3 S N T O R N L R~ I T S =Y

[}
R

Listing 4.5: Test 3 - Directory blob structure

typedef enum tagBLOBTYPE

{
FILEDATALIST= 12288, //0x3000
DRECTORYMETADATA= 16384, //0x4000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000
} BLOBTYPE;
struct DirectoryInfoStoreBlob
{
HEADER header;
DWORD childID;
DWORD unknown |[2];
DWORD ParentlD;
DWORD neighbourlD;
DWORD unknown |[2];
WORD unknown;
WORD DirectoryNameLength;
WORD DirectoryName [DirectoryNameLength] ;
|
struct FileMetaDataBlob
{

HEADER header;

DWORD fileDataListID;

DWORD unknown [2];

DAWORD parentID ;

DWORD unknown|[3];

WORD unknown ;

WORD filenameLength;

WORD filename [filenameLength |;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 66

Extract info/Adjust PSM

Now, looking at DirectoryInfoStoreBlob and FileMetaDataBlob in listing
4.5 we see that they have a striking resemblance to each other. They have
the same header of course. The next field they have is an id to some kind of
child blob. Files have id of FILEDATALIST, while directories have the id of
their first child. Next they both have two currently unknown dword, be-
fore both have a dword indicating their parent blob. Directories then have
a neighbor field and two unknown dwords, while files have 3 unknowns.
Seeing how they’ve matched each other thus far, how about we check if the
tirst of these last 3 unknown dwords for files might possibly be a neighbor
field too! Look at CMMapP’s file blob starting at offset 0x03809FC0. Add 28
to get to the suspected neighbor field. The value here is 0x711C0000(figure
4.17, green markings). This is also the id of CMMapG(the grey markings),
it’s neighbor.

Seeing as DirectoryInfoStoreBlob and FileMetaDataBlob has been more or
less identical so far, we suspect the last unknown parts of each of them to
also be similar. What other metadata is it reasonable for the OS to store
about a file? A timestamp of last access or creation and some kind of sys-
tem flags certainly are. The presence of a timestamp is supported by both
the fact that you can view the last accessed time of a file on the device (fig-
ure 4.21), and the fact that a call to the CeOidGetInfo procedure(figure 4.11)
mentioned in test two fills out a CEOIDINFOEX structure (figure 4.19)
which again contains a CEFILEINFO structure (figure 4.20).

We see that this structure has a field of type FILETIME in it. This FILETIME
has to come from somewhere, and since other metadata about a file is al-
ready stored in the FILEMETADATA blob, it makes sense to store it there.
So let’s see if some of the unknown bytes in FileMetaDataBlob(a blob with
type FILEMETADATA) and DirectoryInfoStoreBlob(a blob with type DI-
RECTORYINFO) might be FILETIME. Looking at listing 4.5 we notice that
the two possibilities are either between the childID/fileDataListID or right
after neighborID.

Microsoft defines FILETIME in its API(figure 4.22). It consists of two dwords,
which incidentally is the size of our two possibilities too. These two dwords
together represent the number of 100 nanosecond intervals since 01.01.1601.
The first dword represents the low bits, and the second the high bits. The
high, or most significant, bits should not change for files or directories

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 67

Microsoft Windows CE NET 4.2
CEQIDIMNFOEX

This structure contains information about an object in the object store or database
volume,

typedef struct CEOIDINFOEX {
WORD wifersion:
WORD wobiTvpe:
union {
CEFILEINFO infFile;
CEDIRINFO inflirectory:
CEDBASEINFOEX infDatabase;
CERECORDINFO infRecord:
¥
} CEODIDIHFOEX;

Members
w¥ersion
Yersion of this structure. Applications must set w¥ersion to 1,
wObjType
ype of the object. The following table lists the possible values for wObjType.
value Description
OBITYPE_IMYALID Indicates that the object store contains no valid
object that has this cbject identifier.
OBITYPE_FILE Indicates that the object is a file.
OBITYPE_DIRECTORY Indicates that the object is a directory,
CBITYPE_DATABASE Indicates that the object is a database.
OBITYPE_RECORD Indicates that the object is a record inside a
database,
infFile

CEFILEINFO structure that contains information about a file. This member is walid
only if wObjType is OBITYPE_FILE.

infDirectory
CEDIRINFO structure that contains information about a directory. This member is
valid only if wObjType is OBITYPE_DIRECTORY,

infDatabase
CEDBASEIMFOEX structure that contains information about a database. This member
is valid only if wObjType is OBITYPE_DATABASE.

infRecord
CERECORDIMFO structure that contains information about a record in a database.
This member is valid only if wObjType is OBITYPE_RECCRD.

Figure 4.19: WINDOWS CE API - CEOIDINFOEX structure

stored at approximately the same time. Let us investigate the values of the
two unknown dwords after neightborID in the input files from test 2(fig-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 68

Microsoft Windows CF \NET 4.2
CEFILEIMNFO

This structure contains information about a file object,

typedef struct CEFILEINFO {
DWORD dwAttributes:
CEODID oidPzarent:
WCHAR szFileName[MAX PATH]:
FILETIME fiLastlharnged:
DWORD dwlength:

+ CEFILEINFO:;

Members

dwaAttributes
The attributes of the file.

oidParent
Ohject identifier of the parent directaory.

szFileName
Mull-terminated string that contains the name and path of the file.

ftLastChanged
Time stamp that indicates when the contents of the file were last

changed.

dwlLength
The length, in bytes, of the file.

Figure 4.20: WINDOWS CE API - CEFILEINFO structure

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 69

Il x|
File Edit View Favorites Tools Help ﬂ.
- el »

Qe - () - [T | j) search || Folders | |y

| Address IIE \ConnMgr "’I Go

.| Mame =~ I Size I Type I Modified I
CMMapG 80 bytes File 01,10,2004 10:00:13
EI""'IMapP 73 bytes File 01,10,2004 10:00:13

x
Chitd apP
Type: File
Location: AConnbdgr
Size: 78 bytez
b odified: 01.10.2004 10:00:18
Attributes: [T Bead-only " Hidden
¥ Archive [Sustem

OK Cancel

Figure 4.21: Test 3 - Properties of a file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 70

Microsoft Windows CF 3.0
FILETIME

This structure is a 64-bit value representing the number of 100-
nanosecond intervals since January 1, 1601,

typedef struct FILETIME { ff £t
DWORD dvlowlDateTime:

DWORD dwlighDateTime:

} FILETIME:;

Members
dwilowlate Time
Specifies the low 32 hits of the Win32 date/time value.

dwHighDate Time
Specifies the upper 32 bits of the Win32 date/time value.

Figure 4.22: WINDOWS CE API - FILETIME structure

ure 4.9) and the directories from test 3(figure 4.16). Table 4.2 list these val-
ues. We quickly see that files that were stored at approximately the same
time show few, if any changes in the 2. unknown dword. This is because
it takes quite a while to count to 2*2, even if you increase your count every
100 nanosecond. We confirm that these two dwords are indeed filetime
stamps by filling a FILETIME structure with them in a short test program
in C. Converting the structure to its string representation with the API
method FileTimeToSystemTime yields the same exact time as the proper-
ties of the file the timestamp was taken from.

The last word in DirectoryInfoStoreBlob and FileMetaDataBlob was sus-
pected to be a property flag field. Our reasoning for this was that the value
seemed to almost never change, and the observed values had the distinct
look of being 1-bit flags logically or-ed together. In table 4.3 we list values
of this last word for different blobs. Most of the blobs are user created files
that we put on the phone. There are also some of the files included with
the operating system included. Together with the value, shown in binary
format, we also list the properties of the files as listed by our Judas Foren-
sic Tool (4.1).

The combination of the raw data values and the OS-reported properties we

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 71
Name Offset unknown dword 1 | unknown dword 2
dokhest1 0x036FF4C8 | 0x007CD7E4 0x86A7C401
dokhest2 0x036FF578 | 0x80FD4B73 0x87A7C401
dokhest3 0x036FF6B8 | 0x80809EF7 0x87A7C401
eselbase 0x03700810 | 0x00D3ED33 0xCO0A7C401
eselbase/esell | 0x03700850 | 0x005A8137 0xCOA7C401
eselbase/esel2 | 0x037008CC | 0x804A7C3A 0xCO0A7C401
eselbase/esel3 | 0x03700904 | 0x80D10F3E 0xCOA7C401
eselbase/esel4 | 0x0370093C | 0x00C20A41 0xCOA7C401

Table 4.2: Test 3 - File time dwords
Name Suspected flag | Reported properties
word(binary)

dokhestl 1000100000000 archive, compressed
dokhest2 1000100000000 archive, compressed
dokhest3 1000100000000 archive, compressed
desktop.ini 1011000000000 compressed, hidden, system
GCounterFile.mmf | 1001100000000 archive, compressed, hidden
eselbase 0000000000000 directory

eselbase/esell 0000000000000 directory

eselbase/esel2 0000000000000 directory

eselbase/esel3 0000000000000 directory

eselbase/esel4 0000000000000 directory

Table 4.3: Test 3 - Property flag word.

can conclude that this is in fact a property flag. We also deducted which
bits that corresponded to a particular property. We see that all the blobs
which have the ”archive” property set has bit 8 set to 1, and all those who
do not have this property has bit 8 set to 0. Bit 8 is the archive bit. This
leaves bit 12 as the compressed bit, as this is the only other bit set in the
dokhest files. Now that we know this, the only bit available as the hidden
bit for GCounterFile.mmf is bit 9, as the two other bits are the compressed
and archive bit. Finally we can deduct that bit 10 is the system bit because
this is the only bit left set for desktop.ini given that bit 12 is the compressed
bit and bit 9 is the hidden bit. The results are listed in table 4.4.

© @ ~ [o) &1 N w N —

N N N N N N = = = = Ju = = = = .
a [N w N _ S © @ N o o 'S w N = o

N
=N

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 72

Bit mask Property
compressed | 1000000000000

system 0010000000000
hidden 0001000000000
archive 0000100000000

Table 4.4: Test 3 - Property flag bit masks

Transform to PIM

Listing 4.6 sums up what we know about the object store at the end of
test 3.

Listing 4.6: Test 3 - Blob structures v5
g
typedef enum tagBLOBTYPE

{
FILEDATALIST= 12288, //0x3000
DIRECTORYINFO = 16384, //0x4000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000
} BLOBTYPE;
typedef struct BlobHeader
{
WORD size;
BLOBTYPE blobType;
DWORD zeroFiller;
DWORD 1ID;
} HEADER;
struct GeneralBlob
{
HEADER header;
BYTE data[header.size];
¥
struct FileDataListBlob
{

HEADER header;

DWORD fileDatalD ;

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

BYTE unknown[header.size — 4]; //we suspect
this might contain more fileDatalDs if the
file is larger than 65535 bytes.

}

struct FileMetaDataBlob
{
HEADER header;
DWORD fileDataListID ;
DWORD unknown|[2];
DWORD parentID;
DWORD neighbourID;
DWORD lowOrderTime;
DWORD highOrderTime;
WORD propertyFlags;
WORD filenameLength;
WORD filename [filenameLength |;

}

struct DirectoryInfoStoreBlob
{

HEADER header;

DWORD childID;

DWORD unknown [2];

DWORD parentID;

DWORD neighbourlD;

DWORD lowOrderTime;

DWORD highOrderTime;

WORD propertyFlags;

WORD DirectoryNameLength ;

WORD DirectoryName [DirectoryNameLength] ;

}

struct FileDataBlob
{
HEADER header;
WORD suspected_storageType;
BYTE fileData[header.size — 2];

73

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 74

4.2.3.4 Test4

Create test

For file and directory blobs we only lack information about 2 dwords. We
now want to find out what these dwords contains. As we don’t have any
clues about these fields we add 10 new files and see if we can draw some
conclusions by looking at the differences between the unknown dwords
in them .

Figure 4.23 contains the fourth test.

Test 4

Goal

Investigate the last two unknown dwaords in file and directory blobs.

Input

Directoryname
gnu1i
gnu2
gnu3
gnu4
gnus
gnub
gnu’
gnud
gnu9
gnu10

D |00 || || fa | LD M| —

—

Steps

Action Input Output
Create the directories. All the directories.
Dump object store. fest4 1

—

)

Figure 4.23: Test 4 - New user-created directories

Extract info/Adjust PSM

Other than concluding that the first dword seemed to remain constant,
hex value 0x15000000, we did not manage to draw any more knowledge
from this test.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 75

What these two dwords contain seems to remain unknown at this time,
but what we do know is that what we have is more than enough informa-
tion to extract files and directories directly from a memory dump of the
device without them. The unknown dwords are some kind of metadata
which is of little interest because of this. What we need to do now is to
develop a tool to utilize and confirm our findings so far. We also need to
investigate and conduct tests of other blob types. The device is known to
have a database system, how is this stored? And how are text messages
stored?

4.2.3.5 Testb

Create test

As our device is a mobile phone; text messages are of great interest. We
want to figure out how they are stored. We know from [6] that they are
stored using Windows CE’s built in database functionality[20]. If this is
the case, we need to find out how such databases are stored in the object
store. Grattan and Brain[21] shows that database records are considered
first class citizens in the Windows CE object store and each get a unique
oid. This leads us to suspect that records might simply be yet another blob,
with a new type value. We test this by sending two text messages to the
phone.

Figure 4.24 contains the fifth test.
Extract info/Adjust PSM

A text search for the phrase “rob the” yields a hit at offset 0x037039EB.
This again is clearly a part of the blob of length 0x108(decimal 264) start-
ing at offset 0x03703954 (figure 4.25). As suspected, the message is stored
as a new type of blob, with a blob type of 0x8000. What kind of blob is
this? There are a couple of possibilities. Either text messages have their
very own blob type, or blobs of type 0x8000 are actually database records.
Considering the fact that the specific operating system Windows Mobile,
which our device runs, is based on the much more general Windows CE,
we find it unlikely that text messages have their own blob type. Why
would Windows CE be designed to treat text messages as something spe-
cial when a high percentage of the devices that utilize it dont even have
mobile phone abilities?

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 76

Test 5
Goal
Figure out how text messages are stored.
|
Input
1{From: +4799625124 Sent: 2/20/06 11:24:58 AM Yo man! | think | might rob
the Munch Museum tomorrow. Are you in?
2|From: +4799625124 Sent: 2/20/06 11:32:33 AM | think we might be to late,
brol Seems that his Mr. Toska beat us. Guess I'll just drop by the local
grocery store instead.
Steps
Action Input Qutput
1|Empty phone tests 1
2| Send first text message 1 tests 2
3| 5end second text message 2 fests 3

Figure 4.24: Test 5 - Text messages

We confirm that this indeed is a database record by looking at the first
dword in its data field. This reads 0x2D2A0000 and from the other blobs
we know that this field usually indicates some kind of parent id. Looking
up this parent id we get a hit at offset 0x037026BC (figure 4.26). Here we
tind a blob with the type value of 0x7000 that contains the string “fldr1000cb”.
This happens to be the name of one of the databases exported by the
phone, available through the remote file explorer (figure 4.27). We con-
clude that blobs of type 0x8000 are database records and blobs of type
0x7000 are blobs that contains metadata about a database.

Looking at the data in figure 4.25 we recognize three strings immediately:
"+4799625124”, "+4799625124” and "Yo man! I think I might rob the Munch
Museum tomorrow. Are you in?”. The first two strings are phone numbers,
most likely from and to given that this text message was sent and received
with the same SIM card. The last string is of course the content in the first
text message of this test. Each string is stored in pure ASCII(not Unicode)
and seems to be prefixed with a byte that indicates the length of the string
times two. “+4799625124” is 11 characters long, and is prefixed with the
byte value 0x16(decimal 22, which is 11 * 2).

The rest of the blob was harder to interpret. We see that there are repeat-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 77

03703950
03703960
03703870
03703380
03703990
03703840
037035%B0
037039C0
03703900
037039E0
037039F0
03703A00
03703210
03703220
03703A30
03703240
03703450
03703460

[03702EE0
037026C0
03702600
037026ED
037026F0
03702700
03702710
03702720
03702730
03702740
03702750
03702760
03702770
03702780
037027490
03702740
03702780
037027C0
03702700

124E 00DF
2Dz2A 0000
1300 1180
4000 0B0OE
1F00 3700
1300 070E
oooo ze0OO
3531 3234
OOFF 8459
BERE 2049
6565 204D
746F 6DeF
7520 BO9BE
32C4 7800
03FE 1154
oioo Dooo
0101 0101
0101 0141

0801
0000
1300
1F 00
1300
4001
0059
162B
EF20
206D
756E
7272
3F01
0046
3516
0901
0101
62DA

0oso
oooo
0soo
1Foc
080E
0g30
FFCB
3437
6061
6967
6368
BF77
8400
oooo
oool
FFo1
0101
aC01

aooo
Fo40
1300
1Fo0
1300
7880
162B
3939
BEZ21
BE74
204D
2EZ0
2c00
3024
o101
o101
9r0l
gD 25

oooo
Cooo
170E
1A0C
093D
2900
3437
Je3z
2049
2072
7573
4172
3z0o0
0100
01DF
0101
0101
2103

3224
1300
1300
1F00
1300
o1oo
343
3531
2074
BF62
6575
6520
o1oo
ooozl
o101
0101
0172
aoon

oooo
0580
1400
3boo
0130
oooo
Jb3zZ
3234
6E6Y
2074
6020
796F
0ooF
01z2A
0101
01FF
DZzA
ooao

SN S -G R
R R 1 A= 1= 1
5124 .+4799625124
...7¥o man! I thi
nk I might roh t
he Munch Museum
tomorrow. Are vo
uin?.. .. .20, ..

Figure 4.25: Test 5 - Rob the museum.

2024 0001
C7Z29 0000
3100 3000
oooo oooo
oooo oooo
0ooo oooo
gooo oooo
gooo oooo
gooo oooo
0100 oooo
os0oo oooo
3700 0000
0000 oooo
0100 0000
o400 0100
2300 0000
gooo oooo
0100 oooo
0400 0100

6401
aoon
3000
oooo
oooo
oooo
ao0ez
aoon
aoon
aood4
ZEZ2A
oooo
0zo0
0004
2F2A
aoon
azoo
aood4
3024

anvao
anon
3100
oooo
oooo
oooo
OF D&
anon
anon
anon
anon
oooo
oooo
oooo
anon
anon
anon
anon
anon

aooo
6e00
6300
oooo
oooo
0100
J2AC
4000
aooo
FFFF
o100
1Foo
oooo
FFFF
o100
1Faoo
aooo
FFFF
o100

aoon
6CO0
6200
oooo
oooo
oooo
C401
060E
aoon
FFFF
aoon
1a0C
oocoo
FFFF
aoon
3700
aoon
FFFF
aoon

2D2A
G400
3100
oooo
oooo
0400
BCOZ
aoon
aoon
aoon
3400
oooo
oooo
oooo
7EO0
aoon
aoon
aoon
7EO0

aoon
7200
aoon
oooo
oooo
oooo
aoon
aoon
aoon
aoon
3300
oooo
oooo
oooo
7000
aoon
aoon
aoon
7Don

Figure 4.26: Test 5 - Rob the museum’s parent.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 78

@ Databases -0l x|
File Edit View Favorites Tools Help | ","
- €Y - W ; o
@ Badk s le ‘ 7 Search H-_ Folders (|2 | B~ x n ‘ E
Address I \Databases j €
Folders X || Name = | Size | Type | Modified | -
= B My Windows Mobile-Based Device ;I %Appnintments Da... 356 bytes Datsbase 01.10.2004 10:00:03
P—— &3¥dog.db 356 bytes Datsbase 01.10.2004 10:00:03
() ConnMar ¥ Contacts Database 356 bytes Database 01.10.2004 10:00:03
) esel S3DB_notify_events 940 bytes Database 01,10.2004 08:02:07 _|
&) My Documents J S3DE_notify_queue 724bytes Datshase 08,10,2004 12:12:23
) profies 2= Hfldr 100 1cba 356 bytes Database 01.10.2004 10:00:29
() Program Files 3 fidr 100 1cc5 356bytes Database 01,10.2004 10:00:27
) Storage 3 fdr1001cc7 356 bytes Database 01.10.2004 10:00:27
) Temp &3fidr10025bb 356 bytes Datsbase 01.10.2004 09:01:33
- _Ill 3 idr10025hc 356 bytes Datsbase 01,10,2004 0%:01:33
ﬂ I D 2 AAr 1NN 5RA AL habae Matzhaea 0110 2004 NQG01-33 LI

Figure 4.27: Test 5 - Database found.

ing patterns of "1300 XXXX", where XXXX varies, in the start of the blob.
This indicates that something similar is repeated several times. What can
be similar in a database record?

To answer this we have to look at the whole database model[21] in Win-
dows CE. The databases are defined in a quite uncommon way. A database
is just a collection of database records, kind of what we normally call a
database table. In the traditional view, a database record would just be a
row in this table. The table would also have a schema defining the data
type and name of the different columns in it. In Windows CE a database
has no schema. Instead each record defines a set of properties, which each
consist of a type, an id and a value. All the records of a database can define
their own set of properties, so two database records in the same database
can actually be very different. The property types defined in Windows CE
is given in listing 4.7

Listing 4.7: Test 5 - CEDB property types

‘#define CEVT.I2 0x02 // short
#define CEVT_UI2 0x12 // unsigned short
#define CEVT_I4 0x03 // int

#define CEVT_Ul4 0x13 // unsigned int
#define CEVT_FILETIME 0x40 // FILETIME
#define CEVI.LPWSIR O0x1F // LPWSTR

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 79

#define CEVT_BLOB 0x41 // BYTE=
#define CEVT_BOOL 0x0B // BOOL
#define CEVT_RS8 0x05 // double

Now we see a clearer picture forming in figure 4.25. Let’s start at offset
0x0370396C. We see the mentioned “1300 XXXX” pattern. 0x13 is the data
type for an unsigned 32-bit integer, a quite common data type to store in-
teger values in. Might "1300 XXXX" actually mean "UINT32 ID”? This
is likely when we look right after the 1300-pattern stops. There we have
”4000 060E”, followed by a new repeating pattern of “1F00 XXXX" before
finishing up with a couple more "1300 XXX”. 0x40 is the data type for
FILETIME and 0x1F is the data type of a string. This chunk of data is sim-
ply declaration of the type and id of the properties in the database record.
If we count the number of property declarations we get 15. The value im-
mediately prefixing the first property is 0xCO, which is a value below the
data size of this blob, 0x108. Remembering the Windows CE developers
fondness of prefixing length to their data structures, we think this might
be the length of the property data. If one subtracts 0xC0O and 0x0C(bytes
between start of data and the first property) from 0x108 you get 0x3C. 0x3C
is OxOF times 4. OxOF is 15. You get the following formula: length (data) =
0x0C + numberOf (propertyDeclarations)*sizeOf (propertyDeclaration) +
length (propertydata). The value right in front of the property declarations
is the length of the property values. We checked this also for the other text
message, it holds true.

The data after the property declarations is the values for the properties, in
the same order as they were declared. Utilizing this knowledge, we can
transform figure 4.25 into the much more readable listing 4.8. Notice how-
ever that while we now know what data types the text message database
record consists of, we don’t know what the individual fields actually are.
This is because this information is never stored in the database. It is up
to the applications that use the database records to interpret the id of the
property to give it a meaningful context. We did not spend much more
time on trying to figure out each field exactly, as we already know the
most important things like the text of the message, the sender and the re-
ceiver. The time the message was sent is also most probably stored in the
FILETIME field.

© @® ~ [o) &} ' w N —

10

11

12

13

14

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 80

Listing 4.8: Test 5 - Text message

CEVT.UI4 id0580 = 0x0830

CEVT_UI4 id1180 = 0x7880

CEVT_UI4 id0900 = 0x2900

CEVT_UI4 id170E = 0x0100

CEVT_UI4 id1A00 = 0x0000

CEVT_FILETIME id060E = 0x00002B00 0059FFC6

CEVT_LPWSTR id1FOC = ”+4799625124”

CEVT_LPWSTR id1AO0C ”+4799625124”

CEVT_LPWSIR id3D00 “Yo.man! _I_think_I_.might_rob._the.
Munch_Museum._tomorrow . _Are_you.in?”

CEVT_LPWSTR id3700 = "”

CEVT_UI4 id080E = 0x2C00

CEVT_UI4 id093D = 0x3200
CEVT_UI4 id0180 = 0x0100
CEVT_UI4 id070E = 0x000F

We know that each record has an id to the blob of their parent database.
Figure 4.28 shows the blob for the database containing the two text mes-
sages in this test. It starts at offset 0x037026B4.

The size of the blob is 0x164(356 decimal). This is quite large. Reverse
engineering every one of those bytes will take a long time, and the data
might not even be very interesting. The records are where the actual data
is kept, and we already know enough to extract those. How can we cut
down on the amount of work needed to understand the database blob? If
we knew what we were looking for, it would help immensely. Thinking
back to test 3, we tested some assumptions by writing small test programs
in C that called the CeOidGetInfo procedure (4.19). It takes a object identi-
fier as parameter and fills out an CEOIDINFOEX (figure 4.19). If the object
identifier is the id of a database, the CEOIDINFOEX structure contains a
CEDBASEINFOEX (figure 4.29) structure. The information in this struc-
ture must be stored by the operating system in the object store, so we can
expect all of the items mentioned here to be present in the blob!

This fact reduces the job from guessing blind to mapping the elements in
CEDBASEINFOEX to the blob in figure 4.28. Let’s start with the name of
the database. According to CEDBASEINFOEX this field should be

CEDB_MAXDBASENAMELEN * 2 (wide char is 2 bytes) bytes long. Look-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 81

0370Z6B0 (2C2A 0001 6401 0070 0000 0000 2D22 0000 |,*..d..p....-%..
0370Z6C0(C729 0000 0000 0000 BeROO BCOO B400 Z200|.)1...... f.l.d.r.
037026D0 (3100 3000 3000 3100 6300 B200 3100 OO0O0O|1.0.0.1.c.hL.1...
037026E0 (0000 0OOOO 0000 OOOO OOO0O0 0000 0000 0000).0eeeavannn
037026F0 (0000 OOOO 0000 OOOO OOO0O0 0000 0000 0000).0eeeaeannn
03702700 (0000 0000 0000 0000 0200 0000 0400 0000).0eeeeennsn
037027100000 0000 00C2 1eES 33AC C401 D403 0000 i
037027200000 0000 0000 OOOO 4000 OeOE OOOO OOOO|........ @, ...
03702730 (0000 0000 0000 0000 0000 0000 0000 0000).0eeeeeansn
037027400100 0000 0004 0000 FEFEF FEEE 0000 O0O0O0O|................
037027500800 0000 Z2EZA 0000 0100 0000 5400 5300)..... ... T.3.
03702760 (3700 0000 0000 0000 1FO00 1AO0C 0000 0000 |7.......0.0..00a...
03702770(0000 0000 0200 0000 0000 0000 0000 0000 |.......c.eenan.n
03702780 (0100 0000 0004 DOOO FEFF FFEF OO0OO0 OOOO|................
03702790 (0400 0100 ZFZA 0000 0100 0000 7EOD 7DO0|....-*®...... ~.}.
03702740 (5300 0000 0000 OOOO 1FO0 3700 0000 0000 |3......... oo,
03702780 (0000 0000 OZ00 0000 0000 0000 0000 0000 |.......c..0.ena...
0370Z27C0 (0100 0000 0004 0000 FEFF FFEF 0000 OO0OO|................
03702700 (0400 0100 302& 0000 0100 0000 FEOO 7DOO|....0%=...... R
0370Z7E0 (5300 0000 0000 O0OO 1300 0900 0000 0000 |3...............
0370Z7F0 (0000 0000 0000 0000 0000 0000 0000 0000 |..........c.o...
03702300 (0100 0000 0004 0000 FEFF FEFE OOOO0 OO0OO|................

03702810 (0400 0000 31ZA 0000 0100 0000 7EOOD ¥FDOO|....1=*...... ~ot.
03702820 (5300 0000 0404 OOEQ 000O0 0000 ZEZ2A 0000 |3............ =,
037028302024 0000 0200 0ZOO FEFF FFFEF FFEF FEFF |-*..............
03702840 (3224 0000 36ZA 0000 FEFF FFFF EFZE 7744 |2%, 6%........ wh
03702850 (7B0F BeSF 0011 G8BF O00OFE O2FF 3093 163F|{........... a..?
03702860 (BFYC OOFF 1470 O7FF 1GFE 10EF 3Z29F OQDEF|.|...p...... 2...
03702870 (82F3 BOBF S3EY 004F O0O1BE 41FF S07F 0472 0..A.FP..z
03702880 (6E1Z 18FD OBEY 0BFA YBFE Z24F7 OZEF 04FF |n....... 1.5.....
03702890 [A5FA 5075 0B4D OOEF &89D5 SO0CD 307D BR7E|..Pu.M...... (I
0370Z2B8A0 (3A73 40EZ 449D 02AF BBEFD 007F 424D 01F7|:s@.D....... B...
037028B0(95B6 04FF S51BD 40EF Z4BD 00FD 1AEY O17F|....Q.@.5.......

Figure 4.28: Test 5 - Database blob.

ing at the dump we see that the name starts at 0x037026C0.

CEDB_MAXDBASENAMELEN is defined as 32 in Windows CE, so the 64
next bytes are the name field (marked with red). Right after this field we
find a dword with the value 2 (marked with yellow). This is the only place
in the entire blob that we find the value 2. 2 is the number of records. This
is probably the dwNumRecords field from CEDBASEINFOEX. Then we
have the value 4 (marked with purple). The Windows CE API specifies
that the wINumSortOrder field can be a maximum of 4. Let’s assume this
word is the sort order for now. Next we have a dword with value 0. It
is hard to tell what this is. After this, however, we have two dwords that
we instantly recognize as the bytes of a FILETIME structure (marked with
blue) The high word of 0xC401 is well known by now, from the other tests,

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 82

Microsoft Windows CE NET 4.2
CEDBASEINFOEX

This structure contains information about a database object. This structure is
used by the CeSetDatabaselnfoEx? and CeCreateDatabaseEx=2 functions.

typedef struct CEDBASEINFOEX {
WORD wlersion:
DWORD dwFlags:
WCHAR szlhaseNames[CENDS MAXDEASENAMELEN] :
DWORD dwlbaseTvpe:
DWORD dwNumREecords;
WORD wiumSortlrder:
DHORD dwSize:
FILETIME fiLastModified:
SO0BRTORDERSPECEX rgiortSpecs[CEDE MAXSORTORDER] :
} CEDBASEINFOEX: B

Figure 4.29: WINDOWS CE API - CEDBASEINFOEX structure

as the most significant bytes of FILETIME. So this is the ftLastModified
field.

Assuming that we’ve identified the wNumSortOrder field correctly there
should now be 4 SORTORDERSPECEX (4.30) structures in the unknown
bytes, a dwFlags dword, a dwSize and maybe a wVersion. Saying any-
thing conclusive about the dwFlags and wVersion is difficult because these
might very well be zero, and therefore can map to several places. dwSize
can not, because we know there are at least two records in the database.
The last bytes (marked in grey) in the blob consists of a pattern repeating
4 times. This fits well with wNumSortOrder being 4, as this would entail
there being 4 SORTORDERSPECEX structures. Now that these last bytes
are filled by SORTORDERSPECEXs the only non-zero dword left in the
blob is at offset 0x0370271C (marked with green). This then has to be the
dwsSize field from the CEDBASEINFOEX structures.

All these findings were confirmed by applying our assumptions on other
database blobs and finding them to be correct for them too.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

Microsoft Windows CF NMET 4.2
SORTORDERSPECEX

This structure contains information about a sort order in a database,

typedef struct SORTORDERSFECEX ({
WORD wlWersion:
WORD wNumProps:
WORD wKhevFlags:
CEFROFID rgPropID[CEDE MANSORTEROP] :
DWORD roolwFlags[CEDDE MAXSORTRREOD) :

} S0RTORDERSPECEX ; B

rMembers

w¥ersion
Yersion of this structure. Applications must set w¥ersion to 1.
whumProps

HMumber of properties in this sort order, which must not be more than
CEDBE_MARSORTPROP.

wkeyFlags
Uniqueness indicator, This flag may be zero or CEDE_SORT_UNIQUE,

CEDB_SORT_UKIQUE requires the key to be unique across all records in the
database. It also requires all sort properties to be present in all records.

rgProplID
array of properties to be sorted on, by order of importance. See the
description of a propid inside the CEPROPYAL structure,
rgdwFlags
Sort flags that correspond to the properties in rgProplD.

Figure 4.30: WINDOWS CE API - SORTORDERSPECEX structure

83

© ® ~ [o) o ' w N —

N N N N N = = = = Ju o = = = —
[W N _ S © @ N o a1 'S w N = o

]
a

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 84

After the SORTORDERSPECEXs a new blob starts. It has type 0xE000.
The first dword of its data is the id to another blob, in our case the just
analyzed database blob. We think this blob is some kind of index blob for
the database. It contains the id of all the database records in the database,
sorted in different ways. It also contains several FILETIME timestamps.
We found this kind of blob to be pretty uninteresting for us, given our suc-
cess criteria. We did not spend lots of time trying to decipher it exactly.

Transform to PIM
The results we got from a short overview for this blob and all the other

results from this test were combined and gave the new HW-structures in
listing 4.9.

Listing 4.9: Test 5 - Database blob structures

‘typedef enum tagBLOBTYPE

{
FILEDATALIST= 12288, //0x3000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000
DATABASE = 28672, //0x7000
DATABASERECORD = 32768, //0x8000
DATABASEINDEX = 57344 //0xE000

} BLOBTYPE;

struct DatabaseBlob

{
HEADER header;

DWORD ParentlD;

DWORD databaseType;

WORD databaseName[32];
DWORD numRecords;

DWORD numSortOrder;

DWORD unknown;

DWORD lastModifiedLowTime;
DWORD lastModifiedLowTime ;
DWORD dataBaseSize;

DWORD unknown;

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 85

SortOrder sortOrders|[4];
|

struct DatabaseRecordBlob

{
HEADER header;

DWORD ParentlD;
BYTE data[header.Size —4]

b

struct DatabaseIlndexBlob

{
HEADER header;

DWORD parentID;

WORD unknown;

WORD numRecords;

DWORD delimiter1[2]; //FFFFFFFF
DWORD recordID [numRecords |;
DWORD delimiter2; //FFFFFFFF
DWORD unknown [numRecords=10];
UQUAD timeStamps|[numRecords |;

4.2.3.6 Testo6

Create test

We have a pretty good understanding of the internal structure of the blobs
by now. One of the large remaining questions is how the blobs are com-
bined into the large structure called the object store. Why are blobs stored
at the offsets they are stored at, how does the operating system find a blob
given an oid? Our initial guess was based on the information we had in
the CIM. From it we know that most file systems/object stores have some
kind of mechanism to look up an element given some kind of id, without
searching through the entire file system. File systems/object stores must
also be able to partition an element into as many subparts as needed by
the underlying physical medium. For hard disks this is usually sectors.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 86

Test6

Goal

Figure out how the object store can find a blob given an oid.

Input

None

Steps

Action Input [Qutput
Empty phone.
Dump phone. festf 1

Run BlobExtractor v1 test6 1|Extractor.log

—

L2 M

Figure 4.31: Test 6 - VEAT?

We’ve already seen this in the Windows CE object store. The content of
files is split into several FILEDATA blobs which are connected through a
FILEDATALIST blob.

With this test we basically want to check if we can uncover how the object
store keeps track of which parts of the available storage has been assigned
and which has not. Figuring out this will basically let us say that we know
that we have access to all the data in the object store, not just a subset.
Our test tool (the BlobExtractor) can, based on our findings so far, scan
through a memory dump byte by byte using several heuristics to recog-
nize blobs. While we know that it recognized most blobs this way, we can
not be certain that our heuristics are wide enough to catch all cases or that
they even are 100 percent correct. It would be better if we could figure out
how the blobs are assigned their offsets in the object store in the first place
and access them directly. We are hoping to find some kind of connection
between a blob’s oid and the actual offset of the blob.

Figure 4.31 contains the sixth test.

Extract info/Adjust PSM

The first thing we did was to run our BlobExtractor on the memory dump.
After it was done it had recognized over 10000 individual blobs and writ-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 87

ID Type Flags |DataSize | TotalSize |StartOfs EndOfs
0|0x4000 |0x0 32|0x2C 0x6010 0x603C
1]0x4000 |[Ox0 48|0x3C 0x603C 0x6078
2|0x4000 |Ox0 40|0x34 0x6078 0xB60AC
3|0xA000 |Ox0 12|0x18 Dx60AC 0x60C4
4|0xB000 |Ox0 32|0x2C 0x60C4 0x60F0
5|0xC000 _ |Ox0 24|0x24 0x60F0 0x6114
6|0xD000 |Ox0 44|0x38 0x6114 0x614C
710xC000 _ |Ox0 32|0x2C 0x614C 0x6178
8|0xC000 |Ox0 32|0x2C 0x6178 Ox61A4
9|0xC000 _ |0x0 52|0x40 0x61A4 Ox61E4

10{0xC000 _ |0x0 02|0x68 0xG1E4 0x624C
11|0xD000 |Ox0 76|0x58 0x624C Ox62A4
12|0xC000 |0x0 56|0x44 0x62A4 0x62E8
13|0xC000 |Ox0 02|0x68 0xG2ES 0x6350
14|0xD000 [Ox0 36|0x30 0x6350 0x6380
15/0xD000 |0x0 50|0x48 0x6380 0x63C8
16{0xC000 |0x0 24|0x24 0x63C8 OxB3EC
18|0xC000 |0x0 32|0x2C 0x63EC 0x6418
19{0xC000 |Ox0 32|0x2C 0x6418 Ox6444
20|0xC0O00 |0x0 52|0x40 0x6444 0x6484
21|0xC000 |0x0 92|0x68 0x6484 OxB4EC
22|0xD000 |0x0 76|0x58 Dx64EC 0x6544
23|0xC000 |0x0 56|0x44 0x6544 0x6588
24|0xC000 |0x0 02|0x68 0x6588 0x65F0

Figure 4.32: Test 6 - BlobExtractor first edition output

ten them to a log file. Figure 4.32 shows the start of this file. As we see,
the first blob was found around offset 0x6000 and the other blobs followed
successively. This means that a lookup table for oids has to either be lo-
cated before these 0x6000 bytes or it has to be intermingled with the rest
of the blobs in the object store from offset 0x6000 and out.

Lets look at the data before offset 0x6000. From 0x16 to 0xD0 we have noth-
ing, everything is zero-filled. From 0xDO0 to until 0x3DO0 there is clearly
some kind of structure to the data. We also notice that there are what
seems to be object identifiers mentioned here (figure 4.33 red markings).
We also see that they appear right after what seems to be pointers (marked
green) to places in the object store, given that the store is located at offset
0x42000000 in memory as figure 4.14 indicates. This is interesting, as it
shows a connection between oids and pointers to addresses in the object
store! But looking at the size of the data, this simply cannot be our lookup

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 88

000ooo0o0 (0004 0000 454 494D 454B 494D 0040 69920(....EEIMEEIM.@i.
gooooolo(oo40 9e07 0080 0000 0000 0OOO OOOO OO0OO(.@.....cueennnnnn
Qgooooozo(oooo o000 0000 0000 0000 0000 0000 O000f.....cveeeennnnnn
Qooooo30 (0000 o000 0000 0000 0000 0000 0000 0000f.....cveeeennnnnn
gooooodo (o000 o000 0000 0000 0000 0000 0000 O000f.....cveeeennnn.n
00000050 (0000 0000 0000 0000 0000 0000 0000 0000f.... ...
00000060 (0000 0000 0000 OOOO 0000 0000 0000 O000f.... ..o innnn..
00000070 (0000 0000 0000 DOOO 0000 0000 0000 0000 (... .o innnn..
00000080 (0000 0000 0000 DOOO 0000 0000 0000 0000 (... .o innnn..
Qoooooso (o000 o000 0000 0000 0000 0000 0000 0000f.....ceeeeennnnnn
Qo00000AD (OOOO OOOO 0OOO0 OOOO 0000 0000 0000 O000f.....ceeeeinnnnnn
Qo00000BO (0000 0000 0000 0000 0000 0000 0000 0000f.....ceeeeennnnnn
goooooco(oooo oooo 0000 0000 0000 Qo000 00DO 2894 (f.........0..... (.
ooooooDo (o090 2797 OEZF 0507 50F1 eO0F4 ODOF 1S1B|..'..-..P.
0000O0ED (FO73 ADD1 0050 0042 0000 0OOO 0300 ooOOf.s...P.B........
O000OO0OFOD (D400 0000 0000 DOOO 0009 0400 0000 0000 (... . .ueueennnn..
oooooloo(34C3 71B3 0DAOF Oez2F 70OFO0 AOQFS 0100 0000(4.q
Qo0oo110(FOFE 7C42 9C00 0080 0400 0000 0100 O0O0Of..|B............
oooool1zo(F4FE 7C42 0000 0000 0400 0000 0100 OoOdof..|

00000130 (FEFE 7C42 AFI1C 0000 0400 0000 0100 0000 |

oooool4o0(z0Fe 7C42 C502 0000 0400 0000 0100 oooof .|

00000150 (24F9 ¥C42 0000 0O0OOO 0400 0000 0100 00O0O0(%. |

00000160 (28F%9 ¥C42 3334 3001 0400 0000 0100 000D
00000170 (D4FS9 7C42 3200 b100 0400 0000 0100 OOOOf..|BZ.a.........
Qoooolso(DEFS FC42 3000 3200 0400 0000 0100 oOOOf..|BO.Z2.........
Qgooool1%0(ESEL 0C42 F1lAB ¥C30 0400 0000 0100 ooooOf...B..|O0........
Qo0oo01A0(FOBL OC42 4545 ¥C10 0400 0000 0100 oooof...BE.|.........
Qo0o001B0(CEFS ¥C42 0000 0000 0400 0000 0100 O0O00f..|B............
goooolco (2086 ¥B4Z2 0Z00 0000 0400 0000 0100 oooof fB............

—
[ma]
A}
s
=)

goooolbo | 4CFE FC4Z 0000 0000 0400 0000 0100 OOOOfL.|B............
OODO01ED | 54FB 7C4Z 811C 0000 0400 00O0OO0 0100 OOOOfT.|B............
000001F0|SBFE 7C4Z2 0000 0000 0400 0000 0100 0OOO(X.|B............

Qoooozoo [FEFE 7C42 (FC29 0000 0400 0000 0100 oooof..|BlY....oooeut

Figure 4.33: Test 6 - Offset 0x0

table. It would need room for over 10000 of these connections. 10000 * 4 *
2 = 80000, which is way more than the 0x300 available.

Next we have a section of similar data from offset 0x3D0 until 0x1000 (fig-
ure 4.34). The data looks uniform; the bytes have similar value ranges in
the entire section. None of them give us any clue of their use but using
the same reasoning as the last section, there simply isn’t enough data here
to hold a lookup table. From offset 0x1000 the data changes form. The
30 first bytes here definitely lie in a low value interval if we look at the
data as dwords. None of them use their most significant byte. We also
notice that the dwords rise in value from the first to the last. Interesting,
but again there simply is not enough room for a lookup table for 10000

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 89

ooooo3sn
ooooo3so
oo0o034a0
ooooo3en
ooooosco
ooooosno
ooooo3ED
ooooosrFo
ooooo4o00
ooooo410
ooooo4z0
ooooo430
ooooo440

O0000FED
Qoooorco
Q000oFDo
O0000FED
Q0000FFO
oooo1o000
oooo1o010
oooo1ozo
oooo1o030
oooo1040

C4FB
44p2
COFB
CCESR
CBESR
ADEZ
498F9
7085
COF4
S0a0
70F6B
JOEH
COFz2

FC71
F2F0
FOFO
FaFz
Fzan
oooo
1014
aC10
oooo
oooo

FC4Z2
bBE4Z
FC4Z2
7Cdz
7Cdz
B4ED
74FH
F1F3
S0FS
70FO0
6OEFD
FOFZ
S0F0

Fi1z
FZzB0
7890
D4A0
Fav0
oooo
0400
2500
oooo
oooo

0422
7DAR
oooo
gBAT
oocE
017F
OEOQE
OF5F
0Aa8F
07eF
oDorE
ooor
n7o7v

DFOE
aFar
OFoa
BFOF
OF0E
50F3
AOFA
ccec
aooo
aooo

Figure 4.34:

oooo
7C10
oooo
c401
C30F
ODSF
094E
070E
031F
078F
0s0F
030F
1FCE

OF0E
6FO7
2Fo7
7FO5
aF oD
oooo
0400
4a00
oooo
oooo

o400
o400
o400
o400
o400
70F0
FOFZ
AO0BOD
433C
30F1
OODE
90B0
goFo

Dacao
F1izo
Fa74
F470
FzF0o
6404
283C
a8C11
oooo
oooo

oooo
oooo
oooo
ooao
ooao
FOFO
FOFO
9074
833C
30F4
coDo
S0ES
FOEOD

F190
FaDo
FAFO
FzD0o
Faco
0z00
0s00
GEO0
oooo
oooo

o1oo
o1oo
o1oo
o100
OFoF
4F 1F
030F
N
OC1F
oEQ7
OFSE
OF 4D
OF 4F

gFO7
AF0A
DFOE
aFo3
BFOF
9013
205F
aoano
oooo
oooo

oooo
oooo
oooo
ooao
O5BF
07aD
O7EF
2B1F
150F
17AF
04BF
grer
OF3F

arov
AFOD
ZEOE
OFoF
OB4D
0300
ocoo
oooo
oooo
oooo

Test 6 - Offset 0x1000

B oL
DjkBY.|.........
B 1=
1 =
1 =
........ p...0.
L
& e e e t.o+
Po.o... O <.
P.p..o..0.0.....
=
O......... FP..M.o
P ... 0
B«
e o
-
......... |+ I
|+ S, o.M
........ d... ...,
........ (<.. _
ELLLT ke

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 90

Q0004FBO (0000 0000 0000 0000 0000 0000 0000 0000(f.....cveeevnnnnnn
Qo0o04FCO (0000 0000 0000 0000 0000 0000 0000 0000f.....ceeeeinnnnnn
Q0004FDO (0000 0000 0000 0000 0000 0000 0000 0000(f.....ceeeeinnnnnn
O0O004FED (0000 0000 0000 0000 0000 0000 0000 0000f.... .. nnnnn..
O0004FFO (0000 0000 0000 0000 0000 0000 0000 0000f.... .. nnnn..
00005000 (0410 0O0ZO0 DOOO 0030 0000 0OOO 1110 O0O0O0f... ...0........
00005010 (3D10 0000 7910 DO0OO AD1O 0000 C510 0000(=...%..c..oeunan..
Qooos020(F110 o000 1511 0000 4D11 0000 #7911 0000f........ M..oowv.o..
00005030 (A511 0000 ES511 0000 4D1z2 0000 AS12 000O0(........ Moo
Qo0os040(E912 0000 5113 0000 S§113 0000 C913 0000(.... Q...
00005050 (35%F0 0110 ED13 0000 1914 0000 4514 0000(9........... E...
00005060 (58514 0000 ED14 0000 4515 0000 8915 0000|........ E.......

Figure 4.35: Test 6 - Offset 0x5000

objects, as everything from 0x1030 to 0x5000 is filled with zeros. The data
from 0x5000 to 0x6000 looks very interesting. First of all, we see that this is
in fact a blob. Our heuristics missed this because it has a flag field with a
non-zero value (figure 4.35, red markings), which we’ve never seen in any
other blob. This blob has blob type of 0x2000, which is also new. We see
that the data in the blob follows a distinct pattern. Most likely these are
dwords stored after each other, but only the bottom half of the dword is
used. Might this be our table? The 2 lowest bytes from one of the dwords
(green markings) have the value 0x12E9. What if this is some kind of delta
offset from the start of the data, 0x5000 or from the start of the entire ob-
ject store? None of these theories seem to be correct, as we end up in what
seems like “random” data, not at the start of a blob. This might be because
we use the wrong base offset, or the dwords might not be pointers at all.
All we know is that we can’t conclude either way.

We also observe that the blob extractor recognizes several blobs of un-
known type: 0xA000, 0xB000, 0xC000 and 0xD000 (figure 4.32). However,
the size of these blobs is typically less than 100 and inspection of the blobs
reveal that they are most likely connected with the registry part of Win-
dows CE as registry keys and registry values of different data types. A
lookup table will be quite large and while it could be split into several
parts we see no reason to make these parts as small as 100 bytes.

Trying to attack the problem from another angle we chose a random blob
in the dump; the file metadata blob of wtmfdll.dll at offset 0x00569200
(figure 4.36). If there is such a thing as a lookup table, it should contain
the offset of the blob and/or the id of the blob. Let’s try searching for the

© @ ~ [N &} ' w N —

-
o

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 91

00569200 (3800 0050 0000 0OOOO CEZ5 0000 DOZ5 oO0oo|s..P..... -
005659210 (0044 0100 0z00 0044 0100 0000 9Az25 0000).D..... Do A
00569220 (00C3 8251 56A1 C401 1100 0BOO 7700 7400)...0W....... w.t.
00569230 (6D00 6600 6400 6CO0 &6CO0 ZEOO 6400 &CO0|m.f.d.1.1...d.1.
00569240 (6C0O0 0205 4000 0030 0000 0000 DOZ5 0O00O|1...@..0..... A

Figure 4.36: Test 6 - Random file

id and the offset. The id is OxCF250000. This value is not used anywhere
else in the dump, so a table with the id is out of the question. How about
the offset? If the system can find the blob, and therefore the offset, given
an id it has to store this offset somewhere. Alternatively it can calculate
the offset from the id, but this is unlikely given that the ids are increasing
by 1 for each new blob and each blob can be of a different size. Search-
ing directly for the value of the offset 0x569200 yields nothing. The offset
of the blob might very well be combination of a base offset and a delta
offset. Lets make some educated guesses about possible base offsets. We
search for 0x568200(base 0x1000), 0x564200(base 0x5000) and 0x563200(base
0x6000). We had no luck, as we found nothing.

Clearly, a new information gathering strategy for finding out how exactly
objects are given their place in the object store is needed. Our black box
testing needs to be supported by something else.

Transform to PIM

The last thing we do before defining our new strategy is to update our
HW-structure to include the new data types observed in this test (listing
4.10).

Listing 4.10: Test 6 - Blob structures v6

rtypedef enum tagBLOBTYPE

{
UNKNOWN _POINTER LIST? = 8192, //0x2000

FILEDATALIST= 12288, //0x3000
DIRECTORYINFO = 16384, //0x4000
FILEMETADATA = 20480, //0x5000
FILEDATA = 24576, //0x6000

DATABASE = 28672, //0x7000
DATABASERECORD = 32768, //0x8000
REGISTER UNKNOWN A = 40960, //0xA000

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

REGISTER UNKNOWNB = 45056, //0xB000
REGISTER KEY= 49152, //0xC000
REGISTERINT = 53248, //0xD000
DATABASEINDEX = 57344 //0xE000

} BLOBTYPE;

typedef struct BlobHeader

{
WORD size ;
BLOBTYPE blobType;
DWORD zeroFiller;
DWORD 1ID;
} HEADER;
struct GeneralBlob
{
HEADER header;
BYTE data[header.size];
I¥
struct FileDataListBlob
{
HEADER header;
DWORD fileDatalD ;
BYTE unknown|[header.size — 4];
}
struct FileMetaDataBlob
{

HEADER header;
DWORD fileDataListID;
DWORD unknown [2];
DWORD parentID ;
DWORD neighbourlID;
DWORD lowOrderTime;
DWORD highOrderTime;
WORD propertyFlags;
WORD filenameLength;
WORD filename|[filenameLength |;

92

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

struct DirectoryInfoStoreBlob
{

HEADER header;

DWORD childID;

DWORD unknown|[2];

DWORD parentID;

DWORD neighbourlD;

DWORD lowOrderTime ;

DWORD highOrderTime;

WORD propertyFlags;

WORD DirectoryNameLength;

WORD DirectoryName [DirectoryNameLength] ;

}

struct FileDataBlob
{
HEADER header;
WORD suspected_storageType;
BYTE fileData[header.size — 2];

}

struct DatabaseBlob

{
HEADER header;

DWORD ParentlD;

DWORD databaseType;

WORD databaseName[32];
DWORD numRecords;

DWORD numSortOrder;

DWORD unknown;

DWORD lastModifiedLowTime;
DWORD lastModifiedLowTime;
DWORD dataBaseSize;

DWORD unknown;

SortOrder sortOrders|[4];

o

struct DatabaseRecordBlob

{
HEADER header;

93

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

|

DWORD ParentlD;
BYTE data[header.Size —4]

struct DatabaselndexBlob

{

HEADER header;

DWORD parentID;

WORD unknown ;

WORD numRecords;

DWORD delimiter1[2]; //FFFFFFFF
DWORD recordID [numRecords |;
DWORD delimiter2; //FFFFFFFF
DWORD unknown [numRecords«10];
UQUAD timeStamps|[numRecords |;

94

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 95

4.2.4 Defining a Strategy - Second Loop

The black-box testing had given us a great deal of knowledge about the
object store, but one important question remained unanswered: how does
the object store keep track of all its files? As we had failed to locate some
kind of file allocation table, we needed to re-think our strategy. Though
we did not expect any direct answer, we tried to consult Microsoft. As
expected, they would not answer our questions, but ended their response
with "FWIW it does not use file allocation tables.” It seemed like a waste of
time to continue the search for such a table in memory dumps.

We needed to come up with a plan. After discussing our new situation,
we defined the problem as follows:

Goal: Find out how Windows Mobile keeps track of objects.
Known: Every object has an object identifier.
Strategy: Find a procedure in the Windows CE API that can locate an

object from an object identifier. Disassemble this procedure, to
see how the object is found.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 96

4.2.5 About Disassembling

All programs start out as source code. Usually this is written by humans
in a high level language like C or C++. High level language means that
the functionality of the program can be written in a somewhat humanly
readable form with much more abstract concepts than a computer can uti-
lize. Computers support a given number of low level basic instructions
that they can execute very quickly. Typical examples are instructions that
fetch or store a value in memory and instructions that do simple arith-
metic operations like addition and subtraction. Bridging that gap between
a high level language source code and the instructions of a specific proces-
sor is the job of a compiler. It maps high level concepts to several low level
instructions which can be performed by the processor. The source code
writer usually never has to see this process. The low level instructions are
then encoded in a binary format that is easy for computers to work with.
This is called assembling a binary.

A disassembler does the opposite. Its primary task is to take a compiled
and assembled binary file and produce a listing of the low level processor
instructions and data contained in it. Figure 4.37 illustrates this.

In addition to just listing the low level processor instructions, a good dis-
assembler utilizes several techniques to enhance the readability of this list-
ing. Some of these techniques are:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 97

High level source code

int add_numbers(int a. int b){
char* str = "Joso koso":
return a + b;

Compiled low level instructions

.texk:
.texk:
.texk:
.texkt:
.texkt:
|- text:
.texk:
.texk:
.texk:
.texk:
.texkt:
.texk:
.texk:
.texk:
.texk:
.texkt:
.texkt:
.texk:
.text:
.text:
.texkt:
.texkt:
-texk:
.text:
.text:
.texkt:
.texkt:
.texk:

6861183¢
6861183¢
oae1102c
g8p11083C
g8p11083C
6881183¢
6861183¢
6ae81183c
§8p1183C
§8p1183C
§8611083C
68611048
68681104,
68011048
6881184C
68811858
60011854
eae811a8s8
6801165c
6ee11660
68011864
68011068
€8e81186c
68011860
68011860
688110860
680116878
68811676

P SUBROUTIHE i
sub_1163cC ; CODE XREF: WinMain+1&Tp
var_18 = -@x18
var_C = -6xC
arqg_8 = @
arg_4 = i
MDY R12, 5P

STHFD SP*, {RE,R1}
STHFD P!, (R12,LR}
SUB SP, SP, #8

LDR RA, =aJosoKosao

STR RA, [5P,#8x18+var_14]
LDR R1, [P, H#8x18+arg_0]

LDR RO, [SP,#8:x18'a1-g_4]

ADD R2, R1, RA

STR R2, [SP. #iBx10+var C]

LDR RA, [5P,#8x18+var_C]

ADD SP, 5P, #8
LDHFD SP, {SP,PC}
; End of Function sub_1183C

oFf_11678 DCDP aJosoKoso ; DATA XREF: sub 11@3c+1efr
; "Joso koso'

Binary File

-text:000116360 64 60 9D ES5 BC DO 8D E2 @60 AG 9D E8 6D

|64 12 81 88 68 20 01 60 6D CO AO E1 [MdEm.h H.E+3D

Figure 4.37: The compile, assemble, disassemble cycle.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

Data/code dif-
ferentiation

Procedure
identification

String recog-
nition

System /
library call
identification
Data and
code cross
references

Data structure
identification

Path analysis

98

Every disassembler must be able to discern the difference
between data and code. This seems very basic, but can
be very tricky as assemblers can generate an enormous
amount of different code/data variations.

The ability to recognize procedures in the code, and
when they are called. Might also be able to figure out
the types of the procedure’s parameters.

Recognition of string literals in the data. Strings are mes-
sages meant for humans and referencing strings can of-
ten help a lot in figuring out what some piece of code is
actually doing.

A disassembler should be able to figure when the code
is calling operating system functions and annotate these
calls in a specific way. Better disassemblers can do the
same thing for calls to well known library functions (like
the C common runtime), and the best disassemblers can
recognize any library function if the library is available
at the time of the disassembly.

A disassembler should annotate a recognized procedure
with a cross reference to all the places in the code that
calls the procedure. In the same manner it should anno-
tate data addresses, or variables, with cross references to
all the code that access them.

Good disassemblers can recognize known data struc-
tures from libraries and improve the readability of the
code listing by incorporating this information.

Analyze the code paths and branching instructions to
enable enhanced code analysis coverage and enable the
possibility of graph visualization.

There exists a multitude of disassemblers:

e Sourcer[22]
e BORG[23]

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 99

BDASM][24]

W32Dasm|[25]

PEDasm][26]

Diss[27]

Disassembler[28]

ARMD:is[29]

All of these disassembler were found to be inferior to IDA, described in
the next section, because of one or more of the following reasons: does
not support the ARM processor, lacking interactive nature(letting the user
correct errors in the disassembly) or does not automatically identify API
and system calls. IDA does this and much more, making it the best choice
for any serious reverse engineering of binary executables.

Interactive DisAssembler (IDA)

IDA is a disassembler written by Ilfak Guilfanov and DataRescue[30]. It

supports interactive disassembly of an impressive list of processor types
and binary file formats, including the PE file format and ARM processor
found in our “unknown” device. IDA has a efficient built-in support for
automatically separating code from data, but at the same time the user can
at anytime override all automatically made choices and have IDA update
itself accordingly. This kind of interactivity is unique for IDA and is not
found in other disassembling products. IDA does not produce just lists of
low level instructions, but rather gives the user a complete environment
for reverse engineering work. The interface can be seen in figure 4.38.
Some of the functionality supported by IDA include:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 100

[1A - C:\prosjekt\dokumentering\Adder.exe =lel x|

Eile Edit Jump Search Yiew Debugger Options Windows Help

SE| --- - [@Ems 6= =l H#| [=+x| |[25m0]2
EERNEY TN EEE N T AEEER EN) B
B[y - = N x|[g-#-w SHKm- g sae[ub][aavas
E ANl F

106 izt | 5 Hewviews. | 3 Evpors | B8 Impons| M Names | ™) Functions | .o Swings | f§ Stuctures | B Erums |

FIE BEED
.text:0001103C : SUBROUTINE || [Name Adde
.text:0081103C F wWittan oot
_text:0081103C L ot pouss
.text:0001103c sub_1103C : CODE XREF: Winain+18tp
.text:0061103C L _aint oooTy
.text:001103C var_10 = -ox10 L _initerm 00011
.text:a081183C var_C = -8xC L _ceit o001t
_text:0081183C arg 0 -0 L _ceit o011
.text:0001103C arg_4 = 4 F _xcptFirer [l R}

. -t"?gggﬂ:gg Hou B2, SP F __C_specific_handler o001
_text: s

* _text:00011040 STHFD SPY, {RE,R1} E L°‘°ma:’eec T

* .text: 00811044 STHFD SP?, {R12,LR} —me__C_speciic_

° .text: 00011048 suB SP, SP, H8 I _imp_LocaFree

* .text:0001104C LDR RO, -aJosokoso 1 _imp_xcpiFier

* .text:00811050 STR RO, [SP,H8x10+var_10] Al alosooso

° .text:00011054 LDR R1, [SP,H0x10+arg_o]

* .text:00811058 LDR RO, [SP,H0x10+arg 4]

* _text:0061185C abD R2], R1, RO 4] |

' .text:00011068 STR R2, [SP,m0x10+var_C] Line 130f 13

* .text:00811064 LDR RO, [SP,H0x10+var C]

* .text:00811068 ADD SP, SP, ¥

* .text:0001106C _LDHFD P, {SP,PC} sddess | Ondinl | Home
':E::;:ggﬂggg ; End of function sub 1163C BB 00013000 &7 __C_specific_handler
Ctext:oon11060 ; ER 00013004 36 Locafree

* _text:00611070 off_11078 DED aJosoHoso ; DATA XREF: sub_1103C+10tr ERO00T3008 1645 _XopiFiter
.text:00011070 : "Joso koso"
.text: 00811074 ;

* _text:00811074 ANDEQ R1, R1, RA4,RORHL

* .text:00011078 ANDEQ , R1, R8,RRX

. ; [00000858 BYTES: COLLAPSED FUNCTION start. PRESS KEYPAD "+ TO EXPAND]
.text:00011004 :

* .text:00011004 STR LR, [SP,H-u]t

* _text:00811008 HOU R1, RO

* .text:ooo1100C LDR RO, [R1]

* .text:00B110E0 LDR RO, [RB]

* .text:008110E4 BL _XcptFilter

* .text:000110E8 LDNFD SPt, {PC}

. ; [00000828 BYTES: COLLAPSED FUNCTION cinit. PRESS KEYPAD "+ TO EXPAND] « —

° .text:0061110C off_1110C DCD unk_13610 : DATA XREF: _cinit+14Tr -
o | _>| Line 10f 3 |

kil | 2

I0A 15 analysing the input Tile... .. N =
You may start to explore the input file right now.
ida_sync initialized. Compiled on Mar 7 2006
Pedram Amini <pedram.aminiegmail.com>
Using FLIRT signature: windows CE runtime & MFC for ARM
ing type information

[au: idie |[Down [pisk: 1768 [0000045C [0001105C: sub_1103C+20 4

Figure 4.38: IDAs user interaction interface.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

FLIRT - Fast
Library Iden-
tification and
Recognition
Technology.

PIT -
rameter
Identification
and Tracking

Pa-

High level
constructs.

101

This feature identifies standard system calls and API
function calls from several popular compilers. The re-
sult is that the user instantly can figure out that the call
being made is to a known function without having to in-
spect the function at all. Figure 4.39 shows the difference
between FLIRT being active and not. FLIRT can also be
used on any custom library if the library file is available.

Tracks stack parameters as they are used. That means
that if IDA sees that a certain memory address is given
as an argument to a known system or library function it
can automatically deduct the type of the variable stored
there based on the function definition. This is propa-
gated throughout the rest of the disassembly, helping
with the overall readability. Figure 4.39 shows the dif-
terence PIT makes.

IDA lets one define and assign high level constructs like
unions, structures and enumerations to any memory ad-
dress, including stack based ones. This furthers the read-
ability of disassembled code and narrows the gap be-
tween the low level machine instructions and the high
level language they originated from. IDA automatically
assigns well known structures to the parameters of sub-
routines found with its FLIRT technology. Figure 4.40
shows how the high level structure feature in IDA affects
a disassembly.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

a) FLIRT and PIT deactivated

004046680
a84 84660
08484663
00404666
08484669
08404660
a84 84678
a04BL4672
08404675
004BLGT7 6
084 0467B
084 BL467E
004 0467E
B84 8467E
00404683
08484686
00404687
88484680
004 0468F
08484692
00484696
08404698
004B469E
884 08469C
ae4B846A1
0040460,
884 B846AE
08404685
084 B846B8
884 046BD
08484603

b) FLIRT

08484660
00484660
88484663
00484666
00484669
00484660
08484670
00484672
88484675
B84 B467 6
00484678
804846 7E
004846 7E
804846 7E
00484683
88484686
00484687
80484680
0048468F
00484692
00484696
00484698
88484608
0848469C
aa4Bu6A1
00484604
884B846AE
00484685
88484668
004846BD
884846C3

loc_4B4660:

loc_48467E:

and PIT activated

loc_4Bhb68:

loc_4B467E:

mou
mou
mou
mov
cmp
jz
mov
push
call
add

push
mou
push
call
add
mou
cmp
jnz
mou
push
call
add
mou
mou
lea
call
mou

imp

mov
mov
mov
mov
cmp
jz
mou
push
call
add

push
mov
push
call
add
mov
cmp
jnz
mov
push
call
add
mov
mov
lea
call
mov

jmp

; CODE XREF:
eax, [ebp+uvar_uiy]
ecx, [ebp+arg_u]
edx, [ecx+eax=y]
[ebp+var_24], edx
[ebp+var_14], @
short loc_4B467E
eax, [ebp+uvar_14]
eax
sub_413112
esp, 4

; CODE XREF:
offset aRb s "'rb™
ecx, [ebp+uvar_24]

ecx

sub_41328C

esp, 8

[ebp+var_14], eax
[ebp+var_14], @

short loc_4B45CR

edx, [ebp+var_24]

edx

sub_4131F6

esp, &L

[ebp+var_9%C], 1
[ebp+var_4], BFFFFFFFFh
ecx, [ebp+var_3C]
sub_4858DA

eax, [ebp+var_9C]
loc_A4B48F6

; CODE XREF:
eax, [ebp+var_uik]
ecx, [ebp+argu]
edx, [ecx+eax=h]
[ebp+var_24], edx
[ebp+var_14], @
short loc_4B467E
eax, [ebp+uvar_14]
eax . FILE =

esp, 4

; CODE XREF:
offset aRb s M'rb™
ecx, [ebp+var_24]

eCx ; char =
esp, 8

[ebp+var_14], eax
[ebp+var_14], @

short loc_4B46C8

edx, [ebp+var_24]

edx ; char =

esp, &4

[ebp+var_9C], 1
[ebp+var_4], BFFFFFFFFh
ecx, [ebp+var_3C]
sub_4@858DA

eax, [ebp+var_9C]
loc_A4B848F6

102

Figure 4.39: Flirt and PIT- Fast Library Identification and Recognition
Technology - Parameter Identification and Tracking.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

a) Structs disabled

ae48259c
a0408259F
a84825A5
a8482509
ae4825ae
ae4e25ac
a84825a0
A84825AE
ae4 82580
a84825B3
a84825B5
a84825B9
a84825BD
ae4825Cca
a84825Ch
ae4Be25Cce
ae4825Cco
aa4e25cD
a84825CF
ae4825D03
ae4825D4
a84825D%
a84825D0D
A84825ES
a840825ED
a84825F1

b} Structs enabled

g848259cC
a848259F
a84825A5
08482509
g84825nB
ae4e25ac
a84825aD
984825AE
ge4 82580
a04025B3
08482585
08482589
a84825BD
ae4p25Ca
g84825Ch
g84825C8e
a84825C0
a84825CcD
g84825CF
a84825D3
ae4Be25Dh
a84825D5
a84825DD
084 825ES
a84825ED
a84825F1

nov
nov
lea
push
push
push
push
call
nov
nov
nov
lea
or
mov
nov
push
nov
push
lea
push
push
mov
nov
nov
nov
call

nov
nov
lea
push
push
push
push
call
nov
nov
mov
lea
or
nov
mov
push
nov
push
lea
push
push
nov
nov
nov
nov
call

103
ecx, [esi+@Ch]
ed:, dword_L4BDESLH
eax, [esp+%4h+Buffer]
L Bh ; nBufferHax
eax s lpBuffer
BCX ; ulb
edx s hInstance
ebx ; LoadStringhn
edx, [esi+8]
ecx, [esi]
[esp+ 1, edx=
edx, [esp+{illl]
ch, 1
[esp+@Bl], eax
eax, [esp+94h+var 84]
edx ; LPCHEHUITEMIHFORA
[esp+Elll], ecx
1 : BOOL
ecx, [esp+?Ch+Buffer]
edi ; UIHT
Pax » HHEHU
dword ptr [esp+ 1, 38h
dword ptr [esp+], 13h
dword ptr [esp+], @
[esp+], ecx
ebp ; InsertHenultemA
ecx, [esi+@Ch]
ed:, dword_4BDEShH
eax, [esp+94h+Buffer]
S 8h ; nBufferhax
eax s 1lpBuffer
ecx ; ulb
edx ; hInstance
ebx ; Load3tringn
edx, [esi+8]
ecx, [esi]
[esp+24h+var_88.wID], edx
edx, [esp+94h+var_§a]
ch, 1
[esp+94h+var_B88.cch], eax
eax, [esp+94h+var_g4]
edx ; LPCHMENUITEMINFOA
[ecp+28h+var_BO.FType], ecx
1 ; BooOL
ecx, [esp+9Ch+Buffer]
edi ; UINT
eax ; HHEHU

[esp+BAsh+var_8A.chbSize], 38h
[esp+BAakh+var_8A.fHMask], 13h
[esp+BAkh+var_BBA_fS5tate], A

[esp+BAadh+var_8B8.dwTypeDatal, ecx

ebp ; InsertMenultemA

Figure 4.40: High level constructs.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 104

Interactive
Register
renaming.

IDC

Plug-in archi-
tecture.

Graphing.

A listing of low level machine code is greatly enhanced
by the ability to rename stack and heap based variables
to more meaningful names. RISC processors, like ARM,
have a large number of general data registers. In order to
work efficiently the processors try to keep as much data
as possible in these registers. This means that it loads
most of the “variables” it is currently working here. For
human readability this is bad, because a helpful variable
name like “counter” suddenly just becomes register R4.
This problems only increases as more general registers
become available. The user has to remember what is in
each register at all times. IDA has come up with a tech-
nique for countering this problem. They allow you to
rename a register on the fly, just like a normal variable.
The user selects simply selects a register they want to re-
name, a start and end address the renaming should be
for and IDA does the rest for you. Figure 4.41 show an
example of this useful feature.

One of the most powerful features in IDA is the built-
in C-like script language that user can write scripts to
enhance parts of the reverse engineering process. Exam-
ples of uses are scripts to unscramble packed and com-
pressed code, or scripts that handles file formats not sup-
ported out of the box from DataRescue. Everything from
the user interface to the disassembly process can be cus-
tomized. Much of the built-in functionality is actually
implemented in IDC.

For the tasks where IDC is not powerful enough IDA has
support for precompiled plug-ins. These can be written
in C or Python and are normally used to support a com-
pletely new architectures or processors. Recent editions
of IDA also have a built-in X86/ARM debugger which is
implemented as a plug-in.

IDA supports visualization of code control flow. This
gives the user a way to quickly understand the overall
flow of the program, something which is easy to lose
track of in a disassembly. Figure 4.42 shows an example
of IDAs graph support.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

a) Without register renaming

000268E@ ; |} T SUBROUDTINE (Rt
809268EQ oidInfo leBFunc : CODE XREF:
800268EQ ; sub 3ABDC+
8ae268ED STHFD SPt, {R4-R7,LR}

000268EL Hou R4, RO

000268E8 Mov R6, R1

8A9268EC HMou R5, R2

000268F 0 Hou R7, #@

000268F 4 BL hash_

8a8268F8 CHP RB, #A

8a8268FC BNE loc_26918

80926900

88826908 goodbye ; GODE XREF:
008256900 Hou RO, #0x57

888269084 BL SetLastError

80926908 HMov RB, R7

80826900 LDHFD SPt, {R4-R7,PC}

80826918 ; - - - - - -
aae26910

A0826918 loc_26918 ; CODE XREF:
800826910 LDR RO, [RO,#-0:xC]

00926914 HMov R1, RO,LSR#28

00826918 CHP R1, #4

8092691C BEQ loc_26978

88926920 CHP R1, #5

00026924 BEQ loc_26960

80026928 CHP R1, #7

8892692C BEQ loc_2694C

00026930 CHP R1, #8

80026934 BHE goodbye

00926938 HMov R2, RS

8082693C Hou R1, Ré

80026940 Mov RO, R4

00926944 BL sub_334D8

00826948 B loc_2697C

b) With register renaming

BBB268EG 5 [11iiliiiIiIIl SUBROUTINE I
809268EQ oidInfoNibble®Func : CODE XREF:
800268E0 ; sub 3ABDC+
889268E8 nibbleFuncArgument =

000268E8 oid = R6

800268EQ poidInfoPtr

8aP268EQ STHFD SPt, {nibbleFuncArqument-R7,LR}
BA8268EL HOU nibbleFuncfArqument, RO
000268E8 Mou oid, R1

BAP268EC Moy poidInfoPtr, R2

000268F 0 Hou R7, #@

000268F 4 BL hash_

8a8268F8 CHP RB, #A

8a8268FC BNE loc_26918

80926900

88826908 goodbye ; GODE XREF:
008256900 Hou RO, #0x57

088269084 BL SetLastError

88826908 HMou RB, R7

aae25690c LDHFD SPt, {nibbleFuncfArqument-R7,PC}
8ae26918 ; - - - - - -
aae26918

80826918 loc_26918 ; CODE XREF:
80926910 LDR RO, [RO,H#-0xC]

88826914 HMou R1, RB,LSR#28

00926918 CHP R1, #4

8a82691C BEQ loc_26970

aae26920 CHP R1, #5

00026924 BEQ loc_26968

00026928 CHP R1, #7

8882692C BEQ loc_2694C

0009256930 CHP R1, #8

00026934 BHE goodbye

00926938 MOu R2, poidInfoPtr

8082693C Hou R1, oid

80826940 HOU RA, nibbleFuncArqument
00926944 BL sub_334D8

00826948 B loc_2697C

Figure 4.41: Interactive register renaming.

105

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 106

mestsannsynlighet0idInfoEx:

Mo R1Z, 5P

STMFD 3P!, {RO-RZ}

STMFD SP!, {STACK,R1Z,LR}

ADD STACK, 3P, #0<C ; R11 first war on stack

SUB SP, SP, #0x28

Mo RO, #0

5TR RO, [STACK,#nibbleFuncResult]; -0x30 = 0

LOR: R1, [STACK,#oid]

MO RO, R1,LSR#Z8 ; find most significant nibble
3TR RO, [STACK ,#most3igMibble0ID]; find topNibblelID
LOR R1, =0<FFFFCB00 ; ; check for kernel thread start
LOR: RO, [R1]

LDR RZ, [RO,#-0x14]

T=T RZ, #Z

BEQ loc_ 12098

_‘

false true

!

" Toc_12098:
DOD1ZDAE : LDR RO, =0xFFFFCE00
Mov RO, #2 LR RI, [RD]
3TR RO, [STACK ,#var_Z8] ’
B lob. 17088 LDR RZ, [R1,#-0x18]
— 3TR RZ, [STACK #var_Z8]
|
loc_1ZDAG:
LDR RO, [STACK #var_Z8]
CMP RO, #2
BED) loc_1Z0CC
false true
0001ZDB4 :
MOy R1, #0x220
LDR RO, [STACK ,#poidInfoPtir]
BL MapCallerFtr ; check for kernel thread end?
3TR RO, [STACK ,#poidInfovalidPir]
LDR R1, [STACK ,#poidInfoValidPir]
STR R1, [STACK,#poidInfoPtr]
$ w

Figure 4.42: Code control flow graph.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 107

4.2.6 Testing

The testing phase of this strategy was somewhat different from the black
box strategy. The idea this time was to find a suitable target for the disas-
sembling, meaning a procedure that was able to locate objects from object
identifiers, and follow this procedure as far as we were able to.

4.2.6.1 Test7

Create test

From the Windows CE API we had the procedure CeOidGetInfo (figure
4.11):

This procedure fulfilled our criteria, and was picked to be used in the dis-
assembling.

Extract info/Adjust PSM

The next obstacle was then to locate the actual implementation of this pro-
cedure. According to "Windows CE 3.0 - Application Programming” [21],
most Windows CE APIs are exported by coredll.dll. This file is part of Win-
dows Mobile’s system files, and we were not able to reach this file on the
phone for a simple copy/paste from the phone to the computer. Instead
we had to inspect the flash partition were the operating system files are
located, knowing that we had the tools to make a complete image of this
area. To get hold of the file, we needed to re-construct the file from this
flash image. Writing a tool to perform this task was now our primary task.
Luckily, we were able to find a tool which did exactly what we needed.
The DumpRom tool by Willem Jan Hengeveld[7] takes a flash image as
input, and tries to re-generate all the files seen in the image. The tool did
what it claimed, and we were able to get coredll.dll from the flash image
with less effort than we had expected. It was time to start disassembling
coredll.dll using IDA. We will base the disassembling on some of the ideas
from Sychronized Refinement described in section 3.2.3. We will analyse
the code in parallel with the process of building up a description of what
the code accomplishes by focusing on heavy commenting. We will also
keep dynamic expectation lists that will guide our analysis towards an ad-
equate understanding.

IDA presented a menu with a list of procedures, from where we could
easily locate CeOidGetInfo. Figure 4.43 shows the code found. As we can

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 108

B1F7BDS5C ; Exported entry 381. PeqOidGetInfo
B1F7BDS5C ; Exported entry 312_. CelidGetInfo

A1F7BDSC

B1FZBDSC ; J1iiiiiiiiiiiil SUBROUT I NE [IEiiiitittiiie
M1F7BDSC

01F7BDSC

A1F7BDSC EXPORT Ce0idGetInfo

B1F7BDSC CeDidGetInfo

01F7BDSC Hou RZ2, R1

A1F7BDGA Moy R1, R@O

M1F7BDG6Y LDR RA, =unk_1FCA67 80

M1F7BDGE B CeDidGetInfoEx

81F7BD68 ; End of function CelidGetInfo

A1F7BDGE

|F7BDG6GE ; —

Figure 4.43: Test 7 - CeOidGetInfo in coredll.dll.

see, this code segment is called for both PegOidGetInfo and CeOidGetInfo,
where PegOidGetlnfo is used for applications on Windows CE vesions 1.0
and 1.01. Remembering the definition of CeOidGetInfo, we know that it
takes two parameters, a CEOID and a pointer to a CEOIDINFO structure
(which will be explored in detail below). Upon a procedure call, these
parameters will be placed in registers RO and RI (RO, R1, R2, and R3 are
used for argument passing), from where they can be reached within the
procedure. What happens in the code segment above is that the second
parameter is instead moved to R2, the first parameter is moved to R1, and
some value is loaded into R0 (the name unk_1FC6700 is inserted by IDA.
A branch is then made to CeOidGetInfoEx. Looking at CeOidGetInfoEx in
the Windows CE API, we found the definition in figure(4.44).

As we can see, CeOidGetInfoEx has been given an additional first parame-
ter, a PCEGUID. The PCEGUID is a pointer to a globally unique identifier
of the database volume, or of the object store. From this, we know what
is done in the code segment above (figure 4.43). The two parameters of
CeOidGetInfo has been shifted one position to fit their positions in CeOid-
GetInfoEx. This is what happens with the two MOV operations. The value
placed in R0 is the PCEGUID used in CeOidGetInfoEx. As this was a call to
CeOidGetInfo, the PCEGUID will always point to the identifier of the ob-
ject store. That is what allows this value to be placed into the code itself.
At the end of this code segment, the original call to CeOidGetInfo has been
adjusted to fit CeOidGetInfoEx, which now means that the same code can

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 109

Microsoft Windows CE NET 4.2
CeQidGetInfoEx

BOOL CeDidGetInfoEx(
PCEGUID pceguid,
CEOID oid,
CEOIDINFO* poidInfo

¥

Parameters

poeguid
[in] Pointer to the CEGUID that contains the globally unique identifier of a mounted
database volume, or of the object store, Use CREATE SYSTEMGUID to obtain the
GUID of the object staore.

olid
[in] Identifier of the object far which information is to be retrieved.

poidinfo
[out] Painter to a CEQIDIMFC structure that contains information about the object.

Return Yalues

TRUE indicates success. FALSE indicates failure. To get extended error information, call
GetlastError. GetLastError may return ERROR_INYALID_HAMNDLE if the specified object
identifier is invalid.

Remarks

The difference between CeidGetInfo and CeOidGetInfoEx is that CeOidGetInfo
retrieves information about objects only in the object store databases, while
CeOidGetInfoEx retrieves information about any object in mounted database volumes
in addition to the object store databases.

Figure 4.44: Windows CE API - CeOidGetInfoEx

be used for both. A branch is therefore made to CeOidGetInfoEx.

As we located CeOidGetInfoEx, we found a larger code segment. The be-
ginning of this procedure is shown in figure 4.45. The first two instructions
(MOV, STMFD) together form the entry stub, which saves register values,
stack pointer and return address, and moves the stack pointer accordingly.
Next, “ADD R11, SP, #0x18” assigns R11 with the previous stack pointer
value, the value seen before the entry stub. This is done so that R11 can be
used as a base in later references to the stack. To see why an ADD instruc-
tion is used instead of a SUB instruction, we need to remember that the
stack grows downwards, towards lower memory addresses. Thus, the en-
try stub has assigned the stack pointer with a smaller value. "SUB SP, SP,
#0x234" assigns 564 bytes (234 hexadecimal) to the stack. This makes room

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 110

81F7BB78 ; Exported entry 1195. CelidGetInfoE=x
B1F7BBY8

B1F7BBY8 ; [111 1iIIIl S UBROUT I HE JIbHIIb i
B1F7BB78

B1F7BB78 ; nttributes: bp-based frame

B1F7BBY8

B1F7BB78 EXPORT CeOidGetInfoEx
B1F7BE7E CeDidGetInfoEx ; CODE XREF: CeDidGetInfo+C]j
B1F7BBY8

B1F7BBY8 var_248 = —Bx248

B1F7BBY8 var_2uah = —Bx244

B1F7BBY8 var_2068 = —-Bx288

B1F7BBY8 var_1FC = —-@=1FC

B1F7BBY8 var_1F8 = —B=1F8

B1F7BBY8 var_1F4 = —Bx1F4

B1F7BBY8 var_1F8 = —-Bzx1F@

B1F7BBY8 var_2C = —Bx2C

B1F7BBY8 var_28 = —Bx28

B1F7BBY8 var_24 = —Bx2y

B1F7BB78 var_28 = —-B=28

B1F7BBY8 var_1C = —-Bz1C

B1F7BB78 oldR%4 = —Bx18

B1F7BBY8 o0ldRS = —Bz14

B1F7BB78 o0ldR6 = —Bz18@

B1F7BBY8 o0ldR11 = —B=C

B1F7BBY8 o0ldsP = -8

B1F7BBY8 oldLR = -4

B1F7BB78

B1F7BBY8 Mou R12, SP
B1F7BBYC STHFD sPt, {R4-R6,R11,R12,LR}
B1F7BBBA ADD R11, 5P, #ox18
B1F7BBBY4 SUB 3P, 5P, HOx234
B1F7BB8E Mou R4, R2

81F7BBBC Mov RG, #1

B1F7BB9A LDR R12, =8=FFFFFDB4
B1F7BB94 STRH RG, [R11,R12]
B1F7BB28 LDR R2, =8xFFFFFDBA4
81F7BB2C ADD RZ, R11, RZ
B1F7BBAA LDR R3, =8xFO8BAFDA
B1F7BBAY Mou LR, PC

B1F7BBAS Mou PC, R3

Figure 4.45: Test 7 - The start of CeOidGetInfoEx in coredll.dIl.

for a CEOIDINFOEX structure that is to be filled by the procedure (figure
4.19). This is an extended version of the CEOIDINFO structure, containing
one additional value (WORD wVersion). This structure is used in a third
version of the procedure, called CeOidGetInfoEx2. When CeOidGetInfo or

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 111

CeOidGetInfoEx are used, the values in the CEOIDINFOEX structure, ex-
cept the new version field, will get copied into the CEOIDINFO structure
before returning from the procedure. "MOV R4, R2” stores the value of
the CEOIDINFO* argument into R4, so that R2 is free to be used for argu-
ment passing in a new procedure call. "MOV R6, #1” places the value 1
into R6. "LDR R12, =0OxFFFFFDB4” then assigns the value OXFFFFFDB4 to
R12. Looking at the following instruction, "STRH R6, [R11,R12]”, we see
that this value is used as offset from the base stored in R11, to store the
value 1 found in R6 on the stack. This offset value is a 2’s Complement
value. We can decode OxFFFFFDB4 into binary as follows in figure 4.46.

F F F F F D B 4
111111111111 11111111 1101 1011 0100

Invert 0000 0000 0000 0000 0000 0010 0100 1011
+1 0000 0000 0000 0000 0000 0010 0100 1100

2 4 C
Remembering that we had a 1 as msbh, we get:
- 2 4 C

Figure 4.46: Test 7 - Converting from 2’s Complement to binary.

0x24C equals 0x18 + 0x234. As seen from the base value in R11, -0x24C is
the position of the last assigned location on the stack. This is where the
code places the value 1. The STRH instruction stores a half word, which
equals 2 bytes on a ARM processor. If we go back to the definition of the
CEOIDINFOEX structure in the Windows CE API (figure 4.19), we see that
the first field in the structure is the WORD wVersion. The size of this word
is 2 bytes, and according to the comment in the AP, this field always needs
to be set to 1. This is exactly what has happened in the assembly so far.
Figure 4.47 shows the changes seen on the stack so far in CeOidGetInfoEx.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 112

a) b) c)
SP e—|{» LR R11e}t» LR
R12 R12
R11 R11
R6 R6
R5 RS
R4 R4
SP e—t—»

#1

SPe——»

] C-.J -1 [

Before Assigned Assigned, Unassigned
CeGetInfoEx and used not used

Figure 4.47: Test 7 - a) Before calling CeOidGetInfoEx. b) After executing
the first two instructions, LR, R12, R11, R6, R5, and R4 have been pushed
on the stack, and the stack pointer has been moved accordingly. c) R11
has been set as base, the stack pointer has assigned 0x234 more bytes to
the stack, and the value 1 has been inserted at offset -0x24C. The STRH

instruction only stores 2 bytes.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 113

The next two instructions (LDR and ADD) calculates this memory location
again, and places it in register R2 so that it can be used as an argument.
Then, if we look at what happens in the last three instructions in figure
4.45, a new unknown value(OxFOOOAFDO) is introduced, and the program
counter ends up getting this value. Thus, we tried to search the phones
memory to see what could be located at this address, but had no luck. We
also searched different sources at the Internet, looking for any references
to this memory address, but did not get any answers. For some reason
the code jumped to this location, but it seemed impossible to find the code
that was executed there. The memory location did not even seem to be in
use.

Then we discovered an article at the “"Windows CE Base Team Blog” called
“Inside Windows CE API calls” [31] which contained valuable informa-
tion. This included the following explanation of Windows CE API calls:

e Windows CE APIs are implemented by a set of server processes (nk.exe,
filesys.exe, gwes.exe, device.exe, services.exe).

* When an application calls an API in one of these servers, the app
thread jumps into the server process.

* Most Windows CE APIs are exported by coredll.dll, which all Win-
dows CE applications link against, but coredll.dll is just a small wrap-
per, re-directing the call to the server process containing the actual
implementation.

* The re-direction of the call is done by making a jump to an invalid
address. This causes an exception. The invalid address value is not
an arbitrary invalid address, but contains information about what
server process the call should be re-directed to. When the exception
is caught, the value is recognized and decoded.

From the XDA-developers web site [32] we found more information, in-
cluding the formula to decode the invalid address value:

* A callismade to an invalid address in the range 0xf0000000 - 0xf0010000.
* The system call number is determined by 0xf0010000-(256*apiset+apinr)*4.

* The api set handles are defined in PUBLIC/COMMON /SDK/INC /K-
FUNCS.H and PUBLIC/COMMON/OAK/INC/psyscall.h.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 114

* The aipnrs are defined in several files, for example SH_GDI calls are
defined in PUBLIC/COMMON/OAK/INC/mwinuser.h.

Decoding 0OxFOOOAFDO according to this rule, we get API set = 20 and API
nr = 12. The same article from XDA-developers also contained a list with
all system calls found on a Pocket PC Phone Edition 2003, another version
of Windows CE. Instead of trying to make such a list for our device, we
decided to first see what we could find by using the list found. Despite the
fact that our device is running the Second Edition, the OS was the same.
Scrolling down the list to set number 20(0x14), we found that it is called
SH_FILESYS_APIS (figure 4.48). Since we were looking at a procedure to
get information about files, this seemed reasonable.

0x14/97fc43d0 [W32A (05 |00 005c 00011028 00011198 001e9798|SH_FILESYS_APIS
00016784 ()
00000000 ()
0001342c|(PTR)
000135b8|(PTR)
00013de0|(PTR)

00014158 |(PTR)

00014634 |(PTR)
000153d0|(PTR)
00015d24|(PTR)
0001373¢|(PTR, DWORD)
00012c88 ()
0002acOc (PTR)
00012d14|(PTR, PTR)
0002153¢|(PTR)

00020004 |(PTR)
15InNNNasN IPTR . PTRA

Olea| ||| ka|w|[w|—=]|O

—
=

—
—

—_
(o]

—
|75

—_
oy

Figure 4.48: Test 7 - List of API sets.

It also backed up our suspicion of finding the implementation in the server
process filesys.exe. As a consequence, we decided to start disassembling
filesys.exe, which was also available from the flash image.

At the top of the file created by IDA we saw the table shown in figure
4.49.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 115

A06116828 off_11028 DCD sub_167DC ;: DATA XREF: .text:off_17A88L0
Aaaa1182C DCD @
Aae116838 DCD sub_13464
0811834 DCD loc_135F@
goe11838 DCD sub_13E38
Aae1183c DCD sub_141A8
Aoe11848 DCD sub_14684
808110844 DCD sub_15428
A0611648 DCD sub_15D7C
8081184C DCD sub_ 13774
faee11858 DCD loc_12CCh
86116854 DCD loc_2ABAC
A86110858 DCD sub_12D5A
gaa1185c pCD loc_2152@
Aee11868 DCD sub_1FFES
AB6110864 DCD loc_2BE34
Q0G4 BA R nrh coh 24R9%

Figure 4.49: Test 7 - Table at the beginning of filesys.exe.

The table contains memory addresses for several subroutines, and the ad-
dresses seemed quite similar to the addresses found in 4.48. Though they
were not exactly alike, the list in 4.48 had been created with a different
phone, which made us assume that this list might be what we were look-
ing for. We had already found the API number to be 12. Counting from
0, the subroutine at index 12 is highlighted. It appears to be located at
address 0x12D50, and figure 4.50 shows the code located there. As before,
the first instructions form the entry stub. R11 is set to be used as base,
and the stack pointer is moved to make room for some additional values
on the stack. "MOV RO, #0” and "STR RO, [R11 #var_30]” initializes one of
the new variables on the stack to zero. As we will see below, this variable
is what ends up being the return value received in coredll.dll. 1f it is still
zero when received by coredll.dll, the procedure call will be interpreted as
failed. The numeric value zero will then also be returned by coredIl.dll. Re-
call from the API definition of CeOidGetInfoEx (4.44) that the return value
will be either TRUE or FALSE. As we know, the numeric value zero is in-
terpreted as FALSE, which according to the API correctly indicates failure.

We know from the analysis of coredll.dll that the second parameter, which
is found in R1, is the object identifier (CEOID). "LDR R1, [R11 #param_R1]”
gets the value of this parameter from its newly assigned slot on the stack,
and puts it into RI. This may seem unnecessary, and in fact it is, since
R1 has not been changed. The value to be stored in R1 is already there.
The reason for this strange behavior is that the compiler, which translates

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 116

8eB12D58 ; (1l SUBRODUT I NE LIV IINIEEIE
A8\@12p5 a8

886120508 ; nttributes: bp-based frame

Ae\E12p5a8

88812058 sub_ 12D58 ; CODE XREF: sub 31934+7CLp
Ae\@12p5a9 ; DATA XREF: .text:@88110858T0
gee12p509

A8\@12p58 var_34 = —@x3y

A8\@12p58 var_38 = —@z38

A8\812D58 var 2C = —B@x2C

A8\@12D58 var_28 = —@x28

A8\@12p58 var_24 = —@x2y

A8\812p58 var_ 28 = —@=28

A8\@12p58 var_1C = —@z1C

8e\e12058 var_18 = —Bz18

A8\@12p58 var_14 = —@z1y

A8\@12p58 var_18 = —@z1@

88812058 oldR11 = —BxC

88812058 oldsP = -8

88812058 oldLR = -4

B8612D58 param_RA@ = B

88812058 param_R1 = 4

88812050 param_R2 = 8

Ae\@12p5a

Ae\@12p5a9 Hou R12, 3P

A88E12D5L STHFD 5Pt, {RB-R2}
Aa\@12ps8 STHFD 5Pt, {R11,R12,LR}
aa\|12ps5c ADD R11, 3P, #8xC
aa\E12p68 SuUB 5P, SP, #0x28
Ae\E12D64 Hou RA, #8

gee12068 STR RB, [R11,#var_38]
Aa\@12p6C LDR R1, [R11,#param_R1]
aa\E12p7a Hou R8, R1,L3R#28
Ae\E12D7 L 5TR RA, [R11,#var 34]
aa\|12p7e LDR R1, =8xFFFFCEA8
aa\|12pvc LDR RA, [R1]

aa\@12p8a LDR R2, [RB,#-0:x14]
A8\E12D84 TST R2, #2

aea12p88 BEQ loc_12D98

Aa\@12p8c Hou RB, #2

Ae\E12p949 STR RA, [R11,#var_28]
A8\E12D94 B loc_12DAg8

BEEI2D98 [-

Figure 4.50: Test 7 - Beginning of code segment found when jumping to
address 0x00012D50.

from high level language into assembly, may not always find optimal so-
lutions. This may result in some unnecessary instructions at times, and we

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 117

will see similar examples as we move along. "MOV R0, R1,LSR#28” per-
forms a logical shift right operation on the object identifier value, shifting
the value 28 bits to the right. The 4 previous MSBs of the object identifier,
which is what is left after the shift operation, is then stored in RO. “STR
RO, [R11#var_34]" then stores this value into the last assigned slot on the
stack so far.

What happens next is best explained by a flowchart. The flowchart (fig-
ure 4.51) itself has been generated by IDA, and we will now analyze the
instructions within the green area. Continuing our analysis, "LDR R1,
=0xFFFFC800” and "LDR RO, [R1]” loads some value from the memory
address OxFFFFC800. We found several references to this memory loca-
tion, including one at the XDA-developers web site [32]. OxFFFFC800 is
the location of a kernel data structure called KDataStruct. KDataStruct is
defined in PRIVATE /WINCEOS/COREOS/NK/INC/NKARM.H, and in
this file we also noticed a comment confirming the memory location of the
KDataStruct.

As the memory location read was the same as the location of the KDataS-
truct, we knew that we were interested in the first 4 bytes of the structure.
We found this field at the first position: "LPDWORD IpvTls; /* 0x000 Cur-
rent thread local storage pointer */”. From the comment we knew that the
value loaded was a pointer to the current threads local storage. “LDR R2,
[RO,#-0x14]" uses this pointer to load the desired value into R2. The next
instruction tests to see if the value loaded equals 2, and depending on the
outcome of the test, the “branch if equal” instruction decides which code
to execute next. We did not know exactly what this value was, but we
had some suspicions. Anyhow, as we will see, it was not necessary to fig-
ure out that value to understand the rest of the code. For that reason, we
did not spend much time on it. What has happened in the code segment
marked 1 is that a value has been loaded from the threads local storage,
and a branch is made on the condition of whether or not this value is 2.

As we analyze further, we can follow the flowchart. In the case where
the value is 2, a new value is loaded with the same pointer as offset, and
stored on the stack. If it was not 2, the value 2 is stored on that same stack
location instead. Then, no matter the result from the previous conditional
branch, step 3 merges the two paths and checks to see if the stack value
is 2. That will be the case if either the previous condition failed, or if it
succeeded and the new value found with "LDR R2, [R1,#-0x18]” was 2.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 118

cub_12050;
MO R1%, SF
STHFD SF1, {R0-RZ}
STMFD 3F!, {R11,R1Z,LR}
ADD R11, SF, #0xC
SLE SF, SF, #0<25
MO RO, #0
STR RO, [R11,#var_50]
LCR k1, [R11,#param_R1]
MO RO, R1,L3RA2S
STR RO, [Ri1,#var_54]
1) [LER R1, =0<FFFFCE00
LCR RO, [R1]
LDF Rz, [RO,#—0=14]
TST RE, #F
BED Toc_ 17095
falso truo
2a) | i 2b)
: Toc_12095 :
US| LOR R, =0FFFFCS00
A0y ek LOR R1, [RO]
STR RO, [R11,#var_z&8] o R’ [R1,#-0x18]
B Tac_ 12045 s R
= STR RZ, [R11,#var_z5]

3) | Toc_1Z0AS

LOR RO, [R11,#var_Z&8]
CHF RO, #F
BED loc_1Z0CC

W
!

0001z0oe4
B MO R1, #0=ZZ20

LOR RO, [R11,#param_RZz]

BL MapCallerFtr

aTR RO, [R11,#var_24]

LDR Ri, [R11,gwar_z4]

3TR k1, [R11,#param_RZz]

4] Toc_1Z2D0C0 :

LDR RO, [Ri11,#var_354]
CHF RO, #3
BME Toc_120DF5

Figure 4.51: Test 7 - Assembly flow graph.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 119

We now come to what really separates the paths taken. If the last con-
dition fails, we need one extra step, denoted 3.5 in figure 4.51. A proce-
dure named MapCallerPtr is called, with the two parameter registers RO
and R1 prepared with corresponding values. R0 is given the value of the
second argument to CeOidGetInfoEx, which was a pointer to the CEOID-
INFO structure to be filled. R1 is given a value matching the size assigned
for the structure. Figure 4.52 shows the definition of MapCallerPtr.

Blatform Bullder for Microsoft Windows CE 5.0
MapCallerPtr

Send Feedback on this topic to the authors

This function validates whether a region of memory pointed to by the ptr
parameter is valid with respect to the caller process.

LPVYOID MapCallerPtr{
LPVOID pir,
DWORD Jwlexn

¥

Parameters

ptr
[in] Pointer to walidate,

dwien
[in] Length, in bytes, of the region of memory being validated.

Return Yalues

Returns the mapped version of p#r if it is valid; otherwise, this function
returns MULL.

Remarks
MapCallerPtr is generally used in device drivers' IOCTLs, where you can
validate the pointer parameters passed by the caller process. Because
device drivers usually run with a higher privilege and have access to more
memory, if vou do not call this function to validate the parameters, it could
overwrite a processes' memaory. It could also averwrite the kernel memory
if called from a malicious application,

Requirements

085 Yersions: YWindows CE \NET 4.0 and later,

Figure 4.52: Windows CE API - MapCallerPtr

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 120

As we can see from the API, MapCallerPtr is used to guarantee that the
initiator of the procedure call has access to write to the desired memory
location.

If we summarize the code shown in the green area of figure 4.51 in short,
we could say that some information about the thread is checked to see
whether or not the access rights to the memory location needs to be vali-
dated. We simply assumed that the unknown value that was checked had
to do with the access rights of the thread, and whether or not it runs in
kernel mode. But as stated before, for our purpose of finding how files are
located, having the exact answer was unnecessary.

Figure 4.53 shows the code following the access check analyzed above.
At this point we saw some signs telling us that we might be on the right
track, as the assembly code started using the object identifier to make de-
cisions. The 4 MSBs of the object identifier that was previously stored
on the stack are now loaded back into RO with "LDR RO, [R11#var_34]".
The values of these bits are tested against four different values on lines
0x00012DDO0, 0x00012E3C, 0x00012E48, and 0x00012E58. The options are
3,0, 1, and OxE, and from this point on the execution take separate paths
depending on the value of these 4 MSBs. From this we could already see
that the object identifier was not just a random unique numeric value, but
instead actually held information encoded in the identifier itself. After re-
verse engineering all the paths, we were able to see the difference:

3: Objects with a global identifier other than 0. This sup-
ports objects found on a mounted database volume other
than the object store databases.
0: Objects that are located within the object store.
1: Objects located in ROM.
0xE: Special case objects.
Since our task was to figure out how to locate files in the object store, we
will only present the details of the path concerning objects with identifiers

having 0 in the 4 MSBs.

Starting at the top on figure 4.53, the test against 3 will then obviously fail,

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

g8e12pCC loc_12DCC

gae12pCeC LDR
gae12ppa CHP
gae12pD0 4 BHE
aae12p08 LDR
aae12ppC LDR
ga8e812DEQ LDR
B8812DEL BL
g8e12DES 5TR
g8e12DEC LDR
gae12DFa 5TR
B8812DF 4 B
88e12DF8 ;

a8e12DF8

88812DPF8 loc_12DF8

a8e12DF8 LDR
a8e12DFC BL
g8e12E80 LDR
Ba812E084 CHP
g8e12E088 BEQ
gae12E8C LDR
B8812E10 LDRH
BOB12E1Y Moy
g8e812E18 HMou
g8e12E1C CHP
B8e812E20 BEQ
BE812E2Y4

B8812E24 loc_12E24

BAB12EZ2Y4 HMOou
B8812E28 BL
g8e12E2C B
g8812E30 ;

B8812E30

B8812E308 loc_12E38

B86812E34 LDR
B8812E34 5TR
88812E38 LDR
g8e812E3C CHP
B8812E40 BEQ
B8812E44 LDR
BOB12ELB CHP
g8e812E4C BEQ
B8812E50 LDR
B8812E5L CHP
B8812E58 BEQ
88812ESC B
A8B12E6A ;

; CODE XREF: sub_12D58+60T]
RA, [R11,#var_34]
Ra, #3

loc_12DF8

R2, [R11,#param_R2Z]
R1, [R11,#param_R1]
R8, [R11,#param_RA]
sub_23DF4

RA, [R11,#var_28]
R1, [R11,#var_28]
R1, [R11,#var_2C]
loc_12F38

; CODE XREF: sub_12D58+84Tj
RA, =unk_ X46CEB
EnterCriticalSection
R8, [R11,#param_R2Z]
RO, #A

loc_12E24

R8, [R11,#param_R2Z]
R1, [RB]

R2, R1,LSL#16

RB, R2,LSR#16

RO, #1

loc_12E3@

; CODE XREF: 5uh_12D5ﬂ+BBTj
RA, #HOx57

SetLastError

loc_12F8C

; CODE XREF: sub_12D5@+D@tj
RO, [R11,#tvar_34]
R8, [R11,Hvar_1C]
R1, [R11,H#var_1C]
R1, #0

loc_12E88

RB, [R11,Hvar_1C]
RO, 1

loc_12EES

RB, [R11,Hvar_1C]
RO, HOXE
loc_12E68
loc_12F@h

Figure 4.53: Test 7 - Seperating MSB paths.

121

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 122

and a branch is made to 0x00012DF8. What happens there is that a call is
made to EnterCriticalSection to ensure mutual-exclusion synchronization
so that no changes are made to the object while retrieving information.
Then two tests are performed on the CEOIDINFO pointer.

The first checks that the pointer is not 0. The second checks if the version
field of the structure is set to 1. If either of the two tests fails, execution is
continued from 0x00012E24, which sets the last error value to 0x57, leaves
the critical section, and return with an error. Error message 0x57 is defined
as ERROR_INVALID_PARAMETER (in WinError.h). If all goes well, execu-
tion continues from 00012E30, where the three remaining paths (0, 1, and
OxE) are separated. In our case, the "CMP R1, #0” instruction will find the
two values to be equal, which cause a branch to 0x00012E80.

80012E88 loc_12E80 ; CODE XREF: sub_12D58+F0Tj
B0012E80 LDR RO, [R11,Hparam RO]
80012E8Y CHP RO, #0

80012E88 BEQ loc_12EBC

80012E8C LDR RO, [R11,ftparam R8]
80012E90 LDR R1, [R11,ftparam R8]
AB012E94 LDR R2, [R1]

00012E98 LDR R3, [RO,#4]

80612E9C ORR R1, R2, R3

B0012EAD LDR RO, [R11,Hparam RO]
80012EAY LDR R2, [RO,H8]

80012EAS ORR R3, R1, R2

80612EAC LDR RO, [R11,ftparam R8]
80012ER0 LDR R1, [RO,H#0xC]

A0012EBY ORRS R2, R3, R1

00012EBS BNE loc_12EDC

80612EBC

80012EBC loc 12EBC ; CODE XREF: sub_12D58+1387]
80612EBC LDR R2, [R11,Hparam R2]
80012ECEH LDR R1, [R11,#param R1]
80012ECY LDR RO, =unk_469A0

80012ECS BL sub_268ED

80612ECE STR RO, [R11,fvar_14]

80812ED D LDR R1, [R11,fuar_14]

00012EDY STR R1, [R11,Hvar_30]

80612EDS B loc_12EE4

BBO12EDE ; ———————————

Figure 4.54: Test 7 - Validating that object store path is correct.

At address 0x00012E80 we found the code in figure 4.54. The first parame-
ter to CeOidGetInfoEx, which was a pointer to a global identifier (PCEGUID),
is loaded from the stack and compared with 0. If the PCEGUID is 0, there

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 123

is no global identifier, which in turn indicates that the file is located in the
object store. A branch is then made to 0x00012EBC.

If, on the other hand, the PCEGUID is defined, the code needs to check
if this global identifier actually is the identifier of the object store. Figure
4.55 shows the definition of the global identifier (CEGUID). It is defined
as a structure with four dwords. These values are loaded one at a time,
and then ORed together, before "ORRS R2, R3, R1” finally, in addition to
performing an OR-instruction, sets the zero flag if R2 ends up with 0. As
the final value in R2 is decided by an OR of all the four dwords in the
CEGUID, it will only be 0 if all these dwords are 0. If this is the case, the
branch is not made, and execution continues from 0x00012EBC as it did
when the PCEGUID was 0. If R2 does not end up with 0, a branch is made
to a location where an error code is determined, and the procedure returns
as failed.

Windows Mobile \Version 5.0 SD&
CEGUID

Send Feedback an this topic to the authors

This structure contains the globally unique identifier (GUIDY of a mounted
database. A CEGUID and CEOID together uniquely identify a record or
database in a database volume or in the object store,

typedef struct CEGUID {
DWORD Datsl:
DWORD Datas:;
DWORD Datal:
DWORD Datad:
} CEGUID:;

Members

Datal
Cpagque data member,

Dataz
Cpaque data member,

Data3
Cpaque data member,

Data4
Cpaque data member,

Figure 4.55: Windows CE API - CEGUID structure

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 124

The Windows CE API defines a macro to perform a check on a CEGUID to
see if it identifies the object store. Figure 4.56 shows the macro. Compar-
ing this macro with the assembly code just analyzed, we see that this check
is exactly what happens in the code. When execution continues from ad-
dress 0x00012EBC, we now know that the object is located in the object
store.

Microsoft Windows CE NET 4.2
CHECK_SYSTEMGUID

This macro checks a CEGUID to determine if it identifies the object store
database wolume.

#define CHECK SYSTEMEUID{ pguid)
1 {{pouid)-=Datal]{pouid)->Data?|{pguid)->=Datad]|(pguid)->Datad)
Parameters
pouid
[in] Pointer to the CEGUID to be checked.
Return Yalues

TEUE indicates success. FALSE indicates failure.

Figure 4.56: Windows CE API - CHECK_SYSTEMGUID macro

At address 0x00012EBC we see the object identifier (CEOID) and the pointer
to the file info structure (CEOIDINFOEX") being loaded back into R1 and
R2, and some global variable loaded into RO. A branch is then made to
0x000268EO0 (figure 4.57) with these three parameters. At 0x000268EQ there
is just a redirection to a new subroutine located at 0x00023FCC. The result
from this subroutine is compared with 0, where a 0 indicates failure, and
any other value cause a branch to 0x00026910.

Figure 4.59 shows the subroutine found at address 0x00023FCC. We no-
ticed that several calculations and comparisons were made on the object
identifier value itself, so we decided that the best way to keep up with
what happens in the code segment was to simulate the code on paper with
some real parameter values. For the object identifier in R1, we used the
identifier of the meta-data object for the file Dogbark.wav which is one of
the phones default files.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 125

BOE26BER ; (111 ILIIIII SUBROUTINE i
B00268E 0

PON26S8E D

B00268E0 sub_268E0 ; CODE XREF: sub_12058+178Tp
B00268E0 ; sub_SABDC+C8Yp

B00268E 0 STHFD SPt, {R4-R7,LR}

BO0268EL MOU R4, RO

PO0268ES MOU R6, R

B00268EC MOU RS, R2

B00268F 0 MOU R7, #0

BO0268FY BL sub_23FGC

PON268FS CHP RO, #0

B00268FC BNE loc_26918

00026900

00026900 loc_26900 ; CODE XREF: sub_268EB+54)j
00026900 MOU RO, #Ox57

000269 B4 BL SetLastError

000269 08 MOU RO, R7

000269 L LDMFD SPt, {R4-R7,PC}

BOBZH91B ; ———

Figure 4.57: Test 7 - Redirecting to 0x00023FCC.

004ERO060 (3800 0050 0000 0000 5424 0DO0DO 5524 DOOO|B..P....T5..US..
004ERO070(64A5 0000 0100 F700 5017 0000 3C24 o000O0|d....... P...<5..
004EROE0 (0O0BF SESS 745FB C301 1100 OBOO 4400 eFOO0|....t[...... D.ao.
004ERO0%0 (6700 6200 6100 7200 eBOO ZEOO 7700 bl100|g.b.a.r.k...w.a.
004ERODAD (7600 DFOO

Figure 4.58: Test 7 - The file dogbark.wav used in the simulation.

We located the file in memory to find its identifier. The identifier of this ob-
ject was 0x00002454, shown in green on figure 4.58. R2 contains a pointer
to the structure to be filled. As this is an out parameter, we did not need a
precise value for it, but kept the definition of the CEOIDINFOEX structure
(figure 4.60) in mind.

For R0, we needed to locate the global variable that was loaded before
the subroutine call in figure 4.57. IDA noted that the variable was located
at address 0x00012F44. When locating this memory address, we needed to
make sure that we read the address from filesys.exe’s perspective. By using
the Itsutils[7] tool called pps, which dumps information about processes,
we found the filesys.exe process to be located at address 0x04000000. With
0x00012F44 as offset from the start of filesys.exe’s memory slot, we found
the value of the global variable to be 0x00469a0 (which we learned was
exactly the value used by IDA to name the variable on line 0x00012EC4 in

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

figure 4.54).

aa@23rFcc
a8623FCcc
aa@23rFcc
a8623rFDa
880623FD4
a8623FDs
aa623rDC
880623FE@
880623FEL
0802 3FES
88623FEC
g8023FFa
880623FF4
B8823FF8
88623FFcC
a882480808
aap24004
aa824 8088
gag248ac
aaezyo1a
aap24814
aaezyo1y
aa624814
aap24a18
aap2ye1c
aap24p2a
a8624824
aae240828
aa@2482c
aa624030
a8624834
aap240838
aap2u483c
aap24840
aaa2h484h
aaa24848
aa82484C
aap2495 08
aa824854
aap24958
aap2485c
g8624860
a8e2406a
g8624860
a8e2406a
a8624864
aa0240864

sub_23FCC

STHFD
Hou
HMOouU
BIC
CHP
BCS
HMou
Hou
HMou
ORR
HMou
AHD
HOUSs
BED)
LDR
LDR
CHP
BEN

loc_ 24014
LDR
LDR
LDR
ADD
ADDS
BEQ
HOU
HOU
LDR
ST
BEQ
HOU
AND
AND
CHP
BICEQ
ADDEQ
ADDEQ

CODE XREF: sub_1F8F@+1CTp
.text:0002e8ceTp ...
SPY, {R4-R6,LR}

R3, RO

R6, R1

RO, R6, HOXFFOOAOOD
RO, HBx4200000
loc_24060

RO, R6,LSLHS

R2, HOX3IFC

R1, RO,LSR#t18

R2, R2, #3

RO, R1,LSL#16

R4, R6, R2

R2, RO,LSR#t16
loc_24814

RO, [R3,#0x2BC]

R1, [RO,R2,LSL#2]

R1, #0

loc_24060

; GODE XREF: sub_ 23FCC+3utj
RO, [R3,#0x2BC]

RG, [R3,#0x2B4]

R1, [RO,R2,LSLH2]
R2, R1, RS

R3, RZ, H#OxC
loc_24060

RO, R4,LSL#16

R1, RO,LSR#t16

R3, [R3,R1,LSLH2]
R3, M

loc_ 24060

RO, R3,LSRith

R2, RO, #OXFOOOOOD
R1, R6, HOxXFOOBOOD
R1, R2

RO, R3, HOxFOOBAOO3
R1, RA, RS

RO, R1, H#OxC

LDMEQFD 5PY, {R4-Rb6,PC}

loc_24068

Moy
LDHMFD

CODE XREF: sub_23FCC+14Tj
; sub_23FcC+untj ...

Ra, #a

SP*, {R4-R6,PC}

; End of function sub_23FCC

Figure 4.59: Test 7 - Utilizing the rest of the object identifier.

126

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 127

We were now ready to begin the simulation. Table 4.5 shows how we

Sicrosoft Windows CF NET 4.2
CEOQIDINFOEX

This structure contains information about an object in the object store or database
volume,

typedef struct CEOIDINFOEX {
WORD wiiersion;
WORD wilkiTvbe:
union {
CEFILEINFO0 infFile:
CEDIRINFO inflirectory;
CEDBASEINFOEX infDatabase;
CERECDRDINFOD :infRecord;
b
} CEDIDIHFOEX:

Members
wYersion
Yersion of this structure. Applications must set w¥ersion to 1,
wObjType
ype of the object. The following table lists the possible values for wObjType.
Yalue Description
OBITYPE_IMYALID Indicates that the object store contains no valid
ohject that has this object identifier,
QOBITYPE_FILE Indicates that the object is a file.
OBJTYPE_DIRECTORY Indicates that the object is a directory.
COBITYPE_DATABASE Indicates that the ohject is a database,
QOBITYPE_RECORD Indicates that the object is a record inside a
database.
infFile

CEFILEIMFD structure that contains information about a file, This member is valid
only if wObjType is CBITVPE_FILE.

infDirectory
CEDIRINFO structure that contains information about a directory. This member is
valid only if wObjType is OBIJTYPE_DIRECTORY .

infDatabase
CEDBASEIMFOER structure that contains information about a database. This member
is valid only if wObjType is OBITYPE_DATABASE,

infRecord
CERECORDINFO structure that contains information about a record in a database.
This mermber is valid only if wObjType is CBITYPE_RECCRD.

Figure 4.60: Windows CE API - CEOIDINFOEX structure

stepped through the code segment one instruction at a time.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 128

Instruction Result Comment

STMFD SP!, R4-R6,LR Entry stub

MOV R3, RO R3 = 0x469A0

MOV R6, R1 R6 = 0x2454 The identifier.

BIC RO, R6, | RO = 0x469A0 Clears the 8MSBs,

#0xFF000000 which have done their
part of the lookup

CMP RO, #0x400000

Checks that the OID
is less than the limit
0x400000

BCS loc_24060 Branches to return 0 if
OID is incorrect

MOV RO, R6,LSL#8 RO = 0x245400

MOV R2, #0x3FC R2 = 0x3FC

MOV R1, RO,LSR#18 R1 =0x9 b23-b10 of OID

ORR R2, R2, #3 R2 = Ox3FF

MOV RO, R1,LSL#16 RO = 0x90000

AND R4, R6, R2 R4 = 0x54 b9-b0 of OID

MOVS R2, RO,LSR#16 R2 = 0x9

BEQ loc_24014 Branches if R2 is 0

LDR RO, [R3,#0x2BC]

RO = 0x42001000

Uses the global vari-
able in R3 as base, in a
memory load from off-
set 0x2BC

LDR R1, [RO,R2,LSL#2]

R1 = 0x4A9C68

Uses the value found in
the previous load as a
base in a new memory
load. The offset is b23-
b10 of the OID, shifted
2 positions to the left.
This equals a multipli-
cation by 4.

CMP R1, #0

BEQ loc_24060

If the value found and
placed in R1 is 0, the
procedure failed

LDR RO, [R3,#0x2BC]

RO = 0x42001000

Uses the global vari-
able to load from offset
0x2BC as before

LDR R5, [R3,#0x2B4]

R5 = 0x42005000

Uses the global variable
to load a new value
from offset 0x2B4

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

129

LDR R1, [RO,R2,LSL#2]

R1 = 0x4A9C68

Loads the same address
as before

ADD R2, R1, R5 R2 = 0x424AEC68

ADDS R3, R2, #0xC R3 = 0x424AEC74

BEQ loc_24060 Branches and returns
failed if R3is 0

MOV RO, R4,LSL#16 RO = 0x540000

MOV R1, R0, LSR#16 R1 = 0x54

LDR R3, [R3,R1,LSL#2] | R3 = 0x4E1061 Uses the 10 LSBs of the
OID as offset from R3.

TST R3, #1

BEQ loc_24060

MOV RO, R3,LSR#4 RO = 0x4E106

AND R2, RO, | R2=0

#0xF000000

AND R1, R6, | R1=0

#0xF000000

CMP R1, R2

BICEQ RO, R3, | RO = 0x4E1060

#0xF0000003

ADDEQ R1, R0, R5 R1 = 0x424E6060

ADDEQ RO, R1, #0xC RO = 0x424E606C

Table 4.5: Test 7 - Simulating a file lookup.

The result of the simulation shows the value 0x424E606C being returned
by the subroutine. Surprisingly, this value was exactly the memory ad-

dress of the data held by Dogbark.wav’s metadata object, with address 0x42000000

being the start of the object store. The object identifier had been split into
pieces, where the pieces themselves were used as offsets into memory to
locate the file. We had now found the way in which files are located, which
had been the missing link in our reverse engineering process. But to get
a better impression of what actually happened in the code, we needed to
transform this assembly code from the PSM into a more abstract definition

to include in the PIM.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 130

Transform to PIM

We sketched what we had just experienced, and made the model shown in
tigure 4.61. Two values had been loaded from a structure pointed to by the
global variable that was passed as an argument. The offset values into this
structure were 0x2B4 and 0x2BC. Both of these loaded values 0x42001000
and 0x42005000 pointed to a table, which we have called Object table list
and Object table. Bits 10 to 23 were used as index into the table pointed to
by the value found at structure index 0x2BC (Object table list). The value
found there were used as a new offset from the value found at structure in-
dex 0x2B4, to locate the correct Object table where the object address could
be found. From the Object table, bits 0 to 9 were used as index to locate the
actual address of the object.

filesys structure

0x2B4

Object table list Pl

*%—_—‘“7%. 0x2BC

*
Object tables /
.

¥ Objects

Figure 4.61: Test 7 - Locating an object.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 131

If we combine this lookup with the connection we have seen previously
between metadata, filedata list, and filedata objects, we get the complete
tile lookup shown in figure 4.62.

filesys structure

Object table list P 0x2B4
(-,__\k____
7% 0x2BC
/?
/ Filedata objects
/ "
/ |+
L
Object tables .
L
v, .
. i

. /

} . , S

Metadata Filedata list

Figure 4.62: Test 7 - Locating a file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 132

4.2.7 Defining a Strategy - Third Loop

Now that we had gained a good understanding of both the storage format
of objects and how they were located, we started to get a good overview of
how the object store is built. This made us discover things that we did not
see at earlier stages. As we had found how the object store uses tables to
locate objects, we wanted to test how these tables were affected when ob-
jects were deleted. In addition, when inspecting the memory dumps, we
had seen some memory addresses that kept appearing at the beginning
of unused spaces. Now that we had a better understanding of the object
store, we also wanted to inspect these addresses further. By looking at the
data pointed to by these addresses, we often found the addresses pointing
to new addresses in a way as if it were a linked list.

We decided to inspect these aspects further, and went back to the black
box strategy as before.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

4.2.8 Testing
4.2.8.1 Test8

Create test Now that have located the Object table list and the Object tables
with the help of disassembly we would like to understand how they are
updated when files are moved or deleted. The point of this is to figure
out if there is any way we can extract blobs that have been “deleted” by
the user. It is very uncommon for such data to be overwritten at once at
deletion. In most storage systems the data is only marked as ready for re-

allocation.

Figure 4.63 contains the eight test.

Test 8

Goal

Figure out what happens to the Object table list and
Object tables when blobs are moved / deleted.

Input

—a

"zebratest-30032006-T 1-6 abbababba"

Text message. From: +4793404090 To: +4795482315

Steps

Action

Input

Qutput

Empty phone.

festd 1

Send text message

—

testg 2

Find offset and id of text message and parent.

Look up the object in the Object table.

N L0 [R | —

Delete text message sothat is ends up in
"deleted items"

test8 3

6|Find offset and id of text message and parent.

7|Lock up the abject in the Object table again.

8| Delete text message from "deleted items".
Should be completely deleted.

festd 4

9|Look upthe object in the Object table. Should be gone|

Figure 4.63: Test 8 - Object table list and Object tables.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 134

Extract info/Adjust PSM

Searching for “zebra” we find our text message at offset 0x007CFA1C (fig-
ure 4.64). Its id is 0x2A04 and its parent id is 0x2575 (Inbox database).

O07CFAL0(3100 6300 e200 3100 0000 OO0O0 DCOO 0080 (l.c.k.l.........

O07CFAZO (0000 0000 O4ZA& 0000 7325 0000 OOO0 OO00f..... A -,
O07CFASO (AC40 9300 1300 0380 1300 1180 1300 0900 (.@..............
007CFA40 (1300 170E 1300 1A00 4000 OeODE 1FO0O0 1FDC|........ @.......
007CFASO(1FO0 1A0C 1FO0 3DO0 1FO00 3700 1300 O8B0E|...... = T
007CFABO (1300 093D 1300 0180 1300 OF0E 4001 0830 (...=........ @..0

007CFAYO (5300 5600 0053 0000 2002 0004 0000 O100(3.V..2..
007CFASO (EDO1 117D E6Ce 162B 3437 903% 3334 3001)...}...+47.9340.
007CFASO (3930 EBOO 0000 0042 7ARS b272 6100 7465 (90..... Bzebra.te
007CFAAD (7374 2D33 3030 0433 3221 362D 5431 ZDE0 |(st-300.3216-T1-.
007CFABO (3620 Bl6Z 6211 0111 0542 0O0EE 1200 01006 akb....B......
007CFACO (0026 008E C456 0000 3E00 0030 ZAO01 0000 |.&...W..>..0=...
007CFADO (0101 2803 FBEA F953 1600 0101 0101 FFO1|..)....5........
007CFAEO (0101 0101 0101 O1FF 0101 0101 0101 0101 ... eveinnvinanns
007CFAFO|FFO1 0101 0101 0101 0110 2901 ZA06 AZO4|.......... 1%L

Figure 4.64: Test 8 - Zebra found.

Doing the same calculations as earlier in the disassembly we get that the
index into the Object table list should be 0x0A and the index into the Ob-
ject table should be 0x204. From the disassembly we know that the ob-
ject store starts at virtual address 0x42000000, the Object table list starts at
0x42001000 and the data in the object store starts at 0x42005000. In our
memory dumps of the object store however, we start counting from O,
not 0x42000000. Therefore the object page table is located at offset 0x1000
and the data starts at 0x5000. Dumping the Object table list from offset

Qgoooloo0o o000 oooo s0F3 0000 e404 0200 9013 03000 do..o.oo.
oooolo0lo|1C14 0400 AOFA 0400 283C 0600 ZO05F O0COO|........ (<., .
00001020 |AC10 2500 CCBC 4A00 8C11 6BOO 0000 DOOO|..%...J...k.....
Q0001030 |0000 0000 0000 0000 0o000 o000 0000 0000)oeeveninnns
Qoooilo40|0000 0000 0O0O 0000 Q0O000 0000 0000 0000)o eveninnns

Figure 4.65: Test 8 - Object table list.

0x1000 in figure 4.65 we see that this gives us the value 0x6B118C at offset
OxA*4(marked with yellow). This is the offset to the Object table for our
blob. We add 0x5000 to get to the start of data and get 0x6B618C. Next we
add 0x204*4, which is the Object table index, and 0xC to skip the header of
the Object table, which gives us 0x6B69A8. This location is where the offset

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE

Inbox

00eEE9AD
00eEE9ED
o0eBe9CO

29A9 7C10
oooo 1cos
oooo z2cos

49506
oooo
oooo

Deleted Items

00eEE9AD
00eEE9ED
00BEBE9CO

Complet

d0eBE&IAD
00eBE&IEO
d0eBRICO

CoAC 7C10
D149 7C40 0000
oooo 2208 0000

ely Deleted

oooo EC25 0000
0ood oooo 0858
2808 0000 2C08

ESAd

7940
20043
30043

TC70
20243
3008

1588
oooo
oooo

1DAA
oooo
oooo

7CR0
2403
34043

oooo
oooo
oooo

1C98
2403
3408

4D6Z
2028
3008

7C90
oooo
oooo

oooo
oooo
oooo

g5A0
oooo
oooo

oooo
2408
3408

1828
28048
3804

740 |
2808 . .

3808

ncss
oooo
oooo

135

Figure 4.66: Test 8 - Object table

of the blob with id 0x2A04 is stored. As we see in figure 4.66, yellow mark-
ings, this is now 0x607CAA1D. The algorithm from the disassembly states
that the next step is to clear the 2 lowest bits and the highest byte of this.
The result is 0xX7CAA1C to which we finally add 0x5000 to get 0x7CFA1C,
which is the offset to our blob.

Now what happens when we delete the message from “Inbox”? We know
from using the phone that the message is actually just moved to another
folder called “Deleted Items”. How is this reflected in the object store?
Let’s look at the memory dump taken after the text message was moved
to “Deleted Items”. A search for “zebra” shows us that text message now
is located at offset 0x007CF9DO instead. It has been moved and has par-
tially written over the old version that was stored at offset 0x007CFA1C
(figure 4.64). There is a new id, 0x2A06, and doing the same calculations
as the last paragraph for this new id tells us that the offset to this blob is
stored in the Object table at location 0x6B69B0(4.66, red markings). Clear-
ing the two lowest bits and the highest byte and adding 0x5000 again gives
us the correct offset to our new blob. Notice that location 0x6B69AS, the
slot for our first blob in the Object table, has been cleared (4.66, grey mark-
ings). This means that when a text message is moved from “Inbox” to
"Deleted Items” the data is copied to a completely new blob and the old
blob is deleted. The reference to the old deleted blob is also erased from
the Object table.

Next we deleted the text message completely from the device. Inspect-
ing the old offset of the text message, 0x007CF9DO0 in figure 4.67, we now

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 136

see that the blob has been completely overwritten by new data. The pur-
ple markings in figure 4.66 also shows us that the blob has been erased
from the Object table. Notice also that the id 0x2A04, at the green offset
0x006B69A8, has been reused and a pointer to a new blob has been in-
serted here.

QO07CEFSDO | 0000 3000 3000 0000 00O0O o000 Oooo 3800
O07CFS9EOD| 3100 3000 3300 3000 3100 3000 3200 ZEOO)|1
O07CEF9FO0 | eD0O0 7000 6200 5400 0030 0000 0OOOOQ FDZ29|m.
O07CFA00 | 0000 DD1E 0000 0000 0OOO 8040 6DO0 4000 Em.@.
O07CFA10|0100 4101 0200 4080 g0E1 8DC4 7e00 0002 |..A...@..... V.
Q07CFAZ0|0080 E18D C400 0000 0030 0043 0000 0O0OCO|......... o0.H....
O07CFA3O | 0000 0000 0072 6570 eCel 6Fe7 ZEGS 78B5|..... repllog.exe
007CFA40|00ZF 7265 eDeF 7465 202F 616C BC20 ZF63| . remote ~all ~h
O07CFASO0 |202F 703A 616C 6CO0 4000 DOZE 0000 40DA| ~pr:all.@..+..@.
007CFAROD |EFAT 0100 0001 OOFF 0800 0101 0101 0101)....0.ivininnnnns
Q07CFA7O|O1FF 0101 0101 0101 0101 FFO1 0101 0101 ... eivinnn i vt
O07CFABO|0101 0121 362D B900 0000 0000 0000 OZ2ZA|...l6-......... *®
007CFAS0 | 0000 OOF9 ¥YC42 8OFB 7C42 6040 5900 1FO0|....|B..|B @Y...
O07CFRAAD |ODCES0 1300 0180 1300 1180 1300 1983 1300c.cvuunn..
O07CFABRO | 2183 4100 1380 1300 0680 1300 0O%0E 4101)0V.A.., .. AL
O07CFACO | 2283 ZE00 3000 0O0ZE 0000 Z000 0O00Z OO0AF |"...0.....
Q07CFADO | 3100 01CG 002C 2C91 0O31F 5200 0O13F 0101 |1......... E..7..
O07CFAED |D101 0101 3006 DOOO B400 1061 B17Z2 D041)....0...... a.r.h
O07CFAFO | 0065 3000 0029 0000 COOO DOZA 011C 0341).e0..)..... ®, .4

Figure 4.67: Test 8 - Objects completely deleted.

To summarize: when a blob is deleted the data of the blob can be over-
written and the pointer to the blob in the Object table is erased. Sooner or
later the object id is reused and a new pointer is placed in the id’s slot in
the Object table.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 137

4.2.8.2 Test9

Create test

The memory addresses that seemed to form a linked list were suspected
to be a linked list pointing to all the spaces of unused memory. Such a list
could be used to find the first space of memory large enough to store new
objects. If this was the case, we would have an additional way to locate
areas with possibly deleted data. We wanted this test to find out if our sus-
picion was true by adding and deleting some files. The sizes of the files
were picked to help determine this. We would first add some small files
(svein.txt and gjertrud.txt), and then a fairly large file (msn.gif). After delet-
ing msn.gif and svein.txt, we first added a file larger then all others (baa.jpg),
and finally one more small file (diskoteket.txt). We expected diskoteket.txt to
be placed at the position of the deleted file msn.gif.

Figure 4.68 shows the ninth test. We needed to make the memory dumps
from filesys.exe’s view, in order to use the addresses as found.

Test9
Goal
‘Determine if there is a linked list pointing to free memony
Input
Filename Size
1|svein b 168 bytes
2| gjertrud txt 83 bytes
3| msn.gif 7047 bytes
dibaa jpg 12180 hbytes
Al diskoteket bt 191 bytes
Steps
Action Input Output
1{Dump object store. tests 1
2|Add 1 new file. svein bt testd 2
3|Add 1 new file. gjertrud testd 3
A1 Add 1 naw file. msn . gif testd 4
5|Delete svein txt testd 5
6| Delete msn.gif testd 6
71Add 1 new file. baajpg test9 7
3| Add 1 new file. diskotelket txt testd 3

Figure 4.68: Test 9 - Pointers to deleted space.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 138

Extract info/Adjust PSM

We started inspecting test9_2, where only svein.txt has been added. We
located the objects related to svein.txt, shown in figure 4.69. The last object

007CEG90 | 00A4 0OOO 0044 6574 2065 7220 6B2G eCe1|..... Det er kila
007CEBAD (7271 6412 0069 6B40 BEBS 2068 6164 AlZ0|rgd..ik@ke had.

007CESBEO (0476 EBAZ 006D 6567 2069 0541 BF81 ES5Z20|.v...meg 1.ho..

007CEBBCO (7361 7400 7365 2031 3030 2025 4420 70D1|sat.se 100 XD p.
007CESDO(6D75 7313 016E B8ZE 204A 2202 736A 6502 |mus..n.. J".sje.
007CESED (0408 7220 6761 72Z6E 6520 0075 7420 6176|..r garne .ut av
007CESF0O 2068 BF10 7465 6CeC EZ200 6876 6936 73C3| ho.tell..hvi.s.
007CE900(00D1 2074 6172 BZ0S5 2345 04F2 046D B564|.. tar..#E...med
007CE910 (3303 61lel 8074 212C 2066 6FY2 1406 007Z)|..al.t!, for...r
007CE920 (2053 Y665 696E 2000 4B7Z 6F67 7374 bled| 3vein .Krogstad
007CE930 (0020 OOBF 3400 0050 0000 0000 DCZ9 0000, ..4..P..... ..
007CE940(DD29 0000 AB00 0000 0100 SeFC 0000 0000 |.)......veevans.
007CE950(701C 0000 0087 C993 GAATY C401 1100 0900 |m.....veeennnsn

007CE960 (7300 ¥600 6500 £900 eE00 ZEOO 7400 7¥800|s.v.e.i.n...t.=.
007CE970 (7400 O4FF 8176 4D03 0000 0000 eBeS ZOBE|t....wM..... ke h
007CESE0 (0000 0000 0000 0000 O0eD e567 2069 OS41)......... meg 1.A
007CES90 (6FE1 ESZ0 736l 7400 7365 Z031 3030 2025 |o.. sat.se 100 %

007CESAD (4420 70D1 6D75 7313 OleE BGZE 2042 2202 |D p.mus..n.. J".
O07CESEO[736A 6502 0408 7220 6761 7ZBE 6520 0075 |sje...r garne .u
007CESCO (7420 6176 2063 BF10 7485 BCEC EZO00 BE76 |t av ho.tell..hv
007CESDO (69686 73C3 0001 2074 6172 B20S5 2345 04FZ|i.s... tar..#E..
007CESED (046D 6564 85303 bB1eC 8074 Z12C 2066 BF7Z2| .med..al.t!, for
007CESFO(1406 0072 Z053 7ek5 B9BE 2000 4B7Z2 BF67|...r Bvein .Krog
007CBAOO (7374 6164 0020 OOBF 5400 0050 0000 0000 |stad. ..4..P....
007CBA10(DC29 0000 DDZ9 0000 ASOO0 0000 0100 S6FC|.)...)....ova...
007CBAZ0 (0000 0000 701C 0000 0087 C993 8AA7 C401)
007CBASO (1100 0900 7300 700 &500 6900 eEOO ZEOO|....s.v.=.l.n...
007CBA40 | 7400 7800 7400 04FF ADYS 4D0O3 0000 0000 |t.=.t....uM.....

Figure 4.69: Test 9 - The objects of svein.txt.

related to svein.txt, the metadata object, is highlighted in green. Assum-
ing that no other objects has been added without our knowledge by the
operating system, the free memory space should be starting right after the
metadata object of svein.txt. We can see that the data following svein.txt
are clearly not using any blob pattern we have seen so far, so we assume
this could in fact be the beginning of the free space. We also notice that
parts of the data related to svein.txt are found again right below the correct
data objects. From this we made the assumption that the objects related to
svein.txt may have been moved, and the remnants below are showing the
previous position of svein.txt.

To inspect further, we looked at the file test9_3, where gjertrud.txt has been

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 139

added. This time, we found a pointer following gjertrud.txt’s metadata

Q07CH930 (0020 OOBF 3400 0050 0000 000OO DCZ9 O0000|. ..4..P..... 1.
007CE940 |DDZY9 0000 AGOO0 0OOO0O 0100 36eFC 0000 000D (.3oouo....
007CE9S0|701C 0000 0087 CY993 BAAY C401 1100 0900 (p. ...t
007CE9R0 | 7300 7600 6500 6900 6EOOD ZEOO 7400 7800(s.v.e.i.n...t.=.
Qo07CE970 (7400 O4FF 5100 0000 0000 0000 DFZS 0000 |t...0........ 1.
Q07CE950 (0000 0000 DOBA ¥C42 0100 e56% 0000 OOOOf...... [B..eg....
Q07CE9%90 (DC29 0000 0014 0Z2A0 SBAY C401 1100 1700(.0......0cevnnn.n
Q07CE9AD(SFO00 5000 6500 6700 4600 &%00 eCO0 7400|_.P.= .1 .
007CESED | YEOD 3200 3000 3800 3Z00 3700 3200 3700(™.2.0.

007CE9CO | 3500 3400 3300 ZEOO 7400 eD0O0 7000 eE8Y6(G.4.3...%.
0o07CESDO | 4000 0030 0000 0OOOO EOZ29 0000 E125 0O0O0(@..0..... Tooo)..
007CESECQ | 0000 0000 0000 OOO0O 0000 0000 0000 0000 (f........eeuan...
QO07CESFO (0000 0000 0000 0000 0000 0000 0000 0000 (f.....eeeeennnnnn
Q07CEAOO (0OOO O0CO 0000 0000 0000 0000 0000 0000 (.....eeennnnnnn
007CBALO (0000 O0OO QOO0 QOOO0O 0000 0000 5800 0060(............ .0
O07CBAZO (0000 0000 E129 0000 0230 47eA 6572 7472 1...0Gjertr
007CBAZD | 7364 2073 B5BE 6465 7220 75¥4 2065 7420 (ud sender ut et
007CBA40 | 7279 BBE74 6520 eF6D zZO61 7420 3376 6369 |rvkte om at Svel
007CBASO |BEZ0 6572 2073 616D 6D65S BEZ0 BDES 6420 (n er sammen med
007CBARD |636F 756E 7472 7973 746A 6572 BEGS BEZ0D |(countrvstjernen
O07CBAYO (45865 6964 6920 4861 7567 B52E ZOFD 4158F [Heidi Hauge. .A.

007CBASO (3500 0050 0000 QOOOO DFZ9 0000 EOZ% OO000(g..P..... Teadlon
Q07CBASO (5300 0000 0100 Z8FF 0000 0000 DCZ9 O000(s..... (P 1.
007CBAAD(0O14 O02A0 BBAT C401 1100 0C0O0 6700 BAOD|............ g.].

007CBABD | 6500 7z00 7400 7Z00 7500 6400 ZEOOD 7400 (e.r.t.r.u.d...t.
007CBACD | 7500 7400 3175 4D03 0000 0000 E1D7 Z20FA(=.t.luM....... .
007CEBADO |B0BS FC42 0000 0000 0Z05 00ZF 42D9 0ARAY (.. |B....... ZB...
O07CBAEOD (5363 00Be BBFS Z8FE 8795 003F bRAE 00F9 (Sc....(....7f...

Figure 4.70: Test 9 - Locating gjertrud.txt.

object. The value of the pointer was 0x427CB980 (marked in red on fig-
ure 4.70). As before, the memory is dumped from the start of the object
store(0x42000000), which means that this address is seen as 0x7CB980 on
figure 4.70. If we take a look at what is found at this address, we see the
value 0x00000000 (marked in yellow). But right next to it, we find the ad-
dress 0x427CBADO. As we can see, it points back to the first pointer. This
appears to be a linked list as expected, where two pointers are used to
point to the next and previous node. If this is the case, we have two sepa-
rate spaces of free memory on figure 4.70. In addition, these spaces need
to be the only spaces of free memory, since one space has a value in the
next field but not the previous, and the other space has the opposite. If this
is in fact a linked list, these are the only two nodes.

So how do we determine if this is the case? If we take a look at the
data found at this second space(marked yellow in figure 4.71), we see that

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 140

007CE930|0020 OOBF 3400 0050 0000 0000 DC29 Qoood). ..4..P..... 1.,
007CE940 |DD29 0000 A800 0000 0100 BeFC 0000 0000 |.).....ooeuonann.
O07CE950(701C 0000 0087 C993 BAATY C401 1100 0900 |m...ve e,
007CE960 (7300 7600 6500 6900 BEOO0 ZEOO 7400 7800|s.v.e.i.n...t.X.
Q07CE970 (7400 O4FF 5100 0000 0OOO0O 0000 DEF29 0000 |t...Q........ ..
Q07CE9580 (0000 0000 DOBA 7C4Z 0100 6567 0000 0OOO|...... |B..eg....
O07CE950 (DC29 0000 0014 02A0 8BAY C401 1100 1700|.). ...,
O07CE9AQ (SFO0 5000 6500 6700 4800 6900 &CO0 7400|_ .1 .
Q07CE9BO |(7EOQ0 3200 3000 3800 3200 3700 3Z00 3700|™

Q07CE9CO (3800 3400 3300 2E0O0 7400 eDO0O 7000 B376 (8.
O07CESDO (4000 0030 0000 0000 EOZS 0000 E129 0000 |@.. . .
O07CE9EQ (0000 0000 0000 0000 OOO0O0 0000 0000 0000)....ceeeeeennnnn,
007CESF0O | 0000 0000 0000 0000 0000 0000 0000 0000,
007CBAO0D | 0000 OOO0 0000 0000 0000 0000 0000 0000, ...,
007CBAL0 0000 O0OO0O O0OOO 0000 0000 0000 S800 0060 X0
007CBAZ0O | 0000 0000 E129 0000 0230 476A B37Z 7472)..... 1...0Gjertr
007CBAZD | 7364 2073 BSBE 6465 7220 7574 2065 7420 |ud sender ut et

007CBA40 7279 BBEY4 B520 BFBED 2061 7420 5376 B56Y9 |rvkte om at Svel
007CBASO |BEZ0 B572 2073 B16D BDES BEZ0 6D6ES 6420 |n er sammen med

007CBARO |B3RF 756E 7472 7973 74BA 6572 BERS BEZ0 |countrystjernen

007CBAYO | 4865 6964 6920 4861 7567 B52E 20FD 418F |Heidi Hauge. .A.

007CBASO (3800 0050 0000 00OO DEZ9 0000 EOz9 OOOO|&..P..... Toaad..
007CBAS0O (5300 0000 0100 28FF 0000 0000 DC29 0000|3..... . ..
007CBAAD (0014 02A0 8BAT C401 1100 0CO0 6700 p&A00|............ g.7.

007CBABO (6500 7200 7400 7200 7500 6400 ZE00 7400 |e.r.t.r.u.d...t.
Q07CBACO (7800 7400 3175 4D0O3 0000 0000 E1D¥ Z20F& |=z.t.luM....... .
007CBADO (G0BS 7C42 0000 0000 0205 00ZF 4ZD9 0AAT|..|B....... <B...
007CBAEQD (5363 00BR BEBEFS 28FE 8795 003F 6RAE 00F9 |Bc....(....7f...

Figure 4.71: Test 9 - A temporary object.

it is found right beneath svein.txt’s metadata object. This is the area we
assumed to be the start of the free space in our first inspection of test9_2.
Since the three objects related to gjertrud.txt has not been placed starting
from this position, some other object must have been placed there if our
assumptions are correct. This object would have to have been created by
the operating system or some other process. Looking at the data following
the metadata of svein.txt, the size field of this object would then be 0x51.
As we have seen earlier, an odd value for the size appears to indicate that
the object is deleted, which in this case needs to be true if our theory about
the pointers is correct.

If we look at the id field of the deleted object, which is still present, the id
of this object would have been 0x000029DF. This is in fact the id following
those used by svein.txt. From this we can see that some object has been cre-
ated between the insertion of svein.txt and gjertrud.txt. gjertrud.txt’s meta-
data object also uses this id, so the object must also have been deleted

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 141

before the insertion of gjertrud.txt.

If we look at what appears to be the name of the file, its file extension
shows that it was a temporary file (.tmp). This backs up the idea that the
object has been deleted, and that the space is now free to be reused. We
find that the size of this free space is 0x50, and if we ignore the 1 in the size
tield, which we assume has to do with the object being deleted, this equals
the value found there.

Having seen that the size was found in the first bytes of the free space,
we took another look at the first space following gjertrud.txt. The value
found to occupy the first two dwords there is 0x034D7531. Ignoring the
1 in the LSB as before, we find this value to equal 55407920 in decimal.
This seemed like a reasonable value for the free space on the phone, as it
translates to approximately 52.8 MB. When we inspected the phones set-
tings, we actually found this to be exactly the amount of memory said to
be free. This was a strong indicator telling us that our theory about these
pointers was correct. We took another look at test9_2 that was inspected
previously (figure 4.69), and found that in the positions where the pointers
should be located (0x7CB980 and 0x7CB984), we saw the value 0x00000000
at both positions. This seems reasonable, meaning that there is only one
large space of free memory, hence no other spaces to point to.

The next file inserted in the test was msn.gif. The results from this in-
sertion could be inspected in test9 4. We located svein.txt (figure 4.72),
and found that some changes had been made. The object store appeared
to have been reorganized, and the deleted temporary file was no longer
present. When we located msn.gif (metadata object shown in green on fig-
ure 4.73), we found that both pointers were now indeed given the value
0x00000000, indicating that a reorganization had been performed. This re-
organization makes sense, in order to prevent the object store from being
too fragmented.

The rest of the test files showed the same behavior we had seen so far. The
linked list kept pointing to the free spaces, the size field was updated, and
from time to time the object store was reorganized. In fact, we never saw
more than two spaces of free memory before a new reorganization was
performed. Because of this reorganization, diskoteket.txt had been placed
last in the main free space area just as the other files.

The test had confirmed our suspicion about the pointers.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 142

O007CESCO
Qo07CESDO
Q07CESED
Q07CESFO
Qo7CE900
007CE910
007CE920
007CE930
007CE940
Q07CE950
Q07CE960
Qo07CE970
Qo07CE980
007CE9920
007CHB9AD
O007CE9ED
Qo07CE9CO
Qo07CE9DO
Q07CE9ED
Q07CE9FO
Qo07CEAOOD
007CBALD
007CBAZD

007CDB40
Q07CDe50
007CDe60
Q07CDe70
Q07CDeE0
007CDe90
007CDRAD
007CDBED
007CDBCO
Q07CDeDO
Q07CDBED

4B7 2
aoon
a1o0
BAAT
eEDN
oooo
1191
FFFF
E1Z29
aoon
aoon
aoon
2g00
B372
2065
5376
6DES
BERS
20FD
E0Z9
DCz29
6700
2E00

26F0
4931
aoon
o100
BCAT
6700
892K
01E4
OCF9
21149
20AF

BFBE7
anon
gaFC
c401
2E00
aooo
ADAE
c401
oooo
anon
anon
anon
aoen
7472
7420
B569
G420
BEZ0
418F
anon
anon
BAO0
7400

7374
DCz29
aooo
1100
7400
EZ229
Ez40
4000
oooo
aooo
aooo
aooo
aooo
7064
7279
GEZ20
B36F
4865
3g00
2300
0014
6300
7600

6164
aoon
aoon
o900
7800
oooo
DBZ29
0030
oooo
aoon
aoon
aoon
aoon
2073
6B74
6572
756E
6964
oos0
aoon
0zA0
7200
7400

oozo
DDz9
701C
7300
7400
0zz20
oool
oooo
oooo
aoon
aoon
aoon
E129
B56E
6520
2073
7472
6920
aoon
o100
gBATY
7400
3400

O0OBF
aoon
aoon
7600
O4FF
g70a
oooo
oooo
oooo
aoon
aoon
aoon
aoon
6463
BF 6D
616D
7973
4861
aoon
28FF
c401
7200
ooDo

3400
AB00
aog?
6500
1c0oa
1200
oooo
E0DZ9
0ooo
aoaoo
aoaoo
aoaoo
0z30
7220
2061
EDES
74BA
7567
DFZ9
aoaoo
1100
7500
oooo

0050
aooo
£993
6900
oo0e0
1111
FFFF
0ooo
0ooo
aooo
aooo
aooo
47BhA
7574
7420
6EZ0
6572
B5ZE
aooo
aooo
acaoo
6400
0ooo

Erogstad. ..4..F

........ S.vV.2.1
n R R
..... 1. e
..... @)
S = N I I]

T
oo .. 1...0G]

ertrud sender ut
et rvkte om at
Swveln er sammen
med countrvstjer
nen Heidi Hauge.
R R 1.

Figure 4.72: Test 9 - Object store reorganized

99B7
BE7z
anoon
FFe1
c401
6900
BB1Z
B99E
2342
B30z
g11z

Figure 4.73: Test 9 - Locating msn.gif.

Transform to PIM

D338
2E185
729
ooon
1100
G6e00
oooo
3548
2202
ZEAB
B3A7

0AC3
9331
ooon
ooon
0¥on
FFOO
oooo
LOES
6142
312E
49BECE

97F9
Eezz
E329
DFZ9
D00
3D59
oooo
999E
4A5F
E572
F39Eb

0931
FFAD
ooon
ooon
7300
4D03
oooo
4C19
D338
ZEDG
2B71

3aD3
3000
g7 1B
go01c
eEOD
oooo
392F
aCE3
CFD9
7929
49503

AF AL
o050
oooo
0A3Z
ZE00
oooo
37F4
658E
2DAT
04Da
C498

Figure 4.74 summarizes what we found. At the initial state shown in a), the
object store has been organized in order to have all unused memory gath-
ered into one big space. When an object is deleted, a linked list connects
the spaces of free memory as shown in b). Whenever the object store is
reorganized, the free space of the object store goes back to the state shown

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 143

in a).
Free space from
deleted object
- size
- previous = 0x00000000
- next =¢
Y
a) b)
Free space Free space
- size - §ize
- previous = 0x00000000 - previous =*
- next = 0x00000000 - next = 0x00000000

Figure 4.74: Test 9 - Linked list pointing to free space.

4.2.9 Evaluate PIM/CIM Consistency

During this loops evaluation of the consistency between our PIM and CIM,
we found our reverse engineering to be adequate. We had covered both of
the two major parts of the CIM: the object allocation table and the objects
storage format. The success criteria appeared to be met, so we decided to
enter the validation phase in order to test if this was in fact true.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 144

4.3 Validation Phase

According to our methodology, the validation should be performed by uti-
lizing what is called reverse reverse engineering. This meant that we had to
enhance our validation tool (BlobExtractor) in order to test all the success
criteria described in section 4.1.

The second success criterion is: “Understand the format used to store ob-
ject, in order to extract data and attributes.” As we have performed our
tests, we have steadily been building a list of structure definitions on the
various blobs found in the object store. The last version of these structures
was presented in listing 4.10. In order to test this criterion we implemented
these structures and the logic to extract them from a given location offset
of the memory dump in our validation tool. With this we could, if we had
the starting location of a blob, extract it directly from the memory dump
without utilizing the Windows CE API at all. For most of the blob types
we could also interpret the data in the blobs and differentiate between data
and metadata.

The problem now was to find the starting location of the blobs. Our first
approach was to scan through the file sequentially byte by byte. We com-
bined this with several heuristics to detect the start of a new blob. The
heuristics were:

1. Size check. The size of the blob should be divisible by 2 and over 0.

2. ID check. The id of the blob should be over 0 and under 30000. (This
was the largest value we had seen as an id and then some.)

3. Type check. The type of the blob should not be 0 and should only
use the highest nibble of the 2 byte wide type field.

4. Flags check. The flag field should be set to 0.

As we saw in test 6 this worked pretty well, but there were several down-
sides with this approach. First of all, it is time consuming. Scanning
through the memory dumps and applying the heuristics for every byte
took up to 30 minutes, which is a lot considering that they are only 64 MB
in size. Second, and the worst problem, is that we cannot guarantee that
we have found all the blobs because our heuristics may be wrong. This
leads us to success criterion number 3.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 145

According to this criterion we had to “Make sure that we have covered
the entire object store”. In order to do this we needed a much better ap-
proach to finding blobs than simple heuristics. Thanks to the disassembly
in test 7 and further testing in test 8 we found the coveted lookup table
that maps between object ids and offsets to actual blobs in the object store.
Combining the fact that every object in the object store must have an id
and the fact that we have the table that maps all ids to blobs, we now had
a way to make sure we knew where all blobs in the object store was lo-
cated. We implemented code to extract the lookup table from the memory
dumps and used this table to find all the blobs which could then be ex-
tracted.

Now that we know where all the blobs in the object store are, we also
know where they are not. We use this knowledge to figure out where
all the possible locations for deleted data. They are basically any place
there is data which is not connected to a blob that can be found through
the lookup table. This fulfills the first criterion: “Be able to distinguish
between deleted and non-deleted data.” In our validation tool we have
implemented code that recognizes these locations. In addition we have
also implemented code that utilizes the other way to locate deleted data.
This method is mentioned in test 9. It basically entails following a double
linked list of freed memory (which can contain deleted data) that the ob-
ject store maintains.

By enhancing our validation tool to use all the information in the PIM we
have successfully used reverse reverse engineering to validate that our model
has produced enough information to be able to say that all the specific suc-
cess criteria for our object store analysis has been fulfilled. To summarize:

1. Be able to distinguish between deleted and non-deleted data. This
came as a result of fulfilling criterion 2 and 3. We have two ways of
tulfilling this criterion. 1) All data that is not pointed to by the object
store is possibly deleted. We know everything the object store points
to and thus can deduct what it doesn’t point to. 2) Follow the freed
memory double linked list.

2. Understand the format used to store objects, in order to extract data
and attributes. The black box tests enabled us to extract this infor-
mation.

3. Make sure that we have covered the entire object store. We found
the lookup table used by the object store by disassembling parts of

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 146

the operating system. This table contains pointer to all valid blobs
and thus all valid data in the object store.

Chapter 5

Discussion

147

CHAPTER 5. DISCUSSION 148

This project has had two parallel objectives. On one hand we wanted to
analyze Windows Mobile’s object store in order to improve the tools used
for forensic analysis of evidence from devices running Windows Mobile.
At the same time we were interested in the establishment of a general
methodology for forensic analysis of an unknown embedded device. The
following discussion will consider each of these objectives in separate sec-
tions.

5.1 The Object Store

During the final validation phase of the methodology (4.3) we concluded
that all the success criteria for the analysis had been met. By extensive ex-
perimentation we had gained enough knowledge about the object store to
extract the information we wanted. We had found a way to locate objects
from the identifiers. As we also knew the value space of the identifiers, we
could either loop through all identifier values, or we could more elegantly
loop through the tables containing identifiers of all active objects. This
made us capable of locating all active objects. By subtracting the mem-
ory occupied by these objects from the rest of the object store memory, we
were left with only the parts of memory possibly containing deleted infor-
mation. In addition, we had found a second way to find the deleted parts
of memory. We located a linked list structure pointing to all areas of free
memory, which equals the areas where deleted data can be found. This
gave us two different methods to verify the results.

Of the objects themselves, we had almost complete knowledge of the at-
tributes, and we were able to extract the data from the objects. The few
fields missing were left because they did not appear to contain valuable
information for our purpose, and hence were not worth spending time on.
This is the kind of choice any reverse-engineer will have to make, unless
interested in complete knowledge of the entire device.

The most important classes of BlobExtractor is listed in appendix B. These
are the classes that do all the heavy work involved with parsing a mem-
ory dump and extracting the objects and free space areas from the objects
store. The complete program is much larger and also includes code for vi-
sualizing the content of the object store in different ways. Its source code
is included in the zip file accompanying this thesis.

Appendix B also include the extensions made to the Judas Forensic Tool

CHAPTER 5. DISCUSSION 149

during our analysis. The complete tool is included in the zip file.

5.1.1 Future Work

Our work has given future tools the ability to extract a lot more accu-
rate information about Windows Mobile phones content, and even accu-
rate information concerning remaining parts of deleted information on the
phones. [6] discussed existing tools, and showed that they all lacked the
ability to extract deleted information from such phones. With the results
from this project, a tool can now be made that could easily outperform the
existing tools, giving a detailed view of all remnants of deleted data on the
phone. This could have an important forensic value.

5.2 The Methodology

Our decision to sketch a methodology before moving on to the actual anal-
ysis of the device was problematic, since we were not experienced with
reverse engineering. We still found this to be the best solution in order to
get a good basis for the discussion of a general methodology that was ap-
plicable to forensic analysis of other unknown embedded devices. Instead
of just attacking the object store immediately and at the end summarize
our experiences from this process; we believe that our approach made us
more qualified to discuss methodology.

It was natural to base the methodology on previous work by other research
teams. This would make use of years of research, and by using concepts
familiar to the reverse-engineer, the methodology framework were more
likely to be well understood and accepted.

The methodology sketched in section 3.3.2 guided us through our reverse
engineering process, and we found it to be a good support throughout.
The methodology itself will never solve the problem. Reverse engineering
such a system is hard, and we often found ourselves stuck in situations
where solutions seemed far away. But in such situations it is a good sup-
port to have a well-defined methodology to lean on. The methodology
helped us maximize our focus on the problem areas, instead of just fum-
bling around in the dark.

Of particular value was our immediate focus on building a knowledge

CHAPTER 5. DISCUSSION 150

base, continuously updated with all the information we found to be rel-
evant for our analysis. There were many situations during the analysis
where progress was made because we somehow recognized data we had
documented in the knowledge base, and thereby made connections to de-
fine new knowledge. Building such a knowledge base should have a high
priority in any reverse engineering process.

The methodology aimed at being both general enough to be applicable
with other devices, and at the same time be specific enough to be useful
in the process. We solved this by separating the specific choice of strategy
from the more general aspects of the process. The strategies are chosen
dynamically to adapt to the current situation. Over time, experience and
learning from other projects will help the reverse engineer choose accurate
strategies.

Model-Driven Reverse Engineering was chosen as basis for the general
procedure. This supported the idea of documenting all information found
in a structured way, by using models to represent information. The mod-
els represented different abstraction levels, which we believe served as a
good way to both drive the process and to validate the adequacy of the re-
sults. As defining a standard for the representation was outside the scope
of this project, and a big task in itself, we did not make any attempt at
this. This meant that we had to choose the representation we found to be
the most suitable on the fly. Though this was inevitable, it meant that we
could not test the effects of using a standard modeling language.

By separating information on different abstraction levels, the top-level
models representing the CIM can be re-used in similar projects. This may
be a good help for a reverse-engineer, who can search previous projects in
order to find top-level models for similar projects that could either be used
directly, or slightly modified. This way, experience from previous projects
are used directly in the new project.

As we were two reverse-engineers working together on this project, we
also got a glimpse of how the methodology can be used to improve co-
operation. The models were used as basis for our discussions throughout
the process, and we believe they played an important role in order to pre-
vent misunderstandings and to make sure we both dragged in the same
direction.

With a defined methodology you get another possible benefit. Courses

CHAPTER 5. DISCUSSION 151

and training material could be made, aimed at improving the use of the
methodology. This could help improve both quality and efficiency.

5.2.1 Future Work

Whether or not the methodology is a good sketch for a general approach
is hard to determine from a single case study. Though our experiences
support the methodology, additional cases should be targeted with the
methodology in order to establish its relevance.

We have discussed the importance of the knowledge base, and mentioned
how the representation of information is of great importance. In order to
get advanced tools more involved in the process, this should be targeted
in future work. In [14], Rugaber discuss representation when reverse engi-
neering programs and specifies several requirements. We believe that his
thoughts on this serves as a good foundation for future work on this task:

¢ Requirements Related to the Information Content of the Repre-
sentation: The representation must be able to contain a variety of
types of information. These include informal rationale and annota-
tions, program segments, pointers to other documentation, and ap-
plication descriptions. Most importantly, it must be able to represent
the organization of the program in terms of detected abstractions. In
fact, the reverse engineer constructs a complex information structure
that describes the organization of the program and the interrelation-
ships of its pieces. There must be a place in the representation to
hold observations made by the reverse engineer during his process.

* Requirements Related to the Relationships Among the Data Being
Represented: The representation is constructed incrementally by the
reverse engineer. It must allow an observation concerning a section
of code to be associated both with related sections of code and with
the overall functional description being constructed. This includes
both hierarchical connections among abstractions and heterarchical
(cross-reference) associations. Finally, the representation should sup-
port instances where a section of code contains several components
interleaved together.

¢ Requirements Related to How the Representation is Constructed:
The representation needs to be easy to construct incrementally, both
computationally and from a user interface point of view. Addition-
ally, it should be language independent in the sense that it can be

CHAPTER 5. DISCUSSION 152

used during the reverse engineering of programs written in a vari-
ety of languages and programming paradigms.

¢ Requirements Related to How the Representation is Used: The
representation must be formal enough to support automatic manip-
ulation. For example, after a program has been reverse engineered
into the representation, it should be possible to apply tools to adapt
segments for reuse. This process is called transformational program-
ming, and a variety of such transformations exist.

* Requirements Related to How the Representation is Accessed and
Viewed: A predominant use of the representation will be to facili-
tate program browsing. That is, a maintenance programmer desir-
ing to fix a bug or make an enhancement needs to be able to pursue
the information structure either to answer specific questions (which
functions call a given function), obtain an architectural overview (in
graphical form), or locate a specific section of the code (where are all
of the statements that could affect the final value of a given output
variable). The representation must, at the same time, be indepen-
dent of any particular design method or notation and be capable of
generating information in any of a variety of formats.

Chapter 6

Conclusion

153

CHAPTER 6. CONCLUSION 154

The steadily increasing number of new digital device models is putting a
strain on law enforcement agencies’ ability to acquire evidence in crimi-
nal cases. The devices are often highly advanced and poorly documented
which makes it very time consuming to analyze them completely. One of
the more dire consequences of this is that there might be under develop-
ment a new kind of digital free haven for criminals. They can utilize the
new abilities of the devices to optimize their nefarious purposes safe in the
knowledge that police will not be able to catch them doing it.

The solution to this problem lays in making sure the analysis of the new
devices can be done more efficiently and well-structured than before. In
our thesis we have tried to do just this. First we constructed a methodol-
ogy for doing such analysis. This was based on prior research and assump-
tions we made of the context of our task. Then we tested our methodology
on a specific analysis of a Qtek Windows Mobile phone. This device was
chosen because the direct results of this analysis can be applied to any de-
vice utilizing this operating system, which is predicted by Gartner to be
around 20 million in 2008. Our analysis utilized with great effect the well
known techniques of black box testing and disassembly. One of the most
important lessons learned has been that understanding every single detail
of a unknown device is extremely time consuming and in most cases com-
pletely unnecessary. One should take great care in defining, in advance,
when one knows enough to get the job done. This is essential in figur-
ing out when to decide enough is enough. Our resulting developed tool,
BlobExtractor, can be used to extract most data from any device running
Windows Mobile or Windows CE. Some details remain, but the time and
cost involved in understanding them completely was found to be too high.

While the detailed analysis of Windows Mobile is interesting, the other
important part of our task was to evaluate whether our methodology and
model was general enough or could be generalized to work with other
types of digital devices. Based on our own success in utilizing it, we be-
lieve that this method could very well be suitable for others. Its iterative
approach of analyzing low level details and abstracting them to higher lev-
els of documentation to further understanding lends itself to widespread
use. The exact techniques used to do the low level analysis are device de-
pendant and not specified in the methodology. It is also important to note
that the methodology takes into account the importance of documenting
all knowledge firmly in a knowledge base, to enable better cooperation
between several reverse engineers. In the future, reverse engineering task
will be so complex that one cannot expect single individuals to perform

CHAPTER 6. CONCLUSION 155

them well in short amounts of time.

We hope that our thesis is a contribution in keeping the tidal wave of new
digital devices from swamping the ability of law enforcement agencies to
do their jobs.

Bibliography

156

BIBLIOGRAPHY 157

[1] Gartner: Forecast: Mobile Terminals, Worldwide, 2000-2009, 2005

[2] Microsoft Corp.: Microsoft ~ Shared ~ Source Initiative,
http:/ /www.microsoft.com/resources/sharedsource/ 2006

[3] Noblett, Pollitt, Presley: Recovering and Examining Computer Foren-
sic Evidence, Forensic Science Communications, Volume 2, Number
4, October 2000.

[4] Chikofsky, Cross: Reverse Engineering and Design Recovery: A Taxon-
omy, IEEE Software, pp 13-17, IEEE Computer Society, January 1990.

[5] Biggerstaff : Design Recovery for Maintenance and Reuse, Computer, pp
36-49, July 1989

[6] Eide: Mobile Forensics, http://www.dintnuno/ jar-
lee/m_forensics.pdf, 2005

[7] Hengeveld: Itsutil, http://www.xs4all.nl/ itsme/projects/xda/-
tools.html, 2005

[8] Stirewalt: Model-Driven Reverse Engineering, Georgia Institute of Tech-
nology, 2004

[9] Miller, Mukerji: MDA Guide Version 1.0.1, Object Management Group,
2003

[10] Fowler, Scott: UML Destilled. Second Edition. A Brief User Guide to the
Standard Object Modeling Language., Addison Wesley Longman Inc.,
1999

[11] Raymond: Reference Model of Open Distributed Processing (RM-ODP):
Introduction, University of Queensland

[12] Kamper, Rugaber: A Reverse Engineering Methodology For Data Process-
ing Applications, Georgia Institute of Technology, 1990

[13] Jackson: A System Development Method,
http:/ /www.ferg.org /papers/jackson—
a_system_development_method.pdf, 1981

[14] Rugaber: Program Comprehension For Reverse Engineering, Georgia In-
stitute of Technology, 1992

[15] Qtek: wwww.qtek.nu

BIBLIOGRAPHY 158

[16] Microsoft Corp.: Microsoft Developers Network,
http:/ /msdn.microsoft.com/

[17] Berkeley Wireless Research Center :ARM instruction Set Quick Refer-
ence, http:/ /bwrc.eecs.berkeley.edu/Research/Pico_Radio/Test_Bed /
Hardware/Documentation/ ARM/ARM Instruction_Set.pdf 2005

[18] ARM Ltd.: ARM architecture, http:/ /www.arm.com/miscPDFs/8031.pdf
2005

[19] Wikipedia: “Black box testing — Wikipedia The Free Encyclopedia”,
http:/ /en.wikipedia.org/w/index.php?title=Black_box_testing, 2006

[20] Microsoft Corp.: Windows CE 3.0 Features,
http:/ /msdn.microsoft.com/embedded /prevver/ce3/feature/

[21] Grattan, Brain: Windows CE 3.0 Application Programming, Prentice
Hall PTR, 2001

[22] VCOM Company: Sourcer, http:/ /www.partitioncommander.com/company
[23] Cronos/Terminus One: BORG, http:/ /www.caesum.com
[24] Jimnez: BDASM, http:/ /www.bdasm.com/

[25] URSoft: W32Dasm, http:/ /www.ursoftware.com

[26] unknown: PEDasm, http:/ /www.geocities.com/SiliconValley /Lab/
6307 /PEDasm.htm

[27] DoggySoft: Diss, http:/ /www.doggysoft.co.uk

[28] IOTA: Disassembler, http:/ /www.iota.demon.co.uk/psion/
disassembler/disassembler.html

[29] Delosoft: ARMDis, http:/ /www.delosoft.com/
[30] DataRescue : DataRescue, http:/ /www.datarescue.com/

[31] Loh: Windows CE Base Team Blog: Inside Windows CE API Calls,
http:/ /blogs.msdn.com/ce_base/archive/2006/02/02
/Inside_Windows_CE_API_Calls.aspx, 2006

[32] XDA Developers: XDA Developers, http:/ /xda-developers.com, 2006

Appendix A
Qtek S110 basics

159

APPENDIX A. QTEK 5110 BASICS

160

Platform

Dimension

e PDA form factor integrated
GSM/GPRS, Bluetooth,
and 1.3 mega-pixel camera

e Microsoft Windows Pock-
etPC Phone Second Edition

¢ 108.2 mm(L) x 58 mm(W) x
18.2 mm(T)

* 150 g with battery pack

Processor/Chipset

Memory

¢ Intel Bulverde 416 MHz

¢ ROM: 64 MB
e RAM: 128 MB SDRAM

LCD Module

GSM/GPRS Function

e 2.8” 240 x 320 dots resolu-
tion

e 64K-color TFT Transflective
LCD with white LED back
light

e Sensitive Touch Screen

¢ Internal antenna

¢ Tri-Band
(900/1800/1900MHz)

¢ GPRS Functionality

¢ Multi-slot standard class 10
e SIM

* 3V operation

¢ SIM Application Toolkit re-
lease 96

¢ Over the air programming

APPENDIX A. QTEK 5110 BASICS 161

Notification Audio

¢ Vibration for notification ¢ Built-in Microphone

* Notification by sound, mes- * Receiver

sage on the display
* Loud speaker for Hands-
Free supported

Camera Interface

¢ Colors CMOS 1.3 mega- * Infrared IrDA SIR

pixel camera with dust-
proof cover

SDIO/MMC card slot with
door (top)
e Preview Mirror

3V SIM card

2.5 D stereo audio jack

Table A.1: Qtek S110 specification

Appendix B

Source Code

162

© @ ~ [o) o N w N —

@ © ©w ©w @ @ w N N N N N N N N N) = = = = - = = = = =
s @ 'S @ N — S © @® N =N a [oY) N _ = © @ N o a1 'S w N = o

W
S

APPENDIX B. SOURCE CODE
B.1 BlobExtractor

Listing B.1: BlobExtractor: Blob.cs

163

using System;

using System. Collections.Generic;
using System.Text;

using System .Windows.Forms;

namespace BlobExtractor

{
public class Blob : TreeNode, IBlob

{
#region Fields
private long startOffset;
private long endOffset;
private long analysislD;
const long headerSize = 2 + 2 + 4 + 4;

private Ulnt32 blobDataSize;
private Ulntl6 blobType;
private Ulnt32 flags;
private Ulnt32 blobID;
private byte[] data;

#endregion
#region Properties

public long AnalysisID

{
get { return analysisID; }
set { analysisID = value; }
}
public long StartOffset
{

get { return startOffset; }
set { startOffset = value; }

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

APPENDIX B. SOURCE CODE 164

public long EndOffset

{
get { return endOffset; }
set { endOffset = value; }
}
public long HeaderSize
{
get { return headerSize; }
}
public long TotalSize
{
get{return HeaderSize + blobDataSize;}
}
public Ulnt32 BlobDataSize
{
get { return blobDataSize; }
set { blobDataSize = value; }
}
public Ulntl6 BlobType
{
get { return blobType; }
set { blobType = value; }
}
public String BlobTypeString
{
get
{
return BlobFactory.GetBlobTypeString (
blobType) ;
}
}
public Ulnt32 Flags
{

get { return flags; }

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

APPENDIX B. SOURCE CODE

set { flags = value; }

}
public Ulnt32 BlobID
{
get { return blobID; }
set { blobID = value; }
}
public byte[] Data
{
get { return data; }
set { data = value; }
}
#endregion

#region Null properties
public virtual Blob ChildBlob

{
get
{
return null;
}
}
public virtual Blob ParentBlob
{
get
{
return null;
}
}
public virtual Blob NeighbourBlob
{
get
{

return null;

}

165

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

APPENDIX B. SOURCE CODE 166

}

#endregion

#region Constructor

public Blob(long startOffset, long endOffset,
Ulntl6 dataSize, Ulntlé type, Ulnt32 flags,
Ulnt32 id, byte[] data, long analysisID)

{
this.startOffset = startOffset;
this.endOffset = endOffset;
this.blobDataSize = dataSize;
this .blobType = type;
this.flags = flags;
this .blobID = id;
this.data = data;
this .analysisID = analysisID;
this.Text = ”"”+bloblD;
this . ContextMenu = new ContextMenu () ;
Menultem mlItemStartOffset = new Menultem ()
mltemStartOffset.Tag = this;
mltemStartOffset. Text = "Copy.start_offset
~to.clipboard”;
mltemStartOffset.Click += new EventHandler
(mItemStartOffset_Click);
this . ContextMenu . Menultems . Add (
mltemStartOffset);
¥
#endregion

void mlItemStartOffset_Click (object sender,
EventArgs e)
{
Blob b = (sender as Menultem).Tag as Blob;
if (b !'= null)
{
Clipboard . SetText(b.StartOffset.
ToString ()) ;

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

APPENDIX B. SOURCE CODE 167

}
public override string ToString()
{
return ”” + blobID;
}

#region Debug

public virtual string Debuglnfo

{
get
{
return String.Format(”{0}\t{1}\t0Ox{2:X
INtOX {3: X\ t{4}\tOx {5:X}\t0Ox {6:X}\
tOx {7:X}”, analysisID, bloblID,
blobType, flags, blobDataSize,
TotalSize , startOffset, endOffset);
}
}
public virtual string Debug
{
get
{
return “debug”;
}
}

public static string DebuglnfoHeader

{

get
{
return ”AnallD\tID\tType\tFlags\
tDataSize\tTotalSize\tStartOfs\
tEndOfs”;
}

}

#endregion

187

© ® N o & 'S ©w N —

= = = — = = =
o ul 'S) N [1S)

Ju
N

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

APPENDIX B. SOURCE CODE 168

g

Listing B.2: BlobExtractor: BlobExtractor.cs

using
using
using
using
using

{
{

System;

System . Collections . Generic;
System . Text;

System .1O;

System . Collections;

namespace BlobExtractor

class BlobExtractor

const long HIGHTLOOKUP = 0x1000;
const long BASELOOKUP = 0x5000;
const long BLOB_HEADERSIZE = 0xC;
const long START_OFFSET = 0x0;

static long counter = 0;

StreamWriter sw = new StreamWriter (”c:\\
BlobExtractor.log”);

Hashtable h = new Hashtable () ;

byte[] highLookUpTable = new byte[0x04000];

byte[][] lowTables;

777

string filename = ;

public BlobExtractor(string filename)

{
}

public Ulnt32 GetBlobPointer (UInt32 blobID)
{

this.filename = filename;

return GetBlobPointer (GetHighIndexValue (
blobID), GetLowIndexValue(blobID));

}

public Ulnt32 GetBlobPointer (UInt32 highIndex,
UInt32 lowIndex)
{

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

APPENDIX B. SOURCE CODE 169

Ulnt32 indexValue = BitConverter.ToUInt32 (
lowTables[highIndex], (int)(lowIndex =
4));

indexValue = indexValue & 0xO00FFFFFC;

return indexValue;

}

public long GetBlobPointerFileOffset (UInt32
blobID)

{
return GetBlobPointerFileOffset (
GetHighIndexValue (blobID) ,
GetLowIndexValue (blobID)) ;
}

public long GetBlobPointerFileOffset (UInt32
highIndex, UInt32 lowIndex)

{
long seekValue = GetBlobPointer (highlndex,
lowIndex)+ BASE LOOKUP;
return seekValue;
}

public static UInt32 GetHighIndexValue (UInt32
blobID)
{

}

public static Ulnt32 GetLowIndexValue(UInt32
blobID)

return (blobID & 0xFC00)>>10;

{
return blobID & 0x3FF;
}
public void ExtractExact(string filename)
{

this . filename = filename;

FileStream fs = File.OpenRead(filename);
BinaryReader br = new BinaryReader(fs);
long fileLength = fs.Length;

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

APPENDIX B. SOURCE CODE 170

fs . Seek (HIGHLOOKUP, SeekOrigin . Begin) ;

int count = fs.Read(highLookUpTable, 0, 0
x4000) ;

if (count != 0x4000 || highLookUpTable ==
null || BitConverter.ToUInt32(
highLookUpTable, 0) == OxFFFFFFFF)

{
Console. WriteLine (”couldn’t_read .
hightable”);
return;
h

int numLowTables = 1;
Ulnt32 indexValue = 1;

while (true){ //get count
indexValue = BitConverter.ToUInt32(
highLookUpTable, numLowTablesx4) ;

if (indexValue != 0)

numLowTables++;

else
break;

}

lowTables = new byte[numLowTables][];
for (int i = 0; i < numLowTables; i++)
{
indexValue = BitConverter.ToUInt32(
highLookUpTable, i + 4);

long seekHeaderValue = BASELOOKUP +
indexValue;

fs.Seek (seekHeaderValue, SeekOrigin.
Begin) ;

readBlob (br);

long seekDataValue = BASELOOKUP +
indexValue + + BLOB_HEADER SIZE;

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

APPENDIX B. SOURCE CODE

int
int
int

for

171

fs .Seek(seekDataValue, SeekOrigin.
Begin) ;

byte[] lowTable = new byte[0x1000];

fs .Read (lowTable, 0, 0x1000);

lowTables[i] = lowTable;

emptySkips = 0;
largeSkips = 0;
okNormal = 0;
(int j = 0; j < numLowTables; j++)
for (int i = 0; i < 0x400; i++)
{
indexValue = BitConverter.ToUInt32

(lowTables[j], i = 4);

indexValue = indexValue& 0
x00FFFFFC ;
if (indexValue != 0)
{
long seekValue = indexValue +
BASE_LOOKUP;
fs.Seek(seekValue, SeekOrigin.
Begin) ;
readBlob (br) ;
okNormal ++;
}
else if (indexValue != 0)
{
// Console. WriteLine(” skipping
large entry: [7 + j + 7,7 +
l‘ + /I]//);
largeSkips++;
}
else
{
// Console. WriteLine(” skipping
empty entry: [+ | + 7,7 +

i+ "17);
emptySkips++;

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

APPENDIX B. SOURCE CODE 172

}
}
Console. WriteLine ("high.” + numLowTables) ;
Console. WriteLine ("empty.” + emptySkips);
Console. WriteLine (”large.” + largeSkips);
Console. WriteLine ("normal.” + okNormal);

}

private void handleHighLookup (byte[]
highLookupTable, int highlndex)

{
}

public void Extract(string filename)

{
FileStream fs = File.OpenRead(filename);
BinaryReader br = new BinaryReader(fs);
long fileLength = fs.Length;

fs .Seek (START_OFFSET, SeekOrigin.Begin);
Console. WriteLine (”starting _extraction”);
sw. WriteLine (Blob . DebugIinfoHeader) ;

Blob blob = null;
Blob last = null;
bool done = false;
do

{
if (fs.Position < fileLength — 14)

blob = readBlob(br);
else
blob = null;

if (blob != null)

if (last != null) //check for
holes
{

long diff = blob.StartOffset —
last . EndOffset;

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

APPENDIX B. SOURCE CODE 173

if (diff > 0)

{
String hole = string.
Format (”Memory._hole. .\t
\VENENE{O\ t{1:X}\t{2:X}
7 diff , last.EndOffset
, blob.StartOffset);
¥
¥
dumpBlob (blob) ;
last = blob;
¥
else
{
fs.Seek (2, SeekOrigin.Current);
if (fs.Position >= fileLength —12
)
{
done = true;
h
}

} while (!done);

Console. WriteLine ("done_extracting”);
sw. Flush () ;

sw.Close () ;

public Ulnt32 ExtractFreeBlobEndpoint(UInt32

{

startOffset , bool goNext)

FileStream fs = File.OpenRead(filename);

BinaryReader br = new BinaryReader(fs);

Ulnt32 result = getFreeBlobEndpoint(br,
startOffset , goNext);

br.Close () ;

return result;

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

238

APPENDIX B. SOURCE CODE 174

private Ulnt32 getFreeBlobEndpoint(
BinaryReader br, Ulnt32 offset, bool goNext

)

br.BaseStream .Seek (offset , SeekOrigin.
Begin) ;

UInt32 blobSize = br.ReadUInt32() ;
Ulnt32 flags = br.ReadUInt32() ;
UInt32 blobID = br.ReadUInt32() ;
UInt32 next = br.ReadUInt32() ;
Ulnt32 prev = br.ReadUlInt32() ;

if (goNext)

if ((next & OxFFFFFF) == 0)
return offset;
else
return getFreeBlobEndpoint(br, (
next — 0xC) & OxFFFFFF, true);
}else
{
if ((prev & OxFFFFFF) == 0)
return offset;
else
return getFreeBlobEndpoint(br, (
prev — 0xC) & OxFFFFFF, false);

}

private void dumpBlob(Blob blob)

{
String debuglnfo = blob.Debuglnfo;

// Console. WriteLine (debuglnfo);
sw. WriteLine (debuglnfo);

}

private Blob readBlob(BinaryReader br)

{
byte[] data;

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

256

257

258

259

260

261

262

263

264

266

267

268

269

APPENDIX B. SOURCE CODE 175

long startOffset = br.BaseStream.Position;
Ulntl6 blobSize = br.ReadUlntl6() ;

Ulntl6 blobType = br.ReadUlntl6() ;

Ulnt32 flags = br.ReadUInt32() ;

UInt32 blobID = br.ReadUInt32() ;

bool sizeOK = (blobSize > 0) && (blobSize
% 2 == O),

bool idOK = (blobID >= 0 && blobID <
30000) ;

bool typeOK = ((blobType & OxOFFF) ==
x000) && (blobType != 0);

bool flagsOK = (flags == || flags ==
x20000000) ;

if (sizeOK && idOK && typeOK && flagsOK)

{

data = br.ReadBytes(blobSize);

¥
else
{

// Console. WriteLine(” Got error at : Ox
{0:X} Rewinding to : O0x{1:X}”, br.
BaseStream . Position , startOffset);

br.BaseStream .Seek(—12,SeekOrigin.
Current) ;

return null;

¥
/] if (
long analysisID = counter++;

Blob blob = BlobFactory.Create(startOffset
, br.BaseStream.Position, blobSize,
blobType, flags, blobID, data,
analysisID) ;

/+Blob blob = new Blob();
blob.StartOffset = startOffset;
blob.EndOffset = br.BaseStream . Position;
blob.BlobDataSize = blobSize;
blob.BlobType = blobType;

blob.Flags = flags;

270

271

272

273

274

275

276

277

© ® ~ [N &} ' w N —

—_ =
s =)

-
N

13

14

15

16

17

18

19

20

APPENDIX B. SOURCE CODE 176
blob .BlobID = bloblID ;
blob.Data = data;

blob. AnalysisID = analysisID ; x/

return blob;

Listing B.3: BlobExtractor: BlobFactory.cs

using
using
using
using
using

System
System
System
System
System

.Collections . Generic;
.Collections;

. Text;

.Windows . Forms;

namespace BlobExtractor

{

class BlobFactory
{
public static Dictionary<UInt32, Blob>
FileDirIDToBlob = new Dictionary<UInt32,
Blob >();
public static Dictionary<UInt32, Blob>
DatabaseIDToBlob = new Dictionary<UInt32,
Blob >();
public static Dictionary<UInt32, Blob>
OtherIDToBlob = new Dictionary<UInt32, Blob
>();
public static Dictionary<UInt32, Blob>
AllIDToBlob = new Dictionary<UInt32, Blob
>();, //everything
public static Dictionary<long, Blob>
OffsetToFreeBlobs = new Dictionary<long,
Blob >();

public static Blob LowestOffsetBlob;
public static Blob HighestOffsetBlob;

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

APPENDIX B. SOURCE CODE 177

public static Blob Create(long startOffset,
long endOffset, Ulntl6 dataSize, Ulntlé6
type, Ulnt32 flags, UInt32 id, byte[] data,
long analysisID)

Blob b = null;

switch (type)
{
case OxFFFF:
// b = new FreeBlob(startOffset ,
endOffset , dataSize , type, flags,
id , data, analysislD);
break;

case 0x4000: //”DIRECTORYNAME_ENTRY”
b = new DirectoryBlob (startOffset,
endOffset, dataSize, type,
flags , id, data, analysisID);
if (FileDirIDToBlob.ContainsKey (b.
BlobID))

Console. WriteLine (”
FileDirIDToBlob _.already .has
~key.” + b.BlobID);

FileDirIDToBlob[b.BlobID] = b;
break;

case 0x5000: //FILENAME ENTRY
b = new FileBlob (startOffset,
endOffset, dataSize, type,
flags , id, data, analysisID);
if (FileDirIDToBlob.ContainsKey (b.
BlobID))

Console. WriteLine (”
FileDirIDToBlob _already _has
~key.” + b.BloblID);

FileDirIDToBlob[b.BlobID] = b;
break;

case 0x7000: //database stuff

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

APPENDIX B. SOURCE CODE 178

b = new DatabaseBlob (startOffset,
endOffset, dataSize, type,
flags , id, data, analysisID);

if (DatabaselDToBlob.ContainsKey (b
.BlobID))

Console. WriteLine (”
DatabaselDToBlob.already .
has_key.” + b.BlobID);

DatabaselDToBlob[b.BlobID] = b;

break;

case 0x8000: //database stuff

b = new DatabaseRecordBlob (
startOffset , endOffset,
dataSize, type, flags, id, data
, analysisID);

if (DatabaselDToBlob.ContainsKey (b
.BlobID))

Console. WriteLine (”
DatabaseIDToBlob_already .
has_key.” + b.BlobID);

DatabaselDToBlob[b.BlobID] = b;

break;

case O0xE000:

b = new DatabaselndexBlob (
startOffset , endOffset,
dataSize, type, flags, id, data
, analysisID);

if (DatabaseIDToBlob.ContainsKey (b
.BlobID))

Console. WriteLine (”
DatabaseIlDToBlob_already.
has_key.” + b.BlobID);

DatabaselDToBlob[b.BlobID] = b;

break;

case 0x2000: //”SUPERBLOCK”;

b = new Blob(startOffset,
endOffset, dataSize, type,
flags , id+0xFF000000, data,
analysisID) ;

if (OtherIDToBlob.ContainsKey (b.
BlobID))

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

APPENDIX B. SOURCE CODE 179

Console. WriteLine (”
OtherIDToBlob.already .has..
key.” + b.BlobID);

OtherIDToBlob[b.BlobID] = b;

break;

default:

case 0x3000: //”FILLER-BLOCK”;
case 0x6000: //”"DATA(FILE ONLY?)"”;
case 0xC000: //”REGISTER_STRING”;
case 0xD000: //”REGISTER_KEY”;

b = new Blob(startOffset,
endOffset, dataSize, type,
flags , id, data, analysisID);

if (OtherIDToBlob.ContainsKey (b.
BlobID))

Console. WriteLine (”
OtherIDToBlob._already._has.
key.” + b.BlobID);

OtherIDToBlob[b.BlobID] = b;

break;
}
if (b != null)
{
if (AllIDToBlob . ContainsKey (b.BlobID))
Console. WriteLine (” AIIIDToBlob .
already_has_key.” + b.BlobID);
AllIDToBlob [b.BlobID] = b;
if (LowestOffsetBlob == null || b.
StartOffset < LowestOffsetBlob.
StartOffset)
LowestOffsetBlob = b;
if (HighestOffsetBlob == null || b.
StartOffset > HighestOffsetBlob.
StartOffset)
HighestOffsetBlob = b;
}

return b;

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

}

public static string GetBlobTypeString (Ulntl6
blobType)

{

APPENDIX B. SOURCE CODE

switch (blobType)

case 0x2000:
return "“SUPERBLOCK” ;
break;

case 0x3000:
return “"DATALIST” ;
break;

case 0x4000:
return "“DIRECTORYNAME” ;
break;

case 0x5000:
return “"FILE”;
break;

case 0x6000:
return "DATA”;
break;

case 0x7000:
return ”“Database”;
break;

case 0x8000:
return ”“"DatabaseRecord”;
break;

case 0xEO000:
return ”“Databaselndex”;
break;

case 0xC000:
return “"REGISTER_STRING”;

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

APPENDIX B. SOURCE CODE 181

break;

case 0xDO000:
return "REGISTER_ KEY”;
break;

7

return ;

}

/// <summary>

/// Get all blobs with given blob as parent.

// /] </summary>

/// <param name="parent”></param>

/// <returmns ></returns>

public static List<Blob> GetParent(Blob parent
,Dictionary <UInt32 , Blob> table)

{ List<Blob> nodes = new List<Blob>();
foreach (Blob blob in table.Values)
{ if (blob.ParentBlob == parent)
nodes.Add(blob) ;
1eturn nodes;
}

/// <summary>

/// Get all blobs with given ID as parent.

/// </summary>

/// <param name="blobld"></param>

//] <returns></returns>

public static List<Blob> GetParent(UInt32
parentID , Dictionary<UInt32, Blob> table)

{

Blob parent = table[parentID];
return GetParent(parent, table);

174

© ® N o & 'S ©w N —

©w ©w N N N [N N N N N N [¥) = — = = = = — = = =
— S e ® AN =N ar £ @ [N [S © ® N SN ul 'S) N [1S)

[}
R

33

APPENDIX B. SOURCE CODE 182

U J

Listing B.4: BlobExtractor: DatabaseRecordBlob.cs

using System;
using System. Collections . Generic;
using System. Text;

namespace BlobExtractor

{
class DatabaseRecordBlob : Blob, IBlob

{
#region Fields
Ulnt32 parentlD;
UInt32 lowOrderTime;
Ulnt32 highOrderTime;
Ulntl6 nameLength;
string name;
Property [] properties;

Blob parent = null;
#endregion

#region Properties
public Ulnt32 ParentID

{
get { return parentID; }
set { parentlD = value; }
}
#endregion

public override Blob ParentBlob

{
get
{
if (parent == null && parentID !=

BlobID && BlobFactory.
DatabaseIDToBlob . ContainsKey (
parentlID))
parent = BlobFactory.
DatabaseIlDToBlob [parentID |;

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

APPENDIX B. SOURCE CODE 183

return parent;

}

#region Constructor
public DatabaseRecordBlob (long startOffset,
long endOffset, Ulntl6 dataSize, Ulntlé6
type, Ulnt32 flags, UlInt32 id, byte[] data,
long analysisID)
base(startOffset , endOffset, dataSize,
type, flags, id, data, analysisID)

{
parentID = BitConverter.ToUInt32(data, 0);
properties = PropertyFactory.Create(data,
this);
/+neighbourlD = BitConverter.TolUlnt32(data
, 16);
lowOvrderTime = BitConverter.TolUInt32(data,
20);
highOrderTime = BitConverter.TolUInt32(data
, 24);
nameLength = BitConverter.TolInt16(data,
30);
name = new string (Encoding. Unicode.
GetChars(data , 32, nameLength x 2)); x/
string general = string.Format(”{0:X}:{1}(
db{2:X}_size{3})”, BlobID, name, type,
TotalSize);
this.Text = general + ”\n” +
getPropertyString () ;
}
#endregion

private string getPropertyString ()

{

StringBuilder sb = new StringBuilder ();
foreach (Property property in properties)

{

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

© @ N =N & IS w N) —_

T S
S © ® N & G & ® N = O

N
=

APPENDIX B. SOURCE CODE 184

sb . Append ("—") ;
sb . Append (property . ToString ()) ;
ieturn sb. ToString () ;
}
public override string Debug
{
get
{
return “db” + BlobID + ”:” + name + ”_
parent:” + parentlD;
}
}
h
L} J

Listing B.5: BlobExtractor: FileBlob.cs

(N
using System;

using System.Collections . Generic;

using System. Text;

namespace BlobExtractor

{
class FileBlob : Blob, IBlob

{
#region Fields
UlInt32 datalListID;
Ulnt32 directorylD;
Ulnt32 neighbourlD;
UInt32 lowOrderTime;
Ulnt32 highOrderTime;
Ulntl6 nameLength;
string name;
Blob datalList;
Blob directory;
Blob neighbour;
#endregion

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

APPENDIX B. SOURCE CODE 185

#region Properties
public Ulnt32 DataListID

{
get { return dataListID; }
set { dataListID = value; }
}
public Ulnt32 DirectoryID
{
get { return directorylD; }
set { directoryID = value; }
}
public Ulnt32 NeighbourlID
{
get { return neighbourlD; }
set { neighbourID = value; }
}
public Ulntl6 NameLength
{
get { return namelength; }
set { nameLength = value; }
}
public string Name
{
get { return name; }
set { name = value; }
}

public override Blob ChildBlob //datalist
{

get

{

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

APPENDIX B. SOURCE CODE 186

if (dataList == null && BlobFactory.
FileDirIDToBlob . ContainsKey (
dataListID))
dataList = BlobFactory.
FileDirIDToBlob[dataListID |;
return datalist;

1
}
public override Blob ParentBlob
{
get
{
if (directory == null && directoryID
'= BlobID && BlobFactory.
FileDirIDToBlob . ContainsKey (
directoryID))
directory = BlobFactory.
FileDirIDToBlob [directoryID |;
return directory;
}
}
public override Blob NeighbourBlob
{
get
{
if (neighbour == null && BlobFactory.
FileDirIDToBlob . ContainsKey (
neighbourID))
neighbour = BlobFactory.
FileDirIDToBlob [neighbourID |;
return neighbour;
}
}
#endregion

#region Constructor

public FileBlob (long startOffset, long
endOffset, Ulntl6 dataSize, Ulntl6 type,
Ulnt32 flags, Ulnt32 id, byte[] data, long

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

oW N e

APPENDIX B. SOURCE CODE 187

analysisID)
base (startOffset , endOffset, dataSize,
type, flags, id, data, analysisID)

{
dataListID = BitConverter.ToUInt32(data,
0);
directorylD = BitConverter.ToUInt32(data,
12);
neighbourID = BitConverter.ToUInt32(data,
16);
lowOrderTime = BitConverter.ToUInt32(data,
20) ;
highOrderTime = BitConverter.ToUInt32(data
, 24);
namelLength = BitConverter.ToUlIntl6(data,
30);
name = new string (Encoding.Unicode.
GetChars(data, 32, nameLength +« 2));
this.Text = BlobID + ”:” + name + " (f)”;
t
#endregion

public override string Debug

{
get
{
return ”“file” + BlobID + ”:” + name +”
.parent:” + directorylD;
}
}

Listing B.6: BlobExtractor: FreeBlob.cs

using System;
using System. Collections.Generic;
using System. Text;

o ® ~ o) a1

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

APPENDIX B. SOURCE CODE 188

namespace BlobExtractor

{
class FreeBlob : Blob, IBlob

{
const int CeDBMAXDBASENAMELEN = 32;

#region Fields

UInt32 nextOffset;
Ulnt32 prevOffset;
Blob next = null;
Blob prev = null;

#endregion
#region Properties

public Ulnt32 NextOffset

{
get { return nextOffset; }
set { nextOffset = value; }
}
public Ulnt32 PreviousOffset
{
get { return prevOffset; }
set { prevOffset = value; }
}
#endregion

public override Blob NextBlob

{
get
{

if (next == null && nextOffset !=
StartOffset && BlobFactory.
OffsetToFreeBlobs.ContainsKey (
nextOffset))
next = BlobFactory.
OffsetToFreeBlobs[nextOffset];
return next;

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

APPENDIX B. SOURCE CODE 189

}
}
public override Blob NextBlobsy
{
get
{
if (next == null && nextOffset !=
StartOffset && BlobFactory.
OffsetToFreeBlobs.ContainsKey (
nextOffset))
next = BlobFactory.
OffsetToFreeBlobs[nextOffset |;
return next;
}
}

#region Constructor
public FreeBlob (long startOffset, long
endOffset, Ulntl6 dataSize, Ulntl6 type,
Ulnt32 flags, Ulnt32 id, byte[] data, long
analysisID)
base(startOffset , endOffset, dataSize,
type, flags, id, data, analysisID)

{
parentID = BitConverter.ToUInt32(data, 0);
char[] nameChars = Encoding. Unicode.
GetChars(data, 8, CeDBMAXDBASENAMELEN
* 2),
name = new string (nameChars);
name = name. Substring (0, name.IndexOf(’\0"’
));
this.Text = string.Format(”{0:X}:{1}(db{2:
X},size{3})”, BlobID, name, type,
TotalSize);
}
#endregion

public override string Debug

70

71

72

73

74

75

76

© ® ~ [N &} ' w N —

N N N [N] N N N N N ¥ = = = N Ju = = = Ju =
© @ | = @ = o) N = S) @ N o ['S w N —_ S)

©w
S

APPENDIX B. SOURCE CODE

{
get
{
return “db” + BlobID + ”7:”
parent:” + parentlD;
}
}

+ name +

190

77

[

Listing B.7: BlobExtractor: Property.cs

B
using System;

using System. Collections . Generic;
using System. Text;

namespace BlobExtractor

class Property

{

int id;

#endregion

#region Fields
PropertyTypeEnum type;
object value;

{

public enum PropertyTypeEnum ushort

{
12 = 0x02,
U2 = 0x12,
14 = 0x03,
Ul4 = 0x13,
TIME = 0x40,
STRING = 0xF1,
BIN = 0x41,
BOOL = 0x0B,
R8 = 0x05,
ERROR = OxFF,
UNKNOWN = OxFE,

}

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

APPENDIX B. SOURCE CODE 191

#region Properties
public PropertyTypeEnum PropertyType

{

get { return type; }
set { type = value; }

}
public object PropertyValue

{

get { return this.value; }
set { this.value = value; }

}

public int ID
{

get { return this.id; }
set { this.id = value; }

}

#endregion

#region Constructor

public Property (PropertyTypeEnum type, int id,

object value)
{

this .type = type;

this.id = id;
this.value = value;
}
#endregion

#region Overrides
public override string ToString ()

{

string s = 7(” + id + 7:” + type.ToString

0
if (value != null)
s += ”:” + value.ToString () ;

S +: II)II;
return s;

70

71

72

© @ ~ [N &1 ' w N —

= = = =
[N = o

-
'S

16

17

18

20

21

22

23

24

25

26

27

28

29

APPENDIX B. SOURCE CODE 192

#endregion

Listing B.8: BlobExtractor: PropertyFactory.cs

using System;
using System. Collections . Generic;
using System. Text;

namespace BlobExtractor

{

class PropertyFactory
{
/// <summary>
/// Create properties from blob data.
/// </summary>
/// <param name="data”></param>
/// <returns></returns>
public static Property[] Create(byte[] data,
Blob blob)
{

int aaa;

if ((blob.BlobID == 0x2a36) || (blob.
BlobID == 0x362a))
aaa = 0;

int intSize = 4;

int index = 8§;

Ulntl6 headerBytes = BitConverter.ToUlIntl6
(data, index);

index += 2;

int propertiesDataSize = BitConverter.
ToUlntl6(data, index);

index += 2;

int numProperties = (data.Length —
propertiesDataSize — 12) / 4;

Property[] properties = new Property]|
numProperties |;

for (int i = 0; i < numProperties; i++)

{

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

APPENDIX B. SOURCE CODE 193

PropertyTypeEnum type = (
PropertyTypeEnum)data[index];

index += 2;

int id = BitConverter.Tolntl6(data,
index) ;

index += 2;

properties[i] = new Property(type, id,
null) ;

}

bool unknown = false;
if ((headerBytes & 0x4000) == 0x4000)

{ index += 2; //skip 2 bytes if this bit
is set.
intSize = 2;
¥
else
{
intSize = 4;
¥
for (int i = 0; i < numProperties; i++)
{

Property property = properties[i];
if (unknown){
property . PropertyType =
PropertyTypeEnum .ERROR;
continue;

try

switch (property.PropertyType)
{
case PropertyTypeEnum .BIN:
index += 16;
break;
case PropertyTypeEnum.I2:
property.PropertyValue =
BitConverter. Tolnt16(

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

APPENDIX B. SOURCE CODE

194

data, index);
index += 2;
break;
case PropertyTypeEnum.I4:
if (intSize == 2)

{
property . PropertyValue
= BitConverter.
Tolntl6(data, index
)
index += 2;
}
else if (intSize == 4)
{
property.PropertyValue
= BitConverter.
ToInt32 (data, index
);
index += 4;
}
break;
case PropertyTypeEnum .STRING:
string stringValue = null;

if (data[index + 3] == 0x0
) //unicode
{

Ulntl6 length =
BitConverter.
ToUlntl6 (data,
index) ;

index += 2;

stringValue = new
string (Encoding.
Unicode . GetChars (
data, index, length
));

index += length;

}

else //ascii

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

APPENDIX B. SOURCE CODE

195
{
byte length = (byte)(
data[index] / 2);
index += 1;
stringValue = new
string (Encoding.
ASCII. GetChars(data
, index, length));
if (length % 2 == 0)
index += length +
1;
else
index += length;
}

property.PropertyValue =
stringValue;
break;
case PropertyTypeEnum .TIME:
byte[] date = new byte[4];
date[0] data[index++];
date[1] = data[index++];

date[2] = data[index++];

date[3] = data[index++];

property.PropertyValue =
date;

break;

case PropertyTypeEnum.Ul4:
if (intSize == 2)

{
property.PropertyValue
= BitConverter.
ToUlnt16 (data,
index) ;
index += 2;
}
else if (intSize == 4)
{

property . PropertyValue
= BitConverter.
ToUlInt32 (data,

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

APPENDIX B. SOURCE CODE

index) ;
index += 4;
}
break;
default:

int o = 4;
property . PropertyType

PropertyTypeEnum .
UNKNOAN;
unknown = true;
break;
}
}
catch (Exception e)
{
property . PropertyType =
PropertyTypeEnum .ERROR;
unknown = ftrue;
}

}

return properties;

196

© @ ~ [o) &} ' w N —

L T S S o
S © ® N o G & W N = o

N
[

22

23

24

25

26

27

28

29

30

31

32

33

APPENDIX B. SOURCE CODE
B.2 Extensions to the Judas Forensic Tool

Listing B.9: Extensions to the Judas Forensic Tool

197

‘void perform_OID _request ()

{
printf (" ssx+++ _Enter_file .name:.");
char file_name [MAXFILENAME SIZE |;
scanf ("%hs”, &file_.name);
get_oid (file_name);
}
void perform_object_request ()
{
printf (”+sx+++ . Enter .OID. (hex):.");
int object_id;
scanf ("%x”,&object_id) ;
if (object_id & Oxffff0000)
{
get_object(object_id);
lelse
{
DWORD cnt = 0x1000000;
while ((object_id < 0xFF00000) && !
get_object(object_id))
printf (”tried .0x%X\n”,
object_id);
object_id += cnt;
}
}
}
DAORD flip_dword (DWORD dw_in)
{

DIWORD dw_rev_in = dw_in << 24;

dw_rev_in = ((dw_.in & 0x0000ff00) << 8) |
dw_rev_in;

dw_rev_in = ((dw_.in & 0x00ff0000) >> 8) |
dw_rev_in;

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

APPENDIX B. SOURCE CODE 198

}

dw_rev_in = dw_rev_in | (dw_.in >> 24);
return dw_rev_in;

void get_oid (char xfile_.name)

{

wchar_t wide_file_.name [MAX FILENAME SIZE | ;
mbstowcs (wide_file_name , file_name ,
MAX_FILENAME SIZE) ;

CEFIND_DATA find_data;

HANDLE hSearch;

hSearch = CeFindFirstFile (wide_file_.name, &
find_data) ;

if (hSearch != INVALID HANDLE VALUE) {

telse{

char szFilename[256];
wcestombs (szFilename , find _data.
cFileName ,256) ;

printf (”File _name: %s\n” ,szFilename) ;

printf (”Object_ID: %x\n” ,find_data.
dwOID) ;

print_time_data (find_data.
ftLastWriteTime) ;

print_file_attributes (find_data.
dwFileAttributes) ;

return;

hSearch = CeFindFirstDatabase(0); //
Parameter value zero means that all
database types are enumerated
if (hSearch !'= INVALID_HANDLE_VALUE)
{
CEOID ceoid =
CeFindNextDatabase (hSearch)
char szFilename[256];
while(ceoid !'= 0)

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

APPENDIX B. SOURCE CODE 199

CEOIDINFO ceoidinfo;

CeOidGetInfo (ceoid ,&
ceoidinfo);

wcstombs (szFilename ,
ceoidinfo.
infDatabase.
szDbaseName ,256) ;

printf (”Name.: %s\n”,
szFilename) ;

printf ("Type.:_0x%X\n”
,ceoidinfo.
infDatabase.
dwDbaseType) ;

printf ("OID..: _0x%X\n"”

,ceoid) ;

ceoid = CeFindNextDatabase (hSearch) ;

}
telse{
printf (”Error”);
return;
}
}
CeCloseHandle (hSearch);
}
void print_file_attributes (DWORD attr)
{

printf (”File _Attributes.(0x%X):\n” ,attr);
printf (”\n”);
printf (”"Archive_..oooo:l”); (
FILE_ ATTRIBUTE_ARCHIVE & attr)? printf(”X\n
”) :+ printf(”\n”);
printf ("Compressed._..:."); (
FILE_ ATTRIBUTE_.COMPRESSED & attr)? printf(”
X\n”) : printf(”\n”);
printf (”Directory....:.”); (
FILE_ ATTRIBUTE_DIRECTORY & attr)? printf(”X

\n”) : printf(”\n”);

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

APPENDIX B. SOURCE CODE 200

}

printf (”"Has_children.:."); (
FILE_ATTRIBUTE_.HAS_ CHILDREN & attr)? printf
("X\n”) : printf(”\n"”);

printf ("Hidden...oooo:l”); (
FILE ATTRIBUTE_HIDDEN & attr)? printf(”X\n”
) : printf(”\n”);

printf ("In ROM__ooooo:l”); (
FILE_ATTRIBUTE_INROM & attr)? printf(”X\n”)
printf (”\n”);
printf (’ Normaluuuuuuu:u”)' (

FILE ATTRIBUTE NORMAL & attr)? printf(”X\n”
) printf(”\n”);

printf (”Read._ onlyuuuu:u”)' (
FILEATTRIBUTEREADONLY & attr)? printf (”X\
n”) : printf(”\n”);

printf ("ROM_module_..:."); (
FILE ATTRIBUTE ROMMODULE & attr)? printf(”X
\n”) : printf(”\n"”);

printf (”System...oo oot L") (
FILE_ ATTRIBUTE_.SYSTEM & attr)? printf(”X\n”
) : printf(”\n”)

printf (’ Temporaryuuuu:u”)' (
FILE_ ATTRIBUTE_.TEMPORARY & attr)? printf(”X

\n”) : printf(”\n"”);

void print_db_flags (DMORD flags)

{

printf (”Database.flags _(%X):\n”,flags);

printf (”\n”);

printf (”Valid .modified _time._:."); (
CEDB_VALIDMODTIME & flags)? printf(”X\n”)

printf(”\n”);

printf(”Valid.name..._.ooooo:l”); (
CEDB.VALIDNAME & flags)? prlntf(”X\n”)
printf (”\n”);

printf (”Valid_otype.ooooooooao:il”); (
CEDB_VALIDTYPE & flags)? printf(”X\n"”)
printf(”\n”);

printf (”Valid_sort_ospecooooo:l”); (
CEDB_VALIDSORTSPEC & flags)? printf(”X\n”)

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

APPENDIX B. SOURCE CODE 201

printf (”\n”);
printf(”Valid_flags....ooooo:l”); (
CEDB_VALIDDBFLAGS & flags)? prlntf “X\n")
printf (”\n”);

printf ("No_compress...oooooo:l”); (
CEDBNOCOMPRESS & flags)? prlntf(”X\n”)
printf(”\n”);

}

void print_time_data (FILETIME filetime)
{
SYSTEMTIME s_time;
if (FileTimeToSystemTime(&filetime , &s_time)) {
printf (”"Modified.: %i.%i.%1i %i:%i\n",
s_time .wDay, s_time.wMonth, s_time.
wYear, s_time.wHour, s_time.wMinute
)
DIWORD dw_low = filetime .dwLowDateTime;
DWORD dw_high = filetime.
dwHighDateTime;
printf ("FILETIME.: %x _%x\n” ,dw_high,
dw_low) ;
DWORD dw_rev_low = flip_.dword (dw_low) ;
DWORD dw_rev_high = flip_dword (dw_high
);
printf (”“Reversed.: %x_%x\n"” ,dw_rev_low
,dw_rev_high);

}

void print_sort_order_specs (SORTORDERSPEC sos[], WORD
num _sos)
{

printf(”\n”);

printf (”Sort_order_specs\n”);

for(int i=0;i<num_sos;i++)

{
printf(”\n”);
printf (”Spec #%i:\n”,i
print_sort_flags(sos[i].dwFlags);

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

APPENDIX B. SOURCE CODE 202

}
void print_sort_flags (DNORD flags)
{
printf (”Descending._......:.”); (
CEDB_SORT_DESCENDING & flags)? printf (”X\n”
) : printf(”\n”);
printf (”“Case_insensitive.:.”); (
CEDB_SORT_CASEINSENSITIVE & flags)? printf(
"X\n”) : printf(”\n"”);
printf ("Unknown. first....:.”); (
CEDB_SORT_UNKNOWNEHIRST & flags)? printf (”X\
n”) : printf(”\n”);
}
bool get_object(int object_id)
{

CEOID ceoid = object_id;
CEOIDINFO ceoidinfo;
if (CeOidGetInfo(ceoid ,&ceoidinfo))
{
char name[256];
switch (ceoidinfo .wODbjType)
{
case OBJTYPE_INVALID:
printf (”Object_type: .INVALID\n
")
break;
case OBJTYPE_FILE:
wcestombs (name, ceoidinfo .
infFile .szFileName ,256);
printf (”"Name.......: %s\n"”,
name) ;
printf (”Object_type: _FILE\n");
printf ("Object_ID..:.0x%X\n",
ceoid);
printf (”Parent_ID..:_0x%X\n",
ceoidinfo.infFile.oidParent
);
print_time_data (ceoidinfo.
infFile . ftLastChanged);

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

APPENDIX B. SOURCE CODE 203

print_file_attributes(
ceoidinfo.infFile.
dwAttributes) ;
break;
case OBJTYPE_DIRECTORY :
wcstombs (name, ceoidinfo .
infDirectory .szDirName,256)

printf (”"Name.oooooo: %s\n”,
name) ;

printf (”Object._type: .DIRECTORY
\n”);

printf (”Object_ID..:_.0x%X\n",
ceoid) ;

printf (”Parent_ID..:_0x%X\n",
ceoidinfo.infDirectory.
oidParent);

print_file_attributes (
ceoidinfo.infDirectory.
dwAttributes) ;

break;
case OBJTYPE_DATABASE:

wcstombs (name, ceoidinfo .
infDatabase .szDbaseName
,256) ;

printf (”"Name......ccoo: Y%s\n”,
name) ;

printf (”Object_type...:.
DATABASE\n") ;

printf (”Object ID.cooo: c0x%X\n
7 ,ceoid) ;

print_time_data (ceoidinfo.
infDatabase . ftLastModified)

print_db_flags (ceoidinfo.
infDatabase .dwFlags) ;

printf (”\n”);

printf (”Database_info\n"”);

printf (”Database_type... ...
1 .0x%X\n” , ceoidinfo .
infDatabase .dwDbaseType) ;

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

204

205

206

207

208

APPENDIX B. SOURCE CODE 204

}

lelse

printf (”"Database.size_._....ooo
:.0x%X\n” , ceoidinfo .
infDatabase .dwSize) ;
printf ("#.records.ooooooooaoos
:.0x%X\n"” , ceoidinfo .
infDatabase . wNumRecords) ;
printf ("Number_of _sort_orders.
:.0x%X\n"” , ceoidinfo .
infDatabase . wNumSortOrder) ;
if (CEDB_VALIDSORTSPEC &
ceoidinfo.infDatabase.
dwFlags)
{
print_sort_order_specs
(ceoidinfo.
infDatabase.
rgSortSpecs,
ceoidinfo.
infDatabase.
wNumSortOrder) ;

}

break;
case OBJTYPE RECORD:
printf (”Object_type.: RECORD\n
II);
printf ("OID_parent..:0x%X\n",
ceoidinfo.infRecord.
oidParent);
break;
}

return true;

return false;

void perform_attributes_request()

{

printf (" s+x+++ _Enter_file .name:.");

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

APPENDIX B. SOURCE CODE

205

char search_name[MAX_FILENAMESIZE |;
scanf ("%hs”, &search_name);

wchar_t wide_search_name [MAX_FILENAMESIZE |;
mbstowcs (wide_search_name ,search_name,
MAX _FILENAME SIZE) ;

CE_FIND_DATA find_data;

HANDLE hSearch;

hSearch = CeFindFirstFile (wide_search_name, &

find _data);

if (hSearch != INVALID HANDLE VALUE) {

char szFilename[256];
wcstombs (szFilename , find _data .
cFileName ,256) ;

printf (”File _name: -%s\n” ,szFilename) ;

printf (”Object_ID: %x\n”,find_data.
dwOID) ;

print_time_data (find_data.
ftLastWriteTime) ;

char at;

while (true) {

print_file_attributes (
find_data.dwFileAttributes)

printf(”\n”);

printf (7 Alter_attribute.((a)
rchive , .(h)idden, .(n)ormal,
~(r)ead._only,._(s)ystem,_(t)
emporary) . .Enter_c.to._
cancel:.”);

printf(”\n”);

scanf ("%c” ,&at) ;

scanf ("%c” ,&at);

switch (at)

{ 7 7

case ’‘a

alter_attribute (
find_data,

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

APPENDIX B. SOURCE CODE

case

case

case

case

case

case

206

FILE_ATTRIBUTE_ARCHI
);
break;
"h”:
alter_attribute (
find_data,

FILE_ATTRIBUTE_HIDDEN

);

break;
'n’:

alter_attribute (

find_data,

);
break;
“r’:
alter_attribute (
find_data,
FILE_ATTRIBUTE_READOI
);
break;
"s’:
alter_attribute (
find_data,
FILE_ATTRIBUTE_SYSTE]
);
break;
"t
alter_attribute (
find_data,
FILE_ATTRIBUTE_TEMPOI
);
break;
"¢’
CeCloseHandle (hSearch)

return;

default:

printf(”Error:.
incorrect.input”);
return;

FILE_ATTRIBUTE_NORMAL

VE

NLY

vl

RARY

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

290

APPENDIX B. SOURCE CODE

}

{

}
CeCloseHandle (hSearch) ;

hSearch = CeFindFirstFile(
wide_search_name, &
find_data);

207

if (hSearch ==
INVALID HANDLE VALUE) return
}
return;
lelse
{
printf(”Error: _No.matching.file _.found”
);
return;
1

CeCloseHandle (hSearch) ;

void alter_attribute (CEFIND_.DATA find_data , DWORD

attr)

wchar_t ws[256];
ws[0] = "\\’;

int cnt = 1;
for(int i=0;find_data.cFileName[i]!=0;i++)
{
ws[i+1] = find_data.cFileName[i];
cnt++;
}
ws[cnt] = 0;

(find _data.dwFileAttributes & attr) ?

CeSetFileAttributes (ws,(find _data.
dwFileAttributes & !attr)):

CeSetFileAttributes (ws, (find_data.
dwFileAttributes | attr));

Appendix C

ARM Instruction Set Quick
Reference Card

208

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD209

5119 JO 12qUUnu U2A2 UB Aq 2N[EA 1q-§ UB SUNBIOI-YS 0 4q pamiio] “TUBISUOD 11q-7E W

5 spoy Buissslppy 2[qeL 0113123

(21015) + spoy Buisseippy =[qEL 011312y
(peo) + apoln Bulssaippy 2[qeL 011323

€ apo Buissauppy 2[qul 01332y

(peba|inlid) z @pon Bulsseippy 2[qEL 0113123

Z apo Buissauppy a[qul 01332y

525527PPT pax2apul-21d 1 PAsn 2 10UUED "UCNE[SUTI] SSATPPT $3070,]

([euondo) voneisdo piosmgey

(revondo) vonwmado 2189

(reuondo) SPPOd UONTPUOD 5125

PISId S[qEL 017313y

gpuidQ [qeL o1 331y

{puoca} pIsi4 UcIIpUOD QL 011332y

waI T 3TATES
<gapow =
<Syapow =
< IFpouw =
cEapou e
<dF=pouw 2>
<zapour =

LI S

1]

{PTI=TF}
< gpuados>
[puoos}

zpuadQ 2[qEL 225 SIS UIYS
<zpwido> LON ANV U =:p 2 Z N <gpuado> ‘uwgd ‘pd {s}{pucsloIg Je3[D 11g
<gpurdO= ¥O v =py 2 Z N <gpuado> ‘wg ‘pa (S} {puealddo AN
<gpurdo> ¥OT vy =Py 2 Z N <gpuado> ‘wd ‘pd (S} {puced}dow FyoT
<gpuidQ=> NV U =P 37 N <gpuado> ‘ud ‘pPd (S} {pPuod}aury ANY
<gpuido> MOT v =5Ter US40 3 Z N <gpuado> ‘g [pucs}iEI souzeambaisa],
<gpurdo> ANV Uy =sSe[l ASdD 2 Z N <gpuxdo> ‘g [pUSI}LSL 1531
resrSo
<zgpwdo>+uy =sSeF ¥SdD | A O Z N <zpuado> ‘pd {puosS} D sanTau
<zpwdo>-uy =sSep UsdD | A D Z N <zpuado> ‘pd {pPuUoS}dHD aredmaon
((o 1P+ [0 1£](s ¥y)) woig T8
+ HPY + [CE:£9)sd iy IpauSs = 1H pa
KJUO g PU VS 24NE02431{ 24V o1py + [0:1£]is3 e un) pauSs =0 pa Z N| =4 “wd ‘THPd ‘o1Ipd [S}{Puea} TdIHs Suo[2IB[NWNDTE p2US1S
[0:1£]is¥ e un i pauS s =0 Pyl
KJUO f PUR JE SANII3 IV [zezealiss. I pauSis =g P Zz N sd ‘urd ‘THPA ‘opd [(sSHpues TIaMsS Fua[pauFis
(opa+ [0 e (s
wotIAITe) + 1HPY + [TE:E9]St 1=TH P
UO f PUR P SANIIIYIAY o Ip + [0 TE](5 ¥y) =10 TP Z N s ‘urd ‘THPY ‘oTpd [S}{pues}TEIHn Fuo[aE[nwnaoe pausisun
L0371 £](S Ayt =0T pRL
qUO § PUP JYE 24ME2251 34y [TEE9](S ;L) =1TH P Z N| =d ‘ud ‘THPE ‘oTpd [S}{PuUe>s}TInmMn Suo[pauFisun
] 24N YAV LY LN W + (5 4 W) =P Z N g Csd Curd CPd {SH{PUSI}EIH 200 [N 20T
[24nio28oa Y tl don] SY 4 TN =1P Z N 9 ‘ud ‘pd {S} {Puos}Iam Ldnmyy
(LTI LON - U - <gpuido==1pa | A O Z N <gpuxdos> ‘wd ‘pad (S} (puod}osd AITED Y1 10EINS 35712427
wy - <gpudo>=pd | A O Z N <gzpuado> ‘wd ‘pd (S} {pucslasd 1DEICNS 2SI2A2T
(1) 1ON - <gpudo>-uM="pd| A J Z N <gpuado> ‘wd ‘pd {S}{Pucs}oags KB yum
<zpuidQ>-uyd=1pd|A 23 Z N <gpuado> ‘uwd ‘pPd (=} {pueslans 1oENgns
KLmeg + <gpurdo>+uy=pd| A O Z N <gzpuado> ‘wd ‘pa {S}{pucs}oaw KB yum
<gpurdQ=+ug=pd|A D Z N <gpuado> ‘wd ‘pPd (=} {pucslaaw PPV
smampIY nv
Quo g pur YE ' 342134y WL 1q-TE# =S T 3Tz E4 ' F dSdD [PuoSlusH SSU[3 ASID 01 ATIP I
LJUo P g E QAN o4y Wl NG-TE# =SS WIIT 3TAZES ‘F dSdS | PuUel}ldsH SSE[F ASAS 01 1B Ip 3]
(qua g pur g °E 34Oy Wy =S40 g ‘[PTSTFIMSSD (PUSS)usSwH MSJD 0112151521
Quo § pup g *c 2402034y wy =¥SdS ug Y {pI=TFldsds [(pucldsH AMSAS 0112151520
(o pur JE '€ 24may 2y SO =Py WSdD ‘Pd [PUeS)Sui 2251521 01 ¥SdD
Quo g pur JYE ' 34m21 34y ASAS =P wsds ‘Pd [Puos)Sul 32151527 01 MSJS
<gpuid Q> MOH A4999449%0 =P 2 Z N <gpuidos> ‘pd (=} {PUOD} AT 1ON
<gpuidg > =:p3f 2 Z N <gpuado> ‘pd (s} {pues}iron A0 anop
S3J0N uonoy [ssiepdn s J13|qusssy uoneiadg
({ PUE |) S20BIQ UI P2SO[OU2 51251520 O 15[P2AEIEd25-BMWOD <3sTTh=a>

sa|qe| o} Asy

pieD 2suaiajay JoINp
19S uonoONISU| WH VY

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD210

“UOTISNTISUT 211 uondaoxa wdnuisiu
UTLIM PRPODUD N[EA IETPIAWWI -7 Jossa0o1d 1dmI2u1 2TEMIJOS B SBNED WIIT3ITAFE IMS SUEBMYOS
“g=pou 2> ‘pda ‘<unudssd [puos)aors 20mg
“gapou => “‘pda C<unudssd {puos)oat peOT
<gdo= ‘urgny ‘wgn ‘pd ‘=Tdo> ‘cunudssd {puos}yop| Fea ARV woip co1dos ol a0
<gdes> ‘uyn ‘wdd ‘pd ‘<Tdor ‘wuwnudord {pues}owr| ooadoo wor) S WY 01 200N
T MO IRYIAY U JON] <zdo> ‘urgd ‘udn ‘pdo ‘=Tdo> ‘cunudoxd {puos}gad suoneiado e1egy siossasoudo]
TAO [NP ARSIV U JON] [ud] “urgd ‘pd G{puocs}dams 214g
TAO [SN AP AN Ul JON] [rdg] ‘ud ‘pd {pucsS}dMms PIOAN demsg
L<3STTB=a> ‘{|}pd <Sy=pow =2>{pucs}nHis simsiSaTaas)
(ysnd) vonendivem yows <3sTIb=a> ‘{|}pd <sy=pow =>{pPUcd}HIS suoieiedo ¥oeIg
{.}<asTrb=a> “{|}pd Ya{puod}Huis 1201 1US 2003
19 § 2 5195 {.l=3stTrb=a> “{ilpd gal{pue=lnis 20J2 g 1U2W2022
(J2fSUBT 2 J21JE J2151527 258q {ob<3sTrbsas “{}pPd WI{PUCD}IHIS Iy JUIWIISUL
2w samepdn) 119 a4 210 s12s {.}<3sTrb=2a> “{|}pPd 9Il{pPUc2}NlS 210j2 g Jusm=aou]
suoneiado vmp ¥o0[g
adnmiy
Kuo ¢ saniosnyaay P WoI) 2n[EA promjey ={ss21p pE] <gspowT=: ‘pd H{pucooluls paosy B
<dgepow 2> ‘pPd Ld{pPUca}uls 2Sepand spow-iasn yiim
P woiy 2nEa 214q =:[ss=21ppE] <g=pow 2> ‘pd dipuesldics 204g
cgrapou = ‘pd L{pucslduis 2Fepand spow-1asn yarm
P =ssaippe] <gspou 2> ‘pd [pPuodldIs PIOM al01S
L<3ASTTE2a> ‘pd < IF=Ppow 2> {pucs}Wdl simsiSaTaas)
(I3FSUERM 301 I21YT I21515 27 358 w=adyasTTbaas ‘[pd <TpSpow 2n {puos}uadt ¥USHD 3101527 pue
211 samepdn) 119 Ay 21 5135 § (dod) vonendwew yomg <3sTTB=3> ‘| }pd <Ip=pow == {puos}ual suoierado yor1g
{.l<3sTrb=a> ‘{|lpd ¥alpuo2}lwadl I3 1USWR103(]
19 § 21 519 ., {.}<3sTrb=a> ‘{|}pPd gai{puca}lnadl 210J2 g 1UI W22
(IJJSUBI 21 J20Je 12151527 358 {.}l<astrb2a> “[|lpd ¥Ilpuesluad I 1UAWAI0UT
211 samepdn) 119 A 21 5135 | {.l=3sTrb=a> “{]}Pd EI({pPucs}ual 27012 { 1USW2IU]
suonuiado wmp ¥20[g
adnmy
€111 01 1£-97 511 5135 PUE £ 01 511 5pEOT
KJUO f SN YI A [ss21ppe WwWoly 2n[EA pIomy[ey pausis] =py <gsSpou 2> ‘pd HS{puoo}uad pauss
0©17£-97] 511q 5135 PUE £ 01 Q 5114 SPEOT
AJUO § SANIIIYIAY [s527ppE WOl 2n[eA PIOMI[BY] =Py <gI=pouw 2> ‘pd H{puos}lddl PIOMI[EH
L 119 01 TE-§ S11q 5125 PUE £ 01 511q SPEOT
AJUS f 2RI YIIY [5527pp® W01y an[eA 214q pauss] =py <E3pow 2> ‘pd go{puos}ua pausis
<dg=pou == ‘pyd 1g{pucs}iaa 2F2pand spow-aasn s
01 TE-§ 511q 5135 pUT ;£ ©1 0 511¢ SPECT
[sseappe wony anfea 2149] =Py <gapoul => “‘pd g{puos}dar 214g
<dg=pew 2> ‘pd L{pue=}ddrl 2Sepand spow-12sn yaim
[sserppe] =:p3 cgepouTEx ‘pd {pues}ddl PIoAL peO
0= [olwy fa3e1s NV @1
1 = [gJuy f21m1s quinyg, o1
AJUO LML T I f 2ANIDIIYIIY [olug =119 L ‘uy=:€1% g {puos}Xd| 125 uonomisul 2SUBYDXS puT
[3CE] JO SSIIPPE =161 F-S 1A= T=q=T {Puo=}ng Huip i
aane[21-od p218[No[ED SS2IPPY [2q8[JO SS2IPPE =ICTH Taq=T1 {pucslg youeIg youeug
SsaloN uonay 12|quIessy uoneladg

piED 20Uad3jay H2IND
19SS uonondisu| NHVY

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD211

(F+3=5330 3T98) —/+#
il (F+3=5FF0 3TA8) —/+#
[(F+3S5FFO ITAS) —/+¥%

‘[wd]
‘]
“ug]

PaX23pu-1sod
paxapul-aig
12510 21BIpS L

13JSuEel] ejeq 10ss8001do) - G spoyy buissalppy

ISSFFO ITAS—/+4
i[3=55F30 3TaA5—/+%
[I=SSFF0 FITA8—/+#

[ua]
‘1]
“ug]
4 [uwd]
“ug]
“ug]

PaXapUI-IsOq
paxapuUI-Ag

1235 1S3
paxapu-Isog
paxapul-aig

12510 S1BIPS W]

ijSuEl] Bleq PIoMIEH PUE S3Ag peubls - £ sPON PUISS2IPPY

SARM[W T
[enba 10 welp ssa aTI
UEBLR I21B200) o
uBy s 11
renbe J0 121v200) T8
2Wes 10 J2Ma[pauFisun =1
ISy pauFisun IH
MO[I2A0 ON] on
MOI2AD sa
O12Z 10 2AN 150 g 1d
EENG :FETN I
Jzmo[p2uSisuf) 20
awes 10 12UFny pauFisun =2
renba 10py <ty
renbg o
uonduasag APNS
{puoa} pisid uompuod
(g q) 11 }SBW P21} UOISUS1XET w
(1 119) 11q ¥STW PRI SUTS s
(0 119) 1q ¥sTW pl2y sSe(g Ea
(£ 119) 11 (ST P2 [0NUSTD En
sies XHng
PIS1d
Xdd wd PIPUIN2 S0 21BIOY
sd dod wd S0 2110y
g dsY urd ST IS INIWYITY
5d dST urd WFo aprys eSoT
g IST urd Y2 s [enso]
urg ;515
WITT3TASE Hod Wl S0 2110y
WITT3TASE HSY Wl G YIYs 2N YINTY
WITT3TASE HST wWd WSw p1ys [eoSo
WITT3TASE IST wWd 12 y1ys [eonSo
UNIT TR TATE £ N[TA VTPV
zpuido
Surpuadsag ([N ag 2703 1US2123(] aa
Surpuaosag Admwg aZ 3311 1USW2333(] i
Surpu2osy N4 = 2702 JUIWIIDUT dar
Sutpueosy Admg ics I3 JUSm3Iou] L
adfA] yoeis apoy Buissaippy
(21015} + spo Buissaippy
Surpuaosy Aadmg T 270]2g 1U2W2322] Eis}
Sulpu2osy [[ng T 3311 1USW2333(] i
Suipuzosaq Sidmg ad 2]0j2g JUImW232UT [=0%
Surpusosac] (Mg [a gt J211% U222 I
adk] yoels apo Buissaippy

[“urd—/ ‘g]
UWITTIFTYST ATAGH HOod urd—/+ C [ud]
UWITTIFTYST ATAGH USY und—/+ C [ud]
T 3FFUS ATASH HST wd-/+ C [wd]
WU 3FTUS FITAGH IST wd— s+ C [ud] 121515271 pa[eos
unf—/+ *[ud] 125152y
I=SIFO ATAZT—/+4 ‘[wa] SrEIpatw]
13510 PRIX2PUI-1SO]
[3dd ‘und—/+ ‘ud]
[LITT3FTYS™ 3TAGH# Hod ‘urg ‘i]
[uaTTRITHSTATAGH WSY ‘urd—/+ ‘ud]
[uuT™ 33TYs” 3Tq5é ds1 ‘wd-/+ ‘ud]
[uaT™ 33TYs” 3Tq5¢ Is1 ‘wd-/+ ‘ud] Jaspj0 12151821 p2[Eog
[urdg—/+ “uwd] 125110 1215 1§y
[3=5F3F0 3TAZT—/+§ “ud] 12510 S1EIpImm]
(paBajinlid) z spo Buissaippy
[:odd “u fud]
UITTRFTYST ATAGH oW ‘urd 4[]
LT 3F TS ATASH HSE und “[wd]
LT 3F TS ATASH HST und “[wd]
WU 3FTUS FTAGHE IST urd ‘[ud] 121515271 pa[eos
ung ‘[udg] 215152y
1=57F073TIZT 4[] AEpIWWL
13510 PRIX2PUI-1SO]
i [aoge ‘ung—y 4+ ‘]
i [UITT3FTYS™ 3TASH "Wod ‘un—/+ ‘ud]
P [WUT 3 3TYs 3154 ¥dsw ‘uwd-/+ ‘ud]
P [WUT 3 3TYs 3164 ¥ds1 wd-/+ ‘ud]
P [WUT 3 3Tys 3Tq6# IsT wnd-/+ ‘ud] 121515271 pa[eos
i [wg—y+ fud] 125152y
i[3=5FF07ATATT—/+4 “ud] SEIp AW
135110 PRX2pUI-214
[xraa J+ fud]
[LITT3FTYS™ ITAGH HOH J+]
[WUTT3FTUS 3TAs$ dSY + g]
[T 3FTUS 3Tdsé dsT + g]
[T 3FTUS 3Tdsé Is7T ‘+] 12510 12151521 PRAEDS
‘+ fud] 1251710 1215 152y
[1=25TTJ0 ATAST—/+% “uwd] 125110 VTIPS WU

(PE0T) ¥ SPoN BuIssa1pPY

2 spo Buissaippy

pieD asuasaiay J21INp
sapo Buissaippy W4V

