
June 2009
Helge Langseth, IDI
Tore Anders Husebø, SpareBanken 1 SR-Bank

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Early Warnings of Corporate
Bankruptcies Using Machine Learning
Techniques

Jostein Gogstad
Jostein Øysæd

Problem Description
We develop a model, using machine learning techniques, capable of recognizing patterns in
transactions to and from a company’s tax withdrawal account that indicates a financially unhealthy
company. The model is easily integrated into an early warning system capable of flagging
Norwegian companies which represent a high risk for defaulting on a loan or going into
bankruptcy.

Assignment given: 26. January 2009
Supervisor: Helge Langseth, IDI

Abstract

The tax history of a company is used to predict corporate bankruptcies using Bayesian inference.
Our developed model uses a combination of Naive Bayesian classification and Gaussian Processes.
Based on a sample of 1,184 companies, we conclude that the Naive Bayes-Gaussian Process model
successfully forecasts corporate bankruptcies with high accuracy. A comparison is performed
with the current system in place at one of the largest banks in Norway. We present evidence that
our classification model, based solely on tax data, is better than the model currently in place.

Preface

This report constitutes our master thesis, written during the 10th semester of the Master of
Science studies in Computer Science at the Norwegian University of Science and Technology
(NTNU). It was carried out at the Department of Computer and Information Science (IDI). The
work started January 26th, 2009 and ended June 10th, 2009.

First, we would like to thank Tore A. Husebø and Geir Tjentland who first came up with the
idea behind this thesis. Without their invaluable feedback and tutoring this thesis would never
been possible. We are also grateful to BearingPoint, Oslo, for taking the initiative for this thesis,
and thus giving us the opportunity to work with such an interesting field as the intersection
between machine learning and economics.

We will especially like to thank our professor and supervisor Helge Langseth. Without his
advice, feedback, support and passion for lengthy discussions, this thesis would never see the light
of day. Albert Einstein once said: “It is the supreme art of the teacher to awaken joy in creative
expression and knowledge.” A quote summarizing Helge Langseth’s contribution to this thesis, as
he has provided encouragement and expertise in all phases of this project.

At last, a big thank you goes to C. E. Rasmussen at University of Cambridge for providing
us with hours of video lectures, and not to mention the implementation of Gaussian Processes
(http://www.gaussianprocess.org/gpml/).

NTNU, June 10, 2009.

Jostein Gogstad Jostein Øysæd

http://www.gaussianprocess.org/gpml/

Contents

Preface i

1 Introduction 1
1.1 Terminology . 1
1.2 Purpose . 2
1.3 Scope . 2
1.4 Success Criteria . 3

2 Background 5
2.1 The Tax Withdrawal Account . 5
2.2 Challenges . 6

3 The Dataset 9
3.1 Training and Validation Data Sets . 9
3.2 Class Distribution . 9
3.3 Noise and Phased-out Companies . 10
3.4 Samples from the Dataset . 11

I Coarse-Grained Separation 17

4 Preprocessing the time series 19
4.1 Holiday Tax Adjustments . 19
4.2 Safety Buffer . 20
4.3 Normalization . 21
4.4 Identifying Trends . 21

5 A Model for Coarse-Grained Classification of Companies 27
5.1 Feature Generation . 27
5.2 Discretizing Features . 35
5.3 Supervised Learning with a Naive Bayes Classifier 37
5.4 Adding Cost-Sensitivity to the Classifier Using MetaCost 40

6 Results 43
6.1 Terminology . 43
6.2 Naive Bayes Results . 45
6.3 Feature Evaluation . 49
6.4 Cross Validation Results . 50
6.5 Performance of Other Classifiers . 51

7 Discussion 55
7.1 Robustness and Adequacy of Evaluation Measures 55
7.2 Evaluation of Final Results . 55
7.3 Feature Evaluation . 57

8 Conclusion 61

iii

II Fine-Grained Separation Using Gaussian Processes 63

9 Bayesian Inference 65
9.1 Basics . 65
9.2 Making Decisions . 66
9.3 Coin toss example . 66
9.4 Summary . 67

10 Gaussian Processes Basics 69
10.1 The Gaussian Distribution . 69
10.2 A Parametric Example: Curve Fitting . 70
10.3 Gaussian Processes Definition . 72
10.4 A Non-Parametric Model . 73
10.5 The Covariance Function . 75

11 Advanced Gaussian Processes 79
11.1 Classification . 79
11.2 Covariance Functions . 82
11.3 Model Selection . 88

12 Results 91
12.1 Test Setup . 91
12.2 Empirical Results . 92
12.3 Combining the Results with the Naive Bayes Results 95

13 Discussion 97
13.1 Model Selection . 97
13.2 Evaluation of Gaussian Processes Results . 98
13.3 Evaluation of Combined Results . 99

14 Conclusion 101

A PD-Rating 103
A.1 Risk Class Mapping . 103

B Mathematical Prerequisites 105
B.1 Gaussian Identities . 105
B.2 Generating Samples from a Multivariate Gaussian Distribution 105

1 Introduction

The prediction of corporate bankruptcies is an important and widely studied topic since it can
have significant impact on bank lending decisions and profitability. Banks need to predict the
probability of a loss when extending loans; accurate estimates of risk associated with loans leads
to sounder lending decisions and can result in significant savings. After the financial crisis hit in
September 2008, the topic of estimating a company’s financial health is even more relevant.

A common feature of the various studies in bankruptcy prediction is the use of industry-relative
ratios: comparing company financial ratios with industry ratios [Platt and Platt, 1991]. Altman
and Izan pioneered the field of industry-relative ratios in [Altman, 1973], among the six ratios
presented where sales/total assets, working capital/total assets and market capitalization/total
debt. These ratios has gained extensive popularity in the research on bankruptcy prediction;
Neural Networks has been especially popular [Atiya, 2001; Odom and Sharda, 1990; Wilson and
Sharda, 1994; Zhang et al., 1999].

The ratios proposed by Altman depends on industry numbers and company information which
is (1) only available every quarter for public companies and once a year for other companies, and
(2) the numbers may be inaccurate or not available for all companies, e.g. market capitalization is
only available for public companies.1 The contribution of this thesis is a prediction model which
can—at any given time—provide an estimate of the financial health of a company independent of
accounting and industry information.

Specifically, we base our estimator on transactions to, and from, the “Tax Withdrawal Account”
explained in the next chapter. We theorize that the financial health of a company is reflected in
the management of the Tax Withdrawal Account, especially before a bankruptcy or other actions
leading to a loss for the bank.

The model we propose for prediction is two-folded: We first perform a coarse grained separation
of companies in Part I. The result is two sets of companies: one with healthy companies which is
left out of further analysis, the second with companies that has a higher probability of incurring a
loss for the bank and which will by analysed in Part II. By partitioning the companies in this way
we hope to achieve a homogeneous set of “hard” cases which can be analysed apart from the rest.

All data used in this thesis was provided by one of the largest banks in Norway.

1.1 Terminology

Before continuing, we must introduce a few words about the terminology used by banks in the
context of loans and credit rating.

A default occurs when a debtor (company in our case) fails to meet the obligations according
to a loan agreement. Defaults together with bankruptcies are important when considering the
financial health of a company.

Companies in our dataset (see Chapter 3) are marked accordingly if the bank has reckoned
a loss in connection with that company. A financially healthy (or simply healthy) company, is
a company that has no defaults nor any loss reckonings for the past four years. An unhealthy
company is a company that has defaulted on a loan and/or the bank has reckoned a loss.

A loss associated with a loan for a bank is not restricted to bankruptcies, we therefore refrain
from using the term “bankruptcy” explicitly, but instead use the term “loss” or “loss-reckoning”.

1Market capitalization = share prize × outstanding shares

1

2 Chapter 1. Introduction

1.2 Purpose

The purpose of this thesis is to create a classification model—or classifier—which is able to
accurately estimate the financial health of a company at any given time. A classification model is
a mapping of instances to a certain class/group. Our classification model will assign a real value
to a company indicating the financial health of that company. The health-indicator is based on
events that directly or indirectly leads to losses associated with loan agreements. An example of
the former would be bankruptcies, an example of the latter is defaults.

The resulting classifier has the following characteristics:

• Reactive: It is able to estimate the financial health of a company at any time.

• Proactive: A potential bankruptcy or default is flagged before the actual event takes place.

• Independency : It is independent of accounts and other information which is (1) only updated
certain times a year, or (2) hard to measure accurately.

• Consistency : No subjective measures are taken into account.

The classifier is deemed successful if it can describe more accurately the financial health of a
company than the PD-rating.

1.2.1 The PD-rating

Our banks current credit rating system outputs a “PD-rating” in the range [0, 1] where low values
indicates healthy companies. In addition, the bank operates with risk classes derived directly
from the PD-rating:

Risk class : PD-Rating→ {A,B,C,D,E, F,G,H, I} ∪ {J,K}

If a company defaults on a loan, the company is automatically rated with PD = 1.0 and the risk
class J. If some other loss-reckoning is made, the company is rated with PD = 1.0 and the letter
K. Else, the company is rated with a PD rating in the range [0, 1) and a risk class from the set
{A,B,C,D,E, F,G,H, I} (cf. Appendix A.1 for details on the mapping).

The PD-rating is calculated by a semi-automatic process which is subject to both objective
and subjective measures. Our model should beat the PD-rating in identifying companies which
will incur a loss for the bank. In other words, the PD-rating acts as a measurement of how good
our model is.

1.3 Scope

We are only concerned with the corporate prediction problem in this thesis. For the private
consumer problem, we refer the reader to [Šušteršič et al., 2009; Hand and Henley, 1997 or
Serrano-Cinca, 1996] for a review.

More specifically, only companies with the following characteristics are used to train and
evaluate the classifier:

1. The company has to be public. In bank terminology, this is the same as specifying that the
company is in “sub-sector 710”. The opposite of a public company is a privately owned
company.

2. We only use companies from the following industries: Construction, Hotel, Retail and
Industry. This is by request from the bank.

1.4. Success Criteria 3

3. The company need to be larger than a certain threshold. Small companies are not considered.

4. The company has to pay tax; we require at least half a year of payments—without any
defaults or bankrupts—before any estimation can be done.

The list above was advised by the bank. By restricting our analysis to public companies in
the industries mentioned in point 2, we hope to find more homogeneous patterns in the deposits
and withdrawals from the Tax Withdrawal Account. It should be noted however that public
companies are not a requirement for the method, it is merely a choice for testing purposes. The
same is true for the industry requirement in point 2.

We expect small companies with only one or a few employees to behave significantly different
from the rest; the analysis is therefore restricted to companies of a certain size. We need a certain
amount of data to perform prediction, by manual testing we have determined that we need at
least six months of data, preferably a year, to correctly classify a company.

1.4 Success Criteria

The success criteria for the thesis is summarized below

1. The resulting model is easily integrated with a system capable of automatically supervise
corporate customers of the bank and flag companies which will default or incur a loss in
near future.

2. The performance (measured in accuracy, ROC or any other suitable measure) of the
classification model should be better than the performance of the existing system—the
PD-rating.

4 Chapter 1. Introduction

2 Background

SpareBank 1 is an alliance of 24 Norwegian Banks. In addition to administrative responsibility for
common processes among the banks, the alliance also do research development on—among other
things—estimation of credit ratings. A “Credit rating” assesses the credit worthiness1 of an entity,
it can be a private person, a company or any other establishment that can undertake a loan. A
high credit rating indicates high risk of defaulting, and thus leads to more restrictive covenants
in the loan agreement. On the other hand, a low credit rating indicates that risk of defaulting
is low so the debtor may loan more money or get less restrictive covenants. The credit rating
estimation problem is to calculate the credit rating of an entity with only limited information.

Traditionally, banks use quantitative and subjective factors such as leverage, earnings, reputa-
tion or ratios suggested by [Altman, 1973] to calculate credit ratings through a scoring system
[Treacy and Carey, 1998]. The problem with this approach is the subjective aspect which makes
it hard to achieve consistent estimates.

SpareBank 1 is seeking a replacement for the system currently in place, the resulting model
from this thesis may in the future be used as a part of the new system. Today, SpareBank 1 does
credit assessment of all its customers—both private consumers and corporate companies—using
an in-house system. SpareBank 1’s current system is complex and relies on many parameters to
estimate an entity’s credit worthiness. Some of these parameters may not be available at any
time, others are in-frequently updated, maybe only a few times a year (e.g. accounts and returns).
There is also a certain degree of subjectivity in the ratings.

We base our credit rating estimate on a special bank account which is required by Norwegian
law to be maintained by all corporations. The “Tax Withdrawal Account” is described in more
detail in the next section; in short it provides information about how much tax is payed off wages
every month.

2.1 The Tax Withdrawal Account

According to the Norwegian tax law, a company is liable to pay tax off the wages payed to
workers. This tax is transferred from the company to the authorities every second month (starting
January) and is reserved on a special tax account each month. According to the law, a company
is required to maintain a balance on the Tax Withdrawal Account equal to wage taxes every
month. In addition, the money on the Tax Withdrawal Account is reserved and cannot be used
for anything else (such as paying other creditors).

We hypothesize that the management of this account reflects to a certain degree the state
of the company. For example, if the company is transferring more and more money to the tax
withdrawal account, it means that it is paying more wages (more wages leads to more tax). This
might be because an increase in staff or salary. Either way, it is a positive sign for the health of
the company. Conversely, if a company is paying less and less tax to the tax withdrawal account,
one might suspect that the company is in trouble and that the bank should take steps to secure
any liabilities the company might have.

In the figure on the following page we see deposits to the Tax Withdrawal Account for two
different companies. In Figure 2.1 (b) we make two observations: there is an overall negative
trend in the deposits; the company is for some reason transferring less and less money to the
account. The balance plot for this company (not shown) shows that there is no extra money on
the account, so we interpret this as a bad sign for the health of the company.

1The risk of loss due to debtor’s non-payment of a loan.

5

6 Chapter 2. Background

2005 2006 2007 2008 2009
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Time (t)

D
e

p
o

s
it
s
 (

N
O

K
)

id: 1634

(a)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3
x 10

4

Time (t)

D
e

p
o

s
it
s
 (

N
O

K
)

id: 1977

(b)

Figure 2.1: Two trivial examples. (a) A healthy company’s deposits to the tax withdrawal
account. (b) A non-healthy company’s deposits.

2.2 Challenges

Classifying the two companies above is a trivial task and form the basis for our assumption
that there is enough information in the Tax Withdrawal Account to predict financially troubled
companies. In the general case however, such well-behaved companies as those shown in Figure
2.1 are extremely rare. Consider the figure on the facing page.

For the healthy companies in Figure 2.2 (a) and (b) we notice that there is very little structure
in the deposits. This is fairly common for all the companies in the data set. Second, we notice
that the company in (b) several times does not transfer money to the Tax Withdrawal Account,
there is also a lack of trend in the deposits for any of the companies.

Figure 2.2 (c) and (d) shows deposits for two companies that has economical problems; they
have defaulted or a loss was reckoned some time during the period. Figure (d) displays the
deposits up to a bankruptcy. The company suddenly transfer very little money (but not zero)
to the account before they go bankrupt, this is typical hard-case. The default in figure (c) also
appear somewhat out of thin air, even though we might accept a slight downward trend during
2006.

As a last note we note that by focusing solely on the Tax Withdrawal Account we neglect
global events that may affect the amount of tax a company is expected to pay. For example,
seasons and the current unemployment rate will impact the Tax Withdrawal Account and should
be considered. While we certainly could incorporate such numbers in our model, we have decided
not to in order to keep the model as simple as possible.

2.2. Challenges 7

2005 2006 2007 2008 2009
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Time (t)

D
e

p
o

s
it
s
 (

N
O

K
)

id: 950

(a)

2005 2006 2007 2008 2009
0

2

4

6

8

10

12

14

16

18
x 10

4

Time (t)

D
e
p
o
s
it
s
 (

N
O

K
)

id: 676

(b)

2005 2006 2007 2008 2009
0

2000

4000

6000

8000

10000

12000

Time (t)

D
e
p
o
s
it
s
 (

N
O

K
)

id: 2459

(c)

2005 2006 2007 2008 2009
5

6

7

8

9

10

11
x 10

4

Time (t)

D
e
p
o
s
it
s
 (

N
O

K
)

id: 516

(d)

Figure 2.2: Four less trivial examples. In (a) and (b) we see deposits to the Tax Withdrawal
Account for two healthy companies. In (c) and (d) we see deposits for two companies that
defaulted and went bankrupt respectively. Only deposits up to the default and bankrupt is
plotted. Note the deposits are ×104 and ×105.

8 Chapter 2. Background

3 The Dataset

The dataset used in this thesis is a collection of deposits and withdrawals from the Tax Withdrawal
Account from 2005 to (and including) 2008 for various companies. All which are (or have been
in case of bankruptcy) customers of SpareBank 1. For each company we have the following
information available:

1. The company’s Industry code1 in the Brønnøysund register.
2. The company’s Sector code in the Brønnøysund register.
3. Date of establishment
4. Monthly deposits to the Tax Withdrawal Account from 2005 to 2008
5. Monthly withdrawals to the Tax Withdrawal Account in the same period.
6. The bank’s estimated credit rating for that company, also in the same period.
7. Annual revenues from 2005 to 2007. 2008 is not yet available.

Point 6 in the list above is the PD-ratings for the company estimated for every month. Both
Point 4 and 5 consists of time series data. A time series is a statistical term for a sequence of
data points measured at successive times, spaced often (but not necessarily) at uniform time
intervals. Point 3–7 are used as inputs for the classification algorithm presented in Part I and II.

3.1 Training and Validation Data Sets

In order to make sure that the classifier is able to generalize2, we divide the data set in two: a
training set and a validation set. The purpose of the validation set is to provide new data to a
tweaked classifier to ensure a performance measurement not biased by the effect of overfitting.
Thus, the validation set is only used once. It is not used for tweaking the classifier, but to ensure
that the classifier generalizes.

The training set is used to tweak parameters of the features and the classifier itself. When
the classifier displays good performance on the training, the validation set is used to validate or
invalidate the performance.

The validation set is constructed by removing 25 % of the healthy companies from the original
data set, along with 25 % of the companies that defaulted or were the bank reckons a loss. This
way we ensure an equal ratio of healthy/non-healthy companies in both the training set and the
validation set. The validation set is only used once.

3.2 Class Distribution

The main problem with the dataset is the number of unhealthy companies. In the past four
years (including 2008) only 137 out of a total 3,689 companies were considered as companies
who caused a loss to the bank. After filtration of companies, which do not conform with the
specifications on page 3, the number of loss-reckonings are considerably smaller. The companies
are separated into three classes based on the PD-rating:

1. J-rating : The company has defaulted on a loan some time during the period.
2. K-rating : A loss where reckoned during the period.
1Norwegian: “Næringskode”
2That the classifier works in the general case and not just on the data we are working with

9

10 Chapter 3. The Dataset

3. PD(company) ⊂ [0, 1): The company has not defaulted and has not caused a loss for the
bank.

Of course, a company may be in both Class 1 and 2 at the same time. Therefore, we treat Class 1
and 2 as the same class and Class 3 as a separate disjunct class. In machine learning terminology,
this is called a binary classification problem. We shall refer to Class 1 and 2 as “unhealthy”
companies and Class 3 as “healthy” companies. Table 3.1 shows the distribution of companies in
Sub-sector 710 before applying restriction 2–4 in the Scope section, page 2.

Class Training-Set Validation-Set

Healthy 2,669 883
Non-healthy 99 38
Total 2,768 921

Table 3.1: Distribution of companies in Sub-sector 710 before filtration.

Applying restrictions 2–4 we get the following class distribution:

Class Training-Set Validation-Set

Healthy 918 287
Non-healthy 41 11
Total 959 298

Table 3.2: Distribution of companies in Sub-sector 710 after filtration.

We loose almost 2,000 companies by restricting our analysis to companies in the selected
industries which are above a certain threshold. Performing filtration or not, healthy companies
are represented by a far larger number of instances than non-healthy companies, resulting in a
skewed distribution.

When one class is represented by a large number of examples while the other is represented
only by a few, the dataset is imbalanced [Japkowicz et al., 2000]; a feature which is quite common
in practice. When learning from imbalanced data sets, machine learning algorithms tend to
produce high predictive accuracy over the majority class, but poor predictive accuracy over the
minority class [Maloof, 2003]. We discuss how to tackle this problem later in Part I.

3.3 Noise and Phased-out Companies

There are two groups of companies in addition to those above: (1) Companies which do not have
any record of defaults or bankruptcy, but which have been phased out and do not longer exist.
(2) Companies that has received an erroneous PD-rating based on subjective measures.

These two classes of companies presents a problem for us. The phased out companies are in a
grey area between healthy and non-healthy companies. They are clearly not non-healthy as they
have always payed their debt and no bankruptcy or other evidence or economical problems are
present. On the other hand, if no problems were present, the company probably would not have
been phased out. After discussion with the bank, all companies which are phased out have been
removed from the dataset.

While phased out companies can be handled, those which have been manually, and erroneously,
marked with a J- or K-rating are worse. These companies are part of the already sparse set of
non-healthy companies and may significantly disturb the classification. Fortunately, it is not
impossible to identify such mistakes, to do this however, one need access to bank internals which
we do not have.

3.4. Samples from the Dataset 11

Identifying mistakes in the PD-rating requires manual analysis of the company in question; it
is not reasonable to analyse all the non-healthy companies for erroneous PD-ratings. Instead
we tune the classifier on the noisy set of healthy and unhealthy companies. When a certain
error-threshold has been met, we send the (hopefully small) set of false negatives1 for further
analysis by SpareBank 1. If some of the companies are erroneously marked they are manually
re-classified and new parameters is evaluated for the classifier.

The process of removing erroneous rated and phased out companies was done after the
training of the classifier (Chapter 6), but we present the final class distribution here for the sake
of completeness:

Class Training-Set Validation-Set

Healthy 873 273
Non-healthy 31 7
Total 904 280

Table 3.3: Final distribution of companies

3.4 Samples from the Dataset

In order to give the reader a taste of what we are working with, we present some samples of
healthy and unhealthy companies. In the following figures, defaults are marked with yellow dotted
circles and loss-reckonings are marked with solid red circles. Deposits to the Tax Withdrawal
Account is shown in the left column; withdrawals from the same account is shown in the right
column.

A few comments is needed for the withdrawals plot. First, we only plot actual withdrawals
from the Tax Withdrawal Account, since companies are only expected to transfer money from the
account every second month (Section 2.1) there are usually only six points in the plot for each
year. There are, however, some exceptions: Some companies transfer money from the account
even though they are not expected to, also, some companies do not transfer money from the
account even though they are expected to. These exception are also plotted.

1Companies that were classified as healthy, but which is labeled with J or K in the dataset.

12 Chapter 3. The Dataset

2005 2006 2007 2008 2009
0

2

4

6

8

10

12
x 10

4

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 1633

(a)

2005 2006 2007 2008 2009
−8

−7

−6

−5

−4

−3

−2

−1
x 10

4

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 1633

(b)

2005 2006 2007 2008 2009
0

2

4

6

8

10

12

14

16

18
x 10

4

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 1684

(c)

2005 2006 2007 2008 2009
−15

−10

−5

0
x 10

4

Withdrawal number

W
ith

d
ra

w
a
ls

 (
N

O
K

)

id: 1684

(d)

Figure 3.1: Two unhealthy companies. Notice in Figure (b) that there is a dominant up-trend.
This means that the company is transferring less and less money to the government. In Figure (c)
we see an example of a delayed loss reckoning. The company is not bankrupt as proved by the last
deposit in 2008. Notice that three times around the shift from 2006 to 2007 the company does not
transfer money from the account. More importantly, the company suddenly stops transferring
money to and from the account—we have no explanation for such behaviour.

3.4. Samples from the Dataset 13

2005 2006 2007 2008 2009
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 787

(a)

2005 2006 2007 2008 2009
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 787

(b)

2005 2006 2007 2008 2009
0

2

4

6

8

10

12
x 10

4

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 189

(c)

2005 2006 2007 2008 2009
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 189

(d)

Figure 3.2: Again we see examples of delays before loss reckonings for both companies. Certainly,
not all information about a company’s health is reflected in the Tax Withdrawal Account. Notice
in both withdrawals plot that several times the companies omit transferring money from the Tax
Withdrawal Account.

14 Chapter 3. The Dataset

2005 2006 2007 2008 2009
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 4786

(a)

2005 2006 2007 2008 2009
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4
x 10

5

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 4786

(b)

2005 2006 2007 2008 2009
1

1.5

2

2.5
x 10

5

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 867

(c)

2005 2006 2007 2008 2009
−5

−4.5

−4

−3.5

−3

−2.5

−2
x 10

5

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 867

(d)

Figure 3.3: These companies are classified in the dataset at healthy: they have no registered
defaults and there has not been reckoned a loss on any loans they have in SpareBank 1. In contrast
to some of the non-healthy companies in Figure 3.1 and Figure 3.2, these companies (mostly)
transfer money from the account when they are supposed to, and there are few zero-deposits.

3.4. Samples from the Dataset 15

2005 2006 2007 2008 2009
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 5417

(a)

2005 2006 2007 2008 2009
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Withdrawal number

W
it
h
d
ra
w
a
ls
 (
N
O
K
)

id: 5417

(b)

2005 2006 2007 2008 2009
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 2801

(c)

2005 2006 2007 2008 2009
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Withdrawal number

W
ith
d
ra
w
a
ls
 (
N
O
K
)

id: 2801

(d)

Figure 3.4: Here we present some exceptions to the rule. Both companies has some time during the
period not transferred money from the Tax Withdrawal Account even though they were supposed
to. The company in (c) and (d) is specially awkward in that the deposits and withdrawals
suddenly stops (the company is not registered in the Brønnøysund registers as phased out). We
can think of no good explanation for such behaviour, but it happens now and then.

16 Chapter 3. The Dataset

I Coarse-Grained Separation

The heterogeneity of the dataset presents a problem when searching for one algorithm to solve the
corporate bankruptcy problem. While this is in theory possible, we take a two-step approach. We
first separate the obvious healthy companies from the rest to obtain a “grey area” of companies
were the probability for a default or loss-reckoning is above a certain threshold; this grey area is
then analyzed at higher resolution than the previous others. We perform the first step—the coarse
grained separation—by using abstractions of the time series forming deposits and withdrawals.
These abstractions are derived through an extensive domain-oriented data study resulting in a
small finite set of features, see Section 5.1.

1.

Preprocess
Data

2.

Feature
Generation

3.

Train
Classifier

4.

 Test
Classifier

Figure 3.5: The different phases conducted in Part I

As presented in Figure 3.5, the feature generation phase is conducted after the preprocessing
phase, which is discussed in detail in Chapter 4. The preprocessing phase consists of normalizing
the data and adjusting them due to special tax rules. In the two latter phases, Chapter 5 to 7, we
integrate the features by a classification algorithm to separate healthy companies from the rest.

17

18

4 Preprocessing the time series

Preprocessing is the process of altering a set of data prior to analysis. The goal of preprocessing
is to transform a noisy set of measurements into a set of data values more easily and effectively
processed by a later procedure. In this chapter we discuss how to exploit domain knowledge
to smooth and adjust the curves forming deposits and withdrawals from the Tax Withdrawal
Account in order to make them easier to analyse and later on classify. This includes incorporation
of regulations in the Norwegian tax law as well as techniques for trend extraction and “safety
buffers”.

4.1 Holiday Tax Adjustments

The Norwegian tax law requires every wage-earner (with some few exceptions) to pay tax off
their wages.1 The amount of tax a worker is required to pay is distributed over 10.5 months due
to the following rules:

• No tax is required off vacation pay in June/July. This accounts for one month of pay,
however the employer is free to choose which month.

• Only half tax is required in December.

Since we have 12 months of deposits and withdrawals some correction is needed. By adjusting
the raw data accordingly we achieve more accurate trend estimates later on. In the figure below
we see an example of the results after adjusting from the rules in the list above.

2005 2006 2007 2008 2009
0

2

4

6

8

10

12
x 10

5

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 5257

Figure 4.1: Holiday adjustments in action. The dotted red line is the raw data, the solid blue line
is the result after adjusting. The result after adjusting is a smoother function.

We first adjust the vacation tax in June/July. If the company pays less tax in June than July
we set TaxJune = average(TaxMay, TaxJune, TaxJuly). If the company pays less tax in July,
then the July deposits is set to the average of June, July and August. The deposits for December
is adjusted similarly: TaxDecember = average(TaxNovember, TaxDecember). Notice however that
we do not use the average of November and January, this is because we have frequently observed
spikes in January (probably because of the new year), see for instance Figure 4.1.

1Consult “Skatteloven” §2-1 for details on exceptions

19

20 Chapter 4. Preprocessing the time series

The adjustments just outlined are not mathematically correct with respect to the tax regu-
lations outlined in the list on the preceding page. For example, adjusting for December month
should be achieved by simply multiplying by two. The problem is that not every company have
as evident tax reductions as the company in Figure 4.1, consider for example the companies in
Figure 2.2 on page 7. Multiplying the December deposits by two in these cases will result in
distinguished spikes. By just averaging we achieve more robust adjustments.

4.2 Safety Buffer

When analyzing the time series forming deposits and withdrawals we need to determine an interval
to consider. This interval might seem obvious, but consider the following:

1. We only have data up to and including December 2008. This means that if a healthy
company exhibits behaviour that indicates a default or loss-reckoning, but the actual loss
or default occurs in early 2009, the company will be marked as “healthy” in the dataset. In
this case, the classifier should mark the company as “will have a default or loss reckoned”
and not healthy.

2. There is no reason to look at deposits/withdrawals data after a default or loss-reckoning since
we want to recognize the patterns forming before a default or loss-reckoning. We therefore
need to determine an interval for non-healthy companies to consider when extracting
features.

3. In cases where several defaults has taken place we need to determine which default to use
as an end of the interval to analyze. See Figure 4.2 (b) on this page.

2005 2006 2007 2008 2009
0

1

2

3

4

5

6

7
x 10

5

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 959

(a)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 2902

(b)

Figure 4.2: (a) Solid green circle marks end of the interval considered for healthy companies. (b)
Defaults marked with dotted yellow circles, loss-reckoning marked with a solid red circle. The
first yellow circle of the second defaults group is used as the start point of the safety buffer. Only
data points up to, but not including, this point are used.

With respect to point 1 in the list above, we require at least six months without evidence of a
default or loss reckoning in order for the company to be healthy. The start of this “safety buffer”
is marked with a solid green circle in Figure 4.2 (a). When analyzing healthy companies, only
data points up to and including the circle are used.

In Figure 4.3 on the facing page we see an example were parts of the time series are left out of
the analysis. Only the points from January 2005 up to, but not including, the first dotted yellow

4.3. Normalization 21

circle are analysed. By discarding data points after the first loss-reckoning or default we also
discard all companies that only have defaults or loss-reckonings in the first half of 2005. This is
because we require at least six data points for the analysis.

Regarding the last point in the list on the preceding page we have decided to use the first
evidence received, after the required 6 months have passed, as the end point for the interval under
analysis. Consider Figure 4.2, where defaults occurs in the first month of the time series. If we
were to only analyze the data points up to the first default we would have too few data points for
a proper analysis (in this case none). Instead we use the time series up to the next “block” of
evidence of defaults (early 2007). Specifically, the first yellow circle in 2007 is used as the end
point of the interval to analyze.

2005 2006 2007 2008 2009
0

2000

4000

6000

8000

10000

12000

14000

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 2459

Figure 4.3: An example of a time series where data points are left out of the analysis. In this
example we only use the data point up to (but not including) the first dotted yellow circle.

4.3 Normalization

In order for the classifier to compare deposits and withdrawals for different companies some
normalization is needed. All deposits and withdrawals are normalized to the range [0, 1], this
ensures that trends are described the same regardless of whether a company pays 100,000 a month
or 1,000 a month in taxes.

There is nothing fancy about the normalization process. To normalize a timeseries ts to the
range [0, 1]—be it deposits or withdrawals—we simply divide by the maximum value:

n(ts) =
ts

max(ts)

4.4 Identifying Trends

A trend is a prolonged period of time where deposits or withdrawals rise or fall faster than their
historical average [Turner, 2007]. Identifying trends in a function f is usually done in two steps:
(1) Filter f to obtain a function g that express “roughly” the shape of f . (2) Analyze the first
difference of g: trends exists in intervals where the sign of the first difference is constant. Of
course additional constraints may be added, such as the minimal amount of data points in a
trend. See Figure 4.4 on the following page for an illustration.

We use local and global trends as part of the model explained in the next chapter. There is
not one specific way to estimate a trend given a set of data points; in our context, the following
characteristics are important for the algorithm identifying trends:

22 Chapter 4. Preprocessing the time series

2005 2006 2007 2008 2009
−8

−7

−6

−5

−4

−3

−2

−1
x 10

4

Withdrawal number

W
it
h
d
ra

w
a
ls

 (
N

O
K

)

id: 1633

(a)

2005 2006 2007 2008 2009
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Withdrawal number

W
it
h

d
ra

w
a

ls
 (

N
O

K
)

id: 1633

(b)

Figure 4.4: (a) Withdrawals from a Tax Withdrawal Account. Actual withdrawals are plotted
with solid blue, a filtered version is plotted in dotted red. (b) The first difference of the dotted
red function in (a). Notice that the sign of the first difference is positive from the end of 2005
and half way through 2008, hence a trend exists in this period.

• The algorithm must be able to recognize several trends given a set of data values. For
instance, a time series may start in an up-trend and end in a down-trend. Such cases are
interesting when determining whether there exists a global trend or not.

• The algorithm should not be overly sensitive to short term fluctuations. I.e. spikes should
not disturb the trend.

Next, we discuss different ways of fitting a trend to a set of data points.

4.4.1 Least Squares

In the most generic case, fitting a trend is done with the least squares method: Given a set of
data points X, and data values Y , one choose values for a and b so that∑

X

([axi + b− yi]2) xi ∈ X, yi ∈ Y (4.1)

is minimized. We minimize the sum of offsets—the residuals—of the points from the curve.
Because every point is weighted equally, outlying points may have a disproportionate effect on
the fit. The result is a straight line describing the major trend.

4.4.2 Moving Average

A moving average is used to analyze a set of data points by creating a series of averages of subsets
of the full data set. The simple moving average (SMA) of size n is the unweighted mean of the
past n data points. Formally, given a data set X:

SMAxi
=
xi + xi−1 + xi−2 + · · ·+ xi−n−1

n
xi ∈ X

we calculate the mean of the previous n points for every xi ∈ X. By using the sign of the first
derivative of the SMA we can extract several trends from a single time series (change of sign
equals change of trend).

4.4. Identifying Trends 23

4.4.3 Fourier Analysis

By analyzing the frequency domain of a signal—deposits and withdrawals in our case—we
can make certain qualitative assertions about it. The low frequency components are especially
interesting as they contain information about the general curvature of the signal, ignoring abrupt
variations.

In the discrete case we have a collection of points (xk, yk) and a total of K points. Let xk
denote month and yk the deposit to the Tax Withdrawal Account. Then for all points in the
function we define a complex number s(k) = xk+jyk, where j is the imaginary unit. The Discrete
Fourier Transform (DFT) is defined as:

a(u) =
1
K

K−1∑
k=0

s(k)e−j2πuk/K

for u = 0, 1, 2, . . . ,K − 1. a(u) is referred to as a “Fourier component” and low frequency means
low values for u. The low frequency components carry general information about the signal,
while high frequency components accords for details. By analyzing the slope of the low frequency
components we can make assertions about trends in the deposits or withdrawals.

4.4.4 Hodrick-Prescott Filter

The Hodrick-Prescott filter is a mathematical tool proposed in [Hodrick and Prescott, 1997]
and used in macroeconomics. It is used to produce a representation of a time series that is less
sensitive to short term fluctuations than long term.

Let Y be a time series, the Hodrick-Prescott filter assumes that Y can be expressed as a sum:
yt = τt + ct for all yt ∈ Y . Here, τ is the “trend” component of the time series and c is the “cycle”
component. The filter is parameterized by a λ-parameter controlling its sensitivity to short term
fluctuations. Formally, given an adequately chosen positive value for λ there exists a value τ that
will minimize the following function:

min
T∑
t=1

(yt − τt)2 + λ

T∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2 yt ∈ Y (4.2)

Usually the logarithm of the data points Y is used instead of the actual values. The cycle
component c is obtained simply by subtracting τ from y: ct = yt− τt. The right part of Equation
4.2 is a way to formulate the second difference for a discrete function. The second difference
penalizes abrupt changes in the trend-function and the λ parameter adjusts the effect on the
overall minimization problem.

4.4.5 Choosing a Method for Identifying Trends

The least squares method in its original form is only appropriate in cases where you always
expect that the time series in question is in fact trending, and that there is only one dominant
trend. Neither of this is true for our case so the least squares method is discarded. The reason
for the least squares inability to detect several trends is because the linear polynomial used in
Equation 4.1. By using a non-linear polynomial the least squares method will in theory be able
to detect several trends. It is however not very robust to determine such a polynomial, meaning
one polynomial will not fitt all functions very well.

The Simple Moving Average is able to detect several trends in a time series, but since each
point is equally weighted the fit might be disproportionally affected by single points. This can be
solved with a “weighted moving average”. The amount of smoothing by the moving average filter
is controlled by the size parameter, i.e. how many points are considered when averaging. The
more points, the more smoothing.

In Figure 4.5 on the next page the moving average (dotted red) is plotted for the deposits
(solid blue) for a company. Here we have smoothed the original function by averaging the past

24 Chapter 4. Preprocessing the time series

2005 2006 2007 2008 2009
3

4

5

6

7

8

9

10

11
x 10

5

Time (t)

D
e

p
o

s
its

 (
N

O
K

)

id: 5257

Figure 4.5: The solid blue line denotes deposits to the Tax Withdrawal Account; the dotted red
line is the Simple Moving Average (SMA) of the deposits. The size of the filter is 6 months.

six months for every data point. This requires at least six months of data for the smoothing to
have maximum effect; we let the data points before 2005 equals the values at January 1st, 2005,
in order for the smoothed function to be defined over the entire interval. Considering the figure
we notice three important things:

• There is a trend from mid-2006 to 2008. It is not possible to identify this trend by analyzing
the first difference of the moving average since the original function is not smoothed enough.

• It is not reasonable to increase the size of the filter as this would require too much data.

• The moving average is “lagging”. Notice that the tops and valleys in the moving average is
delayed from the original function.

The lagging behaviour of the moving average filter is proportional to the size of filter; this
is another reason to keep the size low. The lagging behaviour will cause a delay when flagging
bankrupts. Thus, because of insufficient smoothing and the lagging we discard the use of moving
averages.1

The Hodrick-Prescott filter suffers from none of the problems mentioned so far. The λ-
parameter in Equation 4.2 controls how sensitive τ is to high frequency components (abrupt
variations) in the original function. In other words, λ controls how smooth τ is.

In Figure 4.6 on the facing page we see two examples of the Hodrick-Prescott filter in action:
Figure 4.6 (a) is equal to Figure 4.5. We see that the Hodrick-Prescott filter successfully identifies
the trend from mid-2006 to early 2008 (the sign of the first difference is the same throughout
the period). In Figure 4.6 (b) we see an example were the filter identifies less obvious trends.
According to the first difference of the output, the deposits (solid blue) is constantly in an uptrend
until the end of 2007. If we consider only the data points where actual deposits where made
(ignoring zero-deposits), this might well be true. But when considering zero-deposits, it is more
questionable whether a trend exists or not. Notice that the function is never zero over a period
of time, zero deposits are only caused by short term fluctuations which are exactly what the
Hodrick-Prescott filter is designed to be less sensitive to.

Fourier descriptors—like the Hodrick-Prescott filter—provides a well smoothed, correctly
shifted trend in accordance to the original function. The only problem is that the amount of
deposits and withdrawals varies from company to company (depending on whether the company
went bankrupt or not). This makes it harder to choose the optimal amount of low frequency

1The “Weighted Moving Average” will perform better with respect to both lagging and smoothing, but will
eliminate neither of the problems.

4.4. Identifying Trends 25

2005 2006 2007 2008 2009
3

4

5

6

7

8

9

10

11
x 10

5

Time (t)

D
e
p
o
s
it
s
 (

N
O

K
)

id: 5257

(a)

2005 2006 2007 2008 2009
0

5

10

15
x 10

4

Time (t)

D
e
p
o
s
it
s
 (

N
O

K
)

id: 449

(b)

Figure 4.6: Two examples of the Hodrick-Prescott filter (dotted red, λ = 500). The original
function is plotted with solid blue. (a) Previous example with Hodrick-Prescott filter instead
of Moving Average. (b) Deposits to the Tax Withdrawal Account for a non-bankrupt company
where the Hodrick-Prescott filter perform less well.

components to consider. While not impossible, due to the success of the Hodrick-Prescott filter,
we have discarded Fourier descriptors.

26 Chapter 4. Preprocessing the time series

5 A Model for Coarse-Grained Classification
of Companies

As stated in Chapter 3, our dataset consists of time series data describing deposits and withdrawals
to, and from, a company’s Tax Withdrawal Account. These time series are so called non-stationary:
their statistical properties depend on time. Hence, we have highly varying and shifting time series
with trends, seasonal changes and other irregularities, such as large month-to-month changes.
Most of the irregularities and variations originate from unknown systems, for instance accounting
methods, and does not necessarily reflect the economical state of the company. By including the
time series in our model as is, we rely entirely on the classifiers ability to neglect the irrelevant
information, and focus on the relevant information in the time series.

Additionally, the length of time series usually varies from series to series. This difference in
dimensionality is incompatible with the majority of classifiers, which only accepts input of the
same dimensionality. In this chapter we will present an approach that handles not only the issue
with dimensionality but also the issue with information overload in the time series. We perform a
domain-oriented data study resulting in a finite set of features. The features represent only the
relevant information in the time series. All of the features, introduced underneath, are derived
from discussion with experts within the credit risk field. By assuring that the features are backed
by experts within the domain, we decrease the potential for overfitting. The features, being a
compact representation of the time series, enable the use of a simple algorithm for classification.

In Part II of this thesis we will, despite its complications with information overload and
dimensionality, explore an approach performing classification over the raw non-stationary time
series. To tackle this task we will bring in the statistically heavier method of Gaussian Processes
and see how it performs on the data.

Another approach, commonly used for classifying non-stationary time series, involves using the
Box-Jenkins approach presented in [G.E.P. Box and Reinsel, 1994]. The Box-Jenkins approach
applies Autoregressive Integrated Moving Average (ARIMA) models to find the best fit of a time
series to past values of this time series. These models are then used to forecast the future values
of the time series. Even though the Box-Jenkins approach is quite popular, especially in the field
of econometrics, we have not explored this approach in our research due to the requirement of
sufficiently long series. [Chatfield, 1996] recommends at least 50 observations. Many others would
recommend at least 100 observations, while we only have 48 observations (monthly data for four
years). Additionally, the Box-Jenkins approach is not a complete solution to our problem. The
forecasted time series still need to be analyzed to decide whether or not a company is financially
sick; a non-trivial task.

In the following section we will walk thoroughly through the features we derived via our data
study, before we see how a simple classifier performs on the abstracted dataset. Recall, as stated
in Chapter 3, the dataset we use is imbalanced. To tackle this imbalance, we use a cost-sensitivity
inducing wrapper around the classifier, called MetaCost [Domingos, 1999]. What a cost-sensitive
classifier is and how we benefit from it will be discussed in Section 5.4.

5.1 Feature Generation

Feature generation means creating a set of features based on the original data. From this set of
features only the best performing features are selected. In order to identify such features we have
conducted a domain-oriented data study, which is the main contribution from Part I of this thesis.
For a study to be considered as domain-oriented, it is required that the findings are backed by

27

28 Chapter 5. A Model for Coarse-Grained Classification of Companies

domain knowledge. The objectives of this study has been to extract features and select a finite
set of discriminating feature functions that represents the relevant information in the time series,
compactly. A “discriminating feature function” is identified as a feature function that separates
the two classes of companies well. Additionally, a relevant feature will discriminate the two classes
entirely based on information that we reckon ought to separate the classes. The relevance of the
feature has been assured through extensive discussions together with experts within the credit
risk field, currently working at SpareBank 1’s own research department for credit risk models.
Selecting only relevant features decreases the possibilities for overfitting, since the features are
backed by knowledge not only learned from the small world composed by our dataset.

We have two ways of extracting features: a few features are extracted from company metadata,
while the rest of the features process the time series associated with the company. The latter can
be further divided into two groups, namely local and global time series features. The difference is,
as the name indicates, the former type of features only processes a window, the last n months
from current date, while the latter feature type process the whole time series, from the beginning
of the time series to the current date. In contrast to the differences between the features, they all
return a real number. Overall, the feature functions can be summarized as

r = featureFunction(company, n)

where company is a structure encapsulating all data regarding a company, n is the number of
months to look back (n will be ignored by features not concerned with the time series), and r is a
real number with different meaning for each feature function. The following list enumerates the
proposed features:

1. Local Deposit Trend
2. Local Withdrawal Trend
3. Global Withdrawal Trend
4. Global Deposit Trend
5. Global Balance Trend
6. Consecutive Zero Deposits
7. Consecutive Zero Withdrawals
8. Consecutive Zero Balance
9. Zero Deposits

10. Zero Withdrawals
11. Age
12. Company Size

Feature 1–10 abstracts the time series representing deposits and withdrawals, while the last
two features, Company Size and Age, are extracted directly from the company metadata. The
time series are mainly described in two ways, by various trends and by various counts of incidents
when a company refrains from making a deposit or withdrawal. An performance evaluation of
the features will be comprehended in Chapter 6 and discussed in Chapter 7.

5.1.1 Extracting Trend Features

What a trend is, and how we can extract the trend component from a time series, have already
been covered in Section 4.4 on page 21. In this section we analyze the trend component and
output a real number summarizing the relevant information regarding the trend.

First, let us explore the rationale behind analyzing trends in time series describing transactions
to and from the Tax Withdrawal Account. Our hypotheses propose that the observed transaction
trend is a mirror of the financial situation in the company. Consider a company in growth. By
hiring more people and rising wages to employees, the company pay increasingly more and more
wages. Due to the increasing amount of paid wages, a corresponding increase with respect to the
amount of tax deposited to the Tax Withdrawal Account is expected. A tightly coupled negative

5.1. Feature Generation 29

trend is expected to be manifested in the withdrawals from the same account, since the money
deposited needs to be further transferred to the government. See Figure 5.1 for an example of a
financially healthy company with both positive deposit trend and negative withdrawal trend.

A financially sick company will seldom increase wages or workforce, so a positive deposit
trend, or a negative withdrawal trend, is less likely to happen. More likely, a negative or stagnant
trend is observed when studying the deposits. Both types are believed to be a sign of financial
weakness in the company. A negative trend may indicate that the company is lowering wages
or getting rid of employees, while a stagnant trend may be conceived as slightly negative sign
when adding inflation to the picture; the employees receive the same wages, while the prices are
increasing.

2005 2006 2007 2008 2009
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 611

(a)

6 12 18 24
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
x 10

5

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 611

(b)

Figure 5.1: (a) Plot of deposits by Company 611 over the four year period. A strong positive
trend is revealed. (b) The opposite trend is observed when plotting the actual withdrawals done
by Company 611 over the same period.

It should be noted that there is a substantial amount of uncertainty tied to the theories
presented in this section. For instance, a negative deposit trend may as well be a result of a
couple of highly paid senior employees going into retirement. Additionally, a company getting
rid of a bad-performing department is not necessarily a sign of bad health, but may as well be a
sign of a healthy company being focused on cost efficiency. Notice, the examples above are all
examples of relatively short-term trend movements. The retired seniors may soon be replaced
by younger employees, and the absence of the bad-performing department may give room for
new positions in departments that are profitable. As stated in [Gordon and Rosenthal, 2003],
growth is imperative for firms in the capitalistic world. This observation, that economical healthy
companies may suffer a short term negative tendency but economically growth in the long run,
calls for different trend features observing trends over different time periods. Only studying
short-term trends are not sufficient.

Local and global features, as introduced earlier in this section, are utilized to cope with the
demand of trend features observing trends over different time intervals. Global trend features,
such as feature 3–5 in the list above, extracts a single global trend over the whole time series,
until current date. Local trend features extracts the trend prevailing in the last n months, from
current date.

30 Chapter 5. A Model for Coarse-Grained Classification of Companies

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 2902

Deposits
Trend Comp.(λ

hp
= 500)

a

n (months)

(a)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 2902

Deposits
Trend Comp.(λ

hp
= 14400)

a

(b)

6 12 20 31
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 2902

Withdrawals
Trend Comp.(λ

hp
= 500)

n (months)

a

(c)

6 12 20 31
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 2902

Withdrawals
Trend Comp.(λ

hp
= 14400)

a

(d)

Figure 5.2: (a)–(d) shows deposits and withdrawals from/to Company 2902’s Tax Withdrawal
Account. In (a) and (c) the local trend is extracted using a Hodrick-Prescott filter with λ = 500.
From a window of 12 months we calculate the slope, a, of the trend. In (b) and (d) the global
trend is extracted using a Hodrick-Prescott filter with λ = 14400.

5.1. Feature Generation 31

There are two trend measurements of interest, whether the trend is negative or positive, and
the strength of the trend. Fortunately a single metric covers both points of interest, namely
the slope. A negative slope indicates a negative trend, and vice versa. The magnitude of the
slope indicates the strength of the trend. In Figure 5.2 on the preceding page, global and local
trends are extracted from time series describing both deposits and withdrawals. Which value
to use for the smoothing parameter, λ, is decided due to the frequency of the data. Our time
series have a frequency of one month. While [Ravn and Uhlig, 2002] suggest using λ = 129600
for monthly data, the “industry standard”, or macro economical best practices, uses λ = 14400.
We suggest using λ = 14400 for global trends, see Figure 5.2(b) and (d), and λ = 500 for local
trends, see Figure 5.2(a) and (c). Notice, by using a lower λ when extracting local trends we
extract a less smoothed trend component, following the time series more, compared to the global
trend component. This lower λ is necessary in order to extract a trend that may change direction
several times during our four year period.

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 2902

Deposits
Trend Comp.(λ

hp
= 500)

65%

100%

35%

t0-n t0 t1t1-n

w0

w1

Figure 5.3: Here two different time windows, w0 and w1, are displayed. Notice in w1 how the
trend is negative during the whole period. The story is different in w0, which contains two
different trends. In 35% of the period there is a positive trend present, which then turns into a
negative trend. Due to our trend-ratio requirement we need at least a presence of 80% for one
trend type in order to report a trend. Thus, the local deposit trend feature will return a = 0 over
w0.

The low λ used when extracting local trends poses an issue when the current window is located
over an extremal point of the trend component. At an extremal point the trend direction switches.
To handle these cases we have defined a trend ratio threshold, demanding a presence of 80% of
the time for one trend in the current window. If no trend has a presence of 80% of the time in
the window, we say the trend is horizontal and returns a slope equal to zero. See Figure 5.3 for
an example of how the trend ratio threshold impacts what we appreciate as a trend.

The last trend feature is the global balance trend, which is extracted in the same manner
as the global deposit and withdrawal trend. This feature captures whether or not the company
builds up reserves on the Tax Withdrawal Account. If a company has a negative global balance
trend, it means that the company is paying more to the government than it is depositing to the
Tax Withdrawal Account. This may be considered as a negative sign, since the practice can only
sustain as long as there still are reserves left on the Tax Withdrawal Account.

5.1.2 Counting Zero-Transactions

We have five features, feature 6–10, detecting whenever a company omits transferring tax to the
Tax Withdrawal Account (deposit), omits transferring tax to the government (withdrawal), or
whenever the balance of a company’s Tax Withdrawal Account is zero. The two latter features

32 Chapter 5. A Model for Coarse-Grained Classification of Companies

counts every incident of zero deposits and withdrawals, while the three former counts the longest
series of consecutive zeros in the time series.

The most important of the zero-transactions is the zero withdrawal, in other words, the
incident of skipping a transfer of tax to the government. As introduced in Section 2.1 a company
is liable to transfer tax to the government every second month. Omitting to do so may indicate
serious liquidity issues within the company. A one time incident of skipping a withdrawal is
serious enough, but skipping several consecutively payments is even more interesting to detect. It
may indicate the beginning of the end, meaning the company may have stopped paying wages.
Such incidents is captured by the consecutive zero withdrawal feature. See Figure 5.4(b), where a
company skips several withdrawals and goes into bankruptcy during 2008.

There is usually a correspondence between a zero deposit and a zero withdrawal; the company
did not deposit any money to the Tax Withdrawal Account thus there is not enough funds on
the account to follow up on its obligations to the government. This link is not always a fact. Zero
deposits are more frequent than zero withdrawals since companies are not liable to deposit every
month, as long as they keep the balance on the Tax Withdrawal Account on a high enough level
to cover the usual withdrawals. Hence, companies are allowed to skip deposits without breaking
the law. If a company omits depositing tax to the Tax Withdrawal Account several times in a
row, the same argument as for withdrawals applies; it may be the beginning of the end. Again,
such events is detected by the consecutive zero deposits feature. Figure 5.4(a) and (c) depicts
two different companies omitting transferring tax to their Tax Withdrawal Account.

The rationale behind the consecutive zero balance feature is the following: keeping funds on
the Tax Withdrawal Account may indicate sloppy economical management in a company since
it is suboptimal. The interest are very low, compared to regular corporate bank accounts, and
the funds deposited to the account may not be used for anything else than paying taxes. In
Figure 5.4(d) the consecutive incidents of zero balance on the Tax Withdrawal Account precedes
company 1977’s defaulting on loan obligations towards the bank.

5.1.3 Extracting Age and Company Size

The Age and Company Size features are included with the following rationale: The older and
larger a company is, the smaller the probability is for a company to default on a loan obligation,
or to go into bankruptcy. A company with some years on the track has already passed the
test of time. Start ups, on the other hand, have been initiated with only a theory that there is
money to be made from their product. Hence, young companies seem to be more risky than older
companies. The Age feature is extracted as the number of days since the date it was established.
In Figure 5.5(a) we present a cumulative plot showing the age of financially sick companies.
The average age for all companies, meaning the average period from a company’s establishment
day until today, May 7th, 2009, is 12 years (4494

365 ≈ 12). By studying the plot we observe that
approximately 23 out of totally 31 sick companies are on, or below, the average age. This fact
supports the rationale behind the age feature.

The size feature is derived from annual income numbers. Specifically, we calculate the size
feature as the mean of yearly income over the last three years. Companies of larger size generally
have its own accounting department, best practices for how to do business, and larger margins
before going into periods with financial struggle. Hence, the size feature is included in our model.
The rationale behind the size feature is emphasized in Figure 5.5(b). Notice that 25 out of 31
financially sick companies have a yearly income lower than 5 million NOK. The average size over
all companies is at 20 million NOK.

5.1. Feature Generation 33

2005 2006 2007 2008 2009
0

1

2

3

4

5

6

7

8

9
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 1089

(a)

2006 2007 2008 2009
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 2902

2005

(b)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 1977

(c)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Time (t)

B
al

an
ce

 (
N

O
K

)

id: 1977

(d)

Figure 5.4: (a)–(d) displays plots of deposits, withdrawals, and balance associated with different
companies’ Tax Withdrawal Account. Incidents of zero transaction are marked with a blue circle.
When more than one incident of a zero transaction occur consecutively, we mark it with a blue
ellipse. In (a) company 1089 skips a single deposit. In (b) company 2902 first skips two withdrawals
in 2006. Then, in two different periods in 2008, the company have consecutive incidents where it
omits to transfer tax to the government. Company 2902 was marked as bankrupt by SpareBank 1
in September, 2008, but defaulted several times on their loan obligations throughout 2007. In (c)
company 1977 omits depositing tax to the Tax Withdrawal Account during 2008. The company
defaults on its loan obligation in December, 2008. As seen in (d), the same company depletes the
balance of Tax Withdrawal Account during late 2008.

34 Chapter 5. A Model for Coarse-Grained Classification of Companies

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e

N
um

be
r

of
 F

in
an

ci
al

ly
 S

ic
k

C
om

pa
ni

es

Age (days since established)

(a)

0 1 2 3 4 5 6

x 10
7

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e

N
um

be
r

of
 F

in
an

ci
al

ly
 S

ic
k

C
om

pa
ni

es

Size (Mean of Yearly Income, NOK)

(b)

Figure 5.5: Two plots illustrating the rationale behind size and age features. In (a), age is plotted
for the financially struggling companies in our training set. The y-axis represents a cumulated
count of companies, while the x-axis represents the age. In (b), a similar plot regarding the
company size is presented. The y-axis represents the cumulated count of companies, while the
x-axis represents the size.

5.2. Discretizing Features 35

5.2 Discretizing Features

The features extracted in the section on page 32 constitutes a compact representation of the time
series, and the company. Through our feature generation we have abstracted away, tentatively,
everything but the relevant information. Hence, the burden on the statistical abilities of a classifier
is lowered to the minimum. In other words, through investing effort in abstracting the time series,
we can invest less effort on the classifier. Keeping in mind that SpareBank 1 wants a technique
that is easy to prove sound, and easy to implement, reinforces the argument for using a simple
classifier.

We conducted a small empirical study testing several simple classifiers over the features. The
Naive Bayes classifier performed best, which it surprisingly often does [Domingos and Pazzani,
1997]. See Section 6.5 and Chapter 7 for the details from this empirical study.

The Naive Bayes classifier is discussed in detail in Section 5.3. To anticipate the course of
events, we will in this section focus on a minor design issue with the Naive Bayes.

Training a Naive Bayes classifier consists of counting the number of training instances for
each class, and for each value of every feature. Recall from Section 5.1 that the features returns
a real number. Real numbers measures continuous quantities, meaning it can have an infinite
number of values. Since the task of counting the number of instances for every possible feature
value is impossible, we need to discretize the features.1

Discretizing a numerical feature means splitting the continuous value space into a small finite
set of distinct ranges. In the simplest form of discretizing, ranges are decided either by using
equal-frequency binning or equal-width binning. Equal-width binning means splitting the range
into a set of uniformly sized ranges. Notice, in Figure 5.6(a), how almost all the companies have
a size within the first range. This is a typical result when discretizing a feature with unevenly
distributed data points. Equal-frequency binning means deciding ranges by enforcing an equal
amount of data points within each range, see Figure 5.6(b).

4

220,768.5 NOK -
331,131.08 NOK

270

-inf -
110,405.91 NOK

5

110,405.92 NOK -
220,768.5 NOK

1

331,131.09 NOK -
inf

(a)

-inf -
2,329.66 NOK

2,329.67 NOK -
6,096.16 NOK

6,096.17 NOK -
14,732.16 NOK

14,732.17 NOK -
inf

70 70 70 70

(b)

Figure 5.6: This figure presents the different types of binning used for simple discretizing. The
colors indicate the number of instances from each class contained in each bin, where red constitutes
the number of financially sick companies, and blue the healthy companies. In (a) the company
size feature is discretized into 4 equal-width ranges. The alternative, equal-frequency, is presented
in (b) over the same feature.

The two types of discretizing mentioned above are simple methods for discretizing. The
optimal number of partitions need to be decided manually, for instance by visual inspection or
by empirical testing. A potentially better procedure, proposed in [Fayyad and Irani, 1993], uses
a entropy minimization heuristic for discretizing a range into multiple intervals. Let us first

1An extension of Naive Bayes enables it for numerical features by assuming they have a normal distribution.
This assumption is often not very plausible in practice.

36 Chapter 5. A Model for Coarse-Grained Classification of Companies

see how this procedure performs binary discretization, meaning discretizing a feature into two
sub-ranges. Say, we are doing a binary discretization over the feature A, for instance the company
size feature. Tsize is then the cut point parting the set S of N training examples into two subset
S1 and S2. The examples in S1 have lower size values than Tsize while the examples in S2 have
larger size values than Tsize. If Tsize is the perfect cut point, then all of the examples in S1 are of
class C1, while the examples in S2 are of class C2. From being a feature ranging over a set of
examples being of two classes (high class entropy), we have now partitioned the feature into two
sub-features which each describes a class perfectly (low class entropy). The procedure presented
underneath strives to find a discretizing which has the lowest possible amount of class entropy,
given the training examples.

In this setting. the class entropy over S is translated to a measure of the degree of “randomness”
that the classes, C1, . . . , Ck, of the training examples appears to exhibit. Formally, the class
entropy of the set S is defined as:

Ent(S) = −
k∑
i=1

P (Ci, S) log(P (Ci, S))

where P (Ci, S) is the portion of the examples in S that are of class Ci. The logarithm may be to
any convenient base. The best cut point is selected by sorting the examples in S by increasing
values, evaluating each candidate cut point in the range of values. This totals to evaluating N − 1
candidate cut points. To evaluate the resulting class entropy after a set S is partitioned into two
subsets, S1 and S2, we calculate the weighted average of their resulting class entropies:

E(A, T ;S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2)

The cut point, TA, for which E(A, T ;S) is minimal amongst all the candidate cut points is
selected.

So far we have only discussed how this procedure performs binary discretizing. In [Fayyad and
Irani, 1993], the procedure is generalized for multi-interval discretizing by running the procedure
recursively over the partitioned intervals. They also propose a criterion to be applied when
deciding whether or not to refrain from applying further binary partitioning to a given interval.
This criterion is based on the Minimum Description Length Principle, abbreviated MDLP, which
were introduced by [Rissanen, 1978]. MDLP is defined to be the minimum number of bits required
to uniquely specify an object out of the universe of all objects. In this procedure, MDLP is used
as an estimate of the cost induced by partitioning an interval. The cost estimate is calculated as
the number of bits needed to communicate a method that will enable the receiver to determine
the class labels of the examples in the set. On a high level, the criterion estimates whether or not
more information is gained through partition the set further. The MDLP criterion is defined as:

Gain(A, T ;S) >
log2(N − 1)

N
+

∆(A, T ;S)
N

where

Gain(A, T ;S) = Ent(S)− E(A, T : S)

and

∆(A, T ;S) = log2(3k − 2)− [kEnt(S)− k1Ent(S1)− k2Ent(S2)].

Recall that k is the number of classes in the set. An interval is further partitioned if we gain
more information, or in other words, lose more entropy, by partitioning the interval. The amount
of information needed to be gained is given by the right side of the inequality sign. The details
behind the derivation of the criterion are outside the scope of this thesis.

5.3. Supervised Learning with a Naive Bayes Classifier 37

Feature # of partitions Cut point, T

Local Deposit Trend 1 -
Local Withdrawal Trend 2 T = 0.0473
Global Withdrawal Trend 2 T = 0.0001
Global Deposit Trend 2 T = −0.0026
Global Balance Trend 2 T = −0.00465
Consecutive Zero Deposits 2 T = 1
Consecutive Zero Withdrawals 2 T = 1
Consecutive Zero Balance 1 -
Zero Deposits 2 T = 3.5
Zero Withdrawals 2 T = 1.5
Age 1 -
Company Size 2 T = 6107000

Table 5.1: Table enumerating the discretized features.

When applying the procedure explained above on our training examples we get the following
partitions:

In Table 5.1 we see that the majority of our features were discretized into two subintervals.
Three of the features, the Company Age feature, the Consecutive Zero Balance feature, and
the Local Deposit Trend feature, are not partitioned. The discretizing procedure decided that
there were not enough to gain from discretizing the features any further, indicating that the
features contains too much randomness to be useful in distinguishing the classes. Such distracting
features often confuses the classifier. Additionally, since the binary value of the three features,
with only one partition, will be equal to one for every possible example, the features may as well
be excluded from the model.

The procedure of removing low performing features is called feature selection. Feature
selection is beneficial due to the following three reasons [Guyon and Elisseeff, 2003]: it improves
the prediction performance of the classier, it provides faster and more cost-effective classifiers,
and it provides a better understanding of the underlying process that generated the data. In
our case, the latter point translates to learning what kind of incidents and patterns that usually
precedes a period of financially struggle.

After discretizing the numerical features into q ranges, the features will individually consist of
q binary features, indicating whether or not a data point is located within the respective ranges.
Training a Naive Bayes classifier is now possible, since we have decreased the sample space of
each feature from being of infinite size to only q distinct values. We will exploit this fact in the
next section, where we will derive the Naive Bayes classifier.

5.3 Supervised Learning with a Naive Bayes Classifier

Bayesian Learning is an approach to learning a classifier that uses Bayes rule. For the following
description of the Naive Bayes classifier we have used [Russell and Norvig, 1995] as a reference.

We view each company as a vector of random variables. Let C be the random variable, also
called the class variable, indicating whether or not the company is financially troubled. Let
X1, X2, . . . , Xp be the random feature variables which we derived in Section 5.1. For a training
example, values for all of these are known, including C = c. For a test example, only the values
X1 = x1 to Xp = xp are known. Given a test example, we want the classifier to estimate the
probability, P (C = c|X = x) for each value that C may take. In our case we only have two
classes, namely C = 1 if the company is financially sick, and C = 0 otherwise. More precisely, we
want to estimate the conditional probability P (C|x1, . . . , xp), which is different for each example

38 Chapter 5. A Model for Coarse-Grained Classification of Companies

since each example has different values for the feature random variables X1 = x1 to Xp = xp (we
will in the following text for convenience denote P (Xj = xj) with P (xj)).

Applying Bayes rule to the test example gives

P (C|x1, . . . , xp) =
P (x1, . . . , xp|C)P (C)

P (x1, . . . , xp)
. (5.1)

There are three factors in Equation 5.1, two in the numerator and one in the denominator, each
of which we need to learn from training data. The easiest factor to learn is the unconditional
probability P (C = c). This is the overall probability of the class variable having the value
c ∈ {0, 1} for the whole population of companies. We estimate this as the fraction count(C=c)

N ,
where count(C = c) is the number of instances of each class in the training set and N is the total
number of training examples.

The denominator can by the law of total probability be written as

P (x1, . . . , xp) =
∑
c

P (x1, . . . , xp|C)P (C)

Due to the fact that we only have two classes, financially sick (C = 1) and financially healthy
companies (C = 0), we have that P (x1, . . . , xp) equals

P (x1, . . . , xp|C = 1)P (C = 1) + P (x1, . . . , xp|C = 0)[1− P (C = 1)]

This leaves us with only one factor left to estimate, which also is needed to calculate the denomina-
tor, the conditional probability: P (x1, . . . , xp|C). So far we have not made any assumptions; the
equations above are mathematically sound. The Naive Bayes classifier has earned the word “naive”
in its name due to the following assumption. First, use the product rule to rewrite P (x1, . . . , xp|C)
as

P (x1|C)P (x2|x1, C) . . . P (xp|x1, . . . xp−1C).

Now we make assumptions that are not always true. We assume that inside each class, each
feature is independent of all the other features, or mathematically,

P (x2|x1, C) = P (x2|C)
...

P (xp|x1, . . . , xp−1, C) = P (xp|C).

This assumption makes estimating P (xj |C) easy:

P (xj |C) =
count(xj ∧ C)
count(C)

. (5.2)

Now we have all the factors we need, and can express Equation 5.1 as

P (C = c|x1, . . . , xp) =
P (C = c)

∏p
j=1 P (xj |C = c))∑

v∈{0,1} [P (C = v)
∏p
j=1 P (xj |C = v)]

(5.3)

The denominator in Equation 5.3 is usually called the partition function, or normalization function,
and scales the output to a real number in the range from 0 to 1, and hence a valid probability. In
principle, if we do not need probabilities, the denominator can be left out, since it is constant
given the class. Equation 5.3 will then return a score, and the class with the highest score is the
result of the classification.

A common pitfall with the Naive bayes classifier is revealed if a value of a feature, for example
value y of feature j, is never observed in the training data for some class c. Then we will obtain

5.3. Supervised Learning with a Naive Bayes Classifier 39

the estimate P (Xj = y|C = c) = 0 exactly. For every test example with value y for feature j we
will have P (C = c| ~X) = 0 by multiplication regardless of the values of all other features. This
is undesirable because it gives a veto to a single feature. Our imbalanced dataset is especially
vulnerable to this pitfall since the chances for a feature j having an value y that is never observer
is very high for the minority class.

The solution is to make all probabilities non-zero (and also not exactly 1.0) by adding
“pseudo-counts” to the real counts. Define

P (C = c) =
count(C = c) + 1

N + r

where r is the number of different class values, and define

P (Xj = xj |C = c) =
count(Xj = x ∧ C = c) + 1

count(C = c) + qj

where qj is the number of different values of Xj . Smoothing with pseudo-counts of 1, as above, is
called Laplace smoothing. In practice, this amount of smoothing is too much. We can define
more general smoothing as follows:

P (Xj = xj |C = c) =
count(Xj = x ∧ C = c) + λ

count(C = c) + qjλ
.

A good common value for λ is 0.1 instead of λ = 1 which corresponds to Laplace smoothing.
The actual algorithm to train a Naive Bayes classifier is the following. Given the training

data:

1. Calculate a vector P (C = c) for each class value c

2. For each c and each feature xj , calculate a vector P (Xj = y|C = c) (Equation 5.2) where y
ranges over the different possible values of Xj , the jth feature.

Since we have two classes, step 1 gives us a vector of two numbers that adds up to 1.0. If
feature Xj has q alternative values (for instance q = 2, as we ended up with when discretizing
our real valued data) then step 2 gives a vector of q numbers. Again, this vector adds up to 1.0.

After training, the algorithm for applying the classifier on a test example is the following.
Note, for a test example we know the values for each feature, Xj , but not the value of C. The
probability of an example company having the class value c, given the values of the features, is
calculated in Equation 5.3. Through training we have estimated all the factors needed for this
calculation. The test instance is classified as of the class with the highest probability.

As mentioned in Section 5.2, the Naive Bayes classifier often performs surprisingly well doing
binary classification. Although the classifier separates two classes well, Naive Bayes is not known
for producing good estimates for P (C|X = x). This is due to the naive assumption, which limits
how the distribution over the data points may look like. Recall, the naive assumption assumes
that given a test example’s class all features are independent of each other.

Say, we have two distributions over two types of objects measured over two features, and
that there is a high dependency between the two features. Hence, the distributions may look
like the two distributions in Figure 5.7(a). Due to the naive assumption, through the eyes of a
Naive Bayes classifier those two distributions may look like the ones in Figure 5.7(b). Notice, the
dependency, or correlation, between the features is neglected. Thus, the Naive Bayes estimate of
P (C|X = x) for the single cross in Figure 5.7(b) will be smaller than its actual value, depicted in
Figure 5.7(a). This effect is one of the drawbacks by using the Naive Bayes classifier. On the
other hand, notice that the red line separating the two classes is still appropriate in Figure 5.7(b),
even though the correlation is neglected.

The Naive Bayes classifier, discussed above, is not cost sensitive. In Section 5.4 on the next
page we discuss how we can add cost-sensitivity to the classifier without changing anything of
what we have discussed in this section.

40 Chapter 5. A Model for Coarse-Grained Classification of Companies

(a) (b)

Figure 5.7: Both figures display two Gaussian distributions and one data point. In (a) the
distributions incorporate dependency between the two features, indicated by the skewness in the
distribution. In (b) this dependency is removed.

5.4 Adding Cost-Sensitivity to the Classifier Using MetaCost

As stated in Chapter 3 our dataset is imbalanced. Examples of unhealthy companies makes up
only about 3.5% of the dataset. Classifiers usually tend to favor the major class when classifying
imbalanced dataset, classifying all the instances to the major class. This is due to the way
a classifier is designed. Most classifier have some means of preventing overfitting, to remove
sub-concepts that are not believed to be meaningful [Kotsiantis et al., 2006]. Say, for instance,
that our minority class, instead of representing a class of rare and exceptional examples, represents
noisy data. The minority class would be apprehended as not meaningful, thus ignored. In our
case this effect translates to classifying all companies as healthy.

The machine learning community has mostly addressed the issue of class imbalance in two
ways [Karagiannopoulos et al., 2007]. One is to give distinct cost to miss-classifications [Domingos,
1999] while the other is to re-sample the original dataset, either by oversampling the minority class
and/or under-sampling the majority class [Japkowicz, 2002; Kubat et al., 1998]. We have chosen
to focus on the former way of handling imbalanced dataset, namely by adding cost to training
instances. By adding cost sensitivity to the classifier, we not only force it to appreciate the minority
class, but also to acknowledge that in real world applications the cost for making classification
errors are not always equal, as most of the current-available algorithms for classification would
assume. For instance, in our case, if a company goes into bankruptcy without the bank getting
an early warning, called a false negative, the bank will not be able to execute any pre-emptive
measures, such as making sure the bank has enough risk capital left. On the other hand, if the
bank receives a warning regarding a company that is not economically unhealthy, called a false
positive, the only cost is the extra labor that is needed in order to manually double-check the
company.

We use a procedure called MetaCost, proposed in [Domingos, 1999], for adding cost sensitivity
to our classifier. MetaCost can be applied to any error-based classifier by treating it as a black
box, requiring no knowledge of its functioning and change to it. Before we dive into the details
of MetaCost, let us start with some basic concepts. If, for a given example x, we know the
probability of each class j, P (j|x), the optimal prediction for x is the class i that minimizes the
conditional risk:

R(i|x) =
∑
j

P (j|x)C(i, j) (5.4)

where the conditional risk, R(i|x), is the expected cost of predicting that x belongs to class i, and

5.4. Adding Cost-Sensitivity to the Classifier Using MetaCost 41

C is the cost matrix, with C(i, j) being the cost of predicting that an example belongs to class i
when in fact it belongs to class j. See Table 5.2 for an example of a cost matrix. Note that the
diagonal of a cost matrix is always zeros since classifying correctly never should induce a cost.

Predicted, i
Actual, j 0 1

0 0 1
1 10 0

Table 5.2: Cost Matrix Example

The idea behind MetaCost is to relabel the training instances according to arg miniR(i|x),
where R(i|x) is given in Equation 5.4. The relabeled training instances are then used to train the
error-based classifier. The difference between training the classifier on the original training set
and the relabeled training set are few. Now the classifier finds the cost-optimal separation of the
classes, while it before only found the error-optimal separation.

In order to relabel the training examples with their “optimal” classes, using Equation 5.4, we
need to estimate P (j|x). Some classifiers output estimated class probabilities, which is then used
for P (j|x). If the classifier only outputs the predictions, then P (j|x) = 1 for the class that were
predicted, and P (j|x) = 0 for the other classes. To ensure that the estimated class probabilities
are stable, MetaCost estimates P (j|x) over m different re-samples of the training set and averages
over them. The Naive Bayes classifier outputs class probabilities. That is, if implemented as
described in Section 5.3 on page 37 where we estimate the denominator to normalize the outputs
to be a real number in the range [0, 1], hence a valid probability.

After training the relabeled training set on the original classifier we have concluded our model.
We are now ready to test it on unseen data.

42 Chapter 5. A Model for Coarse-Grained Classification of Companies

6 Results

Binary Classification can be briefly explained in two steps (1) For every instance, assign a score
value (2) Determine a threshold such that every instance with score larger than the threshold is
classified as positive and the others classified as negative. Such a threshold is called a discrimination
threshold. This chapter presents the results after classification with the Naive Bayes classifier
explained in Chapter 5 and contrasts it with the results from the PD-rating and other classifiers.
The discrimination threshold is central when calculating confusion matrices and is discussed in
detail for the PD-rating.

6.1 Terminology

In the classification reports in this chapter you will find terms such as “Confusion Matrix”, “ROC
Area” and “False Positive Rate”. Before presenting the results we briefly recap the meaning of
these terms.

6.1.1 Confusion Matrix

Our classification problem is binary, i.e. there are two classes and four distinct outcomes in the
general case. Assume that each instance is either mapped to class p or n; if the classifier assigns
the class p to an instance which is in fact of class p we call the mapping a true positive. In
contrast, if the classifier assigns the instance to class n when it is in fact class p we call it a false
negative. The same logic applies the other way around: If the classifier assigns an instance to
class n when it is in fact class n we have a true negative. If the classifier assigns the class p to a
company which is in fact class n it is a false positive.

True/false positives and negatives form the foundation for most of the following error measures.
A confusion matrix presents true- and false positives/negatives in a matrix. Figure 6.1 is an
example of a confusion matrix.

True Positives

False PositivesTrue Negatives

False Negatives

Predicted value

Actual
value

p'n'

p

n

Figure 6.1: A confusion matrix illustrating true/false positives and negatives.

The True Positives Rate, or TP-Rate, is defined as the number of true positives over the
total number of predicted positives: TP

TP+FN . Likewise, False Positives Rate, or FP-Rate, is the
proportion of negative instances that were reported being positive: FP

FP+TN . The last rate we
will consider is the False Negatives Rate, FN-Rate, it is the proportion of positive instances that
were reported as being negative: FN

FP+TP . Together, these three rates—along with precision and
recall explained shortly—form the basis for various performance measures.

In statistics, two sources of error have become universally accepted, they are called Type I and
Type II error. These two terms are interchangeable with “false positives” and “false negatives”,
but we mention them here as they are commonly found in the literature. By statistical convention,

43

44 Chapter 6. Results

when proposing a hypothesis (e.g. the company is not healthy), we assume by default that the
opposite is true. This is called the null hypothesis. A common example used is the court room:
the null hypothesis is that the accused is not guilty and the speculative hypothesis (the one to
refute or not) is that he is guilty.

Type I and Type II errors (or false positives and false negatives) are defined as [Neyman and
Pearson, 1928]:

• Type I errors (the ”false positive”): the error of rejecting the null hypothesis given that it
is actually true; e.g., a court finding a person guilty of a crime that they did not actually
commit.

• Type II errors (the ”false negative”): the error of failing to reject the null hypothesis given
that the alternative hypothesis is actually true; e.g., A court finding a person not guilty of
a crime that they did actually commit.

The speculative hypothesis in this thesis is that the company is going to have a default or
incur loss for the bank in some other way. The null hypothesis (assumed by default to be true) is
that the company is healthy. A Type I error occurs when a company is classified as unhealthy
when it is in fact healthy. A Type II error occurs when a company is classified as healthy when it
is in fact unhealthy.

6.1.2 Precision and Recall

Precision and Recall are two measures used to integrate the confusion matrix into a single number.
Recall—also known as sensitivity—is defined as TP

TP+FN , it tells us the proportion of the actual
positives that where in fact recognized by the classifier. Precision is defined as TP

TP+FP and tells
us how many of the positives recognized by the classifier where in fact positives.

Makhoul et al. [1999] describe precision and recall with these words:

“A perfect Precision score of 1.0 for a class C means that every item labeled as
belonging to class C does indeed belong to class C (but says nothing about the number
of items from class C that were not labeled correctly) whereas a Recall of 1.0 means
that every item from class C was labeled as belonging to class C (but says nothing
about how many other items were incorrectly also labeled as belonging to class C).”

The goal of Part I is to achieve high recall: of the companies that is in fact unhealthy we
should recognize as many as possible. It is better to mark some healthy companies as unhealthy,
than the other way around, put another way: It is worse to commit a Type II error than a Type I
error.

6.1.3 Accuracy, ROC Area and Expected Cost

The predictive performance of a classifier has traditionally been measured in “Accuracy”. Accuracy
is defined as the proportion of the dataset that where correctly classified: TP+TN

TP+TN+FP+FN . Some
classifiers (like Naive Bayes) output a confidence in its predictions. This information is lost in
the Accuracy measure as a true positive is regarded as a true positive as long as the confidence is
above the discrimination threshold;1 information about how far from the threshold is discarded.
Ling et al. [2003] presents a proof in their paper that the area under the “Receiver Operator
Characteristics”-curve is a statistically more consistent and more discriminating performance
measure than Accuracy. We will therefore base our evaluation of the classifiers on the ROC curve
and not accuracy; we have included accuracy in the subsequent result tables because of its prior
popularity.

The ROC curve, or “Receiver Operator Characteristics” curve, shows how the number of
correctly classified positive examples (TPR) varies with the number of incorrectly classified

1See the introduction to this chapter for a brief explanation of the discrimination threshold.

6.2. Naive Bayes Results 45

examples (FPR) when shifting the discrimination threshold. Figure 6.2 shows an example of a
ROC curve. Each point in the TP-FP-plane is calculated from different discrimination thresholds.

0 1

1

TP

FP

Figure 6.2: Example ROC curve. Each point on the curve is calculated for different discrimination
thresholds. The diagonal line illustrates the lower bound for an acceptable classifier; i.e. TP = FP

Technically, the ROC curve contains all the information we need to reason about the per-
formance of classifier. It is, however, convenient to reduce the curve to a single number: The
area under the ROC curve (ROC AUC) is a common representation which we will use here.
Statistically, the ROC AUC specifies the probability that, when we draw one positive and one
negative example at random, the decision function assigns a higher value to the positive than to
the negative example. A high value for the area under the curve indicates good performance.

Hand and Till [2001] demonstrates a way to calculate the area under the ROC curve without
calculating the actual curve, but from the predictions P (C = c|X). This enables us to calculate
the ROC AUC for the PD rating as well as for the Naive Bayes classifier. For more information
about ROC curves we refer the interested reader to [Ling et al., 2003, Fawcett, 2006 and Hand
and Till, 2001].

At last we introduce the Expected cost or E(cost) as a measure for how well the classifier
performs. The ROC measure assumes equal cost for Type I and II errors. This is not the case in
our situation (cf. Section 6.1.2), we therefore define the “Expected Cost” measure as

E(cost) =
FP

N
· C(FP) +

FN

N
· C(FN) (6.1)

where C is the cost function defined by the cost matrix in Section 5.4, and N is the total number
of examples in the dataset. The area under the ROC curve combined with E(cost) provides
an adequate measure of how well the classifier performs, considering both confidence and cost
function. An excellent classifier should have high ROC AUC and low E(cost).

6.2 Naive Bayes Results

Table 6.1 on the following page presents the performance of our classification model derived in
Chapter 5. A cost-sensitive Naive Bayes classifier is trained over the abstracted training set, and
tested on the validation set. We use the cost-matrix presented in Table 5.2 on page 41, which has
a cost of 10 for false negatives, and 1 for false positives. Our performance is contrasted with the
performance of the PD-rating. The discrimination threshold used for testing the PD-rating has
been optimized on the training set, and tested on the validation set.

It is worth explaining the mapping from the real number PD-rating to the confusion matrix on
the following page. SpareBank 1 uses the PD-rating implicitly through a set of “risk classes” from
A to I, where A indicates excellent health and I indicates bad health. The risk class that performs

46 Chapter 6. Results

Predicted Value

Actual
Value

N P
N 247 26
P 2 5

(a) Naive Bayes

Predicted Value

Actual
Value

N P
N 242 31
P 2 5

(b) PD-Rating

Table 6.1: (a) Confusion Matrix for the Naive Bayes Classifier. (b) Confusion Matrix calculated
from the PD-rating with discrimination threshold = 0.025.

best on the training set—Risk Class G—is assigned to those companies with a PD-rating between
0.025 and 0.05.1 When calculating Table 6.1 (b) we use 0.025 as a discrimination threshold. See
Table 6.2, where we have tested the different risk classes as discrimination threshold values over
the training set. We measure the PD-rating calculated at the last sample point for each company.
For a healthy company this will be at the start of the safety buffer; for an unhealthy company
this will be before the first “usable” evidence of a default or loss reckoning.2 See Section 4.2 on
page 20 for more details about the last sample point.

Table 6.2 illustrates confusion matrices for different discrimination thresholds. Each threshold
correspond to a risk class for the PD-rating.

Predicted Value

Actual
Value

N P
N 854 19
P 17 14

(a) Threshold = 0.1

Predicted Value

Actual
Value

N P
N 824 49
P 13 18

(b) Threshold = 0.05

Predicted Value

Actual
Value

N P
N 752 121
P 9 22

(c) Threshold = 0.025

Predicted Value

Actual
Value

N P
N 664 209
P 6 25

(d) Threshold = 0.0125

Table 6.2: Confusion matrices for the PD-rating with various discrimination thresholds over the
training data. (a) Risk class H, (b) Risk Class G, (c) Risk Class F, (d) Risk Class E

6.2.1 Performance

Table 6.3 (a) on the next page illustrates the performance of the Naive Bayes classifier. Table 6.3
(b) illustrates how well the classifier performs on each class. The null hypothesis for the first
line is H0 = 1, for the second line H0 = 0. I.e. the first line can be interpreted as how well the
classifier recognizes healthy companies and the second line as how well the classifier recognized
unhealthy companies. The first line is only included for the sake of completeness, the second line
is the interesting part.

Table 6.4 illustrates the performance for the PD-rating when thresholded on Risk Class G,
PD = 0.025.

1See Appendix A.1 for the complete mapping
2An “unsuable” default or loss reckoning occurs when there are too few data points prior to the default to

make a sound analysis

6.2. Naive Bayes Results 47

Results

E(cost) 0.164
ROC 0.877
Accuracy 0.900

(a)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.90476 0.28571 0.095238 0.99197 0.90476
1 0.71429 0.095238 0.28571 0.16129 0.71429

(b)

Table 6.3: Statistics for the Naive Bayes Classifier.

Results

E(cost) 0.182
ROC 0.921
Accuracy 0.882

(a)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.88645 0.28571 0.11355 0.9918 0.88645
1 0.71429 0.11355 0.28571 0.13889 0.71429

(b)

Table 6.4: Statistics for the PD-rating with a discrimination threshold equal to 0.025 (Risk Class
G).

6.2.2 Confidence Plots

Figure 6.3 and Figure 6.4 on the following page illustrates the confidence of the Naive Bayes
classifier and PD rating respectively for the validation set. Discrimination thresholds are marked
with a dotted line. Remember that the discrimination thresholds were decided using the training
set; from the particular case of the validation set, a threshold of 0.1 in Figure 6.4 on the next
page would probably be better.

Ideally all the unhealthy companies in Figure 6.3 (a) would receive a score close to 1.0 and all
the healthy companies is Figure 6.3 (b) would receive a score close to 0. The same is true for
Figure 6.4 (a) and (b).

48 Chapter 6. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

In
st
an
ce
s

Probability

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

In
st
an
ce
s

Probability

(b)

Figure 6.3: Confidence plots for the Naive Bayes classifier. (a) Confidence assigned to each of the
unhealthy companies (red circles) in the validation set. (b) Confidence assigned to each of the
healthy companies (blue crosses) in the validation set. The discrimination threshold is 0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

2

3

4

5

6

7

PD

In
st
an
ce
s

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

PD

In
st
an
ce
s

(b)

Figure 6.4: Confidence plots for the PD rating. (a) Confidence assigned to each of the unhealthy
companies (red circles) in the validation set. (b) Confidence assigned to each of the healthy
companies (blue crosses) in the validation set. The discrimination threshold is 0.025

6.3. Feature Evaluation 49

6.3 Feature Evaluation

In Section 5.1 we derived 12 features abstracting the data regarding a company. Three of these
were excluded from the model in Section 5.2, due to high level of randomness. Most of the
features left processes the deposit and withdrawal time series and quantifies events and properties
within them. The objective by deriving these features is to remove information not relevant for
classifying whether or not a company is financially sick or healthy. Although we have strived to
derive features that are relevant, and provide information which seems to separate the two classes,
the features still vary in relevance. Due to the implementation cost associated with implementing
the features, the bank is interested in the performance impact imposed by neglecting a given
feature. We have performed a feature evaluation where we identify how important each feature is.

Feature evaluation was performed by using an feature subset evaluator. We perform a 10-fold
cross-validation, were we for each fold evaluate all possible subsets of features on 9

10 of the training
set. For every fold the best performing subset is reported back. With nine features left, we
have to evaluate a total of 29 − 1 = 511 possible subsets each fold. The −1 indicates that we do
not need to evaluate the empty feature subset. Each subset of features is evaluated by, again,
performing a 10-fold cross-validation with MetaCost (see Section 5.4) wrapping around a Naive
Bayes classifier (see Section 5.3) over the feature subset.

The result from the feature evaluation is the best performing feature subset from all ten folds.
We create Table 6.5, by counting the number of times a feature is a member of the best subset:

Feature # of Folds Member of Best Subset

Local Withdrawal Trend 3
Global Withdrawal Trend 4
Global Deposit Trend 2
Global Balance Trend 10
Consecutive Zero Deposits 2
Consecutive Zero Withdrawals 2
Zero Deposits 6
Zero Withdrawals 10
Company Size 9

Table 6.5: Table showing the counts of how many folds each feature was a member of the best
performing feature subset.

Notice in Table 6.5, that two features were members of the best performing subset ten out of
ten times, i.e. the Zero Withdrawals feature and the Global Balance Trend feature. Every feature
was member of the set of best performing features at least twice. In Table 6.6 we present the
results from running our model over the validation set without the lowest performing features:
the features that were member of best performing subset only twice.

Predicted Value

Actual
Value

N P
N 243 30
P 2 5

Table 6.6: Confusion matrix derived from running a stripped down model over the validation set,
excluding the lowest performing features (Global Deposit Trend, Consecutive Zero Deposits and
Consecutive Zero Withdrawals). Compare with Table 6.1 (a) on page 46.

50 Chapter 6. Results

6.4 Cross Validation Results

The results presented in Section 6.2 was calculated by presenting a trained classifier with new data.
These results should be considered the final results from Part I, however, since the validation
set ended up having only 7 unhealthy companies, the difference in performance between the two
classifiers is somewhat unclear. We present in this section the results from the training phase
where the sets of healthy and unhealthy companies are larger.

When training and validating a classifier using the same data source one is subject to overfitting,
that is, the classifier is only able to recognize companies in the training set and is in practice
worthless. In order to counter overfitting, a procedure called Cross Validation is used. The results
presented in this section have been calculated through the use of cross validation with 10 folds.1

Predicted Value

Actual
Value

N P
N 769 104
P 5 26

(a) Naive Bayes

Predicted Value

Actual
Value

N P
N 752 121
P 9 22

(b) PD-Rating

Table 6.7: Confusion matrices from cross validation over the training set. (a) Naive Bayes
Classifier. (b) PD-Rating with discrimination threshold equal to 0.025

6.4.1 Performance

Results

E(cost) 0.170
ROC 0.909
Accuracy 0.879

(a) Naive Bayes

Results

E(cost) 0.233
ROC 0.856
Accuracy 0.856

(b) PD rating

Table 6.8: Performance metrics for Naive Bayes and the PD-rating on the training set with cross
validation

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.881 0.161 0.119 0.993 0.881
1 0.839 0.119 0.161 0.200 0.839

(a) Naive Bayes

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.861 0.290 0.139 0.988 0.861
1 0.710 0.139 0.290 0.154 0.710

(b) PD Rating

Table 6.9: Detailed statistics from the training set (a) The Naive Bayes classifier. (b) The PD
Rating.

1In short, the cross validation method segments the dataset in n folds where n− 1 folds are used for training
and the last fold for testing. The average of all permutations of folds is then used for calculating results.

6.5. Performance of Other Classifiers 51

6.4.2 Confidence Plots

Figure 6.5 and Figure 6.6 illustrate the confidence plots for the cross validation results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

In
st
an
ce
s

Probability

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

In
st
an
ce
s

Probability

(b)

Figure 6.5: Confidence plots for the Naive Bayes classifier. (a) Confidence assigned to each of the
unhealthy companies (red circles) in the validation set. (b) Confidence assigned to each of the
healthy companies (blue crosses) in the validation set. The discrimination threshold is 0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

In
st
an
ce
s

Probability

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

100

200

300

400

500

600

700

800

900

(b)

Figure 6.6: Confidence plots for the PD rating. (a) Confidence assigned to each of the unhealthy
companies (red circles) in the validation set. (b) Confidence assigned to each of the healthy
companies (blue crosses) in the validation set. The discrimination threshold is 0.025

6.5 Performance of Other Classifiers

The decision to use the Naive Bayes classifier in preference to any other were not coincidental.
Several other classifiers where evaluated prior to deciding for Naive Bayes. This section briefly
summarizes the performance displayed by various machine learning algorithms. The algorithms
were (naturally) evaluated using the training set only, and not the validation set. The results in
this section is therefore calculated from the training set with cross validation, 10 folds. Page 52
illustrates the performance of K-Nearest Neighbor and Logistic Regression; page 53 illustrates
the performance for a RBF-Network and Feed Forward Neural Network.

52 Chapter 6. Results

6.5.1 K-Nearest Neighbor

Predicted Value

Actual
Value

N P
N 818 55
P 14 17
(a)

Results

E(cost) 0.2157
ROC 0.7427
Accuracy 0.9237

(b)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.9370 0.4516 0.0630 0.9832 0.9370
1 0.5484 0.0630 0.4516 0.2361 0.5484

(c)

Table 6.10: Performance measure of K-Nearest Neighbor. (a) Confusion Matrix, (b) Results, (c)
Performance table.

6.5.2 Logistic Regression

Predicted Value

Actual
Value

N P
N 809 64
P 15 16
(a)

Results

E(cost) 0.2367
ROC 0.7214
Accuracy 0.9126

(b)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.9267 0.4839 0.0733 0.9818 0.9267
1 0.5161 0.0733 0.4839 0.2000 0.5161

(c)

Table 6.11: Performance measure of Logistic Regression. (a) Confusion Matrix, (b) Results, (c)
Performance table.

6.5. Performance of Other Classifiers 53

6.5.3 RBF Network

Predicted Value

Actual
Value

N P
N 794 79
P 10 21
(a)

Results

E(cost) 0.1980
ROC 0.7935
Accuracy 0.9015

(b)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.9095 0.3226 0.0905 0.9876 0.9095
1 0.6774 0.0905 0.3226 0.2100 0.6774

(c)

Table 6.12: Performance measure of a Radial Basis Function Network (a) Confusion Matrix, (b)
Results, (c) Performance table.

6.5.4 Feed Forward Neural Network

Predicted Value

Actual
Value

N P
N 795 78
P 12 19
(a)

Results

E(cost) 0.2190
ROC 0.7618
Accuracy 0.9004

(b)

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.9107 0.3871 0.0893 0.9851 0.9107
1 0.6129 0.0893 0.3871 0.1959 0.6129

(c)

Table 6.13: Performance measure of a Feed Forward Neural Network trained with backpropagation.
(a) Confusion Matrix, (b) Results, (c) Performance table.

54 Chapter 6. Results

7 Discussion

7.1 Robustness and Adequacy of Evaluation Measures

The Area Under the ROC Curve, abbreviated ROC AUC, provides a measure of the “goodness”
in the classification; erroneous classifications affects the ROC AUC as a function of how far from
the discrimination threshold the classifications are. Assuming that instances that were only just
misclassified are better than those that were misclassified by a large margin. In other words, the
area under the ROC curve provides a good measure of how robust the classifier is. If we weight
Type I and Type II errors equally, then the ROC AUC contains all the information needed to
validate or invalidate a classifier.

In our case, we are willing to accept less Type II errors (false negatives) at the cost of Type
I errors (false positives), we therefore need an additional measure to the area under the ROC
curve. We have introduced the expected cost, or E(cost), measure to capture the effect of the cost
matrix, consult Section 6.1.3 on page 44 for details. In addition to these two measure, Recall is
of particular interest for unhealthy companies. This measure tells us the proportion of unhealthy
companies that were recognized as unhealthy companies by the classifier. The classifier should be
validated or discarded with regard to these three measures.

It is important to distinguish between the validation set results and the training set results.
The validation set results should be considered more important than the training set results with
cross validation. Cross validation is solely used for choosing which algorithm to use, and to tweak
the configuration of this algorithm. Thus, the result from cross validation is gained from test
examples used to choose the configuration in the first place. We are more interested in seeing how
good our model generalizes, i.e. how good our model performs on unseen data. This is gauged by
testing our model over the validation set.

The size of the validation set ought to be large enough to distinguish between results from
different algorithms. In our case the validation set ended up being fairly small with few unhealthy
companies. The cross validation set provides an illustration of the classifier’s performance in the
face of more data and is therefore mentioned briefly.

7.2 Evaluation of Final Results

Table 6.1 on page 46 illustrates the confusion matrices for the Naive Bayes classifier and the
PD rating. From these matrices it might seem like the Naive Bayes classifier outperforms the
PD rating because of a small edge on the amount of false positives. However, if we consider the
ROC value we see that the PD rating is rated higher than the Naive Bayes. The explanation for
this is evident in the confidence plots, Figure 6.3 and 6.4 on page 48. In the case of unhealthy
companies, Naive Bayes assigns more erroneous confidence to the misclassified companies than
the PD-rating. The same is true for the healthy companies. By “erroneous”, we mean erroneous
relative to the total distribution of companies, i.e. a healthy company rated as 0.2 by PD-rating
is just as bad as a healthy company rated as 1.0 by the Naive Bayes since in both cases 100 % of
the dataset is rated lower. We touched into Naive Bayes inability to return accurate confidences
in Section 5.3. Thus, by only considering the ROC it is not a big surprise that Naive Bayes does
not come out on top. If we, on the other hand, consider the E(cost), we realize that Naive Bayes
have less expected cost than the PD-rating (0.164 vs. 0.182).

Interestingly, the Naive Bayes classifier and the PD rating does not agree on all the misclassified
false negatives. Starting with the false negative they have in common; both classifiers erroneously

55

56 Chapter 7. Discussion

2005 2006 2007 2008 2009
0

2

4

6

8

10

12
x 10

4

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 1633

(a)

2005 2006 2007 2008 2009
−8

−7

−6

−5

−4

−3

−2

−1
x 10

4

Withdrawal number

W
it
h
d
ra

w
a
ls

 (
N

O
K

)

id: 1633

(b)

Figure 7.1: This company is misclassified as a false negative by both the Naive Bayes classifier
and the PD rating. Months were the bank reckoned a loss is marked with red circles. (a) Deposits,
(b) withdrawals.

classify the company in Figure 7.1. This is very surprising, especially in our case since almost
all the time series features (except zero withdrawals) indicate that this company is unhealthy.
A close look yields that the company has very large mean income (26 MNOK) while paying a
fairly small amount of tax. We estimate the size of a company solely as a function of the incomes;
the size of this company is overestimated and the other features does not have strong enough
response to overturn the size estimate.

Next, we turn to the remaining two companies misclassified as false negatives by the Naive
Bayes and PD rating; illustrated in Figure 7.2 on the facing page.

The deposits and withdrawals graphs in Figure 7.2 on the next page (c) and (d) is quite similar
to the ones in Figure 7.1, the only difference is that the amount of deposits and withdrawals in
this case are consistent with the yearly incomes (mean 2.6 MNOK) yielding a lower size measure.
Combined with the other features, the Naive Bayes classifies this company as unhealthy with
confidence 1.0. The PD rating for this company is 0.015 (discrimination threshold at 0.025).

The PD-rating classifies the company in Figure 7.2 (a) and (b) as unhealthy with a confidence
0.102. This is a very high confidence considering the PD-rating. Naive Bayes classifies the
company as healthy with confidence 1.0. This emphasizes the point already made: The PD-rating
is more variable in its confidence, while the Naive Bayes is not (cf. Figure 6.3 and Figure 6.4)

7.2.1 Cross Validation Results

The cross validation results illustrates a broader difference between the Naive Bayes classifier
and the PD rating. Considering the confusion matrices (Table 6.7 on page 50) and performance
measures (Table 6.8 and Table 6.9 on page 50), the Naive Bayes classifier excels the PD rating in
every metric.

The confidence plots in Figure 6.5 and Figure 6.6, on pages 51–51, confirms the plots calculated
from the validation set: The PD rating is more willing to use the whole confidence spectrum than
the Naive Bayes.

7.3. Feature Evaluation 57

2005 2006 2007 2008 2009
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (t)

D
e
p
o
si

ts
 (

N
O

K
)

id: 929

(a)

2005 2006 2007 2008 2009
−12

−10

−8

−6

−4

−2

0
x 10

5

Withdrawal number

W
it
h
d
ra

w
a
ls

 (
N

O
K

)

id: 929

(b)

2005 2006 2007 2008 2009
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (t)

D
e

p
o

si
ts

 (
N

O
K

)

id: 1340

(c)

2005 2006 2007 2008 2009
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Withdrawal number

W
it
h
d
ra

w
a
ls

 (
N

O
K

)

id: 1340

(d)

Figure 7.2: (a) and (b): Deposits and withdrawals for company misclassified as a false negative
by Naive Bayes, but correctly classified by the PD-rating. (c) and (d): Deposits and withdrawals
for a company misclassified as a false negative by the PD rating, but correctly classified by Naive
Bayes.

7.3 Feature Evaluation

Our main contribution in Part I has been the features abstracting away irrelevant information
present in the time series. The results presented in Chapter 6 suggests that we have succeeded in
capturing relevant information to discriminate fairly well between the two classes of companies.
By “fairly well” we mean good enough to perform a coarse-grained separation, and barely beat the
PD-rating. Even though our classification model’s performance on the data sets speaks for itself,
we have for completeness performed an additional feature evaluation. The feature evaluation
provides a more detailed view of which features were most important for performance. The result
from this evaluation is presented in Section 6.3 and form the foundation for this section.

The most important finding from the feature evaluation is that none of the features seems to
be dispensable without tolerating a loss in performance. As we can see in Table 6.5 on page 49,
each feature is at least member of the best performing subset twice. The most vital features
seems to be the global balance trend feature and the zero withdrawals feature, which were part of
the best performing subset 10 out of 10 folds.

58 Chapter 7. Discussion

Figure 7.3: A combined plot of the two best performing features over the training set. The red
crosses represents unhealthy companies and the blue crosses represents healthy companies.

In Figure 7.3, a plot of the two best performing features is included. The plot illustrates
how well the global balance trend feature combined with the zero withdrawals feature separates
the training set. Healthy companies are indicated with blue crosses, unhealthy companies are
indicated with red crosses. Initially, since the features are discretized into binary features, all
data points are located at four different coordinates (0, 0), (0, 1), (1, 0), and (1, 1). By adding
jitter to the data points, that is zero mean Gaussian noise, we artificially scatter the points to see
the different values, contrary to just see four crosses. Notice that the majority of financially sick
companies is located in the second range of the zero withdrawals feature (zero withdrawals = 1),
while the majority of the financially healthy companies are located in the lower right corner
(zero withdrawals = 0 and global balance trend = 1).

753

151

Global Balance Trend

(a)

820

84

Consecutive Zero Withdrawals

(b)

Figure 7.4: The global balance trend feature and the consecutive zero withdrawal feature after
discretization.

The characteristics discriminating a good performing feature from a bad performing feature
are subtle. For instance, the features displayed in Figure 7.4 appears to be of similar quality
when studying the ratio between blue (healthy) and red (sick) companies. Both features have
a range containing the majority of the companies and a range containing the minority of the
companies. The ratios within the corresponding ranges are similar. Despite the resemblance, the

7.3. Feature Evaluation 59

global balance trend feature is a top performer while the consecutive zero withdrawal feature
is on the bottom, due to the feature evaluation. One common characteristic among the good
performers is the low level of redundancy that particular feature provides to the classifier. Some
of the low performers are redundant given another feature. For instance, a positive global deposit
trend usually comes along with a negative global withdrawal trend (unless they are building
up the Tax Withdrawal Account balance). Another example: consecutive zero deposits usually
induces consecutive zero withdrawals (unless they have a solid balance on the Tax Withdrawal
Account). These observations points in direction of the naive assumption behind the Naive Bayes
classifier. As stated in Section 5.3, the Naive Bayes classifier treats the features as they were
independent. When two, or more, of the features are redundant, the concept that is described by
the redundant features will get more influence in the decision process, see [Witten and Frank,
2005, page 96]. Thus, the learning process is skewed, resulting in a negative impact on the
classification performance. This may explain why seemingly good features are rated low by the
feature evaluation: they are victims of the naive assumption.

As long as we are utilizing the Naive Bayes classifier some of the lowest performing features
may be excluded without a substantial loss in performance. In Table 6.6 on page 49, we present
the result from running a subset of our model over the validation set. This stripped down model
consists of only the features which were a member of the best performing subset more than two
times. Results from this run indicates a minimal loss in performance. The exclusion of the lowest
performing features resulted in only four more false positives. In light of these results, we suggest
that features that were member of the best performing subset only two or three times may be
removed without any substantial impact on performance.

60 Chapter 7. Discussion

8 Conclusion

The results presented in Chapter 6 and discussed in Chapter 7 suggest that we have accomplished
our goal to beat the PD-rating in the task of giving early warnings regarding unhealthy companies.
Our model, based on a simple Naive Bayes classifier over a set of abstracted features, outperforms
the PD-rating when running cross-validation over the training set and receives a lower E(cost)
than the PD-rating over the validation set. The PD-rating, on the other hand, is better to utilize
the whole range when returning a confidence about a company’s health status. This ability
awards the PD-rating with a slightly better ROC, compared to our model, when measured over
the validation set. Considering all the performance measures presented in Chapter 6 it is safe to
say that our model beats the PD-rating.

The key accomplishment in Part I has been the feature generation. In order to get such
results as reported above we must have succeeded in elevating the relevant information from the
time series. The Feature Evaluation supports this notion, but suggests removing low performing
features in order to save implementation costs. See Table 6.5 on page 49 for a complete list of
how the features perform.

The model proposed can easily be used in a system for real time early warning, or flagging,
of unhealthy companies. A trained model can be installed in such a system—as is—and will
immediately provide good estimates of the financial health of companies.

Due to the success criteria stated in Section 1.4, we reckon that Part I already satisfies the
goals for our thesis. In Part II we will try to sanitize the results further by using Gaussian
Processes over the raw data. The companies we in Part I classify as unhealthy will form the data
set for Part II. By utilizing information we, through our feature generation, have abstracted away,
we hope to recover some of the companies that actually are healthy but which are reported sick
by our system.

61

62 Chapter 8. Conclusion

II Fine-Grained Separation Using Gaussian
Processes

We used features to perform inference on the time series forming deposits and withdrawals in
Part I; the features were used as abstractions capturing only relevant information from the time
series. No measurements were made on how complete the features were with respect to the total
amount of relevant information, but empirical results suggests that the features are at least as
good as the system currently in place at SpareBank 1: the PD rating system. Measuring how
complete the features are is not trivial since we have no notion of the total amount of relevant
information that are encoded in the dataset. This part addresses the question of completeness;
we perform inference based on the raw data forming the time series.

Artificial Neural Networks and fuzzy logic based models have gained wide popularity in classi-
fication and the modelling of non-linear relationships between variables. Industrial applications
of such models ranges from fingerprint analysis [Sagar and Alex, 1999] and data mining [Lu et al.,
1996] to automated trading of stocks and bonds [Deboeck, 1994], and learning arm trajectory
models for robotic arms [Wada and Kawato, 1993]. Artificial Neural Networks have been especially
popular in the context of bankruptcy prediction [Atiya, 2001; Odom and Sharda, 1990; Wilson and
Sharda, 1994; Zhang et al., 1999]. Both the Artificial Neural Network and fuzzy logic based models
are known as “black box”-models which are mainly identified using input/output data[Gregorcic
and Lightbody, 2002]. The main difficulty with such models are the lack of transparency, which
means that the resulting model does not provide any physical knowledge about the underlying
system. As a consequence of the lack of transparency, incorporation of prior knowledge into such
models is not possible. Neither Neural Networks nor fuzzy logic models use probabilities; this
is not necessarily a weakness, but using probabilistic models we are provided with a notion of
uncertainty. In the case of bankruptcy prediction, uncertainty estimates enables us to reason
about how likely a bankruptcy is.

Gaussian Processes (GP) is a probabilistic model based on Bayesian inference. We gave a brief
introduction to Bayesian inference when discussing the Naive Bayes classifier in Section 5.3, a
thorough explanation is provided in the next chapter. Gaussian Processes are based on performing
inference directly on the space of functions instead of, e.g. network parameters. This not only
drastically reduces the number of parameters to optimize, but the optimized parameters provides
information about the underlying function, for instance how smooth the function is assumed to
be. The strongest advantage of Gaussian Processes is that it provides an analytic expression of

63

64

the model uncertainty. Given a set of models (configurations of different GP’s) one is able to
argue about how good each of the models are with respect to the observations.

9 Bayesian Inference

Both classifiers presented in Part I and Part II are based on Bayesian inference. We briefly recap
the essence of Bayesian Inference in this chapter; the readers who are familiar with the subject
may skip to Chapter 10.

9.1 Basics

Let us first define the problem. Given a dataset D of n observations, D = {(xi, yi) | i = 1, . . . , n)},
where x denotes an input vector of dimension D and y denotes a scalar output or target. We
wish to find a mapping h : X → Y so that we can associate new input values, x∗, with an output
y∗. We write D as D = (X,y) where X is the D× n input matrix and y is the associated targets.

The starting point when doing Bayesian inference is to define a model M for the problem at
hand along with some free parameters π for the model. The free parameters π are given a prior
distribution p(π) which encodes our initial knowledge about the parameters. The quality of the
inference depends on the accuracy of the model along with the value of its parameters, before
any observations is made.

Specifying information about the relationships and distributions of variables and parameters
may seem counterintuitive at first, after all, is not this part of the learning problem? This is partly
true, however, if we know nothing about the problem at hand it is impossible to do inference
since the next unknown state may be anything. Consider the advanced case of predicting future
stock prices. If we have observed the closing price for a particular stock for the past two days to
be 11.43 $ and 14.58 $, does this mean we can say anything about the closing price for the stock
today? Do we believe that the probability for the price to be 19.0 $ equals the probability for the
price to be 1026 $? Obviously, we can not predict the exact closing price for today, but given
previous data we can say something about the probability.

The likelihood is the probability of the observed data given the parameters: p(D|π). Inference
in the Bayesian framework is based on the posterior distribution over the parameters, and can be
expressed as a function of the prior and likelihood via Bayes’ rule:

p(π|D) =
p(D|π)p(π)

p(D)
p(π|D) ∝ p(D|π)p(π) (9.1)

where ∝ means “proportionate to” and p(D) is the constant marginal likelihood and is only used
for normalization. p(D) can easily be obtained from the likelihood and prior by marginalization:

p(D) =
∫
p(D, π) dπ =

∫
p(D|π)p(π) dπ

The posterior distribution tells us something about the model that most likely explains the
data seen so far. Inference in the Bayesian framework is done by conditioning the unknown target
y∗ on the new data x∗ and all previously observed data:

p(y∗|x∗,D) =
∫
p(y∗, π|x∗,D) dπ =

∫
p(y∗|x∗, π)p(π|D) dπ (9.2)

The last part of Equation 9.2 is the likelihood times the posterior. Notice that we average over
all possible parameter values weighted by the posterior probability in order to find the predictive
distribution. This is in contrast to non-Bayesian schemes where one usually choose one value for
π based on some criterion to define the predictive distribution.

65

66 Chapter 9. Bayesian Inference

9.2 Making Decisions

Given the predictive distribution p(y∗|x∗,D) we can decide for our belief of y∗. If we believe that
the cost of every decision is equal (i.e. there is no worse to make decision A when we should
have made decision B and vice versa), then we simply use the expected value of the predictive
distribution of y∗.

On the other hand, if it is indeed worse to make decision A when we should have made decision
B than the other way around, we need to incorporate a loss function L(y, y′) and minimize the
predictive distribution with respect to the loss:1

y∗ =
∫
p(y∗|(x∗),D)L(y∗, y′) dy∗

Where y∗ is the decision we make and y′ is the correct decision. Note that if the predictive
distribution and the loss function both are symmetric then the integral equals the expected value
of the predictive distribution and the loss function: E[p(y∗|x∗,D)L(y∗, y′)]. We induce this notion
of cost by wrapping the classifier with MetaCost, discussed in Section 5.4.

9.3 Coin toss example

Let us consider the example of predicting the probability for a head when tossing a coin. Given
m+ n observed cases with m heads, we are concerned with predicting the probability of a head
in the next case (with respect to the mapping problem, we can think of x as the m+ n observed
cases, and y∗ as the probability of a head in the next case). This is a binomial experiment with
possible outcomes {T,H}, let m denote the number of heads and n denote the number of tails.
Then the likelihood is the probability of the m+ n observations given the probability of a head,
π = p(H).

p(m,n|π) =
(
n+m

m

)
πm(1− π)n

The posterior becomes

p(π|m,n) ∝

(
n+m

m

)
πm(1− π)n · p(π)

The only thing left is to define a prior p(π) in order to calculate the posterior and predictive
distribution. It can be shown that if the prior p(π) takes the form of a Beta distribution, then
the posterior also takes the form of a Beta distribution [Rasmussen and Williams, 2006]. We let
the prior be uniform, this is a special case of the Beta distribution with parameters α = β = 1,
and is illustrated in Figure 9.1 on the next page.

Let us assume the following observations: TTHHTTTHTT, m = 3, n = 7, the posterior beta
distributions have parameters α = 1 +m and β = 1 + n:

p(π|m,n) =
Γ(α+ β)
Γ(α)Γ(β)

πm(1− π)n =
Γ(12)

Γ(4)Γ(8)
π3(1− π)7

Figure 9.2 on the facing page illustrates the posterior distribution. The predictive distribution
becomes

p(y∗|m,n) =
∫
πp(π|m,n) dπ =

Γ(12)
Γ(4)Γ(8)

· Γ(5)Γ(8)
Γ(13)

=
1
3

Thus, we believe that the probability for the next coin flip to be a head is 1/3.
1The loss function relates to the utility function in economics; loss is negative utility. In economics, one is

concerned with maximizing expected utility while in statistics one is concerned with minimizing expected loss.
Therefore, economists are optimists and statisticians are pessimists.

9.4. Summary 67

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PI

P
(P

I)

Figure 9.1: Prior distribution for p(π). This is the same as stating “every value for π is equally
reasonable” as our initial belief.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

PI

P
(P

I)

Figure 9.2: Posterior distribution of π. Notice the difference from the prior after accounting for
the observations.

9.4 Summary

The goal of Bayesian inference is the posterior distribution which captures everything we know.
We can use this distribution to do inference about future values for a parameter or to make
predictions for y∗ given some test inputs x∗.

The Bayesian framework obeys the likelihood principle: conclusions depend only on the
likelihood of the observations (and the explicit model assumptions). The explicit prior distribution
is subject to most of the criticism of the Bayesian framework. The prior incorporates prior
knowledge about the domain in the model, predictions becomes biased with respect to the prior.
The question is whether you should incorporate prior knowledge in the model or not. This has
been debated by statisticians for centuries and we will not delve deep into the discussion. We
settle for that not knowing anything about the prior probabilities does not equal that we accept
the prior probabilities to be anything (as illustrated by the stock example on page 65). In our
case we have knowledge of the parameters of the model. This will become clear when we discuss
Gaussian Processes in Part II.

The major problem when doing Bayesian inference is solving the integral for the predictive
distribution. If the likelihood and prior does not have certain properties, then solving this integral
analytically becomes intractable and we need to settle for approximations.

68 Chapter 9. Bayesian Inference

10 Gaussian Processes Basics

Remember from Chapter 9 that there was three important distributions when doing Bayesian
inference, (1) the prior p(π), (2) the likelihood, p(D|π), and (3) the posterior, p(π|D) ∝ p(D|π)p(π),
where π was the parameter of the model and D was the observed data, ∝ means “proportionate
to”. In the coin toss example in Chapter 9 we used a uniform distribution as the prior distribution
for the parameter π. The reason for this choice was deliberate as the posterior distribution then
took the form of a Beta distribution which is easy to integrate. Choosing a prior on the basis of
mathematical properties and not initial knowledge however, seems to contradict the very principle
of the prior distribution. If we were to choose a prior that makes the integrals necessary for
inference intractable, then the Bayesian framework is in practice inadequate for the problem at
hand. In other words, when deciding to use Bayesian inference one should ask whether or not the
prior knowledge of the domain can be expressed by a given distribution. A prior p(π) is conjugate
to the likelihood p(D|π) if the posterior takes the same form as the prior. In Chapter 9 we could
choose an arbitrary Beta distribution as the prior instead of a uniform distribution to achieve
the same results. However, using a uniform distribution seems more appropriate as the uniform
distribution is a special case of the Beta distribution and it is easier interpreted in the domain
of coin tossing. Gaussian Process models is a family of statistical models where the likelihood
is assumed to be Gaussian and the integrals needed to perform predictions turns into simple
linear algebra. Further, the prior can take a wide variety of shapes without loosing the analytical
tractable expressions for the posterior.

We start our discussion of Gaussian Processes models with a short summary of the Gaussian
distribution; an example is provided where the multivariate Gaussian distribution is is used
to solve a linear regression problem in a parametric model. We then show how to extend the
parametric model into a non-parametric model where a Gaussian Process is used to model a
distribution over function. Finally we discuss the covariance function of the Gaussian Process
and how learning and model selection is performed.

10.1 The Gaussian Distribution

The Gaussian Distribution (or Normal Distribution) N (x;µ, σ) is given by

N (x;µ, σ) =
1

σ
√

2π
exp(− (x− µ)2

2σ2
)

where x is the random variable and µ and σ2 are the mean and variance respectively. In the
general case, we often allow x to have any number of dimensions giving rise to the multivariate
Gaussian distribution N (x; µ,Σ):

fX(x1, . . . , xN) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(x− µ)>Σ−1(x− µ)) (10.1)

where µ is the mean vector and Σ is the covariance matrix for the set of inputs X. We will use
upper case letters to denote sets of variables and bold face letters to denote vectors unless otherwise
clear from the context. The eigenvalues of Σ are the square of the variances in the direction of the
eigenvectors. Figure 10.1 on the following page illustrates a one- and two dimensional Gaussian
distribution; note that we usually work with distributions in much higher dimensions, but these
distributions are hard to visualize.

The Gaussian distribution has several nice properties which makes it a useful distribution for
the prior (in the general case):

69

70 Chapter 10. Gaussian Processes Basics

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) N (x; 0, 1)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) N (x; 0, 2)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

0

10

20

30

40

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−3

(d)

Figure 10.1: Different plots of Gaussian distributions. (a) and (b) 2D plots of one-dimensional
Gaussians with different standard deviation. (c) Contour plot of 2 two-dimensional Gaussians (d)
3D plot of 2 two-dimensional Gaussians. We will use contour plots throughout this thesis as it is
easiest to interpret.

Conditional property If P (A) is normally distributed, then P (B|A) is also normally dis-
tributed. Here, A and B are stochastic variables, and not sets of variables.

Marginalization property P (X) =
∫
P (X,Y) dY . We can calculate P (X) from the joint

distribution of X and Y regardless the dimension of that distribution, where X and Y are
stochastic variables.

The marginalization property of the Gaussian distribution allows us to reason about P (X) from
P (X,Y) regardless of the dimensionality of P (Y). This is useful when P (Y) is of a dimensionality
which is impossible or impractical to store on a computer.

10.2 A Parametric Example: Curve Fitting

Before we discuss the Gaussian Process model, let us see how we can use the Gaussian distribution
in the original Bayesian framework to do inference. We use as our example problem the problem
of finding parameters α and β that makes f(x) fit the observed data:

f(x) = αx+ β (10.2)

10.2. A Parametric Example: Curve Fitting 71

This equation can be more compactly written as

f(x) = x>w, y = f(x) + ε (10.3)

where x = [x, 1] and w = [α, β]. Notice that we introduce the variable y, this variable is the
actual observed data which is the underlying function f(x) plus some additive noise. We assume
that this noise follows an independent identically Gaussian distribution with zero mean and
variance σ2

n:
ε ∼ N (0, σ2

n)

We could use any other noise model, but for the sake of example, this model makes computations
easier. Given a training set D = (X,y), where X denotes the set of input vectors xi and y is a
vector of target values yi for each input vector. We define the likelihood p(y|X,w) and the prior
p(w) to be Gaussian, further, we assume the observations yi to be independent of x given w (cf.
Figure 10.3 on page 73).

p(y|X,w) =
n∏
i=1

p(yi|xi,w) =
n∏
i=1

1√
2πσn

exp(− (yi − x>i w)2

2σ2
n

)

= (2πσn)−n/2 exp(− 1
2σ2

n

|y −X>w|2) = N (X>w, σ2
nI)

where |z| is the Euclidean length of the vector |z|. Notice that we only allow for variance in each
observation by multiplying σ2

n with the identity matrix. We give the prior a normal distribution
with zero mean and covariance matrix Σp:

p(w) ∼ N (0,Σp)

= (2π)−N/2|Σp|−1/2 exp(−1
2
w>Σ−1

p w) (10.4)

The posterior distribution is given by Bayes rule p(a|b) = p(b|a)p(a)/p(b) where p(b) is constant.
The exact calculation of the posterior is not particularly interesting, but is provided below for
completeness.

p(w|X,y) ∝ p(y|X,w)p(w)

∝ exp
(
− 1

2σ2
n

(y −X>w)>(y −X>w)
)

exp
(
− 1

2
w>Σ−1

p w
)

∝ exp
(
− 1

2
(w − w̄)>(

1
σ2
n

XX> + Σ−1
p)(w − w̄)

)
(10.5)

where w̄ = σ−2
n (σ−2XX>+ Σ−1

p)−1Xy, and we recognize the form of the posterior as a Gaussian
with mean w̄ and covariance matrix A−1:

p(w|X,y) ∼ N (w̄, A−1)

where A−1 = σ−2
n XX> + Σ−1

p . Given new test data x∗, we calculate the predictive distribution
for y∗ by calculating p(y∗,w|x∗, X,y) and integrate over the weights.

p(y∗|x∗, X,y) =
∫
p(y∗|x∗,w)p(w|X,y) dw (10.6)

= N
(1
σ2
n

x>∗ A
−1Xy, x>∗ A

−1x∗
)

The product in the integral above equals the likelihood weighted by the posterior. Since the
product of two Gaussians is a non-normalized Gaussian (cf. Appendix B.1), the integral in
Equation 10.6 equals the expected value or the mode of the distribution which is analytically
tractable. Notice that we calculate prediction based on all possible values for w, this is in contrast
to other inference methods, for instance maximum likelihood.

72 Chapter 10. Gaussian Processes Basics

10.3 Gaussian Processes Definition

The Gaussian Process model is an extension of the Bayesian framework to a model with multivariate
Gaussian distributions of infinite dimensions. This is achieved by replacing the mean and
covariance matrix in Equation 10.1 with their infinite counterparts: functions (we can think of
a function as an infinitely long vector). So, µ is replaced by a mean function m(x) and Σ is
replaced by a covariance function k(x, x′). Just as a given row and column in Σ specifies the
covariance between two dimensions, the function k calculates the covariance between dimension x
and x′.

Using the normal distribution with finite number of dimensions, we say that p(x) is a
distribution over different values of x. In the Gaussian Process model, we say that p(f(x)) is a
distribution over functions.

Definition 1 (Gaussian Process). A Gaussian Process is a collection of random variables, any
finite number of which have a joint Gaussian distribution. A Gaussian Process is completely
defined by a mean function m and a covariance function k.

p(f(x)) = GP(m(x), k(x, x′))

To get an intuition about what this distribution looks like, we can draw some samples over a
finite interval and plot them. We consider the following Gaussian Process

p(f(x)) = GP
(
m(x) = 0, k(x, x′) = exp(−1

2
(x− x′)2)

)
(10.7)

for which a subset of a sample function values f , f = {f(x1), f(x2), . . . , f(xn)} is normally
distributed, f ∼ N (0,Σ); given two dimensions p and q we have Σpq = k(xp, xq). Some sample
functions drawn from this distribution is shown in Figure 10.2, details on how to sample a
Gaussian Process is described in Appendix B.2.

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

Figure 10.2: Three samples drawn from the GP prior, Equation 10.7. The functions has been
drawn as lines by sampling with small interval ∆x. The shaded area corresponds to the pointwise
mean plus two times the standard deviation, i.e. a 95 % confidence interval.

Observe that the functions in Figure 10.2 have some common traits: they are all smooth and
they change at approximately the same time: every unit step on the x-axis. All these properties
are embodied in the covariance function k(x, x′) which we will discuss further in Section 10.5.

A graphical model of a Gaussian Process evaluated at three points is illustrated in Figure 10.3
on the facing page. We assume that the observations y is a function of inputs x, but has been
modified with noise by an underlying process f . Our task in Gaussian Process regression and

10.4. A Non-Parametric Model 73

x1
y
1

f1

x2 y
2

f2

x3 y
3

f3

Figure 10.3: A graphical model of a Gaussian Process. Squares represents observed data, f is the
underlying unknown process (function). We assume noisy observations yi; function values f are
fully connected. For the parametric model, replace f with w.

classification is to estimate the most probable values for f given several observations pairs (xi, yi).
The more we know about the underlying process generating the outputs, the better will the
prediction for a new observation y∗ be given a test input x∗. Notice the absence of links between
two outputs, e.g. y1 and y2, this means that the observations y1 and y2 are independent if we
know the latent function values f1 or f2. Also, an output yi is independent of xi given fi. The
independence assumptions means that p(y|f) can be expressed as a product

∏
i p(yi|fi), this will

become clear later.
Unfortunately, we can not say anything about the dependencies between function values before

we have learned the hyperparameters. Prior to learning, all values for the underlying function f
is assumed to be dependent (hence the undirected bold links).

10.4 A Non-Parametric Model

In Section 10.2 we saw how to use the Bayesian framework with Gaussian distributions to fit
a linear function f(x) to some observed data points where f(x) was parameterized by w. In a
non-parametric model, the “parameters” are the function itself. We do not have a fixed model
like the one in Equation 10.2, instead we perform inference directly on the space of all possible
functions that maps X to y. With respect to the graphical model in Figure 10.3, we search for
the most probable function f with the characteristics in Definition 1.

To illustrate how this works, we redo the example from Section 10.2, but this time we replace
all occurrences of w with f(x). Now, f(x) has nothing to do with Equation 10.2, it is simply any
possible function. In this model, the prior goes from a distribution over values for w, p(w), to
a distribution over functions, p(f(x)). Since a Gaussian Process is exactly that—a distribution
over functions—we can use it to model the prior.

p
(
f(x)

)
= GP

(
m(x) = 0, k(xp, xq) + σ2

nδpq
)

(10.8)

p
(
y|X, f(x)

)
∼ N (f , σ2

nI) (10.9)

where δpq is the Kronecker delta function.1 The likelihood is Gaussian shaped centered at the
training data X, f = {f(x1), f(x2), . . . , f(xn) | xi ∈ X} with mean m(x). The variance equals
the noise variance for every observation yi.

The unnormalized posterior distribution is given as always by multiplying together the prior
and the likelihood. The product of two finite dimension Gaussians is another (unnormalized) finite

1δpq =

δpq = 1, if p = q
δpq = 0, if p 6= q

74 Chapter 10. Gaussian Processes Basics

dimension Gaussian. The same goes for a Gaussian Process: the product of an infinite dimensional
Gaussian with at finite dimension Gaussian results in an infinite dimensional Gaussian, or a
Gaussian Process. Thus, the posterior can be expressed as:

p(f(x)|x,y) = GP(mpost(x) = k(x,X)[K(X,X) + σ2
nI]−1y, (10.10)

kpost(x, x′) = k(x, x′)− k(x,X)[K(X,X) + σ2
nI]−1k(X,x′))

where mpost and kpost are the results after multiplying together two Gaussians, and K(·, ·) is the
covariance matrix calculated by k. See Appendix B for details on the multiplication.

Let K be a shorthand for K(X,X), the covariance matrix for training inputs, and k∗ the
covariance matrix between a single test input x∗ and the training data X, K(x∗, X). The joint
distribution of observations y and a new prediction f∗ = f(x∗) can be written as[

y
f∗

]
∼ N

(
0,
[
K + σ2

nI k∗
k>∗ k(x∗,x∗)

])
(10.11)

We can consider Figure 10.2 on page 72 as different functions drawn from the prior. In order
to do inference, we may simply draw functions from the prior, rejecting the ones that disagree
with the observations. The resulting set of functions which conform the training data is then
used to calculate the distribution for p(f∗|y,x∗). Of course, there is no reason why a drawn
function should conform the training data, so this process is quite tedious. Instead, we do as
we would have done in the original Bayesian framework, find the joint distribution p(f∗, f |y,x∗)
and marginalize out f to obtain p(f∗|y,x∗). Since the likelihood and posterior is Gaussian, this
distribution is also Gaussian. Formally, we obtain the predictive distribution from Equation 10.11
(by utilizing Equation B.3):

p(f∗|X,y,x∗) ∼ N
(
f̄∗,V(f∗)

)
, where (10.12)

f̄∗ = E(f∗|X,y,x∗) = k>∗ (K + σ2
nI)−1y (10.13)

V(f∗) = k(x∗,x∗)− k>∗ (K + σ2
nI)−1k∗ (10.14)

Notice that we can calculate the predictive distribution solely by linear algebra, in contrast to
the Bayesian framework which calls for solving integrals (e.g. Equation 10.6). Figure 10.4 on the
facing page illustrates the posterior conditioned on some training data D marked with crosses.
The shaded area is the 95 % confidence interval for the function.

The results from the deduction in this section is the predictive distribution in Equation 10.12.
Using this distribution, we can achieve the same results as in the parametric example in Section 10.2;
the model is now not explicitly formulated like in Equation 10.3, but through the covariance
function of the Gaussian Process, Equation 10.8. If we believe that the observations are linear we
can explicitly communicate this through the covariance function; more on this in Section 10.5.
First, let us analyze the predictive distribution in Equation 10.12; the mean of the predictive
distribution is given by f̄∗ = k>∗ (K+σ2

nI)−1y. The mean can be expressed as a linear combination

f̄∗ = k>∗ (K + σ2
nI)−1y

=
∑
n

βyn (10.15)

for β = k>∗ (K + σ2
nI)−2, the mean is a linear combination of the observations. In statistics, this

is called a “linear smoother” (remember our discussion about moving averages, Section 4.4 on
page 21). We can also express Equation 10.15 as

f̄∗ = k>∗ (K + σ2
nI)−1y

=
∑
n

αnk>∗

=
∑
n

αnk(x∗, X) (10.16)

10.5. The Covariance Function 75

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

input, x

o
u
tp

u
t,
 y

Figure 10.4: Three samples drawn from the posterior distribution (prior conditioned on noisy
observations), Equation 10.10. The covariance function used is the squared exponential: k(x,x′) =
exp(− 1

2 |x − x′|2). The shaded area represents the pointwise mean plus minus two times the
standard deviation for each input value (corresponding to a 95 % confidence interval). The mean
function is drawn with a solid blue line, two other realizations of the data are drawn with dotted
and dash-dotted red and green lines.

for α = (K + σ2
n)−1y. We can view the mean as a linear combination of the covariance function

evaluated at every training input for a particular test input x∗. The notation in Equation 10.16
is commonly used in the kernel literature. For the readers who are familiar with Support Vector
Machines, this is the exact same form as the kernel used in the SVM. Just as the SVM, Gaussian
Processes are linear in the feature space defined by the kernel.

The variance is the difference between two terms, V(f∗) = k(x∗,x∗)−k>∗ (K + σ2
nI)−1k∗. The

first term is the prior variance for the test inputs and the second term tells us how much the data
X has explained. If the correlation between the test inputs and the training data is low, then
the covariance k∗ should be close to zero. The result is that the second term is close zero and
that the posterior variance is close to the prior variance. Notice that if the second term had been
negative, we would end up with a higher variance (uncertainty) about f∗ than we had before
any observations was made. This is clearly a contradiction; in fact, it is a requirement that the
covariance function is positive semi-definite. We will elaborate this a bit in Section 11.2, for now
it means simply that the second term above can not be negative. Note that the variance of f∗
does not depend on any observations y, but only on the observed inputs X (embodied in k∗).

10.5 The Covariance Function

So far we have seen how to escape an explicit formulation of the model as in Section 10.2 by using
a non-parametric model. A non-parametric model calls for a distribution over functions and we
used a Gaussian Process to model this distribution. The space of functions which are considered
are restricted by the mean and covariance functions of the Gaussian Process. We usually choose
the mean function to be zero, this is done in order to simplify computations; however, choosing
another function for the mean function has surprisingly little effect on the overall fit [Rasmussen
and Williams, 2006, Chapter 2.7]. In this section we discuss the covariance function and how
we can use it to communicate prior knowledge of the model. The covariance function defines
properties of the functions which are drawn from the Gaussian Process.

76 Chapter 10. Gaussian Processes Basics

10.5.1 A Linear Covariance Function

Assume that we expect the relationship between X and y to be linear. For the sake of example,
let us assume zero noise, so f(x) = y. We choose a Gaussian prior for the parameters a and b
with variance α and β respectively.

f(x|a, b) = ax+ b, A ∼ N (0, α), B ∼ N (0, β) (10.17)

where f(x) is considered a distribution over functions where x are fixed and the parameters a and
b are drawn from the prior distributions. The mean and covariance functions for the Gaussian
Process are calculated directly from Equation 10.17:

m(x) = E[f(x)]

=
∫∫

f(x)p(a)p(b) da db = x

∫
ap(a) da+

∫
bp(b) db

= 0

Cov[f(x), f(x′)] = k(x, x′) = E[(f(x)− 0)(f(x′)− 0)]

=
∫∫

(ax+ b)(ax′ + b)p(a)p(b) da db

= xx′
∫
a2p(a) da+

∫
b2p(b) db+ (x+ x′)

∫
abp(a)p(b) da db

= αxx′ + β (10.18)

The mean function is not surprisingly zero. This is intuitive as we can think of the distribution
over functions f(x) as having an equal amount of functions with mean above zero as mean below
zero (the normal distribution is symmetric).

If we define a Gaussian Process GP(0, αxx′ + β) we end up with a distribution over linear
functions. α and β are the parameters of the covariance function, often referred to as the
hyperparameters.1 Estimating values for the hyperparameters are part of the learning process.

10.5.2 A Non-Linear Covariance Function

The example in the previous section illustrates how to use a Gaussian Process to model linear
regression. Of course, if you ever where to do linear regression, there are algorithms which are far
more efficient. Let us consider a more interesting regression problem. This time we let f(x) be
the weighted sum of infinitely many Gaussian functions centered at every point on the x-axis

f(x) =
∫ ∞
−∞

γ(u) exp(−(x− u)2) du, γ(u) ∼ N (0, 1), u ∈ R

where f(x) is considered a distribution over functions with x fixed and γ(u) and u as parameters.
Using this function as our regression model, we are able to estimate any differentiable function.
The mean and covariance are calculated as before.

m(x) = E[f(x)]

=
∫

exp
(
− (x− u)2

) ∫
γ(u)p(γ) dγ du

= 0

1We refer to the parameters of the covariance function as “hyperparameters” to emphasize that that they are
parameters of a non-parametric model.

10.5. The Covariance Function 77

Cov[f(x), f(x′)] = E[(f(x)− 0)(f(x′)− 0)]

=
∫

exp
(
− (x− u)2 − (x′ − u)2

)
du

=
∫

exp
(
− 2(u− 1

2
(x+ x′))2 +

1
2

(x+ x′)2 − x2 − x′2
)
du

∝ exp(− (x− x′)2

2
) (10.19)

If we use a Gaussian Process with the covariance function in Equation 10.19, it is the same as
doing regression in a model in which there are infinitely many Gaussian “bumps” on the x-axis.
This particular covariance function is called the Squared Exponential (SE) function—or in the
kernel community, the Gaussian kernel.

We make an important observation for both the covariance functions considered so far. The
covariance between two outputs are calculated as a function of the inputs (this is true in the
general case, cf. Equation 10.14). For the squared exponential, we see that if the squared distance
between x and x′ is high, then the covariance between f(x) and f(x′) is low, and vice versa.
Thus, by using the squared exponential, we state that “points close in input space are correlated”.
The squared exponential is also infinitely differentiable, so we expect smooth curves between the
observed outputs.

We most often encounter the squared exponential function parameterized by `, σ2
f and σ2

n:

k(x, x′) = σ2
f exp(− (x− x′)2)

2`
+ σ2

nδxx′ (10.20)

` is called the length scale parameter of the squared exponential, it allows us to define the
semantics of points lying “near to each other”. A long length scale means that we are willing to
accept points with a large Euclidean distance as lying near to each other. A short length scale
works in the opposite way. σ2

f adjusts the amplitude of the approximated function, and the noise
variance is controlled by the Kronecker delta function as before (we assume independent noise).

In the Gaussian Process model we perform inference over the hyperparameters of the covariance
function in addition to the covariance function itself. This is in contrast to other kernel machines,
e.g. Support Vector Machines, where one consider the kernel (covariance function) as fixed. Some
samples drawn from a Gaussian Process with linear and the squared exponential covariance
functions are shown in Figure 10.5

−8 −6 −4 −2 0 2 4 6 8
−15

−10

−5

0

5

10

15

input, x

o
u
tp

u
t,
 y

(a) α = 1, β = 1

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

2

2.5

3

input, x

o
u

tp
u

t,
 y

(b) σ2
f = 1, ` = 1, σ2

n = 0.1

Figure 10.5: Random samples drawn from a zero mean Gaussian Process with covariance functions
in (a) and (b) as Equation 10.18 and Equation 10.20 respectively.

78 Chapter 10. Gaussian Processes Basics

11 Advanced Gaussian Processes

We saw in the previous chapter how the solution for the predictive distribution had a simple
analytical form by using a non-parametric model with a Gaussian Process prior; this in contrast
to the parametric model with a Gaussian Distribution prior. Common for the two models were
that they are both models for the regression problem: given a set of training data {xi, yi |xi ∈
RD, yi ∈ R}, find y∗ given a test input x∗. In classification, the problem is stated slightly
differently: given a set of training data {(xi, yi) |xi ∈ X, yi ∈ y}, find a mapping h : X → y that
maps any input xi to its true output label yi for a finite set of class labels y. The solution to
the classification problem does not have an analytical form and needs to be approximated. We
find several approaches for approximations in the literature: Laplace Approximation [Williams
and Barber, 1998a], Expectation Propagation [Minka, 2002], and Variational methods [Bernardo
et al., 2003; Opper and Archambeau, 2009], each with their own strengths and weaknesses.

The space of functions defined by a Gaussian Process is fully specified by the covariance
function (assuming the mean function to be zero). Thus, the quality of the regression and
classification depends on the choice of covariance function and the hyperparameters for that
function; this is referred to as the model selection problem. We introduce this chapter with a
discussion of Gaussian Process classification and its approximations. Then, we present some
covariance functions along with their characteristics, and finally we show how to do learning over
the space of covariance functions and the corresponding hyperparameters.

11.1 Classification

A natural starting point when discussing classification is the joint probability function p(y,x),
where x is the inputs and y is the class label, y ∈ C, C = {c1, c2, . . . , cn}. Using Bayes’
theorem, we can express the joint distribution as either p(x|y)p(y) or p(y|x)p(x). If we know
the class conditional distribution p(x|y) we can calculate the posterior distribution by Bayes’
formula: p(y|x) = p(x|y)p(y)/p(x). Alternatively we can model the posterior explicitly. These
two approaches are referred to in the literature as the generative and discriminative approach
respectively.

In order to do inference we have to model either p(x|y) or p(y|x). Using the generative approach
in the Bayesian framework, we usually model p(x|y) (the likelihood) with a known distribution,
and then place a conjugate prior over p(y) in order to calculate p(y|x). If we additionally assume
independent inputs, we arrive at the Naive Bayes model discussed in Chapter 5.

For the discriminative case we could use a regression model to estimate p(y|x) and then pass
the result through a response function g, g : p̂ → [0, 1] to obtain a valid probability estimate.
The response function must have domain in R and range [0, 1]. A common choice is to combine a
linear model h(x) = x>w with a sigmoid function,1 for instance the logistic function.

p(y = ci|x) =
1

1 + exp(−x>w)

By replacing x>w with a function f(x) drawn from some space over functions, we can use
Gaussian Process regression in order to do classification (demonstrated later). Figure 11.1 on the
following page illustrates the logistic function.

The question of which approach to use remains unsolved and should be influenced by prior
knowledge of the problem at hand. The generative approach is attractive because we have access
to p(x) (from marginalization of y from p(x|y)p(y)), thus we are able to account for outliers and

1A sigmoid function is any monotonically increasing bounded s-shaped function.

79

80 Chapter 11. Advanced Gaussian Processes

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

input, x

o
u
tp

u
t,
 y

Figure 11.1: A Sigmoid function

missing data in our predictions. This comes at the cost of defining a model for p(x|y), which is
usually very hard, especially if x is high dimensional; using the generative approach may mean
we are trying to solve a harder problem than we need to (Naive Bayes solves the problem by
making preposterous assumptions about the data). The discriminative approach is appealing in
that we are modelling exactly what we want and is the method of choice for this thesis. For a
more comprehensive discussion of the generative and discriminative approach, we redirect the
interested reader to Ripley [1996, Chapter 2.1].

We introduce Gaussian Process classification in a similar manner as we did with Gaussian
Process regression. We start by giving a parametric example using only Gaussian distributions,
and then replace the parameters in the parametric model with a distribution over functions
resulting in a non-parametric solution.

11.1.1 A Parametric Example

Let us consider binary classification. We follow the Support Vector Machine (SVM) literature
and let y ∈ {−1,+1}. The likelihood p(y|x,w) is a linear combination of inputs x and weights w
passed through a sigmoid function. The deduction in this section parallels the deduction given
Section 10.2 on page 70.

p(y = +1|x,w) = Φ(x>w) =
1

1 + exp(−x>w)
(11.1)

Since the sigmoid function is symmetric we have Φ(−z) = 1−Φ(z) and thus p(y = −1|x,w) =
1− p(y = +1|x,w). Equation 11.1 can be written more compactly as

p(yi|x,w) = Φ(yix>w) (11.2)

Note that in contrast to the regression case, the likelihood is now not normally distributed.
We assume as before a given dataset D = (X,y) and we define a prior distribution over
the weights w, w ∼ N (µ,Σp). The posterior distribution is given by Bayes’ rule; recall
the independence assumptions from Figure 10.3 on page 73: we assume independent obser-
vations yi given f , (f corresponds to w in this case), and yi independent from xi given w.

p(w|X,y) =
p(y|w)p(w|X)

p(X,y)
(11.3)

∝
n∏
i=1

Φ(yix>w) exp(−
w>Σ−1

p w
2

)

log p(w|D) c=
n∑
i=1

log Φ(yix>w)− 1
2
w>Σpw

11.1. Classification 81

where c= means “equality up to a constant”. Since the likelihood is not Gaussian, the posterior is
also not Gaussian. To make predictions for new inputs x∗ we calculate the predictive distribution
as the likelihood p(y∗,w|D,x∗) and integrate over w.

p(y∗|D,x∗) =
∫
p(y∗|w,x∗)p(w|D,x∗) dw (11.4)

which is also analytically intractable. Rasmussen and Williams [2006] note that even though the
posterior is analytically intractable, it is concave and unimodal for some response functions (one
of which is the logistic function that we are using here). Thus, we can approximate the posterior
by maximizing Equation 11.3 with respect to w; this is also known as the MAP-estimate. The
predictive integral in Equation 11.4 turns into calculating Equation 11.2 for x∗ and the MAP
estimate of w. The maximum of the posterior can be calculated numerically with Newton’s
method, or more sophisticated algorithms like conjugate gradient descend [Minka, 2003].

11.1.2 A Non-Parametric Example

We now turn to a non-parametric model of the classification problem. The idea of Gaussian
Process classification is similar to that of regression: we relate the outputs (class labels) to
a function f(x), p(yi|f(x)), and use a Gaussian Process to draw different functions; then, we
perform inference directly on the space of functions. In classification, we “squash” f(x) through
a sigmoid function to obtain a valid probability estimate. Assuming some observed training data
D = (X,y), the likelihood is given by

p(y|f) =
n∏
i=1

p(yi|f(xi)) =
n∏
i=1

Φ(yif(xi))

where f is the function f evaluated at the training inputs. The function f(x) plays the role of a
nuisance function. We are not particularly interested in the values of f(x), but rather in the
values of Φ(f(x)), particular in the case of test inputs, Φ(f(x∗)). The purpose of f is simply to
allow for a convenient formulation of the model. As in the regression case, we integrate over f to
obtain the predictive likelihood of p(y∗|x∗,D).

We define a prior on f(x) to be a Gaussian Process with a mean and covariance function as
before

p(f(x)) = GP
(
m(x), k(x, x′)

)
p(f |X) ∼ N

(
µ,K

)
then, we obtain the unnormalized posterior distribution by multiplying the likelihood with the
prior

p(f |D) ∝ p(y|f)p(f |X)

∝
n∏
i=1

Φ(yif(xi))N
(
f |0,K

)
which is not Gaussian because of the non-Gaussian likelihood. Inference is performed in two
steps: first we calculate the value for the latent function at test point x∗, f∗ = f(x∗), then, we
integrate out f∗ to produce a probabilistic prediction

p(f∗|D,x∗) =
∫
p(f∗|X,x∗, f)p(f |D) df

p(y∗|D,x∗) =
∫
p(y∗|f∗)p(f∗|D,x∗) df∗ (11.5)

82 Chapter 11. Advanced Gaussian Processes

In the regression case, the predictive integral was analytically tractable since both the likelihood
and posterior were Gaussian. In the classification case, none of this is true and we need to resort
to analytical approximations of the integrals on the previous page or solutions based on Monte
Carlo sampling. The latter approach combined with Markov Chains was explored by [Neal, 1999].
A variety of methods have been used to analytically approximate the non-Gaussian joint posterior
of which the predictive integrals is a direct consequence of, cf. the introduction of this chapter.

Nickisch and Rasmussen [2008] performs an empirical study of analytical approximations to the
integrals on the preceding page and concludes that the Expectation Propagation algorithm is almost
always the method of choice unless the computation budget is very tight; we refer the interested
reader to Minka [2002] for details of the Expectation Propagation algorithm. Both Markov Chain
Monte Carlo sampling, Expectation Propagation and the other analytical approximations runs in
O(n3) [Rasmussen and Williams, 2006] where n is the number of observations (i.e. companies).

11.2 Covariance Functions

The covariance function is the vital ingredient to our Gaussian process as it specifies the space of
functions considered for regression and classification. We already saw examples of two covariance
functions, a linear covariance function and the Squared Exponential covariance function (cf.
Section 10.5). As there are infinitely many functions, there are also infinitely many covariance
functions. In this section we define the properties of a covariance function more formally, and
inspect other popular covariance functions.

11.2.1 Definition and Properties

From integral operators theory, a function k of two arguments mapping into R is called a kernel.
The operator Tk is defined as

(Tkf)(x) =
∫
X

k(x,x′)f(x′) dx′

A kernel is said to be symmetric if k(x,x′) = k(x′,x). Given a set of inputs X = {xi|i = 1, . . . , n},
we can compute the Gram matrix K whose entries are Kij = k(xi,xj).1 If k is a covariance
function, we call K a covariance matrix. From the definition, both K and k are symmetric if k is
a covariance function. We use the terms “kernel” and “covariance function” interchangeably in
this chapter unless specified otherwise.

We noted in the discussion of the non-parametric model, Section 10.4 on page 73, that the
covariance matrix is positive semidefinite; we defined this informally as k being non-negative for
all arguments xi and xj . Formally, K is positive semidefinite if and only if v>Kv ≥ 0 for all
vectors v ∈ RD.

A covariance function k is said to be stationary if K(xi, xj) is only a function of the difference
xi−xj ; stationary covariance functions are invariant to translations. If k is a function of |xi−xj | it
is isotropic and also invariant to rotations. The squared exponential is an example of a stationary
isotropic covariance function.

If the covariance function is not a function of the Euclidean distance between the arguments
it is called a non-stationary covariance function. The dot-product kernel used to define a function
over linear functions in Figure 10.5 (a) on page 77 is non-stationary. Non-stationary covariance
functions are able to adapt to variable smoothness of functions which is not possible when only
considering the stationary functions [Gibbs, 1997; MacKay, 1997]; whether variable smoothness is
expected depends on the domain in question. Note that we can model any degree of smoothness

1A Gram matrix is a symmetric matrix of inner products. Our covariance matrix is an example of such a
matrix.

11.2. Covariance Functions 83

(including not smooth) with ordinary stationary kernels. Before we discuss stationary and non-
stationary covariance functions, we take a look at some common hyperparameters of stationary
covariance functions and how they affect the distribution over functions.

11.2.2 Varying Hyperparameters

Stationary covariance functions are often characterized by a length-scale attribute `. Informally,
the length-scale specifies how far—in input space—you need to move along a particular axis for
the function values to become uncorrelated. We use the Squared Exponential to illustrate the
role of the length-scale parameter. Figure 11.2 illustrates how the hyperparameters affects the

−8 −6 −4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

input, x

o
u

tp
u

t,
 y

(a) ` = 1

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

input, x

o
u
tp

u
t,
 y

(b) ` = 0.3

−8 −6 −4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

input, x

o
u

tp
u

t,
 y

(c) ` = 3

Figure 11.2: Illustrations of different values for ` for the same data points. The grey area is the
mean function plus minus two times the standard deviations, corresponding to a 95 % confidence
interval for the underlying function f . The hyperparameters are θ = (`, σf , σn). (a) Data points
generated by a Gaussian process is shown with crosses; the mean function is drawn with a solid
line, θ = (1.0, 1.0, 0.1) (b) θ = (0.3, 1.0, 0.0001). (c) θ = (3.0, 1.3, 0.4).

distribution over functions conditioned on some data points. Figure 11.2 (a) shows the data
points drawn from a GP with Squared Exponential covariance function with hyperparameters
θ = (1.0, 1.0, 0.1). As the distance between observations increases, so does the uncertainty of
the function values. Because of the noise component, we do not expect the observations to be
functional, i.e. xi and xj may yield different y even though xi = xj . Observe that the data points
are fitted fairly well in (a), the function explains the discrepancies from the observations near
x = 2 as noise, the same goes for the observations near x = 5.

84 Chapter 11. Advanced Gaussian Processes

If we lower the length scale, we allow the function to vary more rapidly, as seen in Figure 11.2
(b). Notice that the error bars are now much higher in the areas with no observations. Since the
function is allowed to move more freely, the noise component is much lower than in (a). Notice
that the observations near x = 2 is now explained by the function and not by the noise. In a sense,
the function in (b) is “better” than the function in (a) as it fits all the observations perfectly,
however the uncertainties in (b) makes the function less attractive; not surprisingly, the function
in (b) is not favoured by the marginal likelihood. The marginal likelihood is a measure of well a
model fits the data when complexity is taken into account, more on this in Section 11.3.

Figure (c) illustrates what happens when we set the length scale too high and optimize the
other parameters. Now, almost all the data points are explained by noise and the error bars are
quite high over the entire interval. The amplitude of the function, σf , has also been raised a bit.
We can of course take this to the extremes. If we let `→∞ then the function would be constant
with added white noise. Conversely, if `→ 0, the function would model white noise.

Given only the data points in Figure 11.2 (a), we are able to deduce that white noise is not
a suitable model for the data as the observations seems correlated. However, if the inputs is of
higher dimensions, such correlation is no longer obvious. We inspect how we can use the marginal
likelihood to score various models of the hyperparameters in Section 11.3, now we take a look at
some commonly used covariance functions.

11.2.3 Stationary Covariance Functions

The Squared Exponential

We have already seen several examples of the Squared Exponential (SE) covariance function.
Using the Squared Exponential covariance function is the same as performing regression with
f(x) =

∫∞
−∞ γ(u) exp(−(x − u)2) du. In other words, we place a squared exponential at every

point on on the x-axis (equals at every point in the input-space in higher dimensional spaces),
and sum all the components, cf. page 76. This is the same as using a Gaussian Process to model
a space of functions with Equation 11.6 as the covariance function.

kSE(r) = σf exp
(
− |r|

2`
)

(11.6)

where r = x−x′ and |z| is Euclidean length of the vector z. The Squared Exponential is infinitely
differentiable and is thus very smooth. Also, the length scale is constant for the entire function;
we do not accept the functions drawn from this distribution to have varying length scales. The
Squared Exponential is usually critiqued for the smoothness assumptions, Stein [1999] argues
that such strong smoothness is unrealistic for many physical problems. Nevertheless, the Squared
Exponential remains the most popular covariance function for solving practical problems.

The Rational Quadratic

The Rational Quadratic covariance function is a generalization of the Squared Exponential
with variable length-scale `. We let τ = `−2 and use a Gamma distribution to model τ ,
p(τ |α, β) ∝ τα−1 exp

(
ατ/β

)
, and get

kRQ(r) =
∫
p(τ |α, β)kSE(r|τ) dτ (11.7)

=
∫
τα−1 exp

(
− ατ

β

)
exp

(τr2
2
)
dτ

∝
(

1 +
r2

2α`2
)−α

Figure 11.3 on the facing page illustrates the behaviour of the Rational Quadratic kernel for
various α. Just as the Squared Exponential, the Ration Quadratic is also infinitely differentiable.

11.2. Covariance Functions 85

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input distance

C
o

v
a

ri
a

n
c
e

alpha = 2

alpha = infinity

alpha = 0.5

(a)

−8 −6 −4 −2 0 2 4 6 8
−2

−1

0

1

2

3

4

input, x

o
u
tp

u
t,
 y

(b)

Figure 11.3: The Rational Quadratic function (a) The covariance as a function of Euclidean
distance for various α. (b) Random samples drawn from Gaussian Processes with Rational
Quadratic covariance functions. ` = 1 for all cases.

In the limit of the RQ covariance, α → ∞, the gamma distribution converges to one and the
integral in Equation 11.7 becomes the SE covariance function with length scale `. The Rational
Quadratic is the most general representation for an isotropic kernel which defines a valid covariance
function in any dimension [Stein, 1999].

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is—in addition to the length scale—parameterized by a
parameter that controls how many times sample functions are mean square differentiable; this
allows the user to perform inference on how smooth functions are. The Matérn class of covariance
functions is given by

kMatern(r) =
21−ν

Γ(ν)

(√2νr
`

)ν
Kν

(√2νr
`

)
where ν denotes how many times function samples are mean square differentiable and ` denotes
the length-scale; Γ is the Gamma function and Kν is a modified Bessel function [Abramowitz and
Stegun, 1965]. If ν is is half-integer, ν = p+ 1/2, p ∈ Z, then the covariance function becomes a
product of an exponential and a polynomial of order p. Rasmussen and Williams [2006] argues
that the most interesting values for p in the context of machine learning is 1 and 2, resulting in
ν = 3/2 and ν = 5/2 respectively. For p = 0 the sample functions become very rough since they
are not differentiable; p ≥ 3 requires prior knowledge about higher order derivatives which is
probably hard to determine from noisy training examples. The Matérn covariance function for
ν = 3/2 and ν = 5/2 is given below.

kν=3/2(r) =
(

1 +
√

3r
`

)
exp

(
−
√

3r
`

)
kν=5/2(r) =

(
1 +
√

5r
`

+
5r2

3`2
)

exp
(
−
√

5r
`

)
(11.8)

Figure 11.4 on the following page illustrates the covariance and samples from the Matérn class
covariance functions. When ν → ∞, the Matérn covariance function becomes the Squared
Exponential with length-scale `2.

11.2.4 Non-Stationary Covariance Functions

All the covariance functions in the previous section was a function of the distance between
two input vectors r = xi − xj . We have already seen an example of one covariance function

86 Chapter 11. Advanced Gaussian Processes

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input distance, r

C
o

v
a

ri
a

n
c
e

,
k
(r

)

v = 1/2

v = 3/2

v = 5/2

v = Inf

(a)

−8 −6 −4 −2 0 2 4 6 8
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

input, x

o
u

tp
u

t,
 y

(b)

Figure 11.4: (a) The covariance as a function of input distance for Matérn covariance functions
with different ν. (b) Random samples drawn from a Gaussian Process with Matérn covariance
functions, ` = 1. The solid blue line only has one derivative which is not easily seen in the figure.

which is not stationary: the linear dot product kernel in Section 10.5 on page 75. This kernel
is not particularly useful as it can only represent linear functions. However, there are other
non-stationary kernels which are more interesting, one of them is the Neural Network kernel.

Neural Network Kernel

It has been shown that neural networks with one hidden layer are universal approximators—
meaning they can approximate any function—as the number of hidden units tends to infinity for
a wide class of transfer functions [Hornik, 1993]. Consider a network which takes as input a vector
xi, has one hidden layer with NH neurons weighting the inputs with weights u, and a single
output neuron weighting the hidden layer neurons and a bias with weights v. The construction is
illustrated in Figure 11.5 with four hidden units; the bias neural is always one. h(x; uj) is the
hidden unit transfer function which is usually chosen to be a sigmoid function, e.g. the logistic
function. However, strictly speaking, the only requirement is that transfer function is bounded.

Input, x

Output

Hidden

Bias

i h

h

h

hu

v

v

v

v

1

1

2

3

4

v5

Figure 11.5: An Artificial Neural Network. Inputs are weighted by weights u, h(x;uj) is the
transfer function for each hidden neuron. The output weights the hidden layer neurons and a
bias neuron with weights v.

The mapping from inputs xi to outputs f(xi) in the neural network can be written as

11.2. Covariance Functions 87

f(xi) = b+
NH∑
j=1

vjh(xi; uj)

Neal [1996] demonstrated how to construct a kernel approximating a neural network with unlimited
hidden neurons. Following Neal [1999], we calculate the mean and covariance functions in the
same fashion as we did with the linear and squared exponential on page 76. Assuming independent
zero mean Normal distributions on b, u and v with variance σ2

b , σ2
u and σ2

v respectively, we get
(denoting w as all the weights):

m(x) = Ew[f(x)] = 0

Cov[f(x), f(x′)] = E[
(
f(x)− 0

)(
f(x′)− 0

)
]

= σ2
b +

∑
j

σ2
vEu[h(x; uj)h(x′; uj)] (11.9)

= σ2
b +NHσ

2
vEu[h(x; u)h(x′; u)]

the sum in Equation 11.9 turns into NH since h is identically distributed for all the hidden neurons.
The covariance function is found by evaluating Eu[h(x; u)h(x′; u)] which depends on the choice of
transfer function. Williams and Barber [1998b] use the error function erf(z) = 2/

√
π
∫ z
0

exp(−t2) dt
as the transfer function with h(x; u) = erf

(
u0+

∑D
j=1 ujxj

)
= erf(u0+ux), and chose u ∼ N (0,Σ).

This transfer function is a sigmoid function, just as the logistic function; the covariance function
for this transfer function is

kNN (x,x′) =
2
π

sin−1
(2x̃>Σx̃′√

(1 + 2x̃>Σx̃)(1 + 2x̃′>Σx̃′)

)
(11.10)

where x̃ = (1, x1, . . . , xn)> is the input vector augmented with the bias node; Σ = diag(σ2
0 , σ

2)
and controls the variance for u0 and u respectively. Samples from Gaussian Processes with this
covariance functions can be viewed as regression in a model with superpositions of h [Rasmussen
and Williams, 2006], just as the Squared Exponential covariance function can be viewed as
regressions with superpositions of squared exponentials (cf. Section 10.5 on page 75). Figure 11.6
illustrates some samples drawn from a Gaussian Process with this covariance function. Notice
that samples displays the non-stationarity of the covariance function in that the samples tend
to constant for large values of −x and x: consistent with the model of superpositioned sigmoid
functions. For more non-stationary covariance functions, see [Abrahamsen et al., 1997; Rasmussen
and Williams, 2006; Schölkopf and Smola, 2002].

−8 −6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

input, x

o
u

tp
u

t,
 y

Figure 11.6: Samples drawn from a Gaussian Process with a Neural Network Kernel.

88 Chapter 11. Advanced Gaussian Processes

11.3 Model Selection

Having defined the Gaussian Process formalism and the use of covariance functions, the only
questions left are what covariance function should be used, and what is the configuration of the
hyperparameters of that function (if any). These two questions forms the learning aspect of
Gaussian Processes and we use the term “model selection” to cover both determination of the
covariance function and selection of the corresponding hyperparameters.

We saw several examples of covariance functions in the previous section and the variety
of functions which can be represented by a single covariance function by varying the free
hyperparameters. The selection of covariance function and hyperparameters not only helps us
refine the predictions of the model, but also gives valuable insight in the properties of the data. For
example, the characteristic length scale parameter ` in stationary kernels tells us the correlation
assumption made by the model: if the length scale has a very large value, then the covariance
becomes almost independent of the inputs.

Our task is, based on a set of training data, to make inference about the form and parameters
of the covariance function, or equivalently, about the relationships in the data. We need to be able
to compare different models and select the optimal model. Also we need to compare Gaussian
Process models with any other model such as neural networks or fuzzy logic models. Although
there are endless variations in suggestions for model selection in the literature, Rasmussen and
Williams [2006] argue that three general principles cover most: (1) compute the probability of
the model given the data, (2) estimate the generalization error and (3) bound the generalization
error. The generalization error is the error calculated from the classification of the validation set,
assumed to be from the same distribution as the training set. The training error is usually a bad
estimate of the error since there is a possibility of overfitting the training data (model the noise
in the data). We already discussed how to estimate the generalization error with the validation
set and cross validation, Section 3.1 and 6.4.

The marginal likelihood in the Bayesian framework provides a probability estimate of the
model given the data, and we use this to find the optimal model for our classification problem.
We start our discussion of model selection by introducing a parametric example in the plain
Bayesian framework, and then extend the parametric example to non-parametric model with
Gaussian Processes.

11.3.1 Model Selection: A Parametric Example

We usually view model selection as a hierarchical specification of parameters. At the bottom level
we have the parameters w for the model; be it a linear model as in Section 9.3 or the weights in a
neural network model. At the second level are hyperparameters θ which controls the distribution
of w, then, at the top level, we may have set of possible models structures Mi under consideration;
inference takes place one level at a time. At the bottom level, the posterior for the parameters w
is given by Bayes’ rule

p(w|y,X, θ,Mi) =
p(y|X,w,Mi)p(w|θ,Mi)

p(y|X, θ,Mi)
(11.11)

where p(y|X,w,Mi) is the likelihood and p(w|θ,Mi) is the parameter prior. The prior distribution
reflects our initial beliefs about the data and will affect the inference. Care should be taken
not to employ too restrictive priors as this may rule out reasonable explanations of the data.1

If we have vague prior knowledge, then we usually choose a broad prior distribution to reflect
this. The denominator in Equation 11.11 is called the marginal likelihood, or evidence; it is the
probability of the observations given the model and is independent of the parameters w. The

1This is known as Cromwell’s dictum after Oliver Cromwell who on August 5th, 1650 wrote to the synod of
the Church of Scotland: “I beseech you, in the bowels of Christ, consider it possible that you are mistaken.”

11.3. Model Selection 89

marginal likelihood is calculated by

p(y|X, θ,Mi) =
∫
p(y|X,w,Mi)p(w|θ,Mi) dw

Moving up the ladder we can express the posterior for the hyperparameters θ in the same fashion:

p(θ|y,X,Mi) =
p(y|X, θ,Mi)p(θ|Mi)

p(y|X,Mi)
(11.12)

p(θ|Mi) is the prior for the hyperparameters and the marginal likelihood is given by

p(y|X,Mi) =
∫
p(y|X, θ,Mi)p(θ|Mi) dθ

at the top level we compute the posterior for the model as

p(Mi|y,X) =
p(y|X,Mi)p(Mi)

p(y|X)

and the marginal likelihood for the model as

p(y|X) =
∑
i

p(y|X,Mi)p(Mi)

assuming a discrete set of models Mi. In practice, the prior for the models p(Mi) is usually
chosen to be flat: all models are deemed equally probable. We note that implementation of
Bayesian inference requires that we solve integrals which may be intractable, calling for analytical
approximations or solutions based on Monte Carlo sampling. Rasmussen and Williams [2006]
notes that the posterior distribution for the hyperparameters θ, Equation 11.12, are usually
hard to calculate and that maximum likelihood approximations works well in practice as the
distribution of the hyperparameters—in contrast to the model parameters w—is usually unimodal
[see MacKay, 1999, for a discussion].

Given a set of models and a set of datasets, there is a trade-off between complexity and how
well the model explains the data. A simple model—say, a linear model—will explain few datasets
well and the marginal likelihood will be low for most datasets; the few datasets it does explain will
however receive very high marginal likelihood since the probability distribution needs to integrate
to one. On the other hand, we have complex models—say, neural networks—that explains a lot
of datasets, but will not be rewarded well for any particular because of the exact same reason.
The optimal model is something in-between that describes enough datasets to be useful, and
few enough to explain those datasets well (in other words, receives high marginal likelihood).
This scenario is illustrated in Figure 11.7 on the following page and is in the machine learning
literature referred to as “Occam’s Razor” after William of Occam, 1285–1349, whose principle
“of equally complex models, choose the simplest one”.1 Notice that Occam’s Razor is automatic
in a Bayesian framework, there is no parameter controlling the trade-off between complexity and
data-fit.

11.3.2 A Non-Parametric Extension

In the non-parametric model we have no parameters w and it may not be immediately obvious
what the parameters for the model actually are. Generally, we consider the latent noise-free
function f(x) evaluated at the training inputs, f , as the parameters for the non-parametric model.
Thus, the more training inputs, the more parameters. As in the parametric example, we integrate
out f to obtain the marginal likelihood

p(y|X, θ) =
∫
p(y|X, θ, f)p(f |θ) df

1Latin: Pluralitas non est ponenda sine necessitate, or directly translated, “Plurality should not be assumed
without necessity”.

90 Chapter 11. Advanced Gaussian Processes

Possible data sets

M
a

rg
in

a
l
lik

e
lih

o
o

d

Complex

Intermediate

Simple

Figure 11.7: Occam’s Razor. The solid blue line denotes the optimal model according to the
marginal likelihood.

In the Gaussian Processes model the prior and likelihood are Gaussian, thus the marginal
likelihood is also Gaussian. Written in the log domain, we can interpret the distribution a bit
easier.

log p(y|X, θ) = −1
2
y>K−1y − 1

2
log |K| − n

2
log(2π) (11.13)

the model along with the inputs are incorporated in K. The first term is the only term that
depends on the data—the data fit term—it describes how well the model fits the data. The
second term is the complexity penalty depending only on the covariance function and the inputs;
the third term is a normalization constant ensuring that the range of the marginal likelihood is
in [0, 1]. Figure 11.8 illustrates three different explanations for the observations, marked with
crosses. The dotted red line illustrates a complex model overfitting the data; the dash-dotted
green line illustrates a simple model not explaining the data very well. The solid blue line is the
model favored by the marginal likelihood and balances well between complexity and data-fit.

The Gaussian Process model provides a framework for choosing the optimal model Mi

(consisting of a covariance function and hyperparameters) rather than a way to perform inference
on the space of all possible covariance functions. When using Gaussian Processes in practice, one
usually use the marginal likelihood as an indicator to how good the current covariance function is
(a covariance function may be composed of several other covariance functions) and then tune the
covariance function accordingly.

−5 0 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

input, x

o
u
tp

u
t,
 y

Figure 11.8: Gaussian Process regression with three different length-scales. Blue solid lines,
` = 1.0. Red dotted line, ` = 0.3. Green dash-dotted line, ` = 5. σf and σn where set to 1.0 and
0.1 respectively in all cases. The optimal setting is close to ` = 1.0.

12 Results

The purpose of Part II of this thesis is to perform classification over the raw data: i.e. the
withdrawal and deposit time series associated with each company. How to define the learning
problem, particularly how to combine the time series into one series, is not obvious. Our suggested
solution for this design issue is discussed in Section 12.1. We perform several experiments using
binary GP classification utilizing the covariance functions covered in Section 11.2. The results
from the experiments are presented in Section 12.2, where we additionally use the best performing
covariance function to classify the companies in the validation set. We will use the term “Gaussian
Process Classification” to mean Bayesian classification using a non-parametric model with a
Gaussian Process prior.

12.1 Test Setup

In addition to the target values, y, our data set D consists of n companies, each described by two
time series: withdrawals and deposits. Hence, we have a n×D× 2 large input data set, where D
is the dimension of the time series. As with all common learning algorithms, classical Gaussian
Process classification only handles data sets D = {(xi, yi) | i = 1, . . . , n)}, where x denotes a
single input vector of dimension D and y denotes a target. A way to combine the two time series
into one vector x is needed.

The figures below illustrates two distinct options for how to combine the time series: (1) Con-
catenating the withdrawals with the deposits, (2) Interleave withdrawal transactions into the
deposit time series: one withdrawal transaction is interleaved for every two deposits since a
company only transfers money to the authorities every second month (cf. Section 2.1). Addition-
ally, the options of using only the deposits, or only the withdrawals, were also considered. The
drawback by only analyzing one of the time series is obvious: we neglect half of the information
we have access to. Recall from Section 11.1, the dimensionality of the time series does not have
an impact on the time complexity of the algorithm, which is O(n3), where n is the number of
companies. Hence, there is no obvious reason for using only half of the time series data.

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3
x 10

5

Transaction Number

N
O

K

Company 1012

(a) Concatenated

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3
x 10

5

Transaction Number

N
O

K

Company 1012

(b) Interleaved

Figure 12.1: Two ways of representing the input. In (a) the withdrawals and deposits have
been concatenated, in (b) the raw data input is created by interleaving the withdrawals and the
deposits. Experiments showed that a binary Gaussian Process classifier performed better over
the concatenated representation.

91

92 Chapter 12. Results

The best way to represent the raw data is chosen by running 10-fold cross-validation over
the two different representations using a binary Gaussian Processes classification algorithm,
as described in Section 11.1. According to such experiments, the concatenated representation
resulted in a slightly higher log marginal likelihood. Hence, the concatenated representation is
used in the resulting part of this thesis.

For clarification, we note that the same safety buffers used in Part I is also used in this part
when deciding what segment of a time series to analyze. To recap, for financially sick companies
the transactions occurring in the preceding months before a loss reckoning, or a loan defaulting,
are analyzed. For financially healthy companies we analyze an equally long interval as analyzed
for sick companies, ending six months before the last data point. We know that the segment
analyzed is followed by six months where the company is still healthy, hence the name “safety
buffer”.

The results presented in the following section are acquired over a data set consisting of
transactions, both withdrawals and deposits, occurring over an interval length of 24 months. If a
company has not existed in all of the 24 months before it defaults on a loan or incur a loss, we
pad the time series with zeros. This way we ensure consistency over the length of the time series.

First, we perform model selection. That is, we run experiments aimed at identifying the
best performing covariance function. All of the covariance functions described in Section 11.2
are tested, and their corresponding hyperparameters are learned from the training data. The
model that results in the highest log marginal likelihood is chosen as the one to use for further
classification tasks.

Secondly, we test the best performing model by classifying the companies in the validation
set. As in Part I the classification algorithm is wrapped by MetaCost, described in Section 5.4
on page 40. This way we induce the notion of cost into the classification, and additionally, we
handle the imbalanced data set. We use the same cost matrix as used in Part I, see Table 12.1.

Predicted, i
Actual, j 0 1

0 0 1
1 10 0

Table 12.1: Cost Matrix

12.2 Empirical Results

First, we present the results from performing model selection. For each covariance function
described in Section 11.2, we find the optimal hyperparameters. Then, the covariance function
that best describes the data, indicated by the highest log marginal likelihood, is chosen as the
model. In Figure 12.2 on the next page the log marginal likelihood is plotted as a function of the
hyperparameters for various covariance functions.

12.2. Empirical Results 93

−
95 −95

−95 −95

−95−
85

−
85

−85

−
85

−8
5

−
80

−
80

−80

−
80

−8
0

−
75

−
75

−75

−75 −75

−
75

−75

−7
5

−7
0

−7
0

−7
0

−70

−70 −70

−7
0

−
70

−6
5

−6
5

−6
5

−6
3

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ
f)

Log Marginal Likelihood

9.8 11.8 13.8 15.8 17.8 19.8

−1.2

−0.2

0.8

1.8

2.8

3.8

4.8

5.8

6.8

(a) Squared Exponential

−
85

−
85

−85

−85

−
80

−
80

−80

−8
0

−
75

−
75

−75

−75 −75

−
75

−7
5−

70
−
70

−70

−70

−70

−7
0

−7
0

−70

−6
5

−65

−65

−6
5

−63

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ
f)

Log Marginal Likelihood

9.8 11.8 13.8 15.8 17.8 19.8

−1.2

−0.2

0.8

1.8

2.8

3.8

4.8

5.8

6.8

(b) Matérn, ν = 3/2

−
85

−
85

−85

−
85 −8

5

−
80

−
80

−80

−
80 −8

0

−
75

−
75

−75

−75 −75

−
75 −7

5−
70

−
70

−70 −70

−
70

−7
0

−7
0

−7
0

−70−6
5

−65

−6
5

−63.5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ
f)

Log Marginal Likelihood

8.8 10.8 12.8 14.8 16.8 18.8

−1.2

−0.2

0.8

1.8

2.8

3.8

4.8

5.8

6.8

(c) Matérn, ν = 5/2

−100

−9
5−

95−
90

−9
0

−
85

−
85

−85

−
85

−8
5

−
80

−
80

−80

−
80

−8
0

−
75

−
75

−75

−75 −75

−
75

−7
5

−7
5
−7
0

−7
0

−
70

−70

−70 −70

−7
0

−70

−6
5

−
65

−6
5

−6
3

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ
f)

Log Marginal Likelihood

9.8 11.8 13.8 15.8 17.8 19.8

−1.2

−0.2

0.8

1.8

2.8

3.8

4.8

5.8

6.8

(d) Rational Quadratic, α = 4.6050

−80 −80 −80

−
75

−75 −75 −75

−
75

−
70

−
70

−70 −70 −70

−
65

−
65

−65

−65 −65 −65

−
60

−6
0

−6
0

−60

−
58

−5
8

−58

−58

−58

−58 −
57
.5

−57.5

−
57
.5

Log Marginal Likelihood

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ
f)

−1.3 0.7 2.7 4.7 6.7 8.7 10.7

-0.4

1.6

3.6

5.6

7.6

9.6

11.6

13.6

15.6

17.6

19.6

(e) Neural Network

Figure 12.2: Model selection over the training data. The figure shows contour plots of the
log marginal likelihood as a function of log(`) and log(σf), using a binary Gaussian Process
classifier with various covariance functions. In Table 12.2 on the next page we list the optimal
hyperparameters together with the optimal log marginal likelihood.

94 Chapter 12. Results

Covariance Function Max Log Marginal Likelihood Hyperparameters

Rational Quadratic -62.8790 log(`) = 13.60, log(σf) = 1.85,
α = 4.6050

Squared Exponential -62.8768 log(`) = 13.60, log(σf) = 1.85
Matérn, ν = 5

2 -62.9616 log(`) = 13.71, log(σf) = 1.83
Matérn, ν = 3

2 -62.8198 log(`) = 13.67, log(σf) = 1.80
Neural Network -57.4885 log(`) = 4.30, log(σf) = 10.0

Table 12.2: A summary of the covariance functions along with the optimal hyperparameters and
marginal likelihood. The optimal hyperparameters are learned by maximizing the log marginal
likelihood as a function over the hyperparameters.

Table 12.2 shows a detailed summary of Figure 12.2 on the preceding page. The Neural
Network covariance function excels the other covariance function with a log marginal likelihood
of −57.4885. The rest of the covariance functions fit the training data similarly well, with a
log marginal likelihood just higher than −63. Thus, the Neural Network covariance function
with the corresponding hyperparameters listed in Table 12.2 will be used as a model for further
classification over the companies in the validation set.

Next, the selected model, consisting of Neural Network covariance function with hyperparam-
eters log(`) = 4.30 and log(σf) = 10.0, is tested on the validation set. Given a company from
the validation set, the classifier predicts a probability that the company is financially sick, see
Equation 11.5 on page 81. A company is classified as financially sick if the predicted probability
is higher than 0.5. Below follows tables and figures describing the results from the validation
set and training set, using cross validation on the latter. The final results after combining the
approaches in Part I and Part II is presented in the next section. The results are commented in
Chapter 13.

Predicted Value

Actual
Value

N P
N 17 9
P 0 5

(a) Validation Set

Predicted Value

Actual
Value

N P
N 67 37
P 6 20

(b) Cross validation

Table 12.3: Confusion matrices for the validation set and training set (using cross validation). A
neural network covariance function was used with logarithmic hyperparameters: log(`) = 4.30
and log(σf) = 10.0

Results

E(cost) 0.290
ROC 0.884
Accuracy 0.709

(a) Validation set

Results

E(cost) 0.746
ROC 0.733
Accuracy 0.669

(b) Cross validation

Table 12.4: Performance measures for the GP-classifier on the validation- and training set.

12.3. Combining the Results with the Naive Bayes Results 95

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.6538 0.0 0.3462 1.0 0.6538
1 1.0 0.3462 0.0 0.3571 1.0

(a) Validation set

Detailed Performance By Class

Class TP Rate FP Rate FN Rate Precision Recall
0 0.6442 0.2308 0.3558 0.9178 0.6442
1 0.7692 0.3558 0.2308 0.3509 0.7692

(b) Cross validation

Table 12.5: Detailed performance measures for the GP-classifier.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

In
st

an
ce

Predictive Probability

(a) Validation set

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

In
st

an
ce

Predictive Probability

(b) Cross validation

Figure 12.3: Confidence plots for the binary GP-classifier for the validation set and training set
using cross validation. Confidences assigned to unhealthy companies are marked with red circles,
confidences assigned to healthy companies are marked with blue crosses.

12.3 Combining the Results with the Naive Bayes Results

In Part I of this thesis, we performed a coarse-grained separation of the companies by a cost-
sensitive Naive Bayes classifier using a set of features. The result from the coarse-grained
separation were a grey area consisting of companies believed to be financially unhealthy. In this
part, a cost-sensitive binary Gaussian Processes classifier takes a second look at the—believed to
be—financially sick companies, analyzing the raw time series. The objective is to decrease the
number of false positives (healthy companies classified as sick), tentatively without increasing the
number of false negatives (sick companies classified as healthy).

In Table 12.6 (a) on the following page, we include an updated version of the confusion matrix
presented in Table 6.1 on page 46, where we combine the result from Naive Bayes with the
Gaussian Processes result. The combined confusion matrix is derived the following way:

TNcomb = TNnb + TNgp

FPcomb = FPnb − TNgp
TPcomb = TPnb − FNgp
FNcomb = FNnb + FNgp

96 Chapter 12. Results

Predicted Value

Actual
Value

N P
N 264 9
P 2 5

(a) Combined, Validation

Predicted Value

Actual
Value

N P
N 836 37
P 11 20

(b) Combined, Cross-Val.

Predicted Value

Actual
Value

N P
N 242 31
P 2 5

(c) PD-Rating,Validation

Predicted Value

Actual
Value

N P
N 752 121
P 9 22

(d) PD-Rating, Cross-Val.

Predicted Value

Actual
Value

N P
N 247 26
P 2 5

(e) Naive Bayes, Validation

Predicted Value

Actual
Value

N P
N 769 104
P 5 26

(f) Naive Bayes, Cross-Val.

Table 12.6: (a)–(b) shows confusion matrices derived from integrating the results from the
cost-sensitive Naive Bayes classifier with the results from the cost-sensitive classifier based on
Gaussian Processes. (a) shows the result from classifying companies in the validation set, while
(b) shows the result from performing cross-validation over the training set. In (c)–(d), we include
the PD-rating confusion matrices; (e)–(f) shows the Naive-Bayes results.

In Table 12.6 (b), we include for completeness a combined confusion matrix summarizing the
results from performing cross-validation over the training set. The corresponding PD-rating
confusion matrices have been excerpted from Chapter 6 to ease the efforts of comparing our
results with the PD-rating’s performance, see Table 12.6(c)–(d). At last, the Naive Bayes results
have been excerpted from Part I to ease the comparison between Part I and Part II results, see
Table 12.6(e)–(f).

To calculate the ROC for the combined result, the confidences of the Naive Bayes classifier in
Part I have been updated with the confidences derived from the Gaussian Processes classifier in
this Part II. In Table 12.7 the ROC, Expected Cost and Accuracy is listed for every confusion
matrix in Table 12.6.

Experiment E(cost) ROC Accuracy

Combined 0.104 0.888 0.961
PD-Rating 0.182 0.921 0.882
Naive Bayes 0.164 0.877 0.900

(a) Validation set

Experiment E(cost) ROC Accuracy

Combined 0.163 0.917 0.947
PD-Rating 0.233 0.856 0.856
Naive Bayes 0.170 0.909 0.879

(b) Cross validation

Table 12.7: Table enumerating the performance for the different experiments listed in Table 12.6.

13 Discussion

13.1 Model Selection

Of the covariance function tested, the neural network covariance function excelled the others.
Table 12.2 on page 94 shows that the optimal log marginal likelihood using the neural network
covariance function is -57.4885. The second best performing covariance function, the Matérn
with ν = 3

2 , resulted in a log marginal likelihood at -62.8198. This means that the marginal
likelihood has increased by a factor of exp(62.8198 − 57.4885) = 206.7 by choosing the neural
network covariance function, compared to the Matérn covariance function.

Interestingly, the neural network covariance function is the only non-stationary covariance
function tested in this thesis. Non-stationary covariance function allow the model to adapt to
functions whose smoothness varies with the inputs [Paciorek and Schervish, 2004]. Hence, more
flexibility is allowed for the latent function f .

The optimal length-scale hyperparameter for the stationary covariance functions are rela-
tively long: all are of magnitudes about 13.6. A consequence of the long length-scales is that
the covariance between two outputs f(xi) and f(xj) will be close to one (or σ2

f + δijσ
2
n, cf.

Equation 10.20 on page 77) and not provide any new information about the underlying process f .
Put differently: a latent function value f(x) is affected by a large set of other function values and
the new observations provide limited new information to the whole picture. Short length-scales,
on the other hand, cause new test observations to be dominated by the class-labels of the nearest
neighbors in input space. If the distance to the nearest observation is large, the function may take
a wide set of different values resulting in a large confidence interval. This effect is illustrated for
regression in Figure 11.2 (b) on page 83. Notice that the prediction of a point y1 given x1 = −4
is not impacted by the fact that the prediction of point y2 = 0 given x2 = 4. This is due to the
highly fluctuating regression function, which fits each training point exactly. Contrary to the
effect observed with short length-scales, long length scales implies that observations are deemed
close to each other. A prediction of a unseen test company is dominated by the class-label of
several neighbors, limiting the flexibility. Of course, the length-scale needs to be “just right” and
is part of the learning problem. The length scale for the non-stationary covariance function is
much smaller than that for the stationary ones. The non-stationary covariance function explains
the observations with high variance σ2

f and relatively short length scale `.
Analogously to a Gaussian Process classifier with a long length-scale is a k-nearest neighbor

classifier with a high k. In this analogy the covariance function corresponds to the distance
function, representing a measure of similarity between two observations. A high k means that the
prediction for a new test example is impacted by many neighbors; thus limiting the flexibility,
since the prediction is an average over many class-labels (or targets).

The neural network covariance function stands out from the other covariance functions due to
two observations, see Table 12.2. First, the length-scale is much shorter. In fact, the optimal
length-scale for the neural network covariance function is exp(13.6− 4.3) = 10,938 times shorter
than the second shortest optimal length-scale. Secondly, the neural network covariance function
also has a relatively high optimal magnitude of the latent function f , log(σf) = 10.0. By itself,
an increased log(σf) leads to harder predictions (i.e. confidences closer to 0 and 1), but the
associated variances will also increase. This increased uncertainty tends to soften the confidences,
i.e. move them closer to 0.5.[Rasmussen and Williams, 2006, p.67].

In summary, the most flexible covariance function fitted the data set best, with a relatively
short length-scale ` (compared to the other covariance functions) and a high σf . This may
indicate that the data set is hard to separate, containing high entropy. The less flexible covariance

97

98 Chapter 13. Discussion

functions were not able to distinguish the companies from each other, thus treating them all as
similar. Composite covariance functions was tested without interesting results.

13.2 Evaluation of Gaussian Processes Results

First we present the results from classifying the validation set. Recall from Chapter 3 on page 9,
validation set results indicates our models ability to generalize, i.e. perform well over data not
used for tweaking the model. Validation set results are usually presented as the main result,
but in our case it ended up being too small to distinguish the performance between two models.
Therefore, the cross-validation results will be discussed as well.

Table 12.3 on page 94 presents the confusion matrix derived from classifying the validation set
companies. The result is in general pleasing. Without misclassifying any of the sick companies
we manage to correctly classify 17 healthy companies. Recall, all companies classified in this
part were classified as financially sick by the Naive Bayes classifier. The data set consists of
companies that are not easily recognized as financially healthy; hence, the task of separating the
healthy companies from the sick is not considered an easy task. In Figure 13.1, we present two
companies that Naive Bayes misclassified as sick. Both companies have time series containing
several zero-transactions, which is probably partly the reason why Naive Bayes classified them as
sick. The Gaussian Processes classifier manage to correctly classify the company presented in
Figure 13.1(a) and (b), with confidence 1− p(y = 1|D,x∗) = 0.81.

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 2247

(a)

2005 2006 2007 2008 2009
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 2247

(b)

2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3
x 10

4

Time (t)

D
ep

os
its

 (
N

O
K

)

id: 2275

(c)

2005 2006 2007 2008 2009
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Withdrawal number

W
ith

dr
aw

al
s

(N
O

K
)

id: 2275

(d)

Figure 13.1: Examples of two companies; one correctly classified and one misclassified by
the Gaussian Processes classifier. Company 2247 is correctly classified as healthy, with a
confidence: 1 − p(y = 1|D,x∗) = 1 − 0.19 = 0.81. (a) and (b) presents the deposits and the
withdrawals, respectively. Company 2275 is misclassified as financially sick, with a confidence:
p(y = 1|D,x∗) = 0.96. (c) and (d) presents the deposits and the withdrawals, respectively.

13.3. Evaluation of Combined Results 99

Company 2275, whose time series are presented in Figure 13.1(c) and (d), is unsurprisingly
wrongly classified by the Gaussian Processes classifier. Considering what we learned from the
study we performed in Section 5.1, we realize by visual inspection of the time series that the
economical situation in this company is hardly healthy as the company several times does not
transfer money to the authorities, and there is a strong negative trend in the withdrawals. Hence,
even though it is a misclassification the confidence of p(y = 1|D,x∗) = 0.96 does not appear that
far-fetched. In addition to the zero transactions, notice the steep negative trends.

The cross-validation results are not as good as the validation set results, but still decent.
In Table 12.3 on page 94 we see that by misclassifying six actually unhealthy companies, we
gain 67 more correctly classified healthy companies. The high number of false negatives makes
the expected cost higher for the cross-validation results, compared to the validation results.
Specifically, E(cost) = 0.290 for the validation set, compared to E(cost) = 0.746 when doing
cross-validation. The same tendency is observed for the ROC and Accuracy metrics.

Another interesting tendency is observed in the confidence plots, see Figure 12.3. Notice the
high number of companies that are classified with a confidence close to 0.5. This tendency is
especially present in the cross-validation confidence plot, and indicates uncertainty in the classifier.
A possible explanation may be the relatively high σf , as discussed in Section 13.1. Increasing the
σf means increasing the magnitude of the values obtained for the latent function f . Recall, a
high σf increases the associated variances, hence soften the predictions (moving the confidences
closer to 0.5). MetaCost will also impact the confidences, increasing them to higher probabilities.

The data set used in this part is different from the one used in Part I, being only a subset of
the original data set. Hence, the results discussed above is not directly comparable to the results
presented in Chapter 6. In next section, we discuss the combined results from the Gaussian
Processes classifier and the Naive Bayes classifier from Part I. These results are directly comparable
to both the PD-rating performance and the results in Part I.

In an effort to justify the use of a heavy statistical model such as Gaussian Processes, we
tested the model from Part I (Naive Bayes over features) over the training data set used in this
section. The result indicates a very low performance. The Naive Bayes classifier only managed to
gain 26 correctly classified healthy companies, while at the same time misclassifying 6 unhealthy.
This emphasizes the contribution done by the Gaussian Processes classifier. Further affirmation
of this contribution is achieved when combining the contribution from the Gaussian Processes
classifier with the Naive Bayes results, see next section.

13.3 Evaluation of Combined Results

Section 12.3 on page 95 presents the combined results from the Gaussian Processes classifier and
the Naive Bayes classifier. The improvement done by the Gaussian Processes classifier is readily
apparent by comparing the confusion matrices in Table 12.6, summarized in Table 12.7.

Prior to the Gaussian Process classification, all the companies considered were classified as
unhealthy, this corresponds to an expected cost of 0.83 (26 false positives, 0 false negatives and a
total of 31 companies, cf. Equation 6.1). For the validation set, the Gaussian Process classifier
recognized 17 of these companies as healthy resulting in an expected cost of 0.29: a reduction of
0.54. For the training set, 67 companies were recognized as healthy, but this came at the cost
of classifying 6 unhealthy companies also as healthy. Since we consider it worse to misclassify
unhealthy companies as healthy, the resulting expected cost is 0.746: a reduction of only 0.08.

The ROC Area has increased when comparing the Naive Bayes results with the combined
results. The explanation is evident, recall from the confidence plots in Chapter 6 that the Naive
Bayes classifier tends to be overly confident (confidences close to 0 and 1), even when misclassifying
healthy companies. When the Gaussian Processes classifier identifies several misclassified healthy
companies, it updates the confidence to a probability lower than 0.5; hence the ROC area is
increased. Similarly, the expected cost is decreased since the Gaussian Processes classifier generally
decreases the number of misclassifications done by the Naive Bayes classifier. By comparing the

100 Chapter 13. Discussion

combined results with the PD-rating performance we notice that the narrow performance gap
claimed in Part I has increased. The PD-rating still achieves a slightly higher ROC over the
validation set, but performs less well on the other metrics.

At last, we will explore the fact that the Gaussian Processes classifier enhances the results
from Part I. This suggest that the features, derived in Section 5.1, fails at catching all the relevant
information from the time series. By analyzing the raw time series, the Gaussian Processes
classifier learns relevant patterns that is lost in the abstractions made by the features. Of course,
such patterns may only be apparent in an high dimensional space; thus not easy to discover
through the kind of study we performed in Section 5.1.

14 Conclusion

We concluded Part I by claiming that our goal to beat the PD-rating had been accomplished. That
is, we perform the task of recognizing financially unhealthy companies with a higher performance,
compared to the PD-rating measured a month before a company defaults on a loan, or induces a
loss-reckoning.

The results from Part I are satisfying, and are further enhanced by a binary Gaussian Processes
classifier analyzing the raw data. Hence, the claim that we have accomplished our goal to beat
the PD-rating has been further affirmed through Part II. A neural network covariance function
with hyperparameters log(`) = 4.30 and log(σf) = 10.0 constitutes the selected model used for
classifying the grey-area companies from Part I. For the validation set, this model results in
17 more companies correctly classified as healthy, without losing any correctly classified sick
companies. By integrating the results from Part I and Part II we manage to correctly classify
five out of seven financially sick companies, and 264 out of 273 financially healthy companies.

We have through Part I and II successfully derived and tested a two-fold model for classification
of financially unhealthy companies. The model can be integrated into an early-warning system
by training the cost-sensitive Naive Bayes classifier over the whole training set and the cost-
sensitive Gaussian Processes classifier over the grey-area companies. After training, the model
will immediately be able to estimate the probability that a given company is financially unhealthy.
If the Naive Bayes classifier deems a company as sick, the Gaussian Processes will take a second
look and return its confidence. On the other hand, if Naive Bayes classifies a company as healthy,
a second opinion from the Gaussian Processes classifier is not needed.

The features from Section 5.1 does not catch all the relevant information in the time series.
If they had, there would be no gain in running Gaussian Processes classification over the raw
data. Hence, the main contribution of Part II is the recognition of new patterns in the raw data,
indicating economical sickness.

As of future work, it would be interesting to identify the patterns only recognized by the Gaus-
sian Processes classifier and incorporate them as Part I features. There are several ways to gain
more knowledge about the underlying function: A more complete study of the hyperparameters
will probably reveal more information. Additionally, there are several non-stationary covariance
functions which we did not test, for instance, Gibbs [1997] proposed a covariance function where
the characteristic length scale is controlled by a function, this covariance may perform better
than the neural network covariance function. Rasmussen and Williams [2006] suggest testing
covariance function implementing automatic relevance determination (ARD). ARD has been used
successfully for removing irrelevant input, hence may be useful for acquire more knowledge about
the data set. At last, we have not performed a test of how early in the time series a default,
bankruptcy or other actions leading to loss is evident. There is no need to change the existing
model to perform such test, however, this is left for future work.

101

102 Chapter 14. Conclusion

A PD-Rating

This appendix contains specifics about the PD-rating.

A.1 Risk Class Mapping

In practice, SpareBank 1 operates with risk classes rather than the explicit PD-rating number.
The mapping from the PD-rating to risk classes is illustrated in Table A.1. Risk class J is assigned
automatically to companies that have defaulted on a loan; risk class K is assigned automatically
to companies where a loss has been reckoned.

From To Risk Class

0.00 0.0010 A
0.0010 0.0025 B
0.0025 0.0050 C
0.0050 0.0075 D
0.0075 0.0125 E
0.0125 0.0250 F
0.0250 0.0500 G
0.050 0.100 H
0.1000 0.99 I
1 1 J
1 1 K

Table A.1: Numerical PD-rating to Risk Class mapping

103

104 Appendix A. PD-Rating

B Mathematical Prerequisites

B.1 Gaussian Identities

The multivariate Gaussian distribution, N (x; m,Σ), is given by

p(x|m,Σ) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(x−m)>Σ−1(x−m)) (B.1)

where m is the mean vector and Σ is the (symmetric, semi-positive definite) covariance matrix.
As a shorthand, we write x ∼ N (m,Σ).

Joint Distribution

Let x and y be two Gaussian random vectors, then the joint distribution is also Gaussian and is
given by [

x
y

]
∼ N

([mx

my

]
,

[
A C
C> B

])
(B.2)

Marginal Distribution

The marginal distribution of x is x ∼ N (mx, A) and the marginal distribution of y is y ∼
N (my, B). The covariance between x and y is given by C.

Conditional Distribution

The conditional distribution p(x|y) is

p(x|y) ∼ N
(
mx + CB−1(y −my), A− CB−1C>

)
(B.3)

Products

The product of two Gaussians results in another (unnormalized) Gaussian

N (x|mx, A) · N (x|my, B) = Z−1N (x|mc, C) (B.4)

where mc = C(A−1mx +B−1my)

and C = (A−1 +B−1)−1

The normalizing constant Z−1 looks itself like a Gaussian

Z−1 = (2π)−D/2|A+B|−1/2 exp
(
− 1

2
(mx −my)>(A+B)−1(mx −my)

)
(B.5)

B.2 Generating Samples from a Multivariate Gaussian Distribution

To generate samples x ∼ N
(
mx,K

)
with arbitrary mean and covariance matrix K, we proceed

as follows

1. Compute the Cholesky decomposition, L, of K so that LL> = K, where L is a lower
triangular matrix.

105

106 Appendix B. Mathematical Prerequisites

2. Generate a vector u ∼ N
(
0, I
)
. Using a Gaussian random number generator. If you only

have access to a uniform random number generator, then use the Box-Muller transform to
obtain u from a set of uniformly distributed random numbers.

3. Compute x = mx + Lu which has the desired distribution with mean mx and covariance
matrix K.

In practice it may be necessary to add a small amount of noise to identity matrix I. This is
because the eigenvalues of K may decay very rapidly. Without this stabilization, the Cholesky
decomposition may fail.

Bibliography

Abrahamsen, P., Aji, S., McEliece, R., Altun, Y., Tsochantaridis, I., Hoffman, T., Amari, S.,
Anthony, M., Shawe-Taylor, J., Aronszajn, N., et al. (1997). A review of Gaussian Random
Fields and Correlation Functions. ANNS, 26:2743–2760.

Abramowitz, M. and Stegun, I. (1965). Handbook of mathematical functions with formulas, graphs,
and mathematical table. Courier Dover Publications.

Altman, E. I. (1973). Predicting Railroad Bankruptcies in America. Bell Journal of Economics,
4(1):184–211.

Atiya, A. (2001). Bankruptcy prediction for credit risk using neural networks: Asurvey and new
results. IEEE Transactions on neural networks, 12(4):929–935.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West, M.
(2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring
graphical model structures. In Bayesian Statistics 7: Proceedings of the Seventh Valencia
International Meeting, page 453. Oxford University Press, USA.

Chatfield, C. (1996). The Analysis of Time Series, 5th ed. Chapman & Hall, New York, NY.

Deboeck, G. (1994). Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial
markets. Wiley.

Domingos, P. (1999). MetaCost: A General Method for Making Classifiers Cost-Sensitive. In In
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,
pages 155–164. ACM Press.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under
zero-one loss. Machine learning, 29(2):103–130.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8):861–874.

Fayyad, U. and Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for
classification learning.

G.E.P. Box, G. J. and Reinsel, G. (1994). Time Series Analysis: Forecasting and Control (3rd
Ed.). Prentice Hall, Englewood Cliffs, NJ.

Gibbs, M. (1997). Bayesian Gaussian Processes for Regression and Classification. Unpublished
doctoral dissertation, University of Cambridge.

Gordon, M. and Rosenthal, J. (2003). Capitalism’s growth imperative. Cambridge Journal of
Economics, 27(1):25–48.

Gregorcic, G. and Lightbody, G. (2002). Gaussian processes for modelling of dynamic non-linear
systems. In Proceedings of the Irish Signals and Systems Conference, Cork, pages 141–147.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal
of Machine Learning Research, 3:1157–1182.

Hand, D. and Till, R. (2001). A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 45(2):171–186.

Hand, D. J. and Henley, W. E. (1997). Statistical Classification Methods in Consumer Credit
Scoring: a Review. Journal Of The Royal Statistical Society Series A, 160(3):523–541.

107

108 Bibliography

Hodrick, R. and Prescott, E. (1997). Postwar US Business Cycles: An Empirical Investigation.
Journal of Money, Credit & Banking, 29(1).

Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,
6(9):1069–1072.

Japkowicz, N. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis,
6(5):429–449.

Japkowicz, N. et al. (2000). Learning from imbalanced data sets: a comparison of various
strategies. In AAAI workshop on learning from imbalanced data sets, pages 00–05.

Karagiannopoulos, M., Anyfantis, D., Kotsiantis, S., and Pintelas, P. (2007). A Wrapper for
Reweighting Training Instances for Handling Imbalanced Datasets. page 29.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Handling imbalanced datasets: A
review. GESTS International Transactions on Computer Science and Engineering, 30(1):25–36.

Kubat, M., Holte, R., and Matwin, S. (1998). Machine learning for the detection of oil spills in
satellite radar images. Machine Learning, 30(2):195–215.

Ling, C., Huang, J., and Zhang, H. (2003). AUC: a statistically consistent and more discriminating
measure than accuracy. In International Joint Conference on Artificial Intelligence, pages
519–526.

Lu, H., Setiono, R., and Liu, H. (1996). Effective data mining using neural networks.

MacKay, D. (1997). Introduction to Gaussian processes. NATO ASI series. Series F: computer
and system sciences, pages 133–165.

MacKay, D. (1999). Comparison of approximate methods for handling hyperparameters. Neural
Computation, 11(5):1035–1068.

Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R. (1999). Performance measures
for information extraction. In Broadcast News Workshop’99 Proceedings, page 249. Morgan
Kaufmann.

Maloof, M. (2003). Learning when data sets are imbalanced and when costs are unequal and
unknown. In ICML-2003 workshop on learning from imbalanced data sets II.

Minka, T. (2002). Expectation propagation for approximate Bayesian inference. update, 500(2):5z.

Minka, T. (2003). A comparison of numerical optimizers for logistic regression. Unpublished draft.

Neal, R. (1996). Bayesian learning for neural networks. Springer.

Neal, R. (1999). Regression and classification using Gaussian process priors. In Bayesian Statistics
6: Proceedings of the Sixth Valencia International Meeting, June 6-10, 1998, page 475. Oxford
University Press.

Neyman, J. and Pearson, E. (1928). On the use and interpretation of certain test criteria for
purposes of statistical inference: Part II. Biometrika, pages 263–294.

Nickisch, H. and Rasmussen, C. (2008). Approximations for Binary Gaussian Process Classification.
Journal of Machine Learning Research, 9:2035–2078.

Odom, M. and Sharda, R. (1990). A neural network model for bankruptcy prediction. In Neural
Networks, 1990., 1990 IJCNN International Joint Conference on, pages 163–168.

Opper, M. and Archambeau, C. (2009). The variational gaussian approximation revisited. Neural
Computation, 21(3):786–792.

Bibliography 109

Paciorek, C. J. and Schervish, M. J. (2004). Nonstationary Covariance Functions for Gaussian
Process Regression. In In Proc. of the Conf. on Neural Information Processing Systems (NIPS).
MIT Press.

Platt, H. D. and Platt, M. B. (1991). A note on the use of industry-relative ratios in bankruptcy
prediction. Journal of Banking & Finance, 15(6):1183 – 1194.

Rasmussen, C. and Williams, C. (2006). Gaussian processes for machine learning. Springer.

Ravn, M. and Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of
observations. Review of Economics and Statistics, 84(2):371–376.

Ripley, B. (1996). Pattern recognition and neural networks. Cambridge university press.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5):465–471.

Russell, S. J. and Norvig, P. (1995). Artificial intelligence: a modern approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Sagar, V. and Alex, K. (1999). Hybrid fuzzy logic and neural network model for fingerprintminutiae
extraction. In Neural Networks, 1999. IJCNN’99. International Joint Conference on, volume 5.

Schölkopf, B. and Smola, A. (2002). Learning with kernels: Support vector machines, regularization,
optimization, and beyond. MIT press.

Serrano-Cinca, C. (1996). Self organizing neural networks for financial diagnosis. Decis. Support
Syst., 17(3):227–238.

Stein, M. (1999). Interpolation of spatial data: some theory for kriging. Springer.

Treacy, W. F. and Carey, M. S. (1998). Credit risk rating at large U.S. banks. Federal Reserve
Bulletin, (Nov):897–921.

Turner, T. (2007). Beginner’s Guide to Day Trading Online. Adams Media Corporation.

Šušteršič, M., Mramor, D., and Zupan, J. (2009). Consumer credit scoring models with limited
data. Expert Syst. Appl., 36(3):4736–4744.

Wada, Y. and Kawato, M. (1993). Neural network model for arm trajectory formation using
forward and inverse dynamics models. Neural Networks, 6(7):919–932.

Williams, C. and Barber, D. (1998a). Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351.

Williams, C. and Barber, D. (1998b). Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351.

Wilson, R. and Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support
Systems, 11(5):545–557.

Witten, I. and Frank, E. (2005). Data mining-practical machine learning tools and techniques.
Second Edition.

Zhang, G., Y. Hu, M., Eddy Patuwo, B., and C. Indro, D. (1999). Artificial neural networks in
bankruptcy prediction: General framework and cross-validation analysis. European Journal of
Operational Research, 116(1):16–32.

	Title Page
	Problem Description
	Preface
	1 Introduction
	1.1 Terminology
	1.2 Purpose
	1.3 Scope
	1.4 Success Criteria
	2 Background
	2.1 The Tax Withdrawal Account
	2.2 Challenges

	3 The Dataset
	3.1 Training and Validation Data Sets
	3.2 Class Distribution
	3.3 Noise and Phased-out Companies
	3.4 Samples from the Dataset

	I Coarse-Grained Separation
	4 Preprocessing the time series
	4.1 Holiday Tax Adjustments
	4.2 Safety Buffer
	4.3 Normalization
	4.4 Identifying Trends

	5 A Model for Coarse-Grained Classification of Companies
	5.1 Feature Generation
	5.2 Discretizing Features
	5.3 Supervised Learning with a Naive Bayes Classifier
	5.4 Adding Cost-Sensitivity to the Classifier Using MetaCost

	6 Results
	6.1 Terminology
	6.2 Naive Bayes Results
	6.3 Feature Evaluation
	6.4 Cross Validation Results
	6.5 Performance of Other Classifiers

	7 Discussion
	7.1 Robustness and Adequacy of Evaluation Measures
	7.2 Evaluation of Final Results
	7.3 Feature Evaluation

	8 Conclusion
	II Fine-Grained Separation Using Gaussian Processes
	9 Bayesian Inference
	9.1 Basics
	9.2 Making Decisions
	9.3 Coin toss example
	9.4 Summary
	10 Gaussian Processes Basics
	10.1 The Gaussian Distribution
	10.2 A Parametric Example: Curve Fitting
	10.3 Gaussian Processes Definition
	10.4 A Non-Parametric Model
	10.5 The Covariance Function

	11 Advanced Gaussian Processes
	11.1 Classification
	11.2 Covariance Functions
	11.3 Model Selection

	12 Results
	12.1 Test Setup
	12.2 Empirical Results
	12.3 Combining the Results with the Naive Bayes Results

	13 Discussion
	13.1 Model Selection
	13.2 Evaluation of Gaussian Processes Results
	13.3 Evaluation of Combined Results
	14 Conclusion
	A PD-Rating
	A.1 Risk Class Mapping

	B Mathematical Prerequisites
	B.1 Gaussian Identities
	B.2 Generating Samples from a Multivariate Gaussian Distribution

