@ NTNU

Norwegian University of
Science and Technology

Construction of Object-Oriented
Queries Towards Relational Data

In View of Industrial Practices

Stein Magnus Jodal

Master of Science in Computer Science

Submission date: February 2009
Supervisor: Svein Erik Bratsberg, IDI

Co-supervisor: Anders Haugeto, Iterate AS
Morten Berg, lterate AS

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Today it is increasingly common to facilitate object-relational mapping (ORM] to access data
stored in relational databases. As the data are represented as real objects we also need an object-
oriented way to retrieve the objects. This becomes challenging when dealing with complex queries
where the underlying relational data model places limitations on the queries. In the current
solutions the source code of these complex, object-oriented queries are harder to comprehend
than the corresponding SQL query on the relational data. The assignment is to identify the
limitations of the current APIs for object-oriented queries and propose possible improvements on
these in context of JPQL and Hibernate’s Criteria API. Further, we want to compare this approach
with the queries in the web development framework Django.

Assignment given: 22. September 2008
Supervisor: Svein Erik Bratsberg, IDI

Abstract

The focus of this work is querying relational data through an object-
relational mapper (ORM). In Java projects, it is common to use the
Hibernate ORM and write the queries using HQL and Criteria. These
approaches have limitations in regard to readability and static analysis.
The limitations are identified and explained in this thesis. Several possible
solutions are discussed. One of the solutions is looked at in depth and
implemented in a real world project. The described solution eases the
construction of queries and provides a way to fully utilize the development
support tools.

Preface

This Master’s Thesis is the final part of a Master of Science degree from the
Department of Computer and Information Science (IDI) at the Norwegian
University of Science and Technology (NTNU).

I would like to thank my supervisor at NTNU, Professor Svein Erik
Bratsberg, and my co-supervisors at Iterate AS, Anders Haugeto and
Morten Berg, for their support during my work on this thesis.

Also, I am thankful to Nina Heitmann for proofreading my work and for
believing in me.

Stein Magnus Jodal (sign.)

Oslo, February 15, 2009

iii

Contents

1 Introduction 1
1.1 Outline e 2

2 Background 3
2.1 Object-Relational Mapping 3
2.1.1 The Impedance Mismatch Problem 4

2.1.2 ORM and Querying 5

2.2 Example Data Model 5
2.3 Hibernate 6
2.3.1 Java Persistence L. 6

232 APL 6

2.3.3 Mapping Objects to the Database 7

2.3.4 Hibernate Query Language 8

2.3.5 The Criteria API 9

2.4 Integrated Development Environment 10
2.4.1 Code Completion 11

2.4.2 Refactoring 11

3 Limitations and Requirements 13
3.1 Limitations of Queries in Hibernate 13
3.1.1 Strings in Queries 13

3.1.2 SQL Experience of Little Use 14

3.1.3 Low Signal-to-Noise Ratio 14

3.1.4 Missing Features 15

3.2 Requirements for a Solution 15
321 Usage o 15

3.22 Refactoring L Lo 16

3.2.3 Imtegration oL 16

3.24 Summary 16

4 Existing Query APIs 17
4.1 .NET Language Integrated Query 17
4.1.1 Language Integration in Java vs NET 18

CONTENTS CONTENTS

4.2 Quaere e 18
421 Usage e 19
4.2.2 Refactoring oo 20
4.2.3 Imtegration L. 20
424 Conclusion 0o 20

4.3 JaQu. e 20
431 Usage 21
4.3.2 Refactoring 21
4.3.3 Imtegration L L. 21
4.3.4 Conclusion 22

4.4 Squill ... 22
441 Usage e 22
4.42 Refactoring 23
4.4.3 Integration 23
4.44 Conclusion oo 23

4.5 JaQue 24
451 Usage« 24
4.5.2 Refactoring oL 25
4.5.3 Imtegration 25
4.5.4 Conclusion 25

4.6 Querydsl. 26
4.6.1 Usage e 26
4.6.2 Refactoring oL 27
4.6.3 Integration L. 27
4.6.4 Conclusion 27

4.7 Summary oo e e e e e e 27

5 Applying Querydsl to Existing Projects 29

5.1 Setting up Querydsl oL 29
5.1.1 Dependencies 29
5.1.2 Code Generation 30
5.1.3 Compatibility with HQL and Criteria 32

5.2 Playground Project L 33
5.2.1 Setup 33
5.2.2 Implementation 33

5.3 LeanCast 35
53.1 Setup 36
5.3.2 Implementation 36

54 Problems 38
5.4.1 sum(Integer) results in a Long 38
5.4.2 java.util. Time fields does not work 39
54.3 Minorissues.o 39
5.4.4 Documentation L0, 40

5.5 Summaryo e 40

vi

CONTENTS CONTENTS
6 Django and JPA2 41
6.1 Django. e 41
6.1.1 Queries in Django, 41

6.1.2 Comparison with Querydsl 43

6.2 Java Persistence API12.0. 43

7 Discussion 45
8 Conclusion 47
8.1 Future Work 47
Bibliography 49
Appendices 53
A Playground Project 55
B Playground Core Project 59
B.1 playground-core/ 59
B.2 playground-core/src/main/resources/ 61
B.3 playground-core/src/main/java/ 63
B.3.1 .../no/jodal/query/playground/domain/ 63

B.3.2 .../no/jodal/query/playground/dao/ 66

B.4 playground-core/src/test/java/o 71
B.4.1 .../no/jodal/query/playground/domain/ 71

C Playground Hibernate Project 77
C.1 playground-hibernate/ 7
C.2 playground-hibernate/src/main/java/ 78
C.2.1 .../no/jodal/query/playground/dao/ 78

C.3 playground-hibernate/src/test/java/ 80
C.3.1 .../no/jodal/query/playground/dao/ 80

D Playground Querydsl Project 83

D.1 playground-querydsl/ 83
D.2 playground-querydsl/src/main/java/ 84
D.2.1 .../no/jodal/query/playground/dao/ 84

D.3 playground-querydsl/src/test/java/ 85
D.3.1 .../no/jodal/query/playground/dao/ 85

E Iterate LeanCast 87
E.1 leancast-business/src/main/java. 87
E.1.1 ../no/iterate/leancast/dao/ 87

E.2 leancast-business/src/test/java 98
E.2.1 ../no/iterate/leancast/dao/ 98

vii

Listings

2.1
2.2
2.3
2.4
2.5
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
6.1
6.2
6.3
Al
B.1
B.2
B.3
B4
B.5
B.6
B.7

Mapping with XML o oL 7
Mapping with Java annotations 8
Example of Hibernate Query Language (HQL) usage 9
Example of Criteria (QBC) usage 10
Example of Criteria (QBE) usage 10
A more complex Criteria query 14
Same query in Structured Query Language (SQL) 15
Example of LINQ usage in C# 17
Query example with Quaere (from [16]) 19
Query example with JaQu (from [10]) 20
Query example with Squill (from [22]) 22
Proposed syntax of Java closures 24
Query example with JaQue (from [11]) 25
Query example with Querydsl 26
Querydsl dependencies in Maven 30
Querydsl code generation configuration in Maven 31
A generated query type for the Customer model 32
Total sales query using HQL 34
Total sales query using Criteria 34
Total sales query using Querydsl 35
Original Criteria query 37
Same query rewritten using Querydsl L. 37
Workaround for Querydsl sum() bug 38
Example of Django ORM usage 42
Django field operations using keyword arguments 42
Queries using the JPA2 Criteria APT 44
pom.xml 55
pom.xml 59
applicationContext.xml 61
database.properties 62
hibernate.cfg.xml o000 62
logdj.propertieso 62
Customer.java L Lo 63
Invoicejava 64

ix

LISTINGS LISTINGS

B.8 InvoiceLinejava o 65
B.9 InvoicingDao.java 66
B.10 InvoicingDaolmpl.java L. 67
B.11 InvoicingDaoTest.java 68
B.12 CustomerTest.java 71
B.13 InvoiceTest.java 73
B.14 InvoiceLineTest.java 74
C.l pomxml oL 77
C.2 InvoicingDaoCriterialmpl.java 78
C.3 InvoicingDaoHqllmpljava 79
C.4 InvoicingDaoCriterialmplTest.java 80
C.5 InvoicingDaoHqllmplTest.java 81
D1 pomxml. 83
D.2 InvoicingDaoQuerydsllmpl.java 84
D.3 InvoicingDaoQuerydsllmplTest.java 85
E.1 PersistenceFacade.javao 87
E.2 HibernatePersistenceFacade.java 88
E.3 QuerydslPersistenceFacade.java 94
E.4 HibernatePersistenceFacadeTest.java 98
E.5 QuerydslPersistenceFacadeTest.java 111

Acronyms

API Application Programming Interface
DAO Data Access Object

DBMS Database Management System
DOM Domain Object Model

DSL Domain Specific Language

DTO Data Transfer Object

HQL Hibernate Query Language

IDE Integrated Development Environment
JDBC Java Database Connectivity

JPA Java Persistence API

JPQL Java Persistence Query Language
JSR Java Specification Request

JVM Java Virtual Machine

LINQ Language Integrated Query
ORM Object-Relational Mapping
POJO Plain Old Java Object

QBC Query by Criteria

QBE Query by Example

SQL Structured Query Language

XML Extensible Markup Language

xi

Chapter 1

Introduction

In software development it is usually a need for data to exist after the
application has been shut down. Commonly, the data is stored in a
relational database. The way data are stored and used in a database is
quite different from how the data is used in an object-oriented software
application. Retrieving data from a relational database in a way that
conforms with object-oriented and development practices is a challenge.
Thus, several software solutions for this purpose exist, so-called Object-
Relational Mapping (ORM) layers, that provides an abstraction layer for
the relation data.

Iterate is a software development consultancy which uses the Java
platform for many of their projects. In most of these projects, they are using
the popular ORM implementation Hibernate for managing the persistence
of objects to relational databases. To retrieve previously persisted objects
from the database they are using two different approaches to querying, which
both have limitations.

The first is an API, called Criteria, which uses objects to build the query,
but not all queries are possible to express using this approach, and complex
queries expressed with the API are also difficult for the developers to read.

The second approach is based on query strings, similar to SQL, called
HQL. The strings are comparably easy to understand, even for complex
queries, but errors in the string queries are not detected before they fail at
run-time, and the query strings are also easily broken by small changes to
the domain object models.

We want a better solution which takes the best from each approach;
an object-oriented API for querying where even complex queries are both
possible to express and easy to understand.

A better solution could help developers create fewer defects, as an API
that is easy to understand is also easier to use correctly. Instead of failing
first at run-time, a good API will detect many invalid queries already at
compile-time, or when an IDE is used, already when they are written.

1.1 Outline 1 Introduction

A better query mechanism will make developers more effective. With
the readability of e.g. SQL and full support for code completion in the IDE
the queries will be easy both to comprehend and to formulate. Finally, a
type safe and static API would make the code more flexible as the developer
could change and reorganize the code safely in an automated fashion with
the help of the IDE.

In this thesis we will study what possibilities exists for improving the
task of query construction in context of Java and Hibernate, with the
goal of proposing improvements to, or a replacement of, the currently used
approaches.

1.1 Outline

The thesis is organized as follows. In Chapter 2 we look at ORM, Hibernate
and the current approaches to querying. In Chapter 3 the problems with
the current state are described, and we decide on the requirements for a
solution. The requirements are used in Chapter 4 to evaluate five existing
approaches to querying, and in Chapter 5 the one the query APIs is tried
out in both a test project and in a real-world project. Chapter 6 looks at
queries in Django, and the upcoming JPA2 standard. Finally, in Chapter 7
we discuss our findings, and Chapter 8 concludes our work.

Chapter 2

Background

This chapter first explains what ORM is, why we need it, and how queries
relate to persisting of objects through an ORM. Then we look at a popular
implementation of ORM for applications developed in the Java programming
language, called Hibernate, and its two approaches to constructing queries,
HQL and Criteria. Lastly, we take a look at what an Integrated Development
Environment (IDE) is, and how it can help the developer with code
completion and refactoring.

2.1 Object-Relational Mapping

Today, ORM software is an important tool in most software development
where objects are persisted, or, in other words, the data outlives a single
execution of the application. Figure 2.1 shows stack of software where the
upper layers are closer to the user interface, and the lower are closer to
the hardware. An application built using object-oriented techniques are at
the top of this stack, and it produces some valuable data that needs to be
persisted to a database, or it needs to access some previously persisted data
to do its job.

Application | « Objects

17 — Query API
ORM «— Mapping
17 — SQL

Database «— Relational data

Figure 2.1: The surroundings of an ORM

The figure illustrates the ORM software’s placement between the
application and the database, where it maps data between the different
models used by the two layers above and below. Between the application
and the ORM, either some string based query language like HQL is used,

3

2.1 Object-Relational Mapping 2 Background

or we find some form of query API, e.g. Hibernate’s Criteria API, where
the query is constructed in a programmatic way using objects and methods.
The ORM software translates the query string, or the calls to the query API,
to SQL, which is the query language most common databases understands.
Typically, the application, query API and the ORM software are written
in the same programming language, while the SQL query is plain text, and
at the bottom is any database which understands SQL or a similar query
language.

In other words, the role of the ORM software is to bridge the gap between
the object-oriented models in the application at the top of the stack, and
the relational data in the database at the bottom, solving what is known as
the impedance mismatch problem.

2.1.1 The Impedance Mismatch Problem

The impedance mismatch problem [29, Ch. 8] has its origin in the difference
between the data model of e.g. SQL at the database level, and conventional
programming languages, like C and Java, at the application level.

The conventional programming languages has a series of data types, like
integers, floats, and chars, pointers, and various data structures, like arrays.
The data has no inherent meaning, but are gradually modified through the
series of simple statements which any program consists of. This is known as
the imperative programming paradigm [35].

On the other hand, relational databases and SQL uses a relational data
model, consisting of tables—with data tuples as rows, and attributes as
columns—and the relations between the tables. The database queries are
not imperative like the programming languages, but declarative. That is,
the queries states what the result should be, and not how to achieve the result,
which would include how to find, read, parse, compute, and store the data,
and preferably be efficient in doing so. The how is taken care of by the
Database Management System (DBMS), which makes it possible for users
without knowledge of a database’s inner workings to get useful information
from the database with comparatively little effort.

Obviously, the differences between imperative programming languages
and declarative database queries are rather large, and the different
paradigms are well suited for their particular problem domains. As it
would be a lot harder to express the task efficiently using the opposite
paradigm, it is both impractical and inefficient to do everything in SQL
or to do everything in a generic programming language. Thus, if database
operations are a part of the application, a combination of SQL and generic
programming languages are needed, and we need to easily pass data between
them.

Further, the differences in the data models makes the needed marshalling
and unmarshalling of data passed between SQL and a generic programming

4

2 Background 2.2 Example Data Model

language both non-trivial and repetitive. This again makes the developer’s
task of mapping prone to human error, or difficult due to lack of knowledge,
often resulting in e.g. SQL injection possibilities [26, p. 74], one of the more
common security problems in web applications.

These are important problems that affect a large portion of today’s
applications, both web applications and custom business applications, and
this is what ORM software provides a solution for.

2.1.2 ORM and Querying

When developing an application that persist objects through an ORM, there
are essentially two ways to get a reference to a persisted object: querying
and navigation. Both are functionality provided by the ORM.

When we need an object that is unrelated to the objects we are already
working on—or if we do not have references to any persisted objects at all—
we need to use a query. Search is a typical case. If we are interested in a
customer whose last name is “Smith”, a query could easily provide a list of
all matching customers.

After we have received some initial objects by querying, we can use
navigation to get to objects which are related. Say we pick the customer
we were searching for from the list returned by the query, and call this
object aliceSmith. Then we want to list all invoices sent to this customer.
One solution is to issue a new query for all invoices with a relation to the
customer. The other solution is to traverse the references from the customer
object to its child objects. To retrieve a list of all the invoice objects related
to the customer, we could simply call aliceSmith.getInvoices(). This is called
navigation, and makes the ORM issue the needed queries for us in the
background, while we are using the objects as if they were all in memory
and not persisted to a database.

In this thesis, we are focusing solely on querying, and not on navigation.

2.2 Example Data Model

The simple data model in Figure 2.2 is used throughout most of our work.
The rectangles are entities, i.e. tables in a database, or classes in an object-
oriented programming language. The ellipses are fields, i.e. columns in a
database, or attributes of a class. An instance of an entity, like “Alice
Smith” of the customer entity, becomes a row in the database table, or an
instantiated object of the given class.

Explaining the entities, their fields and relations briefly: All entities
have an unique ID. A customer has a name and zero or more invoices. Fach
invoice has zero or more invoice lines, and must have one and only one
customer. Each invoice line has an amount, and must have one and only
one invoice.

2.3 Hibernate 2 Background

Customer [H——0€ Invoice MH——0€ InvoiceLine

D> ©

Figure 2.2: ER diagram of the data model used in examples

2.3 Hibernate

Hibernate [6] is one of the most widely used ORM implementations for Java.
It was originally developed by a team of Java developers lead by Gavin King.
JBoss, Inc.—a part of Red Hat, Inc. since June 2006—Tlater hired King to
work on Hibernate and has since been leading the development. Hibernate
is freely available under the terms of the open-source license GNU Lesser
General Public License, also known as the LGPL.

2.3.1 Java Persistence

Java Persistence API (JPA) is a part of Java Specification Request (JSR)
220, which is titled Enterprise JavaBeans 3.0 [23]. The specification was
published in its final form in May 2006 by the EJB 3.0 software expert
group. The stated goal of the work was to improve the EJB architecture by
reducing its complexity from the developer’s point of view.

Java Persistence provides persistence for plain old Java objects, POJOs,
using object-relational mapping. Java Persistence can be divided in three
parts: JPA, i.e. the Java package javaz.persistence, the query language, Java
Persistence Query Language (JPQL), and metadata describing the mapping
between objects and relational data [12].

2.3.2 Application Programming Interface (API)

Hibernate may either be used by programming directly against Hibernate’s
own API, or one may use Hibernate as an Java Persistence Provider, as
defined by JPA. In practice, this means that the code uses the interfaces of
the javaz.persistence package and Hibernate as an implementation of these
interfaces. If we at some later time wants to replace Hibernate by another
Java Persistence Provider, only small parts of the code, if anything, needs to
be modified. If needing to use features supported by Hibernate which is not
included by JPA, one can access the Hibernate API directly where needed
and keep to JPA everywhere else. This minimizes the changes needed to the
code if one ever were to replace Hibernate.

6

=W N =

o = O Ut

10
11
12
13
14
15
16
17

2 Background 2.3 Hibernate

2.3.3 Mapping Objects to the Database

There are two common ways in Java Persistence and Hibernate to describe
the mapping between objects and the database. The older way is to use
definitions in Extensible Markup Language (XML) which lives beside the
source code, as shown in Listing 2.1. NHibernate, the Microsoft .NET port
of Hibernate, still only supports this variant.

<?xml version="1.0"7>
<!DOCTYPE hibernate —mapping PUBLIC
”—//Hibernate /Hibernate Mapping DID 3.0//EN”
"http://hibernate.sourceforge .net/hibernate —mapping —3.0.dtd”
>

<hibernate —mapping>
<class name="example.domain.Customer” table="customer”>
<id name="id” column="1id”>
<generator class="native” />
</id>
<property name="name” column="name” />
<set name="invoices” inverse="true”>
<key column="customer” />
<one—to—many class="example.domain.Invoice” />
</set>
</class>
</hibernate —mapping>

Listing 2.1: Mapping with XML

This XML file maps the class example. domain. Customer to the database
table customer. The class attribute id is mapped to the database table
column 4d, and the DBMS is given the responsibility of generating new
unique IDs. The name attribute is mapped to the name column. Finally,
the class attribute invoices are mapped to a set of all Invoice objects which
have a reference to the current customer in the table column customer.
The last mapping is just a convenience making navigation between related
objects possible both in the direction defined in the database, where the
invoice references its customer, and in the opposite direction like we see in
this example. This is the meaning of the XML attribute inverse="true”.

The newer approach to mapping objects to database tables, as of
Java 5, is to use the language feature annotations to describe the
mapping directly in the source code. The annotations are of the form
@NameOfAnnotation(namel = valuel, name2 = value2) and apply to the
class, field or method directly following it. Multiple annotations can be
applied to one element, and annotations can also be nested by using an
annotation in the place of e.g. valuel. An example of mapping a class with
annotations, achieving approximately the same as the XML example, is
shown in Listing 2.2.

2.3 Hibernate 2 Background

QEntity

@Table(name = ”customer”)

public class Customer {
@Id

@GeneratedValue(strategy = GenerationType .AUTO)
private Long id;

private String name;

@OneToMany (mappedBy = ”customer”, cascade = CascadeType.ALL)
private Set<Invoice> invoices;

Listing 2.2: Mapping with Java annotations

As we can see, the annotations encode the same information as the XML
file, but the information is attached to the source code instead of being
shipped as an independent file. There are a couple of differences. First,
there is no annotation on the field name. Annotations can be assigned
either to the class fields or to getters accessing the class fields. If, as in this
case, one field is annotated, Hibernate treats all other fields as if they were
annotated using @Column(name = ”fieldName”). For the field name the
behaviour is as if it had an @Column(name = "name”) annotation. If a field
should not be mapped, it should be marked with the annotation @Transient.
Second, the invoice field is a bit simpler. We simply state that the field is
mapped by the database column customer on the other side of the relation,
while the relevant class on the other side is inferred from the type of the set,
i.e. from Invoice in Set<Invoice>, and the relevant database table is taken
from the other class’ mapping.

2.3.4 Hibernate Query Language

Moving on to queries, which is what we will focus on throughout this
work. Hibernate Query Language (HQL) is Hibernate’s primary means for
constructing queries. HQL is a superset of JPQL, which means that all
JPQL queries are valid HQL queries, but HQL supports additional features,
some of which predates the Java Persistence standardization.

A HQL query is a text string consisting mostly of HQL keywords, class
names, and property names. It may look very similar to a SQL query, as it
uses many of the same keywords, like select, from, and where, but HQL works
with classes, objects and attributes instead tables, rows and columns. HQL
also supports object-oriented concepts such as inheritance, polymorphism
and association [33, Ch. 14].

Listing 2.3 shows the short Java method searchForCustomer(). It takes a
string name as its only argument, uses a HQL query at line 2-3 to request all

8

N O U W N

2 Background 2.3 Hibernate

public List <Customer> searchForCustomer (String name) {
String query = "from Customer as customer ”
+ ”where customer.name = :name” ;
return session.createQuery (query)
.setString (”name” , name)
Clist ()

Listing 2.3: Example of HQL usage

persisted Customer objects with names matching name, executes the query,
and returns the result as a list. Note that instead of using the string name
directly in the query, a placeholder :mame is used, and then replaced with
the content of name at line 5. This avoids SQL injection vulnerabilities, as
mentioned in Section 2.1.1, completely.

In SQL the corresponding query would be approximately SELECT *
FROM customer WHERE name = ?. Very similar to the HQL query,
but with important differences. The HQL query works on a Java class
(Customer), its instances (customer), and the instances’ attribute (name).
The results returned by the query are real Java objects. We know that the
objects are persisted in a database somewhere, but no hints to this or any
information about the database leaks through the small bits of Hibernate
APT used or the query string itself.

Accordingly, the SQL query works on a database table (customer),
selecting all its data fields (*), and returning a list of tuples of primitive
data types. The same data are available, but in as primitives in a data
structure without any further meaning or functionally associated with them.
Back in the result of searchForCustomer(), the data are stored as fields
on a series of object instances—the data are the instances’ state—which
also contain methods applying behaviour on these fields. The data and
the related business logic are encoded in a single location, called a business
object or domain object.

2.3.5 The Criteria API

In addition to HQL, Hibernate exposes an API called Criteria for query
construction [33, Ch. 15]. While HQL constructs queries using strings of
text, Criteria build the query using objects. Text strings are only for e.g.
the names of class attributes.

The method searchForCustomer() in Listing 2.4 implements the same
functionality as the one in Listing 2.3, only using the Criteria API instead
of HQL. Using a Hibernate session (session), it creates a Criteria for the
class Customer. If we now just added .list(), we would get a list of all
Customer instances. As we want to restrict the result list to instances where
the name attribute matches the name argument of searchForCustomer(), we

9

=W N =

ot

T W N =

2.4 Integrated Development Environment 2 Background

public List<Customer> searchForCustomer (String name) {
return session.createCriteria (Customer.class)
.add(Restrictions.eq(”name” , name))
Clist ()

Listing 2.4: Example of Criteria (QBC) usage

use .add() to add a Restriction instance. The Restriction instance requires
that Customer.name equals the string name.

The example in Listing 2.4 uses what in Hibernate terms are called Query
by Criteria (QBC). The Criteria API also supports another way to query
objects called Query by Example (QBE). When using QBE we create a new
object of the same type as we want to receive as a result of the query. One
this new object—the “example” object—we set the attributes which we want
to restrict the result set on. E.g. if we want all Customer objects whose name
is Alice, we would create a new Customer object and call setName(”Alice”)
on the object. A complete example is shown in Listing 2.5.

public List <Customer> searchForCustomer (String name) {
Customer exampleCustomer = new Customer () ;
exampleCustomer . setName (name) ;
return session.createCriteria (Customer.class)
.add (Example. create (exampleCustomer))
Clist ()

Listing 2.5: Example of Criteria (QBE) usage

The queries in Listings 2.4 and 2.5 are almost identical. When using
QBC we add an org.hibernate.criterion. Restrictions instance stating that
the name attribute of the returned objects should match the local variable
name. When using QBE we add an org.hibernate. criterion. Example instance
holding an example Customer object where all attributes is NULL, except
the name attribute, which is set to the value of the local variable name.

We achieve exactly the same result, but in two different ways. The
two approaches may be more or less intuitive and fitting, depending on the
situation and the complexity of the query.

2.4 Integrated Development Environment
Some of the limitations we identify in the next chapter are related to how
the developer cannot fully utilize the development support tools with the

currently used approaches to querying, thus we will explain the importance

10

2 Background 2.4 Integrated Development Environment

of an IDE in modern software development, and how it can help the
developer with code completion and refactoring.

Java applications are usually developed in an Integrated Development
Environment (IDE). An IDE combines multiple development tools into an
integrated suite. Common components in an IDE are a source code editor,
a compiler, a debugger, build automation tools, a unit test runner, and
integration with one or more version control systems. For Java, three well
known IDEs are Eclipse [5], IntelliJ IDEA [9], and NetBeans [13].

2.4.1 Code Completion

Code completion in source code editors is basically the same as auto
completion in other types of application, like interactive command line shells
or the address field of a web browser. The common factor between these
applications is that they have a limited range of valid user input.

In source code editors, code completion is commonly implemented using
a pop-up select list displaying the possible continuations of the current
prefix. The list pops up after the developer has stopped typing for a given
length of time, e.g. 0.5 seconds, or she presses a key combination, typically
Ctrl+Space.

In programming languages, the valid input is restricted to the keywords
for the programming language and the names and variables of the current
namespace. In object-oriented programming languages, code completion is
especially useful, as it can be used to explore the fields and methods available
on an object and to navigate from object to object. Code completion both
serves as easily available documentation, and encourages using good and
descriptive names, even though they may be long, since even long names
can be written using only a few key strokes.

2.4.2 Refactoring

Refactoring is to perform changes to a source code without changing its
functionality or behaviour. The purpose of refactoring is to make the source
code more readable and structured, removing duplication and shortcuts
taken in previous development.

Most IDE source code editors can help the developer with common
refactoring tasks, like moving or renaming classes, fields and methods,
extracting interfaces from classes, and extracting new methods from blocks
of code. When using the IDE for this, the IDE makes sure that all references
to the changed elements are updated correctly. E.g. when renaming a
variable, the developer only changes one usage of the variable, and the IDE
handles the renaming of all the other uses of the same variable.

However, refactoring support relies on the IDE understanding the source
code as completely as possible, usually through static analysis. This means

11

2.4 Integrated Development Environment 2 Background

the IDE cannot reliably know if it should change a string matching the
name it is currently changing all occurrences of, or if the string content just
coincidentally happens to match the name.

12

Chapter 3

Limitations and
Requirements

In this chapter, we will look at the limitations of queries in Hibernate
when using HQL and the Criteria API, then we will define requirements
for a better solution, which is used when looking at various query APIs in
Chapter 4.

3.1 Limitations of Queries in Hibernate

The following sections explain the limitations, with regard to query
construction in Hibernate, experienced by consultants at Iterate who use
Hibernate in their daily work. Primarily, the focus is usability and ease of
use, and not technical corner cases.

3.1.1 Strings in Queries

The main limitation of using HQL is that the queries are formed as strings.
The use of strings to encapsulate query logic in the application means that
the IDE cannot help with code completion, and it cannot safely change the
query when e.g. refactoring the domain object model. For the developer,
the use of strings also means that he gets no validation of whether the query
is syntactically valid before executing it, hopefully in a unit test. This leads
to a slower write-test iteration time, as the developer does not get instant
feedback on the validity of his code. The alternative is to use an API and
an IDE which supports code completion and makes many invalid queries fail
already at compile-time, which in practice means that the IDE detects the
error immediately.

For the Criteria API, strings are still a problem, but to a lesser extent.
In the Query by Criteria example of Listing 2.4 strings are only used for
the name of fields on the object queried, while in the Query by Example

13

=W N =

ot

3.1 Limitations of Queries in Hibernate 3 Limitations and Requirements

example of Listing 2.5, the use of strings is avoided completely by calling the
fields’ set method on the example object instead. Unfortunately, QBE is by
its nature not applicable for other queries than selections on single tables.
These are also very simple queries, while in a bit more complex QBC queries,
like in Listing 3.1, strings are also used for aliases, corresponding to the AS
keyword in SQL and the rename operation in relational algebra.

3.1.2 SQL Experience of Little Use

The next problem with Criteria is related to experience with SQL.
SQL is the greatest common factor between database-driven applications
implemented in different languages and frameworks. This means that
many, if not most, developers got some experience formulating queries using
SQL. Experience which is of little help when using the Criteria API as its
resemblances with SQL is limited. For example, the terminology is mostly
different, projections is used in place of SELECT, and restrictions in place
of WHERE.

3.1.3 Low Signal-to-Noise Ratio

A more subjective consideration, but still a valid one, is the signal-to-noise
ratio of queries using the Criteria APIL. A low signal-to-noise ratio means
that there is much unwanted background noise interfering with the signal.

public List<Object[] > retrievelnvoicesAndTotalAmounts () {

return getSession().createCriteria(Invoice.class, ”invoice”)
.createAlias (”invoiceLines”, 7il”)
.setProjection (Projections. projectionList ()
.add(Projections .sum(” il .amount”), ”totalAmount”)

.add(Projections.groupProperty(”il.invoice”)))
Clist ()

Listing 3.1: A more complex Criteria query

Consider the example in Listing 3.1. Most operations are performed
by add()-ing some object to the query. The objects added are created by
using static factory methods on classes such as Projections for projections, in
relational algebra terms, and Restrictions for selections. Also, when adding
more than one object of a type, one cannot simply list them as a series
of arguments, but must create e.g. a projectionList(), again calling a static
method on a class with a rather long name. In total, this query repeats the
word projection four times. And that for a query where only two values—an
invoice and the total amount of its invoice lines—is returned in each result
tuple. The net result is a query where most of the text are due to how one

14

3 Limitations and Requirements 3.2 Requirements for a Solution

is forced to use the API, and not due to the size or complexity of the actual
query.

SELECT invoice , SUM(il .amount)
FROM invoice JOIN invoiceLine il ON invoice.id = il.invoice
GROUP BY il .invoice

Listing 3.2: Same query in SQL

When comparing with the same query expressed in SQL in Listing 3.2,
it becomes abvious that the Criteria queries contains too much noise and
too little useful signal, and this severely reduces the queries’ readability.

3.1.4 Missing Features

Finally, Criteria lack a bit in feature completeness when compared to HQL
and SQL. As a concrete example of this, Criteria supports aggregations and
the functionality of GROUP BY in SQL, but not the counterpart HAVING'!
[7]. This may force developers to use e.g. HQL to perform the query, even
though one highly prefers to keep to APIs.

We do not address this problem, as the problem has little to do with
usability and refactoring, but it is still a relevant problem for users of
Criteria.

3.2 Requirements for a Solution

Given the identified limitations, the following requirements are proposed for
a solution.

3.2.1 Usage

First, a query API must be easy to use for the developers and enable them
to produce working, clean and readable code with little effort and few errors.
To achieve this, the API must support as much code completion as possible
and make use of the experience many developers got from SQL. To reduce
run-time errors, the API should try to avoid the construction of invalid
queries by fetching all syntactic and many semantic errors at compile-time.

"When performing aggregation operations, HAVING is used to select which data rows
to include in groups. This is similar to how WHERE is used to select of which data
rows should be included in SELECT, UPDATE and DELETE operations. In relational
algebra, both HAVING and WHERE are known as selections.

15

3.2 Requirements for a Solution 3 Limitations and Requirements

3.2.2 Refactoring

Second, the API must support refactoring, as refactoring together with unit
tests is maybe the most efficient way to keep code clean and flexible through
time, keeping the amount of technical debt in the project to a minimum
[34, 31, 30].

[34] defines technical debt as “the total amount of less-than-perfect
design and implementation decisions in your project. This includes quick
and dirty hacks intended just to get something working right now! and
design decisions that may no longer apply due to business changes. (...)
Unchecked technical debt makes the software more expensive to modify
than to reimplement.” This is maybe the largest challenge in software
development projects today.

To support refactoring, the API must minimize the use of strings in the
application as they cannot reliably be changed by an IDE, as we discussed in
Section 2.4.2. Using strings in the API calls makes the code more fragile and
prone to errors. When keeping to queries without strings, the code adopts
easier to changes in the domain object models.

3.2.3 Integration

Finally, to make the query API applicable for more projects, the API must
integrate easily with existing Hibernate projects.

To integrate easily, the API must build on Hibernate and JPA, and
within reasonable boundaries keep to the same object types as Hibernate
for e.g. query results. It should be possible to use the API as a drop-in
replacement for Criteria or HQL without changing any other code than the
Data Access Objects.

3.2.4 Summary
To summary, the requirements a solution needs to fulfill are as follows:
Usage

Queries must resemble SQL, support code completion, and reject many
invalid queries at compile-time.

Refactoring
The API must minimize the use of strings.

Integration
The API must build on Hibernate and JPA, and queries should
primarily have the same return types etc. as HQL and Criteria.

16

0O 1 O UL W

Chapter 4

Existing Query APIs

In the Microsoft .NET framework they have solved the problems with queries
by making them a native of the .NET programming languages, through what
is known as Language Integrated Query (LINQ). In this chapter we will first
take a brief look at LINQ and how their approach to queries could apply to
Java.

Through initial research, we discovered five query APIs for Java which
at the surface seemed to solve some of our problems. We study and evaluate
each of them using the requirements from Chapter 3. Finally, we round of
the chapter with a summary of the query APIs.

4.1 .NET Language Integrated Query

Microsoft .NET Framework introduced LINQ in version 3.5 released
in November 2007 [28]. LINQ integrates queries into all the .NET
programming languages by letting the queries keywords become keywords
of the programming language too. LINQ is not specific to database access,
but it does require data to be mapped to objects before it can be queried
through LINQ. The mapping is done by LINQ providers, which also includes
NHibernate, the .NET port of Hibernate.

public List SearchForCustomer (string Name) {
List <Customer> AllCustomers = GetCustomerList () ;
var Customers =
from ¢ in AllCustomers
where c.name = Name
select c;
return Customers;

Listing 4.1: Example of LINQ usage in C#

Listing 4.1 shows the SearchForCustomer method implemented in C#.

17

4.2 Quaere 4 Existing Query APIs

LINQ are used for the query in lines 4-6. Note that the query is not
delimited by quotation marks. The keywords of the query, like from, in,
where, and select, are keywords of the programming language, just like public
and return.

4.1.1 Language Integration in Java vs .NET

Several Java APIs mimic .NET LINQ, except they are not actually
integrated into the language, but are regular APIs. These APIs can be
considered as Domain Specific Languages implemented in Java. A Domain
Specific Language (DSL) is a language for a specific problem, typically
implemented in a generic programming language to avoid all the work which
are needed to implement a full independent language.

The advantage of integration into the programming language over the
use of an API is mostly the removal of syntactic sugar like parentheses
around the method arguments, and the dots combining the return value of
one method call with the next method call. E.g. from(c).in(allCustomers)
has more syntactic sugar than from c in allCustomers.

On the other side, the advantages of APIs over a query language
integrated into the programming language are that no special support in
tools like IDEs are needed. The queries are just normal method calls and
arguments, while the programming language itself is unchanged. In addition,
not having the query mechanism integrated into the programming language
opens up for a multitude of competing APIs and implementations.

When comparing the Microsoft-controlled .NET environment with the
mostly open source Java environment, it is obvious that integrating a
query mechanism into the programming languages of the .NET platform
is considerably easier, considering that Microsoft provides most of the
supporting tools, like Visual Studio. In the Java environment, language
changes are driven through the open JSR process and tools are developed
by numerous loosely cooperating companies and groups. After large changes
to the Java language, it can take years before both the tool support and a
large installation base of JVMs supporting the new features are in place.

In the next sections, we will give an overview of some query APIs for
Java. All of them are inspired by LINQ or SQL when defining their public
API.

4.2 Quaere

The Quaere project was started by the Norwegian developer Anders Noras
as an example of a DSL implemented in Java. The example was meant for a
presentation at the yearly JavaZone conference in Oslo in September 2007.
The project became a bit more than an example, and was later released
under the open source Apache Software Foundation License 2.0 [15].

18

4 Existing Query APIs 4.2 Quaere

4.2.1 Usage

Quaere resembles SQL in that it uses the same vocabulary of keywords. The
main difference is that the select clause is at the end and not at the start,
which seems very common among the Java APIs that resembles SQL, as we
will soon see.

public class GettingStartedWithQuaere {
public static void main() {
City [] cities=City.ALL_CITIES;

Iterable<String> largePopulations =
from (7 city”)
.in(cities)
.where (gt (” city .getPopulation ()”, 10000000))
.select (7 city .getName()”);

for (String cityName: largePopulations) {
System.out. println (cityName) ;
}

Listing 4.2: Query example with Quaere (from [16])

Listing 4.2 shows an example query, expressed with the Quaere API,
which returns the name of all cities with a population greater than ten
million. from(”city”).in(cities) in line 6-7 creates city as an alias to an
element of cities, analogous to a Java 5 for-each loop such as for (City city
: cities).

The arguments to the where() call is more similar to Hibernate’s Criteria
API than to SQL. Just as Criteria, the gt(a, b) form is used instead of SQL’s
greater-than expression ¢ > b, though this should be of little hindrance to
the query’s readability.

The query ends with a call to select(”city.getName()”). For each City
instance city remaining after the filtering done by where(), the values
returned by city.getName() are returned as the result of the entire query.

Even before we get to the refactoring part where strings are banned,
strings are causing problems for the usage. As city.getPopulation() and
city.getName() both are expressed within strings, the developer gets no code
completion when programming these parts of the query. Additionally, using
city.population and city.name could have been supported through automatic
expanding of population and mame to the matching accessor methods.
Hibernate does this by prefixing the field name with #s for boolean fields
and get for all other fields to get the read accessor method, and prefixing
with set to get the write accessor method, as is the Java convention.

19

T W N =

-3

4.3 JaQu 4 Existing Query APIs

4.2.2 Refactoring

With regard to refactoring, Quaere has the same limitations as Criteria.
Strings are used for both instance names, field names and method names.
IDEs can of course do changes by best effort, but unless they have
specific support for the exact query API used changes can never be made
automatically with the same confidence as static queries would yield.

4.2.3 Integration

The current status of Quaere is that Quaere for Java collections are rather
feature complete, but that Quaere for JPA is incomplete and has not seen
any development since the start of 2008. Thus, Quaere is currently not
usable for existing projects based on Hibernate or JPA, but will maybe be
usable for such projects in the future.

4.2.4 Conclusion

At the time of writing, the project still labels itself as in pre-beta state
and has seen no development in the last year, querying through JPA are
not supported and the API itself is not any improvement over Criteria with
regards to refactoring. The plus with Quaere is that the queries are readable
without any previous experience with the specific API.

4.3 JaQu

JaQu is a query API for building SQL statements created by Thomas
Mueller, also the original creator of HSQLDB and a contributor to Quaere
before starting on JaQu [10]. Listing 4.3 shows an example query expressed
in JaQu. The query returns a list of products which has no units in stock,
ordered by the product ID.

public List<Product> retrieveSoldOutProducts () {
Product p = new Product () ;
List <Product> soldOutProducts =
db.from(p) .
where (p. unitsInStock).is (0).
orderBy (p.productld).select () ;
return soldOutProducts;

Listing 4.3: Query example with JaQu (from [10])

20

4 Existing Query APIs 4.3 JaQu

4.3.1 Usage

The example shows that JaQu is very similar to SQL, which would be
something like SELECT * FROM Product WHERE wunitsInStock = 0
ORDER BY productld. That is, almost exactly the same as the JaQu query.
Again we observe that the select part is moved from the start to the end of
the query.

With regard to code completion, JaQu is clearly better than Quaere as
the use of strings for e.g. the where clause is replaced with a static reference
to the actual field on the model, which allows for both code completion when
developing, and automatic renaming of e.g. field names when refactoring.

Further, JaQu seems to prefer single-argument—or monadic—methods,
which also helps on the readability of the code [31, Ch. 3]. Where Quaere and
Criteria uses the static method g¢¢() with two arguments for a greater-than
comparison, JaQu passes the first argument to where(), then on the returned
object calls is() with the second argument to do an equals comparison, which
is analogous to a greater-than comparision. Where Quaere only guides the
developer and the IDE’s code completion with the defined type of where()’s
argument, JaQu can define exactly what methods are possible to call on the
object returned by where(). This leads to the construction of fewer invalid
queries that passes compile-time checks, but fails at run-time, and is thus
speeding up the development cycle.

4.3.2 Refactoring

As mentioned, JaQu’s use of static object and field references, instead of
strings, improve the refactoring support substantially. For example, if one
where to rename a field name on a domain class to make its meaning and
use more obvious, the IDE’s rename function could automatically and safely
change the query. If strings where used, the situation would be very different.
The IDE would have to guess, and probably ask the developer, if a string—or
ten—which happens to contain the field name, also should be changed.

4.3.3 Integration

As for integration, JaQu currently works as a replacement for an
independent ORM, like Hibernate. It is though stated in the list of ideas for
future enhancements at [10] to “internally use a JPA implementation (for
example Hibernate) instead of SQL directly.” If and when this happens,
JaQu may be of more interest for existing projects searching for new query
mechanisms on top of Hibernate.

21

0 N O Utk W N

el e el el e e
0 ~J O UL = W N~ O ©

4.4 Squill 4 Existing Query APIs

4.3.4 Conclusion

To sum up, JaQu seems interesting with regards to the readable queries it
creates and the good support for automatic refactoring. Though, due to
lack of support for use on top Hibernate or JPA it does not integrate easily
into existing Hibernate projects.

4.4 Squill

Squill is a query API with focus at replacing SQL queries in code with
an almost identical DSL [22]. The API works on Data Transfer Objects
generated from metadata about the layout of the database. Objects which
are free of business logic, in contrast to traditional domain objects that
Hibernate works with.

ComplaintTable ¢ = new ComplaintTable () ;
List <Tuple2<String , Integer>> rows =
squill
.from(c, c.customer)
.where (
gt (c.customer.isActive, 0)
notNull(c. percentSolved) ,
notNull (c.refoundSum))
.orderBy (desc(c.customer.id))
.selectList (
c.customer .lastName ,
c.percentSolved);

for (Tuple2<String, Integer> tuple2 : rows) {
System.out. println (
” Customer ” + tuple2.vl + ” has a complaint solved ”
+ tuple2.v2 + %) ;

Listing 4.4: Query example with Squill (from [22])

4.4.1 Usage

Listing 4.4 shows a from-where-orderby-select query using Squill. The query
returns a list of customer’s last names and how solved their complaint is.
Only active complaints with a set percent and refund sum are included. The
results are ordered by the customer ID in descending order.

Again, the select clause has moved from the beginning to the end of the
query, when comparing to SQL. Except for this minor detail, the query
is constructed in the same way as a SQL query, and [22] states that “it is
designed to allow everything SQL allows you to do, exactly the way SQL is
meant to do it.”

22

4 Existing Query APIs 4.4 Squill

The from clause uses two database tables: ¢, the complaint table, and
c.customer, the customer table. By accessing the customer table through
¢, the tables are joined. No aliases for the tables are created, but ¢ and
c.customer are used consistently throughout the query. In the where clause,
three restrictions are applied by a single call to where() with one argument
for each restriction. The first restriction, gt(c.customer.isActive, 0) uses a
static method g¢t() just as Criteria and Quaere does. Though, there is one
major difference. The Squill uses no strings at all, which enables the use of
code completion in the IDE. The order by orders the result by the customer’s
ID in descending order by calling orderBy(desc(c.customer.id)), while the
corresponding SQL would be ORDER BY customer.id DESC. Finally, a
call to selectList with two arguments returns a list of Tuple2 objects, each
with a String and an Integer value, which are explicitly defined using Java
generics. Squill has TupleN classes for N in 1-10. These are used as data
structures for returning multiple values in a typesafe manner, using Java
generics for all the individual types in the tuple. To access the values, the
TupleN objects got N fields named v1 to vN, as seen in the for-loop in the
listing.

4.4.2 Refactoring

As JaQu, Squill avoids the use of strings for instance, field and method
names, and instead work on its own table objects which directly represent
database tables. As Squill also uses generics, it is “almost complete typesafe”
and further guides the IDE in understanding the code and performing correct
refactorings.

4.4.3 Integration

As Squill is a direct replacement for SQL in the source code, it does not
work on top of an ORM like Hibernate but executes the generated SQL
queries directly through a Java Database Connectivity (JDBC) data source.
Also, it uses simple DTOs directly representing database tables and columns,
instead of the more common Domain Object Model (DOM) objects which
may abstract parts of the database representation and usually are loaded
with business logic in addition to representing persistable data.

4.4.4 Conclusion

Since Squill maps very closely to SQL and aims to make everything possible
with SQL possible through Squill in the same way, it may be interesting
for use in performance-critical parts of an application, where the developer
wants full control of what queries are passed to the database. Normally,
developers will be forced to drop from a query API to raw SQL through
the JDBC API, but with Squill they can get the same amount of control as

23

N O Ut e W N

4.5 JaQue 4 Existing Query APIs

raw SQL and at the same time achieve increased productivty from the code
completion and type safety.

4.5 JaQue

JaQue is another Java query library, though the name could be a typo of
JaQu. Development was started by Konstantin Triger in early 2008, and is
still active [11]. It is licensed under the GNU General Public License version
3 or newer. JaQue takes another approach than the previously discussed
APIs in that it makes use of closures, a language feature which may be part
of Java 7.

Closures are functions with internal variables that bind to variables in
the executing environment at run-time. In the prototype implementation
for Java [2], closures can be used to wrap any block of code into a closures
object, which may then be passed around, e.g. as an argument to a method.
The execution of the wrapped code is deferred to the invoke() method is
called on the closure object. The call to invoke() returns the result of the
last statement in the wrapped code block. Two examples with explaining
comments can be seen in Listing 4.5.

// A closure is of the form { arguments => code }.

// Closure which take no arguments and always returns 42.
int answerToEverything = { => 42 }.invoke();

// Returns the circumference of a circle with radius 5.
int circumference = { int radius => 2 x Math.PI % radius }.
invoke (5) ;

Listing 4.5: Proposed syntax of Java closures

4.5.1 Usage

Listing 4.6 shows a very simple query using JaQue and closures. data is
some collection of Integer objects. The where() call gets passed a closure
object which given an integer from the collection returns true if it should
be included and false otherwise. In this case the closure returns true if
the integer is larger than five. Thus, all integers less than or equal to five
are excluded from the result. Next up, orderBy() is passed another closure
which takes two integers and returns a negative number, zero or a positive
number, depending upon how the to integers compare to each other. Thus,
the query returns a list of all integers in data that are larger than five, in
ascending order.

24

AW N =

4 Existing Query APIs 4.5 JaQue

Iterable <7 extends Number> r =
from (data ,
where ({ Integer i = i > 5 },
orderBy ({ Integer il, Integer i2 => i1—-i2 })));

Listing 4.6: Query example with JaQue (from [11])

This example is similar to SQL, while larger examples would be more
analogous to LINQ), as the vision of JaQue is to provide the capabilities of
LINQ on a Java platform. Though, as the same vocabulary is used in both
SQL and LINQ, JaQue queries should be relatively easy to understand by
anyone familiar with SQL. The exception to this claim is the use of closures,
which at the time of writing is a rather unknown concept to most Java
programmers, unless they are familiar with more functional programming
languages. Though, if closures are included in Java 7, Java developers will
also eventually become familiar with closures.

4.5.2 Refactoring

With regard to refactoring, JaQue is very promising. Strings are not used in
any part of the queries, neither to describe the names of object attributes nor
anything else. The use of closures, which essentially is real code executed
at a later time, also makes it possible to describe filtering by using plain
domain objects, and not some form of manually or auto-generated proxy
object, which most other string-free approaches must resolve to.

Additionally, JaQue uses Java generics extensively to be as type safe as
possible, which is generally of help for an IDE’s understanding of the code
and its semantics.

4.5.3 Integration

JaQue depends on a prototype of a Java closure proposal [2], and should
thus itself be considered only a prototype for how future query APIs in Java
may look like. Also, Java 7 is still in the future, but it will probably be years
from it is released to its deployment base is large enough for developers to
depend on the availability of new language features like closures.

At this time, JaQue supports querying objects and XML, but it does not
support JPA fully. A subproject named jaque2jpa exists for bringing JaQue
to JPA implementations, but it is still under development.

4.5.4 Conclusion

JaQue is an interesting and different approach to queries. Given more
understanding of how closures works among developers, its queries are both
readable to humans and well suited for statical analysis and refactoring

25

J—

O 1 O U W N

4.6 Querydsl 4 Existing Query APIs

by IDEs. Though, use of JaQue in production code today should clearly
be avoided, if it is at all technically possible considering the lack of JPA
support.

4.6 Querydsl

Querydsl was created by the software consulting company Mysema in
Helsinki, Finland, and as such is the sole query API in this comparison
which is backed by a company. It is an open-source project, licensed under
GNU Lesser General Public License 2.1 [16], which is the same license as
Hibernate uses.

4.6.1 Usage

public List <Customer> retrieveCustomersWithTotalSalesLargerThan (
int amount) {
QCustomer customer = new QCustomer (” customer”);
QInvoice invoice = new QInvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);
return from (customer)
.innerJoin (customer.invoices.as(invoice))
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.groupBy (customer , customer.name)
.having (sum(invoiceLine.amount) . gt (amount))
.list (customer) ;

}

private HqlQuery from (EEntity<?>... s) {
return new HqlQuery (getSession ()).from(s);
}

Listing 4.7: Query example with Querydsl

Listing 4.7 shows an example of Querydsl in use. The query returns a
list of customers who has received invoices with a total amount greater than
a given threshold amount. The resemblances between the Querydsl API and
SQL or HQL are obvious, as with all the other APIs except JaQue. The
queries are easy to understand by somebody experienced with SQL, even
without any experience in the Querydsl API.

A translation from Querydsl to SQL is easy to perform. With
all SQL keywords capitalized, from(customer) becomes FROM customer,
innerJoin(customer.invoices.as(invoice)) becomes INNER JOIN invoice
ON invoice.customer_id = customer.id, and analogous for the next join.
groupBy(customer, customer.name) becomes GROUP BY customer.id,
customer.name, having(sum(invoiceLine.amount).gt(amount)) becomes e.g.
HAVING SUM(invoiceLine.amount) > 1000, and finally list(customer)

26

4 Existing Query APIs 4.7 Summary

becomes SELECT customer.*. The Querydsl query and the SQL is almost
identical, word for word. The method names in Querydsl generally match
the keywords in SQL. The only large difference for the reader is in the
syntactic sugar, i.e. spacing, parentheses, and punctuation.

4.6.2 Refactoring

As Listing 4.7 shows, the use of strings is contained to the creation of
Querydsl query types—the classes whose names start with —which may
be reused in multiple queries. The queries themselves are completely free of
string usage. This makes code with queries written using the Querydsl API
easily adaptable to changes in the DOM classes.

4.6.3 Integration

Querydsl comes with three back ends: Java collections, SQL and HQL.
Through the HQL back end, Querydsl may be used as a query API on top
of the Hibernate ORM, replacing confusing object-oriented Criteria queries
and string-based HQL queries. That HQL is a supported back-end can also
be seen in in Listing 4.7, where the from() method actually is a simplifying
wrapper for a HqlQuery().

4.6.4 Conclusion

Queries formed using Querydsl are readable for developers familiar with
SQL. They do not use strings, which means that the IDE can both
understand how to apply refactorings safely to the queries, provide code
completion during development, and make most invalid queries fail at
compile-time. The API supports Hibernate through a HQL back end, seems
more mature than the other APIs considered and are also supported by a
company.

4.7 Summary

Table 4.1 summarizes how the reviewed query APIs met the specific
requirements of our usage, refactoring and integration criteria. For
comparison, the Criteria API which are a part of the Hibernate distribution
are also included in the summary table.

All the alternatives are inspired by SQL or LINQ. Quaere is the only
one using strings, and thus also the worst alternative with regard to code
completion. JaQu and Squill does not support using JPA as a back-end.
JaQue are working on JPA support, but JaQue is only to be considered a
prototype as it uses closures, a still not standardized future feature of the
Java language.

27

4.7 Summary

4 Existing Query APIs

’ API ‘ Inspiration ‘ Code compl.? ‘ Strings? ‘ Support JPA? ‘
Criteria | Rel. algebra Some Yes Yes
Quaere SQL Some Yes In development

JaQu SQL Yes No No

Squill SQL Yes No No

JaQue LINQ Yes No In development
Querydsl SQL Yes No Yes

Table 4.1: Summary of the Query APIs

The last one, Querydsl, is inspired by SQL, does not use strings, supports
code completion, and are primarily targeted at JPA as the back end. In other
words, Querydsl seems to provide a solution matching all our requirements.
Though, we need to get more experience with Querydsl and test how it
integrates into existing projects. In the next chapter, we will use Querydsl
in two different projects.

28

Chapter 5

Applying Querydsl to
Existing Projects

After reviewing five query APIs with various properties in Chapter 4
Querydsl emerged as the most interesting alternative. At the surface it
seems like a good match for requirements we defined back in Chapter 3,
but one point remains: How easy is it to put Querydsl to use in an existing
project which already uses Hibernate with HQL or the Criteria API?

For the API to be a possible replacement of HQL and Criteria, it must
be easy to start using for most projects, and it should be fair to assume that
most projects have an existing code base. Thus, we need to know how well
Querydsl integrates into existing code bases, and what changes are needed,
if any, to the code base.

First, to get to know Querydsl in a familiar environment, we extend the
playground project used for the Hibernate examples in Section 2.3. Then we
will try Querydsl by reimplementing the persistence facade of a real-world
project: Iterate’s internal communication platform, known as LeanCast.

5.1 Setting up Querydsl

Before starting to write queries, we need to add Querydsl as a dependency
of our project so that it becomes available in the class path of our project.
Second, we need to setup automatic generation of the query types, which
are based on our domain objects. We use Apache Maven [1] for both tasks,
and then discuss the use of code generation.

5.1.1 Dependencies

To get started using Querydsl, we must add Querydsl’s HQL adapter,
querydsl-hgl, and the part of Querydsl which generates Querydsl query types
for our models, querydsl-apt, as dependencies in our Maven configuration file,

29

0 1 O UL W=

e e e el e e
N O Ut e W NN = O O

5.1 Setting up Querydsl 5 Applying Querydsl to Existing Projects

named pom.zml. The relevant excerpt from the configuration can be seen in
Listing 5.1.

<project [...]>
<dependencies>
<dependency>
<groupld>com.mysema. querydsl</groupld>
<artifactId>querydsl—hql</artifactId>
<version>0.2.9 —SNAPSHOT</version>
</dependency>
<dependency>
<groupld>com.mysema. querydsl</groupld>
<artifactId>querydsl—apt</artifactId>
<version>0.2.9 —SNAPSHOT</version>
<scope>provided</scope>
</dependency>
</dependencies>
</project>

Listing 5.1: Querydsl dependencies in Maven

The SNAPSHOT postfix on the version number means that we are not
using the released version 0.2.9, but the latest development snapshot of
Querydsl. The reason for this is that we ran into a couple of problems
with version 0.2.9, which was resolved in the newer snapshot versions. The
problems will be described in Section 5.4.

Querydsl 0.3.0, which includes the needed fixes, will according to the
main Querydsl developer, Timo Westkdmper, hopefully be released within
the middle of February 2009.

5.1.2 Code Generation

Continuing with the Maven configuration, we have to define some settings
for the Maven APT plug-in which performs the code generation, as shown
in Listing 5.2. The plug-in needs to know in which Maven lifetime phase
it should run, in this case generate-sources, where our DOM classes are
located, what factory it should use for generating the sources, and where
the generated sources should be saved.

The Querydsl APT factory, com.mysema.query.apt. APTFactory, which
is a part of the earlier mentioned querydsl-apt Maven module, analyzes the
standard JPA annotations on the models. Using the annotations it generates
a Querydsl PEntity class—also known as a query type—for each of the
models. These generated classes make it possible to construct queries using
actual objects and object fields, instead of using class objects for the entities
and strings for the fields of the entities, like the Criteria API does.

30

© 00 N O Uk W N

== e = =
= w N = O

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34

5 Applying Querydsl to Existing Projects 5.1 Setting up Querydsl

<project [...]>
[...]
<build>
<plugins>
<plugin>
<groupld>org.apache. myfaces.tobago</groupld>
<artifactId>maven—apt—plugin</artifactId>
<version>1.0.20</version>
<executions>
<execution>
<phase>generate—sources</phase>
<goals>
<goal>execute</goal>
</goals>
<configuration>
<force>true</force>
<fork>false</fork>
<factory>com.mysema. query .apt.APTFactory</factory>
<generated>target /generated—sources/apt</generated
>
<nocompile>true</nocompile>
<A>
—AdestPackage=no.jodal.query.playground .domain,
—AdtoPackage=no. jodal . query.playground .domain,
—AnamePrefix=Q

<showWarnings>true</showWarnings>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

Listing 5.2: Querydsl code generation configuration in Maven

When the configuration is in place, Maven will generate Querydsl
query types for all models whenever needed. Since only the Java package
containing the models are defined in the Maven configuration, we do not
need to change the Maven configuration when changing or adding models.
As long as they are annotated with the standard JPA annotations, Querydsl
will have all the metadata needed for generating updated or new query types.

The generated query type for the playground project’s Customer model
is shown in Listing 5.3, and the model itself in Listing B.6 at page 63 in
the appendices. Clearly, the generated query type is not complex, only
containing two constructors and three fields: id, name, and invoices. Thus
Querydsl’s amount of source code generation should be acceptable even by

31

=W N =

© 00 O Ut

13
14

16
17
18

19
20

5.1 Setting up Querydsl 5 Applying Querydsl to Existing Projects

package no.jodal.query.playground.domain;

import com.mysema.query .grammar.types.x;

Jx*

* QCustomer is a Querydsl query type

*
*/
public class QCustomer extends Path.PEntity<no.jodal.query.
playground . domain . Customer >{
public final Path.PString name = _string (”name”);
public final Path.PNumber<java.lang.Long> id = _number(”id”
java.lang.Long.class);
public final Path.PEntityCollection<no.jodal.query.
playground .domain. Invoice> invoices = _entitycol(”
invoices”, no.jodal.query.playground.domain.Invoice.class
, "Invoice”);

public QCustomer(java.lang.String path) {
super (no. jodal . query.playground .domain . Customer. class
Customer” , path);

”

public QCustomer (PathMetadata<?> metadata) {
super (no. jodal . query.playground .domain . Customer. class ,
Customer” , metadata);

2

Listing 5.3: A generated query type for the Customer model

developers who are not in favor of the concept of code generating code.
The query types can of course be created manually, but since all the
information needed to create them already exists in the form of models
and JPA annotations, using code generation to produce them removes the
need for manual duplication of information. Such duplication would surely
lead to unnecessary bugs introduced by human error, which is avoided by
using code generation.

5.1.3 Compatibility with HQL and Criteria

By introducing Querydsl into an existing project which is already using
HQL or Criteria, we only add some Maven configuration and new generated
classes. Since nothing else is changed, there is no incompatibility between
Querydsl and HQL or Criteria. This means that Querydsl can be used in
parallel with other query solutions, and thus can be introduced incrementally
to existing projects, replacing one query at the time, or just using Querydsl
for new queries.

32

5 Applying Querydsl to Existing Projects 5.2 Playground Project

5.2 Querydsl in the Playground Project

The playground project was created to explore Hibernate, HQL, and
Criteria, and their limitations for Chapter 2 and 3. E.g. all the examples
in those chapters are created and tested in the context of the playground
project.

5.2.1 Setup

The project consists of a simple DOM with three entities or models,
Customer, Invoice, and InvoiceLine (see Listings B.6, B.7, B.8), which are
related in the way illustrated by Figure 2.2 on page 6. A Data Access Object
(DAO) interface, InvoicingDao (see Listing B.9), defines some methods
which either serves as good examples or illustrates limitations of the Criteria
API. Originally, we had two implementations of this interface, one using
HQL and one using Criteria (see Listing C.3 and C.2, respectively).

A suite of unit tests for the entities (see Listings B.12, B.13, B.14) and
the interface (see Listing B.11) has been developed independently of the
interface implementations, and are thus reusable for all implementations.
The test suite lets us be sure that the methods are implemented correctly
and that they yield the same results independent of the query mechanism
used in their method implementations.

To get to know Querydsl we configured the playground project as
described in Section 5.1, and extended it with a Querydsl implementation
in addition to the existing HQL and Criteria implementations.

5.2.2 Implementation

The InvoicingDao interface we are implementing using Querydsl defines five
methods, of which four involves aggregate functions, three involves grouping,
and two involves grouping with having clauses. The reason for this focus
on grouping and aggregations is to explore the limitations of the Criteria
API, and how other APIs handle those queries compared to Criteria. Using
Criteria we were not able to implement the two queries needing a having
clause at all.

Listing 5.4, 5.5, and 5.6 shows the same query implemented in HQL,
Criteria and Querydsl. The query joins three entities, limits the result to
rows matching the customer name, and sums the amount of all the invoice
lines, returning the total sales generated by the given customer.

In the HQL version, the entire query is obviously a string. The Criteria
version uses strings for all fields and aliases, and combinations thereof, while
the Querydsl version only uses strings for the instantiation of query types,
outside the query itself.

When considering the amount of code completion support from the

33

=W N =

w N O Ot

10
11

w

0 N O Ut

10
11

5.2 Playground Project 5 Applying Querydsl to Existing Projects

@SuppressWarnings (” unchecked”)
public int retrieveTotalSalesByCustomerName (String name) {
String query = ”select sum(invoiceLine.amount) ”

+ 7from Customer as customer ”
4+ ”inner join customer.invoices as invoice ”
+ ”inner join invoice.invoiceLines as invoiceLine ”
+ ”where customer.name = :name” ;
List results = getSession ().createQuery(query).setString (”
name” , name)
Clist ()

return ((Long) results.get(0)).intValue();

Listing 5.4: Total sales query using HQL

@SuppressWarnings (” unchecked”)
public int retrieveTotalSalesByCustomerName (String name) {
List results = getSession().createCriteria(Customer.class,
customer”)
.add(Restrictions.eq(”name” , name))
.createAlias (”invoices”, ”invoice”)
.createAlias (”invoice.invoiceLines”, ”"invoiceLine”)
.setProjection (Projections.projectionList ()
.add(Projections .sum(”invoiceLine .amount”) ,
totalSales”))

”

”

Clist ()
return ((Integer) results.get(0)).intValue();

Listing 5.5: Total sales query using Criteria

IDE, the HQL version only supports code completion on line 9 where
the query string and method argument name are combined and the
query executed. Code completion is better in the Criteria version, but
does not restrict many invalid combinations because of the amount of
strings still left in the query. E.g. adding a sum of an entity instead
of a field, like Projections.sum(”invoiceLine”), would be allowed by the
IDE, but would fail at run-time. Finally, for Querydsl, strings are
moved out of the query and the maximum amount of code completion is
achieved. Instead of manually writing createAlias(”invoice.invoiceLines”,
“invoiceLine”) one can use code completion the whole way through
innerJoin(invoice.invoiceLines.as(invoiceLine), and immediately know with
some certainty that the clause is valid since the IDE does not complain about
any non-existing fields or methods, or type mismatches.

With regard to using Querydsl as a drop-in replacement for HQL
or Criteria, Querydsl fits right in without any type conversions or data
structure changes. Actually, Querydsl does a better job in following the

34

0 T A W N

e e
=W N = O ©

5 Applying Querydsl to Existing Projects 5.3 LeanCast

public int retrieveTotalSalesByCustomerName (String name) {
QCustomer customer = new QCustomer (” customer”);
QInvoice invoice = new QInvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);
List<Integer> results = from(customer)
.innerJoin (customer.invoices.as(invoice))
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.where (customer .name. eq (name))
.list (sum(invoiceLine.amount).intValue());
return results.get (0);
}
private HqlQuery from (EEntity <?>... s) {
return new HqlQuery (getSession ()).from(s);
}

Listing 5.6: Total sales query using Querydsl

defined interface than HQL and Criteria simply because its a newer API
and thus uses Java generics throughout the implementation. While list()
in the HQL and Criteria queries returns a List with unknown content
which requires casting before use and an @Suppress Warnings(”unchecked”)
annotation to avoid warnings from the IDE and compiler, Querydsl
guarantees that the list contains Integer elements, which means that we
do not need to manually cast elements taken from the list before use, and
thus risk a run-time ClassCastException.

Finally, the Querydsl query matches the HQL query almost word for
word. The major difference is that the Querydsl version consists of API
calls and objects, and not a long string. The similarity with HQL also means
that Querydsl got large similarities with SQL, which again means that many
developers will understand the query without having any previous knowledge
of Querydsl. This is very important, as most code is read much more than
it is written.

5.3 Querydsl in LeanCast

As we this far have only tested Querydsl on artificial examples, it would be
interesting to try Querydsl in an existing real-world project. Also, we need
to test if it is possible to easily replace queries implemented in Criteria using
Querydsl without changing the method’s signature, and thus not affect the
rest of the application.

LeanCast is an application developed for internal use at Iterate. At its
core, LeanCast is a messaging platform where users can send each other
messages using a web interface, an instant messaging client, or by sending
SMS messages from a mobile phone. On top of this platform Iterate has
added support for registering hours worked on a project by sending a simple

35

5.3 LeanCast 5 Applying Querydsl to Existing Projects

message to LeanCast. The entire project consists of about thirteen thousand
lines of code (excluding empty lines), of which more than half are unit tests.
Thus, LeanCast represents a moderately sized and complex project, and
it has good enough test coverage for us to be confident that everything is
still working as expected after having replaced the Criteria queries with
Querydsl.

5.3.1 Setup

To test Querydsl on LeanCast, we extracted the parts of LeanCast which
was needed to run the query tests. The most important classes are
included in Appendix E starting at page 87. This includes the interface
PersistenceFacade in Listing E.1, the original Criteria implementation of
the interface, HibernatePersistenceFacade, in Listing E.2, and its unit
tests, HibernatePersistenceFacadeTest, in Listing E.4. The unit tests
are—in contradiction to its name—actually independent of the Hibernate
implementation, and apply to any implementation of the PersistenceFacade
interface.

After we separated the relevant parts of LeanCast, Querydsl was added
as an dependency in LeanCast’s Maven configuration, and the APT code
generation plug-in was configured, as described in Section 5.1.

To reuse the parts of HibernatePersistenceFacade (HPF) which are
specific to Hibernate but not specific to the query language and
thus are irrelevant for our tests, like save(Object) and delete(Object),
QuerydslPersistenceFacade (QPF) was created as a subclass of HPF. All
methods in HPF which involves Criteria queries, twelve in total, are
overridden in QPF with implementations using Querydsl. QPF and the test
adapter which runs the PersistenceFacade tests using QPF can be found in
Listings E.3 and E.5.

5.3.2 Implementation

Already knowing the LeanCast domain models and how they related to
each other, implementation of most of QPF was done by observing the
name of the method, what arguments it accepted, and what type of object
it returned. After implementing the query, relying heavily on previous
knowledge of SQL and the code completion provided by the IDE, we ran
the unit test suite, and in many cases one or more tests for the method
passed on the first try, and we could continue the implementation based on
the descriptive names of the unit tests that were still failing.

Even though this is a subjective experience, it says something about
Querydsl’s ease of use. Pouring through documentation on how to formulate
your query, or searching the net for similar examples becomes unnecessary
when you can leverage on previous knowledge of HQL or SQL, combined

36

\V]

> W

ot

© 0w g >

11
12
13
14

© 00 O Uk W N

5 Applying Querydsl to Existing Projects 5.3 LeanCast

with the help of code completion. Stating your intention with the query
becomes the focus, and not how to use the query APIL

@SuppressWarnings (" unchecked”)
public List<Message> retrieveConversation (User userl, User user2
) A
Session session = getHibernateSession () ;
Criteria criteria = session.createCriteria(Message.class);
criteria.setResultTransformer (CriteriaSpecification .
DISTINCT ROOT_ENTITY) ;
criteria.createAlias(”receivers”, 7r”);
criteria.add(Restrictions.or(
Restrictions.and (Restrictions.eq(”sender”
Restrictions.eq(”r.id”, user2.getld ()
Restrictions.and(Restrictions.eq(” sender”
Restrictions.eq(”r.id”, userl.getld()
List <Message> list = criteria.list ();
return list ;

userl) ,

)
)

)
, user2),
)))) s

)

Listing 5.7: Original Criteria query

public List<Message> retrieveConversation (User userl, User user2
) {
QMessage message = new QMessage (” message”) ;
return from (message)
.where ((message.sender.eq(userl)
.and (message.receivers.contains (user2)))
.or (message.sender.eq(user2)
.and (message.receivers.contains (userl))))
.list (message) ;

Listing 5.8: Same query rewritten using Querydsl

To further illustrate the point, compare the readability of Listing 5.7 and
5.8. Everything in Section 5.2.2 about writing queries for the playground
project still applies here. It is easy to read, and to write. It is type safe,
string free, and replaces Criteria without changing the interface, or adjusting
argument or return values. And it is concise.

There is almost nothing to remove from the Querydsl version of the
method. It has a very high signal-to-noise ratio, in contrast to the original
Criteria version. The query type instance, message, could have been
instantiated at class level and been reused across multiple methods and
queries. And the list() method, when given no arguments, could have
reused the arguments given to from(). Thus, from(message).list() would
return a list of all messages. Requiring from(message).list(message) seems
a bit redundant for the not too uncommon case where the projection should

37

S U W N

5.4 Problems 5 Applying Querydsl to Existing Projects

include every relation in the query.

5.4 Problems

During the writing of Querydsl queries for the playground project and
LeanCast we ran into some problems with Querydsl. The problems and
their solutions are summarized in the following sections.

5.4.1 sum(Integer) results in a Long

In Querydsl 0.2.9, when using the sum() aggregate function on an Integer
field as the result of the query, Querydsl claimed to return a List<Integer>,
just as one would expect when taking the sum of some integers. Though, the
unit test failed with a run-time ClassCastFException on the statement return
result.get(0);. The returned list actually contained Long objects, and the
use of generics implicitly casted the list element to an Integer when calling

get(0).

List results = from (customer)
.innerJoin (customer.invoices.as(invoice))
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.where (customer .name. eq (name))
.list (sum(invoiceLine .amount));

return ((Long) result.get(0)).intValue();

Listing 5.9: Workaround for Querydsl sum() bug

The workaround, as seen in Listing 5.9, was to remove all use of generics
in the query, i.e. assign the result to a List without any information about its
content. Then, on the line of the return statement explicitly cast the result
to a Long object before finally using Long.int Value() to get an integer, which
the method signature required for its return value.

Returning Long objects when taking the sum of Integer fields are actually
the right behaviour according to the JPA standard, and Hibernate does
this correctly [8]. The problem was that Querydsl’s propagation of type
information from the list() call to the actual return value did not change
the return type from Integer to Long. The problem was reported to the
Querydsl developers through their issue tracker at [17], and within a couple
of rounds of fixes from Timo Westkdmper, the Querydsl project leader, and
testing from our side, the bug was finally resolved two days later. The final
version of the query again uses Java generics and is type safe, as seen in
Listing 5.6 back on page 35.

38

5 Applying Querydsl to Existing Projects 5.4 Problems

5.4.2 java.util. Time fields does not work

The next problem surfaced when generating the query types for the
LeanCast project. One of the LeanCast models contained a java.sql. Time
field for storing time without date information. Time is a subclass of
java.util. Date and implements the interface Comparable<Date>, just like
Date does.

While Date fields worked flawlessly, the Time field in the generated
query type resulted in the compile-time error Bound mismatch: The type
Time is not a wvalid substitute for the bounded parameter <D extends
Comparable<D>>of the type Path<C>.PComparable<D>”. In other
words, Querydsl required any type used by PComparable to be comparable
with itself, and nothing else.

No easy workaround for this problem was found, except not using Time
fields in the models, which could possibly require unwanted changes to the
application. Instead, we looked for how to fix Querydsl by applying the
PECS mnemonic from [27, Item 28] on the signature of the PComparable
class. PECS is short for producer extends, consumer super. Since a
comparator consumes objects, the signature could be extended from <D
extends Comparable<D>> to the more flexible <D extends Comparable<?
super D>>, which would allow Time to be comparable by any superclass
of itself, including Date.

This problem and the analysis was submitted to the Querydsl issue
tracker at [18]. A fix following the direction of our analysis was applied
to the development version of Querydsl less than three hours later.

5.4.3 Minor issues

Additionally, two minor issues was submitted to Querydsl’s issue tracker.
One of them related to the generated query types, which had the same two
imports in all the generated source code files, and in some cases one of
them was not in use. Unused imports normally results in warnings both
from the IDE and from the Java compiler, even though the import is of no
obstruction. This was reported as an minor issue at [20] and was also fixed
less than three hours later.

The last issue was a minor feature request. When constructing queries
using Querydsl, one could compare numeric types using methods for both
less than, equal, and less than or equal, and analogously for greater than.
However, when querying date and time fields, the methods before(), after(),
and eq() was available, but no shortcut for the combination of eq() with each
of the two other methods. This felt like an inconsistency in the API, thus
issue [19] was submitted to propose the addition of these two new methods.
Parallel with the fixing of the unused import issue, the new methods was
added to the development version less than three hours later.

39

5.5 Summary 5 Applying Querydsl to Existing Projects

5.4.4 Documentation

Querydsl’s documentation is somewhat limited. The project wiki contains
a getting starting guide for how to setup code generation and some query
examples. Using this and code completion in the IDE, it is possible to
figure out enough to make use of Querydsl, but improved and more complete
documentation would make it easier to recommend Querydsl for adoption in
existing projects. There have been done some work on improving the API’s
Javadoc recently, which is useful as Javadoc is easy accessible through the
IDE during development. The scope of a query API is limited, and as such
the need for extensive documentation is also limited when compared to more
complex software components, like Hibernate itself.

5.5 Summary

We have applied Querydsl to the artificial playground project and to a real-
world application, LeanCast. Querydsl has been easy to get running, and
easy to write compact and readable queries in. Integration in an existing
project has been as painless as it could be, and we have had almost no
problems. Where we had problems, they were resolved in manner of hours
by the Querydsl developers, which both seem dedicated and got a company
backing the development. The API is complete, making all queries we have
tried to express possible. When we had a request for a simplifying addition
to the API, it was willingly accepted.

40

Chapter 6

Django and JPA2

After finding a solution to the limitations of HQL and Hibernate’s Criteria
API, the problem description requests that the solution is compared with
how Django approaches the same problems. In this chapter we will discuss
Querydsl in relation to queries in Django, and the future of queries in Java
with the next JPA standard, which we became aware of during our work.

6.1 Django

Django [3] is a web development framework for the Python [14] programming
language. It was originally conceived as an internal project of World Online,
the web development section of the newspaper house Lawrence Journal-
World in Kansas, US. In July 2005, the project was publicly released
under the 3-clause BSD open-source license, and in June 2008 a non-profit
organization, the Django Software Foundation was launched to promote and
support the project financially. In the time since its initial public release,
Django has grown increasingly popular both as a good web development
framework promoting web standards and best practices, and as the Python
language’s alternative to the Ruby framework Ruby on Rails [21]. This
without imitating Rails, like other popular frameworks such as Grails and
CakePHP have done.

The Django framework is a collection of loosely coupled components,
including a template language, a drop-in administration interface, multiple
cache back-ends, internationalization support, form handling, and an ORM
with a query API.

6.1.1 Queries in Django

The Django ORM and query API supports much of what one would expect
from a general purpose ORM, but not everything. E.g. Django, which is
currently in version 1.0.2, will not support aggregates before version 1.1 [4],

41

6.1 Django 6 Django and JPA2

due for release in March 2009, almost four years after the Django project
was made public. Because Django primarily targets web development, it
has been possible for the Django developers to keep things a bit simpler for
the most common use cases in a web development setting. Listing 6.1 uses
Django’s query API to implement the same functionality as we did with
HQL and Criteria back in Listing 2.3 and 2.4.

def search_for_customer (name):
return Customer.objects. filter (name=name)

Listing 6.1: Example of Django ORM usage

As you can see, there is no explicit session object in play here. The
starting point for the query is the uninstantiated class Customer and its
static (in Java terminology) field objects as we want to retrieve instantiated
objects of the class Customer. If we would like to retrieve all objects, we
can simply replace filter(name="Alice’) with all().

In the call to filter() we use a very convenient Python feature called
keyword arguments or kwargs for short [32]. Keyword arguments allow
functions to accept arbitrary name-value pairs as arguments. These names
and values are, as Python is a dynamic language, evaluated at run-time,
which makes their use very flexible, and the Django query API uses them
extensively as can be seen with a few examples in Listing 6.2.

All invoice lines with an amount greater than 1000
Translated to ”amount > 1000” in SQL
InvoiceLine.objects. filter (amount__gt=1000)

All customers with names which start with ’'Alice’
Translated to ”name LIKE ’Alice%’” in SQL
Customer. objects. filter (name__startswith="Alice’)

All customers with an IDs in the list
Translated to ”id IN (1, 2, 3)” in SQL
Customer. objects. filter (id__in=[1, 2, 3])

All invoices for customers whose name starts with ’Alice’
Invoice.objects. filter (customer__name__startswith="Alice’)

Traversing through customer 1 to his invoices
Customer. object . get (id=1).invoice_set . all ()

Listing 6.2: Django field operations using keyword arguments

Two succeeding underscore characters in the kwargs name are used much
in the same way as dot in normal object traversal. In most of the examples
of Listing 6.2 they are used to separate data field names and operator names.
While in the second to last example, customer__name__startswith, they are

42

6 Django and JPA2 6.2 Java Persistence API 2.0

actually used to walk the path from the Invoice class, through customer,
its foreign key to the Customer class, and check if the customer’s name
starts with “Alice”. This query is implicitly doing a join operation between
Invoice and Customer, before filtering on the customer name. Instead of
expressing yourself in joins and relational database operations, you use
keyword arguments just as if you where traversing the real objects.

In the last example, a similar result is achieved by first getting the
customer with ID 1. Then on the returned Customer instance, use the
automatically added invoice_set field’s all() method. This is analogous with
the all() method on the objects field in some of the other examples.

6.1.2 Comparison with Querydsl

As the API properties considered good and important are widely different in
the world of Python versus the world of Java, it has no purpose to compare
Django queries with Querydsl queries to any great extent. Java is a compiled
language with static typing normally developed in a large IDE, while Python
is an interpreted language with dynamic typing usually developed using a
simple text editor with rapid prototyping in an interactive shell which can
execute Python statements.

In Java, refactoring is done with large amounts of help from the IDE,
thus our focus on avoiding strings and using real objects wherever possible.
In Python, changing code is mostly done by hand, thus using keyword
arguments—which are seen by the called function as pairs of key strings
and values—is not inferior to keeping to objects. In fact, using keyword
arguments is usually regarded as a good practice in a Python context, since
it helps explain to the reader what the arguments passed to a method are.

While Querydsl draws on SQL and HQL, Django’s query API creates
an abstraction layer which has few similarities with SQL. The major
commonality between Querydsl and Django is that both APIs can be said to
have a high signal-to-noise ratio and readability. They are both good query
APIs, but in different environments.

6.2 Java Persistence API 2.0

During the work on this thesis we became aware of the currently ongoing
work on Java Specification Request 317, which specifies Java Persistence
API 2.0 [25, 24]. The latest development was the release of a version for
public review November 14, 2008.

With regard to queries, the most interesting part is the inclusion of a
Criteria API in the JPA2 standard, which is similar to Hibernate’s Criteria
API. Compared to Hibernate Criteria, JPA2 Criteria is quite different and
addresses several of the requirements from Chapter 3, confirming that our
problems are real.

43

=W N =

S Ut

N1

10
11
12
13
14

16
17
18
19

6.2 Java Persistence API 2.0 6 Django and JPA2

EntityManager em = ...; // Instead of sessions in Hibernate
QueryBuilder queryBuilder = em.getQueryBuilder () ;

@SupressWarnings (” unchecked”)
public List <Customer> searchForCustomer (String name) {
DomainObject customer = queryBuilder.createQueryDefinition (
Customer. class) ;
Query q = em.createQuery (customer
.where (customer . get ("name”) . equal (name))) ;
return q.getResultList ();

}

@SupressWarnings (” unchecked”)
public List<Object[]> retrievelnvoicesAndTotalAmounts () {

DomainObject invoice = queryBuilder.createQueryDefinition (
Invoice.class);
DomainObject invoiceLine = invoice.join (”invoiceLines”);

Query q = em.createQuery (invoice
.select (invoice , invoiceLine.get (”amount”).sum()));
return q.getResultList () ;

Listing 6.3: Queries using the JPA2 Criteria API

Listing 6.3 shows two methods we have used earlier in this work, this
time implemented using the new JPA2 Criteria API, as it is proposed in the
public review version of JSR. 317.

There are mainly three improvements in JPA2 Criteria over Hibernate
Criteria. First, it supports everything supported by JPQL, thus the lack
of e.g. having clauses, as we mentioned in Section 3.1.4, are fixed. Second,
the vocabulary of SQL/JPQL/HQL is used instead of the relational algebra
vocabulary used by Hibernate Criteria. Third, the amount of strings are
reduced to only single field names, meaning no more strings along the lines
of “alias.relatedModel.field”.

Some problems still remain. Because the use of strings is not entirely
eliminated, the API is still not typesafe, which is obvious from the
@Supress Warnings(”unchecked”) annotations in the listing. The signal-to-
noise ratio is still quite low. The query itself has become better by removing
the extensive use of factory methods, but the surrounding lines of code
needed to implement these methods have an even lower signal-to-noise ratio
than queries implemented with Hibernate Criteria.

In summary, JPA2 seems promising, and as it still is not finalized,
additional improvements to the Criteria API are still possible. If large
changes, such as getting rid of the last remaining strings and attain type
safety, will happen before JPA2 is published in its final form remains to
see.

44

Chapter 7

Discussion

When the problem description was given and we started working on
this thesis, we depicted that our contribution could be in the form of
improvements to the Hibernate Criteria API which we could contribute back
to the Hibernate project, or a new query API which would work as a wrapper
around HQL or Criteria, providing the properties we wanted from a query
APL

When looking closer at the limitations with today’s solutions in Criteria
and HQL, we realized that incremental improvements to the Criteria
APIT could only introduce the missing technical features. Improving the
usability aspects of the Criteria API—which would include removing the
use of strings, making SQL knowledge more applicable, and increasing the
signal-to-noise ratio of the queries—would not be possible without breaking
backwards compatibility for existing users of the Criteria API.

For the option of creating a new query API on top of Hibernate, we
discovered several existing APIs which seemed to do approximately what we
wanted. We looked at how the .NET framework has solved this with LINQ),
but concluded that the approach could not easily be applied to Java. We
studied five query APIs with various properties. All was inspired by SQL,
except JaQue which looked to LINQ for inspiration and used a prototype of
closures, which probably will be included as a new language feature in Java
7. In addition to JaQue, Quaere and Querydsl had existing or emerging
support for JPA, and thus support for Hibernate. Quaere was a step in the
right direction with regards to readability, but still used strings heavily and
thus had poor support for both code completion and refactoring. Querydsl
scored well on all requirements we defined.

Querydsl’s syntax reminisce SQL and is almost identical with HQL.
Thus, queries written in Querydsl can be understood by many developers
without previous experience with Querydsl, and large and complex queries
remains readable to a larger degree than queries formulated with other APIs.

At the same time, Querydsl is both free of strings and type safe,

45

7 Discussion

which has many benefits. First, invalid queries fail fast. Since the query
is static, i.e. entirely made out of objects and method invocations, most
invalid queries will fail at compile-time, and, when developing in an IDE,
the developer gets immediate feedback when introducing syntactic errors.
Second, the developer can use the code completion feature of her IDE to
rapidly construct the query and to explore what operations are available
without referring to documentation. Third, when the query is static, the
IDE can automatically and safely modify the query when e.g. the name of
an entity or field is changed, making refactoring a native operation.

To learn more about Querydsl and to verify that it actually is viable for
use in existing real-world projects, we applied it in two different settings.
The first was a test project originally created for identifying limitations
of creating queries with HQL and Criteria. Since Iterate’s consultants had
experienced problems with expressing queries which involved aggregates and
grouping using Criteria, the test project focused on that area. The second
experiment involved rewriting all the Criteria queries in Iterate’s internal
messaging platform, LeanCast, using Querydsl. The queries in LeanCast
were generally simpler than the artificial queries of the playground project,
but they were also more diverse, and keeping the interface with the rest of
the application unchanged was critical for a smooth transition from Criteria
to Querydsl. In both settings, having a high percentage of the code covered
by unit test was of immense help to build confidence that the new queries
both returned the correct results and kept to the existing interface.

During the experiments with Querydsl we met some technical difficulties.
In the one case where a simple work around was not possible we proposed
a change to the Querydsl developers, which implemented the change in the
development version in a matter of hours. The rest of our problems was also
reported as issues to the Querydsl developers, who were very responsive and
promptly implemented the needed changes.

Querydsl is reasonably easy to get started with, and integrates well into
existing projects which have been using HQL or the Criteria API. The
Querydsl project is active and is continually making improvements to the
software. The developers are very responsive and handle issues rapidly, while
being open to new ideas for improvement. The project is also backed by a
software development consultancy which can provide commercial support if
needed.

The Querydsl API seems mature enough to be a helpful tool in any
Hibernate project, and should thus be considered for use in both new and
existing projects.

Finally, we briefly compared Querydsl to queries in the web development
framework Django, and looked at what the new JPA2 standard will bring
to the area of constructing queries in Java.

46

Chapter 8

Conclusion

In this thesis we have identified the limitations of the two most commonly
used approaches for constructing queries in software development projects
that use Hibernate.

We have shown that Querydsl provide solutions to the identified
limitations, and we recommend Querydsl as a viable alternative to HQL
and Hibernate’s Criteria API for use in both new and existing projects.

We have briefly compared Querydsl to queries in the web development
framework Django, but because of the difference in nature between Python
and Java environments, we concluded that this had little meaning.

Our work provides a solution that can make developers more effective
while producing better code with less defects. Querydsl is easily integrated
with existing projects, and can be used in addition to HQL and Criteria
allowing for an incremental introduction.

8.1 Future Work

For future work, it would be interesting to empirically confirm that Querydsl
is an improvement over the Criteria API and HQL. This could be done by
collecting experiences from projects which are using Querydsl, or by using
Querydsl in a larger project—with more complex domain object models
and queries—and look at what benefits and problems the project teams
experiences.

Looking a bit wider, a closer look at JPA2, and how it will change the
area of persistence in Java, is a potential path to take. Also, queries against
in-memory collections are a related area to look into.

47

Bibliography

[9]
[10]

[11]

[12]

[13]
[14]
[15]

Apache Maven Project. http://maven.apache.org/.

Closures for the Java Programming Language. Retrieved from http:
//www. javac.info/ at 2009-02-02.

Django project. http://www.djangoproject.com/.

Django ticket #3566: ORM aggregation support. Retrieved from
http://code.djangoproject.com/ticket/3566 at 2009-01-11.

Eclipse IDE. http://www.eclipse.org/.
Hibernate. http://www.hibernate.org/.

Hibernate issue tracker: [#HHH-1043] Added HAVING Support
to Criteria. Retrieved from http://opensource.atlassian.com/
projects/hibernate/browse/HHH-1043 at 2009-01-19.

Hibernate issue tracker: [#HHH-1538] aggregations functions in
EJBQL queries does not return the appropriate types. Retrieved from
http://opensource.atlassian.com/projects/hibernate/browse/
HHH-1538 at 2009-02-07.

IntelliJ IDEA. http://www.jetbrains.com/idea/.

JaQu. Retrieved from http://h2database.com/html/jaqu.html at
2009-01-22.

JaQue. Retrieved from http://code.google.com/p/jaque/ at 2009-
01-22.

Java Persistence API. Retrieved from http://java.sun.com/javaee/
technologies/persistence. jsp at 2009-01-14.

NetBeans IDE. http://www.netbeans.org/.
Python programming language. http://www.python.org/.

Quaere. Retrieved from http://quaere.codehaus.org/ at 2009-01-22.

49

BIBLIOGRAPHY BIBLIOGRAPHY

[16]

[17]

18]

[19]

[20]

[21]

[26]

[27]

[28]

Querydsl. Retrieved from http://source.mysema.com/display/
querydsl/Querydsl at 2009-01-22.

Querydsl bug #326650: HqglGrammar.sum() on an Integer field
should return a Long. Retrieved from https://bugs.launchpad.net/
querydsl/+bug/326650 at 2009-02-10.

Querydsl bug #327113: java.sql.Time fields does not work. Retrieved
from https://bugs.launchpad.net/querydsl/+bug/327113 at 2009-
02-09.

Querydsl bug #327552: Add PComparable<Date>.boe() and
.aoe(). Retrieved from https://bugs.launchpad.net/querydsl/
+bug/327552 at 2009-02-10.

Querydsl bug #327555: Unused import in generated classes. Retrieved
from https://bugs.launchpad.net/querydsl/+bug/327555 at 2009-
02-10.

Ruby on Rails framework. http://www.rubyonrails.org/.
Squill. Retrieved from https://squill.dev. java.net/ at 2009-01-22.

Java Specification Request 220: Enterprise JavaBeans 3.0. Retrieved
from http://www.jcp.org/en/jsr/detail?id=220 at 2009-01-14,
May 2006.

Java Specification Request: Java Persistence 2.0, Public Review.
Retrieved from http://jcp.org/en/jsr/detail?id=317 at 2009-01-
02, November 2008.

Linda DeMichiel’s Blog: Java Persistence 2.0 Public Draft: Criteria
API. Retrieved from http://blogs.sun.com/ldemichiel/entry/
java_persistence_2_0_publicl at 2009-01-02, November 2008.

Mike Andrews and James A. Whittaker. How to Break Web Software:
Functional and Security Testing of Web Applications and Web Services.
Addison-Wesley Professional, February 2006.

Joshua Bloch. Effective Java. Prentice Hall PTR, second edition, May
2008.

Don Box and Anders Hejlsberg. LINQ: .NET Language-
Integrated Query. Retrieved from http://msdn.microsoft.com/
en-us/library/bb308959.aspx at 2009-01-16, February 2007.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall, first edition,
October 2001.

50

BIBLIOGRAPHY BIBLIOGRAPHY

[30]

[31]

[32]

33]
[34]

[35]

Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, October 1999.

Robert C. Martin. Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall PTR, August 2008.

Python Software Foundation. The Python Tutorial (Python v2.6.1),
January 2009.

Red Hat, Inc. Hibernate Reference Documentation v3.5.1, 2008.

James Shore and Shane Warden. The Art of Agile Development.
O’Reilly Media, Inc., October 2007.

Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. The MIT Press, March 2004.

o1

Appendices

53

[\

N O Ut W

10
11
12
13

Appendix A

Playground Project

The playground project is used to test various query methods and APIs—
including HQL and Criteria—on the same set of example domain object
models.

This appendix contains the main Maven configuration for the main or
mother project, i.e. the pom.zml that defines the dependency configuration
which is common between the subprojects.

playground/

playground/playground-core/
Common framework. See Appendix B.

playground/playground-hibernate/
Criteria and HQL implementations. See Appendix C.

playground/playground-querydsl/
Querydsl implementation. See Appendix D.

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0” xmlns:xsi="http://
www.w3.org /2001 /XMLSchema—instance”
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven—v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>
<groupld>no. jodal.query</groupld>
<artifactId>playground</artifactId>
<version>1.0 —SNAPSHOT</version>
<packaging>pom</packaging>
<name>Playground</name>

<organization>

<name>Stein Magnus Jodal</name>
</organization>

55

14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

A Playground Project

<modules>
<module>playground—core</module>
<module>playground—hibernate</module>
<module>playground—querydsl</module>
</modules>

<repositories>

<repository>
<id>jboss.com.maven.2</id>
<url>http://repository.jboss.com/maven2
</url>

</repository>

<repository>
<id>java.net.maven.2</id>
<url>http://download.java.net/maven/2
</url>

</repository>

<repository>
<id>java.net.maven.1</id>
<url>http://download.java.net/maven/1
</url>
<layout>legacy</layout>

</repository>

<repository>
<id>mysema.com.maven.2.releases</id>
<url>http://source.mysema.com/maven2/releases
</url>

</repository>

<repository>
<id>mysema.com.maven.2.snapshots</id>
<url>http://source.mysema.com/maven2/snapshots
</url>

</repository>

</repositories>

<dependencies>
<dependency>
<groupld>junit</groupld>
<artifactId>junit</artifactId>
<version>4.5</version>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>no. jodal.query</groupld>
<artifactId>playground—core</artifactId>
<version>${project.version }</version>
</dependency>

<dependency>
<groupld>no.jodal.query</groupld>
<artifactId>playground—hibernate</artifactId>
<version>${project.version }</version>
</dependency>

<dependency>
<groupld>no. jodal.query</groupld>
<artifactId>playground—querydsl</artifactId>
<version>${project.version }</version>

56

76
"
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

A Playground Project

</dependency>

<dependency>
<groupld>org. hibernate</groupld>
<artifactId>hibernate</artifactId>
<version>3.2.6.ga</version>
</dependency>

<dependency>
<groupld>org. hibernate</groupld>
<artifactId>hibernate—annotations</artifactId>
<version>3.3.1.GA</version>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupld>org.apache.maven. plugins</groupld>
<artifactId>maven—compiler—plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>
</configuration>
</plugin>

<plugin>
<artifactId>maven—eclipse —plugin</artifactId>
<configuration>
<downloadJavadocs>true</downloadJavadocs>
</configuration>
</plugin>
</plugins>
</build>
</project>

Listing A.1: pom.xml

o7

U W \V]

(Ol e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Appendix B

Playground Core Project

This appendix contains the core playground project, which includes all the
parts the other subprojects have in common.

B.1 playground-core/

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0” xmlns:xsi="http://
www.w3.org /2001 /XMLSchema—instance”
xsi:schemaLocation="http://maven. apache.org/POM/4.0.0 http://maven.
apache.org/maven—v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>
<groupld>no.jodal.query</groupld>
<artifactId>playground—core</artifactId>
<version>1.0 —SNAPSHOT</version>
<packaging>jar</packaging>
<name>Playground Core</name>

<organization>
<name>Stein Magnus Jodal</name>
</organization>

<parent>
<groupld>no.jodal.query</groupld>
<artifactId>playground</artifactId>
<version>1.0 —SNAPSHOT</version>
</parent>

<dependencies>
<dependency>
<groupld>javax . persistence</groupld>
<artifactId>persistence —api</artifactId>
<version>1.0</version>
</dependency>

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.5.6</version>

59

B.1 playground-core/ B Playground Core Project

32 </dependency>

33

34 <dependency>

35 <groupld>org. hibernate</groupld>

36 <artifactId>hibernate</artifactId>

37 </dependency>

38

39 <dependency>

40 <groupld>log4j</groupld>

41 <artifactId>log4j</artifactId>

42 <version>1.2.14</version>

43 </dependency>

44

45 <dependency>

46 <groupld>hsqldb</groupld>

47 <artifactId>hsqldb</artifactId>

48 <version>1.8.0.7</version>

49 <scope>runtime</scope>

50 </dependency>

51

52 <dependency>

53 <groupld>org. hibernate</groupld>

54 <artifactId>hibernate—annotations</artifactId>
55 <scope>runtime</scope>

56 </dependency>

57

58 <dependency>

59 <groupld>com.mysema. querydsl</groupId>
60 <artifactId>querydsl—hql</artifactId>
61 <version>0.2.9 —SNAPSHOT</version>

62 </dependency>

63

64 <dependency>

65 <groupld>com.mysema. querydsl</groupld>
66 <artifactId>querydsl—apt</artifactId>
67 <version>0.2.9 —SNAPSHOT</version>

68 <scope>provided</scope>

69 </dependency>

70 </dependencies>

71

72 <build>

73 <plugins>

74 <plugin>

75 <groupld>org.apache. myfaces.tobago
76 </groupld>

7 <artifactId>maven—apt—plugin</artifactId>
78 <version>1.0.20</version>

79 <executions>

80 <execution>

81 <phase>generate—sources</phase>
82 <goals>

83 <goal>execute</goal>

84 </goals>

85 <configuration>

86 <force>true</force>

87 <fork>false</fork>

88 <factory>

89 com.mysema. query . apt . APTFactory
90 </factory>

91 <generated>

92 target /generated —sources/apt
93 </generated>

60

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

N =

N O Ut W

10
11

12

13
14
15
16
17
18

19
20
21
22
23

25
26
27
28
29
30
31
32

B Playground Core Project B.2 playground-core/src/main/resources/

<nocompile>true</nocompile>
<A>
—AdestPackage=no. jodal.query.playground .domain,
—AdtoPackage=no. jodal.query.playground .domain,
—AnamePrefix=0Q

<showWarnings>true</showWarnings>
<verbose>false</verbose>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

Listing B.1: pom.xml

B.2 playground-core/src/main/resources/

applicationContext.xml

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE beans PUBLIC ”—//SPRING//DID BEAN 2.0//EN”
"http://www.springframework .org/dtd/spring—beans —2.0.dtd”>

<beans>
<bean id="propertyPlaceholderConfigurer”
class="org.springframework . beans. factory.config.
PropertyPlaceholderConfigurer”>
<property name="location” value="classpath:database.properties”></
property>
</bean>
<bean id="dataSource”
class="org.springframework.jdbc.datasource.DriverManagerDataSource
77>
<property name="driverClassName” value="${database.driverClassName
}’7 />
<property name="url” value="${database.url}” />
<property name="username” value="${database.username}” />
<property name="password” value="${database.password}” />
</bean>
<bean id="sessionFactory”
class="org.springframework.orm. hibernate3 . LocalSessionFactoryBean”
>
<property name="dataSource”>
<ref bean="dataSource” />
</property>
<property name="configLocation”>
<value>classpath:hibernate . cfg.xml</value>
</property>
<property name="configurationClass”>
<value>org. hibernate.cfg. AnnotationConfiguration</value>
</property>
<property name="hibernateProperties”>
<props>
<prop key="hibernate.dialect”>${database. dialect }</prop>
</props>
</property>

61

B.2 playground-core/src/main/resources/ B Playground Core Project

33 </bean>
34 |</beans>

Listing B.2: applicationContext.xml

database.properties

In—memory Java database
database.driverClassName=org. hsqldb.jdbcDriver
database. url=jdbc:hsqldb:mem:playground

database . username=sa

database . password=

database. dialect=org. hibernate.dialect . HSQLDialect

S UL W N

Listing B.3: database.properties

hibernate.cfg.xml

<?xml version=’1.0" encoding="utf—-8’7>
<!DOCTYPE hibernate—configuration PUBLIC
”—//Hibernate/Hibernate Configuration DID 3.0//EN”
"http://hibernate.sourceforge.net/hibernate—configuration —3.0.
dtd”>

[N

=~ W

<session—factory>

5

6 |<hibernate—configuration>

7

8 <property name="hibernate.connection.pool_size”>1</property>

9 <property name="show_sql”>false</property>

10 <property name="hibernate.hbm2ddl.auto”>create</property>

11

12 <!— Mapping using annotations —>

13 <mapping class="no.jodal.query.playground.domain.Customer” />

14 <mapping class="no.jodal.query.playground.domain.Invoice” />

15 <mapping class="no.jodal.query.playground.domain.InvoiceLine” />
16 </session—factory>

17 |</hibernate—configuration>

Listing B.4: hibernate.cfg.xml

log4j.properties

Loggers
log4j .rootLogger=DEBUG, Console

=W N =

log4j.logger.org. hibernate=WARN
log4j.logger.org.springframework=WARN
log4j.logger .com.mysema. query=WARN

ot

Console logging

log4j .appender. Console=org.apache.log4j.ConsoleAppender

log4j.appender. Console.layout=org.apache.log4j.PatternLayout

log4j.appender. Console.layout.ConversionPattern=%4r [%t] %5p %c %x —
Yarfon

= OO0

— =

Listing B.5: log4j.properties

62

N =

00~ O T W

— e = e
=W~ O o

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32

B Playground Core Project B.3 playground-core/src/main/java/

B.3 playground-core/src/main/java/

B.3.1 .../no/jodal/query/playground/domain/

Customer.java

package no.jodal.query.playground.domain;

import java.util.HashSet;
import java.util.Set;

import javax.persistence .CascadeType;
import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.OneToMany;
import javax.persistence.Table;

ez
* Customer domain model
*
*x @author Stein Magnus Jodal (Master’s Thesis)
4
QEntity
@Table (name = ”customer”)
public class Customer {
@Id

@GeneratedValue (strategy = GenerationType .AUTO)
private Long id;

private String name;

@OneToMany (mappedBy = ”customer” , cascade = CascadeType.ALL)
private Set<Invoice> invoices;

public void addInvoice(Invoice invoice) {
if (invoices = null) {
invoices = new HashSet<Invoice >();
}
invoices.add(invoice);
invoice .setCustomer (this);

}

public Long getId () {
return id;
}

public Set<Invoice> getInvoices () {
if (invoices = null) {
return new HashSet<Invoice >();
} else {
return invoices;
}
}

public String getName() {
return name;
}

public void setld (Long id) {

63

B.3 playground-core/src/main/java/ B Playground Core Project

56 this.id = id;
57 }
58
59 public void setInvoices (Set<Invoice> invoices) {
60 this.invoices = invoices;
61 }
62
63 public void setName(String name) {
64 this.name = name;
65 }
66
67 @Override
68 public String toString () {
69 return 7 [Customer: id=" + getld () + ”, name=" + getName() + 7]”;
70 }
71|}
Listing B.6: Customer.java
Invoice.java
1 | package no.jodal.query.playground.domain;
2
3 |import java.util.HashSet;
4 |import java.util.Set;
5
6 |import javax.persistence.CascadeType;
7 |import javax.persistence.Entity;
8 |import javax.persistence.GeneratedValue;
9 |import javax.persistence.GenerationType;
10 |import javax.persistence.Id;
11 |import javax.persistence.ManyToOne;
12 | import javax.persistence.OneToMany;
13 |import javax.persistence.Table;
14
15 | /xx
16 * Invoice domain model
17 *
18 * @author Stein Magnus Jodal (Master’s Thesis)
19 * /
20 | QEntity
21 | @Table(name = ”invoice”
22 | public class Invoice {
23 @Id
24 @GeneratedValue(strategy = GenerationType .AUTO)
25 private Long id;
26
27 @ManyToOne
28 private Customer customer;
29
30 @OneToMany (mappedBy = ”invoice”, cascade = CascadeType.ALL)
31 private Set<InvoiceLine> invoiceLines;
32
33 public void addInvoiceLine(InvoiceLine invoiceLine) {
34 if (invoiceLines = null) {
35 invoiceLines = new HashSet<InvoiceLine >();
36 }
37 invoiceLines.add(invoiceLine);
38 invoiceLine.setInvoice (this);
39 }

64

B Playground Core Project B.3 playground-core/src/main/java/

40
41 public Customer getCustomer () {
42 return customer;
43 }
44
45 public Long getld () {
46 return id;
47 }
48
49 public Set<InvoiceLine> getInvoiceLines () {
50 if (invoiceLines =— null) {
51 return new HashSet<InvoiceLine >();
52 } else {
53 return invoicelines;
54 }
55 }
56
57 public void setCustomer (Customer customer) {
58 this.customer = customer;
59 |}
60
61 public void setld(Long id) {
62 this.id = id;
63 }
64
65 public void setInvoiceLines (Set<InvoiceLine> lines) {
66 this.invoicelLines = lines;
67 }
68
69 @QOverride
70 public String toString () {
71 return ” [Invoice: id=" + getld() + ”, customer=" 4+ getCustomer ()
72 + 7, numLines=" + getInvoiceLines ().size() + ”]”;
73 |}
74 |}
Listing B.7: Invoice.java
InvoiceLine.java
1 | package no.jodal.query.playground.domain;
2
3 |import javax.persistence.Entity;
4 |import javax.persistence.GeneratedValue;

5 |import javax.persistence.GenerationType;
import javax.persistence.Ild;

import javax.persistence .ManyToOne;

8 |import javax.persistence.Table;

9

N o

10 | /=

11 * InvoiceLine domain model

12 *

13 * @author Stein Magnus Jodal (Master’s Thesis)
14 */

15 | @QEntity

16 | @QTable(name = ”invoice_line”)

17 | public class InvoiceLine {

18 @Id

19 @GeneratedValue (strategy = GenerationType .AUTO)
20 private Long id;

65

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53
54
55

15
16
17
18

B.3 playground-core/src/main/java/ B Playground Core Project

private int amount;

@ManyToOne
private Invoice invoice;

public int getAmount () {

return amount;

public Long getId () {
return id;
}

public Invoice getInvoice () {
return invoice;

}

public void setAmount(int amount) {
this.amount = amount;

}

public void setld (Long id) {
this.id = id;
}

public void setInvoice(Invoice invoice) {

this.invoice = invoice;
}
public String toString () {
return 7 [InvoiceLine: id=" + getld() + ”, invoice=" + getlnvoice ()
+ 7, amount=" + getAmount() + 7]”;

Listing B.8: InvoiceLine.java

B.3.2 .../no/jodal/query/playground/dao/

InvoicingDao.java

package no.jodal.query.playground.dao;
import java.util.List;
import org.hibernate. SessionFactory ;

import no.jodal.query.playground.domain. Customer;
import no.jodal.query.playground.domain. Invoice;
import no.jodal.query.playground.domain.InvoiceLine;

VAT
* Interface to be tmplemented in all query variants.
*
* @author Stein Magnus Jodal (Master’s Thesis)
*/
public interface InvoicingDao {
public void setSessionFactory (SessionFactory sessionFactory);

66

B Playground Core Project B.3 playground-core/src/main/java/

19 public void save(Object domainObject);

20

21 public Customer retrieveCustomerById (Long customerld);

22 public List<Customer> retrieveCustomersWithTotalSalesLargerThan (int
amount) ;

23 public List<Customer> searchForCustomer (String name) ;

24 public int retrieveTotalSalesByCustomerName (String name);

25

26 public Invoice retrievelnvoiceByld (Long invoiceld);

27 public List<Invoice> retrievelnvoicesByCustomerId (Long customerld);

28 public List<Invoice> retrievelnvoicesWithTotalAmountLargerThan (int
amount) ;

29 public List<Object[]> retrievelnvoicesAndTotalAmounts();

30

31 public InvoiceLine retrievelnvoiceLineByid (Long invoiceLineld);

32 public List<InvoiceLine> retrievelnvoiceLinesByInvoiceld (Long
invoiceld);

33 |}

Listing B.9: InvoicingDao.java

InvoicingDaolmpl.java

1 | package no.jodal.query.playground.dao;

2

3 |import java.util.ArrayList;

4 |import java.util.List;

5

6 |import no.jodal.query.playground.domain.Customer;

7 |import no.jodal.query.playground.domain. Invoice;

8 |import no.jodal.query.playground.domain.InvoiceLine;

9

10 |import org.hibernate. Session;

11 |import org.hibernate.SessionFactory;

12

13 | /*x

14 * Partial implementation of the {@link InvoicingDao} interface.
15 *

16 * @author Stein Magnus Jodal (Master’s Thesis)

17 */

18 | public abstract class InvoicingDaolmpl implements

19 InvoicingDao {

20 SessionFactory sessionFactory;

21 Session session;

22

23 public void setSessionFactory (SessionFactory sessionFactory) {
24 this.sessionFactory = sessionFactory;

25 }

26

27 public Session getSession () {

28 if (session = null || !session.isOpen()) {

29 session = sessionFactory.openSession () ;

30 }

31 return session;

32 }

33

34 public Customer retrieveCustomerBylId (Long customerlId) {
35 return (Customer) getSession ().get(Customer.class, customerld);
36 }

37

67

38
39
40
41
42
43

44
45
46

47

58
59
60

00~ O Ui W N -

=
= O ©

12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

B.3 playground-core/src/main/java/ B Playground Core Project

public Invoice retrievelnvoiceByld (Long invoiceld) {
return (Invoice) getSession().get(Invoice.class, invoiceld);
}

public InvoiceLine retrievelnvoiceLineByid (Long invoiceLineld) {
return (InvoiceLine) getSession().get(InvoiceLine.class,
invoiceLineld);

}

public List<InvoiceLine> retrievelnvoiceLinesByInvoiceld (Long
invoiceld) {
Invoice invoice = (Invoice) getSession().get(Invoice.class,
invoiceld);
return new ArrayList<InvoiceLine >(invoice.getInvoiceLines());

}

public List<Invoice> retrievelnvoicesByCustomerId (Long customerId) {
Customer customer = (Customer) getSession ().get(Customer.class,
customerld) ;
return new ArrayList<Invoice >(customer. getInvoices());

}

public void save(Object domainObject) {
getSession () .save (domainObject) ;

Listing B.10: InvoicingDaolmpl.java

InvoicingDaoTest.java

package no.jodal.query.playground.dao;

import static org.junit.Assert.assertEquals;
import static org.junit. Assert.assertFalse;
import static org.junit.Assert.assertNotNull;
import static org.junit. Assert.assertTrue;

import java.util.List;

import no.jodal.query.playground.domain.Customer;
import no.jodal.query.playground.domain.Invoice;
import no.jodal.query.playground.domain.InvoiceLine;

import org.hibernate.SessionFactory;

import org.junit.Before;

import org.junit.Test;

import org.springframework.context. ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext ;

Vix:
x Integration tests for implementations of InvoicingDao.
*
*x @author Stein Magnus Jodal (Master’s Thesis)
*/
public abstract class InvoicingDaoTest {
InvoicingDao invoicingBusinessFacade;
Customer customerl, customer2;
Invoice invoicel , invoice2;

68

29
30
31

32
33
34
35
36

37
38

39

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

68
69
70
71
72
73
74
75
76
"
78
79
80

82
83
84
85
86
87

B Playground Core Project B.3 playground-core/src/main/java/

InvoiceLine invoiceLinel , invoiceLine2 , invoiceLine3 , invoiceLine4;

public void setInvoicingBusinessFacade (InvoicingDao
invoicingBusinessFacade) {
this.invoicingBusinessFacade = invoicingBusinessFacade;

}

public SessionFactory getSessionFactory () {
ApplicationContext applicationContext = new
ClassPathXmlApplicationContext (
”?applicationContext .xml”);
return (SessionFactory) applicationContext.getBean(” sessionFactory
)5
}

@Before

public void setUp () throws Exception {
invoiceLinel = new InvoiceLine();
invoiceLinel .setAmount (900) ;
invoiceLine2 = new InvoiceLine () ;
invoiceLine2 .setAmount (200) ;
invoicel = new Invoice();
invoicel .addInvoiceLine(invoiceLinel);
invoicel .addInvoiceLine (invoiceLine2);
customerl = new Customer () ;
customerl .setName (” Alice”);
customerl.addInvoice (invoicel);

invoiceLine3 = new InvoiceLine () ;
invoiceLine3 .setAmount (750) ;
invoiceLine4 = new InvoiceLine () ;
invoiceLine4 .setAmount (250) ;

invoice2 = new Invoice();
invoice2.addInvoiceLine(invoiceLine3);
invoice2.addInvoiceLine (invoiceLine4);
customer2 = new Customer () ;
customer2.setName (”Bob”) ;
customer2.addInvoice(invoice2);

invoicingBusinessFacade .save (customerl) ;
invoicingBusinessFacade .save(customer2);

}

QTest

public void testSave () {
assertNotNull (customerl.getId ());
assertNotNull (invoicel.getId ());
assertNotNull (invoiceLinel . getId ());

}

QTest
public void testRetrieveCustomerById () {
Customer customer2 = invoicingBusinessFacade

.retrieveCustomerById (customerl.getId());
assertEquals (customerl, customer2);

}

Q@Test

public void testRetrieveCustomersWithTotalSalesLargerThan () {
int amount = 1000;
List <Customer> customers = invoicingBusinessFacade

.retrieveCustomersWithTotalSalesLargerThan (amount) ;

69

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148

B.3 playground-core/src/main/java/ B Playground Core Project

assertTrue (customers. contains (customerl));
assertFalse (customers.contains (customer2));

}

@Test
public void testRetrievelnvoicesWithTotalAmountLargerThan () {
int amount = 1000;
List<Invoice> invoices = invoicingBusinessFacade
.retrievelnvoicesWithTotalAmountLargerThan (amount) ;
assertTrue (invoices.contains(invoicel));
assertFalse(invoices.contains(invoice2));

}

QTest
public void testRetrievelnvoicesAndTotalAmounts () {
List <Object[] > invoicesAndTotalAmounts = invoicingBusinessFacade

.retrievelnvoicesAndTotalAmounts () ;
assertEquals (2, invoicesAndTotalAmounts.size ());
for (Object[] tuple : invoicesAndTotalAmounts) {

int totalAmount;
if (tuple[0] instanceof Long) {
// HQL returns a Long
totalAmount = ((Long) tuple[0]).intValue();
} else {
// Criteria returns an Integer
totalAmount = ((Integer) tuple[0]).intValue();

// Invoice invoice = (Invoice) tuple[1];
assertTrue (totalAmount = 1000 || totalAmount = 1100);
}
}

@Test
public void testSearchForCustomerNull () {
List <Customer> customers = invoicingBusinessFacade

.searchForCustomer (null);
assertEquals (0, customers.size());

}

Q@Test
public void testSearchForCustomerFail () {
List <Customer> customers = invoicingBusinessFacade

.searchForCustomer (”Bob”) ;
assertFalse (customers. contains (customerl));

}

Q@QTest
public void testSearchForCustomerSuccess () {
List <Customer> customers = invoicingBusinessFacade

.searchForCustomer (customerl .getName ()) ;
assertTrue (customers. contains (customerl));

}

QTest
public void testRetrievelnvoiceById () {
Invoice invoice2 = invoicingBusinessFacade.retrievelnvoiceById (
invoicel
Lgetld () ;

assertEquals (invoicel , invoice2);

}

@QTest

70

B Playground Core Project B.4 playground-core/src/test/java/

149 public void testRetrievelnvoicesByCustomerld () {

150 List<Invoice> invoices = invoicingBusinessFacade
151 .retrievelnvoicesByCustomerld (customerl. getId ());
152 assertEquals (1, invoices.size());

153 assertTrue (invoices.contains(invoicel));

154 }

155

156 @Test

157 public void testRetrieveInvoiceLineByid () {

158 InvoiceLine invoiceLine2 = invoicingBusinessFacade
159 .retrievelnvoiceLineByid (invoiceLinel.getId ());
160 assertEquals (invoiceLinel , invoiceLine2);

161 }

162

163 @Test

164 public void testRetrievelnvoiceLinesByInvoiceld () {
165 List<InvoiceLine> invoiceLines = invoicingBusinessFacade
166 .retrievelnvoiceLinesByInvoiceld (invoicel.getId());
167 assertEquals (2, invoiceLines.size());

168 assertTrue(invoiceLines. contains (invoiceLinel));
169 assertTrue (invoiceLines.contains(invoiceLine2));
170 }

171

172 @Test

173 public void testRetrieveTotalSalesByCustomerName () {
174 assertEquals (1100, invoicingBusinessFacade

175 .retrieveTotalSalesByCustomerName (” Alice”));
176 assertEquals (1000, invoicingBusinessFacade

177 .retrieveTotalSalesByCustomerName (”Bob”)) ;

178 }

179 |}

Listing B.11: InvoicingDaoTest.java

B.4 playground-core/src/test/java/

B.4.1 .../no/jodal/query/playground/domain/

CustomerTest.java
1 | package no.jodal.query.playground.domain;
2
3 |import static org.junit.Assert.x;
4
5 |import java.util.Collection;
6 |import java.util.HashSet;
7 |import java.util.Set;
8

9 |import org.junit.Before;
10 |import org. junit.Test;

11

12 | /*x

13 x Unit tests for {@link Customer}
14 *

15 * @author Stein Magnus Jodal (Master’s Thesis)
16 */

17 | public class CustomerTest {

18 Customer customer ;

71

B.4 playground-core/src/test/java/ B Playground Core Project

19

20 @Before

21 public void setUp () throws Exception {

22 customer = new Customer () ;

23 }

24

25 QTest

26 public void testAddInvoice () {

27 Invoice invoicel = new Invoice();

28

29 customer.addInvoice(invoicel);

30

31 Set<Invoice> invoices = customer.getInvoices();
32 assertTrue (invoices.contains(invoicel));

33 assertEquals (customer, invoicel.getCustomer());
34 | 3}

35

36 Q@Test

37 public void testCustomer () {

38 assertNull (customer. getId ());

39 assertNull (customer.getName ()) ;

40 assertNotNull (customer. getInvoices ());

41 }

42

43 Q@Test

44 public void testGetInvoicesEmpty () {

45 Set<Invoice> invoices = customer.getlnvoices();
46

47 assertNotNull (invoices);

48 assertTrue (invoices instanceof Collection);
49 assertEquals (0, invoices.size());

50 |}

51

52 Q@Test

53 public void testSetId () {

54 Long id = 1337L;

55

56 customer . setld (id);

57

58 assertEquals (id, customer.getId());

59 }

60

61 Q@Test

62 public void testSetInvoices () {

63 Set<Invoice> invoicesl = new HashSet<Invoice >();
64 invoicesl.add(new Invoice());

65

66 customer.setInvoices (invoicesl);

67 Set<Invoice> invoices2 = customer.getInvoices();
68

69 assertNotNull (invoices2);

70 assertTrue (invoices2.containsAll (invoicesl));
71 }

72

73 Q@Test

74 public void testSetName () {

75 String name = ” Alice”;

76

7 customer . setName (name) ;

78

79 assertEquals (name, customer.getName());

80 | 1}

72

B Playground Core Project B.4 playground-core/src/test/java/

81
82 @Test
83 public void testToString () {
84 String result = customer.toString();
85
86 assertTrue(result.contains(”id="));
87 assertTrue (result.contains (”name="));
88 }
89 |}
Listing B.12: CustomerTest.java
InvoiceTest.java
1 | package no.jodal.query.playground.domain;
2
3 |import static org.junit.Assert.x;
4
5 |import java.util.Collection;
6 |import java.util.HashSet;
7 |import java.util.Set;
8
9 |import org.junit.Before;
10 |import org.junit.Test;
11
12 | /*x
13 x Unit tests for {@link Invoice}
14 *
15 * @author Stein Magnus Jodal (Master’s Thesis)
16 * /
17 | public class InvoiceTest {
18 Invoice invoice;
19
20 @Before
21 public void setUp() throws Exception {
22 invoice = new Invoice();
23 }
24
25 QTest
26 public void testAddInvoiceLine () {
27 InvoiceLine invoiceLinel = new InvoiceLine();
28
29 invoice.addInvoiceLine (invoiceLinel);
30
31 Set<InvoiceLine> invoiceLines = invoice.getInvoiceLines();
32 assertTrue (invoiceLines.contains(invoiceLinel));
33 assertEquals (invoice, invoiceLinel.getInvoice());
34 |}
35
36 Q@Test
37 public void testGetInvoiceLinesEmpty () {
38 Set<InvoiceLine> invoiceLines = invoice.getInvoiceLines();
39
40 assertNotNull (invoiceLines);
41 assertTrue(invoiceLines instanceof Collection);
42 assertEquals (0, invoiceLines.size());
43 }
44
45 @Test
46 public void testInvoice () {

73

B.4 playground-core/src/test/java/ B Playground Core Project

47 assertNull (invoice.getId ());

48 assertNull (invoice.getCustomer());

49 assertNotNull (invoice . getInvoiceLines ());
5 |}

51

52 Q@Test

53 public void testSetCustomer () {

54 Customer customer = new Customer () ;

55 customer .setName (” Alice”) ;

56

57 invoice .setCustomer (customer) ;

58

59 assertEquals (customer, invoice.getCustomer());
60 | 1}

61

62 Q@Test

63 public void testSetlId () {

64 Long id = 1337L;

65

66 invoice.setld (id);

67

68 assertEquals (id, invoice.getId());

69 }

70

71 Q@Test

72 public void testSetInvoiceLines () {

73 Set<InvoiceLine> invoiceLinesl = new HashSet<InvoiceLine >();
74 invoiceLinesl.add (new InvoiceLine());

75

76 invoice.setInvoiceLines (invoiceLinesl);
7 Set<InvoiceLine> invoiceLines2 = invoice.getIlnvoiceLines();
78

79 assertNotNull (invoiceLines2);

80 assertTrue (invoiceLines2.containsAll (invoiceLinesl));
81 }

82

83 QTest

84 public void testToString () {

85 String result = invoice.toString();

86

87 assertTrue(result.contains (”id="));

88 assertTrue (result.contains (” customer="));
89 assertTrue (result.contains ("numLines="));
9 | 1}

91 |}

Listing B.13: InvoiceTest.java

InvoiceLineTest.java

1 | package no.jodal.query.playground.domain;
2

3 |import static org.junit. Assert.x;

4

5 |import org.junit.Before;

6 |import org.junit.Test;

7

8 | /xx*

9 x Unit tests for {@link InvoiceLine}

10 *

74

11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

B Playground Core Project B.4 playground-core/src/test/java/

* @author Stein Magnus Jodal (Master’s Thesis)
*/
public class InvoiceLineTest {

InvoiceLine invoicelLine;

@Before
public void setUp() throws Exception {
invoiceLine = new InvoiceLine();

}

QTest

public void testInvoiceLine () {
assertNull (invoiceLine.getId());
assertEquals (0, invoiceLine.getAmount());
assertNull (invoiceLine. getInvoice ());

}

QTest
public void testSetAmount () {
int amount = 12345;

invoiceLine .setAmount (amount) ;

assertEquals (amount, invoiceLine.getAmount());

}

QTest

public void testSetId () {
Long id = 1337L;

invoiceLine.setId (id);

assertEquals (id, invoiceLine.getId());

}

QTest
public void testSetInvoice () {
Invoice invoice = new Invoice();

invoiceLine.setInvoice (invoice);

assertEquals (invoice, invoiceLine.getInvoice());

}

@Test
public void testToString () {
String result = invoiceLine.toString();

assertTrue (result.contains(”7id="));
assertTrue(result.contains(”invoice="));
assertTrue (result.contains (”amount="));

Listing B.14: InvoiceLineTest.java

75

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Appendix C

Playground Hibernate
Project

This appendix contains the Hibernate playground project, which tests HQL
and the Criteria API.

C.1 playground-hibernate/

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0” xmlns:xsi="http://
www.w3.org /2001 /XMLSchema—instance”
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven—v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>
<groupld>no. jodal.query</groupld>
<artifactId>playground—hibernate</artifactId>
<version>1.0 —SNAPSHOT</version>
<packaging>jar</packaging>

<name>Playground Hibernate</name>

<organization>
<name>Stein Magnus Jodal</name>
</organization>

<parent>
<groupld>no. jodal.query</groupld>
<artifactId>playground</artifactId>
<version>1.0 —SNAPSHOT</version>
</parent>

<dependencies>
<dependency>
<groupld>no.jodal.query</groupld>
<artifactId>playground—core</artifactId>
</dependency>

<dependency>
<groupld>org. hibernate</groupld>

7

29
30
31
32

00~ O Ui W N -

=
= O ©

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

42

C.2 playground-hibernate/src/main/java/ C Playground Hibernate Project

<artifactId>hibernate</artifactId>
</dependency>
</dependencies>
</project>

Listing C.1: pom.xml

C.2 playground-hibernate/src/main/java/

C.2.1 .../no/jodal/query/playground/dao/

InvoicingDaoCriterialmpl.java

package no.jodal.query.playground.dao;
import java.util.List;

import no.jodal.query.playground.domain. Customer;
import no.jodal.query.playground.domain.Invoice;

import org.hibernate.criterion.Projections;
import org.hibernate.criterion.Restrictions;

VAT

x Criteria implementation of {@link InvoicingDao}
*

* @author Stein Magnus Jodal (Master’s Thesis)
*/

public class InvoicingDaoCriterialmpl extends InvoicingDaolmpl {
public List<Customer> retrieveCustomersWithTotalSalesLargerThan (int
amount) {
// XXX This is not possible to Implement using Criteria, since
// it does not support the HAVING clause in SQL
throw new RuntimeException (”Method not implemented”);

}

@SuppressWarnings (” unchecked”)
public List<Object[] > retrievelnvoicesAndTotalAmounts () {

return getSession ().createCriteria(Invoice.class, ”invoice”)

.createAlias (”invoiceLines”, ”invoiceLine”)

.setProjection (Projections.projectionList ()
.add(Projections.sum(”invoiceLine.amount”), ”totalAmount”)
.add(Projections.groupProperty (”invoiceLine.invoice”)))

Clist ()

}

public List<Invoice> retrievelnvoicesWithTotalAmountLargerThan (int
amount) {
// XXX This is not possible to Implement using Criteria, since
// it does not support the HAVING clause in SQL
throw new RuntimeException (”Method not implemented”);

}

@SuppressWarnings (” unchecked”)
public int retrieveTotalSalesByCustomerName (String name) {

List results = getSession().createCriteria(Customer.class, ”
customer”)
.add(Restrictions.eq(”name” , name))

78

43
44
45

Ut Ot Ot Ot
=W N =

(S 3
t

(S5
~N

00~ O U W

16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35
36
37

C Playground Hibernate Project C.2 playground-hibernate/src/main/java/

.createAlias (”invoices”, ”invoice”)

.createAlias (”invoice.invoiceLines”, ”invoiceLine”)

.setProjection (Projections.projectionList ()
.add(Projections.sum(”invoiceLine .amount”), ”totalSales”))

Clist ()

return ((Integer) results.get(0)).intValue();

}

@SuppressWarnings (” unchecked”)
public List<Customer> searchForCustomer(String name) {
return getSession().createCriteria(Customer.class)
.add(Restrictions.eq(”name” , name))
Llist ()

Listing C.2: InvoicingDaoCriterialmpl.java

InvoicingDaoHqlImpl.java

package no.jodal.query.playground.dao;
import java.util.List;

import no.jodal.query.playground.domain.Customer;
import no.jodal.query.playground.domain.Invoice;

ez
x HQL implementation of {@link InvoicingDao}
*
* @author Stein Magnus Jodal (Master’s Thesis)
*/
public class InvoicingDaoHqllmpl extends InvoicingDaolmpl {
@SuppressWarnings (” unchecked”)
public List<Customer> retrieveCustomersWithTotalSalesLargerThan (int
amount) {
XXX Why must we ”group by customer, customer.name” and not just
Y g9 p by ; J
7group by customer”?
// "group by
String query = ”select customer
4+ ”inner join customer.invoices as invoice
4+ ”inner join invoice.invoicelLines as invoiceLine
+ ”group by customer, customer.name ”
+ ”"having sum(invoiceLine.amount) > :amount”;
return getSession ().createQuery (query).setInteger (”amount” , amount

)
Llist () ;

2 9

+ ”from Customer as customer
”

”

}

@SuppressWarnings (” unchecked”)
public List<Object[]> retrievelnvoicesAndTotalAmounts () {
// XXX Why must we “group by invoice, invoice.customer” and not

Just
// 7group by invoice”?
String query = ”select sum(invoiceLine.amount), invoice ”

+ 7"from Invoice as invoice ”

4+ ”inner join invoice.invoiceLines as invoiceLine
+ ”group by invoice, invoice.customer”;
return getSession ().createQuery (query).list ();

}

”

79

38
39

40

66
67

=W N =

ot

(el e

C.3 playground-hibernate/src/test /java/ C Playground Hibernate Project

@SuppressWarnings (” unchecked”)
public List<Invoice> retrievelnvoicesWithTotalAmountLargerThan (int
amount) {
// XXX Why must we “group by invoice, inwvoice.customer” and not

Just
// 7group by invoice”?
String query = ”select invoice ” + ”"from Invoice as invoice ”

+ ”inner join invoice.invoiceLines as invoiceLine ”

+ ”group by invoice, invoice.customer ”
+ ”"having sum(invoiceLine.amount) > :amount”;
return getSession ().createQuery(query).setInteger (?amount” , amount
)
Clist ()
}

uppressWarnings (” unchecke
@S W ? hecked”
ublic int retrieveTotalSales ustomerName ring name
bl t t TotalSalesByCust N St
String query = ”"select sum(invoiceLine.amount) ”
+ 7from Customer as customer ”
+ ”inner join customer.invoices as invoice
+ ”inner join invoice.invoicelLines as invoicelLine

”

”

+ ”where customer.name = :name” ;

List results = getSession ().createQuery(query).setString (”name” ,
name)
Clist ()

return ((Long) results.get(0)).intValue();

@SuppressWarnings (” unchecked”)
public List <Customer> searchForCustomer (String name) {

String query = ”from Customer as customer where customer.name =
name” ;

return getSession ().createQuery(query).setString (”name”, name).
list ();

Listing C.3: InvoicingDaoHqllmpl.java

C.3 playground-hibernate/src/test/java/

C.3.1 .../no/jodal/query/playground/dao/

InvoicingDaoCriterialmplTest.java

package no.jodal.query.playground.dao;

import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;

Vix:

x Integration test adapter for {@link InvoicingDaoCriterialmpl}

*

* @author Stein Magnus Jodal (Master’s Thesis)

*/

public class InvoicingDaoCriterialmplTest extends InvoicingDaoTest {
@Before

80

16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34

Tk W N =

© 00N>

— =
= O

12
13
14

15
16
17
18
19

C Playground Hibernate Project C.3 playground-hibernate/src/test/java/

public void setUp() throws Exception {
InvoicingDao invoicingDao = (InvoicingDao) new
InvoicingDaoCriterialmpl () ;
invoicingDao .setSessionFactory (getSessionFactory ());
setInvoicingBusinessFacade (invoicingDao);
super.setUp () ;

}

@Ignore

@QOverride

QTest

public void testRetrieveCustomersWithTotalSalesLargerThan () {
// Not possible with Criteria

@Ignore

@Override

QTest

public void testRetrievelnvoicesWithTotalAmountLargerThan () {
// Not possible with Criteria

Listing C.4: InvoicingDaoCriterialmplTest.java

InvoicingDaoHqlImplTest.java

package no.jodal.query.playground.dao;

import org.junit.Before;

VEx:

x Integration test adapter for {@link InvoicingDaoHqllmpl}

*

* @author Stein Magnus Jodal (Master’s Thesis)

*/

public class InvoicingDaoHqllmplTest extends
InvoicingDaoTest {

@Before
public void setUp() throws Exception {
InvoicingDao invoicingDao = (InvoicingDao) new InvoicingDaoHqllmpl
O

invoicingDao .setSessionFactory (getSessionFactory ());
setInvoicingBusinessFacade (invoicingDao);
super.setUp () ;

Listing C.5: InvoicingDaoHqlImplTest.java

81

TUs W N

(Ol e

11
12
13
14
15
16
17
18
19
20

22
23
24
25
26
27

Appendix D

Playground Querydsl Project

This appendix contains the Querydsl playground project, which tests the
Querydsl API on top of Hibernate.

D.1 playground-querydsl/

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0” xmlns:xsi="http://
www.w3.org /2001 /XMLSchema—instance”
xsi:schemaLocation="http://maven. apache.org/POM/4.0.0 http://maven.
apache.org/maven—v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>
<groupld>no.jodal.query</groupld>
<artifactId>playground—querydsl</artifactId>
<version>1.0 —SNAPSHOT</version>
<packaging>jar</packaging>

<name>Playground Querydsl</name>

<organization>
<name>Stein Magnus Jodal</name>
</organization>

<parent>
<groupld>no.jodal.query</groupld>
<artifactId>playground</artifactId>
<version>1.0 —SNAPSHOT</version>
</parent>

<dependencies>
<dependency>
<groupld>no. jodal.query</groupld>
<artifactId>playground—core</artifactId>
</dependency>
</dependencies>
</project>

Listing D.1: pom.xml

83

[N

00 ~1 O U W

— e e
=W = O o

15
16
17
18
19

21
22
23

24
25
26
27
28
29

49
50
51
52
53

D.2 playground-querydsl/src/main/java/ D Playground Querydsl Project

D.2 playground-querydsl/src/main/java/

D.2.1 .../no/jodal/query/playground/dao/

InvoicingDaoQuerydslImpl.java

package no.jodal.query.playground.dao;
import static com.mysema.query .grammar.HqlGrammar . *;

import java.util.Collections;
import java.util.List;

import no.jodal.query.playground.domain. Customer;
import no.jodal.query.playground.domain.Invoice;
import no.jodal.query.playground.domain.QCustomer;
import no.jodal.query.playground.domain. QInvoice;
import no.jodal.query.playground.domain.QInvoiceLine;

import com.mysema.query.grammar. types.Expr. EEntity;
import com.mysema. query . hql.HqlQuery;

Vir:

x Querydsl implementation of {@link InvoicingDao}

*

x @author Stein Magnus Jodal (Master’s Thesis)

*/

public class InvoicingDaoQuerydslImpl extends InvoicingDaolmpl {
public List <Customer> retrieveCustomersWithTotalSalesLargerThan (int

amount) {

QCustomer customer = new QCustomer(” customer”);
QInvoice invoice = new Qlnvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);

// I had some problems here, but they are now solved.
// See https://bugs.launchpad.net/querydsl/+bug/326650
List <Customer> results = from (customer)
.innerJoin (customer.invoices.as(invoice))
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.groupBy (customer , customer .name)
.having (sum(invoiceLine .amount) . gt (amount))
.list (customer);
return results;

}

public List<Object[] > retrievelnvoicesAndTotalAmounts () {
QInvoice invoice = new QInvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);
List<Object[] > results = from(invoice)
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.groupBy (invoice, invoice.customer)
.list (sum(invoiceLine.amount), invoice);
return results;

}

public List<Invoice> retrievelnvoicesWithTotalAmountLargerThan (int
amount) {
QInvoice invoice = new QInvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);
// I had some problems here, but they are now solved.
// See https://bugs.launchpad.net/querydsl/+bug/326650
List<Invoice> results = from(invoice)

84

54
55
56
57
58
59
60
61
62
63
64
65
66

68
69
70
71
72
73

75
76
T
78
79
80

82
83
84
85
86
87

89

00~ O U W

= = e
W= O

D Playground Querydsl Project ~ D.3 playground-querydsl/src/test/java/

.innerJoin (invoice.invoiceLines.as(invoiceLine))
.groupBy (invoice, invoice.customer)
.having (sum(invoiceLine .amount) . gt (amount))
.list (invoice);
return results;

}

public int retrieveTotalSalesByCustomerName (String name) {

QCustomer customer = new QCustomer(” customer”);
QInvoice invoice = new QInvoice(”invoice”);
QInvoiceLine invoiceLine = new QInvoiceLine(”invoiceLine”);

// I had some problems here, but they are now solved.
// See https://bugs.launchpad.net/querydsl/+bug/326650
List<Integer> results = from (customer)
.innerJoin (customer.invoices.as(invoice))
.innerJoin (invoice.invoiceLines.as(invoiceLine))
.where (customer .name. eq (name))
.list (sum(invoiceLine.amount).intValue());
return results.get (0);

}

public List<Customer> searchForCustomer(String name) {

if (name =— null) {
return Collections.emptyList();
} else {
QCustomer customer = new QCustomer(” customer”);

return from (customer)
.where (customer .name. eq (name))
.list (customer);
}
}

private HqlQuery from (EEntity <?>... s) {
return new HqlQuery(getSession ()).from(s);
}
}

Listing D.2: InvoicingDaoQuerydsllmpl.java

D.3 playground-querydsl/src/test/java/

D.3.1 .../no/jodal/query/playground/dao/
InvoicingDaoQuerydslImplTest.java

package no.jodal.query.playground.dao;
import org.junit.Before;

/%%
x Integration test adapter for {@link InvoicingDaoQuerydslImpl}
*
* @author Stein Magnus Jodal (Master’s Thesis)
*/
public class InvoicingDaoQuerydslImplTest extends InvoicingDaoTest {
@Before
public void setUp() throws Exception {
InvoicingDao invoicingDao = (InvoicingDao) new
InvoicingDaoQuerydslImpl () ;

85

14
15
16
17
18

D.3 playground-querydsl/src/test /java/ D Playground Querydsl Project

}

}

invoicingDao .setSessionFactory (getSessionFactory ());
setInvoicingBusinessFacade (invoicingDao);
super.setUp () ;

Listing D.3: InvoicingDaoQuerydsllmplTest.java

86

Tk W N =

[=>]

10
11
12
13
14
15
16
17
18
19
20
21

22
23

Appendix E

Iterate LeanCast

This appendix contains the relevant part of Iterate’s LeanCast project.
PersistenceFacade, HibernatePersistenceFacade, and HibernatePersistence-
FacadeTest has been taken almost unchanged from the LeanCast project.
QuerydslPersistenceFacade and QuerydslPersistenceFacadeTest has been
implemented as an alternative implementation of PersistenceFacade using
the Querydsl API. See Chapter 5 for more information on this work.

E.1 leancast-business/src/main/java

E.1.1 .../no/iterate/leancast/dao/

PersistenceFacade.java

package no.iterate.leancast.dao;

import java.util.Date;
import java.util.List;

import no.iterate.leancast.business.exceptions.
IntervalOutOfRangeException;

import no.iterate.leancast.domain. Message;

import no.iterate.leancast.domain.Nag;

import no.iterate.leancast.domain.SmsMessage;

import no.iterate.leancast.domain. User;

import no.iterate.leancast.exceptions.ConstraintViolationException;

import no.iterate.leancast.exceptions.SmsMessageNotFoundException;

import no.iterate.leancast.exceptions.UserNotFoundException;

/%%

x* Interface between the the business layer and the persistence store.

*

* @author Iterate Summer Project 2008

*/

public interface PersistenceFacade {

public void save(Object domainObject) throws

ConstraintViolationException ;

public void delete (Object domainObject) ;

87

24
25
26
27
28
29
30
31

33
34
35
36

38
39
40
41
42
43

44
45
46
47
48
49
50
51
52

16
17
18
19
20
21
22
23
24

E.1 leancast-business/src/main/java

E Iterate LeanCast

public
public
public

public

List<User> retrieveAllUsers () ;
List <Message> retrieveConversation (User userl, User user2);
List <Message> retrieveMessages (Date timestamp);

List <Message> retrieveMessages (User user);

public List<Nag> retrieveNags (Date fromDate, Date toDate)

throws IntervalOutOfRangeException;

public List<SmsMessage> retrieveNewSmsMessages () ;

public SmsMessage retrieveSmsMessage (String identifier)

throws SmsMessageNotFoundException;

public User retrieveUser (int userld) throws UserNotFoundException;

public User retrieveUser (String emailAddress) throws

UserNotFoundException ;

public User retrieveUserByPhoneNumber (String phoneNumberCountryCode ,

String phoneNumber) throws UserNotFoundException;

public User retrieveUserByXmppAddress(String xmppAddress)

throws UserNotFoundException;

public List<User> retrieveUsers (Date lastModified);

Listing E.1: PersistenceFacade.java

HibernatePersistenceFacade.java

package no.iterate.leancast.dao;

import
import
import
import

import

import
import
import
import
import
import
import

import
import
import
import
import
import
import
import

java.sql.Time;
java.util.Calendar;
java.util.Date;
java.util. List;

no.iterate.leancast.business.exceptions.
IntervalOutOfRangeException ;

no.
no.
no.
no.
no.
no.
no.

org.
org.
org.
org.
org.
org.
org.
org.

iterate .leancast
iterate.leancast
iterate .leancast
iterate.leancast
iterate.leancast.
iterate.leancast.
iterate.leancast

hibernate .
hibernate.
hibernate .
hibernate.
hibernate .
hibernate.
hibernate.
springframework .orm.

Criteria;

.domain . Message ;

.domain . Nag;

.domain . SmsMessage ;

.domain. User;

exceptions. ConstraintViolationException ;
exceptions.SmsMessageNotFoundException;
.exceptions . UserNotFoundException;

HibernateException;

Session ;

Transaction ;

criterion .

criterion
criterion

CriteriaSpecification;

.LogicalExpression;
.Restrictions;

hibernate3 .support.HibernateDaoSupport ;

88

25
26
27
28
29
30
31
32
33
34

35
36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78

80
81
82

83
84

E Iterate LeanCast E.1 leancast-business/src/main/java

import org.springframework.transaction.annotation. Transactional;

VxS

x Hibernate implementation of the PersistenceFacade interface.

ES

* @author Iterate Summer Project 2008

* @see PersistenceFacade

*/

@QTransactional

public class HibernatePersistenceFacade extends HibernateDaoSupport
implements
PersistenceFacade {

private Session hibernateSession;

public HibernatePersistenceFacade () {

}

public HibernatePersistenceFacade(Session session) {
setHibernateSession (session);
}

VAT

* Delete an entry from the database
*

* @param domainObject

* the object to be deleted
*/

public void delete (Object domainObject) {
Session session = getHibernateSession () ;
Transaction transaction = session.beginTransaction();
session . delete (domainObject) ;
transaction .commit () ;
session . flush () ;

}

public Session getHibernateSession (
if (hibernateSession = null || !
return getSession () ;

{

)
hibernateSession.isOpen()) {

return hibernateSession;

}

@SuppressWarnings (” unchecked”)
public List<User> retrieveAllUsers () {
Session session = getHibernateSession () ;
Criteria criteria = session.createCriteria(User.class);

List<User> list = criteria.list ();
return list ;

}

@SuppressWarnings (” unchecked”)
public List<Message> retrieveConversation (User userl,
User user2) {
Session session = getHibernateSession () ;
Criteria criteria = session.createCriteria(Message.class);
criteria
.setResultTransformer (CriteriaSpecification .
DISTINCT_ROOT_ENTITY) ;
criteria.createAlias(”receivers”, 7r”);

89

85

86
87
88
89
90

92
93
94
95
96

98

99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141

E.1 leancast-business/src/main/java E Iterate LeanCast

criteria.add(Restrictions.or(Restrictions.and(Restrictions.eq(”

sender” |
userl), Restrictions.eq(”r.id”, user2.getId())), Restrictions
.and(Restrictions.eq(”sender”, user2), Restrictions.eq(”r.id”,
userl.getId()))));
List <Message> list = criteria.list ();

return list ;

}

@SuppressWarnings (” unchecked”)
public List<Message> retrieveMessages (Date timestamp) {

Session session = getHibernateSession ();
Criteria criteria = session.createCriteria(Message.class);
criteria.add(Restrictions.gt(”timestamp” , timestamp));

return (List<Message>) criteria.list ();

}

@SuppressWarnings (” unchecked”)
public List<Message> retrieveMessages (User user) {
Session session = getHibernateSession () ;
Criteria criteria = session.createCriteria(Message.class);
criteria
.setResultTransformer (CriteriaSpecification.
DISTINCT_ROOT_ENTITY) ;
criteria.createAlias(”receivers”, 7r”);

LogicalExpression userEqualsSenderOrReceiver = Restrictions.or(
Restrictions.eq(”sender”, user), (Restrictions.eq(”r.id”, user

.getld ())));

criteria.add(userEqualsSenderOrReceiver);

return (List<Message>) criteria.list ();

}
VAT

* Retrieve a list of mags which should be sent within the given
interval .
* The interval can not be greater than 59 minutes since this could
cause
ambiguous nags.

*
*
* The precision is in minutes.
*

* @throws IntervalOutOfRangeException
*
/
@SuppressWarnings (” unchecked”)
public List<Nag> retrieveNags (Date fromDate, Date toDate)
throws IntervalOutOfRangeException {
if (toDate.getTime() — fromDate.getTime() >= 60 % 60 % 1000) {
throw new IntervalOutOfRangeException (
?The interval was too big. Must be 59 minutes or less.”);
} else if (toDate.before(fromDate)) {
throw new IntervalOutOfRangeException (
?The to date was set before the from date in the interval.”)

}

Session session = getHibernateSession () ;
Transaction transaction = session.beginTransaction () ;

90

E Iterate LeanCast E.1 leancast-business/src/main/java

142 List<Nag> resultset = null;

143 try {

144 Calendar fromCalender = Calendar. getInstance () ;

145 fromCalender .setTime (fromDate) ;

146

147 Calendar toCalender = Calendar. getInstance () ;

148 toCalender.setTime (toDate) ;

149

150 // Get the weekday for the period

151 String [|] days = new String[] { ”sunday”, “monday”, ”tuesday”,

152 ”wednesday” , ”thursday”, ”friday”, ”saturday” };

153 String fromDateDayOfWeekField = days|[fromCalender

154 .get (Calendar .DAY.OF WEEK) — 1];

155 String toDateDayOfWeekField = days[toCalender

156 .get (Calendar .DAY.OF WEEK) — 1];

157

158 // The nag must be active

159 Criteria criteria = session.createCriteria(Nag.class);

160 criteria.add(Restrictions.or(Restrictions.isNull (”start”),

161 Restrictions.le(”start”, fromDate)));

162 criteria.add(Restrictions.or(Restrictions.isNull(”end”),

163 Restrictions.gt(”end”, toDate)));

164

165 // Remove date, second and milliseconds from calendar intervals

166 toCalender.set (0, 0, 0);

167 toCalender.set (Calendar .SECOND, 0);

168 toCalender.set (Calendar .MILLISECOND, 0);

169 fromCalender.set (0, 0, 0);

170 fromCalender. set (Calendar .SECOND, 0);

171 fromCalender. set (Calendar . MILLISECOND, 0);

172

173 // Create time objects from the calendar intervals

174 Time fromTime = new Time(fromCalender.getTimeInMillis());

175 Time toTime = new Time(toCalender.getTimeInMillis ());

176

177 if (!fromDateDayOfWeekField.equals (toDateDayOfWeekField)) { //
If

178 // the interval is not within the same day

179 LogicalExpression before = Restrictions.and(Restrictions.ge(

180 ?time” , fromTime), Restrictions.eq/(

181 fromDateDayOfWeekField, true));

182 LogicalExpression after = Restrictions.and(Restrictions.lt (

183 ?time” , toTime), Restrictions.eq(toDateDayOfWeekField,

184 true));

185 criteria.add(Restrictions.or(before, after));

186 } else if (fromTime.equals(toTime)) {

187 criteria.add(Restrictions.between(”time” , fromTime, toTime));

188 criteria.add(Restrictions.eq(fromDateDayOfWeekField, true));

189 } else {

190 criteria.add(Restrictions.ge(”time”, fromTime));

191 criteria.add(Restrictions.lt (”time”, toTime));

192 criteria.add(Restrictions.eq(fromDateDayOfWeekField, true));

193 }

194

195 // Retrieve the list of results

196 resultset = criteria.list ();

197 transaction.commit () ;

198 } catch (RuntimeException e) {

199 transaction.rollback();

200 } finally {

201 session . flush ();

202 }

91

203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260
261

E.1 leancast-business/src/main/java E Iterate LeanCast

return resultset;

}
Vit

* Retrieve all SMS messages which has not previously been processed

*/
@SuppressWarnings (” unchecked”)
public List<SmsMessage> retrieveNewSmsMessages () {

Session session = getHibernateSession ();
Criteria criteria = session.createCriteria(SmsMessage.class);
criteria.add(Restrictions.eq(” processed”, false));

return (List<SmsMessage>) criteria.list ();

}

@SuppressWarnings (” unchecked”)
public SmsMessage retrieveSmsMessage (String identifier)
throws SmsMessageNotFoundException {

Criteria criteria = getHibernateSession().createCriteria (
SmsMessage . class) ;
criteria.add(Restrictions.eq(”identifier”, identifier));

criteria.setMaxResults (1) ;

List <SmsMessage> resultSet = criteria.list ();

if (resultSet.size() = 0) {
throw new SmsMessageNotFoundException(”identifier=" + identifier
)
} else {

return resultSet.get (0);

}
}

@SuppressWarnings (” unchecked”)
public User retrieveUser (int userld)
throws UserNotFoundException {
Criteria userCriteria = getHibernateSession ()
.createCriteria (User.class);
userCriteria.add(Restrictions.eq(”id”, userld));
userCriteria.setMaxResults (1) ;

List<User> userResultSet = userCriteria.list ();

if (userResultSet.size () = 0) {
throw new UserNotFoundException(”The user id was not found.”);
} else {

return userResultSet.get (0);

}
}

@SuppressWarnings (” unchecked”)
public User retrieveUser (String emailAddress)
throws UserNotFoundException {

Criteria userCriteria = getHibernateSession ()
.createCriteria (User.class);
userCriteria.add(Restrictions.eq(” emailAddress”, emailAddress));

userCriteria.setMaxResults (1) ;

List <User> userResultSet = userCriteria.list ();
if (userResultSet.size () = 0)
throw new UserNotFoundException(”The email address was not found

} else {
return userResultSet.get (0);

92

262
263
264
265
266
267
268
269
270
271
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321

E Iterate LeanCast E.1 leancast-business/src/main/java

}
}

@SuppressWarnings (” unchecked”)
public User retrieveUserByPhoneNumber (String phoneNumberCountryCode ,
String phoneNumber) throws UserNotFoundException {
Criteria userCriteria = getHibernateSession ()
.createCriteria (User.class);
userCriteria.add(Restrictions. like (”phoneNumberCountryCode” ,
phoneNumberCountryCode + ”%”)) ;
userCriteria.add(Restrictions.like (”phoneNumber”, "%” +
phoneNumber)) ;
userCriteria.setMaxResults (1) ;

List<User> userResultSet = userCriteria.list ();
if (userResultSet.size () = 0)
throw new UserNotFoundException(” User with phone number \
+ phoneNumber + ”\” was not found.”);
} else {
return userResultSet.get (0);

}

” 9

}

@SuppressWarnings (” unchecked”)
public User retrieveUserByXmppAddress(String xmppAddress)
throws UserNotFoundException {
Criteria userCriteria = getHibernateSession ()
.createCriteria (User.class);
userCriteria.add(Restrictions.eq(”xmppAddress”, xmppAddress));
userCriteria.setMaxResults (1) ;

List <User> userResultSet = userCriteria.list ();
if (userResultSet.size() = 0) {
throw new UserNotFoundException(” User with XMPP address \””
+ xmppAddress + ”\” was not found.”);
} else {
return userResultSet.get (0);

}
}

@SuppressWarnings (” unchecked”)

public List<User> retrieveUsers (Date lastModified) {
Session session = getHibernateSession () ;
Criteria criteria = session.createCriteria(User.class);
criteria.add(Restrictions.gt(”lastModified”, lastModified));
return (List<User>) criteria.list ();

}

public void save(Object domainObject)
throws ConstraintViolationException {

Session session = getHibernateSession () ;
Transaction transaction = session.beginTransaction();
try {

session .saveOrUpdate (domainObject) ;
} catch (org.hibernate.exception.ConstraintViolationException e) {
transaction.rollback () ;
throw new ConstraintViolationException (e.getMessage());
} catch (HibernateException e) {
// XXX: This is a hack needed because of bad session handling in
the
// daemon system.
// Will first try saveOrUpdate, but catch HibernateEzception

93

322
323
324

326
327
328
329
330
331
332
333
334
335
336
337

00~ O UL W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34

E.1 leancast-business/src/main/java E Iterate LeanCast

// to handle
// 7Illegal attempt to associate a collection with two open
// sessions”. The hack is done by merging the domainObject with

the

// database object and bind it to the current session. Which
allows

// us to update the object in the database.

domainObject = session.merge(domainObject) ;

session .saveOrUpdate (domainObject) ;

}

session . flush () ;
transaction .commit () ;

}

public void setHibernateSession(Session hibernateSession) {
this. hibernateSession = hibernateSession;
}

}

Listing E.2: HibernatePersistenceFacade.java

QuerydslPersistenceFacade.java

package no.iterate.leancast.dao;

import java.sql.Time;
import java.util.Calendar;
import java.util.Date;
import java.util.List;

import no.iterate.leancast.business.exceptions.
IntervalOutOfRangeException;

import no.iterate.leancast.domain. Message;

import no.iterate.leancast.domain.Nag;

import no.iterate.leancast.domain.QMessage;

import no.iterate.leancast.domain.QNag;

import no.iterate.leancast.domain.QSmsMessage;

import no.iterate.leancast.domain.QUser;

import no.iterate.leancast.domain.SmsMessage;

import no.iterate.leancast.domain. User;

import no.iterate.leancast.exceptions.SmsMessageNotFoundException;

import no.iterate.leancast.exceptions.UserNotFoundException;

import org.hibernate.classic.Session;

import com.mysema.query.grammar. types.Expr. EBoolean;
import com.mysema.query .grammar. types.Expr. EEntity;
import com.mysema.query.grammar. types.Path.PBoolean;
import com.mysema.query.hql.HqlQuery;

VAT

* Hibernate implementation of the PersistenceFacade interface,
* using Querydsl for building queries.
*
*

@author Stein Magnus Jodal (Master’s Thesis)
* @see PersistenceFacade
*/
public class QuerydslPersistenceFacade extends
HibernatePersistenceFacade
implements PersistenceFacade {

94

36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

71
72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
88
89
90

92
93

94
95
96

E Iterate LeanCast E.1 leancast-business/src/main/java

Session hibernateSession;

public QuerydslPersistenceFacade () {

}

public QuerydslPersistenceFacade(Session hibernateSession) {
setHibernateSession (hibernateSession);
}

protected HqlQuery from (EEntity<?>... s) {
return new HqlQuery(getHibernateSession ()).from(s);
}

@Override
public List<User> retrieveAllUsers () {
QUser user = new QUser(” user”);

return from (user).list (user);

}

@Override
public List<Message> retrieveConversation (User userl, User user2) {
QMessage message = new QMessage (” message”) ;

return from (message)
.where ((message . sender.eq(userl)
.and (message.receivers.contains (user2)))
.or (message.sender.eq(user2)
.and (message.receivers.contains (userl))))
.list (message) ;

}

@Override
public List<Message> retrieveMessages (Date timestamp) {
QMessage message = new QMessage (” message”) ;

return from (message)
.where (message . timestamp . after (timestamp))
.list (message) ;

}

@QOverride
public List<Message> retrieveMessages (User user) {
QMessage message = new QMessage (” message”) ;
return from (message)
.where (message.sender.eq(user)
r (message.receivers.contains (user)))
.list (message) ;

}

@QOverride
public List<Nag> retrieveNags (Date fromDate, Date toDate)
throws IntervalOutOfRangeException {

if (toDate.getTime() — fromDate.getTime() >= 60 * 60 * 1000) {
throw new IntervalOutOfRangeException (
”"The interval was too big. Must be 59 minutes or less.”);

if (toDate.before (fromDate)) {
throw new IntervalOutOfRangeException (
"The to date was set before the from date in the interval.”)

3

}

QNag nag = new QNag(”nag”);

95

E.1 leancast-business/src/main/java E Iterate LeanCast

97

98 Calendar fromCalender = Calendar. getInstance () ;

99 fromCalender . setTime (fromDate) ;

100 Calendar toCalender = Calendar. getInstance();

101 toCalender .setTime (toDate) ;

102

103 // Get the weekday for the period

104 PBoolean [] weekdays = new PBoolean|[] { nag.sunday, nag.monday,
105 nag.tuesday , nag.wednesday, nag.thursday, nag.friday ,
106 nag.saturday };

107 PBoolean fromDateDayOfWeek = weekdays[fromCalender
108 .get (Calendar .DAY.OF-WEEK) — 1];

109 PBoolean toDateDayOfWeek = weekdays|[toCalender

110 .get (Calendar .DAY.OF WEEK) — 1];

111

112 // Remove date, second and milliseconds from calendar intervals
113 toCalender.set (0, 0, 0);

114 toCalender.set (Calendar .SECOND, 0);

115 toCalender . set (Calendar . MILLISECOND, 0);

116 fromCalender.set (0, 0, 0);

117 fromCalender. set (Calendar .SECOND, 0);

118 fromCalender . set (Calendar . MILLISECOND, 0);

119

120 // Create time objects from the calendar intervals
121 Time fromTime = new Time(fromCalender.getTimeInMillis());
122 Time toTime = new Time(toCalender.getTimeInMillis ());
123

124 EBoolean naglsActive = (nag.start.isnull ()

125 .or(nag.start .before (fromDate)

126 .or (nag.start .eq(fromDate))))

127 .and (nag.end.isnull ()

128 .or(nag.end. after (toDate)));

129 EBoolean nagTimelnInterval;

130

131 if (!fromDateDayOfWeek.equals (toDateDayOfWeek)) {
132 EBoolean after = (nag.time. after (fromTime)

133 .or (nag.time.eq(fromTime)))

134 .and (fromDateDayOfWeek . eq (true)) ;

135 EBoolean before = nag.time.before (toTime)

136 .and (toDateDayOfWeek . eq(true));

137 nagTimelnInterval = before.or(after);

138 } else if (fromTime.equals(toTime)) {

139 nagTimelnInterval = nag.time.eq(fromTime)

140 .and (fromDateDayOfWeek . eq(true)) ;

141 } else {

142 nagTimelnInterval = (nag.time.after (fromTime)

143 .or(nag.time.eq(fromTime)))

144 .and ((nag.time. before (toTime)))

145 .and (fromDateDayOfWeek. eq (true)) ;

146 }

147

148 return from (nag)

149 .where(naglIsActive.and(nagTimelInInterval))

150 .list (nag);

151 }

152

153 @Override

154 public List <SmsMessage> retrieveNewSmsMessages () {
155 QSmsMessage smsMessage = new QSmsMessage (” smsMessage”) ;
156 return from (smsMessage)

157 .where (smsMessage . processed . eq(false))

158 .list (smsMessage) ;

96

E Iterate LeanCast E.1 leancast-business/src/main/java

159 }

160

161 @QOverride

162 public SmsMessage retrieveSmsMessage (String identifier)

163 throws SmsMessageNotFoundException {

164 QSmsMessage smsMessage = new QSmsMessage (” smsMessage”) ;

165 List <SmsMessage> results = from (smsMessage)

166 .where (smsMessage. identifier .eq(identifier))

167 .list (smsMessage) ;

168 if (results.size() = 1) {

169 return results.get (0);

170 } else {

171 throw new SmsMessageNotFoundException (”SMS message (”

172 + identifier + ”) not found.”);

173 }

174 |}

175

176 @Override

177 public User retrieveUser (int userId) throws UserNotFoundException {

178 QUser user = new QUser(” user”);

179 List <User> results = from(user)

180 .where (user.id.eq(userlId))

181 .list (user);

182 if (results.size() = 1) {

183 return results.get (0);

184 } else {

185 throw new UserNotFoundException(”User (” + userId + ”7) not found

)5

186 }

187 }

188

189 @QOverride

190 public User retrieveUser (String emailAddress) throws
UserNotFoundException {

191 QUser user = new QUser(” user”);

192 List <User> results = from (user)

193 .where (user.emailAddress.eq(emailAddress))

194 .list (user);

195 if (results.size() = 1) {

196 return results.get (0);

197 } else {

198 throw new UserNotFoundException(”User (” + emailAddress + ”) not

found.”);

199 }

200 |}

201

202 @Override

203 public User retrieveUserByPhoneNumber (String phoneNumberCountryCode,

204 String phoneNumber) throws UserNotFoundException {

205 QUser user = new QUser(” user”);

206 List<User> results = from(user)

207 .where (user . phoneNumberCountryCode . eq (phoneNumberCountryCode)

208 .and (user . phoneNumber . eq (phoneNumber)))

209 .list (user);

210 if (results.size() = 1) {

211 return results.get (0);

212 } else {

213 throw new UserNotFoundException (” User (”

214 + phoneNumberCountryCode + phoneNumber + ”) not found.”);

215 }

216 }

217

97

218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239

=W N~

N o

9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25

E.2 leancast-business/src/test /java E Iterate LeanCast

@Override
public User retrieveUserByXmppAddress(String xmppAddress)
throws UserNotFoundException {
QUser user = new QUser(” user”);
List<User> results = from (user)
.where (user . xmppAddress.eq(xmppAddress))
.list (user);
if (results.size() = 1) {
return results.get (0);
} else {
throw new UserNotFoundException(” User (” 4+ xmppAddress + ”) not
found.”);
}

}

@Override
public List<User> retrieveUsers (Date lastModified) {
QUser user = new QUser(” user”);
return from (user)
.where (user.lastModified . after (lastModified))
.list (user);

Listing E.3: QuerydslPersistenceFacade.java

E.2 leancast-business/src/test/java

E.2.1 .../no/iterate/leancast/dao/

HibernatePersistenceFacadeTest.java

package no.iterate.leancast.dao;

import static org.junit.Assert.assertArrayEquals;
import static org.junit. Assert.assertEquals;
import static org.junit.Assert.assertNotSame;
import static org.junit. Assert.assertTrue;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;
import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import no.iterate.leancast.Settings;

import no.iterate.leancast.business.exceptions.
IntervalOutOfRangeException;

import no.iterate.leancast.domain.Message;

import no.iterate.leancast.domain.Nag;

import no.iterate.leancast.domain.SmsMessage;

import no.iterate.leancast.domain.Tag;

import no.iterate.leancast.domain.TagType;

import no.iterate.leancast.domain. User;

import no.iterate.leancast.domain.exceptions.
InvalidDomainDataException;

98

26

27
28
29

68
69
70
71
72
73
74
75

"
78
79
80
81
82

E Iterate LeanCast E.2 leancast-business/src/test/java

import no.iterate.leancast.domain.exceptions.
InvalidEmailAddressException;

import no.iterate.leancast.domain.exceptions.InvalidMessageException;

import no.iterate.leancast.exceptions.ConstraintViolationException ;

import no.iterate.leancast.exceptions.SmsMessageNotFoundException;

import no.iterate.leancast.exceptions.UserNotFoundException;

import org.hibernate. SessionFactory;

import org.hibernate.cfg.AnnotationConfiguration;
import org.hibernate.cfg.Environment;

import org.hibernate.classic.Session;

import org.junit.Before;

import org.junit.Test;

VExS

* Unit test for {@link HibernatePersistenceFacade}.
*

x @author Iterate Summer Project 2008

*/

public class HibernatePersistenceFacadeTest {
PersistenceFacade persistenceFacade;

VAT

* Sets up the configuration environment for the Hibernate testing.
The

* tests run on a ”"real” database connection and mnot a mock facade.

*

% @throws FExzception

*/

@Before
public void setUp () throws Exception {
AnnotationConfiguration configuration = new

AnnotationConfiguration () ;

configuration.setProperty (Environment .DRIVER, ”org.hsqldb.
jdbcDriver”);
configuration.setProperty (Environment .URL,
”jdbc: hsqldb :mem: ehourdaotest”) ;
configuration.setProperty (Environment .USER, ”sa”);
configuration.setProperty (Environment .PASS, ”7);
configuration.setProperty (Environment . DIALECT,
“org.hibernate.dialect . HSQLDialect”) ;
configuration.setProperty (Environment . POOL_SIZE, ”17);
configuration.setProperty (Environment .HBM2DDL AUTO, ”create”);

configuration .setProperty (Environment .SHOW.SQL, ” false”);
configuration.setProperty (Environment .HBM2DDL AUTO, ”create”);
configuration.addAnnotatedClass (Message. class) ;
configuration.addAnnotatedClass (Nag. class);
configuration.addAnnotatedClass (SmsMessage. class) ;
configuration.addAnnotatedClass (Tag. class);
configuration.addAnnotatedClass (TagType. class) ;
configuration.addAnnotatedClass (User. class);

SessionFactory sessionFactory = configuration.buildSessionFactory
0

Session session = sessionFactory.openSession();

persistenceFacade = getPersistenceFacade (session);

}

public PersistenceFacade getPersistenceFacade(Session session) {

99

E.2 leancast-business/src/test /java E Iterate LeanCast

83 return new HibernatePersistenceFacade(session);

84 |}

85

86 @Test (expected = ConstraintViolationException.class)

87 public void testAddDuplicateEmail () throws
InvalidEmailAddressException ,

88 ConstraintViolationException {

89 String email = "testaddress@iterate.no”;

90 User user = new User(email);

91 persistenceFacade.save (user);

92 User user2 = new User(email);

93 persistenceFacade .save(user2);

94 }

95

96 Q@QTest

97 public void testDelete () throws InvalidDomainDataException,

98 ConstraintViolationException {

99 assertEquals (0, persistenceFacade.retrieveAllUsers ().size());

100 User user = new User(”test2@email.com”) ;

101 persistenceFacade.save (user);

102 assertEquals (1, persistenceFacade.retrieveAllUsers().size());

103 persistenceFacade . delete (user);

104 assertEquals (0, persistenceFacade.retrieveAllUsers().size());

105 }

106

107 @Test

108 public void testRetrieveAllUsers () throws InvalidDomainDataException

109 ConstraintViolationException {

110 assertEquals (persistenceFacade.retrieveAllUsers ().size (), 0);

111 persistenceFacade .save (new User(”testl@email.com”));

112 persistenceFacade.save (new User(”test2@Qemail.com”));

113 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 2);

114

115 Iterator <User> usersRetrieved = persistenceFacade.retrieveAllUsers

0

116 .iterator ();

117 assertNotSame (usersRetrieved .next (), usersRetrieved.next());

118

119 persistenceFacade .save (new User (”test3@email.com”));

120 persistenceFacade .save (new User (” test4@email.com”));

121 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 4);

122 |}

123

124 @Test (expected = UserNotFoundException. class)

125 public void testRetrieveNonExistingUser () throws
UserNotFoundException {

126 assertEquals (0, persistenceFacade.retrieveAllUsers().size());

127 persistenceFacade.retrieveUser (7 test@example.com”) ;

128 |}

129

130 VAT

131 x Creates a new wuser, saves it and checks that the same wuser is
found, when

132 * using the retrieveUserByEmailAddress method.

133 *

134 * @throws InvalidDomainDataFException

135 * @throws ConstraintViolationExzception

136 * @throws UserNotFoundExzception

137 */

138 QTest

139 public void testRetrieveUser () throws InvalidDomainDataException,

100

140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194
195
196

E Iterate LeanCast E.2 leancast-business/src/test/java

ConstraintViolationException , UserNotFoundException {
String email = ”"testaddress@iterate.no”;
User user = new User(email);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 0);
persistenceFacade .save (user);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);
User savedUser = persistenceFacade.retrieveUser (email);
assertEquals (user, savedUser);

}
Vit

x Creates a new wuser, saves it and checks that the same user is
found, when
using the retrieveUserByld method.

@throws InvalidDomainDataFException

@throws ConstraintViolationEzception

* @throws UserNotFoundException

*/

@Test

public void testRetrieveUserByld () throws InvalidDomainDataException

* X ¥ X%

7

ConstraintViolationException , UserNotFoundException {
String email = "testaddress@iterate.no”;
User user = new User(email);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 0);
persistenceFacade .save (user);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);
User savedUser = persistenceFacade.retrieveUser (1);
assertEquals (user , savedUser);

}
Vix:

x* Creates a new wuser, saves it. Tries to retrieve a mew user with a
id

* which does mot exist in the database and expects to get an
exception .

*
* @throws InvalidDomainDataFException
* @throws ConstraintViolationEzception
* @throws UserNotFoundException
*/
@Test (expected = UserNotFoundException. class)
public void testRetrieveUserByNonExistingld ()
throws InvalidDomainDataException, ConstraintViolationException ,
UserNotFoundException {
String email = "testaddress@iterate.no”;
User user = new User(email);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 0);
persistenceFacade .save (user);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);
User savedUser = persistenceFacade.retrieveUser (3);
assertEquals (user , savedUser);

VAT

x* Creates a new wuser, saves it and checks that the same user is
found , when

using the retrieveUserByXmppAddress method.

@throws InvalidDomainDataFEzception
@throws ConstraintViolationException

* ¥ X ¥

101

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234
235
236
237
238
239

240

241
242
243
244
245
246
247
248
249
250
251
252
253
254

E.2 leancast-business/src/test /java E Iterate LeanCast

* @throws UserNotFoundException
*/
QTest
public void testRetrieveUserByXmppAddress ()
throws InvalidDomainDataException, ConstraintViolationException ,
UserNotFoundException {
String email = "testaddress@iterate.no”;
User user = new User(email);
user .setXmppAddress (” testxmpp@iterate.no”) ;
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 0);
persistenceFacade .save (user);
assertEquals (persistenceFacade.retrieveAllUsers ().size (), 1)
User savedUser = persistenceFacade.retrieveUserByXmppAddress
.getXmppAddress());
assertEquals (user, savedUser);

5
(user

}
Vair

* Creates a new user, saves it and checks that the same user is
found, when
using the retrieveUserByPhoneNumber method.

@throws InvalidDomainDataFEzception
@throws ConstraintViolationEzception
* @throws UserNotFoundFExzception
*/
Q@Test
public void testRetrieveUserByPhoneNumber ()
throws InvalidDomainDataException, ConstraintViolationException ,
UserNotFoundException {
String email = "testaddress@iterate.no”;
User user = new User(email);
user .setPhoneNumber (7 12345678”) ;
user .setPhoneNumberCountryCode (”+49”) ;
assertEquals (persistenceFacade.retrieveAllUsers ().size (), 0);
persistenceFacade.save (user);
assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1)
User savedUser = persistenceFacade.retrieveUserByPhoneNumber

* X ¥ X

(” +49»7

123456787) ;
assertEquals (user, savedUser);

}
VAT

* Creates a new user, saves it and checks that no user is found
when trying

* to find a user with non—existing phone number and correct country
code.

*
* @throws InvalidDomainDataException
* @throws ConstraintViolationExzception
* @throws UserNotFoundFEzception
*/
@Test (expected = UserNotFoundException. class)
public void testRetrieveUserByNonExistingPhoneNumber ()
throws InvalidDomainDataException, ConstraintViolationException ,
UserNotFoundException {
String email = ”testaddress@iterate.no”;
User user = new User(email);
user . setPhoneNumber (7 12345678”) ;
user . setPhoneNumberCountryCode (”+49”) ;
assertEquals (persistenceFacade.retrieveAllUsers ().size (), 0);

102

E Iterate LeanCast E.2 leancast-business/src/test/java

255 persistenceFacade.save (user);

256 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);

257 User savedUser = persistenceFacade.retrieveUserByPhoneNumber (”+49”

258 7876543217 ;

259 assertEquals (user, savedUser);

260 }

261

262 Vair:

263 x Creates a new user, saves it and checks that no user is found
when trying

264 * to find a user with non—ezisting country code and correct phone
number.

265 *

266 * @throws InvalidDomainDataFException

267 * @throws ConstraintViolationException

268 * @throws UserNotFoundEzception

269 x/

270 @Test (expected = UserNotFoundException. class)

271 public void testRetrieveUserByNonExistingPhoneNumberCountryCode ()

272 throws InvalidDomainDataException, ConstraintViolationException ,

273 UserNotFoundException {

274 String email = ”testaddress@Qiterate.no”

275 User user = new User(email);

276 user . setPhoneNumber (7 12345678”) ;

277 user . setPhoneNumberCountryCode (”+49”) ;

278 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 0);

279 persistenceFacade .save (user);

280 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);

281 User savedUser = persistenceFacade.retrieveUserByPhoneNumber (”+47”

282 712345678”) ;

283 assertEquals (user, savedUser);

284 |}

285

286 VAT

287 x Creates a new wuser, saves it and checks that an exception is
thrown when

288 * trying to get a user with non—ezxistent XMPP address.

289 *

290 * @throws InvalidDomainDataFException

291 * @throws ConstraintViolationEzception

292 * @throws UserNotFoundException

293 */

294 @Test (expected = UserNotFoundException. class)

295 public void testRetrieveUserByNonExistingXmppAddress ()

296 throws InvalidDomainDataException, ConstraintViolationException ,

297 UserNotFoundException {

298 String email = ”testaddress@iterate.no”

299 User user = new User (email);

300 user .setXmppAddress (” testxmpp@iterate.no”) ;

301 assertEquals (persistenceFacade.retrieveAllUsers ().size (), 0);

302 persistenceFacade.save (user);

303 assertEquals (persistenceFacade.retrieveAllUsers () .size (), 1);

304 User savedUser = persistenceFacade

305 .retrieveUserByXmppAddress(” testaddress@iterate .no”);

306 assertEquals (user, savedUser);

307 1

308

309 o

310 x Test retrieval of nags within a too big interval.

311 *

103

E.2 leancast-business/src/test /java E Iterate LeanCast

312 * @throws ConstraintViolationException

313 * @throws InvalidEmailAddressException

314 * @throws IntervalOutOfRangeExzception

315 %/

316 Q@Test (expected = IntervalOutOfRangeException. class)

317 public void testRetrieveNagsTooBiglnterval ()

318 throws ConstraintViolationException ,

InvalidEmailAddressException ,

319 IntervalOutOfRangeException {

320 persistenceFacade .retrieveNags (new Date(0), new Date(1000 * 60 x*
60));

321 }

322

323 VAT

324 * Test retrieval of mags within a negative interval.

325 *

326 * @throws ConstraintViolationEzxzception

327 * @throws InvalidEmailAddressException

328 * @throws IntervalOutOfRangeFExzception

329 %/

330 @Test (expected = IntervalOutOfRangeException. class)

331 public void testRetrieveNagsNegativelnterval ()

332 throws ConstraintViolationException ,

InvalidEmailAddressException ,

333 IntervalOutOfRangeException {

334 persistenceFacade . retrieveNags (new Date(1l), new Date(0));

335 |}

336

337 Q@Test

338 public void testRetrieveNags () throws ConstraintViolationException ,

339 InvalidEmailAddressException , IntervalOutOfRangeException {

340 Calendar date = Calendar.getInstance();

341 date.set (2015, 11, 30);

342 Nag nag = new Nag() ;

343 date.set (2008, 0, 1);

344 nag.setStart (date.getTime());

345 date.set (2018, 0, 1);

346 nag.setEnd (date.getTime());

347 nag.setTime (23, 59);

348 nag .setMonday (true) ;

349 nag.setChannel ("xmpp”) ;

350 User user = new User () ;

351 user .setEmailAddress (” test@example.org”);

352 persistenceFacade.save (user);

353 nag.setUser (user);

354 persistenceFacade.save(nag);

355 Nag nag2 = new Nag() ;

356 date.set (2008, 0, 1);

357 nag2.setStart (date.getTime());

358 nag?2.setTime (0, 2);

359 nag2.setMonday (true) ;

360 nag?2.setTuesday (true) ;

361 nag2.setUser (user);

362 nag2.setChannel (”xmpp”) ;

363 persistenceFacade.save(nag2);

364

365 GregorianCalendar cal = new GregorianCalendar () ;

366 cal.set (2008, 6, 14, 15, 23);

367 GregorianCalendar calTo = new GregorianCalendar () ;

368 calTo.set (2008, 6, 14, 15, 23);

369 List <Nag> test = persistenceFacade.retrieveNags(cal.getTime(),
calTo

104

370
371
372
373
374
375

376
377
378
379
380

381
382
383
384
385

386
387
388
389
390

391
392
393
394
395

396
397
398
399
400

401
402
403
404
405

406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421

422

E Iterate LeanCast E.2 leancast-business/src/test/java

.getTime ());
assertEquals (0, test.size());

cal.set (2008, 6, 14, 23, 59);
calTo.set (2008, 6, 14, 23, 59);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (1, test.size());

cal.set (2008, 6, 14, 23, 58);
calTo.set (2008, 6, 15, 0, 3);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (2, test.size());

cal.set (2008, 6, 14, 23, 58);
calTo.set (2008, 6, 15, 0, 2);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (1, test.size());

cal.set (2008, 6, 14, 23, 59);
calTo.set (2008, 6, 15, 0, 2);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0)s

assertEquals (1, test.size());

cal.set (2008, 6, 15, 0, 0);
calTo.set (2008, 6, 15, 0, 2);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (0, test.size());

cal.set (2008, 6, 15, 0, 0);
calTo.set (2008, 6, 15, 0, 3);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0)s

assertEquals (1, test.size());

cal.set (2008, 6, 14, 14, 23);
calTo.set (2008, 6, 14, 14, 59);
test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (0, test.size());

// Do not get mags on a monday, if monday ts set to false.
nag.setMonday (false) ;

persistenceFacade.save(nag);

cal.set (2008, 6, 14, 23, 59);

calTo.set (2008, 6, 14, 23, 59);

test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime
0);
assertEquals (0, test.size());
}
VAT
x* Test that we don’t get a nag with end date in the past.
*/
QTest

public void testRetrieveNagsEnded () throws
ConstraintViolationException ,
InvalidEmailAddressException , IntervalOutOfRangeException {

105

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454

455
456
457
458
459
460

461
462
463
464
465
466
467
468
469

470
471
472
473
474

476
477
478
479
480

E.2 leancast-business/src/test /java

E Iterate LeanCast

Calendar date = Calendar. getInstance () ;
date.set (2015, 11, 30);

Nag nag = new Nag() ;

date.set (2008, 0, 1);
nag.setStart (date.getTime());
date.set (2009, 0, 1);
nag.setEnd (date.getTime());
nag.setTime (23, 59);
nag.setMonday (true) ;
nag.setTuesday (true) ;
nag.setWednesday (true) ;
nag.setThursday (true) ;
nag.setChannel (”xmpp”) ;

User user = new User () ;

user .setEmailAddress (” test@example.org”);

persistenceFacade.save (user);
nag.setUser (user);
persistenceFacade .save (nag);

GregorianCalendar cal = new GregorianCalendar () ;

cal.set (2008, 6, 14, 23, 59);

GregorianCalendar calTo = new GregorianCalendar () ;

calTo.set (2008, 6, 14, 23, 59);

List<Nag> test = persistenceFacade.retrieveNags(cal.getTime(),

calTo
.getTime ()) ;
assertEquals (nag, test.get(0));

// Should not get any when interval end is

date.set (2008, 0, 1);
nag.setEnd (date.getTime ());
persistenceFacade.save(nag);

before nag end date.

test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0);

assertEquals (0, test.size());

// End date should be greater than interval end date.

nag.setEnd (calTo.getTime ());
persistenceFacade.save(nag);

test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime
0);
assertEquals (0, test.size());
}
VAT
x Test that we don’t get a nag with start date in the future.
*/
Q@Test

public void testRetrieveNagsNotStarted ()

throws ConstraintViolationException ,
InvalidEmailAddressException ,
IntervalOutOfRangeException {
Calendar date = Calendar.getInstance();
date.set (2015, 11, 30);
Nag nag = new Nag() ;
date.set (2008, 0, 1);
nag.setStart (date.getTime());
date.set (2015, 0, 1);
nag.setEnd (date.getTime ());
nag.setTime (23, 59);
nag .setMonday (true) ;
nag.setTuesday (true) ;

106

E Iterate LeanCast E.2 leancast-business/src/test/java

nag.setWednesday (true) ;

nag.setThursday (true);

nag.setChannel (”xmpp”) ;

User user = new User () ;

user .setEmailAddress (7 test@example.org”);
persistenceFacade.save (user);

nag.setUser (user);
persistenceFacade.save(nag);

GregorianCalendar cal = new GregorianCalendar () ;
cal.set (2008, 6, 14, 23, 59);
GregorianCalendar calTo = new GregorianCalendar () ;

calTo.set (2008, 6, 14, 23, 59);

List <Nag> test = persistenceFacade.retrieveNags(cal.getTime (),
calTo
.getTime ());

assertEquals (nag, test.get(0));

// Do not get mags if it is in the future

date.set (2009, 0, 1);

nag.setStart (date.getTime());

persistenceFacade.save(nag);

test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0)s

assertEquals (0, test.size());

// Get a nag if the interval is on start date.

nag.setStart (cal.getTime());

persistenceFacade.save(nag);

test = persistenceFacade.retrieveNags(cal.getTime(), calTo.getTime

0)s

assertEquals (nag, test.get(0));

}

@Test
public void retrieveMessagesByUser () throws InvalidMessageException ,
ConstraintViolationException , InvalidEmailAddressException
UserNotFoundException {
User systemUser = new User(Settings.SYSTEM_USER EMAIL) ;
User userl = new User(”test@test.no”);
User user2 = new User(”test2@test.no”);

Set<User> setofUsers = new HashSet<User>();
setofUsers.add(userl);
setofUsers.add (user2);

Message messagel = new Message (userl, setofUsers, ”Testing”);
messagel . setTimestamp (new Date ()) ;

Message message2 = new Message(userl, user2, ”Testing”);
message?2 .setTimestamp (new Date());

Message message3 = new Message(userl, userl, ”Testing”);

messaged.setTimestamp (new Date());

Message systemMessagel = new Message(userl , systemUser
”Sent system message”);

Message systemMessage2 = new Message (systemUser, userl ,
”Sent system message”);

List <Message> listOfUserlMessages = new ArrayList<Message>();

listOfUser1Messages .add (messagel) ;
listOfUser1Messages .add (message2) ;

107

566
567

568
569
570
571
572
573
574
575
576

578
579
580
581
582
583
584
585
586
587
588
589
590

591
592
593
594

E.2 leancast-business/src/test /java E Iterate LeanCast

listOfUser1Messages .add (message3) ;

List <Message> listOfUser2Messages = new ArrayList<Message >();
listOfUser2Messages . add (messagel) ;
listOfUser2Messages .add (message2) ;

persistenceFacade .save(systemUser) ;
persistenceFacade .save(userl);
persistenceFacade .save(user2);

persistenceFacade .save (messagel);
persistenceFacade.save(message2);
persistenceFacade.save (message3) ;
persistenceFacade.save(systemMessagel);
persistenceFacade.save(systemMessage2) ;

List <Message> listOfUserlSystemMessages = new ArrayList<Message >()

listOfUser1SystemMessages .add (systemMessagel) ;
listOfUser1SystemMessages .add (systemMessage?2) ;

List <Message> resultl = persistenceFacade.retrieveMessages (userl);
List <Message> result2 = persistenceFacade.retrieveMessages (user2);
List <Message> result3 = persistenceFacade.retrieveConversation (
userl ,
user2);
List <Message> result4 = persistenceFacade.retrieveConversation (
userl ,
userl);
List <Message> result5 = persistenceFacade.retrieveConversation (
userl ,
systemUser) ;
List <Message> result6 = persistenceFacade.retrieveConversation (

systemUser , userl);

// resultl further down

assertEquals (”result2 assertion: ”, listOfUser2Messages, result2);

assertEquals ("result3 assertion: 7, listOfUser2Messages, result3);

// result4 further down

assertEquals ("result5 assertion: 7, listOfUserlSystemMessages,
resultb);

assertEquals (" result6 assertion: ”, listOfUserlSystemMessages,
result6);

listOfUserlSystemMessages.addAll (1listOfUser1Messages) ;
assertTrue(resultl.containsAll(listOfUserlSystemMessages)
&& resultl.size () = listOfUserlSystemMessages.size ());

listOfUser1Messages .remove (message2) ;
assertTrue (result4 .containsAll (listOfUserlMessages)

&& resultd .size () = listOfUserlMessages.size ());

*

Tests that the correct messages are retrieved when retrieving
messages

saved after a given timestamp.

@throws InvalidMessageException
@throws ConstraintViolationException

108

595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

625
626
627
628
629
630
631
632
633
634
635
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652

E Iterate LeanCast E.2 leancast-business/src/test/java

*
*
*

@throws InvalidEmailAddressException
@throws UserNotFoundEzception

/

Q@Test
public void retrieveMessagesByTimestamp () throws

}
/*

*

* ¥ ¥ ¥ ¥

*
*

InvalidMessageException ,
ConstraintViolationException , InvalidEmailAddressException ,
UserNotFoundException {

long currentTime = System.currentTimeMillis () ;

User userl = new User(”test@test.no”);

Message messagel = new Message (userl, userl, ”Testing”);
messagel .setTimestamp (new Date(currentTime — 1000));
Message message2 = new Message(userl, userl, ”Testing”);
message?2.setTimestamp (new Date(currentTime)) ;

Message message3 = new Message(userl, userl, ”Testing”);

message3.setTimestamp (new Date(currentTime + 1000));

List <Message> listOfMessages = new ArrayList<Message>();
listOfMessages .add (messagel);
listOfMessages .add (message2) ;
listOfMessages .add (message3) ;

persistenceFacade .save(userl);

persistenceFacade.save(messagel);
persistenceFacade .save (message2);
persistenceFacade.save(message3);

// Three new messages

List <Message> result = persistenceFacade.retrieveMessages (new Date
(
currentTime — 2000));

assertArrayEquals (result.toArray (), listOfMessages.toArray());

// Two mew messages
result = persistenceFacade
.retrieveMessages (new Date(currentTime — 1000));
listOfMessages .remove (messagel) ;
assertArrayEquals (result.toArray (), listOfMessages.toArray());

// No new messages
result = persistenceFacade

.retrieveMessages (new Date(currentTime + 1000));
listOfMessages .remove (message2) ;
listOfMessages .remove (message3) ;
assertArrayEquals (result.toArray (), listOfMessages.toArray());

*

Tests that the correct users are retrieved when retrieving wusers
saved

after a given timestamp .

@throws InvalidMessageExzception
@throws ConstraintViolationEzception
@throws InvalidEmailAddressException
@throws UserNotFoundExzception

/

@Test
public void retrieveUsersByTimestamp () throws

InvalidMessageException ,

109

E.2 leancast-business/src/test /java E Iterate LeanCast

653 ConstraintViolationException , InvalidEmailAddressException ,

654 UserNotFoundException {

655 long currentTime = System.currentTimeMillis () ;

656 User userl = new User(”test1@test.no”);

657 userl.setLastModified (new Date(currentTime — 1000));

658 User user2 = new User(”test2@test.no”);

659 user2.setLastModified (new Date(currentTime));

660 User user3 = new User(”test3@test.no”);

661 user3.setLastModified (new Date(currentTime + 1000));

662

663 List<User> listOfUsers = new ArrayList<User >();

664 listOfUsers .add (userl);

665 listOfUsers .add (user2);

666 listOfUsers .add (user3);

667

668 persistenceFacade .save(userl);

669 persistenceFacade .save(user2);

670 persistenceFacade .save(user3);

671

672 // Three new messages

673 List <User> result = persistenceFacade.retrieveUsers (new Date(

674 currentTime — 2000));

675 assertArrayEquals(result.toArray (), listOfUsers.toArray());

676

677 // Two mew messages

678 result = persistenceFacade.retrieveUsers (new Date(currentTime —
1000)) ;

679 listOfUsers .remove (userl);

680 assertArrayEquals (result.toArray (), listOfUsers.toArray());

681

682 // No new messages

683 result = persistenceFacade.retrieveUsers (new Date(currentTime +
1000)) ;

684 listOfUsers .remove (user2);

685 listOfUsers .remove (user3);

686 assertArrayEquals (result.toArray (), listOfUsers.toArray());

687 }

688

689 VAT

690 * Test that only sms messages which are not processed are retrieved

691 *

692 * @throws ConstraintViolationException

693 % @throws InvalidDomainDataExzception

694 */

695 @Test

696 public void testRetrieveNewSmsMessages ()

697 throws ConstraintViolationException, InvalidDomainDataException

698 SmsMessage smsMessagel = new SmsMessage(”12345678” , ” Messagel”) ;

699 smsMessagel .setIdentifier (" Messagel”) ;

700 smsMessagel . setProcessed (true);

701 SmsMessage smsMessage2 = new SmsMessage(”12345678” , ” Message2”);

702 smsMessage2.setIdentifier (” Message2”);

703 smsMessage2.setProcessed (false) ;

704

705 persistenceFacade .save (smsMessagel);

706 persistenceFacade.save (smsMessage2) ;

707

708 List <SmsMessage> smsMessages = new ArrayList<SmsMessage>();

709 smsMessages . add (smsMessage2) ;

710

110

711

712
713
714
715
716
evs
718
719
720
721
722

723
724
725
726
727
728
729

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

748
749
750

E Iterate LeanCast E.2 leancast-business/src/test/java

List <SmsMessage> result = persistenceFacade.retrieveNewSmsMessages

Q)

assertArrayEquals (smsMessages.toArray (), result.toArray());

smsMessage2.setProcessed (true);

persistenceFacade .save (smsMessage2);

result = persistenceFacade.retrieveNewSmsMessages () ;
smsMessages . remove (smsMessage2) ;

assertArrayEquals (smsMessages.toArray (), result.toArray());

}

@Test
public void testRetrieveSmsMessageByld () throws
InvalidDomainDataException ,
ConstraintViolationException , SmsMessageNotFoundException {
SmsMessage smsMessagel = new SmsMessage(” 123456787 , ” Messagel”) ;
smsMessagel.setIdentifier (" Messagel”) ;

smsMessagel.setProcessed (true) ;
persistenceFacade.save(smsMessagel);
SmsMessage result = persistenceFacade.retrieveSmsMessage (” Messagel
”
)5

assertEquals (smsMessagel, result);

smsMessagel .setProcessed (false) ;
persistenceFacade.save(smsMessagel);

result = persistenceFacade.retrieveSmsMessage (” Messagel”) ;
assertEquals (smsMessagel, result);

}

@Test (expected = SmsMessageNotFoundException. class)
public void testRetrieveSmsMessageByNonExistingId ()
throws InvalidDomainDataException, ConstraintViolationException ,
SmsMessageNotFoundException {
SmsMessage smsMessagel = new SmsMessage(”12345678” , ” Messagel”) ;
smsMessagel.setIdentifier (" Messagel”);
smsMessagel .setProcessed (false) ;
persistenceFacade.save(smsMessagel) ;

SmsMessage result = persistenceFacade.retrieveSmsMessage (” Message2

77),
)

assertEquals (smsMessagel, result);

Listing E.4: HibernatePersistenceFacadeTest.java

QuerydslPersistenceFacadeTest.java

package no.iterate.leancast.dao;

import org.hibernate.classic. Session;

VxS

x Subclass of {@link HibernatePersistenceFacadeTest} which

x uses {@link QuerydslPersistenceFacade} as the implementation.
*

* @author Stein Magnus Jodal (Master’s Thesis)

*/

public class QuerydslPersistenceFacadeTest extends

111

12
13
14
15
16
17
18

E.2 leancast-business/src/test /java

E Iterate LeanCast

}

HibernatePersistenceFacadeTest {

@Override
public PersistenceFacade getPersistenceFacade(Session session) {

}

return new QuerydslPersistenceFacade (session);

Listing E.5: QuerydslPersistenceFacadeTest.java

112

	Title Page
	Problem Description
	masteroppgave.pdf

