
July 2009
Torbjørn Skramstad, IDI
Per Håkon Meland, SINTEF
Derek Mathieson, CERN

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Security Testing of Web Based
Applications

Gencer Erdogan

Problem Description
Web application users and Web application vulnerabilities are increasing. This will inevitably
expose more Web application users to malicious attacks. Security testing is one of the most
important software security practices, which is used to mitigate vulnerabilities in software.
Security testing of Web applications is becoming complicated, and there is still need for security
testing methodologies. This indicates that security testing methodologies for Web applications
needs attention. The student will contribute in this respect by doing the following:

1. Execute a thorough research among state-of-the-art security testing methodologies for Web
applications.

2. Elicit a security testing methodology for Web applications based on certain defined criteria. The
overall goal is to elicit a security testing methodology that:

(a) Formalizes how to detect vulnerabilities in a Web application, and makes the detection process
more efficient regarding time spent and the amount of vulnerabilities that are found.

(b) Mitigates false-positives during the security testing process.

3. Integrate the elicited security testing methodology from point 2 into the SDLC that is being used
by the AIS group at CERN. The integration is to be carried out at a proof of concept level.

4. Perform a security test on parts of CERN’s largest administrative Web application: Electronic
Document Handler (EDH), which has approximately 11,000 users at world basis.

(a) A Web Vulnerability Scanner must be evaluated and selected to be used in the testing iterations
when there is a need for a testing tool.

(b) The security testing will be executed in four iterations; two iterations using the new
methodology and two iterations using the old methodology. The testing iterations are executed to
collect results based on the old and new security testing methodology.

(c) Based on the results from the first and second iteration, an evaluation of the new security
testing methodology is to be made.

Assignment given: 20. January 2009
Supervisor: Torbjørn Skramstad, IDI

Abstract

Web applications are becoming more and more popular in means of modern
information interaction, which leads to a growth of the demand of Web ap-
plications. At the same time, Web application vulnerabilities are drastically
increasing. This will inevitably expose more Web application users to malicious
attacks, causing them to lose valuable information or be harmed in other ways.

One of the most important software security practices that is used to mitigate
the increasing number of vulnerabilities is security testing. The most commonly
applied security testing methodologies today are extensive and are sometimes
too complicated with their many activities and phases. Because of this complex-
ity, developers very often tend to neglect the security testing process. Today,
there is only a few security testing methodologies developed especially for Web
applications and their agile development environment. It is therefore necessary
to give attention to security testing methodologies for Web applications.

A survey of state-of-the-art security testing methodologies for Web applica-
tions is performed. Based on some predefined criterions, Agile Security Testing
is selected as the most adequate security testing methodology for Web applica-
tions, and is further extended to support all the predefined criterions. Further-
more, the extended Agile Security Testing methodology (EAST) is integrated
into the Software Development Life Cycle applied by the Administrative Infor-
mation Services group at the Department of General Infrastructure Services at
CERN−The European Organization for Nuclear Research. Finally, by using the
EAST methodology and the security testing methodology applied by the AIS
group (which is an ad hoc way of performing security tests), an evaluation of the
EAST methodology compared to existing ad hoc ways of performing security
tests is made. The security testing process is carried out two times using the
EAST methodology and two times using the ad hoc approach. In total, 9 vul-
nerability classes are tested. The factors that are used to measure the efficiency
is: (1) the amount of time spent on the security testing process, (2) the amount

i

of vulnerabilities found during the security testing process and (3) the ability
to mitigate false-positives during the security testing process.

The results show that the EAST methodology is approximately 21% more
effective in average regarding time spent, approximately 95% more effective
regarding the amount of vulnerabilities found, and has the ability to mitigate
false-positives, compared to existing ad hoc ways of performing security tests.

These results show that structured security testing of Web applications is
possible not being too complicated with many activities and phases. Further-
more, it mitigates three important factors that are used as basis to neglect
the security testing process. These factors are: The complexity of the test-
ing process, the “too time-consuming” attitude against security testing of Web
applications and that it’s considered to lack a significant payoff.

Preface

This Master thesis concludes my MSc in Computer Science at the Department of
Computer and Information Science (IDI) at the Norwegian University of Science
and Technology (NTNU). The thesis has been written as a part of a Technical
Student program at CERN, the European Organization for Nuclear Research, in
Geneva, Switzerland, in the period from January 2009 to July 2009. The work
has been carried out in the GS-AIS-EB section at CERN. The thesis consists
of:

• A study of state-of-the-art security testing methodologies for Web applica-
tions, in which one security testing methodology is elicited based on defined
criterions.

• The integration of a security testing methodology for Web applications into a
software development life cycle (SDLC), at a proof of concept level.

• An evaluation of the integrated security testing methodology by: (1) per-
forming security tests using the integrated security testing methodology, (2)
performing security tests using existing ad hoc ways of performing security tests,
and (3) comparing the test results obtained in point (1) and (2).

Geneva, July 28, 2009.

Gencer Erdogan

iii

Acknowledgments

I would like to express my sincere appreciation to my advisors: Per Håkon
Meland (SINTEF ICT) and Professor Torbjørn Skramstad (Department of Com-
puter and Information Science, NTNU) for their guidance, encouragement and
continuous support throughout the course of this work.

I would like to express my sincere appreciation to my supervisor Derek
Mathieson (Section leader at GS-AIS-EB, CERN) for making it possible to re-
alize my thesis in the GS-AIS-EB section. I would also thank Derek Mathieson
for his guidance and continuous support throughout the course of this work.
Additionally, I would like to thank Benjamin Couturier and Istvan Kallai (from
the GS-AIS-EB section) for showing interest in my work and for sharing their
opinions with me.

Last, but certainly not least, I would like to thank my family for their everlast-
ing love, support and encouragement throughout my life and studies—“thanks”
would never suffice. I hope to make you proud.

v

Contents

1 Thesis introduction 1
1.1 Background and motivation . 4
1.2 Problem statement . 6
1.3 Research goals . 6
1.4 Research method and approach 7
1.5 Thesis outline . 10

2 Security testing of Web applications 13
2.1 Software security and security testing 13
2.2 Security testing methodologies 16
2.3 Security testing methodologies for Web based applications 19

2.3.1 Agile Security Testing . 19
2.3.2 A penetration testing approach 24
2.3.3 The Open Web Application Security Project (OWASP)

testing framework . 27
2.4 Security testing tools . 36
2.5 Acunetix Web Vulnerability Scanner (WVS) 40

2.5.1 Why Acunetix WVS? . 43
2.6 Relevant competitors to Acunetix WVS 45
2.7 Comparison, evaluation and selection 49

2.7.1 Selection justification . 50

3 Current situation 55
3.1 CERN - The European Organization for Nuclear Research 55

3.1.1 The Administrative Information Services (AIS) group . . 58
3.2 The Scrum methodology: A short introduction 59
3.3 The need for a security testing methodology 61
3.4 Risk analysis . 63

vii

viii Contents

3.4.1 The CORAS methodology: A short introduction 63
3.4.2 Conducting the risk analysis 65

4 Contribution 73
4.1 Extending Agile Security Testing 73
4.2 Integrating EAST in the AIS group’s SDLC 77
4.3 Performing security tests . 79

5 Realization 85
5.1 The integration of EAST: How, Why & Who 85
5.2 Security testing of EDH . 90

5.2.1 The test environment and the testers 96
5.2.2 Testing using the current methodology 96
5.2.3 Testing using the EAST methodology 102

5.3 Test results . 114
5.3.1 The current methodology test results 114
5.3.2 The EAST methodology test results 114

6 Evaluation and discussion 117
6.1 Comparison of the methodologies 117
6.2 Threats to validity . 119
6.3 Goals attained . 121

6.3.1 Problem statement goals 121
6.3.2 Research goals . 122

6.4 The hypothesis: Verified or falsified? 124

7 Conclusion and further work 125
7.1 Conclusion . 125
7.2 Further work . 126

List of Figures 129

List of Tables 131

Glossary 133

Bibliography 135

Appendices 145

A The current methodology: the guidelines A-1

Chapter 1
Thesis introduction

The increasing number of Web application users indicates that Web applica-
tions are becoming more and more popular in means of modern information
interaction. In turn, this leads to a growth of the demand of Web applications.
This is due to their capability of providing convenient access to information and
services in ways not previously possible [68].

In 2007, Rubicon [22] examined the growth of Web applications in the US by
surveying over 2000 US adults who had a personal computer at home. This sur-
vey revealed that 80% of US home PC users had heard of Web applications, and
that 37% of US home PC users used at least one Web application on regular basis
(see Figure 1.1). According to Rubicon, the latter result indicates that the usage
of Web applications spreads far beyond the 16% of the population traditionally
identified as innovators and early adopters. Another interesting discovery was
made in Rubicon’s survey: 38% among those who did not use Web applications
were worried about security risks and used this as the main reason for why they
did not use Web applications (see Figure 1.2). Unfortunately, these people have
a good reason to worry about security risks. In their Global Internet Security
Threat Report, Symantec reports that they detected 499,811 new malicious code
threats during the second half of 2007 [118, 70]. This is a 571% increase over
the second half of 2006 (see Figure 1.3). Apparently, the main motivation that
drives malicious users to obtain private information by performing attacks such
as XSS (cross site scripting) and SQL injection on Web applications (which are
some of the most known attack types executed on Web applications [56]), is
the economical gain they get by selling what they obtain. The selling is mainly
happening through Web based forums and Internet relay chat (IRC) channels,
in which they publish advertisements of “their goods” [73]. In their survey of
cybercrime activity in the underground economy, Symantec estimates the value

1

2 Chapter 1. Thesis introduction

Use some web

applica!ons

regularly, 37 %

Tried them,

don't use any

regularly, 18 %

Heard of them

but never tried, 25 %

Never heard of

them, 17 %

Don't know, 3 %

Figure 1.1: The usage of Web applications among US adults. This figure is
adapted from Rubicon [22].

Figure 1.2: These comments were given by the Rubicon’s survey participants as
an explanation for why they did not use Web applications. Note that “Worried
about security” is the second most common response. This figure is adapted
from Rubicon [22].

3

Figure 1.3: Malicious code threats evolution in the period from July 2002 to
December 2007, as given by Symantec [118]. This figure is adapted from Syman-
tec [118].

of total advertised goods on observed underground economy servers to be over
$276 million for the reporting period (July 2007 - June 2008) [73]. Table 1.1
shows how much of the total value each good covers. A good’s percentage
value and rank is closely coupled to their level of demand by the “underground
market”. The fact that Web application vulnerabilities and Web application

Rank Category Percentage
1 Credit card information 59%
2 Identity theft information 16%
3 Server accounts 10%
4 Financial accounts 8%
5 Spam and phishing information 6%
6 Financial theft tools <1%
7 Compromised computers <1%
8 Malicious applications <1%
9 Website accounts <1%
10 Online gaming accounts <1%

Table 1.1: Value of advertised goods as a percentage of the total value ($276
million). Credit card information seems to be the good with the highest value,
which is a side effect of being the good of highest demand. This table is adapted
from Symantec Report on the Underground Economy [73].

users are increasing will inevitably expose more people to attacks, which may
further cause them to lose information that is of particular value (credit card

4 Chapter 1. Thesis introduction

information, account credentials, etc). Although the software security field is
quite new (some of the first books and academic classes about software security
appeared in 2001 [93]), there have been suggested and published a number of
software security practices throughout the years. A software security practice
is the result of a systematic study for creating secure software [93]. Some of the
major software security practices that have evolved through the years are; the
Security Development Lifecycle (SDL) by Microsoft [82, 89], the Secure Soft-
ware Development Lifecycle (SSDL) [121], the Risk Management Framework
(RMF) [95], the CORAS methodology [111, 79], and different security model-
ing techniques as described by Erdogan and Baadshaug [70]. The purpose of
these (and other) software security practices is to ultimately mitigate software
vulnerabilities. E.g. Web application vulnerabilities.

However, despite the numbers of security practices that have evolved through-
out the years, security is often bolted on late in the development and executed
as a penetrate-and-patch activity in an ad hoc fashion [57]. In turn, this has
a ripple effect on software security practices as a whole. One of the most im-
portant software security practices that is affected negatively, as an outcome of
this, is software security testing (hereby security testing).

Security testing is an activity that reveals whether the security functional-
ities are properly implemented, and whether software behaves correctly in the
presence of a malicious attack. This is achieved by using the results from an
architectural risk analysis, and the results from a risk based security test plan
as a base for the security testing [96]. In order to benefit from security testing,
formal methodologies for performing security tests in terms of who should test
and how it should be tested must exist. Further, the formal security testing
methodologies must be implemented in the SDLC to make sure that security
testing is executed [121].

Security testing gives developers an understanding and overview of: (1)
whether the security requirements are fulfilled or not, and (2) which of the vul-
nerability classes are present in the software (the test object). From the results
of these points, developers can deduce facts regarding the security quality of the
software. In addition, it increases the security specific knowledge of the develop-
ers in means of how software vulnerabilities may be exploited (i.e. thinking like
a malicious user), which further makes them more aware of software security
next time they develop software.

1.1 Background and motivation

The field of security testing has yet to be matured; there is still need for security
testing methodologies, techniques, and tools [115]. A security testing method-

1.1. BACKGROUND AND MOTIVATION 5

ology covers the question of who should test, and how it should be tested, much
like in any other form of testing. A security testing technique is used to discover
security vulnerabilities at the implementation level (bugs) or at the design level
(flaws). A security testing tool is used to discover security vulnerabilities that
may have been introduced into the software at the implementation-level (bugs).
Security testing has generally been an afterthought in traditional testing [121].
One of the reasons to this is the field’s immaturity.

Adding security practises (such as security testing) late in the development
increases the probability for vulnerabilities to lie dormant in software for a long
time before discovery. In the domain of Web applications, this increases the risk
of being exposed to an attack. In addition, the longer vulnerability lies dormant,
the more expensive it can be to fix the problem [58, 94] (see Table 1.2).

Phase Relative Cost to Correct
Definition $1
High-level design $2
Low-level design $5
Code $10
Unit test $15
Integration test $22
System test $50
Post-delivery $100

Table 1.2: The earlier a defect (vulnerability) is uncovered, the cheaper it is to
fix. This table is adapted from The Art of Software Security Testing [121].

Security testing of Web applications has even more factors that make the pro-
cess complicated: Firstly, Web applications have a very short time-to-market,
which is why developers very often tend to neglect the testing process. Sec-
ondly, it’s considered too time-consuming. And thirdly, it’s considered to lack
a significant payoff [77, 67, 90].

The result from security tests gives an assurance, to a certain extent, whether
the software has an acceptable security quality. It gives significant insight on
whether the software should go on production or not. The following facts are
present:

1. Web application users and Web application vulnerabilities are increasing.

2. Security testing of Web applications is becoming complicated.

3. There is still need for security testing methodologies.

The above mentioned facts indicate that security testing methodologies for Web
applications needs attention.

6 Chapter 1. Thesis introduction

1.2 Problem statement

Based on what has been explained in the introduction of this chapter and in
Section 1.1, the student is to:

1. Execute a thorough research among state-of-the-art security testing method-
ologies for Web applications.

2. Elicit a security testing methodology for Web applications based on certain
defined criteria. The overall goal is to elicit a security testing methodology
that:

(a) Formalizes how to detect vulnerabilities in a Web application, and
makes the detection process more efficient regarding time spent and
the amount of vulnerabilities that are found.

(b) Mitigates false-positives during the security testing process.

3. Integrate the elicited security testing methodology from point 2 into the
SDLC that is being used by the AIS group at CERN. The integration is
to be carried out at a proof of concept level.

4. Perform a security test on parts of CERN’s largest administrative Web ap-
plication: Electronic Document Handler (EDH), which has approximately
11,000 users at world basis.

(a) A Web Vulnerability Scanner must be evaluated and selected to be
used in the testing iterations when there is a need for a testing tool.

(b) The security testing will be executed in four iterations; two iterations
using the new methodology and two iterations using the old method-
ology. The testing iterations are executed to collect results based on
the old and new security testing methodology.

(c) Based on the results from the first and second iteration, an evaluation
of the new security testing methodology is to be made.

1.3 Research goals

RG.01 Gain knowledge of state-of-the-art security testing methodologies, with
a special focus on Web applications.

RG.02 Find and evaluate security testing methodologies for Web applications.

RG.03 Implement one security testing methodology for Web applications into

1.4. RESEARCH METHOD AND APPROACH 7

the SDLC that is used by the AIS group at CERN, and evaluate it.

RG.04 Get an overview of the different security testing tool categories, along
with some tool examples for each category (both freeware and commercial).

1.4 Research method and approach

According to March et al. [92, 75], there are two main concepts in the realm
of Information Technology (IT) research on methodologies, tools, programming
languages, development processes, etc. These are:

1. Behavioral-science: Behavioral-science has its origin from research meth-
ods within natural science research methods. Furthermore, natural science
is often known to have two activities; discovery (in which a scientific claim
is proposed or generated) and justification (in which a scientific claim is
verified or falsified). I.e., natural science research methods try to under-
stand the reality of, for example, a theory or a law [92].

2. Design-science: Design-science has the purpose of creating artifacts that
serve human purposes. Design-science is technology oriented and has four
types of outputs; constructs, models, methods and implementations. Fur-
thermore, it consists of two main activities; build (in which an artifact is
constructed for a specific purpose) and evaluate (in which an artifact is
evaluated for how well it performs) [92].

Although behavioral-science and design-science are quite different, they are also
dependent on each other. Design-science produces artifacts. In turn, these
artifacts produce results that can be treated by behavioral-science [92].

Design-science research is quite similar to what is defined as the Technol-
ogy Research Methodology by Stølen et al. [112]. The Technology Research
Methodology consists of three main activities and is an iterative process: (1)
problem analysis (in which the need for an artifact for the underlying problem
is identified), (2) innovation (in which new artifacts are created, or existing ar-
tifacts are extended, in order to satisfy the need), (3) evaluation (in which the
artifact is proven to support the need). In this context, artifacts are objects
manufactured by human beings, e.g. a new algorithm for a computer program,
a new SDLC, a new security testing methodology, etc. Furthermore, Stølen et
al. [112] define Classical Research as “reasearch that is focusing on the world
around us, seeking new knowledge about nature, space, the human body, the so-
ciety, etc.”. This definition is quite similar to what March et al. [92] define as
Behavioral-science. Table 1.3 shows the main elements of Classical Research
and Technology Research as described by Stølen et al. [112].

8 Chapter 1. Thesis introduction

Classical Research Technology Research
Problem Need for new theory Need for new artifact
Solution New explanations (new

theory)
New artifact

Solution should be
compared to...

Relevant part of the real
world

Relevant need

Overall hypothesis The new explanations
agree with reality

The new artifact satisfies
the need

Table 1.3: The main elements of Classical Research and Technology Research.
This table is adapted from Stølen et al. [112].

The overall goal for this thesis (defined in point 2 in Section 1.2) clearly
shows that the purpose of the thesis is to elicit a security testing methodology
(the artifact) that makes the security testing of Web applications more reliable
and efficient. The purpose is not to understand the reality of e.g. a theory, or to
seek new knowledge about nature, space and the human body, etc. (Behavioral-
science and Classical Research). Furthermore, Design-science and Technology
Research, which are quite similar (see Figure 1.4), are technology oriented. The
author has therefore selected Technology Research as the research method and
approach for this thesis:

• In the Problem Description phase, the need for a security testing method-
ology for Web applications is given (the artifact).

• In the Survey of SotA phase, security testing methodologies for Web appli-
cations are analyzed and evaluated, and then elicited for a specific purpose.
The literature regarding security testing methodologies is mainly obtained
from academic books, scientific databases, and domain specific Web sites.

• In the Innovation phase, the elicited security testing methodology is ad-
justed and implemented in a specific Software Development Life Cycle (at
a proof of concept level). The final result is the artifact.

• In the evaluation activity, the artifact is evaluated for its efficiency.

Furthermore, the overall hypothesis of the technology research is: The artifact
satisfies the need [112]. The overall hypothesis in this thesis is:

H.00 The detection of vulnerabilities in Web applications is done significantly
more efficient regarding time spent, the amount of vulnerabilities that are
found and managing false-positives by using a structured security testing
methodology for Web applications, compared to existing ad hoc ways of
performing security tests.

1.4. RESEARCH METHOD AND APPROACH 9

Problem Analysis

Innovation

Evaluation

The Technology

Research Method

Design-science

Build

Evaluate

The author’s

approach

Problem Description

Innovation

Evaluation

Survey of SotA

Chapter 1, 2 and 3

Chapter 2

Chapter 2, 3, 4 and 5

Chapter 5 and 6

Figure 1.4: The Design-sience approach to research, the Technology Research
approach, and the author’s approach. The dashed arrows from the Build phase
in Design-science to the Problem Analysis and Innovation phases in Technology
Research indicates that the latter phases are regarded as a whole in the Build
phase. Technology Research explicitly define problem analysis and innovation
as two separate phases. In addition to the three phases in Technology Research,
the author performs an extra phase, which is a survey of state-of-the-art. Hence,
“The author’s approach”. Both Design Science and Technology Research can be
applied iteratively. The figure also shows in which chapter the phases of the
author’s approach are covered.

10 Chapter 1. Thesis introduction

1.5 Thesis outline

This Thesis is organized in the following chapters:

2 - Security testing of Web applications
This chapter is the result of a thorough research that consists of security testing
methodologies with the main focus on state-of-the-art security testing method-
ologies for Web applications. It explains the connection between software secu-
rity and security testing, and touches upon general security testing methodolo-
gies. The following security testing methodologies for Web based applications
are described:

• Agile Security Testing

• A Penetration Testing Approach

• The OWASP Testing Framework

Furthermore, a short introduction to security testing tools and their different
categories are given, along with some tool examples. Then, a description of
Acunetix Web Vulnerability Scanner (WVS) is given along with an explanation
of why Acunetix WVS is selected to be used in the security testing iterations
in Chapter 5. A list of Acunetix’ relevant competitors are given, which are
also the tools Acunetix is evaluated against. Finally, there is a comparison and
evaluation among the security testing methodologies listed in the three points
above, where one methodology is selected to be used for security testing in the
AIS group at CERN.

3 - Current situation
This chapter starts by giving a brief introduction of CERN, and the AIS group
and its role at CERN. Further, it explains and describes how security testing
is currently done at the AIS group, and explains the need for a security testing
methodology for Web applications in the group. Finally, some potential threats
for the Web applications in the AIS group (EDH is one of the applications) are
given along with their related consequences. This is carried out by using the
CORAS security risk analysis methodology.

4 - Contribution
This chapter describes the author’s contributions to security testing of Web
based applications, which are:

1. Extending the Agile Security Testing methodology to make it support the
criterions defined in Chapter 2.

1.5. THESIS OUTLINE 11

2. Integrating the extended Agile Security Testing methodology (at a proof
of concept level) into the AIS group’s SDLC, which is Scrum.

3. Performing security tests on parts of EDH using the extended Agile Secu-
rity Testing methodology and thereby measuring its efficiency, compared
to existing ad hoc ways of performing security tests.

5 - Realization
This chapter describes the realization of the contribution. That is, it describes
how the testing methodology is integrated into AIS group’s SDLC, and how the
security testing iterations are executed, along with their results.

6 - Evaluation and discussion
This chapter presents an evaluation and discussion of:

• The testing process and the results obtained from the tests.

• The threats to the validity of the security test results.

• The project goals and whether they are attained.

• The verification or falsification of the hypothesis defined in Chapter 1.

7 - Conclusion and further work
This capter concludes the thesis by highlighting the main points and giving a
discussion of the achievements. Furthermore, it presents thoughts and sugges-
tions of potential future work and improvements.

12 Chapter 1. Thesis introduction

Chapter 2
Security testing of Web
applications

This chapter is the result of a thorough research that consists of security testing
methodologies with the main focus on state-of-the-art security testing method-
ologies for Web applications. It explains how security testing of Web applica-
tions is done today. It gives an explanation of the connection between software
security and security testing, and touches upon security testing methodologies
in general. The security testing methodologies for Web based applications are
then evaluated based on given criteria. Furthermore, a short introduction to se-
curity testing tools and their different categories are given, along with some tool
examples. Then, a description of Acunetix Web Vulnerability Scanner (WVS)
is given along with an explanation of why Acunetix WVS is selected to be used
in the security testing iterations in Chapter 5. A list of Acunetix’ relevant
competitors are given, which are also the tools Acunetix is evaluated against.

2.1 Software security and security testing

Software security is about engineering software so that it continues to function
correctly under malicious attack. The software security field is quite new. Some
of the first books and academic classes about software security appeared in 2001,
in which they represent a systematic study for creating secure software [93]. As
mentioned in Chapter 1, some major software security practices have evolved
throughout the years since then. These software security practices are applied
and used in software development by being integrated in the various phases
of the SDLC. Furthermore, as more and more security practices evolved, it

13

14 Chapter 2. Security testing of Web applications

became apparent that every phase of a SDLC could have its corresponding
security phase. By putting together the different software security practices
used in the different SDLC phases, new SDLCs specialized on security began
to emerge. Some of the biggest contributors in this respect are; the Security
Development Lifecycle (SDL) by Microsoft [82, 89], the security touchpoints for
a SDLC by McGraw (Cigital Inc.) [95], and the Secure Software Development
Lifecycle (SSDL) by Wysopal et al. [121].

Security & Privacy Training

Security

&

Privacy

Kickoff

Security

&

Privacy

Design

Best

Practices

Security Arch &

Attack Surface

Review

Security

&

Privacy

Best Dev

Practices

and Tools

Security

&

Privacy

Docs

and Tools

For

Product

Security

&

Privacy

Response

Plans

Security

Push

Pen

Testing

Final

Security

&

Privacy

Reviews

Security

Servicing &

Response

Execution

Feature Lists

Quality Guidelines

Arch Docs

Schedules

Design

Specifications
Testing and Verification

Development

of New Code
Bug Fixes

Code

Signing +

Checkpoint

Express

Signoff

RTM

Product Support

Service Packs/

QFEs Security

Updates

Requirements Design Implementation Verification Release
Support

&
Servicing

Risk

Analysis

Functional

Specifications

Traditional Microsoft Software Product Development Lifecycle TasTraditional Microsoft Software Product Development Lifecycle Tasks and Processesks and Processes

Cost

Analysis

Security

&

Privacy

Best

Test

Practices

RTM

Or

RTW

Public

Release

Privacy

Review

Figure 2.1: The Security Development Lifecycle (SDL) by Microsoft. This figure
is adapted from Microsoft SDL V3.2 [97].

Requirements

and Use Cases

Architecture

and Design

Test Plans Code Tests and

Test Results

Feedback From

The Field

1
 Code

Review

(Tools)

5
Abuse

Cases

2
 Risk

Analysis

6
 Security

Requirements

*
External

 Review

4
Risk-Based

 Security

 Tests

2
 Risk

Analysis

3
Penetration

 Testing
7

 Security

Operations

Figure 2.2: The security touchpoints by McGraw (Cigital Inc.). This figure is
inspired from McGraw [95].

Figure 2.1 shows the Microsoft Security Development Lifecycle phases (on
top of the traditional SDLC used at Microsoft). Figure 2.2 shows the security

2.1. SOFTWARE SECURITY AND SECURITY TESTING 15

The SSDL

1. Security Guidelines/Rules

 and Regulations

 3. Architectural

Reviews/Threat Modeling

2

. S
e

cu
ri

ty

R
e

q
u

ir
e

m
e

n
ts

4. Secure Coding

 Guidelines

5
. W

h
ite

/G
ra

y/B
la

ck

 B
o

x te
stin

g

6. Determining

 Exploitability

Patch ManagementPatch Management

Patch Management Patch Management

Infrastructure Security, Firewalls, IDSs, DMZs, and so on

Infrastructure Security, Firewalls, IDSs, DMZs, and so on

Figure 2.3: Secure Software Development Lifecycle (SSDL) by Wysopal et al.
This figure is inspired from Wysopal et al. [121].

touchpoints (best practices) by McGraw. The touchpoints are ranked accord-
ing to their importance, i.e. number 1 being the most important touchpoint.
Figure 2.3 shows the Secure Software Development Lifecycle. By comparing
these three development life cycles it is possible to see the similarities in their
six phases. One obvious fact is that they all are considering software security
before, during and after development. Furthermore, the comparing reveals that
security testing constitutes a large part in these development life cycles. The se-
curity testing practices (reviewing is also a testing practice) are also considered
before, during and after development:

• The Security Development Lifecycle (SDL):

– Before development: Security requirements reviewing, and security
architecture & attack surface reviewing.

16 Chapter 2. Security testing of Web applications

– During development: Security & privacy best test practices, public
release privacy reviewing, pen testing, and final security & privacy
reviewing.

– After development: Security servicing & response execution (new
patches/updates/builds etc. goes through the same security testing
process).

• The Security Touchpoints:

– Before development: Security requirements reviewing (touchpoint 5
and 6).

– During development: Risk based security testing (touchpoint 4), code
review (touchpoint 1), and penetration testing (touchpoint 3).

– After development: Penetration testing (touchpoint 3) and thereby
getting feedback from the field.

• The Secure Software Development Lifecycle (SSDL):

– Before development: Security guidelines/rules and regulations re-
viewing, and security requirements reviewing.

– During development: Architecture reviewing, secure coding guide-
lines (code reviewing), and white/gray/black box testing (e.g. pene-
tration testing).

– After development: Patch management (managing vulnerabilities);
tracking and prioritizing internally and externally identified vulner-
abilities, out-of-cycle source code auditing, and penetration test-
ing [121].

In order to say something about the security level in software and to be able
to manage the security, security testing must be conducted and carried out
before, during and after the development. Security testing reveals whether the
security functionalities are properly implemented, and whether software behaves
correctly in the presence of a malicious attack. This is why security testing
methodologies are needed and why they play such a crucial role in order to
achieve secure software.

2.2 Security testing methodologies

As shown in Section 2.1, security testing constitutes a large part of the SDLCs
specialized on security. Furthermore, these SDLCs show which security testing
practices should be carried out in the appropriate SDLC phases (before, during

2.2. SECURITY TESTING METHODOLOGIES 17

and after). By following the security testing practices as given by these SDLCs,
structured security testing can be obtained. Each of the SDLCs mentioned in
Section 2.1 has thereby a security testing methodology that can be followed.

Another security testing methodology is given by ISECOM [84]; the Open
Source Security Testing Methodology Manual (OSSTMM). The OSSTMM is a
peer-reviewed methodology for performing security tests and metrics [26]. The
guidelines in this extensive testing methodology provides the basis for audits
and tools towards:

• A formal scientific method to operational security auditing.

• The metrics to quantify security within any channel.

• The rules of engagement for auditors to assure unbiased and logical anal-
ysis.

• A standard for providing certified security audit reports.

It does not only cover security testing of applications, but six “sections” that
is related to the application. The six sections are shown in Figure 2.4. The
following points list the sections in the OSSTMM, but only one subsection (In-
ternet Application Testing) is expanded to illustrate where in the methodology
security testing of Web applications is located. The reader is referred to the
OSSTMM [84] for a complete and detailed description of the sections.

1. Information Security Testing

2. Process Security Testing

3. Internet Technology Security Testing

(a) Internet Application Testing

i. Re-Engineering

ii. Authentication

iii. Session Management

iv. Input Manipulation

• Inject SQL language in the input strings of database-tired
web applications.

• Examine “Cross-Site Scripting” in the web applications of the
system.
etc.

v. Output Manipulation

vi. Information Leakage

18 Chapter 2. Security testing of Web applications

4. Communications Security Testing

5. Wireless Security Testing

6. Physical Security Testing

Information

 Security (1)

Physical

Security (6)

Process Security

 (2)

Wireless

Security (5)

Communications

 Security (4)
Internet Technology

 Security (3)

Figure 2.4: The figure illustrates the security testing sections in the Open Source
Security Testing Methodology Manual. It also shows that each section overlaps
and contains elements of all other sections. This figure is inspired from the
OSSTMM [84].

The above mentioned security testing methodologies are based on years of
experience and are therefore sound and reliable. However, these testing method-
ologies are not optimal for every development projects (e.g. Web application
development), and can be extensive and very time-consuming. Based on the rea-
sons given in Chapter 1 (i.e. Web application users are increasing and thereby
making Web applications the current trend in means of modern information
interaction), and because of the scope of this thesis, the focus is set towards
security testing methodologies for Web based applications.

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 19

2.3 Security testing methodologies for Web based

applications

The following sections describe security testing methodologies that are especially
applicable in Web application development projects.

2.3.1 Agile Security Testing

The nature of Web applications requires an iterative and evolutionary approach
to development - not a formal rigorous methodology [114]. This has made ag-
ile development methodologies the trend for Web application development [85],
which has further lead to the idea of agile security engineering. Agile secu-
rity engineering is the idea of adapting the same philosophy that drive agile
software engineering to the traditional practice of mitigating security risks in
software [114]. It is a highly iterative process for delivering the security solution
and translating security objectives (requirements) into automated security test
cases. In addition, it promotes the idea of creating security test cases before
the system exists, i.e. test driven development (TDD) (see Figure 2.5), which is
another characteristic of agile and iterative development processes [88]. Due to
the scope of this thesis, only the testing part of agile security engineering will
be regarded, i.e. Agile Security Testing.

Test

CodeRefactor

Start

Figure 2.5: The three steps in TDD. This figure is inspired from TMap Next [88].

The Agile Security Testing methodology that is suggested by Tappenden et
al. [114] consists of the following three main steps:

1. Modeling of security requirements.

20 Chapter 2. Security testing of Web applications

Actor Misuser Insider

System

<<include>>

<<extend>>

<<generalize>>

Associatio
n

Layer 1

Layer 2

Layer 3

Vulnerable use caseMisuse caseUse case

<<threaten>> <<mitigate>> <<exploit>>

Figure 2.6: The misuse case legend. Layer 1 shows the UML use case notation,
layer 2 shows the misuse case notation [110] and layer 3 shows the extended
misuse case notation [105]. Layer 1 is included in layer 2. Layer 1 and layer 2 is
included in layer 3. This figure is adapted from Erdogan and Baadshaug [70].

2. Employing a highly testable architecture.

3. Running automated security tests.

The modeling of security requirements (step 1) is executed by creating abuser
stories [103, 95] and/or misuse cases [110, 105] in order to elicit security re-
quirements. These are then used as reference points when testing for security
in order to verify or falsify a given security requirement. Figure 2.6 shows the
misuse case legend. An example of a misuse case diagram is given in Figure 2.7.
From this misuse case diagram, it is possible to elicit security requirements such
as:

• A client must be identified and authorized with a valid username and
password combination to gain access to the Web application.

• The communication between a client and the Web application must be
encrypted at all times.

• The network traffic for the Web application shall be monitored for poten-
tial denial of service (DoS) attacks.

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 21

Authorized user

 System

Use the system

Malicious user
Login to system

<<include>>

Identify and

authenticate user

<<include>>

Encrypt connection

<<threaten>>

Monitor network

traffic

<<mitigate>>Alert system
administrator(s)

<<include>>

<<include>>

<<include>>

<<threaten>>

<<mitigate>>

Identity theft

<<include>>

<<mitigate>>

<<exploit>>

<<threaten>>

<<mitigate>>

Man-in-the-

middle-attack

Denial of service

attack

Figure 2.7: An example of a misuse case diagram for a potential Web appli-
cation. The gray use case denotes a vulnerable use case. The black use cases
denote misuse cases. This figure is adapted from Erdogan and Baadshaug [70].

Most Web applications have a three layered architecture; a presentation
layer, a business service layer and a data service layer. In more detailed varia-
tions of this architecture, the business service layer is further split in two layers -
namely a process/control layer and a business entity layer [10]. A highly testable
architecture (step 2) is achieved by adding a test layer on top of each layer, as
shown in Figure 2.8. The resulting architecture suits very well for agile devel-
opment methodologies because of its many test layers. Additionally, it is useful
for security testing because the architecture makes it possible to employ various
security testing techniques within any number of the test layers. Furthermore,
this architecture makes it possible to carry out the testing in three main levels,
which is in line with the well known testing strategy; the V model (see Fig-
ure 2.9). Firstly, by creating mock objects, it is possible to execute a single
test layer (fits under development tests of the V model). Secondly, by targeting
an upper layer and the layer that it depends on, it is possible to execute an
integration test, e.g. the process/control layer and the presentation layer (fits
under system tests of the V model). Thirdly, by having security requirements
as reference points, it is possible to verify or falsify a required security property
of the system (fits under acceptance tests of the V model).

In order to fully benefit from Agile Security Testing, the security tests must
be automated as much as possible (step 3). This can be achieved by using a

22 Chapter 2. Security testing of Web applications

Test Layer

Presentation Layer

Test Layer

Process/Control Layer

Test Layer

Business Entity Layer

Test Layer

Data Services Layer

B
u

si
n

e
ss

 S
e

rv
ic

e
 L

a
ye

r

Figure 2.8: A highly testable architecture. This figure is inspired from Tappen-
den et al. [114].

penetration testing tool, such as Acunetix WVS (explained in Section 2.5).
Agile Security Testing has been used in the industry. An example is Bekk

Consulting AS [87], where they approach Agile Security Testing with a method-
ology possessing the same characteristics mentioned in the three points above.
The outcome shows that Agile Security Testing has its benefits and shortcom-
ings. The benefits are:

• Increased security awareness: There is a knowledge gap between security
experts and software developers [70], and sometimes developers and archi-
tects tend to worry less about security [119]. Agile Security Testing brings
security testing closer to developers, and thereby increases their security
awareness.

• Collective ownership of security issues: By integrating security in the
development process through misuse cases or abuser stories, and by per-
forming security tests at the development test level, system test level and
acceptance test level, security becomes a collective ownership.

• Easier understanding of security when sufficiently broken down: By break-
ing security issues down to misuse cases or abuser stories, developers and
architects finds it easier to relate to and to handle.

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 23

wish, legislation, policy,
opportunity, problem

Requirements

Functional design

Technical design

Realisation Development tests

System tests

Acceptance tests

Operation &
management

Test levels

Accepting party

Supplying party

Figure 2.9: The V model. This figure is inspired from TMap Next [88].

• Automatic testing:

– Expresses the security requirements with a high degree of formality
throughout the acceptance tests.

– Gives a certain degree of confidence that security regression is not
introduced during the project.

• Getting away from “penetrate and patch”: This approach to security test-
ing of Web applications promotes the idea of building-security-in the soft-
ware throughout the development process.

The shortcomings are:

• Misuse cases/abuser stories incompleteness: In Agile Security Testing,
the misuse cases/abuser stories are developed and handled incrementally
together with the system functionality and their related user stories. This,
however, does not cover all the security issues because not all misuse
cases/abuser stories have their corresponding user story. Consequently,
there must be created misuse cases/abuser stories that do not have any
corresponding user stories. In order to create such misuse cases/abuser
stories, special security knowledge is needed.

• Test incompleteness: Not all misuse cases/abuser stories can be expressed
as automatic tests. E.g. vulnerabilities that has to be mitigated by hard-

24 Chapter 2. Security testing of Web applications

ening the application environment. In these cases, manual tests must be
carried out.

• Security specialist role not eliminated: The two previous points indicate
that there are situations in the security testing process where there is a
need for security experts.

2.3.2 A penetration testing approach

Penetration testing is the most commonly applied security testing methodology,
but it is also the most commonly misapplied security testing methodology [58].
It is misapplied by firstly, being carried out at the end of the SDLC and secondly,
by being performed in a “time boxed” manner where a small and predefined
portion of time and resources is given to the effort. In turn, this approach
uncovers problems too late. Even if the problems are uncovered, fixing them at
this stage is prohibitively expensive [58].

In order to prevent the misapplication of penetration testing, Thompson [116]
(and Security Innovation [44]) suggests a structured penetration testing method-
ology. Although this methodology is more formal than Agile Security Testing
(see Section 2.3.1), it is applicable for Web application development projects
and consists of the following five main steps [116]:

1. Create a threat model

2. Build a test plan

3. Execute test cases

4. Create the problem report

5. Execute a postmortem evaluation

The first step in this penetration testing methodology is to create a threat
model in order to get a detailed, written description of the risks that threatens
the application, which is of the utmost importance to mitigate. Threat model-
ing [82, 98] is somewhat similar to the misuse case/abuser story approach (see
Section 2.3.1) in means of thinking like an attacker when developing the model.
The key difference with threat modeling is the ability to get an overview of
the various conditions (vulnerabilities) that have to be present in order to re-
alize a given threat. Figure 2.10 shows a partly created threat model (a threat
tree) for a Web application that lets users manage their bank account online.
A threat tree, and the threat modeling process, helps security testers to break
an exploitable threat goal into testable sub goals that they can assess more
easily [116].

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 25

1.a
Site allows a large or unlimited

number of password guesses

before locking out an account

or IP address

Threat 1:
Bypass authentication and gain access to a user’s account

Possible password combinations

are small (like a 4-digit PIN) and

thus can be brute-forced in a

reasonable number of tries

1.b

Site has an exploitable command

injection (SQL, CGI, XSS, etc.)

vulnerability

1.c

User data is not securely

validated on the server

1.c.a

User data is placed insecurely

into a command or shell on

the server

1.c.b

AND

AND

Figure 2.10: An example of a threat model for a Web application that lets users
manage their bank account online. In this threat model, only one threat is
regarded for such a system; naimly “bypass authentication and gain access to a
user’s account”. The threat’s child nodes represent the vulnerabilities that have
to be present in order to realize the threat itself. The logical AND between the
edges of node 1.a and 1.b means that both 1.a AND 1.b have to be present in
order to attain the threat. Otherwise the edges are regarded as logical OR. This
figure is inspired from Thompson [116].

The second step is to build a test plan. The test plan acts as a road map
for the total security testing effort. It is created to get a high-level overview of
the security test cases, an overview of how exploratory testing (i.e. simultaneous
learning, test design, and test execution [60]) will be conducted, and to get an
overview of which components will be tested [116]. The test plan must address
the following key points:

• Logistics: The security testing project schedule and people, resources, and
equipment that is needed must be addressed.

• Deliverables and timeline: In order to support the development organi-
zation to integrate the results into the project timeline, a timetable of
activities and a list of deliverables along with their description must be
addressed.

• Test cases and tools: An overview of the security test cases that will be
constructed and executed, the tools that is needed to conduct the tests,
and the opportunities for automated testing along with their tools must
be addressed.

The third step is to execute the test cases. Security issues and insecure

26 Chapter 2. Security testing of Web applications

behavior in software is often hard to understand, and thereby makes it challeng-
ing to create good security test cases. Fortunately, there exist many extensive
public vulnerability databases and mailing lists that are available online. Some
of the most known are; the BugTraq mailing list [7], the Computer Emergency
Readiness Team (CERT) at Carnegie Mellon University [13], and the Common
Vulnerabilities and Exposure (CVE) website [12]. These are invaluable resources
for security testers. Furthermore, the security testing of vulnerabilities are di-
vided into four main testing groups [120]:

• Dependency testing : Tests in this group has the purpose of uncovering se-
curity vulnerabilities in the file system, the registry and external libraries
by either denying the application access to these resources, or by tamper-
ing with and corrupting data.

• User interface testing : Tests in this group has the purpose of uncovering
security vulnerabilities that may be exposed through the user interface by
generating corrupt and unanticipated input data, e.g. SQL injection and
XSS.

• Design testing : Tests in this group has the purpose of uncovering security
vulnerabilities that may be exposed because of design errors such as un-
secured ports and default accounts. Such design errors are often referred
to as flaws [95].

• Implementation testing : Tests in this group has the purpose of uncovering
security vulnerabilities that may be exposed because of implementation
errors such as time-of-check-to-time-of-use (TOCTOU) and incorrect or
none input validation. Such implementation errors are often referred to
as bugs [95].

The fourth step is to create a report of the findings from the security testing
process. This is critical for proofing that a given vulnerability is present in the
application, at a later hand. The security test report must at least cover the
following three points:

• Reproduction steps: A complete and unambiguous list of how the vulnera-
bilities were discovered must be provided. This is necessary in order to pin
point and track down how a given vulnerability was exploited. Without
this, it is unlikely that the security bug will be fixed. Additionally, a list
of reproduction steps makes it possible for other testers and developers to
perform the same test and verify the existence of the vulnerability. Finally,
information about the environment must also be added. At the very last,
the version of the operating system, application, relevant protocols, client

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 27

and how they are configured must be provided. This is because different
environments may act differently on a given vulnerability attack.

• Severity : Severity is based on the potential result of a security failure.
An accurate severity ranking is crucial in order to prioritize the most
important security features of the application, and making sure that they
are present. Failing to do this correctly may cause big problems for the
application and its stakeholders, e.g. economic and reputation loss.

• Exploit scenarios: An exploit scenario is the specific sequence of things
an attacker can do to take advantage of a given vulnerability and the
consequences of doing so. This plays a critical role in describing the vul-
nerability’s impact for decision makers.

The fifth step is to execute a postmortem evaluation. A postmortem eval-
uation is basically a meeting session executed by the security test team for
analyzing the security bugs/flaws that were detected during the testing process.
The focus in a postmortem evaluation should be on why vulnerabilities (bugs
or flaws) were missed during development, and how to improve the process to
prevent or isolate such security issues in the future. Postmortem evaluations can
also help a security testing team to put light on potential holes in the testing
process, and sharpen techniques to find certain security vulnerabilities. Fur-
thermore, a postmortem evaluation should be executed after a security testing
is completed, while the security issues are still fresh in the testers’ minds. It is
necessary to mention that postmortem evaluations can be executed iteratively,
for example after each security testing iteration.

2.3.3 The OpenWeb Application Security Project (OWASP)
testing framework

The Open Web Application Security Project (OWASP) is an open, not-for-
profit, community dedicated to enabling organizations to develop, purchase,
and maintain applications that can be trusted. All of the OWASP tools, docu-
ments, forums, and chapters are free and open to anyone interested in improving
application security [33].

One of the major contributions by OWASP is their security testing frame-
work for Web applications. The framework is not developed for a specific SDLC,
but is rather a comprehensive generic development model (see Figure 2.11) that
contains the necessary activities needed for systematic security testing of Web
applications. Because of the framework’s generality, organizations can pick and
integrate those activities that fit their development environment and SDLC in

28 Chapter 2. Security testing of Web applications

Figure 2.11: The generic SDLC model. This figure is inspired from the OWASP
Testing Guide [102].

order to develop secure software. The OWASP Testing Framework consists of
five main phases [102]:

1. Before development begins

(a) Review policies and standards: This is to ensure that appropriate
policies, standards, and documentation are in place and available
for the development teams. Further, this gives development teams
guidelines and policies that they can follow.

(b) Develop measurement and metrics criteria (ensure traceability): By
defining measurement and metrics criteria, and using them through-
out the project, provides visibility into defects in both the process
and the product.

2. During definition and design

(a) Review security requirements: It is important to have unambiguous
requirements. This activity is about testing (reviewing) the assump-
tions that are made in the security requirements, and reviewing to
see if there are gaps in the security requirements definitions. When
looking for these gaps, the following security properties should be
considered:

i. User Management (password reset etc.)

ii. Authentication

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 29

iii. Authorization

iv. Data Confidentiality

v. Integrity

vi. Accountability

vii. Session Management

viii. Transport Security

ix. Tiered System Segregation

x. Privacy

(b) Review design and architecture: Design and architecture documents
(such as models describing the architecture, and their corresponding
textual descriptions) must be reviewed to ensure that the design and
architecture enforce the appropriate level of security as defined in the
requirements. Identifying security flaws in the design phase is one of
the most cost-efficient places to identify flaws (see Table 1.2). Addi-
tionally, it can be one of the most effective places to make changes.
For example, if the architecture reveals that authorization is to be
made in multiple places, then it might be more efficient to create a
central authorization component. A Comprehensive Method for Ar-
chitecture Evaluation (ATAM) [61], an architectural review method-
ology by Maranzano et al. [91] and the Independent Software Ar-
chitecture Review methodology (ISAR) [113] are some examples of
architecture review methodologies. These methodologies can easily
be used for security reviewing, as well as other quality features.

(c) Create and review UML models: After creating Unified Modeling
Language (UML) models that describe how the application works,
they must be reviewed in order to discover security weaknesses. To
get an exact understanding of how the application works the UML
models must be confirmed with the system designers.

(d) Create and review threat models: After the design and architecture re-
view, along with the UML models explaining exactly how the system
works, a threat modeling exercise must be performed. By developing
realistic threat scenarios, and analyzing the design and architecture
accordingly, makes it possible to look for and ensure that the threats
have been mitigated. Additionally, this analysis makes it possible to
discover threats that don’t have any mitigation strategies. Such dis-
coveries can then be used as reference points to modify the design or
architecture in order to mitigate the given threat. Figure 2.10 shows
an example of a threat model.

30 Chapter 2. Security testing of Web applications

An important contributer to formal security reviewing practices is SHIELDS.
SHIELDS is an FP7 (the EU’s Seventh Framework Programme for re-
search and technological development) project concerned with model-based
detection and elimination of software vulnerabilities [46]. The main ob-
jective of SHIELDS is to bridge the gap between security experts and
software developers and thereby reduce the occurrence of security vulner-
abilities [71].

SHIELDS suggest goal-driven security inspections and vulnerability-driven
security inspections that can be used to review software artifacts, i.e. re-
quirements, design, source code and manuals. The purpose of the goal-
driven security inspections is to check that a given security goal has been
correctly implemented. The purpose of the vulnerability-driven security
inspections is to check whether a vulnerability is present or not in the soft-
ware artefacts [71]. Furthermore, the goal-driven and vulnerability-driven
security inspections have their respective techniques [71]:

• Goal-driven security inspections:

– Security Goal Indicator Tree (SGIT): Provides a reusable, struc-
tured and detailed description of indicators that provide evidence
(not necessarily conclusive) of the correct (or incorrect, missing)
realisation of a security goal.

– Indicator specialisation tree: Provide details on how to inspect
for a given indicator in different software artifacts.

– Guided checklist: Derived from SGITs, and provides an easy to
use guide for how to inspect whether a security goal has been
correctly implemented.

• vulnerability-driven security inspections:

– Vulnerability Inspection Diagram (VID): Provides procedural in-
structions on how to review a software artefact for detecting the
presence of a specific class of vulnerability.

– Security inspection scenarios: Ease and increase efficiency of the
manual security inspection process through giving detailed de-
scription of the security problem and the threat related to it
and giving detailed instructions on how to find instances of the
vulnerability class in software artefacts.

Figure 2.12 shows an example of an SGIT for the security goal “audit data
generation”. Figure 2.13 shows an example of a VID where the vulner-
ability class is “Revealing Internal Error Message”. Further detailed ex-
planation of the goal-driven and vulnerability-driven security inspections

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 31

can be found in SHIELDS deliverables D1.2 [71], SHIELDS deliverables
D4.1 [72], and Erdogan and Baadshaug [70].

 Automated

Security Audit

 Analysis

Audit Data

Generation
Audit Data

 Storage

D: An audit
component

 exists.

 R/D/S:
Operations

create audit

event

AND

AND

R/D/S: Audit
component

time is not

synchronised

R/S: Upon crash/
non-existance of

audit component

the system continues

to work

S: Audit events

lack either time/

subject/object/

operation information

Depends on Depends on

Figure 2.12: An SGIT of the security goal “audit data generation”. The initials
in the diagram elements have the following meaning: R = Requirements, D =
Design and S = Source code. This figure is inspired from SHIELDS deliverables
D4.1 [72].

3. During development

(a) Code walkthroughs: The security team should perform a code walk-
through with the developers and system architects in order to get a
high-level understanding of the flow, the layout, and the structure
of the code that makes up the application. A code walkthrough is a
high-level walkthrough of the code where the developers can explain
the logic and flow of the implemented code. It allows the code re-
view team to obtain a general understanding of the code, and allows
the developers to explain why certain things were developed the way
they were [102, 99].

(b) Code reviews: After a code walkthrough, the security team has a bet-
ter understanding of the code structure and thereby a good starting
point of reviewing the code for security defects. An example of a pro-
cess for performing security code reviews is suggested by Howard [81],
in which he explains three main steps for performing a security code

32 Chapter 2. Security testing of Web applications

Revealing Internal Error Message (CWE ID: 210)

For every output

of an error message loop

Check for

information

leak

end

Ensure that unhandled

exeptions/errors are not

visible at the interface of

the system

Finished

Begin

E.g. in Java you could

catch all exceptions in

the main function

Begin

i
Ensure that only a

very general problem

description is given

Document error

information which is

directed at the user and

how it gives insight into

the system

Finished

Check for information leak (short)

Check for information leak (detailed)

Begin

E.g. Distinguishing

between the error

message “wrong

username” and “wrong

password” enables the

attacker to !nd

usernames by brute-force

Does the ouput message

give information relevant to

the developer?

 Does the

 error message contain

 information about

 internal states?

“Development error

message in production

system”yes

no

Finished

“System gives information

about internal state

exploitable by the

attacker”

no

yes

Figure 2.13: A VID example of the vulnerability class; “Revealing Internal Error
Message”. The dashed arrows point to the short and detailed version of the
“Check for information leak” procedure call. The short version of a procedure
call is aimed at security experts and inspectors that have experience in security
inspection. The detailed version of a procedure call is a step-by-step guide of
how to carry out the VID and is primarily aimed at unexperienced inspectors.
This figure is inspired from SHIELDS deliverables D4.1 [72].

review in a structured manner. Briefly explained, the three steps in
the process are:

i. Make sure you know what you’re doing: This step is about
getting educated on the security issues and to learn about the
vulnerabilities and how they appear in software.

ii. Prioritize: This step is about prioritizing which files to review
in respect to level of threat, risk, budget, etc. The point is to

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 33

review the files (the part of the system) that have the highest
risk of being attacked.

iii. Review the code: The final step is to carry out the code review
by; (1) rerunning all available code-analysis tools, (2) looking for
common vulnerability patterns and (3) digging deeper into risky
code.

In addition to these steps, the process provides a graphical modeling
technique for modeling charts to guide security testers in the review
process. Figure 2.14 shows an example of a chart containing the
high-level steps required to identify common XSS issues.

Web server

code?

Other

defenses?

Input

sanitized?

Dynamic

Input?

Consider !x!

Fix!

Move on

Response.Write

Response.Redirect

<%=

Request.Querystring

Request.Form

HTML Encode

HttpOnly

No

No

No

No

No

Yes

Yes

Yes

Yes Yes

Start

Dynamic

output?

Figure 2.14: Reviewing for cross site scripting (XSS) issues. This figure is
inspired from Howard [81].

4. During deployment

(a) Application penetration testing: Having carried out reviews of the
security requirements, analyzed the design and architecture for secu-

34 Chapter 2. Security testing of Web applications

rity flaws, and performed security code reviews, a penetration testing
(explained in Section 2.3.2) should be carried out to make sure that
nothing has been missed (i.e. none of the known security issues).

(b) Configuration management testing: The application penetration test-
ing process should include the checking of how the infrastructure was
deployed and secured. A small aspect of the configuration may be at
a default install stage and vulnerable to exploitation.

5. Maintenance and operations

(a) Conduct operational reviews: There needs to be a process in place
which details how the operational side of both the application and
infrastructure is managed [102].

(b) Conduct periodic checks: In order to ensure that no new security risks
have been introduced and that the level of security is still sound,
health checks of the application and the infrastructure should be
performed monthly or quarterly.

(c) Ensure change verification: It is vital to check that the level of se-
curity is still sound after each new deployment in the production
environment, and that the new build hasn’t affected the security
negatively.

Figure 2.15 shows the OWASP Testing Framework work flow. It gives an
overview of the five phases described above, and lists the main activities in
each phase.

2.3. SECURITY TESTING METHODOLOGIES FOR WEB BASED
APPLICATIONS 35

Metrics

Criteria,

Measurement,

Traceability

Review SDLC Process

Standards

Review
Policy Review

Create /

Review

Threat

Models

Create /

Review UML

Models

Design and

Architecture

Review

Requirements

Review

Unit and

System

Tests

Code

Walkthroughs

Code

Review

Acceptance

Tests

Unit and

System

Tests

Con!guration

Management

Reviews

Penetration

Testing

Regression

Tests
Operational

Management

Reviews

Change

Veri!cation
Health

Checks

OWASP Testing Framework Work Flow

B
e

fo
re

 D
e

v
e

lo
p

m
e

n
t

 (

P
h

a
se

 1
)

D
e

!
n

it
io

n
 a

n
d

 D
e

si
g

n

 (

P
h

a
se

 2
)

D
e

ve
lo

p
m

e
n

t

 (

P
h

a
se

 3
)

D
e

p
lo

ym
e

n
t

(P

h
a

se
 4

)
M

a
in

te
n

a
n

ce

(P

h
a

se
 5

)

Figure 2.15: The OWASP Testing Framework work flow. This figure is inspired
from the OWASP Testing Guide [102].

36 Chapter 2. Security testing of Web applications

2.4 Security testing tools

Security testing tools provide the automation of security tests. Automated secu-
rity testing is necessary in order to carry out security tests efficiently, which can
sometimes be very extensive [117]. Additionally, for reasons given in Chapter 1
(i.e. significant increase of vulnerabilities in Web applications, Web applica-
tion’s short time-to-market, and that security testing of Web applications is
considered too time-consuming) there is an obvious requirement for effective
methods to find vulnerabilities in Web applications [66].

Security testing tools can be used to help identify potential security vul-
nerabilities within commercial and proprietary based software [104]. As Fig-
ure 2.1, 2.2 and 2.3 shows, security testing tools are used in both pre-deployment
and post-deployment. The focus on the software security field these recent
years has also made the software security community to look closer at secu-
rity testing tools, and the automation of security tests. As a result, there have
been produced hundreds of security testing tools (both freeware, and commer-
cial) [45, 34]. These security testing tools can further be divided into several
categories with their specific purpose. However, some security testing tools over-
lap in different categories because they are multi functional. Having so many
security testing tools (in different categories) does not make things easier when
selecting tools for software development or testing projects. Fortunately, there
have been suggested a list of evaluation criteria by Radosevich and Michael [104],
and Dustin et al. [69] that can be considered when selecting a security testing
tool. The latter evaluation criteria list can be used for any type of testing tools
as well as for security testing tools, and is available on the UML Web site [50].
Not all of the criteria in these lists are relevant to all software development or
testing projects [104]. It is therefore possible to select some relevant criteria and
use them as a starting point for evaluating security testing tools.

The following points explain the different categories of security testing tools,
as given by Curphey et al. [63]. Table 2.1 gives some examples of commercial
and free tools for each of the categories, and Table 2.2 shows the SDLC phase
a tool category is typically associated with.

• Source-code analyzers are divided in two sub-categories; static analyz-
ers and dynamic analyzers. Static analyzers run text-based searches for
strings and patterns in source code files and tries to find security defects
in the source code, and then generates a report of the findings. They
are generally fast, because they require very little processing. On the
other hand, they are quite limited in what they actually find and have
a tendency to produce false-positives. Dynamic analyzers run a deeper
analytical analyze of the source code. They don’t only find instances of

2.4. SECURITY TESTING TOOLS 37

bad coding practices, but also perform rich control and dataflow traver-
sals. This reduces the false-positive rate dramatically, but at the same
time makes them slow and performance intensive.

• Web application (black-box) scanners perform security tests on Web
applications by (usually) first crawling through the entire Web site that’s
holding the Web application, and then running specific security test cases
wherever possible. All the tests are performed over the HTTP protocol.
They are not only effective at finding attack incidents like SQL injection
and cross-cite scripting, but also at finding configuration management
issues (especially those related to Web servers). These tools are usually
not aimed at developers, this makes the mitigation process complex.

• Database scanners are used to perform various database queries to an-
alyze the database’s security configuration. It also scans the database
configuration to determine common problems (e.g. loosely permissioned
and powerful stored procedures). Additionally, they verify database users
and role membership against known best practices.

• Binary analysis tools usually look for security issues in two steps. They
first determine the public interface of the application or library. Then, they
attempt to “fuzz” the input parameters and look for signs of an application
crash, common vulnerability symptoms, and other unusual behavior. Fuzz
testing is a type of blackbox random testing which randomly change well-
formed inputs and tests the application on the resulting data [74]. Some
tools under this category (e.g. FxCop, see Table 2.1) use reflection and
introspection to find security issues in application binaries. Although these
applications are easy to use, they tend to produce very complex results
that require highly skilled analysts to understand the results. Additionally,
these tools have an extremely high false-positive rate [63].

• Runtime analysis tools are much like dynamic source-code analyzers,
but the key difference is that they don’t identify application bugs, but
instead give reviewers and testers a variety of critical information, e.g.
application control flows and data flows.

• Configuration analysis tools are used for static analysis of the applica-
tion configuration files, host settings, or Web/application server configura-
tion. They are most useful for deployment-security evaluation and for en-
suring that the application operates under desired security context. They
can also analyze files such as web.xml, machine.config and web.config

for security issues.

38 Chapter 2. Security testing of Web applications

• Proxy tools are used between a client and a Web server that hosts a Web
application. They allow testers to trap the HTTP request that leaves a
client or the HTTP response that leaves a Web server. Furthermore, they
let testers view and modify different parts of the request, e.g. cookies,
HTTP headers, GET and POST parameters and HTML content. They
can also be used to efficiently bypass client side validation.

• Miscellaneous tools: Some tools don’t fit under a specific category be-
cause they are multi functional, e.g. Visual Studio Team System (VSTS)
that is a mix of source code analyzer, load/stress testing tool, web appli-
cation (black-box) scanner and unit testing tool.

In addition to the above mentioned categories there exist other security
testing tool categories that are defined by OWASP (currently without descrip-
tion) [35]:

• Application Vulnerability Scanning Tools (Subcategory of Web application
(black-box) scanners?)

• Application Penetration Testing Tools (Subcategory of Web application
(black-box) scanners?)

• Test and Educational Applications (Subcategory of mixed tool types (mis-
cellaneous tools)?)

• Application Security Analysis Support Tools (A collective term for source-
code, binary, runtime and configuration analysis tools?)

Furthermore, insecure.org [45] distinguish between vulnerability scanners and
Web scanners, and have named other categories such as password crackers,
sniffers, and packet crafters. In addition to automated security testing, there
exist tools that actually create security test cases based on models (e.g. UML
models and UMLsec models) [107, 86].

All these different, and sometimes overlapping, categories of security testing
tools indicate the difficultness of tool categorization and the lack of standards
for software security testing tools.

2.4. SECURITY TESTING TOOLS 39

Tool type (category) Commercial Free/Open Source
Source-code analyzers Fortify SCA [21],

Klockwork Insight [28]
Rough Auditing Tool
for Security [41], Find-
Bugs [19]

Web application (black-
box) scanners

Acunetix WVS [2],
HP WebInspect soft-
ware [23]

WebScarab [37], Burp
Suite [8]

Database scanners AppDetective [4], NeX-
pose [32]

Scuba [42], SQLre-
con [48]

Binary analysis tools IDA Pro [25], Bin-
Navi [5]

BugScam [6], Fx-
Cop [29]

Runtime analysis tools Rational Purify-
Plus [40], Compuware
BoundsChecker [14]

.NETMon [31], CLR
Profiler [11]

Configuration analysis
tools

Desaware
CAS/Tester [17]

SSLDigger [49], Secu-
rity Configuration Tool
set [30]

Proxy tools Paros [38], Fiddler [18]

Miscellaneous tools Visual Studio Team
System [53]

Firefox Toolbar [20],
SiteDigger [47], JU-
nit [27]

Table 2.1: Some examples of security testing tools. This table is inspired from
Curphey et al. [63].

Tool type (category) SDLC phase
Source-code analyzers Development, Testing, Predeploy-

ment
Web application (black-box) scan-
ners

Testing, Predeployment, Postdeploy-
ment

Database scanners Testing, Predeployment, Postdeploy-
ment

Binary analysis tools Testing, Predeployment, Postdeploy-
ment

Runtime analysis tools Development, Testing, Predeploy-
ment, Postdeployment

Configuration analysis tools Development, Testing, Predeploy-
ment, Postdeployment

Proxy tools Testing, Predeployment, Postdeploy-
ment

Miscellaneous tools Development, Predeployment, Post-
deployment

Table 2.2: This table shows the same tool categories as in Table 2.1 along with
the SDLC phace in which they are typically applied. This table is inspired from
Curphey et al. [63].

40 Chapter 2. Security testing of Web applications

2.5 Acunetix Web Vulnerability Scanner (WVS)

Acunetix Web Vulnerability Scanner [2] is an automated Web application se-
curity testing tool. It can be used to audit a Web application by checking
for vulnerabilities such as SQL injection, cross site scripting and many other
exploitable vulnerabilities. Additionally, it offers a solution for analyzing off-
the-shelf and custom Web applications [54]. It also allow testers to create user
defined vulnerability tests that can be added to the existing “library” of vulner-
ability tests. The tool also allows users to create customized scan profiles in
order to perform specific security tests and thereby reduce the total scan time.
These scan profiles are sometimes referred to as scan policies [100, 83].

The following six points briefly explain how automated security scanning in
Acunetix WVS works [54]:

1. The crawler crawls the entire website by following all the links on the site.
Then it displays a tree structure of the website and detailed information
of each discovered file (see Figure 2.16).

2. After the crawling process, Acunetix WVS launches vulnerability attacks
on each page found, and thereby emulating a hacker.

3. If the port scanner option is enabled, Acunetix WVS will perform network
security checks against the services running on the open ports.

4. Acunetix WVS displays each vulnerability as they are detected and places
them under an alert node. Alert nodes can either be high, medium or
low. It is further possible to look deeper into one vulnerability and look
at information like the HTTP response, the source code line and its vul-
narable part, stack trace etc. For each discovered vulnerability, Acunetix
WVS gives a recommendation on how to fix it.

5. Open ports will be listed along with the security tests that were performed.

6. Finally, it is possible to save a complete scan for later analysis, comparison,
or report generation.

The following points give an overview of Acunetix WVS and its main tools
and features:

• Web Scanner: The Web Scanner is the most important component. It
launches the security scan of a Web application which is executed in two
steps:

– First, it uses the crawler function to analyze and build a site structure
of the website.

2.5. ACUNETIX WEB VULNERABILITY SCANNER (WVS) 41

Figure 2.16: This figure shows a screenshot of Acunetix WVS in action. In
this example, the scanning profile was set to SQL injection, which means that
Acunetix WVS only scans for SQL injections. By further expanding the SQL
injection node a list of files containing this vulnerability is shown. Further,
expanding the file node reveals the parameters in the file that are leading to
SQL injections.

– Then, it launches a series of attacks against the crawled site structure.

The results of a scan are displayed in an Alert Node tree with details on
all the vulnerabilities found within the website (see Figure 2.16).

• AcuSensor Technology: The AcuSensor Technology leads to the discov-
ery of more vulnerabilities and the generation of less false-positives than
a traditional Web Application Scanner [55, 54]. Additionally, it indicates
exactly where in the source code the vulnerability lies. This accuracy is
achieved by combining black-box scanning techniques with dynamic code
analyzes while the source code is executed. Figure 2.17 illustrates how the
AcuSensor Technology functions with the rest of Acunetix WVS.

• Port Scanner and network alerts: The Port Scanner performs a port
scan against the Web server that’s hosting the website. If any open
ports are found, Acunetix WVS will perform network level security checks

42 Chapter 2. Security testing of Web applications

Acunetix WVS

 Scanner

1. Application behaviour

2. Retrieve list of !les/directories

not found by the crawler

3. Pinpoint where in the code

the vulnerability lies

Update

Web Application
AcuSensor

Technology

Scan

Figure 2.17: An illustration of how the AcuSensor Technology functions with
the rest of Acunetix WVS.

against the open ports, such as DNS open recursion tests, badly configures
proxy server tests and weak SNMP community strings.

• Target Finder: The Target Finder is a port scanner that locates open
Web server ports within a given range of IP addresses.

• Subdomain Scanner: The Subdomain Scanner identifies active subdo-
mains in a DNS zone.

• Blind SQL Injector: The Blind SQL Injector is an automated database
data extraction tool where it is possible to perform manual SQL injection
tests. The tool is also able to enumerate databases, tables, dump data
and also read specific files on the file system of the Web server to check
whether a SQL injection is found.

• HTTP Editor: The HTTP Editor allows a user to create custom HTTP
requests, and debug HTTP requests and responses. Additionally, it in-
cludes a tool for encoding and decoding text and URLs to MD5 hashes,
UTF-7 formats, etc.

• HTTP Sniffer: The HTTP Sniffer acts as a proxy that allows a user to

2.5. ACUNETIX WEB VULNERABILITY SCANNER (WVS) 43

capture, examine and modify HTTP traffic between a client and a Web
server. This tool can be used to:

– Analyze how Session IDs are stored and how inputs are sent to the
server.

– Alter any HTTP request before it gets sent to the Web server.

– Navigate through parts of the website which cannot be crawled auto-
matically (e.g. because of certain JavaScript code and import results
to the scanner).

• HTTP Fuzzer: The HTTP Fuzzer allows a user to perform sophisticated
buffer overflow and input validation tests. As an example, let’s say we have
the following URL: http://www.your-webshop.com/listproducts.php?category=1.
Then, by using the HTTP Fuzzer, it is possible to create a rule to auto-
matically replace the last part of the URL with numbers between 1 and
999. From these generated URLs, only valid results will be reported. This
process reduces the amount of manual input significantly.

• Authentication Tester: The Authentication Tester can be used to per-
form a dictionary attack on login pages which use HTTP authentication
or HTML form authentication. This tool uses two text files that contain
common usernames and passwords which can be expanded.

• Web Services Scanner: The Web Services Scanner allows a user to scan
Web services for vulnerabilities in an automated way.

• Web Services Editor: The Web Services Editor allows a user to import
an online or local WSDL for an in depth analyses of WSDL requests and
responses by custom editing and execution of Web service operations over
different port types. Users can also customize their own manual attacks.

• Vulnerability Editor: The Vulnerability Editor (see Figure 2.18) con-
tains all the security tests that Acunetix WVS launches against Web ap-
plications. It allows a user to view, modify and add security tests.

• Reporter: The Reporter allows a user to create reports of scan results.
The reports can be created in different level of details depending on whom
the report is meant for (e.g. executive summary, developers report, de-
tailed scan report).

2.5.1 Why Acunetix WVS?

Acunetix Web Vulnerability Scanner has been selected as the security testing
tool for the security tests in this thesis. There are several reasons to this:

44 Chapter 2. Security testing of Web applications

Figure 2.18: This screenshot shows the Acunetix WVS Vulnerability Editor. A
user can view, modify or add a security test through the Vulnerability Editor.
It is also possible to edit the description of a vulnerability class (e.g. Cross Site
Scripting) which appears in a report.

• Acunetix WVS covers a high level of automated security testing coverage.

• Acunetix WVS provides the ability to save crawl results and scan results
separately. This may further reduce the total time spent on security test-
ing, which is in line with the overall goal of reducing the time spent on
security testing, as defined in point 2 of Section 1.2.

• Acunetix WVS produce less false-positives, which is in line with the overall
goal of mitigating false-positives, as defined in point 2 of section 1.2. An
independent Web vulnerability scanner comparison done by Ananta Secu-
rity [55] backs this up. Acunetix WVS, IBM Rational AppScan and HP
WebInspect were compared in this comparison. Furthermore, the compar-
ison reveals that Acunetix WVS found 75% of the tested vulnerabilities,
while AppScan and WebInspect found 50% and 44% respectively.

• Acunetix WVS is the cheapest Web vulnerability scanner among its com-
mercial competitors (see Table 2.3).

2.6. RELEVANT COMPETITORS TO ACUNETIX WVS 45

2.6 Relevant competitors to Acunetix WVS

There are many security testing tools similar to Acunetix WVS that qualify as
relevant competitors:

• N-Stalker Scanner is a commercial Web application security testing
tool. In addition to scanning for security vulnerabilities in Web applica-
tions, it is also built to provide a better control over the Web Application
Development Life-cycle [100]. This is done by letting the users create spe-
cific security scan policies to cover; (1) development & QA profiles, (2)
infrastructure & deployment profiles and (3) penetration testing and se-
curity auditing profiles. This tool has a high level of automated security
testing coverage, and has the capability of saving scan results and crawl
results separately (see Table 2.3).

• IBM Rational AppScan [24] is a commercial Web application secu-
rity testing tool. As N-Stalker Scanner, this tool also let users create
customized scanning profiles in order to get better control over the Web
Application Development Life-cycle [83]. This tool has a high level of
automated security testing coverage, but does not have the capability of
saving scan results and crawl results separately.

• HP WebInspect [23] is a commercial Web application security testing
tool. It is possible to create customized scanning profiles with this tool.
Additionally, it is capable of performing security tests during the crawling
process (simultaneous crawl and audit) [76], which is different from other
similar tools. This tool has a high level of automated security testing
coverage, and has the capability of saving scan results and crawl results
separately.

• Cenzic Hailstorm Professional [9] is a commercial Web application se-
curity testing tool. Like the abovementioned tools, it allows users to create
customized scanning profiles. This tool has a high level of automated se-
curity testing coverage, and has the capability of saving scan results and
crawl results separately.

• OWASP WebScarab is a free Web application security testing tool.
This tool mostly relies on user input (e.g. writing test scripts, editing
HTTP requests, etc.) in order to perform specific security tests. It is
primarily designed to be used by people who can write code themselves,
or at least have a pretty good understanding of the HTTP protocol [37].
It has a medium level of automated security testing coverage and don’t
have the capability of saving scan results and crawl results separately.

46 Chapter 2. Security testing of Web applications

• Burp Suite [8] is a free Web application security testing tool. As OWASP
WebScarab, this tool is also mostly relying on user input in order to per-
form specific security tests. It is also primarily designed to be used by
people who can write code. This tool has many of WebScarab’s function-
alities, but has a low level of automated security testing coverage. Ad-
ditionally, it doesn’t have the capability of saving scan results and crawl
results separately.

Table 2.3 shows the comparison of Acunetix WVS against the abovemen-
tioned tools. The stars in column “Level of automated security testing coverage”
represents the broadness of automated security tests the tool covers. Three stars
means high coverage, two stars means medium coverage and one star means low
coverage. Furthermore, the high, medium and low coverage are based on the
following criteria:

• High coverage - The tool covers the following automated security check
topics:

– Custom design errors (e.g. XSS, SQL injection and file and directory
traversal attacks).

– Web server exposure (e.g. Web server version vulnerabilities, HTTP
protocol vulnerabilities and SSL encryption vulnerabilities).

– Web signature attacks (e.g. PHP, ASP and J2EE Web application
security tests).

– Cookie exposure checks (e.g. manipulation of cookie information and
sensitive information leakage in cookie information).

– File and directory exposure checks (e.g. search for backup files, con-
figuration files and password files).

Additionally, the tool has to let a user to manually create and perform
security tests.

• Medium coverage - The tool covers:

– At least two of the automated security check topics mentioned under
“high coverage”.

Additionally, the tool has to let a user to manually create and perform
security tests.

• Low coverage - The tool has the necessary automated functions to re-
trieve a site structure, and lets the user to manually create and perform
security tests.

2.6. RELEVANT COMPETITORS TO ACUNETIX WVS 47

Site crawling can take several hours for large websites. Tools that make it
possible to save the crawl result and the scan result separately, along with
providing the ability to create different scanning profiles, can reduce the total
time spent on security testing. By saving a crawl result, one can perform many
automated security tests on the same crawl result. However, it is important to
repeat the crawling process if the site structure has changed.

48 Chapter 2. Security testing of Web applications

S
ecu

rity
testin

g
tool

L
evel

of
au

tom
ated

S
ave

scan
an

d
craw

l
F
reew

are
C
om

m
ercial

P
rice

(U
S
D
)

secu
rity

testin
g
coverage

resu
lts

sep
arately

A
cu
n
etix

W
V
S

‡

4’195
$

N
-S
talker

S
can

n
er

4’899
$

IB
M

R
ation

al
A
p
p
S
can

7’600
$

H
P

W
eb

In
sp
ect

Starts
at

15’000
$

C
en

zic
H
ailstorm

P
rofession

al

‡

Starts
at

35’000
$

O
W
A
S
P

W
eb

S
carab

Free

B
u
rp

S
u
ite

Free

T
able

2.3:
C
om

parison
table

of
A
cunetix

W
V
S
against

sim
ilar

security
testing

tools.‡Lim
ited

to
X
SS

testing
only.

2.7. COMPARISON, EVALUATION AND SELECTION 49

2.7 Comparison, evaluation and selection

This section describes the criteria that are used for the selection of a secu-
rity testing methodology for Web applications. The comparison and evaluation
scope consist of the security testing methodologies described in Section 2.3.
These are Agile Security Testing, the Penetration Testing Approach, and The
Open Web Application Security Project (OWASP) Testing Framework.

As mentioned in Section 1.1, the field of security testing (and thereby se-
curity testing of Web applications) has yet to be matured; there is still need
for security testing methodologies, techniques, and tools. Because of this im-
maturity of the field, there is a lack of empirical evaluations of security testing
methodologies for Web applications. The author’s selection criteria are there-
fore to some extent subjective. The following points describe the criteria that
the author find important, and that are used in Table 2.4:

C.01 - Reducing complexity: Does the security testing methodology reduce
the complexity of the testing process?

C.02 - Increasing efficiency: Does the security testing methodology increase
the efficiency, regarding time spent, of the testing process?

C.03 - Mitigating false-positives: Does the security testing methodology have
a phase in order to mitigate false-positives during the testing process?

C.04 - Increasing knowledge: Does the security testing methodology contribute
to increase the security-specific knowledge of the security testers (i.e. the secu-
rity testing participants) during the testing process?

C.05 - Postmortem evaluations: Does the security testing methodology have
a phase that initiates the security testers (i.e. the security testing participants)
to reflect over the vulnerabilities, the development process and the security test-
ing process?

C.06 - Repository of knowledge: Does the security testing methodology have a
phase that initiates the security testers (i.e. the security testing participants)
to document and archive why certain security decision were made?

Table 2.4 shows which of the security testing methodologies described in Sec-
tion 2.3 fulfils the abovementioned criteria.

50 Chapter 2. Security testing of Web applications

2.7.1 Selection justification

The following points explain why the security testing methodologies in Table 2.4
fulfill some criteria while not fulfilling others.

• Agile Security Testing:

– Fulfills criterion C.01 by firstly, considering the most necessary points
in order to perform a security test on Web applications. There are
three main phases that needs to be carried out compared to five
and thirteen phases in the Penetration Testing Approach and the
OWASP Testing Framework respectively. Secondly, the three main
phases require little intervention by security experts, although Agile
Security Testing doesn’t completely eliminiate this need.

– Fulfills criterion C.02 by providing phases that are easy for people
with little security knowledge to adapt and apply. This in turn will
increase the efficiency, regarding time spent, of the security testing
process.

– Does not have a phase for mitigating false-positives. Hence, it does
not fulfill criterion C.03.

– Fulfills criterion C.04 by using misuse cases to elicit security require-
ments, which further gives an overview of potential vulnerabilities.
Since the use case notation is known to developers in general, and
since the use case notation and the misuse case notation are quite
similar (see Figure 2.6), security knowledge is brought closer to de-
velopers via misuse cases. Additionally, this helps to decrease the
knowledge gap between security experts and software developers.

– Does not have a phase for postmortem evaluations. Hence, it does
not fulfill criterion C.05.

– Does not have a phase for documenting and archiving security deci-
sions. Hence, it does not fulfill criterion C.06.

• A Penetration Testing Approach:

– Has two phases that relies mostly on security experts’ knowledge and
thorough planning. These are phase 1 (create a threat model) and
phase 2 (build a test plan), which further makes the testing process
more complicated. Therefore, it does not fulfill criterion C.01.

– The two phases mentioned in the previous point generally require
much time, which further decrease the efficiency, regarding time
spent, of the testing process. Hence, it does not fulfill criterion C.02.

2.7. COMPARISON, EVALUATION AND SELECTION 51

– Does not have a phase for mitigating false-positives. Hence, it does
not fulfill criterion C.03.

– Fulfills criterion C.04 through the execution of test cases and cre-
ation of the problem report. By letting the testers (which might also
be developers) create, execute and analyze various security test types
(dependency, user interface, design, and implementation testing) they
gain specific knowledge of how different vulnerabilities might be ex-
ploited and thereby gaining security specific knowledge. Further-
more, the problem reports have to contain reproduction phases, sever-
ity and exploit scenarios which are an invaluable resource for dis-
tributing security specific knowledge.

– Fulfills criterion C.05 by having a postmortem evaluation phase at
the end of each security testing iteration. The postmortem evaluation
phase enables the testers to focus on why vulnerabilities were missed
during development, and how to improve the development and testing
process to prevent given security issues.

– The fact that a postmortem evaluation phase is present, and that one
of the goals in this phase is to create countermeasures for improving
the development and testing process to prevent security issues, indi-
cates that some documentation must be created for later use. This
will further lead to a repository of security specific knowledge over
time. Hence, it fulfills criterion C.06.

• OWASP Testing Framework:

– Does not fulfill criterion C.01 by firstly, having many phases that
relies mostly on security experts’ knowledge (phase 1a, 2a, 2b, 2c,
2d, 3b and 5a given in Section 2.3.3) and secondly, by having to
many phases. This makes the overall testing process complicated.
Although the OWASP Testing Framework is created for a general
SDLC which makes it possible to pick and use the necessary phases,
they are sometimes closely coupled. E.g. to only carry out a code
walkthrough (phase 3a) without carrying out a code review (phase
3b) afterwards would not be of any particular benefit.

– Has thirtheen phases that are quite large which together will require
much time. Hence, it does not fulfill criterion C.02.

– Does not have a phase for mitigating false-positives. Hence, it does
not fulfill criterion C.03.

– Fulfills criterion C.04 through the various reviewing phases (phase
1a, 2a, 2b, 2c, 2d, 3b, 4a and 5a). Although most of these phases

52 Chapter 2. Security testing of Web applications

relies mostly on security experts’ knowledge, it is possible to apply
various activities within these phases in order to reduce the need
for security experts. For example; misuse cases [110, 105] can be
used in phase 2a, the goal-driven and vulnerability-driven security
inspections suggested by SHIELDS [71, 72] can be used in phase 2a,
2b, 2c, and 2d, and the security code review technique suggested by
Howard [81] can be used in phase 3b.

– Does not suggest a specific postmortem evaluation phase, but has
three phases (5a, 5b, and 5c) in which the testers can continuously
get the status about the existing security level. Furthermore, this
gives the testers an opportunity to reflect over the vulnerabilities
and the security testing process. Hence, it fulfills criterion C.05.

– Does not have a phase for documenting and archiving security deci-
sions. Hence, it does not fulfill criterion C.06.

Based on the abovementioned points, the author have selected Agile Security
Testing as the most adequate security testing methodology for Web applications,
for the purpose and scope of this thesis. Agile Security Testing mitigates the
three main factors that make security testing of Web application more compli-
cated (see Section 1.1):

• By fulfilling criterion C.01, Agile Security Testing mitigates the overall
complexity of the testing process. The developers can therefore perform
security testing within the short development timeframe (short time-to-
market), which is typical for Web applications.

• By fulfilling criterion C.02, Agile Security Testing mitigates the “too time-
consuming” attitude against security testing of Web applications.

• By fulfilling criterion C.01, C.02 and C.04, Agile Security Testing shows
that security testing of Web applications doesn’t lack a significant payoff,
which is sometimes how it is considered.

2.7. COMPARISON, EVALUATION AND SELECTION 53

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

S
ec
u
ri
ty

te
st
in
g
m
et
h
od

ol
og
y

C
ri
te
ri
a

R
ed

u
ci
n
g

In
cr
ea
si
n
g

M
it
ig
at
in
g

In
cr
ea
si
n
g

P
os
tm

or
te
m

R
ep

os
it
or
y
of

co
m
p
le
xi
ty

effi
ci
en

cy
fa
ls
e-
p
os
it
iv
es

kn
ow

le
d
ge

ev
al
u
at
io
n
s

kn
ow

le
d
ge

A
gi
le

S
ec
u
ri
ty

T
es
ti
n
g

A
P
en

et
ra
ti
on

T
es
ti
n
g
A
p
p
ro
ac
h

O
W
A
S
P

T
es
ti
n
g
F
ra
m
ew

or
k

T
ab

le
2.
4:

C
om

pa
ri
so
n
ta
bl
e
of

se
cu
ri
ty

te
st
in
g
m
et
ho

do
lo
gi
es

fo
r
W
eb

ap
pl
ic
at
io
ns
.

54 Chapter 2. Security testing of Web applications

Chapter 3
Current situation

This chapter gives a short introduction to CERN and the AIS group at CERN.
Furthermore, it explains how security testing is currently done in the group, and
explains why there is a need for a security testing methodology in the group.
Finally, it shows a high level risk analysis of the AIS group’s Web applications.
The risk analysis is carried out by using the CORAS security risk analysis
methodology.

3.1 CERN - The European Organization for Nu-

clear Research

CERN is the world’s largest particle physics laboratory. It is located in the
outskirts of Geneva, Switzerland and was founded the 29th of September, 1954,
by twelve European states. It currently has twenty European Member States1

and eight Observer States and Organizations2. CERN’s mission is clearly stated
in Article two in the convention that established CERN in 1954 [15]:

“The Organization shall provide for collaboration among European States in nu-
clear research of a pure scientific and fundamental character, and in research
essentially related thereto. The Organization shall have no concern with work
for military requirements and the results of its experimental and theoretical work
shall be published or otherwise made generally available.”

1The Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Fin-
land, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal,
the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom.

2The Observer States and Organizations are the European Commission, India, Israel,
Japan, the Russian Federation, Turkey, UNESCO and the USA.

55

56 Chapter 3. Current situation

This statement not only triggered the concept of open international scientific
cooperation, but also gave CERN an important role in the driving forces that
made the political boundaries between the west and east more transparent. This
was particularly important in a time when the world was recovering after the
Second World War.

CERN has about 2500 fulltime employees, and its facilities are used by
approximately 8000 scientists, representing 500 universities and over 85 nation-
alities [1]. Figure 3.1 shows the organizational structure of CERN.

Sectors

GS-groups

GS-AIS-sections

Engineering

(EN)

Departments

Board of Directors

Administration &

General Services

Research & Scienti!c

Computing

Accelerators &

Technology

Finance & Procurement

(FP)

General Infrastructure

Services (GS)

Human Resources

(HR)

Information

Technology (IT)

Physics (PH)

Beams (BE)

Technology

(TE)

Fire Brigade

(GS-FB)
Medical Ser-

vice (GS-ME)

Administrative

Information

Service (GS-AIS)

Access, Safety

& Engineering

Tools (GS-ASE)

Site Engineering

& Management

(GS-SEM)

Scienti!c

Information

(GS-SI)

e-Business

(GS-AIS-EB)

Finance,

Procurement

& Foundation

(GS-AIS-FPF)

Human

Resources

Management

(GS-AIS-HR)

Management

Decision

Support

(GS-AIS-MDS)

Projects

Management

and Resource

Planning

(GS-AIS-PM)

Figure 3.1: The organizational structure of CERN. Only one department (GS),
and one group (GS-AIS) is expanded for illustration.

CERN provides physicists with the necessary tools (accelerators and detec-
tors) in order to carry out fundamental research. One of the things CERN is
mostly known for is the Large Hadron Collider (LHC). The LHC is the world’s
largest and highest-energy particle accelerator, intended to collide opposing par-
ticle beams at nearly the speed of light. The main purpose of LHC and its ex-
periments is to test and reveal whether some predictions of high-energy physics

3.1. CERN - THE EUROPEAN ORGANIZATION FOR NUCLEAR
RESEARCH 57

really are true or not (e.g. the Higgs boson). Figure 3.2 shows a map of LHC
and an overall view of the LHC experiments.

CERN also plays a vital role in developing cutting edge technology. Some
of the most important contributions in this respect are the following:

• The World Wide Web [52]

• Cancer therapy

• Medical and industrial imaging

• Radiation processing

• Electronics

• Measuring instruments

• New manufacturing processes and materials

Figure 3.2: Map of LHC and an overall view of its experiments. The big circle
in the figure illustrates the 27 kilometres long LHC tunnel. At the deepest, it
is 175 meters beneath the earth.

58 Chapter 3. Current situation

3.1.1 The Administrative Information Services (AIS) group

The AIS group of the GS department (see Figure 3.1) has the responsibility for
all administrative applications and corporate data at CERN. The main objective
is to provide CERN with a set of integrated and reliable corporate Information
Systems. In addition, they design and develop software to cover areas such as
Workflow, Electronic Document Processing, Budget Management and Project
Management where the current market offer does not match CERN require-
ments. The following services are covered by the group [51]:

• Analyse and specify the functional requirements of administrative appli-
cations

• Purchase, develop, implement, and maintain administrative applications
and all tools required for optimal exploitation of the corporate information

• Support users of these applications, prepare user documentation and pro-
vide training

Furthermore, the business areas that the group is responsible for are the follow-
ing [51]:

• Workflow/Self service (EDH)

• Management Reporting and Simulation

• Project Management and Contract Management

• Finance

• Purchasing and related Logistics (movement of goods on site, inbound,
and outbound)

• Foundation which contains all reference information

• Human Resources Managemnet, E-recruitment and Payroll

• Material Management & Logistics (Replenishment, Warehouse Manage-
ment, E-catalog, etc.)

• Import/Export (supporting all Import, Export and Expedition proce-
dures)

In order to provide a unique, coherent and integrated environment for all appli-
cations, tools, and documentation, AIS makes virtually all functionality avail-
able through a Web interface (i.e. through Web applications). This is another
example of how important Web applications are for modern information inter-
action. The AIS group has currently six main applications in operation for users

3.2. THE SCRUM METHODOLOGY: A SHORT INTRODUCTION 59

inside and outside CERN. One of these applications is the Electronic Document
Handler (EDH), which has approximately 11’000 users worldwide. Furthermore,
it is CERN’s largest administrative Web application.

Having the responsibility for developing and maintaining the Web applica-
tions that are vital for CERN’s various business areas (given in the abovemen-
tioned points), and because these various business areas will naturally produce
many requests for updating and modifying the applications whenever a change
in a given business area is made, the AIS group have to use a development
methodology that can produce results efficiently. The AIS group therefore use
Scrum (described in Section 3.2) as their main development methodology. The
Scrum methodology fits the AIS group’s development process by providing max-
imum flexibility and appropriate control of the development process. These are
important points that should be present when developing Web applications (see
Section 1.1).

3.2 The Scrum methodology: A short introduc-

tion

The Scrum methodology was developed because the traditional SDLCs were
regarded as being too complicated and complex, even the phases and phase
processes in agile development methodologies such as the Spiral methodology
and the Iterative methodology were regarded as being linear like the well known
Waterfall model [108]. The Scrum methodology intends to enable development
teams to operate adaptively within a complex environment using imprecise pro-
cesses. It does this by assuming that the analysis, design, and development
processes in the Sprint phase (see Figure 3.3) are unpredictable. This is also the
key difference between the Scrum methodology and other development method-
ologies. The Scrum methodology has the following three main phases, along
with their respective sub-phases [108]:

• Pregame

– Planning : The definition of a new release is made in this phase based
on the existing backlog. Additionally, an estimation of its schedule
and cost is made. In case a new system is to be developed, the system
concept is to be defined and analyzed in this phase, otherwise limited
analysis is carried out.

– System Architecture/High Level Design: In addition to system archi-
tecture modification and high level design, this phase also contains
the process of designing how the backlog items will be implemented.

60 Chapter 3. Current situation

• Game

– Sprints: The sprint phases act as the engine in which the product
backlog items are developed. The goal is to develop new release
functionality within a period of one to four weeks. During a sprint,
the variables of time, requirements, quality, cost and competition are
always regarded through the Scrum meetings. Depending on these
variables, a backlog item in a sprint may be discarded, set on pause,
expanded, etc. Therefore, there is no guarantee that new release
functionality will be 100% ready for production. Hence, the right-
most item in Figure 3.3: “Potential Shippable Product Increment”.
The complete system is developed by carrying out multiple, iterative
sprints. One sprint consists of the four below-mentioned phases.

∗ Develop: This phase consists of either modifying a backlog item,
or developing a new backlog item. Either way, the following
activities of the new/modified backlog item are carried out; do-
main analysis, design, development, implementation, testing and
documentation.

∗ Wrap: An executable version of the result in the previous phase
is made in this phase.

∗ Review : In this phase, the team has a meeting where they present
the resulting work of the sprint, and for reviewing the progress.
This phase also allows the team to discuss and resolve issues,
which may further lead to new backlog items. Additionally, po-
tential risks are reviewed and appropriate responses defined.

∗ Adjust : If the result from the Review phase leads to changes,
then these are defined as product backlog items and added to
the product backlog in this phase.

• Postgame

– Closure: The closure phase is where the release preparations, and the
release itself is made. This includes the following activities: Integra-
tion, system test, user documentation, training material preparation,
and marketing material preparation.

A full description of the Scrum methodology is beyond the scope of this the-
sis, and is therefore not described any further. The reader is referred to Scrum
Development Process [108], and Agile Software Development with Scrum [109]
for a detailed description.

3.3. THE NEED FOR A SECURITY TESTING METHODOLOGY 61

New Product

Backlog item

{

{Sprint Backlog

P
ro

d
u
ct B

ack
lo

g

Backlog items

Develop

Wrap

Review

Adjust

Scrum

meeting

every 24

hours

Sprint

Potentially Shippable

Product Increment

Pregame Game Postgame

Figure 3.3: The Scrum SDLC. This figure is inspired from Schwaber [108].

3.3 The need for a security testing methodology

Having the overall responsibility for all administrative applications and corpo-
rate data at CERN, the AIS group must make sure that the security is built in
their Web applications with respect to confidentiality, integrity and availability
(CIA). Some of the information that is handled by the AIS Web applications,
and that is of utmost importance to consider are:

• Access Controls

• Medical Data (CERN has its own medical service, as shown in Figure 3.1)

• Administrative Data

• Hostel Data (e.g. credit card information used at the CERN hostels)

Besides developing the applications with CIA in mind, a security testing method-
ology for Web applications must be in place in order to verify or falsify a given
adequate level of security. The security testing at the AIS group is currently
done in two main steps (see Figure 3.4):

1. A penetration testing is carried out in the postgame phase. The AIS
group does not use any Web Vulnerability Scanners currently, but have
guidelines that the testers may use to manually perform penetration tests.

2. The testers create a report of the findings after the penetration testing.
The report is used as a basis to create countermeasures for the vulner-
abilities. Then, the countermeasures are added in the product backlog.
Finally, the vulnerability gets mitigated for the next product increment

62 Chapter 3. Current situation

by performing the Scrum phases on the particular backlog item containing
the vulnerability countermeasures.

Additionally, the penetration tests are often carried out in an ad hoc fashion.
I.e. they are not always carried out before each and every “Potentially Shippable
Product Increment” as indicated in Figure 3.4.

Apparently, the AIS group is performing penetraiton testing without consid-
ering security testing before and during development. This gives the AIS group
very little involvement and control of the security testing process. Furthermore,
this approach to security testing is in line with the well known (well known of
its criticism and drawbacks) “penetrate and patch” paradigm. There are several
disadvantages by performing security testing in this way:

• There are no activities that considers security testing at beforehand (e.g.
creation of security requirements). This gives the testing party no ba-
sis to use for verifying whether security requirements are fulfilled or not.
Without knowing the potential vulnerabilities that the system under test
has (which may be discovered via misuse cases) may let undiscovered vul-
nerabilities to lie dormant for years only to be discovered by malicious
users.

• It may seem that this approach is efficient when it comes to the amount
of time that is used for the security testing process itself, but the fact is
that, by only carrying out penetration testing at the end of the SDLC
and thereby fixing the problem, is the second most expensive approach
(see Table 1.2). One of the factors to why it is so expensive is that it
takes a lot of time to mitigate vulnerabilities at a very late stage. In
order to mitigate the vulnerabilities one needs to get educated about the
underlying problem, and dig through source code at a stage where it is
quite complex. Hence, this approach is not efficient regarding the amount
of time spent.

• This approach will give little or no security specific knowledge to develop-
ers because it doesn’t have activities that bring security specific knowledge
closer to developers (e.g. misuse cases).

• The previous points show that this approach is lacking a significant payoff,
both economically and educationally.

The abovementioned points indicates that the AIS group needs a new security
testing methodology integrated in their development process.

3.4. RISK ANALYSIS 63

Penetration testing Add countermeasures

in the Product Backlog

New Product

Backlog item

{

{Sprint Backlog

P
ro

d
u
ct B

ack
lo

g

Backlog items

Develop

Wrap

Review

Adjust

Scrum

meeting

every 24

hours

Sprint

Potentially Shippable

Product Increment

Pregame Game Postgame

12

Figure 3.4: The current security testing methodology performed at the AIS
group. I.e. penetration testing in the postgame phase, and adding the vulnera-
bility countermeasures to the product backlog after a penetration testing.

3.4 Risk analysis

In order to get a high-level understanding of the design flaws, the potential
threats, the vulnerabilities, and the associated risks and their consequences that
a system might posses, a security risk analysis needs to be conducted. Using
the results from a security risk analysis one can further derive countermeasures,
conduct cost-benefit analysis, and make critical business decisions. The CORAS
methodology is one way of performing security risk analysis.

3.4.1 The CORAS methodology: A short introduction

CORAS [111] is a methodology for conducting security risk analysis, specially
developed to support structured brainstorming for risk identification, risk es-
timation and risk treatment [79]. The CORAS methodology consists of seven
main steps. The following points briefly describe the steps:

• Introduction (step 1): Introductory meeting where the client presents the
overall goals of the analysis and the target they wish to have analyzed. The
analyst gathers information based on the presentations and the discussions
that take place.

• High level analysis (step 2): A meeting with the client where the analysts
present their understanding of what they learned from the introductory
meeting, and from studying the client’s relevant documentation. A high-
level security analysis is also made in this step. This analysis will be used

64 Chapter 3. Current situation

to help with directing and scoping the detailed analysis in the following
steps.

• Approval (step 3): A more detailed description of the target that is to be
analyzed, the assumptions and the preconditions are made. This step is
terminated when the client has approved this documentation.

• Risk identification (step 4): A workshop is executed to identify as many
unwanted incidents, threats, vulnerabilities and threat scenarios as possi-
ble. The participants are typically people with expertise on the target of
the analyses.

• Risk estimation (step 5): A workshop is executed to estimate likelihood
and consequence values for each of the unwanted incidents discovered in
step 4.

• Risk evaluation (step 6): A first overall risk picture is given to the client.
Typically, this step introduces some adjustments and corrections.

• Risk treatment (step 7): Treatment identification, together with a cost/ben-
efit analysis of the treatments, is given to the client. This step is best
organized as a workshop.

Furthermore, CORAS provides a customized language which consists of a graph-
ical modeling part and a textual syntax part. The textual language is used to
describe the graphical models. But the graphical models are used as the main
communication medium for representing the risk analysis. The CORAS graph-
ical modeling language [65] has five different diagrams; asset diagrams (also
known as asset overview diagrams), threat diagrams, risk diagrams, treatment
diagrams and treatment overview diagrams. The asset diagrams are used in
step 1 (introduction) to specify the stakeholders of the security analysis and
their assets. The threat diagrams are used in step 4 (risk identification) to
identify and document how vulnerabilities may be exploited by threats, that
may further trigger unwanted incidents. In addition, the threat diagrams are
used to identify and document which assets the unwanted incidents affect. The
threat diagrams are further used as input for step 5 (risk estimation) to create
risk diagrams. Risk diagrams specify the threats, the risks initiated by the
threats and the assets that may be harmed by them. The risk diagrams are
further used to present the overall risk picture in step 6 (risk evaluation). The
risk representation is then compared to a predefined risk tolerance list. From
this comparison, it is possible to decide which risks need treatments. After
identifying the risks that need treatments, the result is used as input for step
7 (risk treatment) to create treatment diagrams. Treatment diagrams are

3.4. RISK ANALYSIS 65

used to reason about countermeasures for the identified risks. Risk overview
diagrams are used to present a high level summary of the findings from an
analysis. In particular, it is meant to present the findings in such a way that
they are well understood by the decision makers. The graphical diagrams in
CORAS are built up of the elements showed in Figure 3.5.

vulnerability

unwanted

 incident
treatment

scenario

 threat

(non-human)

 threat

(deliberate)
 threat

(accidental)

threat

scenario risk

asset stakeholder

andor

logical or

physiacal

 region

Figure 3.5: The CORAS graphical modeling notation. The solid arrow is used
between threats, vulnerabilities, threat scenarios, unwanted incidents and assets,
while the dashed arrow is used for treatments. This figure is adapted from
Erdogan and Baadshaug [70].

3.4.2 Conducting the risk analysis

In this section, the CORAS methodology is used to show the potential risks that
the Web applications belonging to the AIS group might have. As explained in
Section 3.1.1, the AIS group has a collection of different software systems that
covers many business areas. Because of this, it would be quite extensive to con-
duct a risk analysis based on the potential threats for the specific functionalities
in their various software systems. In stead, the author has chosen to conduct
a risk analysis based on the assets (that are processed by the software systems
belonging to the AIS group) that are of importance for the AIS group and those
that are using their software systems. The author has chosen to conduct the
risk analysis using CORAS, because it defines assets as a starting point. The
purpose of this risk analysis is to show the assets that are of importance to the
AIS group (and consequently to CERN), the potential threats that may harm
the assets, the unwanted incidents (i.e. the risks) that the threats may trig-
ger, and their corresponding risk estimation (likelihood and consequence). The
formal processes such as presentation of the CORAS methodology for a client,
and the execution of workshops will not be carried out. For this reason, only
relevant steps from the CORAS methodology will be used:

1. The focus and scope of the risk analysis will be given.

66 Chapter 3. Current situation

2. The assets and their corresponding stakeholder will be listed, along with
a high-level analysis (risk table).

3. A likelihood scale, a consequence scale, and a risk matrix will be given.

4. A threat diagram containing the risks will be given.

5. Risk estimation will be carried out on the resulting threat diagram from
step 4.

6. Based on the risk estimation values from step 5, a risk matrix will be
created.

7. Finally a treatment overview diagram showing high level treatments will
be given.

STEP 1 The focus and scope of the risk analysis:
The focus of the risk analysis is data security. This includes:

1. Business sensitive data for CERN that’s being handled by the AIS
applications.

2. Data that is directly related to CERN employees.

The scope is on data security at CERN processed through the AIS appli-
cations.

STEP 2 Assets, stakeholders and high-level analysis (risk table):
Figure 3.6 shows an asset diagram containing the stakeholders and their
related assets, i.e. which asset is important to whom, and whom does it
affect directly? Furthermore, there is an indirect asset (CERN’s reputa-
tion) which is affected by other assets. Table 3.1 shows the assets ranked
by importance. Table 3.2 shows a high level risk table describing the
unwanted incidents.

Asset Importance Asset Type
CERN’s reputation (Scoped out) Indirect
Salary data 2 Direct
Employee personal data 1 Direct
Medical data 1 Direct
Credit card information
(Hostel)

1 Direct

Access controls 1 Direct
Inventory data 3 Direct

Table 3.1: This asset table shows the importance of an asset denoted by a value
from 1 to 3. 1 = very important, 2 = important, 3 = minor important.

3.4. RISK ANALYSIS 67

AIS

Salary Data

Employee Personal Data

Medical Data

Credit Card Information (Hostel)

CERN's Reputation

Access Controls

Inventory DataEmployee

CERN

CERN Visitor

Figure 3.6: This asset diagram shows the stakeholders and their related assets.
This asset diagram was created using CORAS editor v.2.0.b5 [16].

68 Chapter 3. Current situation

Who/what is the
cause?

How? What may
happen? What does
it harm?

What makes this
possible?

Employee Responds to falsely
forged e-mail giving
away credentials, which
further let malicious
users gain access to
the system and thereby
access to the particular
employee’s personal
data

Lack of security train-
ing/awareness among
the employees

Employee (Software
Developer)

Software developers
don’t use software se-
curity practices during
development, which
may further let undis-
covered vulnerabilities
lay dormant in the
applications

Lack of software secu-
rity development prac-
tices in the SDLC

Malicious Employee
(Insider)

Misuse his/her position
to get access to the var-
ious assets shown in the
AIS frame in Figure 3.6

Weak information re-
striction rules (least
privilege)

Malicious Employee
(Insider)

Logs into the AIS sys-
tem using his/her cre-
dentials and thereby
tries to obtain informa-
tion by performing vari-
ous attacks such as SQL
injection and Cross Site
Scripting

Weak or none input val-
idation on the client
and the server side

Hacker Logs into the AIS sys-
tem by brute force at-
tacking the login page
(e.g. dictionary at-
tack), and thereby gets
access

Weak username/pass-
word combinations

Hacker Gets access to the AIS
system and performs
various attacks such
as SQL injection and
Cross Site Scripting in
order to gain further
information (assets
shown in the AIS frame
in Figure 3.6)

Weak or none input val-
idation on the client
and the server side

Table 3.2: High level risk table describing the unwanted incidents.

3.4. RISK ANALYSIS 69

STEP 3 Likelihood scale, consequence scale, and the risk matrix:

Likelihood scale Likelihood description
1 Rarely
2 Sometimes
3 Regularly
4 Often

Table 3.3: The likelihood scale used in the risk analysis for the unwanted inci-
dents. This table is inspired from CORAS Tutorial [64].

Consequence scale Consequence description
1 Harmless
2 Moderate
3 Serious
4 Catastrophic

Table 3.4: The consequence scale used in the risk analysis for the unwanted
incidents. This table is inspired from CORAS Tutorial [64].

hhhhhhhhhhhhhhConsequence
Likelihood Rarely Sometimes Regularly Often

Harmless
Moderate
Serious
Catastrophic

Table 3.5: The resulting risk matrix by combining the likelyhood table and the
consequence table. The risks that fall in the green area are acceptable risks.
The risks that fall in the red area are the most critical ones and are those that
need urgent countermeasures. This table is inspired from CORAS Tutorial [64].
Generally, risk matrices have values that are neither critical nor acceptable.
These values need to be constantly monitored and are placed in a yellow area
in a risk matrix. The yellow area has been omitted in this risk matrix, because
they too, are regarded as critical in this case.

STEP 4 and 5 Threat diagram and risk estimation:
In order to limit the scope of the risk analysis, only the most important
assets (given in Table 3.1) are considered, and the indirect assets are
scoped out as they are outside the AIS domain (see Figure 3.6). Figure 3.7
shows a threat diagram illustrating threats that may trigger unwanted
incidents, which may further harm the most important assets. The risk
estimations for each unwanted incident are also given in the diagram. The
risks that are considered in Figure 3.7 are the following:

R.01 Personal data is stolen and used for identity theft

70 Chapter 3. Current situation

R.02 Personal data is deleted

R.03 Medical data is modified

R.04 Credit card information is sold or used

R.05 Credit card information is removed so the Hostel won’t get payed

R.06 Access information is stolen and used by malicious users to get
access to the applications

R.07 Access information is modified and the victim is denied access to
use the applications

STEP 6 Risk evaluation:
The following table shows which of the risks are acceptable and which of
the risks that need urgent treatment. The calculations are derived from
the results in Figure 3.7.

hhhhhhhhhhhhhhConsequence
Likelihood Rarely Sometimes Regularly Often

Harmless

Moderate R.02,
R.07

Serious R.05

Catastrophic R.03 R.01,
R.04,
R.06

Table 3.6: This risk evaluation table shows which of the risks in Figure 3.7 are
in the “green zone” and which are in the “red zone”. The risks in the “green
zone” are acceptable, while those in the “red zone” are unacceptable.

3.4. RISK ANALYSIS 71

Em
pl

oy
ee

Li
ttl

e
or

 n
o

se
cu

rit
y

kn
ow

le
dg

e

Em
pl

oy
ee

 (
D

ev
el

op
er

)
D

on
't

us
e

se
cu

rit
y

pr
ac

tic
e

in
 S

D
LC

A
pp

lic
at

io
ns

 a
re

vu
ln

er
ab

le
 t

o
at

ta
ck

s

[R
eg

ul
ar

ly
]

R
es

po
nd

s
to

 e
-m

ai
l g

iv
in

g
aw

ay

cr
ed

en
ti

al
s

[S
om

et
im

es
]

Ac
ce

ss
 c

on
tr

ol
s

Em
pl

oy
ee

's
Pe

rs
on

al
 D

at
a

M
ed

ic
al

 D
at

a

Cr
ed

it
Ca

rd
 I

nf
or

m
at

io
n

(H
os

te
l)

M
al

ic
io

us
 E

m
pl

oy
ee

 (
In

si
de

r)

W
ea

k
in

fo
rm

at
io

n
re

st
ric

tio
ns

 (
le

as
t p

riv
ile

ge
)

W
ea

k
or

 n
on

e
in

pu
t v

al
id

at
io

n
in

 th
e

ap
pl

ic
at

io
ns

H
ac

ke
r

W
ea

k
us

er
na

m
e/

pa
ss

w
or

d
co

m
bi

na
tio

ns
 in

 th
e

lo
gi

n
pa

ge

M
is

us
e

of
 p

os
it

io
n

to
 g

et

ac
ce

ss
 t

o
in

fo
rm

at
io

n

[R
ar

el
y]

B
ru

te
 f

or
ce

 a
tt

ac
ki

ng

[R
ar

el
y]

Pe
rf

or
m

 a
tt

ac
ks

 s
uc

h
as

SQ
L

in
je

ct
io

n
an

d
X

SS

[R
eg

ul
ar

ly
]

M
al

ic
io

us
 u

se
rs

 g
ai

n

ac
ce

ss
 t

o
th

e
sy

st
em

[S
om

et
im

es
]

R
.0

4
C

re
di

t
ca

rd

in
fo

rm
at

io
n

is
 s

ol
d

or
 u

se
d

[O
ft

en
]

M
al

ic
io

us
 u

se
r

co
pi

es
 d

at
a

[R
eg

ul
ar

ly
]

M
al

ic
io

us
 u

se
r

m
od

if
ie

s
da

ta

[S
om

et
im

es
]

R
.0

3
M

ed
ic

al
 d

at
a

is

m
od

if
ie

d
[S

om
et

im
es

]

R
.0

1
Pe

rs
on

al
 d

at
a

is

us
ed

 f
or

 id
en

ti
ty

 t
he

ft

[O
ft

en
]

R
.0

7
A

cc
es

s
in

fo
rm

at
io

n
is

m
od

if
ie

d
an

d
th

e
vi

ct
im

 is
 d

en
ie

d

ac
ce

ss
 t

o
us

e
th

e
ap

pl
ic

at
io

ns

[S
om

et
im

es
]

R
.0

6
A

cc
es

s
in

fo
rm

at
io

n
is

st
ol

en
 a

nd
 u

se
d

by
 m

al
ic

io
us

us
er

s
to

 g
et

 a
cc

es
s

to
 t

he

ap
pl

ic
at

io
ns

 [
O

ft
en

]

R
.0

2
Pe

rs
on

al
 d

at
a

is

de
le

te
d

[S
om

et
im

es
]

R
.0

5
C

re
di

t
ca

rd
 in

fo
rm

at
io

n

is
 r

em
ov

ed
 a

nd
 t

he
 H

os
te

l

w
on

't
 g

et
 p

ay
ed

 [
R

ar
el

y]

44

4

2

42

3

Figure 3.7: Threat diagram and the risk estimations. This threat diagram was
created using CORAS editor v.2.0.b5 [16].

72 Chapter 3. Current situation

STEP 7 Risk treatment:
Figure 3.8 shows a risk treatment overview diagram. The risks that are
shown in the risk treatment diagram (R.01, R.03, R.04 and R.06) are those
with the highest risks according to Table 3.6. The logical OR gates in Fig-
ure 3.8 are showing that one input element to the OR gate is affecting all
the elements that the gates are pointing at. E.g. as shown in Figure 3.7,
an employee that has little or no security specific knowledge may trigger
potential threats by responding to an e-mail giving away his/her creden-
tials. By following the resulting risks that this may lead to, shows that
such an action from an employee may lead to all the risks that are given
in the same figure. Hence, the logical OR gate in Figure 3.8 that connects
the threats with the risks. This is the same for the logical OR gate that
connects the treatments with the threats. E.g. the “use security practices
in the SDLC” treatment would mitigate R.01, R.03, R.04 and R.06.

Employee

Employee (Developer)

Access controls

Employee's Personal Data

Medical Data

Credit Card Information (Hostel)

Malicious Employee (Insider)

Hacker

R.01

R.04

R.06

R.03

Distribute

software/computer security

knowledge via courses and

development

Use security

practices in the

SDLC

Enforce strong passwords

(e.g. a mix of characters,

numbers and special

characters)

Implement input validation

on both client side and

server side of the

applications

Create and enforce

strict least privilege

policies

OR OR

Figure 3.8: This risk treatment overview diagram shows the high level treat-
ments (countermeasures) in order to mitigate the risks. This treatment overview
diagram was created using CORAS editor v.2.0.b5 [16].

Chapter 4
Contribution

This chapter describes the author’s contributions to security testing of Web
based applications, which are the following:

1. Extending the Agile Security Testing methodology (that was selected in
Section 2.7.1 for the purpose of this thesis) to make it support all the
criteria defined in Section 2.7.

2. Integrating the extended Agile Security Testing methodology (at a proof
of concept level) in the AIS group’s SDLC.

3. Performing security tests on parts of EDH using the extended Agile Secu-
rity Testing methodology and thereby measuring its efficiency, compared
to existing ad hoc ways of performing security tests.

4.1 Extending Agile Security Testing

As stated in Section 2.7.1, Agile Security Testing is selected as the most ade-
quate security testing methodology for Web applications, for the purpose and
scope of this thesis. Although Agile Security Testing fulfills the criteria that
mitigates the three main factors that make security testing of Web applications
more complicated (see Section 2.7.1), it does not fulfill all the criteria defined in
Section 2.7. For reasons given in Section 2.7.1, Agile Security Testing doesn’t
fulfill the following criteria:

C.03 - Mitigating false-positives: Does the security testing methodology have
a phase in order to mitigate false-positives during the testing process?

C.05 - Postmortem evaluations: Does the security testing methodology have

73

74 Chapter 4. Contribution

a phase that initiates the security testers (i.e. the security testing participants)
to reflect over the vulnerabilities, the development process and the security test-
ing process?

C.06 - Repository of knowledge: Does the security testing methodology have a
phase that initiates the security testers (i.e. the security testing participants)
to document and archive why certain security decision were made?

In order for Agile Security Testing to support the abovementioned criteria, the
author extends Agile Security Testing by adding the following activities. The
result (as shown in Figure 4.3) is named Extended Agile Security Testing by
the author.

1. False-positives (i.e. nonexistent bugs that are reported as detected by a
testing tool) and false-negatives (i.e. existing bugs that are not detected by
a testing tool) are known to be a problem in automated software security
testing. This problem is especially known to be produced by the static
analyzer tools. Furthermore, if static analyzers are configured so that
they don’t produce any false-negatives (i.e. 100% false-negative proof),
then the developers tend to be flooded with false-positives [101]. A high
rate of false-positives creates high workload and makes it difficult to find
and fix the actual bugs in the software. The author therefore integrates
a false-positive mitigation process with the penetration testing process.
The penetration testing process is regarded as a part of point 3 in Agile
Security Testing (see Section 2.3.1). The false-positive mitigation process
is to be carried out in the following way:

(a) The penetration testing tool is used to perform a penetration test.

(b) After a penetration test, the result is reviewed and the false-positives
are marked so that they won’t be registered as bugs next time the tool
performs a penetration test. Each marked false-positive vulnerability
is associated with its respective Web site.

In the abovementioned approach, the penetration testing tool will contin-
uously be taught about the false-positives for a specific application, and
thereby continuously mitigate false-positives. However, this approach is
dependent on either: (1) the penetration testing tool has the ability to
mark and remember specific false-positives or, (2) the penetration testing
tool has the ability to import a false-positive repository (e.g. false-positive
database, XML file, etc.). Fortunately, Acunetix WVS allows users to
mark a specific reported vulnerability as a false-positive (the aforemen-
tioned point 1). The specific false-positive is then added to a false-positive

4.1. EXTENDING AGILE SECURITY TESTING 75

repository and stays there until it is removed. However, the classification
of false-positives as security vulnerabilities is not an easy task, and is de-
pendent on the tester’s security specific knowledge and experience on the
underlying analysis tool. An experiment carried out by Baca et al. [59]
reveals that testers who have security specific knowledge and experience
in using the underlying analysis tool are the best vulnerability detectors
in this respect. Figure 4.1 shows how a given vulnerability might be regis-
tered as false-positive in Acunetix WVS, and Figure 4.2 shows how marked
false-positives are organized in Acunetix WVS. Acunetix WVS saves all
registered false-positives in an XML file, which makes it easy to distribute
among Acunetix WVS users. This approach introduces a phase in the
testing process that mitigates false-positives, and thereby fulfills criterion
C.03.

2. In order to continuously harden the security testing process, a postmortem
phase needs to be in place at the end of the security testing process. A
postmortem phase is a meeting session that’s executed by the security
testers. It enables them to reflect over the vulnerabilities, the development
process and the security testing process. The postmortem phase is realized
by executing the following steps:

(a) Provide answers to why certain vulnerabilities were missed during
development.

(b) Improve the issued development process in order to mitigate or isolate
the underlying vulnerabilities.

(c) Create, or find, or improve a security testing activity in order to
detect the underlying vulnerabilities.

Criterion C.05 is fulfilled by adding the abovementioned postmortem ac-
tivity in Agile Security Testing.

3. According to Rus et al. [106], a software organization’s main asset is its in-
tellectual capital. One obvious problem in this respect is that intellectual
capital lies within the minds of the employees. As experienced people leave
the organization, so does the knowledge with them. In order to keep the
knowledge alive within the organization, knowledge management must be
present in the organization. Knowledge management is beyond the scope
of this thesis, but by adding a phase in Agile Security Testing that ini-
tiates the security testers (that may be developers, QA people, decision
makers etc.) to document and archive why certain security decision were
made, security specific knowledge can be kept in repositories, and thereby

76 Chapter 4. Contribution

Figure 4.1: By first selecting a false-positive vulnerability, and then clicking on
“Mark this alert as a false positive” (indicated by the red arrow), a false-positive
is marked. The specific false-positive won’t be treated as a vulnerability next
time Acunetix WVS encounters it on the respective Web site/application.

kept alive within the organization. This phase is named “Repository of
knowledge” by the author, and is realized by executing it during the devel-
opment and the review phase of the SDLC. Additionally, it is important to
maintain the repository for the underlying system while it is in operation.
I.e. if vulnerabilities are discovered while the system is in operation, then
these have to be documented as well. By doing this, countermeasures can
be prioritized and new iterations of the testing process can be initiated.
With this, criterion C.06 is fulfilled.

Figure 4.3 shows the Agile Segurity Testing steps described in Section 2.3.1 on
the left hand side of the figure. The Extended Agile Security Testing (hereby
EAST) that contains the abovementioned three steps (in addition to the Agile

4.2. INTEGRATING EAST IN THE AIS GROUP’S SDLC 77

Figure 4.2: The false-positives are organized as a tree structure in Acunetix
WVS (indicated by the red arrow). The figure shows the resulting false-positive
tree after marking the SCROLLPOSN variable (in Figure 4.1) as false-positive.

Security Testing steps) is shown on the right hand side of the figure.

4.2 Integrating EAST in the AIS group’s SDLC

Having selected a security testing methodology for Web applications based on
certain defined criteria in Section 2.7, and described why the AIS group needs
a new security testing methodology in their SDLC in Section 3.3, and further
arrived at the desired security testing methodology (EAST) in Section 4.1, the
author now integrates EAST in the SDLC applied by the AIS group. As men-
tioned in the problem statement (see Section 1.2), the integration is to be carried
out at a proof of concept level. The following points explain where in Scrum
(the SDLC applied by the AIS group) the steps of EAST are integrated.

EAST step 1 (Misuse cases) is integrated in the Pregame phase, and can be
executed during the creation of the product backlog items, and/or during
the refining of a sprint backlog item into several backlog items.

78 Chapter 4. Contribution

1) Modeling of security

requirements using

misuse cases

2) Employing a highly

testable architecture

3) Running automated

security tests (e.g. code

review)

1) Modeling of security

requirements using

misuse cases

2) Employing a highly

testable architecture

3) Running automated

code review (source

code analyzer)

4) Repository of

knowledge

5) Penetration testing

and mitigating false

positives

6) Postmortem

evaluations

Agile Security

Testing

Extended Agile

Security Testing

Figure 4.3: The steps in Agile Segurity Testing (left hand side of the figure),
and the steps in Extended Agile Segurity Testing (right hand side of the figure).

EAST step 2 (Employing a highly testable architecture) is integrated in the
SDLC by integrating Misuse cases in the Pregame phase, Automatic code
review in the Game phase, and Penetration testing and mitigating false-
positives in the Game phase.

EAST step 3 (Automatic code review) is integrated in the Game phase, and
is to be executed in the Development phase.

EAST step 4 (Repository of knowledge) is integrated in the Game phase and
the Postgame phase. It is to be executed in the Development phase and the
Review phase during the Game phase. Additionally, it is to be executed
while the system is in operation as explained in Section 4.1.

EAST step 5 (Penetration testing and mitigating false-positives) is integrated
in the Game phase and is to be carried out in the Wrap phase after an
executable version of the underlying backlog item is deployed.

EAST step 6 (Postmortem evaluations) is integrated in the Game phase and
is to be carried out during the Review phase, right after the penetration
testing.

4.3. PERFORMING SECURITY TESTS 79

Figure 4.4 illustrates where in Scrum the EAST steps are to be executed. Fur-
thermore, Section 5.1 explains how, why and by whom the EAST steps are to
be carried out.

New Product

Backlog item

{

{Sprint Backlog

P
ro

d
u
ct B

ack
lo

g

Backlog items

Develop

Wrap

Review

Adjust

Scrum

meeting

every 24

hours

Sprint

Potentially Shippable

Product Increment

Pregame Game Postgame

Penetration testing

and mitigating false

positives

5

 Misuse cases1

Postmortem

evaluations

6

Repository of

knowledge

4Automatic code

review

3

Employing a highly

testable architecture2

System

in operation

Figure 4.4: The Extended Agile Security Testing steps integrated in the appro-
priate phases of the SDLC applied by the AIS group.

4.3 Performing security tests

Security tests using the current security testing methodology (see Section 3.3)
and using EAST needs to be carried out in order to measure the efficiency of
EAST. By performing security tests using both methodologies and studying the
results, and thereby looking at the difference, one can state whether EAST is
more efficient than the current security testing methodology (see Figure 3.4).

However, conducting extensive tests using both methodologies is beyond the
scope of this thesis due to time limitations. Therefore: (1) the security tests
are limited to a certain amount of vulnerability classes, and (2) the security
testing process is to be performed by using both security testing methodologies
(current and EAST) two times (i.e. four security testing iterations).

Automated security tests can last for hours given the vast array of Web appli-
cation vulnerabilities [12, 13, 7], and the vast array of automated vulnerability
tests a Web Vulnerability Scanner can perform (see Table 2.3). The security
tests are therefore limited to the OWASP Top 10 vulnerabilities, which are the
following (as defined by OWASP) [36]:

80 Chapter 4. Contribution

V.01 - Cross Site Scripting (XSS) XSS flaws occur whenever an applica-
tion takes user supplied data and sends it to a Web browser without first
validating or encoding that content. XSS allows attackers to execute script
in the victim’s browser which can hijack user sessions, deface Web sites,
possibly introduce worms, etc.

V.02 - Injection Flaws Injection flaws, particularly SQL injection, are com-
mon in Web applications. Injection occurs when user-supplied data is
sent to an interpreter as part of a command or query. The attacker’s
hostile data tricks the interpreter into executing unintended commands or
changing data.

V.03 - Malicious File Execution Code vulnerable to remote file inclusion
(RFI) allows attackers to include hostile code and data, resulting in dev-
astating attacks, such as total server compromise. Malicious file execution
attacks affect PHP, XML and any framework which accepts filenames or
files from users.

V.04 - Insecure Direct Object Reference A direct object reference occurs
when a developer exposes a reference to an internal implementation object,
such as a file, directory, database record, or key, as a URL or form param-
eter. Attackers can manipulate those references to access other objects
without authorization.

V.05 - Cross Site Request Forgery (CSRF) A CSRF attack forces a logged-
on victim’s browser to send a pre-authenticated request to a vulnerable
Web application, which then forces the victim’s browser to perform a hos-
tile action to the benefit of the attacker. CSRF can be as powerful as the
Web application that it attacks.

V.06 - Information Leakage and Improper Error Handling Applications
can unintentionally leak information about their configuration, internal
workings, or violate privacy through a variety of application problems.
Attackers use this weakness to steal sensitive data, or conduct more seri-
ous attacks.

V.07 - Broken Authentication and Session Management Account creden-
tials and session tokens are often not properly protected. Attackers com-
promise passwords, keys, or authentication tokens to assume other users’
identities.

V.08 - Insecure Cryptographic Storage Web applications rarely use cryp-
tographic functions properly to protect data and credentials. Attackers

4.3. PERFORMING SECURITY TESTS 81

use weakly protected data to conduct identity theft and other crimes, such
as credit card fraud.

V.09 - Insecure Communications Applications frequently fail to encrypt
network traffic when it is necessary to protect sensitive communications.

V.10 - Failure to Restrict URL Access Frequently, an application only pro-
tects sensitive functionality by preventing the display of links or URLs to
unauthorized users. Attackers can use this weakness to access and perform
unauthorized operations by accessing those URLs directly.

It is not possible to test V.08 using automated security scanning tools [36]. As
mentioned in the problem statement in Section 1.2, the security tests, using the
the new security testing methodology (EAST), are to be carried out using a
Web Vulnerability Scanner. V.08 is therefore excluded from the security tests
in this thesis.

The data gathered by carrying out four security testing iterations is not
enough to conclude whether EAST is more efficient than the current security
testing methodology, but it gives a high level indication of the efficiency, which
is sufficient for a proof of concept. As mentioned in Section 1.2, the testing
scope is limited to parts of EDH. This is due to its size and complexity. The
main functionalities that EDH provides are referred to as EDH documents. The
EDH documents cover the following business areas:

• Administration

• Claims

• Human Resources & Training

• Leave

• Logistics

• Other Services

• Purchasing

• Safety

Figure 4.5 shows a screenshot of EDH and the abovementioned business areas
covered by the EDH documents. There are several options (EDH documents)
under each business area. E.g. under Other Services there is an option named
Access Request. If an employee wants to get access to a restricted building,
the employee must submit an Access Request for that specific building. After
the submission, the people dealing with such requests will be notified through

82 Chapter 4. Contribution

EDH so they may either approve or deny the request. The security testing is to
be carried out on two EDH documents. These are Internal Purchase Request
(DAI) and Material Request (MAG), which are the most frequently used EDH
documents. Figure 4.6 shows an activity diagram illustrating the execution of
the security tests.

4.3. PERFORMING SECURITY TESTS 83

M
A
G

D
A
I

Figure 4.5: Screenshot of EDH showing the business areas covered by the EDH
documents. The red arrows show where MAG and DAI are placed on the menu.

84 Chapter 4. Contribution

Security test of DAI using the EAST methodology

Security test of DAI using the current methodology

Security test of MAG using the EAST methodology

Security test of MAG using the current methodology

Obtain the results

Obtain the results

Obtain the results

Obtain the results

Analyze the results

Figure 4.6: The testing processes are to be carried out two times using the
current security testing methodology that is used at the AIS group, and two
times using EAST. EDH document DAI is tested first by using the current
methodology, then the results are obtained and collected, then DAI is tested
again, but this time using EAST. The process is repeated for EDH document
MAG. Finally, the results from both testing methodologies are analyzed and
compared.

Chapter 5
Realization

This chapter describes how, why and by whom the EAST steps are to be carried
out in the AIS group’s SDLC as indicated in Figure 4.4. Further, it explains
how the security tests on two EDH documents are carried out and describes
the test results. The security tests are carried out using the current security
testing methodology (see Figure 3.4), and using the EAST methodology (see
Figure 4.4) on both of the EDH documents.

5.1 The integration of EAST: How, Why & Who

Section 4.2 described in which phases of Scrum the various EAST steps are
integrated. This section describes how, why, and by whom the EAST steps
are carried out in the specific Scrum phases as indicated in Figure 4.4. As
mentioned in Section 2.7, there is a lack of empirical evaluations of security
testing methodologies for Web applications. The author’s explanation about
who should carry out the EAST steps are therefore to some extent subjective.

• EAST Step 1 (Misuse cases)

– How : As explained in Section 3.2, the pregame phase in Scrum con-
sists of planning and system architecture/high level design, which is
carried out by creating product backlog items that are further re-
fined into sprint backlog items. The creation of misuse cases are
therefore executed in two steps in the pregame phase, in which step
1 is optional and step 2 is mandatory:

1. During the creation of product backlog items, high level misuse
cases (i.e. misuse cases that contain high level specifications of
the system) are created for each product backlog item. Since

85

86 Chapter 5. Realization

the level of system specifications in a product backlog item is
at a high level (not refined), the resulting misuse cases will also
contain high level specifications. This step can be skipped if the
product backlog item does not contain enough details in order
to create misuse cases (e.g. missing details about the system
architecture and design).

2. When a sprint backlog item is refined into several backlog items
(indicated in the pregame phase in Figure 4.4), the system spec-
ifications are well defined and set up for development. The same
transformation is to be applied on the misuse cases created in
step 1 in order to create detailed misuse cases. If no misuse
cases were created in step 1, they must be created containing de-
tailed specifications of the system in this step. Finally, security
requirements are to be derived using the resulting misuse cases.

– Why : Firstly, misuse cases let developers to think like an attacker
(malicious user) and thereby enables them to get an overview of po-
tential threats and vulnerabilities the evolving system may possess.
Secondly, by using the misuse cases as a starting point the develop-
ers can create security requirements. The security requirements are
then used to verify whether the system fulfills the required level of
security (during the security testing process). Thirdly, the creative
process of creating misuse cases let developers gain security specific
knowledge. Last but not least, discovering vulnerabilities and cre-
ating countermeasures during definition, high level design, and low
level design is the most cost efficient way of mitigating vulnerabilities
(see Table 1.2).

– Who: Developers, system architects and security analysts should par-
ticipate in developing misuse cases. Developers can look at the sys-
tem from a low level viewpoint, while system architects can look at
the system from a high level (design) viewpoint. Furthermore, since
agile security testing doesn’t completely eliminate the need for secu-
rity experts (see Section 2.3.1), security experts are needed for misuse
case completeness.

• EAST Step 2 (Employing a highly testable architecture)

– How : Unit security testing is achieved by performing automatic code
review during the development phase (EAST step 3). System secu-
rity testing is achieved by performing penetration testing after the
creation of an executable version of the part or parts of the system

5.1. THE INTEGRATION OF EAST: HOW, WHY & WHO 87

during the wrap phase (EAST step 5). Security acceptance test-
ing is achieved by using the security requirements (EAST step 1)
as reference points to verify or falsify the required level of security.
Furthermore, EAST step 3 can be regarded as development testing,
EAST step 5 can be regarded as system testing, and EAST step 1
can be regarded as basis for acceptance testing. This is also in line
with the well known testing strategy; the V model (see Figure 2.9).

– Why : As explained in Section 2.3.1, a highly testable architecture
is both useful for agile development methodologies and security test-
ing. The highly testable architecture inroduces test layers on top
of the Web application layers as shown in Figure 2.8. It is there-
fore an architecture that suits agile development methodologies very
well. Furthermore, it makes it possible to apply various security test-
ing techniques within any number of the test layers (automatic code
reviewing, penetration testing, etc.).

– Who: This step should be initiated by project managers. Project
managers have an overview of the project development process, and
can thereby initiate architects to employ a highly testable architec-
ture.

• EAST Step 3 (Automatic code review)

– How : As described in Section 3.2, the development phase in Scrum
consists of the following activities: Domain analysis, design, devel-
opment, implementation, testing and documentation. Since testing
is one of the activities, automatic code review is to be carried out in
this phase while source code is being developed. I.e. for each unit
(e.g. a class) the developer finishes, he or she must perform auto-
matic code analysis on that particular unit. This is to be carried out
using a static analysis tool.

– Why : By integrating automatic code review in the development
phase, developers are able to correct the existing bugs at an early
stage. Furthermore, this process continuously hardens the source
code against security bugs. However, in order for this activity to be
of maximum benefit, the developers need to have experience using
the underlying static analysis tool and have security specific knowl-
edge [59].

– Who: This step is carried out by developers.

88 Chapter 5. Realization

• EAST Step 4 (Repository of knowledge)

– How : Every security decision that has been made during the de-
velopment phase and the review phase must be documented. More
specifically, this has to be done during the documentation activity in
the development phase, and while reviewing potential risks in the re-
view phase. The goal is to justify and document why certain security
specific decisions were made. Additionally, the repository needs to
be updated whenever a vulnerability is discovered while the system
is in operation (illustrated by the arrow going from EAST step 4 to
the “System in operation” loop in Figure 4.4). The level of detail on
the justification may vary, but it must at least contain the following
points:

∗ Application : The name of the application that the security
decision applies for.

∗ Decision ID : An ID for the given security decision.

∗ What : A short explanation of what the security decision is.

∗ Where : The name of the affected part(s) of the application(s)
due to the security decision (class(es), module(s), etc.).

∗ How : A short explanation of how the security decision is real-
ized.

∗ Why : A short explanation of why the given security decision
was made.

By providing answers to the abovementioned points it is possible
to archive and store the security specific decisions that were made.
Below is an example:

∗ Application : EDH

∗ Decision ID : EDH.SEC.001

∗ What : To ensure that sensitive information is not leaked when-
ever an error occures.

∗ Where : EDH document A, B, and C.

∗ How : Show standard error message to the user by using the
StandardError() class in the try-catch statements in the source
code.

∗ Why : The StandardError() class contains predefined error mes-
sages that notifies the user that an error occured without giving
away detailed information, such as printing stack trace error mes-
sage. E.g. “Error: the application has experienced a problem,
please try later”. Giving away detailed error messages will be in

5.1. THE INTEGRATION OF EAST: HOW, WHY & WHO 89

the benefit for a malicious user in order to obtain data about the
system structure.

– Why : By documenting security specific decisions that has been made
during development it is possible to keep the decisions in a reposi-
tory, and thereby makes it possible to keep security specific knowl-
edge alive within the organization. E.g. for training purposes, and
for tracing earlier security specific decisions in order to understand
why certain things are done the way they are. At first glance, this
step may be regarded as a contradiction to one of the key thoughts
in agile development, which is to document as little as possible. Ag-
ile software development values working software over comprehensive
documentation [78], and tries to replace documents by initiating oral
communication among developers, and initiating the usage of white-
boards etc. [62]. However, as mentioned in Section 2.3.1, there is
a knowledge gap between security experts and software developers.
Additionally, as mentioned in Section 4.1, there is a risk of losing
years of knowledge when people quit their position. The author has
therefore added this step in the EAST mothodology in order to mit-
igate the knowledge gap and to mitigate the loss of security spe-
cific knowledge within the organization. Furthermore, looking at the
abovementioned example, it is possible to see that such documenta-
tion of security specific decisions are not comprehensive, but rather
a brief summary and justification of the underlying security decision.

– Who: Developers, system architects, project managers and other
decision makers that have affected the security of the system must
document why the security specific decisions have been made.

• EAST Step 5 (Penetration testing and mitigating false-positives)

– How : After an executable part or parts of a system is created in the
wrap phase, a penetration test using a Web Vulnerability Scanner
(see Table 2.3 for examples) has to be carried out on the executable
part(s). The penetration testing results are then to be analyzed and
the false-positives are to be marked. The false positives are to be
marked as explained in Section 4.1.

– Why : By performing penetration tests in the wrap phase makes it
possible to discover vulnerabilities in the application during a sprint
(continuously). This creates a base for the review phase in which,
among other things, risks are discussed, countermeasures are created
and EAST Step 6 (Postmortem evaluations) is carried out. Fur-

90 Chapter 5. Realization

thermore, by continously marking false-positives, the application is
harden against reporting many false-positives.

– Who: Developers, system architects and security analysts should par-
ticipate in interpreting the penetration testing results produced by
the penetration testing tool. By initiating security analysts (or secu-
rity experts) in this step makes it easier to identify false-positives [59].

• EAST Step 6 (Postmortem evaluations)

– How : During the review phase there has to be a postmortem eval-
uation meeting session. The postmortem evaluation is to be carried
out after the wrap phase and EAST Step 5 (Penetration testing and
mitigating false-positives). Furthermore, it is to be carried out as
explained in Section 4.1.

– Why : This step enables the security testers to reflect over the vulner-
abilities, the development process and the security testing process.
This is important in order to continuously harden the security testing
process.

– Who: Everyone that have been involved in the security testing pro-
cess should participate in a postmortem evaluation.

5.2 Security testing of EDH

As mentioned in Section 4.3, the security tests are to be performed on the
most frequently used EDH documents: Internal Purchase Request (DAI) and
Material Request (MAG). DAI is used to request materials from the internal
stock at CERN, while MAG is used to register a purchase request in which
external suppliers are contacted for the purchase. DAI and MAG communicate
with different databases. The testing process is to be carried out as shown in
the activity diagram in Figure 4.6. Figure 5.1 shows a screenshot of DAI and
Figure 5.2 shows a screenshot of MAG.

Section 4.3 lists the vulnerability classes that are tested during the security
testing of DAI and MAG, and for reasons given in the same section, the vul-
nerability class V.08 is excluded from the security testing process. Additionally,
EDH is using Hypertext Transfer Protocol Secure (HTTPS) during all com-
munication it has with a client. Therefore, V.09 Insecure Communications is
also excluded from the testing process. Furthermore, some of the vulnerabil-
ity classes are a collective term for different “types” of the same vulnerability
class [102]:

• V.01 Cross Site Scripting (XSS) consists of:

5.2. SECURITY TESTING OF EDH 91

– Reflected XSS

– Stored XSS

– DOM XSS

– Cross Site Flashing

• V.02 Injection Flaws consists of:

– SQL Injection

– LDAP Injection

– ORM Injection

– XML Injection

– SSI Injection

– XPath Injection

– IMAP/SMTP Injection

– Code Injection

It is beyond the scope of this thesis to test all the vulnerabilities in vulnerability
class V.01 and vulnerability class V.02. The vulnerabilities that are to be tested
are therefore limited to the nine vulnerabilities shown in Table 5.1. The following

Vulnerability Test Description
VT.01 Reflected XSS
VT.02 Stored XSS
VT.03 SQL Injection
VT.04 Malicious File Execution
VT.05 Insecure Direct Object Reference
VT.06 Cross Site Request Forgery (CSRF)
VT.07 Information Leakage and Improper Error Handling
VT.08 Broken Authentication and Session Management
VT.09 Failure to Restrict URL Access

Table 5.1: The vulnerabilities that are tested on DAI and MAG.

points describe why reflected XSS, stored XSS and SQL injection were selected
from vulnerability classes V.01 and V.02:

• Reflected XSS is tested because it is known to be the most frequent type
of XSS attacks [80].

• Stored XSS is tested because it is known to be the most dangerous type
of XSS attacks [102].

• SQL injection is tested because it is one of the most frequently applied
attack type [56].

92 Chapter 5. Realization

Furthermore, in order to get test results that are closely coupled to the testing
methodologies (i.e. the current methodology and the EAST methodology), the
tests are carried out according to the methodologies. However, the tests are also
described and documented with traceability in mind. According to Koomen et
al. [88], the first thing that needs to be created when testing software is a master
test plan that sets up the total test process by:

• Aligning the test levels (the test levels given in the V model in Figure 2.9).

• Minimising overlaps or gaps in the test coverage.

• Optimal distribution of available resources, e.g.

– Testers

– Infrastructure and tools

– Technical or domain expertise

• Detecting the most important defects at the earliest possible stage.

• Testing as early as possible on the critical path of the overall project.

• Achieving uniformity in the test process.

• Laying down agreements with stakeholders.

• Informing the client of the approach, planning, estimated effort, activities
and deliverables in relation to the total test process.

Such a thorough test plan would lead to both traceability and would act as
a roadmap to manage the whole testing process. However, creating such a
thorough test plan for the purpose of this thesis would be an exaggeration. The
author therefore systematically explains how the security tests are carried out
in the following sections (which leads to traceability of the security tests):

• Section 5.2.1 describes the test environment, the testers’ experience in
security testing and their security specific knowledge.

• Section 5.2.2 describes how the security tests (given in Table 5.1), using
the current methodology, are carried out by the testers. Furthermore,
it describes the testing results each tester obtained (the amount of vul-
nerabilities found, and the amount of time spent for each vulnerability
test).

• Section 5.2.3 describes how the security tests (given in Table 5.1) using
the EAST methodology are carried out.

5.2. SECURITY TESTING OF EDH 93

• Section 5.3 summarizes the test results obtained from the security tests
performed on DAI and MAG.

Finally, it is necessary to mention that the time values for how much time it
takes to complete one testing iteration, using either the current methodology or
the EAST methodology, are gathered by observing the time that is spent on each
testing activity in the methodology itself. Time values such as the time spent
on introducing how the testers should use the guidelines given in Appendix A,
and how to create misuse cases in Step 1 of the EAST methodology are not
considered. Only the time spent on the activities per testing methodology are
considered.

94 Chapter 5. Realization

Figure 5.1: Screenshot of DAI as displayed to the user.

5.2. SECURITY TESTING OF EDH 95

Figure 5.2: Screenshot of MAG as displayed to the user.

96 Chapter 5. Realization

5.2.1 The test environment and the testers

A test environment is a composition of parts, such as hardware and software
connections, environment data, maintenance tools and management processes
in which a test is carried out [88].

Hardware refers to the physical parts of a computer (screen, harddisk, key-
board, network card, etc.). Software refers to the programs that should be
present in order to perform the tests. Environment data is the set of data that
is required by the software that is being tested (e.g. user profiles, data in the
database the software communicates with and network addresses). Maintenance
tools are the tools that are used to keep the test environment operational. Man-
agement processes are the activities that are carried out during the setup and
maintenance of a test environment.

A test environment may vary in size. A small size test environment is e.g.
when one single PC is used to test a small accounting package. A large size test
environment is e.g. when a huge collection of hardware and software is used to
test the reservation system of an airline company. The size of the test environ-
ment in this thesis is small. This is due to the small part of EDH that is tested
(the EDH documents DAI and MAG). However, as mentioned in Section 5.2,
DAI and MAG are the most frequently used EDH documents. Table 5.2 sum-
marizes the test environment that is used to test for the vulnerabilities given in
Table 5.1. The security tests given in Table 5.1 are carried out by three testers.

Environment part Description
Hardware Tester’s working PC, EDH test server
Software Internet Explorer or similar Web browser, Source

code/text editor, PMD [39], SeaMonster [43]
Environment data Test data available on EDH test server
Maintenance tools None
Management processes None

Table 5.2: Summarization of the test environment. PMD is a static analyser
tool that scans Java code for potential bugs. SeaMonster is a security modeling
tool that supports, among other things, the modeling of misuse cases.

All tests are performed on EDH’s test server. In order to keep the anonymity of
the testers, their names are not given and are referred to as Tester01, Tester02
and Tester03. Table 5.3 summarizes the testers’ experience and knowledge.

5.2.2 Testing using the current methodology

This section provides answers to the following questions:

• How did each tester perform the specific vulnerability tests given in Ta-

5.2. SECURITY TESTING OF EDH 97

hhhhhhhhhhhhhhhTester
Characteristic X years

devel-
opment
experience

Security
testing
experience

Security
specific
knowledge

Tester01 8 years Low Medium
Tester02 3 years Low Low
Tester03 2 years Low Low

Table 5.3: Summarization of the testers’ experience and security specific knowl-
edge. The possible values for the “Security testing experience” column and the
“Security specific knowledge” column are: High, Medium or Low.

ble 5.1.

• How many vulnerability incidents for each specific vulnerability test were
found by each tester?

• How many minutes did the tester spend on each vulnerability test?

The testers had access to the source code throughout the testing process, and
each tester measured the time they spend on every security test. The function-
alities of DAI and MAG are sometimes directly referred to in the points below
(e.g. “the print preview button”). In order to understand where in the appli-
cation GUI the functionalities are located, the reader is encouraged to look at
Figure 5.1 for DAI, and Figure 5.2 for MAG.

The security test execution points below are given in the format “VTE.01”,
“VTE.02” etc. This means Vulnerability Test Execution 01 (refers to VT.01 in
Table 5.1) and Vulnerability Test Execution 02 (refers to VT.02 in Table 5.1)
etc. Furthermore, the testers have executed the vulnerability tests in a quite
similar manner. This is not surprising given that they all used the exactly same
guidelines as starting point during the vulnerability tests (see Appendix A).
Therefore, detailes regarding how the vulnerability tests were carried out are
only given for Tester01. Anything that has been carried out differently than
Tester01 is specified. Additionally, each of the testers performed the same test-
ing strategy for MAG. I.e. Tester01 performed the same steps on MAG as
performed on DAI (this is also true for Tester02 and Tester03). For this reason,
only details about DAI is given. The results for MAG are listed in Section 5.3
together with the results for DAI.

Testing using the current methodology on DAI

• Tester01

– VTE.01 : The followng scripts were typed directly into the browser’s
address line while inside EDH document DAI:

98 Chapter 5. Realization

<script>alert(123);</script>

“><script>alert(123);</script><!−−

which gives the following URLs:

https://lxdevedh.cern.ch:8065/Document/DAI/

<script>alert(123);</script>

https://lxdevedh.cern.ch:8065/Document/DAI/

“><script>alert(123);</script><!−−

The scripts did not got executed from the URL. Source code for
DAI was reviewed in order to find some variables that could be in-
jected through the URL or input fields. 0 vulnerabilities found. 14
minutes spent.

– VTE.02 : The following script was typed in the input fields (except
the Currency field, the Delivery costs included field and the Purchas-
ing officer field) of the DAI document:

<script>alert(document.cookie)</script>

The input fields interpreted the script as normal text when the Save
button was pressed (the Save button submits the form). The source
code was reviewed in order to see whether the input fields accepted
the text from the input fields as they were typed or if they were con-
verted into strings. The input fields were converted to strings (text).
0 vulnerabilities found. 10 minutes spent.

– VTE.03 : Every input field is saved in a database. For every in-
put field (except the Currency field, the Delivery costs included field
and the Purchasing officer field) the following SQL query was entered
(each input field were tested separately):

’; select count(1) from edhper;−−

The “edhper” table name was found by reviewing the source code.
0 vulnerabilities found. 16 minutes spent.

– VTE.04 : Created three Javascripts (test1.js, test2.txt and test3.SomeExtension).
Each of the scripts contained the following code:

5.2. SECURITY TESTING OF EDH 99

<script type=”text/javascript”>

alert(document.cookie);

</script>

The Attachment functionality was used to attach a file to the DAI
document and the document was saved. By displaying the attach-
ment list and clicking on each attachment, the Javascript described
above was executed. Even if the Javascript file had different exten-
sions, they got executed. 1 vulnerability found. 6 minutes spent.

– VTE.05 : The DAI document does not have any identifiers (e.g.
Document?DocumentNumber=0123456789) in the URL.

1. The source code was reviewed to find if there are any variables
that are set through the URL in the browser. None were found.

2. The HTML code for the DAI document was downloaded to the
local computer and reviewed to find hidden <input> variables. A
hidden <input> variable (SCROLLPOSN) was found and mod-
ified from type=”hidden” to type=”text”.

3. The action variable in the <form> tag was set to point to the
DAI document.

4. The form was submitted, but nothing notably happened. The
DAI document appeard on the Web browser.

0 vulnerabilities found. 13 minutes spent.

– VTE.06 : The HTML source code for the DAI document was re-
viewed in order to find some hidden variables that act as parameter
identifier internally in the Web application. The hidden variable
TechnicalContact was found. The tester created a simple Web site
locally on his PC containing only the following link:

https://edh.cern.ch/Document/DAI/TechnicalContact=

Mister%20HACKER%20%28GS-HACKED-EB%29&

The tester logged in with his credentials on EDH, and then opened
the simple Web site locally. By clicking the link on the Web site
that the tester had created, he got redirected to a new DAI docu-
ment, but the name of the Technical Contact field was not changed.
The name was the tester’s name and not “Mister HACKER (GS-
HACKED-EB)” as indicated by the malicious link above. In this

100 Chapter 5. Realization

test, the tester assumed both roles—the attacker and the victim. 0
vulnerabilities found. 18 minutes spent.

– VTE.07 : For every input field in the DAI document, whenever a
wrong input value was typed, the DAI document responded with a
short error message for the issuing input field. None information
leakage or improper error handling was detected from these error
messages. Next, the tester deliberately made DAI crash by creating
a null pointer in the source code for the DAI document and rebuilt
the project. As expected, the DAI document crashed and as a result
a stack trace of the null pointer exception was shown on the Web
browser. This is a vulnerability. 1 vulnerability found. 15 minutes
spent.

– VTE.08 : The guidelines described for Broken Authentication and
Session Management (VT.08) in Appendix A were followed and the
following was done:

1. Logged on EDH using Firefox Web browser.

2. Used the AnEC [3] cookie management tool (add-on for Firefox)
to obtain the session ID given by EDH.

3. Logged out of EDH and deleted the cookie given by EDH.

4. Restarted Firefox and logged on EDH.

5. Logged out of EDH.

6. Used the AnEC cookie management tool to replace the new ses-
sion ID with the old session ID.

7. Typed in https://edh.cern.ch/Document/DAI/ in the browser.

After step 7, the tester was able to navigate in EDH (using the old
session ID) as if he was logged in successfully. However, for this
to be a successful attack, the malicious user has to obtain a valid
session ID from the victim. This can be done either by obtaining the
session ID from the user’s computer while the user is logged in EDH,
or it requires some social engineering to convince the victim to give
his/her session ID. This is therefore regarded as a vulnerability. 1
vulnerability found. 16 minutes spent.

– VTE.09 : While in the following URL:

https://edh.cern.ch/Document/DAI/

the tester typed in names of both known and unknown directories
after Document/ and Document/DAI/. In the case of a correct direc-
tory and given that the tester have access to that specific directory,

5.2. SECURITY TESTING OF EDH 101

the document was shown. Otherwise, an error message appeard say-
ing either that the requested document did not exist, or that the
tester did not have acces to the given document. Examples of the
directories:

https://edh.cern.ch/Document/DAI/ - Access granted.
https://edh.cern.ch/Document/DAI/MEPPOverview/ - No access.
https://edh.cern.ch/Document/DAI/someting - Error, not found.
https://edh.cern.ch/Document/something - Error, not found.
https://edh.cern.ch/Document/../../../ - Redirected to main
page.

Additionally, the tester followed the guidelines and made a list of
the links and where they pointed at in order to get a visual overview
of the site structure. 0 vulnerabilities found. 12 minutes spent.

• Tester02

– VTE.01 : Same approach as Tester01 (followed the guidelines), ex-
cept reviewing source code. 0 vulnerabilities found. 5 minutes spent.

– VTE.02 : Same approach as Tester01 (followed the guidelines), ex-
cept reviewing source code. 0 vulnerabilities found. 8 minutes spent.

– VTE.03 : Same approach as Tester01 (followed the guidelines), but
instead of listing the query result, Tester02 tried to delete a row in a
table using the following SQL query:

’; delete from edhsupstate where supstateid=’TEST’;−−

The tester had inserted a test row in the target table. The query
did not delete anything. 0 vulnerabilities found. 12 minutes spent.

– VTE.04 : Same approach as Tester01 (followed the guidelines). 1
vulnerability found. 8 minutes spent.

– VTE.05 : Same approach as Tester01 (followed the guidelines), ex-
cept reviewing source code. The tester reviewed only the HTML code
of the DAI document and followed the guidelines on how to change a
hidden <input> variable. 0 vulnerabilities found. 10 minutes spent.

– VTE.06 : Same approach as Tester01 (followed the guidelines). 0
vulnerabilities found. 14 minutes spent.

– VTE.07 : Same approach as Tester01 (followed the guidelines), ex-

102 Chapter 5. Realization

cept modifying source code (did not insert null pointer). 0 vulnera-
bilities found. 8 minutes spent.

– VTE.08 : Same approach as Tester01 (followed the guidelines), but
managed the cookie variables through Internet Explorer in stead of
AnEC cookie management tool. 1 vulnerability found. 11 minutes
spent.

– VTE.09 : Same approach as Tester01 (followed the guidelines), 0
vulnerabilities found. 7 minutes spent.

• Tester03

– VTE.01 : Same approach as Tester01 (followed the guidelines), ex-
cept reviewing source code. 0 vulnerabilities found. 7 minutes spent.

– VTE.02 : Same approach as Tester01 (followed the guidelines), ex-
cept reviewing source code. 0 vulnerabilities found. 8 minutes spent.

– VTE.03 : Same approach as Tester01 (followed the guidelines), but
the tester tried to list several tables from the database and alter
values in some tables. The tester used similar SQL query structure
as Tester01 and Tester02. 0 vulnerabilities found. 14 minutes spent.

– VTE.04 : Same approach as Tester01 (followed the guidelines). 1
vulnerability found. 9 minutes spent.

– VTE.05 : Same approach as Tester01 (followed the guidelines). 0
vulnerabilities found. 11 minutes spent.

– VTE.06 : Same approach as Tester01 (followed the guidelines). 0
vulnerabilities found. 13 minutes spent.

– VTE.07 : Same approach as Tester01 (followed the guidelines), ex-
cept modifying source code (did not insert null pointer). 0 vulnera-
bilities found. 10 minutes spent.

– VTE.08 : Same approach as Tester01 (followed the guidelines), but
managed the cookie variables through Internet Explorer in stead of
AnEC cookie management tool. 1 vulnerability found. 13 minutes
spent.

– VTE.09 : Same approach as Tester01 (followed the guidelines). 0
vulnerabilities found. 9 minutes spent.

5.2.3 Testing using the EAST methodology

This section is divided in two parts: Testing DAI using the EAST methodology,
and Testing MAG using the EAST methodology. For each part, the following
points are given:

5.2. SECURITY TESTING OF EDH 103

1. A misuse case diagram for the underlying EDH document (EAST Step 1).

2. The results from an automatic code review (using PMD via Eclipse) of
the underlying EDH document (EAST Step 3).

3. A description of one security decision for the underlying EDH document.
Any other security decisions are only listed describing what they cover.
(EAST Step 4).

4. The results of the penetration testsing and mitigating false-positives (using
Acunetix WVS) for the underlying EDH document (EAST Step 5).

5. A list of answers to the following questions during the postmortem evalu-
ation (EAST Step 6):

(a) Why were certain vulnerabilities missed during development?

(b) How will the issued development process be improved in order to
mitigate or isolate the underlying vulnerabilities?

(c) Does a security testing activity (EAST Step 1 to EAST Step 6) need
to be improved in order to detect the underlying vulnerabilities?

The details for how much time was spent on each of the abovementioned EAST
steps are also given. Additionally, the details for how many vulnerabilities
that were found from the automatic code review and the penetration testsing
are given. However, the measurement of how much time was spent for the
abovementioned activities was not carried out in the same way as it was done
for the current methodology (in Section 5.2.2). The EAST methodology is a
collection of activities in which the testers have to collaborate. Furthermore, a
collaboration sometimes require preliminary work which means that the testers
have to do some work before the collaboration can take place. E.g. before
the creation of misuse cases, each tester can come up with a list of threats
and vulnerabilities. Each tester might therefore spend different amount of time
depending on the testers experience and security specific knowledge. Then, the
testers can present their findings and create misuse case diagrams jointly. This
example has two different time measurements. The first measurement is how
much time one tester spend on creating a list of threats and vulnerabilities. The
second measurement is how much time the testers spend to create a misuse case
diagram jointly. This is differently from the current methodology, in which a
tester performs a set of vulnerability test without communicating with other
testers (or sometimes do communicate with other testers). Apparently, this
loose coupling of the communication between the testers is a side OBeffect of
ad hoc testing.

104 Chapter 5. Realization

Testing DAI using the EAST methodology

1. Misuse case diagram of DAI
The creation of the misuse case diagram for DAI was done in two steps:

1. Each tester made a list of possible threats and vulnerabilities that could
occur in DAI.

2. The misuse case diagram was created jointly by the testers.

Figure 5.3 shows the resulting misuse case diagram. The following security
requirements were derived from the misuse case diagram:

1. All of the input fields of a DAI document have to be checked for possible
SQL injection whenever the document is saved. If any SQL injection is
discovered, it has to be filtered out so that it is interpreted as normal text
string for further processing.

2. All of the input fields of a DAI document have to be checked for possible
scripting code whenever the document is saved. If any scripting code is
discovered, it has to be filtered out so that it is interpreted as normal text
string for further processing.

3. All of the previously saved input values in a DAI document have to be
checked for possible scripting code whenever a saved DAI document is
requested to be displayed by the user.

4. DAI must reject the document request if a user types in the full path to
a DAI document in the browser’s address bar in order to display the DAI
document.

5. A specific DAI document can only be displayed on the user’s browser if
requested from the user’s DAI document list.

6. Only the following document types can be allowed to be attached on a
DAI document:

(a) gif

(b) jpg

(c) pdf

(d) doc

(e) xls

(f) docx

(g) xlsx

5.2. SECURITY TESTING OF EDH 105

(h) txt

7. An attached document must be filtered, and only the file content is to be
displayed, whenever it is requested to be displayed by a user.

8. A user’s HTTP session ID must be invalidated whenever he logs out of a
DAI document.

9. A user’s HTTP session ID must be invalidated whenever he close the Web
browser while displaying a DAI document.

10. A user’s HTTP session ID must be renewed whenever he opens a new DAI
document.

11. A DAI document must not leak internal code/file/folder information or
stack trace information if an error occures due to user input.

12. A DAI document must not leak internal code/file/folder information or
stack trace information if an error occures due to source code failure.

The following points list the time used by each tester to create a list of threats
and vulnerabilities:

• Tester01 spent 20 minutes.

• Tester02 spent 15 minutes.

• Tester03 spent 18 minutes.

Additionally, the testers spent 23 minutes to create the misuse case diagram
given in Figure 5.3 jointly.

2. Automatic code review of DAI
The static analyser tool, PMD, was used to perform automatic code review
of the DAI source code. PMD is specially developed to review source code
written in Java and is freely available at sourceforge [39]. Furthermore, it can
be used as a standalone application, or it can be used as a plugin for, among
other Integrated Development Environments (IDEs), Eclipse. The testers use
Eclipse daily for software development and had previously used the PMD plu-
gin for Eclipse. PMD was therefore chosen to be used for the automatic code
reviewing. The automatic code review activity of DAI was done in two steps:

1. Each tester performed the automatic code review and analyzed the output
generated by PMD.

2. The testers discussed whether there were any critical security issues from
the findings.

106 Chapter 5. Realization

DAI

Malicious User

 SQL injection

 Reflected XSS

 Stored XSS

 Upload Executable Malicious File

 DoS attack

 Session hijacking

 Leak information by improper
 error handling DAI Application

 Renew session ID

 Input validation

<<threatens>>

<<threatens>>

<<exploits>>

<<threatens>> <<threatens>>
<<mitigates>>

<<exploits>>

<<threatens>>

<<threatens>>

<<mitigates>>

<<exploits>>

<<exploits>>

<<mitigates>>

DAI User

 Fill in document

 Send document

 Purchase material

 Open attached file

 Attach file to document

 Save document

 Open saved document

 Edit saved document

 Monitor network traffic

 Input validation

<<includes>>

<<includes>>

<<mitigates>>

<<mitigates>>

<<mitigates>>

p

<<exploits>>

<<threatens>>

<<exploits>>

<<threatens>>

Figure 5.3: The resulting misuse case diagram for DAI. This misuse case diagram
was created using SeaMonster [43].

5.2. SECURITY TESTING OF EDH 107

Figure 5.4: The folder structure of DAI and its nine Java source files that were
scanned.

Figure 5.4 shows the folder structure of DAI and shows the Java files that
were scanned. PMD has five levels of violations in which level one and two
are regarded as errors, level three and four are regarded as warnings, and level
five is regarded as informational warnings. Table 5.4 shows the total amount of
errors, warnings and informational warnings PMD produced for the DAI source
code. Figure 5.5 shows the PMD plugin for Eclipse in action. For each warning
produced, the tester can click the specific warning to be directed to the issuing
line in the source code. Furthermore, The tester can get detailed description
of the warning by hovering the mouse over the warning sign. The following

Violation Violations found
Error 36
Warning 426
Info 103

Table 5.4: The total amount of errors, warnings and informational warnings
produced by PMD after scanning the DAI source code.

points list the time used by each tester to perform the automatic code review
and to analyze the output generated by PMD:

• Tester01 spent 18 minutes.

• Tester02 spent 13 minutes.

• Tester03 spent 15 minutes.

108 Chapter 5. Realization

Figure 5.5: PMD lists all the warnings it generates and enables the tester to
click on each specific warning in order to be navigated to the issuing line in the
source code.

Additionally, the testers spent 20 minutes to discuss whether there were any
critical security issues from the findings. Most of the warnings were regarded as
guidelines for best programming practices by the testers. The testers concluded
that there were no critical security issues. The two most critical warnings that
PMD produced were the following: “Variables that are final and static should
be in all caps.” and “Variables that are not final should not contain underscores
(except for underscores in standard prefix/suffix).”

3. Security decisions (repository of knowledge) for DAI
Any security decisions that are made for the system that is being tested has
to be documented during the development phase and the review phase, as ex-
plained in Section 5.1. Furthermore, a security decision has to be documented
after the automatic code review (EAST Step 3), and after the penetration test-
ing and mitigation of false-positives (EAST Step 5). The testers did not note
any specific security decisions after the automatic code review, because there
were no warnings from PMD that indicated a critical security related problem.
The following security decisions were made after the penetration testing and
mitigation of false-positives, and by using the misuse case diagram in Figure 5.3
as basis (only one security decision is explained in detail):

• Application : EDH.DAI

• Decision ID : EDH.DAI.001

5.2. SECURITY TESTING OF EDH 109

• What : To mitigate SQL injections in DAI.

• Where : DAI source code.

• How :

– Use only parametrized SQL queries.

– Bind all dynamic data to parametrized SQL queries.

– Never use string concatenation to create dynamic SQL queries.

• Why : SQL injection allows a malicious user to execute SQL queries within
an application on the application’s database. This is a very dangerous
vulnerability and must be mitigated.

Furthermore, the following security decisions were made:

• To mitigate Reflected Cross Site Scripting in DAI.

• To mitigate Stored Cross Site Scripting in DAI.

• To mitigate the execution of attached malicious files in DAI.

• To mitigate session hijacking in DAI.

• To mitigate DoS attacks on EDH. This security decision covers EDH as
total and not only DAI or MAG.

The creation of security decisions for DAI was carried out jointly by the testers.
The total amount of time spent was 28 minutes.

4. Penetration testing and mitigating false-positives of DAI
The penetration testing of DAI was carried out using Acunetix WVS. As men-
tioned in Section 2.5, Acunetix WVS allows users to create customized scan
profiles in order to perform specific security tests and thereby reduce the total
scan time. Before the penetration testing took place, a scan profile for each of
the vulnerabilities mentioned in Table 5.1 was created. Figure 5.6 shows the
profile for Reflected XSS created in Acunetix WVS. The penetration testing
results are listed in Table 5.5. The penetration testing results show that 1 Re-
flected XSS, 43 SQL injections and 10 possible Cross Site Request Forgeries
(CSRF) were detected by Acunetix WVS. The 10 CSRFs were not reported as
vulnerabilities, but as informational warnings and are therefore not added to the
total vulnerabilities found in Table 5.5. The testers analyzed the output and
concluded that the 10 informational warnings were false-positives and there-
fore marked as false-positives in Acunetix WVS. Figure 5.7 shows the resulting
false-positive tree generated by Acunetix WVS. The penetration testing lasted

110 Chapter 5. Realization

Figure 5.6: The Reflected XSS profile created in Acunetix WVS. When scanning
a Web application using this profile, Acunetix WVS will scan for the tests
indicated by the red arrows.

Figure 5.7: The resulting false positive tree after marking all of the 10 possible
CSRFs as false-positives in Acunetix WVS.

5.2. SECURITY TESTING OF EDH 111

Vulnerability Vulnerabilities
found

Minutes spent Seconds spent

VT.01 1 1 30
VT.02 1 5
VT.03 43 4 46
VT.04 1 11
VT.05 5 45
VT.06 10 info. 11
VT.07 5 22
VT.08 36
VT.09 28
Total 44 17 234

The total time spent is: 20.90min ≈ 21min.

Table 5.5: The penetration testing results of DAI. 1 Reflected XSS, 43 SQL
injections and 10 possible (informational) Cross Site Request Forgeries were
reported.

21 minutes, and the testers spent 25 minutes analyzing the penetration testing
output. This gives a total time of 46 minutes.

5. Postmortem evaluations for DAI
The postmortem evaluation took place right after the penetration testing and
the creation of security decisions. The testers discussed and provided (to the
best of their ability) answers to the questions defined at the start of this section.
These questions are the same as those that are defined in Section 4.1 (point 2).
The following points shortly give the answers provided by the testers:

• Answer to question 1 : The fact that no security testing practices are
considered before and during development in the current security testing
methodology, is an obvious indication to why the vulnerabilities listed in
Table 5.5 were missed during development. Furthermore, using the EAST
methodology to test DAI, lead to the detection of the vulnerabilities that
had been introduced in DAI as a result of the current security testing
methodology. However, it is possible to see from the misuse case diagram
in Figure 5.3 that countermeasures for the vulnerabilities that were found
for DAI has been considered. The vulnerabilities that were found would
therefore be mitigated during the development process, if DAI was to be
developed using the EAST methodology as a starting point.

• Answer to question 2 : Creating misuse case diagrams in the pregame
phase (in Scrum) would definitively alert the developers about possible
threats and vulnerabilities (e.g. Cross Site Scripting and SQL injections)
that may arise in the evolving system. Furthermore, by using the docu-

112 Chapter 5. Realization

mentation for the security decisions (produced by EAST Step 4 - Reposi-
tory of knowledge) in the pregame and game phases, knowledge manage-
ment regarding security konwledge can be obtained.

• Answer to question 3 : There is currently too little experience in using
the EAST methodology and its steps in order to say whether some of the
steps need to be improved or not.

The postmortem evaluation of DAI was carried out jointly by the testers. The
total amount of time spent was 35 minutes.

Testing MAG using the EAST methodology

1. Misuse case of MAG
The creation of the misuse case diagram for MAG was done in the same way
as for DAI. The resulting misuse case for MAG is the same as for DAI. This
is due to the similarity between the functionalities provided by DAI and MAG.
However, MAG has one functionality that differs from DAI, which is to provide
links to external supplier (see the Order Items From section in Figure 5.2).
Whenever a link to an external supplier is clicked, MAG automatically redirects
the user to the supplier’s Web site. This is a function that needs to be considered
from a security viewpoint. If the security quality of the supplier’s Web site has
been compromised, then a MAG user might be a victim. But the security
quality of an external supplier’s Web site is beyond the “border” of MAG’s (and
consequently EHD’s) concern. The following points list the time used by each
tester to create a list of threats and vulnerabilities:

• Tester01 spent 12 minutes.

• Tester02 spent 10 minutes.

• Tester03 spent 10 minutes.

Additionally, the testers spent 15 minutes to create the misuse case diagram
jointly, but it was quickly noticed that the misuse case diagram for MAG was
the same as for DAI.

2. Automatic code review of MAG
Automatic code reviewing of MAG was carried out in the same way as explained
for DAI. Table 5.6 shows the total amount of errors, warnings and informational
warnings PMD produced for the MAG source code. The following points list the
time used by each tester to perform the automatic code review and to analyze
the output generated by PMD:

5.2. SECURITY TESTING OF EDH 113

Violation Violations found
Error 56
Warning 498
Info 106

Table 5.6: The total amount of errors, warnings and informational warnings
produced by PMD after scanning the MAG source code.

• Tester01 spent 14 minutes.

• Tester02 spent 10 minutes.

• Tester03 spent 13 minutes.

Additionally, the testers spent 22 minutes to discuss whether there were any
critical security issues from the findings.

3. Security decisions (repository of knowledge) for MAG
The creation of security decisions for MAG was carried out in the same way as
explained for DAI. Not surprisingly, the decisions that the testers ended up with
were the same as for DAI because of the similarities between DAI and MAG. In
stead of defining new security decisions, the testers referred to those created for
DAI by using their Decision ID. E.g. Decision ID: EDH.DAI.001. The creation
of security decisions for MAG was carried out jointly by the testers. The total
amount of time spent was 15 minutes.

4. Penetration testing and mitigating false-positives of MAG
The penetration testing for MAG was carried out in the same way as explained
for DAI. The penetration testing results for MAG are listed in Table 5.7. The 2
CSRFs were not reported as vulnerabilities, but as informational warnings and
are therefore not added to the total vulnerabilities found in Table 5.7. As done
for ADI, the CSRFs were analysed and marked as false-positives. The penetra-
tion testing lasted 8 minutes, and the testers spent 16 minutes analyzing the
penetration testing output. This gives a total time of 24 minutes.

5. Postmortem evaluations for MAG
The postmortem evaluations for MAG was carried out in the same way as ex-
plained for DAI. Furthermore, the resulting answers that the testers provided to
the questions (the questions defined at the start of this section) ended up being
the same as the answers given for DAI. This is again due to the similarities
between DAI and MAG. Although the result ended up being the same as given
for DAI, the postmortem evaluation session was carried out by answering each
question. The postmortem evaluation of MAG was carried out jointly by the

114 Chapter 5. Realization

Vulnerability Vulnerabilities
found

Minutes spent Seconds spent

VT.01 10 47
VT.02 7
VT.03 3 1 22
VT.04 24
VT.05 2 15
VT.06 2 info. 9
VT.07 2 2
VT.08 22
VT.09 36
Total 13 5 184

The total time spent is: 8.06min ≈ 8min.

Table 5.7: The penetration testing results of MAG. 10 Reflected XSS, 3 SQL
injections and 2 possible (informational) Cross Site Request Forgeries were re-
ported.

testers. The total amount of time spent was 15 minutes.

5.3 Test results

The following sections summarize the results obtained from testing DAI and
MAG using both the current methodology and the EAST methodology. Sec-
tion 5.3.1 summarizes the results obtained using the current methodology, while
Section 5.3.2 summarizes the results obtained using the EAST methodology.

5.3.1 The current methodology test results

Table 5.8 shows the results obtained for DAI, while Table 5.9 shows the results
obtained for MAG. Both of the tables reveal that the testers found one VT.04
vulnerability (Malicious File Execution) and one VT.08 vulnerability (Broken
Authentication and Session Management). Additionally, Tester01 found one
VT.07 vulnerability (Information Leakage and Improper Error Handling). In
total, 3 different vulnerabilities were found by the testers using the current
testing methodology. I.e. for VT.04 and VT.08, the testers found the same
vulnerabilities, not different incidents of the same vulnerability class.

5.3.2 The EAST methodology test results

Table 5.10 shows the measured time results obtained by testing DAI using the
EAST methodology, while Table 5.11 shows the measured time results obtained

5.3. TEST RESULTS 115

DAI
Tester01 Tester02 Tester03

VTE TS VF TS VF TS VF
VTE.01 14 min 5 min 7 min
VTE.02 10 min 8 min 8 min
VTE.03 16 min 12 min 14 min
VTE.04 6 min 1 8 min 1 9 min 1
VTE.05 13 min 10 min 11 min
VTE.06 18 min 14 min 13 min
VTE.07 15 min 1 8 min 10 min
VTE.08 16 min 1 11 min 1 13 min 1
VTE.09 12 min 7 min 9 min
Total 120 min 3 83 min 2 94 min 2

The average time spent is: 297/3 = 99min.

Table 5.8: The test results obtained by testing DAI using the current method-
ology. VTE = Vulnerability Test Execution, TS = Time Spent, VF = Vulner-
abilities Found.

MAG
Tester01 Tester02 Tester03

VTE TS VF TS VF TS VF
VTE.01 6 min 4 min 5 min
VTE.02 9 min 6 min 5 min
VTE.03 12 min 10 min 8 min
VTE.04 4 min 1 5 min 1 6 min 1
VTE.05 11 min 8 min 10 min
VTE.06 10 min 9 min 10 min
VTE.07 12 min 1 5 min 8 min
VTE.08 13 min 1 10 min 1 12 min 1
VTE.09 10 min 6 min 8 min
Total 87 min 3 63 min 2 72 min 2

The average time spent is: 222/3 = 74min.

Table 5.9: The test results obtained by testing MAG using the current method-
ology. VTE = Vulnerability Test Execution, TS = Time Spent, VF = Vulner-
abilities Found.

by testing MAG using the EAST methodology. As shown in Table 5.5 and
Table 5.7, the total amount of reported vulnerabilities are 54 for DAI and 15
for MAG respectively. 12 of the reported vulnerabilities were marked as false-
positives. Furthermore, the one VT.01 vulnerability (Reflected XSS) found for
DAI was the same as one of the VT.01 vulnerabilities found for MAG. This gives
a total of 10 different VT.01 vulnerabilities and a total of 46 different VT.03
(SQL Injection) vulnerabilities (see Table 5.12).

116 Chapter 5. Realization

DAI
XXXXXXXXXXEAST

Tester Tester01 Tester02 Tester03 Jointly

Step 1 20 min 15 min 18 min 23 min
Step 3 18 min 13 min 15 min 20 min
Step 4 28 min
Step 5 46 min
Step 6 35 min
Total 38 min 28 min 33 min 152 min

The average time spent is: 251/3 = 83.67min.

Table 5.10: The measured time results obtained by testing DAI using the EAST
methodology.

MAG
XXXXXXXXXXEAST

Tester Tester01 Tester02 Tester03 Jointly

Step 1 12 min 10 min 10 min 15 min
Step 3 14 min 10 min 13 min 22 min
Step 4 15 min
Step 5 24 min
Step 6 15 min
Total 26 min 20 min 23 min 91 min

The average time spent is: 160/3 = 53.33min.

Table 5.11: The measured time results obtained by testing MAG using the
EAST methodology.

hhhhhhhhhhhhhhhhhhVulnerability

EDH Document
DAI MAG In

com-
mon

Total

VT.01 1 10 1 10
VT.03 43 3 0 46

The total number of different vulnerabilities found is 56.

Table 5.12: The total vulnerabilties found for DAI and MAG by testing DAI
and MAG using the EAST methodology

Chapter 6
Evaluation and discussion

This chapter uses the test results described in Section 5.3 as basis to com-
pare the efficiency of the current security testing methodology and the EAST
methodology. Then it describes some threats to the validity of the test results.
Furthermore, it gives an explanation of how the goals defined in the problem
statement in Section 1.2 are fulfilled, and whether the research goals defined
in Section 1.3 are attained. Finally, it gives an explanation on whether the
hypothesis defined in Section 1.4 is verified or falsified.

6.1 Comparison of the methodologies

There are three factors that are used as basis to compare the efficiency of the
current security testing methodology and the EAST methodology. These factors
are also mentioned in the problem statement and in the initial hypothesis in
Chapter 1, which are:

1. The amount of time spent on the security testing process.

2. The amount of vulnerabilities found during the security testing process.

3. The ability to mitigate false-positives during the security testing process.

Figure 6.1 shows an overview the test results obtained from each test iterate (as
shown in the activity diagram in Figure 4.6). Studying Table 5.8, 5.9, 5.10, 5.11
and 5.12 reveals the following facts:

1. Efficiency regarding the amount of time spent:

• The average time spent on testing DAI using the current methodology is
99 minutes, while the average time spent on testing DAI using the EAST

117

118 Chapter 6. Evaluation and discussion

methodology is 83.67 minutes. This shows that the EAST methodol-
ogy is approximately 15% more effective than the current methodology
regarding the average time spent on testing DAI only.

• The average time spent on testing MAG using the current methodology is
74 minutes, while the average time spent on testing MAG using the EAST
methodology is 53.33 minutes. This shows that the EAST methodology
is approximately 28% more effective than the current methodology re-
garding the average time spent on testing MAG only.

• By comparing the average time spent on testing both DAI and MAG
using the current methodology versus the average time spent on testing
both DAI and MAG using the EAST methodology, the following equation
is obtained:

100%
99.00min + 74.00min

(83.67min + 53.33min) ≈ 79%

which means that the average time spent on testing both DAI and MAG
using the EAST methodology is 79% of the average time spent on testing
both DAI and MAG using the current methodology. Hence, the EAST
methodology is approximately 21% more effective in average, regarding
time spent, than the current methodology (see Equation (6.1)).

100%− 79% = 21% (6.1)

2. Efficiency regarding the amount of vulnerabilities found:
The amount of vulnerabilities found by testing DAI and MAG using the current
methodology is 3, while the amount of vulnerabilities found by testing DAI and
MAG using the EAST methodology is 56. In this respect, the EAST method-
ology is approximately 95% more effective than the current methodology (see
Equation (6.2)).

100%− 100%
56vulnerabilities

(3vulnerabilities) ≈ 95% (6.2)

However, the three vulnerabilities that were found by using the current method-
ology were not found by using the EAST methodology. This indicates that
human intervention is necessary in circumstances where tools have limited ca-
pabilities. Furthermore, this is in line with the satements given about the short-
comings of agile security testing in Section 2.3.1. I.e., agile security testing does
not eliminate the need for security experts and has test incompleteness.

6.2. THREATS TO VALIDITY 119

120
A i t t

99

83.67
100

120
Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53 33

80

100

120
Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53.33

44

40

60

80

100

120
Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53.33

3

44

3

1310
2

20

40

60

80

100

120
Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53.33

3

44

3

1310
2

0

20

40

60

80

100

120

DAI (Using

C)

DAI (Using

EAST)

MAG (Using

C)

MAG (Using

EAST)

Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53.33

3

44

3

1310
2

0

20

40

60

80

100

120

DAI (Using

Current)

DAI (Using

EAST)

MAG (Using

Current)

MAG (Using

EAST)

Avarage minutes spent

Vulnerabili!es found

False-posi!ves

99

83.67

74

53.33

3

44

3

1310
2

0

20

40

60

80

100

120

DAI (Using

Current)

DAI (Using

EAST)

MAG (Using

Current)

MAG (Using

EAST)

Average minutes spent

Vulnerabili!es found

False-posi!ves

Figure 6.1: Comparison of the test results.

3. The ability to mitigate false-positives:
By testing DAI and MAG using the EAST methodology (and Acunetix WVS),
there were found 12 false-positives. The false-positives were marked via Acunetix
WVS and thereby added to a false-positive repository. Next time DAI and MAG
are scanned, the marked false-positives will be regarded as false-positives and
not as vulnerabilities by Acunetix WVS. In turn, this mitigates false-positives
during the security testing process. The current security testing methodology
does not have an activity in place that mitigates false-positives. Hence, only the
EAST methodology mitigates false-positives during the security testing process.

However, as mentioned in Section 4.1, this approach to false-positive mitiga-
tion is dependent on either: (1) the penetration testing tool (that is being used
in the EAST methodology) must have the ability to mark and remember spe-
cific false-positives or, (2) the penetration testing tool must have the ability to
import a false-positive repository (e.g. false-positive database, XML file, etc.).

6.2 Threats to validity

The following points describe the threats to the generalizability of the test re-
sults:

• Tools: The usage of one specific Web Vulnerability Scanner is obvi-
ously an important factor that affects the results of the tests performed
in Section 5.2.3. Other Web Vulnerability Scanners could produce differ-
ent results regarding time spent and vulnerabilities found. However, this
risk is mitigated due to the reasons given in Section 2.5.1 (Why Acunetix

120 Chapter 6. Evaluation and discussion

WVS?). Furthermore, it was decided that PMD would be used as the
automatic code scanner tool. This was due to the testers’ previous expe-
rience in using PMD. A better starting point in this respect would be to
find a tool that produce the minimum amount of false-positives. This risk
is mitigated by leaning towards the findings done by Baca et al. [59]. I.e.
the best security detecters are those that have both security experience
and experience in using the static analyzer tool being used. Finally, the
testers used SeaMonster to model misuse case diagrams. Although the
testers had not used SeaMonster previously, they did get an introduction
on how to use it. However, the lack of experience in using SeaMonster
would inevitably affect the test results regarding time spent.

• Security specific knowledge: The majority of the testers had low se-
curity specific knowledge (see Table 5.3). This would consequently lead to
the detection of less vulnerabilities (as shown in Table 5.8 and Table 5.9).

• Security testing experience: All of the testers had a low experience in
security testing. This can also be used as a basis to question the validity of
the test results. On the other hand, this is another example showing that
structured security testing is still not widely applied in organizations. This
risk can only be mitigated by continuously applying structured security
testing using e.g. the EAST methodology.

• Testing thoroughness: The thoroughness of the testers’ test execution
was not measured, except the given explanation on how the testers did per-
form the test activities in each security testing methodology (Section 5.2.2
and Section 5.2.3). This risk is mitigated (or belived to be mitigated) by
the fact that there were only voluntarily testers.

• Psychological effects, and the number of testers: As shown in Fig-
ure 4.6, the test iterations were carried out sequentially. This would have
a learning effect on the testers. I.e. for each iterate, the testers would gain
more security specific knowledge and more experience in performing the
tests. Obviously, this would be in the benefit of the testers, which would
further produce better results. In this context, better results means spend-
ing less time to complete a test iterate and/or to find more vulnerabilities.
Although the testers knew that the purpose of the testing process was
to observe the testing methodologies, they may have been more effective
while performing the security tests and thereby improving the results, as
a response to the fact that they were the ones that produced the results
that were taken into consideration. Thus, the testers may have considered
themselves as a part of the “object” being observed and thereby improved

6.3. GOALS ATTAINED 121

the test results. This form of reactivity is referred to as the Hawthorne
effect. Figure 6.1 shows that the average time spent on the test iterations
decreases for each test iterate. This indicates that there has indeed been
a learning effect on the testers during the testing process. Furthermore,
the number of testers is another factor that could be used to question the
validity of the test results. However, this was a side effect of the limited
time and resources.

6.3 Goals attained

This section starts by explaining how the goals defined in the problem state-
ment in Section 1.2 are attained, i.e. how the problem statement is solved. It
further explains whether the research goals defined in Section 1.3 are attained.
Section 6.3.1 explains the former, while Section 6.3.2 explains the latter. The
problem statement points and the research goal points are referred to by their
identifiers, (e.g. Problem statement point 1, and RG.01). The reader is therefore
encouraged to look at Section 1.2 for the problem statement, and Section 1.3
for the research goals in order to understand the points that are being referred
to.

6.3.1 Problem statement goals

• Problem statement point 1: In Chapter 2, the author performed a
survey of state-of-the-art security testing methodologies, with a special
focus on Web applications. This was done by gathering and analyzing
relevant information from academic books, scientific papers and Web sites.
With this, problem statement point 1 is fulfilled.

• Problem statement point 2: The author defined a set of criterions
in Section 2.7. Using those criterions as basis, the author elicited Agile
Security Testing as the most adequate security testing methodology for
Web applications. However, for reasons given in Section 2.7, the author’s
selection criteria are to some extent subjective. In turn, this could have
an affect on the resulting decision.

Initially, Agile Security Testing did only fulfill point 2a in the problem
statement, and did not fulfill point 2b. Neither did it fulfill criterion C.05
and criterion C.06 defined in Section 2.7. Therefore, the author provided
a solution for point 2b, criterion C.05 and criterion C.06 as shown in
Section 4.1. The resulting solution was named Extended Agile Security
Testing (EAST). With this, problem statement point 2 is fulfilled.

122 Chapter 6. Evaluation and discussion

• Problem statement point 3: In Chapter 3, the author presentet the
current situation of the AIS group at CERN, and described the SDLC that
is being used by the AIS group (Scrum). Furthermore, an explanation to
why there is a need for a security testing methodology in the AIS group
was given. This was done by:

1. Describing the security testing methodology applied by the AIS group,
and giving an explanation to why the current security testing method-
ology is not sufficient.

2. Conducting a risk analysis of the AIS group’s software systems, by
using the most important assets that are handled by their software
systems as a starting point.

In Section 4.2 the author described in which phase of Scrum the various
EAST steps are integrated. Finally, in Section 5.1 the author completed
the integration by describing how, why, and by whom the EAST steps are
carried out. With this, problem statement point 3 is fulfilled.

• Problem statement point 4:

1. In Section 2.4, 2.5 and 2.6, different security testing tools were de-
scribed and evaluated, in which Acunetix WVS was selected. Fur-
thermore, in Section 2.5.1, the author justified why Acunetix WVS
was selected. With this, problem statement point 4a is fulfilled.

2. In Section 4.3 the author explained which security tests were to be
performed, and how the security testing process would be conducted.
Furthermore, in Section 5.2 the author conducted the security test-
ing of DAI and MAG. The security tests were carried out by three
testers. As mentioned in Section 6.2, the number of testers was a
side effect of the limited time and resources. Nevertheless, a secu-
rity test containing four iterations (two iterations using the current
methodology, and two iterations using the EAST methodology) was
carried out. With this, problem statement point 4b is fulfilled.

3. Based on the test results given in Section 5.3, an evaluation of the
security testing methodologies has been made in Section 6.1. With
this, problem statement point 4c is fulfilled.

6.3.2 Research goals

This section describes whether the author has attained the research goals de-
fined in Section 1.3. This is done by associating the problem statement with
the research goals, and thereby describing how the research goals are attained

6.3. GOALS ATTAINED 123

RG.01

RG.02

RG.03

RG.04

Problem statement fulfilled

1

2

3

4a

4b

4c

Research goal attained

Figure 6.2: The left hand side of the figure shows the problem statements that
are fulfilled. By fulfilling the problem statements, the research goals are at-
tained, as shown on the right hand side of the figure.

as a result of fulfilling the problem statement (the fulfillment of the problem
statement goals are described in Section 6.3.1). Figure 6.2 illustrates what is
explained in the points below.

• RG.01: By fulfilling problem statement point 1, 2, 3 and 4, the author
gained knowledge of state-of-the-art security testing methodologies, with a
special focus on Web applications. With this, the author attained research
goal RG.01.

• RG.02: By fulfilling problem statement point 1 and 2, the author found
and evaluated security testing methodologies for Web applications. With
this, the author attained research goal RG.02.

• RG.03: By fulfilling problem statement point 3, 4b and 4c, the author
implemented one security testing methodology (at a proof of concept level)
for Web applications into the SDLC applied by the AIS group at CERN,
and evaluated it. With this, the author attained research goal RG.03.

• RG.04: By fulfilling problem statement point 4a, the author got an
overview of the different security testing tool categories, along with some
tool examples for each category (both freeware and commercial). With
this, the author attained research goal RG.04.

124 Chapter 6. Evaluation and discussion

6.4 The hypothesis: Verified or falsified?

The following hypothesis was defined by the author in Section 1.4:

H.00 The detection of vulnerabilities in Web applications is done significantly
more efficient regarding time spent, the amount of vulnerabilities that are
found and managing false-positives by using a structured security testing
methodology for Web applications, compared to existing ad hoc ways of
performing security tests.

The author uses three factors as basis to decide whether H.00 is verified or
falsified. As mentioned in Section 6.1, these factors are the efficiency of the
security testing methodology regarding: (1) the amount of time spent, (2) the
amount of vulnerabilities found and (3) the ability to mitigate false-positives.
The following facts are derived from the results presented in Section 6.1:

• Equation (6.1) shows that the EAST methodology is approximately 21%
more effective in average, regarding time spent, than the current security
testing methodology.

• Equation (6.2) shows that the EAST methodology is approximately 95%
more effective, regarding the amount of vulnerabilities found, than the
current security testing methodology.

• The current security testing methodology does not have an activity in
place to manage false-positives. It is therefore not possible to measure
how efficient it is to manage false-positives using the EAST methodology,
compared to managing false-positives using the current security testing
methodology. Doing so, would be to compare “something” against “noth-
ing”. However, only the EAST methodology provides the managing of
false-positives, which further mitigates false-positives during the security
testing process.

The three abovementioned points show that the EAST methodology (a struc-
tured security testing methodology for Web applications) is significantly more
efficient than the current security testing methodology applied by tha AIS group
(an ad hoc way of performing security tests). Hence, hypothesis H.00 is verified.

Chapter 7
Conclusion and further work

This capter highlights the main points and gives a discussion of the achieve-
ments. Furthermore, it presents thoughts and suggestions of potential future
work and improvements.

7.1 Conclusion

One of the key security practices that needs to be in place in order to mitigate
the increasing number of vulnerabilities in Web applications, is a structured
security testing methodology. The nature of Web applications requires an it-
erative and evolutionary approach to development. Therefore, the structured
security testing methodology needs to have the capability of being adapted to
such an environment, and it needs to be specialized for Web applications.

The most applied security testing methodologies today are extensive and are
sometimes too complicated with their many activities and phases. By applying
such extensive security testing methodologies in the realm of Web applications,
developers tend to neglect the testing process becuase the methodologies are
considered to be; too time-consuming, lacking a significant payoff and inap-
propriate to be applied on Web applications because they have a very short
time-to-market. This can be regarded as one of the factors to why security
testing often is executed according to the penetrate-and-patch paradigm.

In this thesis, the author has shown that by using a structured security
testing methodology especially developed for Web applications, leads to a sig-
nificantly more effective way of performing security tests on Web applications
compared to existing ad hoc ways of performing security tests. The factors that
the author used to measure the efficiency were: (1) the amount of time spent
on the security testing process, (2) the amount of vulnerabilities found during

125

126 Chapter 7. Conclusion and further work

the security testing process and (3) the ability to mitigate false-positives during
the security testing process.

The author showed this by:

• Executing a research among state-of-the-art security testing methodologies
for Web applications.

• Eliciting Agile Security Testing (based on predefined criterions) as the
most adequate security testing methodology for Web applicaitons. Then,
the author extended Agile Security Testing to make it support all the
predefined criterions. The resulting methodology was named Extended
Agile Security Testing (EAST) by the author.

• Eliciting a Web Vulnerability Scanner (a security testing tool) to be used
in the EAST methodology.

• Integrating the EAST methodology into the SDLC (Scrum) applied by
CERN’s Administrative Information Services (AIS) group, at the General
Infrastructure Services (GS) department.

• Performing security tests using the AIS group’s security testing methodol-
ogy (an ad hoc way of performing security tests), performing security tests
using the EAST methodology (a structured security testing methodology
for Web applications), and finally comparing the results obtained from the
security tests.

The results of the last mentioned point showed that the EAST methodology is:

• Approximately 21% more effective in average, regarding time spent, than
existing ad hoc ways of performing security tests.

• Approximately 95% more effective, regarding the amount of vulnerabilities
found, than existing ad hoc ways of performing security tests.

• The only methodology that provides the managing of false-positives, which
further mitigates false-positives during the security testing process.

7.2 Further work

Although the author has shown that the EAST methodology is significantly
more efficient than existing ad hoc ways of performing security tests, future eval-
uations of the EAST methodology should be focused on mitigating the threats
to the validity presented in Section 6.2. The following points list alternative
questions that should be addressed to mitigate the threats to the validity:

7.2. FURTHER WORK 127

• Does other tools produce significantly different results? Are the results
better or worse?

• The security tests were performed by testers that had low security specific
knowledge (the majority), and that had low security testing experience.
Do testers that have medium or high security specific knowledge and se-
curity testing experience produce significantly improved test results?

• Is the EAST methodology still significantly more efficient than existing ad
hoc ways of performing security tests when a larger empirical data is used?
I.e. more testers, and more vulnerability classes? There were only three
testers, and nine different vulnerability classes used in the test iterations
in this thesis.

Besides the threats to the validity, future evaluations of the EAST methodology
should also address the question of how efficient it is compared to extensive
testing methodologies when applied on Web applications. The extensive se-
curity testing methodologies would naturally require more time and thereby
be less efficient regarding time spent. However, what would be interesting to
discover, is whether the EAST methodology lacks activities that are vital for
the overall security testing process, compared to the extensive security testing
methodologies.

Figure 4.4 shows that EAST step 4 (repository of knowledge) will also be
carried out while the system is in operation. The author explained why it should
be carried out. As a further work, it would be interesting to figure out how the
repository of knowledge would be updated while the system is in operation.

Studying Table 5.10 and Table 5.11 reveals that the testers have spent most
time (jointly) on EAST step 5 (penetration testing and mitigating false pos-
itives). A possible future improvement would be to find out why the testers
spend most time on this step, and whether possible improvements of the step is
possible.

128 Chapter 7. Conclusion and further work

List of Figures

1.1 The usage of Web applications among US adults 2
1.2 Reasons for not using Web applications 2
1.3 Malicious code threats . 3
1.4 Research method and approach 9

2.1 The Security Development Lifecycle (SDL) 14
2.2 The security touchpoints . 14
2.3 The Secure Software Development Lifecycle (SSDL) 15
2.4 The Open Source Security Testing Methodology Manual sections 18
2.5 TDD: Test Driven Development 19
2.6 The misuse case legend . 20
2.7 A misuse case example . 21
2.8 A highly testable architecture . 22
2.9 The V model . 23
2.10 Threat modeling . 25
2.11 The generic SDLC model . 28
2.12 A Security Goal Indicator Tree (SGIT) example 31
2.13 A Vulnerability Inspection Diagram (VID) example 32
2.14 Reviewing for cross site scripting (code review) 33
2.15 The OWASP Testing Framework work flow 35
2.16 Acunetix WVS scan result . 41
2.17 Acunetix WVS AcuSensor Technology 42
2.18 Acunetix WVS Vulnerability Editor 44

3.1 CERN’s organizational structure 56
3.2 LHC and its experiments . 57
3.3 The Scrum SDLC . 61
3.4 The current security testing methodology 63

129

130 List of Figures

3.5 CORAS graphical modeling notation 65
3.6 Risk analysis: Asset diagram . 67
3.7 Risk analysis: Threat diagram and risk estimations 71
3.8 Risk analysis: Risk treatment . 72

4.1 Marking false-positives using Acunetix WVS 76
4.2 Viewing false-positives in Acunetix WVS 77
4.3 Extended Agile Security Testing 78
4.4 Extended Agile Security Testing integrated in the AIS group’s

SDLC . 79
4.5 EDH screenshot . 83
4.6 Activity diagram of the testing process 84

5.1 DAI screenshot . 94
5.2 MAG screenshot . 95
5.3 Misuse case diagram of DAI . 106
5.4 DAI folder and file structure . 107
5.5 PMD in action . 108
5.6 The Reflected XSS profile in Acunetix WVS 110
5.7 DAI false-false positive tree . 110

6.1 Comparison of the test results . 119
6.2 Problem statement fulfilled, research goals attained 123

A.1 XSS test - vulnerable Web application A-2
A.2 XSS test - XSS carried out . A-2
A.3 Stored XSS test - input form . A-3
A.4 Stored XSS test - Stored XSS carried out A-4
A.5 Code Information Leakage . A-11

List of Tables

1.1 Value of advertised goods in the underground economy 3
1.2 Prevention is cheaper than cure 5
1.3 Elements of Classical Research and Technology Research 8

2.1 Security testing tools . 39
2.2 Security testing tools and SDLC phases 39
2.3 Relevant competitors to Acunetix WVS 48
2.4 Comparison of security testing methodologies for Web applications 53

3.1 Risk analysis: Asset table . 66
3.2 Risk analysis: High level risk table 68
3.3 Risk analysis: Likelihood scale 69
3.4 Risk analysis: Consequence scale 69
3.5 Risk analysis: Risk matrix . 69
3.6 Risk analysis: Risk evaluation . 70

5.1 Vulnerabilities tested on DAI and MAG 91
5.2 Test environment . 96
5.3 The testers . 97
5.4 PMD results of DAI . 107
5.5 DAI penetration testing results 111
5.6 PMD results of MAG . 113
5.7 MAG penetration testing results 114
5.8 DAI test results (current methodology) 115
5.9 MAG test results (current methodology) 115
5.10 DAI test time results (EAST methodology) 116
5.11 MAG test time results (EAST methodology) 116
5.12 Total vulnerabilties (EAST methodology) 116

131

132 List of Tables

Glossary

Artifact A man-made object taken as a whole. In this
context: E.g. a new algorithm for a computer
program, a new SDLC, a new security testing
methodology, etc., 7

ATAM A Comprehensive Method for Architecture
Evaluation, 29

Backlog items In Scrum: a collection of refined backlog items
derived from a Sprint Backlog, 60

Bug A security vulnerability at the implementation
level, 4

CORAS A methodology for conducting security risk
analysis, specially developed to support struc-
tured brainstorming for risk identification, risk
estimation and risk treatment, 1

Exploratory testing A collective term for simultaneous learning, test
design, and test execution, 24

False-negative An existing bug that is not detected by a testing
tool, 74

False-positive A nonexistent bug that is reported as detected
by a testing tool, 8

Flaw A security vulnerability at the design level, 4
Forum A public meeting or assembly for open discus-

sion, 1

133

134 Glossary

IRC Internet relay chat, 1
ISAR The Independent Software Architecture Review

methodology, 29

Product Backlog In Scrum: An evolving, prioritized queue of
business and technical functionality that needs
to be developed into a system, 60

RMF Risk Management Framework, 1

Scrum An iterative incremental framework for manag-
ing complex work (such as new product devel-
opment) commonly used with agile software de-
velopment, 10

SDL Security Development Lifecycle, 1
Security regression Security is compromised due to a material

change in the system. For example, a new hard-
ware platform, a new release of a build or mod-
ule, etc., 23

SNMP Simple Network Management Protocol, 41
Sprint Backlog In Scrum: One Product Backlog item, 60
SQL Structured Query Language, 1
SSDL Secure Software Development Lifecycle, 1

TDD Test Driven Development, 19

UML Unified Modeling Language, 20

Vulnerability class A type of software vulnerability, e.g. SQL injec-
tion and Cross Site Scripting (XSS), 4

WVS Web Vulnerability Scanner, 13

Bibliography

[1] About CERN. http://public.web.cern.ch/public/en/about/

Global-en.html Last date accessed 2009-05-12.

[2] Acunetix Web Vulnerability Scanner (WVS). http://www.acunetix.

com/vulnerability-scanner/ Last date accessed 2009-04-20.

[3] Add N Edit Cookies (AnEC) 0.2.1.3. https://addons.mozilla.org/

en-US/firefox/addon/573 Last date accessed 2009-07-06.

[4] AppDetective. http://www.appsecinc.com/products/appdetective/

index.shtml Last date accessed 2009-04-20.

[5] BinNavi. http://www.zynamics.com/binnavi.html Last date accessed
2009-04-21.

[6] BugScam. http://sourceforge.net/projects/bugscam Last date ac-
cessed 2009-04-21.

[7] BugTraq mailing list. http://www.securityfocus.com/archive/1 Last
date accessed 2009-03-21.

[8] Burp Suite. http://portswigger.net/suite/ Last date accessed 2009-
04-20.

[9] Cenzic Hailstorm Professional. http://www.cenzic.com/products/

cenzic-hailstormPro/ Last date accessed 2009-04-21.

[10] Class Type Architecture: A Strategy for Layering Software Appli-
cations. http://www.ambysoft.com/essays/classTypeArchitecture.

html Last date accessed 2009-03-17.

[11] CLR Profiler. http://msdn.microsoft.com/en-us/library/ms979205.
aspx Last date accessed 2009-04-21.

135

http://public.web.cern.ch/public/en/about/Global-en.html
http://public.web.cern.ch/public/en/about/Global-en.html
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
https://addons.mozilla.org/en-US/firefox/addon/573
https://addons.mozilla.org/en-US/firefox/addon/573
http://www.appsecinc.com/products/appdetective/index.shtml
http://www.appsecinc.com/products/appdetective/index.shtml
http://www.zynamics.com/binnavi.html
http://sourceforge.net/projects/bugscam
http://www.securityfocus.com/archive/1
http://portswigger.net/suite/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www.ambysoft.com/essays/classTypeArchitecture.html
http://www.ambysoft.com/essays/classTypeArchitecture.html
http://msdn.microsoft.com/en-us/library/ms979205.aspx
http://msdn.microsoft.com/en-us/library/ms979205.aspx

136 Bibliography

[12] Common Vulnerabilities and Exposures. http://cve.mitre.org/ Last
date accessed 2009-03-21.

[13] Computer Emergency Readiness Team (CERT). http://www.cert.org/
Last date accessed 2009-03-21.

[14] Compuware BoundsChecker. http://www.compuware.com/products/

devpartner/studio.htm Last date accessed 2009-04-21.

[15] Convention for the establishment of a European organization for nuclear
research. http://dsu.web.cern.ch/dsu/ls/conventionE.htm Last date
accessed 2009-05-12.

[16] CORAS editor v.2.0.b5. http://coras.sourceforge.net/downloads.

html Last date accessed 2009-05-22.

[17] Desaware CAS/Tester. http://www.desaware.com/products/

castester/index.aspx Last date accessed 2009-04-21.

[18] Fiddler. http://www.fiddler2.com/fiddler2/ Last date accessed 2009-
04-21.

[19] FindBugs. http://findbugs.sourceforge.net/ Last date accessed
2009-04-20.

[20] Firefox Toolbar. https://addons.mozilla.org/en-US/firefox/

search?q=&cat=1%2C12 Last date accessed 2009-04-21.

[21] Fortify Source Code Analyzer (SCA). http://www.fortify.com/

products/detect/in_development.jsp Last date accessed 2009-04-20.

[22] Growth of web applications in the US. http://rubiconconsulting.com/
insight/whitepapers/2007/09/growth-of-web-applications-in.

html Last date accessed 2009-02-19.

[23] HP WebInspect software. http://www.spidynamics.com/products/

webinspect/ Last date accessed 2009-04-20.

[24] IBM Rational AppScan. http://www-01.ibm.com/software/awdtools/
appscan/ Last date accessed 2009-04-27.

[25] IDA Pro. http://www.datarescue.com/ Last date accessed 2009-04-21.

[26] ISECOM. http://www.isecom.org/ Last date accessed 2009-04-15.

[27] JUnit. http://www.junit.org/ Last date accessed 2009-04-21.

http://cve.mitre.org/
http://www.cert.org/
http://www.compuware.com/products/devpartner/studio.htm
http://www.compuware.com/products/devpartner/studio.htm
http://dsu.web.cern.ch/dsu/ls/conventionE.htm
http://coras.sourceforge.net/downloads.html
http://coras.sourceforge.net/downloads.html
http://www.desaware.com/products/castester/index.aspx
http://www.desaware.com/products/castester/index.aspx
http://www.fiddler2.com/fiddler2/
http://findbugs.sourceforge.net/
https://addons.mozilla.org/en-US/firefox/search?q=&cat=1%2C12
https://addons.mozilla.org/en-US/firefox/search?q=&cat=1%2C12
http://www.fortify.com/products/detect/in_development.jsp
http://www.fortify.com/products/detect/in_development.jsp
http://rubiconconsulting.com/insight/whitepapers/2007/09/growth-of-web-applications-in.html
http://rubiconconsulting.com/insight/whitepapers/2007/09/growth-of-web-applications-in.html
http://rubiconconsulting.com/insight/whitepapers/2007/09/growth-of-web-applications-in.html
http://www.spidynamics.com/products/webinspect/
http://www.spidynamics.com/products/webinspect/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.datarescue.com/
http://www.isecom.org/
http://www.junit.org/

BIBLIOGRAPHY 137

[28] Klocwork Insight. http://www.klocwork.com/products/insight.asp

Last date accessed 2009-04-20.

[29] Microsoft FxCop. http://msdn.microsoft.com/en-us/library/

bb429476.aspx Last date accessed 2009-04-21.

[30] Microsoft Security Configuration Tool set. http://technet.microsoft.
com/en-us/library/bb742512.aspx Last date accessed 2009-04-21.

[31] .NETMon. http://www.foundstone.com/us/resources-free-tools.

asp Last date accessed 2009-04-21.

[32] NeXpose. http://www.rapid7.com/nexpose/overview.jsp Last date
accessed 2009-04-20.

[33] OWASP. http://www.owasp.org/ Last date accessed 2009-03-26.

[34] OWASP Tools. http://www.owasp.org/index.php/Category:OWASP_

Tool Last date accessed 2009-04-20.

[35] OWASP Tools Project. http://www.owasp.org/index.php/Category:

OWASP_Tools_Project Last date accessed 2009-04-22.

[36] OWASP Top 10 vulnerabilities. http://www.owasp.org/index.php/

Top_10_2007 Last date accessed 2009-06-10.

[37] OWASP WebScarab. http://www.owasp.org/index.php/Category:

OWASP_WebScarab_Project Last date accessed 2009-04-20.

[38] Paros. http://www.parosproxy.org/index.shtml Last date accessed
2009-04-21.

[39] PMD - Java source code scanner (Static Analysis Tool). http://pmd.

sourceforge.net/ Last date accessed 2009-07-03.

[40] Rational PurifyPlus. http://www-01.ibm.com/software/awdtools/

purifyplus/ Last date accessed 2009-04-21.

[41] Rough Auditing Tool for Security (RATS). http://www.fortify.com/

security-resources/rats.jsp Last date accessed 2009-04-20.

[42] Scuba. http://www.imperva.com/products/scuba.html Last date ac-
cessed 2009-04-20.

[43] SeaMonster V3.0. http://sourceforge.net/projects/seamonster/

Last date accessed 2009-07-03.

http://www.klocwork.com/products/insight.asp
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://technet.microsoft.com/en-us/library/bb742512.aspx
http://technet.microsoft.com/en-us/library/bb742512.aspx
http://www.foundstone.com/us/resources-free-tools.asp
http://www.foundstone.com/us/resources-free-tools.asp
http://www.rapid7.com/nexpose/overview.jsp
http://www.owasp.org/
http://www.owasp.org/index.php/Category:OWASP_Tool
http://www.owasp.org/index.php/Category:OWASP_Tool
http://www.owasp.org/index.php/Category:OWASP_Tools_Project
http://www.owasp.org/index.php/Category:OWASP_Tools_Project
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.parosproxy.org/index.shtml
http://pmd.sourceforge.net/
http://pmd.sourceforge.net/
http://www-01.ibm.com/software/awdtools/purifyplus/
http://www-01.ibm.com/software/awdtools/purifyplus/
http://www.fortify.com/security-resources/rats.jsp
http://www.fortify.com/security-resources/rats.jsp
http://www.imperva.com/products/scuba.html
http://sourceforge.net/projects/seamonster/

138 Bibliography

[44] Security Innovation. http://www.securityinnovation.com/ Last date
accessed 2009-03-20.

[45] Security tools. http://sectools.org/ Last date accessed 2009-04-20.

[46] SHIELDS - Detecting known security vulnerabilities from within design
and development tools. http://www.shields-project.eu/ Last date
accessed 2009-04-16.

[47] SiteDigger. http://www.foundstone.com/us/resources-free-tools.

asp Last date accessed 2009-04-21.

[48] SQLrecon. http://www.specialopssecurity.com/labs/sqlrecon/1.

0/down.php Last date accessed 2009-04-20.

[49] SSLDigger. http://www.foundstone.com/us/resources-free-tools.

asp Last date accessed 2009-04-21.

[50] Test Tool Evaluations. http://www.uml.org.cn/Test/12/Automated%

20Testing%20Tool%20Evaluation%20Matrix.pdf Last date accessed
2009-04-20.

[51] The Administrative Information Services group. http://it-dep-ais.

web.cern.ch/it-dep-AIS/mandate.asp Last date accessed 2009-05-13.

[52] The website of the world’s first-ever Web server. http://info.cern.ch/
Last date accessed 2009-05-13.

[53] Visual Studio Team System. http://msdn.microsoft.com/en-gb/

teamsystem/default.aspx Last date accessed 2009-04-21.

[54] Acunetix. Acunetix Web Vulnerability Scanner, Manual V6.0. http://

www.acunetix.com/vulnerability-scanner/wvsmanual.pdf Last date
accessed 2009-04-24.

[55] Ananta Security. Web Vulnerability Scanners Evaluation. http://www.

darknet.org.uk/content/files/WebVulnScanners.pdf Last date ac-
cessed 2009-04-27.

[56] M. Andrews. Guest Editor’s Introduction The State of Web Security.
IEEE Security and Privacy, 4(4):14–15, 2006.

[57] Shanai Ardi, David Byers, Per Håkon Meland, Inger Anne Tondel, and
Nahid Shahmehri. How can the developer benefit from security model-
ing? Availability, Reliability and Security, International Conference on,
0:1017–1025, 2007.

http://www.securityinnovation.com/
http://sectools.org/
http://www.shields-project.eu/
http://www.foundstone.com/us/resources-free-tools.asp
http://www.foundstone.com/us/resources-free-tools.asp
http://www.specialopssecurity.com/labs/sqlrecon/1.0/down.php
http://www.specialopssecurity.com/labs/sqlrecon/1.0/down.php
http://www.foundstone.com/us/resources-free-tools.asp
http://www.foundstone.com/us/resources-free-tools.asp
http://www.uml.org.cn/Test/12/Automated%20Testing%20Tool%20Evaluation%20Matrix.pdf
http://www.uml.org.cn/Test/12/Automated%20Testing%20Tool%20Evaluation%20Matrix.pdf
http://it-dep-ais.web.cern.ch/it-dep-AIS/mandate.asp
http://it-dep-ais.web.cern.ch/it-dep-AIS/mandate.asp
http://info.cern.ch/
http://msdn.microsoft.com/en-gb/teamsystem/default.aspx
http://msdn.microsoft.com/en-gb/teamsystem/default.aspx
http://www.acunetix.com/vulnerability-scanner/wvsmanual.pdf
http://www.acunetix.com/vulnerability-scanner/wvsmanual.pdf
http://www.darknet.org.uk/content/files/WebVulnScanners.pdf
http://www.darknet.org.uk/content/files/WebVulnScanners.pdf

BIBLIOGRAPHY 139

[58] B. Arkin, S. Stender, and G. McGraw. Software penetration testing. IEEE
Security & Privacy, 3(1):84–87, 2005.

[59] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. Static
Code Analysis to Detect Software Security Vulnerabilities - Does Experi-
ence Matter? Availability, Reliability and Security, International Confer-
ence on, IEEE, pages 804–810, 2009.

[60] James Bach. Exploratory testing explained. The Test Practicioner, 2002.

[61] Len Bass, Paul Clements, and Rick Kazman. Software architecture in
practice. Addison-Wesley, 2003.

[62] A. Cockburn and J. Highsmith. Agile Software Development: The People
Factor. Computer, 34(11), 2001.

[63] M. Curphey, R. Arawo, and M.V. Foundstone. Web application security
assessment tools. IEEE Security & Privacy, 4(4):32–41, 2006.

[64] Heidi E. I. Dahl. The CORAS method for security risk analysis. In
Tutorial presentation at 7th Estonian Summer School on Computer and
Systems Science in cooperation with the Nordic Network On DEpendable
Systems (NODES), Otepää, Estonia., 2008.

[65] Heidi E. I. Dahl, Ida Hogganvik, and Ketil Stølen. Structured semantics
for the coras security risk modelling language. report stf07 a970. Technical
report, SINTEF Information and Communication Technology, 2007.

[66] T.B. Dao and E. Shibayama. Idea: Automatic Security Testing for Web
Applications. In Engineering Secure Software and Systems: First Inter-
national Symposium, Essos 2009 Leuven, Belgium, February 4-6, 2009
Proceedings, page 180. Springer-Verlag New York Inc, 2009.

[67] G.A. Di Lucca, A.R. Fasolino, F. Faralli, and U. De Carlini. Testing
Web applications. Software Maintenance, 2002. Proceedings. International
Conference on, pages 310–319, 2002.

[68] M. Dowd, J. McDonald, and J. Schuh. The art of software security assess-
ment: identifying and preventing software vulnerabilities. Addison-Wesley,
2007.

[69] E. Dustin, J. Rashka, and D. McDiarmid. Quality Web Systems: Perfor-
mance, Security, and Usability. Addison-Wesley, 2002.

[70] Gencer Erdogan and Egil Trygve Baadshaug. Extending SeaMonster to
support vulnerability inspection modeling. Technical report, NTNU, De-
partment of computer and information science, 2008.

140 Bibliography

[71] European Commission - Information and Communication Technologies.
D1.2 Initial SHIELDS approach guide. http://er-projects.gf.liu.

se/main.php/D1.2%20Initial%20SHIELDS%20approach%20guide.pdf?

fileitem=1786183 Last date accessed 2009-04-16.

[72] European Commission - Information and Communication Tech-
nologies. D4.1 Initial specifications of the security methods and
tools. http://er-projects.gf.liu.se/main.php/D4.1%20Initial%

20specifications%20of%20the%20security%20methods%20and%

20tools.pdf?fileitem=10551374 Last date accessed 2009-04-16.

[73] Marc Fossi, Eric Johnson, Dean Turner, Trevor Mack, Joseph Blackbird,
David McKinney, Mo King Low, Téo Adams, Marika Pauls Laucht, and
Jesse Gough. Symantec Report on the Underground Economy: July 2007
- June 2008. Technical report, Symantec Corporation, 2008.

[74] P. Godefroid, M.Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Proceedings of the Network and Distributed System Security
Symposium, 2008.

[75] A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in infor-
mation systems research. Management Information Systems Quarterly,
28(1):75–106, 2004.

[76] Hewlett-Packard. HP WebInspect User Guide. https://products.

spidynamics.com/webinspect/webinspectuserguide_8.0.548.0_

04012009.pdf Last date accessed 2009-02-29.

[77] Edward Hieatt and Robert Mee. Going Faster: Testing The Web Appli-
cation. IEEE Software, 19(2):60–65, 2002.

[78] J. Highsmith and A. Cockburn. Agile Software Development: The Busi-
ness of Innovation. Computer, 34(9):120–122, 2001.

[79] Ida Hogganvik. A graphical approach to security risk analysis. PhD thesis,
Faculty of Mathematics and Natural Sciences, University of Oslo, 2007.

[80] Paco Hope and Ben Walther. Web Security Testing Cookbook. O’Reilly,
2008.

[81] M.A. Howard. A process for performing security code reviews. Security
& Privacy, IEEE, 4(4):74–79, 2006.

[82] Michael Howard and Steve Lipner. The Security Development Lifecycle:
SDL, a Process for Developing Demonstrably More Secure Software. Mi-
crosoft Press, 2006.

http://er-projects.gf.liu.se/main.php/D1.2%20Initial%20SHIELDS%20approach%20guide.pdf?fileitem=1786183
http://er-projects.gf.liu.se/main.php/D1.2%20Initial%20SHIELDS%20approach%20guide.pdf?fileitem=1786183
http://er-projects.gf.liu.se/main.php/D1.2%20Initial%20SHIELDS%20approach%20guide.pdf?fileitem=1786183
http://er-projects.gf.liu.se/main.php/D4.1%20Initial%20specifications%20of%20the%20security%20methods%20and%20tools.pdf?fileitem=10551374
http://er-projects.gf.liu.se/main.php/D4.1%20Initial%20specifications%20of%20the%20security%20methods%20and%20tools.pdf?fileitem=10551374
http://er-projects.gf.liu.se/main.php/D4.1%20Initial%20specifications%20of%20the%20security%20methods%20and%20tools.pdf?fileitem=10551374
https://products.spidynamics.com/webinspect/webinspectuserguide_8.0.548.0_04012009.pdf
https://products.spidynamics.com/webinspect/webinspectuserguide_8.0.548.0_04012009.pdf
https://products.spidynamics.com/webinspect/webinspectuserguide_8.0.548.0_04012009.pdf

BIBLIOGRAPHY 141

[83] IBM. IBM Rational AppScan. ftp://ftp.software.ibm.com/software/
rational/web/datasheets/watchfire_appscan_ds.pdf Last date ac-
cessed 2009-02-22.

[84] Institute for Security and Open Methodologies (ISECOM). Open Source
Security Testing Methodology Manual V2.2. http://www.isecom.org/

mirror/osstmm.en.2.2.zip Last date accessed 2009-04-15.

[85] M. Jazayeri. Some trends in web application development. In International
Conference on Software Engineering, pages 199–213. IEEE Computer So-
ciety Washington, DC, USA, 2007.

[86] J. Jürjens. Model-based Security Testing Using UMLsec. Electronic Notes
in Theoretical Computer Science (ENTCS), 220(1):93–104, 2008.

[87] V. Kongsli. Towards agile security in web applications. In Conference on
Object Oriented Programming Systems Languages and Applications, pages
805–808. ACM Press New York, NY, USA, 2006.

[88] Tim Koomen, Leo van der Aalst, Bart Broekman, and Michiel Vroon.
TMap Next: For Result-driven Testing. UTN Publishers, 2006.

[89] S. Lipner and M. Howard. The Trustworthy Computing Security Devel-
opment Lifecycle. In 20th Annual Computer Security Applications Con-
ference (ACSAC 2004), pages 2–13, 2004.

[90] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing Web-based appli-
cations: The state of the art and future trends. Information and Software
Technology, 48(12):1172–1186, 2006.

[91] J.F. Maranzano, S.A. Rozsypal, G.H. Zimmerman, G.W. Warnken, P.E.
Wirth, and D.M. Weiss. Architecture reviews: practice and experience.
Software, IEEE, 22(2):34–43, 2005.

[92] S.T. March and G.F. Smith. Design and natural science research on in-
formation technology. Decision Support Systems, 15(4):251–266, 1995.

[93] G. McGraw. Software security. Security & Privacy Magazine, IEEE,
2(2):80–83, 2004.

[94] G. McGraw. Automated Code Review Tools for Security. Computer,
41(12):108–111, 2008.

[95] Gary McGraw. Software Security: Building Security in. Addison-Wesley,
2006.

ftp://ftp.software.ibm.com/software/rational/web/datasheets/watchfire_appscan_ds.pdf
ftp://ftp.software.ibm.com/software/rational/web/datasheets/watchfire_appscan_ds.pdf
http://www.isecom.org/mirror/osstmm.en.2.2.zip
http://www.isecom.org/mirror/osstmm.en.2.2.zip

142 Bibliography

[96] Gary McGraw and Bruce Potter. Software Security Testing. IEEE Secu-
rity & Privacy, 2(5):81–85, 2004.

[97] Microsoft. Microsoft Security Development Lifecycle (SDL) V3.2.
http://www.microsoft.com/downloads/details.aspx?FamilyID=

2412c443-27f6-4aac-9883-f55ba5b01814&displaylang=en Last date
accessed 2009-04-02.

[98] Microsoft. The Microsoft Security Development Lifecycle (SDL): Process
Guidance. http://msdn.microsoft.com/en-us/security/cc420639.

aspx Last date accessed 2009-03-21.

[99] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler.
The art of software testing. John Wiley and Sons, 2004.

[100] N-Stalker. N-Stalker user manual. http://community.nstalker.com/

manual/ Last date accessed 2009-02-22.

[101] National Academy of Engineering, National Academy of Engineering
of the N, and Microsoft Corporation. Frontiers of engineering: reports on
leading-edge engineering from the 2007 symposium. National Academies
Press, 2008.

[102] The Open Web Application Security Project. OWASP Testing Guide
V3.0. http://www.owasp.org/index.php/Category:OWASP_Testing_

Project Last date accessed 2009-03-26.

[103] J. Peeters. Agile Security Requirements Engineering. In Symposium on
Requirements Engineering for Information Security, 2005.

[104] W. Radosevich, C. C. Michael, and Inc. Cigital. Black box security testing
tools. https://buildsecurityin.us-cert.gov/daisy/bsi/articles/

tools/black-box/261-BSI.html Last date accessed 2009-04-17.

[105] L. Røstad. An extended misuse case notation: Including vulnerabilities
and the insider threat. In The Twelfth Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ.06), 2006.

[106] I. Rus and M. Lindvall. Knowledge management in software engineering.
Software, IEEE, 19(3):26–38, 2002.

[107] P.A.P. Salas, Padmanabhan Krishnan, and K.J. Ross. Model-Based Se-
curity Vulnerability Testing. Software Engineering Conference, 2007.
ASWEC 2007. 18th Australian, 0:284–296, 2007.

http://www.microsoft.com/downloads/details.aspx?FamilyID=2412c443-27f6-4aac-9883-f55ba5b01814&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2412c443-27f6-4aac-9883-f55ba5b01814&displaylang=en
http://msdn.microsoft.com/en-us/security/cc420639.aspx
http://msdn.microsoft.com/en-us/security/cc420639.aspx
http://community.nstalker.com/manual/
http://community.nstalker.com/manual/
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box/261-BSI.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box/261-BSI.html

BIBLIOGRAPHY 143

[108] K. Schwaber. Scrum development process. In OOPSLA Business Object
Design and Implementation Workshop, 1995.

[109] K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall, 2002.

[110] G. Sindre and A.L. Opdahl. Eliciting security requirements with misuse
cases. Requirements Engineering, 10(1):34–44, 2005.

[111] SINTEF, Telenor. The CORAS UML Profile. http://coras.

sourceforge.net/ Last date accessed 2009-02-22.

[112] Ketil Stølen and Ida Solheim. Technology research explained. report sintef
a313. Technical report, SINTEF Information and Communication Tech-
nology, 2007.

[113] A. Tang, F.C. Kuo, and M.F. Lau. Towards Independent Software Archi-
tecture Review. In Proceedings of the 2nd European conference on Software
Architecture, pages 306–313. Springer, 2008.

[114] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith. Agile security
testing of Web-based systems via HTTPUnit. Agile Conference, 2005.
Proceedings, pages 29–38, 2005.

[115] Herbert H. Thompson. Why Security Testing Is Hard. IEEE Security and
Privacy, 1(4):83–86, 2003.

[116] Herbert H. Thompson. Application penetration testing. IEEE Security
and Privacy, 3(1):66–69, 2005.

[117] G. Tóth, G. Kőszegi, and Z. Hornák. Case study: automated security
testing on the trusted computing platform. In Proceedings of the 1st Eu-
ropean workshop on system security, pages 35–39. ACM New York, NY,
USA, 2008.

[118] Dean Turner, Marc Fossi, Eric Johnson, Trevor Mack, Joseph Blackbird,
Stephen Entwisle, Mo King Low, David McKinney, and Candid Wueest.
Symantec Internet Security Threat Report: Trends for July-December 07
- Volume XIII. Technical report, Symantec Corporation, 2008.

[119] John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley, 2002.

[120] James A. Whittaker and Herbert H. Thompson. How to Break Software
Security: Effective Techniques for Security Testing. Pearson/Addison
Wesley, 2003.

http://coras.sourceforge.net/
http://coras.sourceforge.net/

144 Bibliography

[121] Chris Wysopal, Luke Nelson, Elfriede Dustin, Lucas Nelson, and Dino Dai
Zovi. The Art of Software Security Testing. Addison-Wesley, 2006.

Appendices

145

Appendix A
The current methodology: the
guidelines

The following points give guidelines for security testers to perform security tests
of the vulnerabilities that are given in Table 5.1. These guidelines are what
the AIS group use for the current security testing methodology. Some of the
guidelines have been adapted from the OWASP Testing Guide V3.0 [102] and the
OWASP Top 10 vulnerabilities Web site [36]. The guidelines also give a short
description of the underlying vulnerability followed by a detailed description.
The detailed descriptions are omitted in the points below as they are not needed
in order to perform the security test. Furthermore, the terms “application” and
“Web application” are used interchangeably in the points below.

VT.01 - Reflected XSS

• Short description : Reflected Cross Site Scripting (XSS) is another name
for non-persistent XSS, where the attack doesn’t load with the vulnerable
Web application but is originated by the victim loading the offending URI.

• How to test :

1. Detect input vectors. The tester must determine the Web applica-
tion’s variables and how to input them in the Web application.

2. Analyze each input vector to detect potential vulnerabilities. To
detect an XSS vulnerability, the tester will typically use specially
crafted input data with each input vector. Such input data is typ-
ically harmless, but trigger responses from the Web browser that

A-1

A-2 Appendix A. The current methodology: the guidelines

Figure A.1: A Web application potentially vulnerable to XSS. This figure is
adapted from OWASP Testing Guide V3.0 [102].

Figure A.2: XSS successfully executed. This figure is adapted from OWASP
Testing Guide V3.0 [102].

manifests the vulnerability. Testing data can be generated by using
a Web application fuzzer or manually.

3. For each vulnerability reported in the previous phase, the tester will
analyze the report and attempt to exploit it with an attack that has
a realistic impact on the Web application’s security.

• Example : Consider a site that has a welcome notice “Welcome User-
name”, where “Username” denotes the user’s name. Further, let’s say that
the user’s name is MrSmith. The URI:

http://example.com/index.php?user=MrSmith

would give the result as shown in Figure A.1. The tester must suspect
that every data entry point can result in an XSS attack. By changing the
URI to:

http://example.com/index.php?user=<script>alert(123)</script>

and given that no input validation for that specific URI is done, then
the result would be as shown in Figure A.2. If this happens, then there
is an indication that the Web application is vulnerable to Reflected Cross
Site Scripting.

A-3

Figure A.3: A Web application form is one of the places where Stored XSS can
be performed. This figure is adapted from OWASP Testing Guide V3.0 [102].

VT.02 - Stored XSS

• Short description : Stored Cross Site Scripting (XSS) is the most dan-
gerous type of Cross Site Scripting. Web applications that allow users to
store data are potentially exposed to this type of attack.

• How to test : The first step is to identify all points where user input is
stored into the back-end and then displayed by the application. Typical
examples of stored user input can be found in:

– User/Profiles page: the application allows the user to edit/change
profile details such as first name, last name, nickname, avatar, pic-
ture, address, e-mail address etc.

– Shopping cart: the application allows the user to store items into the
shopping cart which can then be reviewed later.

– File Manager: application that allows upload of files.

– Application settings/preferences: application that allows the user to
set preferences.

– Forums: application that allows storing of user defined text.

The second step is to analyze the HTML code. Input stored by the appli-
cation is normally used in HTML tags, but it can also be found as part
of Javascript content. At this stage, it is fundamental to understand if
input is stored and how it is positioned in the context of the page. For
example, the form in Figure A.3 has five input fields, in which one of
them is an e-mail address. The HTML code for the Email input field
is: <input class=”inputbox” type=”text” name=”email” size=”40”

value=”aaa@aa.com” />. In this case, the penetration tester needs to
find a way to inject code outside the <input> tag.

• Example : Below are two basic injection examples:

aaa@aa.com”><script>alert(document.cookie)</script>

A-4 Appendix A. The current methodology: the guidelines

Figure A.4: Stored XSS successfully executed. This figure is adapted from
OWASP Testing Guide V3.0 [102].

aaa@aa.com%22%3E%3Cscript%3Ealert(document.cookie)%3C%2Fscript%3E

Input validation/filtering controls of the application are tested by entering
these injection examples in the Email input field and submitting the form.
The tester needs to ensure that the input is submitted through the appli-
cation. This normally involves disabling Javascript if client-side security
controls are implemented or modifying the HTTP request with a Web
proxy (e.g. WebScarab). If one of the abovementioned injection examples
are successful, then the result would be a popup window containing the
cookie values as shown in Figure A.4. This would happen each time the
browser reloads the page. The resulting HTML code after the injection
is: <input class=”inputbox” type=”text” name=”email” size=”40”

value=”aaa@aa.com”><script>alert(document.cookie)</script>

VT.03 - SQL Injection

• Short description : A SQL injection attack consists of insertion or “in-
jection” of a SQL query via the input data from the client to the appli-
cation. A successful SQL injection exploit can read sensitive data from
the database, modify database data (Insert/Update/Delete), execute ad-
ministration operations on the database (such as shutdown the DBMS),
recover the content of a given file existing on the DBMS file system and,
in some cases, issue commands to the operating system. SQL injection at-
tacks are a type of injection attack, in which SQL commands are injected
into data-plane input in order to affect the execution of predefined SQL
commands.

• How to test : The first step in this test is to understand when the ap-
plication connects to a DB Server in order to access some data. Typical
examples of cases when an application needs to execute transactions on a
DB include:

– Authentication forms: when authentication is performed using a Web

A-5

form, chances are that the user credentials are checked against a
database that contains all usernames and passwords.

– Search engines: the string submitted by the user could be used in a
SQL query that extracts all relevant records from a database.

– E-Commerce sites: the products and their characteristics (price, de-
scription, availability, etc.) are very likely to be stored in a relational
database.

The tester has to make a list of all input fields whose values could be used
in crafting a SQL query, including the hidden fields of POST requests
and then test them separately, trying to interfere with the query and to
generate an error. The very first test usually consists of adding a single
quote (’) or a semicolon (;) to the field under test. The first is used in
SQL as a string terminator and, if not filtered by the application, would
lead to an incorrect query. The second is used to end a SQL statement
and, if it is not filtered, it is also likely to generate an error. The error
messages are valuable to the tester in order to perform a successful SQL
injection.

• Example : The following SQL query is typically used from the Web ap-
plication in order to authenticate a user:

SELECT * FROM Users WHERE Username=’$username’ AND

Password=’$password’

If the query returns a value it means that inside the database a user with
that credentials exists, then the user is allowed to login to the system,
otherwise the access is denied. The values of the input fields are generally
obtained from the user through a Web form. Suppose the following User-
name and Password values are inserted:

$username = 1’ or ’1’ = ’1

$password = 1’ or ’1’ = ’1

Then the SQL query will be:

SELECT * FROM Users WHERE Username=’1’ OR ’1’ = ’1’ AND Password=’1’

OR ’1’ = ’1’

If we suppose that the values of the parameters are sent to the server
through the GET method, and if the domain of the vulnerable Web site

A-6 Appendix A. The current methodology: the guidelines

is www.example.com, the request that is carried out would be:

http://www.example.com/index.php?username=1’%20or%20’1’%20=%20’1

&password=1’%20or%20’1’%20=%20’1

After a short analysis it is possible to notice that the query returns a
value (or a set of values) because the condition is always true (OR 1=1).
In this way the system has authenticated the user without knowing the
username and password. Another example is the following query:

SELECT * FROM Users WHERE ((Username=’$username’) AND

(Password=MD5(’$password’)))

There are two problems in this case, one is the use of the parentheses,
and the second problem is the use of the MD5 hash function. To resolve
the problem of the parentheses a number of closing parentheses (until we
obtain a corrected query) is added. The second problem is resolved by
invalidating the part of the query that contains the MD5 hash function.
To invalidate the MD5 hash function the symbol for a comment is typed
in. The comment symbol can vary for each database systems. In Oracle
the symbol is “−−”. Given this information the values for user name an
password is set to:

$username = 1’ or ’1’ = ’1’))/*

$password = foo

The resulting SQL query will then become:

SELECT * FROM Users WHERE ((Username=’1’ or ’1’ = ’1’))/*’) AND

(Password=MD5(’$password’)))

The URL request will then be:

http://www.example.com/index.php?username=1’%20or%20’1’

%20=%20’1’))/*&password=foo

VT.04 - Malicious File Execution

• Short description : Malicious file execution can be carried out if the un-
derlying Web application doesn’t check whether the uploaded file is what

A-7

the file is said to be. E.g. a file that has the extention .jpg may actually
be a file that contains a script, which may further be executed by the Web
application each time the file is invoked. All Web application frameworks
are vulnerable to malicious file execution if they accept filenames or files
from the user.

• How to test : If the Web application allows to upload a file, the tester
has to create a file containing a script and then upload it:

1. Create a script in the programming/scripting language the Web ap-
plcation supports, or is supposed to support.

2. Upload the file containing the script with its original file extension
e.g. .exe, .php, .js or .sh.

3. If the application doesn’t accept the file, try to change the extension
and upload again.

4. If the application now accepts the file, try to invoke the file and see
if the script is executed, if it is executed, then the application is
vulnerable to malicious file execution.

• Example : At the simplest, the following Javascript code can be written
in a file and uploaded:

<script type=”text/javascript”>

alert(document.cookie);

</script>

Whenever the file that contains the abovementioned script is invoked,
the cookie value for that specific user is shown in a popup dialog.

VT.05 - Insecure Direct Object Reference

• Short description : A direct object reference occurs when a developer
exposes a reference to an internal implementation object, such as a file,
directory, database record, or key, as a URL or form parameter. An
attacker can manipulate direct object references to access other objects
without authorization, unless an access control check is in place.

• How to test : There are two ways to test for this vulnerability. The first
option is to manipulate the values that are available in the URL field in
the browser. The second option is to download the HTML source from
the application Web site to a local computer, and then manipulate the

A-8 Appendix A. The current methodology: the guidelines

hidden fields. The following points show how to test for insecure direct
object reference in a URL:

1. Let’s say we have the following URL:
http://www.example-bank.com/BankAccount?AccountNumber=01234567890.

2. By changing the AccountNumber variable in the URL, information
about other bank accounts can be visible if no proper access control
check is in place.

As long as there is a variable in the URL that may be changed, a test
of this type is possible. If information that should have been restricted
is accessed or displayed, then an insecure direct object reference attack
has been successfully carried out. The following points show how to test
for insecure direct object reference in the HTML source code of a Web
application:

1. Download the HTML source code for the Web aplication to a local
computer. This can be done by clicking on View and then clicking on
Source via Microsoft Internet Explorer. Other browsers have similar
functionality.

2. Look for the <input> HTML tag where type is set to be hidden, e.g.
<input type=”hidden” name=”AccountNumber”/>.

3. Modify type=”hidden” to type=”text”.

4. In the form’s <form> tag, modify the action attribute to point di-
rectly to the issuing Web site. E.g. in this example the complete
<form> tag would be:

<form method=”post” action=”http://www.example-bank.com/”

name=”MainForm”>

This makes sure that the form would be submitted to the issuing
Web application.

5. Save the file as a HTML file on the local computer and open it using
a browser.

6. If everything went well, the hidden variables should be visible and it
should be possible to type in any value in the AccountNumber input
field.

7. Finally, it should be possible to see the responce from the issuing
Web application by submitting the form.

• Example : Look at the previous point for an example.

A-9

VT.06 - Cross Site Request Forgery (CSRF)

• Short description : CSRF is an attack which forces an end user to exe-
cute unwanted actions on a Web application in which he/she is currently
authenticated. With a little help of social engineering (like sending a link
via email/chat), an attacker may force the users of a Web application to
execute actions of the attacker’s choosing. A successful CSRF exploit can
compromise end user data and operation, when it targets a normal user.
If the targeted end user is the administrator account, a CSRF attack can
compromise the entire Web application.

• How to test : The tester needs to know URLs in the restricted (authen-
ticated) area. If the tester possess valid credentials, he/she can assume
both roles—the attacker and the victim. In this case, the tester know the
URLs to be tested just by browsing around the application.

Otherwise, if the tester doesn’t have valid credentials available, he/she
has to organize a real attack, and so induce a legitimate, logged in user
into following an appropriate link. This may involve a substantial level of
social engineering.

Either way, a test case can be constructed as follows:

– Let u denote the URL being tested; for example, u = http://www.example.com/action.

– Build an HTML page containing the HTTP request referencing URL
u (specifying all relevant parameters; in the case of HTTP GET this
is straightforward, while to a POST request you need to resort to
some Javascript).

– Make sure that the valid user is logged on the application.

– Induce him into following the link pointing to the to-be-tested URL
(social engineering involved if you cannot impersonate the user your-
self).

– Observe the result, i.e. check if the Web server executed the request.

• Example : Look at the previous point for an example.

VT.07 - Information Leakage and Improper Error Handling

• Short description : Applications can unintentionally leak information
about their configuration, internal workings, or violate privacy through a
variety of application problems. Applications can also leak internal state
via how long they take to process certain operations or via different re-
sponses to differing inputs, such as displaying the same error text with dif-
ferent error numbers. Web applications will often leak information about

A-10 Appendix A. The current methodology: the guidelines

their internal state through detailed or debug error messages. Detailed or
debug error messages are good entry points, and are often used to launch
or even automate more powerful attacks.

• How to test : The basic purpose of this vulnerability testing class is to
make the application produce/leak system information (as described in
the previous point). This is usually done in the following way:

– From a Graphical User Interface (GUI) perspective, a tester can type
unvalid information in e.g. forms in order to crash the application. If
there are no tests in the Web application to check whether unexpected
values are submitted to the Web application, the Web application
may crash and reveal internal error messages.

– From a developer (programmer) perspective, a tester can modify
source code in order to make the application crash and see if the
application reveals e.g. the error stack trace on the browser.

• Example : Figure A.5 shows an example of code information leakage
which is due to a NullPointerException in the Web application. The
correct way to prevent this is to send the information that is shown in the
figure to a log file, and to use a try—catch statement in the source code in
order to catch the NullPointerException. Furthermore, an error message
indicating that an error occured has to be shown to the user. The error
message needs only to contain e.g. “An error occured, please try again
later”. A typical example of improper error handling is when a Web appli-
cation gives “incorrect password” as an error message when a user types in
correct username but incorrect password. Such information is valuable for
a malicious user. If a malicious user knows that the username is correct,
then he/she can perform e.g. a dictionary attack in order to guess the
correct password.

VT.08 - Broken Authentication and Session Management

• Short description : Proper authentication and session management is
critical to Web application security. Flaws in this area most frequently
involve the failure to protect credentials and session tokens through their
lifecycle. These flaws can lead to the hijacking of user or administrative
accounts, undermine authorization and accountability controls, and cause
privacy violations.

• How to test : All interaction between the client and application should
be tested at least against the following criteria:

A-11

Figure A.5: Due to a NullPointerException in the source code, the error message
that can be seen on the figure is produced by Apache Tomcat Web server. The
problem is not Apache Tomcat, but improper error handling in the application.
From this error message it is possible to deduce facts such as the name of the
Java servlet that crashed, and the values of the HTML form input-fields.

A-12 Appendix A. The current methodology: the guidelines

– Are all Set-Cookie directives tagged as secure?

– Do any Cookie operations take place over unencrypted transport?

– Can the Cookie be forced over unencrypted transport?

– If so, how does the application maintain security?

– Are any Cookies persistent?

– What Expires= times are used on persistent cookies, and are they
reasonable?

– Are cookies that are expected to be transient configured as such?

– What HTTP/1.1 Cache-Control settings are used to protect Cookies?

– What HTTP/1.0 Cache-Control settings are used to protect Cookies?

The first step required in order to manipulate the cookie is to understand
how the application creates and manages cookies. This can be done by
providing answers to the following questions:

– How many cookies are used by the application?

Surf the application. Note when cookies are created. Make a list of re-
ceived cookies, the page that sets them (with the setcookie directive), the
domain for which they are valid, their value, and their characteristics.

– Which parts of the application generate and/or modify the cookie?

Surfing the application, find which cookies remain constant and which get
modified. What events modify the cookie?

– Which parts of the application require this cookie in order to be
accessed and utilized?

Find out which parts of the application need a cookie. Access a page, then
try again without the cookie, or with a modified value of it. Try to map
which cookies are used where.

Analyzing the information gathered from the abovementioned points gives
enough basis to test for session ID predictability, cookie reverse engineer-
ing, brute force attacks through cookie manipulation, and testing for how
well sessions are managed.

• Example : A test that checks whether the sessions are managed properly
can be performed by carrying out the following points:

1. Login to a Web application using valid credentials.

A-13

2. Use the browser’s cookie management tool (or a similar tool) to ob-
tain the session ID given by the Web application.

3. Log out of the Web application and use the cookie management tool
to delete the cookie and its information.

4. Open the Web site to the same Web application in step 1, and login
again using valid credentials.

5. Log out of the Web application.

6. Use the cookiemanager to edit the new cookie and delete the new
session ID. Then paste the old session ID in the session ID field.

7. Try to navigate in the Web application.

If this test is successfully carried out, then the tester would be able to
navigate in the Web application using the old session ID. This indicates
e.g. that the unused sessions are not timed out. Furthermore, two testers
(tester A and tester B) may perform the test in the follwing way:

1. Tester A performs step 1–3 using credentials A.

2. Tester B obtains tester A’s session ID.

3. Tester B performs step 4 using credentials B.

4. Tester B performs step 5.

5. Tester B performs step 6 and replaces the new session ID with the
session ID obtained from tester A.

6. Tester B performs step 7 and now navigates the Web application as
tester A. This is also referred to as session hijacking.

VT.09 - Failure to Restrict URL Access

• Short description : Frequently, the only protection for a URL is that
links to that page are not presented to unauthorized users. However, a
motivated, skilled, or just plain lucky attacker may be able to find and
access these pages, invoke functions, and view data. Security by obscurity
is not sufficient to protect sensitive functions and data in an application.
Access control checks must be performed before a request to a sensitive
function is granted, which ensures that the user is authorized to access
that function.

• How to test : The primary attack method for this vulnerability is called
“forced browsing”, which encompasses guessing links and brute force tech-
niques to find unprotected pages. Before trying to guess folder names or
file names, a site structure should be obtained at least by carrying out the
following points:

A-14 Appendix A. The current methodology: the guidelines

1. Brows the Web site and observ which link points to which folder/file.

2. During the browsing, create a list of links and which folders/files they
point to. This is to get an overview of the site structure.

3. Try to look for a pattern of the folder and file names by analyzing
the result.

4. Make educated guesses from the knowledge obtained by the site struc-
ture.

• Example : Some typical examples are /admin/adduser.php and /approveTransfer.do.
Otherwise, as explained in the previous point, to test for this vulnerability
class is to conduct “forced browsing”.

