
June 2009
Monica Divitini, IDI

Master in Information Systems
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Interruption Management in ubiquitous
collaborative environments
developing suitable interaction mechanisms for ASTRA

Tara Nath Subedi

Problem Description
ASTRA is a project that aims at studying awareness systems that help people to feel in touch with
family and friends even when they are away from their computers and the existing widespread
tools of today (IM, skype,
twitter,...) are not enough. In this context, this thesis aims at addressing the problem of
Interruption management. The focus will be on the design and development of different interaction
mechanisms to support the definition of interruption rules as needed in ASTRA. This will require
the extension of the existing Interruption Manager as well as the development of suitable user
interfaces, also considering physical interfaces when appropriate. A limited evaluation of the
proposed solutions will be evaluated with users.

Assignment given: 15. January 2009
Supervisor: Monica Divitini, IDI

Abstract

ASTRA is a project that aims at studying awareness systems that help people to feel in touch with
family and friends even when they are away from their computers and the existing widespread
tools of today (IM, skype, twitter etc.) are not enough. In this context, this thesis aims at address-
ing the problem of Interruption Management. The focus will be on the design and development
of different interaction mechanisms to support the definition of interruption rules as needed in
ASTRA. This will require the extension of the existing Interruption Manager as well as the de-
velopment of suitable user interfaces, also considering physical interfaces when appropriate. A
limited evaluation of the proposed solutions will be evaluated with users.

i

Preface

This report is the result of the master thesis at the Norwegian University of Science and Tech-
nology (NTNU). This is for the last semester in the Master of Information Systems degree at the
Department of Computer and Information Science (IDI).

The study is part of ASTRA project. ASTRA project is funded by the European Community
under the "Information Society Technologies" programme.

I would like to thank my university supervisor, professor Monica Divitini for helping me to
find an interesting topic and providing good advice during the thesis.

Trondheim, June 15, 2009

Tara Nath Subedi

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Research Questions . 2

1.3.1 Main Research Questions . 2
1.3.2 Sub Research Questions . 2

1.4 Research Method . 2
1.5 Contributions . 2
1.6 Report Outline . 3

2 State of the Art 4
2.1 Interruption Management . 4
2.2 Tangible interaction . 7
2.3 Tangible Interface Examples . 8

3 Interruption Management in ASTRA : state of the art 10
3.1 ASTRA Overview . 10
3.2 Platform . 11

3.2.1 BackEnd . 13
3.2.2 Node . 13
3.2.3 EUT . 14

3.3 Interruption Management . 15

4 Community Extension 20
4.1 Community in Interruption . 20
4.2 Community in ASTRA . 20
4.3 Scenario . 21
4.4 Design . 21

4.4.1 End User Tool . 22
4.4.2 Asserting membership in rule engine 22
4.4.3 Rule check : CLIPS rule . 24

4.5 Conclusion . 26

iii

5 Design of tangible interface 27
5.1 Motivation . 27
5.2 Introduction . 27
5.3 Prototype . 27
5.4 Design Strategy . 29
5.5 COTS Analysis UPNP Architecture . 31

5.5.1 Addressing . 32
5.5.2 Discovery . 32
5.5.3 Description . 35
5.5.4 Control . 35
5.5.5 Eventing . 37
5.5.6 Presentation . 37

5.6 COTS Analysis Phidgets . 37
5.7 Design . 40

6 Implementation of Tangible Interface 46
6.1 Introduction . 46
6.2 Device . 46
6.3 Control Point . 48
6.4 Phidget . 53
6.5 Proxy: to ASTRA System . 56
6.6 circuit diagram . 60
6.7 Final look . 63
6.8 Comparison of tangible and web interface . 63

7 Evaluation 70
7.1 Evaluation Design . 70
7.2 Results . 71
7.3 Discussion . 75
7.4 Conclusion . 80

8 Conclusions 81
8.1 Summary . 81
8.2 Contributions . 81
8.3 Evaluation of the thesis . 82
8.4 Future Work . 82

Appendices 84
A-1 Evaluation Set . 84

A-1.1 ASTRA introduction : Presentation Slides 84
A-1.2 Demo . 86
A-1.3 questionnaire-info-participants . 88
A-1.4 task_list_tangible . 89

iv

A-1.5 task_list_web . 91
A-1.6 post_evaluation form . 93
A-1.7 filled form for example . 95
A-1.8 Answer Set . 97
A-1.9 Log Extraction . 98

v

List of Figures

2.1 Overload and irritating by increased number of devices 6

3.1 ASTRA Awareness System . 11
3.2 Overall SOA Component Architecture of ASTRA 12
3.3 Summarization of different elements of Interruption Management 16
3.4 Design of interruption manager . 17
3.5 Editing rule interface . 18
3.6 Compounded single rule example . 19

4.1 Scenario for interruption rules with community 22
4.2 High level view of the design . 23
4.3 End User tool interruption rule interface . 23
4.4 Web services roles . 25
4.5 Node accessing BackEnd community membership 25
4.6 Interface showing community part . 26

5.1 High level view . 28
5.2 web interface to define interruption rules . 28
5.3 Different components combination for tangible interface 29
5.4 Logical view of the prototype . 30
5.5 Deployment of tangible interface . 32
5.6 Typical Universal Plug and Play System Architecture 33
5.7 Steps to UPNP Networking . 33
5.8 Device side of the UPnP Subsystem . 34
5.9 Control Point side of the UPnP Subsystem . 34
5.10 Description of device and service . 35
5.11 Control flow in Control Point and Device . 36
5.12 Subscription and Notification flow among control point and devices 38
5.13 Phidget Kit . 39
5.14 common understanding device and service parameter 40
5.15 Compounded XML Rule . 42
5.16 Sequence diagram for Control Point initialization 43
5.17 Sequence diagram when entity type (slider1) changes 43
5.18 Sequence diagram when entities (slider2) changes 44

vi

5.19 sequence diagram when selection (allow, deny, and) pushed 44
5.20 sequence diagram when comparison (eq, neq) changed 44
5.21 sequence diagram when default(accept, deny) changed 45

6.1 device description for UPnPdevice0 . 47
6.2 Class diagram for device0 . 48
6.3 slider1 service xml description . 49
6.4 slider2 service xml description . 50
6.5 comparison service xml description . 50
6.6 selection service xml description . 51
6.7 default service xml description . 51
6.8 device description for UPnPdevice1 . 52
6.9 Class diagram for device1 . 52
6.10 display service xml description . 53
6.11 Pseudo Code for Control Point . 54
6.12 Class Diagram of Control Point . 55
6.13 Pseudo code for interfacing phidget device0 . 57
6.14 Services snapshot provided by ASTRA BackEnd and Node 58
6.15 Community Manager WSDL / Web Service endpoint 59
6.16 Using service to get a stub . 60
6.17 Class diagram connecting proxy with awareness application manager 60
6.18 class diagram connection proxy and awarness managar 61
6.19 Class diagram connecting proxy with community manager 61
6.20 Circuit Diagram for Device0 . 62
6.21 Circuit Diagram for Device1 . 62
6.22 Tangible Interface showing default setting . 63
6.23 Tangible Interface with community selected . 64
6.24 Tangible Interface with Person selected . 64
6.25 Tangible Interface with application selected . 65
6.26 Tangible Interface with Awareness state selected 65
6.27 Tangible Interface with Device selected . 66
6.28 Tangible Interface with Device Chair selected 66
6.29 Tangible Interface showing making composite rule 67
6.30 Tangible interface showing negation rule . 67
6.31 Tangible interface after rule accepted . 68
6.32 Tangible interface with inner component shown 69

7.1 Monitoring setting in evaluation lab . 71
7.2 Participants evaluating the interfaces . 72
7.3 Participants information . 72
7.4 Easy and difficult problem for individual participant 73
7.5 hand written answers for some tasks . 74
7.6 Post evaluation from participants . 74

vii

7.7 Comparison of web interface and tangible interface 75
7.8 Misunderstood the task . 76
7.9 Different user understanding . 77
7.10 Case when buttons are clicked multiple times 78
7.11 Participants task correctness . 79
7.12 Different cases for Composite rule in Scenario 3 80

viii

List of Tables

2.1 Eleven factors that influence a person’s interruptibility at a given moment. [1] . . 5
2.2 Definitions of interruptibility and evaluation metrics used in some recent work [1] 6

ix

Chapter 1

Introduction

This introduction sets the stage for the report, describing the motivation followed by the work
context, research questions, research method and report structure.

1.1 Motivation
ASTRA 1 is a project that aims at studying awareness systems that help people to feel in touch
with family and friends even when they are away from their computers and the existing widespread
tools of today (IM, skype,twitter etc.) are not enough. In this context, this thesis aims at ad-
dressing the problem of Interruption Management. Interruption Management is important since
increased numbers of mobile computing devices and other social context aware software and
devices are contributing information overload and interruption irritability. Interruption manage-
ment model has already been incorporated inside ASTRA system on a previous project entitled
"Interruption Management in ASTRA" [2]. It consisted of interruption manager with rule engine
support for different rules. As end user tool, user is presented with a web interface where they
can define rules. This research aims at extending interruption management to have one more
interface with tangible interface.

The aim of the area of "tangible interfaces" [3] is to move beyond the current dominant model
of direct manipulation in Graphical User Interfaces, where computers typically use a rectangular
display, windows, a mouse and a keyboard. The idea is to remove the limited communication
channels and explore new channels of interaction, such as gestures or touch. Following this idea
new types of interfaces have been built, and in particular interfaces with synthetic characters.
Objects in the real world can be given extended capabilities that allow users to merge the real
world with the virtual world where synthetic characters exist.

The research focus will be on the design and development of different interaction mechanisms
to support the definition of interruption rules as needed in ASTRA. I find this field of study
interesting because it is applicable to most domains and is challenging problem.

1http://www.astra-project.net/

1

CHAPTER 1. INTRODUCTION 2

1.2 Context
The context of this report is a master thesis as a part of a Master degree in computer science at
the Department of Computer and Information Science at NTNU in Trondheim. Research focuses
on extension of the existing Interruption Manager in ASTRA as well as the development of
suitable user interfaces, also considering physical interfaces when appropriate. ASTRA develops
a framework for supporting the design of Pervasive Awareness Systems intended to support social
relationships. A limited evaluation of the proposed solutions will be evaluated with users.

1.3 Research Questions

1.3.1 Main Research Questions
• How to solve the problem of interruption management in pervasive awareness systems ?

1.3.2 Sub Research Questions
• What are the different approaches in general for interruption management ?

• What are the relevant approaches for pervasive awareness system ?

• What support need to be provided by platform for the approach ?

• What support need to be provided by End User Tools for the approach ?

• Design and implementation of tangible interface for interruption management in platform
and End User Tools.

1.4 Research Method
State-of-the-art for tangible interface and for ASTRA system will be carried out with literature
review and analysis of the existing system. Current interruption management module inside
ASTRA system don’t have support for community handling. So this also need to be extended
inside ASTRA system. With this background information, I need to do COTS (Component Off-
the-self) analysis for the tool / technology that I am going to use. The tangible system will
be designed and implemented after the COTS analysis. The overall design and implementation
need to be compatible with the current ASTRA principles. A limited evaluation of the proposed
solutions will be evaluated with users.

1.5 Contributions
This report will present the following set of contributions made by the work.

CHAPTER 1. INTRODUCTION 3

• state-of-the-art analysis for interruption management and rule related tangible interface.

• Tangible Interface for the system.

• Evaluation results from the comparison of web interface and tangible interface

1.6 Report Outline

Chapter 2 - State of the Art
This chapter motivates the thesis with the state-of-the-art for interruption management and tan-
gible interface.

Chapter 3 - Interruption Management in ASTRA : state of the art
This chapter describes ASTRA project related aspects to the interruption management.

Chapter 4 - Community Extension
This chapter presents the design and implementation for extending community support in current
ASTRA system.

Chapter 5 - Design of tangible interface
This chapter describes design for the tangible interface supporting interruption rules in the con-
text of my proof-of-concept implementation.

Chapter 6 - Implementation of Tangible Interface
This chapter presents implementation details for the design depicted in Chapter 5.

Chapter 7 - Evaluation
This chapter evaluates the tangible interface and compares with web interface. This will have
results and discussion from the user evaluation.

Chapter 8 - Conclusions
This chapter concludes by summarizing important aspects done and points some future exten-
sions.

Chapter 2

State of the Art

Interruption Management is not new topic, there are lots of work going on. Research done in
other projects related to interruption management will guide to design it in ASTRA system.
Different interaction mechanisms like physical interfaces is the focus of this project to support
the definition of interruption rules as needed in ASTRA. It is necessary to have literature review
for framing the problem domain and to present possible approaches to the solutions.

2.1 Interruption Management
Increased number of mobile computing devices and lots of other social context aware softwares
are contributing to feelings of information overload and to "interruption irritability" [1]. New
sensor-enabled mobile devices will put opportunities for innovative applications that proactively
deliver information to people when and where they need it. Mobile computing devices will in-
creasingly deliver phone calls, reminders, email, task lists, instant messages, news, and other
time and/or place-based informations. Delivering the proactive interruptions the user wants with
the help of context-aware applications such as location and activity based friend-finders for ex-
ample, therefore will inevitably increase the number of unwanted interruptions the user must
endure.

Each time a device proactively provides information, it is competing for the user’s atten-
tion and possibly interrupting the ongoing tasks. Although computing power will continue to
improve, permitting more powerful mobile devices, human attention is a limited resource [4].

Determining a good time to interrupt requires a complex assessment of context and message
content. For example, consider an office worker sitting at a desk discussing a report with a
supervisor. If the phone rings and it is a coworker with updated information for the report, the
office worker is likely to be receptive to the phone call. However, if the phone call is from a
friend to discuss plans for the weekend, then the office worker is likely to be less receptive. On
the other hand, the office worker might be receptive to the phone call from the friend if the phone
displays the message visually instead of using the ring to signal the interruption. The visual
notification is less likely to disrupt the flow of the current conversation, perhaps lowering the
perceived burden of the interruption for both people in the room. [1]

4

CHAPTER 2. STATE OF THE ART 5

Table 2.1: Eleven factors that influence a person’s interruptibility at a given moment. [1]

According to paper [1], there are at least 11 factors that impact the perceived burden of
an interruption, as listed in Table 2.1. So an exhaustive model of interruptility would include a
weighted sum of these factors. Some of the metrics that have been used to evaluate interruptibility
are listed in Table 2.2. Applications that can infer interruptibility from sensors can defer non-
time-critical prompts to the times that are likely to be least disruptive. One suggested strategy to
minimize the perceived burden of an interruption is to present reminders immediately following
the completion of some actions [5]. The assumption is that at activity transitions, memory load
may be low, because a person may be between evaluation of the last activity and formation of a
new goal. An alternative approach would be to use activity transitions to compute a priority for
incoming messages, perhaps in combination with other information about the message content
and user context. The priority score could be used by an application to perform negotiation-based
coordination.

The strategy of using activity transitions could be adopted as a trigger for non-time-critical
interruption to potentially reduce feelings of information overload.

The picture 2.1 depicts overload and irritating to the user by the increased number of devices
and demands interruption management to tackle.

Interruption management model has already been incorporated inside ASTRA system on a
previous project entitled "Interruption Management in ASTRA" [2]. ASTRA is a project that
aims at studying awareness systems that help people to feel in touch with family and friends
even when they are away from their computers and the existing widespread tools of today (IM,

CHAPTER 2. STATE OF THE ART 6

Table 2.2: Definitions of interruptibility and evaluation metrics used in some recent work [1]

Figure 2.1: Overload and irritating by increased number of devices

CHAPTER 2. STATE OF THE ART 7

skype, twitter etc.) are not enough. In this context, this thesis aims at addressing the problem
of Interruption Management. The focus will be on the design and development of different
interaction mechanisms to support the definition of interruption rules as needed in ASTRA. This
will require the extension of the existing Interruption Manager as well as the development of
suitable user interfaces, also considering physical interfaces when appropriate.

2.2 Tangible interaction
For many years the development of user interfaces to design applications has focussed on the
use of screen real estate and more effective use of menus, palettes, and increasing functionality.
Recent developments in HCI technologies have lead to an exploration of a variety of devices
to enhance the design experience with tangible and multiple visual interfaces. In recent times,
interfaces have been developed which use physical objects as representation and controls for
digital information for the purpose of making our interaction with computing devices more nat-
ural. These interfaces have been aptly named tangible user interfaces by Ullmer and Ishii in
their paper "Tangible Bits" [3]. The main characteristic of tangible user interfaces is its intuitive
interaction with the digital world using familiar physical objects, surfaces and spaces. The focus
is on direct physical interaction with objects as an element of tangible user interfaces as opposed
to input done only through a mouse and keyboard. A central characteristic of tangible inter-
faces is the seamless integration of representation and control, with physical objects being both
representation of information and as physical controls for directly manipulating their underlying
associations. Input and Output devices fall together. Tangible interfaces rely on a balance be-
tween physical and digital representations. There are 4 characteristics concerning representation
and control:

• Physical representations are computationally coupled to underlying digital information.

• Physical representations embody mechanisms for interactive control.

• Physical representations are perceptually coupled to actively mediated digital representa-
tions.

• Physical state of tangible embodies key aspects of the digital state of a system.

A Graspable user interface design provides users concurrent access to multiple, specialized
input devices which can serve as dedicated physical interface widgets, affording physical ma-
nipulation and spatial arrangements. Hence input control can be "space-multiplexed" [6]. That
is, different devices can be attached to different functions, each independently (but possibly si-
multaneously) accessible. This, then affords the capability to take advantage of the shape, size
and position of the physical controller to increase functionality and decrease complexity. It also
means that the potential persistence of attachment of a device to a function can be increased. By
using physical objects, we not only allow users to employ a larger expressive range of gestures
and grasping behaviors but also to leverage off of a user’s innate spatial reasoning skills and
everyday knowledge of object manipulations. These physical artifacts are essentially "graspable

CHAPTER 2. STATE OF THE ART 8

functions" – input devices which can be tightly coupled or "attached" to virtual objects for ma-
nipulation, or for expressing actions. These artifacts need to have spatially-aware computational
devices.

The benefits of tangible interfaces have been well described elsewhere [3]. Specifically,
tangible interactors allow for collaborative and two-handed interaction, require less dexterity
than traditional input, and better preserve spatial relationships between virtual objects and their
real-world counterparts. This research focuses on tangible interaction interface for end-user
programming of interruption management.

2.3 Tangible Interface Examples
Credits should be given to John Frazer and Robert Aish, who were the first to (in parallel) develop
the idea and first implementations of a tangible construction kit for creating virtual models at the
end of the 70s and beginning of the 80s. This work, coming from the areas of architecture and
CAD, has only recently been rediscovered by people interested in tangible interfaces.

George W. Fitzmaurice together with Hiroshii Ishii and William Buxton 1995 introduced
Bricks, tangible new input devices that allow direct control of electronic or virtual objects through
physical handles for control, and coined the term "Graspable User Interface".

Authors [7] describe the design and implementation of a system, SiteView, for creating and
viewing automation control rules for active environments those with sensing and actuation capa-
bilities. Site View has an intuitive tangible interaction method for creating control rules and en-
hances user understanding of the system by appropriately exposing internal state. SiteView also
supports users’ visualization of the active environment outside the programming environment
through a photographic display keyed to control rule conditions. Site-View programs consist
of rules with a simple conjunctive predicate and one or more consequent actions. Users create
rules by manipulating tangible interactors representing sensed conditions and automated actions
within a world-in-miniature (WIM) model. World-in-miniature is a small-scale representation of
the active environment and condition composer is an area that senses and structures the user’s
specification of rule conditions. Environment display shows what the environment will look like
when a rule is activated and rules display interactively shows the rule as it is created and shows
other rules applicable for the given set of conditions. To specify rule conditions, they created
interactors representing weather, time-of-day, and day-of-week condition categories. Weather
interactors depicted sunny, partly cloudy, overcast, and rainy states; time -of-day interactors de-
picted each of the twenty-four hours of the day, as well as morning, midday, afternoon, evening,
and night; and day-of-week interactors depicted each of the seven days of the week as well
as weekdays and weekends. These interactors have been implemented as foam-core cards and
embedded with RFID transponders. The cards provide tactile feedback about their condition
category through a unique shape on their upper edge, which also serves as a physical constraint
within the condition composer. To specify the rule actions, they built tightly-coupled interactors
representing both binary light state and a thermostat. They built four light state interactors, two
for each controllable lamp in the active environment. A physical slider Phidget [8] was used for
temperature range for thermostat.

CHAPTER 2. STATE OF THE ART 9

An affective tangible interface (SenToy) that allows a player to influence the emotions of his
character (avatar) in a 3-D computer game have been made [9]. SenToy works as an interface
to the role playing game where players must exhibit a particular set of emotions and perform a
set of actions as a way to evolve in the game [10]. Emotions play a central role in the game,
since it is through mastering the emotion expression of the controlled characters in the game that
players can advance in the game and win battles against their opponents. The aim of SenToy is
to "pull the user into the game" through the use of a physical, touchable, affective interface. With
sensors in its limbs, sensitive to movement and acceleration, SenToy captures certain pattern of
movements that are associated with particular emotional expressions.

Chapter 3

Interruption Management in ASTRA :
state of the art

ASTRA is a project that aims at studying awareness systems that help people to feel in touch with
family and friends even when they are away from their computers and the existing widespread
tools of today (IM, skype, twitter etc.) are not enough. This chapter details on current state of
ASTRA which are taken from ASTRA technical deliverable, whenever otherwise not mentioned.
Interruption management model has already been incorporated inside ASTRA system on a pre-
vious project entitled "Interruption Management in ASTRA" [2], whose current state will be
detailed in last section.

3.1 ASTRA Overview
ASTRA develops a framework for supporting the design of Pervasive Awareness Systems in-
tended to support social relationships. The framework consists of

• A Theory to guide the design and the evaluation of pervasive awareness systems

• supporting technologies:

service oriented architecture

end - user tools that support users to appropriate the Awareness applications

Pervasive Awareness Systems(PAS) is awareness systems that use mobile and ambient de-
vices for collecting or presenting awareness information and operate within an Ambient Intelli-
gence (AmI) Environment.

Here is one typical scenario of ASTRA use. This is from ASTRA Movie (http://www.astra-
project.net/) of connected life of father (Vic), son (Pavan) and daugher(Eleftheria). When vic
is at home and he wants to talk with pavan. But since pavan is cooking, he don’t want to talk
at that moment. Pavan has published his awareness state "not-available" through nimbus ap-
plication whenever he is cooking. Vic has set his focus application to Pavan’s "not-available"

10

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 11

Figure 3.1: ASTRA Awareness System

awareness state and this is represented by red colour in picture frame. When Pavan is not cook-
ing and available, Pavan’s another application notify this awareness state to focused application
of father and the picture frame will be green notifying to father Pavan is available for talk. This
model provides a basis for describing the design space of awareness systems, in terms of con-
tent exchanged, elementary user behaviors pertaining to sharing information about themselves
or perceiving information about others. Figure 3.1 depicts the tactics of awareness in ASTRA.

3.2 Platform
An open source OSGI [11] implementation called knopflerfish [12] is used as deployment
framework for ASTRA. It is very elegant and easy way of deploying services. ASTRA is
designed from Service oriented architecture (SOA) environment. In an SOA environment, re-
sources on a network are made available as independent services that can be accessed without
knowledge of their underlying platform implementation. SOA can also be regarded as a style
of Information Systems architecture that enables the creation of applications that are build by
combining loosely coupled and inter operable services. The current overall SOA architecture
design of ASTRA is shown in figure 3.2. This includes the platform for awareness services,
the ontology, ontology management, context management, service and other necessary modules.
There are 3 main types of deployment of the ASTRA SOA and architecture, which are described
in following sections.

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 12

Figure 3.2: Overall SOA Component Architecture of ASTRA

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 13

3.2.1 BackEnd
Identities are dependent on an identity provider in the "back-end" of the system, which will
manage and authenticate identities across different nodes. For a user to trust the identity of
another user, a trusted third party is required to provide identity management. The back-end also
takes care of synchronizing the different ASTRA-nodes and also provides persistency to the user
manager and the community manager.

Nimbus application from Node updates its application states to this BackEnd and focus ap-
plication of another Node polls this BackEnd to receive the changed state information.

3.2.2 Node
This is the main deployment unit. The components of the SOA are integral parts of an au-
tonomous deployment on a node - an ASTRA node. This node can for instance be the local
deployment in one’s home, at the office, at a university or in the car. The nodes work together
on peer-to-peer approach and their common channel of communication is through Community
Manager - different users collaborate with each other (i.e. sharing information) through so-called
collaboration instances of the Community Manager; this is where services and attributes are ex-
posed to other users in the context of a shared community. Considered a part of this ASTRA
node are all the awareness devices installed at one location.

It includes the platform for awareness services,context management,service discovery and
other necessary modules.

Context Manager

Context Manager is a unified repository of the collected local discovered services. Context Man-
ager is (a) responsible to gather any change in the local environment and inform the other com-
ponents about it, and (b) to handle incoming requests for activating an actuating device (through
a change on a local focus for example). It is responsible then to find the correct Service proxy
manager to give the message to forward to the appropriate service in order to actuate it.

Awareness Manager

The awareness manager twofold operation intermediates between the low level user-system in-
teractions and the high level concepts connected with. It is connected to the rule engine kernel
which processes (maps) a) actions-situations to nimbus alike concepts and b)focus alike concepts
towards particular actuation (reverse of a).

Awareness Application Manager

The awareness application manager (AAM) is responsible for storing and managing the local
awareness applications. An awareness application is a mapping of an awareness state to a ser-
vice that can be made available to a community, in other words it is a service representation of a
specific awareness state. Every local awareness application is stored here and the AAM is in turn

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 14

associated with a community of the Community Manager, which in turn is the communication
point with other nodes. Whenever an awareness state is changed, the Awareness Manager in-
forms the AAM, which in turn checks to see if any communities need to be informed. The AAM
at the same time monitors communities for such state changes that are of interest. The AAM
provides two types of awareness state applications: nimbus applications and focus applications.
These applications are mappings of the focus and nimbus concepts, which will be detailed in
next section. Basically whenever a user wants to share her awareness state, she must create a
nimbus application and publish it. Every other member can choose to focus on that awareness
state by creating focus application.

focus and nimbus

ASTRA supports not only at individual users, but also at communities or social networks. Aware-
ness might be mediated within different types of communities, for example co-located and re-
mote families, communities of friends, colleagues, neighborhoods. In general, each individual
can be a member of multiple communities. Within each community, diverse rules and conven-
tions might influence how issues such as awareness service provisioning, sharing and tailoring
should be facilitated by the system [13]. The theoretical background for ASTRA awareness
applications is the focus-nimbus model, originally described by Benford et al [14]. The authors
use room metaphors as the basis for a spatial model to support communication between partic-
ipants in virtual rooms. The basic idea is that people can not only visit different virtual rooms
but they can move around in these different rooms, and the (modeled) spatial characteristics of
the rooms mediate the communication between different persons in the room. Two concepts are
introduced; the focus represents a space in the room where a person targets his attention. Peo-
ple are more aware of objects in the focus than those outside. The nimbus is the counterpart,
representing where the person locates himself in the room. Objects are more aware of a person
if the object is located in the person’s nimbus than when is located outside [15]. Awareness is
defined through the interaction of focus and nimbus. The model has been generalized by Rodden
[16]. He extends the notions of focus and nimbus towards application areas without an explicit
notion of spatial relations. Metaxas and Markopoulos have later presented a formal model which
concentrates on the communication aspects of the focus-nimbus model [17]. Their model ad-
dresses issues of privacy by allowing for plausible deni-ability and deception. For e.g., Alice
would make her wish for walk available by placing it on her nimbus. She can control to which
community of users she publishes this message. Bob, on the other hand, would have a focus on
this Alice’s message [13].

3.2.3 EUT
Users access the SOA via the tools available on a user device, be it a computer, PDA or mobile
phone. These devices offer tools and applications to the end-user. No SOA parts are actually
found here (except for a service discovery client), but the user access the SOA functionalities
through a set of tools on this device.

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 15

From End User Tools one can register as user, create community, join to community, pub-
lish application, subscribe to application, have rules on publish and how to get notification of
awareness. This is just interface which allows user to communicate with SOA.

3.3 Interruption Management
This section details Interruption management model that has already been incorporated inside
ASTRA system on a previous project [2]. There are many interests and study on interruption
management. From literature review, the summarized model is as shown in figure 3.3. As
ASTRA intends to support social relationship, it will inherit the interruption problems and op-
portunities from real life, which it has to tackle. Since the interruption properties by ASTRA are
subclass of interruption properties of big real life model, it was used to have initial model for
interruption management in ASTRA.

The interruption manager is modeled as in figure 3.4, which follows the findings from state
of art and hypothetical requirement analysis aimed to ASTRA project. The interruption manager
intercepts the incoming messages and is aware of interruptee’s context and also of interrupter
message. The interrupt manager decides what to do with the interruption for e.g. accept or deny
or differ.

User is able to control interruption based on interrupter like interrupting person, interrupter’s
particular application and the time of interruption; and based on interruptee like device context
and awareness state. Since only the application for which she is focusing on can interrupt her,
so owners of those application only are probable interrupter. The interruption manager decides
whether to accept, deny or differ based on the different rules defined by interruptee. This inter-
ruption management model is rule based decision support. Inference engine get updated with
interrupter information at the time of interruption; and context of interruptee instantly get up-
dated as facts each time it get change. Through end user tools, user sets the interruption rules
and that get updated in inference engine as rules. The decision of inference engine, will be ac-
cept, deny or differ based on rules and facts. Interruption manager supports to this inference
decision and decides what to do next and logging of denied and differed decisions. In case of
accept decision, it allows the interruption to happen. In case of deny decision, it blocks the inter-
ruption from happening and log, for future display to user. User is presented web interface to set
interruption rules by EUT. EUT accesses the platform component’s web services to access, set
rules. The platform component implements rule inference engine, what to do after decision and
lots of methods. Editing rules interface looks like as in figure 3.5. One single rule looks like as
in figure 3.6. This interruption management module don’t have support for having interruption
rules based on community of the interrupter. This will be detailed in next chapter. The next
chapter extends the interruption management module so that to have community support.

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 16

Figure 3.3: Summarization of different elements of Interruption Management

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 17

Figure 3.4: Design of interruption manager

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 18

Figure 3.5: Editing rule interface

CHAPTER 3. INTERRUPTION MANAGEMENT IN ASTRA : STATE OF THE ART 19

Figure 3.6: Compounded single rule example

Chapter 4

Community Extension

This chapter sets the design and implementation for community support in interruption manage-
ment.

4.1 Community in Interruption
From previous project [2], Design for the interruption management has been proposed. There are
different parameters like who is the interrupter, at what time the interruption is being occurred,
which application interrupting, and interruptee’s context etc. Moreover the user wants to have
control from community perspective. For example, A user may want to avoid colleagues while
he is at home. When a person is at meeting, he may want to be interrupted just from a group of
people related to the meeting group. So rather than defining the individual person or some time
frame, it is equally important to have control with the community. Family,friends, colleagues are
some examples of community. This aspect haven’t been implemented on the project. So here I
have extended this to the community, so that user can decide which community she may want to
allow or block in some sort of contexts.

4.2 Community in ASTRA
A user can create community and other users can join and / or leave to the community. The
user who have created the community itself can leave and join the community. A user can
have different applications that can be published to different community and other users joining
to the community can subscribe and focus to the application. Since a user can join in many
community and can publish his application to many community and application doesn’t bind
directly to the community but bind to user. A user from same community can subscribe and focus
to the application of other user who have published the application to that community. The user
focusing to others’ application might be interested to block or allow to particular community. The
application information itself just gives who belongs that application and which application from
the owner. The community here actually means to the belonging community of the application
owner. That simply means community is group of peoples and one people can have belongings

20

CHAPTER 4. COMMUNITY EXTENSION 21

to different group. If the owner is by any way belongs to particular community, then the focusing
user wants to either block or allow to all applications from the owner.

This simply puts some points for the design of the interruption management from community
extension point of view. The interruptee should be able to define the community that he wants
to allow or block. The end user tool should support interface for setting rule to allow or block
the community of which the user is member or owner. Since the user can’t subscribe and hence
focus and interrupted from the community of which he is not member or owner, the membership
community is only important to list. Whenever focus application get triggered or in other word,
the user get interruption the Node will check different interruption rules and decide either to allow
or block to the interruption. EUT will have its rules in Node. And the Node now would require
the membership community of the interrupter, so that it can be compared with the interruption
rules of community. There should be membership information in rule engine of Node so that
it can interpret the rules with sufficient information and decide the result. The membership
information itself is part of BackEnd, which need to be queried by the Node. One user join or
leave the community in dynamic settings, so the community information should be uptodate on
EUT and Node rule engine. The design should be in a way to support scalability, when the user
and community expands.

4.3 Scenario
Figure 4.1 depicts three different scenario for interruption rules from community perspective.
User sets rule to allow or deny based on community for example family, friends, colleagues.

4.4 Design
High level view of the design implication for the community extension in interruption manage-
ment is depicted in figure 4.2. The BackEnd has the community related information like member,
owner and other details in database in XML document form. Community Manager bundle can
access the community related information through the methods and the BackEnd publishes this
access service through web service. EUT and Node can use this service to get membership in-
formation of user. EUT need to have interface to choose the community to allow or block. The
community list to be displayed should be just the membership community of the rule setting
user because the focus application couldn’t be out of the user’s community. In Node, when the
focused application get triggered i.e. interruption occurs, the membership communities of the
interrupter get updated in rule engine. At this point the rule engine has interruption rules that
is related to community and sufficient information about the community of the interrupter, so
that it can check its rule to the information available and decide on interruption result. So the
implementation details will be divided into EUT, asserting information and rule check.

CHAPTER 4. COMMUNITY EXTENSION 22

Figure 4.1: Scenario for interruption rules with community

4.4.1 End User Tool
Figure 4.3 presents the interface for the interruption rules for community support. A user can
define the incoming message as either equal or not equal to one community and decide to either
"block" or "allow". The atomic rule can be made composite rule with anding. Anding multiple
atomic rule results complex rule. For example "allow" when the interrupter has membership to
one community and not equal to another community. This community list displayed should limit
to the membership of the user. Since the user don’t get interruption from out of membership
community, there is no point of giving choice to select from all community. The membership
information is retrieved from the Community Manager web service provided by the BackEnd.
This interruption rule is saved in XML document to the Node Database. The rule will be set in
Node inference engine, ie CLIPS [18] engine, which is discussed in next subsection.

4.4.2 Asserting membership in rule engine
When there is interruption i.e. focused application get triggered, the Node inference engine will
run the interruption rules and check with different parameters of the interrupter like who, which
application, when and which community and result allow or deny. Since every information are
in inference engine as facts, we also need the membership community of the interrupter before
the interruption rule can check its community rule. There could be two design way for this as:

• Complete membership update: Complete membership information could be synced in in-
ference engine as facts in form of (community,member). So that whenever be the inter-

CHAPTER 4. COMMUNITY EXTENSION 23

Figure 4.2: High level view of the design

Figure 4.3: End User tool interruption rule interface

CHAPTER 4. COMMUNITY EXTENSION 24

ruption, the interruption rules could be checked with the available complete membership
information as facts. This is just matter of simply checking if the fact (community, inter-
rupter) is available or not. But this design seems to have quite heavy computation and is
not suitable for scalability purpose. If we just think of 100 community with 100 users, then
it needs to map every community and every users. But in one node, one user might not be
quite related to all this. The rule check need to check to all the facts, which requires high
computation. And moreover whenever there join or leave and creation of new community,
it need to be updated even in inference engine demanding code addition in many places.

• interrupter’s membership only: In this design, the membership information will be updated
in inference engine just for the interrupter and this is done while there is interruption. So
when the focus application get triggered i.e. interruption occurs, interrupter and inter-
ruptee information is already being asserted in inference engine. Now we are also adding
or refreshing if already exists the membership information of the interrupter in inference
engine. This is quite straight forward and lightweight.

The 2nd approach has been implemented. The membership is asserted as fact in inference engine
as: (assert (membership (name tara@astra) (member-of guitar-community)

To get the membership of the interrupter, the Node need to access BackEnd Community
Manager through Community Manager Proxy. This assertion need to be done in Awareness
Manager bundle, so it need to get service reference of Community Manager API bundle that
have been implemented by Community Manager Proxy. The figure 4.4 presents the web services
roles example. The figure 4.5 depicts the picture of getting membership information from the
BackEnd. The Community Manager from BackEnd provides service ismemberof(user) along
with other services. This service returns the membership community associated to the given
user. The node has Community Manager Proxy that gets stub from the Backend Community
Manager. Awareness Manager Activator can access the service through the Community Manager
Proxy after getting the service reference for the Community Manager API. The assertion of the
membership facts should be aware of deleting old membership for the same interrupter. This will
be described in following section.

In notifyAM_interruption() method, interrupter, interruptee information is being asserted.
And now it need to assert community membership information for the interrupter. Inference
Engine invokes this method and the service reference need to be passed by Awareness Manager
Activator.

4.4.3 Rule check : CLIPS rule
The EUT calls the Node service to set the interruption rule after getting from the user interface.
The rule first get saved in database in XML format. while setting in CLIPS format, the rule will
be set as: if the rule is: community eq family the clips rule will look like: (exists (membership
(name ?who_interrupter) (member-of family)) where the name value will be obtained at run
time from the interrupter fact and will looked in facts database if there exists any facts with
this membership. if the rule is negative like: community neq home the clips rule will look like:

CHAPTER 4. COMMUNITY EXTENSION 25

Figure 4.4: Web services roles

Figure 4.5: Node accessing BackEnd community membership

CHAPTER 4. COMMUNITY EXTENSION 26

Figure 4.6: Interface showing community part

(!(exists (membership (name ?who_interrupter) (member-of home))) Where if the fact exists then
it will be false.

The old membership need to be deleted before adding new facts in rule engine for the same
interrupter. Otherwise the membership would be either stale or duplicated. This deletion could
be done before asserting membership facts for the interrupter.

4.5 Conclusion
Figure 4.6 displays the interface with community option in interruption rules. The interruption
module have been patched so as to support community feature in interruption rule setting and in
rule engine.

Chapter 5

Design of tangible interface

This chapter details the concept of the tangible interface and expected outcome and also illus-
trates different design to achieve the result.

5.1 Motivation
The research focus will be on the design and development of different interaction mechanisms to
support the definition of interruption rules as needed in ASTRA. Tangible user interface (TUI)
is a user interface in which a person interacts with digital information through the physical envi-
ronment. Tangible interface will have the interruption rules out of computer desktop, where user
will interact to the some physical environment to set the interruption rules.

Research focuses on achieving similar functionality as web interface to interruption rules,
but should be simple from user perspective. It focuses more to set rules in easy way rather than
managing rules like deleting.

5.2 Introduction
Interruption management model has already been incorporated inside ASTRA system on a pre-
vious project entitled "Interruption Management in ASTRA" [2]. It consisted of interruption
manager with rule engine support for different rules. As end user tool, user is presented with a
web interface where they can define rules. This research aims at extending interruption manage-
ment to have one more interface with tangible interface. The Overall system in play is depicted
in figure 5.1.

5.3 Prototype
Web interface to define the rules look like as shown in figure 5.2.

Since Phidget [19] supports different analog input, digital input and digital output, it could
be used to make tangible interface. Slider Phidget, display Phidget etc are easily available in

27

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 28

Figure 5.1: High level view

Figure 5.2: web interface to define interruption rules

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 29

Figure 5.3: Different components combination for tangible interface

market and digital input can also be used to exploit the switch like operation. "Allow", "Deny"
and "And" switch buttons results true value on some digital input when pressed. They should be
like bell switch, press and release. It should not be true in digital input, unless pressed. "Default"
and "Comparison" has one state as default and thus sliding switch could be used for this. So that
when changed it would change the state.

The projected tangible interface will use different components as presented in figure 5.3.
Sliding Phidget need to be use because the number of choices are not fixed in advance and it is
very dynamic list. Moreover different entity type like community, person for eg have different
number of choices (entities). If system design expands to add some more entity type in future,
for example ’When Time’ entity type, it can use slider for that entity type also.

Rules can be composite by anding different atomic rules. Slider1 will select among commu-
nity, person, mystatus, application, device, myapplication. Slider2 will select particular choice
based on slider1 selection. This will be displayed on display unit. Allow or Deny push button
will make the rule. Pushing "And" button makes sure another rule added on the current one.
Figure 5.4 depicts logical view of this prototype.

5.4 Design Strategy
We are dealing with tangible interface and we may want to have more devices to function the
same. For example, we have now small display unit, but later may want to have big screen to
display things. We may want to have different sort of interface to select among choices. The

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 30

Figure 5.4: Logical view of the prototype

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 31

devices could be in different places in room independent to each other. Considering these all,
UPnP [20] technology is implemented rather than fixing everything in rigid and monolithic way.
In short UPnP suggests,

• Just send data

• Keep implementation private

• Agree on content / format of data

So the each functionalities like slider1, slider2, selection, comparison, default, display could be
seen as services. One logical device could interface to one or more physical devices like for
e.g. slider1, slider2 and so implement one or more services inside it. The device will notify
its capability in network. Control Point will cumulate all the services that it needs to function
correctly and ask devices to use some services or devices will notify on the change.

To make use of different types of devices in future, it’s necessary to make the device part
very simple. The control point just gives the device information like the count of total choices
and expect the selected index as choice result. There will be common understanding description
for how to be sure all services are available and what capability each service should have. This
will be elaborated in upcoming sections.

Beside this since we are developing tangible interface, which itself is end user tool, this needs
information from ASTRA System for eg communities, applications. Moreover, after getting
different rules from user, it should be set in ASTRA Node for execution and storing in database.
It should be done such that user could see and change rules even from web interface. So that it
would be sure the tangible interface is working correctly and could be modified as needed. This
means both web interface and tangible interface should rely on similar format.

To stick on service oriented architecture (SOA) of ASTRA System, tangible interface is ex-
pected not to be as a module within ASTRA Node. This Tangible interface is going to be con-
nected with ASTRA system by web services, so that everything will be in clean code with loosely
coupled to ASTRA system. Figure 5.5 depicts how this tangible system will be deployed.

5.5 COTS Analysis UPNP Architecture
UPnP technology defines an architecture for pervasive peer-to-peer network connectivity of in-
telligent appliances, wireless devices, and PCs of all form factors. It is designed to bring easy-
to-use, flexible, standards-based connectivity to ad-hoc or unmanaged networks whether in the
home, in a small business, public spaces, or attached to the Internet. UPnP technology provides
a distributed, open networking architecture that leverages TCP/IP and the Web technologies to
enable seamless proximity networking in addition to control and data transfer among networked
devices. The UPnP Device Architecture (UDA) is more than just a simple extension of the plug
and play peripheral model. It is designed to support zero-configuration, "invisible" networking,
and automatic discovery for a breadth of device categories from a wide range of vendors. This
means a device can dynamically join a network, obtain an IP address, convey its capabilities, and

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 32

Figure 5.5: Deployment of tangible interface

learn about the presence and capabilities of other devices. Finally, a device can leave a network
smoothly and automatically without leaving any unwanted state behind.

Two general classifications of devices are defined by the UPnP architecture: controlled de-
vices (or simply "devices"), and control points. A controlled device functions in the role of
a server, responding to requests from control points [21]. The UPnP System Architecture is
depicted in figure 5.6.

Figure 5.7 shows the steps of UPnP Networking. Figure 5.8 shows device side of the UPnP
Subsystem. Figure 5.9 shows Control Point side of the UPnP Subsystem.

5.5.1 Addressing
The foundation for UPnP networking is IP addressing. Control point and device get address
either by a DHCP server or use Auto IP.

5.5.2 Discovery
By this control points finds interesting devices. Given an IP address, Step 1 in UPnP networking
is discovery. When a device is added to the network, the UPnP discovery protocol allows that
device to advertise its services to control points on the network. Devices refresh advertisements
based on lease time and it cancels advertisements when removed. Similarly, when a control
point is added to the network, the UPnP discovery protocol allows that control point to search
for devices of interest on the network.

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 33

Figure 5.6: Typical Universal Plug and Play System Architecture

Figure 5.7: Steps to UPNP Networking

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 34

Figure 5.8: Device side of the UPnP Subsystem

Figure 5.9: Control Point side of the UPnP Subsystem

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 35

Figure 5.10: Description of device and service

5.5.3 Description
Devices declares and advertises its capabilities with description. Control point learns about de-
vice capabilities. After discovery, it gets URL for description and retrieves description. From
this description, it gets URL for service description. The figure 5.10 shows how the description
of device and services are connected.

5.5.4 Control
Control is Step 3 in UPnP networking. Control comes after addressing (Step 0) where devices
get a network address, after discovery (Step 1) where control points find interesting device(s),
and after description (Step 2) where control points learn about device capabilities. Control is in-
dependent of eventing (Step 4) where control points listen to state changes in device(s). Through
control, control points invoke actions on devices and poll for values. Control and eventing are
complementary to presentation (Step 5) where control points display a user interface provided
by device(s). Given knowledge of a device and its services, a control point can ask those services
to invoke actions and receive responses indicating the result of the action. Invoking actions is a
kind of remote procedure call; a control point sends the action to the device’s service, and when
the action has completed (or failed), the service returns any results or errors.

To control a device, a control point invokes an action on the device’s service. To do this, a
control point sends a suitable control message to the control URL for the service (provided in
the controlURL sub element of service element of device description). In response, the service
returns any results or errors from the action. The effects of the action, if any, may also be
modeled by changes in the variables that describe the run-time state of the service. When these
state variables change, events are published to all interested control points. The figure 5.11 shows
how action, query occur among control point and device.

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 36

Figure 5.11: Control flow in Control Point and Device

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 37

5.5.5 Eventing
Device publishes a list of events for which control points can subscribe and get notifications.
Control points subscribe with the devices for the events published. Eventing is Step 4 in UPnP
networking. Through eventing, control points listen to state changes in device(s). As the section
on Description explains, a UPnP service description includes a list of actions the service responds
to and a list of variables that model the state of the service at run time. If one or more of these
state variables are evented, then the service publishes updates when these variables change, and a
control point may subscribe to receive this information. Throughout this section, publisher refers
to the source of the events (typically a device’s service), and subscriber refers to the destination
of events (typically a control point).

To subscribe to eventing, a subscriber sends a subscription message. If the subscription is
accepted, the publisher responds with a duration for the subscription. To keep the subscription
active, a subscriber must renew its subscription before the subscription expires. When a sub-
scriber no longer needs eventing from a publisher, the subscriber should cancel its subscription.
The publisher notes changes to state variables by sending event messages. Event messages con-
tain the names of one of more state variables and the current value of those variables, expressed
in XML. A special initial event message is sent when a subscriber first subscribes; this event
message contains the names and values for all evented variables and allows the subscriber to
initialize its model of the state of the service. All subscribers are sent all event messages, sub-
scribers receive event messages for all evented variables (not just some), and event messages
are sent no matter why the state variable changed (either in response to a requested action or
because the state the service is modeling changed). The figure 5.12 describes the subscription
and notification flow among control point and devices.

5.5.6 Presentation
Presentation is Step 5 in UPnP networking. Presentation exposes an HTML-based user interface
for controlling and/or viewing device status. If a device has a URL for presentation, then the
control point can retrieve a page from this URL, load the page into a browser, and depending
on the capabilities of the page, allow a user to control the device and/or view device status. The
URL for presentation is contained within the presentationURL element in the device description.

5.6 COTS Analysis Phidgets
Phidgets are an easy to use set of building blocks for low cost sensing and control from PC. Using
the Universal Serial Bus (USB) as the basis for all Phidgets, the complexity is managed behind
this easy to use and robust Application Program Interface (API) library. The bottom level of the
API is the C library - phidget21. This is a cross-platform library, which implements the low-
level protocols necessary to communicate with the Phidgets, and exports a unified interface to
the software programmer. Built upon this low level library are higher level libraries that simplify
using Phidgets for many more languages. These higher level libraries contain only glue logic

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 38

Figure 5.12: Subscription and Notification flow among control point and devices

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 39

Figure 5.13: Phidget Kit

for interfacing with the C library, thus making maintenance much easier [22]. The figure 5.13
shows the Phidget kit.

The first step in controlling a Phidget is calling Open() on it. This will signal the library that
one would like to use this Phidget and register it for usage. Open will return immediately once
called, because it can be called even if the Phidget to be used is not attached to the system. This
is known as an asynchronous call. It is important to understand that most calls on a Phidget will
fail if they are calls when the Phidget is not attached - in fact the only calls that are allowed on
a detached Phidget are Close(), waitForAttachment() and Attached [get]. Once open has been
called, there are two options: One can call waitForAttachment(timeout), which will block until
either the Phidget is available or until the time out has passed, or one can wait until the Attach
event fires. The event based method is recommended, and generally most useful for GUI based
applications. The waitForAttachment() method is useful for simple command line applications.
If one decide to use events, one need to register the event handlers before calling Open(), or one
will miss events. Once the Phidget is attached, the full API can be used on it. Open is also
pervasive. This means that once open has been called, it will constantly try to stay attached to a
Phidget. Even if the Phidget is unplugged from the computer and then plugged back in, you will
simply get a Detach event, and then an Attach event. It is a good idea to handle the Detach event
in order to avoid calling the Phidget after it has detached. Phidgets can either be opened with or
without using their unique serial number. In the event a serial number is not specified, the first
available device will be opened. If there are more than one of the same type of Phidget attached
to a computer, there is no way of knowing which of these will be opened. Once a Phidget is

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 40

Figure 5.14: common understanding device and service parameter

opened by an application, it cannot be opened again in another application until closed by the
first.

Event Handlers are used to notify your application that a noteworthy event has occurred
on a Phidget. By creating a function accepting the proper parameters (an Event Handler), and
registering that function with the library, the library is able to call your function whenever events
occur. Because your Event Handler can be run at anytime, it is best to register them before calling
Open(). Every event will contain a reference to the Phidget that raised the event. This allows
properties of the Phidget to be evaluated within the Callback.The Event Type identifies the kind
of event being fired, this allows the user to make a choice of how to handle the event.

5.7 Design
It is desired to have some common understanding to have flexibility on implementation of control
point and devices. The figure 5.14 shows how the services and the action variables and the
parameters are going to be defined.

One device could implement some of these services and other devices as well as other ser-
vices. No matter which device implements which service until it follows this standard. In the
figure 5.14, it’s defined which action and action argument should be implemented by each service
with expected values shown in italic. The service type is also been defined. The device imple-
menting these service/s must have friendly name ’irules’, so that control point just could search
or accept for the devices having friendly name irules. Control point will look on the defined
service from those devices and use the action, action argument to have action on the service.
Control point checks whether it have all services available or not.

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 41

Control point can inform irules_slider1 service the number of choices with slider1Resolution
argument of the setSlider1Resolution action. Then the device will notify the control point on
change of choice from user. The device will notify this with slider1Value that have the selected
index. For example if we have Community, Person, Application, mystatus, device then it means
we have 5 choices to select on. Then the control point will inform this with slider1Resolution=5.
The device will notify the selected value with for eg: slider1Value=3. This means the user has
selected Application.

Control Point will update its list for the entity type selected by slider1value. This means it
should have fresh list from ASTRA system using proxy. It is necessary because the lists like
community,person etc are very dynamic and could have been change in ASTRA system. The
number of count of the entities for the selected entity type is passed by control point to the
service irules_slider2 by the argument slider2Resolution with the action setSlider2Resolution.
The service will notify the selected index with slider2Value argument. If not changed then con-
trol point reads current selection with slider2Value argument from getSlider2Value action. The
control point asks irules_display service to display text with the setText action.

"irules_comparison" and "irules_default" service notify its value with respective arguments
and control point sets accordingly and display it with display service. The default setting need to
be updated to ASTRA system by control point.

When irules_selection service notifies about the "allow", "deny" or "and", control point sets
on rule. If it is "and", it will make composite rule but caution should be apply not to duplicate the
conditions. If it is "allow" or "deny" it should set rule accordingly in XML format similar as used
in web interface as depicted in figure 5.15 and sets rule in ASTRA System with proxy. The figure
5.16 shows the initial sequence diagram that will occur when control point get started. It will
discover all related services and do some initial action and subscribe to have further notification.

On each service notification, control point will be triggered to do something since it is be-
ing implemented as event based. The sequence diagram 5.17,5.18,5.19,5.20,5.21 details the se-
quence when notification comes from slider1, slider2,selection,comparison,default respectively.

UPnP device should be available when physical device is functioning. Control point should
perform broadcast search (msearch), when it starts rather than waiting for device to get alive
notification.

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 42

Figure 5.15: Compounded XML Rule

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 43

Figure 5.16: Sequence diagram for Control Point initialization

Figure 5.17: Sequence diagram when entity type (slider1) changes

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 44

Figure 5.18: Sequence diagram when entities (slider2) changes

Figure 5.19: sequence diagram when selection (allow, deny, and) pushed

Figure 5.20: sequence diagram when comparison (eq, neq) changed

CHAPTER 5. DESIGN OF TANGIBLE INTERFACE 45

Figure 5.21: sequence diagram when default(accept, deny) changed

Chapter 6

Implementation of Tangible Interface

This chapter details the implementation part of tangible interface.

6.1 Introduction
CyberGarage’s clink jar library has been used for UPnP implementation. CyberGarage is a
reference implementation of UPnP [23]. UPnP implementation of Device and Control Point ;
Phidget interface and proxy to ASTRA will be discussed in following sections.

6.2 Device
slider1, slider2, selection, default, comparison services have been implemented in one UPnP
device and that is here named as UPnPdevice0. The figure 6.1 shows the XML device description
for UPnPdevice0. It points to its different service description 6.3 6.4 6.5 6.6 6.7.

The class diagram for the Device0 is depicted by figure 6.2. The device is Phidget implemen-
tation and when physical device attached, UPnP services will be available, and when physical
device get detached, UPnP services would stop. Thus assuring the availability of the services
only when there is physical device connection.

Display service has been implemented by another UPnP Device, named UPnPDevice1. The
figure 6.8 shows the XML device description. It embodies display service, which is defined as
6.10.

The class diagram for the Device1 is depicted by figure 6.9. The device is phidget implemen-
tation and when physical device attached, UPnP services will be available, and when physical
device get detached, UPnP services would stop. Thus assuring the availability of the services
only when there is physical device connection.

46

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 47

Figure 6.1: device description for UPnPdevice0

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 48

Figure 6.2: Class diagram for device0

6.3 Control Point
When a device is added to the network, it sends a multicast request with method NOTIFY. It will
send NOTIFY in periodic time out afterwards. When a control point is added to the network, it
will send a multicast request with method M-SEARCH. After implementing NOTIFY, reply to
M-SEARCH, control point can discover already existing devices. Otherwise it should wait till
the periodic notification.

When the notification are from "irules" devices i.e. device have friendlyname as "irules", then
control point will initialize the services and subscribe all the services provided by the device,
except display service. Since display service is only output device and do not have any input
change to have event notification. When all services are available to control point then only the
notification from the service get accounted. If not all services are available but control point
already discover display service, then that could be used to display missing services information.
The control point works on event trigger. When there is change in the physical interface, like
sliding and press on button, then the Device will give event notification to all the control point
that has subscribed to it. So this control point, if all services are already available to this, control
point decides what to do based on the service the event notification is from. If event notification
is from slider1 service, it will refresh the list for the entity type selected by slider1value. It is
very essential to update like this, since the ASTRA System is very dynamic and user might have
change the focus application, or devices have been updated or awareness state have been changed.
By the count of entities of this selected entity type, control point asks slider2 service to set its
resolution based on the count. Control point then do query to know the current selected index
from slider2 service and display the information through display service. If event notification is
from slider2 service, control point asks to display service to set the new display value according
to the selection. When notification is from selection service, it acts according to the value either

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 49

Figure 6.3: slider1 service xml description

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 50

Figure 6.4: slider2 service xml description

Figure 6.5: comparison service xml description

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 51

Figure 6.6: selection service xml description

Figure 6.7: default service xml description

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 52

Figure 6.8: device description for UPnPdevice1

Figure 6.9: Class diagram for device1

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 53

Figure 6.10: display service xml description

it is ’and’, ’accept’ , ’deny’. If selection service notification value is ’and’ then it will add the
current selection to rule but makes sure not to be repeated in this composite rule just to avoid
human error for pressing multiple times, or pressing ’and’ and after that ’allow’ or ’deny’. If
the selection value is ’accept’ or ’deny’ then the current selection is added with caution not to
duplicate entry. These rule atoms are converted to XML rule compatible to web interface as we
discuss in earlier chapter and save that on ASTRA System through proxy with setRule.

Since the control point and device and so services are loosely coupled and control point keep
track of availability or unavailability of devices and so of services. When control points do not
get periodic alive notification from device or if it gets byebye notification, control point un set
the availability of services and waits again till all services are available before functioning again.
Pseudo code of the implementation of the control point is given in figure 6.11.

Class diagram of this is depicted in figure 6.12.

6.4 Phidget
Event handlers are registered before calling Open(). Open will return immediately once called,
because it can be called even if the Phidget to be used is not attached to the system. The program
waits until the Attach event fires with waitForAttachement(). When ever attach event fires, that
means the physical device is attached to it. UPnP device set to start when this event triggered. If
after attach, sometime detach event occurs, then UPnP device stops saying bybbye to the control
point. This dynamic availability of UPnP device is very important because if there is no physical

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 54

Figure 6.11: Pseudo Code for Control Point

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 55

Figure 6.12: Class Diagram of Control Point

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 56

device available then there is no meaning of having UPnP (software) device. By this control
point get notified of tear off the device.

The change in the Phidget digital input trigger inputchange event and change in analog input
can trigger to sensorchange event. On the event, we can set the new values accordingly and UPnP
device will notify this. The analog input could be set for how much change should it be notified.
For example if we have 10 entities for selection, then we will divide the slider in 10 parts. so that
transition among them only have trigger on. If the entities are just 5 then this is divided in 5 parts
and will be notified only on that much transition. This is done with setSensorChangeTrigger.
The figure 6.13 depicts the pseudo code for interfacing Phidget device0.

6.5 Proxy: to ASTRA System
Proxy connects to ASTRA System by web services. ASTRA System provides different services
that we need to populate entities and for setting interruption rules and interruption preferences.

User must be member of community before publishing application to the community. User
publishes application to the community. So focusing user do not see published application until
she is member of that community. So the application that could arise interruption to the user is
only possible from the community where she is member of. isMemberOf service from commu-
nitymanager provides this membership list for the particular user. "getCommunitName" from
communitymanager gives the user friendly name for particular community id. As interruption
will not be from out of application that have not been subscribed and focused, only the people
having ownership to this application can interrupt. "listFocusApplications" service from aware-
ness application manager is used to list focus applications and extract the user information and
to uniquely represent them. Application part of interruption rules are also need to be extracted
from listfocusApplications. Awareness status are listed with getResourceByClass("Awareness",)
from ontology manager. Device providers and device sensor services that is device states are
extracted with getServiceProviders and getSensorServicesByProvider from context manager. Fi-
nally setRule is used from awareness manager to set XML rule and putUserPreference is used
from interruption manager to have default setting from user.

As ASTRA publishes WSDL that describes the endpoint / web service, the proxy need to
use this WSDL. The figure 6.14 shows the services provided by ASTRA Backend and Node.
A WSDL document describes a Web service. A WSDL binding describes how the service is
bound to a messaging protocol, particularly the SOAP messaging protocol. A WSDL SOAP
binding can be either a Remote Procedure Call (RPC) style binding or a document style binding.
A SOAP binding can also have an encoded use or a literal use. This gives you four style/use
models: RPC/encoded, RPC/literal, Document/encoded , Document/literal [24].

Figure 6.15 is snapshot of WSDL document of community manager provided by ASTRA
Backend. This shows it is based on RPC/encoded. JAX-RPC project [25] develops and evolve
the code base for the Reference Implementation of JAX-RPC, the Java APIs for XML based
RPC. Axis-1.4 [26] supports JAX-RPC through WSDL2java. It has been used to generate java
files from the WSDL XML file so that proxy can use them to get service from existing endpoint.
It will create four files for eg: WSName, WSNameService, WSNameServiceLocater, and WS-

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 57

Figure 6.13: Pseudo code for interfacing phidget device0

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 58

Figure 6.14: Services snapshot provided by ASTRA BackEnd and Node

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 59

Figure 6.15: Community Manager WSDL / Web Service endpoint

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 60

Figure 6.16: Using service to get a stub

Figure 6.17: Class diagram connecting proxy with awareness application manager

NameSoapBindingStub. First two are interfaces and last two are classes. The figure 6.16 is to
show how to create stub, which is local object representing the remote service.

The figure 6.17 depicts the class diagram for how the proxy is connected to awareness appli-
cation manager.

The figure 6.18 depicts the class diagram for how the proxy is connected to awareness appli-
cation.

The figure 6.19 depicts the class diagram for how the proxy is connected to community
manager.

In the similar way, the proxy is connected with other managers like ontology manager, con-
text manager, interruption manager, user manager.

6.6 circuit diagram
Circuit diagram for device0 is depicted by figure 6.20 and for device1 by figure 6.21.

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 61

Figure 6.18: class diagram connection proxy and awarness managar

Figure 6.19: Class diagram connecting proxy with community manager

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 62

Figure 6.20: Circuit Diagram for Device0

Figure 6.21: Circuit Diagram for Device1

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 63

Figure 6.22: Tangible Interface showing default setting

6.7 Final look
This is how finally tangible interface looks like.

6.8 Comparison of tangible and web interface
There is slightly varying functionality in web and tangible interface. Web interface has both
"and" and "or" option for making composite rule but tangible interface only have "and" option
for making composite rule. Web interface show all rules in single page and can be changed /
edited old rules for the user. But in case of tangible interface, we can set the rule but can’t view
the already set rule and neither can change old rules. But of course, the rules that have been set
from tangible interface could be seen and modified from web interface.

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 64

Figure 6.23: Tangible Interface with community selected

Figure 6.24: Tangible Interface with Person selected

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 65

Figure 6.25: Tangible Interface with application selected

Figure 6.26: Tangible Interface with Awareness state selected

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 66

Figure 6.27: Tangible Interface with Device selected

Figure 6.28: Tangible Interface with Device Chair selected

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 67

Figure 6.29: Tangible Interface showing making composite rule

Figure 6.30: Tangible interface showing negation rule

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 68

Figure 6.31: Tangible interface after rule accepted

CHAPTER 6. IMPLEMENTATION OF TANGIBLE INTERFACE 69

Figure 6.32: Tangible interface with inner component shown

Chapter 7

Evaluation

This chapter details on evaluation design, results and discussion.

7.1 Evaluation Design
The implemented tangible interface need to be evaluated with participants. As tangible interface
is similar to the web interface in functionality, they can be compared to have feedback from
the participants. The evaluation carried out in audio video recording lab setting, where tangible
interface is recorded by camera and also the overall view with participant using tangible interface
also recorded to see the perception and mood of the participant. Web interface is also captured
with screen capture and the overall view with participant using web interface also get captured
to see the mood of participant. Lab setting is depicted in figure 7.1. These settings is so as to
record participant’s expression on how they feel and on the interfaces to see whats going on to
the interface.

It is desired to record participants information so that to know how much they use the tech-
nology to be in touch with family and friends. The participants information is collected with the
questionare A-1.3.

Participants in pair will be involved in each session of evaluation. As we have 10 participants
making involvement of 2 participant in single session, there will be 5 evaluation session. Each
evaluation session lasts for 45 minutes. One evaluation session consists of introducing of ASTRA
System and role of interruption management (appendix A-1.1); and short power-point demon-
stration (appendix A-1.2) to introduce the web and tangible interface. Time slot for this section
was 15 minutes. Then the participant get the tasklist to do with interfaces. The task have been
divided such that participant get involve in both interfaces. The tasks are divided in 3 sections a)
Task A b) Task B c)Scenario. One participant starts with one interface and another participant
with another interface for the first task. they get 7 minutes time for first task and they switched
the interface for 2nd task and continue the same interface for the scenario task. The tasks are
made so that to see whether they can make new rule, composite rule with anding, negation and
choice on different entities, "accept" or "deny" rule ; to change the default setting for unspecified
rules. The task for the participant starting with tangible interface is shown in Appendix A-1.4

70

CHAPTER 7. EVALUATION 71

Figure 7.1: Monitoring setting in evaluation lab

and for the participant starting with web interface is shown in Appendix A-1.5. They then did
scenario task, which was a bit higher level task extracting rule and rule conditions from scenario.
This scenario is to check the participants understanding on real situation. Task A and Task B are
more usability of the interfaces and scenario task is more usability of overall rule based system,
to see whether it is easy for the user to extract rule from scenario or not. The expected solution is
presented on appendix A-1.8. Participants get form to fill on evaluation of the interfaces, where
we ask them to write easiest and most difficult task in evaluation, usability of the interface and
comparison of the interfaces in terms of intuitive, easy to use, overview, control and fun. It is
tried to extract general perception on interruption management and rule based system as seen in
appendix A-1.6.

7.2 Results
Figure 7.2 shows participants involvement on evaluation day.

Figure 7.3 is combined result for participant information extracted from the form given to
them.

The rule made by participants to the given tasks get extracted from database and analyzed
how they are and compared to the expected solution. This log per participant can be seen in
appendix A-1.9. Figure 7.4 combines easy and difficult problem written by each participants
collected from the task list.

Figure 7.5 compares the hand written answers for some tasks.
Figure 7.6 compares the results of post evaluation.
Figure 7.7 compares the post evaluation results for comparison of web interface and tangible

interface. The number means participants id who prefer the interface.

CHAPTER 7. EVALUATION 72

Figure 7.2: Participants evaluating the interfaces

Figure 7.3: Participants information

CHAPTER 7. EVALUATION 73

Figure 7.4: Easy and difficult problem for individual participant

CHAPTER 7. EVALUATION 74

Figure 7.5: hand written answers for some tasks

Figure 7.6: Post evaluation from participants

CHAPTER 7. EVALUATION 75

Figure 7.7: Comparison of web interface and tangible interface

7.3 Discussion
One participant completely misunderstood the tangible interface. She said she will not do default
allow. She will make default deny and make explicit rules as accept one. This lead to different
answer than expected, as depicted in Figure 7.8. she had done correctly in web interface, as the
default setting was expected "deny" in web interface.

Anding first, later changing to correct solution : Some participants get confused by question
whether new rule or new condition for same rule to apply. First most participants who have
started from web interface tried to ’and’ all rules so as adding conditions on the same rule to make
composite rule. When they reach to the task where they are asked to make composite rule, they
realize and reverted the previously done task. This may be because they thought first composite
situation and later realized. But in tangible, no evident was found like that. While changing after
they commit mistake, one participant (P1) change this with "OR". another participant (p4) realize
on composite case but didn’t change the old one, another participant (p7) even could not notice at
all. This is depicted in figure 7.9. Most of the rest users had made composite first with ’and’ and
later change to new rule. This is also clear from participants comments on most easy and most
difficult task as shown in figure 7.4. P1 writes difficult task as "difference rule vs. rule conditions
/ logic operators among rules". P6 writes as "new rules vs. additional conditions". P4 comment
on difficult task as "sometimes to add composite rules" and P5 comment on difficult task as "more
difficult with more conditions" clearly states that they are even aware of the growing challenge
for expanding conditions.

Lack of feedback: The same slider is used to show different entities. The number of choices
are different according to the entity type. Community could have 5 choices, while application
could have 15 choices. So for user it is difficult to understand how fast to move the slider to
change the choices. Sometimes they slide back n forth to find the choices. It also means lack of
feedback or overview of the choices. In web interface of course the user can see all choices at
once and select the right one directly. This is supported by participant comments on difficult task
as depicted in figure 7.4. P8 writes difficult task as "starting changing parameters in the tangible"
and p10 writes difficult task as "in tangible lack of feedbacks, especially for complex rules - it

CHAPTER 7. EVALUATION 76

Figure 7.8: Misunderstood the task

CHAPTER 7. EVALUATION 77

Figure 7.9: Different user understanding

only says rule saved, but not what rule". But some other participants P1, P4 found easy choosing
options in tangible. P6 found easy on setting and understanding the rules. P7 found easy on
combining conditions. P9 found easy to add simple rules on the tangible. One user mistakenly
pushed "and" button but wanted to correct that, but that was not possible in tangible interface. It
means they want to have more control as there could be human error and later they realize and
want to correct.

Time response and multiple pressing: The tangible interface took some time while rule ac-
cepted or denied, this is because it need to write rule to the ASTRA system, and the system was
responding only after the success or failure but not showing information like "processing" after
the button for "accept" or "deny" pressed. So this caused serious problem on user, they thought
either the button is not working or they haven’t pressed properly, since they expected fast re-
sponse. This is clearly seen even in rule. The same rule appeared multiple times with multiple
pressing. But this could be even serious while making composite rule and multiple times press-
ing. The last rule from the composite rule could be made as new rule again. This is depicted
in figure 7.10. This poses need of some modification to the system like to show transient state
like "processing" while acting on the some buttons not to annoy the users and may be not to take
other input while on this state. The system is currently checking just not to duplicate atomic
rule inside composite rule. This evaluation study poses more advance rule checking like old rule
check in database not to have duplication. This could be problem even in web based interface.
Though the user can see all the rules at once in web interface, it has good overview and feedback,
but still may need alert mechanism not to push duplicate rule. From system view, it is ok to have
duplicate rule since they mean same.

The tasks from all participants are compared, and figure 7.11 tables the participants tasks
performance, showing they did right or wrong. We can see two users made the composite rule in
scenario 3. one made it one correct. But other didn’t end up with composite rule. This is depicted

CHAPTER 7. EVALUATION 78

Figure 7.10: Case when buttons are clicked multiple times

in figure 7.12. One user made even richer composite rule with status busy. The participants have
successfully composited rules in task1 and task2 with both web and tangible interfaces. But all
didn’t realized the composition, this means it is not problem with interface usability but there
is problem converting the scenario to the rule system. People don’t easily grasp every scenario
element as rule and forget to mention that. It means technical competency is not sufficient, and
there is need of human study to understand how people think.

The post evaluation analysis from the participants as depicted in figure 7.6 and evaluating the
task done by participants as depicted in figure 7.11 makes some points clear. Most of participants
agree on usability of both interfaces and this is proved by their job on task. Most of them manage
to use the interfaces to write proper rules. Most of participants agree on they understand how
rules do combine. But the task evaluation don’t reflect the same. Only two people get correct
answer for the scenario 3 where they are expected to have composite rule. One participant made
1 right answer among 2 needed. It means people are doing things wrong but still think they
understand how rules do combine. This could have serious consequences. This means there is
need of some sort of feedback to alert people on what actually going on and to show is it the
way they expected, just to correct their measure. At the beginning people don’t understand how
they combine, but when they do , because of lack of feedback, they simply cannot revive in
tangible. In web interface, they can think and see other rules while proceeding with new rules
and can revert the rules easily. But in tangible interface user can’t see earlier rules, so they might
think what they have done is correct. When they get opportunity to see it again while doing
other rules or if it had overview of whats going on, they will correct the rules, if necessary.
The other questions related to managing interruptions sets backing for usefulness of the whole
system, whether people prefer the system for their interruption management or not. Participant
agree on importance of interruption management in keep in touch systems, and defining rules for
interruption management. But they are quite aware of growing challenge for the growing rules
and the system behavior would be not so simple. Participants are aware of both use of "accept"
and "deny" as default settings and have rules for the opposite. They agree on need of sender
information and recipient context information to know either to accept or deny. Since the system

CHAPTER 7. EVALUATION 79

Figure 7.11: Participants task correctness

CHAPTER 7. EVALUATION 80

Figure 7.12: Different cases for Composite rule in Scenario 3

have been made in the same context, it gives positive sign for development of such system but
equally pose problem for growing number of rules.

The evaluation comparing to the web interface and tangible interface with respect to intuitive,
easiness, better overview, control and fun is shown in figure 7.7. This shows tangible interface
is definitely fun to use. 5 out of 10 participants vote to tangible interface for easier to use is also
good. 4 out of 10 participants vote to tangible interface for intuitive is also good result.

Participants overall understanding of the system and the interface response can be analyzed
from the answer presented to the task as compared in the figure 7.5. P7 participant made it wrong
in one interface but correct in another, so it is difficult to be in any conclusion for him. Sixty
percent of the participants made it correctly.

7.4 Conclusion
The evaluation and discussion clearly gives positive result on usability of the tangible interface
and the overall rule based interruption management system. This also paves many rooms for
improvements. Technical competency is not only the solution and there is need of human study
to catch some points on how they think in real situation. People want to have more control on
managing and reviewing the rules, and to correct the old rules. People will later realize and want
to revive. So there is quite room for improvement with feedback system, overall view.

Chapter 8

Conclusions

This chapter concludes the research.

8.1 Summary
This research resulted design and development of different interaction mechanisms to support
the definition of interruption rules in ASTRA system. Existing Interruption Manager is extended
to have community support on interruption rules as well as suitable user interfaces has been
developed. A limited evaluation of the proposed solutions get evaluated with users. Creating
a tangible interaction device such as this for managing interruption rules turned out to be both
possible and even successful. The development gained a lot from state of art study at an early
stage. It was robust enough for the experiment. Rule based interruption management also seems
feasible but as rule expands it could be hard to track to the user and need to have some support
from the system. User evaluation favors the tangible interface design and paves the way for
improvement like feedback support, control and overall view.

8.2 Contributions
This thesis contributed on the field of interruption management in pervasive awareness system.
This gives proof of concept for rule based interruption management. This resulted to core in-
terruption management module and both web interface and tangible interface as end user tools
to define the rules. User evaluation tasks, forms, logs and videos are useful for usability of the
interface and overall system. The discussion from the user evaluation after the successful prod-
uct is hoped to be helpful for future research purpose. And the novel extensible design for the
implementation of tangible interface could be useful in similar domain.

81

CHAPTER 8. CONCLUSIONS 82

8.3 Evaluation of the thesis
Thesis is evaluated as successful as it is achieved as targeted and user evaluation results are also
encouraging for usability of the system. User evaluation results pave for the further development
and research.

8.4 Future Work
The evaluation and discussion of the system paves many rooms for improvements. As people
did correctly to the defined rules but were poor on extracting rules from the scenario, technical
competency is not only the solution and there is need of human study to catch some points on
how they think in real situation. People want to have more control on managing and reviewing
the rules, and to correct the old rules. People will later realize and want to revive. So there is
quite room for improvement with feedback system, overall view and more control. Initially, it
was thought as to have tangible interface just to make rule but not to have complex managing
properties like reviewing and deletion. It was thought like to use tangible interface for making
rule and using web interface for modification, deletion and overall view but after evaluation, It
is clear that user wants to have more control on tangible interface itself and don’t want to have
dependency to other interface. Future work could be on extending the system with more control
option, feedback support and managing rules options.

Appendices

83

84

A-1 Evaluation Set
Here are the different presentation and demo done to the participants. And the results data from
task given to the participants.

A-1.1 ASTRA introduction : Presentation Slides
This is slides that have been presented to the participant as introduction to the ASTRA and the
background information, before giving task of evaluation to them.

85

86

A-1.2 Demo
This is slides that have been presented to the participant as demonstration of the interfaces.

87

88

A-1.3 questionnaire-info-participants
This is questionnaire for gaining information about participant.

89

A-1.4 task_list_tangible
This is task given to the participant starting with tangible interface.

90

91

A-1.5 task_list_web
This is task given to the participant starting with web interface.

92

93

A-1.6 post_evaluation form
These are post evaluation form, that the participant will fill up after finishing the tasks.

94

95

A-1.7 filled form for example
These are some forms that have been filled by participants. This is just for one participant.

This is form with information about participant.

96

This form is an example of filled post evaluation form.

97

A-1.8 Answer Set
This is answer we have expected from the tasks given to the user.

98

A-1.9 Log Extraction
These are individual answers from the participants for the provided tasks.

Participant 1

Participant 2

99

Participant 3

Participant 4

100

Participant 5

Participant 6

101

Participant 7

Participant 8

102

Participant 9

Participant 10

Bibliography

[1] Joyce Ho and Stephen S. Intille. Using context-aware computing to reduce the perceived
burden of interruptions from mobile devices. CHI 2005, 2005.

[2] Tara Nath Subedi. Interruption management in astra. Technical report, NTNU, 2008.

[3] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between people, bits and
atoms. In Proceedings of CHI’97 pp. 234-241, 1997.

[4] A. Smailagic D. Garlan, D. Siewiorek and P. Steenkiste. Project aura: toward distraction-
free pervasive computing. IEEE Pervasive Computing, 2002.

[5] Miyata Y. and Norman D. Psychological issues in support of multiple activities. User-
centered System Design: New Perspectives on Human-Computer Interaction, pages 265–
284, 1986.

[6] http://www.dgp.toronto.edu/ml, March 2009.

[7] Chris Beckmann and Anind Dey. Siteview: Tangibly programming active environments
with predictive visualization. Technical report, June 2003.

[8] S. Greenberg and C. Fitchett. Phidgets: Easy development of physical interfaces through
physical widgets. In Proceedings of UIST 2001 pp. 209-218, 2001.

[9] Ana Paiva Rui Prada et al. Towards tangibility in gameplay: Building a tangible affective
interface for a computer game. ICMI, 2003.

[10] A. Paiva G. Andersson. Designing an affective sympathetic interface to a computer game.
Personal and Ubiquitous Computing, 2002.

[11] http://www.osgi.org/main/homepage, January 2009.

[12] http://www.knopflerfish.org/, March 2009.

[13] Anders Kofod-Petersen Sobah Abbas Petersen, Jorg Cassens and Monica Divitini. To be or
not to be aware: Reducing interruptions in pervasive awareness systems.

103

BIBLIOGRAPHY 104

[14] S. Benford A. Bullock N. Cook P. Harvey R. Ingram and O. K. Lee. From rooms to cy-
berspace: models of interaction in large virtual computer spaces. Interacting with Comput-
ers, 5(2):217–237, 1993.

[15] S. Harrison and P. Dourish. Re-place-ing space: The roles of place and space in collabora-
tive system. Proceedings of the 1996 ACM Conference on Computer Supported Coopera-
tive work, pages 67–76, 1996.

[16] T. Rodden. Populating the application: A model of awareness for cooperative applications.
Proceedings of the 1996 ACM conference on Computer Supported Cooperative Work, pages
87–96, 1996.

[17] G. Metaxas and P. Markopoulos. ’aware of what?’ a formal model of awareness systems
that extends the focus-nimbus model. Procceedings of the IFIP conference EHCI 2007,
2007.

[18] http://clipsrules.sourceforge.net/, March 2009.

[19] http://www.phidgets.com/, April 2009.

[20] http://www.upnp.org, June 2009.

[21] http://www.upnp.org/specs/arch/upnp-arch-devicearchitecture-v1.0.pdf, May 2009.

[22] http://www.phidgets.com/documentation/programming_manual.pdf, April 2009.

[23] http://www.cybergarage.org/, February 2009.

[24] http://www.w3.org/tr/wsdl, March 2009.

[25] https://jax-rpc.dev.java.net/, March 2009.

[26] http://ws.apache.org/axis/, March 2009.

	Title Page
	Problem Description
	Introduction
	Motivation
	Context
	Research Questions
	Main Research Questions
	Sub Research Questions

	Research Method
	Contributions
	Report Outline

	State of the Art
	Interruption Management
	Tangible interaction
	Tangible Interface Examples

	Interruption Management in ASTRA : state of the art
	ASTRA Overview
	Platform
	BackEnd
	Node
	EUT

	Interruption Management

	Community Extension
	Community in Interruption
	Community in ASTRA
	Scenario
	Design
	End User Tool
	Asserting membership in rule engine
	Rule check : CLIPS rule

	Conclusion

	Design of tangible interface
	Motivation
	Introduction
	Prototype
	Design Strategy
	COTS Analysis UPNP Architecture
	Addressing
	Discovery
	Description
	Control
	Eventing
	Presentation

	COTS Analysis Phidgets
	Design

	Implementation of Tangible Interface
	Introduction
	Device
	Control Point
	Phidget
	Proxy: to ASTRA System
	circuit diagram
	Final look
	Comparison of tangible and web interface

	Evaluation
	Evaluation Design
	Results
	Discussion
	Conclusion

	Conclusions
	Summary
	Contributions
	Evaluation of the thesis
	Future Work

	Appendices
	Evaluation Set
	ASTRA introduction : Presentation Slides
	Demo
	questionnaire-info-participants
	task_list_tangible
	task_list_web
	post_evaluation form
	filled form for example
	Answer Set
	Log Extraction

