
June 2006
Stig Frode Mjølsnes, ITEM
Svein Y. Willassen, ITEM

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Forensic analysis of an unknown
embedded device

Jarle Eide
Jan Ove Skogheim Olsen

Problem Description
Sometimes investigators must extract digital evidence from an embedded
device with unknown specifications. The manufacturer of the device could be
unknown, or the manufacturer may choose to keep information about the
device's inner workings confidential. In order to be able to interpret
digital evidence on such devices, an investigator must carefully analyze a
similar device by inserting known data and observing the changes in the
contents of the device.

The task is to treat a mobile phone with the Windows Mobile Operating System
as an unknown embedded device. Find a methodologically sound approach for
analyzing the device. Interpret the contents in a such a way that the result
can be applied in forensic analysis of real evidence.

Describe and evaluate the analysis methodology. Is the methodology
applicable for forensic analysis of other unknown embedded devices?

Assignment given: 16. January 2006
Supervisor: Stig Frode Mjølsnes, ITEM

Abstract

Every year thousands of new digital consumer device models come on
the market. These devices include video cameras, photo cameras, com-
puters, mobile phones and a multitude of different combinations. Most
of these devices have the ability to store information in one form or an-
other. This is a problem for law enforcement agencies as they need access
to all these new kinds of devices and the information on them in investi-
gations. Forensic analysis of electronic and digital equipment has become
much more complex lately because of the sheer number of new devices
and their increasing internal technological sophistication. This thesis tries
to help the situation by reverse engineering a Qtek S110 device. More
specifically we analyze how the storage system of this device, called the
object store, is implemented on the device’s operating system, Windows
Mobile. We hope to figure out how the device stores user data and what
happens to this data when it is ”deleted”. We further try to define a gen-
eralized methodology for such forensic analysis of unknown digital de-
vices. The methodology takes into account that such analysis will have to
be performed by teams of reverse-engineers more than single individuals.
Based on prior external research we constructed and tested the methodol-
ogy successfully. We were able to figure our more or less entirely the object
store’s internal workings and constructed a software tool called BlobEx-
tractor that can extract data, including ”deleted”, from the device without
using the operating system API. The main reverse engineering strategies
utilized was black box testing and disassembly. We believe our results can
be the basis for future advanced recovery tools for Windows Mobile de-
vices and that our generalized reverse engineering methodology can be
utilized on many kinds of unknown digital devices.

I

Contents

1 Introduction 1
1.1 Background . 2
1.2 Reverse Engineering . 4
1.3 Objective . 6
1.4 Focus . 7
1.5 Document Outline . 9

2 Work Method 11

3 A Forensic Reverse Engineering Methodology 14
3.1 Benefits from Using a Methodology 15
3.2 Exploring Previous Work . 16

3.2.1 Model-Driven Reverse Engineering (MDRE) 16
3.2.2 UML and RM-ODP Viewpoints 20
3.2.3 Other Reverse Engineering Methodologies 22

3.3 Defining a Methodology . 24
3.3.1 Guidelines for a New Methodology 24
3.3.2 Sketching a Forensic Reverse Engineering Method-

ology . 25

4 Reverse Engineering the Object Store 32
4.1 Initialization Phase . 33

4.1.1 Defining the Problem 33
4.1.2 Documentation Review 33
4.1.3 Creating CIM . 35

4.2 Exploration Phase . 37
4.2.1 Defining a Strategy - First Loop 37
4.2.2 About Black Box Testing 38
4.2.3 Testing . 40
4.2.4 Defining a Strategy - Second Loop 95
4.2.5 About Disassembling 96

II

CONTENTS III

4.2.6 Testing . 107
4.2.7 Defining a Strategy - Third Loop 132
4.2.8 Testing . 133
4.2.9 Evaluate PIM/CIM Consistency 143

4.3 Validation Phase . 144

5 Discussion 147
5.1 The Object Store . 148

5.1.1 Future Work . 149
5.2 The Methodology . 149

5.2.1 Future Work . 151

6 Conclusion 153

A Qtek S110 basics 159

B Source Code 162
B.1 BlobExtractor . 163
B.2 Extensions to the Judas Forensic Tool 197

C ARM Instruction Set Quick Reference Card 208

List of Figures

2.1 Work method. 13

3.1 MDA transformation. 20
3.2 MDRE transformation. 27
3.3 Flow chart of our methodology. 28

4.1 Computation Independent Model 35
4.2 Black box and white box testing. 39
4.3 Test 1 - User-created file. 41
4.4 Test 1 - Hex Workshop default view. 42
4.5 Test 1 - Hex Workshop search box. 43
4.6 Test 1 - Found ”HESTE” in memory dump. 45
4.7 Test 2 - New file. 47
4.8 Test 2 - Compare base dumps. 49
4.9 Test 2 - Looking at new files. 51
4.10 Test 2 - Applying the BlobHeader structure to a blob in Hex

Workshop. 52
4.11 Windows CE API - CeOidGetInfo 55
4.12 Test 2 - Jackson Data Structure diagram of a file. 56
4.13 Test 2 - What happens to the blobs of a deleted file. 59
4.14 Windows CE API - Windows CE Memory Layout[16] 60
4.15 Test 3 - User-created directories 61
4.16 Test 3 - View of user-created directories 62
4.17 Test 3 - Neighbor and child id. 64
4.18 Test 3 - Data files on the device. 64
4.19 WINDOWS CE API - CEOIDINFOEX structure 67
4.20 WINDOWS CE API - CEFILEINFO structure 68
4.21 Test 3 - Properties of a file. 69
4.22 WINDOWS CE API - FILETIME structure 70
4.23 Test 4 - New user-created directories 74
4.24 Test 5 - Text messages . 76

IV

LIST OF FIGURES V

4.25 Test 5 - Rob the museum. 77
4.26 Test 5 - Rob the museum’s parent. 77
4.27 Test 5 - Database found. 78
4.28 Test 5 - Database blob. 81
4.29 WINDOWS CE API - CEDBASEINFOEX structure 82
4.30 WINDOWS CE API - SORTORDERSPECEX structure 83
4.31 Test 6 - VFAT? . 86
4.32 Test 6 - BlobExtractor first edition output 87
4.33 Test 6 - Offset 0x0 . 88
4.34 Test 6 - Offset 0x1000 . 89
4.35 Test 6 - Offset 0x5000 . 90
4.36 Test 6 - Random file . 91
4.37 The compile, assemble, disassemble cycle. 97
4.38 IDAs user interaction interface. 100
4.39 Flirt and PIT . 102
4.40 High level constructs. 103
4.41 Interactive register renaming. 105
4.42 Code control flow graph. 106
4.43 Test 7 - CeOidGetInfo in coredll.dll. 108
4.44 Windows CE API - CeOidGetInfoEx 109
4.45 Test 7 - The start of CeOidGetInfoEx in coredll.dll. 110
4.46 Test 7 - Converting from 2’s Complement to binary. 111
4.47 Test 7 - Changes on the stack. 112
4.48 Test 7 - List of API sets. 114
4.49 Test 7 - Table at the beginning of filesys.exe. 115
4.50 Test 7 - Code segment at 0x00012D50 116
4.51 Test 7 - Assembly flow graph. 118
4.52 Windows CE API - MapCallerPtr 119
4.53 Test 7 - Seperating MSB paths. 121
4.54 Test 7 - Validating that object store path is correct. 122
4.55 Windows CE API - CEGUID structure 123
4.56 Windows CE API - CHECK SYSTEMGUID macro 124
4.57 Test 7 - Redirecting to 0x00023FCC. 125
4.58 Test 7 - The file dogbark.wav used in the simulation. 125
4.59 Test 7 - Utilizing the rest of the object identifier. 126
4.60 Windows CE API - CEOIDINFOEX structure 127
4.61 Test 7 - Locating an object. 130
4.62 Test 7 - Locating a file. 131
4.63 Test 8 - Object table list and Object tables. 133
4.64 Test 8 - Zebra found. 134
4.65 Test 8 - Object table list. 134

LIST OF FIGURES VI

4.66 Test 8 - Object table . 135
4.67 Test 8 - Objects completely deleted. 136
4.68 Test 9 - Pointers to deleted space. 137
4.69 Test 9 - The objects of svein.txt. 138
4.70 Test 9 - Locating gjertrud.txt. 139
4.71 Test 9 - A temporary object. 140
4.72 Test 9 - Object store reorganized 142
4.73 Test 9 - Locating msn.gif. 142
4.74 Test 9 - Linked list pointing to free space. 143

List of Tables

4.1 Test 3 - 5 directories in object store 63
4.2 Test 3 - File time dwords . 71
4.3 Test 3 - Property flag word. 71
4.4 Test 3 - Property flag bit masks 72
4.5 Test 7 - Simulating a file lookup. 129

A.1 Qtek S110 specification . 161

VII

Listings

4.1 Test 1 - Blob structures v1 . 46
4.2 Test 2 - Blob structures v2 . 50
4.3 Test 2 - Blob structures v3 . 53
4.4 Test 2 - Blob structures v4 . 57
4.5 Test 3 - Directory blob structure 65
4.6 Test 3 - Blob structures v5 . 72
4.7 Test 5 - CEDB property types 78
4.8 Test 5 - Text message . 79
4.9 Test 5 - Database blob structures 84
4.10 Test 6 - Blob structures v6 . 91
B.1 BlobExtractor: Blob.cs . 163
B.2 BlobExtractor: BlobExtractor.cs 168
B.3 BlobExtractor: BlobFactory.cs 176
B.4 BlobExtractor: DatabaseRecordBlob.cs 182
B.5 BlobExtractor: FileBlob.cs . 184
B.6 BlobExtractor: FreeBlob.cs . 187
B.7 BlobExtractor: Property.cs . 190
B.8 BlobExtractor: PropertyFactory.cs 192
B.9 Extensions to the Judas Forensic Tool 197

VIII

Abbrevations

API Application Programming Interface

ARM Acorn RISC Machine

CEDB CE DataBase

CIM Computation Independant Model

DLL Dynamic Link Library

FAT File Allocation Table

HW Hex Workshop

IDA (PRO) Interactive Disassembler (Professional)

LSB Least Significant Bit

MDA Model-Driven Architecture

MDRE Model-Driven Reverse Engineering

MSB Most Significant Bit

MSDN Microsoft Developers Network

ODP Open Distributed Processing

OID Object Identifier

OMG Object Management Group

OS Operating System

PIM Platform Independant Model

PSM Platform Specific Model

IX

LISTINGS X

RAM Random Access Memory

RAPI Remote Application Programming Interface

RM-ODP The Reference Model for Open Distributed Processing

SIM Subscriber Identity Module, smart card for mobile phones.

UML Unified Modeling Language

VFAT (see FAT)

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

1.1 Background

The digital world is all around us. Every year thousands of new digi-
tal consumer device models come on the market. These devices include
video cameras, photo cameras, computers, mobile phones and a multi-
tude of different combinations. Most of these devices have the ability to
store information in one form or another. Cameras store video or pictures,
computers store the users work and mobile phones store call logs and text
messages.

Among the fastest growing segments of new digital consumer devices are
so-called smartphones. These are hybrids between a small computer and
a mobile phone. They have the phone capabilities of a mobile phone and
at the same time they can play music, record video and run programs like
any other computer. One of the biggest operating systems suppliers for
such devices is Microsoft with their Windows Mobile platform. Accord-
ing to Gartner[1] the smartphone market is expected to double every year,
reaching 200 million by 2008. Currently Windows Mobile runs on around
10 percent of these, but their market share is rising every year. Microsoft
distributes parts of the internal functions in its operating system freely
through its shared source initiative[2], but several of the key components
are not included. Unfortunately this includes all code pertaining to how
the device stores user data at a low level, which would be very helpful
for forensic analysts. This fact combined with the future market share of
Windows Mobile makes it a very attractive target for analysis, as it could
be helpful in many investigations in years to come.

The explosion of new digital devices has led to an explosion of both amounts
and types of available information. This is a problem for law enforcement
agencies as they need access to all these new kinds of devices and the in-
formation on them in investigations[3]. Forensic analysis of electronic and
digital equipment has become much more complex lately because of the
sheer number of new devices and their internal technological sophistica-
tion. One would expect that manufacturers of these devices would help
out in this endeavor, but the fact is that the manufacturers often can not or
will not reveal the internal workings of their devices. They can not because
they have simply bought the underlying technology from a third party or
they will not because they view the technical implementation details as
business secrets. The fact that manufacturers can be located anywhere in
the world and can be difficult to get in touch with on tight investigation
schedules hardly helps either. There are also legal problems with letting

CHAPTER 1. INTRODUCTION 3

just anybody handle evidence, which these devices are in an investigation.
This leaves it up to the law enforcement agencies themselves or third party
specialists to analyze them. Earlier this could be done by lone wolfs with
high technology skills, but with the sophistication level and high volume
of new devices this is becoming increasingly difficult. Cooperation among
several individuals is essential to keep up and they need to be able to ex-
change their findings. What is needed is a methodology and model for
doing and documenting forensic analysis of unknown devices, based on
the principles of reverse engineering.

CHAPTER 1. INTRODUCTION 4

1.2 Reverse Engineering

”The process of analyzing a subject system to identify the system’s com-
ponents and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction.” (IEEE 1990)

Reverse engineering is the process of figuring out the inner technological
workings of a device or system without having access to its architectural
and design details. A device is to be understood as any device, be it me-
chanical, electrical, software or anything else. The process usually consists
of, by some kind of means, deconstructing the device. How this is done, of
course varies wildly according to what kind of device one has. Mechanical
components are usually just taken apart physically to understand what the
different parts are and how they interact. Electrical components are ana-
lyzed with advanced equipment like oscilloscopes and logical analyzers,
while software can be tested with different input/output combinations or
a reverse-engineer can analyze the raw machine instructions that make up
the program with the help of a disassembler.

The purpose of this process can be several things, depending on the type
of system one is reverser engineering. For software systems the two main
purposes are redocumentation and design recovery according to [4]. They
describe them like this:

Redocumentation ”.. is the creation or revision of a semantically equiva-
lent representation within the same relative abstrac-
tion level. The resulting form of representation are
usually considered alternative views (for example,
dataflow, data structure, and flow control) intended
for a human audience.

Redocumentation is the simplest and oldest form of
reverse engineering, and many consider it to be an un-
intrusive, weak form of restructuring. The ”re-” pre-
fix implies that the intent is to recover documentation
about the subject system that existed or should have
existed.

CHAPTER 1. INTRODUCTION 5

Some common tools used to perform redocumenta-
tion are pretty printers (which display a code listing in
an improved form), diagram generators(which create
diagrams directly from code, reflecting control flow or
code structure), and cross-reference listing generators.
A key goal of these tools is to provide easier ways to
visualize relationships among program components
so you can recognize and follow paths clearly.”[4]

Design discovery ”.. is a subset of reverse engineering in which do-
main knowledge, external information, and deduc-
tion or fuzzy reasoning are added to the observations
of the subject system to identify meaningful higher
level abstractions beyond those obtained directly by
examining the system itself. Design recovery is dis-
tinguished by the sources and span of information it
should handle.”[4]

According to Biggerstaff design recovery also ”recre-
ates design abstractions from a combination of code,
existing design documentation (if available), personal
experience, and general knowledge about program
and application domains ... Design recovery must
reproduce all of the information required for a per-
son to fully understand what a program does, how
it does it, why it does it, and so forth. Thus, it deals
with a far wider range of information than found in
conventional software-engineering representations or
code.”[5]

CHAPTER 1. INTRODUCTION 6

1.3 Objective

The following presents the project description, as defined by the univer-
sity:

Forensic analysis of an unknown embedded device

Sometimes investigators must extract digital evidence from an embed-
ded device with unknown specifications. The manufacturer of the device
could be unknown, or the manufacturer may choose to keep information
about the device’s inner workings confidential. In order to be able to inter-
pret digital evidence on such devices, an investigator must carefully ana-
lyze a similar device by inserting known data and observing the changes
in the contents of the device.

The task is to treat a mobile phone with the Windows Mobile Operating
System as an unknown embedded device. Find a methodologically sound
approach for analyzing the device. Interpret the contents in such a way
that the result can be applied in forensic analysis of real evidence.

Describe and evaluate the analysis methodology. Is the methodology ap-
plicable for forensic analysis of other unknown embedded devices?

CHAPTER 1. INTRODUCTION 7

1.4 Focus

We now define more precisely what our focus will be in this thesis.

Based on Windows Mobile devices rising popularity and the thesis de-
scription we are going to treat one of these mobile phones as an unknown
device and try to analyze it. Analysis of a phone can include many things,
but we have chosen to focus on how the phone stores user created data.

User created data is of course interesting because it can contain a lot of
information about the device’s user. In criminal cases call logs that keep
tracks of who the user has been talking to can help the investigation. Text
messages not only shows who the user has been talking to, but also what
has been said. Other user created files of interest are pictures, videos and
just any file with data that can help an investigation.

How call logs, text messages and user files are physically formatted on
the ”disk” of the phone is unknown. Some Windows Mobile Smartphones
do not actually have non-volatile storage. Instead, parts of the devices
RAM is used as storage. This means the user can actually lose all his data
if the device runs out of power. The parts of RAM allocated for storage
is called the object store. In this store the device stores all non-OS data
on the phone. The layout and implementation of this store is not publicly
available outside Microsoft. The biggest focus in our task has been to re-
cover this layout. With this information we can construct forensic utilities
to extract data from the phone without relying on the API exposed by the
operating system itself. This is very important for forensic work because
we do not know what side effects using the API might lead to. Forensic
analysis must be free of side effects that change the data in any way.The
integrity of the data must always be maintained so that it can be used as
possible evidence in legal matters.

The capture of the raw memory contents of the phone is a daunting task
in itself, but it is not within our scope. Our task starts when such a dump
is available. The exact way this is done, is not important for us. Both
hardware and software ways of doing this can be constructed. As far as
we know no one has done this with a pure hardware approach at present
time, but both [6] and [7] have made available software tools capable of
this. We will use these to get our memory dumps. Our device also has a
compact flash drive for additional storage space. We have defined this to
be outside our scope as it is not considered part of the device’s object store.

CHAPTER 1. INTRODUCTION 8

The second part of the task has been to develop a model and methodology
for doing our analysis. How should we start analysis of a completely un-
known device? Where do we begin, what steps should we follow, which
tools should we use and how do we document our progress? We have to
find out and make a system out of it. This is primarily done before attack-
ing the object store so that we have a model to work from. Our model will
be based on prior models combined with our own ideas. After testing the
model on the Microsoft Mobile device we will discuss whether the model
is general enough to work with other types of unknown devices as well.

CHAPTER 1. INTRODUCTION 9

1.5 Document Outline

Reverse engineering a system such as the object store requires us as the
reverse-engineers to dive into detailed low-level concepts in order to be
able to analyze the system. When presenting the work from this process it
makes no sense not to go into these details, even though they may require
extra attention from the reader. We are fully aware of this dilemma, and
have therefore taken some precautions in order to make the presentation
as readable as possible.

Chapter 1, ”Introduction”, starts with an introduction to the domain of
forensic analysis, and presents the objective and focus of the project.

Before moving on to present our work, chapter 2, ”Work Method”, gives
a brief insight into our process throughout the project. This includes how
we moved from planning and brainstorming sessions, towards defining a
methodology and finally the actual reverse engineering. This chapter will
also note some of the tools and programming languages we learned in or-
der to carry out the project.

In chapter 3, ”A Forensic Reverse Engineering Methodology”, we start
presenting our work on a methodology. The chapter starts with a discus-
sion of why such a methodology could prove beneficial. It then continues
by introducing the existing methodologies we decided to build our work
on. Then, towards the end of the chapter, a new methodology is defined,
which is to be used in our own reverse engineering process.

Chapter 4, ”Reverse Engineering the Object Store”, is where we present
the detailed analysis of the object store. In order to make this chapter as
readable as possible, we try to present the work by continuously referring
to the methodology from the previous chapter in order to make it easier
for the reader to follow the process. We have also made figures and screen-
shots a high priority in situations where we found them useful to explain
details. We believe that this has resulted in a readable presentation of these
low-level details.

Chapter 5, ”Discussion”, discuss both of the two objectives of the project.
It starts by discussing the results from the reverse engineering process,
and then moves on to discuss our experience with the methodology. Some
thoughts on future work are presented for both topics.

CHAPTER 1. INTRODUCTION 10

In chapter 6, ”Conclusion”, we sum up the project with some final con-
clusions.

Chapter 2

Work Method

11

CHAPTER 2. WORK METHOD 12

This chapter gives an overview of how we have arranged our work.

Our task was to define and evaluate a methodology for forensic analysis
of an unknown device. We started of with brainstorming sessions on how
we should attack our task. We soon found that we wanted to define a
stepwise approach built around general concepts. This approach should
be developed to help assist us in performing and documenting forensic
analysis of any unknown device.

Seeing no need to re-invent the wheel, we did a literature study on method-
ologies for forensic analysis and general reverse engineering. Based on
this study we constructed what we felt was a good methodology for ap-
proaching an unknown device for analysis. This methodology and the
basis for constructing it is found in chapter 3.

After having constructed our methodology, we tested it quite thoroughly
on our unknown device in chapter 4. This testing involved black box test-
ing and disassembling of the device. The black box testing was performed
by giving known input and dumping the phones memory content. This
dump was then analyzed with the help of a hex editor and its built-in
structure definition library. Several small test programs were written in
C++/C for Windows Mobile. We also developed a memory dump val-
idation and analysis tool called BlobExtractor. For this we used Visual
Studio .NET 2005 and C#. The disassembling phase also gave us consider-
able challenges. First we had to learn how to use the advanced Interactive
DisAssembler (IDA). In order to synchronize the discoveries found with
IDA with each other we had to modify a third party utility to work with
our version of IDA. This utility, called ida sync, is written in Python and
C++. Next, in order to use IDA on the dll files from the unknown device
and understand its output we also had to learn the ARM assembly lan-
guage and the executable file format used on Windows Mobile. We also
had to familiarize ourselves with Windows Mobile (Windows CE)’s inter-
nal architecture and memory layout in order to interpret what the ARM
assembly instructions were actually doing to the phone. In the disassem-
bly phase we also further enhanced BlobExtractor to make use of the new
knowledge gained here.

The results from the reverse engineering phase and possible further en-
hancements to the model or its utilization was then documented in chap-
ter 5.

CHAPTER 2. WORK METHOD 13

Figure 2.1 shows the large picture steps in our work method. We only used
our method for one main cycle as we only analyzed only one unknown de-
vice.

Figure 2.1: Work method.

Chapter 3

A Forensic Reverse Engineering
Methodology

14

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY15

3.1 Benefits from Using a Methodology

Before going into the details of a reverse engineering methodology, we
need to discuss why such a methodology could be beneficial. We believe
that there are many aspects supporting the use of a defined methodology.
The resources spent on developing the methodology itself are clearly jus-
tified by long-term benefits.

The new methodology should first of all build on techniques from exist-
ing related work. This could help avoid common pitfalls, and would take
advantage of knowledge gained during years of research. This implies the
use of well-defined modeling techniques, which in turn would bring sev-
eral possible benefits to the table.

A standard indicating what to model would encourage the reverse-engineer
to document all information found, and arrange it in a way that improves
readability. Section 3.3.1 argues that the representation and arrangement
of information is of great importance in a reverse engineering process.

Using well-defined modeling techniques also improves co-operation when
several reverse-engineers work together on the same project. This could
prove useful when time is a concern. It also gives the reverse-engineer
easier access to the knowledge from other reverse engineering projects.
When the same methodology is used over time, knowledge from previous
projects become more available to upcoming projects. This is of particular
interest to the forensic analysts, as the target devices often share character-
istics.

Another benefit that could have great impact on both the quality and effi-
ciency of the reverse engineering process is that using a standard method-
ology would lay the foundation for developing a more involving tool to
be used throughout the process. The tool could feature many useful func-
tions based on the methodology, including support for co-operation, au-
tomatic model creation, structured knowledge base arrangement, incon-
sistency checks, import of information from previous projects, resource
gathering, report generation, and many more.

In general, considerable improvement in two vital areas could be the re-
sult of a defined methodology: quality and efficiency. Quality, because the
reverse-engineer can follow a step by step procedure almost as a checklist,
which guides the reverse-engineer using a quality-tested process. Also

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY16

because the work of the reverse-engineer could more easily be quality-
controlled afterwards. Efficiency, because the reverse-engineer can get
into what he knows best, the actual reverse engineering, almost imme-
diately. A substantial load from the planning phase of the project is re-
moved, since this wheel has already been invented. The above discussion
also mentioned several other aspects affecting the efficiency, including co-
operation, using knowledge from other projects, and enabling advanced
tools to be used.

From the forensic perspective, quality and efficiency is of great impor-
tance. The forensic analyst would need to document both the process and
his findings, and a well-defined methodology could be of great assistance
when defending the quality of the work. In addition, during an investiga-
tion, time is always an issue. If the forensic evidence could be discovered
at an earlier stage, this could have a great impact on the investigation.

3.2 Exploring Previous Work

As discussed in the previous section, we wanted to build our new method-
ology on existing related work by taking advantage of well-defined stan-
dards and concepts. Our job was to gather only what we found most suit-
able for the methodology, and use these references as a guide.

3.2.1 Model-Driven Reverse Engineering (MDRE)

Model-Driven Reverse Engineering[8] is an ongoing research field, de-
signed to overcome the difficulties of predicting the time consumption of a
reverse engineering project, and evaluating the quality of the reverse engi-
neering. As the name suggests, MDRE is based on using models to guide
the reverse engineering process. The models are divided into different ab-
straction levels, and the key element of the process is to make connections
between models at different abstraction levels.

MDRE is based on the Object Management Groups (OMG) Model-Driven
Architecture (MDA). MDA is an approach to using models in software de-
velopment. It is based on separating the specification of the operation of a
system from the details of the way that system uses the capabilities of its
platform. As MDA is designed for forward engineering, the idea of MDRE
is to reverse processes described in MDA, but still use the same ideas and
models. The following will include a short description of MDA concepts,

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY17

taken from the MDA Guide Version 1.0.1 [9].

The Basic Concepts

System MDA concepts are presented in terms of some existing
or planned system. That system may include anything,
like: a program, a single computer system, some combi-
nation of parts of different systems, a federation of sys-
tems, each under separate control, people, an enterprise
or a federation of enterprises.

Model A model of a system is a description or specification of
that system and its environment for some certain pur-
pose. A model is often presented as a combination of
drawings and text. The text may be in a modeling lan-
guage or in natural language.

Model-Driven MDA is an approach to system development, which in-
creases the power of models in that work. It is model-
driven because it provides a means for using models to
direct the course of understanding, design, construction,
deployment, operation, maintenance and modification.

Architecture The architecture of a system is a specification of the parts
and connectors of the system and the rules for the inter-
actions of the parts using the connectors.

The Model-Driven Architecture prescribes certain kinds
of models to be used, how those models may be prepared
and the relationships of the different kinds of models.

Viewpoint A viewpoint on a system is a technique for abstraction
using a selected set of architectural concepts and struc-
turing rules, in order to focus on particular concerns
within that system. Here abstraction is used to mean the
process of suppressing selected detail to establish a sim-
plified model. The concepts and rules may be considered
to form a viewpoint language. The Model-Driven Archi-
tecture specifies three viewpoints on a system: a compu-
tation independent viewpoint, a platform independent
viewpoint and a platform specific viewpoint.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY18

View A viewpoint model or view of a system is a represen-
tation of that system from the perspective of a chosen
viewpoint.

Platform A platform is a set of subsystems and technologies that
provide a coherent set of functionality through interfaces
and specified usage patterns, which any application sup-
ported by that platform can use without concern for the
details of how the functionality provided by the platform
is implemented.

Application The term application is used to refer to a functionality be-
ing developed. A system is described in terms of one or
more applications supported by one or more platforms.

Platform Inde-
pendence

Platform independence is a quality, which a model may
exhibit. This is the quality that the model is independent
of the features of a platform of any particular type. Like
most qualities, platform independence is a matter of de-
gree.

Computation
Independent
Viewpoint

The computation independent viewpoint focuses on the
on the environment of the system, and the requirements
for the system; the details of the structure and processing
of the system are hidden or as yet undetermined.

Platform Inde-
pendent View-
point

The platform independent viewpoint focuses on the op-
eration of a system while hiding the details necessary
for a particular platform. A platform independent view
shows that part of the complete specification that does
not change from one platform to another. A platform
independent view may use a general purpose modeling
language, or a language specific to the area in which the
system will be used.

Platform
Specific View-
point

The platform specific viewpoint combines the platform
independent viewpoint with an additional focus on the
detail of the use of a specific platform by a system.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY19

Computation
Independent
Model (CIM)

A computation independent model is a view of a sys-
tem from the computation independent viewpoint. A
CIM does not show details of the structure of systems.
A CIM is sometimes called a domain model and a vocab-
ulary that is familiar to the practitioners of the domain in
question is used in its specification. It is assumed that
the primary user of the CIM, the domain practitioner,
is not knowledgeable about the models or artifacts used
to realize the functionality for which the requirements
are articulated in the CIM. The CIM plays an important
role in bridging the gap between those that are experts
about the domain and its requirements on the one hand,
and those that are experts of the design and construction
of the artifacts that together satisfy the domain require-
ments, on the other.

Platform
Independent
Model (PIM)

A platform independent model is a view of a system
from the platform independent viewpoint. A PIM ex-
hibits a specified degree of platform independence so as
to be suitable for use with a number of different plat-
forms of similar type.

A very common technique for achieving platform inde-
pendence is to target a system model for a technology-
neutral virtual machine. A virtual machine is defined
as a set of parts and services (communications, schedul-
ing, naming, etc.), which are defined independently of
any specific platform and which are realized in platform-
specific ways on different platforms. A virtual machine
is a platform, and such a model is specific to that plat-
form. But that model is platform independent with re-
spect to the class of different platforms on which that
virtual machine has been implemented. This is because
such models are unaffected by the underlying platform
and, hence, fully conform to the criterion of platform in-
dependence.

Platform Spe-
cific Model
(PSM)

A platform specific model is a view of a system from the
platform specific viewpoint. A PSM combines the speci-
fications in the PIM with the details that specify how that
system uses a particular type of platform.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY20

Figure 3.1: MDA transformation.

Model Trans-
formation

Model transformation is the process of converting one
model to another model of the same system. Figure 3.1
illustrates the MDA pattern, by which a PIM is trans-
formed to a PSM.
The drawing is intended to be suggestive. The plat-
form independent model and other information are com-
bined by the transformation to produce a platform spe-
cific model.

The drawing is also intended to be generic. There are
many ways in which such a transformation may be done.
However it is done, it produces, from a platform inde-
pendent model, a model specific to a particular platform.

3.2.2 UML and RM-ODP Viewpoints

UML

The Unified Modeling Language (UML)[10] is OMGs most-used specifi-

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY21

cation. It is used to model not only application structure, behavior, and ar-
chitecture, but also business process and data structure. The latest version
of the specification, UML 2.0, defines thirteen types of diagrams, divided
into three categories:

Structure Diagrams include the Class Diagram, Object Diagram, Com-
ponent Diagram, Composite Structure Diagram, Package Diagram, and
Deployment Diagram.

Behavior Diagrams include the Use Case Diagram (used by some method-
ologies during requirements gathering), Activity Diagram, and State Ma-
chine Diagram.

Interaction Diagrams, all derived from the more general Behavior Dia-
gram, include the Sequence Diagram, Communication Diagram, Timing
Diagram, and Interaction Overview Diagram.

UML form a foundation for MDA, and can be used for CIM, PIM, and
PSM.

RM-ODP Viewpoints

The Reference Model For Open Distributed Processing (RM-ODP)[11] was
a joint effort by the international standards bodies ISO and ITU-T to de-
velop a coordinating framework for the standardization of open distributed
processing (ODP). In a world of interconnected computer systems, het-
erogeneity in interaction models prevents interworking between systems.
RM-ODP targets this dilemma with an architecture that supports distribu-
tion, interworking, interoperability, and portability.

The RM-ODP framework defines ODP concerns using five viewpoints: en-
terprise, information, computational, engineering, and technology.

Enterprise
view

Three keywords describe the enterprise viewpoint: pur-
pose, scope, and policies. It focuses on the environment
and general organization of the system, concerned with
objects, communities, and the roles of the objects within the
communities.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY22

Information
view

The information viewpoint focuses on the semantics of
information and information processing, divided into
three schemas. A static schema captures the state and
structure of an object, typically represented by an object
diagram. An invariant schema restricts the state and struc-
ture of an object, e.g. by a class diagram with associations
and other constraints. A dynamic schema defines the per-
mitted change in the state and structure of an object in a
behavior specification.

Computational
view

The computational viewpoint is an object-based, modu-
lar view. A computational specification defines the ob-
jects within an ODP system, the activities within those
objects, and the interactions that occur among objects.

Engineering
view

The engineering viewpoint focuses on the mechanisms
and functions required to support distributed interac-
tions between object in the system.

Technology
view

The technology viewpoint focuses on the choice of tech-
nology in the system.

MDA uses these ODP viewpoints as a guide for the models at different
abstraction levels. A CIM of a system may include several models, based
on the enterprise and information viewpoints. A PIM uses models based
on the enterprise, information, and computational viewpoints. The more
specific viewpoints, engineering and technology, are left for the PSM.

3.2.3 Other Reverse Engineering Methodologies

In ”A Reverse Engineering Mehodology For Data Processing Applications”
[12] K. Spencer and S. Rugaber from the Software Research Center at Geor-
gia Institute of Technology defines a reverse engineering methodology
based on four phases: a documentation review, an analysis of system in-
put/output structure, an analysis of the structure of the input and output
files, and a detailed analysis of the source code using a technique called
Synchronized Refinement. It should be noted that the methodology was
tested on a system targeted for redesign, with reasonably accurate docu-
mentation available, and also access to all source code, which the article
claims was cleanly structured.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY23

They start with a review of existing documents. The purpose of this phase
is to establish an overview and a functional description of the system, ig-
noring the implementation details.

They continue with an analysis of the systems input/output behavior. The
key concept here is data flow diagrams. The top level diagram is called a
Context Diagram, which only include one activity, the system itself, and all
external files as repositories with the direction of the arc denoting whether
the file is used as input or output. The context diagram is then verified
by examining source code. The data flow diagrams can be nested, to de-
scribe different levels in the system. That is, a process node at one level
can be expanded into an entire diagram at a lower level. The nesting of
the diagrams proceeds until all system input/output behavior has been
described.

The next phase consists of an analysis of the structure of the files used
in the system. The analysis is expressed in terms of Jackson Data Struc-
ture diagrams[13], which describes the file as a tree-structured collection
of boxes.

The final phase uses a technique called Synchronized Refinement. Syn-
chronized Refinement is a code reading technique developed by Rugaber
et al. that simultaneously examines and abstracts source code while elab-
orating an application description. It is used to obtain a detailed descrip-
tion of a specific function. Captured understanding is expressed in terms
of how identified code constructs realize specific application domain con-
cepts. The process is driven by the detection of design decisions in the
source code. The key concepts are recognition and abstraction. When a de-
sign decision is recognized and annotated, the code segment representing
the design decision is replaced by a description of what it does. This way,
the source code gets shorter, while the description of the system grows.

The process begins with a high-level description obtained from the doc-
umentation review. This description leads to some expectations about the
system. A dynamic list of expectations is kept, while exploring expecta-
tions by examining the source code. This may lead to some expectations
being discarded, while new expectations emerge. This process is contin-
ued until enough connections have been made between the high-level and
low-level descriptions to cover the system being analyzed.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY24

3.3 Defining a Methodology

This section will introduce our new methodology for forensic reverse engi-
neering. As mentioned, it is based on concepts from other methodologies
and standards presented in the previous section.

3.3.1 Guidelines for a New Methodology

As part of our preparations for the development of this methodology, we
made some guidelines to lead us in our development. The guidelines are
based on a combination of experiences from similar projects studied and
our own thoughts on important aspects of such a methodology.

First of all, the methodology needs to be specific enough to be used as
a guide through a reverse engineering process, while at the same time be
general enough to be used on entirely different systems.

”Program Comprehension For Reverse Engineering” [14] discuss some
concerns related to program comprehension, and states that reverse en-
gineering is difficult because of the need to bridge different worlds. Of
particular importance, they mention five gaps:

• The gap between a problem from some application domain and a
solution in some programming language.

• The gap between the concrete world of physical machines and com-
puter programs and the abstract world of high level descriptions.

• The gap between the desired coherent and highly structured descrip-
tion of the system and the actual system whose structure may have
disintegrated over time.

• The gap between the hierachical world of programs and the associa-
tional nature of human cognition.

• The gap between the bottom-up analysis of the source code and the
top-down synthesis of the description of the application.

[14] states that these difficulties manifest themselves in three ways: lack
of a systematic methodology, lack of an appropriate representation for the
information discovered during reverse engineering, and lack of powerful
tools to facilitate the reverse engineering process.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY25

The lack of a systematic methodology is the main objective of this project,
and we will target this problem directly.

We also want to target the problem with lack of appropriate representa-
tion. We believe that in a reverse engineering project, having a clear and
organized overview of what is known at all times may be the difference be-
tween success and failure. New information needs to be connected to what
we already know. To do this, the representation of information will be im-
portant to decrease the chances of overlooking possibly important new
information. We will not, however, go into the details of any requirements
or languages used in the representation of information, but acknowledge
its importance, encourage the reverse-engineer to see its importance, and
build a methodology that supports this idea and future work on a specific
representation.

Finally, we want to target the problem related to a lack of supporting tools
indirectly by developing a methodology suitable to lay the foundation for
such tools to be developed based on the it.

3.3.2 Sketching a Forensic Reverse Engineering Methodol-
ogy

It is time to start presenting the new methodology. First of all, the method-
ology is based on the ideas from Model-Driven Reverse Engineering and
the Model-Driven Architecture, presented in section 3.2.1. We want the
main focus of our methodology to be aimed at the Computation Inde-
pendent Model, the Platform Independent Model, the Platform Specific
Model, and the mappings between these models. These models are gen-
eral enough to be adjusted to any reverse engineering problem, but still
specific enough to lay the foundation for the reverse engineering process.
One of our main thoughts behind the idea of building the methodology
around such models is to encourage the reverse-engineer to document all
stages of the process. This is particularly important in a forensic setting.

In most cases, the reverse-engineer will have some level of knowledge
about the domain in question. That is, if the target device was a digi-
tal camera, depending on experience, the reverse-engineer would imme-
diately expect to find some sort of storage chip, a file system, some al-
gorithms and parameters related to interpolation, compression, etc. This

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY26

knowledge is part of the foundation for building the CIM. The other part
is gained from a documentation review. As with the methodology pre-
sented in 3.2.3, developed by K. Spencer and S. Rugaber, we want a docu-
mentation review to be one of the initial stages of the process. This should
support the building of the CIM, and also construct an initial knowledge
base that at any stage contains all the information known about the system
so far. But, as opposed to Spencer and Rugaber’s methodology, we believe
that the choice of strategy and techniques used in the reverse engineering
process should be chosen after the documentation review. While they de-
fined their strategy at the very beginning of the project, we believe that the
reverse-engineer can come to a better conclusion about his strategy after
having gained more knowledge about the system. In addition, we don’t
want the strategy to be static, but instead use a dynamic approach where
strategies may be swapped as the process reveals new information about
the system.

When a CIM of the system has been built, the fundamental idea is to pick
strategies and techniques for reverse engineering and gradually build a
PSM of the system. The CIM works as a high-level guide in the reverse
engineering, guiding the choice of attack-angles, and giving a better un-
derstanding of the revealed information. From the general ideas of the
CIM to the specific information represented in the PSM, the goal is to ab-
stract the PSM to create a PIM. This is done by mappings from the PSM to
the PIM, based on recognizing the intended purpose of PSM concepts. The
process can be seen as the opposite of how MDA uses a PIM to transform
it into a PSM. To validate the result of the reverse engineering, we want to
use the idea of ”adequate reverse engineering” from ”Model-Driven Re-
verse Engineering” [8]. The article compares adequate reverse engineering
with how the term adequacy is used in software testing. Testers use var-
ious adequacy criteria to ensure that requirements have been met. These
criteria derive their benefit from being deterministic and measurable.

The article further states that ”if adequacy criteria existed for reverse engi-
neering, then software engineers could start collecting experience reports
and building databases of project statistics to help predict reverse engi-
neering time and effort.” Two characteristics are introduced to form the
basis for adequacy: thoroughness and lucidity. Thoroughness is ”the extent to
which the reverse engineering covers the entire system being examined.”
Lucidity is ”the extent to which the reverse engineering sheds light on the
purpose of the system and how that purpose is accomplished by the code.”
The intension is to use the models to help measure the thoroughness and

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY27

Figure 3.2: MDRE transformation (modified version of figure 3.1, taken
from [9]).

lucidity of the system. To do this, they introduce the term ”reverse reverse
engineering.” Reverse reverse engineering is used for validation, by using
the resulting models from the reverse engineering to build a new imple-
mentation of the system, hence reversing the reverse engineering. The
idea is to compare this new version with the original, to determine if the
match is close enough. The article discusses reversing a software program,
using a code generation tool for the reverse reverse engineering task, gen-
erating the code automatically from a standard representation of the mod-
els and comparing the results. In our situation, the system may not be a
software program, but the general idea of reverse reverse-engineering still
hold.

Our methodology is presented with the flow chart shown in figure 3.3,
and a step by step explanation is given below.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY28

Figure 3.3: Flow chart of our methodology.

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY29

1. Initialization phase This phase includes the initial preparations be-
fore moving on to analyze the system itself. At the end of this phase, the
reverse-engineer should have a general idea of the functioning of the tar-
get system.

1.1 Define problem

The first step of the methodology is to define the problem, in order to get
a clear understanding of what to target. The important part in this step is
to limit the problem to only include what is necessary. This step should
include a definition of the success criteria.

1.2 Documentation review

The documentation review was discussed above. The goal of this step is
to get an initial understanding of the problem and its domain. The knowl-
edge gained during the documentation review will be the basis for three
important aspects of the methodology:

1. A knowledge base is formed based on the information found. This
knowledge base should contain all known information at any time,
and represent the reverse-engineers current understanding of the
system.

2. A CIM is created based on a general idea of the domain of the system.

3. The first strategy chosen in the Experimentation phase is based on
knowledge from the documentation review.

1.3 Create CIM

A CIM should be created based on the domain knowledge gained during
the documentation review. The CIM will be used throughout the process
to guide what part of the system to address at any time and to validate the
models created for consistency. The CIM can change during the process,
in cases where the actual domain differs from the expected.

2. Experimentation phase
This is the phase where all tests and experiments on the system are per-
formed. The idea is to increase the knowledge about the system incremen-
tally by continuously making new connections between new information

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY30

and the current state of the knowledge base.

2.1 Define strategy

When the reverse-engineer has gained a general impression of the system,
it is time to start analyzing it. The choice of strategy will vary depend-
ing on the system and the information found during the documentation
review. A chosen strategy is kept as long as it produces new informa-
tion, but a strategy could be re-used at some later stage if new information
from other strategies causes this strategy to be valuable again. Examples
of strategies, which will be seen in action in our case study, are black-box
testing and disassembling.

2.2 Create tests

At this stage, tests are created according to the chosen strategy. The tests
should be targeted at a particular part of the CIM they intend to explore.

2.3 Perform tests

Tests are performed according to the plan created in the previous step.

2.4 Extract info

Information is extracted from the results of the tests.

2.5 Adjust PSM

If new information was found in the previous step, the information is in-
corporated into the PSM.

2.6 Transform to PIM

When new information is incorporated into the PSM, we try to abstract
the PSM into a PIM. The CIM helps us understand the concepts explored
in the PSM.

2.7 Evaluate PIM/CIM consistency

As the PIM grows, we evaluate the consistency between the PIM and the
CIM to see if we have covered the entire system. This corresponds to

CHAPTER 3. A FORENSIC REVERSE ENGINEERING METHODOLOGY31

the discussion of adequate reverse engineering above, and the characteris-
tics thoroughness and lucidity. If we believe to have covered what we need,
we move on to test against our success criteria. If we have not yet covered
everything, we go back to create a new set of tests to test new aspects of
the system.

3. Validation phase

There are two ways to enter this phase. Either you believe to have covered
the entire system in question, and need to test against the success criteria.
Or you have performed a set of tests that gave no new information.

3.1 Test against success criteria

When the reverse engineering is believed to be adequate, it is time to test
against the success criteria. This is done by reverse reverse engineering, to
see if our understanding of the system is accurate. This stage could either
end with the conclusion that the project is successfully completed, or if
the test fails, a valuation of the project is needed to determine if the project
should be closed, or if we should continue analyzing the system.

3.2 Evaluate project

When this stage is reached, the question to answer is whether or not we
still see possibilities of finding new information about the system. We
could reach this stage either by failing to match the success criteria, or by
failing to extract new information from a given set of tests. In the latter
case, we would normally decide to continue, but with a different strat-
egy, a new test set, or a different target for the test set. This is unless we
have failed to extract information from several strategies in a row, and
see no reason to continue the project. On the other hand, when the stage
is reached from failing to meet the success criteria, we should perform a
more detailed evaluation of the project to determine if and how we are
likely to reach a more accurate understanding of the system.

Chapter 4

Reverse Engineering the Object
Store

32

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 33

Now that a sketch of a methodology has been developed, we need a sys-
tem to test the methodology on. The system chosen for this task was Win-
dows Mobile’s object store. This choice was made not only because the
object store suits as a good candidate for testing the methodology, but also
because knowing the inner workings of the object store could be an im-
portant forensic discovery in itself.

4.1 Initialization Phase

4.1.1 Defining the Problem

The system to be analyzed is Windows Mobile’s object store. We are not
concerned with Windows Mobile functionality that does not affect the ob-
ject store. We seek to get enough information about the structure of the
object store to be able to locate objects and their data using only our own
program code. We will base our work on the acquisition techniques dis-
cussed in ”Mobile Forensics” [6], which also showed examples of recog-
nizable data in the object store. We wish to get a good understanding of
the data related to the objects, in order to extract the important parts of in-
formation. We should also be able to distinguish between objects that are
deleted and those that are not. More precisely, we want to be able to lo-
cate all unused areas of the object store, which are the areas where deleted
information can be found.

We defined three success criteria for the analysis:

1. Be able to distinguish between deleted and non-deleted data.

2. Understand the format used to store objects, in order to extract data
and attributes.

3. Make sure that we have covered the entire object store.

All tests will be performed on a Qtek S110[15] device (Appendix A).

4.1.2 Documentation Review

We started off with an in-depth documentation review. Our focus was on
gathering as much relevant information as possible in order to establish a
knowledge base for the upcoming process. This included:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 34

”Mobile Forensics” The work presented by Jarle Eide in the
report named ”Mobile Forensics”[6] was
available. The report gave an introduction
to forensic analysis of Qtek S110.

Qtek S110 basics The basics of Qtek S110 (appendix A) were
known from ”Mobile Forensics”.

Windows Mobile An overview of Windows Mobile was also
presented in ”Mobile Forensics”. This in-
cluded some basic knowledge of the ob-
ject store. Microsoft entered the handheld
market with the Windows CE operating
system. Since then, many different plat-
forms have been based on the core Win-
dows CE functionality. Windows Mobile is
the name of a subset of these platforms, in-
cluding Pocket PC and Smartphone. The
Pocket PC operating system evolved along
with Windows CE from WinCE 2.0/PPC
2000 to WinCE 3.0/PPC 2002 to WinCE
4.2/PPC 2003. PPC 2003 was re-branded
as Windows Mobile 2003, and with some
additional functionality a new version was
released as Windows Mobile 2003 Second
Edition in March 2004.

Windows CE API The Windows CE API was available
from the Microsoft Developers Network
(MSDN) website [16].

ARM instruction set As Qtek S110 uses an ARM-processor, the
ARM instruction set was available in case
we needed to use a disassembler. See ap-
pendix C for a ARM instruction Set Quick
Reference found at [17]. For a thorough ex-
planation of the ARM processor architec-
ture see [18].

Shared Source Initiative Some of the Windows CE source code
are available through Microsoft’s Shared
Source Initiative[2].

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 35

In addition, we had several tools available:

Itsutils The Itsutils tools [7] were available, which
provide useful functionality when working
with Windows Mobile.

IDA PRO Disassembler The IDA PRO Disassembler (4.2.5) was
made available to us from the university,
which made it possible to disassemble sys-
tem files if necessary.

Judas Forensic Tool The Judas Forensic Tool was available from
”Mobile Forensics”, in order to make com-
plete bit-by-bit images of memory on the
phone.

4.1.3 Creating CIM

To represent our expectations of the domain, we created the CIM shown in
figure 4.1. The model was fairly simple, containing two main components:
an object allocation table and the object as found in the object store.

Figure 4.1: Computation Independent Model

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 36

From the documentation review we knew that object identifiers (OID), a
unique 32-bit numerical value, were used to identify objects. We expected
to find some sort of allocation table, mapping these identifiers to the loca-
tions of the objects.

Many examples of stored objects had been presented in [6]. We expected to
find both object attributes and the data stored together according to some
unknown format, where the data could possibly be compressed.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 37

4.2 Exploration Phase

The initialization phase had given us the basic system understanding we
needed to start the analysis. According to the methodology, the next step
was to define a strategy. We will present our analysis by continuously
referring to the steps defined in the methodology. However, steps such
as 2.7 Evaluate PIM/CIM consistency will not be included in the early stages
where every such evaluation concluded that our knowledge was still inad-
equate. In addition, we will not show the results from 3.2 Evaluate project
every time no new information was found, since this step, though use-
ful during the process, does not provide any information valuable for the
presentation.

4.2.1 Defining a Strategy - First Loop

”Mobile Forensics” ([6]) had shown that memory dumps from Qtek S110
could provide a complete bit-by-bit copy of the object store, and also pro-
vided many examples on how investigation of such memory dumps could
reveal information about the contents of the object store. It seemed like a
good idea to continue this work. But while ”Mobile Forensics” sought to
determine if it was at all possible to re-discover previously deleted data,
we were now interested in finding exactly how objects are stored, and de-
termine what actually happens when objects are deleted.

We summarized our situation with the following:

• have an ”unknown” device, with unknown behavior

• have the ability to input data to the device

• have the ability to delete data from the device

• have the ability to reset the device to its initial state

• have the ability to make a complete bit-by-bit copy of data on the
device

From this we decided that our first strategy should be to run black box
tests, treating the phone as the black box, and analyze the changes seen in
memory dumps as input is introduced.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 38

4.2.2 About Black Box Testing

Black box testing[19] is a well known testing methodology. It gets its name
from the fact that it treats the system you test as a black box you can not
look inside. The inner workings of the system are not known by the people
doing the test. The testing consists of giving the system certain controlled
inputs and comparing the resulting outputs to the functional specification.
Because of its dependency on the functional requirements, black box test-
ing is also often called functional, behavioral, opaque box and closed box
testing. Because testing every possible permutation of inputs to a device is
extremely time-consuming and not practical in any realistic scenario, there
are some techniques available to reduce the input testing space.

Equivalence
sets

Also called equivalence partitioning. This technique tries
to partition the possible input set into subsets that are
expected to test the system in the same way. You then
make sure you select at least 1 input from all the subsets.
It’s optimal to design the sets such that all values belong
to one set and one set alone. The difficulty with this tech-
nique is choosing the correct strategy for set partitioning
without knowing anything about the inner workings of
the component.

Limit testing Also called boundary value analysis. This technique
tests the limits of the input set. These limits are set by
the input type and the input domain. If you have a black
box device that it supposed to give you the square root of
its input you would check the limits -1, 0, 1 and the max
value of the input type. The downside of this technique
is that few tests are generated and you can miss essential
parts of the black box inner workings.

Black box testing has a natural counterpart in white box testing, where one
uses information about the structure of the program to check how it func-
tions. White box testing is better suited for times when one has access to
the systems detailed plans and/or source code. With an unknown device
this is not very likely. The difference between black box and white box
testing is illustrated in figure 4.2.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 39

Figure 4.2: Black box and white box testing.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 40

Hex Workshop (HW)

Hex Workshop is a hex editor. It displays data from files in both their
raw hexadecimal numeric representation and the visual symbols associ-
ated with these representations through standards like ASCII. It gives the
user the ability to view, find and edit the data. Hex Workshop also has
advanced features like its own structure language, bookmarks and com-
parison between different files.

Concept clarifications

To help the readability of the rest of the thesis we define a couple of key
concepts that appear in the text:

0x All numerical values prefixed with 0x are in base 16, hex-
adecimal.

byte An unsigned byte, 8 bits wide.

word An unsigned word, 16 bits wide.

dword An unsigned double word, 32 bits wide.

quad An unsigned quadruple word, 64 bits wide.

little-
endian/big-
endian

This concerns how data is stored in a computer. Little-
endian means the LSB is stored first and big-endian means
the MSB is stored first. Given the value 0x4A3B2C1D,
it is stored as 0x1D2C3B4A in little-endian and as
0x4A3B2C1D in big-endian.

id, oid, OID,
CEOID, iden-
tifer

All these are meant as the 32 bits wide numerical identi-
fer of an object in the object store.

4.2.3 Testing

The ultimate goal of our testing was to figure out the physical and logical
format our device use in order to store objects in the object store. The abil-
ity to do this is important because one is no longer limited by the official

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 41

APIs, but can access all the raw data and might extract more information
than the API makes available.

Referring to the methodology as shown in figure 3.3, the following will
include the tests executed during this first choice of strategy.

4.2.3.1 Test 1

Create test

We want to find out how a user-created file is stored in the object store.
We assume the data bytes in the file are stored in sequence and that meta-
data about that file is also somehow saved. We also assume that there
exists some way to link the data and the metadata to each other.

Figure 4.3 contains the first test.

Figure 4.3: Test 1 - User-created file.

Extract info/Adjust PSM

Our tool of choice was Hex Workshop. Opening test1 1.bin in it we got
the default view in figure 4.4. The first thing we notice is the hex value at
offset 0x4; 0x454B494D454B494D or the text version ”EKIMEKIM”. These
bytes are always present first in the object store as a ”magic number” iden-
tifier. This is not officially documented by Microsoft, but was found to al-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 42

Figure 4.4: Test 1 - Hex Workshop default view.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 43

Figure 4.5: Test 1 - Hex Workshop search box.

ways be present by Jarle Eide in his ”Mobile Forensics”[6]. We will use the
presence of this value as a strong indicator that we have a memory dump
from the correct location.

We also notice that there is a strong repeating pattern of the data in the
area of memory from offset 0xE0 to offset 0x34C. Exactly what this data
is is unknown at this point but its noted as an interesting area to ex-
plore later. The interest in this area is further enhanced by the knowl-
edge that many file systems (like VFAT) store their lookup tables for file
indexing at start of the disk. Utilizing the search-functionality of HW we
conducted a binary search(figure 4.5) for the content of our test file, heste-
dokument1.txt. The content of our file was the text ”HESTEPEIS” repeated
111 times. This means that the phrase ”HESTEPEIS” and its hex equivalent
0x484553544550454953 should be present at least 111 times unless the ob-
ject store utilized some kind of data compression. In its documentation[20]
Microsoft do however mention that the object store may internally use
compression, but this should be completely transparent for anybody uti-
lizing the official APIs. We are not, and have to investigate whether or not
compression is used. The search resulted in no instances found, which im-
mediately implies that compression is indeed used (given that our mem-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 44

ory dump is correct, something we assume at this point). Refining the
search to ”HESTE” and its hex equivalent 0x4845535445 yields one hit at
offset 0x036FF6DD (figure 4.6 - yellow markings).

We see that the string ”HESTEPEI” is followed by much ”random” data
until offset 0x036FF7FC. We have no knowledge of the format of this data,
but we make the assumption that some or all of it contains the compressed
data of our test file. The data from offset 0x036FF7FC is very interesting,
however (marked in red in figure 4.6), as this is actually the name of our
file, encoded in some kind of Unicode variant where each character oc-
cupies two bytes. The filename is not zero-terminated, but is prefixed
with the value 0x1100, which in decimal is 17. This also happens to be
the number of characters in the filename. At this point this can be purely
coincidental, but we make the assumption that every Unicode string in
the object store is prefixed with its length. We will check if this holds true
for other files in later tests. We also make the assumption that files in the
object store is stored with the file’s data first, in a compressed form, with
the file’s name afterwards.

Next we notice that right before our ”HESTEPEI” string, at offset 0x036FF6D0,
the hex value 0xEC290000 is stored. Also, before the filname, at offset
0x036FF7DA, we find the hex value 0xEB290000. Now these two values
look like a counter that is increased with one. Might this be some kind
of id for our file? It could of course be only coincidence, but this seems
less likely when we also notice that the same two values are stored at off-
set 0x036FF684, which is right before our ”HESTEPEI” string. These val-
ues are marked in green. In fact, the whole byte patterns before each of
the values seem to have things in common. Looking at the grey mark-
ings we see that before the value 0xEC290000 at offset 0x0x036FF7DA, the
value 0xEB290000 at offset 0x036FF7DA and the value 0xEB290000 at off-
set 0x036FF684 we see that the bytes in front of them seem to follow this
pattern: XX00 00Y0 0000 0000 where XX is a number between 0 and 0xFF,
and Y is a number greater than zero. The fact that this pattern is repeated
before both the data and the name of the file leads us to suspect that it is
part of some kind of header and that the data and the filename both in-
dividually have this header. This again leads us to suspect that they are
actually threated as two separate objects in the object store.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 45

Figure 4.6: Test 1 - Found ”HESTE” in memory dump.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 46

Transform to PIM

Listing 4.1 shows the Hex Workshop structure we can construct based on
this information. This structure can be super-imposed by the program
upon the raw hex listing, letting us view the data as an instance of the
structure.

Listing 4.1: Test 1 - Blob structures v1� �
1 s t r u c t ObjectHeader
2 {
3 WORD unknown ; / / XX00
4 WORD unknown ; / / 00Y0
5 DWORD z e r o F i l l e r ; / / 0000 0000
6 DWORD suspected ID ;
7 } ;� �

4.2.3.2 Test 2

Create test

We now want to further check our assumption on the existence of an id
for each file, and how the data and metadata of a file is connected to each
other. From the first test we made the assumption that they are treated
separately and somehow linked together. An id would be practical for
just this purpose. We now check these assumptions by testing if they hold
when adding multiple files.

We also wanted to start looking at what happens when we delete a file
from the object store. How does this affect the data in object store? Is it
just marked as deleted, overwritten by new data or actually erased by fill-
ing it with zeros or any other deletion pattern?

When we compare two memory dumps we can see what differences there
exist between them. These differences can be caused by our actions, but
they can also be caused by other process on the telephone or the operat-
ing system itself. We have no way of getting single atomic access to the
phone, so when analyzing changes we have to do it ”best effort” and keep
our eyes open for changes not connected to our actions. In order to pre-
pare for this, we need to have a ”base” dump of the phone. This means

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 47

Figure 4.7: Test 2 - New file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 48

a dump of the phone without any user actions having had any influence
on it. This is achieved by dumping the phones memory just after remov-
ing the battery and letting it drain itself completely for both primary and
backup power. We dump three times to make sure the ”base” is more or
less stable.

Figure 4.7 contains the second test.

Extract info/Adjust PSM

From figure 4.8 we can see parts of the three ”base” dumps. They are
overall almost identical, except for the big block starting at offset 0x110
and ending at 0x1D4. These bytes are different (marked with blue), but
they follow an overall pattern. From this we conclude that this area can
change quite a lot even without user interference, and any changes here
should not automatically be considered effects of user input. The struc-
tured layout and constant location gives us the distinct impression that
this might be part of the file systems own data structures, not user data
itself. It cannot be user data, as there has been no user data stored on the
device after it was reset. At this point we hazard to guess that it is in-
deed part of the object stores object table, the structure that maps objects
to the memory addresses that contain the object (much like the FAT table
in the VFAT file system is). This is later proven not to be the case, but
further tests were needed to come to that conclusion. Next we turned our
attention to the new files that had been added to the phone, looking at the
dump named test2 6. By now we know that the name of files can be found
as Unicode clear text in the object store dumps, so we did a binary search
and ended up with three hits. These are marked with yellow in figure
4.9. We see that our assumption that Unicode strings are prefixed with a
length word holds true for all the filenames. dokhest1 is indeed 8 charac-
ters long, as is dokhest and dokhest3. In test 1 we found some kind of header
before both the file data and the file metadata (filename). Is this present in
this object store dump as well? Yes, it is. In fact, we can see the pattern
from test 1 (XX00 00Y0 0000 0000) ten times, marked with red in figure
4.9. Examining the Y-part of the pattern at the different locations gives us
the following values of it: 3,6,5,3,6,5,D,3,6,5. The pattern with Y value D is
disregarded for now, it only appears one time. Three files were added to
the device before this dump. Three times three headers was added, with
Y values 3, 6, 5 respectively. This does not seem like a coincidence! If we
look closer we notice that the pattern appearing right before the metadata
of the file (filename) the Y-value is always 5! The header right before the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 49

Figure 4.8: Test 2 - Compare base dumps.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 50

data of a file mysteriously always has 6 as Y-value. The same goes for the
headers with Y-value 3, they always appear right before a header with Y-
value 6. By now it is a pretty safe bet to assume that the second word of
our pattern is a type indicator. The value 0x0050 means ”this is metadata”
and 0x0060 means ”this is data”. The meaning of 0x0030 is not yet clear,
but as it seems to always appear next to file metadata and file data it’s a
good bet that it has something to do with the files!

Transform to PIM

We can now safely say that metadata about a file and the data itself is
treated as separate entities prefixed by the similar headers. We call these
entities for blobs and update our earlier HW-structure to take into account
our new discoveries (listing 4.2). The second word of the pattern is defined
as a word enumeration, called BLOBTYPE. As we see in figure 4.10, this
helps us to quickly assess what the data we are looking at means. When
the cursor is placed at an offset, a BlobHeader structure is filled with data
from there. The result is that we can view the data as a structure of data
types instead of a simple hex dump of a byte stream.

Listing 4.2: Test 2 - Blob structures v2� �
1 typedef enum tagBLOBTYPE
2 {
3 UNKNOWN FILE RELEATED= 12288 , / / 0 x3000
4 FILEMETADATA = 20480 , / / 0 x5000
5 FILEDATA = 24576 , / / 0 x6000
6 } BLOBTYPE ;
7

8 s t r u c t BlobHeader
9 {

10 WORD unknown ; / / XX00
11 BLOBTYPE blobType ; / / 00Y0
12 DWORD z e r o F i l l e r ; / / 0000 0000
13 DWORD suspected ID ;
14 } ;� �

Extract info/Adjust PSM

We still have a number of unknowns in our BlobHeader, like the first word

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 51

Figure 4.9: Test 2 - Looking at new files.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 52

Figure 4.10: Test 2 - Applying the BlobHeader structure to a blob in Hex
Workshop.

of data. Figure 4.10 shows us that its value is 28(0x1C00), which is a low
value considering that an unsigned word (16 bits) can have values as high
as 65535(0xFFFF). This in itself is not evidence of anything, but when we
look at the first word of all the other headers in figure 4.9 we see that this
word has the following values: 0x4000, 0x1400, 0x3000, 0x4000, 0x1C00,
0x3000, 0x3400, 0x4000, 0x1400, 0x3000. If we once again disregard the
header with a blob type of 0x00D0, we see a repeating pattern. In head-
ers with blob type UNKNOWN FILE RELEATED(0x0030), the first word
is always 0x4000. Likewise, in headers of blobtype FILEMETADATA, the
first word is always 0x3000. This leads us to suspect the BLOBTYPE of
maybe actually being a double word (dword) instead of a word, because
the unknown first word seems to have a special value based on the value
of the next word, the blob type. This suspicion was false, as headers with
the blobtype value FILEDATA have different values of the unknown first
word (0x1C00 and 0x1400). Keep in mind that our device stores informa-
tion in little-endian format, so the value 0x1400 in the hex dump is the
decimal value 20.

So, we had no luck uncovering the meaning of the first word in our header.
Starting from another angle we see that at offset 0x036FF678 we have a
header starting with value 20(0x1400), and at offset 0x036FF698 we have
a header starting with the value 48(0x3000). The length of each header is

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 53

12(0x0C) bytes. The space between the end of the first header and the start
of the next header is 0x036FF698 - (0x036FF678 + 0x0C) = 20 decimal. This
is the same value as the unknown word! The unknown word gives the dis-
tance from after the header until the next header, or put in another way:
the size of the data between headers. Looking at the actual data between
the two headers reveals 0xFF33EE33DD33CC33BB33AA3399338833. This
is the file content of our input file dokhest3. We know assume that the data
immediately following a blob header is the data the user stored, and that
a header and data together makes a complete object in the object store,
which we call blob. The first word in a blob’s header is the size of the
blob’s data.

Transform to PIM

Once again we update our HW-structure based on the new knowledge(listing
4.3). Applying it to the start of each header gives us further faith that the
first word is size. All the blobs can be described by it. The end offset
indicated by the size field of each of the blobs match perfectly with the
start offset of the next blob, except for the blob with blob type 0x00D0. An
example is the blob at offset 0x036FF62C. According to our updated HW-
structure it should last until the next blob, which starts at 0x036FF678.
Using the formula: start offset + length (header) + data size = start of next
header, we get 0x036FF62C + 0x0C + 0x40 = 0x036FF678. Success.

Listing 4.3: Test 2 - Blob structures v3� �
1 typedef enum tagBLOBTYPE
2 {
3 UNKNOWN FILE RELEATED= 12288 , / / 0 x3000
4 FILEMETADATA = 20480 , / / 0 x5000
5 FILEDATA = 24576 , / / 0 x6000
6 } BLOBTYPE ;
7

8 s t r u c t Blob
9 {

10 WORD s i z e ;
11 BLOBTYPE blobType ; / / 00Y0
12 DWORD z e r o F i l l e r ; / / 0000 0000
13 DWORD suspected ID ;
14 BYTE Data [s i z e] ;
15 } ;� �

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 54

Extract info/Adjust PSM

After test 1 we had a suspicion that the last dword of the header was some
kind of id. This is pretty much confirmed in this test. Every header has
a unique value at this location, and the values vary with only one or two
from header to header (0xC3290000, 0xC4290000, 0xC2290000 and so on).
At this point we wanted to verify completely that this was indeed an id
because it would be important to know when analyzing further. In the
Windows CE API documentation Microsoft mention that every object in
the object store has its own unique id. So far, so good. But we need to
make sure that what we believe to be the id in fact is this very same id as
mentioned by Microsoft. In order to do this we decided to extend the C++
Forensic tool, called Judas, created by Jarle Eide[6]. The tool was modi-
fied to take an id as input and looking it up using the Windows CE API.
If we feed this tool what we believe to be the id of a file from our anal-
ysis and the API call returns with information about the correct file, we
can conclude that this is in fact a valid id. The API call utilized for this
was CeOidGetInfo(figure 4.11). The id 0xC2290000(10690) was reported by
Windows CE as belonging to a file with the name dokhest1, which we al-
ready know from looking at the blob at offset 0x036FF4A8 in figure 4.9. It
is confirmed, the last field of the blob header is definitely the id of a blob!

The size field is only 16 bits wide. This means a max value of 65535(given
that the value is unsigned). Does this mean the object store can’t store ob-
jects larger than this? According to the API the maximum file size is 32MB.
How can it support files larger than 65535 bytes when the object size is lim-
ited to this? The obvious solution is to utilize several objects for each file.
One would have to construct some kind of mechanism to map a filename
or id to several file data objects. This mechanism would have to be able to
connect the id of a metadata blob with the id of several filedata blobs. If
we look at offset 0x036FF564(figure 4.9)we see that the first dword in the
data field of the blob starting here contains what looks suspiciously like
an id (0xC6290000). In fact it’s the id of the UNKNOWN FILE RELEATED
blob located right above, at offset 0x036FF4E4! The metadata blob of a file
has a ”pointer” to a blob of type UNKNOWN FILE RELEATED. Look-
ing closely at this UNKNOWN FILE RELEATED blob we see that the first
dword of it’s data contains yet another id(0xC7290000), which is the id of
the FILEDATA blob starting at 0x036FF530. Now this is interesting! This
means that we have a ”pointer chain” for this file. The file’s metadata
blob contains a ”pointer” to a UNKNOWN FILE RELEATED blob which
again contains a ”pointer” to a FILEDATA blob. We also notice that the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 55

Figure 4.11: Windows CE API - CeOidGetInfo

UNKNOWN FILE RELEATED blob has a data size of 0x40 bytes accord-
ing to it’s header, yet it only utilizes 8 of them. We think this is because
it has reserved these bytes in the case that the file’s content should grow
beyond what a single FILEDATA can store. If this happens, it could just
insert a pointer to yet another FILEDATA blob right after the first one.
We investigate this further in later tests. UNKNOWN FILE RELEATED
is no longer completely unknown; we assume it’s a list of ”pointers” to
FILEDATA blobs. From now on we call it FILEDATALIST instead of UN-
KNOWN FILE RELEATED.

Armed with our new knowledge we follow the ”pointer chain” from FILEMETA-
DATA to FILEDATA via FILEDATALIST for all the input files in this test.
dokhest1 and dokhest3 is easily proven correct as the FILEDATA blob for
each of these contains the file content directly, only prefixed by the hex
value 0x0220. The data in the FILEDATA blob of dokhest2 is different how-
ever. It is prefixed with another hex value, 0x110, and the data is now
stored as the raw file content. Might this be because the object store has
compressed the contents? Anyway it is obvious that the first word of the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 56

Figure 4.12: Test 2 - Jackson Data Structure diagram of a file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 57

data in a FILEDATA blob is some kind of type or flag field indicating the
way the data is stored.

Transform to PIM

A Jackson Data Structure diagram of a file is illustrated in figure 4.12.

All our new findings make us able to refactor and update our HW-structures
quite a lot. Listing 4.4 summarizes what we now know about the object
store data structures, called blobs.

Listing 4.4: Test 2 - Blob structures v4� �
1 typedef enum tagBLOBTYPE
2 {
3 FILEDATALIST= 12288 , / / 0 x3000
4 FILEMETADATA = 20480 , / / 0 x5000
5 FILEDATA = 24576 , / / 0 x6000
6 } BLOBTYPE ;
7

8

9 typedef s t r u c t BlobHeader
10 {
11 WORD s i z e ;
12 BLOBTYPE blobType ;
13 DWORD z e r o F i l l e r ;
14 DWORD ID ;
15 } HEADER;
16

17

18 s t r u c t GeneralBlob
19 {
20 HEADER header ;
21 BYTE data [header . s i z e] ;
22 } ;
23

24

25 s t r u c t F i l e D a t a L i s t B l o b
26 {
27 HEADER header ;
28 DWORD f i l e D a t a I D ;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 58

29 BYTE unknown[header . s i z e − 4] ; / / we s u s p e c t
t h i s might c o n t a i n more f i l e D a t a I D s i f t h e
f i l e i s l a r g e r than 65535 b y t e s .

30 }
31

32

33 s t r u c t FileMetaDataBlob
34 {
35 HEADER header ;
36 DWORD f i l e D a t a L i s t I D ;
37 BYTE unknown [2 6] ;
38 WORD filenameLength ;
39 WORD filename [filenameLength] ;
40

41 }
42

43 s t r u c t Fi leDataBlob
44 {
45 HEADER header ;
46 WORD suspected storageType ;
47 BYTE f i l e D a t a [header . s i z e − 2] ;
48 }� �

Extract info/Adjust PSM

The last thing we wanted to check in test 2 was what happens in the ob-
ject store when you delete a file. Figure 4.13 give us some starting points.
It shows the difference, marked with green, between the three blobs con-
nected to dokhest2(FILEMETADATA, FILEDATALIST, FILEDATA) before
and after the file is deleted.

The first thing we notice is that the length and type field in all the blobs
have been altered. The type field is simply set to 0. The length field is
somewhat more complicated. For all the blobs it has at least the least sig-
nificant bit set. This has never been observed in the length field of any
normal blob, as these are always divisible by 2. Maybe this is quick way
for OS to check whether a blob is deleted or not? For the FILEDATA and
METADATA blobs at offsets 0x036FF530 and 0x036FF558 we see that the
length offsets have simply had their least significant bit set. The FILE-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 59

DATALIST blob at offset 0x036FF4E0 however has been given the value
0x69 as its length. Why this is, we don’t know yet. Further testing is
needed. An interesting observation is that 0x69 is pretty close to 0x40 +
0x1C, which is the combined length of FILEDATALIST and FILEDATA.
We also see that the first 8 bytes of the blobs’ data area have been over-
written with new data. Not much can be said about this at the time, but
we do notice that the 8 bytes seem to consist of two dwords each having
42 as their most significant byte (remember that data is stored little-endian
wise). According to Microsoft (figure 4.14), 0x42000000 is the start of the
object store and memory mapped files in our mobile device. So a value
with 42 as the most significant byte might be addresses in this memory
area. Could these values be some kind of pointers? We have to test more
to find out.

The last step in the test was to delete all the added files. No new results
were drawn from this, as the blobs were altered the same way as dokhest2.

Figure 4.13: Test 2 - What happens to the blobs of a deleted file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 60

Figure 4.14: Windows CE API - Windows CE Memory Layout[16]

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 61

Figure 4.15: Test 3 - User-created directories

4.2.3.3 Test 3

Create test

We want to find out how user-created directories are stored in the object
store. We assume that in addition to the name of the directory, other meta-
data like the creation date and some flags are stored. Most likely there
must also exist some kind of mechanism to allow the OS to keep track of
the hierarchies of directories. That is, to know which directories are sub di-
rectories of other directories. Making assumptions based on what we now
know about files, it would not be surprising if each directory is stored as
at least one blob. Most likely this blob will have the same header as the
other blobs, but with a new value for the blob type field to indicate that
this is a directory.

Figure 4.15 contains the third test.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 62

Figure 4.16: Test 3 - View of user-created directories

Extract info/Adjust PSM

A quick search for the string ”esel” gives us 5 relevant hits. They all re-
side in the same area of memory shown in figure 4.16.

All of them have the blob header, and the blob type value for directories
is 0x0040. The last data in the data field is the Unicode encoded directory
name. Looking closer at the data field of the directory blobs we see that
the first dword often contains values of the pattern 0xXX290000. So does
the 4th and 5th dword. Values matching this pattern have earlier been
shown to have a high likelihood of being an id of another blob. Might this
be the case also? We make the analysis easier by showing the name and id
together with the first, fourth and fifth dwords of the data of each blob in
table 4.1.
Now we see straight away that esel1-4 all have the same fourth dword,
with the value 0xFE1C0000. This is also the id of eselbase. We assume this
is a ”parent” field that points to the directory’s immediate parent direc-
tory. eselbase has 0 as it’s parent id, which makes sense considering that
this directory was put straight in the root of the object store and therefore

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 63

Directory ID dword 1 dword 4 dword 5
eselbase 0xFE1C0000 0xEB290000 0 0x701C0000
eselbase/esel1 0xBE290000 0 0xFE1C0000 0
eselbase/esel2 0xC0290000 0 0xFE1C0000 0xBE290000
eselbase/esel3 0xBF290000 0 0xFE1C0000 0xC0290000
eselbase/esel4 0xEB290000 0 0xFE1C0000 0xBF290000

Table 4.1: Test 3 - 5 directories in object store

has no actual parent directory. The fourth dword is a parent id.

esel4’s fifth word contains the id of esel3, which in turn has esel2’s id as its
5th word. Not surprisingly, esel2’s fifth word is esel1’s id. We have a linked
list of pointers from the ”last” subdirectory to the ”first” subdirectory. This
fifth word is some kind of neighbor id. It makes perfect sense for a object
store to have this, as this makes directory traversal very easy. Simply start
with the ”last” directory and follow it’s neighbor id field recursively. Now
how does the object store know which subdirectory is the ”last”? The first
dword in eselbase conveniently has the ”last” directory’s (esel4) id in it.
This might be a child id field, with the id of the first or ”last” child added.
Directory traversal is now very simple. Just look up the id in the direc-
tory’s child field and follow the neighbor ids recursively from there.

Further evidence that the fifth dword is a neighbor id was needed. eselbase
has the hex value 0x701C0000 as it’s neighbor id. A search for the hex
string ”0040 0000 0000 701C 0000”, which is the header of the blob with id
0x701C0000, results in one hit. The hit is the directory blob for the directory
called ”ConnMgr”(see figure 4.17, red markings). Looking at the file listing
of the phone (figure 4.18) we see that this is indeed a directory with the
same parent as eselbase. The fifth dword is a neighbor id. In the exact
same manner we see that the child id in ”ConnMgr’s” blob is 0x721C0000.
The blob with this id is located at offset 0x03808FC8(figure 4.17, marked
with yellow). It is a file called ”CMMapP”. This file can be found in the
”ConnMgr” directory on the phone. Notice also its fourth data dword has
its parent directory id in it. The file points right back to the ”ConnMgr”
blob. The first dword is a child id.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 64

Figure 4.17: Test 3 - Neighbor and child id.

Figure 4.18: Test 3 - Data files on the device.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 65

Transform to PIM

Our assumptions about the nature of the first, fourth and fifth word of
the directory blobs has yet to see any contradictional evidence. We cele-
brate this by creating a new HW-structure for directory blobs(listing 4.5).

Listing 4.5: Test 3 - Directory blob structure� �
1 typedef enum tagBLOBTYPE
2 {
3 FILEDATALIST= 12288 , / / 0 x3000
4 DRECTORYMETADATA= 16384 , / / 0 x4000
5 FILEMETADATA = 20480 , / / 0 x5000
6 FILEDATA = 24576 , / / 0 x6000
7 } BLOBTYPE ;
8

9 s t r u c t D i r e c t o r y I n f o S t o r e B l o b
10 {
11 HEADER header ;
12 DWORD childID ;
13 DWORD unknown [2] ;
14 DWORD ParentID ;
15 DWORD neighbourID ;
16 DWORD unknown [2] ;
17 WORD unknown ;
18 WORD DirectoryNameLength ;
19 WORD DirectoryName [DirectoryNameLength] ;
20 } ;
21

22 s t r u c t FileMetaDataBlob
23 {
24 HEADER header ;
25 DWORD f i l e D a t a L i s t I D ;
26 DWORD unknown [2] ;
27 DWORD parentID ;
28 DWORD unknown [3] ;
29 WORD unknown ;
30 WORD filenameLength ;
31 WORD filename [filenameLength] ;
32 }� �

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 66

Extract info/Adjust PSM

Now, looking at DirectoryInfoStoreBlob and FileMetaDataBlob in listing
4.5 we see that they have a striking resemblance to each other. They have
the same header of course. The next field they have is an id to some kind of
child blob. Files have id of FILEDATALIST, while directories have the id of
their first child. Next they both have two currently unknown dword, be-
fore both have a dword indicating their parent blob. Directories then have
a neighbor field and two unknown dwords, while files have 3 unknowns.
Seeing how they’ve matched each other thus far, how about we check if the
first of these last 3 unknown dwords for files might possibly be a neighbor
field too! Look at CMMapP’s file blob starting at offset 0x03809FC0. Add 28
to get to the suspected neighbor field. The value here is 0x711C0000(figure
4.17, green markings). This is also the id of CMMapG(the grey markings),
it’s neighbor.

Seeing as DirectoryInfoStoreBlob and FileMetaDataBlob has been more or
less identical so far, we suspect the last unknown parts of each of them to
also be similar. What other metadata is it reasonable for the OS to store
about a file? A timestamp of last access or creation and some kind of sys-
tem flags certainly are. The presence of a timestamp is supported by both
the fact that you can view the last accessed time of a file on the device (fig-
ure 4.21), and the fact that a call to the CeOidGetInfo procedure(figure 4.11)
mentioned in test two fills out a CEOIDINFOEX structure (figure 4.19)
which again contains a CEFILEINFO structure (figure 4.20).

We see that this structure has a field of type FILETIME in it. This FILETIME
has to come from somewhere, and since other metadata about a file is al-
ready stored in the FILEMETADATA blob, it makes sense to store it there.
So let’s see if some of the unknown bytes in FileMetaDataBlob(a blob with
type FILEMETADATA) and DirectoryInfoStoreBlob(a blob with type DI-
RECTORYINFO) might be FILETIME. Looking at listing 4.5 we notice that
the two possibilities are either between the childID/fileDataListID or right
after neighborID.

Microsoft defines FILETIME in its API(figure 4.22). It consists of two dwords,
which incidentally is the size of our two possibilities too. These two dwords
together represent the number of 100 nanosecond intervals since 01.01.1601.
The first dword represents the low bits, and the second the high bits. The
high, or most significant, bits should not change for files or directories

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 67

Figure 4.19: WINDOWS CE API - CEOIDINFOEX structure

stored at approximately the same time. Let us investigate the values of the
two unknown dwords after neightborID in the input files from test 2(fig-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 68

Figure 4.20: WINDOWS CE API - CEFILEINFO structure

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 69

Figure 4.21: Test 3 - Properties of a file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 70

Figure 4.22: WINDOWS CE API - FILETIME structure

ure 4.9) and the directories from test 3(figure 4.16). Table 4.2 list these val-
ues. We quickly see that files that were stored at approximately the same
time show few, if any changes in the 2. unknown dword. This is because
it takes quite a while to count to 232, even if you increase your count every
100 nanosecond. We confirm that these two dwords are indeed filetime
stamps by filling a FILETIME structure with them in a short test program
in C. Converting the structure to its string representation with the API
method FileTimeToSystemTime yields the same exact time as the proper-
ties of the file the timestamp was taken from.

The last word in DirectoryInfoStoreBlob and FileMetaDataBlob was sus-
pected to be a property flag field. Our reasoning for this was that the value
seemed to almost never change, and the observed values had the distinct
look of being 1-bit flags logically or-ed together. In table 4.3 we list values
of this last word for different blobs. Most of the blobs are user created files
that we put on the phone. There are also some of the files included with
the operating system included. Together with the value, shown in binary
format, we also list the properties of the files as listed by our Judas Foren-
sic Tool (4.1).

The combination of the raw data values and the OS-reported properties we

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 71

Name Offset unknown dword 1 unknown dword 2
dokhest1 0x036FF4C8 0x007CD7E4 0x86A7C401
dokhest2 0x036FF578 0x80FD4B73 0x87A7C401
dokhest3 0x036FF6B8 0x80809EF7 0x87A7C401
eselbase 0x03700810 0x00D3ED33 0xC0A7C401
eselbase/esel1 0x03700850 0x005A8137 0xC0A7C401
eselbase/esel2 0x037008CC 0x804A7C3A 0xC0A7C401
eselbase/esel3 0x03700904 0x80D10F3E 0xC0A7C401
eselbase/esel4 0x0370093C 0x00C20A41 0xC0A7C401

Table 4.2: Test 3 - File time dwords

Name Suspected flag
word(binary)

Reported properties

dokhest1 1000100000000 archive, compressed
dokhest2 1000100000000 archive, compressed
dokhest3 1000100000000 archive, compressed
desktop.ini 1011000000000 compressed, hidden, system
GCounterFile.mmf 1001100000000 archive, compressed, hidden
eselbase 0000000000000 directory
eselbase/esel1 0000000000000 directory
eselbase/esel2 0000000000000 directory
eselbase/esel3 0000000000000 directory
eselbase/esel4 0000000000000 directory

Table 4.3: Test 3 - Property flag word.

can conclude that this is in fact a property flag. We also deducted which
bits that corresponded to a particular property. We see that all the blobs
which have the ”archive” property set has bit 8 set to 1, and all those who
do not have this property has bit 8 set to 0. Bit 8 is the archive bit. This
leaves bit 12 as the compressed bit, as this is the only other bit set in the
dokhest files. Now that we know this, the only bit available as the hidden
bit for GCounterFile.mmf is bit 9, as the two other bits are the compressed
and archive bit. Finally we can deduct that bit 10 is the system bit because
this is the only bit left set for desktop.ini given that bit 12 is the compressed
bit and bit 9 is the hidden bit. The results are listed in table 4.4.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 72

Bit mask Property
compressed 1000000000000
system 0010000000000
hidden 0001000000000
archive 0000100000000

Table 4.4: Test 3 - Property flag bit masks

Transform to PIM

Listing 4.6 sums up what we know about the object store at the end of
test 3.

Listing 4.6: Test 3 - Blob structures v5� �
1 typedef enum tagBLOBTYPE
2 {
3 FILEDATALIST= 12288 , / / 0 x3000
4 DIRECTORYINFO = 16384 , / / 0 x4000
5 FILEMETADATA = 20480 , / / 0 x5000
6 FILEDATA = 24576 , / / 0 x6000
7 } BLOBTYPE ;
8

9 typedef s t r u c t BlobHeader
10 {
11 WORD s i z e ;
12 BLOBTYPE blobType ;
13 DWORD z e r o F i l l e r ;
14 DWORD ID ;
15 } HEADER;
16

17 s t r u c t GeneralBlob
18 {
19 HEADER header ;
20 BYTE data [header . s i z e] ;
21 } ;
22

23 s t r u c t F i l e D a t a L i s t B l o b
24 {
25 HEADER header ;
26 DWORD f i l e D a t a I D ;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 73

27 BYTE unknown[header . s i z e − 4] ; / / we s u s p e c t
t h i s might c o n t a i n more f i l e D a t a I D s i f t h e
f i l e i s l a r g e r than 65535 b y t e s .

28 }
29

30 s t r u c t FileMetaDataBlob
31 {
32 HEADER header ;
33 DWORD f i l e D a t a L i s t I D ;
34 DWORD unknown [2] ;
35 DWORD parentID ;
36 DWORD neighbourID ;
37 DWORD lowOrderTime ;
38 DWORD highOrderTime ;
39 WORD propertyFlags ;
40 WORD filenameLength ;
41 WORD filename [filenameLength] ;
42

43 }
44

45 s t r u c t D i r e c t o r y I n f o S t o r e B l o b
46 {
47 HEADER header ;
48 DWORD childID ;
49 DWORD unknown [2] ;
50 DWORD parentID ;
51 DWORD neighbourID ;
52 DWORD lowOrderTime ;
53 DWORD highOrderTime ;
54 WORD propertyFlags ;
55 WORD DirectoryNameLength ;
56 WORD DirectoryName [DirectoryNameLength] ;
57 }
58

59 s t r u c t Fi leDataBlob
60 {
61 HEADER header ;
62 WORD suspected storageType ;
63 BYTE f i l e D a t a [header . s i z e − 2] ;
64 }� �

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 74

4.2.3.4 Test 4

Create test

For file and directory blobs we only lack information about 2 dwords. We
now want to find out what these dwords contains. As we don’t have any
clues about these fields we add 10 new files and see if we can draw some
conclusions by looking at the differences between the unknown dwords
in them .

Figure 4.23 contains the fourth test.

Figure 4.23: Test 4 - New user-created directories

Extract info/Adjust PSM

Other than concluding that the first dword seemed to remain constant,
hex value 0x15000000, we did not manage to draw any more knowledge
from this test.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 75

What these two dwords contain seems to remain unknown at this time,
but what we do know is that what we have is more than enough informa-
tion to extract files and directories directly from a memory dump of the
device without them. The unknown dwords are some kind of metadata
which is of little interest because of this. What we need to do now is to
develop a tool to utilize and confirm our findings so far. We also need to
investigate and conduct tests of other blob types. The device is known to
have a database system, how is this stored? And how are text messages
stored?

4.2.3.5 Test 5

Create test

As our device is a mobile phone; text messages are of great interest. We
want to figure out how they are stored. We know from [6] that they are
stored using Windows CE’s built in database functionality[20]. If this is
the case, we need to find out how such databases are stored in the object
store. Grattan and Brain[21] shows that database records are considered
first class citizens in the Windows CE object store and each get a unique
oid. This leads us to suspect that records might simply be yet another blob,
with a new type value. We test this by sending two text messages to the
phone.

Figure 4.24 contains the fifth test.

Extract info/Adjust PSM

A text search for the phrase ”rob the” yields a hit at offset 0x037039EB.
This again is clearly a part of the blob of length 0x108(decimal 264) start-
ing at offset 0x03703954 (figure 4.25). As suspected, the message is stored
as a new type of blob, with a blob type of 0x8000. What kind of blob is
this? There are a couple of possibilities. Either text messages have their
very own blob type, or blobs of type 0x8000 are actually database records.
Considering the fact that the specific operating system Windows Mobile,
which our device runs, is based on the much more general Windows CE,
we find it unlikely that text messages have their own blob type. Why
would Windows CE be designed to treat text messages as something spe-
cial when a high percentage of the devices that utilize it dont even have
mobile phone abilities?

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 76

Figure 4.24: Test 5 - Text messages

We confirm that this indeed is a database record by looking at the first
dword in its data field. This reads 0x2D2A0000 and from the other blobs
we know that this field usually indicates some kind of parent id. Looking
up this parent id we get a hit at offset 0x037026BC (figure 4.26). Here we
find a blob with the type value of 0x7000 that contains the string ”fldr1000cb”.
This happens to be the name of one of the databases exported by the
phone, available through the remote file explorer (figure 4.27). We con-
clude that blobs of type 0x8000 are database records and blobs of type
0x7000 are blobs that contains metadata about a database.

Looking at the data in figure 4.25 we recognize three strings immediately:
”+4799625124”, ”+4799625124” and ”Yo man! I think I might rob the Munch
Museum tomorrow. Are you in?”. The first two strings are phone numbers,
most likely from and to given that this text message was sent and received
with the same SIM card. The last string is of course the content in the first
text message of this test. Each string is stored in pure ASCII(not Unicode)
and seems to be prefixed with a byte that indicates the length of the string
times two. ”+4799625124” is 11 characters long, and is prefixed with the
byte value 0x16(decimal 22, which is 11 * 2).

The rest of the blob was harder to interpret. We see that there are repeat-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 77

Figure 4.25: Test 5 - Rob the museum.

Figure 4.26: Test 5 - Rob the museum’s parent.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 78

Figure 4.27: Test 5 - Database found.

ing patterns of ”1300 XXXX”, where XXXX varies, in the start of the blob.
This indicates that something similar is repeated several times. What can
be similar in a database record?

To answer this we have to look at the whole database model[21] in Win-
dows CE. The databases are defined in a quite uncommon way. A database
is just a collection of database records, kind of what we normally call a
database table. In the traditional view, a database record would just be a
row in this table. The table would also have a schema defining the data
type and name of the different columns in it. In Windows CE a database
has no schema. Instead each record defines a set of properties, which each
consist of a type, an id and a value. All the records of a database can define
their own set of properties, so two database records in the same database
can actually be very different. The property types defined in Windows CE
is given in listing 4.7

Listing 4.7: Test 5 - CEDB property types� �
1 # define CEVT I2 0x02 / / s h o r t
2 # define CEVT UI2 0x12 / / uns igned s h o r t
3 # define CEVT I4 0x03 / / i n t
4 # define CEVT UI4 0x13 / / uns igned i n t
5 # define CEVT FILETIME 0x40 / / FILETIME
6 # define CEVT LPWSTR 0x1F / / LPWSTR

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 79

7 # define CEVT BLOB 0x41 / / BYTE*
8 # define CEVT BOOL 0x0B / / BOOL
9 # define CEVT R8 0x05 / / d o u b l e� �

Now we see a clearer picture forming in figure 4.25. Let’s start at offset
0x0370396C. We see the mentioned ”1300 XXXX” pattern. 0x13 is the data
type for an unsigned 32-bit integer, a quite common data type to store in-
teger values in. Might ”1300 XXXX” actually mean ”UINT32 ID”? This
is likely when we look right after the 1300-pattern stops. There we have
”4000 060E”, followed by a new repeating pattern of ”1F00 XXXX” before
finishing up with a couple more ”1300 XXX”. 0x40 is the data type for
FILETIME and 0x1F is the data type of a string. This chunk of data is sim-
ply declaration of the type and id of the properties in the database record.
If we count the number of property declarations we get 15. The value im-
mediately prefixing the first property is 0xC0, which is a value below the
data size of this blob, 0x108. Remembering the Windows CE developers
fondness of prefixing length to their data structures, we think this might
be the length of the property data. If one subtracts 0xC0 and 0x0C(bytes
between start of data and the first property) from 0x108 you get 0x3C. 0x3C
is 0x0F times 4. 0x0F is 15. You get the following formula: length (data) =
0x0C + numberOf (propertyDeclarations)*sizeOf (propertyDeclaration) +
length (propertydata). The value right in front of the property declarations
is the length of the property values. We checked this also for the other text
message, it holds true.

The data after the property declarations is the values for the properties, in
the same order as they were declared. Utilizing this knowledge, we can
transform figure 4.25 into the much more readable listing 4.8. Notice how-
ever that while we now know what data types the text message database
record consists of, we don’t know what the individual fields actually are.
This is because this information is never stored in the database. It is up
to the applications that use the database records to interpret the id of the
property to give it a meaningful context. We did not spend much more
time on trying to figure out each field exactly, as we already know the
most important things like the text of the message, the sender and the re-
ceiver. The time the message was sent is also most probably stored in the
FILETIME field.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 80

Listing 4.8: Test 5 - Text message� �
1 CEVT UI4 id0580 = 0 x0830
2 CEVT UI4 id1180 = 0 x7880
3 CEVT UI4 id0900 = 0 x2900
4 CEVT UI4 id170E = 0 x0100
5 CEVT UI4 id1A00 = 0 x0000
6 CEVT FILETIME id060E = 0 x00002B00 0059FFC6
7 CEVT LPWSTR id1F0C = ” +4799625124 ”
8 CEVT LPWSTR id1A0C = ” +4799625124 ”
9 CEVT LPWSTR id3D00 = ”Yo man! I think I might rob the

Munch Museum tomorrow . Are you in ? ”
10 CEVT LPWSTR id3700 = ””
11 CEVT UI4 id080E = 0x2C00
12 CEVT UI4 id093D = 0 x3200
13 CEVT UI4 id0180 = 0 x0100
14 CEVT UI4 id070E = 0x000F� �

We know that each record has an id to the blob of their parent database.
Figure 4.28 shows the blob for the database containing the two text mes-
sages in this test. It starts at offset 0x037026B4.

The size of the blob is 0x164(356 decimal). This is quite large. Reverse
engineering every one of those bytes will take a long time, and the data
might not even be very interesting. The records are where the actual data
is kept, and we already know enough to extract those. How can we cut
down on the amount of work needed to understand the database blob? If
we knew what we were looking for, it would help immensely. Thinking
back to test 3, we tested some assumptions by writing small test programs
in C that called the CeOidGetInfo procedure (4.19). It takes a object identi-
fier as parameter and fills out an CEOIDINFOEX (figure 4.19). If the object
identifier is the id of a database, the CEOIDINFOEX structure contains a
CEDBASEINFOEX (figure 4.29) structure. The information in this struc-
ture must be stored by the operating system in the object store, so we can
expect all of the items mentioned here to be present in the blob!

This fact reduces the job from guessing blind to mapping the elements in
CEDBASEINFOEX to the blob in figure 4.28. Let’s start with the name of
the database. According to CEDBASEINFOEX this field should be
CEDB MAXDBASENAMELEN * 2 (wide char is 2 bytes) bytes long. Look-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 81

Figure 4.28: Test 5 - Database blob.

ing at the dump we see that the name starts at 0x037026C0.
CEDB MAXDBASENAMELEN is defined as 32 in Windows CE, so the 64
next bytes are the name field (marked with red). Right after this field we
find a dword with the value 2 (marked with yellow). This is the only place
in the entire blob that we find the value 2. 2 is the number of records. This
is probably the dwNumRecords field from CEDBASEINFOEX. Then we
have the value 4 (marked with purple). The Windows CE API specifies
that the wNumSortOrder field can be a maximum of 4. Let’s assume this
word is the sort order for now. Next we have a dword with value 0. It
is hard to tell what this is. After this, however, we have two dwords that
we instantly recognize as the bytes of a FILETIME structure (marked with
blue) The high word of 0xC401 is well known by now, from the other tests,

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 82

Figure 4.29: WINDOWS CE API - CEDBASEINFOEX structure

as the most significant bytes of FILETIME. So this is the ftLastModified
field.

Assuming that we’ve identified the wNumSortOrder field correctly there
should now be 4 SORTORDERSPECEX (4.30) structures in the unknown
bytes, a dwFlags dword, a dwSize and maybe a wVersion. Saying any-
thing conclusive about the dwFlags and wVersion is difficult because these
might very well be zero, and therefore can map to several places. dwSize
can not, because we know there are at least two records in the database.
The last bytes (marked in grey) in the blob consists of a pattern repeating
4 times. This fits well with wNumSortOrder being 4, as this would entail
there being 4 SORTORDERSPECEX structures. Now that these last bytes
are filled by SORTORDERSPECEXs the only non-zero dword left in the
blob is at offset 0x0370271C (marked with green). This then has to be the
dwSize field from the CEDBASEINFOEX structures.

All these findings were confirmed by applying our assumptions on other
database blobs and finding them to be correct for them too.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 83

Figure 4.30: WINDOWS CE API - SORTORDERSPECEX structure

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 84

After the SORTORDERSPECEXs a new blob starts. It has type 0xE000.
The first dword of its data is the id to another blob, in our case the just
analyzed database blob. We think this blob is some kind of index blob for
the database. It contains the id of all the database records in the database,
sorted in different ways. It also contains several FILETIME timestamps.
We found this kind of blob to be pretty uninteresting for us, given our suc-
cess criteria. We did not spend lots of time trying to decipher it exactly.

Transform to PIM

The results we got from a short overview for this blob and all the other
results from this test were combined and gave the new HW-structures in
listing 4.9.

Listing 4.9: Test 5 - Database blob structures� �
1 typedef enum tagBLOBTYPE
2 {
3 FILEDATALIST= 12288 , / / 0 x3000
4 FILEMETADATA = 20480 , / / 0 x5000
5 FILEDATA = 24576 , / / 0 x6000
6 DATABASE = 28672 , / / 0 x7000
7 DATABASERECORD = 32768 , / / 0 x8000
8 DATABASEINDEX = 57344 / / 0xE000
9 } BLOBTYPE ;

10

11

12 s t r u c t DatabaseBlob
13 {
14 HEADER header ;
15

16 DWORD ParentID ;
17 DWORD databaseType ;
18 WORD databaseName [3 2] ;
19 DWORD numRecords ;
20 DWORD numSortOrder ;
21 DWORD unknown ;
22 DWORD lastModifiedLowTime ;
23 DWORD lastModifiedLowTime ;
24 DWORD dataBaseSize ;
25 DWORD unknown ;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 85

26 SortOrder sortOrders [4] ;
27 } ;
28

29 s t r u c t DatabaseRecordBlob
30 {
31 HEADER header ;
32

33 DWORD ParentID ;
34 BYTE data [header . Size −4]
35 } ;
36

37 s t r u c t DatabaseIndexBlob
38 {
39 HEADER header ;
40

41 DWORD parentID ;
42 WORD unknown ;
43 WORD numRecords ;
44 DWORD d e l i m i t e r 1 [2] ; / / FFFFFFFF
45 DWORD recordID [numRecords] ;
46 DWORD d e l i m i t e r 2 ; / / FFFFFFFF
47 DWORD unknown[numRecords * 1 0] ;
48 UQUAD timeStamps [numRecords] ;
49 } ;� �

4.2.3.6 Test 6

Create test

We have a pretty good understanding of the internal structure of the blobs
by now. One of the large remaining questions is how the blobs are com-
bined into the large structure called the object store. Why are blobs stored
at the offsets they are stored at, how does the operating system find a blob
given an oid? Our initial guess was based on the information we had in
the CIM. From it we know that most file systems/object stores have some
kind of mechanism to look up an element given some kind of id, without
searching through the entire file system. File systems/object stores must
also be able to partition an element into as many subparts as needed by
the underlying physical medium. For hard disks this is usually sectors.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 86

Figure 4.31: Test 6 - VFAT?

We’ve already seen this in the Windows CE object store. The content of
files is split into several FILEDATA blobs which are connected through a
FILEDATALIST blob.

With this test we basically want to check if we can uncover how the object
store keeps track of which parts of the available storage has been assigned
and which has not. Figuring out this will basically let us say that we know
that we have access to all the data in the object store, not just a subset.
Our test tool (the BlobExtractor) can, based on our findings so far, scan
through a memory dump byte by byte using several heuristics to recog-
nize blobs. While we know that it recognized most blobs this way, we can
not be certain that our heuristics are wide enough to catch all cases or that
they even are 100 percent correct. It would be better if we could figure out
how the blobs are assigned their offsets in the object store in the first place
and access them directly. We are hoping to find some kind of connection
between a blob’s oid and the actual offset of the blob.

Figure 4.31 contains the sixth test.

Extract info/Adjust PSM

The first thing we did was to run our BlobExtractor on the memory dump.
After it was done it had recognized over 10000 individual blobs and writ-

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 87

Figure 4.32: Test 6 - BlobExtractor first edition output

ten them to a log file. Figure 4.32 shows the start of this file. As we see,
the first blob was found around offset 0x6000 and the other blobs followed
successively. This means that a lookup table for oids has to either be lo-
cated before these 0x6000 bytes or it has to be intermingled with the rest
of the blobs in the object store from offset 0x6000 and out.

Lets look at the data before offset 0x6000. From 0x16 to 0xD0 we have noth-
ing, everything is zero-filled. From 0xD0 to until 0x3D0 there is clearly
some kind of structure to the data. We also notice that there are what
seems to be object identifiers mentioned here (figure 4.33 red markings).
We also see that they appear right after what seems to be pointers (marked
green) to places in the object store, given that the store is located at offset
0x42000000 in memory as figure 4.14 indicates. This is interesting, as it
shows a connection between oids and pointers to addresses in the object
store! But looking at the size of the data, this simply cannot be our lookup

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 88

Figure 4.33: Test 6 - Offset 0x0

table. It would need room for over 10000 of these connections. 10000 * 4 *
2 = 80000, which is way more than the 0x300 available.

Next we have a section of similar data from offset 0x3D0 until 0x1000 (fig-
ure 4.34). The data looks uniform; the bytes have similar value ranges in
the entire section. None of them give us any clue of their use but using
the same reasoning as the last section, there simply isn’t enough data here
to hold a lookup table. From offset 0x1000 the data changes form. The
30 first bytes here definitely lie in a low value interval if we look at the
data as dwords. None of them use their most significant byte. We also
notice that the dwords rise in value from the first to the last. Interesting,
but again there simply is not enough room for a lookup table for 10000

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 89

Figure 4.34: Test 6 - Offset 0x1000

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 90

Figure 4.35: Test 6 - Offset 0x5000

objects, as everything from 0x1030 to 0x5000 is filled with zeros. The data
from 0x5000 to 0x6000 looks very interesting. First of all, we see that this is
in fact a blob. Our heuristics missed this because it has a flag field with a
non-zero value (figure 4.35, red markings), which we’ve never seen in any
other blob. This blob has blob type of 0x2000, which is also new. We see
that the data in the blob follows a distinct pattern. Most likely these are
dwords stored after each other, but only the bottom half of the dword is
used. Might this be our table? The 2 lowest bytes from one of the dwords
(green markings) have the value 0x12E9. What if this is some kind of delta
offset from the start of the data, 0x5000 or from the start of the entire ob-
ject store? None of these theories seem to be correct, as we end up in what
seems like ”random” data, not at the start of a blob. This might be because
we use the wrong base offset, or the dwords might not be pointers at all.
All we know is that we can’t conclude either way.

We also observe that the blob extractor recognizes several blobs of un-
known type: 0xA000, 0xB000, 0xC000 and 0xD000 (figure 4.32). However,
the size of these blobs is typically less than 100 and inspection of the blobs
reveal that they are most likely connected with the registry part of Win-
dows CE as registry keys and registry values of different data types. A
lookup table will be quite large and while it could be split into several
parts we see no reason to make these parts as small as 100 bytes.

Trying to attack the problem from another angle we chose a random blob
in the dump; the file metadata blob of wtmfdll.dll at offset 0x00569200
(figure 4.36). If there is such a thing as a lookup table, it should contain
the offset of the blob and/or the id of the blob. Let’s try searching for the

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 91

Figure 4.36: Test 6 - Random file

id and the offset. The id is 0xCF250000. This value is not used anywhere
else in the dump, so a table with the id is out of the question. How about
the offset? If the system can find the blob, and therefore the offset, given
an id it has to store this offset somewhere. Alternatively it can calculate
the offset from the id, but this is unlikely given that the ids are increasing
by 1 for each new blob and each blob can be of a different size. Search-
ing directly for the value of the offset 0x569200 yields nothing. The offset
of the blob might very well be combination of a base offset and a delta
offset. Lets make some educated guesses about possible base offsets. We
search for 0x568200(base 0x1000), 0x564200(base 0x5000) and 0x563200(base
0x6000). We had no luck, as we found nothing.

Clearly, a new information gathering strategy for finding out how exactly
objects are given their place in the object store is needed. Our black box
testing needs to be supported by something else.

Transform to PIM

The last thing we do before defining our new strategy is to update our
HW-structure to include the new data types observed in this test (listing
4.10).

Listing 4.10: Test 6 - Blob structures v6� �
1 typedef enum tagBLOBTYPE
2 {
3 UNKNOWN POINTER LIST? = 8192 , / / 0 x2000
4 FILEDATALIST= 12288 , / / 0 x3000
5 DIRECTORYINFO = 16384 , / / 0 x4000
6 FILEMETADATA = 20480 , / / 0 x5000
7 FILEDATA = 24576 , / / 0 x6000
8 DATABASE = 28672 , / / 0 x7000
9 DATABASERECORD = 32768 , / / 0 x8000

10 REGISTER UNKNOWN A = 40960 , / / 0xA000

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 92

11 REGISTER UNKNOWN B = 45056 , / / 0xB000
12 REGISTER KEY= 49152 , / / 0xC000
13 REGISTER INT = 53248 , / / 0xD000
14 DATABASEINDEX = 57344 / / 0xE000
15 } BLOBTYPE ;
16

17 typedef s t r u c t BlobHeader
18 {
19 WORD s i z e ;
20 BLOBTYPE blobType ;
21 DWORD z e r o F i l l e r ;
22 DWORD ID ;
23 } HEADER;
24

25 s t r u c t GeneralBlob
26 {
27 HEADER header ;
28 BYTE data [header . s i z e] ;
29 } ;
30

31 s t r u c t F i l e D a t a L i s t B l o b
32 {
33 HEADER header ;
34 DWORD f i l e D a t a I D ;
35 BYTE unknown[header . s i z e − 4] ;
36 }
37

38 s t r u c t FileMetaDataBlob
39 {
40 HEADER header ;
41 DWORD f i l e D a t a L i s t I D ;
42 DWORD unknown [2] ;
43 DWORD parentID ;
44 DWORD neighbourID ;
45 DWORD lowOrderTime ;
46 DWORD highOrderTime ;
47 WORD propertyFlags ;
48 WORD filenameLength ;
49 WORD filename [filenameLength] ;
50 }
51

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 93

52 s t r u c t D i r e c t o r y I n f o S t o r e B l o b
53 {
54 HEADER header ;
55 DWORD childID ;
56 DWORD unknown [2] ;
57 DWORD parentID ;
58 DWORD neighbourID ;
59 DWORD lowOrderTime ;
60 DWORD highOrderTime ;
61 WORD propertyFlags ;
62 WORD DirectoryNameLength ;
63 WORD DirectoryName [DirectoryNameLength] ;
64 }
65

66 s t r u c t Fi leDataBlob
67 {
68 HEADER header ;
69 WORD suspected storageType ;
70 BYTE f i l e D a t a [header . s i z e − 2] ;
71 }
72

73 s t r u c t DatabaseBlob
74 {
75 HEADER header ;
76

77 DWORD ParentID ;
78 DWORD databaseType ;
79 WORD databaseName [3 2] ;
80 DWORD numRecords ;
81 DWORD numSortOrder ;
82 DWORD unknown ;
83 DWORD lastModifiedLowTime ;
84 DWORD lastModifiedLowTime ;
85 DWORD dataBaseSize ;
86 DWORD unknown ;
87 SortOrder sortOrders [4] ;
88 } ;
89

90 s t r u c t DatabaseRecordBlob
91 {
92 HEADER header ;

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 94

93

94 DWORD ParentID ;
95 BYTE data [header . Size −4]
96 } ;
97

98 s t r u c t DatabaseIndexBlob
99 {

100 HEADER header ;
101

102 DWORD parentID ;
103 WORD unknown ;
104 WORD numRecords ;
105 DWORD d e l i m i t e r 1 [2] ; / / FFFFFFFF
106 DWORD recordID [numRecords] ;
107 DWORD d e l i m i t e r 2 ; / / FFFFFFFF
108 DWORD unknown[numRecords * 1 0] ;
109 UQUAD timeStamps [numRecords] ;
110 } ;� �

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 95

4.2.4 Defining a Strategy - Second Loop

The black-box testing had given us a great deal of knowledge about the
object store, but one important question remained unanswered: how does
the object store keep track of all its files? As we had failed to locate some
kind of file allocation table, we needed to re-think our strategy. Though
we did not expect any direct answer, we tried to consult Microsoft. As
expected, they would not answer our questions, but ended their response
with ”FWIW it does not use file allocation tables.” It seemed like a waste of
time to continue the search for such a table in memory dumps.

We needed to come up with a plan. After discussing our new situation,
we defined the problem as follows:

Goal: Find out how Windows Mobile keeps track of objects.

Known: Every object has an object identifier.

Strategy: Find a procedure in the Windows CE API that can locate an
object from an object identifier. Disassemble this procedure, to
see how the object is found.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 96

4.2.5 About Disassembling

All programs start out as source code. Usually this is written by humans
in a high level language like C or C++. High level language means that
the functionality of the program can be written in a somewhat humanly
readable form with much more abstract concepts than a computer can uti-
lize. Computers support a given number of low level basic instructions
that they can execute very quickly. Typical examples are instructions that
fetch or store a value in memory and instructions that do simple arith-
metic operations like addition and subtraction. Bridging that gap between
a high level language source code and the instructions of a specific proces-
sor is the job of a compiler. It maps high level concepts to several low level
instructions which can be performed by the processor. The source code
writer usually never has to see this process. The low level instructions are
then encoded in a binary format that is easy for computers to work with.
This is called assembling a binary.

A disassembler does the opposite. Its primary task is to take a compiled
and assembled binary file and produce a listing of the low level processor
instructions and data contained in it. Figure 4.37 illustrates this.

In addition to just listing the low level processor instructions, a good dis-
assembler utilizes several techniques to enhance the readability of this list-
ing. Some of these techniques are:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 97

Figure 4.37: The compile, assemble, disassemble cycle.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 98

Data/code dif-
ferentiation

Every disassembler must be able to discern the difference
between data and code. This seems very basic, but can
be very tricky as assemblers can generate an enormous
amount of different code/data variations.

Procedure
identification

The ability to recognize procedures in the code, and
when they are called. Might also be able to figure out
the types of the procedure’s parameters.

String recog-
nition

Recognition of string literals in the data. Strings are mes-
sages meant for humans and referencing strings can of-
ten help a lot in figuring out what some piece of code is
actually doing.

System /
library call
identification

A disassembler should be able to figure when the code
is calling operating system functions and annotate these
calls in a specific way. Better disassemblers can do the
same thing for calls to well known library functions (like
the C common runtime), and the best disassemblers can
recognize any library function if the library is available
at the time of the disassembly.

Data and
code cross
references

A disassembler should annotate a recognized procedure
with a cross reference to all the places in the code that
calls the procedure. In the same manner it should anno-
tate data addresses, or variables, with cross references to
all the code that access them.

Data structure
identification

Good disassemblers can recognize known data struc-
tures from libraries and improve the readability of the
code listing by incorporating this information.

Path analysis Analyze the code paths and branching instructions to
enable enhanced code analysis coverage and enable the
possibility of graph visualization.

There exists a multitude of disassemblers:

• Sourcer[22]

• BORG[23]

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 99

• BDASM[24]

• W32Dasm[25]

• PEDasm[26]

• Diss[27]

• Disassembler[28]

• ARMDis[29]

All of these disassembler were found to be inferior to IDA, described in
the next section, because of one or more of the following reasons: does
not support the ARM processor, lacking interactive nature(letting the user
correct errors in the disassembly) or does not automatically identify API
and system calls. IDA does this and much more, making it the best choice
for any serious reverse engineering of binary executables.

Interactive DisAssembler (IDA)

IDA is a disassembler written by Ilfak Guilfanov and DataRescue[30]. It
supports interactive disassembly of an impressive list of processor types
and binary file formats, including the PE file format and ARM processor
found in our ”unknown” device. IDA has a efficient built-in support for
automatically separating code from data, but at the same time the user can
at anytime override all automatically made choices and have IDA update
itself accordingly. This kind of interactivity is unique for IDA and is not
found in other disassembling products. IDA does not produce just lists of
low level instructions, but rather gives the user a complete environment
for reverse engineering work. The interface can be seen in figure 4.38.
Some of the functionality supported by IDA include:

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 100

Figure 4.38: IDAs user interaction interface.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 101

FLIRT - Fast
Library Iden-
tification and
Recognition
Technology.

This feature identifies standard system calls and API
function calls from several popular compilers. The re-
sult is that the user instantly can figure out that the call
being made is to a known function without having to in-
spect the function at all. Figure 4.39 shows the difference
between FLIRT being active and not. FLIRT can also be
used on any custom library if the library file is available.

PIT - Pa-
rameter
Identification
and Tracking

Tracks stack parameters as they are used. That means
that if IDA sees that a certain memory address is given
as an argument to a known system or library function it
can automatically deduct the type of the variable stored
there based on the function definition. This is propa-
gated throughout the rest of the disassembly, helping
with the overall readability. Figure 4.39 shows the dif-
ference PIT makes.

High level
constructs.

IDA lets one define and assign high level constructs like
unions, structures and enumerations to any memory ad-
dress, including stack based ones. This furthers the read-
ability of disassembled code and narrows the gap be-
tween the low level machine instructions and the high
level language they originated from. IDA automatically
assigns well known structures to the parameters of sub-
routines found with its FLIRT technology. Figure 4.40
shows how the high level structure feature in IDA affects
a disassembly.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 102

Figure 4.39: Flirt and PIT- Fast Library Identification and Recognition
Technology - Parameter Identification and Tracking.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 103

Figure 4.40: High level constructs.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 104

Interactive
Register
renaming.

A listing of low level machine code is greatly enhanced
by the ability to rename stack and heap based variables
to more meaningful names. RISC processors, like ARM,
have a large number of general data registers. In order to
work efficiently the processors try to keep as much data
as possible in these registers. This means that it loads
most of the ”variables” it is currently working here. For
human readability this is bad, because a helpful variable
name like ”counter” suddenly just becomes register R4.
This problems only increases as more general registers
become available. The user has to remember what is in
each register at all times. IDA has come up with a tech-
nique for countering this problem. They allow you to
rename a register on the fly, just like a normal variable.
The user selects simply selects a register they want to re-
name, a start and end address the renaming should be
for and IDA does the rest for you. Figure 4.41 show an
example of this useful feature.

IDC One of the most powerful features in IDA is the built-
in C-like script language that user can write scripts to
enhance parts of the reverse engineering process. Exam-
ples of uses are scripts to unscramble packed and com-
pressed code, or scripts that handles file formats not sup-
ported out of the box from DataRescue. Everything from
the user interface to the disassembly process can be cus-
tomized. Much of the built-in functionality is actually
implemented in IDC.

Plug-in archi-
tecture.

For the tasks where IDC is not powerful enough IDA has
support for precompiled plug-ins. These can be written
in C or Python and are normally used to support a com-
pletely new architectures or processors. Recent editions
of IDA also have a built-in X86/ARM debugger which is
implemented as a plug-in.

Graphing. IDA supports visualization of code control flow. This
gives the user a way to quickly understand the overall
flow of the program, something which is easy to lose
track of in a disassembly. Figure 4.42 shows an example
of IDAs graph support.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 105

Figure 4.41: Interactive register renaming.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 106

Figure 4.42: Code control flow graph.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 107

4.2.6 Testing

The testing phase of this strategy was somewhat different from the black
box strategy. The idea this time was to find a suitable target for the disas-
sembling, meaning a procedure that was able to locate objects from object
identifiers, and follow this procedure as far as we were able to.

4.2.6.1 Test 7

Create test

From the Windows CE API we had the procedure CeOidGetInfo (figure
4.11):
This procedure fulfilled our criteria, and was picked to be used in the dis-
assembling.

Extract info/Adjust PSM

The next obstacle was then to locate the actual implementation of this pro-
cedure. According to ”Windows CE 3.0 - Application Programming” [21],
most Windows CE APIs are exported by coredll.dll. This file is part of Win-
dows Mobile’s system files, and we were not able to reach this file on the
phone for a simple copy/paste from the phone to the computer. Instead
we had to inspect the flash partition were the operating system files are
located, knowing that we had the tools to make a complete image of this
area. To get hold of the file, we needed to re-construct the file from this
flash image. Writing a tool to perform this task was now our primary task.
Luckily, we were able to find a tool which did exactly what we needed.
The DumpRom tool by Willem Jan Hengeveld[7] takes a flash image as
input, and tries to re-generate all the files seen in the image. The tool did
what it claimed, and we were able to get coredll.dll from the flash image
with less effort than we had expected. It was time to start disassembling
coredll.dll using IDA. We will base the disassembling on some of the ideas
from Sychronized Refinement described in section 3.2.3. We will analyse
the code in parallel with the process of building up a description of what
the code accomplishes by focusing on heavy commenting. We will also
keep dynamic expectation lists that will guide our analysis towards an ad-
equate understanding.

IDA presented a menu with a list of procedures, from where we could
easily locate CeOidGetInfo. Figure 4.43 shows the code found. As we can

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 108

Figure 4.43: Test 7 - CeOidGetInfo in coredll.dll.

see, this code segment is called for both PegOidGetInfo and CeOidGetInfo,
where PegOidGetInfo is used for applications on Windows CE vesions 1.0
and 1.01. Remembering the definition of CeOidGetInfo, we know that it
takes two parameters, a CEOID and a pointer to a CEOIDINFO structure
(which will be explored in detail below). Upon a procedure call, these
parameters will be placed in registers R0 and R1 (R0, R1, R2, and R3 are
used for argument passing), from where they can be reached within the
procedure. What happens in the code segment above is that the second
parameter is instead moved to R2, the first parameter is moved to R1, and
some value is loaded into R0 (the name unk 1FC6700 is inserted by IDA.
A branch is then made to CeOidGetInfoEx. Looking at CeOidGetInfoEx in
the Windows CE API, we found the definition in figure(4.44).

As we can see, CeOidGetInfoEx has been given an additional first parame-
ter, a PCEGUID. The PCEGUID is a pointer to a globally unique identifier
of the database volume, or of the object store. From this, we know what
is done in the code segment above (figure 4.43). The two parameters of
CeOidGetInfo has been shifted one position to fit their positions in CeOid-
GetInfoEx. This is what happens with the two MOV operations. The value
placed in R0 is the PCEGUID used in CeOidGetInfoEx. As this was a call to
CeOidGetInfo, the PCEGUID will always point to the identifier of the ob-
ject store. That is what allows this value to be placed into the code itself.
At the end of this code segment, the original call to CeOidGetInfo has been
adjusted to fit CeOidGetInfoEx, which now means that the same code can

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 109

Figure 4.44: Windows CE API - CeOidGetInfoEx

be used for both. A branch is therefore made to CeOidGetInfoEx.

As we located CeOidGetInfoEx, we found a larger code segment. The be-
ginning of this procedure is shown in figure 4.45. The first two instructions
(MOV, STMFD) together form the entry stub, which saves register values,
stack pointer and return address, and moves the stack pointer accordingly.
Next, ”ADD R11, SP, #0x18” assigns R11 with the previous stack pointer
value, the value seen before the entry stub. This is done so that R11 can be
used as a base in later references to the stack. To see why an ADD instruc-
tion is used instead of a SUB instruction, we need to remember that the
stack grows downwards, towards lower memory addresses. Thus, the en-
try stub has assigned the stack pointer with a smaller value. ”SUB SP, SP,
#0x234” assigns 564 bytes (234 hexadecimal) to the stack. This makes room

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 110

Figure 4.45: Test 7 - The start of CeOidGetInfoEx in coredll.dll.

for a CEOIDINFOEX structure that is to be filled by the procedure (figure
4.19). This is an extended version of the CEOIDINFO structure, containing
one additional value (WORD wVersion). This structure is used in a third
version of the procedure, called CeOidGetInfoEx2. When CeOidGetInfo or

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 111

CeOidGetInfoEx are used, the values in the CEOIDINFOEX structure, ex-
cept the new version field, will get copied into the CEOIDINFO structure
before returning from the procedure. ”MOV R4, R2” stores the value of
the CEOIDINFO* argument into R4, so that R2 is free to be used for argu-
ment passing in a new procedure call. ”MOV R6, #1” places the value 1
into R6. ”LDR R12, =0xFFFFFDB4” then assigns the value 0xFFFFFDB4 to
R12. Looking at the following instruction, ”STRH R6, [R11,R12]”, we see
that this value is used as offset from the base stored in R11, to store the
value 1 found in R6 on the stack. This offset value is a 2’s Complement
value. We can decode 0xFFFFFDB4 into binary as follows in figure 4.46.

Figure 4.46: Test 7 - Converting from 2’s Complement to binary.

0x24C equals 0x18 + 0x234. As seen from the base value in R11, -0x24C is
the position of the last assigned location on the stack. This is where the
code places the value 1. The STRH instruction stores a half word, which
equals 2 bytes on a ARM processor. If we go back to the definition of the
CEOIDINFOEX structure in the Windows CE API (figure 4.19), we see that
the first field in the structure is the WORD wVersion. The size of this word
is 2 bytes, and according to the comment in the API, this field always needs
to be set to 1. This is exactly what has happened in the assembly so far.
Figure 4.47 shows the changes seen on the stack so far in CeOidGetInfoEx.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 112

Figure 4.47: Test 7 - a) Before calling CeOidGetInfoEx. b) After executing
the first two instructions, LR, R12, R11, R6, R5, and R4 have been pushed
on the stack, and the stack pointer has been moved accordingly. c) R11
has been set as base, the stack pointer has assigned 0x234 more bytes to
the stack, and the value 1 has been inserted at offset -0x24C. The STRH
instruction only stores 2 bytes.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 113

The next two instructions (LDR and ADD) calculates this memory location
again, and places it in register R2 so that it can be used as an argument.
Then, if we look at what happens in the last three instructions in figure
4.45, a new unknown value(0xF000AFD0) is introduced, and the program
counter ends up getting this value. Thus, we tried to search the phones
memory to see what could be located at this address, but had no luck. We
also searched different sources at the Internet, looking for any references
to this memory address, but did not get any answers. For some reason
the code jumped to this location, but it seemed impossible to find the code
that was executed there. The memory location did not even seem to be in
use.

Then we discovered an article at the ”Windows CE Base Team Blog” called
”Inside Windows CE API calls” [31] which contained valuable informa-
tion. This included the following explanation of Windows CE API calls:

• Windows CE APIs are implemented by a set of server processes (nk.exe,
filesys.exe, gwes.exe, device.exe, services.exe).

• When an application calls an API in one of these servers, the app
thread jumps into the server process.

• Most Windows CE APIs are exported by coredll.dll, which all Win-
dows CE applications link against, but coredll.dll is just a small wrap-
per, re-directing the call to the server process containing the actual
implementation.

• The re-direction of the call is done by making a jump to an invalid
address. This causes an exception. The invalid address value is not
an arbitrary invalid address, but contains information about what
server process the call should be re-directed to. When the exception
is caught, the value is recognized and decoded.

From the XDA-developers web site [32] we found more information, in-
cluding the formula to decode the invalid address value:

• A call is made to an invalid address in the range 0xf0000000 - 0xf0010000.

• The system call number is determined by 0xf0010000-(256*apiset+apinr)*4.

• The api set handles are defined in PUBLIC/COMMON/SDK/INC/K-
FUNCS.H and PUBLIC/COMMON/OAK/INC/psyscall.h.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 114

• The aipnrs are defined in several files, for example SH GDI calls are
defined in PUBLIC/COMMON/OAK/INC/mwinuser.h.

Decoding 0xF000AFD0 according to this rule, we get API set = 20 and API
nr = 12. The same article from XDA-developers also contained a list with
all system calls found on a Pocket PC Phone Edition 2003, another version
of Windows CE. Instead of trying to make such a list for our device, we
decided to first see what we could find by using the list found. Despite the
fact that our device is running the Second Edition, the OS was the same.
Scrolling down the list to set number 20(0x14), we found that it is called
SH FILESYS APIS (figure 4.48). Since we were looking at a procedure to
get information about files, this seemed reasonable.

Figure 4.48: Test 7 - List of API sets.

It also backed up our suspicion of finding the implementation in the server
process filesys.exe. As a consequence, we decided to start disassembling
filesys.exe, which was also available from the flash image.

At the top of the file created by IDA we saw the table shown in figure
4.49.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 115

Figure 4.49: Test 7 - Table at the beginning of filesys.exe.

The table contains memory addresses for several subroutines, and the ad-
dresses seemed quite similar to the addresses found in 4.48. Though they
were not exactly alike, the list in 4.48 had been created with a different
phone, which made us assume that this list might be what we were look-
ing for. We had already found the API number to be 12. Counting from
0, the subroutine at index 12 is highlighted. It appears to be located at
address 0x12D50, and figure 4.50 shows the code located there. As before,
the first instructions form the entry stub. R11 is set to be used as base,
and the stack pointer is moved to make room for some additional values
on the stack. ”MOV R0, #0” and ”STR R0, [R11,#var 30]” initializes one of
the new variables on the stack to zero. As we will see below, this variable
is what ends up being the return value received in coredll.dll. If it is still
zero when received by coredll.dll, the procedure call will be interpreted as
failed. The numeric value zero will then also be returned by coredll.dll. Re-
call from the API definition of CeOidGetInfoEx (4.44) that the return value
will be either TRUE or FALSE. As we know, the numeric value zero is in-
terpreted as FALSE, which according to the API correctly indicates failure.

We know from the analysis of coredll.dll that the second parameter, which
is found in R1, is the object identifier (CEOID). ”LDR R1, [R11,#param R1]”
gets the value of this parameter from its newly assigned slot on the stack,
and puts it into R1. This may seem unnecessary, and in fact it is, since
R1 has not been changed. The value to be stored in R1 is already there.
The reason for this strange behavior is that the compiler, which translates

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 116

Figure 4.50: Test 7 - Beginning of code segment found when jumping to
address 0x00012D50.

from high level language into assembly, may not always find optimal so-
lutions. This may result in some unnecessary instructions at times, and we

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 117

will see similar examples as we move along. ”MOV R0, R1,LSR#28” per-
forms a logical shift right operation on the object identifier value, shifting
the value 28 bits to the right. The 4 previous MSBs of the object identifier,
which is what is left after the shift operation, is then stored in R0. ”STR
R0, [R11,#var 34]” then stores this value into the last assigned slot on the
stack so far.

What happens next is best explained by a flowchart. The flowchart (fig-
ure 4.51) itself has been generated by IDA, and we will now analyze the
instructions within the green area. Continuing our analysis, ”LDR R1,
=0xFFFFC800” and ”LDR R0, [R1]” loads some value from the memory
address 0xFFFFC800. We found several references to this memory loca-
tion, including one at the XDA-developers web site [32]. 0xFFFFC800 is
the location of a kernel data structure called KDataStruct. KDataStruct is
defined in PRIVATE/WINCEOS/COREOS/NK/INC/NKARM.H, and in
this file we also noticed a comment confirming the memory location of the
KDataStruct.

As the memory location read was the same as the location of the KDataS-
truct, we knew that we were interested in the first 4 bytes of the structure.
We found this field at the first position: ”LPDWORD lpvTls; /* 0x000 Cur-
rent thread local storage pointer */”. From the comment we knew that the
value loaded was a pointer to the current threads local storage. ”LDR R2,
[R0,#-0x14]” uses this pointer to load the desired value into R2. The next
instruction tests to see if the value loaded equals 2, and depending on the
outcome of the test, the ”branch if equal” instruction decides which code
to execute next. We did not know exactly what this value was, but we
had some suspicions. Anyhow, as we will see, it was not necessary to fig-
ure out that value to understand the rest of the code. For that reason, we
did not spend much time on it. What has happened in the code segment
marked 1 is that a value has been loaded from the threads local storage,
and a branch is made on the condition of whether or not this value is 2.

As we analyze further, we can follow the flowchart. In the case where
the value is 2, a new value is loaded with the same pointer as offset, and
stored on the stack. If it was not 2, the value 2 is stored on that same stack
location instead. Then, no matter the result from the previous conditional
branch, step 3 merges the two paths and checks to see if the stack value
is 2. That will be the case if either the previous condition failed, or if it
succeeded and the new value found with ”LDR R2, [R1,#-0x18]” was 2.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 118

Figure 4.51: Test 7 - Assembly flow graph.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 119

We now come to what really separates the paths taken. If the last con-
dition fails, we need one extra step, denoted 3.5 in figure 4.51. A proce-
dure named MapCallerPtr is called, with the two parameter registers R0
and R1 prepared with corresponding values. R0 is given the value of the
second argument to CeOidGetInfoEx, which was a pointer to the CEOID-
INFO structure to be filled. R1 is given a value matching the size assigned
for the structure. Figure 4.52 shows the definition of MapCallerPtr.

Figure 4.52: Windows CE API - MapCallerPtr

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 120

As we can see from the API, MapCallerPtr is used to guarantee that the
initiator of the procedure call has access to write to the desired memory
location.

If we summarize the code shown in the green area of figure 4.51 in short,
we could say that some information about the thread is checked to see
whether or not the access rights to the memory location needs to be vali-
dated. We simply assumed that the unknown value that was checked had
to do with the access rights of the thread, and whether or not it runs in
kernel mode. But as stated before, for our purpose of finding how files are
located, having the exact answer was unnecessary.

Figure 4.53 shows the code following the access check analyzed above.
At this point we saw some signs telling us that we might be on the right
track, as the assembly code started using the object identifier to make de-
cisions. The 4 MSBs of the object identifier that was previously stored
on the stack are now loaded back into R0 with ”LDR R0, [R11,#var 34]”.
The values of these bits are tested against four different values on lines
0x00012DD0, 0x00012E3C, 0x00012E48, and 0x00012E58. The options are
3, 0, 1, and 0xE, and from this point on the execution take separate paths
depending on the value of these 4 MSBs. From this we could already see
that the object identifier was not just a random unique numeric value, but
instead actually held information encoded in the identifier itself. After re-
verse engineering all the paths, we were able to see the difference:

3: Objects with a global identifier other than 0. This sup-
ports objects found on a mounted database volume other
than the object store databases.

0: Objects that are located within the object store.

1: Objects located in ROM.

0xE: Special case objects.

Since our task was to figure out how to locate files in the object store, we
will only present the details of the path concerning objects with identifiers
having 0 in the 4 MSBs.

Starting at the top on figure 4.53, the test against 3 will then obviously fail,

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 121

Figure 4.53: Test 7 - Seperating MSB paths.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 122

and a branch is made to 0x00012DF8. What happens there is that a call is
made to EnterCriticalSection to ensure mutual-exclusion synchronization
so that no changes are made to the object while retrieving information.
Then two tests are performed on the CEOIDINFO pointer.

The first checks that the pointer is not 0. The second checks if the version
field of the structure is set to 1. If either of the two tests fails, execution is
continued from 0x00012E24, which sets the last error value to 0x57, leaves
the critical section, and return with an error. Error message 0x57 is defined
as ERROR INVALID PARAMETER (in WinError.h). If all goes well, execu-
tion continues from 00012E30, where the three remaining paths (0, 1, and
0xE) are separated. In our case, the ”CMP R1, #0” instruction will find the
two values to be equal, which cause a branch to 0x00012E80.

Figure 4.54: Test 7 - Validating that object store path is correct.

At address 0x00012E80 we found the code in figure 4.54. The first parame-
ter to CeOidGetInfoEx, which was a pointer to a global identifier (PCEGUID),
is loaded from the stack and compared with 0. If the PCEGUID is 0, there

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 123

is no global identifier, which in turn indicates that the file is located in the
object store. A branch is then made to 0x00012EBC.

If, on the other hand, the PCEGUID is defined, the code needs to check
if this global identifier actually is the identifier of the object store. Figure
4.55 shows the definition of the global identifier (CEGUID). It is defined
as a structure with four dwords. These values are loaded one at a time,
and then ORed together, before ”ORRS R2, R3, R1” finally, in addition to
performing an OR-instruction, sets the zero flag if R2 ends up with 0. As
the final value in R2 is decided by an OR of all the four dwords in the
CEGUID, it will only be 0 if all these dwords are 0. If this is the case, the
branch is not made, and execution continues from 0x00012EBC as it did
when the PCEGUID was 0. If R2 does not end up with 0, a branch is made
to a location where an error code is determined, and the procedure returns
as failed.

Figure 4.55: Windows CE API - CEGUID structure

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 124

The Windows CE API defines a macro to perform a check on a CEGUID to
see if it identifies the object store. Figure 4.56 shows the macro. Compar-
ing this macro with the assembly code just analyzed, we see that this check
is exactly what happens in the code. When execution continues from ad-
dress 0x00012EBC, we now know that the object is located in the object
store.

Figure 4.56: Windows CE API - CHECK SYSTEMGUID macro

At address 0x00012EBC we see the object identifier (CEOID) and the pointer
to the file info structure (CEOIDINFOEX*) being loaded back into R1 and
R2, and some global variable loaded into R0. A branch is then made to
0x000268E0 (figure 4.57) with these three parameters. At 0x000268E0 there
is just a redirection to a new subroutine located at 0x00023FCC. The result
from this subroutine is compared with 0, where a 0 indicates failure, and
any other value cause a branch to 0x00026910.

Figure 4.59 shows the subroutine found at address 0x00023FCC. We no-
ticed that several calculations and comparisons were made on the object
identifier value itself, so we decided that the best way to keep up with
what happens in the code segment was to simulate the code on paper with
some real parameter values. For the object identifier in R1, we used the
identifier of the meta-data object for the file Dogbark.wav which is one of
the phones default files.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 125

Figure 4.57: Test 7 - Redirecting to 0x00023FCC.

Figure 4.58: Test 7 - The file dogbark.wav used in the simulation.

We located the file in memory to find its identifier. The identifier of this ob-
ject was 0x00002454, shown in green on figure 4.58. R2 contains a pointer
to the structure to be filled. As this is an out parameter, we did not need a
precise value for it, but kept the definition of the CEOIDINFOEX structure
(figure 4.60) in mind.

For R0, we needed to locate the global variable that was loaded before
the subroutine call in figure 4.57. IDA noted that the variable was located
at address 0x00012F44. When locating this memory address, we needed to
make sure that we read the address from filesys.exe’s perspective. By using
the Itsutils[7] tool called pps, which dumps information about processes,
we found the filesys.exe process to be located at address 0x04000000. With
0x00012F44 as offset from the start of filesys.exe’s memory slot, we found
the value of the global variable to be 0x00469a0 (which we learned was
exactly the value used by IDA to name the variable on line 0x00012EC4 in

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 126

figure 4.54).

Figure 4.59: Test 7 - Utilizing the rest of the object identifier.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 127

We were now ready to begin the simulation. Table 4.5 shows how we

Figure 4.60: Windows CE API - CEOIDINFOEX structure

stepped through the code segment one instruction at a time.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 128

Instruction Result Comment
STMFD SP!, R4-R6,LR Entry stub
MOV R3, R0 R3 = 0x469A0
MOV R6, R1 R6 = 0x2454 The identifier.
BIC R0, R6,
#0xFF000000

R0 = 0x469A0 Clears the 8MSBs,
which have done their
part of the lookup

CMP R0, #0x400000 Checks that the OID
is less than the limit
0x400000

BCS loc 24060 Branches to return 0 if
OID is incorrect

MOV R0, R6,LSL#8 R0 = 0x245400
MOV R2, #0x3FC R2 = 0x3FC
MOV R1, R0,LSR#18 R1 = 0x9 b23-b10 of OID
ORR R2, R2, #3 R2 = 0x3FF
MOV R0, R1,LSL#16 R0 = 0x90000
AND R4, R6, R2 R4 = 0x54 b9-b0 of OID
MOVS R2, R0,LSR#16 R2 = 0x9
BEQ loc 24014 Branches if R2 is 0
LDR R0, [R3,#0x2BC] R0 = 0x42001000 Uses the global vari-

able in R3 as base, in a
memory load from off-
set 0x2BC

LDR R1, [R0,R2,LSL#2] R1 = 0x4A9C68 Uses the value found in
the previous load as a
base in a new memory
load. The offset is b23-
b10 of the OID, shifted
2 positions to the left.
This equals a multipli-
cation by 4.

CMP R1, #0
BEQ loc 24060 If the value found and

placed in R1 is 0, the
procedure failed

LDR R0, [R3,#0x2BC] R0 = 0x42001000 Uses the global vari-
able to load from offset
0x2BC as before

LDR R5, [R3,#0x2B4] R5 = 0x42005000 Uses the global variable
to load a new value
from offset 0x2B4

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 129

LDR R1, [R0,R2,LSL#2] R1 = 0x4A9C68 Loads the same address
as before

ADD R2, R1, R5 R2 = 0x424AEC68
ADDS R3, R2, #0xC R3 = 0x424AEC74
BEQ loc 24060 Branches and returns

failed if R3 is 0
MOV R0, R4,LSL#16 R0 = 0x540000
MOV R1, R0,LSR#16 R1 = 0x54
LDR R3, [R3,R1,LSL#2] R3 = 0x4E1061 Uses the 10 LSBs of the

OID as offset from R3.
TST R3, #1
BEQ loc 24060
MOV R0, R3,LSR#4 R0 = 0x4E106
AND R2, R0,
#0xF000000

R2 = 0

AND R1, R6,
#0xF000000

R1 = 0

CMP R1, R2
BICEQ R0, R3,
#0xF0000003

R0 = 0x4E1060

ADDEQ R1, R0, R5 R1 = 0x424E6060
ADDEQ R0, R1, #0xC R0 = 0x424E606C

Table 4.5: Test 7 - Simulating a file lookup.

The result of the simulation shows the value 0x424E606C being returned
by the subroutine. Surprisingly, this value was exactly the memory ad-
dress of the data held by Dogbark.wav’s metadata object, with address 0x42000000
being the start of the object store. The object identifier had been split into
pieces, where the pieces themselves were used as offsets into memory to
locate the file. We had now found the way in which files are located, which
had been the missing link in our reverse engineering process. But to get
a better impression of what actually happened in the code, we needed to
transform this assembly code from the PSM into a more abstract definition
to include in the PIM.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 130

Transform to PIM

We sketched what we had just experienced, and made the model shown in
figure 4.61. Two values had been loaded from a structure pointed to by the
global variable that was passed as an argument. The offset values into this
structure were 0x2B4 and 0x2BC. Both of these loaded values 0x42001000
and 0x42005000 pointed to a table, which we have called Object table list
and Object table. Bits 10 to 23 were used as index into the table pointed to
by the value found at structure index 0x2BC (Object table list). The value
found there were used as a new offset from the value found at structure in-
dex 0x2B4, to locate the correct Object table where the object address could
be found. From the Object table, bits 0 to 9 were used as index to locate the
actual address of the object.

Figure 4.61: Test 7 - Locating an object.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 131

If we combine this lookup with the connection we have seen previously
between metadata, filedata list, and filedata objects, we get the complete
file lookup shown in figure 4.62.

Figure 4.62: Test 7 - Locating a file.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 132

4.2.7 Defining a Strategy - Third Loop

Now that we had gained a good understanding of both the storage format
of objects and how they were located, we started to get a good overview of
how the object store is built. This made us discover things that we did not
see at earlier stages. As we had found how the object store uses tables to
locate objects, we wanted to test how these tables were affected when ob-
jects were deleted. In addition, when inspecting the memory dumps, we
had seen some memory addresses that kept appearing at the beginning
of unused spaces. Now that we had a better understanding of the object
store, we also wanted to inspect these addresses further. By looking at the
data pointed to by these addresses, we often found the addresses pointing
to new addresses in a way as if it were a linked list.

We decided to inspect these aspects further, and went back to the black
box strategy as before.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 133

4.2.8 Testing

4.2.8.1 Test 8

Create test Now that have located the Object table list and the Object tables
with the help of disassembly we would like to understand how they are
updated when files are moved or deleted. The point of this is to figure
out if there is any way we can extract blobs that have been ”deleted” by
the user. It is very uncommon for such data to be overwritten at once at
deletion. In most storage systems the data is only marked as ready for re-
allocation.

Figure 4.63 contains the eight test.

Figure 4.63: Test 8 - Object table list and Object tables.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 134

Extract info/Adjust PSM

Searching for ”zebra” we find our text message at offset 0x007CFA1C (fig-
ure 4.64). Its id is 0x2A04 and its parent id is 0x2575 (Inbox database).

Figure 4.64: Test 8 - Zebra found.

Doing the same calculations as earlier in the disassembly we get that the
index into the Object table list should be 0x0A and the index into the Ob-
ject table should be 0x204. From the disassembly we know that the ob-
ject store starts at virtual address 0x42000000, the Object table list starts at
0x42001000 and the data in the object store starts at 0x42005000. In our
memory dumps of the object store however, we start counting from 0,
not 0x42000000. Therefore the object page table is located at offset 0x1000
and the data starts at 0x5000. Dumping the Object table list from offset

Figure 4.65: Test 8 - Object table list.

0x1000 in figure 4.65 we see that this gives us the value 0x6B118C at offset
0xA*4(marked with yellow). This is the offset to the Object table for our
blob. We add 0x5000 to get to the start of data and get 0x6B618C. Next we
add 0x204*4, which is the Object table index, and 0xC to skip the header of
the Object table, which gives us 0x6B69A8. This location is where the offset

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 135

Figure 4.66: Test 8 - Object table

of the blob with id 0x2A04 is stored. As we see in figure 4.66, yellow mark-
ings, this is now 0x607CAA1D. The algorithm from the disassembly states
that the next step is to clear the 2 lowest bits and the highest byte of this.
The result is 0x7CAA1C to which we finally add 0x5000 to get 0x7CFA1C,
which is the offset to our blob.

Now what happens when we delete the message from ”Inbox”? We know
from using the phone that the message is actually just moved to another
folder called ”Deleted Items”. How is this reflected in the object store?
Let’s look at the memory dump taken after the text message was moved
to ”Deleted Items”. A search for ”zebra” shows us that text message now
is located at offset 0x007CF9D0 instead. It has been moved and has par-
tially written over the old version that was stored at offset 0x007CFA1C
(figure 4.64). There is a new id, 0x2A06, and doing the same calculations
as the last paragraph for this new id tells us that the offset to this blob is
stored in the Object table at location 0x6B69B0(4.66, red markings). Clear-
ing the two lowest bits and the highest byte and adding 0x5000 again gives
us the correct offset to our new blob. Notice that location 0x6B69A8, the
slot for our first blob in the Object table, has been cleared (4.66, grey mark-
ings). This means that when a text message is moved from ”Inbox” to
”Deleted Items” the data is copied to a completely new blob and the old
blob is deleted. The reference to the old deleted blob is also erased from
the Object table.

Next we deleted the text message completely from the device. Inspect-
ing the old offset of the text message, 0x007CF9D0 in figure 4.67, we now

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 136

see that the blob has been completely overwritten by new data. The pur-
ple markings in figure 4.66 also shows us that the blob has been erased
from the Object table. Notice also that the id 0x2A04, at the green offset
0x006B69A8, has been reused and a pointer to a new blob has been in-
serted here.

Figure 4.67: Test 8 - Objects completely deleted.

To summarize: when a blob is deleted the data of the blob can be over-
written and the pointer to the blob in the Object table is erased. Sooner or
later the object id is reused and a new pointer is placed in the id’s slot in
the Object table.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 137

4.2.8.2 Test 9

Create test

The memory addresses that seemed to form a linked list were suspected
to be a linked list pointing to all the spaces of unused memory. Such a list
could be used to find the first space of memory large enough to store new
objects. If this was the case, we would have an additional way to locate
areas with possibly deleted data. We wanted this test to find out if our sus-
picion was true by adding and deleting some files. The sizes of the files
were picked to help determine this. We would first add some small files
(svein.txt and gjertrud.txt), and then a fairly large file (msn.gif). After delet-
ing msn.gif and svein.txt, we first added a file larger then all others (baa.jpg),
and finally one more small file (diskoteket.txt). We expected diskoteket.txt to
be placed at the position of the deleted file msn.gif.

Figure 4.68 shows the ninth test. We needed to make the memory dumps
from filesys.exe’s view, in order to use the addresses as found.

Figure 4.68: Test 9 - Pointers to deleted space.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 138

Extract info/Adjust PSM

We started inspecting test9 2, where only svein.txt has been added. We
located the objects related to svein.txt, shown in figure 4.69. The last object

Figure 4.69: Test 9 - The objects of svein.txt.

related to svein.txt, the metadata object, is highlighted in green. Assum-
ing that no other objects has been added without our knowledge by the
operating system, the free memory space should be starting right after the
metadata object of svein.txt. We can see that the data following svein.txt
are clearly not using any blob pattern we have seen so far, so we assume
this could in fact be the beginning of the free space. We also notice that
parts of the data related to svein.txt are found again right below the correct
data objects. From this we made the assumption that the objects related to
svein.txt may have been moved, and the remnants below are showing the
previous position of svein.txt.

To inspect further, we looked at the file test9 3, where gjertrud.txt has been

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 139

added. This time, we found a pointer following gjertrud.txt’s metadata

Figure 4.70: Test 9 - Locating gjertrud.txt.

object. The value of the pointer was 0x427CB980 (marked in red on fig-
ure 4.70). As before, the memory is dumped from the start of the object
store(0x42000000), which means that this address is seen as 0x7CB980 on
figure 4.70. If we take a look at what is found at this address, we see the
value 0x00000000 (marked in yellow). But right next to it, we find the ad-
dress 0x427CBAD0. As we can see, it points back to the first pointer. This
appears to be a linked list as expected, where two pointers are used to
point to the next and previous node. If this is the case, we have two sepa-
rate spaces of free memory on figure 4.70. In addition, these spaces need
to be the only spaces of free memory, since one space has a value in the
next field but not the previous, and the other space has the opposite. If this
is in fact a linked list, these are the only two nodes.

So how do we determine if this is the case? If we take a look at the
data found at this second space(marked yellow in figure 4.71), we see that

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 140

Figure 4.71: Test 9 - A temporary object.

it is found right beneath svein.txt’s metadata object. This is the area we
assumed to be the start of the free space in our first inspection of test9 2.
Since the three objects related to gjertrud.txt has not been placed starting
from this position, some other object must have been placed there if our
assumptions are correct. This object would have to have been created by
the operating system or some other process. Looking at the data following
the metadata of svein.txt, the size field of this object would then be 0x51.
As we have seen earlier, an odd value for the size appears to indicate that
the object is deleted, which in this case needs to be true if our theory about
the pointers is correct.

If we look at the id field of the deleted object, which is still present, the id
of this object would have been 0x000029DF. This is in fact the id following
those used by svein.txt. From this we can see that some object has been cre-
ated between the insertion of svein.txt and gjertrud.txt. gjertrud.txt’s meta-
data object also uses this id, so the object must also have been deleted

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 141

before the insertion of gjertrud.txt.

If we look at what appears to be the name of the file, its file extension
shows that it was a temporary file (.tmp). This backs up the idea that the
object has been deleted, and that the space is now free to be reused. We
find that the size of this free space is 0x50, and if we ignore the 1 in the size
field, which we assume has to do with the object being deleted, this equals
the value found there.

Having seen that the size was found in the first bytes of the free space,
we took another look at the first space following gjertrud.txt. The value
found to occupy the first two dwords there is 0x034D7531. Ignoring the
1 in the LSB as before, we find this value to equal 55407920 in decimal.
This seemed like a reasonable value for the free space on the phone, as it
translates to approximately 52.8 MB. When we inspected the phones set-
tings, we actually found this to be exactly the amount of memory said to
be free. This was a strong indicator telling us that our theory about these
pointers was correct. We took another look at test9 2 that was inspected
previously (figure 4.69), and found that in the positions where the pointers
should be located (0x7CB980 and 0x7CB984), we saw the value 0x00000000
at both positions. This seems reasonable, meaning that there is only one
large space of free memory, hence no other spaces to point to.

The next file inserted in the test was msn.gif. The results from this in-
sertion could be inspected in test9 4. We located svein.txt (figure 4.72),
and found that some changes had been made. The object store appeared
to have been reorganized, and the deleted temporary file was no longer
present. When we located msn.gif (metadata object shown in green on fig-
ure 4.73), we found that both pointers were now indeed given the value
0x00000000, indicating that a reorganization had been performed. This re-
organization makes sense, in order to prevent the object store from being
too fragmented.

The rest of the test files showed the same behavior we had seen so far. The
linked list kept pointing to the free spaces, the size field was updated, and
from time to time the object store was reorganized. In fact, we never saw
more than two spaces of free memory before a new reorganization was
performed. Because of this reorganization, diskoteket.txt had been placed
last in the main free space area just as the other files.

The test had confirmed our suspicion about the pointers.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 142

Figure 4.72: Test 9 - Object store reorganized

Figure 4.73: Test 9 - Locating msn.gif.

Transform to PIM

Figure 4.74 summarizes what we found. At the initial state shown in a), the
object store has been organized in order to have all unused memory gath-
ered into one big space. When an object is deleted, a linked list connects
the spaces of free memory as shown in b). Whenever the object store is
reorganized, the free space of the object store goes back to the state shown

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 143

in a).

Figure 4.74: Test 9 - Linked list pointing to free space.

4.2.9 Evaluate PIM/CIM Consistency

During this loops evaluation of the consistency between our PIM and CIM,
we found our reverse engineering to be adequate. We had covered both of
the two major parts of the CIM: the object allocation table and the objects
storage format. The success criteria appeared to be met, so we decided to
enter the validation phase in order to test if this was in fact true.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 144

4.3 Validation Phase

According to our methodology, the validation should be performed by uti-
lizing what is called reverse reverse engineering. This meant that we had to
enhance our validation tool (BlobExtractor) in order to test all the success
criteria described in section 4.1.

The second success criterion is: ”Understand the format used to store ob-
ject, in order to extract data and attributes.” As we have performed our
tests, we have steadily been building a list of structure definitions on the
various blobs found in the object store. The last version of these structures
was presented in listing 4.10. In order to test this criterion we implemented
these structures and the logic to extract them from a given location offset
of the memory dump in our validation tool. With this we could, if we had
the starting location of a blob, extract it directly from the memory dump
without utilizing the Windows CE API at all. For most of the blob types
we could also interpret the data in the blobs and differentiate between data
and metadata.

The problem now was to find the starting location of the blobs. Our first
approach was to scan through the file sequentially byte by byte. We com-
bined this with several heuristics to detect the start of a new blob. The
heuristics were:

1. Size check. The size of the blob should be divisible by 2 and over 0.

2. ID check. The id of the blob should be over 0 and under 30000. (This
was the largest value we had seen as an id and then some.)

3. Type check. The type of the blob should not be 0 and should only
use the highest nibble of the 2 byte wide type field.

4. Flags check. The flag field should be set to 0.

As we saw in test 6 this worked pretty well, but there were several down-
sides with this approach. First of all, it is time consuming. Scanning
through the memory dumps and applying the heuristics for every byte
took up to 30 minutes, which is a lot considering that they are only 64 MB
in size. Second, and the worst problem, is that we cannot guarantee that
we have found all the blobs because our heuristics may be wrong. This
leads us to success criterion number 3.

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 145

According to this criterion we had to ”Make sure that we have covered
the entire object store”. In order to do this we needed a much better ap-
proach to finding blobs than simple heuristics. Thanks to the disassembly
in test 7 and further testing in test 8 we found the coveted lookup table
that maps between object ids and offsets to actual blobs in the object store.
Combining the fact that every object in the object store must have an id
and the fact that we have the table that maps all ids to blobs, we now had
a way to make sure we knew where all blobs in the object store was lo-
cated. We implemented code to extract the lookup table from the memory
dumps and used this table to find all the blobs which could then be ex-
tracted.

Now that we know where all the blobs in the object store are, we also
know where they are not. We use this knowledge to figure out where
all the possible locations for deleted data. They are basically any place
there is data which is not connected to a blob that can be found through
the lookup table. This fulfills the first criterion: ”Be able to distinguish
between deleted and non-deleted data.” In our validation tool we have
implemented code that recognizes these locations. In addition we have
also implemented code that utilizes the other way to locate deleted data.
This method is mentioned in test 9. It basically entails following a double
linked list of freed memory (which can contain deleted data) that the ob-
ject store maintains.

By enhancing our validation tool to use all the information in the PIM we
have successfully used reverse reverse engineering to validate that our model
has produced enough information to be able to say that all the specific suc-
cess criteria for our object store analysis has been fulfilled. To summarize:

1. Be able to distinguish between deleted and non-deleted data. This
came as a result of fulfilling criterion 2 and 3. We have two ways of
fulfilling this criterion. 1) All data that is not pointed to by the object
store is possibly deleted. We know everything the object store points
to and thus can deduct what it doesn’t point to. 2) Follow the freed
memory double linked list.

2. Understand the format used to store objects, in order to extract data
and attributes. The black box tests enabled us to extract this infor-
mation.

3. Make sure that we have covered the entire object store. We found
the lookup table used by the object store by disassembling parts of

CHAPTER 4. REVERSE ENGINEERING THE OBJECT STORE 146

the operating system. This table contains pointer to all valid blobs
and thus all valid data in the object store.

Chapter 5

Discussion

147

CHAPTER 5. DISCUSSION 148

This project has had two parallel objectives. On one hand we wanted to
analyze Windows Mobile’s object store in order to improve the tools used
for forensic analysis of evidence from devices running Windows Mobile.
At the same time we were interested in the establishment of a general
methodology for forensic analysis of an unknown embedded device. The
following discussion will consider each of these objectives in separate sec-
tions.

5.1 The Object Store

During the final validation phase of the methodology (4.3) we concluded
that all the success criteria for the analysis had been met. By extensive ex-
perimentation we had gained enough knowledge about the object store to
extract the information we wanted. We had found a way to locate objects
from the identifiers. As we also knew the value space of the identifiers, we
could either loop through all identifier values, or we could more elegantly
loop through the tables containing identifiers of all active objects. This
made us capable of locating all active objects. By subtracting the mem-
ory occupied by these objects from the rest of the object store memory, we
were left with only the parts of memory possibly containing deleted infor-
mation. In addition, we had found a second way to find the deleted parts
of memory. We located a linked list structure pointing to all areas of free
memory, which equals the areas where deleted data can be found. This
gave us two different methods to verify the results.

Of the objects themselves, we had almost complete knowledge of the at-
tributes, and we were able to extract the data from the objects. The few
fields missing were left because they did not appear to contain valuable
information for our purpose, and hence were not worth spending time on.
This is the kind of choice any reverse-engineer will have to make, unless
interested in complete knowledge of the entire device.

The most important classes of BlobExtractor is listed in appendix B. These
are the classes that do all the heavy work involved with parsing a mem-
ory dump and extracting the objects and free space areas from the objects
store. The complete program is much larger and also includes code for vi-
sualizing the content of the object store in different ways. Its source code
is included in the zip file accompanying this thesis.

Appendix B also include the extensions made to the Judas Forensic Tool

CHAPTER 5. DISCUSSION 149

during our analysis. The complete tool is included in the zip file.

5.1.1 Future Work

Our work has given future tools the ability to extract a lot more accu-
rate information about Windows Mobile phones content, and even accu-
rate information concerning remaining parts of deleted information on the
phones. [6] discussed existing tools, and showed that they all lacked the
ability to extract deleted information from such phones. With the results
from this project, a tool can now be made that could easily outperform the
existing tools, giving a detailed view of all remnants of deleted data on the
phone. This could have an important forensic value.

5.2 The Methodology

Our decision to sketch a methodology before moving on to the actual anal-
ysis of the device was problematic, since we were not experienced with
reverse engineering. We still found this to be the best solution in order to
get a good basis for the discussion of a general methodology that was ap-
plicable to forensic analysis of other unknown embedded devices. Instead
of just attacking the object store immediately and at the end summarize
our experiences from this process; we believe that our approach made us
more qualified to discuss methodology.

It was natural to base the methodology on previous work by other research
teams. This would make use of years of research, and by using concepts
familiar to the reverse-engineer, the methodology framework were more
likely to be well understood and accepted.

The methodology sketched in section 3.3.2 guided us through our reverse
engineering process, and we found it to be a good support throughout.
The methodology itself will never solve the problem. Reverse engineering
such a system is hard, and we often found ourselves stuck in situations
where solutions seemed far away. But in such situations it is a good sup-
port to have a well-defined methodology to lean on. The methodology
helped us maximize our focus on the problem areas, instead of just fum-
bling around in the dark.

Of particular value was our immediate focus on building a knowledge

CHAPTER 5. DISCUSSION 150

base, continuously updated with all the information we found to be rel-
evant for our analysis. There were many situations during the analysis
where progress was made because we somehow recognized data we had
documented in the knowledge base, and thereby made connections to de-
fine new knowledge. Building such a knowledge base should have a high
priority in any reverse engineering process.

The methodology aimed at being both general enough to be applicable
with other devices, and at the same time be specific enough to be useful
in the process. We solved this by separating the specific choice of strategy
from the more general aspects of the process. The strategies are chosen
dynamically to adapt to the current situation. Over time, experience and
learning from other projects will help the reverse engineer choose accurate
strategies.

Model-Driven Reverse Engineering was chosen as basis for the general
procedure. This supported the idea of documenting all information found
in a structured way, by using models to represent information. The mod-
els represented different abstraction levels, which we believe served as a
good way to both drive the process and to validate the adequacy of the re-
sults. As defining a standard for the representation was outside the scope
of this project, and a big task in itself, we did not make any attempt at
this. This meant that we had to choose the representation we found to be
the most suitable on the fly. Though this was inevitable, it meant that we
could not test the effects of using a standard modeling language.

By separating information on different abstraction levels, the top-level
models representing the CIM can be re-used in similar projects. This may
be a good help for a reverse-engineer, who can search previous projects in
order to find top-level models for similar projects that could either be used
directly, or slightly modified. This way, experience from previous projects
are used directly in the new project.

As we were two reverse-engineers working together on this project, we
also got a glimpse of how the methodology can be used to improve co-
operation. The models were used as basis for our discussions throughout
the process, and we believe they played an important role in order to pre-
vent misunderstandings and to make sure we both dragged in the same
direction.

With a defined methodology you get another possible benefit. Courses

CHAPTER 5. DISCUSSION 151

and training material could be made, aimed at improving the use of the
methodology. This could help improve both quality and efficiency.

5.2.1 Future Work

Whether or not the methodology is a good sketch for a general approach
is hard to determine from a single case study. Though our experiences
support the methodology, additional cases should be targeted with the
methodology in order to establish its relevance.

We have discussed the importance of the knowledge base, and mentioned
how the representation of information is of great importance. In order to
get advanced tools more involved in the process, this should be targeted
in future work. In [14], Rugaber discuss representation when reverse engi-
neering programs and specifies several requirements. We believe that his
thoughts on this serves as a good foundation for future work on this task:

• Requirements Related to the Information Content of the Repre-
sentation: The representation must be able to contain a variety of
types of information. These include informal rationale and annota-
tions, program segments, pointers to other documentation, and ap-
plication descriptions. Most importantly, it must be able to represent
the organization of the program in terms of detected abstractions. In
fact, the reverse engineer constructs a complex information structure
that describes the organization of the program and the interrelation-
ships of its pieces. There must be a place in the representation to
hold observations made by the reverse engineer during his process.

• Requirements Related to the Relationships Among the Data Being
Represented: The representation is constructed incrementally by the
reverse engineer. It must allow an observation concerning a section
of code to be associated both with related sections of code and with
the overall functional description being constructed. This includes
both hierarchical connections among abstractions and heterarchical
(cross-reference) associations. Finally, the representation should sup-
port instances where a section of code contains several components
interleaved together.

• Requirements Related to How the Representation is Constructed:
The representation needs to be easy to construct incrementally, both
computationally and from a user interface point of view. Addition-
ally, it should be language independent in the sense that it can be

CHAPTER 5. DISCUSSION 152

used during the reverse engineering of programs written in a vari-
ety of languages and programming paradigms.

• Requirements Related to How the Representation is Used: The
representation must be formal enough to support automatic manip-
ulation. For example, after a program has been reverse engineered
into the representation, it should be possible to apply tools to adapt
segments for reuse. This process is called transformational program-
ming, and a variety of such transformations exist.

• Requirements Related to How the Representation is Accessed and
Viewed: A predominant use of the representation will be to facili-
tate program browsing. That is, a maintenance programmer desir-
ing to fix a bug or make an enhancement needs to be able to pursue
the information structure either to answer specific questions (which
functions call a given function), obtain an architectural overview (in
graphical form), or locate a specific section of the code (where are all
of the statements that could affect the final value of a given output
variable). The representation must, at the same time, be indepen-
dent of any particular design method or notation and be capable of
generating information in any of a variety of formats.

Chapter 6

Conclusion

153

CHAPTER 6. CONCLUSION 154

The steadily increasing number of new digital device models is putting a
strain on law enforcement agencies’ ability to acquire evidence in crimi-
nal cases. The devices are often highly advanced and poorly documented
which makes it very time consuming to analyze them completely. One of
the more dire consequences of this is that there might be under develop-
ment a new kind of digital free haven for criminals. They can utilize the
new abilities of the devices to optimize their nefarious purposes safe in the
knowledge that police will not be able to catch them doing it.

The solution to this problem lays in making sure the analysis of the new
devices can be done more efficiently and well-structured than before. In
our thesis we have tried to do just this. First we constructed a methodol-
ogy for doing such analysis. This was based on prior research and assump-
tions we made of the context of our task. Then we tested our methodology
on a specific analysis of a Qtek Windows Mobile phone. This device was
chosen because the direct results of this analysis can be applied to any de-
vice utilizing this operating system, which is predicted by Gartner to be
around 20 million in 2008. Our analysis utilized with great effect the well
known techniques of black box testing and disassembly. One of the most
important lessons learned has been that understanding every single detail
of a unknown device is extremely time consuming and in most cases com-
pletely unnecessary. One should take great care in defining, in advance,
when one knows enough to get the job done. This is essential in figur-
ing out when to decide enough is enough. Our resulting developed tool,
BlobExtractor, can be used to extract most data from any device running
Windows Mobile or Windows CE. Some details remain, but the time and
cost involved in understanding them completely was found to be too high.

While the detailed analysis of Windows Mobile is interesting, the other
important part of our task was to evaluate whether our methodology and
model was general enough or could be generalized to work with other
types of digital devices. Based on our own success in utilizing it, we be-
lieve that this method could very well be suitable for others. Its iterative
approach of analyzing low level details and abstracting them to higher lev-
els of documentation to further understanding lends itself to widespread
use. The exact techniques used to do the low level analysis are device de-
pendant and not specified in the methodology. It is also important to note
that the methodology takes into account the importance of documenting
all knowledge firmly in a knowledge base, to enable better cooperation
between several reverse engineers. In the future, reverse engineering task
will be so complex that one cannot expect single individuals to perform

CHAPTER 6. CONCLUSION 155

them well in short amounts of time.

We hope that our thesis is a contribution in keeping the tidal wave of new
digital devices from swamping the ability of law enforcement agencies to
do their jobs.

Bibliography

156

BIBLIOGRAPHY 157

[1] Gartner: Forecast: Mobile Terminals, Worldwide, 2000-2009, 2005

[2] Microsoft Corp.: Microsoft Shared Source Initiative,
http://www.microsoft.com/resources/sharedsource/ 2006

[3] Noblett, Pollitt, Presley: Recovering and Examining Computer Foren-
sic Evidence, Forensic Science Communications, Volume 2, Number
4, October 2000.

[4] Chikofsky, Cross: Reverse Engineering and Design Recovery: A Taxon-
omy, IEEE Software, pp 13-17, IEEE Computer Society, January 1990.

[5] Biggerstaff : Design Recovery for Maintenance and Reuse, Computer, pp
36-49, July 1989

[6] Eide: Mobile Forensics, http://www.idi.ntnu.no/ jar-
lee/m forensics.pdf, 2005

[7] Hengeveld: Itsutil, http://www.xs4all.nl/ itsme/projects/xda/-
tools.html, 2005

[8] Stirewalt: Model-Driven Reverse Engineering, Georgia Institute of Tech-
nology, 2004

[9] Miller, Mukerji: MDA Guide Version 1.0.1, Object Management Group,
2003

[10] Fowler, Scott: UML Destilled. Second Edition. A Brief User Guide to the
Standard Object Modeling Language., Addison Wesley Longman Inc.,
1999

[11] Raymond: Reference Model of Open Distributed Processing (RM-ODP):
Introduction, University of Queensland

[12] Kamper, Rugaber: A Reverse Engineering Methodology For Data Process-
ing Applications, Georgia Institute of Technology, 1990

[13] Jackson: A System Development Method,
http://www.ferg.org/papers/jackson–
a system development method.pdf, 1981

[14] Rugaber: Program Comprehension For Reverse Engineering, Georgia In-
stitute of Technology, 1992

[15] Qtek: wwww.qtek.nu

BIBLIOGRAPHY 158

[16] Microsoft Corp.: Microsoft Developers Network,
http://msdn.microsoft.com/

[17] Berkeley Wireless Research Center :ARM instruction Set Quick Refer-
ence, http://bwrc.eecs.berkeley.edu/Research/Pico Radio/Test Bed/
Hardware/Documentation/ARM/ARM Instruction Set.pdf 2005

[18] ARM Ltd.: ARM architecture, http://www.arm.com/miscPDFs/8031.pdf
2005

[19] Wikipedia: ”Black box testing — Wikipedia The Free Encyclopedia”,
http://en.wikipedia.org/w/index.php?title=Black box testing, 2006

[20] Microsoft Corp.: Windows CE 3.0 Features,
http://msdn.microsoft.com/embedded/prevver/ce3/feature/

[21] Grattan, Brain: Windows CE 3.0 Application Programming, Prentice
Hall PTR, 2001

[22] VCOM Company: Sourcer, http://www.partitioncommander.com/company

[23] Cronos/Terminus One: BORG, http://www.caesum.com

[24] Jimnez: BDASM, http://www.bdasm.com/

[25] URSoft: W32Dasm, http://www.ursoftware.com

[26] unknown: PEDasm, http://www.geocities.com/SiliconValley/Lab/
6307/PEDasm.htm

[27] DoggySoft: Diss, http://www.doggysoft.co.uk

[28] IOTA: Disassembler, http://www.iota.demon.co.uk/psion/
disassembler/disassembler.html

[29] Delosoft: ARMDis, http://www.delosoft.com/

[30] DataRescue : DataRescue, http://www.datarescue.com/

[31] Loh: Windows CE Base Team Blog: Inside Windows CE API Calls,
http://blogs.msdn.com/ce base/archive/2006/02/02
/Inside Windows CE API Calls.aspx, 2006

[32] XDA Developers: XDA Developers, http://xda-developers.com, 2006

Appendix A

Qtek S110 basics

159

APPENDIX A. QTEK S110 BASICS 160

Platform Dimension

• PDA form factor integrated
GSM/GPRS, Bluetooth,
and 1.3 mega-pixel camera

• Microsoft Windows Pock-
etPC Phone Second Edition

• 108.2 mm(L) x 58 mm(W) x
18.2 mm(T)

• 150 g with battery pack

Processor/Chipset Memory

• Intel Bulverde 416 MHz • ROM: 64 MB

• RAM: 128 MB SDRAM

LCD Module GSM/GPRS Function

• 2.8” 240 x 320 dots resolu-
tion

• 64K-color TFT Transflective
LCD with white LED back
light

• Sensitive Touch Screen

• Internal antenna

• Tri-Band
(900/1800/1900MHz)

• GPRS Functionality

• Multi-slot standard class 10

• SIM

• 3V operation

• SIM Application Toolkit re-
lease 96

• Over the air programming

APPENDIX A. QTEK S110 BASICS 161

Notification Audio

• Vibration for notification

• Notification by sound, mes-
sage on the display

• Built-in Microphone

• Receiver

• Loud speaker for Hands-
Free supported

Camera Interface

• Colors CMOS 1.3 mega-
pixel camera with dust-
proof cover

• Preview Mirror

• Infrared IrDA SIR

• SDIO/MMC card slot with
door (top)

• 3V SIM card

• 2.5 D stereo audio jack

Table A.1: Qtek S110 specification

Appendix B

Source Code

162

APPENDIX B. SOURCE CODE 163

B.1 BlobExtractor

Listing B.1: BlobExtractor: Blob.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4 using System . Windows . Forms ;
5

6 namespace BlobExt rac tor
7 {
8 publ ic c l a s s Blob : TreeNode , IBlob
9 {

10 # region F i e l d s
11 p r i v a t e long s t a r t O f f s e t ;
12 p r i v a t e long endOffset ;
13 p r i v a t e long analys i s ID ;
14 const long headerSize = 2 + 2 + 4 + 4 ;
15

16

17 p r i v a t e UInt32 blobDataSize ;
18 p r i v a t e UInt16 blobType ;
19 p r i v a t e UInt32 f l a g s ;
20 p r i v a t e UInt32 blobID ;
21 p r i v a t e byte [] data ;
22

23 # endregion
24

25 # region P r o p e r t i e s
26

27 publ ic long AnalysisID
28 {
29 get { return analys i s ID ; }
30 s e t { analys i s ID = value ; }
31 }
32 publ ic long S t a r t O f f s e t
33 {
34 get { return s t a r t O f f s e t ; }
35 s e t { s t a r t O f f s e t = value ; }
36 }
37

APPENDIX B. SOURCE CODE 164

38 publ ic long EndOffset
39 {
40 get { return endOffset ; }
41 s e t { endOffset = value ; }
42 }
43

44 publ ic long HeaderSize
45 {
46 get { return headerSize ; }
47 }
48

49 publ ic long T o t a l S i z e
50 {
51 get { return HeaderSize + blobDataSize ;}
52 }
53

54 publ ic UInt32 BlobDataSize
55 {
56 get { return blobDataSize ; }
57 s e t { blobDataSize = value ; }
58 }
59

60

61 publ ic UInt16 BlobType
62 {
63 get { return blobType ; }
64 s e t { blobType = value ; }
65 }
66

67 publ ic S t r i n g BlobTypeString
68 {
69 get
70 {
71 return BlobFactory . GetBlobTypeString (

blobType) ;
72 }
73 }
74

75 publ ic UInt32 Flags
76 {
77 get { return f l a g s ; }

APPENDIX B. SOURCE CODE 165

78 s e t { f l a g s = value ; }
79 }
80

81

82 publ ic UInt32 BlobID
83 {
84 get { return blobID ; }
85 s e t { blobID = value ; }
86 }
87

88

89 publ ic byte [] Data
90 {
91 get { return data ; }
92 s e t { data = value ; }
93 }
94 # endregion
95

96 # region Null p r o p e r t i e s
97 publ ic v i r t u a l Blob ChildBlob
98 {
99 get

100 {
101 return n u l l ;
102 }
103 }
104

105 publ ic v i r t u a l Blob ParentBlob
106 {
107 get
108 {
109 return n u l l ;
110 }
111 }
112

113 publ ic v i r t u a l Blob NeighbourBlob
114 {
115 get
116 {
117 return n u l l ;
118 }

APPENDIX B. SOURCE CODE 166

119 }
120 # endregion
121

122 # region Constructor
123 publ ic Blob (long s t a r t O f f s e t , long endOffset ,

UInt16 dataSize , UInt16 type , UInt32 f l a g s ,
UInt32 id , byte [] data , long analys i s ID)

124 {
125 t h i s . s t a r t O f f s e t = s t a r t O f f s e t ;
126 t h i s . endOffset = endOffset ;
127 t h i s . blobDataSize = dataS ize ;
128 t h i s . blobType = type ;
129 t h i s . f l a g s = f l a g s ;
130 t h i s . blobID = id ;
131 t h i s . data = data ;
132 t h i s . ana lys i s ID = analys i s ID ;
133 t h i s . Text = ””+blobID ;
134

135 t h i s . ContextMenu = new ContextMenu () ;
136 MenuItem mItemStartOffset = new MenuItem ()

;
137 mItemStartOffset . Tag = t h i s ;
138 mItemStartOffset . Text = ”Copy s t a r t o f f s e t

to c l ipboard ” ;
139 mItemStartOffset . Cl ick += new EventHandler

(m I t em S ta r t Of f se t C l i ck) ;
140 t h i s . ContextMenu . MenuItems .Add(

mItemStartOffset) ;
141

142 }
143 # endregion
144

145 void m It em St a r t Of f se t C l i ck (o b j e c t sender ,
EventArgs e)

146 {
147 Blob b = (sender as MenuItem) . Tag as Blob ;
148 i f (b != n u l l)
149 {
150 Clipboard . SetText (b . S t a r t O f f s e t .

ToStr ing ()) ;
151 }

APPENDIX B. SOURCE CODE 167

152 }
153

154 publ ic overr ide s t r i n g ToStr ing ()
155 {
156 return ”” + blobID ;
157 }
158

159 # region Debug
160

161 publ ic v i r t u a l s t r i n g DebugInfo
162 {
163 get
164 {
165 return S t r i n g . Format (”{0}\ t {1}\ t0x {2 :X

}\ t0x {3 :X}\ t {4}\ t0x {5 :X}\ t0x {6 :X}\
t0x {7 :X}” , analysisID , blobID ,
blobType , f l a g s , blobDataSize ,
Tota lS ize , s t a r t O f f s e t , endOffset) ;

166 }
167 }
168

169 publ ic v i r t u a l s t r i n g Debug
170 {
171 get
172 {
173 return ”debug” ;
174 }
175 }
176 publ ic s t a t i c s t r i n g DebugInfoHeader
177 {
178 get
179 {
180 return ”AnalID\ tID\ tType\ t F l a g s \

tDataSize \ t T o t a l S i z e \ t S t a r t O f s \
tEndOfs” ;

181

182 }
183 }
184

185 # endregion
186 }

APPENDIX B. SOURCE CODE 168

187 }� �
Listing B.2: BlobExtractor: BlobExtractor.cs� �

1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4 using System . IO ;
5 using System . C o l l e c t i o n s ;
6

7 namespace BlobExt rac tor
8 {
9 c l a s s B lobExt rac tor

10 {
11 const long HIGH LOOKUP = 0 x1000 ;
12 const long BASE LOOKUP = 0 x5000 ;
13 const long BLOB HEADER SIZE = 0xC ;
14 const long START OFFSET = 0x0 ;
15

16 s t a t i c long counter = 0 ;
17 StreamWriter sw = new StreamWriter (” c :\\

BlobExtrac tor . log ”) ;
18 Hashtable h = new Hashtable () ;
19 byte [] highLookUpTable = new byte [0 x04000] ;
20 byte [] [] lowTables ;
21 s t r i n g f i lename = ”” ;
22

23 publ ic B lobExt rac tor (s t r i n g fi lename)
24 {
25 t h i s . f i lename = fi lename ;
26 }
27

28 publ ic UInt32 GetBlobPointer (UInt32 blobID)
29 {
30 return GetBlobPointer (GetHighIndexValue (

blobID) , GetLowIndexValue (blobID)) ;
31 }
32

33 publ ic UInt32 GetBlobPointer (UInt32 highIndex ,
UInt32 lowIndex)

34 {

APPENDIX B. SOURCE CODE 169

35 UInt32 indexValue = Bi tConverter . ToUInt32 (
lowTables [highIndex] , (i n t) (lowIndex *
4)) ;

36 indexValue = indexValue & 0x00FFFFFC ;
37 return indexValue ;
38 }
39

40 publ ic long G e t B l o b P o i n t e r F i l e O f f s e t (UInt32
blobID)

41 {
42 return G e t B l o b P o i n t e r F i l e O f f s e t (

GetHighIndexValue (blobID) ,
GetLowIndexValue (blobID)) ;

43 }
44

45 publ ic long G e t B l o b P o i n t e r F i l e O f f s e t (UInt32
highIndex , UInt32 lowIndex)

46 {
47 long seekValue = GetBlobPointer (highIndex ,

lowIndex) + BASE LOOKUP ;
48 return seekValue ;
49 }
50

51 publ ic s t a t i c UInt32 GetHighIndexValue (UInt32
blobID)

52 {
53 return (blobID & 0xFC00) >>10;
54 }
55

56 publ ic s t a t i c UInt32 GetLowIndexValue (UInt32
blobID)

57 {
58 return blobID & 0x3FF ;
59 }
60

61 publ ic void E x t r a c t E x a c t (s t r i n g fi lename)
62 {
63 t h i s . f i lename = fi lename ;
64 Fi leStream f s = F i l e . OpenRead (f i lename) ;
65 BinaryReader br = new BinaryReader (f s) ;
66 long f i l e L e n g t h = f s . Length ;

APPENDIX B. SOURCE CODE 170

67

68 f s . Seek (HIGH LOOKUP, SeekOrigin . Begin) ;
69

70 i n t count = f s . Read (highLookUpTable , 0 , 0
x4000) ;

71 i f (count != 0 x4000 | | highLookUpTable ==
n u l l | | BitConverter . ToUInt32 (
highLookUpTable , 0) == 0xFFFFFFFF)

72 {
73 Console . WriteLine (”couldn ’ t read

hightab le ”) ;
74 return ;
75 }
76

77 i n t numLowTables = 1 ;
78 UInt32 indexValue = 1 ;
79

80 while (t rue) { / / g e t count
81 indexValue = Bi tConverter . ToUInt32 (

highLookUpTable , numLowTables * 4) ;
82 i f (indexValue != 0)
83 numLowTables++;
84

85 e lse
86 break ;
87 }
88

89 lowTables = new byte [numLowTables] [] ;
90 for (i n t i = 0 ; i < numLowTables ; i ++)
91 {
92 indexValue = Bi tConverter . ToUInt32 (

highLookUpTable , i * 4) ;
93

94 long seekHeaderValue = BASE LOOKUP +
indexValue ;

95 f s . Seek (seekHeaderValue , SeekOrigin .
Begin) ;

96 readBlob (br) ;
97

98 long seekDataValue = BASE LOOKUP +
indexValue + + BLOB HEADER SIZE ;

APPENDIX B. SOURCE CODE 171

99 f s . Seek (seekDataValue , SeekOrigin .
Begin) ;

100 byte [] lowTable = new byte [0 x1000] ;
101 f s . Read (lowTable , 0 , 0 x1000) ;
102 lowTables [i] = lowTable ;
103 }
104

105 i n t emptySkips = 0 ;
106 i n t l a r g eS k ip s = 0 ;
107 i n t okNormal = 0 ;
108

109 for (i n t j = 0 ; j < numLowTables ; j ++)
110 {
111 for (i n t i = 0 ; i < 0 x400 ; i ++)
112 {
113 indexValue = Bi tConverter . ToUInt32

(lowTables [j] , i * 4) ;
114 indexValue = indexValue& 0

x00FFFFFC ;
115 i f (indexValue != 0)
116 {
117 long seekValue = indexValue +

BASE LOOKUP ;
118 f s . Seek (seekValue , SeekOrigin .

Begin) ;
119 readBlob (br) ;
120 okNormal++;
121 }
122 e lse i f (indexValue != 0)
123 {
124 / / C o n s o l e . W r i t e L i n e (” s k i p p i n g

l a r g e e n t r y : [” + j + ” ,” +
i + ”] ”) ;

125 l a r g eS k ip s ++;
126 }
127 e lse
128 {
129 / / C o n s o l e . W r i t e L i n e (” s k i p p i n g

empty e n t r y : [” + j + ” ,” +
i + ”] ”) ;

130 emptySkips ++;

APPENDIX B. SOURCE CODE 172

131 }
132 }
133 }
134 Console . WriteLine (” high ” + numLowTables) ;
135 Console . WriteLine (”empty ” + emptySkips) ;
136 Console . WriteLine (” l a r g e ” + la r ge S k i p s) ;
137 Console . WriteLine (”normal ” + okNormal) ;
138 }
139

140 p r i v a t e void handleHighLookup (byte []
highLookupTable , i n t highIndex)

141 {
142 }
143

144 publ ic void E x t r a c t (s t r i n g f i lename)
145 {
146 Fi leStream f s = F i l e . OpenRead (f i lename) ;
147 BinaryReader br = new BinaryReader (f s) ;
148 long f i l e L e n g t h = f s . Length ;
149

150 f s . Seek (START OFFSET , SeekOrigin . Begin) ;
151 Console . WriteLine (” s t a r t i n g e x t r a c t i o n ”) ;
152 sw . WriteLine (Blob . DebugInfoHeader) ;
153

154 Blob blob = n u l l ;
155 Blob l a s t = n u l l ;
156 bool done = f a l s e ;
157 do
158 {
159 i f (f s . P o s i t i o n < f i l e L e n g t h − 14)
160 blob = readBlob (br) ;
161 e lse
162 blob = n u l l ;
163

164 i f (blob != n u l l)
165 {
166 i f (l a s t != n u l l) / / c h e c k f o r

h o l e s
167 {
168 long d i f f = blob . S t a r t O f f s e t −

l a s t . EndOffset ;

APPENDIX B. SOURCE CODE 173

169 i f (d i f f > 0)
170 {
171 S t r i n g hole = s t r i n g .

Format (”Memory hole . \ t
\ t \ t \ t {0}\ t {1 :X}\ t {2 :X}
” , d i f f , l a s t . EndOffset
, blob . S t a r t O f f s e t) ;

172 }
173 }
174 dumpBlob (blob) ;
175 l a s t = blob ;
176 }
177 e lse
178 {
179 f s . Seek (2 , SeekOrigin . Current) ;
180 i f (f s . P o s i t i o n >= f i l e L e n g t h −12

)
181 {
182 done = true ;
183 }
184 }
185

186 } while (! done) ;
187 Console . WriteLine (”done e x t r a c t i n g ”) ;
188 sw . Flush () ;
189 sw . Close () ;
190 }
191

192

193 publ ic UInt32 ExtractFreeBlobEndpoint (UInt32
s t a r t O f f s e t , bool goNext)

194 {
195 Fi leStream f s = F i l e . OpenRead (f i lename) ;
196 BinaryReader br = new BinaryReader (f s) ;
197 UInt32 r e s u l t = getFreeBlobEndpoint (br ,

s t a r t O f f s e t , goNext) ;
198 br . Close () ;
199 return r e s u l t ;
200 }
201

202

APPENDIX B. SOURCE CODE 174

203 p r i v a t e UInt32 getFreeBlobEndpoint (
BinaryReader br , UInt32 o f f s e t , bool goNext
)

204 {
205 br . BaseStream . Seek (o f f s e t , SeekOrigin .

Begin) ;
206

207 UInt32 blobSize = br . ReadUInt32 () ;
208 UInt32 f l a g s = br . ReadUInt32 () ;
209 UInt32 blobID = br . ReadUInt32 () ;
210 UInt32 next = br . ReadUInt32 () ;
211 UInt32 prev = br . ReadUInt32 () ;
212

213 i f (goNext)
214 {
215 i f ((next & 0xFFFFFF) == 0)
216 return o f f s e t ;
217 e lse
218 return getFreeBlobEndpoint (br , (

next − 0xC) & 0xFFFFFF , t rue) ;
219 } e lse
220 {
221 i f ((prev & 0xFFFFFF) == 0)
222 return o f f s e t ;
223 e lse
224 return getFreeBlobEndpoint (br , (

prev − 0xC) & 0xFFFFFF , f a l s e) ;
225 }
226

227 }
228

229 p r i v a t e void dumpBlob (Blob blob)
230 {
231 S t r i n g debugInfo = blob . DebugInfo ;
232 / / C o n s o l e . W r i t e L i n e (d e b u g I n f o) ;
233 sw . WriteLine (debugInfo) ;
234 }
235

236 p r i v a t e Blob readBlob (BinaryReader br)
237 {
238 byte [] data ;

APPENDIX B. SOURCE CODE 175

239 long s t a r t O f f s e t = br . BaseStream . P o s i t i o n ;
240 UInt16 blobSize = br . ReadUInt16 () ;
241 UInt16 blobType = br . ReadUInt16 () ;
242 UInt32 f l a g s = br . ReadUInt32 () ;
243 UInt32 blobID = br . ReadUInt32 () ;
244

245 bool sizeOK = (blobSize > 0) && (blobSize
% 2 == 0) ;

246 bool idOK = (blobID >= 0 && blobID <
30000) ;

247 bool typeOK = ((blobType & 0x0FFF) == 0
x000) && (blobType != 0) ;

248 bool flagsOK = (f l a g s == 0 | | f l a g s == 0
x20000000) ;

249 i f (sizeOK && idOK && typeOK && flagsOK)
250 {
251 data = br . ReadBytes (b lobSize) ;
252 }
253 e lse
254 {
255 / / C o n s o l e . W r i t e L i n e (” Got e r r o r a t : 0x

{0 :X} Rewinding t o : 0x {1 :X}” , br .
BaseStream . P o s i t i o n , s t a r t O f f s e t) ;

256 br . BaseStream . Seek (−12 , SeekOrigin .
Current) ;

257 return n u l l ;
258 }
259

260 / / i f (
261 long analys i s ID = counter ++;
262 Blob blob = BlobFactory . Create (s t a r t O f f s e t

, br . BaseStream . Pos i t ion , blobSize ,
blobType , f l a g s , blobID , data ,
ana lys i s ID) ;

263

264 / * B lob b l o b = new Blob () ;
265 b l o b . S t a r t O f f s e t = s t a r t O f f s e t ;
266 b l o b . E n d O f f s e t = br . BaseStream . P o s i t i o n ;
267 b l o b . B l o b D a t a S i z e = b l o b S i z e ;
268 b l o b . BlobType = b l o b T y p e ;
269 b l o b . F l a g s = f l a g s ;

APPENDIX B. SOURCE CODE 176

270 b l o b . BlobID = blob ID ;
271 b l o b . Data = d a t a ;
272 b l o b . Ana lys i s ID = a n a l y s i s I D ; * /
273

274 return blob ;
275 }
276 }
277 }� �

Listing B.3: BlobExtractor: BlobFactory.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . C o l l e c t i o n s ;
4 using System . Text ;
5 using System . Windows . Forms ;
6 namespace BlobExt rac tor
7 {
8

9

10 c l a s s BlobFactory
11 {
12 publ ic s t a t i c Dict ionary<UInt32 , Blob>

FileDirIDToBlob = new Dict ionary<UInt32 ,
Blob >() ;

13 publ ic s t a t i c Dict ionary<UInt32 , Blob>
DatabaseIDToBlob = new Dict ionary<UInt32 ,
Blob >() ;

14 publ ic s t a t i c Dict ionary<UInt32 , Blob>
OtherIDToBlob = new Dict ionary<UInt32 , Blob
>() ;

15 publ ic s t a t i c Dict ionary<UInt32 , Blob>
AllIDToBlob = new Dict ionary<UInt32 , Blob
>() ; / / e v e r y t h i n g

16 publ ic s t a t i c Dict ionary<long , Blob>
OffsetToFreeBlobs = new Dict ionary<long ,
Blob >() ;

17

18 publ ic s t a t i c Blob LowestOffsetBlob ;
19 publ ic s t a t i c Blob HighestOffsetBlob ;
20

APPENDIX B. SOURCE CODE 177

21 publ ic s t a t i c Blob Create (long s t a r t O f f s e t ,
long endOffset , UInt16 dataSize , UInt16
type , UInt32 f l a g s , UInt32 id , byte [] data ,

long analys i s ID)
22 {
23 Blob b = n u l l ;
24

25 switch (type)
26 {
27 case 0xFFFF :
28 / / b = new F r e e B l o b (s t a r t O f f s e t ,

e n d O f f s e t , d a t a S i z e , type , f l a g s ,
id , data , a n a l y s i s I D) ;

29 break ;
30

31 case 0 x4000 : / / ”DIRECTORYNAME ENTRY”
32 b = new DirectoryBlob (s t a r t O f f s e t ,

endOffset , dataSize , type ,
f l a g s , id , data , ana lys i s ID) ;

33 i f (Fi leDirIDToBlob . ContainsKey (b .
BlobID))

34 Console . WriteLine (”
Fi leDirIDToBlob already has

key ” + b . BlobID) ;
35 FileDirIDToBlob [b . BlobID] = b ;
36 break ;
37

38 case 0 x5000 : / / FILENAME ENTRY
39 b = new F i l e B l o b (s t a r t O f f s e t ,

endOffset , dataSize , type ,
f l a g s , id , data , ana lys i s ID) ;

40 i f (Fi leDirIDToBlob . ContainsKey (b .
BlobID))

41 Console . WriteLine (”
Fi leDirIDToBlob already has

key ” + b . BlobID) ;
42 FileDirIDToBlob [b . BlobID] = b ;
43 break ;
44

45 case 0 x7000 : / / d a t a b a s e s t u f f

APPENDIX B. SOURCE CODE 178

46 b = new DatabaseBlob (s t a r t O f f s e t ,
endOffset , dataSize , type ,
f l a g s , id , data , ana lys i s ID) ;

47 i f (DatabaseIDToBlob . ContainsKey (b
. BlobID))

48 Console . WriteLine (”
DatabaseIDToBlob already
has key ” + b . BlobID) ;

49 DatabaseIDToBlob [b . BlobID] = b ;
50 break ;
51 case 0 x8000 : / / d a t a b a s e s t u f f
52 b = new DatabaseRecordBlob (

s t a r t O f f s e t , endOffset ,
dataSize , type , f l a g s , id , data
, ana lys i s ID) ;

53 i f (DatabaseIDToBlob . ContainsKey (b
. BlobID))

54 Console . WriteLine (”
DatabaseIDToBlob already
has key ” + b . BlobID) ;

55 DatabaseIDToBlob [b . BlobID] = b ;
56 break ;
57 case 0xE000 :
58 b = new DatabaseIndexBlob (

s t a r t O f f s e t , endOffset ,
dataSize , type , f l a g s , id , data
, ana lys i s ID) ;

59 i f (DatabaseIDToBlob . ContainsKey (b
. BlobID))

60 Console . WriteLine (”
DatabaseIDToBlob already
has key ” + b . BlobID) ;

61 DatabaseIDToBlob [b . BlobID] = b ;
62 break ;
63 case 0 x2000 : / / ”SUPERBLOCK” ;
64 b = new Blob (s t a r t O f f s e t ,

endOffset , dataSize , type ,
f l a g s , id +0xFF000000 , data ,
ana lys i s ID) ;

65 i f (OtherIDToBlob . ContainsKey (b .
BlobID))

APPENDIX B. SOURCE CODE 179

66 Console . WriteLine (”
OtherIDToBlob already has
key ” + b . BlobID) ;

67 OtherIDToBlob [b . BlobID] = b ;
68 break ;
69 default :
70 case 0 x3000 : / / ”FILLER−BLOCK” ;
71 case 0 x6000 : / / ”DATA(FILE ONLY?) ” ;
72 case 0xC000 : / / ”REGISTER STRING ” ;
73 case 0xD000 : / / ”REGISTER KEY ” ;
74 b = new Blob (s t a r t O f f s e t ,

endOffset , dataSize , type ,
f l a g s , id , data , ana lys i s ID) ;

75 i f (OtherIDToBlob . ContainsKey (b .
BlobID))

76 Console . WriteLine (”
OtherIDToBlob already has
key ” + b . BlobID) ;

77 OtherIDToBlob [b . BlobID] = b ;
78 break ;
79

80 }
81

82 i f (b != n u l l)
83 {
84 i f (AllIDToBlob . ContainsKey (b . BlobID))
85 Console . WriteLine (” AllIDToBlob

already has key ” + b . BlobID) ;
86 AllIDToBlob [b . BlobID] = b ;
87

88 i f (LowestOffsetBlob == n u l l | | b .
S t a r t O f f s e t < LowestOffsetBlob .
S t a r t O f f s e t)

89 LowestOffsetBlob = b ;
90 i f (HighestOffsetBlob == n u l l | | b .

S t a r t O f f s e t > HighestOffsetBlob .
S t a r t O f f s e t)

91 HighestOffsetBlob = b ;
92 }
93

94 return b ;

APPENDIX B. SOURCE CODE 180

95 }
96

97 publ ic s t a t i c s t r i n g GetBlobTypeString (UInt16
blobType)

98 {
99 switch (blobType)

100 {
101 case 0 x2000 :
102 return ”SUPERBLOCK” ;
103 break ;
104

105 case 0 x3000 :
106 return ”DATALIST” ;
107 break ;
108

109 case 0 x4000 :
110 return ”DIRECTORYNAME” ;
111 break ;
112

113 case 0 x5000 :
114 return ”FILE” ;
115 break ;
116

117 case 0 x6000 :
118 return ”DATA” ;
119 break ;
120

121 case 0 x7000 :
122 return ” Database ” ;
123 break ;
124

125 case 0 x8000 :
126 return ” DatabaseRecord ” ;
127 break ;
128

129 case 0xE000 :
130 return ” DatabaseIndex ” ;
131 break ;
132

133 case 0xC000 :
134 return ”REGISTER STRING” ;

APPENDIX B. SOURCE CODE 181

135 break ;
136

137 case 0xD000 :
138 return ”REGISTER KEY” ;
139 break ;
140

141 }
142 return ”” ;
143 }
144

145 / / / <summary>
146 / / / Get a l l b l o b s wi th g i v e n b l o b as p a r e n t .
147 / / / </summary>
148 / / / <param name=” p a r e n t ”></param>
149 / / / <r e t u r n s ></ r e t u r n s >
150 publ ic s t a t i c Lis t <Blob> GetParent (Blob parent

, Dict ionary<UInt32 , Blob> t a b l e)
151 {
152 Lis t <Blob> nodes = new Lis t <Blob >() ;
153

154 foreach (Blob blob in t a b l e . Values)
155 {
156 i f (blob . ParentBlob == parent)
157 nodes .Add(blob) ;
158 }
159 return nodes ;
160

161 }
162

163 / / / <summary>
164 / / / Get a l l b l o b s wi th g i v e n ID as p a r e n t .
165 / / / </summary>
166 / / / <param name=” b l o b I d ”></param>
167 / / / <r e t u r n s ></ r e t u r n s >
168 publ ic s t a t i c Lis t <Blob> GetParent (UInt32

parentID , Dict ionary<UInt32 , Blob> t a b l e)
169 {
170 Blob parent = t a b l e [parentID] ;
171 return GetParent (parent , t a b l e) ;
172 }
173 }

APPENDIX B. SOURCE CODE 182

174 }� �
Listing B.4: BlobExtractor: DatabaseRecordBlob.cs� �

1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4

5 namespace BlobExt rac tor
6 {
7 c l a s s DatabaseRecordBlob : Blob , IBlob
8 {
9 # region F i e l d s

10 UInt32 parentID ;
11 UInt32 lowOrderTime ;
12 UInt32 highOrderTime ;
13 UInt16 nameLength ;
14 s t r i n g name ;
15 Property [] p r o p e r t i e s ;
16

17 Blob parent = n u l l ;
18

19 # endregion
20 # region P r o p e r t i e s
21 publ ic UInt32 ParentID
22 {
23 get { return parentID ; }
24 s e t { parentID = value ; }
25 }
26 # endregion
27

28 publ ic overr ide Blob ParentBlob
29 {
30 get
31 {
32 i f (parent == n u l l && parentID !=

BlobID && BlobFactory .
DatabaseIDToBlob . ContainsKey (
parentID))

33 parent = BlobFactory .
DatabaseIDToBlob [parentID] ;

APPENDIX B. SOURCE CODE 183

34 return parent ;
35 }
36 }
37

38 # region Constructor
39 publ ic DatabaseRecordBlob (long s t a r t O f f s e t ,

long endOffset , UInt16 dataSize , UInt16
type , UInt32 f l a g s , UInt32 id , byte [] data ,

long analys i s ID)
40 : base (s t a r t O f f s e t , endOffset , dataSize ,

type , f l a g s , id , data , ana lys i s ID)
41 {
42

43

44 parentID = BitConverter . ToUInt32 (data , 0) ;
45 p r o p e r t i e s = PropertyFactory . Create (data ,

t h i s) ;
46

47 / * ne ighbour ID = B i t C o n v e r t e r . ToUInt32 (data
, 16) ;

48 lowOrderTime = B i t C o n v e r t e r . ToUInt32 (data ,
20) ;

49 highOrderTime = B i t C o n v e r t e r . ToUInt32 (data
, 24) ;

50 nameLength = B i t C o n v e r t e r . ToUInt16 (data ,
30) ;

51 name = new s t r i n g (Encoding . Unicode .
GetChars (data , 32 , nameLength * 2)) ; * /

52 s t r i n g general = s t r i n g . Format (” {0 :X} :{1} (
db{2 :X} s i z e {3}) ” , BlobID , name , type ,
T o t a l S i z e) ;

53 t h i s . Text = general + ”\n” +
g et P ro p er t yS t r in g () ;

54 }
55 # endregion
56

57 p r i v a t e s t r i n g ge t Pr o pe r ty S t r i ng ()
58 {
59 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r () ;
60 foreach (Property property in p r o p e r t i e s)
61 {

APPENDIX B. SOURCE CODE 184

62 sb . Append (”−−”) ;
63 sb . Append (property . ToStr ing ()) ;
64 }
65 return sb . ToStr ing () ;
66 }
67

68 publ ic overr ide s t r i n g Debug
69 {
70 get
71 {
72 return ”db” + BlobID + ” : ” + name + ”

parent : ” + parentID ;
73 }
74 }
75

76 }
77 }� �

Listing B.5: BlobExtractor: FileBlob.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4

5 namespace BlobExt rac tor
6 {
7 c l a s s F i l e B l o b : Blob , IBlob
8 {
9 # region F i e l d s

10 UInt32 dataLis t ID ;
11 UInt32 direc toryID ;
12 UInt32 neighbourID ;
13 UInt32 lowOrderTime ;
14 UInt32 highOrderTime ;
15 UInt16 nameLength ;
16 s t r i n g name ;
17 Blob d a t a L i s t ;
18 Blob d i r e c t o r y ;
19 Blob neighbour ;
20 # endregion
21

APPENDIX B. SOURCE CODE 185

22 # region P r o p e r t i e s
23 publ ic UInt32 DataListID
24 {
25 get { return dataLis t ID ; }
26 s e t { dataLis t ID = value ; }
27 }
28

29

30 publ ic UInt32 DirectoryID
31 {
32 get { return direc toryID ; }
33 s e t { direc toryID = value ; }
34 }
35

36

37 publ ic UInt32 NeighbourID
38 {
39 get { return neighbourID ; }
40 s e t { neighbourID = value ; }
41 }
42

43

44 publ ic UInt16 NameLength
45 {
46 get { return nameLength ; }
47 s e t { nameLength = value ; }
48 }
49

50

51 publ ic s t r i n g Name
52 {
53 get { return name ; }
54 s e t { name = value ; }
55 }
56

57

58 publ ic overr ide Blob ChildBlob / / d a t a l i s t
59 {
60 get
61 {

APPENDIX B. SOURCE CODE 186

62 i f (d a t a L i s t == n u l l && BlobFactory .
Fi leDirIDToBlob . ContainsKey (
dataLis t ID))

63 d a t a L i s t = BlobFactory .
Fi leDirIDToBlob [dataLis t ID] ;

64 return d a t a L i s t ;
65 }
66 }
67

68 publ ic overr ide Blob ParentBlob
69 {
70 get
71 {
72 i f (d i r e c t o r y == n u l l && direc toryID

!= BlobID && BlobFactory .
Fi leDirIDToBlob . ContainsKey (
direc toryID))

73 d i r e c t o r y = BlobFactory .
Fi leDirIDToBlob [di rec toryID] ;

74 return d i r e c t o r y ;
75 }
76 }
77

78 publ ic overr ide Blob NeighbourBlob
79 {
80 get
81 {
82 i f (neighbour == n u l l && BlobFactory .

Fi leDirIDToBlob . ContainsKey (
neighbourID))

83 neighbour = BlobFactory .
Fi leDirIDToBlob [neighbourID] ;

84 return neighbour ;
85 }
86 }
87 # endregion
88

89 # region Constructor
90 publ ic F i l e B l o b (long s t a r t O f f s e t , long

endOffset , UInt16 dataSize , UInt16 type ,
UInt32 f l a g s , UInt32 id , byte [] data , long

APPENDIX B. SOURCE CODE 187

analys i s ID)
91 : base (s t a r t O f f s e t , endOffset , dataSize ,

type , f l a g s , id , data , ana lys i s ID)
92 {
93 dataLis t ID = BitConverter . ToUInt32 (data ,

0) ;
94 direc toryID = BitConverter . ToUInt32 (data ,

12) ;
95 neighbourID = BitConverter . ToUInt32 (data ,

16) ;
96 lowOrderTime = BitConverter . ToUInt32 (data ,

20) ;
97 highOrderTime = BitConverter . ToUInt32 (data

, 24) ;
98 nameLength = Bi tConverter . ToUInt16 (data ,

30) ;
99

100

101 name = new s t r i n g (Encoding . Unicode .
GetChars (data , 32 , nameLength * 2)) ;

102 t h i s . Text = BlobID + ” : ” + name + ” (f) ” ;
103 }
104 # endregion
105

106 publ ic overr ide s t r i n g Debug
107 {
108 get
109 {
110 return ” f i l e ” + BlobID + ” : ” + name +”

parent : ” + direc toryID ;
111 }
112 }
113 }
114 }� �

Listing B.6: BlobExtractor: FreeBlob.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4

APPENDIX B. SOURCE CODE 188

5 namespace BlobExt rac tor
6 {
7 c l a s s FreeBlob : Blob , IBlob
8 {
9 const i n t CeDB MAXDBASENAMELEN = 3 2 ;

10

11 # region F i e l d s
12 UInt32 n e x t O f f s e t ;
13 UInt32 prevOffse t ;
14 Blob next = n u l l ;
15 Blob prev = n u l l ;
16

17 # endregion
18 # region P r o p e r t i e s
19

20 publ ic UInt32 NextOffset
21 {
22 get { return n e x t O f f s e t ; }
23 s e t { n e x t O f f s e t = value ; }
24 }
25

26 publ ic UInt32 PreviousOffse t
27 {
28 get { return prevOffse t ; }
29 s e t { prevOffse t = value ; }
30 }
31

32

33 # endregion
34

35 publ ic overr ide Blob NextBlob
36 {
37 get
38 {
39 i f (next == n u l l && n e x t O f f s e t !=

S t a r t O f f s e t && BlobFactory .
OffsetToFreeBlobs . ContainsKey (
n e x t O f f s e t))

40 next = BlobFactory .
OffsetToFreeBlobs [n e x t O f f s e t] ;

41 return next ;

APPENDIX B. SOURCE CODE 189

42 }
43 }
44

45 publ ic overr ide Blob NextBlobsy
46 {
47 get
48 {
49 i f (next == n u l l && n e x t O f f s e t !=

S t a r t O f f s e t && BlobFactory .
OffsetToFreeBlobs . ContainsKey (
n e x t O f f s e t))

50 next = BlobFactory .
OffsetToFreeBlobs [n e x t O f f s e t] ;

51 return next ;
52 }
53 }
54

55 # region Constructor
56 publ ic FreeBlob (long s t a r t O f f s e t , long

endOffset , UInt16 dataSize , UInt16 type ,
UInt32 f l a g s , UInt32 id , byte [] data , long
analys i s ID)

57 : base (s t a r t O f f s e t , endOffset , dataSize ,
type , f l a g s , id , data , ana lys i s ID)

58 {
59 parentID = BitConverter . ToUInt32 (data , 0) ;
60 char [] nameChars = Encoding . Unicode .

GetChars (data , 8 , CeDB MAXDBASENAMELEN

* 2) ;
61 name = new s t r i n g (nameChars) ;
62 name = name . Substr ing (0 , name . IndexOf (’ \0 ’

)) ;
63

64

65 t h i s . Text = s t r i n g . Format (” {0 :X} :{1} (db{2 :
X} , s i z e {3}) ” , BlobID , name , type ,
T o t a l S i z e) ;

66 }
67 # endregion
68

69 publ ic overr ide s t r i n g Debug

APPENDIX B. SOURCE CODE 190

70 {
71 get
72 {
73 return ”db” + BlobID + ” : ” + name + ”

parent : ” + parentID ;
74 }
75 }
76 }� �

Listing B.7: BlobExtractor: Property.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4

5 namespace BlobExt rac tor
6 {
7 publ ic enum PropertyTypeEnum : ushort
8 {
9 I2 = 0x02 ,

10 UI2 = 0x12 ,
11 I4 = 0x03 ,
12 UI4 = 0x13 ,
13 TIME = 0x40 ,
14 STRING = 0xF1 ,
15 BIN = 0x41 ,
16 BOOL = 0x0B ,
17 R8 = 0x05 ,
18 ERROR = 0xFF ,
19 UNKNOWN = 0xFE ,
20 }
21

22 c l a s s Property
23 {
24 # region F i e l d s
25 PropertyTypeEnum type ;
26 o b j e c t value ;
27 i n t id ;
28

29 # endregion
30

APPENDIX B. SOURCE CODE 191

31 # region P r o p e r t i e s
32 publ ic PropertyTypeEnum PropertyType
33 {
34 get { return type ; }
35 s e t { type = value ; }
36 }
37 publ ic o b j e c t PropertyValue
38 {
39 get { return t h i s . value ; }
40 s e t { t h i s . value = value ; }
41 }
42

43 publ ic i n t ID
44 {
45 get { return t h i s . id ; }
46 s e t { t h i s . id = value ; }
47 }
48 # endregion
49

50 # region Constructor
51

52

53 publ ic Property (PropertyTypeEnum type , i n t id ,
o b j e c t value)

54 {
55 t h i s . type = type ;
56 t h i s . id = id ;
57 t h i s . value = value ;
58 }
59 # endregion
60

61 # region Overrides
62 publ ic overr ide s t r i n g ToStr ing ()
63 {
64 s t r i n g s = ” (” + id + ” : ” + type . ToStr ing

() ;
65 i f (value != n u l l)
66 s += ” : ” + value . ToStr ing () ;
67 s += ”) ” ;
68 return s ;
69 }

APPENDIX B. SOURCE CODE 192

70 # endregion
71 }
72 }� �

Listing B.8: BlobExtractor: PropertyFactory.cs� �
1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Text ;
4

5 namespace BlobExt rac tor
6 {
7 c l a s s PropertyFactory
8 {
9 / / / <summary>

10 / / / C r e a t e p r o p e r t i e s from b l o b d a t a .
11 / / / </summary>
12 / / / <param name=” d a t a ”></param>
13 / / / <r e t u r n s ></ r e t u r n s >
14 publ ic s t a t i c Property [] Create (byte [] data ,

Blob blob)
15 {
16 i n t aaa ;
17 i f ((blob . BlobID == 0 x2a36) | | (blob .

BlobID == 0 x362a))
18 aaa = 0 ;
19

20 i n t i n t S i z e = 4 ;
21 i n t index = 8 ;
22 UInt16 headerBytes = Bi tConverter . ToUInt16

(data , index) ;
23 index += 2 ;
24 i n t proper t i esDataS ize = Bi tConverter .

ToUInt16 (data , index) ;
25 index += 2 ;
26 i n t numProperties = (data . Length −

proper t i esDataS ize − 12) / 4 ;
27 Property [] p r o p e r t i e s = new Property [

numProperties] ;
28 for (i n t i = 0 ; i < numProperties ; i ++)
29 {

APPENDIX B. SOURCE CODE 193

30 PropertyTypeEnum type = (
PropertyTypeEnum) data [index] ;

31 index += 2 ;
32 i n t id = Bi tConverter . ToInt16 (data ,

index) ;
33 index += 2 ;
34 p r o p e r t i e s [i] = new Property (type , id ,

n u l l) ;
35 }
36

37 bool unknown = f a l s e ;
38 i f ((headerBytes & 0 x4000) == 0 x4000)
39 {
40 index += 2 ; / / s k i p 2 b y t e s i f t h i s b i t

i s s e t .
41 i n t S i z e = 2 ;
42 }
43 e lse
44 {
45 i n t S i z e = 4 ;
46 }
47

48 for (i n t i = 0 ; i < numProperties ; i ++)
49 {
50 Property property = p r o p e r t i e s [i] ;
51 i f (unknown) {
52 property . PropertyType =

PropertyTypeEnum .ERROR;
53 continue ;
54 }
55

56 t r y
57 {
58 switch (property . PropertyType)
59 {
60 case PropertyTypeEnum . BIN :
61 index += 1 6 ;
62 break ;
63 case PropertyTypeEnum . I2 :
64 property . PropertyValue =

Bi tConverter . ToInt16 (

APPENDIX B. SOURCE CODE 194

data , index) ;
65 index += 2 ;
66 break ;
67 case PropertyTypeEnum . I4 :
68 i f (i n t S i z e == 2)
69 {
70 property . PropertyValue

= Bi tConverter .
ToInt16 (data , index
) ;

71 index += 2 ;
72 }
73 e lse i f (i n t S i z e == 4)
74 {
75 property . PropertyValue

= Bi tConverter .
ToInt32 (data , index
) ;

76 index += 4 ;
77 }
78

79

80 break ;
81 case PropertyTypeEnum . STRING :
82 s t r i n g s t r ingValue = n u l l ;
83 i f (data [index + 3] == 0x0

) / / u n i c o d e
84 {
85 UInt16 length =

Bi tConverter .
ToUInt16 (data ,
index) ;

86 index += 2 ;
87 s t r ingValue = new

s t r i n g (Encoding .
Unicode . GetChars (
data , index , length
)) ;

88 index += length ;
89 }
90 e lse / / a s c i i

APPENDIX B. SOURCE CODE 195

91 {
92

93 byte length = (byte) (
data [index] / 2) ;

94 index += 1 ;
95 s t r ingValue = new

s t r i n g (Encoding .
ASCII . GetChars (data
, index , length)) ;

96 i f (length % 2 == 0)
97 index += length +

1 ;
98 e lse
99 index += length ;

100 }
101 property . PropertyValue =

str ingValue ;
102 break ;
103 case PropertyTypeEnum . TIME :
104 byte [] date = new byte [4] ;
105 date [0] = data [index ++] ;
106 date [1] = data [index ++] ;
107 date [2] = data [index ++] ;
108 date [3] = data [index ++] ;
109 property . PropertyValue =

date ;
110 break ;
111 case PropertyTypeEnum . UI4 :
112 i f (i n t S i z e == 2)
113 {
114 property . PropertyValue

= Bi tConverter .
ToUInt16 (data ,
index) ;

115 index += 2 ;
116 }
117 e lse i f (i n t S i z e == 4)
118 {
119 property . PropertyValue

= Bi tConverter .
ToUInt32 (data ,

APPENDIX B. SOURCE CODE 196

index) ;
120 index += 4 ;
121 }
122 break ;
123 default :
124 i n t o = 4 ;
125 property . PropertyType =

PropertyTypeEnum .
UNKNOWN;

126 unknown = true ;
127 break ;
128 }
129 }
130 catch (Exception e)
131 {
132 property . PropertyType =

PropertyTypeEnum .ERROR;
133 unknown = true ;
134 }
135 }
136 return p r o p e r t i e s ;
137 }
138 }
139 }� �

APPENDIX B. SOURCE CODE 197

B.2 Extensions to the Judas Forensic Tool

Listing B.9: Extensions to the Judas Forensic Tool� �
1 void perform OID request ()
2 {
3 p r i n t f (” * * * * * * Enter f i l e name : ”) ;
4 char f i l e name [MAX FILENAME SIZE] ;
5 scanf (”%hs” , &f i le name) ;
6 g e t o i d (f i l e name) ;
7 }
8

9 void p e r f o r m o b j e c t r e q u e s t ()
10 {
11 p r i n t f (” * * * * * * Enter OID (hex) : ”) ;
12 i n t o b j e c t i d ;
13 scanf (”%x” ,& o b j e c t i d) ;
14

15 i f (o b j e c t i d & 0 x f f f f 0 0 0 0)
16 {
17 g e t o b j e c t (o b j e c t i d) ;
18 } e lse
19 {
20 DWORD cnt = 0 x1000000 ;
21 while ((o b j e c t i d < 0xFF00000) && !

g e t o b j e c t (o b j e c t i d))
22 {
23 p r i n t f (” t r i e d 0x%X\n” ,

o b j e c t i d) ;
24 o b j e c t i d += cnt ;
25 }
26 }
27 }
28

29 DWORD flip dword (DWORD dw in)
30 {
31 DWORD dw rev in = dw in << 2 4 ;
32 dw rev in = ((dw in & 0 x0000f f00) << 8) |

dw rev in ;
33 dw rev in = ((dw in & 0 x00f f0000) >> 8) |

dw rev in ;

APPENDIX B. SOURCE CODE 198

34 dw rev in = dw rev in | (dw in >> 24) ;
35 return dw rev in ;
36 }
37

38 void g e t o i d (char * f i l e name)
39 {
40

41 wchar t wide f i le name [MAX FILENAME SIZE] ;
42 mbstowcs (wide fi le name , f i le name ,

MAX FILENAME SIZE) ;
43

44 CE FIND DATA f i n d d a t a ;
45 HANDLE hSearch ;
46 hSearch = C e F i n d F i r s t F i l e (wide fi le name , &

f i n d d a t a) ;
47 i f (hSearch != INVALID HANDLE VALUE) {
48

49 char szFilename [2 5 6] ;
50 wcstombs (szFilename , f i n d d a t a .

cFileName , 2 5 6) ;
51

52 p r i n t f (” F i l e name : %s\n” , szFilename) ;
53 p r i n t f (” Object ID : %x\n” , f i n d d a t a .

dwOID) ;
54 p r i n t t i m e d a t a (f i n d d a t a .

f tLastWriteTime) ;
55 p r i n t f i l e a t t r i b u t e s (f i n d d a t a .

dwFi leAt t r ibutes) ;
56

57 return ;
58 } e lse {
59 hSearch = CeFindFirstDatabase (0) ; / /

Paramet e r v a l u e z e r o means t h a t a l l
d a t a b a s e t y p e s a r e enumerated

60 i f (hSearch != INVALID HANDLE VALUE)
61 {
62 CEOID ceoid =

CeFindNextDatabase (hSearch)
;

63 char szFilename [2 5 6] ;
64 while (ceoid != 0)

APPENDIX B. SOURCE CODE 199

65 {
66 CEOIDINFO c e o i d i n f o ;
67 CeOidGetInfo (ceoid ,&

c e o i d i n f o) ;
68 wcstombs (szFilename ,

c e o i d i n f o .
infDatabase .
szDbaseName , 2 5 6) ;

69 p r i n t f (”Name : %s\n” ,
szFilename) ;

70 p r i n t f (”Type : 0x%X\n”
, c e o i d i n f o .
infDatabase .
dwDbaseType) ;

71 p r i n t f (”OID : 0x%X\n”
, ceoid) ;

72

73 ceoid = CeFindNextDatabase (hSearch) ;
74 }
75 } e lse {
76 p r i n t f (” Error ”) ;
77 return ;
78 }
79 }
80 CeCloseHandle (hSearch) ;
81

82 }
83

84 void p r i n t f i l e a t t r i b u t e s (DWORD a t t r)
85 {
86 p r i n t f (” F i l e A t t r i b u t e s (0 x%X) :\n” , a t t r) ;
87 p r i n t f (”\n”) ;
88 p r i n t f (” Archive : ”) ; (

FILE ATTRIBUTE ARCHIVE & a t t r) ? p r i n t f (”X\n
”) : p r i n t f (”\n”) ;

89 p r i n t f (”Compressed : ”) ; (
FILE ATTRIBUTE COMPRESSED & a t t r) ? p r i n t f (”
X\n”) : p r i n t f (”\n”) ;

90 p r i n t f (” Direc tory : ”) ; (
FILE ATTRIBUTE DIRECTORY & a t t r) ? p r i n t f (”X
\n”) : p r i n t f (”\n”) ;

APPENDIX B. SOURCE CODE 200

91 p r i n t f (”Has ch i ldren : ”) ; (
FILE ATTRIBUTE HAS CHILDREN & a t t r) ? p r i n t f
(”X\n”) : p r i n t f (”\n”) ;

92 p r i n t f (”Hidden : ”) ; (
FILE ATTRIBUTE HIDDEN & a t t r) ? p r i n t f (”X\n”
) : p r i n t f (”\n”) ;

93 p r i n t f (” In ROM : ”) ; (
FILE ATTRIBUTE INROM & a t t r) ? p r i n t f (”X\n”)

: p r i n t f (”\n”) ;
94 p r i n t f (”Normal : ”) ; (

FILE ATTRIBUTE NORMAL & a t t r) ? p r i n t f (”X\n”
) : p r i n t f (”\n”) ;

95 p r i n t f (”Read only : ”) ; (
FILE ATTRIBUTE READONLY & a t t r) ? p r i n t f (”X\
n”) : p r i n t f (”\n”) ;

96 p r i n t f (”ROM module : ”) ; (
FILE ATTRIBUTE ROMMODULE & a t t r) ? p r i n t f (”X
\n”) : p r i n t f (”\n”) ;

97 p r i n t f (”System : ”) ; (
FILE ATTRIBUTE SYSTEM & a t t r) ? p r i n t f (”X\n”
) : p r i n t f (”\n”) ;

98 p r i n t f (”Temporary : ”) ; (
FILE ATTRIBUTE TEMPORARY & a t t r) ? p r i n t f (”X
\n”) : p r i n t f (”\n”) ;

99 }
100

101 void p r i n t d b f l a g s (DWORD f l a g s)
102 {
103 p r i n t f (” Database f l a g s (%X) : \n” , f l a g s) ;
104 p r i n t f (”\n”) ;
105 p r i n t f (” Valid modified time : ”) ; (

CEDB VALIDMODTIME & f l a g s) ? p r i n t f (”X\n”) :
p r i n t f (”\n”) ;

106 p r i n t f (” Valid name : ”) ; (
CEDB VALIDNAME & f l a g s) ? p r i n t f (”X\n”) :
p r i n t f (”\n”) ;

107 p r i n t f (” Valid type : ”) ; (
CEDB VALIDTYPE & f l a g s) ? p r i n t f (”X\n”) :
p r i n t f (”\n”) ;

108 p r i n t f (” Valid s o r t spec : ”) ; (
CEDB VALIDSORTSPEC & f l a g s) ? p r i n t f (”X\n”)

APPENDIX B. SOURCE CODE 201

: p r i n t f (”\n”) ;
109 p r i n t f (” Valid f l a g s : ”) ; (

CEDB VALIDDBFLAGS & f l a g s) ? p r i n t f (”X\n”) :
p r i n t f (”\n”) ;

110 p r i n t f (”No compress : ”) ; (
CEDB NOCOMPRESS & f l a g s) ? p r i n t f (”X\n”) :
p r i n t f (”\n”) ;

111 }
112

113 void p r i n t t i m e d a t a (FILETIME f i l e t i m e)
114 {
115 SYSTEMTIME s t ime ;
116 i f (FileTimeToSystemTime(& f i l e t i m e , &s t ime)) {
117 p r i n t f (” Modified : %i .% i .% i %i :% i \n” ,

s t ime . wDay, s t ime . wMonth , s t ime .
wYear , s t ime . wHour , s t ime . wMinute
) ;

118 DWORD dw low = f i l e t i m e . dwLowDateTime ;
119 DWORD dw high = f i l e t i m e .

dwHighDateTime ;
120 p r i n t f (”FILETIME : %x %x\n” , dw high ,

dw low) ;
121 DWORD dw rev low = fl ip dword (dw low) ;
122 DWORD dw rev high = fl ip dword (dw high

) ;
123 p r i n t f (” Reversed : %x %x\n” , dw rev low

, dw rev high) ;
124 }
125 }
126

127 void p r i n t s o r t o r d e r s p e c s (SORTORDERSPEC sos [] , WORD
num sos)

128 {
129 p r i n t f (”\n”) ;
130 p r i n t f (” Sor t order specs \n”) ;
131 for (i n t i =0 ; i<num sos ; i ++)
132 {
133 p r i n t f (”\n”) ;
134 p r i n t f (”Spec #%i :\n” , i) ;
135 p r i n t s o r t f l a g s (sos [i] . dwFlags) ;
136 }

APPENDIX B. SOURCE CODE 202

137 }
138

139 void p r i n t s o r t f l a g s (DWORD f l a g s)
140 {
141 p r i n t f (”Descending : ”) ; (

CEDB SORT DESCENDING & f l a g s) ? p r i n t f (”X\n”
) : p r i n t f (”\n”) ;

142 p r i n t f (”Case i n s e n s i t i v e : ”) ; (
CEDB SORT CASEINSENSITIVE & f l a g s) ? p r i n t f (
”X\n”) : p r i n t f (”\n”) ;

143 p r i n t f (”Unknown f i r s t : ”) ; (
CEDB SORT UNKNOWNFIRST & f l a g s) ? p r i n t f (”X\
n”) : p r i n t f (”\n”) ;

144 }
145

146 bool g e t o b j e c t (i n t o b j e c t i d)
147 {
148 CEOID ceoid = o b j e c t i d ;
149 CEOIDINFO c e o i d i n f o ;
150 i f (CeOidGetInfo (ceoid ,& c e o i d i n f o))
151 {
152 char name [2 5 6] ;
153 switch (c e o i d i n f o . wObjType)
154 {
155 case OBJTYPE INVALID :
156 p r i n t f (” Object type : INVALID\n

”) ;
157 break ;
158 case OBJTYPE FILE :
159 wcstombs (name , c e o i d i n f o .

i n f F i l e . szFileName , 2 5 6) ;
160 p r i n t f (”Name : %s\n” ,

name) ;
161 p r i n t f (” Object type : FILE\n”) ;
162 p r i n t f (” Object ID : 0x%X\n” ,

ceoid) ;
163 p r i n t f (” Parent ID : 0x%X\n” ,

c e o i d i n f o . i n f F i l e . oidParent
) ;

164 p r i n t t i m e d a t a (c e o i d i n f o .
i n f F i l e . ftLastChanged) ;

APPENDIX B. SOURCE CODE 203

165 p r i n t f i l e a t t r i b u t e s (
c e o i d i n f o . i n f F i l e .
dwAttributes) ;

166 break ;
167 case OBJTYPE DIRECTORY :
168 wcstombs (name , c e o i d i n f o .

i n f D i r e c t o r y . szDirName , 2 5 6)
;

169 p r i n t f (”Name : %s\n” ,
name) ;

170 p r i n t f (” Object type : DIRECTORY
\n”) ;

171 p r i n t f (” Object ID : 0x%X\n” ,
ceoid) ;

172 p r i n t f (” Parent ID : 0x%X\n” ,
c e o i d i n f o . i n f D i r e c t o r y .
oidParent) ;

173 p r i n t f i l e a t t r i b u t e s (
c e o i d i n f o . i n f D i r e c t o r y .
dwAttributes) ;

174 break ;
175 case OBJTYPE DATABASE :
176 wcstombs (name , c e o i d i n f o .

infDatabase . szDbaseName
, 2 5 6) ;

177 p r i n t f (”Name : %s\n” ,
name) ;

178 p r i n t f (” Object type :
DATABASE\n”) ;

179 p r i n t f (” Object ID : 0x%X\n
” , ceoid) ;

180 p r i n t t i m e d a t a (c e o i d i n f o .
infDatabase . f tLas tModi f ied)
;

181 p r i n t d b f l a g s (c e o i d i n f o .
infDatabase . dwFlags) ;

182 p r i n t f (”\n”) ;
183 p r i n t f (” Database i n f o \n”) ;
184 p r i n t f (” Database type

: 0x%X\n” , c e o i d i n f o .
infDatabase . dwDbaseType) ;

APPENDIX B. SOURCE CODE 204

185 p r i n t f (” Database s i z e
: 0x%X\n” , c e o i d i n f o .
infDatabase . dwSize) ;

186 p r i n t f (”# records
: 0x%X\n” , c e o i d i n f o .
infDatabase . wNumRecords) ;

187 p r i n t f (”Number of s o r t orders
: 0x%X\n” , c e o i d i n f o .
infDatabase . wNumSortOrder) ;

188 i f (CEDB VALIDSORTSPEC &
c e o i d i n f o . infDatabase .
dwFlags)

189 {
190 p r i n t s o r t o r d e r s p e c s

(c e o i d i n f o .
infDatabase .
rgSortSpecs ,
c e o i d i n f o .
infDatabase .
wNumSortOrder) ;

191 }
192

193 break ;
194 case OBJTYPE RECORD :
195 p r i n t f (” Object type : RECORD\n

”) ;
196 p r i n t f (”OID parent : 0 x%X\n” ,

c e o i d i n f o . infRecord .
oidParent) ;

197 break ;
198 }
199 return t rue ;
200 } e lse
201 {
202 return f a l s e ;
203 }
204 }
205

206 void p e r f o r m a t t r i b u t e s r e q u e s t ()
207 {
208 p r i n t f (” * * * * * * Enter f i l e name : ”) ;

APPENDIX B. SOURCE CODE 205

209 char search name [MAX FILENAME SIZE] ;
210 scanf (”%hs” , &search name) ;
211

212 wchar t wide search name [MAX FILENAME SIZE] ;
213 mbstowcs (wide search name , search name ,

MAX FILENAME SIZE) ;
214

215 CE FIND DATA f i n d d a t a ;
216 HANDLE hSearch ;
217 hSearch = C e F i n d F i r s t F i l e (wide search name , &

f i n d d a t a) ;
218 i f (hSearch != INVALID HANDLE VALUE) {
219

220 char szFilename [2 5 6] ;
221 wcstombs (szFilename , f i n d d a t a .

cFileName , 2 5 6) ;
222

223 p r i n t f (” F i l e name : %s\n” , szFilename) ;
224 p r i n t f (” Object ID : %x\n” , f i n d d a t a .

dwOID) ;
225 p r i n t t i m e d a t a (f i n d d a t a .

f tLastWriteTime) ;
226 char a t ;
227 while (t rue) {
228 p r i n t f i l e a t t r i b u t e s (

f i n d d a t a . dwFi leAt t r ibutes)
;

229 p r i n t f (”\n”) ;
230 p r i n t f (” Al ter a t t r i b u t e ((a)

rchive , (h) idden , (n) ormal ,
(r) ead only , (s) ystem , (t)

emporary) . Enter c to
cance l : ”) ;

231 p r i n t f (”\n”) ;
232 scanf (”%c ” ,& at) ;
233 scanf (”%c ” ,& at) ;
234 switch (a t)
235 {
236 case ’ a ’ :
237 a l t e r a t t r i b u t e (

f ind data ,

APPENDIX B. SOURCE CODE 206

FILE ATTRIBUTE ARCHIVE
) ;

238 break ;
239 case ’h ’ :
240 a l t e r a t t r i b u t e (

f ind data ,
FILE ATTRIBUTE HIDDEN
) ;

241 break ;
242 case ’n ’ :
243 a l t e r a t t r i b u t e (

f ind data ,
FILE ATTRIBUTE NORMAL
) ;

244 break ;
245 case ’ r ’ :
246 a l t e r a t t r i b u t e (

f ind data ,
FILE ATTRIBUTE READONLY
) ;

247 break ;
248 case ’ s ’ :
249 a l t e r a t t r i b u t e (

f ind data ,
FILE ATTRIBUTE SYSTEM
) ;

250 break ;
251 case ’ t ’ :
252 a l t e r a t t r i b u t e (

f ind data ,
FILE ATTRIBUTE TEMPORARY
) ;

253 break ;
254 case ’ c ’ :
255 CeCloseHandle (hSearch)

;
256 return ;
257 default :
258 p r i n t f (” Error :

i n c o r r e c t input ”) ;
259 return ;

APPENDIX B. SOURCE CODE 207

260 }
261 CeCloseHandle (hSearch) ;
262 hSearch = C e F i n d F i r s t F i l e (

wide search name , &
f i n d d a t a) ;

263 i f (hSearch ==
INVALID HANDLE VALUE) return
;

264 }
265 return ;
266 } e lse
267 {
268 p r i n t f (” Error : No matching f i l e found”

) ;
269 return ;
270 }
271 CeCloseHandle (hSearch) ;
272 }
273

274 void a l t e r a t t r i b u t e (CE FIND DATA find data , DWORD
a t t r)

275 {
276 wchar t ws [2 5 6] ;
277 ws [0] = ’ \\ ’ ;
278

279 i n t cnt = 1 ;
280 for (i n t i =0 ; f i n d d a t a . cFileName [i] ! = 0 ; i ++)
281 {
282 ws[i +1] = f i n d d a t a . cFileName [i] ;
283 cnt ++;
284 }
285 ws[cnt] = 0 ;
286

287 (f i n d d a t a . dwFi leAt t r ibutes & a t t r) ?
288 C e S e t F i l e A t t r i b u t e s (ws , (f i n d d a t a .

dwFi leAt t r ibutes & ! a t t r)) :
289 C e S e t F i l e A t t r i b u t e s (ws , (f i n d d a t a .

dwFi leAt t r ibutes | a t t r)) ;
290 }� �

Appendix C

ARM Instruction Set Quick
Reference Card

208

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD209

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD210

APPENDIX C. ARM INSTRUCTION SET QUICK REFERENCE CARD211

