
June 2006
Keith Downing, IDI
Sule Yildirim, Høyskolen i Hedmark

Master of Science in Informatics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Connectionist Language Parser and
Symbol Grounding
Experimental coupling of syntax and semantics through perceptual
grounding

Sveinung Monsen

Thesis Description

0.1 The description

This is the original textual description of the thesis:

How are sentences represented in a neural network? Look into traditional and

current approaches to natural language parsing and understanding, and focus

on the connectionist strategy - using neural networks. Learn about how they

perform and find areas in particular need of improvement. Investigate how

the semantic component may be improved through perceptual grounding. Do

experimental implementations of a connectionist parser, symbol grounding,

and word-meaning relations, if possible.

i

ii

Abstract

I hear and I forget. I see and I remember. I do and I understand.

- Confucius

The work in this thesis is about natural language processing and under-

standing, within the context of artificial intelligence research. What was

attempted to achieve here was to investigate how meaning is contained in

language, particularly with respect to how that information is encoded and

how it can be decoded, or extracted. The aspects deemed most relevant for

this quest was automated processing of the syntactic structure of sentences,

and their semantic components. Artificial neural networks was chosen as the

tool to perform the research with, and as such part of the goal became re-

search on connectionist methods. A side-goal of interest was to look into the

possibility of using insight into neural networks to gain deeper understanding

of how the human brain processes information, particularly language. This

area was not explicitly focussed on during the research.

The methodology selected for achieving the goals was to design and im-

plement a framework for developing neural network models, and further to

implement NLP and NLU1 systems within this framework. The systems

selected to explore and implement were: a parser for handling the syntac-

tic structure and a symbol grounding system for dealing with the semantic

component. A third system was also implemented for investigation into an

evolutionary-based communication model on the development of a shared

vocabulary between autonomous agents. All implementations were based on

recent research and results by others.

1NLP: Natural Language Processing, NLU: Natural Language Understanding.

iii

iv

Preface

The best argument against democracy is a five-minute

conversation with the average voter.

- Winston Churchill

This thesis was written during the fall of 2005 and the spring of 2006,

at the Norwegian university of NTNU, department of IDI, at the faculty of

IME. It is the result of investigations into the use of artificial neural networks

in research on language processing and understanding. During the two-year

program for the master’s-degree, a variety of artificial intelligence related sub-

jects were taken to lay the groundwork for writing a thesis on language and

AI. The more relevant subjects taken includes: ”Machine Learning & Case

Based Reasoning”, ”Knowledge Representation”, ”Advanced AI Program-

ming”, ”Computational Linguistics”, ”Subsymbolic Artificial Intelligence”,

and a Neuroscience course.

By covering an as wide range of subjects as possible, I hoped to gain suf-

ficiently diverse knowledge to avoid suffering from the scientific version of

tunnel-vision. That was the idea anyhow. All code for the implementations

was written in the Java2 programming language.

For help and guidance during my work on the thesis I had two supervi-

sors, Keith Downing at NTNU, and Sule Yildirim, at Høyskolen i Hedmark.

Sule was my main supervisor.

2Java SE, version 1.5.0 or higher required.

v

vi

Acknowledgements

I love deadlines. I like the whooshing sound they make

as they fly by.

- Douglas Adams

I would like to thank all the people, and things, that have made

my life more endurable during the last two years - and who made

it possible to complete this thesis. Just barely touching into the

post-deadline zone.

I specifically want to thank my main supervisor, Sule Yildirim, for

being exceptionally supportive and helpful throughout my work

on this thesis. To all others concerned, and you know who you

are, your contributions was and is greatly appreciated.

Sveinung F. Monsen,

Trondheim, June 2006

vii

viii

Introduction

In the beginning the Universe was created. This has made a lot

of people very angry and has been widely regarded as a bad move.

- Douglas Adams

There are too many languages in the world. Most of them unpleasantly dif-

ficult to learn, and they are anything but compatible, translation-wise. It is

almost as if they were made to be so diverse and incompatible, on purpose.

If one were to take certain parts of the Holy Bible literally, God is the one to

blame. This accusation is not so far fetched, or outrageous, as it may seem.

In fact, in Genesis chapter 11, verse 1-9, it is stated that the lord confused

the tongue of man and spread them all over the world. But, in however way

this is interpreted, the undeniable fact remains that such an event is reflected

by the current state of the world. Whether willfully enforced, or simply the

result of a natural process, is irrelevant. This is what we’ve got, now we have

to deal with it.

It is interesting to contemplate on possible effects of the confusion of lan-

guages, assuming it happened at an early point in the history of man. Apart

from being an obvious communication barrier, it also facilitates segmenta-

tion of groups of people into isolated populations.3 A useful and important

aspect of this process is that it helps to ensure diversity in the development

of new ideas, ranging from ways to understand nature to the formation of

distinct structures of society. The point being made here is that within ho-

mogenous groups ideas tend to spread quickly and to be adopted through

imitation. There, focus tends to fall on the refinement of ideas, whereas the

existence of several distinct, geographically or communication-wise, isolated

3The separation itself is likely to further increase the formation of new languages,
forming a positive feedback-loop.

ix

groups enables the generation of new ideas and approaches.

Another important aspect of the diversity of languages, made relevant by

increasing globalization, is the need for continual translation between them,

coupled with the fact that manual translation is a non-trivial, time-consuming

and expensive process. High quality, automated machine-translation would

be an excellent solution to this, if someone could create such a system. That

turned out to be a very difficult task. But, translation is not the only im-

portant element here. In recent years we’ve had an enormous production

of information4, and most of it has been made available digitally and repre-

sented in the form of human language.

So, how can we make use of all this stored knowledge, without having to

search and read for hours, days or even years? A software agent can process

huge amounts of data in an instant, but has no understanding of it what-

soever. If only the agent were able to treat the stream of bits-and-bytes as

information-carrying packets of words and sentences, a huge breakthrough

in information processing would be realized.

A small step towards the ultimate goal has been investigated and tested

in this thesis. The first aspect of sentences that needs to be handled in some

way is their syntactic structure, and for this a parsing system has been im-

plemented. The other main aspect treated in my work is that of meaning

and the meaning-content contained in sentences. Syntactic parsing is dif-

ficult accomplish, correctly extracting the semantic components is a whole

lot worse. It is not even clear exactly how to define meaning and how it

gets bound to words. The chosen approach to deal with this challenging and

interesting problem is that of semantic information processing - by designing

and implementing a perceptual symbol grounding system.

4Information - or data, it all depends upon the eye of the beholder.

x

Table of Contents

0.1 The description . i

Abstract iii

Preface v

Acknowledgements vii

Introduction ix

1 Neural Networkology 101 1

1.1 Introduction . 1

1.2 Definitions . 2

1.3 Three basic models . 4

2 Background and Motivation 7

2.1 Introduction . 7

2.2 Computational Language Processing 8

2.2.1 Introduction . 8

2.2.2 Computer games - virtual environments 8

2.2.3 Knowledge acquisition 9

2.2.4 Automated machine translation - MT 9

2.3 Traditional approaches - GOFAI 10

2.3.1 Introduction . 10

2.3.2 Rule-based parsing . 11

2.3.3 Probabilistic parsing 12

2.4 Why Connectionism? . 13

2.4.1 Introduction . 13

2.4.2 Parallel Distributed Processing 13

2.4.3 Distributed Representation 14

xi

2.4.4 Neuroscience and the Brain 15

2.5 A clinical perspective on Language 15

2.5.1 Introduction . 15

2.5.2 The external world . 16

2.5.3 The internal map . 16

2.5.4 Language and symbol grounding 17

3 The Goal 19

3.1 Introduction . 19

3.2 The Goal and its Subgoals . 20

3.2.1 Gain insight into neural networks 20

3.2.2 Neural networks applied to language 20

3.2.3 NLP - realizing a parsing system 20

3.2.4 NLU - realizing a symbol-grounding system 21

3.2.5 Spinoffs - Neuroscience and biological models 21

3.3 Related research . 22

3.3.1 Introduction . 22

3.3.2 General overview of relevant research 22

3.3.3 Related research within Connectionism 22

4 Methodology of Research 25

4.1 The Methodological Approach 25

4.2 Result - Framework and Models 25

5 A Connectionist Parser 29

5.1 Introduction . 29

5.2 Dataflow . 30

5.3 The Dataset . 31

5.3.1 Introduction . 31

5.3.2 Dataset content . 32

5.3.3 The inputdata . 33

5.3.4 The encoding scheme 34

5.4 The Encoder - SRN . 37

5.4.1 Introduction . 37

5.4.2 Topology . 37

5.4.3 The Learning Task . 37

5.5 The Decoder - RAAM . 39

5.5.1 Introduction . 39

xii

5.5.2 Topology . 39

5.5.3 The Learning Task . 39

5.5.4 Valency Issues . 42

5.5.5 Decoding . 43

5.6 The Mapper - FNN . 45

5.6.1 Introduction . 45

5.6.2 Topology . 46

5.6.3 Training . 46

6 Perceptual Symbol Grounding 49

6.1 Introduction . 49

6.2 The Training Parameters . 50

6.3 The Scene . 50

6.4 The Virtual Data-routing Algorithm 50

6.5 Basic Dataflow and the Components 53

6.6 Word recognizer . 53

6.6.1 Dataset . 53

6.6.2 Encoding of input-data 53

6.6.3 Topology . 54

6.6.4 Training . 54

6.7 Shape recognizer . 55

6.7.1 Dataset . 55

6.7.2 Encoding of inputdata 55

6.7.3 Topology . 56

6.7.4 Training . 56

6.8 Location recognizer . 57

6.8.1 Dataset . 57

6.8.2 Encoding of inputdata 57

6.8.3 Topology . 57

6.8.4 Training . 58

6.9 Concept Word associator 58

6.9.1 Introduction . 58

6.9.2 Dataset . 59

6.9.3 Topology . 59

6.9.4 Training . 60

6.10 Word Concept associator 60

6.10.1 Introduction . 60

xiii

6.10.2 Dataset . 60

6.10.3 Topology . 60

6.10.4 Training . 61

6.11 Scene analyzer . 61

6.11.1 Introduction . 61

6.11.2 Dataset . 62

6.11.3 Analyzing the scene . 62

7 Coevolution of Language 65

7.1 Introduction . 65

7.2 The theory . 65

7.3 Relevancy . 66

7.4 The basic setup . 66

7.4.1 The environment . 66

7.4.2 The codecs . 66

7.4.3 The agents . 67

7.4.4 The words . 67

7.4.5 The meanings . 67

7.4.6 Format of the input-data 67

7.5 Communicating - running the simulation 67

7.6 Results . 68

8 Evaluation of the Results 73

8.1 Introduction . 73

8.2 Subgoal 1: Learn about Neural Nets 74

8.3 Subgoal 2: Neural Nets and Language 74

8.4 Subgoal 3: Realizing a Parser 75

8.5 Subgoal 4: Realizing Symbol Grounding 76

8.6 Subgoal 5: Analogies to Neuroscience 76

8.7 Limitations of the Systems . 76

8.7.1 The Parsing System 76

8.7.2 The Perceptual Grounding System 78

9 Summary and Conclusion 79

9.1 Summary . 79

9.2 Conclusion . 80

9.3 Further Research . 81

xiv

List of Figures

5.1 Dataflow of the parsing system 30

5.2 Example parse-trees . 35

5.3 The ENCODER (SRN) . 38

5.4 The decoder (RAAM) . 40

5.5 Example parse-tree . 41

5.6 RAAM, decoder part . 44

5.7 The Mapper network (FNN) 46

6.1 Dataflow diagram of the Symbol Grounding System 52

6.2 The Word-recognizer network 55

6.3 The Shape-recognizer network 56

6.4 The Location-recognizer network 58

6.5 The Concept-to-Word associator network 59

6.6 The Word-to-Concept associator network 61

6.7 Analyzing the scene: the sampling process 62

7.1 Graph of the evolution - run 1A 70

7.2 Graph of the evolution - run 1B 70

7.3 Graph of the evolution - run 2A 71

7.4 Graph of the evolution - run 2B 71

7.5 Graph of the evolution - run 3A 72

7.6 Graph of the evolution - run 3B 72

8.1 Illustrative levels of goal completion 74

xv

xvi

List of Tables

5.1 Dictionary structure . 32

5.2 The 8 syntactic structures . 32

5.3 Examples of input-sentences 34

6.1 Structure of the bit-pattern of an encoded word 54

xvii

xviii

Chapter 1

Neural Networkology 101

It is a mistake to think you can solve any major problems just

with potatoes.

- Douglas Adams

1.1 Introduction

The reader of this thesis is assumed to have general knowledge of the field

of AI, and to have some basic familiarity of neural networks. Still, there are

quite many technical terms and one cannot expect everyone to be familiar

with all of them. In addition, some concepts are referred to by several differ-

ent terms, (in the spirit of a beloved child has many names) as well as the fact

that many authors tend to use slightly synonymous terms interchangeably,

liberally. Thus, this contributes to more fuzzy and unclear definitions in the

vocabulary of neural networks.

In this regard an introductory chapter on central terms and concepts within

connectionism seems in order. Not to give exact definitions of all essential

terms, but first and foremost to give the reader a general introduction to

the relevant terminology. In fact, the descriptions given here are not even

real definitions, in a strict sense. They are simply meant to show how these

terms are commonly used, and what I, the author, mean when these words

are used in this text. Hence, few citations and references are given.

1

Chapter 1. Neural Networkology 101

1.2 Definitions

Connectionism has come to mean much the same as information process-

ing using neural networks. This is especially true for the computer science

community in AI. Originally, this was a much broader term, where neural net-

works were a branch within connectionism. Other communities, like cognitive

science in biology, psychology and philosophy, still tend to use connectionism

in the original, broader sense. [15]

A node, also called a unit, is the fundamental unit of a neural network,

the equivalent of a biological neuron. It contains the connections to other

nodes as well as the transfer function.

A link is the connection between neurons and each such link is associated

with a weight. It’s biological equivalent is a combination of the axon and the

synapse, where the weight serves as the function of synapse excitability (and

implicitly also as a threshold function).

The transfer function, also called the nodefunction, is responsible for

integrating all incoming signals into one value that can be propagated to the

next node, normalized to a number in the range [0.0, 1.0]. One of the most

commonly used functions is the sigmoid function; 1 / (1 + exp(-x)). It is

continuous and approximates 1.0 at x = -36.0 and 0.0 at x = 36.0. This is

the transfer function used in my implementation.

An activation is the value that a node produces when its input is run

through the transfer function. When we look at such activations from all or

a group of nodes, we get what is called the activation pattern. It is usually

taken from all nodes within a specific layer of neurons; the hidden-layer or

output-layer. (Input-layer nodes obviously also produce activations, but are

rarely considered for analysis).

Propagation is the process of transferring signals from node to node through

weighted connections, the links.

The backpropagation algorithm, also called error backpropagation, is

the core of any artificial neural net’s ability to learn. Backpropagation is a

2

1.2. Definitions

deterministic algorithm that enables the net to learn by making small adjust-

ments to all weighted connections. The size of an adjustment for a particular

link is determined by the error of a neuron’s activation, and that error value

is initially computed as the difference of an output node’s activation from the

desired activation. As the name implies, the algorithm progresses backwards

from the output-layer until the input-layer is reached. All consecutive error

values are indirectly computed from the initial error by taking the derivative

of the error at the previous layer, (n+1, as we are going backwards, and

where n is the current layer), modulated by the strength of the connection

over which a particular erroneous signal was received. It is a supervised

learning algorithm [24].

Inputdata refers to what is presented to a network. Due to the nature of

most transfer functions, any input data given to a neural network must be

normalized to values in the range ± [0.0, 1.0].

The input-layer is the first layer of neurons in a network, and this is

where input is presented from an external source. E.g. the environment,

another network, etc.

The hidden-layer is the layer of nodes that is between the input-layer and

the output-layer. Many simple, experimental neural networks only have one

hidden layer, although there is no problem in having several hidden layers.

In cases of multiple hidden-layers the term ’the hidden layer’ will refer to

the last hidden-layer, the one next to the output-layer, when speaking of the

activation pattern. The activation pattern of this layer is of most interest

when analyzing the ’how’ and ’what’ of a network’s learning process, in terms

of finding what kind of structure a network has identified in a given set of

input data. Also, the activations in this layer shows the network in its most

sub-symbolic state: no single neuron here represents a specific part of a

concept, nor are the activations explicitly shaped in any direction during the

learning process, but only through the errors computed at the output-layer.

Thus, the pattern here is referred to as the network’s internal representation

of a (learned) concept.

The output-layer is where a network’s performance is evaluated during

training, and obviously also the last step in a series of transformations per-

3

Chapter 1. Neural Networkology 101

formed on the input-data. In most training schemes a network is supposed

to learn not only to distinguish between input of distinct classes, but also

to identify each such class as something specific. That is, each pattern that

a net has learned to recognize must then be represented explicitly by a cer-

tain configuration of activation values on the output units. This way the

output-layer activations act as a bridge from a net’s sub-symbolic internal

representation (the hidden-layer) to a much more symbolic (explicit) repre-

sentation on its outer layer. Note though that this observation only holds

if a network is being used in this common way, where such specific train-

ing targets are used by the backpropagation algorithm during the training

process.

One-in-n bit representation. This is an encoding scheme using the one-

in-n bit representation does exactly what it says. It generates a bit-pattern of

n bits, where one, and only one, bit is turned ”on”. (Meaning 1, or 1.0). This

kind of representation is often used when the original data is some kind of id

number or class. It is also sometimes referred to as an orthogonal bit-vector.

1.3 Three basic models

Plain Feedforward - FNN. The Feedforward Neural Network is the sim-

plest of the three models and all the others are based on this construction.

As the name implies, propagation of values is strictly forward; there are no

feedback-loops or any kind of redirection of propagated values. The minimum

number of layers for any standard network is three, that is, one hidden-layer

in addition the the input- and output-layer.

Simple Recurrent Network - SRN. The SRN [11] is an extension of the

feedforward model where the output of all nodes in the (last) hidden-layer

are fed back to context nodes in the input-layer. This works in a way such

that each time an input pattern is given to the net and propagated forward,

the values stored in the context units are propagated along with the current

input just as if it were part of the new input. It is important to note that

the values in the context units are those from the previous timestep, t-1,

and as such makes up the network’s internal representation of the previous

input. What is accomplished by this then, is that the net can handle se-

rial input. This is very useful when one needs to process input in real-time,

4

1.3. Three basic models

and not all the input-data is immediately available. A typical example of

such data would be sentences in natural language, where each word is pre-

sented one at a time, and there is a temporal aspect (word order) to consider.

A problem with the SRN concerning its very limited capacity for longer-

term memory has been pointed out by several researchers. Mayberry III

& Miikulainen have suggested an improvement regarding its usage in the

technical report SAARDSRN: A Neural Network Shift-Reduce Parser [16].

Recursive Autoassociative Memory - RAAM. The RAAM is another

interesting network model, attributed to Jordan Pollack [23]. The purpose

of the RAAM is to enable neural networks to learn and represent structure,

a problem that really caused concern in the early days of connectionism.

(A typical field of research where representation of hierarchial structures is

essential, is natural language processing, concerning syntax). The character-

istic topology of this model is the sizing of its layers, particularly the input-

and output-layer, which need to have the same number of neurons. The rea-

son for this design derives from the way this network is trained, namely to

reproduce on its output units the contents of its input units. Furthermore,

the input- and output-layers are divided into two or more virtual partitions,

thus enabling a training scheme to be set up that allows the net to learn and

represent nested structure.

The whole process of training a RAAM to encode structure, and then re-

cursively decode a pattern to extract all its subparts, is a complicated task.

The topology of the RAAM itself is no more complex than the other models.

Rather, the complexity stems from the way it is used. A detailed description

of this process is beyond the scope of this brief overview, so a short explana-

tion will have to suffice:

Imagine a task where the net is required to learn the full structure of a

binary tree, that is, both the hierarchical relationships among the nodes and

the content of each node, and represent this as one, fixed-width pattern. The

layers are divided into n partitions, where n = 2 because we are working with

a binary tree-structure. Training starts by presenting the input-layer with

the content of two leaf nodes and autoassociating this composite pattern.

Next, the activation pattern of the hidden layer are now taken to represent

5

Chapter 1. Neural Networkology 101

the root-node for this subtree. Training proceeds by encoding successively

larger and larger subtrees into single patterns, in a bottom-up fashion.

The RAAM has a rather limited but difficult to precisely define storage ca-

pacity, and suggestions for improving its design and usage have been made.

Levy and Pollack give a treatment on the topic in their technical report In-

finite RAAM: A Principled Connectionist Substrate for Cognitive Modeling

[17].

6

Chapter 2

Background and Motivation

I have come to the conclusion that my subjective account of my

motivation is largely mythical on almost all occasions. I don’t

know why I do things.

- J.B.S. Haldane

2.1 Introduction

From here on natural language processing and understanding will be simpli-

fied by dropping the natural part, or fully abbreviated to NLP and NLU,

respectively. It is also assumed that the processing part refers to automated,

computational processes in the software/hardware paradigm of computer sci-

ence, and their potential analogues in the neural networks of the human brain

when analyzing sentences syntactically and semantically.

Why language processing and understanding? And why choose the connec-

tionism paradigm which is well known for its computationally heavy training

procedures? What speaks in favor of using this sub-symbolic methodological

approach as opposed to the traditional one operating on the symbolic level,

where one can directly utilize rules, task-specific algorithms, etc? Surely,

there are many valid arguments both for and against both approaches, but

the intention here is not to argue for either one of them as being better.

Instead, I will try to give the rationale behind my decisions by looking at

various kinds of motivating factors. These factors include advantages and

disadvantages of each branch, with respect to NLP, as well as more strategic

7

Chapter 2. Background and Motivation

ones regarding similarities to neuroscience and fields of personal interest.

As for the initial question, why choose the language processing branch in

AI, it will be treated in the next section, 2.2. Finally, a more subjective

discussion of language itself is given in section 2.5, the purpose of which is

to explain and justify the need for perceptual grounding in NLP and NLU.

2.2 Computational Language Processing

2.2.1 Introduction

Almost any number of positive effects can be pointed out as good reasons

for wanting to work towards an ideal NLP/NLU system with human-like ca-

pabilities. Although utopian as a short-term goal, research in that direction

should not be discouraged. To give a full treatment of possible interesting

and useful applications of NLP/NLU research would require a paper in its

own right, and would only serve to confuse the matter at hand: which is to

point out the underlying motivations for choosing language processing and

their justifications. With that in mind, only a few high-level aspects are con-

sidered. Common to all is the economic incentive in a global market hungry

for new and better solutions to automated language processing systems, but

it will not be elaborated upon any further.

2.2.2 Computer games - virtual environments

During the profound increase in the availability of PC’s and the accompany-

ing growth of the computer game industry in the early 80s, a lot of games were

still largely text-based. This author spent a liberal amount of time playing

them, with a particular interest in specimens of the adventure & role-playing

category. The relevancy, finally, is that while the use of language in games

had the potential to increase the gaming experience, the complexity level of

NLP implementations was extremely low. And this has remained so. The

dynamics of interaction with the virtual environment and the entities therein

has been vastly improved, but only in regard to visual quality and physics

simulations.

The bottom line is that any kind of virtual environment could greatly ben-

8

2.2. Computational Language Processing

efit from an advanced language processing module, not just computer video

games. Whether you are talking to an AI-god to glean information about the

immediate surroundings or communicating with a so-called intelligent agent,

it would be nice to actually get a relevant and informative reply. This is

currently not yet realized in any commercial package, and can thus be seen

as a justification for further research into NLP in the language - AI domain.

2.2.3 Knowledge acquisition

One doesn’t need a whole lot of imagination to realize the huge potential that

lies in coupling of AI with decent language skills. The speed with which a

software agent can process data would elevate the concept of speed-reading to

whole new level, and if the agent could understand the text as well. Well, the

implications should be obvious. Understanding is used here in the sense that

recipient gains knowledge, in an orderly and logical fashion, derived from the

processed text. Much in the way humans are believed to accomplish this feat.

Approaches like data-mining would become much more efficient and attrac-

tive. Being able to easily and accurately communicate with the mining agent,

and to actually get the requested results, is another good candidate for invok-

ing interest in computational language processing and understanding. Hu-

man - agent communication, automated knowledge acquisition, advanced

reasoning, etc. are all accomplished through the use of natural language as

the source of information. as well as the medium to convey the knowledge.

2.2.4 Automated machine translation - MT

There are quite many languages in use today, although a select few have

tended to dominate the scene, like English, German, French and Spanish.

However, none are about to completely subsume the others anytime soon,

and thus there exists a very real need for translation between a significant

number of languages. Consider then, the fact that the translation process

itself is very time and resource consuming, especially when two languages are

profoundly different. A large international body, like the EU, is a good exam-

ple of a multilingual environment. In such an organization, the production

of one document immediately necessitates a lot of extra work in the form of

translation into the native tongue of all interested parties. The workload of

these manual translation processes are further increased by a characteristic

9

Chapter 2. Background and Motivation

property of bureaucracy: excessive text-production.

Although some machine translation systems have been developed that per-

form fairly well, like Systran [27], they are far from perfect. Currently, they

have to be developed specifically for a chosen language-pair, are quite expen-

sive and take a long time to develop. The steep price of good MT systems

thus effectively prevents access for the general public and smaller enterprises.

Also, because only large or otherwise significant languages are being imple-

mented in these serious MT systems, only the privileged few can enjoy the

fruits of this work.

While the economic aspect may not be a real issue for a huge body like

the EU, there are other considerations that makes manual translation neces-

sary. One is the continual addition of new languages to this institution, and

so the developers cannot provide all the required combinations of language-

pairs to translate between. Another important reason is the need for high

accuracy in the translations, resulting from the requirement that important

content in documents be exactly and correctly translated.

2.3 Traditional approaches - GOFAI

2.3.1 Introduction

In the previous section (2.2) we looked at some central motivations for choos-

ing to work with NLP and NLU, and why that interest could be justified.

However, the treatment was on a level independent of any particular method-

ology, and as such without subjective bias towards a specific approach.

The remainder of this chapter will be more devoted to specific approaches,

which can be narrowed down to roughly two groups: GOFAI and connection-

ism, where the GOFAI acronym stands for Good Old-Fashioned AI, and is

meant to encompass all traditional methods. Two such approaches are briefly

discussed in this section, with emphasis on advantages and disadvantages.

Finally, in section 2.4, the paradigm of connectionism will be considered,

and the reasons for choosing this platform to do research on computational

language processing are put forward.

10

2.3. Traditional approaches - GOFAI

2.3.2 Rule-based parsing

The Early-algorithm [9], by Jay Early, is a typical, well known algorithm

for parsing sentences using predefined grammar rules. This particular in-

stance of rule-based parsing is constructed to use context-free grammar [14],

or CFG, as a way of simplifying some aspects of a grammar. The reason for

bringing attention to CFG is to point out that a complete modeling of lan-

guage by a nice and clean set of rules was found troublesome from the very

beginning. Because of these difficulties, ways to reduce the complexity were

sought. As a result, CFG was developed. The fact that such a problematic

aspect of rules was identified and accepted by proponents of this approach,

not its adversaries, strongly suggests the seriousness of the problem. Thus,

one can hardly be accused of unduly negative bias for seeking out a radically

different methodology to language processing research.

As the name of this group implies, rule-based parsing relies on a set of rules

to perform its syntactic analysis and, in some cases, semantic interpretations.

The rules are explicit and usually kept in a rule-base. This method is effi-

cient, easy to implement and such systems perform well, in principle. As

long as the grammar rules are few and simple and few exceptions need to be

handled, the rule-based strategy seems like an excellent choice.

The problems become painfully clear when one realizes the large number of

rules needed to account for all syntactic structures occurring in the human

language. In addition, natural language is notoriously rich in rule-exceptions,

which requires the addition of new rules to an already very large rule-base.

The mere size of it makes it very difficult to manage, concerning backlash

between new and old rules, as well as the order of application of simultane-

ously matching rules.

Another problem with rules is the rules themselves, at least concerning the

way they are commonly applied and their format. That is not to say rules are

inherently bad, but to suggest there are domains in which they are less suit-

able to perform. The mismatch between strict and inflexible rules1 and the

relatively chaotic and imprecise domain of natural language strongly suggests

1Referring to rules as traditionally used, where they are usually defined to handle
very specific events or circumstances, and cannot easily handle approximate equality or
similarity.

11

Chapter 2. Background and Motivation

another approach to NLP and NLU.

2.3.3 Probabilistic parsing

After the strictly rule-based approach to parsing turned out to be less than

ideal, some factions in the AI community felt the need for a new approach,

with properties sufficiently distinct from that of explicit rules. Probabilistic

parsing [18] was born, and it is safe to say that it has profoundly different

characteristics.

This scheme is centered around the mathematical model of probability calcu-

lus, utilizing both conditional and unconditional modes of computation. Of

most interest and impact, are those grounded in conditional probability, as

they incorporate the context factor. A popular method for achieving certain

forms of parse-relevant context is N-GRAMS [18], and is commonly used in

part-of-speech prediction, sense disambiguation [18], for finding likely syntac-

tic bindings, etc. Bayesian [1] models are popular here, and particularly the

naive Bayes [2] conditional probability model has been known to be widely

used.

Though the approach is relatively new, and has only recently gained much

attention, current consensus is that it is a promising new branch. No explicit

rules are used, all that is needed is a lot of training data in the form of text-

corpora to build tables of context dependent probabilities. In this regard,

probabilistic parsing is very distinct from other traditional approaches, and

bears, arguably, surprisingly much resemblance to connectionism2.

So, what is wrong with a probability-based approach to NLP? Actually, as

far as performance measures regarding speed of execution and correctness are

considered, nothing. That is, it is by no means perfect, but not lacking with

respect to other contemporary models, like that of connectionism. Rather,

the issue lies with the second part of the NLP - NLU pair, namely natural

language understanding. Arguably, NLU has more to do with semantics than

syntax, morphology, pre- and suffixes, etc. Apparently, the semantic compo-

nents have been badly neglected in language processing, and to say that this

is much due to the very difficult-to-define nature of meaning can hardly be

2Note: personal opinion of author, me.

12

2.4. Why Connectionism?

called jumping to conclusions.

Now, while probabilistic methods may be better suited to deal with the

fuzzy concept of meaning than the old style rule-based approach, no serious

effort to incorporate deep semantics have surfaced.3 A final comment on this

will be an old saying that goes like this; when old methods fail, try some-

thing new. In spirit of that statement, the world of neural networks are a

tempting new candidate. Being both new and adequately distinct from the

other methods it is unlikely to get stuck in the same kinds of problems.

2.4 Why Connectionism?

2.4.1 Introduction

Having argued mostly for why not use the purely symbolic GOFAI, this

section will look at appealing properties of connectionism. Now that the

tenet of objective argumentation is clearly neglected, it seems prudent to

explicitly acknowledge the fact. The justification is that this chapter (Chap.

2) is not meant to be scientifically objective, no approach is to be proven

the best. Motivations are necessarily biased by personal preference. How

else could there be many different approaches to a single problem, assuming

all groups have access to essentially the same information? That is, if there

actually were one objectively correct approach to NLP & NLU, then all or

most researchers would had chosen that approach4.

2.4.2 Parallel Distributed Processing

The concept of parallel distributed processing, or PDP, is closely linked to

distributed representations, discussed in section 2.4.3, and has two specific

properties relevant to the current discussion. Only the aspect of parallel

processing are considered here.

• Speed of execution. Although most experimental, software-based im-

plementations of neural networks run on serial- mode computer hard-

ware, the processes in the network can be considered to be of parallel

3The truth of the statement is obviously limited by the current time of writing, May
2006, and what was actually discovered in my search for such enterprises)

4Assuming, of course, that most researchers are serious and dedicated to a scientific
approach, and that they act in a rational way.

13

Chapter 2. Background and Motivation

nature for all other purposes. So, a (physical) implementation on par-

allel hardware would be extremely fast, and as an extra benefit, the

hardware would be relatively simple.

• There is no need for an extra control system for deciding in which order

the neurons should fire, as everyone fires simultaneously, one layer at

a time. Also, there is no need for conflict resolution between several

matching rules, which was previously seen to be a complicating factor

in section 2.3.2.

2.4.3 Distributed Representation

Every distributed representation is a pattern of activity across all units in a

neural network. To be sure, representations are composed of the activities

of the individual units, but none of these units represent any symbol. The

representations are sub-symbolic in the sense that analysis into their compo-

nents leaves the symbolic level behind.

A cluster of units represents a concept, where a cluster usually consists of a

subset of the net’s units. Exact identification of which units code for a given

concept is not possible, in the sense that all units contribute to the activation

pattern, but some units contribute more than others, in the sense of strength

of the activation. In any case, this type of representation has two interesting

properties.

• Every learned pattern, more or less, overlaps each other, and this neces-

sarily causes similarities to be enhanced and differences to be smoothed

out. One essential part of learning is generalization, and its core re-

quirement is this very effect: finding the general structure in received

stimuli.

• Considering a single learned concept, the distributed representation

makes a network robust to damage, whether on the connections or

neurons themselves. Since almost every unit contributes to the pro-

cessing of an input, the removal or change of a few activations does

not significantly alter the whole activation pattern. Thus, in case of

localized damage or otherwise distorted input-data, the net will still

perform admirably well. The overall favorable effect explained here is

14

2.5. A clinical perspective on Language

also referred to as graceful degradation [28], a property not commonly

attributed to traditional approaches. (Although the recent probabilis-

tic methods do exhibit this behavior to some degree).

2.4.4 Neuroscience and the Brain

The brain amounts to a gigantic neural network processor, and the problem

of psychology is transformed into questions about which operations account

for the different aspects of human cognition. The sub-symbolic nature of

distributed representation provides a novel way to conceive information pro-

cessing in the brain.

Thus, the final part on motivations for choosing to work within the realm

of connectionism relates to the field of neuroscience and our brain. The fact

that artificial neural networks are modeled after biological networks makes it

plausible to assume that semantics and language understanding are possible

to accomplish in connectionism. Moreover, AI research on neural networks

may also contribute to the field of biological neuroscience, as attempted by

O’Reilly and Munakata in their book ”Understanding the Mind by Simulat-

ing the Brain” [21]. Paul Churchland is another researcher and author who

has invested much time and effort into the boundary between artificial neural

networks in AI and neuroscience. Two of his publications directly related to

the current topic are the books Matter and Consciousness [6] and The Engine

of Reason, the Seat of the Soul: A Philosophical Journey into the Brain [7].

2.5 A clinical perspective on Language

2.5.1 Introduction

Language, spoken or written, is notoriously difficult to analyze automatically.

Purely in terms of syntactic structures, there are at least some identifiable

parts of it. But, even at this basic level of analysis, there are severe problems.

Word sense ambiguity, for instance, causes a host of problems when trying

to interpret a given word as having one of many possible meanings. Even so,

systems have been developed that perform decently on grammar handling

and parsing of syntactic structures, if mostly in some or other restricted do-

main.

15

Chapter 2. Background and Motivation

On the semantic level, though, there is nothing but trouble. A likely suspect

is meaning, a word that itself defies the very notion of being precisely defined

and operationalized. Where does the meaning, associated with a particular

word, come from? Independent of how meaning is defined, words in our lan-

guage do have a content, and it is common to all people within the language

group5. In the following sections a perspective on the properties of language

and its usage are given. A schematic view of a logical separation of language

and the external environment of an agent6 are also proposed.

2.5.2 The external world

The purpose of this section is to define the something else that is distinct

and separate from the singularity of an agent’s I-consciousness. Without that

concept, there would be nothing to understand, describe or communicate and

therefore nothing for a language to operate on. Thus, language neither would

nor could ever arise.

Characterized by properties as continuous, dynamic, analog, complex and

only partially observable, the external world refers to any environment ex-

ternal to a language-capable entity. There is structure and systematicity in

this reality, but only implicitly. A more complete definition also includes

events and processes in virtual environments internal to the agent, as long

as it is observable by the its conscious awareness. (or other method of intro-

spection). The reasons for what has been pointed out in this section, and the

implications for the meaning-concept, are humbly suggested in section 2.5.4.

2.5.3 The internal map

Necessarily incomplete, and with reduced overall detail levels of what is rep-

resented, the internal map refers to all and any kind knowledge of all that

is known about the environment in which an agent is situated. Examples

of things known can be the existence of certain objects, properties, proper-

5This is not always the case, as some people seem totally out of sync with the rest of
society. Frequently occurring miscommunications support this, but in most cases meanings
are common to all.

6Agent is used in the broadest sense, including autonomous software and hardware
entities, as well as humans.

16

2.5. A clinical perspective on Language

ties of objects, events, relations, effects of events, etc, ad infinitum. For all

purposes of the current discussion, the internal map can be equated to the

brain of an agent. Although systematicity and structure can be said to be

implicit to the external world, they are explicitly represented here as a form

of knowledge.

2.5.4 Language and symbol grounding

This section is about language as a tool and how a truly useful semantic

component can be realized and bound to words. Also considered here is how

the language system can be elevated to enable the representation of actual

knowledge in linguistic form, and even the formation of new knowledge.

So what is language? Basically, it is a system consisting of a set of sym-

bols and a set of rules specifying the allowed usage of the symbols. This

system is used to label and describe objects and concepts, among numerous

other things, in an external word as defined in section 2.5.2. Recall now,

from that section, the characteristic properties assigned to it: continuous,

dynamic, analog, complex and only partially observable. Imagine that the

language system can be assigned a wholly different set of properties using

words like limited, discrete, digital, simple, fully observable and static.

An analogy might help bring some clarity as to what is being said here.

Let language be a physical net with relatively large fixed- size masks (a typ-

ical fishing net), where the grid size indicates the (low) resolution. In this

respect, the resolution represents the limit of the level of details that can be

addressed and referenced in a continuous world. The fixed grid-size repre-

sents the initial inflexibility of the language.

The idea of all this is to portray language as initially simple and without

any concept of meaning unless it becomes linked to some external world.

However, by using it to label perceived objects on a simple naming basis,

the groundwork for expanding language to support complex representations

like prepositions and verbs are laid down. Now, in terms of the analogy,

the process of expanding the capabilities of language can be visualized as

successive operations of stacking the net onto itself and rotating it. Thereby

achieving a higher resolution without actually changing the grid-size of each

17

Chapter 2. Background and Motivation

individual net. Hence, its ability to capture and represent the finer details

of the underlying substrate, the external world, is increased by doing so.

Thus, language is boosted simply by using it, and the new constructs are

grounded through this process. Incidentally, this is much like the principle

utilized in computer programming languages: the power and expressiveness

increases as a function of how much they are used. C++ got its ++ postfix

for that reason, alluding to the effect of this postfix-notation of the increment

operator: the value of such an expression increases after it has been used.

The main point is that a transition to more advanced levels of language

use seems impossible without some form of symbol grounding. Perceptual

Symbol Grounding may be an adequate tool to achieve it.

18

Chapter 3

The Goal

The tragedy of life doesn’t lie in not reaching your goal. The

tragedy lies in having no goal to reach.

- Benajamin Mays

3.1 Introduction

The goal of all research logically implies a quest for insight and new knowl-

edge, in some chosen domain. From the part on ”Background and Moti-

vation”, chapter 2, it is hopefully clear that the more abstract and overall

goal here is to investigate computational language processing, particularly

within the paradigm of connectionism. It is perhaps also in place to restate

the all-encompassing area of research in which all the work is being done -

Artificial Intelligence and Learning.

The goal of the research in my thesis originally started out vaguely as how

would a sentence in natural language be represented in a neural network? For

example, the sentence ”The flower on the table is red” has both syntactic

structure and semantic content, neither of which can be identified by consid-

ering each word in isolation. From this starting point there were two obvious

areas to pursue: Parsing systems for working on the syntactic structures,

and some type of semantic processing approach to get to the meaning of a

sentence. In the following sections a more orderly and specific formulation

of the goal and subgoals is attempted.

19

Chapter 3. The Goal

3.2 The Goal and its Subgoals

The intention is to achieve the main goal by fulfilling the tasks specified in

the subgoals, and can be formulated as follows:

To gain more insight into the area of computational language

processing, and try to find and suggest ways to improve current

systems.

3.2.1 Gain insight into neural networks

This part of the goal relates to the usage and inner workings of neural net-

works. I had practically no knowledge whatsoever of the computational

framework or models at the beginning of the two-year master program, so a

study of neural networks was both necessary and useful. In principle, inde-

pendent of any particular application. It can be more compactly formulated

like this: Gain insight into how neural networks work and learn the basic

models1.

3.2.2 Neural networks applied to language

This concerns two specific aspects of language that any dedicated approach

should handle, the syntactic structure of sentences and the temporal order

in which words are accessed. Representation of structure, like that of a

hierarchical syntactic parse-tree, was long held as a major problem for neural

networks. Descent handling of serially input data was also a known problem

in connectionism. The subgoal then becomes: Empirically investigate the

capabilities of neural networks to handle structured data and temporal data.

3.2.3 NLP - realizing a parsing system

Almost an extension of subgoal 3.2.2, this goal is more specific, aiming for

an implementation as physical result. In effect: Investigate, implement and

test a connectionist parser to deal with the syntactic structure of sentences,

and look for ways to improve performance in terms of capabilities.

1The FNN, SRN and RAAM.

20

3.2. The Goal and its Subgoals

3.2.4 NLU - realizing a symbol-grounding system

Another, both interesting and important, part of the NLP & NLU branch is

dedicated to the semantic component of language. The category of systems

referred to here are those attempting some form of symbol-grounding, and

that is what is aimed at in this subgoal. It can be more formally stated as

follows: Investigate, implement and test a perceptual grounding system, and

see how meaning might be extracted from sentences and coupled to language

processing.

3.2.5 Spinoffs - Neuroscience and biological models

The phrase ”Understanding the mind by simulating the brain”, from the

book thus titled by O’Reilly & Munakata [21] comes to mind as an appropri-

ate description of this subgoal. Although it has been included here in that

respect, it should be characterized more as an interesting possibility to learn

more about how the brain works, particularly with respect to how we pro-

cess and understand language. No explicit research on the subject was done

during the work on this thesis, but some insight might still be gleaned from

working with artificial neural networks. That is, assuming that the analogies

to the brain are adequately accurate, a view advanced by several researchers,

including Paul Churchland in his book The Engine of Reason, the Seat of

the Soul [7].

21

Chapter 3. The Goal

3.3 Related research

3.3.1 Introduction

This section will serve mostly to summarize and explicate what is already

mentioned in the chapter on ”Background and Motivation”, (Chap. 2), and

chapters in the results part, chapters 5, 6 and 7.

3.3.2 General overview of relevant research

There is a lot of related and relevant research on language, both past and

present. When considering such research independent of methodology and

the implementational level, ideas and results from several branches apply.

These include the theoretical-philosophical work by Noam Chomsky, for ex-

ample his generative grammar and the Chomsky hierarchy[5, 4], computa-

tional linguistics in the traditional approach[18] on the symbolic level, as well

as general research on language processing using the connectionist approach.

While ideas and research from the diverse sources just mentioned are rel-

evant to my work in varying degrees, it is first and foremost research on the

sub-symbolic level that is being used as a source of strategies and models.

In fact, my implementational work is very much based on three distinct and

relatively recent systems, covering the three main areas of interest: a syntax

parser[8], a perceptual grounding system[3] and a communication evolution

model[29, 30]. Since most these are rather thoroughly described in each re-

spective chapter, namely chapters 5, 6 and 7, only a listing of them is included

here.

3.3.3 Related research within Connectionism

Parsing systems

• Bart Selman’s masters thesis Rule-Based Processing in a Connectionist

System for Natural Language Understanding [26].

• The top-down parsing algorithm called the Early-parser [9] for use with

context-free-grammar [14].

• Jeffrey Elman’s simple recurrent network [11] and his work on the de-

sign as described in his article Finding Structure in time [11].

22

3.3. Related research

• Work by Noel & Amanda Sharkey in their paper A Modular Design

For Connectionist Parsing [8].

• Jordan Pollack’s work to enable representation of structure in neu-

ral networks, in the paper Recursive Distributed Representations [23]

where the RAAM model was designed.

Symbol-grounding and Neuroscience

• Work by Stevan Harnad on symbol grounding. He has done a lot of

research into this topic, and his paper Symbol Grounding is an Empir-

ical Problem: Neural Nets are just a Candidate Component [12] was

used as part of the theoretical background.

• Research by Angelo Cangelosi into perceptual symbol grounding, par-

ticularly the article Approaches to Grounding Symbols in Perceptual

and Sensorimotor Categories [3].

• Research on symbol grounding by Vogt and Ziemke in The physical

symbol grounding problem [22].

• Bredeche, Zhongzhi and Zucker in the technical report Perceptual Learn-

ing and Abstraction in Machine Learning [19].

• Coradeschi and Saffiotti in their work described in the article Anchoring

symbolic object descriptions to sensor data [25].

• Sergei Nirenburg and Victor Raskin in their recent book Ontological

Semantics [20], where they give an in-depth treatment of semantics.

• The book Semantic Information Processing [10], compiled and edited

by Marvin Minsky. Although old, it contains a collection of articles on

the topic of meaning as well as various approaches to semantic infor-

mation processing.

• The book The Engine of Reason, the Seat of the Soul where neural

networks are explored specifically as a tool for explaining our biological

brains, including cognition, emotions and consciousness[7].

• The book Connectionist Models in Cognitive Psychology. This is actu-

ally a collection of up-to-date contributions of renowned researchers, in

23

Chapter 3. The Goal

fields of AI, neuroscience, language development, cognitive psychology,

etc. [13].

24

Chapter 4

Methodology of Research

By three methods we may learn wisdom: First, by reflection,

which is noblest; Second, by imitation, which is easiest; and third

by experience, which is the bitterest.

- Confucius

4.1 The Methodological Approach

The methods of research used in this thesis are a combination of the model-

and experimental based, resulting in a hybrid approach. A general frame-

work for experimenting with various implementations was designed in the

modeling phase. In particular, three systems was implemented within the

paradigm of connectionism.

The implementation of the three experimental systems was done in part

to test empirically the abilities of neural networks in the area of NLP, and in

part to gain deeper understanding of how language is processed and handled

in the human brain.

4.2 Result - Framework and Models

A general framework for testing neural networks was implemented. As part

of this framework a set of modules was created for handling three distinct

modes of operation.

25

Chapter 4. Methodology of Research

• The FNN model, for handling otherwise plain pattern transformation

and recognition.

• The SRN model, for handling data having a crucial serial and/or tem-

poral aspect.

• The RAAM model, for handling data with hierarchial structure

The choice of what systems to implement was strategically guided by the

wish to cover distinct, but related areas within computational language re-

search. Specifically, the parsing system by Sharkey [8] and the perceptual

grounding system by Cangelosi [3] were selected partly because of the inter-

esting possibilities that may be achieved by coupling NLP (parser) with NLU

(perceptual grounding).

The third experimental system that was implemented simulates the develop-

ment of word-meaning bindings through co-evolution [29, 30]. Here, a simple

model for communication evolution was designed to test the theory proposed

by Wang.

26

Approach and Results

Hell, there are no rules here - we’re trying

to accomplish something.

- Thomas Edison

27

Chapter 4. Methodology of Research

28

Chapter 5

A Connectionist Parser

Imitation is the sincerest of flattery.

- Charles Caleb Colton

5.1 Introduction

This chapter will try to give a detailed description of a modular parsing

system, based on the work by Noel and Amanda Sharkey [8]. The main

purpose for this re-implementation is threefold:

1. to further familiarize myself with important types of neural networks

by hands-on training especially the SRN and RAAM.

2. to learn how several distinct networks can be combined to work together

3. to see to what extent the grammatical structure of sentences in natural

language can be identified through a sub-symbolic approach like this

when no syntactic information is given.

29

Chapter 5. A Connectionist Parser

5.2 Dataflow

The parsing system is composed of three connectionist modules: A Simple

Recurrent Network, known as the SRN, a Recursive Autoassociative Memory

or RAAM for short, and a plain feedforward network (FNN) for mapping

representations between the two. The black-box schematic in figure 5.1,

should help give a preliminary overview of the dataflow in the system.

Encoder
(SRN)

Decoder
(RAAM)

Mapper
(FNN)

the [1000000]
girl [0100000]
smiles [0010000]

 Words encoded as 7-bit
patterns are fed into the
encoder, one word at a time.

Mapper receives 50-bit
inputs and transforms
them into 12-bit patterns
that the decoder knows.

Decoder recursively
expands 12-bit inputs
into a complete
parsetree.

Figure 5.1: Dataflow of the parsing system

In figure 5.1, the SRN frontends the system and serves as the entry point

of external input, here in the form of words. An SRN used recurrent con-

nections to form compressed representations [11]. A sentence is presented

to the SRN one word at a time and in order. After the presentation of the

last word in a sentence, a compressed representation of the entire sentence

is generated. The RAAM is the backend of the system and serves to decode

compressed representations into their constituents, that is, part-of-speech

(POS) elements. A compressed version of an input-sentence like [the girl

smiles] is what we get when that input has been processed by both the SRN

30

5.3. The Dataset

and the FNN, now transformed into a 12-bit pattern. It contains information

about both the syntactic structure and which POS elements the sentence is

made up of. An intermediate component, the Mapper, is located between

the encoder and decoder. Its function is to map sentence-representations

from encoder into patterns the decoder has been trained to recognize. These

patterns are the parse-trees made up of POS elements.

Each module first had to be separately trained to enable each module to

learn its own functionality, and also to enable all three modules to work

together as an integrated system for parsing. The SRN was trained to rec-

ognize grammatical structure in a set of natural language sentences. The

RAAM was trained to enable decoding a compressed representation of a sen-

tence into its POS constituents, along with structural information (syntactic

structure). The FNN was trained to map between the two modules.

5.3 The Dataset

5.3.1 Introduction

A parsing system firstly should know and represent the grammatical struc-

tures that it is expected to parse the natural language sentences into. It

also should have a way of representing the POS types that occur in these

grammatical structures.

On the other hand, to test the actual performance of the parsing system, a set

of natural language sentences are presented to the parser. These sentences are

constructed according to the grammatical structures that the parser knows.

A dictionary which is kept separately holds the mapping from the words in

the natural language sentences into their POS. The grammatical structures

and the POS knowledge of the parser system as well as the NL sentences and

the dictionary are named as the dataset of the parsing system.

31

Chapter 5. A Connectionist Parser

Table 5.1: Dictionary structure

5.3.2 Dataset content

The dataset for the system is:

1. A dictionary of 70 words, consisting of 31 nouns, 26 verbs, 2 auxiliary

verbs 6 prepositions, 5 adverbs, and 1 relative pronoun. Words in

dictionary are tagged with their respective POS class. The structure

of the dictionary is given in the table 5.1.

2. A representation of POS types, which are determiner (DET), noun

(N), verb (V), axillary verb (AUX), preposition (P), adverb (ADV)

and relative pronoun (RELPN).

3. The 8 syntactic structures the system should learn to recognize and

parse, which is also the training-data for the RAAM. The eight struc-

tures are given in table 5.2.

• 1. (DET N) (RELPN V) (ADV V (DET N))

• 2. (DET N) (RELPN V ADV) (V (DET N))

• 3. (DET N) (V (DET N) (RELPN (DET N) (V (DET N))))

• 4. (DET N (V (DET N (RELPN (DET N) V)) (P (DET N))))

• 5. (DET N) (V (DET N)) (ADV (DET N) (V (DET N)))

• 6. (DET N (V (DET N (AUX V))))

• 7. (DET N (V (DET N (P DET N))))

• 8. (DET N (V (DET N) (P DET N)))

Table 5.2: The 8 syntactic structures

32

5.3. The Dataset

4. A set of generated natural language sentences, each of which has the

format of one of the predefined 8 structures. These sentences are the

training and the test-data for the SRN, the encoder.

5.3.3 The inputdata

The input-data consisted of sentences generated from the eight structures

given above. This was done by substituting a POS element by a random

word from the dictionary having that particular POS category. One example

sentence from each of the eight categories are given in table 5.3.

On the other hand, sometimes, the intention of the speaker makes the dif-

ference in how a sentence should be parsed. That is, although any given two

sentences might have exactly the same POS sequence, they might have two

different syntactic structures.

33

Chapter 5. A Connectionist Parser

Table 5.3: Examples of input-sentences

For example the parser should be able to capture intentions of the speaker

in the following two sentences and parse them differently.

1. (the boy) (who shouted) (greedily took (the sausages))

2. (the boy) (who laughed loudly) (ate (the cake))

In the above sentences the POS structures are exactly the same, whereas

their two different intended syntactic structures are given through braces.

The intentions are different because the adverb greedily bind to namely the

verb took in the first sentence, but the adverb loudly binds to its preceding

verb laughed in the second sentence. The same thing applies to the pairs of

3 and 4, 5 and 6, and 7 and 8 in the given list of natural language sentences

above. It is these eight hand-coded structures that serves as the blueprint

for what kind of parse-tree a sentence should form. To see this more clearly,

look at figure 5.2, where the parse-trees for sentence 1 and 2 are given.

5.3.4 The encoding scheme

The input to the system is sentences, composed of a variable number of

words. As we have 70 words in the dictionary, we need to chose a way of

representing each word uniquely as inputs, and preferably using the same

number of bits for each word. One way is to use the one-in-x bit scheme,

resulting in a 70-bit pattern having exactly 1 bit set with that ON-bit desig-

nating which word number the pattern represents. This approach was used

in the work by Sharkey [8]. A potential disadvantage for this scheme is that

is requires a lot of input units, and all units except one are zero.

34

5.3. The Dataset

Figure 5.2: Example parse-trees

Another way to encode the same information (word number) into patterns of

equal length is to simply use the binary representation of the word number.

E.g. word #7 in the dictionary would be represented as 111. This is the ap-

proach chosen in my re-implementation. The number of input units required

is then derived from the number of bits required to represent the size of the

dictionary in this case 70 and can be represented by 7 bits. (scales up to

handle 128 different words).

This allows for a significant reduction of input units required for representa-

tion. However, this reduction of the number of input units can cause prob-

lems. That is, more work will be demanded from fewer number of weights in

the network, which is a result of fewer number of input units.

In turn, this may impair the ability of the net to learn, if the complexity

of a task is too high relative to the number of weights. An analogy may

help clarify this. Imagine having 5000 glass beads to use for representing a

complex shape, and assume that this number is adequate for creating a good

approximation of that shape. Now, trying to accomplish the same task using

only 100 beads will most certainly result in a very crude approximation, not

35

Chapter 5. A Connectionist Parser

showing much of the details of the original shape. Another effect of signifi-

cantly reducing the number of input units is specific to the SRN. By having

7 fresh inputs and 50 feedback units from the hidden-layer as additional in-

puts, the ratio of new number of inputs to the old number of inputs becomes

rather small, and the inputs tend to be dominated by the feedback.

The encoding of POS elements is done using the one-in-x-bits scheme though,

and this applies to the RAAM module, both in the form of inputs and out-

puts. As an example, POS encoding into 12-bit patterns looks like this:

determiner = 100000000000 noun = 010000000000

36

5.4. The Encoder - SRN

5.4 The Encoder - SRN

5.4.1 Introduction

This model was developed by Jeffrey Elman [11] to test the ability of neural

networks to handle temporally and serially ordered input data.

5.4.2 Topology

The topology for this recurrent net has the usual layer characteristics; three

layers comprised of one input layer, one hidden layer and one output layer;

57:50:70. The number of input units is 57 and is composed of 50 feedback

units from the hidden-layer, and 7 for the number of bits required to repre-

sent a word in the chosen encoding scheme.

As hinted at already, the hidden layer has 50 units, exactly as used by

Sharkey [8]. The size of this layer is guided by the complexity and type

of task at hand, and indirectly by number of units in the other layers. The

number 50 does not correspond directly to any external factor, as the di-

mensions of both the input- and output layers do, but is chosen to achieve a

sufficient capacity of the net. The output layer has 70 units, 1 for each word

in dictionary. The reason for this will become clear when the learning task

for the SRN is described.

In the case of this system, using only 7 inputs (along with the 50 feed-

back units) did not seem to prevent the net from learning its task. In order

to avoid having the feedback totally dominating the input, I used a decay

factor for the context units, which is 0.4, and it worked well with the current

dataset and learning task, symbolized in the figure 5.3, by the ellipse at the

lower left.

5.4.3 The Learning Task

In the training process the net was presented with one word a time, repre-

sented by a 7 bit pattern. Also included with each input cycle was the hidden

layer representation of input from the previous cycle; the so-called activation

pattern which was multiplied by the aforementioned decay factor of 0.4. For

each such input, the training target is to predict which words may follow the

37

Chapter 5. A Connectionist Parser

Figure 5.3: The ENCODER (SRN)

current input sequence. This is achieved by letting the output nodes repre-

sent a word number, such that output unit 1 corresponds to word number 1

in the dictionary, and so on. Thus, for any given input-word all words being

a legal successor should have all their corresponding outputs turned ON, and

giving an output ranging from approximately [0.7, 1.0]. An example using

the first of the syntactic structures from section 5.3.2 should make this clear.

(DET N) (RELPN V) (ADV V (DET N))
(the boy) (who shouted) (greedily took (the sausages))

If the input sentence being processed is [the boy who shouted greedily took

the sausages], and the current input-sequence is [the boy who], we see that

the following POS is a verb. Thus, the legal successors for who are all verbs

in the dictionary.

After the last word of a sentence has been given, we have a compressed

representation of the entire sentence. This will eventually be the output

given to the next module, the mapper, after training has been successfully

accomplished. Note that this representation is the hidden layer activations.

The activations of the output layer at the end of a sentence only represent

the grammatically legal successors for the last word in that sentence, and

38

5.5. The Decoder - RAAM

that should obviously not be used as a representation of the sentence.

5.5 The Decoder - RAAM

5.5.1 Introduction

One important first note is that, unlike the SRN which works with real words

as input, the RAAM [23] works at a higher level of abstraction: With POS

elements. Thus, leaf-nodes in a parse tree does not represent words.

5.5.2 Topology

As with the encoder, this net also has three layers. What is special about

RAAM architecture is the nk : k : nk dimension of the layers. In this

implementation the n is 3 and the k is 12, resulting in a 36:12:36 network.

While n defines the number of partitions that the input and output lay-

ers will have, it can also be seen as a compression ratio, such that 36 bits are

represented by 12 bits in the hidden layer. The function of RAAM, which

is an autoassociator, can actually be described as training the net to repro-

duce the input at the output layer. The reproduction of the inputs at the

output layer explains why the input and output layers must be of same size.

In effect the RAAM acts much as a lossy compression algorithm, like jpeg

image-compression. The RAAM is actually both an encoder and a decoder,

where the first layer and the hidden layer makes up the encoder, while the

hidden layer and the output layer comprises the decoder.

The example inputs shown in figure 5.4 is the typical case where the

input-pattern is a concatenation of two POS-elements, a determiner and a

noun. Note that in this situation partition 3 is left unused, and that this

happens more often than not while encoding a parse-tree. Relevant issues

are discussed in section 5.5.4.

5.5.3 The Learning Task

As briefly mentioned, the basic training target for the RAAM module is an

accurate as possible replica of the input. The input data is the 8 syntactic

structures given in the introduction, where structure can be represented in a

hierarchical structure of a parse-tree and each leaf-node is a 12 bit pattern

39

Chapter 5. A Connectionist Parser

Figure 5.4: The decoder (RAAM)
Note that this example-input leaves the last partition unused.

representing a POS element. The structure itself is realized using objects in

the employed programming language, Java. Such an object based realization

makes the encoding / training process much easier. However, there is more

to the encoding process than merely a few separate autoassociations. Firstly,

to achieve the global training goal we must end up with only one pattern for

representing the entire tree. Secondly, we must be able to reconstruct that

tree by using only that pattern. In order to do this, we need to recursively

encode (by autoassociation) successively larger subtrees ultimately reaching

the stage where we end up with one pattern, which is the root- pattern as

symbolized by the node at the top labeled S. Training starts with patterns

at the bottom of the tree, and recursively progresses upwards as patterns for

a parent-node is acquired.

To clarify this, see nodes 6 and 7 in figure 5.5. They are both leaf-nodes,

each of which is represented by a 12 bit pattern: a determiner and a noun.

They form the two children of a subtree. At the very beginning of the train-

ing process only leaf-nodes have a defined pattern, and consequently, repre-

40

5.5. The Decoder - RAAM

Figure 5.5: Example parse-tree

sentations for parent nodes must be generated during training, where these

patterns are acquired by autoassociating their children. In this example, the

DET(6) and N(7) are given as one concatenated input to the RAAM, and

the hidden layer activation is stored as the pattern for their parent, which is

the xP node immediately above them. This is repeated for all 5 subtrees in

this example.

Autoassociation of patterns after only one iteration cannot be achieved, since

quite many weight updates are necessary. A particular difficulty occurring in

this learning task is that some of the training targets become moving targets,

that is, they change as training proceeds. This does not affect leaf-nodes as

they have explicitly predefined patterns that stem from the POS they repre-

sent. The parent nodes, on the other hand, continuously change as patterns

at lower levels in the tree slowly approach autoassociation. Training a net-

work with several different inputs that cause opposing demands on weight

changes is common to all networks. However, in the case of the RAAM we

also have interdependency between intermediate inputs and outputs during

the encoding process. This results naturally from the fact that we are work-

ing with hierarchically structured input and training targets. There are two

easy ways of reducing this problem somewhat, both of which translates into

41

Chapter 5. A Connectionist Parser

two distinct implementational details:

1. By using a very low learning rate, 0.15 to 0.001, which helps prevent

weight updates for the different patterns to completely ruin each other’s

progress.

2. By observing that patterns (nodes) higher in the tree receives their

training targets from all connected nodes below them. Therefore, it

should be helpful to pre-structure the net by autoassociating all nodes

with known, constant patterns; the leaf nodes. Thus we pre-train on

patterns in subtrees in which all children are leaf-nodes. In figure 5

this amounts to nodes 0 and 1, 2 and 3 and 6 and 7. The exact amount

of training to do for this kind of pre-structuring should be adapted

to the specific dataset at hand, but for this system, a success rate of

approximately 80%-90% of adequate autoassociation was used.

The end result of training the RAAM on the 8 syntactic structures gives

us a set of eight 12-bit patterns representing them. It is these patterns that

will be the training targets for the mapper module.

5.5.4 Valency Issues

The key concept in this section, variable valency, means that the number

of children a node can have is not a predefined constant, but rather varies

from 0 to some chosen maximum. The word valency can be equated with the

number of children of a given node. In the parsing system implemented here

the valency ranges from 0 to a maximum of 3. An example of the opposite,

constant valency, is found in binary trees, where all nodes has either exactly

two children, or none at all.

As mentioned briefly at the end of section 5.5.2, most subtrees in the set

of 8 syntactic structures only have two children. Since our RAAM has three

partitions, the last twelve units are rarely used. The fact that some input

partitions do not receive input during the encoding process has consequences

for weight updates, and also for the design of the decoding cycle. First we

will look at this from the training side of things.

If we ignore unused partitions, in which the units consequently have zero

42

5.5. The Decoder - RAAM

input, a value of 0.51 will be propagated over weighted connections from

these units, and significantly affect the input of all units in the hidden layer

and onward. To avoid such noise I modified the input-routine to simply

not propagate values units in unused partitions. In order to have any real

effect though, a slight modification had to be done to the backpropagation

algorithm also. This change consisted of making the error of output units

in unused partitions zero, thus effectively preventing useless (and disruptive)

weight updates.

The implication of a variable valency for the decoding process should be

obvious: how many children does a particular node or pattern have? It can

be either 0, 1, 2 or 3. Also, due to the modifications done to the encoding

algorithm, another complication arises. The effect of ignoring unused par-

titions during training is that we cannot know whether a partition on the

output layer actually represents a learned non-leaf pattern, or simply is un-

defined activations. This does not apply to leaf-nodes as they have a known,

characteristic pattern of one 1.0 and the rest are 0.0. A workaround for this

is to use the already generated parse trees to guide the decoding process.

This will be explained in section 5.5.5.

5.5.5 Decoding

For the decoding process, we do not need the input-layer and its associated

weights, but rather only the hidden- and output-layer appropriately called

the decoder part. For testing purposes, we use as input those eight 12-bit

patterns that the training process yielded. Note that for actual testing of

the system as a whole, the input will come from the mapper module, and

those patterns will be close approximations of the ones generated during the

RAAM training.

Now, about the decoding procedure: Input data for the decoding part

are not presented to the input units, but rather directly to the hidden layer.

It is also important to remember that the input comes from the activations

at the hidden units, and therefore it should not be run through the transfer

function again. Rather, the input is propagated to the output-layer through

an alternate method, an identity function that does not change the input.

1This is a result of the transfer function used, the standard sigmoid function
1

(1+(exp(−input))) , which will output the value 0.5 when the input is 0.0, or nothing.

43

Chapter 5. A Connectionist Parser

Figure 5.6: RAAM, decoder part

(Obviously the weighted connections are still applied).

The output units represent whatever constituents were contained in the given

input pattern, and this is where the problem of the unknown valency enters

the picture. As the chosen encoding scheme makes it impossible to distin-

guish between an empty partition and one containing a composite represen-

tation, (as all non-leaf nodes do), a solution to the unknown valency had to

be found. It was solved by using the parse-trees for the syntactic structures

as guide during decoding. But, this begs the question of which tree?.

Actually, any input given to the RAAM for decoding is recursively decom-

posed using all of these 8 parse-trees, one at a time. This way we know

which partitions to decode further, and consequently when to stop decoding.

During each of these eight decoding attempts, an error value is computed

by comparing the resulting pattern of each decoded leaf-node with the cor-

responding leaf-nodes in the parse-tree we are attempting to decode it as.

The idea here is to find/guess the correct parse for an input by selecting the

parse-tree that yielded the lowest error.

An obvious implication of this is that the decoder will always identify an

input as one of the 8 structures it has been trained to recognize, no matter

what the input looks like. This makes the parsing system less flexible with

44

5.6. The Mapper - FNN

respect to which syntactic structures it can identify. However, the purpose of

the system was not to enable partial recognition of unknown syntactic varia-

tions, and hence, this is an acceptable limitation. The number of structures

recognized can easily be extended by adding new ones to the dataset, along

with the required scaling up of the networks.

Recall though, that as the decoding process is recursive, either pattern A, B

or C is fed back into the hidden layer, depending on which pattern we want to

decode further. Also, to further clarify the problem of the unknown valency,

look at the example input. This is what a hidden layer representation may

look like, but also very similar to what would appear in an empty, or unused

partition. Imagine now, that after giving the example input as specified in

the figure, patterns A, B, C takes on the following values:

A: [0.007 0.062 0.009 0.943 0.061 0.035 0.018 0.089 0.042 0.013 0.049 0.056]
B: [0.921 0.081 0.001 0.506 0.086 0.035 0.018 0.013 0.004 0.003 0.029 0.099]
C: [0.263 0.462 0.309 0.233 0.761 0.735 0.518 0.189 0.342 0.013 0.349 0.456]

By knowing what properly encoded leaf-node patterns look like (all zero’s

except one), patterns A and B are confidently identified as POS elements

and should not be decoded any further! This is not the case with pattern

C, which may either be the undefined output for an empty partition (a sub-

tree with only two children) or an actual representation of another subtree.

Attempting to decode patterns containing no encoded structure leads to un-

defined outputs, and a potentially neverending recursion. In any case it

pretty much ruins the chance for a successful decoding of a parse-tree.

5.6 The Mapper - FNN

5.6.1 Introduction

The function of the mapper may not seem very important or interesting,

compared to the other modules, but without it the other two modules would

not be able to communicate. So, even though its function is to simply map, or

convert, one pattern into another, that function is an essential one. Also keep

in mind that there is a lot of information is packed into both the input-data

and the output-data associated with this mapper.

45

Chapter 5. A Connectionist Parser

5.6.2 Topology

This is the most straightforward module in the system. Being a plain feed-

forward network with three layers, the topology is simple: 50:35:12. The

number of inputs is determined by the size of the hidden layer in the SRN

module from which it receives its input. The 35 hidden units is chosen as

an appropriate compression factor that is sufficient to finally map the 50-bit

input into 12 bit patterns that closely approximates those generated by the

RAAM. Thus, the output-layer has 12 units, and is determined by the size

of the hidden-layer of the RAAM, which is where the output of the mapper

is routed.

Figure 5.7: The Mapper network (FNN)

5.6.3 Training

The training of the mapper is dependent on results from both the encoder

and decoder modules, and therefore it can only be trained after the others

have finished. The input given to the mapper is the patterns from the hidden

layer of the SRN, which contains certain rules that have been extracted from

the input data by teaching the SRN to predict legal successors (in terms of

words) given the current sequence of POS elements. These 50-bit inputs must

46

5.6. The Mapper - FNN

to be transformed into 12-bit approximations of the patterns the decoder has

learned to use as representations for the parse-trees and these patterns are

the training targets.

47

Chapter 5. A Connectionist Parser

48

Chapter 6

Perceptual Symbol Grounding

All our knowledge has its origin in our perceptions.

- Leonardo da Vinci

6.1 Introduction

Earlier, we have argued for the need for a stronger semantic component in

the analysis and interpretation of natural language. Semantic information

processing [10, 20] can help improve both the syntactic parsing process as

well as the interpretation of the intended meaning. There is much diverse

literature on semantics and several researchers have approached this subject.

Various levels of ambition and numerous methods have been attempted. The

model described in this chapter is based on work done by Angelo Cangelosi,

as described in a recent paper Approaches to Grounding Symbols in Percep-

tual and Sensorimotor Categories [3].

The level of ambition for my implementation was set relatively low compared

to the framework discussed in the paper by Cangelosi. One reason for this

was the purpose of writing an experimental system on perceptual grounding,

which can be summarized as follows: To test the theory empirically, and to

gain more insight and practical experience in the field of perceptual symbol

grounding.

49

Chapter 6. Perceptual Symbol Grounding

6.2 The Training Parameters

An adaptive learning rate and momentum was implemented for this system,

and therefore these parameters will not be specified in the sections concerning

the training process. It will have to suffice to state here that an initial learning

rate of 0.2 was used, and the momentum was set to start at 0.65.

6.3 The Scene

The scene, or field-of-view (fov), is the place in which everything visual in-

put is derived from. It is a very simple construct that can represent the

field of view that is covered by the eyes (or an eye). This is from whence

the system receives its visual input that are to be analyzed, recognized, and

”understood”, the process by which a word can be perceptually grounded.

The percept is visual.

The scene first and foremost has two properties. One is its size as width

and height. In the test runs, the scene was set to be 192 pixels wide and 192

pixels high. That particular number was derived from the decision to allow

room for 6 shapes in both directions, and each shape being fixed at 32x32

pixels. 32 * 6 = 192. Another property that can be attributed to scene is

the spatial granularity, or intrinsic resolution, which determines the number

of positions that exist in the fov-world. This, then directly determines the

number of positions a shape can be located at, and thereby also the number

of patterns that the location-network can be trained on. A granularity of 32

was chosen, not coincidentally exactly the size of a shape, and this greatly

simplifies the process of finding shapes. Other, more implicit properties of

the scene are the fact that it is purely two-dimensional and black-and-white.

Another practical effect of the coarse spatial granularity was that the job

of the scene-analyzer could be greatly simplified, and will be explained in

section 6.11.

6.4 The Virtual Data-routing Algorithm

A problem that arises from having only one word-to-concept mapper, section

6.10, and two concept networks, was decided to be ignorable. It just happens

to be a problem of the routing of activation-data from the hidden-layer of

50

6.4. The Virtual Data-routing Algorithm

the word-to-concept mapper to either the shape net or the location net, and

is not relevant to the symbol grounding experiment. This current state of

affairs appeared after a revision of the design of the symbol grounding system.

So, for the purposes of this system, the routing problem will be considered

solved by a virtual routing algorithm.

51

Chapter 6. Perceptual Symbol Grounding

Shape Network

 Vocabulary
 Network

Concept-to-Word
Associator

Word-to-Concept
Associator

The Scene-
 Analyzer The Scene:

field-of-view

«triangle»

Location
Network

Shape 2Shape 2
belowbelow

Shape 1
aboveabove

Figure 6.1: Dataflow diagram of the Symbol Grounding System
52

6.5. Basic Dataflow and the Components

6.5 Basic Dataflow and the Components

To give an initial overview of the system and its components, the basic

dataflow of the system is shown in figure 6.1. All the main components

are also listed here, briefly describing their function.

The system is comprised of five neural networks and one hybrid module, each

serving a specific role. The word recognizer, section 6.6, provides the func-

tionality of a dictionary, i.e. the system’s vocabulary. The shape recognizer,

section 6.7, provides vision processing and grounding of visual perceptions.

The location recognizer, section 6.8, provides a capability of learning cer-

tain location concepts1. The concept-to-word mapper, section 6.9, serves the

function of associating a ’concept’ with a word. The word-to-concept map-

per, section 6.10, serves the function of associating a word with a ’concept’.

Finally, the scene-analyzer, section 6.11, provides a rudimentary functionality

for identification and extraction of individual shapes from a visual input.

6.6 Word recognizer

6.6.1 Dataset

Words, or labels, for any object or concept are what makes up the dataset for

this module. In the current setup, this comprises the names of four geometric

shapes and five prepositions. The words are: triangle, rectangle, hexagon,

circle, above, below, left, right, on. This resulted in a small dataset of only

9 patterns.

6.6.2 Encoding of input-data

Each word is encoded into a 9-bit pattern. The first two bits represent its

unique id number and the number of letters in the word. The remaining 7

bits contain part-of-speech information. See table 6.1 for a detailed view of

pattern structure.

This encoding scheme ensures a fixed-width pattern for all words, which

is useful when the receiving network has an FNN topology. The choice to

1The location concepts in question are the binary and relative position-relations com-
monly known as prepositions.

53

Chapter 6. Perceptual Symbol Grounding

Table 6.1: Structure of the bit-pattern of an encoded word

include some word-specific information in the encoding was made with re-

spect to an important principle regarding transformation of data: as much

as possible of any potentially relevant properties of the original data should

be retained through a conversion. However, for the limited, experimental

purpose of words in this system, the encoding could just as well have been

using a plain numbering scheme.

6.6.3 Topology

The strategy chosen for presenting input is the parallel, all-at-once type, and

consequently the choice of network model becomes the FNN. From the size

of the input-patterns, the input-layer is set to have 9 input nodes. The size

of the hidden-layer was set to 14, and this was decided in part empirically, in

part by commonsense. The size of the output-layer was directly determined

by number of words in the vocabulary, 9. Thus, resulting in a 9:14:9 FNN

network.

6.6.4 Training

The training process for this network is very simple, and not particularly

interesting. In fact, one could say the training is mostly for show, as all

that is required of the dictionary network is to uniquely identify each word-

pattern. Given the small number of words in the dictionary, each input-

pattern is likely to give rise to sufficiently distinct output-patterns with little

or no training at all.
However, a specific training target was chosen, and consequently a full

training process was required. As already stated, the network was trained to
uniquely identify each word, and a one-in-9 bit representation was selected as
the target pattern for the output layer. That is, each shape was to be iden-
tified as a shape number, where the first would produce 1 0 0 0 0 0 0 0 0,
the second 0 1 0 0 0 0 0 0 0 etc., as activations at the output-layer.

54

6.7. Shape recognizer

Figure 6.2: The Word-recognizer network

6.7 Shape recognizer

6.7.1 Dataset

The dataset for the shape recognizer consists of bitmap images of the four shapes:
a triangle, a rectangle, a hexagon and a circle. To avoid any unnecessary compli-
cations, the shapes are purely two-dimensional, as is the scene. The dimensions
of each image are 32x32 pixels, totalling 1024 pixels. To reduce the number of
elements in a shape-pattern, an algorithm for extraction of shape-data only was
implemented to pre-process the visual input. In addition to removing the ”back-
ground” pixels, all pixels inside the shapes was removed, leaving only the outline,
or circumference, of each shape. This significantly reduced the number of pixels
in each shape representation. Thus, the dataset was comprised of four shapes,
resulting in 4 patterns.

6.7.2 Encoding of inputdata

On average, the shape bitmaps contain 105 pixels after the pre-processing described
in the previous section. However, using RGB color values as training data is not
a good idea for learning to recognize a shape. Instead, relative (x,y)-coordinates
were used, the upper left coordinate in a shape being (0,0).

A fixed-width representation for shape-patterns was chosen, and therefore the
width had to be set according to the maximum number of pixels occurring in all
the shapes, 120. Thus, because each coordinate has two components, the patterns
became 240 bits wide. (Obviously, each x and y value was normalized to values
between 0.0 and 1.0).

55

Chapter 6. Perceptual Symbol Grounding

Figure 6.3: The Shape-recognizer network

6.7.3 Topology

A plain FNN model was used here too, which is why a fixed-width input-pattern
was required. The input-layer therefore had 240 nodes. The size of the hidden-
layer was set relatively high, to 36 nodes, because of the unusually large number
of elements in the input-patterns. Finally, the output-layer had 4 nodes, one for
each of the shapes. In other words, a 240:36:4 topology.

6.7.4 Training

Initially, the intention was to train the network to ”count” the number of edges in
a shape, by using a training target that would somehow represent the number of
edges in a given shape. This quickly turned out to be quite tricky, for a number of
reasons. First, what kind of training-target could be used to make the hidden-layer
actually represent a count of the number of edges? Clearly, there is no obvious
way to accomplish this directly from the current input, using only one net2. So,
for the sake of simplicity and original purpose of the system, the original, more
ambitious training scheme was discarded.

The training of the shape-net was therefore done in the simplest possible way,
namely to train the net to identify each shape-pattern as a shape number. Again,
the one-in-n bit representation was applied when forming the training targets.

2One cannot say definitively that such a representation may not form, but it’s most
likely not possible to deterministically produce it directly by means of a single training
target and only one net.

56

6.8. Location recognizer

6.8 Location recognizer

6.8.1 Dataset

The rather dynamic dataset for the location net consisted of coordinate-pairs of
two shapes. The location concept used was that of prepositions, and they have
two specific properties regarding the spatial relation they represent. One, they
describe a binary relation. Two, the positional relation is relative. That is, the
position of one object is described in terms of the other. Both of these aspects
affects the topology and the training process, as we will see.

The exact number of patterns in the dataset is dependent on a number of things.
An obvious factor being how many distinct positions a shape can have. This is
further dependent on the size of the shapes, the size of the scene, and finally its
granularity. The two latter parameters was set to 192x192 and 32, respectively.
This computes to 6 possible positions along each of the two dimensions, the x and y
axis, by the division 192 / 32. All of the possible location-patterns compute to 36,
from 6x6. However, as we are dealing with relative positions between two objects,
each can have 36 positions independent of the other, yielding a total number of
1296 permutations3. See section 6.3 for more details.

Although they are part of the training-targets, the preposition concepts should
be included here as part of the dataset, because of the central role they have.
Similar to the word-recognizer net, each of the prepositions4 {above, below, left,
right, on} was represented by a unique number, using the standard one-in-n bit
encoding.

6.8.2 Encoding of inputdata

The encoding of the inputdata is straightforward. Two (x,y) pairs are merged
directly into a 4-bit pattern, where the first two bits represent the location of the
first shape, whereas the two next represent the location of the other. No surprises
there.

6.8.3 Topology

Yet another FNN. The input-layer has 4 nodes, the hidden-layer needed to be
enlarged to compensate for the small input-layer, and so 36 nodes was used here.
Another important practical reason for having exactly 36 hidden units is because
it should be of equal size as the shape-net’s hidden-layer, and will be explained in
section 6.9. The output-layer got 10 nodes, 5 for each of the two shape-locations

3This number is not corrected by removing duplicate or otherwise redundant positions.
4Note that ”preposition” here refers to the concept of a relative position, not the word.

57

Chapter 6. Perceptual Symbol Grounding

Figure 6.4: The Location-recognizer network

in question. This means that the first five output units represent the position
of the first object relative to the second object, and the five last output units
represent the position of second object relative to the first. In compact topology
representation, 4:36:10.

6.8.4 Training

The training of the location net consisted of making it transform an input-pattern,
(two coordinates), into the two corresponding location concepts (prepositions). As
an example, consider the following situation: We have two shapes with locations
(x=50,y=10) and (x=50,y=90), respectively. In such a case, one can clearly see
that the first shape is above the second shape, and consequently the second shape
is below the first. The net is supposed to identify both relations, thus producing
on the output-layer a pattern representing these two related preposition concepts.

6.9 Concept Word associator

6.9.1 Introduction

This network has the important function of associating a concept to a name, a
word in some language. In other words, bridging the gap between an intrinsically
meaningless word and an internal concept, thus accomplishing some form or level
of symbol grounding. That is, assuming the associator net is connected to some
other network so that it can receive activations as they occur.

58

6.9. Concept Word associator

Figure 6.5: The Concept-to-Word associator network

6.9.2 Dataset

The dataset for this associator network was the hidden-layer representations for
each of the learned concepts in the system, and these are the prepositional locations
(5 pcs), and the shapes (4 pcs). These are all 36-bit patterns, a convenience
resulting from having equally sized hidden-layers in the location-net and the shape-
net. By having all concepts represented by patterns of the same size, only one
associator network was required, instead of one for every such concept network.
The total number of patterns in this dataset was 9, the sum of the prepositions
and the shapes.

6.9.3 Topology

The topology of this, yet another, FNN network is as follows. The input-layer has
36 units, for reasons mentioned in the previous section, 6.9.2. The hidden-layer
was given 16 units. Finally, the output-layer got its size from the hidden-layer of
the word-recognizer net (section 6.6), which was 14 units. In the short format,
36:16:14.

The dependency between the size of its output-layer and the hidden-layer of
the word-recognizer net is this: The output activations of the concept-to-word as-
sociator are sent directly into the hidden-layer of the word-recognizer net. Thus,
causing the vocabulary network (language center) to produce the word associ-
ated with this sensory stimuli. A plausible, if not entirely correct, model of how
the brain might accomplish the mapping between a recognized percept and the
associated word.

59

Chapter 6. Perceptual Symbol Grounding

6.9.4 Training

As already mentioned in the introduction, (section 6.9.1), the training consisted
of learning to map activation patterns5 originating from a concept-network, into
activation patterns closely resembling those of the word-recognizer net. More spe-
cific, a hidden-layer activation from either the shape-net or the location-net is to
be transformed into the hidden-layer activation that would have been produced by
the word-recognizer if presented with the corresponding word.

To help clarify matters, consider the following example. The word-net, if pre-
sented to a known word, say ’triangle’, produces its internal representation of
that word in the hidden-layer. Let’s call this pattern PAT-dst. The shape-net,
when presented to a known triangle-shape, produces some triangle-specific acti-
vation pattern in its hidden-layer. Let’s call this pattern PAT-src. The learning
task for the associator net is to transform PAT-src into PAT-dst, sufficiently sim-
ilar to make the word-net believe it has been presented to the real word.

6.10 Word Concept associator

6.10.1 Introduction

This has the corresponding ”opposite” function of the concept-to-word associator
detailed in section 6.9. To avoid tedious repetition, descriptions here will be limited
to the specific differences. The overall general functionality and dataflow are the
same, resulting in a network module that gets input as activation patterns from
the hidden-layer of the vocabulary net, and sends its output to the hidden-layer
of the corresponding6 concept network.

6.10.2 Dataset

The dataset for this associator network was the hidden-layer representations for
each of the learned words in the vocabulary and these are 14-bit patterns. The total
number of patterns in this dataset was 9, the number of words in the vocabulary,
and they are the names of the prepositions and the shapes.

6.10.3 Topology

The topology of the network was determined in the same way as the concept-to-
word network, and the resulting layer-dimensions thus became: 14:16:36.

5The activation patterns here refers to those of the hidden-layer, selected due to their
special status as internal representations.

6As determined by the virtual routing algorithm.

60

6.11. Scene analyzer

Figure 6.6: The Word-to-Concept associator network

6.10.4 Training

The training is performed as described in section 6.9.4, although with a different
dataset.

6.11 Scene analyzer

6.11.1 Introduction

The scene-analyzer is a hybrid module containing algorithms and control-code on
the normal symbolic level, in addition to actively using the shape-recognizer net
(6.7), and the location-recognizer net (6.8). The purpose of this component is to
decompose and understand what is in the scene (6.3), also called the field-of-view.
In the current implementation this basically boils down to two things: to find and
extract any shape that may be in the scene, and to interpret their relative posi-
tioning in terms of prepositions.

In addition, the interpreted scene is to be described using words in natural lan-
guage, but that is actually a whole new area within the realm of computational
language processing, namely speech and text production. Obviously, designing a
such a system could not be done within the existing time-frame of this project,
and it would also be beside the point to do so. The end result is that the text
production system implemented is little more than a few simple rules for putting
together nouns and prepositions.

61

Chapter 6. Perceptual Symbol Grounding

6.11.2 Dataset

The dataset for the scene-analyzer is a combination of two kinds of data. On the
symbolic level, explicit (x,y)-coordinates which describes both the location of a
shape, as well as the shape itself. On the sub-symbolic level, activation patterns
from the concept networks (6.7, 6.8), when they are fed the shape and location
data.

Visual data is retrieved from the scene by an extraction algorithm, in portions
of 32x32 pixel bitmaps. Each of these image samples taken from the scene is sent
to the shape-recognizer network for processing, where the activations of both the
hidden-layer and the output-layer is retrieved and analyzed. Also, when retrieving
each bitmap-sample from the scene, the location of that viewport into the scene
is included - as an (x,y)-coordinate.

6.11.3 Analyzing the scene

Ideally, one would send the entire scene into an integrated system of network
modules, and somehow retrieve every shape that actually was there, handling both
variable shape-sizes and unrestricted positioning. However, that is neither a trivial
task, nor is it immediately clear how that should be done. For the experimental
purpose of the perceptual grounding system, a simpler approach was taken. See
figure 6.7 for a visualization of the process.

Shape Network

The Scene-
 Analyzer

Location
Network

 Analying a scene: sampling-
viewport located at (0,0), and

moving right and down.
Samping size is 32x32.

Figure 6.7: Analyzing the scene: the sampling process

62

6.11. Scene analyzer

Basically, the process of interpreting the scene consists of retrieving visual and
positional data through a viewport into it, and sending this data to the shape-
recognizer net and the location-recognizer net, respectively. The results, in the
form of activation patterns from both nets, are then brought back and analyzed
to figure out the most likely interpretation. It is in particular the activations from
the shape-net that may need further analysis, in case the shape under scrutiny
only slightly resembles one (or more) of the known shapes. In practice, this extra
level of analysis was dropped because of time constraints. Also, since only known
shapes were used, this did not pose a problem.

From what positions in the scene were the samples taken, and what was the size
of those samples? The sampling size, as stated in section 6.11.2, was set to 32x32,
and this ensures that complete shapes can be retrieved. The locations which are
sampled also has to be done at same boundaries at which shapes are located to
ensure that only complete shapes are retrieved.

How was this enforced? There are two constraints that must be in place for this to
be possible. First, recall the granularity of the scene, section 6.3, which determines
the number of possible positions an object can occupy. By having this factor set
equal to the size of the shapes, the first of the two constraints was realized. Second,
there is the sampling size, and as this was also set to the same dimension, 32x32
pixels, the remaining requirement was realized. These self-imposed restrictions
greatly simplified the process of decomposing a scene to find its constituents, the
shapes, and allowed for more focus on the grounding principle.

63

Chapter 6. Perceptual Symbol Grounding

64

Chapter 7

Coevolution of Language

Tower of Babel: ”Come, let us go down and confuse their language
so they will not understand each other.” So the LORD scattered them
from there over all the earth, and they stopped building the city. That
is why it was called Babel, because there the LORD confused the lan-
guage of the whole world.

- God, Genesis 11

7.1 Introduction

In this chapter we describe the implementation of a very simple system for evo-
lution of communication. It is based on a recent work by Wang, as presented
in his paper A Simple Evolutionary Communication Model: Theoretical Analysis
and Computer Simulations [29] and the more recent paper Convergence Analy-
sis for Collective Vocabulary [30]. In these papers, he offers an explanation of
how communication can evolve between two or more agents1, in which words are
grounded in some meaning. Moreover, the theory specifically considers a multi-
agent environment, and as such tries to account for the converging process of word
- meaning binding. That is, the communicating agents gradually approach some
maximal degree of agreement on which words means what. As we will see, that
maximal degree is not always 100%.

7.2 The theory

Apart from what was mentioned in the brief introduction to the theory, another
aspect of the coevolution of communication was central to the experiment: What

1Recall, as stated in chapter 2, section 2.5, that agent includes both simulated and
living entities.

65

Chapter 7. Coevolution of Language

relations exist between the sizes of the sets of words and meanings? In other words,
how does level of successful communication vary as a function of changes to the
number words versus the number of meanings. Also, at what word:meaning ratio
is the convergence-process unable to reach any stable state, independent of how
many epochs the simulation runs?

7.3 Relevancy

The inclusion of a communication evolution model might seem slightly at odds with
the main focus of the thesis, which is a language parser and a perceptual symbol-
grounding system. However, as computational language research is the overall area
in which it is rooted, the relevancy should not be too hard to acknowledge.

7.4 The basic setup

The experimental setup suggested by Wang is very simple, and the system im-
plemented during the work on this thesis has retained much of that simplicity.
Basically, the model consists of an environment, agents, a fixed set of keywords
and a fixed set of meanings. Each agent contains an encoder and a decoder net-
work. All these components are described in more detail in the next sections,
(7.4.1, 7.4.2, 7.4.3, 7.4.4, 7.4.5). Only two agents were used in the test-runs.

7.4.1 The environment

The environment is exceedingly simple, and serves only as a framework for the
agents to exist in. It contains functionality for adding and removing agents, setting
the size the vocabulary of keywords and setting the size of the set of meanings.
The environment contains no other objects for the agents to interact with, but
acts as the supervisor of the communication process and determines whether an
interpretation (decoding) of a keyword is correct.

7.4.2 The codecs

The encoder and decoder are both simple neural networks with only two layers.
An important implication of this is that there is no need for a complex learning
algorithm like backpropagation [24]. Since there is a direct relationship between
the activation of an output node and the input of an input node, errors are easily
computed and the weighted connections can be identified as being either right or
wrong. - The encoder is used for converting a chosen meaning into a keyword.
The decoder is used for interpreting a received keyword into a meaning.

66

7.5. Communicating - running the simulation

7.4.3 The agents

The agents are implemented as autonomously running processes, and try to initiate
a communication whenever they are not busy trying to interpret a message from
another agent. Each agent contains an encoder and a decoder.

7.4.4 The words

The words, called keywords in Wang’s paper, are the vocabulary of the agents and
are represented by a unique number.

7.4.5 The meanings

The meanings are also represented by a unique number in the set. They do not
refer to anything in the environment.

7.4.6 Format of the input-data

The standard orthogonal encoding principle of the one-in-n bit scheme is used.
Thus, given a vocabulary of 6 keywords, keyword number 1 would be represented
as 0100000, number two as 001000, etc.

7.5 Communicating - running the simulation

The running of a simulation is configured by a series of user-controllable param-
eters. These are the number of epochs, the number of words and the number of
meanings. The number of agents are fixed at two. One epoch consists of n com-
munication attempts, where n is the number of meanings. Selection of meanings
is randomized, but all meanings are selected each epoch, and only once.

When a simulation is started, the agents choose a meaning (a concept or whatever
someone may want to communicate) at random. The representation of the chosen
meaning, a 6-bit pattern, is sent through the agent’s encoder to get a keyword
to communicate. That keyword is now the symbolic representation of the chosen
meaning. Note though, that this meaning! word mapping is local to the agent.
Another agent may very well have a different mapping. The communicating agents
have to learn to converge on the same mappings, and this is accomplished by sev-
eral successive attempts at communication.

Similar to the process of initiating a communication event is the reception and
subsequent decoding of a keyword into a meaning. A received keyword is sent into
the decoder to be interpreted as one of the globally available meanings. In case
of a correct interpretation, the weights supporting that mapping are increased.

67

Chapter 7. Coevolution of Language

Whenever an interpretation is wrong, the responsible weights are decreased.

At the end of the simulation, the average and final level of successful commu-
nication is computed. This is showed as a percentage, and the entire evolutionary
process is visualized by a graph. The y-axis gives the success rate, 0 - 100%, and
the x-axis represents the time on a per-epoch basis.

7.6 Results

Recall that m is the number of meanings and n is the number of keywords. The
results of the experiment were much as expected, and they supported the theory.
Both the simulations done by Wang and those run in this re-implementation be-
haved similarly. Both of them shows a linear decrease in successful communications
as the m:n rate is increased. Put simply, if two persons trying to communicate has
a lot of things they want to convey 2, but a very limited vocabulary3, communica-
tion becomes difficult or utterly futile. A central theorem in his paper is included
here for linking the results to a mathematical description.

Theorem 1. For an evolutionary communication model described above, sup-
pose each message is played by the two agents periodically, then an effective com-
munication system can emerge with its communication accuracy given by
min{ n

m , 1}, if the number of messages, m, and the number of codewords, n, satisfy
the inequality condition 2n+m−3

n * (1 - 1
n)m−2 > 1 or the approximately equivalent

linear inequality dn > 0.87m - 0.61e. The condition is called emergence condi-
tion.

Although the general results were as expected, one particular part stood out as
interesting. Closely related to the emergence condition, this empirically derived
result tells us that there is a specific ratio of m:n at which the convergence process
suddenly grinds to halt. What was surprising was the steepness of the pivot point.
One would intuitively expect the communication evolution process to deteriorate
in a linear fashion as the m:n ratio increases. As expected, this is true, but only
before the pivot point is reached. The approximate formula for this critical number
of codewords relative to the number of meanings can be written simply as:

n = d0.87m - 0.61e
given that the number of messages is m.

2Communication restricted to words in a language, for the sake of the argument.
3A pointer to the importance of a strong semantic component in language processing: it

is possible to construct an entire sentence from one basic word, and still be interpretable.
The versatile word f*ck can assume nearly any case-role or part-of-speech, like in the
sentence: verb adjective noun. (Expand the statement at your own risk)

68

7.6. Results

To further illustrate the effect of varying the m:n ratio, a series of graph plots
have been included. Each run of a simulation is done with two different number of
epochs, to show the effect of that parameter on the evolution process. The values of
the parameters used in each simulation are provided along with the corresponding
figure.

69

Chapter 7. Coevolution of Language

Graph of the communication evolution process, figure 7.1. The simulation was
run for 50 epochs, and the final rate of success was 56.7%. Number of meanings,
m, was 45. Number of keywords, n, was 45.

Figure 7.1: Graph of the evolution - run 1A

Graph of the communication evolution process, figure 7.2. The simulation was
run for 200 epochs, and the final rate of success was 86.7%. Number of meanings,
m, was 45. Number of keywords, n, was 45.

Figure 7.2: Graph of the evolution - run 1B

70

7.6. Results

Graph of the communication evolution process, figure 7.3. The simulation was
run for 200 epochs, and the final rate of success was 74.0%. Number of meanings,
m, was 50. Number of keywords, n, was 45.

Figure 7.3: Graph of the evolution - run 2A

Graph of the communication evolution process, figure 7.4. The simulation was
run for 400 epochs, and the final rate of success was 82.0%. Number of meanings,
m, was 50. Number of keywords, n, was 45.

Figure 7.4: Graph of the evolution - run 2B

71

Chapter 7. Coevolution of Language

Graph of the communication evolution process, figure 7.5. The simulation was
run for 200 epochs, and the final rate of success was 9.5%. Number of meanings,
m, was 63. Number of keywords, n, was 45. At this m:n ratio, the futility of
achieving a converging process, and finally a stable state, is evident. The graph
continually oscillates between 0.0% and 9.5%.

Figure 7.5: Graph of the evolution - run 3A

Graph of the communication evolution process, figure 7.6. The simulation was
run for 600 epochs, and the final rate of success was 6.4%. Number of meanings,
m, was 63. Number of keywords, n, was 45.

Figure 7.6: Graph of the evolution - run 3B

Since the part concerning the pivot point is not directly relevant to the reason
for implementing the simulation system, no further analysis on this particular
result was done.

72

Chapter 8

Evaluation of the Results

Not everything that can be counted counts, and not everything that
counts can be counted.

- Albert Einstein

8.1 Introduction

In this chapter the results actually achieved will be compared to the goals orig-
inally set for this thesis. The degree of successful realization of each subgoal is
briefly discussed, including what was failed to accomplish. Some of the subgoals
have less tangible results, and in that respect difficult to prove by pointing to spe-
cific results. The goals falling into that category are subgoal 1 (8.2) and 5 (8.6) as
they clearly comprises a subjective belief of gained insight and knowledge.

The order in which the individual goals are treated are the same as that used
in the chapter describing them, chapter 3, but, needless to say, those representing
the major part of the workload in this thesis, subgoal 3 and 4 (8.4, 8.5), should be
considered the most important.

A bar-chart was created to show an estimated success rate of each subgoal, de-
picted in figure 8.1 at the next page. Because of the similarity between subgoal
1 and subgoal 2, they have been conveniently merged into one column, the green.
Each bar in the figure are labeled to show what they represent, and their width
are meant to signify their attributed importance. Note that the heights of each
bar is meant only to illustrate a subjective feel of the completion factor for each
goal, not an exact percentage.

Finally, at the end of the chapter, limitations of the two main systems, the
parser and the perceptual grounding system, are summarized. As both systems
are thoroughly described in their respective chapters, the reader is referred to the
corresponding chapters for detailed explanations, if the need should arise.

73

Chapter 8. Evaluation of the Results

Parser only

Identify & suggest
improvements

Implemented
improvement

Symbol Grounding

Neural Net Insight

Neuroscience

Overall Goal Completion

Figure 8.1: Illustrative levels of goal completion
Note that the parser is split into three bars, one for each aspect of this
subgoal.

8.2 Subgoal 1: Learn about Neural Nets

Although a subjective evaluation, it seems that this part has been accomplished
to a satisfying degree. Since no specific level of ambition was stated with regard
to the desired skill-level, the insight gained has to be evaluated using some other
scale of measurement. The most direct, and perhaps least subjective, method is to
look at the use of neural networks in the implementations: For the most part, the
systems are implemented using neural networks and the basic models1, apparently
successfully as they all perform according to their specified tasks.

8.3 Subgoal 2: Neural Nets and Language

While being closely related to the previous subgoal, in terms of content, what
was intended here was to successfully implement and test two critical aspects
of language that connectionism must be able to handle: to represent syntactic
structure and to handle temporal input of data. As part of the work on the
connectionist parser, (chapter 5), both of these aspects were encountered and
handled through the use of an SRN [11] and a RAAM [23]. There should be no
doubt, therefore, that this modest subgoal was accomplished.

1FNN, SRN, RAAM.

74

8.4. Subgoal 3: Realizing a Parser

8.4 Subgoal 3: Realizing a Parser

Being one of the more complex parts in the thesis, as well as central to the fo-
cus of research, the fulfilling of this part is considered to be of great importance.
Because the result of this subgoal is a concrete implementation with specific and
measurable capabilities, a more objective evaluation of it is made possible.

In terms of being largely based on a modular design by Sharkey & Sharkey [8],
some comparison with that system can help establish the success of my implemen-
tation. Though obvious, the fact that it actually works according to specifications,
shows that the basic part of the subgoal is achieved. Each module did its job; the
SRN [11] encoder learned to identify and extract syntactic structure from sen-
tences, the mapper successfully transformed representations from the encoder to
a format recognized by the decoder, and the RAAM [23] decoder had learned to
successfully recursively decode the syntactic structures.

To be more specific about performance when saying successfully, the Sharkey
parser [8] achieved an average of 75.6% correctly identified syntactic parse-trees
on both training and test data. My parser got very similar results (75% - 80%)
when using the same decoding procedure as Sharkey, but, as explained in chapter
5, section 5.5.5, this increased to 95% - 100% after the change to the decoding pro-
cedure. But, that increase in performance came at the cost of an overall decreased
ability of the parser to generalize to unseen input that has an unknown syntactic
structure2.

Even though a problem was identified, and a change was implemented to solve
it, the result became a parser that was improved in one area and weakened in
another. Also, the initial plan was to do an exact implementation of the Sharkey
parsing system [8], then design and implement a new system, much less bound
to the structural design of their parser. Insufficient time and unexpected imple-
mentational difficulties effectively prevented this from happening. Instead, a more
theoretical improvement was suggested, namely that of integrating the parser with
a symbol grounding system. Whether the idea is novel can be debated, but it was
at least not seen explicitly mentioned in literature at the time. Thus, the part of
the goal regarding identification of performance bottlenecks and suggesting and
implementing improvements was not completely achieved. However, the concept
of a perceptually grounded parser can, arguably, elevate the degree of success on
this part from less-than-perfect to acceptable.

2Note that the Sharkey parser [8] was not tested on unseen syntactic structures, only
unseen input-sentences, in terms of different combinations of lexical items. The syntactic
structure was always one of the eight that it was trained to recognize.

75

Chapter 8. Evaluation of the Results

8.5 Subgoal 4: Realizing Symbol Grounding

This is undoubtedly the other large and important subgoal of the work done as
part of the thesis. From the goal-specification it is tempting to simply declare
this part for 100% completed and move on to the final subgoal. However, a few
lines must be used to support the successfulness: Independent of how advanced a
symbol grounding system is, as long as it is able to ground a concept to a word, the
principle of symbol grounding is realized. In this case, through visual perceptions
of shapes and prepositional location-concepts.

As an additional note of some relevance to subject of symbol grounding systems,
it should be said that to get a really useful coupling between such systems and
parsers, a third component is much needed. That component is a language produc-
tion system, and its purpose is to bridge the linguistic gap between the grounding
system and the parser by taking the individually grounded words and combining
them into full natural language sentences that can be presented to the parsing
system.3

8.6 Subgoal 5: Analogies to Neuroscience

Of all the subgoals this is the one with the least tangible and visible results.
Any new insight into how the brain might process language and achieve its many
advanced cognitive functions is very much internal to myself, and difficult to make
explicit. What can be said though, is that I have a personal belief that much of the
artificial neural network processes and models are adequately close to the truth
about how the brain and its networks operates, a view supported by researcher
and philosopher Paul Churchland in his book The Engine of Reason, the Seat
of the Soul [7], among many others. Although not one of the real goals in this
thesis, its implications are important. However, trying to exactly derive the level of
accomplishment is neither reasonable nor useful. Suffice to say that the literature
read, and the neuroscience course taken, as part of the masters degree is likely to
have given me some new insight and understanding.

8.7 Limitations of the Systems

8.7.1 The Parsing System

In terms of limitations, there are two aspects of the parser that should be men-
tioned. The first concerns what kind of novelty of the input-sentences to the parser
is handled. The second relates to how syntactic structures are handled.

3None of this was part of any goal and should obviously not affect the goal-result
relation of subgoal 4.

76

8.7. Limitations of the Systems

Novelty of input. Because of the way the encoder part of the system was
trained, it was able to handle novel input in terms of new combinations of lexical
items. Or, put another way, as long as the individual words in a given sentence
are contained in the vocabulary that the system was trained on, any word may be
swapped with another word of the same part-of-speech type. Exactly what kind
of structure is identified by the encoder is unclear, although presumably related
to syntactic regularities. The point, however, is that because of this, it is not
trivial to predict the system-behavior in case of unknown words in the input.
Also, no such type of input was tested on the parser, neither in my work, nor
was anything related to this mentioned in the Sharkey-paper A Modular Design
For Connectionist Parsing [8]. Hence, no results in this regard are available for
discussion on capabilities and limitations.

Syntactic structures. There are eight syntactic structures [p.32, section 5.3.2]
that the system is trained to recognize and decode. The original decoding process,
as used by Sharkey [8], performed its decoding purely by interpreting the data
(recursively expanding the patterns), and this had two particular consequences:

1. A potential ability4 to handle unseen syntactic structures.

2. A lower5 rate of successful decoding because there was no external guide to
constrain the decoding process.

The parsing system in this thesis, by guiding the decoding process to interpret
any syntactic structure as one of the eight, usually got all the parse-trees right,
but at the cost of not being able to partially identify any other structure.

4In theory, this represents the feature of graceful degradation, but, from what can be
found in Sharkey’s paper [8], it was apparently not tested.

5Lower, as relative to the results achieved by the decoding procedure used in my im-
plementation.

77

Chapter 8. Evaluation of the Results

8.7.2 The Perceptual Grounding System

The perceptual grounding system was designed to achieve a simple form of symbol
grounding, and that was accomplished, as stated in section 8.5. Because the
implementation is relatively simple, a set of assumptions and restrictions had to
be imposed on the input. As for the grounding-capability itself, two concepts was
learned; relative location and shapes, all through visual percepts.

Relative location. The concept of relative location was successfully tested on
five prepositions, above, below, left, right and beside, and consequently limited to
those spatial relations.

The Shapes. With respect to the identification of shapes and finding them
within a scene, as well as the scene-analyzing process, a series of assumptions
and restrictions was made. This is presented below in a list-format for increased
readability.

1. The set of recognized shapes is limited to a triangle, a rectangle, a hexagon
and a circle.

2. The dimension of the shapes is restricted to 32x32 pixels.

3. Recognition of rotated shapes is not supported.

4. The shapes must be single-colored. White is default.

5. The background of the scene must be single-colored. Black is default.

6. The location of the shapes is restricted to fall on specific boundaries. That
is, the grid-size of the scene is 32x32, and thus a shape must be located at
some multiple of 32, starting at (0,0).

7. The scene-analyzer is restricted to retrieve only 32x32-sized samples from
the scene, and only from the same 32x32 boundaries as the shapes were
restricted to.

78

Chapter 9

Summary and Conclusion

If we knew what it was we were doing, it would not be called research,
would it?

- Albert Einstein

9.1 Summary

An important, but perhaps somewhat understated fact, is that all work done in
the thesis was done within the context of the AI paradigm. Having emphasized
that, focus can be returned to the more concrete details of what was done and how
the goals were attempted solved. The global motivation of the work performed
here is that of research on language and computational language processing and
understanding.

As a starting point, a sentence, The flower on the table is red, was contemplated
upon with respect to how its inherent syntactic structure and semantic components
could be represented in a neural network. For that reason, as well as the profound
similarity between artificial neural networks and the networks in the brain, con-
nectionism was chosen as the tool to perform the research both on and with. A
framework for creating, training and testing neural networks was designed. Three
distinct systems were selected to investigate specifically, and these were: a pars-
ing system [8], a perceptual grounding system [3] and a communication evolution
model [29, 30]. A recent report or paper on each of these was selected, and used
as the basis for implementing the experimental systems.

The parser implemented consists of three modules, each providing a particular
functionality. The part receiving the input-sentences is called the encoder, and
consists of an SRN [11]. The part handling recursive decoding of the syntac-
tic structures is made up of a RAAM [23]. The middleware component between

79

Chapter 9. Summary and Conclusion

the input and output modules enabled the encoder and the decoder to communi-
cate. Functionally, the parser worked well and was successfully implemented, but
because the implementation was more complicated than initially expected, the re-
alization of any truly novel and significant improvements were limited. Grounding
the parser by coupling it to a symbol grounding system was suggested.

The perceptual symbol grounding system implemented is comprised of five neu-
ral networks, a scene component and a scene-analyzer module. There were two
concept networks, one for learning to recognize shapes and another for learning
relative positions. One network served as the system’s vocabulary, and final two
networks provided the functionality of association: a concept-to-word associator,
and a word-to-concept associator. The scene component contained the visual in-
put, along with implicit positional information. Interpretation of the scene was
performed by the scene-analyzer.

The final area investigated was that of a communication evolution model. It in-
volved experimentally testing how and if a shared vocabulary would develop, in an
environment of two autonomous agents. The implemented system contained two
agents in a simple environment, and a common set of keywords n and meanings
m. Simulations were run to test how and if a common set of meaning-keyword
bindings would occur. Results obtained were similar to those obtained by Wang,
and supported the existence of a pivot-point at a specific n:m ratio.

9.2 Conclusion

Normally, or at least in many cases, one is able to finally state in the conclusion
whether some specific theory or model actually worked out in practice. The diverse
work done in this thesis, combined with the relatively wide focus of the research,
makes the formulation of such a short and concise conclusion difficult. However,
certain goals were specified and three systems were successfully implemented a re-
sult. The conclusion, as I see it, can be stated as follows, comprising the remainder
of the current section:

Most of the goals set for my thesis were achieved to a satisfactory degree, although
the part on the parsing system failed to accomplish some of its subgoals. A parser,
a perceptual symbol grounding system and a model of the evolution of a shared
vocabulary was implemented. The core of the connectionism paradigm, neural
networks, was investigated and used extensively. Insight and hands-on experience
was gained. Also, connectionism was empirically found to be both functional and
to have interesting properties useful for NLP and NLU1 -related tasks. Research

1Abbreviation repeated here for convenience: NLP = Natural Language Processing,
NLU = Natural Language Understanding.

80

9.3. Further Research

on computational language processing and AI can reasonably be said to consti-
tute an interesting and promising field of research, and to be worthy of both past,
current and continued efforts.

9.3 Further Research

Further research on language processing is recommended, and particularly with
respect to new ways design a significantly improved parsing system, and more ad-
vanced perceptual grounding systems.

81

Chapter 9. Summary and Conclusion

82

Bibliography

[1] T. Bayes. Bayesian Methods. http://en.wikipedia.org/wiki/Thomas_Bayes,

1764.

[2] T. Bayes. Naive Bayes Classifier. http://en.wikipedia.org/wiki/Naive_Bayes_classifier,

1968.

[3] A. Cangelosi. Approaches to Grounding Symbols in Perceptual and Senso-

rimotor Categories. Preprint, 2005: Cognitive Science, Elsevier. Adaptive

behaviour & Cognition Research Group, School of Computing, Communic-

tion and Electronics. University of Plymouth, UK.

[4] N. Chomsky. Chomsky Hierarchy. http://en.wikipedia.org/wiki/Chomsky,

1900.

[5] N. Chomsky. Generative Grammar. http://en.wikipedia.org/wiki/Chomsky,

1900.

[6] P. Churchland. Matter and Consciousness. MIT. Press, 1988.

[7] Paul. Churchland. The Engine of Reason, the Seat of the Soul: A Philosoph-

ical Journey into the Brain. MIT. Press, 1995.

[8] Noel E. and Amanda J. C. Sharkey. A Modular Design For Connectionist

Parsing. Center for Connection Science, Department of Computer Science,

University of Exeter, U.K., 1992.

83

Bibliography

[9] J. Early. An ecient context-free parsing algorithm. Comm. ACM, 13-2:94–102,

1970.

[10] M. Minsky (Editor). Semantic Information Processing. MIT Press, 1968.

[11] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[12] S. Harnad. Symbol Grounding is an Empirical Problem: Neural Nets are just

a Candidate Component. Proceedings of the Fifteenth Annual Meeting of the

Cognitive Science Society. NJ: Erlbaum, 1993.

[13] G. Houghton, D. Schanks, J. Kruscke J. Bullinaria, R. O’Reilly, E. C. Leek,

G. Dell, and M. Zorzi. Connectionist Models in Cognitive Psychology. Psy-

chology Press, 2005.

[14] i. Wikipedia. Context free frammar. http://en.wikipedia.org/wiki/Context-

free_grammar, 1950.

[15] ii. Wikipedia. Connectionism. http://en.wikipedia.org/wiki/connectionism,

1950.

[16] Marshall R. Mayberry III and Risto Miikulainen. SAARDSRN: A Neural

Network Shift-Reduce Parser. Techical Report AI98-275, 1990.

[17] S. Levy J. B. Pollack. Infinite RAAM: A Principled Connectionist Substrate

for Cognitive Modeling. Dynamical and Evolutionary Machine Organiza-

tion Volen Center for Complex Systems, Brandeis University, Waltham, MA

02454, USA, 2001.

[18] D. Jurafsky and J. H. Martin. SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Prentice Hall, 2000.

[19] J-D. Zucker N. Bredeche, S. Zhongzhi. Perceptual Learning and Abstraction

in Machine Learning. Institute of Computing Technology - Chinese Academy

84

Bibliography

of Sciences - Beijing, China Laboratoire dInformatique Medicale et de Bio-

informatique - Universite Paris-Nord - Paris, France, 2003.

[20] S. Nirenburg and Victor Raskin. Ontological Semantics. MIT Press, 2004.

[21] R. C. O’Reilly and Munakata. Computational Explorations in Cognitive Neu-

roscience: Understanding the mind by simulating the brain. MIT Press, 2000.

[22] Tom Ziemke(Ed.) P. Vogt. The physical symbol grounding problem. Cognitive

Systems Research, Elsevier, 3:429–457, 2002.

[23] J. B. Pollack. Recursive Distributed Representations. Laboratory for AI Re-

search & Computer & Information Science Department, Ohio State Univer-

sity, 1990.

[24] D. Rumelhart. The backpropagation algorithm.

http://en.wikipedia.org/wiki/backpropagation, 1986.

[25] A. Saffiotti S. Coradeschi. Anchoring symbolic object descriptions to sensor

data. Linkping Electronic Articles in Computer and information science, 4

no.9:N/A, 1994.

[26] B. Selman. Rule-based processing in a connectionist system for natural lan-

guage understanding. Master’s thesis, University of Toronto, Departement of

Computer Science, Canada, 1985.

[27] P. Toma. Systran: A Machine Translation system.

http://en.wikipedia.org/wiki/Systran, 1968.

[28] vi. Wikipedia. Graceful degradation. http://en.wikipedia.org/wiki/Graceful_degradation,

1900.

[29] J. Wang. A Simple Communication Evolution Model: Theoretical Analysis

and Computer Simulations. 2005. preliminary tecnical report.

85

Bibliography

[30] J. Wang, L. Gasser, and J. Houk. Convergence Analysis for Collective Vocab-

ulary. 2006. Proceedings of the Fifth International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2006). Hakodate, Japan.

86

