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Abstract

This Master thesis presents simulations within the field of imitative learning. The
thesis starts with a review of the work done in my depth study [2], looking at im-
itative learning in general. Further, forward and inverse models are studied, and
a case study of a Wolpert et al article [29] is done. An architecture using the
recurrent neural network with parametric bias (RNNPB) and a PID-controller
by Tani et al [21] is presented, and later simulated using MATLAB and the
breve simulation environment. It is tested if the RNNPB is suitable for imitative
learning. The first experiment was quite successful, and interesting results were
discovered. The second experiment was less successful. Generally, it was con-
firmed that RNNPB is able to reproduce actions, interact with the environment,
and indicate situations using the parametric bias (PB). It was also observed that
the PB values tend to reflect common characteristics in similar training patterns.
A comparison between the forward and inverse model and the RNNPB model was
done. The former appears to be more modular and a predictor of consequence of
actions, while the latter predicts sequences and is able to represent the situation
it is in. The work done to connect MATLAB and breve is also presented.
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Chapter 1

Introduction

This project is a continuation of the work done in my depth study, Learning by
Imitation [2]. In the depth study imitative learning was studied in detail; in par-
ticularly the uses of imitative learning. A small simulation using a neural network
with parametric bias (RNNPB) [14, 21, 15, 27] was also done to investigate if
the RNNPB was suitable for further simulations. A conclusion was made that
even though the RNNPB is difficult to train, it can be used in the Master thesis.

This chapter begins with an explanation the goals of this project, before a quick
summary is made of what imitative learning is. In the next chapter the forward
and inverse model is studied; both a view of the architecture and study of a
paper by Wolpert et al [29]. Chapter 3 consists of a description on how the
architecture using an RNNPB and a PID controller is, mainly based on an article
by Tani et al [21]. The following chapter describes the work done to connect
MATLAB and the breve simulat

ion environment. In Chapter 5 I describe and discuss the simulations done in this
project. In Chapter 6 a brief comparison between the architectures of the forward
and inverse models and the RNNPB is done. Chapter 7 contains a documentation
of the code written for this project. Finally, a conclusion is made in Chapter 8.
In the Appendix there is a brief terminology for imitative learning, a description
of videos from simulations, and the source code for the files fpr this project.
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1.1. THE GOAL OF THIS PROJECT

1.1 The Goal of this Project

The main aim of this project is to make simulations of imitative learning. A
robot simulator, the breve Simulation Environment [19], is used to simulate a
humanoid robot. MATLAB [22] is used for the implementation of the RNNPB
architecture. One of the goals is to connect MATLAB and breve together. The
forward and inverse model and the RNNPB are two alternative ways of emulating
human and monkey imitative systems. In this project, the RNNPB is used for
simulations. In addition, the forward and inverse models are studied, so that a
comparison between the two architectures can be made.

There are some specific goals for the simulations in this project. In my depth
study, it was concluded that the RNNPB holds a great potential for use in
imitative learning. The main hypothesis for the simulations is that the RNNPB
can indeed be used for imitative learning. In order for this to hold, a number of
conditions must be met.

First, the robot must be able to learn and reproduce different sequences of
actions. This was proved in a small experiment in my depth study, and should
be confirmed further. Second, sensory input should be able to affect action
selection. In other words, interaction with the outside world must be possible.
The robot must be able to act upon a sensory state. Third, the robot should
also be able to see the sensory input in sequential context. It should be able to
act upon a sequence of sensor states.

There are also some results which seem to be recurring in Tani’s articles [14, 21,
15, 27]. His results show that after training the RNNPB, there is one parametric
bias for each pattern. This means that the parametric bias can be used to
indicate what situation the robot is in. How this works exactly will be described
in Chapter 3. It is also discovered that after training similar patterns, common
characteristics emerge in the PB vectors. During my own simulations, these
claims are studied further.

1.2 Imitative Learning

What is imitative learning? Imitative learning within artificial intelligence is
a learning method based on how humans and some monkeys learn. Instead of
programming the robot what to do or to use reinforcement learning to punish and
reward the robot, we simply show it how to act. In my depth study [2], it was
discussed how this could be done in several ways, and in which areas imitative

10



1.2. IMITATIVE LEARNING

learning can be used.

The simplest example was direct demonstration by manually remote controlling
the robot while letting the robot record the movement. After the demonstration,
the robot would be able to replicate the movement. An industrial manipulator
arm was used as an example. However, this form of demonstration is only
sufficient to teach primitive movements, or just movements with no goal. In
order for true imitation to occur, we need the robot to not only replicate the
movement, but also replicate the action. For example, if we show how the robot
how to move a cup, we want it to still be able to move it even if the cup is at a
different position. We want the robot to “understand” that the action is moving
the cup, and not simply moving the arm forward and grasping.

We investigated how this “understanding of goals” could achieved using a hier-
archical approach [3, 25, 16]. Primitive actions could be built to achieve simple
actions; simple actions could be built to achieve complex actions; complex ac-
tions could be built to achieve advanced behaviors; and so on. For example, a
primitive actions might be move forward, while a more complex action could
be give a handshake. We also looked at how imitative learning might be used
to teach navigation through a maze [8].

Another topic that was discussed, was how imitative learning could be connected
to linguistics. We saw how imitative learning might be the route to solve, or rather
avoid, the symbol grounding problem 1 [11]. At a certain level, imitation requires
the ability to predict or “imagine” events. If an event is somehow connected to
interaction with an object, this interaction might be internally represented by the
robot’s A.I. and connected to a word.

Mirror Neurons An important topic within imitative learning is the mirror
neurons [4, 20]. These are recently discovered neurons in both monkey and
human brains. The mirror neurons is very similar to the motor neurons. However,
instead of just firing when the monkey or human acts, like the motor neurons do,
the mirror neurons also appear to fire when action is being observed. What is
even more remarkable is that the mirror neurons also appear to fire when action
is being imagined. Research shows that autism might be caused by defective
mirror neurons, which might mean that they might also connected to empathetic

1The symbol grounding problem was presented by Harnad in 1990 [27]. It is the problem
of giving internal meaning to a symbol. For example, when a robot has a symbol for “cup”, it
should have some kind of internal representation of what a cup is. The problem is that in order
to explain what a cup is, other “ungrounded” symbols have to be used. Harnad compares it
to trying to learn Chinese only by using a Chinese-Chinese dictionary.

11



1.3. SUMMARY

abilities [20].

Because of the higher cognition properties of the mirror neurons, it is no surprise
that scientists want to emulate them in artificial intelligence The forward and
inverse model and the recurrent neural network with parametric bias (RNNPB),
both of which will be discussed further in the coming chapters, are attempts to
model the mirror neurons. So far, the different studies by Demiris et al [16, 9, 10],
Wolpert et al [29], and Tani et al [14, 27, 15] have been quite encouraging.

1.3 Summary

The goal of this project is mainly to study and compare the two most important
architectures on the route to imitative learning, the recurrent neural network with
parametric bias (RNNPB) and forward and inverse models. As with my depth
study, the RNNPB will be studied closer by doing simulations with it. MATLAB
and the breve simulation environment will be used for this.

In this chapter, we also reviewed the most important notes from my depth study:
imitative learning in general and the mirror neurons. Imitative learning holds
a great promise for artificial intelligence. If successful, many problems can be
solved by imitative learning. In addition, emulation of the mirror neurons might
be a more true emulation of the human intelligence. This makes the ability to
imitate a sign of higher cognition.

12



Chapter 2

Forward and Inverse Models

2.1 Introduction

In my depth study [2], forward and inverse models were not discussed. The pri-
mary focus was on Tani’s work and the recurrent neural network with parametric
bias [14, 27, 15]. However, Demiris et al [16, 10] and Wolpert et al [29] have
done work with multiple paired forward and inverse models for motor control.
This architecture can be seen as a mirror system [10], which makes them well
suited for imitative learning. The model may both be implemented using sym-
bolic AI, like Demiris [16, 10] has done, or by using sub symbolic methods, like
Wolpert [29].

I will begin this chapter by explaining how the inverse and forward models works,
before moving on to how they can be connected to emulate a motor system.
Finally, I will present an article written by Wolpert and Kawato [29].

2.2 Architecture

Inverse Model An inverse model takes as input the current state of the system
and the desired goal state. As output, the model gives the commands necessary
to achieve the desired state.

There are many ways to implement such a model. The easiest one though, is
using a PID-controller. As described in Section 3.2.2, a PID-controller can be
implemented as an equation that receives a current state and a desired state,

13



2.2. ARCHITECTURE

and outputs the strength that needs to be applied. For example, the current and
desired states may be temperatures in an oven, while the output is the heating
power. An other implementation of an inverse model can be a neural network
using error learning propagation, as will be described in Section 2.3.

Forward Model A forward model takes as input the current state of the system
and the command acting on it. It then outputs a prediction of the next state.
The most sensible sub symbolic implementation of this would be a recurrent
neural network (RNN) which learns to predict temporal sequences.

Relationship Next, we will look at how those two models can be connected
to each other for motor control. We assume that we have fully trained or pro-
grammed forward and inverse models, meaning that we only describe the inter-
action. The main idea is that we need a forward model to make predictions of
what would happen if certain commands was applied at certain states. In other
words, the model would display a behavior. For each behavior, we need an inverse
model which can find out which command should be performed to go from one
state to another [29].

When the inverse model receives the current and desired states, it sends a motor
command to both the robot and to the forward model. The forward model then
outputs the next predicted state and sends it back to the inverse model. The
robot executes the received command and sends its new current state to the
inverse model.

Figure 2.1 shows a model of the relationship between the forward and inverse
models, and the robot. As we will discover after seeing the model in the case
study in Section 2.3, the model in Figure 2.1 is a quite simple model that is
sufficient for only one behavior. If we need more than one behavior, we need one
such model for each behavior. And as we will see, they can be connected so that
the robot can switch between them.

The “behavior” and the states that we speak of can be on different levels. For
example, the behavior can be a primitive action, like moving an arm forward.
In this case each state would then be the position of the arm in each actual
time step. If the behavior is on a higher level which consists of several primitive
actions, each time step would have to be larger than an actual time step. The
state could then be the position after each primitive action has been performed.

To illustrate, we can look at an example of a higher level action, like lifting
a cup. Let us say that this behavior consists of five primitive actions for the

14



2.2. ARCHITECTURE

Figure 2.1: Simple forward and inverse model based on [16, 10, 29]. This simple
model shows how the current state and desired state is received by the inverse model,
which outputs the command that makes the change. The command is both sent to
the robot and to the forward model. The forward also receives the current state, and
then predicts the next desired state and sends it to the inverse model.

arm: raise, lower, move forward, move back, and grasp. The order of
execution could be: move forward - lower - grasp - raise - move back. The
first current state is then the start position while the first desired state is the
position achieved after moving the arm forward. These two states is fed to the
inverse model. The inverse model then outputs move forward as the solution
to achieving the desired state. This output is fed to the robot which actually
performs the action, and to the forward model which outputs the next desired
state. In this case, the next desired state would be the one after lowering the
arm. The output is fed back to the inverse model, which will then output lower.
This looped process will continue until the whole action has been performed.

Discussion In this example primitive actions were used to achieve desired
states. To apply the model on one single primitive action, for example mov-
ing the arm forward, setting the velocity in a direction could be an action to
achieve a desired state. What becomes obvious is that we can build a hierarchy
of forward and inverse models. At the lowest level we would have the primitive
actions, which could be built to achieve higher level actions [16]. Figure 2.2
shows how the model might look like.

15



2.2. ARCHITECTURE

Figure 2.2: Hierarchical forward and inverse model (based on descriptions in [16, 10].
As we can see, the execution of a primitive action can be done at a lower level forward
and inverse model.

The main focus of the forward and inverse model is the output of the inverse
model. This output is the action that must be taken in order to achieve a desired
state. It is fed both to the forward model and to the robot. As the model on
Figure 2.2 shows, this output might as well be lower level actions. This opens
possibilities to build more complex systems with several levels. For example, the
lowest level could be, as we discussed, move forward. The next level could
be pick up cup, which again could be a primitive action for a larger goal, like
fill cup with tea. At the top level, the action might be a response to the
command “bring me some tea”.

It is easy to see that this hierarchal approach makes sense. And it is from here that
we can look at learning to imitate and learning by imitation. As was discussed
in my depth study, when a robot learns new actions by observing a teacher, we
want to the robot to understand the intentions of the teacher. Using the “tea-
example”: when we show a robot how to bring tea we want it to understand
that bringing tea is a set of actions that is again divided into primitive actions,
rather than seeing the whole action of bringing tea as one single atomic action.

16



2.3. CASE STUDY: WOLPERT AND KAWATO

2.3 Case Study: Wolpert and Kawato

In this section, a brief review of Wolpert’s and Kawatos’s article, Multiple paired
forward and inverse models for motor control [29], is done. The aim of this review
is to see a study of the forward and inverse model, as well as providing something
which can be used for comparison with the RNNPB and PID-controller model in
Chapter 6.

Wolpert and Kawato present an architecture built of multiple paired forward and
inverse models. Their goal is to look at a system which is capable at controlling
the motors of a robot learning and interacting using both external and internal
information. They specifically look at learning multiple actions, and they use a
human’s ability to interact with a great variety of different environments as an
example. The architecture they look at is modular; it uses one module for each
action. This, however, creates a module selection problem which must be solved.

The model is designed so that it is able to predict (or “imagine”) actions before
executing them. It can use these predictions in order to select the correct action
that leads to its desired goal. Wolpert and Kawato are loosely modeling the
human motor system. Though it is not specifically mentioned in the article,
the proposed model does, to some extent, emulate the mirror neurons [4, 20]
discussed in Section 1.2, as it is able to make predictions without necessarily
executing the actions.

2.3.1 Architecture

The architecture of this model uses paired forward and inverse models, similar to
the one in Figure 2.1, as basis. One such paired model is used for each action.
In addition, for each paired forward and inverse model, a responsibility predictor
is added to help each pair decide “how correct” it is. All the paired models are
connected to a responsibility estimator, which makes sure that the most correct
model is weighted most, so that the correct action is executed. Figure 2.3 shows
the architecture.

The Components

As mentioned, the architecture consists of several components. We will now take
a small look at each component.

17



2.3. CASE STUDY: WOLPERT AND KAWATO

Forward Model This model can, as described before, receive a current state
and a motor command, and return a predicted next state. Wolpert and
Kawato mentions simple supervised learning for this model. A normal
backpropagtion neural network or a recurrent neural network would work.

Inverse Model This model also works as previously discussed. It is a component
that receives a current state and a desired state, and returns the motor
command necessary for the change. Though they do not go into detail,
Wolpert and Kawato mention three different methods to adapt an inverse
model: direct inverse modeling [23], distal supervised learning [17], and
feedback-error-learning [18].

One pair of the two described models is able to learn one single action. Therefore
the architecture needs multiple such pairs to be able to perform different actions.
A switching mechanism is needed so that the system might select the appropriate
action for different situations. Another component is added to each pair:

Responsibility Predictor This component receives sensor information as input.
It uses the input for comparison with an internal responsibility model, and
decides how relevant the sensory input is to the current “responsibility”.
It outputs an error that tells the difference between the internal model
and the actual sensor input. This model can be a simple backpropgation
network that learns to output how much error there is in a given situation.

As we begin to see, when this component is added to the paired forward and
inverse models, each “module” will be able to perform a single action as well
as deciding how correct this action is in the current context. However, yet one
more component is needed; a single component that connects all the multiple
modules:

Responsibility Estimator This component receives the error signal from each
module’s responsibility predictor. It uses the error to decide which module
should be selected, and sends “weights” to each module’s forward and
inverse models. These weights is multiplied to each module’s motor output.
Thus, the responsibility estimator selects which action is to be executed
based on the error it receives from the responsibility predictor.
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2.3. CASE STUDY: WOLPERT AND KAWATO

Figure 2.3: A single module within the multiple paired internal model. The thick
dashed line shows the central role of the responsibility estimators signals. Dotted lines
passing through models are training signals for learning. The exponential transform of
the errors has been replaced by a more general likelihood model. [29]
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2.3. CASE STUDY: WOLPERT AND KAWATO

Modularity

We now have a system which is able to learn and perform actions based on
the situation it is in. An important feature of this architecture is modularity.
First, each model (forward model, inverse model, and responsibility predictor)
can be trained or programmed separately. The only important thing is that each
model function as it should, be it a neural network, PID-controller, or any other
traditional or sub symbolic implementation.

Second, each paired model is a module that can easily be added or removed. Af-
ter adding a new module, only the responsibility estimator (and the new module)
needs to be trained, without having to retrain the whole system. This particular
modular feature has several benefits. Wolpert and Kawato mentions the advan-
tage of adding different modules along the way in order for the system to be able
to handle new situations. Another benefit is that motor behaviors can be trained
separately without affecting each other. This makes training of each behavior
more clean and efficient. In addition, many new situations may be combina-
tions of previously learned situations. An architecture with the ability to switch
between different behaviors will have a enormous repertoire of combinations.

2.3.2 Discussion

The study Wolpert and Kawato makes is quite optimistic. Though they do not
produce any test results, the article is quite detailed in how their architecture
should be implemented. Also, a number of untested statements is made about
the architecture. For example, it is talked about how the behavior switching is
controlled by the prediction error rather than the performance error. This means
that behavior is selected based on how well the current behavior fits with the
robot’s predictions, rather being selected based on how well the behavior solves
a task. This is interesting, as it shows that the robot’s “imagination” is of
importance.

Another interesting note is the possibilities of mixing modules. As we remember,
the responsibility estimator assigns weights to the different module outputs. This
means that more than one module may be active at once. Wolpert and Kawato
have a theory that if there are two modules for two different situations, the two
modules might be able to handle a linear combination of the two situations.

It is also discussed that the model seems to be neurophysiologically plausible. In
particular, it is suggested that multiple paired forward and inverse models exists
in the human cerebellum. For example, it is stated that imagination of motor
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actions activates the cerebellum [7]. This has been demonstrated using fMRI
scans [13]. They also describe how to make further studies of the cerebellum in
order to prove that multiple paired forward and inverse models are plausible.

Comparison to Hierarchical Approach The architecture of Wolpert and
Kawato differs somewhat from the hierarchical approach that we discussed in
Section 2.2. Demiris et al [16, 10], with the HAMMER architectures, follows a
hierarchal approach as we described. The main difference is that in the current
architecture, all primitive behaviors are parallel, and selection is handled by the
responsibility estimator. In a hierarchical architecture, primitive behaviors are
in parallel; though the selection is being handled by another paired forward and
inverse model. More correctly, the primitive behavior is an output from a higher
level inverse model. Of course, the two different approaches each has their ad-
vantages. Wolpert’s and Kawato’s approach is obviously well suited for using
primitive behaviors in dynamic environments which requires modularity. How-
ever, a hierarchical model gives better high level abstraction possibilities, and
thus a seemingly higher level of cognition.

2.3.3 Conlcusion

All in all, the model proposed by Wolpert and Kawato appears to be a good
emulator of the human motor/mirror system. Motor execution is based on pre-
diction; thus giving the robot a form of “imagination”. The modularity of this
architecture makes it well suited for practical implementation. It can learn new
behaviors without interfering with previously learned behaviors. This learning can
also occur during interaction while previously learned behaviors are active. The
lack of hierarchy might make it difficult to learn actions and goals with a higher
abstraction level. However, this is not discussed in the article, and further study
might show that the architecture can be modified and used hierarchically.
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Chapter 3

RNNPB and PID-controller

3.1 Introduction

In this chapter, the recurrent neural network with parametric bias (RNNPB)
[14, 27, 15] and PID-controller model is discussed. The model is based on the one
in the article by Tani, Ito, Noda and Hoshino, Dynamic and interactive generation
of object handling behaviors by a small humanoid robot using a dynamic neural
network model [21]. In this article, the RNNPB is used along with a PID-
controller to study a robot’s interaction with an object. In the current chapter,
the architecture of the model is only described. In Chapter 5 simulations using
this architecture is presented.

3.2 Architecture

The “RNNPB and PID-controller”-architecture consists of two phases, a training
phase and an interaction phase.

In the training phase (Figure 3.2), the robot’s motors are controlled manually
by a human teacher, while the state in each time step is recorded and stored so
that it can be used later. The state of the robot can be joint angles of arms,
sensor input, and any other values which the robot can read about itself. The
RNNPB is then trained using the stored states of the robot. The output is the
predicted next state. The prediction is compared to the actual next state which
was recorded. The error from this comparison is used for adjusting the weights
and PB values.
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Figure 3.1: Training phase. As we can see, 1) the robot is controlled manually. After
the data has been collected, off line training is done. For each iteration during training,
2) the current state is sent to the RNNPB. The RNNPB tries to 3a) predict the next
sate; while 3b) the actual next state is already known. 4) The error is calculated in
order to update the RNNPB weights and parametric bias.

In the interaction phase (Figure 3.1), the RNNPB’s receives sensor input and the
current state, and outputs the next state. In this case, however, the next state
is not only a prediction, but it is also a desired state. The current state and the
desired state is then sent to the PID-controller, which compares the states and
applies the motor commands which are necessary to achieve the desired change.
How the PID-controller does this is described in Section 3.2.2. Figures 3.1 and
3.2 show models of these phases.

3.2.1 RNNPB

The recurrent neural network with parametric bias (RNNPB) [14, 21, 15, 27]
was explained in my depth study [2]. The RNNPB is an extended version of
the simple recurrent neural network (SRN) [5]. The SRN is a predictive neural
network, which uses context nodes to predict the next pattern in a sequence.
Figure 3.3 shows a simple illustration of the SRN.

The context nodes helps the network recognize change in the context, even
though the input patterns might be the same. Without the context nodes,
the SRN would be a simple backpropagation network. It would not be able to
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Figure 3.2: Interaction phase. The current state is sent to the RNNPB, which predicts
the next state and sends it to the PID. The PID receives the current state from the
robot and the next state from the RNNPB, and sends the command that needs to be
executed to the robot.

Figure 3.3: A simple recurrent network. This is a simple recurrent network during
training. Each new input is obtained from a “correct” data set. During interaction,
the output would have been fed back as the next input.
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distinguish two identical patterns, even though they come in different context. In
other words, the context nodes enable the network to take into account previous
patterns in a sequence.

In the RNNPB, we add the parametric bias (PB) nodes as input along with the
input and contexts nodes. PB nodes usually starts as a small random number,
and are adjusted during training using a similar learning rule as the one for the
weights. The same error that is backpropagatated to the weights is used to
calculate the change in the PB nodes. The goal is that the PB values converge
into one value (or vector) for each sequence. The effect is that we end up with
as many different PB vectors as there is different sequences. Each PB vector will
then be representing a different sequence. Figure 3.4 shows how the nodes are
connected.

Figure 3.4: A model of an RNNPB during training [27]. As we can see, there is an
input and an output. The output is a prediction of the next input. The context nodes
is calculated and fed back for each step, while the PB nodes remains the same for
each sequence. Since this model is for training, “correct” training data is fed as input,
instead of feeding back the output as input, as the case is for the RNNPB during
interaction.

The parametric bias can have several functions. In my depth study [2], we
discussed how it can be used to connect two or more seperate neural networks
together by giving corresponding pattern sequences the same PB values. If one
network was a recognition network and the other was a motor execution network,
we could let the recognition network recognize something and then inversely
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calculate its own PB values. Those PB values could then be used in the motor
execution network to produce the proper motor execution.

This function is with no doubt helpful for imitative learning. As discussed in the
depth study, the RNNPB can be used to connect observation and execution of
primitive motor actions. To learn new actions, the robot would use the RNNPB
to follow a teacher while storing the PB values as it goes along. The sequence
of these PBs will represent a more complex action. Another RNNPB can then
be used to connect this sequence of PBs to a verbal word describing the action.
Thus, the robot learns new actions with corresponding words by imitating.

In my depth study, I did a small simulation showing how the PB values can be
used to connect linguistic sequences with motor sequences. In the current report,
however, I shall look at another function the PB has. In the article by Tani et al
[21], it is stated that the PB nodes work as situated context nodes. While the
“regular” context nodes indicates the sequential context, the PB nodes indicates
the situation. This is due to the nature of the PB nodes. While the input and
context nodes is under continuous change, the PB nodes only changes when the
situation changes. This happens because during training, the PB values converge
into one PB vector for each different pattern sequence (or situation).

To illustrate, I will present a simple example. Let us say that we have an RNNPB
with one input node, one context node, and one PB node. If we have the in-
put sequence [0.1, 0.1, 0.3, 0.5...], the context nodes for this sequence might be
[0.5, 0.2, 0.3, 0.9...] after training. The PB value would have converged to a sin-
gle value for the whole sequence after training, for example [0.1, 0.1, 0.1, 0.1...].
During interaction, the PB value will start by being faulty, but will quickly con-
verge to the proper value. The convergence due to the use of Equations 3.1 to
3.3. The value [0.1] is now indicating the situation. Should there be any small
interference in the input (compared to during training), the PB value will be
slow to change. The slow change helps the system remain stable in one situation
even though the interaction input might have small differences compared to the
training input. Should there be a complete switch to another learned sequence,
the PB will change and stabilize at a different value.

During training, the following learning rule (Equations 3.1, 3.2, and 3.3) is used
for updating the PB values. The same rule is used for inversely calculating the
PB values during the interaction phase.

∆PB = −
∑

hW · (δH · hW · (1 − hW )) (3.1)
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∂PB = PBt−1 + ∆PB (3.2)

PBt =
1

1 + e−∂PB
(3.3)

hW - The weights connected from the input to the hidden layer

δH - The backpropagated error

∆PB - The change of the PB value

∂PB - New PB value before sigmoid function

PBt−1 - Previous PB value

PBt - New PB value after sigmoid function.

The sigmoid function (Equation 3.3) is used to keep the PB values between 0
and 1.

3.2.2 PID-controller

PID is a control algorithm that is often used in industrial control. It is an
algorithm with various parameters which controls a variable in order to achieve
a desired measurement. For example, it may be used in the cruise control of
a car. The current and desired measurements are values for speed, and the
controlled variable is the gas pressure. A PID-controller would give the best gas
pressure in order to achieve the desired speed as fast as possible without “over
shooting”. When the current speed and desired speed are close to each other,
the gas pressure needs to decrease so that the speed does not go beyond the
desired point. Therefore, it is good to use a PID-controller in systems where
delays may occur after the input is changed, before the measurement is changed.

In my experiment, the PID-controller is applied to the motors. The current and
desired measurements are the states of the angles of joints, while the controlled
variable (the output of the PID) is the velocity of each joint. This makes the
PID-controller to work as an inverse model, from Chapter 2.

The parameters that are used in the formula decide the proportional gain, inte-
gral gain and derivative gain. There are several ways to find the near-optimal
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parameters for a PID controller in a given system. Neural networks, genetic
algorithms [26] and tuning algorithms [30] are examples of methods that are ap-
plied to real life PID controllers. Since there already exists much literature about
PID-controllers and parameter tuning [1], I will not go into too much detail on
how the PID controller works or what the parameters represent.

My implementation of the PID controller is quite simple. It is a Java class which
is created using four parameters. To get an output from the PID, a method is
called from the PID object with the error, as well as a desired minimum and
maximum for the output. The output is calculated by Equation 3.4, which is a
discrete version of the PID algorithm [28].

outputt = outputt−1 + P

[
(et − et−1) +

(
S

I
et

)
D

S
(et − 2et−1 + et−2)

]
(3.4)

outputt - Current output

outputt−1 - Output from the previous calculation

P , I, and D - Parameters for proportional, integral, and derivative gain

S - Sampling interval

et - Current error

et−1 and et−2 - Errors from the two last calculations

3.3 Summary

We have now looked at how the “RNNPB and PID-controller”-architecture
works. The structure of the RNNPB was discussed, and we saw how the para-
metric bias can influence a recurrent neural network. The PID-controller is well
known in control theory, and is only briefly described here. The architecture
which we have studied appears to be suited for imitative learning. We can see
that it might work with the hypotheses and conditions that we discussed in Chap-
ter 1. This will be studied more closely during the simulation in Chapter 5, after
we have studied MATLAB and breve in the next chapter.
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Chapter 4

MATLAB and breve

In this chapter, I will describe the process and effort that has been put into
setting up MATLAB and the breve simulation environment for the experiments.
The main goal was to get MATLAB and breve to communicate with each other
properly. This has been largely done by Axel Tidemann and myself, with some
help from Ole-Marius Moe-Helgesen. From previous work, I was fairly familiar
with MATLAB. However, breve was completely new to me, and some time was
spent getting to know the environment and learning the programming language.
In addition, there was no prior interface between MATLAB and breve, nor was
there any clear documentation on how to set up communication between the
two programs. This meant that we had to spend much time doing most of the
groundwork by ourselves.

I will begin by describing MATLAB and breve, and their plugin and communi-
cation capabilities. In Section 4.3 I will describe the possibilities of connecting
the two applications, and the solution we chose. Finally, in Section 4.4, the
interaction between the two programs will be described more closely.

4.1 Mathworks MATLAB

4.1.1 What is MATLAB?

MATLAB is an interactive high-level programming environment that enables the
user to perform mathematical computing tasks faster and easier than with a
traditional programming languages [22]. It is optimized for matrix operations,
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which makes it useful for neural networks.

4.1.2 Plugin Support

Being an interactive programming environment, MATLAB has real good support
for creating own functions. MATLAB’s own scripting language for creating .m-
files is easy to use and requires only basic programming knowledge in order to
use it. However, it is a high-level language which cannot be used for low-level
operations like communication with other programs. Fortunately, MATLAB also
supports both C/C++ and Java. C/C++-files can be compiled inside MATLAB
and used as regular MATLAB functions. Java objects can be used “as they are”,
simply by first defining the path to the files in MATLAB.

The simplicity of creating own plugins, or functions as they are called, enables
us to easily create an interface between MATLAB and another program, pro-
vided that the other program has good plugin capabilities or a good way to
communicate.

4.1.3 Communication Capabilities

We have considered several ways of communication. The simplest form of com-
munication in MATLAB is networking. MATLAB has own features, like urlread,
which reads data from an URL. In addition, custom Java and C functions using
TCP/IP and sockets may be created.

Another way of communication might be writing and reading to a file or a memory
address. The most “proper” way of making MATLAB communicate would be
to recompile the other application as a plugin inside MATLAB. MATLAB would
then run as usual, with the other application as a function or a plugin. However,
this highly depends on the other application. As we shall see in Section 4.3, our
solution is based on a Java class communicating using TCP/IP.
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4.2 breve Simulation Environment

4.2.1 What is breve?

breve [19] is a free open source 3D simulation environment. It lets users create
custom agents in an environment with a realistic physics engine which can sim-
ulate friction, gravity, and collision detection. breve is based on OpenGL, which
makes it possible to make good visualizations of the simulation. The simulation
environment is especially tailored for multi-agent systems and artificial life, which
makes it suitable for biologically inspired learning.

The Structure of a breve Simulation

A breve simulation is written in a language called steve. The language is object
oriented, and it has a different syntax from other “known” languages. In every
simulation, there has to be a controller object which controls the entire simula-
tion. In the breve documentation [19] the controller object is compared to the
main function in C/C++. The controller initiates and starts other objects and
global variables.

The objects in breve might be abstract, like in any other language, or they can
be with a “physical” appearance in the breve simulation world. Like in any other
language, an object can have methods and variables.

When a simulation runs, a method inside the controller superclass Control.tz,
iterate, will be called with a certain time interval. This method makes the
simulation move one step forward. In any object, one can create such an iterate
method. The method will then be called each time there is an iteration in the
superclass. This feature makes it very easy for a programmer to give an object
a certain behavior without having to deal with threads.

The structure of a breve simulation can be studied further in Appendix D.3 or in
the samples that comes with the breve installation.

4.2.2 Plugin Support

Writing plugins for breve is somewhat complicated. The plugin must be written
in C, and so-called “wrapper functions” communicating with a breve class must
be created. After some time testing, we decided that creating a plugin in breve
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was a bit too complicated. We managed to get communication working using
the web-interface feature existing in breve, as will be described later.

4.2.3 Communication Capabilities

As with MATLAB, communication in breve can be done in several ways. Network
communication is the simplest. breve supports networking to another breve client,
as well as networking using a web-interface. The web-interface is the most
relevant to our purpose. By enabling the feature in the code in breve, the
simulator can receive commands from and return values to any web browser. If
an application supports reading web pages, like MATLAB does, this feature can
be used to interact with breve.

The problem, however, is that this feature is not suited for continuous data trans-
fer. Each time the web-interface is used, a network socket is opened and closed.
Unfortunately, the only solution to this is to use breve’s plugin capabilities, and
create an own custom plugin. The plugin would have to enable communication
by opening and closing the network socket only once. This is possible using
standard network socket communication in C.

As we shall see in the next section, we ended up using breve’s own web-interface.

4.3 Connecting MATLAB and breve

As mentioned, the work done connecting MATLAB and breve was mostly done
by Axel Tidemann and myself, with some input from Ole-Marius Moe-Helgesen.
This was a somewhat difficult process, as our initial plan was to make a quite
tight connection between the two programs. Though we ended up with a simple
solution, we spent some time studying other solutions. I will begin by describing
some of the solutions we looked at, before I go into detail with the solution we
ended up with.

4.3.1 breve as a Plugin in MATLAB

The most “proper” solution would be to make breve work as a plugin in MATLAB.
Our idea was that we would be able to start and use the breve engine from within
MATLAB. There is some documentation on how to make an application frontend
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for breve at the breve website [19]. The way this would be done is that we would
make a frontend and recompile the breve code. Once we had this frontend
working, we would need to create an application frontend. This frondend would
have to be running inside MATLAB.

The reason why we abandoned this solution was that it would have required too
much work. After trying to compile the breve source code “as it is” in Linux,
we discovered that the compilation required several extra packages and libraries.
In addition, the documentation on how to create the custom frontends was not
detailed enough, meaning we would probably have ended up spending much time
figuring things out by ourselves.

4.3.2 Communicating through Sockets

One possible solution which we started implementing, but ended up abandoning,
was creating one plugin for breve and one plugin for MATLAB. The idea was that
the plugins could talk to each other while the two programs were running at the
same time. The plugin for breve would be written in C/C++, while the plugin
for MATLAB would be in either C/C++ or Java. The method of communication
would be sockets.

The main problem we encountered with this method was that there was some
difficulty compiling the plugin for breve. Adding libraries for socket communica-
tion made things a bit more complicated. Solving this would probably not be too
difficult, though it would be more time consuming than we imagined. Another
reason why we dropped this solution was that socket programming in C/C++
is platform specific. This meant that not only would we have to recompile the
source for different operating systems, but we would also have to rewrite some
of the code.

4.3.3 Direct Communication

The simplest solution of all would be to use the web-interface that is already
integrated into breve. This feature enables any web client to enter a specific
URL, and invoke methods in breve code. If the method returns a value, this
value is sent back to the web client. MATLAB, in turn, has a function called
urlread. This functions lets MATLAB read the contents of a web page. Thus, we
can simply use MATLAB’s urlread with an address to a method in breve. This
solution requires both breve and MATLAB to be running at the same time.
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The problem with this solution is that it is not very “elegant”. The connection
is opened and closed every time communication occurs. This means that there
will be some unnecessary slowdown and delay.

4.3.4 Our solution - Modified Direct Communication

The solution we ended up with was similar to the one described in the previ-
ous section. During testing, we discovered that the MATLAB function urlread
seemed to have some extra latency. Axel Tidemann did some tests, and found
out that performance could be improved by writing a small Java class that read
the breve URL. Since MATLAB can run Java classes, we decided to use Axel’s
Java class instead of MATLAB’s urlread.

Axel’s Java class is quite simple. As input, it takes two strings and an integer:
the host where breve is located, the method call, and the port number. As
output, it returns the response from the server. In breve, the only thing that has
to be done is enabling networking, and defining the breve controller as a network
server with a port number. All the methods inside the breve controller can then
be invoked using a web-interface, for example Axel’s Java class.

4.4 Interaction between MATLAB and breve

Now that we are able to send method calls to breve from MATLAB, there are
several ways how the two programs can interact with each other.

The most simple way would be to let breve run as usual while MATLAB sends
messages to breve when only when it needs data or needs to give command.
This is the most realistic way. breve would act as the “real world” with a robot,
while MATLAB would be the computer which reads and writes to the real world.
However, there is one problem with this method. The speed of a breve simulation
is not constant on all computers. It highly depends on the system specifications,
and especially the processing power of the computer. This means that if we, for
example, set MATLAB to read motor positions every 0.5 seconds, we would get
a different resolution of the sampling rate depending if the simulation runs on a
slow or a fast computer.

How can we solve this problem? One option is to slow down the iteration steps
in breve. This will make the simulation always run slow, but we still do not
have any guarantee that it will not go slower. So the best solution is to control
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each iteration directly from MATLAB. This ensures that the two programs are
synchronized. By modifying the iterate method in the controller superclass which
we mentioned in section 4.2.1, we can make the whole breve simulation iterate
only when MATLAB sends a specific command. Our solution was simply to
rename the iterate method to manual-iterate. We then created a method in
our simulation controller which calls manual-iterate only when it is invoked from
MATLAB.

Figure 4.1: Here we can see how MATLAB and breve interacts. 1) If MATLAB needs
to give special instructions, for example setting a certain velocity on a robot joint,
or asking for joint orientations, a method call is sent to breve. 2) If MATLAB asked
for data, breve sends back the data right away. 3) Finally, as long as we want the
simulation to continue, MATLAB needs to call the manual-iterate method.
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Chapter 5

Simulation

This simulation is mainly based on an article by Tani, Ito, Noda and Hoshino,
Dynamic and interactive generation of object handling behaviors by a small hu-
manoid robot using a dynamic neural network model [21]. In this article, the
previously discussed RNNPB [14, 27, 15, 2] is used for learning object handling
patterns. However, in my experiment, the focus is on sensory input that can be
used for imitation, rather than sensory input for handling an object. The source
code can be found in Appendix D.

5.1 Simulation Setup

The simulated robot in breve used for this experiment is Axel Tidemann’s Tiny
Dancer. The robot is a simplified human-shaped robot. It has a torso, two legs,
two arms and a head. The legs each consists of three connected rectangular
parts: the upper and lower legs and the foot. Similarly, the arms consists of two
rectangular parts: the upper and lower arms, and one round part: the hand. In
addition, I have added two light sensors on the head.

In this experiment, only the arms and the light sensors are used. The rest of
the body is just there for the visual presentation. To simulate a real human,
the shoulder joints are as defined in breve, “ball joints”. This means that the
shoulders can be manipulated in three different degrees of freedom. The elbow
joints are “revolute joints”, which can be manipulated in one degree of freedom.

The light sensors detect light and outputs values between 0 and 1, depending
on the intensity of the light. In practice, they measure the distance to an object
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Figure 5.1: The simulated robot in breve.

which is a simulated light. The sensors are placed horizontally so that if the light
moves horizontally, one sensor value will be greater than the other. This means
that the robot is only able to sense a horizontal two-dimensional change in the
light’s position. The two axes in the two-dimensional plane is given implicitly
in the sensors; the depth axis by the avarage of the two sensor values, and the
length axis by the proportion of the two sensor values. Figure 5.2 illustrates this.

As was described in Chapter 3, the simulations run in two phases: a training
phase and an interaction phase. In the training phase the data is first collected,
before it is used to train the RNNPB. In the interaction phase the RNNPB keeps
receiving information about the current state, while outputting the next state to
the PID-controller. The PID-controller then sends the necessary commands to
the robot. The data is collected by invoking methods in breve that returns sensor
values and joint angles, while commands are given by invoking methods that set
joint velocities. As described in Chapter 4, those methods can be invoked from
MATLAB.
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Figure 5.2: As we can see here, each “eye” measures the distance to the light. To
calculate the distance from the head to the light (the depth axis), the mean of the
two distances can be taken. To calculate the position of light on the length axis, the
proportion of the two distances can be used. Note that this is not done explicitly in
the simulation. The position is only given implicitly by the two values.
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5.1.1 Simple Pseudo Code

To show how the experiment is set up, a simple pseudo code is set up for each
of the two phases.

Training Phase

1. Main function asks breve for current state.

2. breve returns current state (sensor values and joint angles). The current
state is also stored for later training.

3. Send predefined desired state to main function.

4. Main function finds difference between current and desired states, and send
the error to the PID-controller.

5. The PID-controller calculates and returns the motor command necessary
to go to decrease the error.

6. Main function sends motor command to breve.

7. breve executes command.

8. Return to 1. until all predefined desired states have been achieved.

9. Use stored states to train the RNNPB.

Interaction Phase

1. Main function asks breve for current state.

2. breve returns current state (sensor values and joint angles).

3. Main function sends current state to RNNPB.

4. RNNPB calculates the next desired state and sends it to the main function.

5. Main function finds difference between current and desired states, and send
the error to the PID-controller.

6. The PID-controller calculates and returns the motor command necessary
to go to decrease the error.
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7. Main function sends motor command to breve.

8. breve executes command.

9. Return to 1.

Illustration of the Experiment Setup

Figures 5.3 and 5.4 illustrates the experiment setup. As we can see, MATLAB
components are colored blue, Java classes are colored green, and breve compo-
nents are colored light orange/red.

Figure 5.3: The PID-controller receives the error (difference) between the predefined
desired state and the current state, and sends a motor command back to the main
function. The motor command is then passed on to breve and executed. breve sends
back the current state (both the sensor values detecting the light ball and the robot’s
angles). The current state is then compared to the next desired state, and the new
error is sent to the PID-controller. The main function stores the current state for each
time step. This data is then used to train the RNNPB.
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5.1. SIMULATION SETUP

Figure 5.4: The RNNPB receives the current state and predicts the next desired
state. An error between the current and desired states is calculated and sent to the
PID-controller, which returns a motor command. The motor command is sent to breve,
which executes it. breve sends the current state (both the sensor values detecting the
light ball and the robot’s angles), which is used by the RNNPB for deciding the next
desired state.
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5.2 The Experiments

During the simulations of the RNNPB with the PID-controller, several different
experiments have been done. The variations of the experiments were in number
of input sequences, number of joints used, and different kinds of sequences.
During the simulations, interaction with the outside world (the light ball) was
an important part. This was important, since the results of these experiments
would show how the RNNPB works and how it can be used for imitative learning.
Appendix C shows the list of simulations with corresponding filenames for videos
showing the simulations.

The training data for each sequence was obtained by preprogramming the PID-
controller to move the robot’s joints into certain goal states, while MATLAB
recorded all the angles and sensor input.

5.2.1 Simulation 1: Separate Arm Movement

Setup

In the first simulation a very simple form of “imitation” is learned. When the light
ball is moved to the side of the robot, the robot should move the corresponding
arm up. If the ball moves right, the right arm should move, and if the ball moves
left, the left arm should move. If the ball is moved to the center, any arm that
is raised should move down. Figure 5.5 shows hows the robot lifting its arm.

For this simulation, 25 time steps is used for each sequence (movement). 4
sequences are taught during the training phase: 2 sequences for lifting each arm
while the light ball is moved to the sides, and 2 sequences for lowering each arm
while the ball is moved to the center. One aim of this experiment is to see that
the PB vectors converge differently for each sequence. Of course, another goal
for this experiment is to see that during interaction the robot responds to the
ball’s position and movement the same way as during training. It is important to
see that the RNNPB indeed works as it should with more “realistic” sequences
than in the simpler experiment in my depth study [2]. As was mentioned in
Chapter 1.1, this is one of the conditions that should be met in order to have
successful imitation. The RNNPB should be able to interact with the outer
world.

Before the training, the PID-controller is preprogrammed to raise and lower each
arm, by giving it a list of desired angles it should be in. Because the PID-controller
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Figure 5.5: As we can see, the robot is lifting up the arm when the ball is placed on
the side. For movies showing the robot performing this action see Appendices C.1 and
C.2.

is an inverse model, it will move the robot’s arms into the desired angles. At the
same time MATLAB records the state (angles and sensor input) in each time
step. The light ball is controlled manually with the mouse by using the select
feature in the breve GUI. An alternative would have been to program the ball’s
trajectory. There are several reasons why manual mouse control was chosen.
Firstly, it is easier to move the ball to the desired position. Secondly, controlling
the ball by hand gives a more realistic and noisy data set. It is a known fact that
noise can improve a neural network’s generalization abilities [12].

After the recording of the states is done, training of the RNNPB is performed.
Afterward, during interaction, the PID-controller receives the desired states from
the RNNPB. The RNNPB uses the current state (angles and sensor input), and
outputs the predicted next state to the PID-controller, as explained in Chapter
3.2.1 and Figure 3.2. Again, the light ball is controlled by mouse. The idea is
that there should be a certain level of noise.

Results

Several trials with slight variations where done with this experiment in order to
find good parameters for learning rates, number of nodes, ect. The best results
were achieved using 10 hidden nodes, 20 context nodes, and 3 PB nodes. A
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learning rate and momentum of 0.002 and 0.8 were used for the weights, and a
learning rate of 0.002 was used for the PB nodes. In addition, only 2 joint angles
in each arm is used for this experiment: the elbow joint, and one axis in the
shoulder joint. This brings the total number of input nodes to 29 (4 joint angles
+ 2 light sensor values + 3 PB nodes + 20 context nodes = 29). One training
session takes around 30 minutes, depending on the load on the computer.

After training, during the interaction phase, the robot is able to lift the correct
arm when the ball is moved to one of the sides. It keeps the arm up as long as
the ball is there. When the ball is moved to the center, the arm is lowered again.
It is important to note that the network seemed to generalize the ball’s position
in addition to the ball’s movement. Had it only captured the movement and
not the position, the arms would have been lowered whenever the ball stopped
moving, not matter what the position was. In the next simulation, in Section
5.2.2, the goal is to capture only movement.

Several interesting facts were discovered during the current simulation. Before
the experiment, it was expected that each individual sensor’s strength and the
proportion between the two sensors’ values would affect the output of the RNNPB
more or less equally. In the current experiment, however, it was discovered that
it was the proportion between the two sensor values that matters most. 1

This was discovered by the fact that during interaction, the ball had to be placed
closer to the robot’s head in order to see any effect from movement and position.
At first, a difference in the sensor scaling during training and interaction was
thought to be the reason for this. But after ensuring that the sensor values was
approximately the same, the ball still needed to be closed to the head during
interaction. This is due to the fact that the network seemed to learn to mostly
use the proportion of the two sensor values, rather than the values themselves.
When the ball is closer to the head, movement and position are more easily
detected as the relative distance between the two sensors becomes larger. In
other words, the proportion changes more dramatically. This is the same as with
human eyes. The closer an object is, the smaller the movement has to be in
order for it to be detected.

Even after several trainings and adjustment of parameters, the results are not
always perfect. There is especially one particular error which seems to be con-
sistent, though in different degrees over several trainings. During interaction,
sometimes one arm is raised when the ball is far away from the sensors, though
still in the middle. The same happens when the ball is removed completely from

1It should be noted that the proportion is not calculated and given explicitly. The proportion
mentioned is only given implicitly by the two different sensor values.
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the view of the robot.

Several things may be the cause of the error described above. Though after
studying the PB values, it can be concluded that the reason this happens is
simply because there is no specific sequence where the ball is still in the middle.
The information is only given implicitly by lowering the arms when the ball is
moved toward the center. Of course, one solution would be to train the network
with one more sequence: keeping the arms lowered while the ball is still. I feel,
however, that this would be “cheating”, as the network should be able to use
the implicit information.

PB Analysis

Studying the PB values reveals that the two sequences for lowering the arms is
perhaps not learned properly. While the PB values for raising the arms seems to
converge into stable vectors, the PB values for lowering the arms is somewhat
unstable. In other words, they do not seem to converge as easily. After training,
these are the resulting PB vectors:

Raising right arm [1 0 1]

Lowering right arm [0.59 0.47 1]

Raising left arm [0 0 0]

Lowering left arm [0 1 0.31]

Further, we can examine the plot in Figure 5.6. As we can see, the values for
raising the arms seems to “firmly” converge into 0s and 1s. The values for
lowering the arms, seems to settle into values in the middle. However, as we
can see on the plot, the values do converge into values that “makes sense”. The
points can easily be separated into two groups; one group for each arm, and one
group for each action. Of course, this could purely be a coincidence, but similar
PB values were obtained after several training runs. Another point is that Tani
et al [21] mentions that when there are certain common characteristics among
the training patterns, the PB space tends to reflect that. When the RNNPB can
not find any common characteristics, the PB space can be distorted and seem
random [21]. Comparing this to the current simulation, it shows that my results
may not be merely a coincidence.
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Figure 5.6: This is a plot of the PB values for this simulation. The two last values
in each PB vector is plotted against each other. As we can see, an interesting feature
appears. The values for raising an arm is in the lower X-axis, while the values for
lowering is higher. On the Y-axis, we can see that the values for the left arm are high,
while the values for the low arm are low. This suggests that during training, the PB
values is distributed in such a separable manner.
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Summary

The results in this simulation show that at least the two first conditions from
our main hypothesis Chapter 1.1 are met. The RNNPB is able to learn patterns
(actions) and reproduce them. It is also able use outside information, the position
of the light ball, to determine which action to execute. Tani’s claims which we
discussed in Section 1.1 also seems to hold. Different PB values is selected for
different situations. The PB values can thus indicate which situation the robot
is currently in. In addition common characteristics in different patterns appear
to be found and represented in the PB space. However, the third condition for
the main hypothesis is not met. Only the position of the ball was learned, rather
than sequences of positions. This means that the RNNPB was not able to learn
to associate movement with action.

The results of this experiment appears to be promising. All but one of the
conditions are satisfied, and the two claims by Tani seem to be holding.

5.2.2 Simulation 2: Capturing Movement

Setup

In this simulation, the focus is on capturing the movement of the light ball rather
than the position, as turned out to be the case in the first simulation. This is
the third condition in the main hypothesis from Chapter 1.1. The robot should
learn to act based on a sequence of states (joint angles and sensor values).

In this experiment, instead of moving the arms separately, both arms are raised
when the ball is moving and lowered when the ball is still. Thus, the biggest
difference from the first simulation is that the arms are raised only when the
ball moves. The reason why both arms are raised simultaneously, no matter
which direction the ball moves in, is so that features in the PB values for move-
ment might appear without interference from features discussed in the previous
simulation.

For this simulation, 40 time steps is used for each sequence. 3 sequences are
used: 1 sequence where the ball is moving, and 2 sequences where the ball is
still. In the first sequence, the ball is moving fast back and forth (sideways) while
both arms are being raised. In the second sequence, the ball is stopped while
both arms are being lowered. Finally, in the third sequence, the ball is still and
the arms are in a lowered position. Even though the main goal of this simulation
is to capture movement, it is also important to study the convergence of the PB

47



5.2. THE EXPERIMENTS

Figure 5.7: The robot is lifting up both arms when the ball is moving. For movies
showing the robot performing this see Appendices C.3 and C.4.

values.

The same procedure as for the previous simulation is followed for training and
interaction. Before training, the PID controller is programmed to raise both
arms at once and then lower them. The light ball is controlled manually using
the select feature in the breve GUI and mouse control. MATLAB is recording
states. After using the data to train the RNNPB, the robot can be interacted
with by controlling the ball manually. The trained RNNPB gets “control” of the
PID-controller, feeding it with a desired state for each iteration.

Results

In this experiment, a considerable amount of time was spent training the RNNPB
and tuning parameters. Even after much time spent, it is still difficult to get a
“good” training. For the sequential properties to be learned, a great deal of effort
is required to find the correct parameters. One problem is that each training takes
about 30 minutes, which makes it time consuming to do small changes in the
parameters and rerun training.

The best results for this simulation were achieved using 10 hidden nodes, 20
context nodes, and 2 PB nodes. Learning rate and momentum was 0.002 and 0.8
for the weights, and a learning rate of 0.002 was used for the PB nodes. As with
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the first simulation, only 2 joint angles in each arm is used for this experiment:
the elbow joint, and one axis in the shoulder joint. The total number of input
nodes is 28 (4 joint angles + 2 light sensor values +3 PB nodes + 20 context
nodes = 29). In interaction phase after training, the robot is not always doing
as it was trained to. There is a sense of randomness of what the robot does.
However, after several trials with different parameters for training, some common
traits are discovered. The goal is that the robot should raise the arms when the
ball is moving and lower them when the ball is still. This appears to be working
only when the ball is moving to and from certain positions. For example, on some
occasions the arms are only raised when the ball is moving back and forth at one
side of the robot. The arms remains lowered if the ball is moved on the other
side. Appendix C.4 refers to the movie file showing the robot in interaction. As
the movie shows, when there is a reaction from the robot, it is quite weak.

In the first simulation it was discovered that the proportion of the two sensor
values affects the output more than the sensor values themselves. This appears
to be true for this simulation as well. As with the first simulation, when the ball
is closer to the head, moving the ball generates a more dramatic change than
when the ball is far away. It should be mentioned that the achieved change is not
always the desired change. The robot’s behavior is quite unstable, and sometimes
only one arm is raised; this is an action that was not introduced during training.
It appears that the third condition from Chapter 1.1 does not hold; at least not
fully.

PB analysis

Looking at the PB values after training in this simulation, we notice something
quite interesting. These are the PB values after a “good” training:

Raising both arms (ball moving) [1 0.36 0.05]

Lowering both arms (ball still) [0 1 0.61]

Arms lowered (ball still) [0 0 0.69]

Now, after seeing those values, it is quite tempting to claim that the PB space
appears to capture the common characteristics of the patterns. Let us speculate
on what the PB value might mean.

It appears that the first and third values (in each vector) represents the perception
of the ball. In the first pattern, the ball is moving and the values are 1 and 0.05.
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In the two other patterns, the ball is still and the values are 0 and around 0.65.
As we can see, the ball moving and being still are two opposite perceptions, and
thus they have values far from each other. Similarly, the second values in each
vector appears to represent the movement of the arms. In the first pattern, the
arms starts lowered and are raised. The value for this is 0.36. In the second
pattern, the arms are lowered down from a raised position. The PB value for
this action has converged to 1. Finally, in the third pattern, the arms are not
moving at all, and the converged value is 0. We have three different actions, and
we get three different values. This is an initial speculation based on just looking
at the PB vectors. Looking at the plots in Figure 5.8, we can see the common
characteristics more closely.

Of course, this analysis of the PB vectors is pure speculation. It is easy to look
at the PB vectors and draw conclusions based on seemingly common features.
However, the fact that the PB values do not appear to be completely random,
might be an indication that common characteristics are indeed captured in the
PB space. Though as long as there is no direct proof, we can only theorize what
the PB values mean.

Summary

The results in this simulation are a bit unclear. The goal was to test the third
condition from Chapter 1.1 and see if the RNNPB managed to learn to detect
different sequences. The results during interaction is too unstable, and we can
conclude that the condition does not hold in this experiment. In theory, the
sequence of changing sensor values should change the PB values, which in turn
would generate a change of action. It appears, though, that the effect of con-
stantly changing sensor values is too weak to induce a change in the PB vectors.
It may be assumed that the reason why the results in the experiment are so
unstable is that further tweaking of the parameters should be done.

Tani’s claims about PB vectors seem to hold. Each pattern (or situation) gets
its own unique PB vector. In addition, it appears that common characteristics
are reflected in the PB space. Of course, the latter is only an observation that
cannot be proved.

Though this experiment was less successful than the first, some interesting PB
values were discovered. The condition we wanted to test did not hold. As
mentioned, however, correct behavior appears occasionally, and my theory is
that correct parameters for training the RNNPB needs to be found.
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Figure 5.8: All three values in the vector for each pattern are plotted against each
others. a) First value plotted against second value. As we can see, the two patterns
where the ball is still is clustered together far from the pattern where the ball moves.
This might mean that the first and third values contains most of the information about
the perception of the ball. b) First value plotted against third value. In this plot, we
can see that all the patterns are far from each other. However, the PB vectors for
patterns where the ball is still is closer to each other (on the X-axis). This corresponds
with our theory that at least the first value represents the perception of the ball. c)
Second value plotted against third value. In this plot too, all the patterns are far from
each other. But if we look more closely, well notice that the PB vectors for raising and
lowering the arms are closer to each other, while the vector where the arms are still is
further away. Perhaps this plot shows how much movement there is in the arms.
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5.2.3 Other Simulations

The two simulations described in the previous sections where the two simulations
I spent most time setting up and analyzing. A few other experiments were done in
addition. However, because finding good training parameters is a time consuming
process, only a quick review has been done for the following experiments. In the
end of this section, a few general observations have been made.

Movement without a light ball

Some early tests were done without the light ball. This was to verify that the
RNNPB managed to learn sequences. Simple tests were done without thorough
testing. Generally these tests were successful, though only simple sequences were
tried. This showed that the first condition for the hypothesis from Chapter 1.1
holds.

Separate Arm Movement with Always Moving Ball

A variation of “Simulation 1” were done. Instead of stopping the ball when the
arms are still, the ball was moved slightly back and forth in the middle. The aim
was to keep the proportion of the two sensor values constant, while the value
strengths varied. This was to verify the discovery about the proportion being
more important in the first simulation.

As expected, the results for this simulation was very similar to the ones in “Sim-
ulation 1”. There was a slight less success rate during interaction, though this
might due to the fact that the exact same training parameters as for the first
simulation was used. A few tweaks might have made interaction more successful.

Capturing Movement 2

This was an extended version of the second simulation. However, instead of
using only three patterns, four patterns were used:

Pattern 1 Ball moving back and forth, while arms being raised

Pattern 2 Ball still in the middle, while arms being lowered

Pattern 3 Ball still at the left side, while arms lowered
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Pattern 4 Ball still at the right side, while arms lowered

The idea was that the RNNPB would be trained to lower the arms no matter
where the ball was, as long as it was not moving. However, this did not work
too well during interaction. The arms ended up being lowered at all times, even
when the ball was moving. The RNNPB seemed to generalize everything into
lowering the arms. A solution to this might be finding better training parameters;
for example increasing the number of hidden nodes.

Observations

During the simulations, a few general observations are worth noting. These are
only observations, and it can not be proved that they will always occur.

� Situations which are dependent on a single state, for example the position
of the light ball, are easily recognized during interaction.

� Generally, the PB vectors always converge into different values for each
situation.

� Very often, the PB values “makes sense”. Patterns with common charac-
teristics get PB vectors that reflects this.

5.3 Summary and Discussion

Looking back at the goals in Chapter 1.1, a conclusion can be made that the
conditions in the main hypothesis partially hold. Clearly, the first condition holds
in all experiments. The robot manages to learn to reproduce sequences in both
of the discussed simulations, as well as in additional “test simulations”. The
second condition also holds, as the robot’s behavior can always be affected by
sensor input. However, the third condition does not fully hold. In the second
simulation, the goal was to specifically test this condition. The results showed
that the robot is successful only occasionally. It appears to be very difficult to
get the robot to learn to recognize a sequence of perceptions.

It was expected that two first conditions in the hypothesis from Chapter 1.1 would
hold. These are general features that are expected to be present in any simple
recurrent neural network (SRN). However, the third condition is not necessarily
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expected to hold in an SRN. The SRN is supposed to reproduce sequences,
though not necessarily recognize sequences. It was hoped that the RNNPB would
be able to so. In theory, the PB vectors will change when a sequence of changing
sensor values is introduced, which again will generate a change of action. As we
can see in Appendix C.4, the robot responds weakly to the movement of the ball.

There might be several reasons why the changing sensor values are not properly
inducing a change in the PB vectors. As mentioned, it might simply be that the
training parameters (number of nodes, learning rates, ect) need to be tweaked
further. However, there might be another reason. During my depth study, it
was discovered that on some occasions, the inverse calculation of the PB vectors
during interaction failed. This happened even if the PB vectors had properly
converged during training. This error might be reappearing here. The features
in the two first conditions are not very dependent on the PB vectors, as they are
general SRN features. The feature in the third condition, on the other and, is
dependent on the PB vectors. This makes “Simulation 2” more easily affected
by a faulty inverse PB calculation. The solution to this problem might simply be
in tweaking the training parameters further, or it might be to review the formula
for PB (inverse) calculations.

When looking at the two claims by Tani presented in Chapter 1.1, we can say
that they appear to be holding. The first claim is an expected feature. In fact, it
is the main feature of the RNNPB. During training, the PB vectors are supposed
to converge differently for each situation (or pattern), so that they may be used
to reproduce corresponding patterns later. The second claim, on the other hand,
is more of an interesting observation rather than a useful feature. Common
characteristics appear to be reflected in the PB space. This cannot be properly
proved, other than observing numerous occurrences. However, more thorough
tests can be done than the ones done in this project. For example, one could
introduce more patterns with combinations of common characteristics, and see if
they are reflected in the PB space as one would expect. This might be considered
for any future research done with the RNNPB.

All in all, the simulations have yielded some interesting results. The main hy-
pothesis does not currently hold fully. However, it appears that the problem with
the third condition may be solved with more work. Therefore, my opinion is
that RNNPB certainly does hold a great potential for imitative learning. The
RNNPB is difficult to train properly though, and it probably needs much work
and research before true imitative learning can be implemented with it.
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Chapter 6

Comparison between the Forward
and Inverse Models and the
RNNPB architecture

In this chapter, a comparison between the two models is made. The training of
each is done in different ways. Both architectures consists of similar components,
though connected differently. In the comparison, it is assumed that some or most
of the components in each model is neural networks.

6.1 Training

One clear difference between is the training and interaction phases. The training
of the forward and inverse model has to happen on line during the interaction,
while the training of the RNNPB can be done after the data has been collected
in a training phase. This poses some challenges for training forward and inverse
models, as the training of the neural networks occurs while the data is being
collected. Training becomes quite time consuming, especially if one is using a
real robot which moves in real time. In the case of using a robot simulator,
the simulation might be sped up in order to collect data faster. However, the
simulator usually needs to process information, which will still lead to long training
times. In addition, the forward and inverse architecture makes the robot “try out”
different actions while training; something which also leads to long training time.

The RNNPB model, on the other hand, is different. The data for the actions that
are to be learned is first recorded during a simulation. Afterward, the RNNPB is
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trained off line. This means that the neural network can be trained without having
to interact with the robot (or the robot simulator). Of course this cuts down
training time considerably. As a comparison, we can look at Axel Tidemann’s
forward and inverse implementation, and my own RNNPB implementation. While
Axel’s implementation uses many hours for each training, my own uses around
30 minutes. Of course, there are differences in the implementations. Axel’s
implementation uses a set of many smaller neural networks, while my own is one
large neural network (the RNNPB). However, the difference in the training times
gives an indication on how different they are.

There is a great advantage with the training method of the multiple paired
forward and inverse models: new actions can be learned during interaction. All
that is needed is adding another paired forward and inverse model. Only this new
“module” need to be trained to handle the new action. The RNNPB, however,
has to be taken off line. Data for the new action has to be added, before the
whole network has to be retrained. This obviously makes the forward and inverse
model more modular than the RNNPB.

6.2 Architectural Comparison

As we have established, the RNNPB has two phases; the training phase and the
interaction phase. The forward and inverse model is trained during interaction,
and makes no distinction between the two phases. In order for the comparison
to make most sense, it is the interaction phase architecture from the RNNPB
that will be compare to the forward inverse model.

If we begin by looking at the similarities in Figure 2.1 and Figure 3.2, we can see
that they share very similar components. The “robot”-component is practically
identical; the robot always receives some motor command, and it always outputs
the current state. Having previously studied the other components, we know
that the inverse model and the PID are also identical components. In fact, a PID
can be used an inverse model and vica versa. The input is a current state and a
desired state, and the output is the command necessary to achieve the change.
This leaves us with the forward model and the RNNPB. Those components are
similar in some ways. Both can predict. The forward model can be an RNN, and
the RNNPB is an extended RNN.

The main difference between the two, however, is that the forward model uses
the command from the inverse model and the current state to predict what the
next state will be. It is like saying: This is the current state, and this is the
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command I am applying. What will the consequences be? The RNNPB on the
other hand, only takes as input the current state, and outputs the prediction of
what the next state will be. Instead of using the applied command, it obtains
the predicted state by implicitly looking at previous states. In addition, the
parametric bias helps it “keep in mind” which action it is currently performing.

Of course, a great difference of the overall architectures, is that the forward and
inverse architecture needs one pair of forward and inverse model for each action,
the while the RNNPB architecture requires only one neural network.

It is also important to note how the two models differs in what they are applied
to. The forward and inverse model is for predicting consequences of actions. In
the case of the experiments we have studied, this has largely been own motor
commands. In the RNNPB model, the focus is on making an A.I. that interacts
with outside objects. Even though both models are well suited for imitative
learning, and are emulators of mirror neurons, they have different approaches to
the problem.

6.3 Summary and Discussion

As we have seen, one of the main differences of the two architectures is that
the RNNPB is split in two, a training phase and an interaction phase, while
the multiple paired forward and inverse models can interact while learning. The
components in the two architectures are quite similar. They are built differently
though. In addition, the RNNPB architecture is much less modular. It consists
of only one large neural network for all the behaviors, in addition to the PID-
controller. The multiple paired forward and inverse models on the other hand, is
built of a set of modules that each can handle one behavior.

The overall difference between the two architectures though, is that the RNNPB
is simply a predictor of sequences of states. In addition, the PB vectors gives it
the ability to indicate which behavior (or situation) it is currently in. The forward
and inverse model, on the other hand, is a predictor that looks at consequences of
commands applied to a current state. Of course, the behavior which the forward
and inverse model is currently in can easily be found by seeing which module is
active.

It is difficult to say which of the two models are the best emulator of mirror
neurons. It can be said though, that the forward and inverse model has a higher
level of cognition, as it can predict consequences of actions applied to a state
/ situation. However, it may be possible to let the RNNPB include actions (or
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commands) in its input, making it a predictor of consequences as well. This has
not been tested in this project though. The RNNPB also seems to have the
ability to generalize and represent common characteristics between patterns in
the PB vectors. If this is true, then a form of internal representation is made
and connected to a “symbol” (the PB vector). This may perhaps be a route to
solve or avoid the symbol grounding problem.

Both architectures should be studied and developed further. It appears that
both can be used as emulators of mirror neurons. Both have the ability to
predict or “imagine” sequences of states. It will be interesting to see how the
development continues in the future, and if true imitation is achieved using one
of the architectures.
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Chapter 7

Program Documentation

In this chapter, the source code is documented. In the first section there is a
short description of each file. In the second section diagrams show how the files
are connected to each other.

7.1 File Description

In this section, a short description of each file is done. The next section will
illustrate how the files are connected to each other. The files that has a filename
containing a # are scripts specific for one simulation. The # stands for the
number of the simulation.

7.1.1 MATLAB Files

rnnpb.m

Function for constructing an neural network with parametric bias (RNNPB).
As input, this file receives variables that specify size and learning rates for the
network. The file returns an RNNPB with one hidden layer.
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rnnpb activate.m

This function is for activating an RNNPB. Activation means that a pattern is
sent through the network. The final layer of the network is the output that
the network produces based on the received pattern. The activation function
receives the RNNPB, the input pattern, and the PB vector as input. It returns
the activated network.

rnnpb train.m

Function for updating the weights and PB vectors in an RNNPB (for one it-
eration). The input for this function is the RNNPB, the error (desired state -
current state), and the number of the pattern. The number of the patterns tells
where the pattern is located in the input layer of the network. This is so that
the correct PB vector is updated.

run training.m

Function for running a whole training. This function basically creates a new
RNNPB and runs rnnpb train.m in a number of iterations. As input, it receives
the variable containing the patterns to be learned, the size of the network, learning
rate, and the number of epochs. It returns a fully trained RNNPB.

trainSim#.m

This file is a script for starting run training.m for a specific simulation. In this
script, the size, learning rate and number of epochs can be set.

scaleSim#.m

This file is a script for scaling down the data variables recorded from breve for a
specific simulation.
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7.1. FILE DESCRIPTION

runSequencesSimulation#.m

Script for recording data for specific simulation. This a “preprogram” that tells
the PID-controller how to move the arms. Simultaneously, the user must control
the light ball in breve.

oneSequence.m

This function is for running one preprogrammed sequence. As input, it receives
the goal state (joint angles), and the number of time steps it should go on. It
then uses the PID-controller to move the joints in the direction of the goal for
the number of defined steps. As output, it returns a data variable containing a
recording of the states (sensor values and joint angles) in each time step.

run trained rnnpb.m

This script runs iterates breve using a trained RNNPB for 500 iterations.

7.1.2 Java Files

Breve.java

This class is created by Axel Tidemann, and is for communication between MAT-
LAB and breve. As input, it takes the host (IP address where breve is running),
port number, and the message to be sent to breve. As output, it returns the
response from breve.

PID.java

This class works as a discrete PID-controller, based on the formula in Chapter
3.2.2. When constructed, it receives the parameters that defines how the PID-
controller should act. The class also contains a method called getNewVelocity.
This method gets the error as input, and returns the velocity needed to decrease
the error.
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7.2. DIAGRAMS

7.1.3 breve Files

Tiny Dancer.tz

This file is the file that runs in breve for my simulations. Builds the robot, controls
the joints, and is able to return all necessary data. The file was originally created
by Axel Tidemann, though this version contains modifications to suit my own
project. The biggest modifications are the way breve is iterated, and the light
ball along with the light sensors.

7.2 Diagrams

We have now seen what each file does. However, in order for it to make more
sense two diagrams showing how the files are connected to each others. Figure
7.1 is for the training phase, and Figure 7.2 is for the interaction phase.

Figure 7.1: Here we can see how the files for the training phase are connected to each
other. The training process is in two parts. First the data needs to be collected using
a script that tells the robot how to move. Then the collected data may be used to
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Figure 7.2: Diagram showing the relationship between the files during interaction.
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Chapter 8

Conclusion

The initial goal of this project was to connect MATLAB and breve, and to do
simulations within the field of imitative learning. However, more work was done
beside those two main tasks.

I started by defining the main goals and introducing imitative learning and mirror
neurons. I then continued to describe two promising architectures for learning
motor behavior: multiple paired forward and inverse models, and the recurrent
neural network with parametric bias (RNNPB). One of the greatest features of
the former is modularity using a hierarchical or parallel approach. On the other
hand, the RNNPB is capable of using the PB vectors to distinguish learned
sequences.

Connecting MATLAB and breve was also a big part of the project. This was
mainly done in cooperation with Axel Tidemann, with some input from Ole-
Maruis Moe-Helgesen. After some work, we decided to go for a simple solution,
and ended up using breve’s web-interface, along with a custom Java communi-
cation class for MATLAB.

Simulations were done using the RNNPB and a PID-controller, and quite inter-
esting results were achieved. The first of the two main simulations was successful,
while the other had mixed results. Both, however, gave quite interesting results.
In particular, common characteristics of patterns appear to be reflected in the
PB space.

As for the goals that was discussed in Chapter 1.1, they have been largely
achieved. A successful connection between MATLAB and breve is made, and
I did some simulations testing our hypothesis on the RNNPB. However, more
work seems to be necessary to completely verify if the hypothesis holds. Future
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work with the RNNPB should certainly include simulations where recognition of
movement is central.

More comparison between the forward and inverse model and the RNNPB is also
necessary. Perhaps identical simulations can be run on both architectures to see
which performs best. Other work with the two models could include making a
new architecture using elements from both. It would be very interesting to see
an architecture that can share the advantages from both models.

All in all, this has been a quite interesting project. I learned a lot about the two
discussed architectures. Connecting MATLAB and breve also gave a technical
aspect to the project. Finally, it was very interesting to run simulations and
“interact” with a robot using an RNNPB.
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Appendix A

Terminology

This is a short description of some of the usual terms within imitative learning.
This is a direct copy from my depth study [2].

Imitation To copy an action by observing how someone else is doing the action.
This action may simply be an action, or it might also be something more
goal-oriented.

Goal emulation [3] To produce the same results as the teacher by observation.
This is especially applicable if machine that is being taught has a different
form than the teacher. For example, a human that teaches a robot that
only has an arm with two joints.

Learning to imitate A problem with machine imitation is to let the machine
know what it is supposed to imitate. The machine has to know what
and who it is supposed to learn from. If the imitation is based on visual
information, a suggestion is to use a special color on whatever the robot is
supposed to follow. However, there is still the problem of making it know
that it is supposed to follow. Also, there is a problem of deciding which
stimuli are relevant [8].

Learning by imitation To learn to perform an action or reaching goals by ob-
serving someone else. The essence of learning by imitation is that the robot
should have only a basic system of primitives in the bottom, and that all
new actions and goal-reaching abilities are learned by having someone show
the robot how to put those primitive parts together. There are many ad-
vantages to this kind of learning. Humans can show a robot how to do
something, instead of programming it manually. Also, teaching between
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robots might be useful. Copying one robot’s program to another is difficult
if the robots differs from each other [8].

Prediction In research, many of the proposed architectures utilize prediction in
order to have the robot properly imitate. For example, Demiris and Hayes
[9] uses a forward model that predicts the next state of the robot. This
state is then compared to the demonstrators next state, and an error value
is generated. This error value can then be used to correct the prediction
of the next state. The result is that after learning, the robot will be able
to “imagine” movements by prediction, without having to actually see the
demonstrator do the whole movement. Parisi [24] explains that prediction
is an important prerequisite for reaching a higher level of cognition. Demiris
and Hayes talks about active imitation, where the imitator uses prediction
to “understand” the actions.
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Appendix B

Running the Simulations

Instructions on how to run simulations is listed here. It is assumed that the reader
has some experience with MATLAB. In addition the reader must download and
install breve. A link is provided in [19]. Since the work on the simulation started,
a new version of breve has been released. The files has not been tested properly
on the new version, and it is recommended that breve 2.3 is used.

It must be noted that testing the simulation on Windows gave poor results. breve
uses too much processing power, and Windows is not able to share the resources
properly. A brief test has been done on Mac OSX, where results was better.
However, for the simulations to run most smoothly, they should be run on Linux.
The Ubuntu [6] distribution works well.

B.1 Readying breve and MATLAB

The first thing that needs to be done is making breve and MATLAB ready.

breve

1. Copy the file Control.tz from /breveFiles to your own breve classes folder,
usually breveIDE2.3/lib/classes.

2. Start up breve, and open the file Tiny Dancer.tz.

3. Press the play button in breve’s GUI to start the simulation.
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B.2. USING TRAINED WEIGHTS

MATLAB

1. Start up MATLAB.

2. Run the command ‘‘javaaddpath <javapath> ’’, where <javapath>

is the path where the Java file for this project is located.

B.2 Using Trained Weights

Along with the source code, I have included two files containing MATLAB
workspaces. Those to files contains trained RNNPBs and can be used for in-
teraction right away.

1. Make sure MATLAB and breve is running by following the instruction
above.

2. In MATLAB, open the file sim1.mat or sim2.mat (depending on which
simulation you want to use). When asked, confirm that all variables should
be imported.

3. In MATLAB open and run the scrip run trained rnnpb.m.

4. If you switch to breve, the robot should now be starting to move. Press
the Select-button, and select the light ball. You can now move the light
ball as you wish. Use the Rotate and Zoom buttons to get a better view.

B.3 Recording Actions

To record the actions for the simulations, the following must be done.

1. Make sure MATLAB and breve is set up correctly.

2. In MATLAB, open the script runSequencesSimulation1.m or runSequen-
cesSimulation2.m (depending on which simulation you want to use).

3. Press run. The robot will start moving in breve in 2 seconds.

4. If you switch to breve, the robot should now be starting to move. Press
the Select-button, and select the light ball. You can now move the light
ball as you wish. Use the Rotate and Zoom buttons to get a better view.
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B.4. TRAINING THE RNNPB

5. When the recording is done, the sensor values needs to be scaled. To do
so, you must examine the recorded variables (refer to the script you opened
in 2. to see the names of the data matrices). The two first columns are the
sensor values. You must chose a scaling value (that will divide the sensor
values) that makes sure no value is above 1.

6. Open scaleSim1.m or scaleSim2.m and enter the scaling value where it is
appropriate. A “sensible” value has already been chosen, but you need to
make sure that the value will scale all sensor values to be below 1.

7. Run the script scaleSim1.m or scaleSim2.m.

B.4 Training the RNNPB

We now have a data set which we can train our RNNPB on.

1. Make sure that none of the sensor values (first two columns) in the data
matrices are between 0 and 1.

2. Open the script trainSim1.m or trainSim1.m. Here you can modify param-
eters such as number of epochs, network size, learning rates, ect. “Good”
values has already been selected.

3. Run the script to start the training. This should take around 30 minutes,
depending on your computer.

We now have a fully trained RNNPB. To run interaction, follow the instruction
in Section B.2, though ignore 2.
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Appendix C

Videos

In this chapter, the files containing videos from the two simulations from Chapter
5 is described. The files are normal MPG files, and should be readable from any
media player. It should be noted, however, that the video recording feature
in breve makes the video based on iteration steps rather than the real time
simulation. This means that the videos seem very fast compared to how the
simulations actually runs when controlled from MATLAB. In addition, the videos
looses resolution during recording. Unfortunately, this gives the videos a poor
quality.

All four videos is located in the /videos folder.

C.1 Simulation 1 - Training

simulation1Training.mpg This file shows the preprogrammed actions for the
first simulation, while the ball is manually controlled.

C.2 Simulation 1 - Interaction

simulation1Training.mpg This file shows the interaction with the robot after
training. As we can see, the robot does not behave exactly as during training.
However, it follows the same behavior. When the ball is moved to the side, it
raises the corresponding arm.
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C.3. SIMULATION 2 - TRAINING

C.3 Simulation 2 - Training

simulation2Training.mpg This file shows the preprogrammed actions for the
second simulation, while the ball is manually controlled.

C.4 Simulation 2 - Interaction

simulation2Training.mpg This file shows the interaction with the robot after
training. The video shows that the robot’s behavior is somewhat unstable. We
can also see that the effect of moving the ball is quite small.
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Appendix D

Source Code

D.1 MATLAB Files

D.1.1 General Files

rnnpb.m

% Creates a recurrent neural network with parametric bias (RNNPB
, Tani)

% with 3 layers − output, input and hidden.
%
% Takes as input: size of the network, learning rate and

momentum for the
% weights, and learning rate the PBs

function N = rnnpb(size, learning rate, momentum,
pb learning rate);

% size − the number of different nodes in the network
% size{1} is number of input/output
% size{2} is number of hidden nodes
% size{3} is number of context nodes
% size{4} is number of different sequences
% size{5} is number of PB nodes

% Store the values in the rnnpb object
N.size = size;
N.lr = learning rate;
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D.1. MATLAB FILES

N.m = momentum;
N.lr pb = pb learning rate;
N.nPB = size{5};

% Initialize weights
N.w = cell(1,2);

N.w{1} = randn(N.size{2}, N.size{1}); % Weights from hidden to
output

N.w{2} = randn(N.size{1} + N.nPB + N.size{3}, N.size{2}); %
Weights from input to hidden

% Initialize variables that holds the weight changes
N.dw{1} = zeros(N.size{2}, N.size{1});
N.dw{2} = zeros(N.size{1} + N.nPB + N.size{3}, N.size{2});

% Initialize contex weights
N.contextWeights = 0.7*randn(N.size{2}, N.size{3});

% Initialize PB vectors
N.PB = 0.5*ones(1, N.nPB, N.size{4});
N.aPB = N.PB;

% Initialize previous PB errors
N.ePB = zeros(1, N.nPB, N.size{4});
N.ePB 1 = zeros(1, N.nPB, N.size{4});
N.ePB 2 = zeros(1, N.nPB, N.size{4});

% Initialize change in PB
N.dPB = zeros(1, N.nPB, N.size{4});

% Create cell with three layers (i.e. the nodes)
N.L = cell(1,3);

% Create the context nodes
N.contextNodes = 0.5*ones(1, N.size{3});

rnnpb activate.m

% Activation function for the recurrent neural network with
parametric bias

% Input: net − the neural network
% X − the input pattern that is to be used for

activation
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D.1. MATLAB FILES

% Returns activated network

function net = rnnpb activate(net, X, PB);

% First layer: input, PBs and context nodes
net.L{1} = [X, PB, net.contextNodes];

% Activate and insert into hidden layer
act1 = net.L{1}*net.w{2};
net.L{2} = 1./(1 + exp(−act1));

% Activate and insert into output layer
act2 = net.L{2}*net.w{1};
net.L{3} = 1./(1 + exp(−act2));

% Activate and update the context nodes
cnAct = net.L{2} * net.contextWeights;
net.contextNodes = 1./(1 + exp(−cnAct));

D.1.2 Training Phase

rnnpb train.m

% Training function for the recurrent neural network with
parametric bias

% Takes as input: net − the neural network (has to be an
rnnpb.m−object)

% err − the error (target − output)
% patternNr − number (id) of the current

sequence; this
% is used so that the correct PB

vector is
% updated.
%
% Returns the network after one correction (one training

iteration)

function net = rnnpb train(net, err, patternNr);

% Output error
oError = net.L{3}.*(1 − net.L{3}).*err;

% Hidden error
hError = oError * net.w{1}' .* net.L{2} .* (1−net.L{2});
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D.1. MATLAB FILES

% The weight change
net.dw{1} = net.lr*(net.L{2}' * oError) + net.m*net.dw{1};
net.dw{2} = net.lr*(net.L{1}' * hError) + net.m*net.dw{2};

% Update weights
net.w{1} = net.w{1} + net.dw{1};
net.w{2} = net.w{2} + net.dw{2};

% Find the error in the PB vectors
pbError = zeros(net.size{5}, net.size{2});
for pbnr=1:net.size{5},

pbError(pbnr,:) = oError * net.w{1}'.*net.w{2}(net.size{1}+
pbnr,:) .* (1−net.w{2}(net.size{1}+pbnr,:));

end;

net.ePB(:,:,patternNr) = net.ePB(:,:,patternNr) − net.lr pb .*
sum((net.w{2}(net.size{1}+1:net.size{1}+net.size{5},:) .*
pbError)');

% Use Simpson's rule to find the integral of the error
% (Important! These variables must be reset for each new

sequence)
net.dPB = net.ePB + 4*net.ePB 1 + net.ePB 2;
net.ePB 2 = net.ePB 1;
net.ePB 1 = net.ePB;

% Update PB vectors
net.aPB = net.aPB + net.dPB;

run training.m

% Function that runs a training
% Input: patterns1 − all the patterns (sequences)
% nPatterns − number of different sequence patterns
% nHidden1 − number of hidden nodes
% nCN1 − number of context nodes
% nPB1 − number of PB nodes
% epochs − number of iterations to run the whole set
% n1 − learning rate for the weights
% a1 − momentum for the weights
% m1 − learning rate for the PBs
%
% Returns a fully trained network
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function net = run training(patterns1, nPatterns, nHidden1, nCN1
, nPB, epochs, n1, a1, m1)

sizes = cell(1,5); % Empty cell with place for 6 numbers of
nodes

% nInput1 = size(patterns1); % Get number of input nodes

% Fill in the number of nodes in the size
sizes{1} = numel(patterns1(1,:,1));
sizes{2} = nHidden1;
sizes{3} = nCN1;
sizes{4} = nPatterns;
sizes{5} = nPB;

% Create the neural network
net = rnnpb(sizes, n1, a1, m1);

% Number of "chunks" in each pattern
% (A chunk is a single set of inputs in a sequence. For example

, if we
% have the sequence [0 1; 0 0; 1 1], [0 1] would be the first "

chunk", ect)
nChunks1 = size(patterns1);
nChunks1 = nChunks1(1,1);

% Start training
epoch = 0;
while epoch < epochs,

% Reset weight changes
net.dw{1} = net.dw{1}.*0;
net.dw{2} = net.dw{2}.*0;

% Reset PB errors
net.dPB = zeros(1, sizes{5}, sizes{4});
net.ePB = zeros(1, sizes{5}, sizes{4});
net.ePB 1 = zeros(1, sizes{5}, sizes{4});
net.ePB 2 = zeros(1, sizes{5}, sizes{4});

% Go through each different sequence
for pattern=1:sizes{4},

% Initialize contex nodes
contexNodes1 = 0.5*ones(1, nCN1);

% Go through each "chunk" in each sequence.
for chunk=1:nChunks1−1,

% Set input
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X = patterns1(chunk, :, pattern);

% Activate
net = rnnpb activate(net, X, net.PB(:,:,pattern));

% Target matrix
T = [patterns1(chunk+1, :, pattern)];

% Calculate error and update error sum
net = rnnpb train(net, T−net.L{3}, pattern);

end;
end;

% Sigmoid function on the PB vector
net.PB = 1./(1 + exp(−net.aPB));

epoch = epoch + 1;
end;

trainSim1.m

% Script that creates and trains an RNNPB with the patterns for
the

% first simulation. It uses the variables with recorded data
already in

% the MATLAB workspace.
%
% IMPORTANT: Remember to scale the patterns first (as desrcibed

in the
% instruction in the appendix of the report)

% Copy patterns
patterns1(:,:,1) = moveLeftArm1;
patterns1(:,:,2) = moveLeftArm2;
patterns1(:,:,3) = moveRightArm1;
patterns1(:,:,4) = moveRightArm2;

% Number of patterns (sequences)
nPatterns = 4;

% Number of hidden nodes in each network
nHidden1 = 10;

% Number of contex nodes in each network
nCN1 = 20;
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% Number of PB nodes
nPB = 3;

% Number of epochs to run
epochs = 50000;

% Learning rate and momentum
n1 = 0.002;
a1 = 0.8;

% PB update rate
m1 = 0.002;

% Begin training
net = run training(patterns1, nPatterns, nHidden1, nCN1, nPB,

epochs, n1, a1, m1);

trainSim2.m

% Functions that creates and trains an RNNPB with the patterns
for the

% first simulation. It uses the variables with recorded data
already in

% the MATLAB workspace.
%
% IMPORTANT: Remember to scale the patterns first (as desrcibed

in the
% instruction in the appendix of the report)

% Copy patterns
patterns1(:,:,1) = bothArmsOut;
patterns1(:,:,2) = bothArmsIn;
patterns1(:,:,3) = bothArmsStill;

% Number of patterns (sequences)
nPatterns = 3;

% Number of hidden nodes in each network
nHidden1 = 10;

% Number of contex nodes in each network
nCN1 = 20;
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% Number of PB nodes
nPB = 3;

% Number of epochs to run
epochs = 50000;

% Learning rate and momentum
n1 = 0.002;
a1 = 0.8;

% PB update rate
m1 = 0.002;

% Begin training
net = run training(patterns1, nPatterns, nHidden1, nCN1, nPB,

epochs, n1, a1, m1);

scaleSim1.m

% This function scales the sequences, and leaves the updated
scaled

% variables in the MATLAB workspace.
%
% Input: sensorScale: the value which scales

% This value must be changed after checking each pattern
% Make sure that the scale is as the highest sensor value.

Should there be
% a value that is much higher than the others (that is not

intended, you
% can lower that value so that the scale does not become too

high)
sensorScale = 1.9;

% A known good scale (should not be changed)
jointScale = 1.5;

moveLeftArm1(:,5) = moveLeftArm1(:,5)/jointScale;
moveLeftArm2(:,5) = moveLeftArm2(:,5)/jointScale;

moveLeftArm1(:,1:2) = moveLeftArm1(:,1:2)/sensorScale;
moveLeftArm2(:,1:2) = moveLeftArm2(:,1:2)/sensorScale;
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moveRightArm1(:,5) = moveRightArm1(:,5)/jointScale;
moveRightArm2(:,5) = moveRightArm2(:,5)/jointScale;

moveRightArm1(:,1:2) = moveRightArm1(:,1:2)/sensorScale;
moveRightArm2(:,1:2) = moveRightArm2(:,1:2)/sensorScale;

moveLeftArm1(:,3) = moveLeftArm1(:,3)/jointScale;
moveLeftArm2(:,3) = moveLeftArm2(:,3)/jointScale;

moveRightArm1(:,3) = moveRightArm1(:,3)/jointScale;
moveRightArm2(:,3) = moveRightArm2(:,3)/jointScale;
bothArms(:,3) = bothArms(:,3)/jointScale;

moveLeftArm1(:,6) = −moveLeftArm1(:,6);
moveLeftArm2(:,6) = −moveLeftArm2(:,6);
moveRightArm1(:,6) = −moveRightArm1(:,6);
moveRightArm2(:,6) = −moveRightArm2(:,6);

scaleSim2.m

% This script scales the sequences, and leaves the updated
scaled

% variables in the MATLAB workspace.
%
% Input: sensorScale: the value which scale

% This value must be changed after checking each pattern
% Make sure that the scale is as the highest sensor value.

Should there be
% a value that is much higher than the others (that is not

intended, you
% can lower that value so that the scale does not become too

high)
sensorScale = 1.9;

jointScale = jointScale;

bothArmsOut(:,5) = bothArmsOut(:,5)/jointScale;
bothArmsIn(:,5) = bothArmsIn(:,5)/jointScale;
bothArmsStill(:,5) = bothArmsStill(:,5)/jointScale

bothArmsOut(:,3) = bothArmsOut(:,3)/jointScale;
bothArmsIn(:,3) = bothArmsIn(:,3)/jointScale;
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bothArmsStill(:,3) = bothArmsStill(:,3)/jointScale;

bothArmsOut(:,1:2) = bothArmsOut(:,1:2)/sensorScale;e;
bothArmsIn(:,1:2) = bothArmsIn(:,1:2)/sensorScale;
bothArmsStill(:,1:2) = bothArmsStill(:,1:2)/sensorScale;

bothArmsOut(:,6) = −bothArmsOut(:,6)/sensorScale;
bothArmsIn(:,6) = −bothArmsIn(:,6)/sensorScale;
bothArmsStill(:,6) = −bothArmsStill(:,6)/sensorScale;

runSequencesSimulation1.m

% This script is a program to run and collect data for the four
sequences

% used in the first simulation. The sensor and angle data for
each sensor

% is stored in seperate variables.
%
% moveLeftArm1: raise the left arm
% moveLeftArm2: lower the left arm
% moveRightArm1: raise the right arm
% moveRightArm2: lower the right arm

test = javaObject('Breve');
timeSteps = 30;

% Set start position
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
oneSequence(goalElbowL, goalElbowR, goalShoulderL, goalShoulderR

, timeSteps)

% Set light ball to start position
lightBall = [−2 4.5 0];
test.read('localhost', 7776, sprintf('move−light %f %f %f',

lightBall(1), lightBall(2), lightBall(3)));

% Pause for two seconds so that the user may get ready to move
the ball

% manually
pause(2);

% Raise left arm
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goalElbowL = 1;
goalElbowR = 0;
goalShoulderL = [0 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
moveLeftArm1 = oneSequence(goalElbowL, goalElbowR, goalShoulderL

, goalShoulderR, timeSteps);

% Lower left arm
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
moveLeftArm2 = oneSequence(goalElbowL, goalElbowR, goalShoulderL

, goalShoulderR, timeSteps);

% Reset ball's position to the center
lightBall = [−2 4.5 0];
test.read('localhost', 7776, sprintf('move−light %f %f %f',

lightBall(1), lightBall(2), lightBall(3)));

% Raise right arm
goalElbowL = 0;
goalElbowR = −1;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [0 0.8 1];
moveRightArm1 = oneSequence(goalElbowL, goalElbowR,

goalShoulderL, goalShoulderR, timeSteps);

% Lower right arm
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
moveRightArm2 = oneSequence(goalElbowL, goalElbowR,

goalShoulderL, goalShoulderR, timeSteps);

runSequencesSimulation2.m

% This script is a program to run and collect data for the three
sequences

% used in the second simulation. The sensor and angle data for
each sensor

% is stored in seperate variables.
%
% bothArmsOut: raise both arms
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% bothArmsIn: lower both arms
% bothArmsStill: arms lowered

test = javaObject('Breve');
timeSteps = 30;

% Set start position
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
oneSequence(goalElbowL, goalElbowR, goalShoulderL, goalShoulderR

, timeSteps)

% Set light ball to start position
lightBall = [−2 4.5 0];
test.read('localhost', 7776, sprintf('move−light %f %f %f',

lightBall(1), lightBall(2), lightBall(3)));

% Pause for two seconds so that the user may get ready to move
the ball

% manually
pause(2);

% Raise both arms
goalElbowL = 1;
goalElbowR = −1;
goalShoulderL = [0 −0.8 −1];
goalShoulderR = [0 0.8 1];
bothArmsOut = oneSequence(goalElbowL, goalElbowR, goalShoulderL,

goalShoulderR, timeSteps);

% Lower both arms
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
bothArmsIn = oneSequence(goalElbowL, goalElbowR, goalShoulderL,

goalShoulderR, timeSteps);

% Keep both arms lowered
goalElbowL = 0;
goalElbowR = 0;
goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];
bothArmsIn = oneSequence(goalElbowL, goalElbowR, goalShoulderL,

goalShoulderR, timeSteps);
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oneSequence.m

% Function that uses the PID−controller to move the joints into
desired

% angles. It also supports automatic moving of the light ball
in the X

% axis.
%
% Input: − Goal angles for each joint
% − Number of timesteps
%
% Output: A matrix containing sensor values and angles of the

joints for
% each timestep in the run.

function dataRead = oneSequence(goalElbowL, goalElbowR,
goalShoulderL, goalShoulderR, timeSteps);

% Make a communication object
communication = javaObject('Breve');

% Make one PID−controller for each angle that need to be
controlled

pidLe = javaObject('PID', 6, 4, 4, 3);
pidRe = javaObject('PID', 6, 4, 3, 0);
pidR1 = javaObject('PID', 6, 4, 4, 1);
pidR2 = javaObject('PID', 6, 4, 4, 1);
pidR3 = javaObject('PID', 6, 4, 4, 1);
pidL1 = javaObject('PID', 6, 4, 4, 1);
pidL2 = javaObject('PID', 6, 4, 4, 1);
pidL3 = javaObject('PID', 6, 4, 4, 1);

% Set shoulder speed to zero
shoulderV = zeros(1,3);

for i = 1:timeSteps,

% Get current left elbow angle
elbowL = str2double(communication.read('localhost', 7776, '

get−left−elbow−angle'));
% Use PID−controller to find new speed
v = pidLe.getNewVelocity(goalElbowL−elbowL, −1, 1);

% Get current right elbow angle
elbowR = str2double(communication.read('localhost', 7776, '

get−right−elbow−angle'));
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% Use PID−controller to find new speed
v2 = pidRe.getNewVelocity(goalElbowR−elbowR, −1, 1);

% Get current right shoulder angles
eval(communication.read('localhost', 7776, sprintf('get−

right−arm−angles')));
p = [X Y Z];
shoulderXR = X; % Store for later use
% Use PID−controller to find new shoulder speeds
shoulderRV(1) = pidR1.getNewVelocity(goalShoulderR(1) − p(1)

, −1, 1);
shoulderRV(2) = pidR2.getNewVelocity(goalShoulderR(2) − p(2)

, −1, 1);
shoulderRV(3) = pidR3.getNewVelocity(goalShoulderR(3) − p(3)

, −1, 1);

% Get current left shoulder angles
eval(communication.read('localhost', 7776, sprintf('get−left

−arm−angles')));
p = [X Y Z];
shoulderXL = X; % Store for later use
% Use PID−controller to find new shoulder speeds
shoulderLV(1) = pidL1.getNewVelocity(goalShoulderL(1) − p(1)

, −1, 1);
shoulderLV(2) = pidL2.getNewVelocity(goalShoulderL(2) − p(2)

, −1, 1);
shoulderLV(3) = pidL3.getNewVelocity(goalShoulderL(3) − p(3)

, −1, 1);

% Send the new speeds to breve
communication.read('localhost', 7776, sprintf('set−left−

elbow−velocity %f', v));
communication.read('localhost', 7776, sprintf('set−right−

elbow−velocity %f', v2));
pause(0.03);
communication.read('localhost', 7776, sprintf('set−left−arm−

velocities %f %f %f', shoulderLV(1), shoulderLV(2),
shoulderLV(3)));

communication.read('localhost', 7776, sprintf('set−right−arm
−velocities %f %f %f', shoulderRV(1), shoulderRV(2),
shoulderRV(3)));

% Tell breve to iterate
communication.read('localhost', 7776, 'matlab−iterate');

% Read sensors from lightball
eyeR = str2double(communication.read('localhost', 7776,

sprintf('get−right−eye'))) / 10;
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eyeL = str2double(communication.read('localhost', 7776,
sprintf('get−left−eye'))) / 10;

% Store data from sensors and joint angles for current
timestep

dataRead(i,:) = [eyeL eyeR shoulderXL elbowL shoulderXR
elbowR];

pause(0.06);

end;

D.1.3 Interaction Phase

runtrainedrnnpb.m

% Main script for the interaction phase.
% − Gets current state from breve,
% − Uses the RNNPB to decide the next state
% − Uses the PID to decide new velocities for each joint
% − Sends new velocities to breve
% (− Also updates PB vectors)
%
% NOTE: This function must be run after breve has been started,

while
% the simulation "Tiny Dancer.tz" is running. A trained RNNPB

named "net"
% must also be present in the workspace.

% Create a java communication objext
communication = javaObject('Breve');

% Set start angles
goalElbowL = 0;
goalElbowR = 0;

goalShoulderL = [1.5 −0.8 −1];
goalShoulderR = [1.5 0.8 1];

% Create java PID objects for each joint angle

% Left and right elbow angles
pidLe = javaObject('PID', 5, 3, 3, 1);
pidRe = javaObject('PID', 5, 3, 3, 1);
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% Right shoulder angles
pidR1 = javaObject('PID', 5, 3, 3, 1);
pidR2 = javaObject('PID', 5, 3, 3, 1);
pidR3 = javaObject('PID', 5, 3, 3, 1);

% Left shoulder angles
pidL1 = javaObject('PID', 5, 3, 3, 1);
pidL2 = javaObject('PID', 5, 3, 3, 1);
pidL3 = javaObject('PID', 5, 3, 3, 1);

% Initialize variables that hold PB errors
dPB1 = zeros(1, net.size{5}, net.size{4});
ePB = zeros(1,net.size{5});
ePB 1 = zeros(1,net.size{5});
ePB 2 = zeros(1,net.size{5});
dpb = zeros(1, net.size{5});
pbError = zeros(net.size{5}, net.size{2});

% Initialize PB vectors
pb = 0.5*ones(1, net.size{5});
pbused = pb;

% Initialize context nodes
contexNodes = 0.5 * ones(1, net.size{3});

% Set the light ball's start position
lightBall = [−3 4.5 0];

% Send message to breve with light ball's position
communication.read('localhost', 7776, sprintf('move−light %f %f

%f', lightBall(1), lightBall(2), lightBall(3)));

for i = 1:500,

% Read current left elbow angle from breve
elbowL = str2double(communication.read('localhost', 7776, '

get−left−elbow−angle'));
% Send error to left elbow PID, and get new velocity
v = pidLe.getNewVelocity(goalElbowL−elbowL, −1, 1);

% Read current right elbow angle from breve
elbowR = str2double(communication.read('localhost', 7776, '

get−right−elbow−angle'));
% Send error to right elbow PID, and get new velocity
v2 = pidRe.getNewVelocity(goalElbowR−elbowR, −1, 1);

% Read current right shoulder angles from breve
eval(communication.read('localhost', 7776, sprintf('get−

right−arm−angles')));
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p = [X Y Z];
shoulderXR = X; % Store X−angle for later use
% Send error to each right shoulder angle PID, and get new

velocities
shoulderRV(1) = pidR1.getNewVelocity(goalShoulderR(1) − p(1)

, −1, 1);
shoulderRV(2) = pidR2.getNewVelocity(goalShoulderR(2) − p(2)

, −1, 1);
shoulderRV(3) = pidR3.getNewVelocity(goalShoulderR(3) − p(3)

, −1, 1);

% Read current left shoulder angles from breve
eval(communication.read('localhost', 7776, sprintf('get−left

−arm−angles')));
p = [X Y Z];
shoulderXL = X;% Store X−angle for later use
% Send error to each left shoulder angle PID, and get new

velocities
shoulderLV(1) = pidL1.getNewVelocity(goalShoulderL(1) − p(1)

, −1, 1);
shoulderLV(2) = pidL2.getNewVelocity(goalShoulderL(2) − p(2)

, −1, 1);
shoulderLV(3) = pidL3.getNewVelocity(goalShoulderL(3) − p(3)

, −1, 1);

% Send new velocities to breve
communication.read('localhost', 7776, sprintf('set−left−

elbow−velocity %f', v));
communication.read('localhost', 7776, sprintf('set−right−

elbow−velocity %f', v2));
communication.read('localhost', 7776, sprintf('set−left−arm−

velocities %f %f %f', shoulderLV(1), shoulderLV(2),
shoulderLV(3)));

communication.read('localhost', 7776, sprintf('set−right−arm
−velocities %f %f %f', shoulderRV(1), shoulderRV(2),
shoulderRV(3)));

% Tell breve to iterate the simulation
communication.read('localhost', 7776, 'matlab−iterate');

% Read sensors:
eyeR = str2double(communication.read('localhost', 7776,

sprintf('get−right−eye'))) / 5;
eyeL = str2double(communication.read('localhost', 7776,

sprintf('get−left−eye'))) / 5;

% Pause for 0.1 seconds (this is so that breve runs smoothly
)

pause(0.1);
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currentPattern = [eyeL eyeR shoulderXL/1.5 elbowL shoulderXR
/1.5 elbowR];

% Activate − we now have a new set of desired goals
net = rnnpb activate(net, currentPattern, pbused);

% Set new elbow and shoulder goals (which will be used by
the PID in

% the next step)
goalElbowL = net.L{3}(4);
goalElbowR = −net.L{3}(6);
goalShoulderL = [net.L{3}(3)*1.5 −0.8 −1];
goalShoulderR = [net.L{3}(5)*1.5 0.8 1];

% Find errors so that the PB vectors can be updated
%
% NOTE: net.L{3} is the third layer in the network: in other
% words, the predicted state from the activation, which we

now want to
% be the target for the next step. The error is thus

measured by
% the difference between the target and current state.
oError = net.L{3}.*(1 − net.L{3}).*(net.L{3} −

currentPattern);
hError = oError * net.w{1}' .* net.L{2} .* (1−net.L{2});

% Find PB error
for pbnr=1:net.size{5},

pbError(pbnr,:) = hError .* net.w{2}(net.size{1}+pbnr,:)
.* (1−net.w{2}(net.size{1}+pbnr,:));

end;

ePB = −sum((net.w{2}(net.size{1}+1:net.size{1}+net.size
{5},:) .* pbError)');

dpb = dpb + ePB;

% Integrate using Simpson's rule
pb = pb + 0.01*(dpb + 4*ePB 1 + ePB 2);
ePB 2 = ePB 1;
ePB 1 = dpb;

% Sigmoid function − the PB vector used in the next step
pbused = 1./(1 + exp(−pb))

end;
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D.2 Java Files

Breve.java

/**
* Class for communicating with the breve simulator.

*
* @author Axel Tidemann

*/

import java.io.*;
import java.net.*;

public class Breve {

/*
* The method reads from the breve simulator by requesting a

file on

* breve's web server.

*/
public static String read(String host, int port, String msg)
{

try{
//connect to the server via the given IP address and port

number
Socket fSocket = new Socket (host, port);

//the request
String message = "GET /" + msg + "\n";

//output writer
PrintWriter pw server out =

new PrintWriter(new BufferedWriter(new OutputStreamWriter (
fSocket.getOutputStream ())), true );

//send the request
pw server out.println (message);

//input stream
BufferedReader server reader =

new BufferedReader (new InputStreamReader (
fSocket.getInputStream () ) );

//read the reply from breve
String response = server reader.readLine();
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fSocket.close();

return response;

} catch ( Exception uhe) {}

return "failure.";
}

}

PID.java

/*
* PID−controller
* Upon construction, this class receives parameters for

* a PID− controller. An error can then be sent to the

* object, and a new velocity to reduce the error will be
returned.

* The two previous erros are stored in the object so that
derivation

* and integration of the error is possible (this is done in the
formula).

*/

public class PID
{

private double v;
public double K;
public double Ti;
public double Ts;
public double Td;
public double v 1 = 0;
public double error = 0;
public double error 1 = 0;
public double error 2 = 0;

// Constructor
public PID (double K, double Ts, double Ti, double Td)
{
this.K = K;
this.Ti = Ti;
this.Ts = Ts;
this.Td = Td;

}
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/*
* Receives an error, and a max and min value.

* Returns a velocity (in the bounds of max and min) that
should

* reduce the error.

*/
public double getNewVelocity(double error, double min, double

max)
{
v = v 1 + K*((error − error 1) + (Ts/Ti) * error + (Td/Ts)*(

error − 2*error 1 + error 2));

if (v < min)
v = min;

else if (v > max)
v = max;

v 1 = v;
error 2 = error 1;
error 1 = error;

return v;
}

}

D.3 breve Files

Tiny Dancer.tz

#

# Tiny Dancer - originally created by Axel Tidemann,

but modified for my own use.

# - Firas R. Barakat

# Imports

@use PhysicalControl.

@use Link.

@use Genome.

@use Shape.

@use Stationary.
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@use MultiBody.

@use NetworkServer.

@use Braitenberg.

@use Movie.

# Create controller (called Elton)

Controller Elton.

# Controller

PhysicalControl : Elton {

+ variables:

tiny_dancer, cloudTexture (object).

X, Y, Z (double).

lightBall (object).

+ to init:

floor (object).

myNetworkServer (object).

#initialize network server

myNetworkServer = new NetworkServer.

myNetworkServer listen on-port 7776.

print (myNetworkServer get-url).

#end init network server

# Initialize movie recording

movie = (new Movie).

# Varios initialization for visualization

self set-random-seed-from-dev-random.

self enable-lighting.

self enable-smooth-drawing.

self move-light to (0, 20, 0).

cloudTexture = (new Image load from

"./lib/classes/images/clouds.png").

# Create the floor

floor = new Floor.

floor catch-shadows.

floor set-color to (1.0, 1.0, 1.0).

floor set-eT to .9.
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self enable-shadow-volumes.

self enable-reflections.

self set-background-color to (.4, .6, .9).

self set-background-texture-image to cloudTexture.

# Visualization end

# Create the Creature (the robot)

tiny_dancer = new Creature.

self init-position.

# Create light ball

lightBall = new Light.

lightBall move to (-3, 4.5, 0).

#this should be done by sharing instance variables of some sort.

+ to init-position:

# tiny_dancer move to (0, 6, 0).

self offset-camera by (3, 13, -13).

self watch item tiny_dancer.

# Iterate from matlab

+ to matlab-iterate:

self manual-iterate.

# Returns angles for elbows and shoulders

# (methods can be invoked from matlab)

+ to get-right-elbow-angle:

return (tiny_dancer get-right-elbow-angle).

+ to get-left-elbow-angle:

return (tiny_dancer get-left-elbow-angle).

+ to get-right-arm-angles:

X = (tiny_dancer get-right-arm-angles)::x.

Y = (tiny_dancer get-right-arm-angles)::y.

Z = (tiny_dancer get-right-arm-angles)::z.

return "X = $X, Y = $Y, Z = $Z".
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+ to get-left-arm-angles:

X = (tiny_dancer get-left-arm-angles)::x.

Y = (tiny_dancer get-left-arm-angles)::y.

Z = (tiny_dancer get-left-arm-angles)::z.

return "X = $X, Y = $Y, Z = $Z".

# Returns the position of the light ball

+ to get-light-position:

X = (lightBall get-location)::x.

Y = (lightBall get-location)::y.

Z = (lightBall get-location)::z.

return "X = $X, Y = $Y, Z = $Z".

# Returns the sensor values

+ to get-left-eye:

return (tiny_dancer get-left-eye).

+ to get-right-eye:

return (tiny_dancer get-right-eye).

# Sets joint velocities for elbows and shoulders

# (methods can be invoked from matlab)

+ to set-right-elbow-velocity to-value v = 0 (double):

tiny_dancer right-elbow velocity v.

+ to set-left-elbow-velocity to-value v = 0 (double):

tiny_dancer left-elbow velocity v.

+ to set-right-arm-velocities to-value x (double)

to-value y(double) to-value z (double):

tiny_dancer right-shoulder velocities (x, y, z).

+ to set-left-arm-velocities to-value x (double)

to-value y(double) to-value z (double):

tiny_dancer left-shoulder velocities (x, y, z).

# Move the light

# (method can be invoked from matlab)

+ to move-light to-value x (double) to-value y(double)

to-value z (double):
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lightBall move to (x, y, z).

# Catching keys (For breve testing only)

### Right arm start ###

+ to catch-key-y-down:

tiny_dancer right-shoulder velocities (1, 0, 0).

+ to catch-key-y-up:

tiny_dancer right-shoulder velocities (0, 0, 0).

+ to catch-key-h-down:

tiny_dancer right-shoulder velocities (-1, 0, 0).

+ to catch-key-h-up:

tiny_dancer right-shoulder velocities (0, 0, 0).

+ to catch-key-g-down:

tiny_dancer right-shoulder velocities (0, 1, 0).

+ to catch-key-g-up:

tiny_dancer right-shoulder velocities (0, 0, 0).

+ to catch-key-j-down:

tiny_dancer right-shoulder velocities (0, 0, -1).

+ to catch-key-j-up:

tiny_dancer right-shoulder velocities (0, 0, 0).

# Right arm elbow

+ to catch-key-t-down:

tiny_dancer right-elbow velocity 1.

+ to catch-key-t-up:

tiny_dancer right-elbow velocity 0.

+ to catch-key-u-down:

tiny_dancer right-elbow velocity -1.

+ to catch-key-u-up:

tiny_dancer right-elbow velocity 0.
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### Right arm end ###

### Left arm start ###

+ to catch-key-w-down:

tiny_dancer left-shoulder velocities (1, 0, 0).

+ to catch-key-w-up:

tiny_dancer left-shoulder velocities (0, 0, 0).

+ to catch-key-s-down:

tiny_dancer left-shoulder velocities (-1, 0, 0).

+ to catch-key-s-up:

tiny_dancer left-shoulder velocities (0, 0, 0).

+ to catch-key-a-down:

tiny_dancer left-shoulder velocities (0, 1, 0).

+ to catch-key-a-up:

tiny_dancer left-shoulder velocities (0, 0, 0).

+ to catch-key-d-down:

tiny_dancer left-shoulder velocities (0, -1, 0).

+ to catch-key-d-up:

tiny_dancer left-shoulder velocities (0, 0, 0).

# Left arm elbow

+ to catch-key-q-down:

tiny_dancer left-elbow velocity 1.

+ to catch-key-q-up:

tiny_dancer left-elbow velocity 0.

+ to catch-key-e-down:

tiny_dancer left-elbow velocity -1.

+ to catch-key-e-up:

tiny_dancer left-elbow velocity 0.

### Left arm end ###
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# Record movie

+ to catch-key-m-down:

testFile (string).

testFile = "breveMovie.mpg".

movie record to testFile.

}

# Create an arm

MultiBody : Arm {

+ variables:

upperLink (object).

elbowJoint, wristJoint, worldJoint (object).

upperShape, lowerShape, handShape (object).

lowerLink, handLink (object).

+ to get-root:

return upperLink.

+ to init:

upperShape = (new Cube init-with size (0.5, 1, 0.5)).

lowerShape = upperShape.

handShape = (new Sphere init-with radius 0.3).

#create the links, give them their shape.

upperLink = new Link.

upperLink set-shape to upperShape.

lowerLink = new Link.

lowerLink set-shape to lowerShape.

handLink = new Link.

handLink set-shape to handShape.

#connect the links

elbowJoint = new RevoluteJoint.

elbowJoint link parent upperLink to-child lowerLink

with-normal (1,0,0)

with-parent-point (0, 0.5, 0)

with-child-point (0, -0.5, 0).
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wristJoint = new FixedJoint. #UniversalJoint #for now.

wristJoint link parent lowerLink to-child handLink

with-parent-point (0, 0.5, 0)

with-child-point (0, -0.3, 0).

elbowJoint set-strength-limit to 100.

# Sets velocity

+ to elbow velocity v = 0 (double):

elbowJoint set-joint-velocity to v.

# Returns angle

+ to getElbowJointAngle:

return (elbowJoint get-joint-angle).

}

# Creates a leg

MultiBody : Leg {

+ variables:

upperLink (object).

kneeJoint, footJoint (object).

+ to get-root:

return upperLink.

+ to init:

upperShape, lowerShape, footShape (object).

lowerLink, footLink (object).

upperShape = (new Cube init-with size (0.5, 1, 0.5)).

lowerShape = upperShape.

footShape = (new Cube init-with size (1, 0.4, 0.4)).

#create the links, give them their shape.

upperLink = new Link.

upperLink set-shape to upperShape.

lowerLink = new Link.

lowerLink set-shape to lowerShape.

footLink = new Link.

footLink set-shape to footShape.
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#connect the links

kneeJoint = new RevoluteJoint.

kneeJoint link parent upperLink to-child lowerLink

with-normal (1,0,0)

with-parent-point (0, 0.5, 0)

with-child-point (0, -0.5, 0).

footJoint = new UniversalJoint.

footJoint link parent lowerLink to-child footLink

with-normal (1,1,0)

with-parent-point (0, 0.5, 0)

with-child-point (-0.25, -0.2, 0).

kneeJoint set-strength-limit to 100.

footJoint set-strength-limit to 2.

}

# Creates a head with sensors

MultiBody : Head {

+ variables:

headShape (object).

leftSensor, rightSensor (object).

headLink (object).

leftSensorJoint, rightSensorJoint (object).

leftSensorShape (object).

rightSensorShape (object).

+ to init:

headShape = (new Sphere init-with radius 0.5).

headLink = new Link.

headLink set-shape to headShape.

rightSensorShape = new Shape.

rightSensorShape init-with-polygon-cone

radius .1 sides 5 height .2.

rightSensor = new Sensor.

rightSensor set-shape to rightSensorShape.
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leftSensorShape = new Shape.

leftSensorShape init-with-polygon-cone

radius .1 sides 5 height .2.

leftSensor = new Sensor.

leftSensor set-shape to leftSensorShape.

leftSensorJoint = new FixedJoint.

leftSensorJoint set-relative-rotation around-axis

(0.6, 0, 1) by 1.54.

leftSensorJoint link parent headLink to-child leftSensor

with-parent-point (-0.4,0.1,0.3)

with-child-point (0, 0, 0).

leftSensorJoint set-strength-limit to 100.

rightSensorJoint = new FixedJoint.

rightSensorJoint set-relative-rotation around-axis

(-0.6, 0, 1) by 1.54.

rightSensorJoint link parent headLink to-child rightSensor

with-parent-point (-0.4,0.1,-0.3)

with-child-point (0, 0, 0).

rightSensorJoint set-strength-limit to 100.

# Returns the link to the head

+ to get-root:

return headLink.

# Returns right sensor value

+ to get-right-eye:

return (rightSensor get-sensor-value).

# Returns left sensor value

+ to get-left-eye:

return (leftSensor get-sensor-value).
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}

# Creates a light ball

Mobile : Light (aka Lights) {

+ to init:

self set-shape to (new Shape init-with-sphere radius .3).

self set-color to (1, 0, 0).

}

# A slightly modified copy of the BreitenbergSensor in Breitenberg.tz

Link : Sensor {

+ variables:

sensorShape (object).

link (object).

direction (vector).

sensorAngle (float).

sensorValue (float).

activationObject (object).

activationMethod (string).

bias (float).

+ to init:

bias = 1.0.

direction = (0, 1, 0).

sensorAngle = 1.2.

self set-color to (0, 0, 0).

+ to get-root:

return link.

+ section "Configuring the Sensor Values"

+ to set-bias to d (float):

% Sets the "bias" of this sensor. The default bias is 1, meaning

% that the sensor has a positive influence on associated wheels

% with strength 1. You can change this to any magnitude, positive

% or negative.

bias = d.
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+ to set-sensor-angle to n (float):

% Sets the angle in which this sensor can detect light. The default

% value of 1.5 means that the sensor can see most of everything in

% front of it. Setting the value to be any higher leads to general

% wackiness, so I don’t suggest it.

sensorAngle = n.

+ to set-activation-method to m (string) in-object o (object):

% This method specifies an activation method for the sensor. An

% activation method is a method which takes as input the strength

% read by the sensor, and as output returns the strength of the

% signal which will travel on to the motor.

% <p>

% Your activation function should be defined as:

% <pre>

% + to <i>activation-function-name</i> with-sensor-strength s (float):

% </pre>

% <p>

% The default activation method is linear, but more complex vehicles

% may require non-linear activation functions.

%

activationMethod = m.

activationObject = o.

+ to get-sensor-value:

return sensorValue.

+ to iterate:

i (object).

lights (int).

total, strength, angle (float).

toLight, transDir (vector).

transDir = (self get-rotation) * direction.

foreach i in (all Lights): {

toLight = (i get-location) - (self get-location).

angle = angle(toLight, transDir).
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if angle < sensorAngle: {

strength = | (self get-location) - (i get-location) |.

strength = 1.0 / (strength * strength) .

if activationMethod && activationObject: {

strength = (activationObject call-method named

activationMethod with-arguments { strength }).

}

if strength > 10: strength = 10.

total += strength.

lights++.

}

}

if lights != 0: total /= lights.

total = 50 * total * bias.

sensorValue = total.

}

# Creates a Creature (the full robot)

MultiBody : Creature {

+ variables:

bodyLink (object).

links (list).

joints (list).

worldJoint (object).

leftArm, leftArmJoint, rightArm, rightArmJoint (object).

leftLeg, leftLegJoint, rightLeg, rightLegJoint (object).

head (object).

testJoint (object).

sensorTest (object).

+ to get-root:

return bodyLink.
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+ to radians from degrees (float):

return degrees * 3.14 / 180.

+ to init:

#the body

bodyShape, headLink, headJoint (object).

bodyShape = (new Cube init-with size (0.5, 2, 1)).

bodyLink = new Link.

bodyLink set-shape to bodyShape.

# the head

head = new Head.

headJoint = 1 new FixedJoint.

headJoint link parent bodyLink to-child (head get-root)

with-parent-point (0,1,0)

with-child-point(0,-0.5,0) .

# Lock the head to a fixed point in space

worldJoint = new FixedJoint.

worldJoint link parent 0 to-child (head get-root)

with-parent-point (0, 4, 0)

with-child-point (0, -1.0, 0).

#the arms.

leftArm = new Arm.

leftArmJoint = new BallJoint.

leftArmJoint link parent bodyLink to-child (leftArm get-root)

with-normal (0,0,1)

with-parent-point (0,1,0.5)

with-child-point (0, -0.5, -0.25).

rightArm = new Arm.

rightArmJoint = new BallJoint.

rightArmJoint link parent bodyLink to-child (rightArm get-root)

with-normal (0,0,1)

with-parent-point (0,1,-0.5)

with-child-point (0, -0.5, 0.25).
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#the legs.

leftLeg = new Leg.

leftLegJoint = new BallJoint.

leftLegJoint link parent bodyLink to-child (leftLeg get-root)

with-normal (1,0,1)

with-parent-point (0, -1, -0.25)

with-child-point (0, -0.5, 0).

rightLeg = new Leg.

rightLegJoint = new BallJoint.

rightLegJoint link parent bodyLink to-child (rightLeg get-root)

with-normal (1,0,1)

with-parent-point (0, -1, 0.25)

with-child-point (0, -0.5, 0).

self set-root to bodyLink.

(self get-all-connected-links) set-color to

random[(1.0, 1.0, 1.0)].

#self show-axis.

#add-dependency is for archiving. not that important.

joints set-double-spring with-strength 400

with-max .8 with-min -.8.

joints set-strength-limit to 300.

leftArmJoint set-strength-limit to 100.

rightArmJoint set-strength-limit to 100.

leftLegJoint set-strength-limit to 3.

rightLegJoint set-strength-limit to 3.

+ to center:

# to center the object, we set the X and Z

# components to 0, but not the Y, otherwise

# we would push the walker into the ground

currentLocation (vector).
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currentLocation = (self get-location).

self move to (0, currentLocation::y, 0).

+ to destroy:

free links.

free bodyLink.

# Manipulate right arm

#Move right shoulder joint.

+ to right-shoulder velocities v = (0, 0, 0) (vector):

rightArmJoint set-joint-velocity to v.

# Elbows

#Move right elbow.

+ to right-elbow velocity v = 0 (double):

rightArm elbow velocity v.

# Manipulate left arm

#Move left shoulder joint.

+ to left-shoulder velocities v = (0, 0, 0) (vector):

leftArmJoint set-joint-velocity to v.

# Elbows

#Move left elbow.

+ to left-elbow velocity v = 0 (double):

leftArm elbow velocity v.

# Returns the angles for the arms and elbows

+ to get-left-arm-angles:

return (leftArmJoint get-joint-angles).

+ to get-right-arm-angles:

return (rightArmJoint get-joint-angles).

+ to get-left-elbow-angle:

return (leftArm getElbowJointAngle).
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+ to get-right-elbow-angle:

return (rightArm getElbowJointAngle).

# Returns the values from the light sensors (eyes)

+ to get-right-eye:

return (head get-right-eye).

+ to get-left-eye:

return (head get-left-eye).

}

109



Bibliography
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