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Abstract

The gap between processing performance and the memory bandwidth is still
increasing. To compensate for this gap various techniques have been used,
such as using a memory hierarchy with faster memory closer to the processing
unit. Other techniques that have been tested include the compression of data
prior to a memory transfer. Bandwidth limitations exists not only at low
levels within the memory hierarchy, but also between the central processing
unit (CPU) and the graphics processing unit (GPU), suggesting the use of
compression to mask the gap.

Seismic datasets are often very large, e.g. several terabytes. This the-
sis explores compression of seismic data to hide the bandwidth limitation
between the CPU and the GPU for seismic applications. The compression
method considered is subband coding, with both run-length encoding (RLE)
and Huffman encoding as compressors of the quantized data. These methods
has shown on CPU implementations to give very good compression ratios for
seismic data.

A proof of concept implementation for decompression of seismic data on
GPUs is developed. It consists of three main components: First the subband
synthesis filter reconstructing the input data processed by the subband anal-
ysis filter. Second, the inverse quantizer generating an output close to the
input given to the quantizer. Finally, the decoders decompressing the com-
pressed data using Huffman and RLE. The results of our implementation
show that the seismic data compression algorithm investigated is probably
not suited to hide the bandwidth limitation between CPU and GPU. This is
because of the steps taken to do the decompression are likely slower than a
simple memory copy of the uncompressed seismic data. It is primarily the
decompressors that are the limiting factor, but in our implementation the
subband synthesis is also limiting. The sequential nature of the decompres-
sion algorithms used makes them difficult to parallelize to make use of the
processing units on the GPUs in an efficient way.

Several suggestions for future work is then suggested as well as results
showing how our GPU implementation can be very useful for data compres-
sion for data to be sent over a network. Our compression results give a
compression factor between 27 and 32, and a SNR of 24.67dB for a cube
of dimension 643. A speedup of 2.5 for the synthesis filter compared to the
CPU implementation is achieved (2029.00/813.76 2.5). Although not cur-
rently suited for the GPU-CPU compression, our implementations indicate
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that the transfer of seismic data over network can be improved by approxi-
mately a factor of 25.
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Chapter 1

Introduction

Given todays increase in difference between computational performance and
performance of memory, measures have to be taken to reduce this gap. Com-
pression of data before a memory transfer has previously been explored at a
low-level, that is between the last-level cache and memory [1]. Compression
has also been used further away from cache and memory levels such as in
sound, image and video compression, before it is transferred. Without com-
pression many of todays media solutions would not be possible due to the
amount of data that is involved and the limited bandwidth.

Current seismic datasets often become several terabytes. Compression of
seismic data is hence desirable to improve the efficiency of both storage and
transmission By reducing the size of these datasets through compression,
they become more available given a limited amount of resources. In this
thesis, we investigate the feasibility of using a lossy compression algorithm
for seismic data, to determine if it is possible to mask the limiting bandwidth
between CPU and GPU.

In this thesis we investigate the feasibility of using a lossy compression
algorithm for seismic data, to determine if it is possible to mask the limiting
bandwidth between CPU and GPU. Compression of seismic data is desirable
to improve the efficiency of both storage and transmission. As seismic data
sets can become several terabytes, reducing the size of the data makes it
more available given a limited amount of resources.

The acquisition of seismic data offshore, is a process where signals are
sent toward the seabed and the time differences received is dependent upon
the sediments found below the seabed. A commonly used energy source is
air guns firing highly compressed air generating what is know as a P -wave,
Røsten [2]. This wave has particles moving in the same direction as the
propagation, and is the type of wave recorded in conventional marine seismic
exploration, according to Røsten [2]. These air guns are gathered in an array

1



2 CHAPTER 1. INTRODUCTION

on a suitable frame that is towed after a survey vessel. In addition to the
source, the air guns, receivers are also found behind the vessel. The receivers
are pressure-sensitive hydrophones that measures reflected waves that travels
upward from the seabed. A pressure wave travels from the source, downward
and into the seabed. When a wave hits the interface found between two
geologic layers, some of the wave reflects while the rest is transmitted. The
hydrophones records the pressure-wave amplitude reflections based on the
two-way traveltime (TWT), as described by Røsten [2]. For a more detailed
explanation of seismic data processing see the thesis of Røsten [2] and the
book on the topic by Yilmaz [3].

Seismic data format
After the data has been recorded and been through preprocessing steps in-
cluding migration and stacking, it results in a data set that can be inter-
preted as if the sampling was done in an ideal setting. That is, as if a
beam is shot straight down into the seabed, and then received at the same
location as the source of the beam. The layout in memory of the data set
after all the preprocessing is as follows: Consecutive data represent values
in the depth direction. Following the last value in the depth direction is the
start of the next column. After processing all the columns in one direction
the following column is placed behind the first column of the previous row
of columns. If we represent the location of a sample by f(i, j, k), where i
denotes the ith plane in the depth direction, j the jth column in a plane
and k the kth sample from the top of the column in the current plane.
Then the function giving the position in memory of an element is given by
f(i, j, k) = i× size(j) × size(k) + j × size(k) + k. Each element is repre-
sented by a floating point number, this has to be considered when calculating
the position. This is the format of the seismic data used in this thesis.

1.1 Problem
This thesis investigates the possibility of using compression of 3-D seismic
data as a means of reducing transfer time from CPU memory to the memory
found on GPUs. It also opens for the possibility of storing compressed data
in the GPU memory for later use. Doing the decompression on a GPU just
before visualization is a benefit, making it possible to keep the data set in the
GPU memory for a longer time, since it take less storage. Other benefits that
come with a compressed 3-D seismic dataset such as reduced transfer time
within a network, is discussed, but not the primary focus of our investigation.
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Another motivation for compressing seismic data is because some oil com-
panies consider their seismic data so valuable, they do not allow storage of
their seismic data on the local machine, so it has to be transferred over a
network each time it is used. Compression hence can give huge time savings
when the dataset become big.

1.2 Goals
The primary goal of this work is to determine the feasibility of compression
to reduce bandwidth requirements in addition to the need of storage space
on GPUs (when compressed). To achieve this, we look at using the seismic
data compression algorithm presented by Røsten in his dissertation, [2]. This
algorithm uses subband coding targeted at seismic data and results in good
compression ratios for seismic data.

As part of the compression algorithm presented by Røsten, entropy cod-
ing is used. Thus, decoding using the Huffman algorithm and run-length
encoding on GPUs will be investigated along with the subband coding.

A poster by Leif C. Larsen et al., [4], shows that GPUs is favorable in
speeding up transform algorithms for image compression. Therefore, subband
transform on seismic data using GPUs can also be favorable.

1.3 Outline
This thesis is organized as follows:

Chapter 2 presents some technical background on basic compression meth-
ods, and subband coding theory.

Chapter 3 describes details of the NVIDIA Tesla GPU architecture.

Chapter 4 explains the details around the implementation, including the
steps in the different parts of the decompression algorithm, and some of our
design decisions. Our implemented GPU kernels are also presented.

Chapter 5 presents our results and discusses our finding along with several
suggestions for improvements.
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Chapter 6 concludes our findings and how they may be applied to seismic
data, as well as presents some suggestions to future work that might improve
our results.

Appendix A lists the coefficient tables used in the subband coding.

Appendix B presents our NOTUR2009 poster that summarizes some of
this work.



Chapter 2

Technical background

This chapter will present different aspects to consider while solving the prob-
lem at hand. First an overview of the theory behind compression is presented,
followed by the subband coding.

2.1 Compression
This section will try to give a concise description of different compression
techniques applied in image compression. Starting out with lossless methods
that are often used in combination with lossy image compression.

2.1.1 Terms used discussing compression
Before the different compression methods are explained, some terms used
while describing compression are presented. These are the vocabulary words
used by David Salomon in his book Data Compression [5].

The program responsible of compressing the input data stream and pro-
ducing a compressed output stream, with low redundancy, is known as the
compressor or encoder. The reverse process is done through a decompressor
or decoder. It is not unusual to use the term stream when referring data input.
A stream can be seen as a flow of data from a source to a sink. Therefore,
while discussing the compressor and decompressor, saying data is streamed
to the decompressor from the compressor does not imply a file as it can go
directly. The original input stream to a compressor can be referenced to by
the terms unendoced, raw or simply original data. As for compressed data,
terms used are encoded or compressed and bitstream.

Other useful terms are semiadaptive, adaptive and nonadaptive. A non-
adaptive compression method does not change its way of working based on

5
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the data being compressed. An adaptive method on the other hand, is capa-
ble of changing its behavior based on the raw data. There are compression
methods that do a two-pass processing of the data being compressed, where
the first pass only collects statistics of the data and the last pass uses this
data while doing the compression. This last method is known as semiadap-
tive.

Central terms in the literature of compression are lossy and lossless com-
pression. Lossless compression preserves the original data, reproducing the
exact original data after decompression. This type of compression is used
on data that has to remain unchanged after decompression to be useful, ex-
amples are text files and source code, where changing only a bit can break
its value. In contrast, lossy compression loses information and is commonly
used on videos, images and sounds where loss is acceptable.

Finally, some terms describing the performance of the compression. The
compression ratio is defined as [5]:

Compression ratio = size of output stream
size of input stream .

A value of 0.7 tells us that the data occupies 70% of its original size
after compression. If the value is above 1 it tells us that the result is an
expansion of the original data. The compression factor is the inverse of the
the compression ratio, thus values greater than 1 indicate compression and
values below 1 entail an expansion. The compression factor is defined as [5]:

Compression factor = size of input stream
size of output stream .

2.1.2 Run length encoding
A simple, yet sometimes efficient compression scheme is RLE. This scheme
is most efficient when data elements occur in a contiguous order. RLE works
as follows: Whenever an element e occurs n consecutive times, it is encoded
with a repeat counter followed by the element such as ne. The repeat counter
n is known as the run length, and the procedure just described is known as
run-length encoding (RLE).

As an example use, this compression scheme is efficient for images with
pixels that have same value in a contiguous pattern. The pattern to scan the
image can of course be different than simply row by row, it is also possible
to scan column by column, other scanning patterns are also possible. Which
pattern is best suited is dependent on the data that is processed.
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Earlier we presented the format of RLE as ne, but sometimes if consecu-
tive values have different values, it is more efficient to mark the stream with
an own counter for raw streams. Such that a stream of values that looks like
v1v2v3v4 are encoded as 4rawv1v2v3v4, with one counter instead of a counter
for each value. A counter for each value would often expand the data stream
instead of compressing it, unless it has a majority of long consecutive values.
This can easily be observed even for the tiny stream presented above, the
result would be 1v11v21v31v4. The size of the counter also has to be consid-
ered when deciding if is worth to code consecutive elements into the format
ne. Let us say we have the string aaabc and the size of the counter is four
bytes, then it will be more space efficient to code this stream as 5rawaaabc
instead of 3a2rawbc.

2.1.3 Huffman coding
Huffman coding [6] is a widely used and known lossless compression method.
It can be found as the only algorithm applied for compression, or as one of
many methods used in combination to obtain a more compressed result. One
such example is the use of Huffman to compress the result of the transforma-
tion done in the joint photographic experts group (JPEG) image compression.

The idea behind Huffman is to represent frequently occurring symbols
with fewer bits than less frequently occurring symbols. The simplest way to
describe the Huffman coding algorithm is by an example. If we consider five
symbols s1, s2, s3, s4 and s5 with occurrence probabilities: 0.46, 0.18, 0.18,
0.09 and 0.09. We can build a Huffman tree by merging the two smallest
values, these can be chosen arbitrary if more than two values values fits the
requirement. This will generate a new node with a value equal to the sum of
its child nodes. In our example s4 and s5 are the two smallest values, they
merge into a node with value 0.09 + 0.09 = 0.18. This new node replaces
the two smallest values it has merged. The next step in the building process
now considers the remaining symbols and the newly created node. There
are three instances of the minimum value at this point, we choose the newly
created node with value 0.18 and a free node of value 0.18. At this point
we have three nodes with the following values 0.36 (the newly created node),
0.18 and 0.46. There are no ambiguities at this point, and the two nodes with
smallest values create a node with value 0.54. Then finally the root node is
created out of two nodes with values 0.54 and 0.46. The resulting Huffman
tree can be seen in Figure 2.1 to the left. Another possible Huffman tree of
these probabilities is shown to the right in Figure 2.1. This version is built
by selecting the nodes that are not in a subtree when it is possible to choose
between free nodes and nodes of a subtree.
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Decoding a Huffman encoded stream is also fairly simple, and is also best
explained through an example. The method to generate the decoded stream
encoded with the Huffman tree seen to the left in Figure 2.1 is as follows:
First one simply reads the encoded stream from the beginning and traverses
the Huffman tree with the values found in the bitstream, and whenever a leaf
node is reached, start at the root again. Let us consider an encoded stream
that looks like the following: 0101011011111110, with the first bit to the left.
To decode this bitstream, one looks at one bit at a time while traversing the
Huffman tree from the root down to the leaves. Which branch to take is
given by the value of the bit. When a leaf is reached its symbol is emitted
to the output stream. Since the encoded stream can only be interpreted in
one way, there is no ambiguity of what symbol to emit.

For the given stream the first two symbols are found as follows: Starting
at the root we follow the branch marked with a 0, which leads us directly to
a leaf node with symbol s1. Then the next bit in the bitstream is considered,
starting at the root node, which leads us to the right, to node s2345. This
is not a leaf node, therefore the next bit in the bitstream is evaluated, and
the result is a leaf node, s2, thus this symbol is emitted to the output. If
this is done with the whole bitstream the result is the following output:
s1s2s2s3s5s4.

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s12345s12345

s2345

s2345

s345

s45

s45s23

1.0 1.0

0.46

0.46

0.54

0.54

0.36

0.36

0.18

0.18

0.18 0.18

0.180.18

0.090.09

0.090.09

Figure 2.1: Two different Huffman trees for the probabilities s1 to s5

2.1.4 Parallel approaches
Huffman decoding and decoding of run-length encoded streams are algo-
rithms that are sequential in their nature. While decoding a Huffman com-
pressed bit string it is impossible to tell at which position the next symbol
will occur without processing the previous bits. There are methods to par-
allelize decoding of Huffman bit strings, as will be discussed in Section ??.
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One simple method that does not scale well is to introduce an offset table
before the bit string. This offset table could tell where the different blocks
of output data can start their decoding within the encoded bit string. The
down side is that this would also require storage and that it does not scale
very well for many processing units. One reason is obviously the growth of
the lookup table too support a given number of process, and too many entries
would give an overhead so great that it would actually result in a growth in
the data.

2.1.5 Image compression
The main idea of image compression is the same as for other compression
scenarios, exploit the redundancy in the data to make it smaller. There
are basically two ways of doing this on images, lossless and lossy. Given
that noise to some degree is acceptable in images without perceptible visual
artifacts, lossy compression is often used. The lossy compression schemes
used on images uses a transformation to compact the information. Gathering
the information into a small region due to decorrelation result in possibility
to discard data with coefficients close to zero (Salomon [5]). As for lossless
compression, it does not introduce any noise, but the compression ratio is
not as good as the lossy compression.

The are three major steps in compressing an image with lossy compres-
sion:

1. Decorrelation (through a transformation)

2. Quantization

3. Entropy encoding

More details about these steps are given in Section 2.2.
The first step, decorrelation, is achieved through a transformation. If this

transformation is separable it can be done in one dimension then in another,
and produce the correct result. Separable filters are desirable due to their
lower computational complexity. Details around separable filtering are given
in Section 2.2.6.

The layout of the three-dimensional (3-D) seismic data is as depicted in
Figure 2.2. It consists of two-dimensional (2-D) images stacked upon each
other in the depth direction. Image compression for 3-D seismic data is based
on the same methods as for 2-D images. Instead of using two passes with
a separable filter, one for each dimension, there are three passes. First all
the images in the stack are processed as the two dimensional case. Second
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height

height

width
width

depth

depth

Figure 2.2: Arrangement of images in a stack for 3-D seismic data

the filter is applied on all the images in the depth direction. That is as
interpreting the values in the depth and height directions as another 2-D
image.

Compressing seismic data while considering three dimensions is of great
advantage, because of the correlation that exists between the images in dif-
ferent directions. An example is the correlation that exists between values
in the horizontal direction of seismic images both in depth and in width. As
the changes in these directions are small and similar to each other, that is,
slow varying.

2.2 Subband coding
The following sections will describe theory related to subband decomposition
and coding. Starting out with decimation and interpolation in Section 2.2.2,
followed by quantization in Section 2.2.3. Then in Section 2.2.4 and Section
2.2.5 representation of of these stages will be presented.

It can be shown that block transforms are a special case of filter banks
that have filter length N , N channels, and a down-sampling by N .

2.2.1 Overview of subband coding
The encoding and decoding processes are presented in Figure 2.3 and 2.4.
As can be seen both encoding and decoding is accomplished in three stages.
Encoding starts with the analysis transformation, then quantization and fi-
nally the entropy encoding. As for the decoding this process is reversed, and
the stages are entropy decoding followed by an inverse quantizer and at the
final stage synthesis transformation.
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Figure 2.3: Subband encoding
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Figure 2.4: Subband decoding

2.2.2 Decimation and interpolation
Decimation and interpolation are operators that processes the samples of a
signal. Decimation is the process of reducing the number of samples by an
integer factor of M. This results in a reduced sample rate of the same factor.
As for the interpolation operator, it does the opposite of the decimation
operator, it increases the sampling rate by an integer factor of M. Both of
these operations is done after a filter that usually is low-pass. The filter is
followed either by a sub sampler, also called down-sample, for decimation,
and for interpolation an up-sampler.

The up-sampler inserts zeros between the samples, such that M−1 zeroes
are inserted between the samples. What the down-sampler does is to pick
each M th sample from the original stream, creating a new list of samples
indexed 0 for the first sample and 1 for the M th sample taken from the
original stream, and so forth.

As we shall see later, these operators are used in the different stages of the
transformation. The down-sampler in the analysis stage, and the up-sampler
in the synthesis stage. They are depicted as ↓ M for the down-sampler and
↑M for the up-sampler.

2.2.3 Quantization and inverse quantization
There are two well known quantization methods mentioned through out liter-
ature, scalar quantization (SQ) and vector quantization (VQ). We will only
focus on scalar quantization in this text. SQ is a special case of VQ where the
number of dimensions is equal to one. We will use scalar quantization and
quantization interchangeably in the rest of the text, unless stated otherwise.

Quantization is a process that “ ‘. . . restrict[s] a variable quantity to dis-
crete values rather than to a continuous set of values’ ” as described by



12 CHAPTER 2. TECHNICAL BACKGROUND

Salomon [5] who refers to a dictionary. One way to quantize values is by
finding the largest absolute value in the input, then use this when scaling the
input data into the integer representation. Mapping into the signed integer
range can be done with ⌊

y(k)
max(abs(y(k))) ×

I

2

⌋
, (2.1)

where I is a constant representing a value that is one greater than the
maximal value of the integer representation. As examples of natural choices
for the value of the constant I are byte (octet) representation1 or word
representation (here two bytes). This gives I = 28 = 256 for bytes and
I = 216 = 65536 for words.

Equation 2.1 will map the source data into the range of the integer rep-
resentation2, except at the positive end, where it will be possible to get an
integer value 1 integer outside the range, as an example 128 is one outside
the range of 8-bits signed values. If necessary this will be corrected in the
quantization process when the index is calculated, as will soon be explained.
This is the stage in the signal compression that introduces the loss of in-
formation by using coarser representation of the data values. Therefore it
is important to set the quantization to adjust the desired compression ratio
and thus the loss.

We use the mid-tread uniform threshold scalar quantizer as described in
the PhD thesis of Røsten [2]. The quantizer is actually called a mid-tread
uniform threshold scalar quantizer with dead-zone, but for convenience we
will just present it as in the previous sentence. This scalar quantization has
a dead-zone with a total width T = 2β × ∆ where β > 0, around zero. In
the equation for T the ∆ symbol represents the distance between quantizer
decision levels, and is known as step-size. The variable β adjusts the size
of the dead-zone, and for image compression β = 0.5 is often used, this
gives no dead-zone. It is common to use β = 0.6 for compression of seismic
data. Compression ratio below 1:10 requires a β < 0.5 to avoid too much
quantization noise according to Røsten [2].

i =


I/2 + b(y(k) + T/2)/∆c, y(k) ≤ −T/2
I/2, −T/2 < y(k) < T/2
I/2 + d(y(k)− T/2)/∆e, y(k) ≥ T/2

(2.2a)

Equation (2.2a) gives the quantizer indices into the γ function of the
quantizer. According to Røsten [2], SQ can be described as a non-linear

1An octet is 8 bites in size. The bytes in this text has the same size as an octet.
2Assuming two’s complement.
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mapping of ym(k) ≡ y(k) ∈ R to a finite set γ = {γ(0), γ(1), . . . , γ(I − 1)}.
Where the indices i = 0, 1, . . . , I − 1 of the γ(i) function are called the
quantizer indices and the results of the gamma function is the quantizer
levels.

γ(i) = (i− I/2)×∆ (2.2b)
In the subband coding system, quantization and inverse quantization is

the stage just after the analysis filter bank and just before the synthesis
filter bank, respectively (see Figures 2.3, 2.4 and 2.5). The output of the
quantizer is denoted by q(k) and the reconstructed signal by ŷ(k). q(k) can
be seen in Figure 2.3 and ŷ(k) in Figure 2.4 (the inverse quantizer is called
“dequantizer” in this figure). The quantizer selects the index i according to
Equation (2.2a), where I is even. The inverse quantizer finds the quantizer
representation level by equation (2.2b). The dynamic range of the quantizer
is given by

y(k) < −I/2×∆− T/2 and y(k) > (I/2− 1)×∆ + T/2.

and is exceeded if any value is outside. If that happens the value of i should
be replaced with i = 0 and i = I − 1 for the given equation, respectively.

2.2.4 Analysis stage
The analysis stage is where the input signal is decomposed into subbands.
This results in a decorrelation of the signal as well as concentration of the
energy into a minimum number of subbands [2]. After this stage quantization
takes place as described above in Section 2.2.3. This introduces compression
noise due to an approximation of the samples, since it is assumed that perfect
reconstruction is possible. Consequently it is at the quantization stage that
loss is introduced to the compressed signal.

Our subband coding scheme is based on the works of Røsten [2] and
will now be described. It consists of M -channel parallel-structured uniform
filter banks with non-unitary linear-phase near-perfect reconstruction (PR)
properties for both analysis and synthesis filters. An illustration of such a
system with M -channels can be seen in Figure 2.5. The number of subband
filter banks, M , is equal to eight, and the number of taps (denoted L) is 32.
If given an one-dimensional (1-D) input by x(n) for n = 0, 1, . . . , N − 1 the
uniform analysis filter bank will produce a decomposition into M subbands
with K subband samples in each.

The analysis filter is denoted by hm(l) for m = 0, 1, . . . ,M − 1 and l =
0, 1, . . . , L − 1 and the subband signals by ym(k) for k ∈ N. The function
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for reconstructed signals is denoted by ŷm(k). For the synthesis filter the
function is given by gm(l). The filters for analysis and synthesis is given by
the following equations (which can be found in Røsten [2], and Ramstad et
al. [7])

ym(k) =
∞∑

n=−∞
hm(kM − n)x(n) (2.3a)

and

x̂(n) =
M−1∑
m=0

∞∑
k=−∞

gm(n− kM)ŷm(k), (2.3b)

respectively.
For 2-D and 3-D subband decomposition and reconstruction separate fil-

tering in each dimension is performed. For the 2-D case this can be done
by first filtering row-wise then column-wise, or the other way around, at
the analysis stage, and for the synthesis stage the ordering of filtering is re-
versed. The 3-D case is similar to the 2-D case just with an expansion of one
more dimension, see Section 2.1.5. For details concerning separable filters
see Section 2.2.6.

When doing subband decomposition, expansion of the signal is prevented
by adhering to three constraints. Firstly, the length of the input signal, N ,
divided by M must give K where K is the number of samples in a subband,
ideally this should be equal for all the subbands. Secondly, extension of
the input signal at the edges has to be considered. Thirdly, the subband
samples has to be critically down-sampled by M . The result of following
these constraints is a reconstructed signal x̂(n) that has the same length as
the original x(n). Furthermore, it gives a maximally decimated filter bank
system that has the property K × M = N . More details of the second
constraint is given in Section 2.2.7.

2.2.5 Synthesis stage
In this stage signals are reconstructed from subbands into the original signal,
if the signal from the analysis stage is used without modification near-PR is
achieved. Loss of precision is mainly due to the quantization that introduces
noise, as mentioned earlier.

Otherwise the synthesis stage is basically equal to the analysis stage,
except for different filter and transformation function. The equation for the
synthesis filter banks is given in Equation 2.3b.
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Figure 2.5: Figure adapted from Fig. 1.10 and Fig. 2.5 in [2]. Overview of a
M-channel maximally decimated filter bank system with a black box in the
middle.

2.2.6 Separable filters
Applying filter transformation to a 2-D image can be done in two ways, as
a convolving mask or as two separate transformations one in the horizontal
direction followed by one in the vertical direction, or vice versa. This last
method works on filters that are separable and has great benefits with respect
to amount of calculations performed. Let us consider the Sobel operator as
described by Gonzalez and Woods [8]. The filter mask of the Sobel operator
with size 3× 3 is as shown in Table 2.1.

Table 2.1: Sobel operator of size 3× 3.

-1 0 1
-2 0 2
-1 0 1

If we use the method of spatial filtering, described by Gonzalez and Woods
[8], of an image of size M ×N and a mask of size m × n. The transformed
image is given by,

g(x, y) =
a∑
s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t) (2.4)

where, a = (m−1)/2 and b = (n−1)/2. Equation 2.4 has to be applied for
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all the values of x and y in the image, that is for x = 0, 1, . . . ,M−2,M−1 and
y = 0, 1, . . . , N − 2, N − 1. As can be seen the number of multiplications for
each element is m×n. This filter mask can also be written as a combination
of two vectors multiplied together. If denoted as v for vertical and h for
horizontal they may be represented as,

v =

 1
2
1

 h = [−1 0 1] (2.5)

This equation shows how a separable 2-D filter can be decomposed into
two vectors. Now, it is possible to transform an input image with the Sobel
operator by first doing a vertical transformation then a horizontal transfor-
mation. Doing the transformation this way results in m+ n multiplications
per transformed element. Thus, it is easy to see that the amount of calcula-
tions needed to do the transformation is drastically reduced with separable
filters. The amount of calculation to filter an image without using separable
filters is MNmn versus MNm+MNn = MN(m+ n) for separable filters.

A figure illustrating the process of doing filtering in two separate steps,
first horizontal then vertical is seen in Figure 2.6.

11 22 33 44

5 6 7 8

9 10 11 12

13 14 15 16

1h1h

1h

2h

2h

3h

3h

4h

4h

5h5h

5h

6h

6h

7h

7h

8h

8h

9h9h

9h

10h

10h

11h

11h

12h

12h

13h13h

13h

14h

14h

15h

15h

16h

16h

1hv 2hv 3hv 4hv

5hv 6hv 7hv 8hv

9hv 10hv 11hv 12hv

13hv 14hv 15hv 16hv

First pass

Second pass

row-wise

column-wise

Figure 2.6: Separable filter over a 2-D image
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2.2.7 Filter extension
To preserve the perfect reconstruction (PR) property of a signal in an analysis-
synthesis filter bank, care has to be taken at the boundaries of a signal. This
is due to the the overlapping of unit pulse responses of both the analysis and
synthesis filter channels. The reason is that signal segments are reconstructed
with an added influence from adjacent signal parts [7].

The solution is extension of the signal, according to Ramstad et al. [7],
there are only two known methods of extending the finite length input signal
while still preserving the PR property. This without generating additional
information to be sent along with the signal. The methods are known as,
circular extension and mirror extension.

Circular extension is achieved through repeating the finite input signal
at its extremities. Given an input signal with a length of K samples, its
extended signal will have a periodicity of K. As pointed out by Ramstad,
et al. [7] it can be proved that the periodic property of an input signal is
preserved after time-invariant linear filtering. Thus, each channel signal have
a period of K before decimation. The period after after decimation is given
by

K = pN, (2.6)

where N is the decimation factor and p is the period for each of the sub-
band signals. Furthermore, given that the decoder has to know each infinite
subband signal for perfect reconstruction, which is fulfilled through the peri-
odicity p of each subband, it is thus sufficient to transmit p samples for each
subband [7].

Finally, we take at look at the mirror extension method. This method
is similar to that of circular extension with a little twist, the signal is first
mirror reflected at one endpoint, then periodic extensions are performed at
the signal that now has double length. The benefits of mirror extension
compared to circular extension is the avoidance of discontinuities present in
circular extension [7].

Instead of taking advantage of periodicity, the mirror extension preserves
the symmetry on both sides of the mirror points. As stated by Ramstad et
al. [7], if a linear phase filter is applied to a symmetric signal x(n) the output
is symmetric. In general if an input signal have the same symmetry as the
filter, symmetric or not, the result is symmetric, and if they differ the result is
anti-symmetric. This same relation is valid for whole-sample symmetry and
half-sample symmetry. Half-sample symmetry is the case when the symmetry
is between two samples contrary to whole-samples where the symmetry is at
a sample.

Let us consider an input signal of length 16, this should be filtered with
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an even-length symmetric filter, h. Assume that the filter has half-sample
symmetry and a length of four. Extension of the input signal can be done
with either whole- or half-sample symmetry. Since we want an output that
has whole-sample symmetry we should exploit the facts mentioned in the
previous paragraph. Thus, we do a half-sample expansion of the input signal,
giving us two half-sample sources which results in a whole-sample output.
An illustration showing how this might look, is given in figure 2.7. The
figure illustrates the extended input and the result before any decimation is
performed.

Figure 2.7: At the top the extended input, and at the bottom the filtered
output.

The filtered signal now has 17 distinct values. Since the critical decima-
tion with factor N result in a transfer of 16/N out of the 17 samples, care
has to be taken while choosing the samples. Ramstad et al. [7], gives two
criteria that has to be fulfilled: First, avoid picking whole-sample symmetry
samples, that is -1 and 17. Second, it is important that the samples on the
opposite side of the symmetry points have the correct distance. If the correct
samples are chosen they have the same value at both sides.

2.2.8 The “black box” stage
Within the “black box” two sub-stages takes place, quantization (Section
2.2.3) and entropy coding. The entropy coding is to reduce the data amount
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used to represent the information. It may be a single method such as Huff-
man coding, arithmetic coding or simply RLE, or a combination of several
compression methods. The entropy encoding and decoding takes place after
the quantization, and before the inverse quantization, respectively. Details
about these compression methods was given in Section 2.1 and quantization
was presented in Section 2.2.3.
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Chapter 3

GPU programming

Since the the topic is decompression of seismic data on GPUs we will look
at the architecture of modern GPUs, focusing on the NVIDIA Tesla archi-
tecture. Given that the application of interest is not designed with a CPU
in mind, description of the CPU architecture is not described here. Section
3.1 and 3.2 and its subsections is taken from an earlier work of mine [9], and
contains minor changes.

3.1 NVIDIA’s Tesla architecture
To get a better understanding of how the GPU works, a presentation of the
NVIDIA Tesla architecture will be given, based on [10] and [11].

Within Tesla based GPUs you will find groupings of texture/processor
clusters (TPCs). Within a TPC you will find 2 streaming multiprocessors
(SMs). Further, inside a SM there are 8 streaming-processors (SPs) cores.
An overview figure of this architecture can be seen in Figure 3.1, and more
detailed figures of the TPC (Figure 3.2) and SM (Figure 3.3). At the highest
abstraction level we find the streaming processor array (SPA), which contains
all from one TPC and up wards. As an example the NVIDIA QuadroFX 5800
has 240 SPs and 30 SMs.

The TPC contains the following elements: a geometry controller, a streaming
multiprocessor controller (SMC), two streaming multiprocessors (SMs), and
a texture unit (see Figure 3.2). The most interesting parts within a TPC
for us is the SMs. Inside the SM you will find an instruction cache, a mul-
tithreaded instruction fetch and issue unit (MT issue), a read-only constant
cache, 8 SP cores, 2 special-function units (SFUs), and a 16 kilobytes of
read/write shared memory, shown in Figure 3.3).

A SP core contains a scalar multiply-add (MAD) unit, resulting in eight

21
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MAD units for a SM. For transcendental functions and attribute interpo-
lation the SFU is used. Each SFU contains four floating-point multipliers.
The texture unit can be used as a third execution unit by the SM within the
TPC. The SMC and raster operation processor (ROP) units implement ex-
ternal memory load, store as well as atomic access. Between the SPs and the
shared-memory banks there is a low-latency interconnect network providing
shared-memory access.

The SM is hardware multithreaded to be able to execute several hundreds
of threads in parallel while running several programs. The number of threads
that can be executed concurrently in hardware with zero overhead for a SM,
varies from 768 to 1024 with compute capability 1.0 and 1.2 respectively [11].

Figure 3.1: Figure of the Tesla architecture adapted from [10]



3.1. NVIDIA’S TESLA ARCHITECTURE 23

Figure 3.2: Figure of the TPC from [10]
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The SM in the Tesla architecture uses what NVIDIA calls single-instruction,
multiple-thread (SIMT). The SM’s SIMT multi-threaded instruction unit’s
responsibility is creating, managing, scheduling and executing threads. Threads
are executed in groups of 32 parallel threads known as warps. Creation of
threads is lightweight, as is fast barrier synchronization between threads,
which can be issued with an instruction. This gives a very efficient and fine-
grained parallelism. Each SM manages a pool of 24 warps, with a total of 768
threads, or 32 warps with a total of 1024 threads for compute capability 1.2
or higher, an example is GeForce GTX 280 [11], we will assume 24 warps in
a pool for the rest of the document, unless stated otherwise. The SM selects
one of the warps, in the pool of 24, to execute a SIMT warp instruction, each
cycle. A warp instruction issued is executed as two sets of 16 threads over
a period of four processor cycles. It should be noted that the SP cores and
the SFU units executes instructions independently, so by issuing instructions
between them on alternate cycles, it is possible for the scheduler to keep
both working. The choice of warp is based on a scoreboard that qualifies
each warp every cycle. Warps that are ready is prioritized by the instruction
scheduler, it then select the one with highest priority for issue. Prioritizing
is based on warp type, instruction type, and “fairness” to executing warps
within the SM.

Memory instructions provided by the Tesla architecture are of the type
load/store. These instructions use integer byte addressing and registers with
offsets through address arithmetic. There are three kinds of memory spaces
accessible through these load/store instructions: local memory, shared mem-
ory and global memory. The properties of the different memory spaces gives
varying performance, care has to be taken to utilize the correct memory space
for optimal performance. We will consider this aspect in greater detail later,
when we look at coalesced memory access. Each of the memory spaces have
their own instructions for load and store, they are load-global, store-global,
load-shared, store-shared and load-local, store-local. Memory bandwidth is
improved by coalescing load/store instructions when accessing global and
local memory.

3.2 NVIDIA CUDA
NVIDIA compute unified device architecture (CUDA) was introduced by
NVIDIA to allow programmers access to the graphics hardware without go-
ing through a graphics application programming interface (API), such as
OpenGL or DirectX. It is a programming model that extends the C program-
ming language through the use of special declarations and an API. The ap-
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Figure 3.3: Figure of the SM from [10]

plication is built on top of a NVIDIA CUDA driver that communicates with
the targeted device. Over this driver there are abstractions, such as NVIDIA
CUDA runtime and NVIDIA CUDA libraries. NVIDIA CUDA runtime is
an abstraction that simplifies the programming as is the NVIDIA CUDA
libraries. The libraries include CUFFT and CUBLAS, that implements fast
Fourier transform (FFT) and basic linear algebra subprograms (BLAS) re-
spectively.

3.2.1 NVIDIA CUDA extensions to the C program-
ming language

Programming C for CUDA provides some extension to the C language:

• Function type qualifiers

• Variable type qualifiers

• Kernel execution directive
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• Built-in variables

Function type qualifiers specify if a function executes on the host, or
on the device. It also specifies if it is callable from the host or the device.
The qualifiers are device , global and host . Functions having
device qualifier is only callable from the device, and executes on a device.

In contrast to those having global , they are callable only from the host,
but executes on the device. Finally, the code that are handled only by the
host have host as a qualifier, or simply no qualifier. It is possible to
combine host with device , in which case code for both host and
device is compiled.

Variable type qualifiers specify where a variable is to reside in memory.
They are device , constant and shared . For variable type qual-
ifiers as with function qualifiers the device specifies that the variable
shall reside on the device. In addition to this qualifier it is possible to specify
which memory space on the device, being either constant or shared .

The execution configuration specifies how the kernel is executed on the
device from the host. It is specified by the use of

¡¡¡DimGrid, DimBlock, NumSharedMem, Stream¿¿¿

Both DimGrid and DimBlock are of type dim3, it has three members: x, y
and z. NumSharedMem is of type size t and Stream of type cudaStream t.
DimGrid specifies the dimension of the grid, that is the number of blocks.
DimBlock specifies the dimension of each block in the grid, that is the num-
ber of threads per block. NumSharedMem specifies the number of bytes in
shared memory that is dynamically allocated. Finally, Stream specifies the
associated stream, default is 0. An example of calling a function is given in
listing 3.1.

The built in variables are the following:

• gridDim of type dim3, holds the dimensions of the grid.

• blockIdx of type uint3, a vector type with the components accessed
through x, y and z as with dim3. It has the block index within the
grid while running a kernel.

• blockDim is of dim3 and holds the dimensions of a block, and thus the
number of threads.

• threadIdx of type uint3 contains the thread index within a block.

• warpSize is an int type containing the size of the warp in number of
threads.
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Listing 3.1: Calling a NVIDIA CUDA kernel
global void f oo ( f loat ∗ arg ) ; // pro to type o f foo

foo<<<DimGrid , DimBlock , NumSharedMem , Stream>>>(arg ) ;

These built-in variables cannot be assign values, and it is not allowed to take
the address of them.

3.2.2 NVIDIA CUDA’s memory hierarchy
Knowing the memory hierarchy is of great importance to able to write ef-
ficient code with NVIDIA CUDA. Since there are no cache on the local
memory or global memory, accessing these gives a penalty between 400 and
600 clock cycles of memory latency.

The hierarchy is as follows [11]. Each thread has a per-thread local mem-
ory, each block contains a shared memory seen by all threads in the block,
having a lifetime as long as the block. Then there is global memory acces-
sible by all threads. In addition to these, there are special type of memory,
known as texture and constant memory, both are actually constant. All of
the mentioned memory spaces are optimized for different purposes. Texture
memory for instance, offers different addressing modes, and it also has data
filtering support for some specific data formats.

To maximize memory bandwidth, it is crucial to access the underlying
memory hierarchy in the correct manner. If possible, for global memory
what is called coalesced memory access should be used. Shared memory
access should be done without bank conflicts to avoid reduced bandwidth
[11]. Details around how this is done follows in the subsequent sections.

3.2.3 Shared memory
Because of the limited number of registers, 8192 for devices with compute
capability below 1.2 and 16384 for devices supporting 1.2. This is the number
of registers for each multiprocessor, in addition to this there are 16 kilobytes
of shared memory for each multiprocessor. This memory is organized into 16
banks for devices of compute capability 1.x. Accessing different banks can
be done simultaneously, therefore accessing n different addresses falling into
n different banks yields bandwidth that is n times that of one single memory
module (bank).

If bank conflicts occur, those addresses that map to same bank are serial-
ized. This is done by the hardware, and results in as many separate conflict-
free requests as necessary. The number of separate memory requests, if there
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are n of them, is called a n-way bank conflict. Consecutive 32-bit words in
shared memory goes into subsequent banks, and each bank has a bandwidth
of 32-bits per two clock cycles.

Further, devices having compute capability 1.x have warp size of 32, and
the bank count is 16. When a warp issues a memory request for shared
memory, is it split into two request, one for each half-warp. Handling the
first half-warp then the second, thus there are no bank conflicts between
threads in the two half-warps.

3.2.4 Global memory
Due to the importance of utilizing the memory when doing high performance
computation on GPUs, the coalescing of memory access will be described [11].
There are differences of the first NVIDIA CUDA capable devices and the new
ones, classified by what is called compute capability. Devices with compute
capability 1.0 and 1.1 are more restricted than that of 1.2 or higher when it
comes to coalesced memory access.

The implementation was written with the strictest of the coalesced mem-
ory access patterns in mind, such that devices with compute capability below
1.2 and those compatible with 1.2 should be able to make use of coalesced
memory access. Even if the kernels was designed to follow the strictest pat-
tern as best as possible, both the access patterns are presented, that is for
devices below and those including and above 1.2. The latter to show how it
eases the way to get coalesced memory access on newer devices.

Now, coalesced memory access is presented based on NVIDIA’s CUDA
programming guide [11]. Coalesced memory access makes what could be
several single memory transactions into one single memory transaction. First,
devices with compute capability below 1.2 is described, followed by those
including and above 1.2.

Compute capability below 1.2 Three conditions have to be satisfied for
global memory access to be coalesced into one or two accesses. Coalescing is
valid for all the threads within a half-warp if the following three conditions
is fulfilled.

It is a requirement that the threads access either, 32-bit, 64-bit or 128-bit
words. The latter case gives two memory transactions each of 128 bytes.
Further all the 16 words that are accessed has to lie in the same segment
or twice size for the 128-bit case. According to the programming guide for
NVIDIA CUDA [11], the global memory is partitioned into segments that
are of size 32, 64 or 128 bytes, and aligned to those sizes. The third condition
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that has to be satisfied is that the threads accesses the words in sequence.
Which means that the ith thread in a half-warp has to access the ith word.

If not all of the above conditions is satisfied, a memory access is issued for
each of the threads. Accessing words of greater sizes reduces the bandwidth,
for example accessing 64-bit words gives reduced bandwidth compared to
32-bit words, and so on. Figure 3.4 shows a coalesced memory access on the
left side, and the right side shows a non-coalesced memory access.

Compute capability 1.2 and above Now, that the coalesced memory
access conditions for compute capability 1.2 and below has been described,
it is in place do describe that of compute capability 1.2 and above.

Coalesced memory access to global memory occurs for a half-warp when-
ever the words accessed by all the threads lie in the same segment. The
segment has to be of size 32 bytes, 64 bytes and 128 bytes, for accesses to
respectively 8-bit, 16-bit and for the last case 32-bit or 64-bit words, it is
assumed that each thread accesses the the same word size.

The access pattern for addresses requested for a half-warp is not re-
stricted, it is even possible for multiple threads to access the same address.
Clearly this is not as strict as for devices of lower compute capabilities. An
example of this can be given as follows: A half-warp addresses words in n
different segments, this results in n memory transactions for devices of com-
pute capabilities above 1.2. Now, devices with compute capabilities below
that, issues 16 different transactions, which occurs as soon as n is above 1.

Even if not all words in a segment is used, all words are read. To reduce
the waste of memory bandwidth, the smallest segment that contains the
requested words is chosen. So if all the words lie in one half of a segment,
and there exists a segment half of the original, the smaller one is chosen
for transaction. Figure 3.5 shows different scenarios for devices of compute
capabilities above 1.2.
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Figure 3.4: Coalesced memory access versus non-coalesced memory access
for devices with compute capability 1.0 and 1.1, [11].
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Figure 3.5: Coalesced memory access patterns for compute capability above
1.2
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Chapter 4

Methodology

This chapter describes details concerning the implementation of different
parts of the system. Starting with RLE in Section 4.1, then subband trans-
formations in 4.2. Furthermore in Section 4.3 the Huffman implementation
details are presented. Then the transpose functions are presented in Section
4.4.

4.1 Run-length encoding implementation
In this section we will present the GPU implementation of RLE decoding. It
is a fairly straight forward implementation of RLE with minor modifications
to speed it up on GPUs.

4.1.1 Layout of the RLE data
The format of the RLE is as described in Section 2.1.2. That is, a counter
followed by a single value or a number of different values. The implemented
RLE encoder uses a 32-bit type. The counter either gives the number of times
to repeat a value or the number of following bytes that should be copied to
the output stream. This is marked by the counter by having a positive value
if the next byte is to be repeated, and a negative value if the following bytes
are to be copied directly to the output, the absolute value gives the actual
count.

Furthermore the modification done to the RLE-decoding on the GPU is
the addition of a table with offsets into the input stream where the decoding
can start. The motivation for this offset table is mainly to increase per-
formance. A run-length encoded stream has to be decoded from the start
because there are no way of telling where a counter starts without following

33
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the counters from the start of the input.
To distribute the workload of decoding a RLE encoded stream among

several processors the encoded stream is partitioned into smaller sections.
This allows the different processors to work on their section of the encoded
stream and produce their own output section. The decomposition of an
encoded stream is such that the sections produced by each processors are
about the same size. This is achieved by choosing the counters that are close
to the given positions in the original stream. If we have a table with two
offsets, we would start at the beginning of the encoded input stream and at
a position in the encoded stream that would start writing close to the middle
of the decoded output stream.

The offset table contains three variables for each entry: input position,
output position and a tag count. The input position gives the offset in number
of bytes from the beginning of the encoded stream. The output position gives
the offset in number of bytes from the beginning of the decoded stream.
Finally, tag count gives the number of the tag from the beginning of the
encoded stream. This last variable is used to keep track of the extent of
the section being decoded, by knowing the tag count of the next section,
decoding can proceed until the tag count of the section being decoded equals
the tag count of the next section. A pseudocode of the RLE-decoding can
be seen in Algorithm 4.1.1.

4.1.2 The RLE decoding kernel
Instead of using branches to select which section of the encoded stream a
group of threads should handle, the thread number is used to select the
correct section. The kernel is designed to handle a RLE-stream that is divided
into eight parts. To be able to fully utilize coalesced memory accesses it has
128 threads assigned to it. This way each section has 16 threads available to
utilize coalesced memory access while reading or writing to global memory.

The partitioning is as follows: First, the thread ID is shifted to the right
such that the three most significant bits of the maximum number of threads
in a block, here 128, can be found as the three least significant bits. Then
a mask is used to ensure that the only valid values are in the range 0 to 7.
The result is that thread IDs in the range 0–15 belong to section 0, thread
IDs in range 16–31 in section 1 and so on. An illustration of this scheme
is given in Figure 4.1. Figure 4.1 illustrates how the binary number with
range 0002 to 1112 maps to the different sections in the decoded stream1.

1We denote the radix by subscript, e.g. 112 is 3 (decimal) in radix 2, and assume radix
10 as the natural radix (decimal).
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Algorithm 4.1.1: rle-decode(input, output, lenOut, threadID)

local currentPos, posOut, startTag, stopTag, currentTag

(currentPos, posOut)← GetPositions(input, threadID)
(startTag, stopTag)← GetTagNumbers(threadID)

repeat
comment: Read counter from input stream.
count← getCount(input[currentPos])
if count ≥ 0

then


symbol← getNextSymbol()
for i← 1 to count

do
{

write(output[posOut], symbol)
posOut← posOut+ 1

else
comment: Copy count symbols from input to output.

copy(output[posOut], input[currentPos],abs(count))
currentPos← currentPos+ abs(count)
currentTag ← currentTag + 1

until currentTag = stopTag
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Starting with the initial length at the top, where binary numbers starting
with a zero as the leftmost digit handles the first part of the output stream.
Furthermore binary numbers starting with 00 handle the first quarter of the
output stream. At the bottom of the figure, section 0 to 1 and section 1 to
2 are handled by binary numbers 000 and 001.

Initial length

0xx

00x

0
1 2 3 4 5 6 7

8

Figure 4.1: Illustration of division based on a binary number

4.2 Subband transform implementation
The kernel of the implementation doing the most compute intensive task,
subband transformation, is presented in this section. There will be given a
thorough description of how it was designed to gain the performance it has.
First the serial implementation of the synthesis stage in the subband coding
(CPU) is briefly described, then the conversion to a parallel version is given
(GPU).

4.2.1 Description of the implementation
First, the serial implementation is described to give a natural transition for
the parallel implementation, and because the serial version maps closer to
Equation 2.3b than the parallel version.

A pseudocode of the serial version is given in Algorithm 4.2.1, this algo-
rithm gives an overview of the synthesis stage. Pseudocode for the upSample-
AndFilter function is given in Algorithm 4.2.2 The coefficients used is given
in Appendix A, the algorithms presented use the coefficients for synthesis
which can be see in Table A.2 and A.4.

The 1-D subband synthesis algorithm starts by padding (mirroring) the
input signal at both ends, that is, at the start and at the end. The procedure



4.2. SUBBAND TRANSFORM IMPLEMENTATION 37

Algorithm 4.2.1: serial-sb-synthesis(subbands, dir, output)

comment: Using 0-based indexing.
local paddedSB, coefs

comment: Process all the 8 subbands.
for i← 0 to 7

do

if (i mod 2 = 0)
then evenFilter ← true
else evenFilter ← false

if evenFilter
then paddedSB ← doPadding(subbands[i], evenPadding)
else paddedSB ← doPadding(subbands[i], oddPadding)

comment: Get coefficients and do the up-sampling and filtering.
coefs← getFilter(i, SY NTHESIS, dir)
output← upSampleAndFilter(coefs, evenFilter, paddedSB)

procedure doPadding(SB, type)
local padded

if type = evenPadding

then


padded[0]← SB[1]
Copy(padded[1], SB)
padded[length(SB) + 1]← SB[length(SB)− 2]
padded[length(SB) + 2]← SB[length(SB)− 3]

else



padded[0]← −SB[0]
padded[1]← 0
Copy(padded[2], SB)
padded[length(SB) + 2]← 0
padded[length(SB) + 3]← −SB[length(SB)− 2]
padded[length(SB) + 4]← −SB[length(SB)− 3]

return (padded)



38 CHAPTER 4. METHODOLOGY

Algorithm 4.2.2: upSampleAndFilter(coefs, evenFilter,
paddedSB)

comment: The subband coding synthesis function.
comment: DS – down-sample size.
comment: FH – half the size of the filter.
comment: pSB – Alias of paddedSB.
comment: c – Alias of coefs.
local n, s, i, data, c, pSB,DS, FH
c← coefs
pSB ← paddedSB
DS ← 8
FH ← 16
i← 0

if evenFilter = true

then



comment: Iterate over the samples in paddedSB.
for n← 0 to length(paddedSB)− 3

do



comment: Loop down-sample number of times.
for s← 0 to 7

do



data[i]← data[i] + pSB[n+ 3]× c[s]
+pSB[n+ 2]× c[s+DS]
+pSB[n+ 1]× c[FH − 1− s]
+pSB[n]× c[FH − 1− s−DS]

i← i+ 1

else



for n← 0 to length(paddedSB)− 3

do



for s← 0 to 7

do



data[i]← data[i] + pSB[n+ 3]× c[s]
+pSB[n+ 2]× c[s+DS]
−pSB[n+ 1]× c[FH − 1− s]
−pSB[n]× c[FH − 1− s−DS]

i← i+ 1

return (data)



4.2. SUBBAND TRANSFORM IMPLEMENTATION 39

doPadding in Algorithm 4.2.1, presents pseudocode for how this is done,
more details about the mirroring at the ends is given in Section 4.2.2. Then
after the padding, the correct filter depending on the direction as well as
the subband, is chosen. Finally, the up-sampling and filtering is done in the
procedure upSampleAndFilter.

The output produced by the inner-loop of upSampleAndFilter is depicted
in 4.2. Subband denotes the input signal starting at index 0, the old data and
new data is the value in the output before and after the upSampleAndFilter
function has been applied. This figure shows how the output is generated
when n = 0 for the inner-loop variables s = 0 and s = 1. The values in
indices 0 to 3 are multiplied by different coefficients for different values of
s of the inner-loop. These products are then summed into one scalar that
is added to a scalar from the data output producing the final value that is
written back to the data output. Each iteration of the inner-loop increases
the index of the data output, thus updating one index for each iteration. As
an example, a subband with length 16 (without the padding) would produce
16×8 = 128 elements in the output. As can be observed upSampleAndFilter
is called 8 times from the function Serial-SB-Synthesis, this entails that the
output is a summation of the results from each subband. Thus each element
in the output is a summation of 8 values.

+ + + +

+ + + +

+

+

data old

data new
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1
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Figure 4.2: Illustration of the convolution step for n = 0 when s = 0 and
s = 1.

Description of how the coefficients are connected to the respective indices
in the inner-loop is now presented. Figure 4.3 illustrates how the subband
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indices after up-sampling are related to the coefficient indices in the filter.
Here, indices 0, 8, 16 and 24 in the subband has values, because up-sampling
inserts zeros, thus these are the interesting indices. The first index uses the
first 8 coefficients of the filter, and the next index of the subband uses the
next 8, and so on. The last row illustrates in which order the filter coefficients
are used with the subband value. By shifting the last row to the left, one
index at the time, one can follow the horizontal arrow from the index at the
top row through the middle row down to the value that will be used at that
iteration of the inner-loop. Thus, if we say we are at the third round in the
inner-loop of Algorithm 4.2.2, then the left-most value at the bottom row
would be 5, and therefore index 0 in the subband would be multiplied by the
coefficient at index 5 in the filter. Likewise index 8 in the subband by the
coefficient at index 13 in the filter, and the same for the two other indices.
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Figure 4.3: Relationship between subband indices and coefficients when doing
synthesis filtering.

Now, as the pattern of the computation should be clear the parallel ver-
sion is presented. At the GPU, utilizing threads to hide memory latency is
of importance, therefore the GPU implementation has one thread for each
output value generated. Furthermore, data fetched from global memory is
reused by several threads in the block. Shared memory is used as a scratchpad
memory for the subband data fetched from global memory, since accessing
shared memory is almost as fast as accessing registers, or as fast as accessing
registers under the right circumstances.

4.2.1.1 Walk-through of the synthesis kernel

A walk-through of the main part of the subband synthesis kernel, seen in
Listing 4.1, is now presented.

The code in Listing 4.1 is executed by all the threads that produce output.
In contrast to the serial version where the output of different elements are
handled in a for-loop, the GPU version has one thread for each output ele-
ment. Thus, the for-loop iterating over the samples in a subband is replaced
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Listing 4.1: Inner-loop of subband synthesis kernel
unsigned int DS = DOWN SAMPLE; // 8
unsigned int F HALF = FILTER SIZE HALF ; // 16
unsigned int s = threadIdx . x & 0x7 ;

#pragma u n r o l l
for ( int sband = 0 ; sband < DS; sband += 2) {

unsigned int f i l t e r o f f s e t = sband ∗ F HALF ;
unsigned int d e l t a = (8 ∗ ( t i d >> 3) ) + sband + 8 ; // p l u s 8 ( adjustment )

sum += SB data [ d e l t a + 24 ] ∗ f i l t e r [ s + f i l t e r o f f s e t ]
+ SB data [ d e l t a + 16 ] ∗ f i l t e r [ s + DS + f i l t e r o f f s e t ]
+ SB data [ d e l t a + 8 ] ∗ f i l t e r [ F HALF − 1 − s + f i l t e r o f f s e t ]
+ SB data [ d e l t a ] ∗ f i l t e r [ F HALF − 1 − s − DS + f i l t e r o f f s e t ] ;

}

#pragma u n r o l l
for ( int sband = 1 ; sband < DS; sband += 2) {

unsigned int f i l t e r o f f s e t = sband ∗ F HALF ;
unsigned int d e l t a = (8 ∗ ( t i d >> 3) ) + sband ;

sum += SB data [ d e l t a + 24 ] ∗ f i l t e r [ s + f i l t e r o f f s e t ]
+ SB data [ d e l t a + 16 ] ∗ f i l t e r [ s + DS + f i l t e r o f f s e t ]
− SB data [ d e l t a + 8 ] ∗ f i l t e r [ F HALF − 1 − s + f i l t e r o f f s e t ]
− SB data [ d e l t a ] ∗ f i l t e r [ F HALF − 1 − s − DS + f i l t e r o f f s e t ] ;

}

by a thread for each element. To address the different subband and filter
offsets used, each thread has to calculate its own offset based on its thread
ID. Section 4.2.1 gives a description of which order the filter coefficients are
accessed in the inner-loop of the subband synthesis function. In the kernel
the variable s is assigned the value of the thread bitwise-anded with the value
7, this way the variable s will have a value ranging from 0 to 7. Therefore,
the value of s will “count” modulo 8 over the increasing thread IDs. The
variable filter offset chooses the correct offset into the filter used based
on the subband (sband).

The delta variable gives the start offset for the given thread. It is calcu-
lated such that a grouped of 8 threads belong to a given offset. This is done
by dividing the thread ID by 8 (actually right shifting the value by 3) then
multiplying by 8, since integer arithmetic is used the three least significant
bits are lost. This leads to a grouping of the first 8 threads into one group
and the next 8 threads (threads 8 to 15) into another group, and so on. This
constitute the base address for first index, from which the next three indices
are calculated. Given the interleaving of the subbands (see Section 4.2.4) the
next index in the same subband is found 8 indices ahead in the interleaved
stream. This can be seen by the addition of 8, 16 and 24 to reach the next
indices used to calculate the current output. To access the same index for
another subband a simple addition of the subband number is done, seen by
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the addition of sband for the variable delta. There is also an addition of 8
as an adjustment because of the padding that is done in the kernel (to avoid
using extra global memory for the padding).

A thread generates one output element which is a summation of the con-
tribution from all the subbands. Therefore, the kernel has to loop over all the
subbands. This looping is divided into even and odd subbands, because there
is a different sign when utilizing the symmetry in the filter for odd subbands
than for even subbands. This is observed by the two for-loops in Listing 4.1.
The first loop handles even subbands and the second odd subbands.

4.2.2 Mirroring
Mirroring is used to avoid expansion of the filtered data and to reduce edge
artifacts, in this section the mirroring technique used in the implementation
is presented.

In Section 2.2.4, three constraints are mentioned to prevent expansion of
the signal. In the implementation, the first constraint is fulfilled even though
the length of each subband is not equal. The length of even subbands is given
by Keven and odd subbands by Kodd. These are Keven = b(N+M−1)/M+1c
and Kodd = b(N +M −1)/M −1c. Where N is the length of the input signal
and M denotes the down-sampling value. The second constraint focuses
on signal extension through either of the following: zero, circular or mirror
extension. The implementation uses a mirror extension. The last constraint,
critical down-sampling, is also applied in the implementation.

The extension of the different subbands is such that even subbands uses
symmetrical extension while odd subbands are extended asymmetrically. Fig-
ure 4.4 gives an illustration of this. In the figure the vertical dotted line marks
the reflection axis, and is found at both ends of the signal. The circle found
just outside the original signal for the odd scheme indicates a value that
is always zero. The reflection axis is placed differently for symmetric and
asymmetric extension, for the symmetric case it is on a sample and for the
asymmetric case it is between two samples. Actually, the reflection axis for
the asymmetric case is placed on the samples inserted at the ends, which are
always zero. From this we can conclude that symmetric filters extend with
samples that start with an offset of one from the ends of the input signal,
and asymmetric filters extend without any offset into the input signal, but
inserts an implicit zero between the input signal and the extended signal
before doing the extension.

Extension as it is in the implementation can also be seen in Algorithm
4.2.1 in procedure doPadding. As zero-indexing is used, the length of a
subband minus one gives the last element.



4.2. SUBBAND TRANSFORM IMPLEMENTATION 43

0

5 10

16

0 5 10 14

even

odd

Figure 4.4: This figure illustrates the different mirroring schemes for even
and odd subbands. At the top symmetric filtering is used, at the bottom
asymmetric filtering is used.

4.2.3 Memory handling
Considerations to be taken while programming against the NVIDIA CUDA
architecture is memory access patterns. The following subsection describes
the access pattern used to utilize the memory bandwidth as much as possible.

4.2.4 Description of the interleaved format
Now, possible storage solutions for three-dimensional seismic data is ex-
plored. When designing high performance applications, details such as how
data is stored is of importance. This is because of the way the memory hi-
erarchy operates in current hardware solutions. If an application is memory
bound, it is crucial to access the memory in a way that is as optimal as pos-
sible. Therefore, we now investigate some possible solutions that suits the
hardware architecture of our implementation.

The program that is under investigation runs on a GPU, and since optimal
performance is achieved when shared memory is used as scratchpad memory,
it is a good idea to organize the data such that it is fetched in an optimal
way. Details of how the memory architecture on GPUs work is described in
Section 3.2.2.
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After the analysis stage of the subband coding the data is partitioned
into 8 subbands. To avoid passing eight different streams to the subband
kernel or passing each subband consecutively in a single stream, interleav-
ing is used. The subbands are interleaved into one stream by taking one
index from each stream and gathering them into 8 consecutive places, this
is done for all the indices. The result is that index 0 for all the 8 sub-
bands are found at the 8 first indices of the interleaved stream. Further,
index 1 of the subbands are found at the next 8 indices, and so on. As
a demonstration, let us consider two indices from each of the 8 subbands,
and denote each element as sn[i] where n is the subband and i is the index.
Starting with two streams that looks like sn[0]sn[1] for n = 0, 1, .., 7 we get:
s0[0]s1[0]s2[0]s3[0]s4[0]s5[0]s6[0]s7[0]s0[1]s1[1]s2[1]s3[1]s4[1]s5[1]s6[1]s7[1].

Organizing the stream this way keeps the same indices of the different
subbands close, which is good when fetching the data, specially on GPUs
see Section 3.2.4. Algorithm 4.2.2 shows the access pattern for the synthesis
filter, as can be seen, only data three indices ahead is needed in the inner
loop.

4.3 Huffman decoding implementation
This section will discuss challenges implementing Huffman decoding on GPUs.
Only a simple Huffman decoder on the GPU has been implemented. It is
able to decode Huffman encoded data from libhuffman. Given the sequen-
tial nature of Huffman coding the performance is limited to that of a single
thread. A parallel approach has been investigated in [12], more details about
this in Section 5.3.

The implementation of the Huffman decoder consists of two different log-
ical parts, one builds the Huffman tree another decodes a Huffman encoded
stream using the tree.

Table 4.1 gives the file format of data Huffman encoded with libhuffman.
The number of codes, that is, leaf nodes in a Huffman tree, is given by the
first four bytes in the encoded Huffman stream. The following four bytes
gives the decoded size, which is the same at the original size. Then after
these two values follows the actual definitions of the codes. The format of a
code entry is: One byte gives the encoded symbol, followed by a byte giving
the bit length. After these two bytes follows the necessary number of bytes
to hold the bit string, the last byte might have additional unused bits. After
all the code entries the actual encoded data is found.

The tree generation uses an array of a struct to represent nodes. This
way pointers are not needed and a node can be referenced through an index
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Offset Length (in bytes) Description
0 4 Number of codes (in big-endian)
4 4 Original size
8 variable Code 1
... ... ...

varies variable Code N
varies variable Encoded data

Table 4.1: File format of Huffman encoded data from libhuffman.

into the array. This technique is described in the book Introduction to Al-
gorithms, [13]. The reason this is done is because one early implementation
using pointers resulted in incorrect use of shared memory, where global mem-
ory was accessed instead of the shared memory. This was found by analyzing
the parallel thread execution (PTX) assembly code generated by the CUDA
compiler. Where access to memory was done through the the instruction
st.global for storing and ld.global for loading, that is, from global mem-
ory instead of shared memory, where the respective instructions should have
been used: st.shared and ld.shared, see [14] for details. It might have
been an erroneous implementation, but it is safer to use array indices when
pointers are not needed. The NVIDIA CUDA programming guide also men-
tions the restrictions when using pointers with respect to addressing global
and shared memory spaces:

“Pointers in code that is executed on the device are supported as
long as the compiler is able to resolve whether they point to either
the shared memory space or the global memory space, otherwise
they are restricted to only point to memory allocated or declared
in the global memory space”, [11].

The node structure consists of three members all of the same type, un-
signed int, as observed in Table 4.2. The members zero and one is given
the index of its child. As the tree is never traversed from a node up to
the root, there is no need to keep track of a node’s parent. Although the
symbol can only have 256 different values, an unsigned int (32-bits) is used
to represent the symbol, because a compaction of the data structure is not
possible. The reason for this is because of a restriction in the instruction
set architecture (ISA) of the PTX virtual machine used to generate device
code for the GPU. The the document describing the PTX ISA mentions its
alignment requirement, stating that all PTX instructions that access mem-
ory requires the address to be aligned to a multiple of the transfer size. It is
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Type Member Name Description
unsigned int zero Index of the child at the edge marked 0
unsigned int one Index of the child at the edge marked 1
unsigned int symbol Value of the symbol

Table 4.2: Node structure

therefore little to gain by having the last member as an 8-bit type, even if it
could result in less used storage, the cost would be lower performance. This
is because data has to be transferred with lower transfer size, which result
in lower bandwidth. Furthermore, to be able to transfer a 32-bit value it
has to be aligned at an address multiple of 4. That is why the structure is
organized as it is.

The nodes of the tree is allocated consecutively, starting with index 0
for the root of the tree. Then nodes are added to the tree referencing other
nodes through indices. Index 0 is reserved as a special marker for child nodes,
indicating that there is no child. This value was chosen since no node can
have the root as a child. A node with value zero in both member zero and
one is a leaf node.

Decoding a Huffman encoded stream on the GPU requires that the Huff-
man tree is built before the decoding can start. Then the encoded stream
is parsed starting at its very beginning. The decoding is as described in
Section 2.1.3. For each decoded symbol one starts at the root, the node at
index 0, then follows the indices found in members zero and one depending
on the current bit value found in the bit string. If a bit is zero then the index
found in member zero is followed, and the same applies for bits with value
one, except then the index found in member one is followed. When both the
values found in member zero and member one are 0 then the node is a leaf
node. At the point of reaching a leaf node the value in the member symbol
is emitted (a byte) to the output stream.

4.4 Transpose
Transposing is done as means to improve performance and to simplify the im-
plementation by only requiring the transform for one direction, either vertical
or horizontal. Coalesced memory access is of great importance to gain high
performance, thus data has to be organized in the correct manner for this to
be exploited, which a transpose ensures. Two kinds of transposes is used, one
for transposing a two-dimensional grid and one for a three-dimensional cube,
a stack of two-dimensional grids. The 3-D transpose is actually a special case
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of the 2-D transpose acting in three dimensions. They are described in the
following subsections 4.4.1 and 4.4.2.

4.4.1 2-D transpose
The following subsection on 2-D transpose is a rewrite of an earlier work of
mine [9].

The 2-D transpose kernel is now explained. First the logical partitioning is
done, creating two-dimensional thread blocks of size N×N . Coalesced mem-
ory access is possible if N is a multiple of 16. In the implementation shared
memory is used as scratch pad memory, that is, as programmer-controlled
cache. Each thread in a thread block handles an element each, which it reads
into shared memory. For the transpose kernel each thread block is two-
dimensional, so it has two-dimensional coordinates for its threads. Before
writing a value to the shared memory the thread transposes its coordinates.
Synchronization is needed before accessing data from the shared memory,
either to write to or read back from global memory.

The kernel can be explained the following way: It reads data from global
memory into shared memory, then synchronizes. After the synchronization,
data from global memory is read into a temporary variable for each thread,
from the part below the main diagonal of the logical partitioning. Then
what is stored in shared memory is written to global memory, followed by
another synchronization. After this synchronization the temporary variable
is written to shared memory. Finally after the last synchronization, what is
in shared memory is written to global memory.

Memory usage is kept at the same amount throughout the transpose,
since it is an in situ algorithm. Thread blocks operate on the main diagonal
or above, those below return at once. Thus the blocks not returning at once
does the actual work, and they operate on both sides of the main diagonal.
This is done because there are no natural mechanisms for synchronization
between blocks. Figure 4.5 shows the idea behind the transpose function.

4.4.2 3-D transpose
To be able to do the subband coding efficiently a 3-D transpose has to be
done. There are two good reasons for this: Implementation complexity and
performance. The way the subband coding kernel is implemented it assumes
a given layout of the data in memory. The layout of the data is organized such
that elements that are needed to calculate a new value is close in memory.
Not only does this ease the address calculation of the needed elements, but
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Figure 4.5: The 2-D transpose function’s use of shared memory.

it also makes the data access more efficient since coalesced memory access is
used.

The 3-D transpose used is actually an extension of a 2-D transpose, the
difference being that it operates over a three-dimensional dataset. A stacked
two-dimensional layout forms the three-dimensional dataset of seismic data.
The layout of this three-dimensional dataset is not optimal with respect to
performance when accessed in its “depth” direction, because of the memory
access pattern that prevents efficient coalesced memory access. Since the
subband coding kernel is designed to process data that is close in memory,
a rotation or a transpose solves this layout problem. A in-situ transpose is
chosen in favor of a 90 degrees rotation of the stack, mainly because of its
ease of implementation. A 90 degrees rotation in-situ would require a more
complex access pattern to avoid overwriting data, and would most likely not
be that easy to parallelize.



4.4. TRANSPOSE 49

After the transpose of the stacked data, what used to be on the Z-axis is
now on the X-axis and vice versa. An analogy to this transpose is a book
where each page represent a 2-D plane, turning the page is like traversing
in the depth (Z-direction). Before the transpose, accessing the words in the
Z-direction is like turning the page and finding the same row and column
on the next page. After the transpose, the words are arranged on a line.
Consider the first column on every page, after a transpose it is arranged as
rows on page one, where the column on the first page is at row one, the
column on the second page at row two, and so on. The same applies for the
second column of every page where the columns are arranged into rows at
the second page. Generally after a transpose, the ith column of every jth
page is arranged into jth row of the ith page.

The 3-D transpose kernel is similar to the 2-D transpose kernel with only
minor changes to support three indices. These changes are because the 3-D
transpose kernel operates over a data set addressed through three indices.
The shared memory is also expanded to three-dimensions, although two-
dimensions is sufficient since the transpose is only working in a plane. This
new dimension leads to a slightly different address calculation, as described
below. Choosing the width (x-dimension) of the thread block to a multiple
of 16 gives coalesced memory access. Given that there is a restriction of
512 threads per thread block and that a multiple of 16 is wanted for the x-
dimension as well as the z-dimension, simply choosing the dimension of the
thread block to be 16 in x-dimension 1 in y-dimension and 16 in z-dimension
is natural, this results in 256 threads for the thread block. As each thread is
to hold a float value requiring 4 bytes each, the amount of shared memory
to hold these values is 4 bytes × 256 = 1024 bytes. Using the tool provided
by NVIDIA for calculating occupancy on the GPU, a spreadsheet, suggest
that this is optimal as it results in 100% occupancy. The occupancy gives
an indication of how well the GPU resources is spent. Furthermore, the
logical partitioning with a main diagonal is also present in the transpose
kernel working on a 3-D data set, except that the y-dimension is now the
z-dimension.

To illustrate the analogy with the book above and to show how the data is
organized in memory, an illustration of the data in memory before and after
the 3-D transpose is given in Figure 4.6. In the figure each rectangle is a slice,
there are 4 slices in this cube of size 43. In the rectangles, the rows are the x-
dimension and values along the rows are at consecutive addresses. For values
along the columns, the y-dimension, consecutive addresses are calculated as:
width × y-pos. On the GPU the actual width of a slice may differ from the
logical width. This occurs when using an API call to allocate memory that
do padding to meet the alignment requirements to allow coalescing when



50 CHAPTER 4. METHODOLOGY

going from one row to the next row. This ensures that coalescing is possible
on each row. When allocating memory that can be padded, a variable giving
the pitch (the actual width of a row in bytes) is returned. Addresses in the
y-dimension can then be calculated through the following code (C code):

T* pElement = (T*)((char*)BaseAddress + Row * pitch) +
Column;

Where T is the type, and row and column is given in addition to the base
address, as described by the NVIDIA CUDA reference manual [15]. The last
direction the z-dimension, is calculated by: width × height × z-pos. All the
address calculations mentioned should use the actual width when calculating
the position of an element.



4.4. TRANSPOSE 51

Initial Transposedx
y

z=1z=1

z=2z=2

z=3z=3

z=4z=4

11

2

2

3

3

4

4

55

6

6

7

7

8

8

99

10

10

11

11

12

12

1313

14

14

15

15

16

16

17

17 1818

19

19

20

20

21

21 2222

23

23

24

24

25

25 2626

27

27

28

28

29

29 3030

31

31

32

32

33

33

34

34 3535

36

36

37

37

38

38 3939

40

40

41

41

42

42 4343

44

44

45

45

46

46 4747

48

48

49

49

50

50

51

51 52

53

53

54

54

55

55 5656

57

57

58

58

59

59 6060

61

61

62

62

62

63

63 6464

Figure 4.6: The layout of elements in memory before and after the 3-D
transpose.
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Chapter 5

Results

This chapter examines the results of different tests done on various selected
components of our compression implementation. The following Section 5.1,
gives and overview of the testing environment, followed by Section 5.1, pre-
senting our benchmarking results, then Section 5.3 presents the compression
efficiency, which is followed by Section 5.4 and Section 5.4 gives a description
of our compression algorithms.

5.1 Testing environment
The timing benchmarks presented in this chapter was performed on a system
with the following specifications: It ran on a system with Microsoft Windows
XP Professional x64 Edition, version 2003 with service pack 2, as the oper-
ating system. The processor in the system was an Intel R© CoreTM 2 Quad
processor Q9550 running at 2.83 GHz, with access to 8GiB1. The graphics
card was a NVIDIA Quadro FX 5800 with 4GiB of memory, using driver
version 182.50.

It should be noted that the program components have not been fully
optimized as the primary concern was to get a working proof of concept
giving correct results.

5.2 Benchmarking
To measure the performance of the implementation different setups was used.
The goal was to see if transferring a compressed stream from the host mem-

11GiB = 230 bytes = 1024MiB. 1MiB = 220 bytes = 1024KiB. 1KiB = 210 bytes =
1024 bytes.

53
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ory to the GPU memory, and then decompress it on the GPU, would result
in shorter transfer time. Because the decompression consists of different
stages, which can be divided into three main stages as described in Section
2.2.1, only the most essential parts has been tested. That is, the parts that
cannot be removed if compression is desired with the method suggested, sub-
band coding. Therefore, the transformation (synthesis) and also the inverse
quantization has been timed.

The timing was done by calling the functions a number of times, this
is to reduce the inaccuracy of the measured time, because the resolution of
the timer is unknown and might be to coarse if measuring is done over a
small time interval. Before doing the measured iterations the kernels was
called once, as a “warm up” as it is called in some of the examples of the
CUDA SDK, such as the white paper by Podlozhnyuk [16]. This warm up
was done because the first invocation of a kernel might give slower runtime
than the following invocations. The result it then averaged over the number
of iterations taken using the arithmetic mean given by: 1

n

∑n
i ai, where ai is

the time for the i iteration and n is the number of iterations taken.
Four timing tests was done, with results given in Table 5.1:

1. A simple memory copy

a) Allocated with Malloc3D on device
b) Allocated with Malloc on device

2. Subband synthesis transform

a) A memory copy followed by the subband synthesis transform
b) Only subband synthesis transform

3. Inverse quantization

a) A memory copy from host followed by inverse quantization and a
copy to 3-D allocated memory on device.

b) Inverse quantization and copying of result to 3-D allocated mem-
ory on device.

4. CPU version of the subband synthesis transformation

All the memory allocated on the host device that was copied to the de-
vice was allocated with cudaMallocHost, this gives what the CUDA ref-
erence manual call page-locked memory. This makes the driver track the
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Table 5.1: Various timing results

Method Description Time (ms)
1a Copy 8192 KiB to device (Malloc3D) 1.77
1b Copy 8129 KiB to device (Malloc) 1.60
2a Subband transformation (w/mem. copy) 813.76
2b Subband transformation (no mem. copy) 811.97
3a Inverse quantization (w/mem. copy) 1.82
3b Inverse quantization (only copying on device) 1.42
4 Synthesis (CPU) 2029.00

virtual memory ranges of the allocated memory resulting in accelerated calls
to cudaMemcpy*() functions2.

In addition, timing using the NVIDIA CUDA Visual Profiler was done,
with results summarized in Table 5.2. The resolution of the timings given
by the Visual Profiler is higher than that of the other timing method used,
giving values in microseconds (µsec). The results given in Table 5.2 was
gathered by running a loop invoking these kernels ten times. The order of
the kernels used is given below:

1. Transfer quantized data to GPU

2. Inverse quantize data on GPU

3. Copy result to data allocated with cudaMalloc3D

4. Pack the data (interleave indices from the subbands)

5. Apply the synthesis filter (horizontal coefficients)

6. Transpose data (X and Y axis)

7. Pack the data

8. Apply the synthesis filter (vertical coefficients)

9. Transpose data (X and Z axis)

10. Pack the data

11. Apply the synthesis filter (vertical coefficients)
2The star (*) represents all the possible endings to the function name.
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Method #Calls GPU µsec CPU µsec % GPU time
Filter kernel 30 8.0615× 106 8.0646× 106 98.08
3-D transpose 20 1.4364× 104 2.3636× 104 0.17
2-D transpose 20 1.1600× 104 1.7050× 104 0.14
Shuffling 30 7.4556× 103 1.2527 × 103 0.09
Inverse quantization 10 1.7301× 103 1.8335× 103 0.02
Memory copy 20 3.9404× 104 3.2191× 104 0.45

Table 5.2: NVIDIA CUDA Visual Profiler timing results.

12. Transpose data (X and Z axis)

13. Transpose data (X and Y axis)

These are the steps necessary to do the synthesis part of the subband coding
over a 3-D data set. As can be seen from the times in Table 5.2 the subband
coding is the most prominent kernel using most of the time of the synthesis
process. All the tests was conducted on a cube with lengths of 128 elements
for each dimension, each element of type float (4 bytes) which result in a
memory footprint of 8 MiB for the cube.

The CUDA Visual Profiler documentations gives guidelines on how to
interpret the results it produces. In addition to give accurate timing values
it gives information of coalesced memory access, divergent warps and similar
features. As the counters can only target one of the multiprocessors of the
GPU, it does not give data on all the warps launched for a particular kernel.
The documentation states that the values returned by the tool is not expected
to match what can be found by inspected the kernel code. Thus, it is a tool
best suited to compare optimized and unoptimized code.

Looking at the times given in Table 5.1 it is easy to conclude that the
decompression of compressed data using subband coding with the current
implementation on the GPU, is not more efficient than simply transferring
the raw data. In this particular, implementation the synthesis filtering takes
most of the time. More details around the results is given in Section 5.4.

5.3 Compression efficiency
The signal-to-noise ratio (SNR) of the seismic data and the seismic data after
quantization and inverse quantization is measured over a cube of dimension
64. This gave a SNR of 24.67 decibel (dB), a value above 27 dB is desired
to ensure that not too much visible noise appear. The SNR is defined by the
following equation for dB:
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SNR = 20 log10

(
Asignal

Anoise

)
. (5.1)

Where the amplitude A is in root mean square (RMS), RMS over a col-
lection of values {x1, x2, . . . , xn} is defined as:

xrms =
√√√√ 1
n

n∑
i=1

x2
i . (5.2)

In addition to measure the SNR, a measure of the standard deviation
for each of the resulting subbands of the 64 × 64 × 64 cube was calculated,
this can be see in Figure 5.1. This figure shows how the energy of the input
signal is gathered into few subbands, with the highest value found in one
of the first subbands. The SNR given above can be improved by a more
elaborate quantizer which gives a better result. As the focus of this thesis is
not that of a signal processing perspective, this is not investigated.

To understand how efficient the compression of the implementation is,
a simple test was conducted. It illustrates the compression achieved with
simple RLE and with both RLE and Huffman applied to the quantized
stream. The Huffman coding was done after the run-length encoding in the
case where both RLE and Huffman was used. For the run-length encoded
stream the RLE encoder written (CPU) was used, and for the Huffman cod-
ing libhuffman was used.

Using the run-length encoder implemented gave a compression ratio of
0.0739 for the cube of dimension 643 and 0.0655 for a cube of size 1283.
By using Huffman encoding these ratios was reduced further as can be ob-
served in the column Compression Ratio in Table 5.3 that gives the ratio for
RLE + Huffman.

Cube Raw RLE RLE + Huffman Compression Ratio
643 1024KiB 75.692KiB 36.702KiB 0.0358
1283 8192KiB 536.529KiB 252.854KiB 0.0310

Table 5.3: Compression results with different cube sizes
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Figure 5.1: The standard deviation over 512 subbands of a 643 cube.

5.4 Discussing the results
The following subsections describes possible suboptimal design choices in our
implementation

5.4.1 GPU memory accesses
The subband synthesis filter kernel is implemented using constant memory
for filter coefficients, and shared memory for the filter data. This might not
be the ideal solution due to the nature of constant memory and the way the
kernel is designed to make use of it. Constant memory is cached according
to the programming guide [11], and it states that reading from it is as fast
as reading from a register, given that all the threads read from the same
address. Otherwise it is serialized, assuming that it is still as fast as accessing
a register for each access it is faster than global memory. The kernel does a lot
of lookups on the filter coefficients, and each thread accesses it own location,
which means that it probably is serialized and in worst case results in access
to global memory. The shared memory is used to hold the filter data and is
accessed as often as constant memory within the inner loops. Access pattern
to the shared memory is not as strict as for constant memory and it is also
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as fast as accessing a register given that there are no bank conflicts between
the threads. If there are bank conflicts the access is serialized. There are 16
banks for devices with compute capability 1.x, and requests are split into one
for each half warp (16 threads). Assuming that the shared memory allocated
for each thread block is aligned in memory such that the first index starts
at the first bank and the consecutive indices are at consecutive banks, the
access pattern in the inner loop falls at 16 different banks for a half warp.
Starting in the middle of the bank array, at offset 8 (offset 24 modulus 16) for
the first lookup in the synthesis kernel, see Listing 4.1 (even subbands), this
should avoid bank conflicts if the access does not have to be at an alignment
modulus 16 for the first thread in the half warp. For the following iterations
of the loop this constraint of accessing 16 different banks for a half warp is
fulfilled. The same applies for the three other accesses to shared memory
found in Listing 4.1.

5.4.2 Branching in GPU
Within the kernel there are many branches as well, this is to avoid having to
store the padded values in global memory. Accessing global memory can take
from 400 to 600 clock cycles of memory latency, this is why this choice was
made. Branch divergence as described in the programming guide for CUDA
states that divergence only occur within a warp, and that threads within a
warp are serially executed for each branch path taken, disabling threads not
on the path, this is done for each execution path and when complete the
threads converge back to the same execution path [11]. Therefore, the condi-
tional checking if a given thread block is the first or the last block processing
the data should only execute its assigned code block if the conditional is
true. Otherwise, the warps not fulfilling the conditional should not execute
any of that code. There are some special cases handling the mirroring of the
filter data that applies only to some threads, but they do not access global
memory so they should not consume to much time. One possibility is also
that all the branches are actually executed, which would lead to a great deal
of unnecessary data processing and it can be the main reason for the poor
performance.

5.4.3 Inverse quantization and alignment
Now, as another comparison basis of the GPU implementation, the inverse
quantizer is interpreted. It is simple in its implementation, it only reads
quantized data from one buffer, do some simple calculations, and write the
result to another buffer. Because it does not write this data to memory
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allocated with cudaMalloc3D it is not necessary aligned correct for the sub-
sequent lines in a cube. Thus, after the processing the data written to a
temporary buffer is copied into memory aware of padding and alignment
requirements for data allocated for 3-D access. The time for the whole quan-
tization step including memory copy from host till the complete result is
placed in the target location is given in Table 5.1. The whole process takes
1.82ms, considering only the quantization including the final copy, it takes
1.42ms. Given that this is the fastest kernel in Table 5.2, the quantization
timing-results presented in Table 5.1 might give the best times achievable
out of these kernels. If this is the case, the time spent processing including
copying from host memory is above that of a pure memory copy from host
to device. The time doing the inverse quantization on the device including
the copy between different buffers is marginally smaller than that of a pure
copy from host to device. In addition, the quantization the way it is im-
plemented only gives a compression ratio of 1:4. As this is only one part
of the whole compression scheme under investigation, one cannot state that
this is an improvement masking the bandwidth limitation between CPU and
GPU using compression with subband coding. In addition the the inverse
quantized data has to be processed by the subband synthesis filter before it
can be used. This would add to the time achieved by the quantizer.

5.5 Proposing improvements to the implemen-
tation

Now that the possible bottlenecks have been discussed some suggestions for
improvements are given. First, the use of constant memory has to be re-
considered. Second, the branch conditions removed or improved. Third, see
if it is possible to use more registers and gain performance that way, and
finally see if the use of more threads is a solution. The reason for choosing
constant memory for the filter coefficients was because is has the lifetime of
an application, so it is not lost during kernel launches. Furthermore, it is
cached and has a peak performance equal to that of a register, with respect
to access time. The problem is that is has a restricted access pattern to gain
good performance. A solution is to copy the filter coefficients into shared
memory for each block. This requires 16 (filter length) × 8 (subbands) ×
4 (size of element) = 512 bytes of shared memory in addition to that used
for the filter data, and usually some uncontrollable use of shared memory
inserted by the compiler, and by the parameters passed along to the kernel
in shared memory. This expansion in use of shared memory will result in a
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total shared memory footprint of 384 bytes (filter data) plus 512 bytes for
filter coefficients in addition to the uncontrolled amount of shared memory,
which gives a requirement of more than 896 bytes. Then some restructuring
of the code reducing the number of branches taken can be tried, most likely
that would require a step where the data is preprocessed extending the the
signal ends in memory before calling the synthesis filter. If possible, one can
try to use more threads to do the computation, this would probably require
more shared memory for the filtered data and perhaps a change in how data
is accessed by a block.

5.5.1 Planning tool
Along with the CUDA software development kit (SDK) a tool to calculate
how much of the GPU resources is use is included, the CUDA GPU occupancy
calculator, which is a spreadsheet containing data on the different compute
architectures and how to compute the usage of different resources. It takes as
input parameters information on the number of registers used per thread, the
number of threads per block, as well as the amount of shared memory used per
block. With this information and the compute capability of the target GPU
it gives information on the occupancy of each multiprocessor, in number of
threads, active warps and active thread blocks, and a percentage of resources
used. It also presents information on the limiting resource or resources. An
example with a device having resource capability 1.3 using 64 threads per
block, 16 registers per thread and a usage of 1024 bytes of shared memory
results in 512 active threads per block, 16 active warps 8 active thread blocks
and a 50% occupancy of each multiprocessor. In addition to numerical values
it gives graphs showing occupancy gained by changing different parameters.

Feeding this spreadsheet with the values of the current implementation
of the subband synthesis kernel, which are: 64 threads per block, 16 registers
per thread and if we round the shared memory up to 1024 bytes, it tells us
that the limiting factor is the number of active warps per multiprocessor,
there can only be 8 active thread blocks per multiprocessor and we use 2
warps per block using only 16 of the 32 warps available. Thus, there are 512
threads per multiprocessor (of 1024 on devices with compute capability 1.3).
This suggest that more threads should be used, the problem is how to use
them efficiently. With the current number of threads per block it is possible
to use more shared memory without suffering according to the calculator.
Comparing this to a device with compute capability 1.0 the story is a little
different as the number of warps per multiprocessor is only 24 and not 32.
In addition there are only 8192 registers and not 16384 as with compute
capability 1.3. Thus the limiting factor is for devices of compute capability



62 CHAPTER 5. RESULTS

1.0 both the available registers and warps utilized, so for these devices it uses
67% of the resources available.

From the information presented above, the expansion of shared memory
to 1024 bytes and the copying of filter coefficients into shared memory should
be a feasible expansion. If the number of registers stay the same, an expan-
sion to 128 threads per block would result in 100% utilization for compute
capability 1.3, the problem is do use the extra threads in a productive way,
one solution might be to take all the 128 input element from the signal and
process them in one kernel.

5.5.2 How fast is the subband synthesis filter?
The big question is: How fast does the subband synthesis filter have to be?
Well, it is not a trivial answer as there are more to the decompression of the
subband coded data than just the synthesis filter. In addition the decom-
pression can be done in two different ways, one includes the transfer from the
host memory to the GPU memory. The other neglects the transfer from host
memory to GPU memory as it can be done once, and the compressed data
can reside in GPU memory. An estimate on how fast the subband coding
has to be if only memory copy and the synthesis is applied, is proposed in
the following paragraphs.

Assuming that the user wants to access the data efficiently with coalesced
memory access, the resulting data should be allocated with cudaMalloc3D
to ensure correct alignment. Looking at the result of transferring data from
page-locked memory on the host to the GPU suggest that this takes 1.77 ms
for a 1283 cube of floats (see Table 5.1). Therefore, if compression should be
beneficial it should be able to transfer the compressed data and decompress
it in a time that is lower that that of a pure transfer of the uncompressed
data. Or, it should be able to decompress it faster than what a transfer
of the raw data takes. In other words the whole process with quantization,
decompression and filtering, should take no more than 1.77 ms.

A rough estimate of the number of floating point operations (FLOPs)
required to do the subband synthesis based on Listing 4.1 is as follows: For
even subbands (4 mul +4 add )×4 = 32, four filter coefficients are multiplied
by four signal elements, these are added together and stored in a variable.
For odd subbands it is (4 mul + 2 add + 2 sub ) × 4 = 32. The sum of
these two are 64, therefore 64 FLOPs are done by each thread, this neglects
other computations done by the thread such as calculating addresses. A cube
of dimension 128 in each direction has 1283 elements, and each element is
processed by a thread. Therefore, the amount of calculations on a cube is at
least 1283 × 64 FLOPs ≈ 134 MFLOPs.
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The number of floating point operations per second (FLOPS) of current
NVIDIA GPUs is calculated as follows: number of SPs × 3 (FLOPs per
cycle) × frequency. Thus, if we underestimate the GPU giving it only an
1GHz clock, and since the NVIDIA Quadro FX 5800 has 240 SPs, it would
have a peak performance of 240× 3× (1× 109) which is 720 GFLOPs. This
means that the GPU should be capable of calculating the synthesis filter in:
134 MFLOPs / 720 GFLOPS = 0.18 milliseconds. This totally ignores the
time used to communicate with memory, nevertheless it illustrates that the
problem with the current implementation probably is wrong use of different
memory spaces.

5.5.3 Constant memory cache
One problem with the current implementation could be that the cache of
the constant memory is not working as expected, it might be flushed such
that memory access goes to global memory instead of using a cached value.
If we estimate the time used accessing global memory to be approximately
the same as for instance the 3-D transpose kernel plus a 50% overhead for
computation and the extra global memory accessed. The synthesis filter read
from global memory 192 values for a line of width 128 elements, then writes
the 128 answers to global memory, so it has 320 accesses to global memory,
where the 3-D transpose would have 256. The ratio 320/256 is 1.25 thus
an estimate using 50% overhead should be reasonable. This would give us
from the timing in Table 5.2 (1.5 × 1.4364 × 104/20) × 30 = 3.2317 × 104

µseconds which is about 250 times smaller than the current time of 8.0615×
106 µseconds. This assumes that the values from the Visual Profiler over a
multiprocessor is representable. Summarizing the result using the values of
the other kernels in Table 5.2 as they are, excluding the memory copy, gives:
3.2317 × 104 + 1.4364× 104 + 1.1600× 104 + 7.4556× 103 + 1.7301× 103 =
6.7467× 104. This time is approximately 120 times smaller than that of the
current implementation, even if the time for a new synthesis kernel was twice
the suggested time, it would be a great improvement. If this new time scales
for all multiprocessors, that is, the measurement on one multiprocessor is
representable, the total time would be reduced by approximately 100 times.
Although this is great, reducing the total time for the subband transform by
100 in Table 5.1 does not help, it would still be slower than the simple memory
copy. Since this is just a theoretical estimate, it is difficult to say anything for
sure on the performance actually achievable for the synthesis filter without
investigating it in more detail. As this estimate does not consider the other
stages in the decompression such as RLE and Huffman, the estimate does
not tell the whole story. Both run-length encoding and Huffman decoding is
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discussed below.

5.6 Our compression algorithms

Only coarse timing tests was done on both the Huffman and RLE imple-
mentations. As these were only implemented and tested for correctness they
are not optimized and thus gave poor results, clearly favoring pure mem-
ory copying of data. These implementations do not utilize many threads
and access memory in a suboptimal way so they are hardly representable,
but they highlight the sequential nature of both these algorithms. Moreover
a technical report from University of California at Berkeley [17], describes
what they call dwarfs. A dwarf captures “. . . a pattern of computation and
communication common to a class of important applications”. One of these
dwarfs are finite state machines, some of which can be “decomposed[ed] into
multiple simultaneously active machines that act in parallel”, [17]. The re-
port summarizes results of their investigation of different applications, and it
puts Huffman decoding under their 13th dwarf, finite state machines. This is
the last dwarf and according to the report maybe the most challenging, and
it might prove to be embarrassingly sequential. RLE is similar to Huffman it
the way it is decoded and might fall under the state machine dwarf, different
algorithms for text, picture and video compression are mentioned under this
dwarf and some of these can use RLE as part of the compression.

Clearly, it is not a trivial task to gain high performance out of these
compression algorithms. There is a paper by Klein and Wiseman [12] that
investigates parallel decoding of Huffman encoded streams. Their experi-
mental results shows a processing time about one-third that of a sequential
Huffman decoder for a four processor system. This result suggests that it
should be possible to achieve reasonable speeds on GPUs given their number
of available processing units. Even if it did perform well on a CPU setup
with four processors it does not necessarily scale to GPUs, so this should be
investigated before any conclusions about the suitability of the algorithm to
GPUs are made.

5.6.1 GPU versus CPU precision

A simple comparison between the CPU version of the subband synthesis
and the GPU version with respect to precision was also performed. The
comparison was done by calculating the distance between two values using
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the following equation:

max
i

(
di =

n∑
1

√
(xi − yi)2

)
. (5.3)

Where x and y denotes the input sequences, and di denote the distance
between the two elements at the position i in the two different sequences.
The max operator gives the greatest value in the distance set.

Applying Equation 5.3 on the result from the GPU and the result given by
the CPU implementation gives the greatest distance between the two. This
distance was measured to 0.007813. Even if the result differ by approximately
0.8% it is not the greatest source of error in the compression scheme, which
is introduced by the quantizer. Thus this difference between the CPU and
GPU implementation is acceptable.
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Chapter 6

Conclusions

The gap between computational performance and memory access times, is
only getting worse. This is particularly true when it comes to memory trans-
fers between the CPU and GPU and the amazing computational power now
available on modern GPUs. Since seismic data sets can become several ter-
abytes, reducing the size of the data makes it more available given a limited
amount of memory bandwidth. The goal of this thesis was hence to inves-
tigate the feasibility of compressing seismic data using subband coding as a
means to reduce the effect of the limited bandwidth between the CPU and
the GPU.

Our work included developing a proof-of-concept implementation of a
system capable of decompressing seismic data on a GPU. An elaborate dis-
cussion of the validity of the implementation as a representable basis for a
conclusion was then given. The main focus of our discussion was on the
subband analysis kernel. Unfortunately our theoretical analysis gave it a
half-open closure that needs further investigation. The compression meth-
ods we used, both Huffman and RLE, were briefly discussed as these im-
plementations were implemented by porting from serial versions, but not
fully optimized. In despite of the possibility of either the subband analysis
transform, or one of the decompressors being able to give results with good
performance, the combination of all these components seemed to result in
a run-time exceeding that of a pure memory transfer without compression.
Thus, the use of subband coding with the use of entropy coding to compress
seismic data as a means to hide the limited memory bandwidth between CPU
and GPU was not the success we had hoped for.
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Another useful application of our work
Although not currently suited for the GPU-CPU compression, our GPU-
based decompression implementations could improve transfer of seismic data
over networks significantly. Seismic data sets can be enormous, so reducing
these before a transfer over a network could reduce the retrieval time and
the load on a network. Our compression results gave a compression factor
between 27 and 32, and a SNR of 24.67dB for a cube of dimension 643. A
speedup of 2.5 for the synthesis filter compared to the CPU implementa-
tion was achieved (2029.00/813.76 ≈ 2.5). Given the compression ratio of
roughly 0.04 presented in Section 5.3, our implementation would reduce the
seismic data by a factor of 25. If we consider a network connection of 100
Mbit/s with 20% overhead, only 10MiB/s would be transferred. Using the
proposed compression method reducing seismic data by 25 times would give
a theoretical transfer rate of 250MiB/s.

6.1 Future work
Because the current implementation might be improved further, an effort
could be made to see how much faster it is possible to get the synthesis
kernel. The sequential nature of both Huffman and run-length encoding is
probably the biggest challenge in parallelizing the decompression, and could
be investigated further to see if they actually scale sufficiently to give accept-
able decoding speeds on GPUs. Furthermore, other compression schemes
better suited for the parallel architecture of GPUs could be investigated
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[3] ÖzdoğanYilmaz and S. M. Doherty, Seismic Data Processing. Tulsa,
OK: Society of Exploration Geophysicists, 1987.

[4] “Speeding up transform algorithms for image compression using GPUs,”
Stanford 50: State of the Art and Future Directions of Computational
Mathematics and Numerical Computing, March 29-31 2007, student
poster.

[5] D. Salomon, Data Compression, The Complete Reference. London:
Springer-Verlag London Limited, 2007.

[6] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the I.R.E., pp. 1098–1101, Sep. 1952.

[7] T. A. Ramstad, S. O. Aase, and J. H. Husøy, Subband Compression of
Images: Principles and Examples. The Netherlands: Elsevier Science
B.V., 1995.

[8] R. C. Gonzales and R. E. Woods, Digital Image Processing. New Jersey:
Prentice-Hall, Inc., 2002.

[9] D. Haugen, “The lapped orthogonal transform using multiple GPUs,”
Computer Science Project Report, Norwegian University of Science and
Technology, Trondheim, Norway, 2009.

[10] “NVIDIA Tesla: A unified graphics and computing architecture,” IEEE
Micro, vol. 28, no. 2, pp. 39–55, 2008.

69



70 BIBLIOGRAPHY

[11] NVIDIA CUDA Compute Unified Device Architecture — Programming
Guide, NVIDIA, 2008, version 2.1.

[12] S. T. Klein and Y. Wiseman, “Parallel huffman decoding with applica-
tions to JPEG files,” The Computer Journal, vol. 46, no. 5, pp. 487–497,
2003.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, 2nd ed. Cambridge, Massachusetts and London,
England: The MIT Press, 2003.

[14] NVIDIA Compute — PTX: Parallel Thread Execution, NVIDIA, 2008,
ISA Version 1.3.

[15] NVIDIA CUDA Compute Unified Device Architecture — Reference
Manual.

[16] Image Convolution with CUDA, NVIDIA, 2007, Victor Podlozhnyuk.

[17] K. Asanovic, R. Bodik, B. Catanzano, J. Gebis, P. Husbands,
K. Keutzer, D.Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelick, “The landscape of parallel computing research: A view from
berkeley,” Electrical Engineering and Computer Sciences University of
California at Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec. 2006.



Appendix A

Filter coefficients

The filter coefficients used by the subband coding can be seen in the four
following tables Tables A.1, A.2, A.3 and A.4. Each filter has a length of 32,
but only half the length of the filter is shown (16). The reason for this is that
the other half i redundant and can be produced as seen in Algorihm 4.2.2.
In addition to having a length of 32, the filters have 8 subbands marked by
the columns hx and gx for analysis and synthesis filters respectively, where x
is the subband number.
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Table A.1: Analysis filter coefficients in the temporal direction, from Røsten [2].
Analysis filter coefficients, hm(l)

h0 h1 h2 h3 h4 h5 h6 h7
l
0 0.006096 -0.015941 -0.023007 -0.008099 0.011024 -0.003653 -0.007104 -0.007900
1 -0.009134 0.000476 0.003330 0.005960 -0.021504 -0.004128 0.014532 0.016889
2 0.000601 0.017705 0.031131 0.007647 0.011982 0.013646 -0.008893 -0.010511
3 0.000165 -0.009817 -0.005237 -0.000981 0.010104 0.002960 -0.010908 -0.012643
4 -0.015298 -0.067306 -0.080253 -0.012672 -0.027305 -0.018986 0.029557 0.032331
5 -0.008286 -0.065844 -0.064885 -0.007899 0.030307 0.003832 -0.029121 -0.031880
6 -0.025789 -0.007358 0.015607 0.019643 0.000909 0.019207 0.005515 0.001630
7 -0.052737 0.001028 0.024532 0.033409 -0.065426 0.004166 0.035082 0.051029
8 -0.037663 -0.103766 -0.038451 0.118896 0.078424 -0.112463 -0.078470 -0.071138
9 0.033872 -0.139232 -0.178099 -0.044076 0.111467 0.231373 0.075029 0.031106
10 0.100825 -0.036716 -0.151063 -0.284211 -0.244996 -0.175210 0.020769 0.048119
11 0.152293 0.153597 0.124966 -0.059419 -0.039820 -0.096330 -0.189972 -0.138138
12 0.213064 0.332400 0.393746 0.364026 0.380032 0.354140 0.355229 0.228646
13 0.284517 0.421830 0.351936 0.166808 -0.124918 -0.306582 -0.426396 -0.312698
14 0.369063 0.360976 -0.018324 -0.397619 -0.416913 -0.059937 0.351563 0.379348
15 0.447614 0.145986 -0.387658 -0.322158 0.306708 0.419064 -0.136123 -0.418129
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Table A.2: Synthesis filter coefficients in the temporal direction, from Røsten [2].
Synthesis filter coefficients, gm(l)

g0 g1 g2 g3 g4 g5 g6 g7
l
0 -0.000160 0.003387 -0.004043 -0.003410 -0.000019 0.008453 -0.001746 0.000671
1 0.001048 -0.007547 0.008759 -0.012156 -0.014173 0.000314 0.016516 -0.022710
2 0.003908 -0.012832 0.013918 0.002350 0.009395 -0.017636 -0.014318 0.019351
3 0.006465 0.012661 -0.015430 0.018354 0.005434 0.005030 -0.008677 0.013456
4 -0.000750 0.040950 -0.045001 0.019606 -0.018034 0.032693 0.030401 -0.040645
5 -0.021309 0.029873 -0.024888 0.002297 0.024577 -0.000579 -0.030727 0.041260
6 -0.048609 0.001984 0.015180 -0.049628 0.007158 -0.020685 0.011331 -0.016950
7 -0.065727 0.024934 -0.002096 -0.093352 -0.018279 0.026760 0.033094 -0.055269
8 -0.043934 0.109218 -0.099950 -0.075215 0.101385 0.063607 -0.078469 0.099161
9 0.013576 0.147900 -0.188223 0.137132 0.042723 -0.221666 0.097492 -0.038866
10 0.078129 0.062944 -0.102608 0.277469 -0.244312 0.202597 -0.005522 -0.047053
11 0.136482 -0.124655 0.169837 -0.009494 0.029259 0.071738 -0.169810 0.135495
12 0.200938 -0.322868 0.396283 -0.354029 0.367703 -0.347160 0.346933 -0.224089
13 0.282134 -0.427550 0.321291 -0.109313 -0.168587 0.321836 -0.426406 0.308310
14 0.376453 -0.367232 -0.043690 0.400296 -0.404493 0.041150 0.360319 -0.373183
15 0.451957 -0.145624 -0.386818 0.298105 0.313810 -0.414986 -0.140746 0.419260



74
A

PPEN
D

IX
A

.
FILT

ER
C

O
EFFIC

IEN
T

S

Table A.3: Analysis filter coefficients in the spatial direction, from Røsten [2].
Analysis filter coefficients, hm(l)

h0 h1 h2 h3 h4 h5 h6 h7
l
0 0.028521 0.016711 -0.015109 0.005772 0.009862 0.010154 0.000174 -0.001362
1 0.029985 0.008172 0.016105 0.016532 -0.000500 -0.006698 -0.000360 0.002941
2 0.014923 -0.003037 0.029721 0.013845 -0.011234 -0.018105 -0.001968 0.003341
3 -0.018072 -0.010483 0.003989 -0.008920 -0.012195 -0.010779 -0.002152 -0.002779
4 -0.051874 -0.018327 -0.024486 -0.019075 0.036217 0.040724 0.016813 0.014945
5 -0.063421 -0.025978 -0.021024 -0.026191 -0.017950 -0.004222 -0.030814 -0.037034
6 -0.047956 -0.025749 0.036362 -0.018587 -0.025978 -0.028487 0.033931 0.035760
7 -0.028350 -0.035764 0.071440 0.030709 0.011984 -0.008299 -0.013524 0.007132
8 -0.065276 -0.121619 -0.039981 0.147132 0.030011 -0.010965 -0.037661 -0.055654
9 -0.029414 -0.158878 -0.201710 -0.079363 0.117220 0.138888 0.060909 0.050566
10 0.041005 -0.086445 -0.156086 -0.282150 -0.224415 -0.138755 0.013513 -0.000556
11 0.139722 0.094500 0.111377 0.011158 -0.085653 -0.090311 -0.175982 -0.098496
12 0.243833 0.308314 0.361981 0.371695 0.385712 0.368322 0.350400 0.213524
13 0.326550 0.433381 0.315170 0.137313 -0.097106 -0.344411 -0.433517 -0.319338
14 0.380350 0.385782 -0.053417 -0.383178 -0.420351 -0.045989 0.361702 0.392374
15 0.409575 0.161938 -0.433829 -0.302472 0.303973 0.442656 -0.141355 -0.425021
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Table A.4: Synthesis filter coefficients in the spatial direction, from Røsten [2].
Synthesis filter coefficients, gm(l)

g0 g1 g2 g3 g4 g5 g6 g7
l
0 0.007463 -0.003982 0.003156 -0.017577 0.009358 -0.003249 -0.000355 -0.003806
1 0.005317 0.008598 0.018240 -0.024589 -0.002268 0.015302 -0.001474 -0.007345
2 -0.005030 0.021921 0.021601 -0.013073 -0.013063 0.024722 -0.002316 -0.005984
3 -0.019517 0.027365 0.002146 0.019659 -0.010059 0.005402 -0.000390 0.003258
4 -0.029959 0.031790 -0.017216 0.036616 0.032097 -0.050018 0.016001 -0.009592
5 -0.031347 0.040529 -0.010212 0.035013 -0.018171 0.004480 -0.029824 0.036694
6 -0.025098 0.049690 0.032128 0.007768 -0.027267 0.040574 0.034469 -0.042506
7 -0.013592 0.065095 0.042921 -0.052878 0.016627 0.010200 -0.019031 -0.004106
8 -0.004361 0.106162 -0.060483 -0.105525 0.054347 -0.020255 -0.038693 0.070838
9 0.035701 0.102718 -0.174097 0.121678 0.088697 -0.144998 0.070920 -0.051181
10 0.098056 0.011205 -0.100492 0.278828 -0.237640 0.150349 0.002003 0.009907
11 0.176120 -0.157290 0.157748 -0.032956 -0.063036 0.066600 -0.166805 0.095769
12 0.254916 -0.335560 0.371595 -0.369249 0.381299 -0.362242 0.347189 -0.210671
13 0.319950 -0.424899 0.292052 -0.115333 -0.113183 0.348068 -0.434200 0.321266
14 0.365755 -0.359145 -0.081206 0.389928 -0.415625 0.035775 0.365051 -0.391057
15 0.392123 -0.143210 -0.443834 0.294352 0.308292 -0.438996 -0.143558 0.423316
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NOTUR2009 poster

The following page displays the poster presented at NOTUR2009, Trond-
heim.
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Strategies for Handling Large Amounts of
Data from Storage to GPUs

Compression solves the bandwidth problem by reducing the amount of transfered data, without losing
information or introducing noticeable noise. The amount of noise introduced is dependent on the comp-
ression  algorithm used  to do the compression,  and can be totally  avoided if lossless compression is
used.
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Applications doing general-purpose computation on GPUs often suffer from bandwidth limitations due
to the limited bandwidth of the communication channel, which typically is PCI Express.

Subband coding is used to decorrelate  the image  data  before doing quantization and entropy coding.
This is done at the time of compression, and the inverse is done while decompressing. The coding in-
volves convolution which is a compute  intensive  procedure  that i well suited for the  GPU architecture
given its arithmetic complexity.

Synthesis filter bankSynthesis filter bankDequantizationDequantizationEntropy decodingEntropy decodingCompressed dataCompressed data Decompressed dataDecompressed data

Preprocessing

Time

CompressCompress CopyCopy DecompressDecompress

CPU
GPU

Overview of the decompression process

Stages in decompression on GPU

  

Examples of compression methods that could be used for entropy coding are Huffman coding and arith-
metic coding.

Dequantization is the process of converting the quantized numbers back to, or close to, their original
value.

The synthesis filter bank  consists of a collection of  filters  that are  applied to  the  dequantized data to
recreate an approximation of the original input data.

The compression under investigation utilize
characteristics found in seismic data, that is,
high correlation in horizontal direction, and
not so high correlation in vertical direction.

To gain maximal compression the data is
considered in three dimensions when
compressing, not only two dimensions. 
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